xref: /linux/drivers/md/raid5.c (revision 1eb63378354ac37b7e27d256bbf84684751bac32)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include <linux/ratelimit.h>
55 #include "md.h"
56 #include "raid5.h"
57 #include "raid0.h"
58 #include "bitmap.h"
59 
60 /*
61  * Stripe cache
62  */
63 
64 #define NR_STRIPES		256
65 #define STRIPE_SIZE		PAGE_SIZE
66 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
67 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
68 #define	IO_THRESHOLD		1
69 #define BYPASS_THRESHOLD	1
70 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
71 #define HASH_MASK		(NR_HASH - 1)
72 
73 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
74 {
75 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
76 	return &conf->stripe_hashtbl[hash];
77 }
78 
79 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
80  * order without overlap.  There may be several bio's per stripe+device, and
81  * a bio could span several devices.
82  * When walking this list for a particular stripe+device, we must never proceed
83  * beyond a bio that extends past this device, as the next bio might no longer
84  * be valid.
85  * This function is used to determine the 'next' bio in the list, given the sector
86  * of the current stripe+device
87  */
88 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
89 {
90 	int sectors = bio->bi_size >> 9;
91 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
92 		return bio->bi_next;
93 	else
94 		return NULL;
95 }
96 
97 /*
98  * We maintain a biased count of active stripes in the bottom 16 bits of
99  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100  */
101 static inline int raid5_bi_phys_segments(struct bio *bio)
102 {
103 	return bio->bi_phys_segments & 0xffff;
104 }
105 
106 static inline int raid5_bi_hw_segments(struct bio *bio)
107 {
108 	return (bio->bi_phys_segments >> 16) & 0xffff;
109 }
110 
111 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112 {
113 	--bio->bi_phys_segments;
114 	return raid5_bi_phys_segments(bio);
115 }
116 
117 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118 {
119 	unsigned short val = raid5_bi_hw_segments(bio);
120 
121 	--val;
122 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123 	return val;
124 }
125 
126 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127 {
128 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
129 }
130 
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head *sh)
133 {
134 	if (sh->ddf_layout)
135 		/* ddf always start from first device */
136 		return 0;
137 	/* md starts just after Q block */
138 	if (sh->qd_idx == sh->disks - 1)
139 		return 0;
140 	else
141 		return sh->qd_idx + 1;
142 }
143 static inline int raid6_next_disk(int disk, int raid_disks)
144 {
145 	disk++;
146 	return (disk < raid_disks) ? disk : 0;
147 }
148 
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150  * We need to map each disk to a 'slot', where the data disks are slot
151  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152  * is raid_disks-1.  This help does that mapping.
153  */
154 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155 			     int *count, int syndrome_disks)
156 {
157 	int slot = *count;
158 
159 	if (sh->ddf_layout)
160 		(*count)++;
161 	if (idx == sh->pd_idx)
162 		return syndrome_disks;
163 	if (idx == sh->qd_idx)
164 		return syndrome_disks + 1;
165 	if (!sh->ddf_layout)
166 		(*count)++;
167 	return slot;
168 }
169 
170 static void return_io(struct bio *return_bi)
171 {
172 	struct bio *bi = return_bi;
173 	while (bi) {
174 
175 		return_bi = bi->bi_next;
176 		bi->bi_next = NULL;
177 		bi->bi_size = 0;
178 		bio_endio(bi, 0);
179 		bi = return_bi;
180 	}
181 }
182 
183 static void print_raid5_conf (struct r5conf *conf);
184 
185 static int stripe_operations_active(struct stripe_head *sh)
186 {
187 	return sh->check_state || sh->reconstruct_state ||
188 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
189 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
190 }
191 
192 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
193 {
194 	if (atomic_dec_and_test(&sh->count)) {
195 		BUG_ON(!list_empty(&sh->lru));
196 		BUG_ON(atomic_read(&conf->active_stripes)==0);
197 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
198 			if (test_bit(STRIPE_DELAYED, &sh->state))
199 				list_add_tail(&sh->lru, &conf->delayed_list);
200 			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
201 				   sh->bm_seq - conf->seq_write > 0)
202 				list_add_tail(&sh->lru, &conf->bitmap_list);
203 			else {
204 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
205 				list_add_tail(&sh->lru, &conf->handle_list);
206 			}
207 			md_wakeup_thread(conf->mddev->thread);
208 		} else {
209 			BUG_ON(stripe_operations_active(sh));
210 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
211 				atomic_dec(&conf->preread_active_stripes);
212 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
213 					md_wakeup_thread(conf->mddev->thread);
214 			}
215 			atomic_dec(&conf->active_stripes);
216 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217 				list_add_tail(&sh->lru, &conf->inactive_list);
218 				wake_up(&conf->wait_for_stripe);
219 				if (conf->retry_read_aligned)
220 					md_wakeup_thread(conf->mddev->thread);
221 			}
222 		}
223 	}
224 }
225 
226 static void release_stripe(struct stripe_head *sh)
227 {
228 	struct r5conf *conf = sh->raid_conf;
229 	unsigned long flags;
230 
231 	spin_lock_irqsave(&conf->device_lock, flags);
232 	__release_stripe(conf, sh);
233 	spin_unlock_irqrestore(&conf->device_lock, flags);
234 }
235 
236 static inline void remove_hash(struct stripe_head *sh)
237 {
238 	pr_debug("remove_hash(), stripe %llu\n",
239 		(unsigned long long)sh->sector);
240 
241 	hlist_del_init(&sh->hash);
242 }
243 
244 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
245 {
246 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
247 
248 	pr_debug("insert_hash(), stripe %llu\n",
249 		(unsigned long long)sh->sector);
250 
251 	hlist_add_head(&sh->hash, hp);
252 }
253 
254 
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(struct r5conf *conf)
257 {
258 	struct stripe_head *sh = NULL;
259 	struct list_head *first;
260 
261 	if (list_empty(&conf->inactive_list))
262 		goto out;
263 	first = conf->inactive_list.next;
264 	sh = list_entry(first, struct stripe_head, lru);
265 	list_del_init(first);
266 	remove_hash(sh);
267 	atomic_inc(&conf->active_stripes);
268 out:
269 	return sh;
270 }
271 
272 static void shrink_buffers(struct stripe_head *sh)
273 {
274 	struct page *p;
275 	int i;
276 	int num = sh->raid_conf->pool_size;
277 
278 	for (i = 0; i < num ; i++) {
279 		p = sh->dev[i].page;
280 		if (!p)
281 			continue;
282 		sh->dev[i].page = NULL;
283 		put_page(p);
284 	}
285 }
286 
287 static int grow_buffers(struct stripe_head *sh)
288 {
289 	int i;
290 	int num = sh->raid_conf->pool_size;
291 
292 	for (i = 0; i < num; i++) {
293 		struct page *page;
294 
295 		if (!(page = alloc_page(GFP_KERNEL))) {
296 			return 1;
297 		}
298 		sh->dev[i].page = page;
299 	}
300 	return 0;
301 }
302 
303 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
305 			    struct stripe_head *sh);
306 
307 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
308 {
309 	struct r5conf *conf = sh->raid_conf;
310 	int i;
311 
312 	BUG_ON(atomic_read(&sh->count) != 0);
313 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314 	BUG_ON(stripe_operations_active(sh));
315 
316 	pr_debug("init_stripe called, stripe %llu\n",
317 		(unsigned long long)sh->sector);
318 
319 	remove_hash(sh);
320 
321 	sh->generation = conf->generation - previous;
322 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323 	sh->sector = sector;
324 	stripe_set_idx(sector, conf, previous, sh);
325 	sh->state = 0;
326 
327 
328 	for (i = sh->disks; i--; ) {
329 		struct r5dev *dev = &sh->dev[i];
330 
331 		if (dev->toread || dev->read || dev->towrite || dev->written ||
332 		    test_bit(R5_LOCKED, &dev->flags)) {
333 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334 			       (unsigned long long)sh->sector, i, dev->toread,
335 			       dev->read, dev->towrite, dev->written,
336 			       test_bit(R5_LOCKED, &dev->flags));
337 			WARN_ON(1);
338 		}
339 		dev->flags = 0;
340 		raid5_build_block(sh, i, previous);
341 	}
342 	insert_hash(conf, sh);
343 }
344 
345 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
346 					 short generation)
347 {
348 	struct stripe_head *sh;
349 	struct hlist_node *hn;
350 
351 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
352 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
353 		if (sh->sector == sector && sh->generation == generation)
354 			return sh;
355 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
356 	return NULL;
357 }
358 
359 /*
360  * Need to check if array has failed when deciding whether to:
361  *  - start an array
362  *  - remove non-faulty devices
363  *  - add a spare
364  *  - allow a reshape
365  * This determination is simple when no reshape is happening.
366  * However if there is a reshape, we need to carefully check
367  * both the before and after sections.
368  * This is because some failed devices may only affect one
369  * of the two sections, and some non-in_sync devices may
370  * be insync in the section most affected by failed devices.
371  */
372 static int has_failed(struct r5conf *conf)
373 {
374 	int degraded;
375 	int i;
376 	if (conf->mddev->reshape_position == MaxSector)
377 		return conf->mddev->degraded > conf->max_degraded;
378 
379 	rcu_read_lock();
380 	degraded = 0;
381 	for (i = 0; i < conf->previous_raid_disks; i++) {
382 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
383 		if (!rdev || test_bit(Faulty, &rdev->flags))
384 			degraded++;
385 		else if (test_bit(In_sync, &rdev->flags))
386 			;
387 		else
388 			/* not in-sync or faulty.
389 			 * If the reshape increases the number of devices,
390 			 * this is being recovered by the reshape, so
391 			 * this 'previous' section is not in_sync.
392 			 * If the number of devices is being reduced however,
393 			 * the device can only be part of the array if
394 			 * we are reverting a reshape, so this section will
395 			 * be in-sync.
396 			 */
397 			if (conf->raid_disks >= conf->previous_raid_disks)
398 				degraded++;
399 	}
400 	rcu_read_unlock();
401 	if (degraded > conf->max_degraded)
402 		return 1;
403 	rcu_read_lock();
404 	degraded = 0;
405 	for (i = 0; i < conf->raid_disks; i++) {
406 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
407 		if (!rdev || test_bit(Faulty, &rdev->flags))
408 			degraded++;
409 		else if (test_bit(In_sync, &rdev->flags))
410 			;
411 		else
412 			/* not in-sync or faulty.
413 			 * If reshape increases the number of devices, this
414 			 * section has already been recovered, else it
415 			 * almost certainly hasn't.
416 			 */
417 			if (conf->raid_disks <= conf->previous_raid_disks)
418 				degraded++;
419 	}
420 	rcu_read_unlock();
421 	if (degraded > conf->max_degraded)
422 		return 1;
423 	return 0;
424 }
425 
426 static struct stripe_head *
427 get_active_stripe(struct r5conf *conf, sector_t sector,
428 		  int previous, int noblock, int noquiesce)
429 {
430 	struct stripe_head *sh;
431 
432 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
433 
434 	spin_lock_irq(&conf->device_lock);
435 
436 	do {
437 		wait_event_lock_irq(conf->wait_for_stripe,
438 				    conf->quiesce == 0 || noquiesce,
439 				    conf->device_lock, /* nothing */);
440 		sh = __find_stripe(conf, sector, conf->generation - previous);
441 		if (!sh) {
442 			if (!conf->inactive_blocked)
443 				sh = get_free_stripe(conf);
444 			if (noblock && sh == NULL)
445 				break;
446 			if (!sh) {
447 				conf->inactive_blocked = 1;
448 				wait_event_lock_irq(conf->wait_for_stripe,
449 						    !list_empty(&conf->inactive_list) &&
450 						    (atomic_read(&conf->active_stripes)
451 						     < (conf->max_nr_stripes *3/4)
452 						     || !conf->inactive_blocked),
453 						    conf->device_lock,
454 						    );
455 				conf->inactive_blocked = 0;
456 			} else
457 				init_stripe(sh, sector, previous);
458 		} else {
459 			if (atomic_read(&sh->count)) {
460 				BUG_ON(!list_empty(&sh->lru)
461 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
462 			} else {
463 				if (!test_bit(STRIPE_HANDLE, &sh->state))
464 					atomic_inc(&conf->active_stripes);
465 				if (list_empty(&sh->lru) &&
466 				    !test_bit(STRIPE_EXPANDING, &sh->state))
467 					BUG();
468 				list_del_init(&sh->lru);
469 			}
470 		}
471 	} while (sh == NULL);
472 
473 	if (sh)
474 		atomic_inc(&sh->count);
475 
476 	spin_unlock_irq(&conf->device_lock);
477 	return sh;
478 }
479 
480 static void
481 raid5_end_read_request(struct bio *bi, int error);
482 static void
483 raid5_end_write_request(struct bio *bi, int error);
484 
485 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
486 {
487 	struct r5conf *conf = sh->raid_conf;
488 	int i, disks = sh->disks;
489 
490 	might_sleep();
491 
492 	for (i = disks; i--; ) {
493 		int rw;
494 		struct bio *bi;
495 		struct md_rdev *rdev;
496 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
497 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
498 				rw = WRITE_FUA;
499 			else
500 				rw = WRITE;
501 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
502 			rw = READ;
503 		else
504 			continue;
505 
506 		bi = &sh->dev[i].req;
507 
508 		bi->bi_rw = rw;
509 		if (rw & WRITE)
510 			bi->bi_end_io = raid5_end_write_request;
511 		else
512 			bi->bi_end_io = raid5_end_read_request;
513 
514 		rcu_read_lock();
515 		rdev = rcu_dereference(conf->disks[i].rdev);
516 		if (rdev && test_bit(Faulty, &rdev->flags))
517 			rdev = NULL;
518 		if (rdev)
519 			atomic_inc(&rdev->nr_pending);
520 		rcu_read_unlock();
521 
522 		/* We have already checked bad blocks for reads.  Now
523 		 * need to check for writes.
524 		 */
525 		while ((rw & WRITE) && rdev &&
526 		       test_bit(WriteErrorSeen, &rdev->flags)) {
527 			sector_t first_bad;
528 			int bad_sectors;
529 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
530 					      &first_bad, &bad_sectors);
531 			if (!bad)
532 				break;
533 
534 			if (bad < 0) {
535 				set_bit(BlockedBadBlocks, &rdev->flags);
536 				if (!conf->mddev->external &&
537 				    conf->mddev->flags) {
538 					/* It is very unlikely, but we might
539 					 * still need to write out the
540 					 * bad block log - better give it
541 					 * a chance*/
542 					md_check_recovery(conf->mddev);
543 				}
544 				md_wait_for_blocked_rdev(rdev, conf->mddev);
545 			} else {
546 				/* Acknowledged bad block - skip the write */
547 				rdev_dec_pending(rdev, conf->mddev);
548 				rdev = NULL;
549 			}
550 		}
551 
552 		if (rdev) {
553 			if (s->syncing || s->expanding || s->expanded)
554 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
555 
556 			set_bit(STRIPE_IO_STARTED, &sh->state);
557 
558 			bi->bi_bdev = rdev->bdev;
559 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
560 				__func__, (unsigned long long)sh->sector,
561 				bi->bi_rw, i);
562 			atomic_inc(&sh->count);
563 			bi->bi_sector = sh->sector + rdev->data_offset;
564 			bi->bi_flags = 1 << BIO_UPTODATE;
565 			bi->bi_vcnt = 1;
566 			bi->bi_max_vecs = 1;
567 			bi->bi_idx = 0;
568 			bi->bi_io_vec = &sh->dev[i].vec;
569 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
570 			bi->bi_io_vec[0].bv_offset = 0;
571 			bi->bi_size = STRIPE_SIZE;
572 			bi->bi_next = NULL;
573 			generic_make_request(bi);
574 		} else {
575 			if (rw & WRITE)
576 				set_bit(STRIPE_DEGRADED, &sh->state);
577 			pr_debug("skip op %ld on disc %d for sector %llu\n",
578 				bi->bi_rw, i, (unsigned long long)sh->sector);
579 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
580 			set_bit(STRIPE_HANDLE, &sh->state);
581 		}
582 	}
583 }
584 
585 static struct dma_async_tx_descriptor *
586 async_copy_data(int frombio, struct bio *bio, struct page *page,
587 	sector_t sector, struct dma_async_tx_descriptor *tx)
588 {
589 	struct bio_vec *bvl;
590 	struct page *bio_page;
591 	int i;
592 	int page_offset;
593 	struct async_submit_ctl submit;
594 	enum async_tx_flags flags = 0;
595 
596 	if (bio->bi_sector >= sector)
597 		page_offset = (signed)(bio->bi_sector - sector) * 512;
598 	else
599 		page_offset = (signed)(sector - bio->bi_sector) * -512;
600 
601 	if (frombio)
602 		flags |= ASYNC_TX_FENCE;
603 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
604 
605 	bio_for_each_segment(bvl, bio, i) {
606 		int len = bvl->bv_len;
607 		int clen;
608 		int b_offset = 0;
609 
610 		if (page_offset < 0) {
611 			b_offset = -page_offset;
612 			page_offset += b_offset;
613 			len -= b_offset;
614 		}
615 
616 		if (len > 0 && page_offset + len > STRIPE_SIZE)
617 			clen = STRIPE_SIZE - page_offset;
618 		else
619 			clen = len;
620 
621 		if (clen > 0) {
622 			b_offset += bvl->bv_offset;
623 			bio_page = bvl->bv_page;
624 			if (frombio)
625 				tx = async_memcpy(page, bio_page, page_offset,
626 						  b_offset, clen, &submit);
627 			else
628 				tx = async_memcpy(bio_page, page, b_offset,
629 						  page_offset, clen, &submit);
630 		}
631 		/* chain the operations */
632 		submit.depend_tx = tx;
633 
634 		if (clen < len) /* hit end of page */
635 			break;
636 		page_offset +=  len;
637 	}
638 
639 	return tx;
640 }
641 
642 static void ops_complete_biofill(void *stripe_head_ref)
643 {
644 	struct stripe_head *sh = stripe_head_ref;
645 	struct bio *return_bi = NULL;
646 	struct r5conf *conf = sh->raid_conf;
647 	int i;
648 
649 	pr_debug("%s: stripe %llu\n", __func__,
650 		(unsigned long long)sh->sector);
651 
652 	/* clear completed biofills */
653 	spin_lock_irq(&conf->device_lock);
654 	for (i = sh->disks; i--; ) {
655 		struct r5dev *dev = &sh->dev[i];
656 
657 		/* acknowledge completion of a biofill operation */
658 		/* and check if we need to reply to a read request,
659 		 * new R5_Wantfill requests are held off until
660 		 * !STRIPE_BIOFILL_RUN
661 		 */
662 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
663 			struct bio *rbi, *rbi2;
664 
665 			BUG_ON(!dev->read);
666 			rbi = dev->read;
667 			dev->read = NULL;
668 			while (rbi && rbi->bi_sector <
669 				dev->sector + STRIPE_SECTORS) {
670 				rbi2 = r5_next_bio(rbi, dev->sector);
671 				if (!raid5_dec_bi_phys_segments(rbi)) {
672 					rbi->bi_next = return_bi;
673 					return_bi = rbi;
674 				}
675 				rbi = rbi2;
676 			}
677 		}
678 	}
679 	spin_unlock_irq(&conf->device_lock);
680 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
681 
682 	return_io(return_bi);
683 
684 	set_bit(STRIPE_HANDLE, &sh->state);
685 	release_stripe(sh);
686 }
687 
688 static void ops_run_biofill(struct stripe_head *sh)
689 {
690 	struct dma_async_tx_descriptor *tx = NULL;
691 	struct r5conf *conf = sh->raid_conf;
692 	struct async_submit_ctl submit;
693 	int i;
694 
695 	pr_debug("%s: stripe %llu\n", __func__,
696 		(unsigned long long)sh->sector);
697 
698 	for (i = sh->disks; i--; ) {
699 		struct r5dev *dev = &sh->dev[i];
700 		if (test_bit(R5_Wantfill, &dev->flags)) {
701 			struct bio *rbi;
702 			spin_lock_irq(&conf->device_lock);
703 			dev->read = rbi = dev->toread;
704 			dev->toread = NULL;
705 			spin_unlock_irq(&conf->device_lock);
706 			while (rbi && rbi->bi_sector <
707 				dev->sector + STRIPE_SECTORS) {
708 				tx = async_copy_data(0, rbi, dev->page,
709 					dev->sector, tx);
710 				rbi = r5_next_bio(rbi, dev->sector);
711 			}
712 		}
713 	}
714 
715 	atomic_inc(&sh->count);
716 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
717 	async_trigger_callback(&submit);
718 }
719 
720 static void mark_target_uptodate(struct stripe_head *sh, int target)
721 {
722 	struct r5dev *tgt;
723 
724 	if (target < 0)
725 		return;
726 
727 	tgt = &sh->dev[target];
728 	set_bit(R5_UPTODATE, &tgt->flags);
729 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
730 	clear_bit(R5_Wantcompute, &tgt->flags);
731 }
732 
733 static void ops_complete_compute(void *stripe_head_ref)
734 {
735 	struct stripe_head *sh = stripe_head_ref;
736 
737 	pr_debug("%s: stripe %llu\n", __func__,
738 		(unsigned long long)sh->sector);
739 
740 	/* mark the computed target(s) as uptodate */
741 	mark_target_uptodate(sh, sh->ops.target);
742 	mark_target_uptodate(sh, sh->ops.target2);
743 
744 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
745 	if (sh->check_state == check_state_compute_run)
746 		sh->check_state = check_state_compute_result;
747 	set_bit(STRIPE_HANDLE, &sh->state);
748 	release_stripe(sh);
749 }
750 
751 /* return a pointer to the address conversion region of the scribble buffer */
752 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
753 				 struct raid5_percpu *percpu)
754 {
755 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
756 }
757 
758 static struct dma_async_tx_descriptor *
759 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
760 {
761 	int disks = sh->disks;
762 	struct page **xor_srcs = percpu->scribble;
763 	int target = sh->ops.target;
764 	struct r5dev *tgt = &sh->dev[target];
765 	struct page *xor_dest = tgt->page;
766 	int count = 0;
767 	struct dma_async_tx_descriptor *tx;
768 	struct async_submit_ctl submit;
769 	int i;
770 
771 	pr_debug("%s: stripe %llu block: %d\n",
772 		__func__, (unsigned long long)sh->sector, target);
773 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
774 
775 	for (i = disks; i--; )
776 		if (i != target)
777 			xor_srcs[count++] = sh->dev[i].page;
778 
779 	atomic_inc(&sh->count);
780 
781 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
782 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
783 	if (unlikely(count == 1))
784 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
785 	else
786 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
787 
788 	return tx;
789 }
790 
791 /* set_syndrome_sources - populate source buffers for gen_syndrome
792  * @srcs - (struct page *) array of size sh->disks
793  * @sh - stripe_head to parse
794  *
795  * Populates srcs in proper layout order for the stripe and returns the
796  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
797  * destination buffer is recorded in srcs[count] and the Q destination
798  * is recorded in srcs[count+1]].
