xref: /linux/drivers/md/raid5.c (revision 1e1159bb97cf4191849b4b03f77ab32977c2ece6)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58 
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63 
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66 
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71 
72 #define NR_STRIPES		256
73 #define STRIPE_SIZE		PAGE_SIZE
74 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
76 #define	IO_THRESHOLD		1
77 #define BYPASS_THRESHOLD	1
78 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK		(NR_HASH - 1)
80 #define MAX_STRIPE_BATCH	8
81 
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 	return &conf->stripe_hashtbl[hash];
86 }
87 
88 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
89  * order without overlap.  There may be several bio's per stripe+device, and
90  * a bio could span several devices.
91  * When walking this list for a particular stripe+device, we must never proceed
92  * beyond a bio that extends past this device, as the next bio might no longer
93  * be valid.
94  * This function is used to determine the 'next' bio in the list, given the sector
95  * of the current stripe+device
96  */
97 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
98 {
99 	int sectors = bio_sectors(bio);
100 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
101 		return bio->bi_next;
102 	else
103 		return NULL;
104 }
105 
106 /*
107  * We maintain a biased count of active stripes in the bottom 16 bits of
108  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
109  */
110 static inline int raid5_bi_processed_stripes(struct bio *bio)
111 {
112 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113 	return (atomic_read(segments) >> 16) & 0xffff;
114 }
115 
116 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
117 {
118 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119 	return atomic_sub_return(1, segments) & 0xffff;
120 }
121 
122 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
123 {
124 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
125 	atomic_inc(segments);
126 }
127 
128 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
129 	unsigned int cnt)
130 {
131 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
132 	int old, new;
133 
134 	do {
135 		old = atomic_read(segments);
136 		new = (old & 0xffff) | (cnt << 16);
137 	} while (atomic_cmpxchg(segments, old, new) != old);
138 }
139 
140 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
141 {
142 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
143 	atomic_set(segments, cnt);
144 }
145 
146 /* Find first data disk in a raid6 stripe */
147 static inline int raid6_d0(struct stripe_head *sh)
148 {
149 	if (sh->ddf_layout)
150 		/* ddf always start from first device */
151 		return 0;
152 	/* md starts just after Q block */
153 	if (sh->qd_idx == sh->disks - 1)
154 		return 0;
155 	else
156 		return sh->qd_idx + 1;
157 }
158 static inline int raid6_next_disk(int disk, int raid_disks)
159 {
160 	disk++;
161 	return (disk < raid_disks) ? disk : 0;
162 }
163 
164 /* When walking through the disks in a raid5, starting at raid6_d0,
165  * We need to map each disk to a 'slot', where the data disks are slot
166  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
167  * is raid_disks-1.  This help does that mapping.
168  */
169 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
170 			     int *count, int syndrome_disks)
171 {
172 	int slot = *count;
173 
174 	if (sh->ddf_layout)
175 		(*count)++;
176 	if (idx == sh->pd_idx)
177 		return syndrome_disks;
178 	if (idx == sh->qd_idx)
179 		return syndrome_disks + 1;
180 	if (!sh->ddf_layout)
181 		(*count)++;
182 	return slot;
183 }
184 
185 static void return_io(struct bio *return_bi)
186 {
187 	struct bio *bi = return_bi;
188 	while (bi) {
189 
190 		return_bi = bi->bi_next;
191 		bi->bi_next = NULL;
192 		bi->bi_size = 0;
193 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
194 					 bi, 0);
195 		bio_endio(bi, 0);
196 		bi = return_bi;
197 	}
198 }
199 
200 static void print_raid5_conf (struct r5conf *conf);
201 
202 static int stripe_operations_active(struct stripe_head *sh)
203 {
204 	return sh->check_state || sh->reconstruct_state ||
205 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
206 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
207 }
208 
209 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
210 {
211 	struct r5conf *conf = sh->raid_conf;
212 	struct r5worker_group *group;
213 	int thread_cnt;
214 	int i, cpu = sh->cpu;
215 
216 	if (!cpu_online(cpu)) {
217 		cpu = cpumask_any(cpu_online_mask);
218 		sh->cpu = cpu;
219 	}
220 
221 	if (list_empty(&sh->lru)) {
222 		struct r5worker_group *group;
223 		group = conf->worker_groups + cpu_to_group(cpu);
224 		list_add_tail(&sh->lru, &group->handle_list);
225 		group->stripes_cnt++;
226 		sh->group = group;
227 	}
228 
229 	if (conf->worker_cnt_per_group == 0) {
230 		md_wakeup_thread(conf->mddev->thread);
231 		return;
232 	}
233 
234 	group = conf->worker_groups + cpu_to_group(sh->cpu);
235 
236 	group->workers[0].working = true;
237 	/* at least one worker should run to avoid race */
238 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
239 
240 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
241 	/* wakeup more workers */
242 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
243 		if (group->workers[i].working == false) {
244 			group->workers[i].working = true;
245 			queue_work_on(sh->cpu, raid5_wq,
246 				      &group->workers[i].work);
247 			thread_cnt--;
248 		}
249 	}
250 }
251 
252 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
253 {
254 	BUG_ON(!list_empty(&sh->lru));
255 	BUG_ON(atomic_read(&conf->active_stripes)==0);
256 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
257 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
258 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
259 			list_add_tail(&sh->lru, &conf->delayed_list);
260 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
261 			   sh->bm_seq - conf->seq_write > 0)
262 			list_add_tail(&sh->lru, &conf->bitmap_list);
263 		else {
264 			clear_bit(STRIPE_DELAYED, &sh->state);
265 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
266 			if (conf->worker_cnt_per_group == 0) {
267 				list_add_tail(&sh->lru, &conf->handle_list);
268 			} else {
269 				raid5_wakeup_stripe_thread(sh);
270 				return;
271 			}
272 		}
273 		md_wakeup_thread(conf->mddev->thread);
274 	} else {
275 		BUG_ON(stripe_operations_active(sh));
276 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
277 			if (atomic_dec_return(&conf->preread_active_stripes)
278 			    < IO_THRESHOLD)
279 				md_wakeup_thread(conf->mddev->thread);
280 		atomic_dec(&conf->active_stripes);
281 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
282 			list_add_tail(&sh->lru, &conf->inactive_list);
283 			wake_up(&conf->wait_for_stripe);
284 			if (conf->retry_read_aligned)
285 				md_wakeup_thread(conf->mddev->thread);
286 		}
287 	}
288 }
289 
290 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
291 {
292 	if (atomic_dec_and_test(&sh->count))
293 		do_release_stripe(conf, sh);
294 }
295 
296 static struct llist_node *llist_reverse_order(struct llist_node *head)
297 {
298 	struct llist_node *new_head = NULL;
299 
300 	while (head) {
301 		struct llist_node *tmp = head;
302 		head = head->next;
303 		tmp->next = new_head;
304 		new_head = tmp;
305 	}
306 
307 	return new_head;
308 }
309 
310 /* should hold conf->device_lock already */
311 static int release_stripe_list(struct r5conf *conf)
312 {
313 	struct stripe_head *sh;
314 	int count = 0;
315 	struct llist_node *head;
316 
317 	head = llist_del_all(&conf->released_stripes);
318 	head = llist_reverse_order(head);
319 	while (head) {
320 		sh = llist_entry(head, struct stripe_head, release_list);
321 		head = llist_next(head);
322 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
323 		smp_mb();
324 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
325 		/*
326 		 * Don't worry the bit is set here, because if the bit is set
327 		 * again, the count is always > 1. This is true for
328 		 * STRIPE_ON_UNPLUG_LIST bit too.
329 		 */
330 		__release_stripe(conf, sh);
331 		count++;
332 	}
333 
334 	return count;
335 }
336 
337 static void release_stripe(struct stripe_head *sh)
338 {
339 	struct r5conf *conf = sh->raid_conf;
340 	unsigned long flags;
341 	bool wakeup;
342 
343 	if (test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
344 		goto slow_path;
345 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
346 	if (wakeup)
347 		md_wakeup_thread(conf->mddev->thread);
348 	return;
349 slow_path:
350 	local_irq_save(flags);
351 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
352 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
353 		do_release_stripe(conf, sh);
354 		spin_unlock(&conf->device_lock);
355 	}
356 	local_irq_restore(flags);
357 }
358 
359 static inline void remove_hash(struct stripe_head *sh)
360 {
361 	pr_debug("remove_hash(), stripe %llu\n",
362 		(unsigned long long)sh->sector);
363 
364 	hlist_del_init(&sh->hash);
365 }
366 
367 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
368 {
369 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
370 
371 	pr_debug("insert_hash(), stripe %llu\n",
372 		(unsigned long long)sh->sector);
373 
374 	hlist_add_head(&sh->hash, hp);
375 }
376 
377 
378 /* find an idle stripe, make sure it is unhashed, and return it. */
379 static struct stripe_head *get_free_stripe(struct r5conf *conf)
380 {
381 	struct stripe_head *sh = NULL;
382 	struct list_head *first;
383 
384 	if (list_empty(&conf->inactive_list))
385 		goto out;
386 	first = conf->inactive_list.next;
387 	sh = list_entry(first, struct stripe_head, lru);
388 	list_del_init(first);
389 	remove_hash(sh);
390 	atomic_inc(&conf->active_stripes);
391 out:
392 	return sh;
393 }
394 
395 static void shrink_buffers(struct stripe_head *sh)
396 {
397 	struct page *p;
398 	int i;
399 	int num = sh->raid_conf->pool_size;
400 
401 	for (i = 0; i < num ; i++) {
402 		p = sh->dev[i].page;
403 		if (!p)
404 			continue;
405 		sh->dev[i].page = NULL;
406 		put_page(p);
407 	}
408 }
409 
410 static int grow_buffers(struct stripe_head *sh)
411 {
412 	int i;
413 	int num = sh->raid_conf->pool_size;
414 
415 	for (i = 0; i < num; i++) {
416 		struct page *page;
417 
418 		if (!(page = alloc_page(GFP_KERNEL))) {
419 			return 1;
420 		}
421 		sh->dev[i].page = page;
422 	}
423 	return 0;
424 }
425 
426 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
427 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
428 			    struct stripe_head *sh);
429 
430 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
431 {
432 	struct r5conf *conf = sh->raid_conf;
433 	int i;
434 
435 	BUG_ON(atomic_read(&sh->count) != 0);
436 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
437 	BUG_ON(stripe_operations_active(sh));
438 
439 	pr_debug("init_stripe called, stripe %llu\n",
440 		(unsigned long long)sh->sector);
441 
442 	remove_hash(sh);
443 
444 	sh->generation = conf->generation - previous;
445 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
446 	sh->sector = sector;
447 	stripe_set_idx(sector, conf, previous, sh);
448 	sh->state = 0;
449 
450 
451 	for (i = sh->disks; i--; ) {
452 		struct r5dev *dev = &sh->dev[i];
453 
454 		if (dev->toread || dev->read || dev->towrite || dev->written ||
455 		    test_bit(R5_LOCKED, &dev->flags)) {
456 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
457 			       (unsigned long long)sh->sector, i, dev->toread,
458 			       dev->read, dev->towrite, dev->written,
459 			       test_bit(R5_LOCKED, &dev->flags));
460 			WARN_ON(1);
461 		}
462 		dev->flags = 0;
463 		raid5_build_block(sh, i, previous);
464 	}
465 	insert_hash(conf, sh);
466 	sh->cpu = smp_processor_id();
467 }
468 
469 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
470 					 short generation)
471 {
472 	struct stripe_head *sh;
473 
474 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
475 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
476 		if (sh->sector == sector && sh->generation == generation)
477 			return sh;
478 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
479 	return NULL;
480 }
481 
482 /*
483  * Need to check if array has failed when deciding whether to:
484  *  - start an array
485  *  - remove non-faulty devices
486  *  - add a spare
487  *  - allow a reshape
488  * This determination is simple when no reshape is happening.
489  * However if there is a reshape, we need to carefully check
490  * both the before and after sections.
491  * This is because some failed devices may only affect one
492  * of the two sections, and some non-in_sync devices may
493  * be insync in the section most affected by failed devices.
494  */
495 static int calc_degraded(struct r5conf *conf)
496 {
497 	int degraded, degraded2;
498 	int i;
499 
500 	rcu_read_lock();
501 	degraded = 0;
502 	for (i = 0; i < conf->previous_raid_disks; i++) {
503 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
504 		if (rdev && test_bit(Faulty, &rdev->flags))
505 			rdev = rcu_dereference(conf->disks[i].replacement);
506 		if (!rdev || test_bit(Faulty, &rdev->flags))
507 			degraded++;
508 		else if (test_bit(In_sync, &rdev->flags))
509 			;
510 		else
511 			/* not in-sync or faulty.
512 			 * If the reshape increases the number of devices,
513 			 * this is being recovered by the reshape, so
514 			 * this 'previous' section is not in_sync.
515 			 * If the number of devices is being reduced however,
516 			 * the device can only be part of the array if
517 			 * we are reverting a reshape, so this section will
518 			 * be in-sync.
519 			 */
520 			if (conf->raid_disks >= conf->previous_raid_disks)
521 				degraded++;
522 	}
523 	rcu_read_unlock();
524 	if (conf->raid_disks == conf->previous_raid_disks)
525 		return degraded;
526 	rcu_read_lock();
527 	degraded2 = 0;
528 	for (i = 0; i < conf->raid_disks; i++) {
529 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
530 		if (rdev && test_bit(Faulty, &rdev->flags))
531 			rdev = rcu_dereference(conf->disks[i].replacement);
532 		if (!rdev || test_bit(Faulty, &rdev->flags))
533 			degraded2++;
534 		else if (test_bit(In_sync, &rdev->flags))
535 			;
536 		else
537 			/* not in-sync or faulty.
538 			 * If reshape increases the number of devices, this
539 			 * section has already been recovered, else it
540 			 * almost certainly hasn't.
541 			 */
542 			if (conf->raid_disks <= conf->previous_raid_disks)
543 				degraded2++;
544 	}
545 	rcu_read_unlock();
546 	if (degraded2 > degraded)
547 		return degraded2;
548 	return degraded;
549 }
550 
551 static int has_failed(struct r5conf *conf)
552 {
553 	int degraded;
554 
555 	if (conf->mddev->reshape_position == MaxSector)
556 		return conf->mddev->degraded > conf->max_degraded;
557 
558 	degraded = calc_degraded(conf);
559 	if (degraded > conf->max_degraded)
560 		return 1;
561 	return 0;
562 }
563 
564 static struct stripe_head *
565 get_active_stripe(struct r5conf *conf, sector_t sector,
566 		  int previous, int noblock, int noquiesce)
567 {
568 	struct stripe_head *sh;
569 
570 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
571 
572 	spin_lock_irq(&conf->device_lock);
573 
574 	do {
575 		wait_event_lock_irq(conf->wait_for_stripe,
576 				    conf->quiesce == 0 || noquiesce,
577 				    conf->device_lock);
578 		sh = __find_stripe(conf, sector, conf->generation - previous);
579 		if (!sh) {
580 			if (!conf->inactive_blocked)
581 				sh = get_free_stripe(conf);
582 			if (noblock && sh == NULL)
583 				break;
584 			if (!sh) {
585 				conf->inactive_blocked = 1;
586 				wait_event_lock_irq(conf->wait_for_stripe,
587 						    !list_empty(&conf->inactive_list) &&
588 						    (atomic_read(&conf->active_stripes)
589 						     < (conf->max_nr_stripes *3/4)
590 						     || !conf->inactive_blocked),
591 						    conf->device_lock);
592 				conf->inactive_blocked = 0;
593 			} else
594 				init_stripe(sh, sector, previous);
595 		} else {
596 			if (atomic_read(&sh->count)) {
597 				BUG_ON(!list_empty(&sh->lru)
598 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
599 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
600 				    && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
601 			} else {
602 				if (!test_bit(STRIPE_HANDLE, &sh->state))
603 					atomic_inc(&conf->active_stripes);
604 				if (list_empty(&sh->lru) &&
605 				    !test_bit(STRIPE_EXPANDING, &sh->state))
606 					BUG();
607 				list_del_init(&sh->lru);
608 				if (sh->group) {
609 					sh->group->stripes_cnt--;
610 					sh->group = NULL;
611 				}
612 			}
613 		}
614 	} while (sh == NULL);
615 
616 	if (sh)
617 		atomic_inc(&sh->count);
618 
619 	spin_unlock_irq(&conf->device_lock);
620 	return sh;
621 }
622 
623 /* Determine if 'data_offset' or 'new_data_offset' should be used
624  * in this stripe_head.
625  */
626 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
627 {
628 	sector_t progress = conf->reshape_progress;
629 	/* Need a memory barrier to make sure we see the value
630 	 * of conf->generation, or ->data_offset that was set before
631 	 * reshape_progress was updated.
632 	 */
633 	smp_rmb();
634 	if (progress == MaxSector)
635 		return 0;
636 	if (sh->generation == conf->generation - 1)
637 		return 0;
638 	/* We are in a reshape, and this is a new-generation stripe,
639 	 * so use new_data_offset.
640 	 */
641 	return 1;
642 }
643 
644 static void
645 raid5_end_read_request(struct bio *bi, int error);
646 static void
647 raid5_end_write_request(struct bio *bi, int error);
648 
649 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
650 {
651 	struct r5conf *conf = sh->raid_conf;
652 	int i, disks = sh->disks;
653 
654 	might_sleep();
655 
656 	for (i = disks; i--; ) {
657 		int rw;
658 		int replace_only = 0;
659 		struct bio *bi, *rbi;
660 		struct md_rdev *rdev, *rrdev = NULL;
661 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
662 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
663 				rw = WRITE_FUA;
664 			else
665 				rw = WRITE;
666 			if (test_bit(R5_Discard, &sh->dev[i].flags))
667 				rw |= REQ_DISCARD;
668 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
669 			rw = READ;
670 		else if (test_and_clear_bit(R5_WantReplace,
671 					    &sh->dev[i].flags)) {
672 			rw = WRITE;
673 			replace_only = 1;
674 		} else
675 			continue;
676 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
677 			rw |= REQ_SYNC;
678 
679 		bi = &sh->dev[i].req;
680 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
681 
682 		rcu_read_lock();
683 		rrdev = rcu_dereference(conf->disks[i].replacement);
684 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
685 		rdev = rcu_dereference(conf->disks[i].rdev);
686 		if (!rdev) {
687 			rdev = rrdev;
688 			rrdev = NULL;
689 		}
690 		if (rw & WRITE) {
691 			if (replace_only)
692 				rdev = NULL;
693 			if (rdev == rrdev)
694 				/* We raced and saw duplicates */
695 				rrdev = NULL;
696 		} else {
697 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
698 				rdev = rrdev;
699 			rrdev = NULL;
700 		}
701 
702 		if (rdev && test_bit(Faulty, &rdev->flags))
703 			rdev = NULL;
704 		if (rdev)
705 			atomic_inc(&rdev->nr_pending);
706 		if (rrdev && test_bit(Faulty, &rrdev->flags))
707 			rrdev = NULL;
708 		if (rrdev)
709 			atomic_inc(&rrdev->nr_pending);
710 		rcu_read_unlock();
711 
712 		/* We have already checked bad blocks for reads.  Now
713 		 * need to check for writes.  We never accept write errors
714 		 * on the replacement, so we don't to check rrdev.
715 		 */
716 		while ((rw & WRITE) && rdev &&
717 		       test_bit(WriteErrorSeen, &rdev->flags)) {
718 			sector_t first_bad;
719 			int bad_sectors;
720 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
721 					      &first_bad, &bad_sectors);
722 			if (!bad)
723 				break;
724 
725 			if (bad < 0) {
726 				set_bit(BlockedBadBlocks, &rdev->flags);
727 				if (!conf->mddev->external &&
728 				    conf->mddev->flags) {
729 					/* It is very unlikely, but we might
730 					 * still need to write out the
731 					 * bad block log - better give it
732 					 * a chance*/
733 					md_check_recovery(conf->mddev);
734 				}
735 				/*
736 				 * Because md_wait_for_blocked_rdev
737 				 * will dec nr_pending, we must
738 				 * increment it first.
739 				 */
740 				atomic_inc(&rdev->nr_pending);
741 				md_wait_for_blocked_rdev(rdev, conf->mddev);
742 			} else {
743 				/* Acknowledged bad block - skip the write */
744 				rdev_dec_pending(rdev, conf->mddev);
745 				rdev = NULL;
746 			}
747 		}
748 
749 		if (rdev) {
750 			if (s->syncing || s->expanding || s->expanded
751 			    || s->replacing)
752 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
753 
754 			set_bit(STRIPE_IO_STARTED, &sh->state);
755 
756 			bio_reset(bi);
757 			bi->bi_bdev = rdev->bdev;
758 			bi->bi_rw = rw;
759 			bi->bi_end_io = (rw & WRITE)
760 				? raid5_end_write_request
761 				: raid5_end_read_request;
762 			bi->bi_private = sh;
763 
764 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
765 				__func__, (unsigned long long)sh->sector,
766 				bi->bi_rw, i);
767 			atomic_inc(&sh->count);
768 			if (use_new_offset(conf, sh))
769 				bi->bi_sector = (sh->sector
770 						 + rdev->new_data_offset);
771 			else
772 				bi->bi_sector = (sh->sector
773 						 + rdev->data_offset);
774 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
775 				bi->bi_rw |= REQ_FLUSH;
776 
777 			bi->bi_vcnt = 1;
778 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
779 			bi->bi_io_vec[0].bv_offset = 0;
780 			bi->bi_size = STRIPE_SIZE;
781 			if (rrdev)
782 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
783 
784 			if (conf->mddev->gendisk)
785 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
786 						      bi, disk_devt(conf->mddev->gendisk),
787 						      sh->dev[i].sector);
788 			generic_make_request(bi);
789 		}
790 		if (rrdev) {
791 			if (s->syncing || s->expanding || s->expanded
792 			    || s->replacing)
793 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
794 
795 			set_bit(STRIPE_IO_STARTED, &sh->state);
796 
797 			bio_reset(rbi);
798 			rbi->bi_bdev = rrdev->bdev;
799 			rbi->bi_rw = rw;
800 			BUG_ON(!(rw & WRITE));
801 			rbi->bi_end_io = raid5_end_write_request;
802 			rbi->bi_private = sh;
803 
804 			pr_debug("%s: for %llu schedule op %ld on "
805 				 "replacement disc %d\n",
806 				__func__, (unsigned long long)sh->sector,
807 				rbi->bi_rw, i);
808 			atomic_inc(&sh->count);
809 			if (use_new_offset(conf, sh))
810 				rbi->bi_sector = (sh->sector
811 						  + rrdev->new_data_offset);
812 			else
813 				rbi->bi_sector = (sh->sector
814 						  + rrdev->data_offset);
815 			rbi->bi_vcnt = 1;
816 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
817 			rbi->bi_io_vec[0].bv_offset = 0;
818 			rbi->bi_size = STRIPE_SIZE;
819 			if (conf->mddev->gendisk)
820 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
821 						      rbi, disk_devt(conf->mddev->gendisk),
822 						      sh->dev[i].sector);
823 			generic_make_request(rbi);
824 		}
825 		if (!rdev && !rrdev) {
826 			if (rw & WRITE)
827 				set_bit(STRIPE_DEGRADED, &sh->state);
828 			pr_debug("skip op %ld on disc %d for sector %llu\n",
829 				bi->bi_rw, i, (unsigned long long)sh->sector);
830 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
831 			set_bit(STRIPE_HANDLE, &sh->state);
832 		}
833 	}
834 }
835 
836 static struct dma_async_tx_descriptor *
837 async_copy_data(int frombio, struct bio *bio, struct page *page,
838 	sector_t sector, struct dma_async_tx_descriptor *tx)
839 {
840 	struct bio_vec *bvl;
841 	struct page *bio_page;
842 	int i;
843 	int page_offset;
844 	struct async_submit_ctl submit;
845 	enum async_tx_flags flags = 0;
846 
847 	if (bio->bi_sector >= sector)
848 		page_offset = (signed)(bio->bi_sector - sector) * 512;
849 	else
850 		page_offset = (signed)(sector - bio->bi_sector) * -512;
851 
852 	if (frombio)
853 		flags |= ASYNC_TX_FENCE;
854 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
855 
856 	bio_for_each_segment(bvl, bio, i) {
857 		int len = bvl->bv_len;
858 		int clen;
859 		int b_offset = 0;
860 
861 		if (page_offset < 0) {
862 			b_offset = -page_offset;
863 			page_offset += b_offset;
864 			len -= b_offset;
865 		}
866 
867 		if (len > 0 && page_offset + len > STRIPE_SIZE)
868 			clen = STRIPE_SIZE - page_offset;
869 		else
870 			clen = len;
871 
872 		if (clen > 0) {
873 			b_offset += bvl->bv_offset;
874 			bio_page = bvl->bv_page;
875 			if (frombio)
876 				tx = async_memcpy(page, bio_page, page_offset,
877 						  b_offset, clen, &submit);
878 			else
879 				tx = async_memcpy(bio_page, page, b_offset,
880 						  page_offset, clen, &submit);
881 		}
882 		/* chain the operations */
883 		submit.depend_tx = tx;
884 
885 		if (clen < len) /* hit end of page */
886 			break;
887 		page_offset +=  len;
888 	}
889 
890 	return tx;
891 }
892 
893 static void ops_complete_biofill(void *stripe_head_ref)
894 {
895 	struct stripe_head *sh = stripe_head_ref;
896 	struct bio *return_bi = NULL;
897 	int i;
898 
899 	pr_debug("%s: stripe %llu\n", __func__,
900 		(unsigned long long)sh->sector);
901 
902 	/* clear completed biofills */
903 	for (i = sh->disks; i--; ) {
904 		struct r5dev *dev = &sh->dev[i];
905 
906 		/* acknowledge completion of a biofill operation */
907 		/* and check if we need to reply to a read request,
908 		 * new R5_Wantfill requests are held off until
909 		 * !STRIPE_BIOFILL_RUN
910 		 */
911 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
912 			struct bio *rbi, *rbi2;
913 
914 			BUG_ON(!dev->read);
915 			rbi = dev->read;
916 			dev->read = NULL;
917 			while (rbi && rbi->bi_sector <
918 				dev->sector + STRIPE_SECTORS) {
919 				rbi2 = r5_next_bio(rbi, dev->sector);
920 				if (!raid5_dec_bi_active_stripes(rbi)) {
921 					rbi->bi_next = return_bi;
922 					return_bi = rbi;
923 				}
924 				rbi = rbi2;
925 			}
926 		}
927 	}
928 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
929 
930 	return_io(return_bi);
931 
932 	set_bit(STRIPE_HANDLE, &sh->state);
933 	release_stripe(sh);
934 }
935 
936 static void ops_run_biofill(struct stripe_head *sh)
937 {
938 	struct dma_async_tx_descriptor *tx = NULL;
939 	struct async_submit_ctl submit;
940 	int i;
941 
942 	pr_debug("%s: stripe %llu\n", __func__,
943 		(unsigned long long)sh->sector);
944 
945 	for (i = sh->disks; i--; ) {
946 		struct r5dev *dev = &sh->dev[i];
947 		if (test_bit(R5_Wantfill, &dev->flags)) {
948 			struct bio *rbi;
949 			spin_lock_irq(&sh->stripe_lock);
950 			dev->read = rbi = dev->toread;
951 			dev->toread = NULL;
952 			spin_unlock_irq(&sh->stripe_lock);
953 			while (rbi && rbi->bi_sector <
954 				dev->sector + STRIPE_SECTORS) {
955 				tx = async_copy_data(0, rbi, dev->page,
956 					dev->sector, tx);
957 				rbi = r5_next_bio(rbi, dev->sector);
958 			}
959 		}
960 	}
961 
962 	atomic_inc(&sh->count);
963 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
964 	async_trigger_callback(&submit);
965 }
966 
967 static void mark_target_uptodate(struct stripe_head *sh, int target)
968 {
969 	struct r5dev *tgt;
970 
971 	if (target < 0)
972 		return;
973 
974 	tgt = &sh->dev[target];
975 	set_bit(R5_UPTODATE, &tgt->flags);
976 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
977 	clear_bit(R5_Wantcompute, &tgt->flags);
978 }
979 
980 static void ops_complete_compute(void *stripe_head_ref)
981 {
982 	struct stripe_head *sh = stripe_head_ref;
983 
984 	pr_debug("%s: stripe %llu\n", __func__,
985 		(unsigned long long)sh->sector);
986 
987 	/* mark the computed target(s) as uptodate */
988 	mark_target_uptodate(sh, sh->ops.target);
989 	mark_target_uptodate(sh, sh->ops.target2);
990 
991 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
992 	if (sh->check_state == check_state_compute_run)
993 		sh->check_state = check_state_compute_result;
994 	set_bit(STRIPE_HANDLE, &sh->state);
995 	release_stripe(sh);
996 }
997 
998 /* return a pointer to the address conversion region of the scribble buffer */
999 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1000 				 struct raid5_percpu *percpu)
1001 {
1002 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1003 }
1004 
1005 static struct dma_async_tx_descriptor *
1006 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1007 {
1008 	int disks = sh->disks;
1009 	struct page **xor_srcs = percpu->scribble;
1010 	int target = sh->ops.target;
1011 	struct r5dev *tgt = &sh->dev[target];
1012 	struct page *xor_dest = tgt->page;
1013 	int count = 0;
1014 	struct dma_async_tx_descriptor *tx;
1015 	struct async_submit_ctl submit;
1016 	int i;
1017 
1018 	pr_debug("%s: stripe %llu block: %d\n",
1019 		__func__, (unsigned long long)sh->sector, target);
1020 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1021 
1022 	for (i = disks; i--; )
1023 		if (i != target)
1024 			xor_srcs[count++] = sh->dev[i].page;
1025 
1026 	atomic_inc(&sh->count);
1027 
1028 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1029 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
1030 	if (unlikely(count == 1))
1031 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1032 	else
1033 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1034 
1035 	return tx;
1036 }
1037 
1038 /* set_syndrome_sources - populate source buffers for gen_syndrome
1039  * @srcs - (struct page *) array of size sh->disks
1040  * @sh - stripe_head to parse
1041  *
1042  * Populates srcs in proper layout order for the stripe and returns the
1043  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1044  * destination buffer is recorded in srcs[count] and the Q destination
1045  * is recorded in srcs[count+1]].
1046  */
1047 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1048 {
1049 	int disks = sh->disks;
1050 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1051 	int d0_idx = raid6_d0(sh);
1052 	int count;
1053 	int i;
1054 
1055 	for (i = 0; i < disks; i++)
1056 		srcs[i] = NULL;
1057 
1058 	count = 0;
1059 	i = d0_idx;
1060 	do {
1061 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1062 
1063 		srcs[slot] = sh->dev[i].page;
1064 		i = raid6_next_disk(i, disks);
1065 	} while (i != d0_idx);
1066 
1067 	return syndrome_disks;
1068 }
1069 
1070 static struct dma_async_tx_descriptor *
1071 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1072 {
1073 	int disks = sh->disks;
1074 	struct page **blocks = percpu->scribble;
1075 	int target;
1076 	int qd_idx = sh->qd_idx;
1077 	struct dma_async_tx_descriptor *tx;
1078 	struct async_submit_ctl submit;
1079 	struct r5dev *tgt;
1080 	struct page *dest;
1081 	int i;
1082 	int count;
1083 
1084 	if (sh->ops.target < 0)
1085 		target = sh->ops.target2;
1086 	else if (sh->ops.target2 < 0)
1087 		target = sh->ops.target;
1088 	else
1089 		/* we should only have one valid target */
1090 		BUG();
1091 	BUG_ON(target < 0);
1092 	pr_debug("%s: stripe %llu block: %d\n",
1093 		__func__, (unsigned long long)sh->sector, target);
1094 
1095 	tgt = &sh->dev[target];
1096 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1097 	dest = tgt->page;
1098 
1099 	atomic_inc(&sh->count);
1100 
1101 	if (target == qd_idx) {
1102 		count = set_syndrome_sources(blocks, sh);
1103 		blocks[count] = NULL; /* regenerating p is not necessary */
1104 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1105 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1106 				  ops_complete_compute, sh,
1107 				  to_addr_conv(sh, percpu));
1108 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1109 	} else {
1110 		/* Compute any data- or p-drive using XOR */
1111 		count = 0;
1112 		for (i = disks; i-- ; ) {
1113 			if (i == target || i == qd_idx)
1114 				continue;
1115 			blocks[count++] = sh->dev[i].page;
1116 		}
1117 
1118 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1119 				  NULL, ops_complete_compute, sh,
1120 				  to_addr_conv(sh, percpu));
1121 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1122 	}
1123 
1124 	return tx;
1125 }
1126 
1127 static struct dma_async_tx_descriptor *
1128 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1129 {
1130 	int i, count, disks = sh->disks;
1131 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1132 	int d0_idx = raid6_d0(sh);
1133 	int faila = -1, failb = -1;
1134 	int target = sh->ops.target;
1135 	int target2 = sh->ops.target2;
1136 	struct r5dev *tgt = &sh->dev[target];
1137 	struct r5dev *tgt2 = &sh->dev[target2];
1138 	struct dma_async_tx_descriptor *tx;
1139 	struct page **blocks = percpu->scribble;
1140 	struct async_submit_ctl submit;
1141 
1142 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1143 		 __func__, (unsigned long long)sh->sector, target, target2);
1144 	BUG_ON(target < 0 || target2 < 0);
1145 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1146 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1147 
1148 	/* we need to open-code set_syndrome_sources to handle the
1149 	 * slot number conversion for 'faila' and 'failb'
1150 	 */
1151 	for (i = 0; i < disks ; i++)
1152 		blocks[i] = NULL;
1153 	count = 0;
1154 	i = d0_idx;
1155 	do {
1156 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1157 
1158 		blocks[slot] = sh->dev[i].page;
1159 
1160 		if (i == target)
1161 			faila = slot;
1162 		if (i == target2)
1163 			failb = slot;
1164 		i = raid6_next_disk(i, disks);
1165 	} while (i != d0_idx);
1166 
1167 	BUG_ON(faila == failb);
1168 	if (failb < faila)
1169 		swap(faila, failb);
1170 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1171 		 __func__, (unsigned long long)sh->sector, faila, failb);
1172 
1173 	atomic_inc(&sh->count);
1174 
1175 	if (failb == syndrome_disks+1) {
1176 		/* Q disk is one of the missing disks */
1177 		if (faila == syndrome_disks) {
1178 			/* Missing P+Q, just recompute */
1179 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1180 					  ops_complete_compute, sh,
1181 					  to_addr_conv(sh, percpu));
1182 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1183 						  STRIPE_SIZE, &submit);
1184 		} else {
1185 			struct page *dest;
1186 			int data_target;
1187 			int qd_idx = sh->qd_idx;
1188 
1189 			/* Missing D+Q: recompute D from P, then recompute Q */
1190 			if (target == qd_idx)
1191 				data_target = target2;
1192 			else
1193 				data_target = target;
1194 
1195 			count = 0;
1196 			for (i = disks; i-- ; ) {
1197 				if (i == data_target || i == qd_idx)
1198 					continue;
1199 				blocks[count++] = sh->dev[i].page;
1200 			}
1201 			dest = sh->dev[data_target].page;
1202 			init_async_submit(&submit,
1203 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1204 					  NULL, NULL, NULL,
1205 					  to_addr_conv(sh, percpu));
1206 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1207 				       &submit);
1208 
1209 			count = set_syndrome_sources(blocks, sh);
1210 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1211 					  ops_complete_compute, sh,
1212 					  to_addr_conv(sh, percpu));
1213 			return async_gen_syndrome(blocks, 0, count+2,
1214 						  STRIPE_SIZE, &submit);
1215 		}
1216 	} else {
1217 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1218 				  ops_complete_compute, sh,
1219 				  to_addr_conv(sh, percpu));
1220 		if (failb == syndrome_disks) {
1221 			/* We're missing D+P. */
1222 			return async_raid6_datap_recov(syndrome_disks+2,
1223 						       STRIPE_SIZE, faila,
1224 						       blocks, &submit);
1225 		} else {
1226 			/* We're missing D+D. */
1227 			return async_raid6_2data_recov(syndrome_disks+2,
1228 						       STRIPE_SIZE, faila, failb,
1229 						       blocks, &submit);
1230 		}
1231 	}
1232 }
1233 
1234 
1235 static void ops_complete_prexor(void *stripe_head_ref)
1236 {
1237 	struct stripe_head *sh = stripe_head_ref;
1238 
1239 	pr_debug("%s: stripe %llu\n", __func__,
1240 		(unsigned long long)sh->sector);
1241 }
1242 
1243 static struct dma_async_tx_descriptor *
1244 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1245 	       struct dma_async_tx_descriptor *tx)
1246 {
1247 	int disks = sh->disks;
1248 	struct page **xor_srcs = percpu->scribble;
1249 	int count = 0, pd_idx = sh->pd_idx, i;
1250 	struct async_submit_ctl submit;
1251 
1252 	/* existing parity data subtracted */
1253 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1254 
1255 	pr_debug("%s: stripe %llu\n", __func__,
1256 		(unsigned long long)sh->sector);
1257 
1258 	for (i = disks; i--; ) {
1259 		struct r5dev *dev = &sh->dev[i];
1260 		/* Only process blocks that are known to be uptodate */
1261 		if (test_bit(R5_Wantdrain, &dev->flags))
1262 			xor_srcs[count++] = dev->page;
1263 	}
1264 
1265 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1266 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1267 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1268 
1269 	return tx;
1270 }
1271 
1272 static struct dma_async_tx_descriptor *
1273 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1274 {
1275 	int disks = sh->disks;
1276 	int i;
1277 
1278 	pr_debug("%s: stripe %llu\n", __func__,
1279 		(unsigned long long)sh->sector);
1280 
1281 	for (i = disks; i--; ) {
1282 		struct r5dev *dev = &sh->dev[i];
1283 		struct bio *chosen;
1284 
1285 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1286 			struct bio *wbi;
1287 
1288 			spin_lock_irq(&sh->stripe_lock);
1289 			chosen = dev->towrite;
1290 			dev->towrite = NULL;
1291 			BUG_ON(dev->written);
1292 			wbi = dev->written = chosen;
1293 			spin_unlock_irq(&sh->stripe_lock);
1294 
1295 			while (wbi && wbi->bi_sector <
1296 				dev->sector + STRIPE_SECTORS) {
1297 				if (wbi->bi_rw & REQ_FUA)
1298 					set_bit(R5_WantFUA, &dev->flags);
1299 				if (wbi->bi_rw & REQ_SYNC)
1300 					set_bit(R5_SyncIO, &dev->flags);
1301 				if (wbi->bi_rw & REQ_DISCARD)
1302 					set_bit(R5_Discard, &dev->flags);
1303 				else
1304 					tx = async_copy_data(1, wbi, dev->page,
1305 						dev->sector, tx);
1306 				wbi = r5_next_bio(wbi, dev->sector);
1307 			}
1308 		}
1309 	}
1310 
1311 	return tx;
1312 }
1313 
1314 static void ops_complete_reconstruct(void *stripe_head_ref)
1315 {
1316 	struct stripe_head *sh = stripe_head_ref;
1317 	int disks = sh->disks;
1318 	int pd_idx = sh->pd_idx;
1319 	int qd_idx = sh->qd_idx;
1320 	int i;
1321 	bool fua = false, sync = false, discard = false;
1322 
1323 	pr_debug("%s: stripe %llu\n", __func__,
1324 		(unsigned long long)sh->sector);
1325 
1326 	for (i = disks; i--; ) {
1327 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1328 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1329 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1330 	}
1331 
1332 	for (i = disks; i--; ) {
1333 		struct r5dev *dev = &sh->dev[i];
1334 
1335 		if (dev->written || i == pd_idx || i == qd_idx) {
1336 			if (!discard)
1337 				set_bit(R5_UPTODATE, &dev->flags);
1338 			if (fua)
1339 				set_bit(R5_WantFUA, &dev->flags);
1340 			if (sync)
1341 				set_bit(R5_SyncIO, &dev->flags);
1342 		}
1343 	}
1344 
1345 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1346 		sh->reconstruct_state = reconstruct_state_drain_result;
1347 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1348 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1349 	else {
1350 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1351 		sh->reconstruct_state = reconstruct_state_result;
1352 	}
1353 
1354 	set_bit(STRIPE_HANDLE, &sh->state);
1355 	release_stripe(sh);
1356 }
1357 
1358 static void
1359 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1360 		     struct dma_async_tx_descriptor *tx)
1361 {
1362 	int disks = sh->disks;
1363 	struct page **xor_srcs = percpu->scribble;
1364 	struct async_submit_ctl submit;
1365 	int count = 0, pd_idx = sh->pd_idx, i;
1366 	struct page *xor_dest;
1367 	int prexor = 0;
1368 	unsigned long flags;
1369 
1370 	pr_debug("%s: stripe %llu\n", __func__,
1371 		(unsigned long long)sh->sector);
1372 
1373 	for (i = 0; i < sh->disks; i++) {
1374 		if (pd_idx == i)
1375 			continue;
1376 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1377 			break;
1378 	}
1379 	if (i >= sh->disks) {
1380 		atomic_inc(&sh->count);
1381 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1382 		ops_complete_reconstruct(sh);
1383 		return;
1384 	}
1385 	/* check if prexor is active which means only process blocks
1386 	 * that are part of a read-modify-write (written)
1387 	 */
1388 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1389 		prexor = 1;
1390 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1391 		for (i = disks; i--; ) {
1392 			struct r5dev *dev = &sh->dev[i];
1393 			if (dev->written)
1394 				xor_srcs[count++] = dev->page;
1395 		}
1396 	} else {
1397 		xor_dest = sh->dev[pd_idx].page;
1398 		for (i = disks; i--; ) {
1399 			struct r5dev *dev = &sh->dev[i];
1400 			if (i != pd_idx)
1401 				xor_srcs[count++] = dev->page;
1402 		}
1403 	}
1404 
1405 	/* 1/ if we prexor'd then the dest is reused as a source
1406 	 * 2/ if we did not prexor then we are redoing the parity
1407 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1408 	 * for the synchronous xor case
1409 	 */
1410 	flags = ASYNC_TX_ACK |
1411 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1412 
1413 	atomic_inc(&sh->count);
1414 
1415 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1416 			  to_addr_conv(sh, percpu));
1417 	if (unlikely(count == 1))
1418 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1419 	else
1420 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1421 }
1422 
1423 static void
1424 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1425 		     struct dma_async_tx_descriptor *tx)
1426 {
1427 	struct async_submit_ctl submit;
1428 	struct page **blocks = percpu->scribble;
1429 	int count, i;
1430 
1431 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1432 
1433 	for (i = 0; i < sh->disks; i++) {
1434 		if (sh->pd_idx == i || sh->qd_idx == i)
1435 			continue;
1436 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1437 			break;
1438 	}
1439 	if (i >= sh->disks) {
1440 		atomic_inc(&sh->count);
1441 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1442 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1443 		ops_complete_reconstruct(sh);
1444 		return;
1445 	}
1446 
1447 	count = set_syndrome_sources(blocks, sh);
1448 
1449 	atomic_inc(&sh->count);
1450 
1451 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1452 			  sh, to_addr_conv(sh, percpu));
1453 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1454 }
1455 
1456 static void ops_complete_check(void *stripe_head_ref)
1457 {
1458 	struct stripe_head *sh = stripe_head_ref;
1459 
1460 	pr_debug("%s: stripe %llu\n", __func__,
1461 		(unsigned long long)sh->sector);
1462 
1463 	sh->check_state = check_state_check_result;
1464 	set_bit(STRIPE_HANDLE, &sh->state);
1465 	release_stripe(sh);
1466 }
1467 
1468 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1469 {
1470 	int disks = sh->disks;
1471 	int pd_idx = sh->pd_idx;
1472 	int qd_idx = sh->qd_idx;
1473 	struct page *xor_dest;
1474 	struct page **xor_srcs = percpu->scribble;
1475 	struct dma_async_tx_descriptor *tx;
1476 	struct async_submit_ctl submit;
1477 	int count;
1478 	int i;
1479 
1480 	pr_debug("%s: stripe %llu\n", __func__,
1481 		(unsigned long long)sh->sector);
1482 
1483 	count = 0;
1484 	xor_dest = sh->dev[pd_idx].page;
1485 	xor_srcs[count++] = xor_dest;
1486 	for (i = disks; i--; ) {
1487 		if (i == pd_idx || i == qd_idx)
1488 			continue;
1489 		xor_srcs[count++] = sh->dev[i].page;
1490 	}
1491 
1492 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1493 			  to_addr_conv(sh, percpu));
1494 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1495 			   &sh->ops.zero_sum_result, &submit);
1496 
1497 	atomic_inc(&sh->count);
1498 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1499 	tx = async_trigger_callback(&submit);
1500 }
1501 
1502 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1503 {
1504 	struct page **srcs = percpu->scribble;
1505 	struct async_submit_ctl submit;
1506 	int count;
1507 
1508 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1509 		(unsigned long long)sh->sector, checkp);
1510 
1511 	count = set_syndrome_sources(srcs, sh);
1512 	if (!checkp)
1513 		srcs[count] = NULL;
1514 
1515 	atomic_inc(&sh->count);
1516 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1517 			  sh, to_addr_conv(sh, percpu));
1518 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1519 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1520 }
1521 
1522 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1523 {
1524 	int overlap_clear = 0, i, disks = sh->disks;
1525 	struct dma_async_tx_descriptor *tx = NULL;
1526 	struct r5conf *conf = sh->raid_conf;
1527 	int level = conf->level;
1528 	struct raid5_percpu *percpu;
1529 	unsigned long cpu;
1530 
1531 	cpu = get_cpu();
1532 	percpu = per_cpu_ptr(conf->percpu, cpu);
1533 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1534 		ops_run_biofill(sh);
1535 		overlap_clear++;
1536 	}
1537 
1538 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1539 		if (level < 6)
1540 			tx = ops_run_compute5(sh, percpu);
1541 		else {
1542 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1543 				tx = ops_run_compute6_1(sh, percpu);
1544 			else
1545 				tx = ops_run_compute6_2(sh, percpu);
1546 		}
1547 		/* terminate the chain if reconstruct is not set to be run */
1548 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1549 			async_tx_ack(tx);
1550 	}
1551 
1552 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1553 		tx = ops_run_prexor(sh, percpu, tx);
1554 
1555 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1556 		tx = ops_run_biodrain(sh, tx);
1557 		overlap_clear++;
1558 	}
1559 
1560 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1561 		if (level < 6)
1562 			ops_run_reconstruct5(sh, percpu, tx);
1563 		else
1564 			ops_run_reconstruct6(sh, percpu, tx);
1565 	}
1566 
1567 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1568 		if (sh->check_state == check_state_run)
1569 			ops_run_check_p(sh, percpu);
1570 		else if (sh->check_state == check_state_run_q)
1571 			ops_run_check_pq(sh, percpu, 0);
1572 		else if (sh->check_state == check_state_run_pq)
1573 			ops_run_check_pq(sh, percpu, 1);
1574 		else
1575 			BUG();
1576 	}
1577 
1578 	if (overlap_clear)
1579 		for (i = disks; i--; ) {
1580 			struct r5dev *dev = &sh->dev[i];
1581 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1582 				wake_up(&sh->raid_conf->wait_for_overlap);
1583 		}
1584 	put_cpu();
1585 }
1586 
1587 static int grow_one_stripe(struct r5conf *conf)
1588 {
1589 	struct stripe_head *sh;
1590 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1591 	if (!sh)
1592 		return 0;
1593 
1594 	sh->raid_conf = conf;
1595 
1596 	spin_lock_init(&sh->stripe_lock);
1597 
1598 	if (grow_buffers(sh)) {
1599 		shrink_buffers(sh);
1600 		kmem_cache_free(conf->slab_cache, sh);
1601 		return 0;
1602 	}
1603 	/* we just created an active stripe so... */
1604 	atomic_set(&sh->count, 1);
1605 	atomic_inc(&conf->active_stripes);
1606 	INIT_LIST_HEAD(&sh->lru);
1607 	release_stripe(sh);
1608 	return 1;
1609 }
1610 
1611 static int grow_stripes(struct r5conf *conf, int num)
1612 {
1613 	struct kmem_cache *sc;
1614 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1615 
1616 	if (conf->mddev->gendisk)
1617 		sprintf(conf->cache_name[0],
1618 			"raid%d-%s", conf->level, mdname(conf->mddev));
1619 	else
1620 		sprintf(conf->cache_name[0],
1621 			"raid%d-%p", conf->level, conf->mddev);
1622 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1623 
1624 	conf->active_name = 0;
1625 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1626 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1627 			       0, 0, NULL);
1628 	if (!sc)
1629 		return 1;
1630 	conf->slab_cache = sc;
1631 	conf->pool_size = devs;
1632 	while (num--)
1633 		if (!grow_one_stripe(conf))
1634 			return 1;
1635 	return 0;
1636 }
1637 
1638 /**
1639  * scribble_len - return the required size of the scribble region
1640  * @num - total number of disks in the array
1641  *
1642  * The size must be enough to contain:
1643  * 1/ a struct page pointer for each device in the array +2
1644  * 2/ room to convert each entry in (1) to its corresponding dma
1645  *    (dma_map_page()) or page (page_address()) address.