799  */
800 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
801 {
802 	int disks = sh->disks;
803 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
804 	int d0_idx = raid6_d0(sh);
805 	int count;
806 	int i;
807 
808 	for (i = 0; i < disks; i++)
809 		srcs[i] = NULL;
810 
811 	count = 0;
812 	i = d0_idx;
813 	do {
814 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
815 
816 		srcs[slot] = sh->dev[i].page;
817 		i = raid6_next_disk(i, disks);
818 	} while (i != d0_idx);
819 
820 	return syndrome_disks;
821 }
822 
823 static struct dma_async_tx_descriptor *
824 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
825 {
826 	int disks = sh->disks;
827 	struct page **blocks = percpu->scribble;
828 	int target;
829 	int qd_idx = sh->qd_idx;
830 	struct dma_async_tx_descriptor *tx;
831 	struct async_submit_ctl submit;
832 	struct r5dev *tgt;
833 	struct page *dest;
834 	int i;
835 	int count;
836 
837 	if (sh->ops.target < 0)
838 		target = sh->ops.target2;
839 	else if (sh->ops.target2 < 0)
840 		target = sh->ops.target;
841 	else
842 		/* we should only have one valid target */
843 		BUG();
844 	BUG_ON(target < 0);
845 	pr_debug("%s: stripe %llu block: %d\n",
846 		__func__, (unsigned long long)sh->sector, target);
847 
848 	tgt = &sh->dev[target];
849 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
850 	dest = tgt->page;
851 
852 	atomic_inc(&sh->count);
853 
854 	if (target == qd_idx) {
855 		count = set_syndrome_sources(blocks, sh);
856 		blocks[count] = NULL; /* regenerating p is not necessary */
857 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
858 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
859 				  ops_complete_compute, sh,
860 				  to_addr_conv(sh, percpu));
861 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
862 	} else {
863 		/* Compute any data- or p-drive using XOR */
864 		count = 0;
865 		for (i = disks; i-- ; ) {
866 			if (i == target || i == qd_idx)
867 				continue;
868 			blocks[count++] = sh->dev[i].page;
869 		}
870 
871 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
872 				  NULL, ops_complete_compute, sh,
873 				  to_addr_conv(sh, percpu));
874 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
875 	}
876 
877 	return tx;
878 }
879 
880 static struct dma_async_tx_descriptor *
881 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
882 {
883 	int i, count, disks = sh->disks;
884 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
885 	int d0_idx = raid6_d0(sh);
886 	int faila = -1, failb = -1;
887 	int target = sh->ops.target;
888 	int target2 = sh->ops.target2;
889 	struct r5dev *tgt = &sh->dev[target];
890 	struct r5dev *tgt2 = &sh->dev[target2];
891 	struct dma_async_tx_descriptor *tx;
892 	struct page **blocks = percpu->scribble;
893 	struct async_submit_ctl submit;
894 
895 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
896 		 __func__, (unsigned long long)sh->sector, target, target2);
897 	BUG_ON(target < 0 || target2 < 0);
898 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
899 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
900 
901 	/* we need to open-code set_syndrome_sources to handle the
902 	 * slot number conversion for 'faila' and 'failb'
903 	 */
904 	for (i = 0; i < disks ; i++)
905 		blocks[i] = NULL;
906 	count = 0;
907 	i = d0_idx;
908 	do {
909 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
910 
911 		blocks[slot] = sh->dev[i].page;
912 
913 		if (i == target)
914 			faila = slot;
915 		if (i == target2)
916 			failb = slot;
917 		i = raid6_next_disk(i, disks);
918 	} while (i != d0_idx);
919 
920 	BUG_ON(faila == failb);
921 	if (failb < faila)
922 		swap(faila, failb);
923 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
924 		 __func__, (unsigned long long)sh->sector, faila, failb);
925 
926 	atomic_inc(&sh->count);
927 
928 	if (failb == syndrome_disks+1) {
929 		/* Q disk is one of the missing disks */
930 		if (faila == syndrome_disks) {
931 			/* Missing P+Q, just recompute */
932 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
933 					  ops_complete_compute, sh,
934 					  to_addr_conv(sh, percpu));
935 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
936 						  STRIPE_SIZE, &submit);
937 		} else {
938 			struct page *dest;
939 			int data_target;
940 			int qd_idx = sh->qd_idx;
941 
942 			/* Missing D+Q: recompute D from P, then recompute Q */
943 			if (target == qd_idx)
944 				data_target = target2;
945 			else
946 				data_target = target;
947 
948 			count = 0;
949 			for (i = disks; i-- ; ) {
950 				if (i == data_target || i == qd_idx)
951 					continue;
952 				blocks[count++] = sh->dev[i].page;
953 			}
954 			dest = sh->dev[data_target].page;
955 			init_async_submit(&submit,
956 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
957 					  NULL, NULL, NULL,
958 					  to_addr_conv(sh, percpu));
959 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
960 				       &submit);
961 
962 			count = set_syndrome_sources(blocks, sh);
963 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
964 					  ops_complete_compute, sh,
965 					  to_addr_conv(sh, percpu));
966 			return async_gen_syndrome(blocks, 0, count+2,
967 						  STRIPE_SIZE, &submit);
968 		}
969 	} else {
970 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
971 				  ops_complete_compute, sh,
972 				  to_addr_conv(sh, percpu));
973 		if (failb == syndrome_disks) {
974 			/* We're missing D+P. */
975 			return async_raid6_datap_recov(syndrome_disks+2,
976 						       STRIPE_SIZE, faila,
977 						       blocks, &submit);
978 		} else {
979 			/* We're missing D+D. */
980 			return async_raid6_2data_recov(syndrome_disks+2,
981 						       STRIPE_SIZE, faila, failb,
982 						       blocks, &submit);
983 		}
984 	}
985 }
986 
987 
988 static void ops_complete_prexor(void *stripe_head_ref)
989 {
990 	struct stripe_head *sh = stripe_head_ref;
991 
992 	pr_debug("%s: stripe %llu\n", __func__,
993 		(unsigned long long)sh->sector);
994 }
995 
996 static struct dma_async_tx_descriptor *
997 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
998 	       struct dma_async_tx_descriptor *tx)
999 {
1000 	int disks = sh->disks;
1001 	struct page **xor_srcs = percpu->scribble;
1002 	int count = 0, pd_idx = sh->pd_idx, i;
1003 	struct async_submit_ctl submit;
1004 
1005 	/* existing parity data subtracted */
1006 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1007 
1008 	pr_debug("%s: stripe %llu\n", __func__,
1009 		(unsigned long long)sh->sector);
1010 
1011 	for (i = disks; i--; ) {
1012 		struct r5dev *dev = &sh->dev[i];
1013 		/* Only process blocks that are known to be uptodate */
1014 		if (test_bit(R5_Wantdrain, &dev->flags))
1015 			xor_srcs[count++] = dev->page;
1016 	}
1017 
1018 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1019 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1020 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1021 
1022 	return tx;
1023 }
1024 
1025 static struct dma_async_tx_descriptor *
1026 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1027 {
1028 	int disks = sh->disks;
1029 	int i;
1030 
1031 	pr_debug("%s: stripe %llu\n", __func__,
1032 		(unsigned long long)sh->sector);
1033 
1034 	for (i = disks; i--; ) {
1035 		struct r5dev *dev = &sh->dev[i];
1036 		struct bio *chosen;
1037 
1038 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1039 			struct bio *wbi;
1040 
1041 			spin_lock_irq(&sh->raid_conf->device_lock);
1042 			chosen = dev->towrite;
1043 			dev->towrite = NULL;
1044 			BUG_ON(dev->written);
1045 			wbi = dev->written = chosen;
1046 			spin_unlock_irq(&sh->raid_conf->device_lock);
1047 
1048 			while (wbi && wbi->bi_sector <
1049 				dev->sector + STRIPE_SECTORS) {
1050 				if (wbi->bi_rw & REQ_FUA)
1051 					set_bit(R5_WantFUA, &dev->flags);
1052 				tx = async_copy_data(1, wbi, dev->page,
1053 					dev->sector, tx);
1054 				wbi = r5_next_bio(wbi, dev->sector);
1055 			}
1056 		}
1057 	}
1058 
1059 	return tx;
1060 }
1061 
1062 static void ops_complete_reconstruct(void *stripe_head_ref)
1063 {
1064 	struct stripe_head *sh = stripe_head_ref;
1065 	int disks = sh->disks;
1066 	int pd_idx = sh->pd_idx;
1067 	int qd_idx = sh->qd_idx;
1068 	int i;
1069 	bool fua = false;
1070 
1071 	pr_debug("%s: stripe %llu\n", __func__,
1072 		(unsigned long long)sh->sector);
1073 
1074 	for (i = disks; i--; )
1075 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1076 
1077 	for (i = disks; i--; ) {
1078 		struct r5dev *dev = &sh->dev[i];
1079 
1080 		if (dev->written || i == pd_idx || i == qd_idx) {
1081 			set_bit(R5_UPTODATE, &dev->flags);
1082 			if (fua)
1083 				set_bit(R5_WantFUA, &dev->flags);
1084 		}
1085 	}
1086 
1087 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1088 		sh->reconstruct_state = reconstruct_state_drain_result;
1089 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1090 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1091 	else {
1092 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1093 		sh->reconstruct_state = reconstruct_state_result;
1094 	}
1095 
1096 	set_bit(STRIPE_HANDLE, &sh->state);
1097 	release_stripe(sh);
1098 }
1099 
1100 static void
1101 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1102 		     struct dma_async_tx_descriptor *tx)
1103 {
1104 	int disks = sh->disks;
1105 	struct page **xor_srcs = percpu->scribble;
1106 	struct async_submit_ctl submit;
1107 	int count = 0, pd_idx = sh->pd_idx, i;
1108 	struct page *xor_dest;
1109 	int prexor = 0;
1110 	unsigned long flags;
1111 
1112 	pr_debug("%s: stripe %llu\n", __func__,
1113 		(unsigned long long)sh->sector);
1114 
1115 	/* check if prexor is active which means only process blocks
1116 	 * that are part of a read-modify-write (written)
1117 	 */
1118 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1119 		prexor = 1;
1120 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1121 		for (i = disks; i--; ) {
1122 			struct r5dev *dev = &sh->dev[i];
1123 			if (dev->written)
1124 				xor_srcs[count++] = dev->page;
1125 		}
1126 	} else {
1127 		xor_dest = sh->dev[pd_idx].page;
1128 		for (i = disks; i--; ) {
1129 			struct r5dev *dev = &sh->dev[i];
1130 			if (i != pd_idx)
1131 				xor_srcs[count++] = dev->page;
1132 		}
1133 	}
1134 
1135 	/* 1/ if we prexor'd then the dest is reused as a source
1136 	 * 2/ if we did not prexor then we are redoing the parity
1137 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1138 	 * for the synchronous xor case
1139 	 */
1140 	flags = ASYNC_TX_ACK |
1141 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1142 
1143 	atomic_inc(&sh->count);
1144 
1145 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1146 			  to_addr_conv(sh, percpu));
1147 	if (unlikely(count == 1))
1148 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1149 	else
1150 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1151 }
1152 
1153 static void
1154 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1155 		     struct dma_async_tx_descriptor *tx)
1156 {
1157 	struct async_submit_ctl submit;
1158 	struct page **blocks = percpu->scribble;
1159 	int count;
1160 
1161 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1162 
1163 	count = set_syndrome_sources(blocks, sh);
1164 
1165 	atomic_inc(&sh->count);
1166 
1167 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1168 			  sh, to_addr_conv(sh, percpu));
1169 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1170 }
1171 
1172 static void ops_complete_check(void *stripe_head_ref)
1173 {
1174 	struct stripe_head *sh = stripe_head_ref;
1175 
1176 	pr_debug("%s: stripe %llu\n", __func__,
1177 		(unsigned long long)sh->sector);
1178 
1179 	sh->check_state = check_state_check_result;
1180 	set_bit(STRIPE_HANDLE, &sh->state);
1181 	release_stripe(sh);
1182 }
1183 
1184 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1185 {
1186 	int disks = sh->disks;
1187 	int pd_idx = sh->pd_idx;
1188 	int qd_idx = sh->qd_idx;
1189 	struct page *xor_dest;
1190 	struct page **xor_srcs = percpu->scribble;
1191 	struct dma_async_tx_descriptor *tx;
1192 	struct async_submit_ctl submit;
1193 	int count;
1194 	int i;
1195 
1196 	pr_debug("%s: stripe %llu\n", __func__,
1197 		(unsigned long long)sh->sector);
1198 
1199 	count = 0;
1200 	xor_dest = sh->dev[pd_idx].page;
1201 	xor_srcs[count++] = xor_dest;
1202 	for (i = disks; i--; ) {
1203 		if (i == pd_idx || i == qd_idx)
1204 			continue;
1205 		xor_srcs[count++] = sh->dev[i].page;
1206 	}
1207 
1208 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1209 			  to_addr_conv(sh, percpu));
1210 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1211 			   &sh->ops.zero_sum_result, &submit);
1212 
1213 	atomic_inc(&sh->count);
1214 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1215 	tx = async_trigger_callback(&submit);
1216 }
1217 
1218 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1219 {
1220 	struct page **srcs = percpu->scribble;
1221 	struct async_submit_ctl submit;
1222 	int count;
1223 
1224 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1225 		(unsigned long long)sh->sector, checkp);
1226 
1227 	count = set_syndrome_sources(srcs, sh);
1228 	if (!checkp)
1229 		srcs[count] = NULL;
1230 
1231 	atomic_inc(&sh->count);
1232 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1233 			  sh, to_addr_conv(sh, percpu));
1234 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1235 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1236 }
1237 
1238 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1239 {
1240 	int overlap_clear = 0, i, disks = sh->disks;
1241 	struct dma_async_tx_descriptor *tx = NULL;
1242 	struct r5conf *conf = sh->raid_conf;
1243 	int level = conf->level;
1244 	struct raid5_percpu *percpu;
1245 	unsigned long cpu;
1246 
1247 	cpu = get_cpu();
1248 	percpu = per_cpu_ptr(conf->percpu, cpu);
1249 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1250 		ops_run_biofill(sh);
1251 		overlap_clear++;
1252 	}
1253 
1254 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1255 		if (level < 6)
1256 			tx = ops_run_compute5(sh, percpu);
1257 		else {
1258 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1259 				tx = ops_run_compute6_1(sh, percpu);
1260 			else
1261 				tx = ops_run_compute6_2(sh, percpu);
1262 		}
1263 		/* terminate the chain if reconstruct is not set to be run */
1264 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1265 			async_tx_ack(tx);
1266 	}
1267 
1268 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1269 		tx = ops_run_prexor(sh, percpu, tx);
1270 
1271 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1272 		tx = ops_run_biodrain(sh, tx);
1273 		overlap_clear++;
1274 	}
1275 
1276 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1277 		if (level < 6)
1278 			ops_run_reconstruct5(sh, percpu, tx);
1279 		else
1280 			ops_run_reconstruct6(sh, percpu, tx);
1281 	}
1282 
1283 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1284 		if (sh->check_state == check_state_run)
1285 			ops_run_check_p(sh, percpu);
1286 		else if (sh->check_state == check_state_run_q)
1287 			ops_run_check_pq(sh, percpu, 0);
1288 		else if (sh->check_state == check_state_run_pq)
1289 			ops_run_check_pq(sh, percpu, 1);
1290 		else
1291 			BUG();
1292 	}
1293 
1294 	if (overlap_clear)
1295 		for (i = disks; i--; ) {
1296 			struct r5dev *dev = &sh->dev[i];
1297 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1298 				wake_up(&sh->raid_conf->wait_for_overlap);
1299 		}
1300 	put_cpu();
1301 }
1302 
1303 #ifdef CONFIG_MULTICORE_RAID456
1304 static void async_run_ops(void *param, async_cookie_t cookie)
1305 {
1306 	struct stripe_head *sh = param;
1307 	unsigned long ops_request = sh->ops.request;
1308 
1309 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1310 	wake_up(&sh->ops.wait_for_ops);
1311 
1312 	__raid_run_ops(sh, ops_request);
1313 	release_stripe(sh);
1314 }
1315 
1316 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1317 {
1318 	/* since handle_stripe can be called outside of raid5d context
1319 	 * we need to ensure sh->ops.request is de-staged before another
1320 	 * request arrives
1321 	 */
1322 	wait_event(sh->ops.wait_for_ops,
1323 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1324 	sh->ops.request = ops_request;
1325 
1326 	atomic_inc(&sh->count);
1327 	async_schedule(async_run_ops, sh);
1328 }
1329 #else
1330 #define raid_run_ops __raid_run_ops
1331 #endif
1332 
1333 static int grow_one_stripe(struct r5conf *conf)
1334 {
1335 	struct stripe_head *sh;
1336 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1337 	if (!sh)
1338 		return 0;
1339 
1340 	sh->raid_conf = conf;
1341 	#ifdef CONFIG_MULTICORE_RAID456
1342 	init_waitqueue_head(&sh->ops.wait_for_ops);
1343 	#endif
1344 
1345 	if (grow_buffers(sh)) {
1346 		shrink_buffers(sh);
1347 		kmem_cache_free(conf->slab_cache, sh);
1348 		return 0;
1349 	}
1350 	/* we just created an active stripe so... */
1351 	atomic_set(&sh->count, 1);
1352 	atomic_inc(&conf->active_stripes);
1353 	INIT_LIST_HEAD(&sh->lru);
1354 	release_stripe(sh);
1355 	return 1;
1356 }
1357 
1358 static int grow_stripes(struct r5conf *conf, int num)
1359 {
1360 	struct kmem_cache *sc;
1361 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1362 
1363 	if (conf->mddev->gendisk)
1364 		sprintf(conf->cache_name[0],
1365 			"raid%d-%s", conf->level, mdname(conf->mddev));
1366 	else
1367 		sprintf(conf->cache_name[0],
1368 			"raid%d-%p", conf->level, conf->mddev);
1369 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1370 
1371 	conf->active_name = 0;
1372 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1373 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1374 			       0, 0, NULL);
1375 	if (!sc)
1376 		return 1;
1377 	conf->slab_cache = sc;
1378 	conf->pool_size = devs;
1379 	while (num--)
1380 		if (!grow_one_stripe(conf))
1381 			return 1;
1382 	return 0;
1383 }
1384 
1385 /**
1386  * scribble_len - return the required size of the scribble region
1387  * @num - total number of disks in the array
1388  *
1389  * The size must be enough to contain:
1390  * 1/ a struct page pointer for each device in the array +2
1391  * 2/ room to convert each entry in (1) to its corresponding dma
1392  *    (dma_map_page()) or page (page_address()) address.
1393  *
1394  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1395  * calculate over all devices (not just the data blocks), using zeros in place
1396  * of the P and Q blocks.
1397  */
1398 static size_t scribble_len(int num)
1399 {
1400 	size_t len;
1401 
1402 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1403 
1404 	return len;
1405 }
1406 
1407 static int resize_stripes(struct r5conf *conf, int newsize)
1408 {
1409 	/* Make all the stripes able to hold 'newsize' devices.
1410 	 * New slots in each stripe get 'page' set to a new page.
1411 	 *
1412 	 * This happens in stages:
1413 	 * 1/ create a new kmem_cache and allocate the required number of
1414 	 *    stripe_heads.
1415 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1416 	 *    to the new stripe_heads.  This will have the side effect of
1417 	 *    freezing the array as once all stripe_heads have been collected,
1418 	 *    no IO will be possible.  Old stripe heads are freed once their
1419 	 *    pages have been transferred over, and the old kmem_cache is
1420 	 *    freed when all stripes are done.
1421 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1422 	 *    we simple return a failre status - no need to clean anything up.
1423 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1424 	 *    If this fails, we don't bother trying the shrink the
1425 	 *    stripe_heads down again, we just leave them as they are.
1426 	 *    As each stripe_head is processed the new one is released into
1427 	 *    active service.
1428 	 *
1429 	 * Once step2 is started, we cannot afford to wait for a write,
1430 	 * so we use GFP_NOIO allocations.
1431 	 */
1432 	struct stripe_head *osh, *nsh;
1433 	LIST_HEAD(newstripes);
1434 	struct disk_info *ndisks;
1435 	unsigned long cpu;
1436 	int err;
1437 	struct kmem_cache *sc;
1438 	int i;
1439 
1440 	if (newsize <= conf->pool_size)
1441 		return 0; /* never bother to shrink */
1442 
1443 	err = md_allow_write(conf->mddev);
1444 	if (err)
1445 		return err;
1446 
1447 	/* Step 1 */
1448 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1449 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1450 			       0, 0, NULL);
1451 	if (!sc)
1452 		return -ENOMEM;
1453 
1454 	for (i = conf->max_nr_stripes; i; i--) {
1455 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1456 		if (!nsh)
1457 			break;
1458 
1459 		nsh->raid_conf = conf;
1460 		#ifdef CONFIG_MULTICORE_RAID456
1461 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1462 		#endif
1463 
1464 		list_add(&nsh->lru, &newstripes);
1465 	}
1466 	if (i) {
1467 		/* didn't get enough, give up */
1468 		while (!list_empty(&newstripes)) {
1469 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1470 			list_del(&nsh->lru);
1471 			kmem_cache_free(sc, nsh);
1472 		}
1473 		kmem_cache_destroy(sc);
1474 		return -ENOMEM;
1475 	}
1476 	/* Step 2 - Must use GFP_NOIO now.
1477 	 * OK, we have enough stripes, start collecting inactive
1478 	 * stripes and copying them over
1479 	 */
1480 	list_for_each_entry(nsh, &newstripes, lru) {
1481 		spin_lock_irq(&conf->device_lock);
1482 		wait_event_lock_irq(conf->wait_for_stripe,
1483 				    !list_empty(&conf->inactive_list),
1484 				    conf->device_lock,
1485 				    );
1486 		osh = get_free_stripe(conf);
1487 		spin_unlock_irq(&conf->device_lock);
1488 		atomic_set(&nsh->count, 1);
1489 		for(i=0; i<conf->pool_size; i++)
1490 			nsh->dev[i].page = osh->dev[i].page;
1491 		for( ; i<newsize; i++)
1492 			nsh->dev[i].page = NULL;
1493 		kmem_cache_free(conf->slab_cache, osh);
1494 	}
1495 	kmem_cache_destroy(conf->slab_cache);
1496 
1497 	/* Step 3.
1498 	 * At this point, we are holding all the stripes so the array
1499 	 * is completely stalled, so now is a good time to resize
1500 	 * conf->disks and the scribble region
1501 	 */
1502 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1503 	if (ndisks) {
1504 		for (i=0; i<conf->raid_disks; i++)
1505 			ndisks[i] = conf->disks[i];
1506 		kfree(conf->disks);
1507 		conf->disks = ndisks;
1508 	} else
1509 		err = -ENOMEM;
1510 
1511 	get_online_cpus();
1512 	conf->scribble_len = scribble_len(newsize);
1513 	for_each_present_cpu(cpu) {
1514 		struct raid5_percpu *percpu;
1515 		void *scribble;
1516 
1517 		percpu = per_cpu_ptr(conf->percpu, cpu);
1518 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1519 
1520 		if (scribble) {
1521 			kfree(percpu->scribble);
1522 			percpu->scribble = scribble;
1523 		} else {
1524 			err = -ENOMEM;
1525 			break;
1526 		}
1527 	}
1528 	put_online_cpus();
1529 
1530 	/* Step 4, return new stripes to service */
1531 	while(!list_empty(&newstripes)) {
1532 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1533 		list_del_init(&nsh->lru);
1534 
1535 		for (i=conf->raid_disks; i < newsize; i++)
1536 			if (nsh->dev[i].page == NULL) {
1537 				struct page *p = alloc_page(GFP_NOIO);
1538 				nsh->dev[i].page = p;
1539 				if (!p)
1540 					err = -ENOMEM;
1541 			}
1542 		release_stripe(nsh);
1543 	}
1544 	/* critical section pass, GFP_NOIO no longer needed */
1545 
1546 	conf->slab_cache = sc;
1547 	conf->active_name = 1-conf->active_name;
1548 	conf->pool_size = newsize;
1549 	return err;
1550 }
1551 
1552 static int drop_one_stripe(struct r5conf *conf)
1553 {
1554 	struct stripe_head *sh;
1555 
1556 	spin_lock_irq(&conf->device_lock);
1557 	sh = get_free_stripe(conf);
1558 	spin_unlock_irq(&conf->device_lock);
1559 	if (!sh)
1560 		return 0;
1561 	BUG_ON(atomic_read(&sh->count));
1562 	shrink_buffers(sh);
1563 	kmem_cache_free(conf->slab_cache, sh);
1564 	atomic_dec(&conf->active_stripes);
1565 	return 1;
1566 }
1567 
1568 static void shrink_stripes(struct r5conf *conf)
1569 {
1570 	while (drop_one_stripe(conf))
1571 		;
1572 
1573 	if (conf->slab_cache)
1574 		kmem_cache_destroy(conf->slab_cache);
1575 	conf->slab_cache = NULL;
1576 }
1577 
1578 static void raid5_end_read_request(struct bio * bi, int error)
1579 {
1580 	struct stripe_head *sh = bi->bi_private;
1581 	struct r5conf *conf = sh->raid_conf;
1582 	int disks = sh->disks, i;
1583 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1584 	char b[BDEVNAME_SIZE];
1585 	struct md_rdev *rdev;
1586 
1587 
1588 	for (i=0 ; i<disks; i++)
1589 		if (bi == &sh->dev[i].req)
1590 			break;
1591 
1592 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1593 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1594 		uptodate);
1595 	if (i == disks) {
1596 		BUG();
1597 		return;
1598 	}
1599 
1600 	if (uptodate) {
1601 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1602 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1603 			rdev = conf->disks[i].rdev;
1604 			printk_ratelimited(
1605 				KERN_INFO
1606 				"md/raid:%s: read error corrected"
1607 				" (%lu sectors at %llu on %s)\n",
1608 				mdname(conf->mddev), STRIPE_SECTORS,
1609 				(unsigned long long)(sh->sector
1610 						     + rdev->data_offset),
1611 				bdevname(rdev->bdev, b));
1612 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1613 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1614 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1615 		}
1616 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1617 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1618 	} else {
1619 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1620 		int retry = 0;
1621 		rdev = conf->disks[i].rdev;
1622 
1623 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1624 		atomic_inc(&rdev->read_errors);
1625 		if (conf->mddev->degraded >= conf->max_degraded)
1626 			printk_ratelimited(
1627 				KERN_WARNING
1628 				"md/raid:%s: read error not correctable "
1629 				"(sector %llu on %s).\n",
1630 				mdname(conf->mddev),
1631 				(unsigned long long)(sh->sector
1632 						     + rdev->data_offset),
1633 				bdn);
1634 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1635 			/* Oh, no!!! */
1636 			printk_ratelimited(
1637 				KERN_WARNING
1638 				"md/raid:%s: read error NOT corrected!! "
1639 				"(sector %llu on %s).\n",
1640 				mdname(conf->mddev),
1641 				(unsigned long long)(sh->sector
1642 						     + rdev->data_offset),
1643 				bdn);
1644 		else if (atomic_read(&rdev->read_errors)
1645 			 > conf->max_nr_stripes)
1646 			printk(KERN_WARNING
1647 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1648 			       mdname(conf->mddev), bdn);
1649 		else
1650 			retry = 1;
1651 		if (retry)
1652 			set_bit(R5_ReadError, &sh->dev[i].flags);
1653 		else {
1654 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1655 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1656 			md_error(conf->mddev, rdev);
1657 		}
1658 	}
1659 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1660 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1661 	set_bit(STRIPE_HANDLE, &sh->state);
1662 	release_stripe(sh);
1663 }
1664 
1665 static void raid5_end_write_request(struct bio *bi, int error)
1666 {
1667 	struct stripe_head *sh = bi->bi_private;
1668 	struct r5conf *conf = sh->raid_conf;
1669 	int disks = sh->disks, i;
1670 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1671 	sector_t first_bad;
1672 	int bad_sectors;
1673 
1674 	for (i=0 ; i<disks; i++)
1675 		if (bi == &sh->dev[i].req)
1676 			break;
1677 
1678 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1679 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1680 		uptodate);
1681 	if (i == disks) {
1682 		BUG();
1683 		return;
1684 	}
1685 
1686 	if (!uptodate) {
1687 		set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1688 		set_bit(R5_WriteError, &sh->dev[i].flags);
1689 	} else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1690 			       &first_bad, &bad_sectors))
1691 		set_bit(R5_MadeGood, &sh->dev[i].flags);
1692 
1693 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1694 
1695 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1696 	set_bit(STRIPE_HANDLE, &sh->state);
1697 	release_stripe(sh);
1698 }
1699 
1700 
1701 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1702 
1703 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1704 {
1705 	struct r5dev *dev = &sh->dev[i];
1706 
1707 	bio_init(&dev->req);
1708 	dev->req.bi_io_vec = &dev->vec;
1709 	dev->req.bi_vcnt++;
1710 	dev->req.bi_max_vecs++;
1711 	dev->vec.bv_page = dev->page;
1712 	dev->vec.bv_len = STRIPE_SIZE;
1713 	dev->vec.bv_offset = 0;
1714 
1715 	dev->req.bi_sector = sh->sector;
1716 	dev->req.bi_private = sh;
1717 
1718 	dev->flags = 0;
1719 	dev->sector = compute_blocknr(sh, i, previous);
1720 }
1721 
1722 static void error(struct mddev *mddev, struct md_rdev *rdev)
1723 {
1724 	char b[BDEVNAME_SIZE];
1725 	struct r5conf *conf = mddev->private;
1726 	pr_debug("raid456: error called\n");
1727 
1728 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1729 		unsigned long flags;
1730 		spin_lock_irqsave(&conf->device_lock, flags);
1731 		mddev->degraded++;
1732 		spin_unlock_irqrestore(&conf->device_lock, flags);
1733 		/*
1734 		 * if recovery was running, make sure it aborts.
1735 		 */
1736 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1737 	}
1738 	set_bit(Blocked, &rdev->flags);
1739 	set_bit(Faulty, &rdev->flags);
1740 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1741 	printk(KERN_ALERT
1742 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1743 	       "md/raid:%s: Operation continuing on %d devices.\n",
1744 	       mdname(mddev),
1745 	       bdevname(rdev->bdev, b),
1746 	       mdname(mddev),
1747 	       conf->raid_disks - mddev->degraded);
1748 }
1749 
1750 /*
1751  * Input: a 'big' sector number,
1752  * Output: index of the data and parity disk, and the sector # in them.
1753  */
1754 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1755 				     int previous, int *dd_idx,
1756 				     struct stripe_head *sh)
1757 {
1758 	sector_t stripe, stripe2;
1759 	sector_t chunk_number;
1760 	unsigned int chunk_offset;
1761 	int pd_idx, qd_idx;
1762 	int ddf_layout = 0;
1763 	sector_t new_sector;
1764 	int algorithm = previous ? conf->prev_algo
1765 				 : conf->algorithm;
1766 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1767 					 : conf->chunk_sectors;
1768 	int raid_disks = previous ? conf->previous_raid_disks
1769 				  : conf->raid_disks;
1770 	int data_disks = raid_disks - conf->max_degraded;
1771 
1772 	/* First compute the information on this sector */
1773 
1774 	/*
1775 	 * Compute the chunk number and the sector offset inside the chunk
1776 	 */
1777 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1778 	chunk_number = r_sector;
1779 
1780 	/*
1781 	 * Compute the stripe number
1782 	 */
1783 	stripe = chunk_number;
1784 	*dd_idx = sector_div(stripe, data_disks);
1785 	stripe2 = stripe;
1786 	/*
1787 	 * Select the parity disk based on the user selected algorithm.
1788 	 */
1789 	pd_idx = qd_idx = -1;
1790 	switch(conf->level) {
1791 	case 4:
1792 		pd_idx = data_disks;
1793 		break;
1794 	case 5:
1795 		switch (algorithm) {
1796 		case ALGORITHM_LEFT_ASYMMETRIC:
1797 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1798 			if (*dd_idx >= pd_idx)
1799 				(*dd_idx)++;
1800 			break;
1801 		case ALGORITHM_RIGHT_ASYMMETRIC:
1802 			pd_idx = sector_div(stripe2, raid_disks);
1803 			if (*dd_idx >= pd_idx)
1804 				(*dd_idx)++;
1805 			break;
1806 		case ALGORITHM_LEFT_SYMMETRIC:
1807 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1808 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1809 			break;
1810 		case ALGORITHM_RIGHT_SYMMETRIC:
1811 			pd_idx = sector_div(stripe2, raid_disks);
1812 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1813 			break;
1814 		case ALGORITHM_PARITY_0:
1815 			pd_idx = 0;
1816 			(*dd_idx)++;
1817 			break;
1818 		case ALGORITHM_PARITY_N:
1819 			pd_idx = data_disks;
1820 			break;
1821 		default:
1822 			BUG();
1823 		}
1824 		break;
1825 	case 6:
1826 
1827 		switch (algorithm) {
1828 		case ALGORITHM_LEFT_ASYMMETRIC:
1829 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1830 			qd_idx = pd_idx + 1;
1831 			if (pd_idx == raid_disks-1) {
1832 				(*dd_idx)++;	/* Q D D D P */
1833 				qd_idx = 0;
1834 			} else if (*dd_idx >= pd_idx)
1835 				(*dd_idx) += 2; /* D D P Q D */
1836 			break;
1837 		case ALGORITHM_RIGHT_ASYMMETRIC:
1838 			pd_idx = sector_div(stripe2, raid_disks);
1839 			qd_idx = pd_idx + 1;
1840 			if (pd_idx == raid_disks-1) {
1841 				(*dd_idx)++;	/* Q D D D P */
1842 				qd_idx = 0;
1843 			} else if (*dd_idx >= pd_idx)
1844 				(*dd_idx) += 2; /* D D P Q D */
1845 			break;
1846 		case ALGORITHM_LEFT_SYMMETRIC:
1847 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1848 			qd_idx = (pd_idx + 1) % raid_disks;
1849 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1850 			break;
1851 		case ALGORITHM_RIGHT_SYMMETRIC:
1852 			pd_idx = sector_div(stripe2, raid_disks);
1853 			qd_idx = (pd_idx + 1) % raid_disks;
1854 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1855 			break;
1856 
1857 		case ALGORITHM_PARITY_0:
1858 			pd_idx = 0;
1859 			qd_idx = 1;
1860 			(*dd_idx) += 2;
1861 			break;
1862 		case ALGORITHM_PARITY_N:
1863 			pd_idx = data_disks;
1864 			qd_idx = data_disks + 1;
1865 			break;
1866 
1867 		case ALGORITHM_ROTATING_ZERO_RESTART:
1868 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1869 			 * of blocks for computing Q is different.
1870 			 */
1871 			pd_idx = sector_div(stripe2, raid_disks);
1872 			qd_idx = pd_idx + 1;
1873 			if (pd_idx == raid_disks-1) {
1874 				(*dd_idx)++;	/* Q D D D P */
1875 				qd_idx = 0;
1876 			} else if (*dd_idx >= pd_idx)
1877 				(*dd_idx) += 2; /* D D P Q D */
1878 			ddf_layout = 1;
1879 			break;
1880 
1881 		case ALGORITHM_ROTATING_N_RESTART:
1882 			/* Same a left_asymmetric, by first stripe is
1883 			 * D D D P Q  rather than
1884 			 * Q D D D P
1885 			 */
1886 			stripe2 += 1;
1887 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1888 			qd_idx = pd_idx + 1;
1889 			if (pd_idx == raid_disks-1) {
1890 				(*dd_idx)++;	/* Q D D D P */
1891 				qd_idx = 0;
1892 			} else if (*dd_idx >= pd_idx)
1893 				(*dd_idx) += 2; /* D D P Q D */
1894 			ddf_layout = 1;
1895 			break;
1896 
1897 		case ALGORITHM_ROTATING_N_CONTINUE:
1898 			/* Same as left_symmetric but Q is before P */
1899 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1900 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1901 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1902 			ddf_layout = 1;
1903 			break;
1904 
1905 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1906 			/* RAID5 left_asymmetric, with Q on last device */
1907 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1908 			if (*dd_idx >= pd_idx)
1909 				(*dd_idx)++;
1910 			qd_idx = raid_disks - 1;
1911 			break;
1912 
1913 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1914 			pd_idx = sector_div(stripe2, raid_disks-1);
1915 			if (*dd_idx >= pd_idx)
1916 				(*dd_idx)++;
1917 			qd_idx = raid_disks - 1;
1918 			break;
1919 
1920 		case ALGORITHM_LEFT_SYMMETRIC_6:
1921 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1922 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1923 			qd_idx = raid_disks - 1;
1924 			break;
1925 
1926 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1927 			pd_idx = sector_div(stripe2, raid_disks-1);
1928 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1929 			qd_idx = raid_disks - 1;
1930 			break;
1931 
1932 		case ALGORITHM_PARITY_0_6:
1933 			pd_idx = 0;
1934 			(*dd_idx)++;
1935 			qd_idx = raid_disks - 1;
1936 			break;
1937 
1938 		default:
1939 			BUG();
1940 		}
1941 		break;
1942 	}
1943 
1944 	if (sh) {
1945 		sh->pd_idx = pd_idx;
1946 		sh->qd_idx = qd_idx;
1947 		sh->ddf_layout = ddf_layout;
1948 	}
1949 	/*
1950 	 * Finally, compute the new sector number
1951 	 */
1952 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1953 	return new_sector;
1954 }
1955 
1956 
1957 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1958 {
1959 	struct r5conf *conf = sh->raid_conf;
1960 	int raid_disks = sh->disks;
1961 	int data_disks = raid_disks - conf->max_degraded;
1962 	sector_t new_sector = sh->sector, check;
1963 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1964 					 : conf->chunk_sectors;
1965 	int algorithm = previous ? conf->prev_algo
1966 				 : conf->algorithm;
1967 	sector_t stripe;
1968 	int chunk_offset;
1969 	sector_t chunk_number;
1970 	int dummy1, dd_idx = i;
1971 	sector_t r_sector;
1972 	struct stripe_head sh2;
1973 
1974 
1975 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1976 	stripe = new_sector;
1977 
1978 	if (i == sh->pd_idx)
1979 		return 0;
1980 	switch(conf->level) {
1981 	case 4: break;
1982 	case 5:
1983 		switch (algorithm) {
1984 		case ALGORITHM_LEFT_ASYMMETRIC:
1985 		case ALGORITHM_RIGHT_ASYMMETRIC:
1986 			if (i > sh->pd_idx)
1987 				i--;
1988 			break;
1989 		case ALGORITHM_LEFT_SYMMETRIC:
1990 		case ALGORITHM_RIGHT_SYMMETRIC:
1991 			if (i < sh->pd_idx)
1992 				i += raid_disks;
1993 			i -= (sh->pd_idx + 1);
1994 			break;
1995 		case ALGORITHM_PARITY_0:
1996 			i -= 1;
1997 			break;
1998 		case ALGORITHM_PARITY_N:
1999 			break;
2000 		default:
2001 			BUG();
2002 		}
2003 		break;
2004 	case 6:
2005 		if (i == sh->qd_idx)
2006 			return 0; /* It is the Q disk */
2007 		switch (algorithm) {
2008 		case ALGORITHM_LEFT_ASYMMETRIC:
2009 		case ALGORITHM_RIGHT_ASYMMETRIC:
2010 		case ALGORITHM_ROTATING_ZERO_RESTART:
2011 		case ALGORITHM_ROTATING_N_RESTART:
2012 			if (sh->pd_idx == raid_disks-1)
2013 				i--;	/* Q D D D P */
2014 			else if (i > sh->pd_idx)
2015 				i -= 2; /* D D P Q D */
2016 			break;
2017 		case ALGORITHM_LEFT_SYMMETRIC:
2018 		case ALGORITHM_RIGHT_SYMMETRIC:
2019 			if (sh->pd_idx == raid_disks-1)
2020 				i--; /* Q D D D P */
2021 			else {
2022 				/* D D P Q D */
2023 				if (i < sh->pd_idx)
2024 					i += raid_disks;
2025 				i -= (sh->pd_idx + 2);
2026 			}
2027 			break;
2028 		case ALGORITHM_PARITY_0:
2029 			i -= 2;
2030 			break;
2031 		case ALGORITHM_PARITY_N:
2032 			break;
2033 		case ALGORITHM_ROTATING_N_CONTINUE:
2034 			/* Like left_symmetric, but P is before Q */
2035 			if (sh->pd_idx == 0)
2036 				i--;	/* P D D D Q */
2037 			else {
2038 				/* D D Q P D */
2039 				if (i < sh->pd_idx)
2040 					i += raid_disks;
2041 				i -= (sh->pd_idx + 1);
2042 			}
2043 			break;
2044 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2045 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2046 			if (i > sh->pd_idx)
2047 				i--;
2048 			break;
2049 		case ALGORITHM_LEFT_SYMMETRIC_6:
2050 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2051 			if (i < sh->pd_idx)
2052 				i += data_disks + 1;
2053 			i -= (sh->pd_idx + 1);
2054 			break;
2055 		case ALGORITHM_PARITY_0_6:
2056 			i -= 1;
2057 			break;
2058 		default:
2059 			BUG();
2060 		}
2061 		break;
2062 	}
2063 
2064 	chunk_number = stripe * data_disks + i;
2065 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2066 
2067 	check = raid5_compute_sector(conf, r_sector,
2068 				     previous, &dummy1, &sh2);
2069 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2070 		|| sh2.qd_idx != sh->qd_idx) {
2071 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2072 		       mdname(conf->mddev));
2073 		return 0;
2074 	}
2075 	return r_sector;
2076 }
2077 
2078 
2079 static void
2080 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2081 			 int rcw, int expand)
2082 {
2083 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2084 	struct r5conf *conf = sh->raid_conf;
2085 	int level = conf->level;
2086 
2087 	if (rcw) {
2088 		/* if we are not expanding this is a proper write request, and
2089 		 * there will be bios with new data to be drained into the
2090 		 * stripe cache
2091 		 */
2092 		if (!expand) {
2093 			sh->reconstruct_state = reconstruct_state_drain_run;
2094 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2095 		} else
2096 			sh->reconstruct_state = reconstruct_state_run;
2097 
2098 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2099 
2100 		for (i = disks; i--; ) {
2101 			struct r5dev *dev = &sh->dev[i];
2102 
2103 			if (dev->towrite) {
2104 				set_bit(R5_LOCKED, &dev->flags);
2105 				set_bit(R5_Wantdrain, &dev->flags);
2106 				if (!expand)
2107 					clear_bit(R5_UPTODATE, &dev->flags);
2108 				s->locked++;
2109 			}
2110 		}
2111 		if (s->locked + conf->max_degraded == disks)
2112 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2113 				atomic_inc(&conf->pending_full_writes);
2114 	} else {
2115 		BUG_ON(level == 6);
2116 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2117 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2118 
2119 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2120 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2121 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2122 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2123 
2124 		for (i = disks; i--; ) {
2125 			struct r5dev *dev = &sh->dev[i];
2126 			if (i == pd_idx)
2127 				continue;
2128 
2129 			if (dev->towrite &&
2130 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2131 			     test_bit(R5_Wantcompute, &dev->flags))) {
2132 				set_bit(R5_Wantdrain, &dev->flags);
2133 				set_bit(R5_LOCKED, &dev->flags);
2134 				clear_bit(R5_UPTODATE, &dev->flags);
2135 				s->locked++;
2136 			}
2137 		}
2138 	}
2139 
2140 	/* keep the parity disk(s) locked while asynchronous operations
2141 	 * are in flight
2142 	 */
2143 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2144 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2145 	s->locked++;
2146 
2147 	if (level == 6) {
2148 		int qd_idx = sh->qd_idx;
2149 		struct r5dev *dev = &sh->dev[qd_idx];
2150 
2151 		set_bit(R5_LOCKED, &dev->flags);
2152 		clear_bit(R5_UPTODATE, &dev->flags);
2153 		s->locked++;
2154 	}
2155 
2156 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2157 		__func__, (unsigned long long)sh->sector,
2158 		s->locked, s->ops_request);
2159 }
2160 
2161 /*
2162  * Each stripe/dev can have one or more bion attached.
2163  * toread/towrite point to the first in a chain.
2164  * The bi_next chain must be in order.
2165  */
2166 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2167 {
2168 	struct bio **bip;
2169 	struct r5conf *conf = sh->raid_conf;
2170 	int firstwrite=0;
2171 
2172 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2173 		(unsigned long long)bi->bi_sector,
2174 		(unsigned long long)sh->sector);
2175 
2176 
2177 	spin_lock_irq(&conf->device_lock);
2178 	if (forwrite) {
2179 		bip = &sh->dev[dd_idx].towrite;
2180 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2181 			firstwrite = 1;
2182 	} else
2183 		bip = &sh->dev[dd_idx].toread;
2184 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2185 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2186 			goto overlap;
2187 		bip = & (*bip)->bi_next;
2188 	}
2189 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2190 		goto overlap;
2191 
2192 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2193 	if (*bip)
2194 		bi->bi_next = *bip;
2195 	*bip = bi;
2196 	bi->bi_phys_segments++;
2197 
2198 	if (forwrite) {
2199 		/* check if page is covered */
2200 		sector_t sector = sh->dev[dd_idx].sector;
2201 		for (bi=sh->dev[dd_idx].towrite;
2202 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2203 			     bi && bi->bi_sector <= sector;
2204 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2205 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2206 				sector = bi->bi_sector + (bi->bi_size>>9);
2207 		}
2208 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2209 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2210 	}
2211 	spin_unlock_irq(&conf->device_lock);
2212 
2213 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2214 		(unsigned long long)(*bip)->bi_sector,
2215 		(unsigned long long)sh->sector, dd_idx);
2216 
2217 	if (conf->mddev->bitmap && firstwrite) {
2218 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2219 				  STRIPE_SECTORS, 0);
2220 		sh->bm_seq = conf->seq_flush+1;
2221 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2222 	}
2223 	return 1;
2224 
2225  overlap:
2226 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2227 	spin_unlock_irq(&conf->device_lock);
2228 	return 0;
2229 }
2230 
2231 static void end_reshape(struct r5conf *conf);
2232 
2233 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2234 			    struct stripe_head *sh)
2235 {
2236 	int sectors_per_chunk =
2237 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2238 	int dd_idx;
2239 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2240 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2241 
2242 	raid5_compute_sector(conf,
2243 			     stripe * (disks - conf->max_degraded)
2244 			     *sectors_per_chunk + chunk_offset,
2245 			     previous,
2246 			     &dd_idx, sh);
2247 }
2248 
2249 static void
2250 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2251 				struct stripe_head_state *s, int disks,
2252 				struct bio **return_bi)
2253 {
2254 	int i;
2255 	for (i = disks; i--; ) {
2256 		struct bio *bi;
2257 		int bitmap_end = 0;
2258 
2259 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2260 			struct md_rdev *rdev;
2261 			rcu_read_lock();
2262 			rdev = rcu_dereference(conf->disks[i].rdev);
2263 			if (rdev && test_bit(In_sync, &rdev->flags))
2264 				atomic_inc(&rdev->nr_pending);
2265 			else
2266 				rdev = NULL;
2267 			rcu_read_unlock();
2268 			if (rdev) {
2269 				if (!rdev_set_badblocks(
2270 					    rdev,
2271 					    sh->sector,
2272 					    STRIPE_SECTORS, 0))
2273 					md_error(conf->mddev, rdev);
2274 				rdev_dec_pending(rdev, conf->mddev);
2275 			}
2276 		}
2277 		spin_lock_irq(&conf->device_lock);
2278 		/* fail all writes first */
2279 		bi = sh->dev[i].towrite;
2280 		sh->dev[i].towrite = NULL;
2281 		if (bi) {
2282 			s->to_write--;
2283 			bitmap_end = 1;
2284 		}
2285 
2286 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2287 			wake_up(&conf->wait_for_overlap);
2288 
2289 		while (bi && bi->bi_sector <
2290 			sh->dev[i].sector + STRIPE_SECTORS) {
2291 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2292 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293 			if (!raid5_dec_bi_phys_segments(bi)) {
2294 				md_write_end(conf->mddev);
2295 				bi->bi_next = *return_bi;
2296 				*return_bi = bi;
2297 			}
2298 			bi = nextbi;
2299 		}
2300 		/* and fail all 'written' */
2301 		bi = sh->dev[i].written;
2302 		sh->dev[i].written = NULL;
2303 		if (bi) bitmap_end = 1;
2304 		while (bi && bi->bi_sector <
2305 		       sh->dev[i].sector + STRIPE_SECTORS) {
2306 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2307 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2308 			if (!raid5_dec_bi_phys_segments(bi)) {
2309 				md_write_end(conf->mddev);
2310 				bi->bi_next = *return_bi;
2311 				*return_bi = bi;
2312 			}
2313 			bi = bi2;
2314 		}
2315 
2316 		/* fail any reads if this device is non-operational and
2317 		 * the data has not reached the cache yet.