1646  *
1647  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1648  * calculate over all devices (not just the data blocks), using zeros in place
1649  * of the P and Q blocks.
1650  */
1651 static size_t scribble_len(int num)
1652 {
1653 	size_t len;
1654 
1655 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1656 
1657 	return len;
1658 }
1659 
1660 static int resize_stripes(struct r5conf *conf, int newsize)
1661 {
1662 	/* Make all the stripes able to hold 'newsize' devices.
1663 	 * New slots in each stripe get 'page' set to a new page.
1664 	 *
1665 	 * This happens in stages:
1666 	 * 1/ create a new kmem_cache and allocate the required number of
1667 	 *    stripe_heads.
1668 	 * 2/ gather all the old stripe_heads and transfer the pages across
1669 	 *    to the new stripe_heads.  This will have the side effect of
1670 	 *    freezing the array as once all stripe_heads have been collected,
1671 	 *    no IO will be possible.  Old stripe heads are freed once their
1672 	 *    pages have been transferred over, and the old kmem_cache is
1673 	 *    freed when all stripes are done.
1674 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1675 	 *    we simple return a failre status - no need to clean anything up.
1676 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1677 	 *    If this fails, we don't bother trying the shrink the
1678 	 *    stripe_heads down again, we just leave them as they are.
1679 	 *    As each stripe_head is processed the new one is released into
1680 	 *    active service.
1681 	 *
1682 	 * Once step2 is started, we cannot afford to wait for a write,
1683 	 * so we use GFP_NOIO allocations.
1684 	 */
1685 	struct stripe_head *osh, *nsh;
1686 	LIST_HEAD(newstripes);
1687 	struct disk_info *ndisks;
1688 	unsigned long cpu;
1689 	int err;
1690 	struct kmem_cache *sc;
1691 	int i;
1692 
1693 	if (newsize <= conf->pool_size)
1694 		return 0; /* never bother to shrink */
1695 
1696 	err = md_allow_write(conf->mddev);
1697 	if (err)
1698 		return err;
1699 
1700 	/* Step 1 */
1701 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1702 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1703 			       0, 0, NULL);
1704 	if (!sc)
1705 		return -ENOMEM;
1706 
1707 	for (i = conf->max_nr_stripes; i; i--) {
1708 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1709 		if (!nsh)
1710 			break;
1711 
1712 		nsh->raid_conf = conf;
1713 		spin_lock_init(&nsh->stripe_lock);
1714 
1715 		list_add(&nsh->lru, &newstripes);
1716 	}
1717 	if (i) {
1718 		/* didn't get enough, give up */
1719 		while (!list_empty(&newstripes)) {
1720 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1721 			list_del(&nsh->lru);
1722 			kmem_cache_free(sc, nsh);
1723 		}
1724 		kmem_cache_destroy(sc);
1725 		return -ENOMEM;
1726 	}
1727 	/* Step 2 - Must use GFP_NOIO now.
1728 	 * OK, we have enough stripes, start collecting inactive
1729 	 * stripes and copying them over
1730 	 */
1731 	list_for_each_entry(nsh, &newstripes, lru) {
1732 		spin_lock_irq(&conf->device_lock);
1733 		wait_event_lock_irq(conf->wait_for_stripe,
1734 				    !list_empty(&conf->inactive_list),
1735 				    conf->device_lock);
1736 		osh = get_free_stripe(conf);
1737 		spin_unlock_irq(&conf->device_lock);
1738 		atomic_set(&nsh->count, 1);
1739 		for(i=0; i<conf->pool_size; i++)
1740 			nsh->dev[i].page = osh->dev[i].page;
1741 		for( ; i<newsize; i++)
1742 			nsh->dev[i].page = NULL;
1743 		kmem_cache_free(conf->slab_cache, osh);
1744 	}
1745 	kmem_cache_destroy(conf->slab_cache);
1746 
1747 	/* Step 3.
1748 	 * At this point, we are holding all the stripes so the array
1749 	 * is completely stalled, so now is a good time to resize
1750 	 * conf->disks and the scribble region
1751 	 */
1752 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1753 	if (ndisks) {
1754 		for (i=0; i<conf->raid_disks; i++)
1755 			ndisks[i] = conf->disks[i];
1756 		kfree(conf->disks);
1757 		conf->disks = ndisks;
1758 	} else
1759 		err = -ENOMEM;
1760 
1761 	get_online_cpus();
1762 	conf->scribble_len = scribble_len(newsize);
1763 	for_each_present_cpu(cpu) {
1764 		struct raid5_percpu *percpu;
1765 		void *scribble;
1766 
1767 		percpu = per_cpu_ptr(conf->percpu, cpu);
1768 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1769 
1770 		if (scribble) {
1771 			kfree(percpu->scribble);
1772 			percpu->scribble = scribble;
1773 		} else {
1774 			err = -ENOMEM;
1775 			break;
1776 		}
1777 	}
1778 	put_online_cpus();
1779 
1780 	/* Step 4, return new stripes to service */
1781 	while(!list_empty(&newstripes)) {
1782 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1783 		list_del_init(&nsh->lru);
1784 
1785 		for (i=conf->raid_disks; i < newsize; i++)
1786 			if (nsh->dev[i].page == NULL) {
1787 				struct page *p = alloc_page(GFP_NOIO);
1788 				nsh->dev[i].page = p;
1789 				if (!p)
1790 					err = -ENOMEM;
1791 			}
1792 		release_stripe(nsh);
1793 	}
1794 	/* critical section pass, GFP_NOIO no longer needed */
1795 
1796 	conf->slab_cache = sc;
1797 	conf->active_name = 1-conf->active_name;
1798 	conf->pool_size = newsize;
1799 	return err;
1800 }
1801 
1802 static int drop_one_stripe(struct r5conf *conf)
1803 {
1804 	struct stripe_head *sh;
1805 
1806 	spin_lock_irq(&conf->device_lock);
1807 	sh = get_free_stripe(conf);
1808 	spin_unlock_irq(&conf->device_lock);
1809 	if (!sh)
1810 		return 0;
1811 	BUG_ON(atomic_read(&sh->count));
1812 	shrink_buffers(sh);
1813 	kmem_cache_free(conf->slab_cache, sh);
1814 	atomic_dec(&conf->active_stripes);
1815 	return 1;
1816 }
1817 
1818 static void shrink_stripes(struct r5conf *conf)
1819 {
1820 	while (drop_one_stripe(conf))
1821 		;
1822 
1823 	if (conf->slab_cache)
1824 		kmem_cache_destroy(conf->slab_cache);
1825 	conf->slab_cache = NULL;
1826 }
1827 
1828 static void raid5_end_read_request(struct bio * bi, int error)
1829 {
1830 	struct stripe_head *sh = bi->bi_private;
1831 	struct r5conf *conf = sh->raid_conf;
1832 	int disks = sh->disks, i;
1833 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1834 	char b[BDEVNAME_SIZE];
1835 	struct md_rdev *rdev = NULL;
1836 	sector_t s;
1837 
1838 	for (i=0 ; i<disks; i++)
1839 		if (bi == &sh->dev[i].req)
1840 			break;
1841 
1842 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1843 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1844 		uptodate);
1845 	if (i == disks) {
1846 		BUG();
1847 		return;
1848 	}
1849 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1850 		/* If replacement finished while this request was outstanding,
1851 		 * 'replacement' might be NULL already.
1852 		 * In that case it moved down to 'rdev'.
1853 		 * rdev is not removed until all requests are finished.
1854 		 */
1855 		rdev = conf->disks[i].replacement;
1856 	if (!rdev)
1857 		rdev = conf->disks[i].rdev;
1858 
1859 	if (use_new_offset(conf, sh))
1860 		s = sh->sector + rdev->new_data_offset;
1861 	else
1862 		s = sh->sector + rdev->data_offset;
1863 	if (uptodate) {
1864 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1865 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1866 			/* Note that this cannot happen on a
1867 			 * replacement device.  We just fail those on
1868 			 * any error
1869 			 */
1870 			printk_ratelimited(
1871 				KERN_INFO
1872 				"md/raid:%s: read error corrected"
1873 				" (%lu sectors at %llu on %s)\n",
1874 				mdname(conf->mddev), STRIPE_SECTORS,
1875 				(unsigned long long)s,
1876 				bdevname(rdev->bdev, b));
1877 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1878 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1879 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1880 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1881 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1882 
1883 		if (atomic_read(&rdev->read_errors))
1884 			atomic_set(&rdev->read_errors, 0);
1885 	} else {
1886 		const char *bdn = bdevname(rdev->bdev, b);
1887 		int retry = 0;
1888 		int set_bad = 0;
1889 
1890 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1891 		atomic_inc(&rdev->read_errors);
1892 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1893 			printk_ratelimited(
1894 				KERN_WARNING
1895 				"md/raid:%s: read error on replacement device "
1896 				"(sector %llu on %s).\n",
1897 				mdname(conf->mddev),
1898 				(unsigned long long)s,
1899 				bdn);
1900 		else if (conf->mddev->degraded >= conf->max_degraded) {
1901 			set_bad = 1;
1902 			printk_ratelimited(
1903 				KERN_WARNING
1904 				"md/raid:%s: read error not correctable "
1905 				"(sector %llu on %s).\n",
1906 				mdname(conf->mddev),
1907 				(unsigned long long)s,
1908 				bdn);
1909 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1910 			/* Oh, no!!! */
1911 			set_bad = 1;
1912 			printk_ratelimited(
1913 				KERN_WARNING
1914 				"md/raid:%s: read error NOT corrected!! "
1915 				"(sector %llu on %s).\n",
1916 				mdname(conf->mddev),
1917 				(unsigned long long)s,
1918 				bdn);
1919 		} else if (atomic_read(&rdev->read_errors)
1920 			 > conf->max_nr_stripes)
1921 			printk(KERN_WARNING
1922 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1923 			       mdname(conf->mddev), bdn);
1924 		else
1925 			retry = 1;
1926 		if (retry)
1927 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1928 				set_bit(R5_ReadError, &sh->dev[i].flags);
1929 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1930 			} else
1931 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1932 		else {
1933 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1934 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1935 			if (!(set_bad
1936 			      && test_bit(In_sync, &rdev->flags)
1937 			      && rdev_set_badblocks(
1938 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
1939 				md_error(conf->mddev, rdev);
1940 		}
1941 	}
1942 	rdev_dec_pending(rdev, conf->mddev);
1943 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1944 	set_bit(STRIPE_HANDLE, &sh->state);
1945 	release_stripe(sh);
1946 }
1947 
1948 static void raid5_end_write_request(struct bio *bi, int error)
1949 {
1950 	struct stripe_head *sh = bi->bi_private;
1951 	struct r5conf *conf = sh->raid_conf;
1952 	int disks = sh->disks, i;
1953 	struct md_rdev *uninitialized_var(rdev);
1954 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1955 	sector_t first_bad;
1956 	int bad_sectors;
1957 	int replacement = 0;
1958 
1959 	for (i = 0 ; i < disks; i++) {
1960 		if (bi == &sh->dev[i].req) {
1961 			rdev = conf->disks[i].rdev;
1962 			break;
1963 		}
1964 		if (bi == &sh->dev[i].rreq) {
1965 			rdev = conf->disks[i].replacement;
1966 			if (rdev)
1967 				replacement = 1;
1968 			else
1969 				/* rdev was removed and 'replacement'
1970 				 * replaced it.  rdev is not removed
1971 				 * until all requests are finished.
1972 				 */
1973 				rdev = conf->disks[i].rdev;
1974 			break;
1975 		}
1976 	}
1977 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1978 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1979 		uptodate);
1980 	if (i == disks) {
1981 		BUG();
1982 		return;
1983 	}
1984 
1985 	if (replacement) {
1986 		if (!uptodate)
1987 			md_error(conf->mddev, rdev);
1988 		else if (is_badblock(rdev, sh->sector,
1989 				     STRIPE_SECTORS,
1990 				     &first_bad, &bad_sectors))
1991 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1992 	} else {
1993 		if (!uptodate) {
1994 			set_bit(WriteErrorSeen, &rdev->flags);
1995 			set_bit(R5_WriteError, &sh->dev[i].flags);
1996 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1997 				set_bit(MD_RECOVERY_NEEDED,
1998 					&rdev->mddev->recovery);
1999 		} else if (is_badblock(rdev, sh->sector,
2000 				       STRIPE_SECTORS,
2001 				       &first_bad, &bad_sectors)) {
2002 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2003 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2004 				/* That was a successful write so make
2005 				 * sure it looks like we already did
2006 				 * a re-write.
2007 				 */
2008 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2009 		}
2010 	}
2011 	rdev_dec_pending(rdev, conf->mddev);
2012 
2013 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2014 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2015 	set_bit(STRIPE_HANDLE, &sh->state);
2016 	release_stripe(sh);
2017 }
2018 
2019 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2020 
2021 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2022 {
2023 	struct r5dev *dev = &sh->dev[i];
2024 
2025 	bio_init(&dev->req);
2026 	dev->req.bi_io_vec = &dev->vec;
2027 	dev->req.bi_vcnt++;
2028 	dev->req.bi_max_vecs++;
2029 	dev->req.bi_private = sh;
2030 	dev->vec.bv_page = dev->page;
2031 
2032 	bio_init(&dev->rreq);
2033 	dev->rreq.bi_io_vec = &dev->rvec;
2034 	dev->rreq.bi_vcnt++;
2035 	dev->rreq.bi_max_vecs++;
2036 	dev->rreq.bi_private = sh;
2037 	dev->rvec.bv_page = dev->page;
2038 
2039 	dev->flags = 0;
2040 	dev->sector = compute_blocknr(sh, i, previous);
2041 }
2042 
2043 static void error(struct mddev *mddev, struct md_rdev *rdev)
2044 {
2045 	char b[BDEVNAME_SIZE];
2046 	struct r5conf *conf = mddev->private;
2047 	unsigned long flags;
2048 	pr_debug("raid456: error called\n");
2049 
2050 	spin_lock_irqsave(&conf->device_lock, flags);
2051 	clear_bit(In_sync, &rdev->flags);
2052 	mddev->degraded = calc_degraded(conf);
2053 	spin_unlock_irqrestore(&conf->device_lock, flags);
2054 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2055 
2056 	set_bit(Blocked, &rdev->flags);
2057 	set_bit(Faulty, &rdev->flags);
2058 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2059 	printk(KERN_ALERT
2060 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2061 	       "md/raid:%s: Operation continuing on %d devices.\n",
2062 	       mdname(mddev),
2063 	       bdevname(rdev->bdev, b),
2064 	       mdname(mddev),
2065 	       conf->raid_disks - mddev->degraded);
2066 }
2067 
2068 /*
2069  * Input: a 'big' sector number,
2070  * Output: index of the data and parity disk, and the sector # in them.
2071  */
2072 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2073 				     int previous, int *dd_idx,
2074 				     struct stripe_head *sh)
2075 {
2076 	sector_t stripe, stripe2;
2077 	sector_t chunk_number;
2078 	unsigned int chunk_offset;
2079 	int pd_idx, qd_idx;
2080 	int ddf_layout = 0;
2081 	sector_t new_sector;
2082 	int algorithm = previous ? conf->prev_algo
2083 				 : conf->algorithm;
2084 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2085 					 : conf->chunk_sectors;
2086 	int raid_disks = previous ? conf->previous_raid_disks
2087 				  : conf->raid_disks;
2088 	int data_disks = raid_disks - conf->max_degraded;
2089 
2090 	/* First compute the information on this sector */
2091 
2092 	/*
2093 	 * Compute the chunk number and the sector offset inside the chunk
2094 	 */
2095 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2096 	chunk_number = r_sector;
2097 
2098 	/*
2099 	 * Compute the stripe number
2100 	 */
2101 	stripe = chunk_number;
2102 	*dd_idx = sector_div(stripe, data_disks);
2103 	stripe2 = stripe;
2104 	/*
2105 	 * Select the parity disk based on the user selected algorithm.