2318 		 */
2319 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2320 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2321 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2322 			bi = sh->dev[i].toread;
2323 			sh->dev[i].toread = NULL;
2324 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2325 				wake_up(&conf->wait_for_overlap);
2326 			if (bi) s->to_read--;
2327 			while (bi && bi->bi_sector <
2328 			       sh->dev[i].sector + STRIPE_SECTORS) {
2329 				struct bio *nextbi =
2330 					r5_next_bio(bi, sh->dev[i].sector);
2331 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2332 				if (!raid5_dec_bi_phys_segments(bi)) {
2333 					bi->bi_next = *return_bi;
2334 					*return_bi = bi;
2335 				}
2336 				bi = nextbi;
2337 			}
2338 		}
2339 		spin_unlock_irq(&conf->device_lock);
2340 		if (bitmap_end)
2341 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2342 					STRIPE_SECTORS, 0, 0);
2343 		/* If we were in the middle of a write the parity block might
2344 		 * still be locked - so just clear all R5_LOCKED flags
2345 		 */
2346 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2347 	}
2348 
2349 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2350 		if (atomic_dec_and_test(&conf->pending_full_writes))
2351 			md_wakeup_thread(conf->mddev->thread);
2352 }
2353 
2354 static void
2355 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2356 		   struct stripe_head_state *s)
2357 {
2358 	int abort = 0;
2359 	int i;
2360 
2361 	md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2362 	clear_bit(STRIPE_SYNCING, &sh->state);
2363 	s->syncing = 0;
2364 	/* There is nothing more to do for sync/check/repair.
2365 	 * For recover we need to record a bad block on all
2366 	 * non-sync devices, or abort the recovery
2367 	 */
2368 	if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2369 		return;
2370 	/* During recovery devices cannot be removed, so locking and
2371 	 * refcounting of rdevs is not needed
2372 	 */
2373 	for (i = 0; i < conf->raid_disks; i++) {
2374 		struct md_rdev *rdev = conf->disks[i].rdev;
2375 		if (!rdev
2376 		    || test_bit(Faulty, &rdev->flags)
2377 		    || test_bit(In_sync, &rdev->flags))
2378 			continue;
2379 		if (!rdev_set_badblocks(rdev, sh->sector,
2380 					STRIPE_SECTORS, 0))
2381 			abort = 1;
2382 	}
2383 	if (abort) {
2384 		conf->recovery_disabled = conf->mddev->recovery_disabled;
2385 		set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2386 	}
2387 }
2388 
2389 /* fetch_block - checks the given member device to see if its data needs
2390  * to be read or computed to satisfy a request.
2391  *
2392  * Returns 1 when no more member devices need to be checked, otherwise returns
2393  * 0 to tell the loop in handle_stripe_fill to continue
2394  */
2395 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2396 		       int disk_idx, int disks)
2397 {
2398 	struct r5dev *dev = &sh->dev[disk_idx];
2399 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2400 				  &sh->dev[s->failed_num[1]] };
2401 
2402 	/* is the data in this block needed, and can we get it? */
2403 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2404 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2405 	    (dev->toread ||
2406 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2407 	     s->syncing || s->expanding ||
2408 	     (s->failed >= 1 && fdev[0]->toread) ||
2409 	     (s->failed >= 2 && fdev[1]->toread) ||
2410 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2411 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2412 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2413 		/* we would like to get this block, possibly by computing it,
2414 		 * otherwise read it if the backing disk is insync
2415 		 */
2416 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2417 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2418 		if ((s->uptodate == disks - 1) &&
2419 		    (s->failed && (disk_idx == s->failed_num[0] ||
2420 				   disk_idx == s->failed_num[1]))) {
2421 			/* have disk failed, and we're requested to fetch it;
2422 			 * do compute it
2423 			 */
2424 			pr_debug("Computing stripe %llu block %d\n",
2425 			       (unsigned long long)sh->sector, disk_idx);
2426 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2427 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2428 			set_bit(R5_Wantcompute, &dev->flags);
2429 			sh->ops.target = disk_idx;
2430 			sh->ops.target2 = -1; /* no 2nd target */
2431 			s->req_compute = 1;
2432 			/* Careful: from this point on 'uptodate' is in the eye
2433 			 * of raid_run_ops which services 'compute' operations
2434 			 * before writes. R5_Wantcompute flags a block that will
2435 			 * be R5_UPTODATE by the time it is needed for a
2436 			 * subsequent operation.
2437 			 */
2438 			s->uptodate++;
2439 			return 1;
2440 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2441 			/* Computing 2-failure is *very* expensive; only
2442 			 * do it if failed >= 2
2443 			 */
2444 			int other;
2445 			for (other = disks; other--; ) {
2446 				if (other == disk_idx)
2447 					continue;
2448 				if (!test_bit(R5_UPTODATE,
2449 				      &sh->dev[other].flags))
2450 					break;
2451 			}
2452 			BUG_ON(other < 0);
2453 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2454 			       (unsigned long long)sh->sector,
2455 			       disk_idx, other);
2456 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2457 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2458 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2459 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2460 			sh->ops.target = disk_idx;
2461 			sh->ops.target2 = other;
2462 			s->uptodate += 2;
2463 			s->req_compute = 1;
2464 			return 1;
2465 		} else if (test_bit(R5_Insync, &dev->flags)) {
2466 			set_bit(R5_LOCKED, &dev->flags);
2467 			set_bit(R5_Wantread, &dev->flags);
2468 			s->locked++;
2469 			pr_debug("Reading block %d (sync=%d)\n",
2470 				disk_idx, s->syncing);
2471 		}
2472 	}
2473 
2474 	return 0;
2475 }
2476 
2477 /**
2478  * handle_stripe_fill - read or compute data to satisfy pending requests.
2479  */
2480 static void handle_stripe_fill(struct stripe_head *sh,
2481 			       struct stripe_head_state *s,
2482 			       int disks)
2483 {
2484 	int i;
2485 
2486 	/* look for blocks to read/compute, skip this if a compute
2487 	 * is already in flight, or if the stripe contents are in the
2488 	 * midst of changing due to a write
2489 	 */
2490 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2491 	    !sh->reconstruct_state)
2492 		for (i = disks; i--; )
2493 			if (fetch_block(sh, s, i, disks))
2494 				break;
2495 	set_bit(STRIPE_HANDLE, &sh->state);
2496 }
2497 
2498 
2499 /* handle_stripe_clean_event
2500  * any written block on an uptodate or failed drive can be returned.
2501  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2502  * never LOCKED, so we don't need to test 'failed' directly.
2503  */
2504 static void handle_stripe_clean_event(struct r5conf *conf,
2505 	struct stripe_head *sh, int disks, struct bio **return_bi)
2506 {
2507 	int i;
2508 	struct r5dev *dev;
2509 
2510 	for (i = disks; i--; )
2511 		if (sh->dev[i].written) {
2512 			dev = &sh->dev[i];
2513 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2514 				test_bit(R5_UPTODATE, &dev->flags)) {
2515 				/* We can return any write requests */
2516 				struct bio *wbi, *wbi2;
2517 				int bitmap_end = 0;
2518 				pr_debug("Return write for disc %d\n", i);
2519 				spin_lock_irq(&conf->device_lock);
2520 				wbi = dev->written;
2521 				dev->written = NULL;
2522 				while (wbi && wbi->bi_sector <
2523 					dev->sector + STRIPE_SECTORS) {
2524 					wbi2 = r5_next_bio(wbi, dev->sector);
2525 					if (!raid5_dec_bi_phys_segments(wbi)) {
2526 						md_write_end(conf->mddev);
2527 						wbi->bi_next = *return_bi;
2528 						*return_bi = wbi;
2529 					}
2530 					wbi = wbi2;
2531 				}
2532 				if (dev->towrite == NULL)
2533 					bitmap_end = 1;
2534 				spin_unlock_irq(&conf->device_lock);
2535 				if (bitmap_end)
2536 					bitmap_endwrite(conf->mddev->bitmap,
2537 							sh->sector,
2538 							STRIPE_SECTORS,
2539 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2540 							0);
2541 			}
2542 		}
2543 
2544 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2545 		if (atomic_dec_and_test(&conf->pending_full_writes))
2546 			md_wakeup_thread(conf->mddev->thread);
2547 }
2548 
2549 static void handle_stripe_dirtying(struct r5conf *conf,
2550 				   struct stripe_head *sh,
2551 				   struct stripe_head_state *s,
2552 				   int disks)
2553 {
2554 	int rmw = 0, rcw = 0, i;
2555 	if (conf->max_degraded == 2) {
2556 		/* RAID6 requires 'rcw' in current implementation
2557 		 * Calculate the real rcw later - for now fake it
2558 		 * look like rcw is cheaper
2559 		 */
2560 		rcw = 1; rmw = 2;
2561 	} else for (i = disks; i--; ) {
2562 		/* would I have to read this buffer for read_modify_write */
2563 		struct r5dev *dev = &sh->dev[i];
2564 		if ((dev->towrite || i == sh->pd_idx) &&
2565 		    !test_bit(R5_LOCKED, &dev->flags) &&
2566 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2567 		      test_bit(R5_Wantcompute, &dev->flags))) {
2568 			if (test_bit(R5_Insync, &dev->flags))
2569 				rmw++;
2570 			else
2571 				rmw += 2*disks;  /* cannot read it */
2572 		}
2573 		/* Would I have to read this buffer for reconstruct_write */
2574 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2575 		    !test_bit(R5_LOCKED, &dev->flags) &&
2576 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2577 		    test_bit(R5_Wantcompute, &dev->flags))) {
2578 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2579 			else
2580 				rcw += 2*disks;
2581 		}
2582 	}
2583 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2584 		(unsigned long long)sh->sector, rmw, rcw);
2585 	set_bit(STRIPE_HANDLE, &sh->state);
2586 	if (rmw < rcw && rmw > 0)
2587 		/* prefer read-modify-write, but need to get some data */
2588 		for (i = disks; i--; ) {
2589 			struct r5dev *dev = &sh->dev[i];
2590 			if ((dev->towrite || i == sh->pd_idx) &&
2591 			    !test_bit(R5_LOCKED, &dev->flags) &&
2592 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2593 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2594 			    test_bit(R5_Insync, &dev->flags)) {
2595 				if (
2596 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2597 					pr_debug("Read_old block "
2598 						"%d for r-m-w\n", i);
2599 					set_bit(R5_LOCKED, &dev->flags);
2600 					set_bit(R5_Wantread, &dev->flags);
2601 					s->locked++;
2602 				} else {
2603 					set_bit(STRIPE_DELAYED, &sh->state);
2604 					set_bit(STRIPE_HANDLE, &sh->state);
2605 				}
2606 			}
2607 		}
2608 	if (rcw <= rmw && rcw > 0) {
2609 		/* want reconstruct write, but need to get some data */
2610 		rcw = 0;
2611 		for (i = disks; i--; ) {
2612 			struct r5dev *dev = &sh->dev[i];
2613 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2614 			    i != sh->pd_idx && i != sh->qd_idx &&
2615 			    !test_bit(R5_LOCKED, &dev->flags) &&
2616 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2617 			      test_bit(R5_Wantcompute, &dev->flags))) {
2618 				rcw++;
2619 				if (!test_bit(R5_Insync, &dev->flags))
2620 					continue; /* it's a failed drive */
2621 				if (
2622 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2623 					pr_debug("Read_old block "
2624 						"%d for Reconstruct\n", i);
2625 					set_bit(R5_LOCKED, &dev->flags);
2626 					set_bit(R5_Wantread, &dev->flags);
2627 					s->locked++;
2628 				} else {
2629 					set_bit(STRIPE_DELAYED, &sh->state);
2630 					set_bit(STRIPE_HANDLE, &sh->state);
2631 				}
2632 			}
2633 		}
2634 	}
2635 	/* now if nothing is locked, and if we have enough data,
2636 	 * we can start a write request
2637 	 */
2638 	/* since handle_stripe can be called at any time we need to handle the
2639 	 * case where a compute block operation has been submitted and then a
2640 	 * subsequent call wants to start a write request.  raid_run_ops only
2641 	 * handles the case where compute block and reconstruct are requested
2642 	 * simultaneously.  If this is not the case then new writes need to be
2643 	 * held off until the compute completes.
2644 	 */
2645 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2646 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2647 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2648 		schedule_reconstruction(sh, s, rcw == 0, 0);
2649 }
2650 
2651 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2652 				struct stripe_head_state *s, int disks)
2653 {
2654 	struct r5dev *dev = NULL;
2655 
2656 	set_bit(STRIPE_HANDLE, &sh->state);
2657 
2658 	switch (sh->check_state) {
2659 	case check_state_idle:
2660 		/* start a new check operation if there are no failures */
2661 		if (s->failed == 0) {
2662 			BUG_ON(s->uptodate != disks);
2663 			sh->check_state = check_state_run;
2664 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2665 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2666 			s->uptodate--;
2667 			break;
2668 		}
2669 		dev = &sh->dev[s->failed_num[0]];
2670 		/* fall through */
2671 	case check_state_compute_result:
2672 		sh->check_state = check_state_idle;
2673 		if (!dev)
2674 			dev = &sh->dev[sh->pd_idx];
2675 
2676 		/* check that a write has not made the stripe insync */
2677 		if (test_bit(STRIPE_INSYNC, &sh->state))
2678 			break;
2679 
2680 		/* either failed parity check, or recovery is happening */
2681 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2682 		BUG_ON(s->uptodate != disks);
2683 
2684 		set_bit(R5_LOCKED, &dev->flags);
2685 		s->locked++;
2686 		set_bit(R5_Wantwrite, &dev->flags);
2687 
2688 		clear_bit(STRIPE_DEGRADED, &sh->state);
2689 		set_bit(STRIPE_INSYNC, &sh->state);
2690 		break;
2691 	case check_state_run:
2692 		break; /* we will be called again upon completion */
2693 	case check_state_check_result:
2694 		sh->check_state = check_state_idle;
2695 
2696 		/* if a failure occurred during the check operation, leave
2697 		 * STRIPE_INSYNC not set and let the stripe be handled again
2698 		 */
2699 		if (s->failed)
2700 			break;
2701 
2702 		/* handle a successful check operation, if parity is correct
2703 		 * we are done.  Otherwise update the mismatch count and repair
2704 		 * parity if !MD_RECOVERY_CHECK
2705 		 */
2706 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2707 			/* parity is correct (on disc,
2708 			 * not in buffer any more)
2709 			 */
2710 			set_bit(STRIPE_INSYNC, &sh->state);
2711 		else {
2712 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2713 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2714 				/* don't try to repair!! */
2715 				set_bit(STRIPE_INSYNC, &sh->state);
2716 			else {
2717 				sh->check_state = check_state_compute_run;
2718 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2719 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2720 				set_bit(R5_Wantcompute,
2721 					&sh->dev[sh->pd_idx].flags);
2722 				sh->ops.target = sh->pd_idx;
2723 				sh->ops.target2 = -1;
2724 				s->uptodate++;
2725 			}
2726 		}
2727 		break;
2728 	case check_state_compute_run:
2729 		break;
2730 	default:
2731 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2732 		       __func__, sh->check_state,
2733 		       (unsigned long long) sh->sector);
2734 		BUG();
2735 	}
2736 }
2737 
2738 
2739 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2740 				  struct stripe_head_state *s,
2741 				  int disks)
2742 {
2743 	int pd_idx = sh->pd_idx;
2744 	int qd_idx = sh->qd_idx;
2745 	struct r5dev *dev;
2746 
2747 	set_bit(STRIPE_HANDLE, &sh->state);
2748 
2749 	BUG_ON(s->failed > 2);
2750 
2751 	/* Want to check and possibly repair P and Q.
2752 	 * However there could be one 'failed' device, in which
2753 	 * case we can only check one of them, possibly using the
2754 	 * other to generate missing data
2755 	 */
2756 
2757 	switch (sh->check_state) {
2758 	case check_state_idle:
2759 		/* start a new check operation if there are < 2 failures */
2760 		if (s->failed == s->q_failed) {
2761 			/* The only possible failed device holds Q, so it
2762 			 * makes sense to check P (If anything else were failed,
2763 			 * we would have used P to recreate it).
2764 			 */
2765 			sh->check_state = check_state_run;
2766 		}
2767 		if (!s->q_failed && s->failed < 2) {
2768 			/* Q is not failed, and we didn't use it to generate
2769 			 * anything, so it makes sense to check it
2770 			 */
2771 			if (sh->check_state == check_state_run)
2772 				sh->check_state = check_state_run_pq;
2773 			else
2774 				sh->check_state = check_state_run_q;
2775 		}
2776 
2777 		/* discard potentially stale zero_sum_result */
2778 		sh->ops.zero_sum_result = 0;
2779 
2780 		if (sh->check_state == check_state_run) {
2781 			/* async_xor_zero_sum destroys the contents of P */
2782 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2783 			s->uptodate--;
2784 		}
2785 		if (sh->check_state >= check_state_run &&
2786 		    sh->check_state <= check_state_run_pq) {
2787 			/* async_syndrome_zero_sum preserves P and Q, so
2788 			 * no need to mark them !uptodate here
2789 			 */
2790 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2791 			break;
2792 		}
2793 
2794 		/* we have 2-disk failure */
2795 		BUG_ON(s->failed != 2);
2796 		/* fall through */
2797 	case check_state_compute_result:
2798 		sh->check_state = check_state_idle;
2799 
2800 		/* check that a write has not made the stripe insync */
2801 		if (test_bit(STRIPE_INSYNC, &sh->state))
2802 			break;
2803 
2804 		/* now write out any block on a failed drive,
2805 		 * or P or Q if they were recomputed
2806 		 */
2807 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2808 		if (s->failed == 2) {
2809 			dev = &sh->dev[s->failed_num[1]];
2810 			s->locked++;
2811 			set_bit(R5_LOCKED, &dev->flags);
2812 			set_bit(R5_Wantwrite, &dev->flags);
2813 		}
2814 		if (s->failed >= 1) {
2815 			dev = &sh->dev[s->failed_num[0]];
2816 			s->locked++;
2817 			set_bit(R5_LOCKED, &dev->flags);
2818 			set_bit(R5_Wantwrite, &dev->flags);
2819 		}
2820 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2821 			dev = &sh->dev[pd_idx];
2822 			s->locked++;
2823 			set_bit(R5_LOCKED, &dev->flags);
2824 			set_bit(R5_Wantwrite, &dev->flags);
2825 		}
2826 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2827 			dev = &sh->dev[qd_idx];
2828 			s->locked++;
2829 			set_bit(R5_LOCKED, &dev->flags);
2830 			set_bit(R5_Wantwrite, &dev->flags);
2831 		}
2832 		clear_bit(STRIPE_DEGRADED, &sh->state);
2833 
2834 		set_bit(STRIPE_INSYNC, &sh->state);
2835 		break;
2836 	case check_state_run:
2837 	case check_state_run_q:
2838 	case check_state_run_pq:
2839 		break; /* we will be called again upon completion */
2840 	case check_state_check_result:
2841 		sh->check_state = check_state_idle;
2842 
2843 		/* handle a successful check operation, if parity is correct
2844 		 * we are done.  Otherwise update the mismatch count and repair
2845 		 * parity if !MD_RECOVERY_CHECK
2846 		 */
2847 		if (sh->ops.zero_sum_result == 0) {
2848 			/* both parities are correct */
2849 			if (!s->failed)
2850 				set_bit(STRIPE_INSYNC, &sh->state);
2851 			else {
2852 				/* in contrast to the raid5 case we can validate
2853 				 * parity, but still have a failure to write
2854 				 * back
2855 				 */
2856 				sh->check_state = check_state_compute_result;
2857 				/* Returning at this point means that we may go
2858 				 * off and bring p and/or q uptodate again so
2859 				 * we make sure to check zero_sum_result again
2860 				 * to verify if p or q need writeback
2861 				 */
2862 			}
2863 		} else {
2864 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2865 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2866 				/* don't try to repair!! */
2867 				set_bit(STRIPE_INSYNC, &sh->state);
2868 			else {
2869 				int *target = &sh->ops.target;
2870 
2871 				sh->ops.target = -1;
2872 				sh->ops.target2 = -1;
2873 				sh->check_state = check_state_compute_run;
2874 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2875 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2876 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2877 					set_bit(R5_Wantcompute,
2878 						&sh->dev[pd_idx].flags);
2879 					*target = pd_idx;
2880 					target = &sh->ops.target2;
2881 					s->uptodate++;
2882 				}
2883 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2884 					set_bit(R5_Wantcompute,
2885 						&sh->dev[qd_idx].flags);
2886 					*target = qd_idx;
2887 					s->uptodate++;
2888 				}
2889 			}
2890 		}
2891 		break;
2892 	case check_state_compute_run:
2893 		break;
2894 	default:
2895 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2896 		       __func__, sh->check_state,
2897 		       (unsigned long long) sh->sector);
2898 		BUG();
2899 	}
2900 }
2901 
2902 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
2903 {
2904 	int i;
2905 
2906 	/* We have read all the blocks in this stripe and now we need to
2907 	 * copy some of them into a target stripe for expand.
2908 	 */
2909 	struct dma_async_tx_descriptor *tx = NULL;
2910 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2911 	for (i = 0; i < sh->disks; i++)
2912 		if (i != sh->pd_idx && i != sh->qd_idx) {
2913 			int dd_idx, j;
2914 			struct stripe_head *sh2;
2915 			struct async_submit_ctl submit;
2916 
2917 			sector_t bn = compute_blocknr(sh, i, 1);
2918 			sector_t s = raid5_compute_sector(conf, bn, 0,
2919 							  &dd_idx, NULL);
2920 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2921 			if (sh2 == NULL)
2922 				/* so far only the early blocks of this stripe
2923 				 * have been requested.  When later blocks
2924 				 * get requested, we will try again
2925 				 */
2926 				continue;
2927 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2928 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2929 				/* must have already done this block */
2930 				release_stripe(sh2);
2931 				continue;
2932 			}
2933 
2934 			/* place all the copies on one channel */
2935 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2936 			tx = async_memcpy(sh2->dev[dd_idx].page,
2937 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2938 					  &submit);
2939 
2940 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2941 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2942 			for (j = 0; j < conf->raid_disks; j++)
2943 				if (j != sh2->pd_idx &&
2944 				    j != sh2->qd_idx &&
2945 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2946 					break;
2947 			if (j == conf->raid_disks) {
2948 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2949 				set_bit(STRIPE_HANDLE, &sh2->state);
2950 			}
2951 			release_stripe(sh2);
2952 
2953 		}
2954 	/* done submitting copies, wait for them to complete */
2955 	if (tx) {
2956 		async_tx_ack(tx);
2957 		dma_wait_for_async_tx(tx);
2958 	}
2959 }
2960 
2961 
2962 /*
2963  * handle_stripe - do things to a stripe.
2964  *
2965  * We lock the stripe and then examine the state of various bits
2966  * to see what needs to be done.
2967  * Possible results:
2968  *    return some read request which now have data
2969  *    return some write requests which are safely on disc
2970  *    schedule a read on some buffers
2971  *    schedule a write of some buffers
2972  *    return confirmation of parity correctness
2973  *
2974  * buffers are taken off read_list or write_list, and bh_cache buffers
2975  * get BH_Lock set before the stripe lock is released.