2106 	 */
2107 	pd_idx = qd_idx = -1;
2108 	switch(conf->level) {
2109 	case 4:
2110 		pd_idx = data_disks;
2111 		break;
2112 	case 5:
2113 		switch (algorithm) {
2114 		case ALGORITHM_LEFT_ASYMMETRIC:
2115 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2116 			if (*dd_idx >= pd_idx)
2117 				(*dd_idx)++;
2118 			break;
2119 		case ALGORITHM_RIGHT_ASYMMETRIC:
2120 			pd_idx = sector_div(stripe2, raid_disks);
2121 			if (*dd_idx >= pd_idx)
2122 				(*dd_idx)++;
2123 			break;
2124 		case ALGORITHM_LEFT_SYMMETRIC:
2125 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2126 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2127 			break;
2128 		case ALGORITHM_RIGHT_SYMMETRIC:
2129 			pd_idx = sector_div(stripe2, raid_disks);
2130 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2131 			break;
2132 		case ALGORITHM_PARITY_0:
2133 			pd_idx = 0;
2134 			(*dd_idx)++;
2135 			break;
2136 		case ALGORITHM_PARITY_N:
2137 			pd_idx = data_disks;
2138 			break;
2139 		default:
2140 			BUG();
2141 		}
2142 		break;
2143 	case 6:
2144 
2145 		switch (algorithm) {
2146 		case ALGORITHM_LEFT_ASYMMETRIC:
2147 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2148 			qd_idx = pd_idx + 1;
2149 			if (pd_idx == raid_disks-1) {
2150 				(*dd_idx)++;	/* Q D D D P */
2151 				qd_idx = 0;
2152 			} else if (*dd_idx >= pd_idx)
2153 				(*dd_idx) += 2; /* D D P Q D */
2154 			break;
2155 		case ALGORITHM_RIGHT_ASYMMETRIC:
2156 			pd_idx = sector_div(stripe2, raid_disks);
2157 			qd_idx = pd_idx + 1;
2158 			if (pd_idx == raid_disks-1) {
2159 				(*dd_idx)++;	/* Q D D D P */
2160 				qd_idx = 0;
2161 			} else if (*dd_idx >= pd_idx)
2162 				(*dd_idx) += 2; /* D D P Q D */
2163 			break;
2164 		case ALGORITHM_LEFT_SYMMETRIC:
2165 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2166 			qd_idx = (pd_idx + 1) % raid_disks;
2167 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2168 			break;
2169 		case ALGORITHM_RIGHT_SYMMETRIC:
2170 			pd_idx = sector_div(stripe2, raid_disks);
2171 			qd_idx = (pd_idx + 1) % raid_disks;
2172 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2173 			break;
2174 
2175 		case ALGORITHM_PARITY_0:
2176 			pd_idx = 0;
2177 			qd_idx = 1;
2178 			(*dd_idx) += 2;
2179 			break;
2180 		case ALGORITHM_PARITY_N:
2181 			pd_idx = data_disks;
2182 			qd_idx = data_disks + 1;
2183 			break;
2184 
2185 		case ALGORITHM_ROTATING_ZERO_RESTART:
2186 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2187 			 * of blocks for computing Q is different.
2188 			 */
2189 			pd_idx = sector_div(stripe2, raid_disks);
2190 			qd_idx = pd_idx + 1;
2191 			if (pd_idx == raid_disks-1) {
2192 				(*dd_idx)++;	/* Q D D D P */
2193 				qd_idx = 0;
2194 			} else if (*dd_idx >= pd_idx)
2195 				(*dd_idx) += 2; /* D D P Q D */
2196 			ddf_layout = 1;
2197 			break;
2198 
2199 		case ALGORITHM_ROTATING_N_RESTART:
2200 			/* Same a left_asymmetric, by first stripe is
2201 			 * D D D P Q  rather than
2202 			 * Q D D D P
2203 			 */
2204 			stripe2 += 1;
2205 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2206 			qd_idx = pd_idx + 1;
2207 			if (pd_idx == raid_disks-1) {
2208 				(*dd_idx)++;	/* Q D D D P */
2209 				qd_idx = 0;
2210 			} else if (*dd_idx >= pd_idx)
2211 				(*dd_idx) += 2; /* D D P Q D */
2212 			ddf_layout = 1;
2213 			break;
2214 
2215 		case ALGORITHM_ROTATING_N_CONTINUE:
2216 			/* Same as left_symmetric but Q is before P */
2217 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2218 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2219 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2220 			ddf_layout = 1;
2221 			break;
2222 
2223 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2224 			/* RAID5 left_asymmetric, with Q on last device */
2225 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2226 			if (*dd_idx >= pd_idx)
2227 				(*dd_idx)++;
2228 			qd_idx = raid_disks - 1;
2229 			break;
2230 
2231 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2232 			pd_idx = sector_div(stripe2, raid_disks-1);
2233 			if (*dd_idx >= pd_idx)
2234 				(*dd_idx)++;
2235 			qd_idx = raid_disks - 1;
2236 			break;
2237 
2238 		case ALGORITHM_LEFT_SYMMETRIC_6:
2239 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2240 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2241 			qd_idx = raid_disks - 1;
2242 			break;
2243 
2244 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2245 			pd_idx = sector_div(stripe2, raid_disks-1);
2246 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2247 			qd_idx = raid_disks - 1;
2248 			break;
2249 
2250 		case ALGORITHM_PARITY_0_6:
2251 			pd_idx = 0;
2252 			(*dd_idx)++;
2253 			qd_idx = raid_disks - 1;
2254 			break;
2255 
2256 		default:
2257 			BUG();
2258 		}
2259 		break;
2260 	}
2261 
2262 	if (sh) {
2263 		sh->pd_idx = pd_idx;
2264 		sh->qd_idx = qd_idx;
2265 		sh->ddf_layout = ddf_layout;
2266 	}
2267 	/*
2268 	 * Finally, compute the new sector number
2269 	 */
2270 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2271 	return new_sector;
2272 }
2273 
2274 
2275 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2276 {
2277 	struct r5conf *conf = sh->raid_conf;
2278 	int raid_disks = sh->disks;
2279 	int data_disks = raid_disks - conf->max_degraded;
2280 	sector_t new_sector = sh->sector, check;
2281 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2282 					 : conf->chunk_sectors;
2283 	int algorithm = previous ? conf->prev_algo
2284 				 : conf->algorithm;
2285 	sector_t stripe;
2286 	int chunk_offset;
2287 	sector_t chunk_number;
2288 	int dummy1, dd_idx = i;
2289 	sector_t r_sector;
2290 	struct stripe_head sh2;
2291 
2292 
2293 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2294 	stripe = new_sector;
2295 
2296 	if (i == sh->pd_idx)
2297 		return 0;
2298 	switch(conf->level) {
2299 	case 4: break;
2300 	case 5:
2301 		switch (algorithm) {
2302 		case ALGORITHM_LEFT_ASYMMETRIC:
2303 		case ALGORITHM_RIGHT_ASYMMETRIC:
2304 			if (i > sh->pd_idx)
2305 				i--;
2306 			break;
2307 		case ALGORITHM_LEFT_SYMMETRIC:
2308 		case ALGORITHM_RIGHT_SYMMETRIC:
2309 			if (i < sh->pd_idx)
2310 				i += raid_disks;
2311 			i -= (sh->pd_idx + 1);
2312 			break;
2313 		case ALGORITHM_PARITY_0:
2314 			i -= 1;
2315 			break;
2316 		case ALGORITHM_PARITY_N:
2317 			break;
2318 		default:
2319 			BUG();
2320 		}
2321 		break;
2322 	case 6:
2323 		if (i == sh->qd_idx)
2324 			return 0; /* It is the Q disk */
2325 		switch (algorithm) {
2326 		case ALGORITHM_LEFT_ASYMMETRIC:
2327 		case ALGORITHM_RIGHT_ASYMMETRIC:
2328 		case ALGORITHM_ROTATING_ZERO_RESTART:
2329 		case ALGORITHM_ROTATING_N_RESTART:
2330 			if (sh->pd_idx == raid_disks-1)
2331 				i--;	/* Q D D D P */
2332 			else if (i > sh->pd_idx)
2333 				i -= 2; /* D D P Q D */
2334 			break;
2335 		case ALGORITHM_LEFT_SYMMETRIC:
2336 		case ALGORITHM_RIGHT_SYMMETRIC:
2337 			if (sh->pd_idx == raid_disks-1)
2338 				i--; /* Q D D D P */
2339 			else {
2340 				/* D D P Q D */
2341 				if (i < sh->pd_idx)
2342 					i += raid_disks;
2343 				i -= (sh->pd_idx + 2);
2344 			}
2345 			break;
2346 		case ALGORITHM_PARITY_0:
2347 			i -= 2;
2348 			break;
2349 		case ALGORITHM_PARITY_N:
2350 			break;
2351 		case ALGORITHM_ROTATING_N_CONTINUE:
2352 			/* Like left_symmetric, but P is before Q */
2353 			if (sh->pd_idx == 0)
2354 				i--;	/* P D D D Q */
2355 			else {
2356 				/* D D Q P D */
2357 				if (i < sh->pd_idx)
2358 					i += raid_disks;
2359 				i -= (sh->pd_idx + 1);
2360 			}
2361 			break;
2362 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2363 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2364 			if (i > sh->pd_idx)
2365 				i--;
2366 			break;
2367 		case ALGORITHM_LEFT_SYMMETRIC_6:
2368 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2369 			if (i < sh->pd_idx)
2370 				i += data_disks + 1;
2371 			i -= (sh->pd_idx + 1);
2372 			break;
2373 		case ALGORITHM_PARITY_0_6:
2374 			i -= 1;
2375 			break;
2376 		default:
2377 			BUG();
2378 		}
2379 		break;
2380 	}
2381 
2382 	chunk_number = stripe * data_disks + i;
2383 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2384 
2385 	check = raid5_compute_sector(conf, r_sector,
2386 				     previous, &dummy1, &sh2);
2387 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2388 		|| sh2.qd_idx != sh->qd_idx) {
2389 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2390 		       mdname(conf->mddev));
2391 		return 0;
2392 	}
2393 	return r_sector;
2394 }
2395 
2396 
2397 static void
2398 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2399 			 int rcw, int expand)
2400 {
2401 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2402 	struct r5conf *conf = sh->raid_conf;
2403 	int level = conf->level;
2404 
2405 	if (rcw) {
2406 
2407 		for (i = disks; i--; ) {
2408 			struct r5dev *dev = &sh->dev[i];
2409 
2410 			if (dev->towrite) {
2411 				set_bit(R5_LOCKED, &dev->flags);
2412 				set_bit(R5_Wantdrain, &dev->flags);
2413 				if (!expand)
2414 					clear_bit(R5_UPTODATE, &dev->flags);
2415 				s->locked++;
2416 			}
2417 		}
2418 		/* if we are not expanding this is a proper write request, and
2419 		 * there will be bios with new data to be drained into the
2420 		 * stripe cache
2421 		 */
2422 		if (!expand) {
2423 			if (!s->locked)
2424 				/* False alarm, nothing to do */
2425 				return;
2426 			sh->reconstruct_state = reconstruct_state_drain_run;
2427 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2428 		} else
2429 			sh->reconstruct_state = reconstruct_state_run;
2430 
2431 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2432 
2433 		if (s->locked + conf->max_degraded == disks)
2434 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2435 				atomic_inc(&conf->pending_full_writes);
2436 	} else {
2437 		BUG_ON(level == 6);
2438 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2439 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2440 
2441 		for (i = disks; i--; ) {
2442 			struct r5dev *dev = &sh->dev[i];
2443 			if (i == pd_idx)
2444 				continue;
2445 
2446 			if (dev->towrite &&
2447 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2448 			     test_bit(R5_Wantcompute, &dev->flags))) {
2449 				set_bit(R5_Wantdrain, &dev->flags);
2450 				set_bit(R5_LOCKED, &dev->flags);
2451 				clear_bit(R5_UPTODATE, &dev->flags);
2452 				s->locked++;
2453 			}
2454 		}
2455 		if (!s->locked)
2456 			/* False alarm - nothing to do */
2457 			return;
2458 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2459 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2460 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2461 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2462 	}
2463 
2464 	/* keep the parity disk(s) locked while asynchronous operations
2465 	 * are in flight
2466 	 */
2467 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2468 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2469 	s->locked++;
2470 
2471 	if (level == 6) {
2472 		int qd_idx = sh->qd_idx;
2473 		struct r5dev *dev = &sh->dev[qd_idx];
2474 
2475 		set_bit(R5_LOCKED, &dev->flags);
2476 		clear_bit(R5_UPTODATE, &dev->flags);
2477 		s->locked++;
2478 	}
2479 
2480 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2481 		__func__, (unsigned long long)sh->sector,
2482 		s->locked, s->ops_request);
2483 }
2484 
2485 /*
2486  * Each stripe/dev can have one or more bion attached.
2487  * toread/towrite point to the first in a chain.
2488  * The bi_next chain must be in order.
2489  */
2490 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2491 {
2492 	struct bio **bip;
2493 	struct r5conf *conf = sh->raid_conf;
2494 	int firstwrite=0;
2495 
2496 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2497 		(unsigned long long)bi->bi_sector,
2498 		(unsigned long long)sh->sector);
2499 
2500 	/*
2501 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2502 	 * reference count to avoid race. The reference count should already be
2503 	 * increased before this function is called (for example, in
2504 	 * make_request()), so other bio sharing this stripe will not free the
2505 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2506 	 * protect it.
2507 	 */
2508 	spin_lock_irq(&sh->stripe_lock);
2509 	if (forwrite) {
2510 		bip = &sh->dev[dd_idx].towrite;
2511 		if (*bip == NULL)
2512 			firstwrite = 1;
2513 	} else
2514 		bip = &sh->dev[dd_idx].toread;
2515 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2516 		if (bio_end_sector(*bip) > bi->bi_sector)
2517 			goto overlap;
2518 		bip = & (*bip)->bi_next;
2519 	}
2520 	if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2521 		goto overlap;
2522 
2523 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2524 	if (*bip)
2525 		bi->bi_next = *bip;
2526 	*bip = bi;
2527 	raid5_inc_bi_active_stripes(bi);
2528 
2529 	if (forwrite) {
2530 		/* check if page is covered */
2531 		sector_t sector = sh->dev[dd_idx].sector;
2532 		for (bi=sh->dev[dd_idx].towrite;
2533 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2534 			     bi && bi->bi_sector <= sector;
2535 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2536 			if (bio_end_sector(bi) >= sector)
2537 				sector = bio_end_sector(bi);
2538 		}
2539 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2540 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2541 	}
2542 
2543 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2544 		(unsigned long long)(*bip)->bi_sector,
2545 		(unsigned long long)sh->sector, dd_idx);
2546 	spin_unlock_irq(&sh->stripe_lock);
2547 
2548 	if (conf->mddev->bitmap && firstwrite) {
2549 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2550 				  STRIPE_SECTORS, 0);
2551 		sh->bm_seq = conf->seq_flush+1;
2552 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2553 	}
2554 	return 1;
2555 
2556  overlap:
2557 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2558 	spin_unlock_irq(&sh->stripe_lock);
2559 	return 0;
2560 }
2561 
2562 static void end_reshape(struct r5conf *conf);
2563 
2564 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2565 			    struct stripe_head *sh)
2566 {
2567 	int sectors_per_chunk =
2568 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2569 	int dd_idx;
2570 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2571 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2572 
2573 	raid5_compute_sector(conf,
2574 			     stripe * (disks - conf->max_degraded)
2575 			     *sectors_per_chunk + chunk_offset,
2576 			     previous,
2577 			     &dd_idx, sh);
2578 }
2579 
2580 static void
2581 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2582 				struct stripe_head_state *s, int disks,
2583 				struct bio **return_bi)
2584 {
2585 	int i;
2586 	for (i = disks; i--; ) {
2587 		struct bio *bi;
2588 		int bitmap_end = 0;
2589 
2590 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2591 			struct md_rdev *rdev;
2592 			rcu_read_lock();
2593 			rdev = rcu_dereference(conf->disks[i].rdev);
2594 			if (rdev && test_bit(In_sync, &rdev->flags))
2595 				atomic_inc(&rdev->nr_pending);
2596 			else
2597 				rdev = NULL;
2598 			rcu_read_unlock();
2599 			if (rdev) {
2600 				if (!rdev_set_badblocks(
2601 					    rdev,
2602 					    sh->sector,
2603 					    STRIPE_SECTORS, 0))
2604 					md_error(conf->mddev, rdev);
2605 				rdev_dec_pending(rdev, conf->mddev);
2606 			}
2607 		}
2608 		spin_lock_irq(&sh->stripe_lock);
2609 		/* fail all writes first */
2610 		bi = sh->dev[i].towrite;
2611 		sh->dev[i].towrite = NULL;
2612 		spin_unlock_irq(&sh->stripe_lock);
2613 		if (bi)
2614 			bitmap_end = 1;
2615 
2616 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2617 			wake_up(&conf->wait_for_overlap);
2618 
2619 		while (bi && bi->bi_sector <
2620 			sh->dev[i].sector + STRIPE_SECTORS) {
2621 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2622 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2623 			if (!raid5_dec_bi_active_stripes(bi)) {
2624 				md_write_end(conf->mddev);
2625 				bi->bi_next = *return_bi;
2626 				*return_bi = bi;
2627 			}
2628 			bi = nextbi;
2629 		}
2630 		if (bitmap_end)
2631 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2632 				STRIPE_SECTORS, 0, 0);
2633 		bitmap_end = 0;
2634 		/* and fail all 'written' */
2635 		bi = sh->dev[i].written;
2636 		sh->dev[i].written = NULL;
2637 		if (bi) bitmap_end = 1;
2638 		while (bi && bi->bi_sector <
2639 		       sh->dev[i].sector + STRIPE_SECTORS) {
2640 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2641 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2642 			if (!raid5_dec_bi_active_stripes(bi)) {
2643 				md_write_end(conf->mddev);
2644 				bi->bi_next = *return_bi;
2645 				*return_bi = bi;
2646 			}
2647 			bi = bi2;
2648 		}
2649 
2650 		/* fail any reads if this device is non-operational and
2651 		 * the data has not reached the cache yet.
2652 		 */
2653 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2654 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2655 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2656 			spin_lock_irq(&sh->stripe_lock);
2657 			bi = sh->dev[i].toread;
2658 			sh->dev[i].toread = NULL;
2659 			spin_unlock_irq(&sh->stripe_lock);
2660 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2661 				wake_up(&conf->wait_for_overlap);
2662 			while (bi && bi->bi_sector <
2663 			       sh->dev[i].sector + STRIPE_SECTORS) {
2664 				struct bio *nextbi =
2665 					r5_next_bio(bi, sh->dev[i].sector);
2666 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2667 				if (!raid5_dec_bi_active_stripes(bi)) {
2668 					bi->bi_next = *return_bi;
2669 					*return_bi = bi;
2670 				}
2671 				bi = nextbi;
2672 			}
2673 		}
2674 		if (bitmap_end)
2675 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2676 					STRIPE_SECTORS, 0, 0);
2677 		/* If we were in the middle of a write the parity block might
2678 		 * still be locked - so just clear all R5_LOCKED flags
2679 		 */
2680 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2681 	}
2682 
2683 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2684 		if (atomic_dec_and_test(&conf->pending_full_writes))
2685 			md_wakeup_thread(conf->mddev->thread);
2686 }
2687 
2688 static void
2689 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2690 		   struct stripe_head_state *s)
2691 {
2692 	int abort = 0;
2693 	int i;
2694 
2695 	clear_bit(STRIPE_SYNCING, &sh->state);
2696 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2697 		wake_up(&conf->wait_for_overlap);
2698 	s->syncing = 0;
2699 	s->replacing = 0;
2700 	/* There is nothing more to do for sync/check/repair.
2701 	 * Don't even need to abort as that is handled elsewhere
2702 	 * if needed, and not always wanted e.g. if there is a known
2703 	 * bad block here.
2704 	 * For recover/replace we need to record a bad block on all
2705 	 * non-sync devices, or abort the recovery
2706 	 */
2707 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2708 		/* During recovery devices cannot be removed, so
2709 		 * locking and refcounting of rdevs is not needed
2710 		 */
2711 		for (i = 0; i < conf->raid_disks; i++) {
2712 			struct md_rdev *rdev = conf->disks[i].rdev;
2713 			if (rdev
2714 			    && !test_bit(Faulty, &rdev->flags)
2715 			    && !test_bit(In_sync, &rdev->flags)
2716 			    && !rdev_set_badblocks(rdev, sh->sector,
2717 						   STRIPE_SECTORS, 0))
2718 				abort = 1;
2719 			rdev = conf->disks[i].replacement;
2720 			if (rdev
2721 			    && !test_bit(Faulty, &rdev->flags)
2722 			    && !test_bit(In_sync, &rdev->flags)
2723 			    && !rdev_set_badblocks(rdev, sh->sector,
2724 						   STRIPE_SECTORS, 0))
2725 				abort = 1;
2726 		}
2727 		if (abort)
2728 			conf->recovery_disabled =
2729 				conf->mddev->recovery_disabled;
2730 	}
2731 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2732 }
2733 
2734 static int want_replace(struct stripe_head *sh, int disk_idx)
2735 {
2736 	struct md_rdev *rdev;
2737 	int rv = 0;
2738 	/* Doing recovery so rcu locking not required */
2739 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2740 	if (rdev
2741 	    && !test_bit(Faulty, &rdev->flags)
2742 	    && !test_bit(In_sync, &rdev->flags)
2743 	    && (rdev->recovery_offset <= sh->sector
2744 		|| rdev->mddev->recovery_cp <= sh->sector))
2745 		rv = 1;
2746 
2747 	return rv;
2748 }
2749 
2750 /* fetch_block - checks the given member device to see if its data needs
2751  * to be read or computed to satisfy a request.