2976  *
2977  */
2978 
2979 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2980 {
2981 	struct r5conf *conf = sh->raid_conf;
2982 	int disks = sh->disks;
2983 	struct r5dev *dev;
2984 	int i;
2985 
2986 	memset(s, 0, sizeof(*s));
2987 
2988 	s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2989 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2990 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2991 	s->failed_num[0] = -1;
2992 	s->failed_num[1] = -1;
2993 
2994 	/* Now to look around and see what can be done */
2995 	rcu_read_lock();
2996 	spin_lock_irq(&conf->device_lock);
2997 	for (i=disks; i--; ) {
2998 		struct md_rdev *rdev;
2999 		sector_t first_bad;
3000 		int bad_sectors;
3001 		int is_bad = 0;
3002 
3003 		dev = &sh->dev[i];
3004 
3005 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3006 			i, dev->flags, dev->toread, dev->towrite, dev->written);
3007 		/* maybe we can reply to a read
3008 		 *
3009 		 * new wantfill requests are only permitted while
3010 		 * ops_complete_biofill is guaranteed to be inactive
3011 		 */
3012 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3013 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3014 			set_bit(R5_Wantfill, &dev->flags);
3015 
3016 		/* now count some things */
3017 		if (test_bit(R5_LOCKED, &dev->flags))
3018 			s->locked++;
3019 		if (test_bit(R5_UPTODATE, &dev->flags))
3020 			s->uptodate++;
3021 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3022 			s->compute++;
3023 			BUG_ON(s->compute > 2);
3024 		}
3025 
3026 		if (test_bit(R5_Wantfill, &dev->flags))
3027 			s->to_fill++;
3028 		else if (dev->toread)
3029 			s->to_read++;
3030 		if (dev->towrite) {
3031 			s->to_write++;
3032 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3033 				s->non_overwrite++;
3034 		}
3035 		if (dev->written)
3036 			s->written++;
3037 		rdev = rcu_dereference(conf->disks[i].rdev);
3038 		if (rdev) {
3039 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3040 					     &first_bad, &bad_sectors);
3041 			if (s->blocked_rdev == NULL
3042 			    && (test_bit(Blocked, &rdev->flags)
3043 				|| is_bad < 0)) {
3044 				if (is_bad < 0)
3045 					set_bit(BlockedBadBlocks,
3046 						&rdev->flags);
3047 				s->blocked_rdev = rdev;
3048 				atomic_inc(&rdev->nr_pending);
3049 			}
3050 		}
3051 		clear_bit(R5_Insync, &dev->flags);
3052 		if (!rdev)
3053 			/* Not in-sync */;
3054 		else if (is_bad) {
3055 			/* also not in-sync */
3056 			if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3057 				/* treat as in-sync, but with a read error
3058 				 * which we can now try to correct
3059 				 */
3060 				set_bit(R5_Insync, &dev->flags);
3061 				set_bit(R5_ReadError, &dev->flags);
3062 			}
3063 		} else if (test_bit(In_sync, &rdev->flags))
3064 			set_bit(R5_Insync, &dev->flags);
3065 		else if (!test_bit(Faulty, &rdev->flags)) {
3066 			/* in sync if before recovery_offset */
3067 			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3068 				set_bit(R5_Insync, &dev->flags);
3069 		}
3070 		if (test_bit(R5_WriteError, &dev->flags)) {
3071 			clear_bit(R5_Insync, &dev->flags);
3072 			if (!test_bit(Faulty, &rdev->flags)) {
3073 				s->handle_bad_blocks = 1;
3074 				atomic_inc(&rdev->nr_pending);
3075 			} else
3076 				clear_bit(R5_WriteError, &dev->flags);
3077 		}
3078 		if (test_bit(R5_MadeGood, &dev->flags)) {
3079 			if (!test_bit(Faulty, &rdev->flags)) {
3080 				s->handle_bad_blocks = 1;
3081 				atomic_inc(&rdev->nr_pending);
3082 			} else
3083 				clear_bit(R5_MadeGood, &dev->flags);
3084 		}
3085 		if (!test_bit(R5_Insync, &dev->flags)) {
3086 			/* The ReadError flag will just be confusing now */
3087 			clear_bit(R5_ReadError, &dev->flags);
3088 			clear_bit(R5_ReWrite, &dev->flags);
3089 		}
3090 		if (test_bit(R5_ReadError, &dev->flags))
3091 			clear_bit(R5_Insync, &dev->flags);
3092 		if (!test_bit(R5_Insync, &dev->flags)) {
3093 			if (s->failed < 2)
3094 				s->failed_num[s->failed] = i;
3095 			s->failed++;
3096 		}
3097 	}
3098 	spin_unlock_irq(&conf->device_lock);
3099 	rcu_read_unlock();
3100 }
3101 
3102 static void handle_stripe(struct stripe_head *sh)
3103 {
3104 	struct stripe_head_state s;
3105 	struct r5conf *conf = sh->raid_conf;
3106 	int i;
3107 	int prexor;
3108 	int disks = sh->disks;
3109 	struct r5dev *pdev, *qdev;
3110 
3111 	clear_bit(STRIPE_HANDLE, &sh->state);
3112 	if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3113 		/* already being handled, ensure it gets handled
3114 		 * again when current action finishes */
3115 		set_bit(STRIPE_HANDLE, &sh->state);
3116 		return;
3117 	}
3118 
3119 	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3120 		set_bit(STRIPE_SYNCING, &sh->state);
3121 		clear_bit(STRIPE_INSYNC, &sh->state);
3122 	}
3123 	clear_bit(STRIPE_DELAYED, &sh->state);
3124 
3125 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3126 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3127 	       (unsigned long long)sh->sector, sh->state,
3128 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3129 	       sh->check_state, sh->reconstruct_state);
3130 
3131 	analyse_stripe(sh, &s);
3132 
3133 	if (s.handle_bad_blocks) {
3134 		set_bit(STRIPE_HANDLE, &sh->state);
3135 		goto finish;
3136 	}
3137 
3138 	if (unlikely(s.blocked_rdev)) {
3139 		if (s.syncing || s.expanding || s.expanded ||
3140 		    s.to_write || s.written) {
3141 			set_bit(STRIPE_HANDLE, &sh->state);
3142 			goto finish;
3143 		}
3144 		/* There is nothing for the blocked_rdev to block */
3145 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3146 		s.blocked_rdev = NULL;
3147 	}
3148 
3149 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3150 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3151 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3152 	}
3153 
3154 	pr_debug("locked=%d uptodate=%d to_read=%d"
3155 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3156 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3157 	       s.failed_num[0], s.failed_num[1]);
3158 	/* check if the array has lost more than max_degraded devices and,
3159 	 * if so, some requests might need to be failed.
3160 	 */
3161 	if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3162 		handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3163 	if (s.failed > conf->max_degraded && s.syncing)
3164 		handle_failed_sync(conf, sh, &s);
3165 
3166 	/*
3167 	 * might be able to return some write requests if the parity blocks
3168 	 * are safe, or on a failed drive
3169 	 */
3170 	pdev = &sh->dev[sh->pd_idx];
3171 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3172 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3173 	qdev = &sh->dev[sh->qd_idx];
3174 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3175 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3176 		|| conf->level < 6;
3177 
3178 	if (s.written &&
3179 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3180 			     && !test_bit(R5_LOCKED, &pdev->flags)
3181 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3182 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3183 			     && !test_bit(R5_LOCKED, &qdev->flags)
3184 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3185 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3186 
3187 	/* Now we might consider reading some blocks, either to check/generate
3188 	 * parity, or to satisfy requests
3189 	 * or to load a block that is being partially written.
3190 	 */
3191 	if (s.to_read || s.non_overwrite
3192 	    || (conf->level == 6 && s.to_write && s.failed)
3193 	    || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3194 		handle_stripe_fill(sh, &s, disks);
3195 
3196 	/* Now we check to see if any write operations have recently
3197 	 * completed
3198 	 */
3199 	prexor = 0;
3200 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3201 		prexor = 1;
3202 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3203 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3204 		sh->reconstruct_state = reconstruct_state_idle;
3205 
3206 		/* All the 'written' buffers and the parity block are ready to
3207 		 * be written back to disk
3208 		 */
3209 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3210 		BUG_ON(sh->qd_idx >= 0 &&
3211 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3212 		for (i = disks; i--; ) {
3213 			struct r5dev *dev = &sh->dev[i];
3214 			if (test_bit(R5_LOCKED, &dev->flags) &&
3215 				(i == sh->pd_idx || i == sh->qd_idx ||
3216 				 dev->written)) {
3217 				pr_debug("Writing block %d\n", i);
3218 				set_bit(R5_Wantwrite, &dev->flags);
3219 				if (prexor)
3220 					continue;
3221 				if (!test_bit(R5_Insync, &dev->flags) ||
3222 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3223 				     s.failed == 0))
3224 					set_bit(STRIPE_INSYNC, &sh->state);
3225 			}
3226 		}
3227 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3228 			s.dec_preread_active = 1;
3229 	}
3230 
3231 	/* Now to consider new write requests and what else, if anything
3232 	 * should be read.  We do not handle new writes when:
3233 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3234 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3235 	 *    block.
3236 	 */
3237 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3238 		handle_stripe_dirtying(conf, sh, &s, disks);
3239 
3240 	/* maybe we need to check and possibly fix the parity for this stripe
3241 	 * Any reads will already have been scheduled, so we just see if enough
3242 	 * data is available.  The parity check is held off while parity
3243 	 * dependent operations are in flight.
3244 	 */
3245 	if (sh->check_state ||
3246 	    (s.syncing && s.locked == 0 &&
3247 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3248 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3249 		if (conf->level == 6)
3250 			handle_parity_checks6(conf, sh, &s, disks);
3251 		else
3252 			handle_parity_checks5(conf, sh, &s, disks);
3253 	}
3254 
3255 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3256 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3257 		clear_bit(STRIPE_SYNCING, &sh->state);
3258 	}
3259 
3260 	/* If the failed drives are just a ReadError, then we might need
3261 	 * to progress the repair/check process
3262 	 */
3263 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3264 		for (i = 0; i < s.failed; i++) {
3265 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3266 			if (test_bit(R5_ReadError, &dev->flags)
3267 			    && !test_bit(R5_LOCKED, &dev->flags)
3268 			    && test_bit(R5_UPTODATE, &dev->flags)
3269 				) {
3270 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3271 					set_bit(R5_Wantwrite, &dev->flags);
3272 					set_bit(R5_ReWrite, &dev->flags);
3273 					set_bit(R5_LOCKED, &dev->flags);
3274 					s.locked++;
3275 				} else {
3276 					/* let's read it back */
3277 					set_bit(R5_Wantread, &dev->flags);
3278 					set_bit(R5_LOCKED, &dev->flags);
3279 					s.locked++;
3280 				}
3281 			}
3282 		}
3283 
3284 
3285 	/* Finish reconstruct operations initiated by the expansion process */
3286 	if (sh->reconstruct_state == reconstruct_state_result) {
3287 		struct stripe_head *sh_src
3288 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3289 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3290 			/* sh cannot be written until sh_src has been read.
3291 			 * so arrange for sh to be delayed a little
3292 			 */
3293 			set_bit(STRIPE_DELAYED, &sh->state);
3294 			set_bit(STRIPE_HANDLE, &sh->state);
3295 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3296 					      &sh_src->state))
3297 				atomic_inc(&conf->preread_active_stripes);
3298 			release_stripe(sh_src);
3299 			goto finish;
3300 		}
3301 		if (sh_src)
3302 			release_stripe(sh_src);
3303 
3304 		sh->reconstruct_state = reconstruct_state_idle;
3305 		clear_bit(STRIPE_EXPANDING, &sh->state);
3306 		for (i = conf->raid_disks; i--; ) {
3307 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3308 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3309 			s.locked++;
3310 		}
3311 	}
3312 
3313 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3314 	    !sh->reconstruct_state) {
3315 		/* Need to write out all blocks after computing parity */
3316 		sh->disks = conf->raid_disks;
3317 		stripe_set_idx(sh->sector, conf, 0, sh);
3318 		schedule_reconstruction(sh, &s, 1, 1);
3319 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3320 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3321 		atomic_dec(&conf->reshape_stripes);
3322 		wake_up(&conf->wait_for_overlap);
3323 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3324 	}
3325 
3326 	if (s.expanding && s.locked == 0 &&
3327 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3328 		handle_stripe_expansion(conf, sh);
3329 
3330 finish:
3331 	/* wait for this device to become unblocked */
3332 	if (conf->mddev->external && unlikely(s.blocked_rdev))
3333 		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3334 
3335 	if (s.handle_bad_blocks)
3336 		for (i = disks; i--; ) {
3337 			struct md_rdev *rdev;
3338 			struct r5dev *dev = &sh->dev[i];
3339 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3340 				/* We own a safe reference to the rdev */
3341 				rdev = conf->disks[i].rdev;
3342 				if (!rdev_set_badblocks(rdev, sh->sector,
3343 							STRIPE_SECTORS, 0))
3344 					md_error(conf->mddev, rdev);
3345 				rdev_dec_pending(rdev, conf->mddev);
3346 			}
3347 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3348 				rdev = conf->disks[i].rdev;
3349 				rdev_clear_badblocks(rdev, sh->sector,
3350 						     STRIPE_SECTORS);
3351 				rdev_dec_pending(rdev, conf->mddev);
3352 			}
3353 		}
3354 
3355 	if (s.ops_request)
3356 		raid_run_ops(sh, s.ops_request);
3357 
3358 	ops_run_io(sh, &s);
3359 
3360 	if (s.dec_preread_active) {
3361 		/* We delay this until after ops_run_io so that if make_request
3362 		 * is waiting on a flush, it won't continue until the writes
3363 		 * have actually been submitted.
3364 		 */
3365 		atomic_dec(&conf->preread_active_stripes);
3366 		if (atomic_read(&conf->preread_active_stripes) <
3367 		    IO_THRESHOLD)
3368 			md_wakeup_thread(conf->mddev->thread);
3369 	}
3370 
3371 	return_io(s.return_bi);
3372 
3373 	clear_bit(STRIPE_ACTIVE, &sh->state);
3374 }
3375 
3376 static void raid5_activate_delayed(struct r5conf *conf)
3377 {
3378 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3379 		while (!list_empty(&conf->delayed_list)) {
3380 			struct list_head *l = conf->delayed_list.next;
3381 			struct stripe_head *sh;
3382 			sh = list_entry(l, struct stripe_head, lru);
3383 			list_del_init(l);
3384 			clear_bit(STRIPE_DELAYED, &sh->state);
3385 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3386 				atomic_inc(&conf->preread_active_stripes);
3387 			list_add_tail(&sh->lru, &conf->hold_list);
3388 		}
3389 	}
3390 }
3391 
3392 static void activate_bit_delay(struct r5conf *conf)
3393 {
3394 	/* device_lock is held */
3395 	struct list_head head;
3396 	list_add(&head, &conf->bitmap_list);
3397 	list_del_init(&conf->bitmap_list);
3398 	while (!list_empty(&head)) {
3399 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3400 		list_del_init(&sh->lru);
3401 		atomic_inc(&sh->count);
3402 		__release_stripe(conf, sh);
3403 	}
3404 }
3405 
3406 int md_raid5_congested(struct mddev *mddev, int bits)
3407 {
3408 	struct r5conf *conf = mddev->private;
3409 
3410 	/* No difference between reads and writes.  Just check
3411 	 * how busy the stripe_cache is
3412 	 */
3413 
3414 	if (conf->inactive_blocked)
3415 		return 1;
3416 	if (conf->quiesce)
3417 		return 1;
3418 	if (list_empty_careful(&conf->inactive_list))
3419 		return 1;
3420 
3421 	return 0;
3422 }
3423 EXPORT_SYMBOL_GPL(md_raid5_congested);
3424 
3425 static int raid5_congested(void *data, int bits)
3426 {
3427 	struct mddev *mddev = data;
3428 
3429 	return mddev_congested(mddev, bits) ||
3430 		md_raid5_congested(mddev, bits);
3431 }
3432 
3433 /* We want read requests to align with chunks where possible,
3434  * but write requests don't need to.
3435  */
3436 static int raid5_mergeable_bvec(struct request_queue *q,
3437 				struct bvec_merge_data *bvm,
3438 				struct bio_vec *biovec)
3439 {
3440 	struct mddev *mddev = q->queuedata;
3441 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3442 	int max;
3443 	unsigned int chunk_sectors = mddev->chunk_sectors;
3444 	unsigned int bio_sectors = bvm->bi_size >> 9;
3445 
3446 	if ((bvm->bi_rw & 1) == WRITE)
3447 		return biovec->bv_len; /* always allow writes to be mergeable */
3448 
3449 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3450 		chunk_sectors = mddev->new_chunk_sectors;
3451 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3452 	if (max < 0) max = 0;
3453 	if (max <= biovec->bv_len && bio_sectors == 0)
3454 		return biovec->bv_len;
3455 	else
3456 		return max;
3457 }
3458 
3459 
3460 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3461 {
3462 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3463 	unsigned int chunk_sectors = mddev->chunk_sectors;
3464 	unsigned int bio_sectors = bio->bi_size >> 9;
3465 
3466 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3467 		chunk_sectors = mddev->new_chunk_sectors;
3468 	return  chunk_sectors >=
3469 		((sector & (chunk_sectors - 1)) + bio_sectors);
3470 }
3471 
3472 /*
3473  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3474  *  later sampled by raid5d.
3475  */
3476 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3477 {
3478 	unsigned long flags;
3479 
3480 	spin_lock_irqsave(&conf->device_lock, flags);
3481 
3482 	bi->bi_next = conf->retry_read_aligned_list;
3483 	conf->retry_read_aligned_list = bi;
3484 
3485 	spin_unlock_irqrestore(&conf->device_lock, flags);
3486 	md_wakeup_thread(conf->mddev->thread);
3487 }
3488 
3489 
3490 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3491 {
3492 	struct bio *bi;
3493 
3494 	bi = conf->retry_read_aligned;
3495 	if (bi) {
3496 		conf->retry_read_aligned = NULL;
3497 		return bi;
3498 	}
3499 	bi = conf->retry_read_aligned_list;
3500 	if(bi) {
3501 		conf->retry_read_aligned_list = bi->bi_next;
3502 		bi->bi_next = NULL;
3503 		/*
3504 		 * this sets the active strip count to 1 and the processed
3505 		 * strip count to zero (upper 8 bits)
3506 		 */
3507 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3508 	}
3509 
3510 	return bi;
3511 }
3512 
3513 
3514 /*
3515  *  The "raid5_align_endio" should check if the read succeeded and if it
3516  *  did, call bio_endio on the original bio (having bio_put the new bio
3517  *  first).
3518  *  If the read failed..
3519  */
3520 static void raid5_align_endio(struct bio *bi, int error)
3521 {
3522 	struct bio* raid_bi  = bi->bi_private;
3523 	struct mddev *mddev;
3524 	struct r5conf *conf;
3525 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3526 	struct md_rdev *rdev;
3527 
3528 	bio_put(bi);
3529 
3530 	rdev = (void*)raid_bi->bi_next;
3531 	raid_bi->bi_next = NULL;
3532 	mddev = rdev->mddev;
3533 	conf = mddev->private;
3534 
3535 	rdev_dec_pending(rdev, conf->mddev);
3536 
3537 	if (!error && uptodate) {
3538 		bio_endio(raid_bi, 0);
3539 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3540 			wake_up(&conf->wait_for_stripe);
3541 		return;
3542 	}
3543 
3544 
3545 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3546 
3547 	add_bio_to_retry(raid_bi, conf);
3548 }
3549 
3550 static int bio_fits_rdev(struct bio *bi)
3551 {
3552 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3553 
3554 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3555 		return 0;
3556 	blk_recount_segments(q, bi);
3557 	if (bi->bi_phys_segments > queue_max_segments(q))
3558 		return 0;
3559 
3560 	if (q->merge_bvec_fn)
3561 		/* it's too hard to apply the merge_bvec_fn at this stage,
3562 		 * just just give up
3563 		 */
3564 		return 0;
3565 
3566 	return 1;
3567 }
3568 
3569 
3570 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3571 {
3572 	struct r5conf *conf = mddev->private;
3573 	int dd_idx;
3574 	struct bio* align_bi;
3575 	struct md_rdev *rdev;
3576 
3577 	if (!in_chunk_boundary(mddev, raid_bio)) {
3578 		pr_debug("chunk_aligned_read : non aligned\n");
3579 		return 0;
3580 	}
3581 	/*
3582 	 * use bio_clone_mddev to make a copy of the bio
3583 	 */
3584 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3585 	if (!align_bi)
3586 		return 0;
3587 	/*
3588 	 *   set bi_end_io to a new function, and set bi_private to the
3589 	 *     original bio.
3590 	 */
3591 	align_bi->bi_end_io  = raid5_align_endio;
3592 	align_bi->bi_private = raid_bio;
3593 	/*
3594 	 *	compute position
3595 	 */
3596 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3597 						    0,
3598 						    &dd_idx, NULL);
3599 
3600 	rcu_read_lock();
3601 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3602 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3603 		sector_t first_bad;
3604 		int bad_sectors;
3605 
3606 		atomic_inc(&rdev->nr_pending);
3607 		rcu_read_unlock();
3608 		raid_bio->bi_next = (void*)rdev;
3609 		align_bi->bi_bdev =  rdev->bdev;
3610 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3611 		align_bi->bi_sector += rdev->data_offset;
3612 
3613 		if (!bio_fits_rdev(align_bi) ||
3614 		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3615 				&first_bad, &bad_sectors)) {
3616 			/* too big in some way, or has a known bad block */
3617 			bio_put(align_bi);
3618 			rdev_dec_pending(rdev, mddev);
3619 			return 0;
3620 		}
3621 
3622 		spin_lock_irq(&conf->device_lock);
3623 		wait_event_lock_irq(conf->wait_for_stripe,
3624 				    conf->quiesce == 0,
3625 				    conf->device_lock, /* nothing */);
3626 		atomic_inc(&conf->active_aligned_reads);
3627 		spin_unlock_irq(&conf->device_lock);
3628 
3629 		generic_make_request(align_bi);
3630 		return 1;
3631 	} else {
3632 		rcu_read_unlock();
3633 		bio_put(align_bi);
3634 		return 0;
3635 	}
3636 }
3637 
3638 /* __get_priority_stripe - get the next stripe to process
3639  *
3640  * Full stripe writes are allowed to pass preread active stripes up until
3641  * the bypass_threshold is exceeded.  In general the bypass_count
3642  * increments when the handle_list is handled before the hold_list; however, it
3643  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3644  * stripe with in flight i/o.  The bypass_count will be reset when the
3645  * head of the hold_list has changed, i.e. the head was promoted to the
3646  * handle_list.