2752  *
2753  * Returns 1 when no more member devices need to be checked, otherwise returns
2754  * 0 to tell the loop in handle_stripe_fill to continue
2755  */
2756 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2757 		       int disk_idx, int disks)
2758 {
2759 	struct r5dev *dev = &sh->dev[disk_idx];
2760 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2761 				  &sh->dev[s->failed_num[1]] };
2762 
2763 	/* is the data in this block needed, and can we get it? */
2764 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2765 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2766 	    (dev->toread ||
2767 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2768 	     s->syncing || s->expanding ||
2769 	     (s->replacing && want_replace(sh, disk_idx)) ||
2770 	     (s->failed >= 1 && fdev[0]->toread) ||
2771 	     (s->failed >= 2 && fdev[1]->toread) ||
2772 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2773 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2774 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2775 		/* we would like to get this block, possibly by computing it,
2776 		 * otherwise read it if the backing disk is insync
2777 		 */
2778 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2779 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2780 		if ((s->uptodate == disks - 1) &&
2781 		    (s->failed && (disk_idx == s->failed_num[0] ||
2782 				   disk_idx == s->failed_num[1]))) {
2783 			/* have disk failed, and we're requested to fetch it;
2784 			 * do compute it
2785 			 */
2786 			pr_debug("Computing stripe %llu block %d\n",
2787 			       (unsigned long long)sh->sector, disk_idx);
2788 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2789 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2790 			set_bit(R5_Wantcompute, &dev->flags);
2791 			sh->ops.target = disk_idx;
2792 			sh->ops.target2 = -1; /* no 2nd target */
2793 			s->req_compute = 1;
2794 			/* Careful: from this point on 'uptodate' is in the eye
2795 			 * of raid_run_ops which services 'compute' operations
2796 			 * before writes. R5_Wantcompute flags a block that will
2797 			 * be R5_UPTODATE by the time it is needed for a
2798 			 * subsequent operation.
2799 			 */
2800 			s->uptodate++;
2801 			return 1;
2802 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2803 			/* Computing 2-failure is *very* expensive; only
2804 			 * do it if failed >= 2
2805 			 */
2806 			int other;
2807 			for (other = disks; other--; ) {
2808 				if (other == disk_idx)
2809 					continue;
2810 				if (!test_bit(R5_UPTODATE,
2811 				      &sh->dev[other].flags))
2812 					break;
2813 			}
2814 			BUG_ON(other < 0);
2815 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2816 			       (unsigned long long)sh->sector,
2817 			       disk_idx, other);
2818 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2819 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2820 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2821 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2822 			sh->ops.target = disk_idx;
2823 			sh->ops.target2 = other;
2824 			s->uptodate += 2;
2825 			s->req_compute = 1;
2826 			return 1;
2827 		} else if (test_bit(R5_Insync, &dev->flags)) {
2828 			set_bit(R5_LOCKED, &dev->flags);
2829 			set_bit(R5_Wantread, &dev->flags);
2830 			s->locked++;
2831 			pr_debug("Reading block %d (sync=%d)\n",
2832 				disk_idx, s->syncing);
2833 		}
2834 	}
2835 
2836 	return 0;
2837 }
2838 
2839 /**
2840  * handle_stripe_fill - read or compute data to satisfy pending requests.
2841  */
2842 static void handle_stripe_fill(struct stripe_head *sh,
2843 			       struct stripe_head_state *s,
2844 			       int disks)
2845 {
2846 	int i;
2847 
2848 	/* look for blocks to read/compute, skip this if a compute
2849 	 * is already in flight, or if the stripe contents are in the
2850 	 * midst of changing due to a write
2851 	 */
2852 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2853 	    !sh->reconstruct_state)
2854 		for (i = disks; i--; )
2855 			if (fetch_block(sh, s, i, disks))
2856 				break;
2857 	set_bit(STRIPE_HANDLE, &sh->state);
2858 }
2859 
2860 
2861 /* handle_stripe_clean_event
2862  * any written block on an uptodate or failed drive can be returned.
2863  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2864  * never LOCKED, so we don't need to test 'failed' directly.
2865  */
2866 static void handle_stripe_clean_event(struct r5conf *conf,
2867 	struct stripe_head *sh, int disks, struct bio **return_bi)
2868 {
2869 	int i;
2870 	struct r5dev *dev;
2871 	int discard_pending = 0;
2872 
2873 	for (i = disks; i--; )
2874 		if (sh->dev[i].written) {
2875 			dev = &sh->dev[i];
2876 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2877 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2878 			     test_bit(R5_Discard, &dev->flags))) {
2879 				/* We can return any write requests */
2880 				struct bio *wbi, *wbi2;
2881 				pr_debug("Return write for disc %d\n", i);
2882 				if (test_and_clear_bit(R5_Discard, &dev->flags))
2883 					clear_bit(R5_UPTODATE, &dev->flags);
2884 				wbi = dev->written;
2885 				dev->written = NULL;
2886 				while (wbi && wbi->bi_sector <
2887 					dev->sector + STRIPE_SECTORS) {
2888 					wbi2 = r5_next_bio(wbi, dev->sector);
2889 					if (!raid5_dec_bi_active_stripes(wbi)) {
2890 						md_write_end(conf->mddev);
2891 						wbi->bi_next = *return_bi;
2892 						*return_bi = wbi;
2893 					}
2894 					wbi = wbi2;
2895 				}
2896 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2897 						STRIPE_SECTORS,
2898 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2899 						0);
2900 			} else if (test_bit(R5_Discard, &dev->flags))
2901 				discard_pending = 1;
2902 		}
2903 	if (!discard_pending &&
2904 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2905 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2906 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2907 		if (sh->qd_idx >= 0) {
2908 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2909 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2910 		}
2911 		/* now that discard is done we can proceed with any sync */
2912 		clear_bit(STRIPE_DISCARD, &sh->state);
2913 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2914 			set_bit(STRIPE_HANDLE, &sh->state);
2915 
2916 	}
2917 
2918 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2919 		if (atomic_dec_and_test(&conf->pending_full_writes))
2920 			md_wakeup_thread(conf->mddev->thread);
2921 }
2922 
2923 static void handle_stripe_dirtying(struct r5conf *conf,
2924 				   struct stripe_head *sh,
2925 				   struct stripe_head_state *s,
2926 				   int disks)
2927 {
2928 	int rmw = 0, rcw = 0, i;
2929 	sector_t recovery_cp = conf->mddev->recovery_cp;
2930 
2931 	/* RAID6 requires 'rcw' in current implementation.
2932 	 * Otherwise, check whether resync is now happening or should start.
2933 	 * If yes, then the array is dirty (after unclean shutdown or
2934 	 * initial creation), so parity in some stripes might be inconsistent.
2935 	 * In this case, we need to always do reconstruct-write, to ensure
2936 	 * that in case of drive failure or read-error correction, we
2937 	 * generate correct data from the parity.
2938 	 */
2939 	if (conf->max_degraded == 2 ||
2940 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2941 		/* Calculate the real rcw later - for now make it
2942 		 * look like rcw is cheaper
2943 		 */
2944 		rcw = 1; rmw = 2;
2945 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2946 			 conf->max_degraded, (unsigned long long)recovery_cp,
2947 			 (unsigned long long)sh->sector);
2948 	} else for (i = disks; i--; ) {
2949 		/* would I have to read this buffer for read_modify_write */
2950 		struct r5dev *dev = &sh->dev[i];
2951 		if ((dev->towrite || i == sh->pd_idx) &&
2952 		    !test_bit(R5_LOCKED, &dev->flags) &&
2953 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2954 		      test_bit(R5_Wantcompute, &dev->flags))) {
2955 			if (test_bit(R5_Insync, &dev->flags))
2956 				rmw++;
2957 			else
2958 				rmw += 2*disks;  /* cannot read it */
2959 		}
2960 		/* Would I have to read this buffer for reconstruct_write */
2961 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2962 		    !test_bit(R5_LOCKED, &dev->flags) &&
2963 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2964 		    test_bit(R5_Wantcompute, &dev->flags))) {
2965 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2966 			else
2967 				rcw += 2*disks;
2968 		}
2969 	}
2970 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2971 		(unsigned long long)sh->sector, rmw, rcw);
2972 	set_bit(STRIPE_HANDLE, &sh->state);
2973 	if (rmw < rcw && rmw > 0) {
2974 		/* prefer read-modify-write, but need to get some data */
2975 		if (conf->mddev->queue)
2976 			blk_add_trace_msg(conf->mddev->queue,
2977 					  "raid5 rmw %llu %d",
2978 					  (unsigned long long)sh->sector, rmw);
2979 		for (i = disks; i--; ) {
2980 			struct r5dev *dev = &sh->dev[i];
2981 			if ((dev->towrite || i == sh->pd_idx) &&
2982 			    !test_bit(R5_LOCKED, &dev->flags) &&
2983 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2984 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2985 			    test_bit(R5_Insync, &dev->flags)) {
2986 				if (
2987 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2988 					pr_debug("Read_old block "
2989 						 "%d for r-m-w\n", i);
2990 					set_bit(R5_LOCKED, &dev->flags);
2991 					set_bit(R5_Wantread, &dev->flags);
2992 					s->locked++;
2993 				} else {
2994 					set_bit(STRIPE_DELAYED, &sh->state);
2995 					set_bit(STRIPE_HANDLE, &sh->state);
2996 				}
2997 			}
2998 		}
2999 	}
3000 	if (rcw <= rmw && rcw > 0) {
3001 		/* want reconstruct write, but need to get some data */
3002 		int qread =0;
3003 		rcw = 0;
3004 		for (i = disks; i--; ) {
3005 			struct r5dev *dev = &sh->dev[i];
3006 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3007 			    i != sh->pd_idx && i != sh->qd_idx &&
3008 			    !test_bit(R5_LOCKED, &dev->flags) &&
3009 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3010 			      test_bit(R5_Wantcompute, &dev->flags))) {
3011 				rcw++;
3012 				if (!test_bit(R5_Insync, &dev->flags))
3013 					continue; /* it's a failed drive */
3014 				if (
3015 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3016 					pr_debug("Read_old block "
3017 						"%d for Reconstruct\n", i);
3018 					set_bit(R5_LOCKED, &dev->flags);
3019 					set_bit(R5_Wantread, &dev->flags);
3020 					s->locked++;
3021 					qread++;
3022 				} else {
3023 					set_bit(STRIPE_DELAYED, &sh->state);
3024 					set_bit(STRIPE_HANDLE, &sh->state);
3025 				}
3026 			}
3027 		}
3028 		if (rcw && conf->mddev->queue)
3029 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3030 					  (unsigned long long)sh->sector,
3031 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3032 	}
3033 	/* now if nothing is locked, and if we have enough data,
3034 	 * we can start a write request
3035 	 */
3036 	/* since handle_stripe can be called at any time we need to handle the
3037 	 * case where a compute block operation has been submitted and then a
3038 	 * subsequent call wants to start a write request.  raid_run_ops only
3039 	 * handles the case where compute block and reconstruct are requested
3040 	 * simultaneously.  If this is not the case then new writes need to be
3041 	 * held off until the compute completes.
3042 	 */
3043 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3044 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3045 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3046 		schedule_reconstruction(sh, s, rcw == 0, 0);
3047 }
3048 
3049 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3050 				struct stripe_head_state *s, int disks)
3051 {
3052 	struct r5dev *dev = NULL;
3053 
3054 	set_bit(STRIPE_HANDLE, &sh->state);
3055 
3056 	switch (sh->check_state) {
3057 	case check_state_idle:
3058 		/* start a new check operation if there are no failures */
3059 		if (s->failed == 0) {
3060 			BUG_ON(s->uptodate != disks);
3061 			sh->check_state = check_state_run;
3062 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3063 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3064 			s->uptodate--;
3065 			break;
3066 		}
3067 		dev = &sh->dev[s->failed_num[0]];
3068 		/* fall through */
3069 	case check_state_compute_result:
3070 		sh->check_state = check_state_idle;
3071 		if (!dev)
3072 			dev = &sh->dev[sh->pd_idx];
3073 
3074 		/* check that a write has not made the stripe insync */
3075 		if (test_bit(STRIPE_INSYNC, &sh->state))
3076 			break;
3077 
3078 		/* either failed parity check, or recovery is happening */
3079 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3080 		BUG_ON(s->uptodate != disks);
3081 
3082 		set_bit(R5_LOCKED, &dev->flags);
3083 		s->locked++;
3084 		set_bit(R5_Wantwrite, &dev->flags);
3085 
3086 		clear_bit(STRIPE_DEGRADED, &sh->state);
3087 		set_bit(STRIPE_INSYNC, &sh->state);
3088 		break;
3089 	case check_state_run:
3090 		break; /* we will be called again upon completion */
3091 	case check_state_check_result:
3092 		sh->check_state = check_state_idle;
3093 
3094 		/* if a failure occurred during the check operation, leave
3095 		 * STRIPE_INSYNC not set and let the stripe be handled again
3096 		 */
3097 		if (s->failed)
3098 			break;
3099 
3100 		/* handle a successful check operation, if parity is correct
3101 		 * we are done.  Otherwise update the mismatch count and repair
3102 		 * parity if !MD_RECOVERY_CHECK
3103 		 */
3104 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3105 			/* parity is correct (on disc,
3106 			 * not in buffer any more)
3107 			 */
3108 			set_bit(STRIPE_INSYNC, &sh->state);
3109 		else {
3110 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3111 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3112 				/* don't try to repair!! */
3113 				set_bit(STRIPE_INSYNC, &sh->state);
3114 			else {
3115 				sh->check_state = check_state_compute_run;
3116 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3117 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3118 				set_bit(R5_Wantcompute,
3119 					&sh->dev[sh->pd_idx].flags);
3120 				sh->ops.target = sh->pd_idx;
3121 				sh->ops.target2 = -1;
3122 				s->uptodate++;
3123 			}
3124 		}
3125 		break;
3126 	case check_state_compute_run:
3127 		break;
3128 	default:
3129 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3130 		       __func__, sh->check_state,
3131 		       (unsigned long long) sh->sector);
3132 		BUG();
3133 	}
3134 }
3135 
3136 
3137 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3138 				  struct stripe_head_state *s,
3139 				  int disks)
3140 {
3141 	int pd_idx = sh->pd_idx;
3142 	int qd_idx = sh->qd_idx;
3143 	struct r5dev *dev;
3144 
3145 	set_bit(STRIPE_HANDLE, &sh->state);
3146 
3147 	BUG_ON(s->failed > 2);
3148 
3149 	/* Want to check and possibly repair P and Q.
3150 	 * However there could be one 'failed' device, in which
3151 	 * case we can only check one of them, possibly using the
3152 	 * other to generate missing data
3153 	 */
3154 
3155 	switch (sh->check_state) {
3156 	case check_state_idle:
3157 		/* start a new check operation if there are < 2 failures */
3158 		if (s->failed == s->q_failed) {
3159 			/* The only possible failed device holds Q, so it
3160 			 * makes sense to check P (If anything else were failed,
3161 			 * we would have used P to recreate it).
3162 			 */
3163 			sh->check_state = check_state_run;
3164 		}
3165 		if (!s->q_failed && s->failed < 2) {
3166 			/* Q is not failed, and we didn't use it to generate
3167 			 * anything, so it makes sense to check it
3168 			 */
3169 			if (sh->check_state == check_state_run)
3170 				sh->check_state = check_state_run_pq;
3171 			else
3172 				sh->check_state = check_state_run_q;
3173 		}
3174 
3175 		/* discard potentially stale zero_sum_result */
3176 		sh->ops.zero_sum_result = 0;
3177 
3178 		if (sh->check_state == check_state_run) {
3179 			/* async_xor_zero_sum destroys the contents of P */
3180 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3181 			s->uptodate--;
3182 		}
3183 		if (sh->check_state >= check_state_run &&
3184 		    sh->check_state <= check_state_run_pq) {
3185 			/* async_syndrome_zero_sum preserves P and Q, so
3186 			 * no need to mark them !uptodate here
3187 			 */
3188 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3189 			break;
3190 		}
3191 
3192 		/* we have 2-disk failure */
3193 		BUG_ON(s->failed != 2);
3194 		/* fall through */
3195 	case check_state_compute_result:
3196 		sh->check_state = check_state_idle;
3197 
3198 		/* check that a write has not made the stripe insync */
3199 		if (test_bit(STRIPE_INSYNC, &sh->state))
3200 			break;
3201 
3202 		/* now write out any block on a failed drive,
3203 		 * or P or Q if they were recomputed
3204 		 */
3205 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3206 		if (s->failed == 2) {
3207 			dev = &sh->dev[s->failed_num[1]];
3208 			s->locked++;
3209 			set_bit(R5_LOCKED, &dev->flags);
3210 			set_bit(R5_Wantwrite, &dev->flags);
3211 		}
3212 		if (s->failed >= 1) {
3213 			dev = &sh->dev[s->failed_num[0]];
3214 			s->locked++;
3215 			set_bit(R5_LOCKED, &dev->flags);
3216 			set_bit(R5_Wantwrite, &dev->flags);
3217 		}
3218 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3219 			dev = &sh->dev[pd_idx];
3220 			s->locked++;
3221 			set_bit(R5_LOCKED, &dev->flags);
3222 			set_bit(R5_Wantwrite, &dev->flags);
3223 		}
3224 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3225 			dev = &sh->dev[qd_idx];
3226 			s->locked++;
3227 			set_bit(R5_LOCKED, &dev->flags);
3228 			set_bit(R5_Wantwrite, &dev->flags);
3229 		}
3230 		clear_bit(STRIPE_DEGRADED, &sh->state);
3231 
3232 		set_bit(STRIPE_INSYNC, &sh->state);
3233 		break;
3234 	case check_state_run:
3235 	case check_state_run_q:
3236 	case check_state_run_pq:
3237 		break; /* we will be called again upon completion */
3238 	case check_state_check_result:
3239 		sh->check_state = check_state_idle;
3240 
3241 		/* handle a successful check operation, if parity is correct
3242 		 * we are done.  Otherwise update the mismatch count and repair
3243 		 * parity if !MD_RECOVERY_CHECK
3244 		 */
3245 		if (sh->ops.zero_sum_result == 0) {
3246 			/* both parities are correct */
3247 			if (!s->failed)
3248 				set_bit(STRIPE_INSYNC, &sh->state);
3249 			else {
3250 				/* in contrast to the raid5 case we can validate
3251 				 * parity, but still have a failure to write
3252 				 * back
3253 				 */
3254 				sh->check_state = check_state_compute_result;
3255 				/* Returning at this point means that we may go
3256 				 * off and bring p and/or q uptodate again so
3257 				 * we make sure to check zero_sum_result again
3258 				 * to verify if p or q need writeback
3259 				 */
3260 			}
3261 		} else {
3262 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3263 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3264 				/* don't try to repair!! */
3265 				set_bit(STRIPE_INSYNC, &sh->state);
3266 			else {
3267 				int *target = &sh->ops.target;
3268 
3269 				sh->ops.target = -1;
3270 				sh->ops.target2 = -1;
3271 				sh->check_state = check_state_compute_run;
3272 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3273 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3274 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3275 					set_bit(R5_Wantcompute,
3276 						&sh->dev[pd_idx].flags);
3277 					*target = pd_idx;
3278 					target = &sh->ops.target2;
3279 					s->uptodate++;
3280 				}
3281 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3282 					set_bit(R5_Wantcompute,
3283 						&sh->dev[qd_idx].flags);
3284 					*target = qd_idx;
3285 					s->uptodate++;
3286 				}
3287 			}
3288 		}
3289 		break;
3290 	case check_state_compute_run:
3291 		break;
3292 	default:
3293 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3294 		       __func__, sh->check_state,
3295 		       (unsigned long long) sh->sector);
3296 		BUG();
3297 	}
3298 }
3299 
3300 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3301 {
3302 	int i;
3303 
3304 	/* We have read all the blocks in this stripe and now we need to
3305 	 * copy some of them into a target stripe for expand.
3306 	 */
3307 	struct dma_async_tx_descriptor *tx = NULL;
3308 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3309 	for (i = 0; i < sh->disks; i++)
3310 		if (i != sh->pd_idx && i != sh->qd_idx) {
3311 			int dd_idx, j;
3312 			struct stripe_head *sh2;
3313 			struct async_submit_ctl submit;
3314 
3315 			sector_t bn = compute_blocknr(sh, i, 1);
3316 			sector_t s = raid5_compute_sector(conf, bn, 0,
3317 							  &dd_idx, NULL);
3318 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3319 			if (sh2 == NULL)
3320 				/* so far only the early blocks of this stripe
3321 				 * have been requested.  When later blocks
3322 				 * get requested, we will try again
3323 				 */
3324 				continue;
3325 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3326 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3327 				/* must have already done this block */
3328 				release_stripe(sh2);
3329 				continue;
3330 			}
3331 
3332 			/* place all the copies on one channel */
3333 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3334 			tx = async_memcpy(sh2->dev[dd_idx].page,
3335 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3336 					  &submit);
3337 
3338 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3339 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3340 			for (j = 0; j < conf->raid_disks; j++)
3341 				if (j != sh2->pd_idx &&
3342 				    j != sh2->qd_idx &&
3343 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3344 					break;
3345 			if (j == conf->raid_disks) {
3346 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3347 				set_bit(STRIPE_HANDLE, &sh2->state);
3348 			}
3349 			release_stripe(sh2);
3350 
3351 		}
3352 	/* done submitting copies, wait for them to complete */
3353 	async_tx_quiesce(&tx);
3354 }
3355 
3356 /*
3357  * handle_stripe - do things to a stripe.
3358  *
3359  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3360  * state of various bits to see what needs to be done.
3361  * Possible results:
3362  *    return some read requests which now have data
3363  *    return some write requests which are safely on storage
3364  *    schedule a read on some buffers
3365  *    schedule a write of some buffers
3366  *    return confirmation of parity correctness
3367  *
3368  */
3369 
3370 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3371 {
3372 	struct r5conf *conf = sh->raid_conf;
3373 	int disks = sh->disks;
3374 	struct r5dev *dev;
3375 	int i;
3376 	int do_recovery = 0;
3377 
3378 	memset(s, 0, sizeof(*s));
3379 
3380 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3381 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3382 	s->failed_num[0] = -1;
3383 	s->failed_num[1] = -1;
3384 
3385 	/* Now to look around and see what can be done */
3386 	rcu_read_lock();
3387 	for (i=disks; i--; ) {
3388 		struct md_rdev *rdev;
3389 		sector_t first_bad;
3390 		int bad_sectors;
3391 		int is_bad = 0;
3392 
3393 		dev = &sh->dev[i];
3394 
3395 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3396 			 i, dev->flags,
3397 			 dev->toread, dev->towrite, dev->written);
3398 		/* maybe we can reply to a read
3399 		 *
3400 		 * new wantfill requests are only permitted while
3401 		 * ops_complete_biofill is guaranteed to be inactive
3402 		 */
3403 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3404 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3405 			set_bit(R5_Wantfill, &dev->flags);
3406 
3407 		/* now count some things */
3408 		if (test_bit(R5_LOCKED, &dev->flags))
3409 			s->locked++;
3410 		if (test_bit(R5_UPTODATE, &dev->flags))
3411 			s->uptodate++;
3412 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3413 			s->compute++;
3414 			BUG_ON(s->compute > 2);
3415 		}
3416 
3417 		if (test_bit(R5_Wantfill, &dev->flags))
3418 			s->to_fill++;
3419 		else if (dev->toread)
3420 			s->to_read++;
3421 		if (dev->towrite) {
3422 			s->to_write++;
3423 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3424 				s->non_overwrite++;
3425 		}
3426 		if (dev->written)
3427 			s->written++;
3428 		/* Prefer to use the replacement for reads, but only
3429 		 * if it is recovered enough and has no bad blocks.
3430 		 */
3431 		rdev = rcu_dereference(conf->disks[i].replacement);
3432 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3433 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3434 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3435 				 &first_bad, &bad_sectors))
3436 			set_bit(R5_ReadRepl, &dev->flags);
3437 		else {
3438 			if (rdev)
3439 				set_bit(R5_NeedReplace, &dev->flags);
3440 			rdev = rcu_dereference(conf->disks[i].rdev);
3441 			clear_bit(R5_ReadRepl, &dev->flags);
3442 		}
3443 		if (rdev && test_bit(Faulty, &rdev->flags))
3444 			rdev = NULL;
3445 		if (rdev) {
3446 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3447 					     &first_bad, &bad_sectors);
3448 			if (s->blocked_rdev == NULL
3449 			    && (test_bit(Blocked, &rdev->flags)
3450 				|| is_bad < 0)) {
3451 				if (is_bad < 0)
3452 					set_bit(BlockedBadBlocks,
3453 						&rdev->flags);
3454 				s->blocked_rdev = rdev;
3455 				atomic_inc(&rdev->nr_pending);
3456 			}
3457 		}
3458 		clear_bit(R5_Insync, &dev->flags);
3459 		if (!rdev)
3460 			/* Not in-sync */;
3461 		else if (is_bad) {
3462 			/* also not in-sync */
3463 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3464 			    test_bit(R5_UPTODATE, &dev->flags)) {
3465 				/* treat as in-sync, but with a read error
3466 				 * which we can now try to correct
3467 				 */
3468 				set_bit(R5_Insync, &dev->flags);
3469 				set_bit(R5_ReadError, &dev->flags);
3470 			}
3471 		} else if (test_bit(In_sync, &rdev->flags))
3472 			set_bit(R5_Insync, &dev->flags);
3473 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3474 			/* in sync if before recovery_offset */
3475 			set_bit(R5_Insync, &dev->flags);
3476 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3477 			 test_bit(R5_Expanded, &dev->flags))
3478 			/* If we've reshaped into here, we assume it is Insync.
3479 			 * We will shortly update recovery_offset to make
3480 			 * it official.
3481 			 */
3482 			set_bit(R5_Insync, &dev->flags);
3483 
3484 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3485 			/* This flag does not apply to '.replacement'
3486 			 * only to .rdev, so make sure to check that*/
3487 			struct md_rdev *rdev2 = rcu_dereference(
3488 				conf->disks[i].rdev);
3489 			if (rdev2 == rdev)
3490 				clear_bit(R5_Insync, &dev->flags);
3491 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3492 				s->handle_bad_blocks = 1;
3493 				atomic_inc(&rdev2->nr_pending);
3494 			} else
3495 				clear_bit(R5_WriteError, &dev->flags);
3496 		}
3497 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3498 			/* This flag does not apply to '.replacement'
3499 			 * only to .rdev, so make sure to check that*/
3500 			struct md_rdev *rdev2 = rcu_dereference(
3501 				conf->disks[i].rdev);
3502 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3503 				s->handle_bad_blocks = 1;
3504 				atomic_inc(&rdev2->nr_pending);
3505 			} else
3506 				clear_bit(R5_MadeGood, &dev->flags);
3507 		}
3508 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3509 			struct md_rdev *rdev2 = rcu_dereference(
3510 				conf->disks[i].replacement);
3511 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3512 				s->handle_bad_blocks = 1;
3513 				atomic_inc(&rdev2->nr_pending);
3514 			} else
3515 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3516 		}
3517 		if (!test_bit(R5_Insync, &dev->flags)) {
3518 			/* The ReadError flag will just be confusing now */
3519 			clear_bit(R5_ReadError, &dev->flags);
3520 			clear_bit(R5_ReWrite, &dev->flags);
3521 		}
3522 		if (test_bit(R5_ReadError, &dev->flags))
3523 			clear_bit(R5_Insync, &dev->flags);
3524 		if (!test_bit(R5_Insync, &dev->flags)) {
3525 			if (s->failed < 2)
3526 				s->failed_num[s->failed] = i;
3527 			s->failed++;
3528 			if (rdev && !test_bit(Faulty, &rdev->flags))
3529 				do_recovery = 1;
3530 		}
3531 	}
3532 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3533 		/* If there is a failed device being replaced,
3534 		 *     we must be recovering.
3535 		 * else if we are after recovery_cp, we must be syncing
3536 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3537 		 * else we can only be replacing
3538 		 * sync and recovery both need to read all devices, and so
3539 		 * use the same flag.
3540 		 */
3541 		if (do_recovery ||
3542 		    sh->sector >= conf->mddev->recovery_cp ||
3543 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3544 			s->syncing = 1;
3545 		else
3546 			s->replacing = 1;
3547 	}
3548 	rcu_read_unlock();
3549 }
3550 
3551 static void handle_stripe(struct stripe_head *sh)
3552 {
3553 	struct stripe_head_state s;
3554 	struct r5conf *conf = sh->raid_conf;
3555 	int i;
3556 	int prexor;
3557 	int disks = sh->disks;
3558 	struct r5dev *pdev, *qdev;
3559 
3560 	clear_bit(STRIPE_HANDLE, &sh->state);
3561 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3562 		/* already being handled, ensure it gets handled
3563 		 * again when current action finishes */
3564 		set_bit(STRIPE_HANDLE, &sh->state);
3565 		return;
3566 	}
3567 
3568 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3569 		spin_lock(&sh->stripe_lock);
3570 		/* Cannot process 'sync' concurrently with 'discard' */
3571 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3572 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3573 			set_bit(STRIPE_SYNCING, &sh->state);
3574 			clear_bit(STRIPE_INSYNC, &sh->state);
3575 			clear_bit(STRIPE_REPLACED, &sh->state);
3576 		}
3577 		spin_unlock(&sh->stripe_lock);
3578 	}
3579 	clear_bit(STRIPE_DELAYED, &sh->state);
3580 
3581 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3582 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3583 	       (unsigned long long)sh->sector, sh->state,
3584 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3585 	       sh->check_state, sh->reconstruct_state);
3586 
3587 	analyse_stripe(sh, &s);
3588 
3589 	if (s.handle_bad_blocks) {
3590 		set_bit(STRIPE_HANDLE, &sh->state);
3591 		goto finish;
3592 	}
3593 
3594 	if (unlikely(s.blocked_rdev)) {
3595 		if (s.syncing || s.expanding || s.expanded ||
3596 		    s.replacing || s.to_write || s.written) {
3597 			set_bit(STRIPE_HANDLE, &sh->state);
3598 			goto finish;
3599 		}
3600 		/* There is nothing for the blocked_rdev to block */
3601 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3602 		s.blocked_rdev = NULL;
3603 	}
3604 
3605 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3606 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3607 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3608 	}
3609 
3610 	pr_debug("locked=%d uptodate=%d to_read=%d"
3611 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3612 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3613 	       s.failed_num[0], s.failed_num[1]);
3614 	/* check if the array has lost more than max_degraded devices and,
3615 	 * if so, some requests might need to be failed.
3616 	 */
3617 	if (s.failed > conf->max_degraded) {
3618 		sh->check_state = 0;
3619 		sh->reconstruct_state = 0;
3620 		if (s.to_read+s.to_write+s.written)
3621 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3622 		if (s.syncing + s.replacing)
3623 			handle_failed_sync(conf, sh, &s);
3624 	}
3625 
3626 	/* Now we check to see if any write operations have recently
3627 	 * completed
3628 	 */
3629 	prexor = 0;
3630 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3631 		prexor = 1;
3632 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3633 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3634 		sh->reconstruct_state = reconstruct_state_idle;
3635 
3636 		/* All the 'written' buffers and the parity block are ready to
3637 		 * be written back to disk
3638 		 */
3639 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3640 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3641 		BUG_ON(sh->qd_idx >= 0 &&
3642 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3643 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3644 		for (i = disks; i--; ) {
3645 			struct r5dev *dev = &sh->dev[i];
3646 			if (test_bit(R5_LOCKED, &dev->flags) &&
3647 				(i == sh->pd_idx || i == sh->qd_idx ||
3648 				 dev->written)) {
3649 				pr_debug("Writing block %d\n", i);
3650 				set_bit(R5_Wantwrite, &dev->flags);
3651 				if (prexor)
3652 					continue;
3653 				if (!test_bit(R5_Insync, &dev->flags) ||
3654 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3655 				     s.failed == 0))
3656 					set_bit(STRIPE_INSYNC, &sh->state);
3657 			}
3658 		}
3659 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3660 			s.dec_preread_active = 1;
3661 	}
3662 
3663 	/*
3664 	 * might be able to return some write requests if the parity blocks
3665 	 * are safe, or on a failed drive
3666 	 */
3667 	pdev = &sh->dev[sh->pd_idx];
3668 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3669 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3670 	qdev = &sh->dev[sh->qd_idx];
3671 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3672 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3673 		|| conf->level < 6;
3674 
3675 	if (s.written &&
3676 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3677 			     && !test_bit(R5_LOCKED, &pdev->flags)
3678 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3679 				 test_bit(R5_Discard, &pdev->flags))))) &&
3680 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3681 			     && !test_bit(R5_LOCKED, &qdev->flags)
3682 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3683 				 test_bit(R5_Discard, &qdev->flags))))))
3684 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3685 
3686 	/* Now we might consider reading some blocks, either to check/generate
3687 	 * parity, or to satisfy requests
3688 	 * or to load a block that is being partially written.
3689 	 */
3690 	if (s.to_read || s.non_overwrite
3691 	    || (conf->level == 6 && s.to_write && s.failed)
3692 	    || (s.syncing && (s.uptodate + s.compute < disks))
3693 	    || s.replacing
3694 	    || s.expanding)
3695 		handle_stripe_fill(sh, &s, disks);
3696 
3697 	/* Now to consider new write requests and what else, if anything
3698 	 * should be read.  We do not handle new writes when:
3699 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3700 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3701 	 *    block.
3702 	 */
3703 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3704 		handle_stripe_dirtying(conf, sh, &s, disks);
3705 
3706 	/* maybe we need to check and possibly fix the parity for this stripe
3707 	 * Any reads will already have been scheduled, so we just see if enough
3708 	 * data is available.  The parity check is held off while parity
3709 	 * dependent operations are in flight.
3710 	 */
3711 	if (sh->check_state ||
3712 	    (s.syncing && s.locked == 0 &&
3713 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3714 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3715 		if (conf->level == 6)
3716 			handle_parity_checks6(conf, sh, &s, disks);
3717 		else
3718 			handle_parity_checks5(conf, sh, &s, disks);
3719 	}
3720 
3721 	if ((s.replacing || s.syncing) && s.locked == 0
3722 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3723 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3724 		/* Write out to replacement devices where possible */
3725 		for (i = 0; i < conf->raid_disks; i++)
3726 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3727 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3728 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3729 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3730 				s.locked++;
3731 			}
3732 		if (s.replacing)
3733 			set_bit(STRIPE_INSYNC, &sh->state);
3734 		set_bit(STRIPE_REPLACED, &sh->state);
3735 	}
3736 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3737 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3738 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3739 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3740 		clear_bit(STRIPE_SYNCING, &sh->state);
3741 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3742 			wake_up(&conf->wait_for_overlap);
3743 	}
3744 
3745 	/* If the failed drives are just a ReadError, then we might need
3746 	 * to progress the repair/check process
3747 	 */
3748 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3749 		for (i = 0; i < s.failed; i++) {
3750 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3751 			if (test_bit(R5_ReadError, &dev->flags)
3752 			    && !test_bit(R5_LOCKED, &dev->flags)
3753 			    && test_bit(R5_UPTODATE, &dev->flags)
3754 				) {
3755 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3756 					set_bit(R5_Wantwrite, &dev->flags);
3757 					set_bit(R5_ReWrite, &dev->flags);
3758 					set_bit(R5_LOCKED, &dev->flags);
3759 					s.locked++;
3760 				} else {
3761 					/* let's read it back */
3762 					set_bit(R5_Wantread, &dev->flags);
3763 					set_bit(R5_LOCKED, &dev->flags);
3764 					s.locked++;
3765 				}
3766 			}
3767 		}
3768 
3769 
3770 	/* Finish reconstruct operations initiated by the expansion process */
3771 	if (sh->reconstruct_state == reconstruct_state_result) {
3772 		struct stripe_head *sh_src
3773 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3774 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3775 			/* sh cannot be written until sh_src has been read.
3776 			 * so arrange for sh to be delayed a little
3777 			 */
3778 			set_bit(STRIPE_DELAYED, &sh->state);
3779 			set_bit(STRIPE_HANDLE, &sh->state);
3780 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3781 					      &sh_src->state))
3782 				atomic_inc(&conf->preread_active_stripes);
3783 			release_stripe(sh_src);
3784 			goto finish;
3785 		}
3786 		if (sh_src)
3787 			release_stripe(sh_src);
3788 
3789 		sh->reconstruct_state = reconstruct_state_idle;
3790 		clear_bit(STRIPE_EXPANDING, &sh->state);
3791 		for (i = conf->raid_disks; i--; ) {
3792 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3793 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3794 			s.locked++;
3795 		}
3796 	}
3797 
3798 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3799 	    !sh->reconstruct_state) {
3800 		/* Need to write out all blocks after computing parity */
3801 		sh->disks = conf->raid_disks;
3802 		stripe_set_idx(sh->sector, conf, 0, sh);
3803 		schedule_reconstruction(sh, &s, 1, 1);
3804 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3805 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3806 		atomic_dec(&conf->reshape_stripes);
3807 		wake_up(&conf->wait_for_overlap);
3808 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3809 	}
3810 
3811 	if (s.expanding && s.locked == 0 &&
3812 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3813 		handle_stripe_expansion(conf, sh);
3814 
3815 finish:
3816 	/* wait for this device to become unblocked */
3817 	if (unlikely(s.blocked_rdev)) {
3818 		if (conf->mddev->external)
3819 			md_wait_for_blocked_rdev(s.blocked_rdev,
3820 						 conf->mddev);
3821 		else
3822 			/* Internal metadata will immediately
3823 			 * be written by raid5d, so we don't
3824 			 * need to wait here.
3825 			 */
3826 			rdev_dec_pending(s.blocked_rdev,
3827 					 conf->mddev);
3828 	}
3829 
3830 	if (s.handle_bad_blocks)
3831 		for (i = disks; i--; ) {
3832 			struct md_rdev *rdev;
3833 			struct r5dev *dev = &sh->dev[i];
3834 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3835 				/* We own a safe reference to the rdev */
3836 				rdev = conf->disks[i].rdev;
3837 				if (!rdev_set_badblocks(rdev, sh->sector,
3838 							STRIPE_SECTORS, 0))
3839 					md_error(conf->mddev, rdev);
3840 				rdev_dec_pending(rdev, conf->mddev);
3841 			}
3842 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3843 				rdev = conf->disks[i].rdev;
3844 				rdev_clear_badblocks(rdev, sh->sector,
3845 						     STRIPE_SECTORS, 0);
3846 				rdev_dec_pending(rdev, conf->mddev);
3847 			}
3848 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3849 				rdev = conf->disks[i].replacement;
3850 				if (!rdev)
3851 					/* rdev have been moved down */
3852 					rdev = conf->disks[i].rdev;
3853 				rdev_clear_badblocks(rdev, sh->sector,
3854 						     STRIPE_SECTORS, 0);
3855 				rdev_dec_pending(rdev, conf->mddev);
3856 			}
3857 		}
3858 
3859 	if (s.ops_request)
3860 		raid_run_ops(sh, s.ops_request);
3861 
3862 	ops_run_io(sh, &s);
3863 
3864 	if (s.dec_preread_active) {
3865 		/* We delay this until after ops_run_io so that if make_request
3866 		 * is waiting on a flush, it won't continue until the writes
3867 		 * have actually been submitted.
3868 		 */
3869 		atomic_dec(&conf->preread_active_stripes);
3870 		if (atomic_read(&conf->preread_active_stripes) <
3871 		    IO_THRESHOLD)
3872 			md_wakeup_thread(conf->mddev->thread);
3873 	}
3874 
3875 	return_io(s.return_bi);
3876 
3877 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3878 }
3879 
3880 static void raid5_activate_delayed(struct r5conf *conf)
3881 {
3882 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3883 		while (!list_empty(&conf->delayed_list)) {
3884 			struct list_head *l = conf->delayed_list.next;
3885 			struct stripe_head *sh;
3886 			sh = list_entry(l, struct stripe_head, lru);
3887 			list_del_init(l);
3888 			clear_bit(STRIPE_DELAYED, &sh->state);
3889 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3890 				atomic_inc(&conf->preread_active_stripes);
3891 			list_add_tail(&sh->lru, &conf->hold_list);
3892 			raid5_wakeup_stripe_thread(sh);
3893 		}
3894 	}
3895 }
3896 
3897 static void activate_bit_delay(struct r5conf *conf)
3898 {
3899 	/* device_lock is held */
3900 	struct list_head head;
3901 	list_add(&head, &conf->bitmap_list);
3902 	list_del_init(&conf->bitmap_list);
3903 	while (!list_empty(&head)) {
3904 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3905 		list_del_init(&sh->lru);
3906 		atomic_inc(&sh->count);
3907 		__release_stripe(conf, sh);
3908 	}
3909 }
3910 
3911 int md_raid5_congested(struct mddev *mddev, int bits)
3912 {
3913 	struct r5conf *conf = mddev->private;
3914 
3915 	/* No difference between reads and writes.  Just check
3916 	 * how busy the stripe_cache is
3917 	 */
3918 
3919 	if (conf->inactive_blocked)
3920 		return 1;
3921 	if (conf->quiesce)
3922 		return 1;
3923 	if (list_empty_careful(&conf->inactive_list))
3924 		return 1;
3925 
3926 	return 0;
3927 }
3928 EXPORT_SYMBOL_GPL(md_raid5_congested);
3929 
3930 static int raid5_congested(void *data, int bits)
3931 {
3932 	struct mddev *mddev = data;
3933 
3934 	return mddev_congested(mddev, bits) ||
3935 		md_raid5_congested(mddev, bits);
3936 }
3937 
3938 /* We want read requests to align with chunks where possible,
3939  * but write requests don't need to.
3940  */
3941 static int raid5_mergeable_bvec(struct request_queue *q,
3942 				struct bvec_merge_data *bvm,
3943 				struct bio_vec *biovec)
3944 {
3945 	struct mddev *mddev = q->queuedata;
3946 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3947 	int max;
3948 	unsigned int chunk_sectors = mddev->chunk_sectors;
3949 	unsigned int bio_sectors = bvm->bi_size >> 9;
3950 
3951 	if ((bvm->bi_rw & 1) == WRITE)
3952 		return biovec->bv_len; /* always allow writes to be mergeable */
3953 
3954 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3955 		chunk_sectors = mddev->new_chunk_sectors;
3956 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3957 	if (max < 0) max = 0;
3958 	if (max <= biovec->bv_len && bio_sectors == 0)
3959 		return biovec->bv_len;
3960 	else
3961 		return max;
3962 }
3963 
3964 
3965 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3966 {
3967 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3968 	unsigned int chunk_sectors = mddev->chunk_sectors;
3969 	unsigned int bio_sectors = bio_sectors(bio);
3970 
3971 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3972 		chunk_sectors = mddev->new_chunk_sectors;
3973 	return  chunk_sectors >=
3974 		((sector & (chunk_sectors - 1)) + bio_sectors);
3975 }
3976 
3977 /*
3978  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3979  *  later sampled by raid5d.