3647  */
3648 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3649 {
3650 	struct stripe_head *sh;
3651 
3652 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3653 		  __func__,
3654 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3655 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3656 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3657 
3658 	if (!list_empty(&conf->handle_list)) {
3659 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3660 
3661 		if (list_empty(&conf->hold_list))
3662 			conf->bypass_count = 0;
3663 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3664 			if (conf->hold_list.next == conf->last_hold)
3665 				conf->bypass_count++;
3666 			else {
3667 				conf->last_hold = conf->hold_list.next;
3668 				conf->bypass_count -= conf->bypass_threshold;
3669 				if (conf->bypass_count < 0)
3670 					conf->bypass_count = 0;
3671 			}
3672 		}
3673 	} else if (!list_empty(&conf->hold_list) &&
3674 		   ((conf->bypass_threshold &&
3675 		     conf->bypass_count > conf->bypass_threshold) ||
3676 		    atomic_read(&conf->pending_full_writes) == 0)) {
3677 		sh = list_entry(conf->hold_list.next,
3678 				typeof(*sh), lru);
3679 		conf->bypass_count -= conf->bypass_threshold;
3680 		if (conf->bypass_count < 0)
3681 			conf->bypass_count = 0;
3682 	} else
3683 		return NULL;
3684 
3685 	list_del_init(&sh->lru);
3686 	atomic_inc(&sh->count);
3687 	BUG_ON(atomic_read(&sh->count) != 1);
3688 	return sh;
3689 }
3690 
3691 static int make_request(struct mddev *mddev, struct bio * bi)
3692 {
3693 	struct r5conf *conf = mddev->private;
3694 	int dd_idx;
3695 	sector_t new_sector;
3696 	sector_t logical_sector, last_sector;
3697 	struct stripe_head *sh;
3698 	const int rw = bio_data_dir(bi);
3699 	int remaining;
3700 	int plugged;
3701 
3702 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3703 		md_flush_request(mddev, bi);
3704 		return 0;
3705 	}
3706 
3707 	md_write_start(mddev, bi);
3708 
3709 	if (rw == READ &&
3710 	     mddev->reshape_position == MaxSector &&
3711 	     chunk_aligned_read(mddev,bi))
3712 		return 0;
3713 
3714 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3715 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3716 	bi->bi_next = NULL;
3717 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3718 
3719 	plugged = mddev_check_plugged(mddev);
3720 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3721 		DEFINE_WAIT(w);
3722 		int disks, data_disks;
3723 		int previous;
3724 
3725 	retry:
3726 		previous = 0;
3727 		disks = conf->raid_disks;
3728 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3729 		if (unlikely(conf->reshape_progress != MaxSector)) {
3730 			/* spinlock is needed as reshape_progress may be
3731 			 * 64bit on a 32bit platform, and so it might be
3732 			 * possible to see a half-updated value
3733 			 * Of course reshape_progress could change after
3734 			 * the lock is dropped, so once we get a reference
3735 			 * to the stripe that we think it is, we will have
3736 			 * to check again.
3737 			 */
3738 			spin_lock_irq(&conf->device_lock);
3739 			if (mddev->delta_disks < 0
3740 			    ? logical_sector < conf->reshape_progress
3741 			    : logical_sector >= conf->reshape_progress) {
3742 				disks = conf->previous_raid_disks;
3743 				previous = 1;
3744 			} else {
3745 				if (mddev->delta_disks < 0
3746 				    ? logical_sector < conf->reshape_safe
3747 				    : logical_sector >= conf->reshape_safe) {
3748 					spin_unlock_irq(&conf->device_lock);
3749 					schedule();
3750 					goto retry;
3751 				}
3752 			}
3753 			spin_unlock_irq(&conf->device_lock);
3754 		}
3755 		data_disks = disks - conf->max_degraded;
3756 
3757 		new_sector = raid5_compute_sector(conf, logical_sector,
3758 						  previous,
3759 						  &dd_idx, NULL);
3760 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
3761 			(unsigned long long)new_sector,
3762 			(unsigned long long)logical_sector);
3763 
3764 		sh = get_active_stripe(conf, new_sector, previous,
3765 				       (bi->bi_rw&RWA_MASK), 0);
3766 		if (sh) {
3767 			if (unlikely(previous)) {
3768 				/* expansion might have moved on while waiting for a
3769 				 * stripe, so we must do the range check again.
3770 				 * Expansion could still move past after this
3771 				 * test, but as we are holding a reference to
3772 				 * 'sh', we know that if that happens,
3773 				 *  STRIPE_EXPANDING will get set and the expansion
3774 				 * won't proceed until we finish with the stripe.
3775 				 */
3776 				int must_retry = 0;
3777 				spin_lock_irq(&conf->device_lock);
3778 				if (mddev->delta_disks < 0
3779 				    ? logical_sector >= conf->reshape_progress
3780 				    : logical_sector < conf->reshape_progress)
3781 					/* mismatch, need to try again */
3782 					must_retry = 1;
3783 				spin_unlock_irq(&conf->device_lock);
3784 				if (must_retry) {
3785 					release_stripe(sh);
3786 					schedule();
3787 					goto retry;
3788 				}
3789 			}
3790 
3791 			if (rw == WRITE &&
3792 			    logical_sector >= mddev->suspend_lo &&
3793 			    logical_sector < mddev->suspend_hi) {
3794 				release_stripe(sh);
3795 				/* As the suspend_* range is controlled by
3796 				 * userspace, we want an interruptible
3797 				 * wait.
3798 				 */
3799 				flush_signals(current);
3800 				prepare_to_wait(&conf->wait_for_overlap,
3801 						&w, TASK_INTERRUPTIBLE);
3802 				if (logical_sector >= mddev->suspend_lo &&
3803 				    logical_sector < mddev->suspend_hi)
3804 					schedule();
3805 				goto retry;
3806 			}
3807 
3808 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3809 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
3810 				/* Stripe is busy expanding or
3811 				 * add failed due to overlap.  Flush everything
3812 				 * and wait a while
3813 				 */
3814 				md_wakeup_thread(mddev->thread);
3815 				release_stripe(sh);
3816 				schedule();
3817 				goto retry;
3818 			}
3819 			finish_wait(&conf->wait_for_overlap, &w);
3820 			set_bit(STRIPE_HANDLE, &sh->state);
3821 			clear_bit(STRIPE_DELAYED, &sh->state);
3822 			if ((bi->bi_rw & REQ_SYNC) &&
3823 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3824 				atomic_inc(&conf->preread_active_stripes);
3825 			release_stripe(sh);
3826 		} else {
3827 			/* cannot get stripe for read-ahead, just give-up */
3828 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3829 			finish_wait(&conf->wait_for_overlap, &w);
3830 			break;
3831 		}
3832 
3833 	}
3834 	if (!plugged)
3835 		md_wakeup_thread(mddev->thread);
3836 
3837 	spin_lock_irq(&conf->device_lock);
3838 	remaining = raid5_dec_bi_phys_segments(bi);
3839 	spin_unlock_irq(&conf->device_lock);
3840 	if (remaining == 0) {
3841 
3842 		if ( rw == WRITE )
3843 			md_write_end(mddev);
3844 
3845 		bio_endio(bi, 0);
3846 	}
3847 
3848 	return 0;
3849 }
3850 
3851 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
3852 
3853 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
3854 {
3855 	/* reshaping is quite different to recovery/resync so it is
3856 	 * handled quite separately ... here.
3857 	 *
3858 	 * On each call to sync_request, we gather one chunk worth of
3859 	 * destination stripes and flag them as expanding.
3860 	 * Then we find all the source stripes and request reads.
3861 	 * As the reads complete, handle_stripe will copy the data
3862 	 * into the destination stripe and release that stripe.
3863 	 */
3864 	struct r5conf *conf = mddev->private;
3865 	struct stripe_head *sh;
3866 	sector_t first_sector, last_sector;
3867 	int raid_disks = conf->previous_raid_disks;
3868 	int data_disks = raid_disks - conf->max_degraded;
3869 	int new_data_disks = conf->raid_disks - conf->max_degraded;
3870 	int i;
3871 	int dd_idx;
3872 	sector_t writepos, readpos, safepos;
3873 	sector_t stripe_addr;
3874 	int reshape_sectors;
3875 	struct list_head stripes;
3876 
3877 	if (sector_nr == 0) {
3878 		/* If restarting in the middle, skip the initial sectors */
3879 		if (mddev->delta_disks < 0 &&
3880 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3881 			sector_nr = raid5_size(mddev, 0, 0)
3882 				- conf->reshape_progress;
3883 		} else if (mddev->delta_disks >= 0 &&
3884 			   conf->reshape_progress > 0)
3885 			sector_nr = conf->reshape_progress;
3886 		sector_div(sector_nr, new_data_disks);
3887 		if (sector_nr) {
3888 			mddev->curr_resync_completed = sector_nr;
3889 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3890 			*skipped = 1;
3891 			return sector_nr;
3892 		}
3893 	}
3894 
3895 	/* We need to process a full chunk at a time.
3896 	 * If old and new chunk sizes differ, we need to process the
3897 	 * largest of these
3898 	 */
3899 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3900 		reshape_sectors = mddev->new_chunk_sectors;
3901 	else
3902 		reshape_sectors = mddev->chunk_sectors;
3903 
3904 	/* we update the metadata when there is more than 3Meg
3905 	 * in the block range (that is rather arbitrary, should
3906 	 * probably be time based) or when the data about to be
3907 	 * copied would over-write the source of the data at
3908 	 * the front of the range.
3909 	 * i.e. one new_stripe along from reshape_progress new_maps
3910 	 * to after where reshape_safe old_maps to
3911 	 */
3912 	writepos = conf->reshape_progress;
3913 	sector_div(writepos, new_data_disks);
3914 	readpos = conf->reshape_progress;
3915 	sector_div(readpos, data_disks);
3916 	safepos = conf->reshape_safe;
3917 	sector_div(safepos, data_disks);
3918 	if (mddev->delta_disks < 0) {
3919 		writepos -= min_t(sector_t, reshape_sectors, writepos);
3920 		readpos += reshape_sectors;
3921 		safepos += reshape_sectors;
3922 	} else {
3923 		writepos += reshape_sectors;
3924 		readpos -= min_t(sector_t, reshape_sectors, readpos);
3925 		safepos -= min_t(sector_t, reshape_sectors, safepos);
3926 	}
3927 
3928 	/* 'writepos' is the most advanced device address we might write.
3929 	 * 'readpos' is the least advanced device address we might read.
3930 	 * 'safepos' is the least address recorded in the metadata as having
3931 	 *     been reshaped.
3932 	 * If 'readpos' is behind 'writepos', then there is no way that we can
3933 	 * ensure safety in the face of a crash - that must be done by userspace
3934 	 * making a backup of the data.  So in that case there is no particular
3935 	 * rush to update metadata.
3936 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3937 	 * update the metadata to advance 'safepos' to match 'readpos' so that
3938 	 * we can be safe in the event of a crash.
3939 	 * So we insist on updating metadata if safepos is behind writepos and
3940 	 * readpos is beyond writepos.
3941 	 * In any case, update the metadata every 10 seconds.
3942 	 * Maybe that number should be configurable, but I'm not sure it is
3943 	 * worth it.... maybe it could be a multiple of safemode_delay???
3944 	 */
3945 	if ((mddev->delta_disks < 0
3946 	     ? (safepos > writepos && readpos < writepos)
3947 	     : (safepos < writepos && readpos > writepos)) ||
3948 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3949 		/* Cannot proceed until we've updated the superblock... */
3950 		wait_event(conf->wait_for_overlap,
3951 			   atomic_read(&conf->reshape_stripes)==0);
3952 		mddev->reshape_position = conf->reshape_progress;
3953 		mddev->curr_resync_completed = sector_nr;
3954 		conf->reshape_checkpoint = jiffies;
3955 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3956 		md_wakeup_thread(mddev->thread);
3957 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3958 			   kthread_should_stop());
3959 		spin_lock_irq(&conf->device_lock);
3960 		conf->reshape_safe = mddev->reshape_position;
3961 		spin_unlock_irq(&conf->device_lock);
3962 		wake_up(&conf->wait_for_overlap);
3963 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3964 	}
3965 
3966 	if (mddev->delta_disks < 0) {
3967 		BUG_ON(conf->reshape_progress == 0);
3968 		stripe_addr = writepos;
3969 		BUG_ON((mddev->dev_sectors &
3970 			~((sector_t)reshape_sectors - 1))
3971 		       - reshape_sectors - stripe_addr
3972 		       != sector_nr);
3973 	} else {
3974 		BUG_ON(writepos != sector_nr + reshape_sectors);
3975 		stripe_addr = sector_nr;
3976 	}
3977 	INIT_LIST_HEAD(&stripes);
3978 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3979 		int j;
3980 		int skipped_disk = 0;
3981 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3982 		set_bit(STRIPE_EXPANDING, &sh->state);
3983 		atomic_inc(&conf->reshape_stripes);
3984 		/* If any of this stripe is beyond the end of the old
3985 		 * array, then we need to zero those blocks
3986 		 */
3987 		for (j=sh->disks; j--;) {
3988 			sector_t s;
3989 			if (j == sh->pd_idx)
3990 				continue;
3991 			if (conf->level == 6 &&
3992 			    j == sh->qd_idx)
3993 				continue;
3994 			s = compute_blocknr(sh, j, 0);
3995 			if (s < raid5_size(mddev, 0, 0)) {
3996 				skipped_disk = 1;
3997 				continue;
3998 			}
3999 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4000 			set_bit(R5_Expanded, &sh->dev[j].flags);
4001 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4002 		}
4003 		if (!skipped_disk) {
4004 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4005 			set_bit(STRIPE_HANDLE, &sh->state);
4006 		}
4007 		list_add(&sh->lru, &stripes);
4008 	}
4009 	spin_lock_irq(&conf->device_lock);
4010 	if (mddev->delta_disks < 0)
4011 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4012 	else
4013 		conf->reshape_progress += reshape_sectors * new_data_disks;
4014 	spin_unlock_irq(&conf->device_lock);
4015 	/* Ok, those stripe are ready. We can start scheduling
4016 	 * reads on the source stripes.
4017 	 * The source stripes are determined by mapping the first and last
4018 	 * block on the destination stripes.
4019 	 */
4020 	first_sector =
4021 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4022 				     1, &dd_idx, NULL);
4023 	last_sector =
4024 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4025 					    * new_data_disks - 1),
4026 				     1, &dd_idx, NULL);
4027 	if (last_sector >= mddev->dev_sectors)
4028 		last_sector = mddev->dev_sectors - 1;
4029 	while (first_sector <= last_sector) {
4030 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4031 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4032 		set_bit(STRIPE_HANDLE, &sh->state);
4033 		release_stripe(sh);
4034 		first_sector += STRIPE_SECTORS;
4035 	}
4036 	/* Now that the sources are clearly marked, we can release
4037 	 * the destination stripes
4038 	 */
4039 	while (!list_empty(&stripes)) {
4040 		sh = list_entry(stripes.next, struct stripe_head, lru);
4041 		list_del_init(&sh->lru);
4042 		release_stripe(sh);
4043 	}
4044 	/* If this takes us to the resync_max point where we have to pause,
4045 	 * then we need to write out the superblock.
4046 	 */
4047 	sector_nr += reshape_sectors;
4048 	if ((sector_nr - mddev->curr_resync_completed) * 2
4049 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4050 		/* Cannot proceed until we've updated the superblock... */
4051 		wait_event(conf->wait_for_overlap,
4052 			   atomic_read(&conf->reshape_stripes) == 0);
4053 		mddev->reshape_position = conf->reshape_progress;
4054 		mddev->curr_resync_completed = sector_nr;
4055 		conf->reshape_checkpoint = jiffies;
4056 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4057 		md_wakeup_thread(mddev->thread);
4058 		wait_event(mddev->sb_wait,
4059 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4060 			   || kthread_should_stop());
4061 		spin_lock_irq(&conf->device_lock);
4062 		conf->reshape_safe = mddev->reshape_position;
4063 		spin_unlock_irq(&conf->device_lock);
4064 		wake_up(&conf->wait_for_overlap);
4065 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4066 	}
4067 	return reshape_sectors;
4068 }
4069 
4070 /* FIXME go_faster isn't used */
4071 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4072 {
4073 	struct r5conf *conf = mddev->private;
4074 	struct stripe_head *sh;
4075 	sector_t max_sector = mddev->dev_sectors;
4076 	sector_t sync_blocks;
4077 	int still_degraded = 0;
4078 	int i;
4079 
4080 	if (sector_nr >= max_sector) {
4081 		/* just being told to finish up .. nothing much to do */
4082 
4083 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4084 			end_reshape(conf);
4085 			return 0;
4086 		}
4087 
4088 		if (mddev->curr_resync < max_sector) /* aborted */
4089 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4090 					&sync_blocks, 1);
4091 		else /* completed sync */
4092 			conf->fullsync = 0;
4093 		bitmap_close_sync(mddev->bitmap);
4094 
4095 		return 0;
4096 	}
4097 
4098 	/* Allow raid5_quiesce to complete */
4099 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4100 
4101 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4102 		return reshape_request(mddev, sector_nr, skipped);
4103 
4104 	/* No need to check resync_max as we never do more than one
4105 	 * stripe, and as resync_max will always be on a chunk boundary,
4106 	 * if the check in md_do_sync didn't fire, there is no chance
4107 	 * of overstepping resync_max here
4108 	 */
4109 
4110 	/* if there is too many failed drives and we are trying
4111 	 * to resync, then assert that we are finished, because there is
4112 	 * nothing we can do.
4113 	 */
4114 	if (mddev->degraded >= conf->max_degraded &&
4115 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4116 		sector_t rv = mddev->dev_sectors - sector_nr;
4117 		*skipped = 1;
4118 		return rv;
4119 	}
4120 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4121 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4122 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4123 		/* we can skip this block, and probably more */
4124 		sync_blocks /= STRIPE_SECTORS;
4125 		*skipped = 1;
4126 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4127 	}
4128 
4129 
4130 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4131 
4132 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4133 	if (sh == NULL) {
4134 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4135 		/* make sure we don't swamp the stripe cache if someone else
4136 		 * is trying to get access
4137 		 */
4138 		schedule_timeout_uninterruptible(1);
4139 	}
4140 	/* Need to check if array will still be degraded after recovery/resync
4141 	 * We don't need to check the 'failed' flag as when that gets set,
4142 	 * recovery aborts.
4143 	 */
4144 	for (i = 0; i < conf->raid_disks; i++)
4145 		if (conf->disks[i].rdev == NULL)
4146 			still_degraded = 1;
4147 
4148 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4149 
4150 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4151 
4152 	handle_stripe(sh);
4153 	release_stripe(sh);
4154 
4155 	return STRIPE_SECTORS;
4156 }
4157 
4158 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4159 {
4160 	/* We may not be able to submit a whole bio at once as there
4161 	 * may not be enough stripe_heads available.
4162 	 * We cannot pre-allocate enough stripe_heads as we may need
4163 	 * more than exist in the cache (if we allow ever large chunks).
4164 	 * So we do one stripe head at a time and record in
4165 	 * ->bi_hw_segments how many have been done.
4166 	 *
4167 	 * We *know* that this entire raid_bio is in one chunk, so
4168 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4169 	 */
4170 	struct stripe_head *sh;
4171 	int dd_idx;
4172 	sector_t sector, logical_sector, last_sector;
4173 	int scnt = 0;
4174 	int remaining;
4175 	int handled = 0;
4176 
4177 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4178 	sector = raid5_compute_sector(conf, logical_sector,
4179 				      0, &dd_idx, NULL);
4180 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4181 
4182 	for (; logical_sector < last_sector;
4183 	     logical_sector += STRIPE_SECTORS,
4184 		     sector += STRIPE_SECTORS,
4185 		     scnt++) {
4186 
4187 		if (scnt < raid5_bi_hw_segments(raid_bio))
4188 			/* already done this stripe */
4189 			continue;
4190 
4191 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4192 
4193 		if (!sh) {
4194 			/* failed to get a stripe - must wait */
4195 			raid5_set_bi_hw_segments(raid_bio, scnt);
4196 			conf->retry_read_aligned = raid_bio;
4197 			return handled;
4198 		}
4199 
4200 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4201 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4202 			release_stripe(sh);
4203 			raid5_set_bi_hw_segments(raid_bio, scnt);
4204 			conf->retry_read_aligned = raid_bio;
4205 			return handled;
4206 		}
4207 
4208 		handle_stripe(sh);
4209 		release_stripe(sh);
4210 		handled++;
4211 	}
4212 	spin_lock_irq(&conf->device_lock);
4213 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4214 	spin_unlock_irq(&conf->device_lock);
4215 	if (remaining == 0)
4216 		bio_endio(raid_bio, 0);
4217 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4218 		wake_up(&conf->wait_for_stripe);
4219 	return handled;
4220 }
4221 
4222 
4223 /*
4224  * This is our raid5 kernel thread.
4225  *
4226  * We scan the hash table for stripes which can be handled now.
4227  * During the scan, completed stripes are saved for us by the interrupt
4228  * handler, so that they will not have to wait for our next wakeup.
4229  */
4230 static void raid5d(struct mddev *mddev)
4231 {
4232 	struct stripe_head *sh;
4233 	struct r5conf *conf = mddev->private;
4234 	int handled;
4235 	struct blk_plug plug;
4236 
4237 	pr_debug("+++ raid5d active\n");
4238 
4239 	md_check_recovery(mddev);
4240 
4241 	blk_start_plug(&plug);
4242 	handled = 0;
4243 	spin_lock_irq(&conf->device_lock);
4244 	while (1) {
4245 		struct bio *bio;
4246 
4247 		if (atomic_read(&mddev->plug_cnt) == 0 &&
4248 		    !list_empty(&conf->bitmap_list)) {
4249 			/* Now is a good time to flush some bitmap updates */
4250 			conf->seq_flush++;
4251 			spin_unlock_irq(&conf->device_lock);
4252 			bitmap_unplug(mddev->bitmap);
4253 			spin_lock_irq(&conf->device_lock);
4254 			conf->seq_write = conf->seq_flush;
4255 			activate_bit_delay(conf);
4256 		}
4257 		if (atomic_read(&mddev->plug_cnt) == 0)
4258 			raid5_activate_delayed(conf);
4259 
4260 		while ((bio = remove_bio_from_retry(conf))) {
4261 			int ok;
4262 			spin_unlock_irq(&conf->device_lock);
4263 			ok = retry_aligned_read(conf, bio);
4264 			spin_lock_irq(&conf->device_lock);
4265 			if (!ok)
4266 				break;
4267 			handled++;
4268 		}
4269 
4270 		sh = __get_priority_stripe(conf);
4271 
4272 		if (!sh)
4273 			break;
4274 		spin_unlock_irq(&conf->device_lock);
4275 
4276 		handled++;
4277 		handle_stripe(sh);
4278 		release_stripe(sh);
4279 		cond_resched();
4280 
4281 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4282 			md_check_recovery(mddev);
4283 
4284 		spin_lock_irq(&conf->device_lock);
4285 	}
4286 	pr_debug("%d stripes handled\n", handled);
4287 
4288 	spin_unlock_irq(&conf->device_lock);
4289 
4290 	async_tx_issue_pending_all();
4291 	blk_finish_plug(&plug);
4292 
4293 	pr_debug("--- raid5d inactive\n");
4294 }
4295 
4296 static ssize_t
4297 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4298 {
4299 	struct r5conf *conf = mddev->private;
4300 	if (conf)
4301 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4302 	else
4303 		return 0;
4304 }
4305 
4306 int
4307 raid5_set_cache_size(struct mddev *mddev, int size)
4308 {
4309 	struct r5conf *conf = mddev->private;
4310 	int err;
4311 
4312 	if (size <= 16 || size > 32768)
4313 		return -EINVAL;
4314 	while (size < conf->max_nr_stripes) {
4315 		if (drop_one_stripe(conf))
4316 			conf->max_nr_stripes--;
4317 		else
4318 			break;
4319 	}
4320 	err = md_allow_write(mddev);
4321 	if (err)
4322 		return err;
4323 	while (size > conf->max_nr_stripes) {
4324 		if (grow_one_stripe(conf))
4325 			conf->max_nr_stripes++;
4326 		else break;
4327 	}
4328 	return 0;
4329 }
4330 EXPORT_SYMBOL(raid5_set_cache_size);
4331 
4332 static ssize_t
4333 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4334 {
4335 	struct r5conf *conf = mddev->private;
4336 	unsigned long new;
4337 	int err;
4338 
4339 	if (len >= PAGE_SIZE)
4340 		return -EINVAL;
4341 	if (!conf)
4342 		return -ENODEV;
4343 
4344 	if (strict_strtoul(page, 10, &new))
4345 		return -EINVAL;
4346 	err = raid5_set_cache_size(mddev, new);
4347 	if (err)
4348 		return err;
4349 	return len;
4350 }
4351 
4352 static struct md_sysfs_entry
4353 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4354 				raid5_show_stripe_cache_size,
4355 				raid5_store_stripe_cache_size);
4356 
4357 static ssize_t
4358 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4359 {
4360 	struct r5conf *conf = mddev->private;
4361 	if (conf)
4362 		return sprintf(page, "%d\n", conf->bypass_threshold);
4363 	else
4364 		return 0;
4365 }
4366 
4367 static ssize_t
4368 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4369 {
4370 	struct r5conf *conf = mddev->private;
4371 	unsigned long new;
4372 	if (len >= PAGE_SIZE)
4373 		return -EINVAL;
4374 	if (!conf)
4375 		return -ENODEV;
4376 
4377 	if (strict_strtoul(page, 10, &new))
4378 		return -EINVAL;
4379 	if (new > conf->max_nr_stripes)
4380 		return -EINVAL;
4381 	conf->bypass_threshold = new;
4382 	return len;
4383 }
4384 
4385 static struct md_sysfs_entry
4386 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4387 					S_IRUGO | S_IWUSR,
4388 					raid5_show_preread_threshold,
4389 					raid5_store_preread_threshold);
4390 
4391 static ssize_t
4392 stripe_cache_active_show(struct mddev *mddev, char *page)
4393 {
4394 	struct r5conf *conf = mddev->private;
4395 	if (conf)
4396 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4397 	else
4398 		return 0;
4399 }
4400 
4401 static struct md_sysfs_entry
4402 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4403 
4404 static struct attribute *raid5_attrs[] =  {
4405 	&raid5_stripecache_size.attr,
4406 	&raid5_stripecache_active.attr,
4407 	&raid5_preread_bypass_threshold.attr,
4408 	NULL,
4409 };
4410 static struct attribute_group raid5_attrs_group = {
4411 	.name = NULL,
4412 	.attrs = raid5_attrs,
4413 };
4414 
4415 static sector_t
4416 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4417 {
4418 	struct r5conf *conf = mddev->private;
4419 
4420 	if (!sectors)
4421 		sectors = mddev->dev_sectors;
4422 	if (!raid_disks)
4423 		/* size is defined by the smallest of previous and new size */
4424 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4425 
4426 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4427 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4428 	return sectors * (raid_disks - conf->max_degraded);
4429 }
4430 
4431 static void raid5_free_percpu(struct r5conf *conf)
4432 {
4433 	struct raid5_percpu *percpu;
4434 	unsigned long cpu;
4435 
4436 	if (!conf->percpu)
4437 		return;
4438 
4439 	get_online_cpus();
4440 	for_each_possible_cpu(cpu) {
4441 		percpu = per_cpu_ptr(conf->percpu, cpu);
4442 		safe_put_page(percpu->spare_page);
4443 		kfree(percpu->scribble);
4444 	}
4445 #ifdef CONFIG_HOTPLUG_CPU
4446 	unregister_cpu_notifier(&conf->cpu_notify);
4447 #endif
4448 	put_online_cpus();
4449 
4450 	free_percpu(conf->percpu);
4451 }
4452 
4453 static void free_conf(struct r5conf *conf)
4454 {
4455 	shrink_stripes(conf);
4456 	raid5_free_percpu(conf);
4457 	kfree(conf->disks);
4458 	kfree(conf->stripe_hashtbl);
4459 	kfree(conf);
4460 }
4461 
4462 #ifdef CONFIG_HOTPLUG_CPU
4463 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4464 			      void *hcpu)
4465 {
4466 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4467 	long cpu = (long)hcpu;
4468 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4469 
4470 	switch (action) {
4471 	case CPU_UP_PREPARE:
4472 	case CPU_UP_PREPARE_FROZEN:
4473 		if (conf->level == 6 && !percpu->spare_page)
4474 			percpu->spare_page = alloc_page(GFP_KERNEL);
4475 		if (!percpu->scribble)
4476 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4477 
4478 		if (!percpu->scribble ||
4479 		    (conf->level == 6 && !percpu->spare_page)) {
4480 			safe_put_page(percpu->spare_page);
4481 			kfree(percpu->scribble);
4482 			pr_err("%s: failed memory allocation for cpu%ld\n",
4483 			       __func__, cpu);
4484 			return notifier_from_errno(-ENOMEM);
4485 		}
4486 		break;
4487 	case CPU_DEAD:
4488 	case CPU_DEAD_FROZEN:
4489 		safe_put_page(percpu->spare_page);
4490 		kfree(percpu->scribble);
4491 		percpu->spare_page = NULL;
4492 		percpu->scribble = NULL;
4493 		break;
4494 	default:
4495 		break;
4496 	}
4497 	return NOTIFY_OK;
4498 }
4499 #endif
4500 
4501 static int raid5_alloc_percpu(struct r5conf *conf)
4502 {
4503 	unsigned long cpu;
4504 	struct page *spare_page;
4505 	struct raid5_percpu __percpu *allcpus;
4506 	void *scribble;
4507 	int err;
4508 
4509 	allcpus = alloc_percpu(struct raid5_percpu);
4510 	if (!allcpus)
4511 		return -ENOMEM;
4512 	conf->percpu = allcpus;
4513 
4514 	get_online_cpus();
4515 	err = 0;
4516 	for_each_present_cpu(cpu) {
4517 		if (conf->level == 6) {
4518 			spare_page = alloc_page(GFP_KERNEL);
4519 			if (!spare_page) {
4520 				err = -ENOMEM;
4521 				break;
4522 			}
4523 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4524 		}
4525 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4526 		if (!scribble) {
4527 			err = -ENOMEM;
4528 			break;
4529 		}
4530 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4531 	}
4532 #ifdef CONFIG_HOTPLUG_CPU
4533 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4534 	conf->cpu_notify.priority = 0;
4535 	if (err == 0)
4536 		err = register_cpu_notifier(&conf->cpu_notify);
4537 #endif
4538 	put_online_cpus();
4539 
4540 	return err;
4541 }
4542 
4543 static struct r5conf *setup_conf(struct mddev *mddev)
4544 {
4545 	struct r5conf *conf;
4546 	int raid_disk, memory, max_disks;
4547 	struct md_rdev *rdev;
4548 	struct disk_info *disk;
4549 
4550 	if (mddev->new_level != 5
4551 	    && mddev->new_level != 4
4552 	    && mddev->new_level != 6) {
4553 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4554 		       mdname(mddev), mddev->new_level);
4555 		return ERR_PTR(-EIO);
4556 	}
4557 	if ((mddev->new_level == 5
4558 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4559 	    (mddev->new_level == 6
4560 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4561 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4562 		       mdname(mddev), mddev->new_layout);
4563 		return ERR_PTR(-EIO);
4564 	}
4565 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4566 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4567 		       mdname(mddev), mddev->raid_disks);
4568 		return ERR_PTR(-EINVAL);
4569 	}
4570 
4571 	if (!mddev->new_chunk_sectors ||
4572 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4573 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4574 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4575 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4576 		return ERR_PTR(-EINVAL);
4577 	}
4578 
4579 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4580 	if (conf == NULL)
4581 		goto abort;
4582 	spin_lock_init(&conf->device_lock);
4583 	init_waitqueue_head(&conf->wait_for_stripe);
4584 	init_waitqueue_head(&conf->wait_for_overlap);
4585 	INIT_LIST_HEAD(&conf->handle_list);
4586 	INIT_LIST_HEAD(&conf->hold_list);
4587 	INIT_LIST_HEAD(&conf->delayed_list);
4588 	INIT_LIST_HEAD(&conf->bitmap_list);
4589 	INIT_LIST_HEAD(&conf->inactive_list);
4590 	atomic_set(&conf->active_stripes, 0);
4591 	atomic_set(&conf->preread_active_stripes, 0);
4592 	atomic_set(&conf->active_aligned_reads, 0);
4593 	conf->bypass_threshold = BYPASS_THRESHOLD;
4594 	conf->recovery_disabled = mddev->recovery_disabled - 1;
4595 
4596 	conf->raid_disks = mddev->raid_disks;
4597 	if (mddev->reshape_position == MaxSector)
4598 		conf->previous_raid_disks = mddev->raid_disks;
4599 	else
4600 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4601 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4602 	conf->scribble_len = scribble_len(max_disks);
4603 
4604 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4605 			      GFP_KERNEL);
4606 	if (!conf->disks)
4607 		goto abort;
4608 
4609 	conf->mddev = mddev;
4610 
4611 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4612 		goto abort;
4613 
4614 	conf->level = mddev->new_level;
4615 	if (raid5_alloc_percpu(conf) != 0)
4616 		goto abort;
4617 
4618 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4619 
4620 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4621 		raid_disk = rdev->raid_disk;
4622 		if (raid_disk >= max_disks
4623 		    || raid_disk < 0)
4624 			continue;
4625 		disk = conf->disks + raid_disk;
4626 
4627 		disk->rdev = rdev;
4628 
4629 		if (test_bit(In_sync, &rdev->flags)) {
4630 			char b[BDEVNAME_SIZE];
4631 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4632 			       " disk %d\n",
4633 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4634 		} else if (rdev->saved_raid_disk != raid_disk)
4635 			/* Cannot rely on bitmap to complete recovery */
4636 			conf->fullsync = 1;
4637 	}
4638 
4639 	conf->chunk_sectors = mddev->new_chunk_sectors;
4640 	conf->level = mddev->new_level;
4641 	if (conf->level == 6)
4642 		conf->max_degraded = 2;
4643 	else
4644 		conf->max_degraded = 1;
4645 	conf->algorithm = mddev->new_layout;
4646 	conf->max_nr_stripes = NR_STRIPES;
4647 	conf->reshape_progress = mddev->reshape_position;
4648 	if (conf->reshape_progress != MaxSector) {
4649 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4650 		conf->prev_algo = mddev->layout;
4651 	}
4652 
4653 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4654 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4655 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4656 		printk(KERN_ERR
4657 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4658 		       mdname(mddev), memory);
4659 		goto abort;
4660 	} else
4661 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4662 		       mdname(mddev), memory);
4663 
4664 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4665 	if (!conf->thread) {
4666 		printk(KERN_ERR
4667 		       "md/raid:%s: couldn't allocate thread.\n",
4668 		       mdname(mddev));
4669 		goto abort;
4670 	}
4671 
4672 	return conf;
4673 
4674  abort:
4675 	if (conf) {
4676 		free_conf(conf);
4677 		return ERR_PTR(-EIO);
4678 	} else
4679 		return ERR_PTR(-ENOMEM);
4680 }
4681 
4682 
4683 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4684 {
4685 	switch (algo) {
4686 	case ALGORITHM_PARITY_0:
4687 		if (raid_disk < max_degraded)
4688 			return 1;
4689 		break;
4690 	case ALGORITHM_PARITY_N:
4691 		if (raid_disk >= raid_disks - max_degraded)
4692 			return 1;
4693 		break;
4694 	case ALGORITHM_PARITY_0_6:
4695 		if (raid_disk == 0 ||
4696 		    raid_disk == raid_disks - 1)
4697 			return 1;
4698 		break;
4699 	case ALGORITHM_LEFT_ASYMMETRIC_6:
4700 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4701 	case ALGORITHM_LEFT_SYMMETRIC_6:
4702 	case ALGORITHM_RIGHT_SYMMETRIC_6:
4703 		if (raid_disk == raid_disks - 1)
4704 			return 1;
4705 	}
4706 	return 0;
4707 }
4708 
4709 static int run(struct mddev *mddev)
4710 {
4711 	struct r5conf *conf;
4712 	int working_disks = 0;
4713 	int dirty_parity_disks = 0;
4714 	struct md_rdev *rdev;
4715 	sector_t reshape_offset = 0;
4716 
4717 	if (mddev->recovery_cp != MaxSector)
4718 		printk(KERN_NOTICE "md/raid:%s: not clean"
4719 		       " -- starting background reconstruction\n",
4720 		       mdname(mddev));
4721 	if (mddev->reshape_position != MaxSector) {
4722 		/* Check that we can continue the reshape.
4723 		 * Currently only disks can change, it must
4724 		 * increase, and we must be past the point where
4725 		 * a stripe over-writes itself
4726 		 */
4727 		sector_t here_new, here_old;
4728 		int old_disks;
4729 		int max_degraded = (mddev->level == 6 ? 2 : 1);
4730 
4731 		if (mddev->new_level != mddev->level) {
4732 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
4733 			       "required - aborting.\n",
4734 			       mdname(mddev));
4735 			return -EINVAL;
4736 		}
4737 		old_disks = mddev->raid_disks - mddev->delta_disks;
4738 		/* reshape_position must be on a new-stripe boundary, and one
4739 		 * further up in new geometry must map after here in old
4740 		 * geometry.
4741 		 */
4742 		here_new = mddev->reshape_position;
4743 		if (sector_div(here_new, mddev->new_chunk_sectors *
4744 			       (mddev->raid_disks - max_degraded))) {
4745 			printk(KERN_ERR "md/raid:%s: reshape_position not "
4746 			       "on a stripe boundary\n", mdname(mddev));
4747 			return -EINVAL;
4748 		}
4749 		reshape_offset = here_new * mddev->new_chunk_sectors;
4750 		/* here_new is the stripe we will write to */
4751 		here_old = mddev->reshape_position;
4752 		sector_div(here_old, mddev->chunk_sectors *
4753 			   (old_disks-max_degraded));
4754 		/* here_old is the first stripe that we might need to read
4755 		 * from */
4756 		if (mddev->delta_disks == 0) {
4757 			/* We cannot be sure it is safe to start an in-place
4758 			 * reshape.  It is only safe if user-space if monitoring
4759 			 * and taking constant backups.
4760 			 * mdadm always starts a situation like this in
4761 			 * readonly mode so it can take control before
4762 			 * allowing any writes.  So just check for that.
4763 			 */
4764 			if ((here_new * mddev->new_chunk_sectors !=
4765 			     here_old * mddev->chunk_sectors) ||
4766 			    mddev->ro == 0) {
4767 				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4768 				       " in read-only mode - aborting\n",
4769 				       mdname(mddev));
4770 				return -EINVAL;
4771 			}
4772 		} else if (mddev->delta_disks < 0
4773 		    ? (here_new * mddev->new_chunk_sectors <=
4774 		       here_old * mddev->chunk_sectors)
4775 		    : (here_new * mddev->new_chunk_sectors >=
4776 		       here_old * mddev->chunk_sectors)) {
4777 			/* Reading from the same stripe as writing to - bad */
4778 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4779 			       "auto-recovery - aborting.\n",
4780 			       mdname(mddev));
4781 			return -EINVAL;
4782 		}
4783 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4784 		       mdname(mddev));
4785 		/* OK, we should be able to continue; */
4786 	} else {
4787 		BUG_ON(mddev->level != mddev->new_level);
4788 		BUG_ON(mddev->layout != mddev->new_layout);
4789 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4790 		BUG_ON(mddev->delta_disks != 0);
4791 	}
4792 
4793 	if (mddev->private == NULL)
4794 		conf = setup_conf(mddev);
4795 	else
4796 		conf = mddev->private;
4797 
4798 	if (IS_ERR(conf))
4799 		return PTR_ERR(conf);
4800 
4801 	mddev->thread = conf->thread;
4802 	conf->thread = NULL;
4803 	mddev->private = conf;
4804 
4805 	/*
4806 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4807 	 */
4808 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4809 		if (rdev->raid_disk < 0)
4810 			continue;
4811 		if (test_bit(In_sync, &rdev->flags)) {
4812 			working_disks++;
4813 			continue;
4814 		}
4815 		/* This disc is not fully in-sync.  However if it
4816 		 * just stored parity (beyond the recovery_offset),
4817 		 * when we don't need to be concerned about the
4818 		 * array being dirty.
4819 		 * When reshape goes 'backwards', we never have
4820 		 * partially completed devices, so we only need
4821 		 * to worry about reshape going forwards.
4822 		 */
4823 		/* Hack because v0.91 doesn't store recovery_offset properly. */
4824 		if (mddev->major_version == 0 &&
4825 		    mddev->minor_version > 90)
4826 			rdev->recovery_offset = reshape_offset;
4827 
4828 		if (rdev->recovery_offset < reshape_offset) {
4829 			/* We need to check old and new layout */
4830 			if (!only_parity(rdev->raid_disk,
4831 					 conf->algorithm,
4832 					 conf->raid_disks,
4833 					 conf->max_degraded))
4834 				continue;
4835 		}
4836 		if (!only_parity(rdev->raid_disk,
4837 				 conf->prev_algo,
4838 				 conf->previous_raid_disks,
4839 				 conf->max_degraded))
4840 			continue;
4841 		dirty_parity_disks++;
4842 	}
4843 
4844 	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4845 			   - working_disks);
4846 
4847 	if (has_failed(conf)) {
4848 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
4849 			" (%d/%d failed)\n",
4850 			mdname(mddev), mddev->degraded, conf->raid_disks);
4851 		goto abort;
4852 	}
4853 
4854 	/* device size must be a multiple of chunk size */
4855 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4856 	mddev->resync_max_sectors = mddev->dev_sectors;
4857 
4858 	if (mddev->degraded > dirty_parity_disks &&
4859 	    mddev->recovery_cp != MaxSector) {
4860 		if (mddev->ok_start_degraded)
4861 			printk(KERN_WARNING
4862 			       "md/raid:%s: starting dirty degraded array"
4863 			       " - data corruption possible.\n",
4864 			       mdname(mddev));
4865 		else {
4866 			printk(KERN_ERR
4867 			       "md/raid:%s: cannot start dirty degraded array.\n",
4868 			       mdname(mddev));
4869 			goto abort;
4870 		}
4871 	}
4872 
4873 	if (mddev->degraded == 0)
4874 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4875 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
4876 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4877 		       mddev->new_layout);
4878 	else
4879 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4880 		       " out of %d devices, algorithm %d\n",
4881 		       mdname(mddev), conf->level,
4882 		       mddev->raid_disks - mddev->degraded,
4883 		       mddev->raid_disks, mddev->new_layout);
4884 
4885 	print_raid5_conf(conf);
4886 
4887 	if (conf->reshape_progress != MaxSector) {
4888 		conf->reshape_safe = conf->reshape_progress;
4889 		atomic_set(&conf->reshape_stripes, 0);
4890 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4891 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4892 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4893 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4894 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4895 							"reshape");
4896 	}
4897 
4898 
4899 	/* Ok, everything is just fine now */
4900 	if (mddev->to_remove == &raid5_attrs_group)
4901 		mddev->to_remove = NULL;
4902 	else if (mddev->kobj.sd &&
4903 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4904 		printk(KERN_WARNING
4905 		       "raid5: failed to create sysfs attributes for %s\n",
4906 		       mdname(mddev));
4907 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4908 
4909 	if (mddev->queue) {
4910 		int chunk_size;
4911 		/* read-ahead size must cover two whole stripes, which
4912 		 * is 2 * (datadisks) * chunksize where 'n' is the
4913 		 * number of raid devices
4914 		 */
4915 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4916 		int stripe = data_disks *
4917 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
4918 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4919 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4920 
4921 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4922 
4923 		mddev->queue->backing_dev_info.congested_data = mddev;
4924 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4925 
4926 		chunk_size = mddev->chunk_sectors << 9;
4927 		blk_queue_io_min(mddev->queue, chunk_size);
4928 		blk_queue_io_opt(mddev->queue, chunk_size *
4929 				 (conf->raid_disks - conf->max_degraded));
4930 
4931 		list_for_each_entry(rdev, &mddev->disks, same_set)
4932 			disk_stack_limits(mddev->gendisk, rdev->bdev,
4933 					  rdev->data_offset << 9);
4934 	}
4935 
4936 	return 0;
4937 abort:
4938 	md_unregister_thread(&mddev->thread);
4939 	print_raid5_conf(conf);
4940 	free_conf(conf);
4941 	mddev->private = NULL;
4942 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4943 	return -EIO;
4944 }
4945 
4946 static int stop(struct mddev *mddev)
4947 {
4948 	struct r5conf *conf = mddev->private;
4949 
4950 	md_unregister_thread(&mddev->thread);
4951 	if (mddev->queue)
4952 		mddev->queue->backing_dev_info.congested_fn = NULL;
4953 	free_conf(conf);
4954 	mddev->private = NULL;
4955 	mddev->to_remove = &raid5_attrs_group;
4956 	return 0;
4957 }
4958 
4959 static void status(struct seq_file *seq, struct mddev *mddev)
4960 {
4961 	struct r5conf *conf = mddev->private;
4962 	int i;
4963 
4964 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4965 		mddev->chunk_sectors / 2, mddev->layout);
4966 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4967 	for (i = 0; i < conf->raid_disks; i++)
4968 		seq_printf (seq, "%s",
4969 			       conf->disks[i].rdev &&
4970 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4971 	seq_printf (seq, "]");
4972 }
4973 
4974 static void print_raid5_conf (struct r5conf *conf)
4975 {
4976 	int i;
4977 	struct disk_info *tmp;
4978 
4979 	printk(KERN_DEBUG "RAID conf printout:\n");
4980 	if (!conf) {
4981 		printk("(conf==NULL)\n");
4982 		return;
4983 	}
4984 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
4985 	       conf->raid_disks,
4986 	       conf->raid_disks - conf->mddev->degraded);
4987 
4988 	for (i = 0; i < conf->raid_disks; i++) {
4989 		char b[BDEVNAME_SIZE];
4990 		tmp = conf->disks + i;
4991 		if (tmp->rdev)
4992 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
4993 			       i, !test_bit(Faulty, &tmp->rdev->flags),
4994 			       bdevname(tmp->rdev->bdev, b));
4995 	}
4996 }
4997 
4998 static int raid5_spare_active(struct mddev *mddev)
4999 {
5000 	int i;
5001 	struct r5conf *conf = mddev->private;
5002 	struct disk_info *tmp;
5003 	int count = 0;
5004 	unsigned long flags;
5005 
5006 	for (i = 0; i < conf->raid_disks; i++) {
5007 		tmp = conf->disks + i;
5008 		if (tmp->rdev
5009 		    && tmp->rdev->recovery_offset == MaxSector
5010 		    && !test_bit(Faulty, &tmp->rdev->flags)
5011 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5012 			count++;
5013 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5014 		}
5015 	}
5016 	spin_lock_irqsave(&conf->device_lock, flags);
5017 	mddev->degraded -= count;
5018 	spin_unlock_irqrestore(&conf->device_lock, flags);
5019 	print_raid5_conf(conf);
5020 	return count;
5021 }
5022 
5023 static int raid5_remove_disk(struct mddev *mddev, int number)
5024 {
5025 	struct r5conf *conf = mddev->private;
5026 	int err = 0;
5027 	struct md_rdev *rdev;
5028 	struct disk_info *p = conf->disks + number;
5029 
5030 	print_raid5_conf(conf);
5031 	rdev = p->rdev;
5032 	if (rdev) {
5033 		if (number >= conf->raid_disks &&
5034 		    conf->reshape_progress == MaxSector)
5035 			clear_bit(In_sync, &rdev->flags);
5036 
5037 		if (test_bit(In_sync, &rdev->flags) ||
5038 		    atomic_read(&rdev->nr_pending)) {
5039 			err = -EBUSY;
5040 			goto abort;
5041 		}
5042 		/* Only remove non-faulty devices if recovery
5043 		 * isn't possible.
5044 		 */
5045 		if (!test_bit(Faulty, &rdev->flags) &&
5046 		    mddev->recovery_disabled != conf->recovery_disabled &&
5047 		    !has_failed(conf) &&
5048 		    number < conf->raid_disks) {
5049 			err = -EBUSY;
5050 			goto abort;
5051 		}
5052 		p->rdev = NULL;
5053 		synchronize_rcu();
5054 		if (atomic_read(&rdev->nr_pending)) {
5055 			/* lost the race, try later */
5056 			err = -EBUSY;
5057 			p->rdev = rdev;
5058 		}
5059 	}
5060 abort:
5061 
5062 	print_raid5_conf(conf);
5063 	return err;
5064 }
5065 
5066 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5067 {
5068 	struct r5conf *conf = mddev->private;
5069 	int err = -EEXIST;
5070 	int disk;
5071 	struct disk_info *p;
5072 	int first = 0;
5073 	int last = conf->raid_disks - 1;
5074 
5075 	if (mddev->recovery_disabled == conf->recovery_disabled)
5076 		return -EBUSY;
5077 
5078 	if (has_failed(conf))
5079 		/* no point adding a device */
5080 		return -EINVAL;
5081 
5082 	if (rdev->raid_disk >= 0)
5083 		first = last = rdev->raid_disk;
5084 
5085 	/*
5086 	 * find the disk ... but prefer rdev->saved_raid_disk
5087 	 * if possible.