3980  */
3981 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3982 {
3983 	unsigned long flags;
3984 
3985 	spin_lock_irqsave(&conf->device_lock, flags);
3986 
3987 	bi->bi_next = conf->retry_read_aligned_list;
3988 	conf->retry_read_aligned_list = bi;
3989 
3990 	spin_unlock_irqrestore(&conf->device_lock, flags);
3991 	md_wakeup_thread(conf->mddev->thread);
3992 }
3993 
3994 
3995 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3996 {
3997 	struct bio *bi;
3998 
3999 	bi = conf->retry_read_aligned;
4000 	if (bi) {
4001 		conf->retry_read_aligned = NULL;
4002 		return bi;
4003 	}
4004 	bi = conf->retry_read_aligned_list;
4005 	if(bi) {
4006 		conf->retry_read_aligned_list = bi->bi_next;
4007 		bi->bi_next = NULL;
4008 		/*
4009 		 * this sets the active strip count to 1 and the processed
4010 		 * strip count to zero (upper 8 bits)
4011 		 */
4012 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4013 	}
4014 
4015 	return bi;
4016 }
4017 
4018 
4019 /*
4020  *  The "raid5_align_endio" should check if the read succeeded and if it
4021  *  did, call bio_endio on the original bio (having bio_put the new bio
4022  *  first).
4023  *  If the read failed..
4024  */
4025 static void raid5_align_endio(struct bio *bi, int error)
4026 {
4027 	struct bio* raid_bi  = bi->bi_private;
4028 	struct mddev *mddev;
4029 	struct r5conf *conf;
4030 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4031 	struct md_rdev *rdev;
4032 
4033 	bio_put(bi);
4034 
4035 	rdev = (void*)raid_bi->bi_next;
4036 	raid_bi->bi_next = NULL;
4037 	mddev = rdev->mddev;
4038 	conf = mddev->private;
4039 
4040 	rdev_dec_pending(rdev, conf->mddev);
4041 
4042 	if (!error && uptodate) {
4043 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4044 					 raid_bi, 0);
4045 		bio_endio(raid_bi, 0);
4046 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4047 			wake_up(&conf->wait_for_stripe);
4048 		return;
4049 	}
4050 
4051 
4052 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4053 
4054 	add_bio_to_retry(raid_bi, conf);
4055 }
4056 
4057 static int bio_fits_rdev(struct bio *bi)
4058 {
4059 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4060 
4061 	if (bio_sectors(bi) > queue_max_sectors(q))
4062 		return 0;
4063 	blk_recount_segments(q, bi);
4064 	if (bi->bi_phys_segments > queue_max_segments(q))
4065 		return 0;
4066 
4067 	if (q->merge_bvec_fn)
4068 		/* it's too hard to apply the merge_bvec_fn at this stage,
4069 		 * just just give up
4070 		 */
4071 		return 0;
4072 
4073 	return 1;
4074 }
4075 
4076 
4077 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4078 {
4079 	struct r5conf *conf = mddev->private;
4080 	int dd_idx;
4081 	struct bio* align_bi;
4082 	struct md_rdev *rdev;
4083 	sector_t end_sector;
4084 
4085 	if (!in_chunk_boundary(mddev, raid_bio)) {
4086 		pr_debug("chunk_aligned_read : non aligned\n");
4087 		return 0;
4088 	}
4089 	/*
4090 	 * use bio_clone_mddev to make a copy of the bio
4091 	 */
4092 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4093 	if (!align_bi)
4094 		return 0;
4095 	/*
4096 	 *   set bi_end_io to a new function, and set bi_private to the
4097 	 *     original bio.
4098 	 */
4099 	align_bi->bi_end_io  = raid5_align_endio;
4100 	align_bi->bi_private = raid_bio;
4101 	/*
4102 	 *	compute position
4103 	 */
4104 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
4105 						    0,
4106 						    &dd_idx, NULL);
4107 
4108 	end_sector = bio_end_sector(align_bi);
4109 	rcu_read_lock();
4110 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4111 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4112 	    rdev->recovery_offset < end_sector) {
4113 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4114 		if (rdev &&
4115 		    (test_bit(Faulty, &rdev->flags) ||
4116 		    !(test_bit(In_sync, &rdev->flags) ||
4117 		      rdev->recovery_offset >= end_sector)))
4118 			rdev = NULL;
4119 	}
4120 	if (rdev) {
4121 		sector_t first_bad;
4122 		int bad_sectors;
4123 
4124 		atomic_inc(&rdev->nr_pending);
4125 		rcu_read_unlock();
4126 		raid_bio->bi_next = (void*)rdev;
4127 		align_bi->bi_bdev =  rdev->bdev;
4128 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4129 
4130 		if (!bio_fits_rdev(align_bi) ||
4131 		    is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4132 				&first_bad, &bad_sectors)) {
4133 			/* too big in some way, or has a known bad block */
4134 			bio_put(align_bi);
4135 			rdev_dec_pending(rdev, mddev);
4136 			return 0;
4137 		}
4138 
4139 		/* No reshape active, so we can trust rdev->data_offset */
4140 		align_bi->bi_sector += rdev->data_offset;
4141 
4142 		spin_lock_irq(&conf->device_lock);
4143 		wait_event_lock_irq(conf->wait_for_stripe,
4144 				    conf->quiesce == 0,
4145 				    conf->device_lock);
4146 		atomic_inc(&conf->active_aligned_reads);
4147 		spin_unlock_irq(&conf->device_lock);
4148 
4149 		if (mddev->gendisk)
4150 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4151 					      align_bi, disk_devt(mddev->gendisk),
4152 					      raid_bio->bi_sector);
4153 		generic_make_request(align_bi);
4154 		return 1;
4155 	} else {
4156 		rcu_read_unlock();
4157 		bio_put(align_bi);
4158 		return 0;
4159 	}
4160 }
4161 
4162 /* __get_priority_stripe - get the next stripe to process
4163  *
4164  * Full stripe writes are allowed to pass preread active stripes up until
4165  * the bypass_threshold is exceeded.  In general the bypass_count
4166  * increments when the handle_list is handled before the hold_list; however, it
4167  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4168  * stripe with in flight i/o.  The bypass_count will be reset when the
4169  * head of the hold_list has changed, i.e. the head was promoted to the
4170  * handle_list.
4171  */
4172 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4173 {
4174 	struct stripe_head *sh = NULL, *tmp;
4175 	struct list_head *handle_list = NULL;
4176 	struct r5worker_group *wg = NULL;
4177 
4178 	if (conf->worker_cnt_per_group == 0) {
4179 		handle_list = &conf->handle_list;
4180 	} else if (group != ANY_GROUP) {
4181 		handle_list = &conf->worker_groups[group].handle_list;
4182 		wg = &conf->worker_groups[group];
4183 	} else {
4184 		int i;
4185 		for (i = 0; i < conf->group_cnt; i++) {
4186 			handle_list = &conf->worker_groups[i].handle_list;
4187 			wg = &conf->worker_groups[i];
4188 			if (!list_empty(handle_list))
4189 				break;
4190 		}
4191 	}
4192 
4193 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4194 		  __func__,
4195 		  list_empty(handle_list) ? "empty" : "busy",
4196 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4197 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4198 
4199 	if (!list_empty(handle_list)) {
4200 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4201 
4202 		if (list_empty(&conf->hold_list))
4203 			conf->bypass_count = 0;
4204 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4205 			if (conf->hold_list.next == conf->last_hold)
4206 				conf->bypass_count++;
4207 			else {
4208 				conf->last_hold = conf->hold_list.next;
4209 				conf->bypass_count -= conf->bypass_threshold;
4210 				if (conf->bypass_count < 0)
4211 					conf->bypass_count = 0;
4212 			}
4213 		}
4214 	} else if (!list_empty(&conf->hold_list) &&
4215 		   ((conf->bypass_threshold &&
4216 		     conf->bypass_count > conf->bypass_threshold) ||
4217 		    atomic_read(&conf->pending_full_writes) == 0)) {
4218 
4219 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4220 			if (conf->worker_cnt_per_group == 0 ||
4221 			    group == ANY_GROUP ||
4222 			    !cpu_online(tmp->cpu) ||
4223 			    cpu_to_group(tmp->cpu) == group) {
4224 				sh = tmp;
4225 				break;
4226 			}
4227 		}
4228 
4229 		if (sh) {
4230 			conf->bypass_count -= conf->bypass_threshold;
4231 			if (conf->bypass_count < 0)
4232 				conf->bypass_count = 0;
4233 		}
4234 		wg = NULL;
4235 	}
4236 
4237 	if (!sh)
4238 		return NULL;
4239 
4240 	if (wg) {
4241 		wg->stripes_cnt--;
4242 		sh->group = NULL;
4243 	}
4244 	list_del_init(&sh->lru);
4245 	atomic_inc(&sh->count);
4246 	BUG_ON(atomic_read(&sh->count) != 1);
4247 	return sh;
4248 }
4249 
4250 struct raid5_plug_cb {
4251 	struct blk_plug_cb	cb;
4252 	struct list_head	list;
4253 };
4254 
4255 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4256 {
4257 	struct raid5_plug_cb *cb = container_of(
4258 		blk_cb, struct raid5_plug_cb, cb);
4259 	struct stripe_head *sh;
4260 	struct mddev *mddev = cb->cb.data;
4261 	struct r5conf *conf = mddev->private;
4262 	int cnt = 0;
4263 
4264 	if (cb->list.next && !list_empty(&cb->list)) {
4265 		spin_lock_irq(&conf->device_lock);
4266 		while (!list_empty(&cb->list)) {
4267 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4268 			list_del_init(&sh->lru);
4269 			/*
4270 			 * avoid race release_stripe_plug() sees
4271 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4272 			 * is still in our list
4273 			 */
4274 			smp_mb__before_clear_bit();
4275 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4276 			/*
4277 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4278 			 * case, the count is always > 1 here
4279 			 */
4280 			__release_stripe(conf, sh);
4281 			cnt++;
4282 		}
4283 		spin_unlock_irq(&conf->device_lock);
4284 	}
4285 	if (mddev->queue)
4286 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4287 	kfree(cb);
4288 }
4289 
4290 static void release_stripe_plug(struct mddev *mddev,
4291 				struct stripe_head *sh)
4292 {
4293 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4294 		raid5_unplug, mddev,
4295 		sizeof(struct raid5_plug_cb));
4296 	struct raid5_plug_cb *cb;
4297 
4298 	if (!blk_cb) {
4299 		release_stripe(sh);
4300 		return;
4301 	}
4302 
4303 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4304 
4305 	if (cb->list.next == NULL)
4306 		INIT_LIST_HEAD(&cb->list);
4307 
4308 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4309 		list_add_tail(&sh->lru, &cb->list);
4310 	else
4311 		release_stripe(sh);
4312 }
4313 
4314 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4315 {
4316 	struct r5conf *conf = mddev->private;
4317 	sector_t logical_sector, last_sector;
4318 	struct stripe_head *sh;
4319 	int remaining;
4320 	int stripe_sectors;
4321 
4322 	if (mddev->reshape_position != MaxSector)
4323 		/* Skip discard while reshape is happening */
4324 		return;
4325 
4326 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4327 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4328 
4329 	bi->bi_next = NULL;
4330 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4331 
4332 	stripe_sectors = conf->chunk_sectors *
4333 		(conf->raid_disks - conf->max_degraded);
4334 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4335 					       stripe_sectors);
4336 	sector_div(last_sector, stripe_sectors);
4337 
4338 	logical_sector *= conf->chunk_sectors;
4339 	last_sector *= conf->chunk_sectors;
4340 
4341 	for (; logical_sector < last_sector;
4342 	     logical_sector += STRIPE_SECTORS) {
4343 		DEFINE_WAIT(w);
4344 		int d;
4345 	again:
4346 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4347 		prepare_to_wait(&conf->wait_for_overlap, &w,
4348 				TASK_UNINTERRUPTIBLE);
4349 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4350 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4351 			release_stripe(sh);
4352 			schedule();
4353 			goto again;
4354 		}
4355 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4356 		spin_lock_irq(&sh->stripe_lock);
4357 		for (d = 0; d < conf->raid_disks; d++) {
4358 			if (d == sh->pd_idx || d == sh->qd_idx)
4359 				continue;
4360 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4361 				set_bit(R5_Overlap, &sh->dev[d].flags);
4362 				spin_unlock_irq(&sh->stripe_lock);
4363 				release_stripe(sh);
4364 				schedule();
4365 				goto again;
4366 			}
4367 		}
4368 		set_bit(STRIPE_DISCARD, &sh->state);
4369 		finish_wait(&conf->wait_for_overlap, &w);
4370 		for (d = 0; d < conf->raid_disks; d++) {
4371 			if (d == sh->pd_idx || d == sh->qd_idx)
4372 				continue;
4373 			sh->dev[d].towrite = bi;
4374 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4375 			raid5_inc_bi_active_stripes(bi);
4376 		}
4377 		spin_unlock_irq(&sh->stripe_lock);
4378 		if (conf->mddev->bitmap) {
4379 			for (d = 0;
4380 			     d < conf->raid_disks - conf->max_degraded;
4381 			     d++)
4382 				bitmap_startwrite(mddev->bitmap,
4383 						  sh->sector,
4384 						  STRIPE_SECTORS,
4385 						  0);
4386 			sh->bm_seq = conf->seq_flush + 1;
4387 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4388 		}
4389 
4390 		set_bit(STRIPE_HANDLE, &sh->state);
4391 		clear_bit(STRIPE_DELAYED, &sh->state);
4392 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4393 			atomic_inc(&conf->preread_active_stripes);
4394 		release_stripe_plug(mddev, sh);
4395 	}
4396 
4397 	remaining = raid5_dec_bi_active_stripes(bi);
4398 	if (remaining == 0) {
4399 		md_write_end(mddev);
4400 		bio_endio(bi, 0);
4401 	}
4402 }
4403 
4404 static void make_request(struct mddev *mddev, struct bio * bi)
4405 {
4406 	struct r5conf *conf = mddev->private;
4407 	int dd_idx;
4408 	sector_t new_sector;
4409 	sector_t logical_sector, last_sector;
4410 	struct stripe_head *sh;
4411 	const int rw = bio_data_dir(bi);
4412 	int remaining;
4413 
4414 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4415 		md_flush_request(mddev, bi);
4416 		return;
4417 	}
4418 
4419 	md_write_start(mddev, bi);
4420 
4421 	if (rw == READ &&
4422 	     mddev->reshape_position == MaxSector &&
4423 	     chunk_aligned_read(mddev,bi))
4424 		return;
4425 
4426 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4427 		make_discard_request(mddev, bi);
4428 		return;
4429 	}
4430 
4431 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4432 	last_sector = bio_end_sector(bi);
4433 	bi->bi_next = NULL;
4434 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4435 
4436 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4437 		DEFINE_WAIT(w);
4438 		int previous;
4439 		int seq;
4440 
4441 	retry:
4442 		seq = read_seqcount_begin(&conf->gen_lock);
4443 		previous = 0;
4444 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4445 		if (unlikely(conf->reshape_progress != MaxSector)) {
4446 			/* spinlock is needed as reshape_progress may be
4447 			 * 64bit on a 32bit platform, and so it might be
4448 			 * possible to see a half-updated value
4449 			 * Of course reshape_progress could change after
4450 			 * the lock is dropped, so once we get a reference
4451 			 * to the stripe that we think it is, we will have
4452 			 * to check again.
4453 			 */
4454 			spin_lock_irq(&conf->device_lock);
4455 			if (mddev->reshape_backwards
4456 			    ? logical_sector < conf->reshape_progress
4457 			    : logical_sector >= conf->reshape_progress) {
4458 				previous = 1;
4459 			} else {
4460 				if (mddev->reshape_backwards
4461 				    ? logical_sector < conf->reshape_safe
4462 				    : logical_sector >= conf->reshape_safe) {
4463 					spin_unlock_irq(&conf->device_lock);
4464 					schedule();
4465 					goto retry;
4466 				}
4467 			}
4468 			spin_unlock_irq(&conf->device_lock);
4469 		}
4470 
4471 		new_sector = raid5_compute_sector(conf, logical_sector,
4472 						  previous,
4473 						  &dd_idx, NULL);
4474 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4475 			(unsigned long long)new_sector,
4476 			(unsigned long long)logical_sector);
4477 
4478 		sh = get_active_stripe(conf, new_sector, previous,
4479 				       (bi->bi_rw&RWA_MASK), 0);
4480 		if (sh) {
4481 			if (unlikely(previous)) {
4482 				/* expansion might have moved on while waiting for a
4483 				 * stripe, so we must do the range check again.
4484 				 * Expansion could still move past after this
4485 				 * test, but as we are holding a reference to
4486 				 * 'sh', we know that if that happens,
4487 				 *  STRIPE_EXPANDING will get set and the expansion
4488 				 * won't proceed until we finish with the stripe.
4489 				 */
4490 				int must_retry = 0;
4491 				spin_lock_irq(&conf->device_lock);
4492 				if (mddev->reshape_backwards
4493 				    ? logical_sector >= conf->reshape_progress
4494 				    : logical_sector < conf->reshape_progress)
4495 					/* mismatch, need to try again */
4496 					must_retry = 1;
4497 				spin_unlock_irq(&conf->device_lock);
4498 				if (must_retry) {
4499 					release_stripe(sh);
4500 					schedule();
4501 					goto retry;
4502 				}
4503 			}
4504 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
4505 				/* Might have got the wrong stripe_head
4506 				 * by accident
4507 				 */
4508 				release_stripe(sh);
4509 				goto retry;
4510 			}
4511 
4512 			if (rw == WRITE &&
4513 			    logical_sector >= mddev->suspend_lo &&
4514 			    logical_sector < mddev->suspend_hi) {
4515 				release_stripe(sh);
4516 				/* As the suspend_* range is controlled by
4517 				 * userspace, we want an interruptible
4518 				 * wait.
4519 				 */
4520 				flush_signals(current);
4521 				prepare_to_wait(&conf->wait_for_overlap,
4522 						&w, TASK_INTERRUPTIBLE);
4523 				if (logical_sector >= mddev->suspend_lo &&
4524 				    logical_sector < mddev->suspend_hi)
4525 					schedule();
4526 				goto retry;
4527 			}
4528 
4529 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4530 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4531 				/* Stripe is busy expanding or
4532 				 * add failed due to overlap.  Flush everything
4533 				 * and wait a while
4534 				 */
4535 				md_wakeup_thread(mddev->thread);
4536 				release_stripe(sh);
4537 				schedule();
4538 				goto retry;
4539 			}
4540 			finish_wait(&conf->wait_for_overlap, &w);
4541 			set_bit(STRIPE_HANDLE, &sh->state);
4542 			clear_bit(STRIPE_DELAYED, &sh->state);
4543 			if ((bi->bi_rw & REQ_SYNC) &&
4544 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4545 				atomic_inc(&conf->preread_active_stripes);
4546 			release_stripe_plug(mddev, sh);
4547 		} else {
4548 			/* cannot get stripe for read-ahead, just give-up */
4549 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4550 			finish_wait(&conf->wait_for_overlap, &w);
4551 			break;
4552 		}
4553 	}
4554 
4555 	remaining = raid5_dec_bi_active_stripes(bi);
4556 	if (remaining == 0) {
4557 
4558 		if ( rw == WRITE )
4559 			md_write_end(mddev);
4560 
4561 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4562 					 bi, 0);
4563 		bio_endio(bi, 0);
4564 	}
4565 }
4566 
4567 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4568 
4569 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4570 {
4571 	/* reshaping is quite different to recovery/resync so it is
4572 	 * handled quite separately ... here.
4573 	 *
4574 	 * On each call to sync_request, we gather one chunk worth of
4575 	 * destination stripes and flag them as expanding.
4576 	 * Then we find all the source stripes and request reads.
4577 	 * As the reads complete, handle_stripe will copy the data
4578 	 * into the destination stripe and release that stripe.
4579 	 */
4580 	struct r5conf *conf = mddev->private;
4581 	struct stripe_head *sh;
4582 	sector_t first_sector, last_sector;
4583 	int raid_disks = conf->previous_raid_disks;
4584 	int data_disks = raid_disks - conf->max_degraded;
4585 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4586 	int i;
4587 	int dd_idx;
4588 	sector_t writepos, readpos, safepos;
4589 	sector_t stripe_addr;
4590 	int reshape_sectors;
4591 	struct list_head stripes;
4592 
4593 	if (sector_nr == 0) {
4594 		/* If restarting in the middle, skip the initial sectors */
4595 		if (mddev->reshape_backwards &&
4596 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4597 			sector_nr = raid5_size(mddev, 0, 0)
4598 				- conf->reshape_progress;
4599 		} else if (!mddev->reshape_backwards &&
4600 			   conf->reshape_progress > 0)
4601 			sector_nr = conf->reshape_progress;
4602 		sector_div(sector_nr, new_data_disks);
4603 		if (sector_nr) {
4604 			mddev->curr_resync_completed = sector_nr;
4605 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4606 			*skipped = 1;
4607 			return sector_nr;
4608 		}
4609 	}
4610 
4611 	/* We need to process a full chunk at a time.
4612 	 * If old and new chunk sizes differ, we need to process the
4613 	 * largest of these
4614 	 */
4615 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4616 		reshape_sectors = mddev->new_chunk_sectors;
4617 	else
4618 		reshape_sectors = mddev->chunk_sectors;
4619 
4620 	/* We update the metadata at least every 10 seconds, or when
4621 	 * the data about to be copied would over-write the source of
4622 	 * the data at the front of the range.  i.e. one new_stripe
4623 	 * along from reshape_progress new_maps to after where
4624 	 * reshape_safe old_maps to
4625 	 */
4626 	writepos = conf->reshape_progress;
4627 	sector_div(writepos, new_data_disks);
4628 	readpos = conf->reshape_progress;
4629 	sector_div(readpos, data_disks);
4630 	safepos = conf->reshape_safe;
4631 	sector_div(safepos, data_disks);
4632 	if (mddev->reshape_backwards) {
4633 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4634 		readpos += reshape_sectors;
4635 		safepos += reshape_sectors;
4636 	} else {
4637 		writepos += reshape_sectors;
4638 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4639 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4640 	}
4641 
4642 	/* Having calculated the 'writepos' possibly use it
4643 	 * to set 'stripe_addr' which is where we will write to.