5088 	 */
5089 	if (rdev->saved_raid_disk >= 0 &&
5090 	    rdev->saved_raid_disk >= first &&
5091 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5092 		disk = rdev->saved_raid_disk;
5093 	else
5094 		disk = first;
5095 	for ( ; disk <= last ; disk++)
5096 		if ((p=conf->disks + disk)->rdev == NULL) {
5097 			clear_bit(In_sync, &rdev->flags);
5098 			rdev->raid_disk = disk;
5099 			err = 0;
5100 			if (rdev->saved_raid_disk != disk)
5101 				conf->fullsync = 1;
5102 			rcu_assign_pointer(p->rdev, rdev);
5103 			break;
5104 		}
5105 	print_raid5_conf(conf);
5106 	return err;
5107 }
5108 
5109 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5110 {
5111 	/* no resync is happening, and there is enough space
5112 	 * on all devices, so we can resize.
5113 	 * We need to make sure resync covers any new space.
5114 	 * If the array is shrinking we should possibly wait until
5115 	 * any io in the removed space completes, but it hardly seems
5116 	 * worth it.
5117 	 */
5118 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5119 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5120 					       mddev->raid_disks));
5121 	if (mddev->array_sectors >
5122 	    raid5_size(mddev, sectors, mddev->raid_disks))
5123 		return -EINVAL;
5124 	set_capacity(mddev->gendisk, mddev->array_sectors);
5125 	revalidate_disk(mddev->gendisk);
5126 	if (sectors > mddev->dev_sectors &&
5127 	    mddev->recovery_cp > mddev->dev_sectors) {
5128 		mddev->recovery_cp = mddev->dev_sectors;
5129 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5130 	}
5131 	mddev->dev_sectors = sectors;
5132 	mddev->resync_max_sectors = sectors;
5133 	return 0;
5134 }
5135 
5136 static int check_stripe_cache(struct mddev *mddev)
5137 {
5138 	/* Can only proceed if there are plenty of stripe_heads.
5139 	 * We need a minimum of one full stripe,, and for sensible progress
5140 	 * it is best to have about 4 times that.
5141 	 * If we require 4 times, then the default 256 4K stripe_heads will
5142 	 * allow for chunk sizes up to 256K, which is probably OK.
5143 	 * If the chunk size is greater, user-space should request more
5144 	 * stripe_heads first.
5145 	 */
5146 	struct r5conf *conf = mddev->private;
5147 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5148 	    > conf->max_nr_stripes ||
5149 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5150 	    > conf->max_nr_stripes) {
5151 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5152 		       mdname(mddev),
5153 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5154 			/ STRIPE_SIZE)*4);
5155 		return 0;
5156 	}
5157 	return 1;
5158 }
5159 
5160 static int check_reshape(struct mddev *mddev)
5161 {
5162 	struct r5conf *conf = mddev->private;
5163 
5164 	if (mddev->delta_disks == 0 &&
5165 	    mddev->new_layout == mddev->layout &&
5166 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5167 		return 0; /* nothing to do */
5168 	if (mddev->bitmap)
5169 		/* Cannot grow a bitmap yet */
5170 		return -EBUSY;
5171 	if (has_failed(conf))
5172 		return -EINVAL;
5173 	if (mddev->delta_disks < 0) {
5174 		/* We might be able to shrink, but the devices must
5175 		 * be made bigger first.
5176 		 * For raid6, 4 is the minimum size.
5177 		 * Otherwise 2 is the minimum
5178 		 */
5179 		int min = 2;
5180 		if (mddev->level == 6)
5181 			min = 4;
5182 		if (mddev->raid_disks + mddev->delta_disks < min)
5183 			return -EINVAL;
5184 	}
5185 
5186 	if (!check_stripe_cache(mddev))
5187 		return -ENOSPC;
5188 
5189 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5190 }
5191 
5192 static int raid5_start_reshape(struct mddev *mddev)
5193 {
5194 	struct r5conf *conf = mddev->private;
5195 	struct md_rdev *rdev;
5196 	int spares = 0;
5197 	unsigned long flags;
5198 
5199 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5200 		return -EBUSY;
5201 
5202 	if (!check_stripe_cache(mddev))
5203 		return -ENOSPC;
5204 
5205 	list_for_each_entry(rdev, &mddev->disks, same_set)
5206 		if (!test_bit(In_sync, &rdev->flags)
5207 		    && !test_bit(Faulty, &rdev->flags))
5208 			spares++;
5209 
5210 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5211 		/* Not enough devices even to make a degraded array
5212 		 * of that size
5213 		 */
5214 		return -EINVAL;
5215 
5216 	/* Refuse to reduce size of the array.  Any reductions in
5217 	 * array size must be through explicit setting of array_size
5218 	 * attribute.
5219 	 */
5220 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5221 	    < mddev->array_sectors) {
5222 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5223 		       "before number of disks\n", mdname(mddev));
5224 		return -EINVAL;
5225 	}
5226 
5227 	atomic_set(&conf->reshape_stripes, 0);
5228 	spin_lock_irq(&conf->device_lock);
5229 	conf->previous_raid_disks = conf->raid_disks;
5230 	conf->raid_disks += mddev->delta_disks;
5231 	conf->prev_chunk_sectors = conf->chunk_sectors;
5232 	conf->chunk_sectors = mddev->new_chunk_sectors;
5233 	conf->prev_algo = conf->algorithm;
5234 	conf->algorithm = mddev->new_layout;
5235 	if (mddev->delta_disks < 0)
5236 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5237 	else
5238 		conf->reshape_progress = 0;
5239 	conf->reshape_safe = conf->reshape_progress;
5240 	conf->generation++;
5241 	spin_unlock_irq(&conf->device_lock);
5242 
5243 	/* Add some new drives, as many as will fit.
5244 	 * We know there are enough to make the newly sized array work.
5245 	 * Don't add devices if we are reducing the number of
5246 	 * devices in the array.  This is because it is not possible
5247 	 * to correctly record the "partially reconstructed" state of
5248 	 * such devices during the reshape and confusion could result.
5249 	 */
5250 	if (mddev->delta_disks >= 0) {
5251 		int added_devices = 0;
5252 		list_for_each_entry(rdev, &mddev->disks, same_set)
5253 			if (rdev->raid_disk < 0 &&
5254 			    !test_bit(Faulty, &rdev->flags)) {
5255 				if (raid5_add_disk(mddev, rdev) == 0) {
5256 					if (rdev->raid_disk
5257 					    >= conf->previous_raid_disks) {
5258 						set_bit(In_sync, &rdev->flags);
5259 						added_devices++;
5260 					} else
5261 						rdev->recovery_offset = 0;
5262 
5263 					if (sysfs_link_rdev(mddev, rdev))
5264 						/* Failure here is OK */;
5265 				}
5266 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5267 				   && !test_bit(Faulty, &rdev->flags)) {
5268 				/* This is a spare that was manually added */
5269 				set_bit(In_sync, &rdev->flags);
5270 				added_devices++;
5271 			}
5272 
5273 		/* When a reshape changes the number of devices,
5274 		 * ->degraded is measured against the larger of the
5275 		 * pre and post number of devices.
5276 		 */
5277 		spin_lock_irqsave(&conf->device_lock, flags);
5278 		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5279 			- added_devices;
5280 		spin_unlock_irqrestore(&conf->device_lock, flags);
5281 	}
5282 	mddev->raid_disks = conf->raid_disks;
5283 	mddev->reshape_position = conf->reshape_progress;
5284 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5285 
5286 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5287 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5288 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5289 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5290 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5291 						"reshape");
5292 	if (!mddev->sync_thread) {
5293 		mddev->recovery = 0;
5294 		spin_lock_irq(&conf->device_lock);
5295 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5296 		conf->reshape_progress = MaxSector;
5297 		spin_unlock_irq(&conf->device_lock);
5298 		return -EAGAIN;
5299 	}
5300 	conf->reshape_checkpoint = jiffies;
5301 	md_wakeup_thread(mddev->sync_thread);
5302 	md_new_event(mddev);
5303 	return 0;
5304 }
5305 
5306 /* This is called from the reshape thread and should make any
5307  * changes needed in 'conf'
5308  */
5309 static void end_reshape(struct r5conf *conf)
5310 {
5311 
5312 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5313 
5314 		spin_lock_irq(&conf->device_lock);
5315 		conf->previous_raid_disks = conf->raid_disks;
5316 		conf->reshape_progress = MaxSector;
5317 		spin_unlock_irq(&conf->device_lock);
5318 		wake_up(&conf->wait_for_overlap);
5319 
5320 		/* read-ahead size must cover two whole stripes, which is
5321 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5322 		 */
5323 		if (conf->mddev->queue) {
5324 			int data_disks = conf->raid_disks - conf->max_degraded;
5325 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5326 						   / PAGE_SIZE);
5327 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5328 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5329 		}
5330 	}
5331 }
5332 
5333 /* This is called from the raid5d thread with mddev_lock held.
5334  * It makes config changes to the device.
5335  */
5336 static void raid5_finish_reshape(struct mddev *mddev)
5337 {
5338 	struct r5conf *conf = mddev->private;
5339 
5340 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5341 
5342 		if (mddev->delta_disks > 0) {
5343 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5344 			set_capacity(mddev->gendisk, mddev->array_sectors);
5345 			revalidate_disk(mddev->gendisk);
5346 		} else {
5347 			int d;
5348 			mddev->degraded = conf->raid_disks;
5349 			for (d = 0; d < conf->raid_disks ; d++)
5350 				if (conf->disks[d].rdev &&
5351 				    test_bit(In_sync,
5352 					     &conf->disks[d].rdev->flags))
5353 					mddev->degraded--;
5354 			for (d = conf->raid_disks ;
5355 			     d < conf->raid_disks - mddev->delta_disks;
5356 			     d++) {
5357 				struct md_rdev *rdev = conf->disks[d].rdev;
5358 				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5359 					sysfs_unlink_rdev(mddev, rdev);
5360 					rdev->raid_disk = -1;
5361 				}
5362 			}
5363 		}
5364 		mddev->layout = conf->algorithm;
5365 		mddev->chunk_sectors = conf->chunk_sectors;
5366 		mddev->reshape_position = MaxSector;
5367 		mddev->delta_disks = 0;
5368 	}
5369 }
5370 
5371 static void raid5_quiesce(struct mddev *mddev, int state)
5372 {
5373 	struct r5conf *conf = mddev->private;
5374 
5375 	switch(state) {
5376 	case 2: /* resume for a suspend */
5377 		wake_up(&conf->wait_for_overlap);
5378 		break;
5379 
5380 	case 1: /* stop all writes */
5381 		spin_lock_irq(&conf->device_lock);
5382 		/* '2' tells resync/reshape to pause so that all
5383 		 * active stripes can drain
5384 		 */
5385 		conf->quiesce = 2;
5386 		wait_event_lock_irq(conf->wait_for_stripe,
5387 				    atomic_read(&conf->active_stripes) == 0 &&
5388 				    atomic_read(&conf->active_aligned_reads) == 0,
5389 				    conf->device_lock, /* nothing */);
5390 		conf->quiesce = 1;
5391 		spin_unlock_irq(&conf->device_lock);
5392 		/* allow reshape to continue */
5393 		wake_up(&conf->wait_for_overlap);
5394 		break;
5395 
5396 	case 0: /* re-enable writes */
5397 		spin_lock_irq(&conf->device_lock);
5398 		conf->quiesce = 0;
5399 		wake_up(&conf->wait_for_stripe);
5400 		wake_up(&conf->wait_for_overlap);
5401 		spin_unlock_irq(&conf->device_lock);
5402 		break;
5403 	}
5404 }
5405 
5406 
5407 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5408 {
5409 	struct r0conf *raid0_conf = mddev->private;
5410 	sector_t sectors;
5411 
5412 	/* for raid0 takeover only one zone is supported */
5413 	if (raid0_conf->nr_strip_zones > 1) {
5414 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5415 		       mdname(mddev));
5416 		return ERR_PTR(-EINVAL);
5417 	}
5418 
5419 	sectors = raid0_conf->strip_zone[0].zone_end;
5420 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5421 	mddev->dev_sectors = sectors;
5422 	mddev->new_level = level;
5423 	mddev->new_layout = ALGORITHM_PARITY_N;
5424 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5425 	mddev->raid_disks += 1;
5426 	mddev->delta_disks = 1;
5427 	/* make sure it will be not marked as dirty */
5428 	mddev->recovery_cp = MaxSector;
5429 
5430 	return setup_conf(mddev);
5431 }
5432 
5433 
5434 static void *raid5_takeover_raid1(struct mddev *mddev)
5435 {
5436 	int chunksect;
5437 
5438 	if (mddev->raid_disks != 2 ||
5439 	    mddev->degraded > 1)
5440 		return ERR_PTR(-EINVAL);
5441 
5442 	/* Should check if there are write-behind devices? */
5443 
5444 	chunksect = 64*2; /* 64K by default */
5445 
5446 	/* The array must be an exact multiple of chunksize */
5447 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5448 		chunksect >>= 1;
5449 
5450 	if ((chunksect<<9) < STRIPE_SIZE)
5451 		/* array size does not allow a suitable chunk size */
5452 		return ERR_PTR(-EINVAL);
5453 
5454 	mddev->new_level = 5;
5455 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5456 	mddev->new_chunk_sectors = chunksect;
5457 
5458 	return setup_conf(mddev);
5459 }
5460 
5461 static void *raid5_takeover_raid6(struct mddev *mddev)
5462 {
5463 	int new_layout;
5464 
5465 	switch (mddev->layout) {
5466 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5467 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5468 		break;
5469 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5470 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5471 		break;
5472 	case ALGORITHM_LEFT_SYMMETRIC_6:
5473 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5474 		break;
5475 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5476 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5477 		break;
5478 	case ALGORITHM_PARITY_0_6:
5479 		new_layout = ALGORITHM_PARITY_0;
5480 		break;
5481 	case ALGORITHM_PARITY_N:
5482 		new_layout = ALGORITHM_PARITY_N;
5483 		break;
5484 	default:
5485 		return ERR_PTR(-EINVAL);
5486 	}
5487 	mddev->new_level = 5;
5488 	mddev->new_layout = new_layout;
5489 	mddev->delta_disks = -1;
5490 	mddev->raid_disks -= 1;
5491 	return setup_conf(mddev);
5492 }
5493 
5494 
5495 static int raid5_check_reshape(struct mddev *mddev)
5496 {
5497 	/* For a 2-drive array, the layout and chunk size can be changed
5498 	 * immediately as not restriping is needed.
5499 	 * For larger arrays we record the new value - after validation
5500 	 * to be used by a reshape pass.
5501 	 */
5502 	struct r5conf *conf = mddev->private;
5503 	int new_chunk = mddev->new_chunk_sectors;
5504 
5505 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5506 		return -EINVAL;
5507 	if (new_chunk > 0) {
5508 		if (!is_power_of_2(new_chunk))
5509 			return -EINVAL;
5510 		if (new_chunk < (PAGE_SIZE>>9))
5511 			return -EINVAL;
5512 		if (mddev->array_sectors & (new_chunk-1))
5513 			/* not factor of array size */
5514 			return -EINVAL;
5515 	}
5516 
5517 	/* They look valid */
5518 
5519 	if (mddev->raid_disks == 2) {
5520 		/* can make the change immediately */
5521 		if (mddev->new_layout >= 0) {
5522 			conf->algorithm = mddev->new_layout;
5523 			mddev->layout = mddev->new_layout;
5524 		}
5525 		if (new_chunk > 0) {
5526 			conf->chunk_sectors = new_chunk ;
5527 			mddev->chunk_sectors = new_chunk;
5528 		}
5529 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5530 		md_wakeup_thread(mddev->thread);
5531 	}
5532 	return check_reshape(mddev);
5533 }
5534 
5535 static int raid6_check_reshape(struct mddev *mddev)
5536 {
5537 	int new_chunk = mddev->new_chunk_sectors;
5538 
5539 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5540 		return -EINVAL;
5541 	if (new_chunk > 0) {
5542 		if (!is_power_of_2(new_chunk))
5543 			return -EINVAL;
5544 		if (new_chunk < (PAGE_SIZE >> 9))
5545 			return -EINVAL;
5546 		if (mddev->array_sectors & (new_chunk-1))
5547 			/* not factor of array size */
5548 			return -EINVAL;
5549 	}
5550 
5551 	/* They look valid */
5552 	return check_reshape(mddev);
5553 }
5554 
5555 static void *raid5_takeover(struct mddev *mddev)
5556 {
5557 	/* raid5 can take over:
5558 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5559 	 *  raid1 - if there are two drives.  We need to know the chunk size
5560 	 *  raid4 - trivial - just use a raid4 layout.
5561 	 *  raid6 - Providing it is a *_6 layout
5562 	 */
5563 	if (mddev->level == 0)
5564 		return raid45_takeover_raid0(mddev, 5);
5565 	if (mddev->level == 1)
5566 		return raid5_takeover_raid1(mddev);
5567 	if (mddev->level == 4) {
5568 		mddev->new_layout = ALGORITHM_PARITY_N;
5569 		mddev->new_level = 5;
5570 		return setup_conf(mddev);
5571 	}
5572 	if (mddev->level == 6)
5573 		return raid5_takeover_raid6(mddev);
5574 
5575 	return ERR_PTR(-EINVAL);
5576 }
5577 
5578 static void *raid4_takeover(struct mddev *mddev)
5579 {
5580 	/* raid4 can take over:
5581 	 *  raid0 - if there is only one strip zone
5582 	 *  raid5 - if layout is right
5583 	 */
5584 	if (mddev->level == 0)
5585 		return raid45_takeover_raid0(mddev, 4);
5586 	if (mddev->level == 5 &&
5587 	    mddev->layout == ALGORITHM_PARITY_N) {
5588 		mddev->new_layout = 0;
5589 		mddev->new_level = 4;
5590 		return setup_conf(mddev);
5591 	}
5592 	return ERR_PTR(-EINVAL);
5593 }
5594 
5595 static struct md_personality raid5_personality;
5596 
5597 static void *raid6_takeover(struct mddev *mddev)
5598 {
5599 	/* Currently can only take over a raid5.  We map the
5600 	 * personality to an equivalent raid6 personality
5601 	 * with the Q block at the end.
5602 	 */
5603 	int new_layout;
5604 
5605 	if (mddev->pers != &raid5_personality)
5606 		return ERR_PTR(-EINVAL);
5607 	if (mddev->degraded > 1)
5608 		return ERR_PTR(-EINVAL);
5609 	if (mddev->raid_disks > 253)
5610 		return ERR_PTR(-EINVAL);
5611 	if (mddev->raid_disks < 3)
5612 		return ERR_PTR(-EINVAL);
5613 
5614 	switch (mddev->layout) {
5615 	case ALGORITHM_LEFT_ASYMMETRIC:
5616 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5617 		break;
5618 	case ALGORITHM_RIGHT_ASYMMETRIC:
5619 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5620 		break;
5621 	case ALGORITHM_LEFT_SYMMETRIC:
5622 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5623 		break;
5624 	case ALGORITHM_RIGHT_SYMMETRIC:
5625 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5626 		break;
5627 	case ALGORITHM_PARITY_0:
5628 		new_layout = ALGORITHM_PARITY_0_6;
5629 		break;
5630 	case ALGORITHM_PARITY_N:
5631 		new_layout = ALGORITHM_PARITY_N;
5632 		break;
5633 	default:
5634 		return ERR_PTR(-EINVAL);
5635 	}
5636 	mddev->new_level = 6;
5637 	mddev->new_layout = new_layout;
5638 	mddev->delta_disks = 1;
5639 	mddev->raid_disks += 1;
5640 	return setup_conf(mddev);
5641 }
5642 
5643 
5644 static struct md_personality raid6_personality =
5645 {
5646 	.name		= "raid6",
5647 	.level		= 6,
5648 	.owner		= THIS_MODULE,
5649 	.make_request	= make_request,
5650 	.run		= run,
5651 	.stop		= stop,
5652 	.status		= status,
5653 	.error_handler	= error,
5654 	.hot_add_disk	= raid5_add_disk,
5655 	.hot_remove_disk= raid5_remove_disk,
5656 	.spare_active	= raid5_spare_active,
5657 	.sync_request	= sync_request,
5658 	.resize		= raid5_resize,
5659 	.size		= raid5_size,
5660 	.check_reshape	= raid6_check_reshape,
5661 	.start_reshape  = raid5_start_reshape,
5662 	.finish_reshape = raid5_finish_reshape,
5663 	.quiesce	= raid5_quiesce,
5664 	.takeover	= raid6_takeover,
5665 };
5666 static struct md_personality raid5_personality =
5667 {
5668 	.name		= "raid5",
5669 	.level		= 5,
5670 	.owner		= THIS_MODULE,
5671 	.make_request	= make_request,
5672 	.run		= run,
5673 	.stop		= stop,
5674 	.status		= status,
5675 	.error_handler	= error,
5676 	.hot_add_disk	= raid5_add_disk,
5677 	.hot_remove_disk= raid5_remove_disk,
5678 	.spare_active	= raid5_spare_active,
5679 	.sync_request	= sync_request,
5680 	.resize		= raid5_resize,
5681 	.size		= raid5_size,
5682 	.check_reshape	= raid5_check_reshape,
5683 	.start_reshape  = raid5_start_reshape,
5684 	.finish_reshape = raid5_finish_reshape,
5685 	.quiesce	= raid5_quiesce,
5686 	.takeover	= raid5_takeover,
5687 };
5688 
5689 static struct md_personality raid4_personality =
5690 {
5691 	.name		= "raid4",
5692 	.level		= 4,
5693 	.owner		= THIS_MODULE,
5694 	.make_request	= make_request,
5695 	.run		= run,
5696 	.stop		= stop,
5697 	.status		= status,
5698 	.error_handler	= error,
5699 	.hot_add_disk	= raid5_add_disk,
5700 	.hot_remove_disk= raid5_remove_disk,
5701 	.spare_active	= raid5_spare_active,
5702 	.sync_request	= sync_request,
5703 	.resize		= raid5_resize,
5704 	.size		= raid5_size,
5705 	.check_reshape	= raid5_check_reshape,
5706 	.start_reshape  = raid5_start_reshape,
5707 	.finish_reshape = raid5_finish_reshape,
5708 	.quiesce	= raid5_quiesce,
5709 	.takeover	= raid4_takeover,
5710 };
5711 
5712 static int __init raid5_init(void)
5713 {
5714 	register_md_personality(&raid6_personality);
5715 	register_md_personality(&raid5_personality);
5716 	register_md_personality(&raid4_personality);
5717 	return 0;
5718 }
5719 
5720 static void raid5_exit(void)
5721 {
5722 	unregister_md_personality(&raid6_personality);
5723 	unregister_md_personality(&raid5_personality);
5724 	unregister_md_personality(&raid4_personality);
5725 }
5726 
5727 module_init(raid5_init);
5728 module_exit(raid5_exit);
5729 MODULE_LICENSE("GPL");
5730 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5731 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5732 MODULE_ALIAS("md-raid5");
5733 MODULE_ALIAS("md-raid4");
5734 MODULE_ALIAS("md-level-5");
5735 MODULE_ALIAS("md-level-4");
5736 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5737 MODULE_ALIAS("md-raid6");
5738 MODULE_ALIAS("md-level-6");
5739 
5740 /* This used to be two separate modules, they were: */
5741 MODULE_ALIAS("raid5");
5742 MODULE_ALIAS("raid6");
5743