4644 	 */
4645 	if (mddev->reshape_backwards) {
4646 		BUG_ON(conf->reshape_progress == 0);
4647 		stripe_addr = writepos;
4648 		BUG_ON((mddev->dev_sectors &
4649 			~((sector_t)reshape_sectors - 1))
4650 		       - reshape_sectors - stripe_addr
4651 		       != sector_nr);
4652 	} else {
4653 		BUG_ON(writepos != sector_nr + reshape_sectors);
4654 		stripe_addr = sector_nr;
4655 	}
4656 
4657 	/* 'writepos' is the most advanced device address we might write.
4658 	 * 'readpos' is the least advanced device address we might read.
4659 	 * 'safepos' is the least address recorded in the metadata as having
4660 	 *     been reshaped.
4661 	 * If there is a min_offset_diff, these are adjusted either by
4662 	 * increasing the safepos/readpos if diff is negative, or
4663 	 * increasing writepos if diff is positive.
4664 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4665 	 * ensure safety in the face of a crash - that must be done by userspace
4666 	 * making a backup of the data.  So in that case there is no particular
4667 	 * rush to update metadata.
4668 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4669 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4670 	 * we can be safe in the event of a crash.
4671 	 * So we insist on updating metadata if safepos is behind writepos and
4672 	 * readpos is beyond writepos.
4673 	 * In any case, update the metadata every 10 seconds.
4674 	 * Maybe that number should be configurable, but I'm not sure it is
4675 	 * worth it.... maybe it could be a multiple of safemode_delay???
4676 	 */
4677 	if (conf->min_offset_diff < 0) {
4678 		safepos += -conf->min_offset_diff;
4679 		readpos += -conf->min_offset_diff;
4680 	} else
4681 		writepos += conf->min_offset_diff;
4682 
4683 	if ((mddev->reshape_backwards
4684 	     ? (safepos > writepos && readpos < writepos)
4685 	     : (safepos < writepos && readpos > writepos)) ||
4686 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4687 		/* Cannot proceed until we've updated the superblock... */
4688 		wait_event(conf->wait_for_overlap,
4689 			   atomic_read(&conf->reshape_stripes)==0);
4690 		mddev->reshape_position = conf->reshape_progress;
4691 		mddev->curr_resync_completed = sector_nr;
4692 		conf->reshape_checkpoint = jiffies;
4693 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4694 		md_wakeup_thread(mddev->thread);
4695 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4696 			   kthread_should_stop());
4697 		spin_lock_irq(&conf->device_lock);
4698 		conf->reshape_safe = mddev->reshape_position;
4699 		spin_unlock_irq(&conf->device_lock);
4700 		wake_up(&conf->wait_for_overlap);
4701 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4702 	}
4703 
4704 	INIT_LIST_HEAD(&stripes);
4705 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4706 		int j;
4707 		int skipped_disk = 0;
4708 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4709 		set_bit(STRIPE_EXPANDING, &sh->state);
4710 		atomic_inc(&conf->reshape_stripes);
4711 		/* If any of this stripe is beyond the end of the old
4712 		 * array, then we need to zero those blocks
4713 		 */
4714 		for (j=sh->disks; j--;) {
4715 			sector_t s;
4716 			if (j == sh->pd_idx)
4717 				continue;
4718 			if (conf->level == 6 &&
4719 			    j == sh->qd_idx)
4720 				continue;
4721 			s = compute_blocknr(sh, j, 0);
4722 			if (s < raid5_size(mddev, 0, 0)) {
4723 				skipped_disk = 1;
4724 				continue;
4725 			}
4726 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4727 			set_bit(R5_Expanded, &sh->dev[j].flags);
4728 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4729 		}
4730 		if (!skipped_disk) {
4731 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4732 			set_bit(STRIPE_HANDLE, &sh->state);
4733 		}
4734 		list_add(&sh->lru, &stripes);
4735 	}
4736 	spin_lock_irq(&conf->device_lock);
4737 	if (mddev->reshape_backwards)
4738 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4739 	else
4740 		conf->reshape_progress += reshape_sectors * new_data_disks;
4741 	spin_unlock_irq(&conf->device_lock);
4742 	/* Ok, those stripe are ready. We can start scheduling
4743 	 * reads on the source stripes.
4744 	 * The source stripes are determined by mapping the first and last
4745 	 * block on the destination stripes.
4746 	 */
4747 	first_sector =
4748 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4749 				     1, &dd_idx, NULL);
4750 	last_sector =
4751 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4752 					    * new_data_disks - 1),
4753 				     1, &dd_idx, NULL);
4754 	if (last_sector >= mddev->dev_sectors)
4755 		last_sector = mddev->dev_sectors - 1;
4756 	while (first_sector <= last_sector) {
4757 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4758 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4759 		set_bit(STRIPE_HANDLE, &sh->state);
4760 		release_stripe(sh);
4761 		first_sector += STRIPE_SECTORS;
4762 	}
4763 	/* Now that the sources are clearly marked, we can release
4764 	 * the destination stripes
4765 	 */
4766 	while (!list_empty(&stripes)) {
4767 		sh = list_entry(stripes.next, struct stripe_head, lru);
4768 		list_del_init(&sh->lru);
4769 		release_stripe(sh);
4770 	}
4771 	/* If this takes us to the resync_max point where we have to pause,
4772 	 * then we need to write out the superblock.
4773 	 */
4774 	sector_nr += reshape_sectors;
4775 	if ((sector_nr - mddev->curr_resync_completed) * 2
4776 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4777 		/* Cannot proceed until we've updated the superblock... */
4778 		wait_event(conf->wait_for_overlap,
4779 			   atomic_read(&conf->reshape_stripes) == 0);
4780 		mddev->reshape_position = conf->reshape_progress;
4781 		mddev->curr_resync_completed = sector_nr;
4782 		conf->reshape_checkpoint = jiffies;
4783 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4784 		md_wakeup_thread(mddev->thread);
4785 		wait_event(mddev->sb_wait,
4786 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4787 			   || kthread_should_stop());
4788 		spin_lock_irq(&conf->device_lock);
4789 		conf->reshape_safe = mddev->reshape_position;
4790 		spin_unlock_irq(&conf->device_lock);
4791 		wake_up(&conf->wait_for_overlap);
4792 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4793 	}
4794 	return reshape_sectors;
4795 }
4796 
4797 /* FIXME go_faster isn't used */
4798 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4799 {
4800 	struct r5conf *conf = mddev->private;
4801 	struct stripe_head *sh;
4802 	sector_t max_sector = mddev->dev_sectors;
4803 	sector_t sync_blocks;
4804 	int still_degraded = 0;
4805 	int i;
4806 
4807 	if (sector_nr >= max_sector) {
4808 		/* just being told to finish up .. nothing much to do */
4809 
4810 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4811 			end_reshape(conf);
4812 			return 0;
4813 		}
4814 
4815 		if (mddev->curr_resync < max_sector) /* aborted */
4816 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4817 					&sync_blocks, 1);
4818 		else /* completed sync */
4819 			conf->fullsync = 0;
4820 		bitmap_close_sync(mddev->bitmap);
4821 
4822 		return 0;
4823 	}
4824 
4825 	/* Allow raid5_quiesce to complete */
4826 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4827 
4828 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4829 		return reshape_request(mddev, sector_nr, skipped);
4830 
4831 	/* No need to check resync_max as we never do more than one
4832 	 * stripe, and as resync_max will always be on a chunk boundary,
4833 	 * if the check in md_do_sync didn't fire, there is no chance
4834 	 * of overstepping resync_max here
4835 	 */
4836 
4837 	/* if there is too many failed drives and we are trying
4838 	 * to resync, then assert that we are finished, because there is
4839 	 * nothing we can do.
4840 	 */
4841 	if (mddev->degraded >= conf->max_degraded &&
4842 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4843 		sector_t rv = mddev->dev_sectors - sector_nr;
4844 		*skipped = 1;
4845 		return rv;
4846 	}
4847 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4848 	    !conf->fullsync &&
4849 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4850 	    sync_blocks >= STRIPE_SECTORS) {
4851 		/* we can skip this block, and probably more */
4852 		sync_blocks /= STRIPE_SECTORS;
4853 		*skipped = 1;
4854 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4855 	}
4856 
4857 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4858 
4859 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4860 	if (sh == NULL) {
4861 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4862 		/* make sure we don't swamp the stripe cache if someone else
4863 		 * is trying to get access
4864 		 */
4865 		schedule_timeout_uninterruptible(1);
4866 	}
4867 	/* Need to check if array will still be degraded after recovery/resync
4868 	 * We don't need to check the 'failed' flag as when that gets set,
4869 	 * recovery aborts.
4870 	 */
4871 	for (i = 0; i < conf->raid_disks; i++)
4872 		if (conf->disks[i].rdev == NULL)
4873 			still_degraded = 1;
4874 
4875 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4876 
4877 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4878 
4879 	handle_stripe(sh);
4880 	release_stripe(sh);
4881 
4882 	return STRIPE_SECTORS;
4883 }
4884 
4885 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4886 {
4887 	/* We may not be able to submit a whole bio at once as there
4888 	 * may not be enough stripe_heads available.
4889 	 * We cannot pre-allocate enough stripe_heads as we may need
4890 	 * more than exist in the cache (if we allow ever large chunks).
4891 	 * So we do one stripe head at a time and record in
4892 	 * ->bi_hw_segments how many have been done.
4893 	 *
4894 	 * We *know* that this entire raid_bio is in one chunk, so
4895 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4896 	 */
4897 	struct stripe_head *sh;
4898 	int dd_idx;
4899 	sector_t sector, logical_sector, last_sector;
4900 	int scnt = 0;
4901 	int remaining;
4902 	int handled = 0;
4903 
4904 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4905 	sector = raid5_compute_sector(conf, logical_sector,
4906 				      0, &dd_idx, NULL);
4907 	last_sector = bio_end_sector(raid_bio);
4908 
4909 	for (; logical_sector < last_sector;
4910 	     logical_sector += STRIPE_SECTORS,
4911 		     sector += STRIPE_SECTORS,
4912 		     scnt++) {
4913 
4914 		if (scnt < raid5_bi_processed_stripes(raid_bio))
4915 			/* already done this stripe */
4916 			continue;
4917 
4918 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4919 
4920 		if (!sh) {
4921 			/* failed to get a stripe - must wait */
4922 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4923 			conf->retry_read_aligned = raid_bio;
4924 			return handled;
4925 		}
4926 
4927 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4928 			release_stripe(sh);
4929 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4930 			conf->retry_read_aligned = raid_bio;
4931 			return handled;
4932 		}
4933 
4934 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4935 		handle_stripe(sh);
4936 		release_stripe(sh);
4937 		handled++;
4938 	}
4939 	remaining = raid5_dec_bi_active_stripes(raid_bio);
4940 	if (remaining == 0) {
4941 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4942 					 raid_bio, 0);
4943 		bio_endio(raid_bio, 0);
4944 	}
4945 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4946 		wake_up(&conf->wait_for_stripe);
4947 	return handled;
4948 }
4949 
4950 static int handle_active_stripes(struct r5conf *conf, int group,
4951 				 struct r5worker *worker)
4952 {
4953 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4954 	int i, batch_size = 0;
4955 
4956 	while (batch_size < MAX_STRIPE_BATCH &&
4957 			(sh = __get_priority_stripe(conf, group)) != NULL)
4958 		batch[batch_size++] = sh;
4959 
4960 	if (batch_size == 0)
4961 		return batch_size;
4962 	spin_unlock_irq(&conf->device_lock);
4963 
4964 	for (i = 0; i < batch_size; i++)
4965 		handle_stripe(batch[i]);
4966 
4967 	cond_resched();
4968 
4969 	spin_lock_irq(&conf->device_lock);
4970 	for (i = 0; i < batch_size; i++)
4971 		__release_stripe(conf, batch[i]);
4972 	return batch_size;
4973 }
4974 
4975 static void raid5_do_work(struct work_struct *work)
4976 {
4977 	struct r5worker *worker = container_of(work, struct r5worker, work);
4978 	struct r5worker_group *group = worker->group;
4979 	struct r5conf *conf = group->conf;
4980 	int group_id = group - conf->worker_groups;
4981 	int handled;
4982 	struct blk_plug plug;
4983 
4984 	pr_debug("+++ raid5worker active\n");
4985 
4986 	blk_start_plug(&plug);
4987 	handled = 0;
4988 	spin_lock_irq(&conf->device_lock);
4989 	while (1) {
4990 		int batch_size, released;
4991 
4992 		released = release_stripe_list(conf);
4993 
4994 		batch_size = handle_active_stripes(conf, group_id, worker);
4995 		worker->working = false;
4996 		if (!batch_size && !released)
4997 			break;
4998 		handled += batch_size;
4999 	}
5000 	pr_debug("%d stripes handled\n", handled);
5001 
5002 	spin_unlock_irq(&conf->device_lock);
5003 	blk_finish_plug(&plug);
5004 
5005 	pr_debug("--- raid5worker inactive\n");
5006 }
5007 
5008 /*
5009  * This is our raid5 kernel thread.
5010  *
5011  * We scan the hash table for stripes which can be handled now.
5012  * During the scan, completed stripes are saved for us by the interrupt
5013  * handler, so that they will not have to wait for our next wakeup.
5014  */
5015 static void raid5d(struct md_thread *thread)
5016 {
5017 	struct mddev *mddev = thread->mddev;
5018 	struct r5conf *conf = mddev->private;
5019 	int handled;
5020 	struct blk_plug plug;
5021 
5022 	pr_debug("+++ raid5d active\n");
5023 
5024 	md_check_recovery(mddev);
5025 
5026 	blk_start_plug(&plug);
5027 	handled = 0;
5028 	spin_lock_irq(&conf->device_lock);
5029 	while (1) {
5030 		struct bio *bio;
5031 		int batch_size, released;
5032 
5033 		released = release_stripe_list(conf);
5034 
5035 		if (
5036 		    !list_empty(&conf->bitmap_list)) {
5037 			/* Now is a good time to flush some bitmap updates */
5038 			conf->seq_flush++;
5039 			spin_unlock_irq(&conf->device_lock);
5040 			bitmap_unplug(mddev->bitmap);
5041 			spin_lock_irq(&conf->device_lock);
5042 			conf->seq_write = conf->seq_flush;
5043 			activate_bit_delay(conf);
5044 		}
5045 		raid5_activate_delayed(conf);
5046 
5047 		while ((bio = remove_bio_from_retry(conf))) {
5048 			int ok;
5049 			spin_unlock_irq(&conf->device_lock);
5050 			ok = retry_aligned_read(conf, bio);
5051 			spin_lock_irq(&conf->device_lock);
5052 			if (!ok)
5053 				break;
5054 			handled++;
5055 		}
5056 
5057 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL);
5058 		if (!batch_size && !released)
5059 			break;
5060 		handled += batch_size;
5061 
5062 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5063 			spin_unlock_irq(&conf->device_lock);
5064 			md_check_recovery(mddev);
5065 			spin_lock_irq(&conf->device_lock);
5066 		}
5067 	}
5068 	pr_debug("%d stripes handled\n", handled);
5069 
5070 	spin_unlock_irq(&conf->device_lock);
5071 
5072 	async_tx_issue_pending_all();
5073 	blk_finish_plug(&plug);
5074 
5075 	pr_debug("--- raid5d inactive\n");
5076 }
5077 
5078 static ssize_t
5079 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5080 {
5081 	struct r5conf *conf = mddev->private;
5082 	if (conf)
5083 		return sprintf(page, "%d\n", conf->max_nr_stripes);
5084 	else
5085 		return 0;
5086 }
5087 
5088 int
5089 raid5_set_cache_size(struct mddev *mddev, int size)
5090 {
5091 	struct r5conf *conf = mddev->private;
5092 	int err;
5093 
5094 	if (size <= 16 || size > 32768)
5095 		return -EINVAL;
5096 	while (size < conf->max_nr_stripes) {
5097 		if (drop_one_stripe(conf))
5098 			conf->max_nr_stripes--;
5099 		else
5100 			break;
5101 	}
5102 	err = md_allow_write(mddev);
5103 	if (err)
5104 		return err;
5105 	while (size > conf->max_nr_stripes) {
5106 		if (grow_one_stripe(conf))
5107 			conf->max_nr_stripes++;
5108 		else break;
5109 	}
5110 	return 0;
5111 }
5112 EXPORT_SYMBOL(raid5_set_cache_size);
5113 
5114 static ssize_t
5115 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5116 {
5117 	struct r5conf *conf = mddev->private;
5118 	unsigned long new;
5119 	int err;
5120 
5121 	if (len >= PAGE_SIZE)
5122 		return -EINVAL;
5123 	if (!conf)
5124 		return -ENODEV;
5125 
5126 	if (kstrtoul(page, 10, &new))
5127 		return -EINVAL;
5128 	err = raid5_set_cache_size(mddev, new);
5129 	if (err)
5130 		return err;
5131 	return len;
5132 }
5133 
5134 static struct md_sysfs_entry
5135 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5136 				raid5_show_stripe_cache_size,
5137 				raid5_store_stripe_cache_size);
5138 
5139 static ssize_t
5140 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5141 {
5142 	struct r5conf *conf = mddev->private;
5143 	if (conf)
5144 		return sprintf(page, "%d\n", conf->bypass_threshold);
5145 	else
5146 		return 0;
5147 }
5148 
5149 static ssize_t
5150 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5151 {
5152 	struct r5conf *conf = mddev->private;
5153 	unsigned long new;
5154 	if (len >= PAGE_SIZE)
5155 		return -EINVAL;
5156 	if (!conf)
5157 		return -ENODEV;
5158 
5159 	if (kstrtoul(page, 10, &new))
5160 		return -EINVAL;
5161 	if (new > conf->max_nr_stripes)
5162 		return -EINVAL;
5163 	conf->bypass_threshold = new;
5164 	return len;
5165 }
5166 
5167 static struct md_sysfs_entry
5168 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5169 					S_IRUGO | S_IWUSR,
5170 					raid5_show_preread_threshold,
5171 					raid5_store_preread_threshold);
5172 
5173 static ssize_t
5174 stripe_cache_active_show(struct mddev *mddev, char *page)
5175 {
5176 	struct r5conf *conf = mddev->private;
5177 	if (conf)
5178 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5179 	else
5180 		return 0;
5181 }
5182 
5183 static struct md_sysfs_entry
5184 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5185 
5186 static ssize_t
5187 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5188 {
5189 	struct r5conf *conf = mddev->private;
5190 	if (conf)
5191 		return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5192 	else
5193 		return 0;
5194 }
5195 
5196 static int alloc_thread_groups(struct r5conf *conf, int cnt);
5197 static ssize_t
5198 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5199 {
5200 	struct r5conf *conf = mddev->private;
5201 	unsigned long new;
5202 	int err;
5203 	struct r5worker_group *old_groups;
5204 	int old_group_cnt;
5205 
5206 	if (len >= PAGE_SIZE)
5207 		return -EINVAL;
5208 	if (!conf)
5209 		return -ENODEV;
5210 
5211 	if (kstrtoul(page, 10, &new))
5212 		return -EINVAL;
5213 
5214 	if (new == conf->worker_cnt_per_group)
5215 		return len;
5216 
5217 	mddev_suspend(mddev);
5218 
5219 	old_groups = conf->worker_groups;
5220 	old_group_cnt = conf->worker_cnt_per_group;
5221 
5222 	conf->worker_groups = NULL;
5223 	err = alloc_thread_groups(conf, new);
5224 	if (err) {
5225 		conf->worker_groups = old_groups;
5226 		conf->worker_cnt_per_group = old_group_cnt;
5227 	} else {
5228 		if (old_groups)
5229 			kfree(old_groups[0].workers);
5230 		kfree(old_groups);
5231 	}
5232 
5233 	mddev_resume(mddev);
5234 
5235 	if (err)
5236 		return err;
5237 	return len;
5238 }
5239 
5240 static struct md_sysfs_entry
5241 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5242 				raid5_show_group_thread_cnt,
5243 				raid5_store_group_thread_cnt);
5244 
5245 static struct attribute *raid5_attrs[] =  {
5246 	&raid5_stripecache_size.attr,
5247 	&raid5_stripecache_active.attr,
5248 	&raid5_preread_bypass_threshold.attr,
5249 	&raid5_group_thread_cnt.attr,
5250 	NULL,
5251 };
5252 static struct attribute_group raid5_attrs_group = {
5253 	.name = NULL,
5254 	.attrs = raid5_attrs,
5255 };
5256 
5257 static int alloc_thread_groups(struct r5conf *conf, int cnt)
5258 {
5259 	int i, j;
5260 	ssize_t size;
5261 	struct r5worker *workers;
5262 
5263 	conf->worker_cnt_per_group = cnt;
5264 	if (cnt == 0) {
5265 		conf->worker_groups = NULL;
5266 		return 0;
5267 	}
5268 	conf->group_cnt = num_possible_nodes();
5269 	size = sizeof(struct r5worker) * cnt;
5270 	workers = kzalloc(size * conf->group_cnt, GFP_NOIO);
5271 	conf->worker_groups = kzalloc(sizeof(struct r5worker_group) *
5272 				conf->group_cnt, GFP_NOIO);
5273 	if (!conf->worker_groups || !workers) {
5274 		kfree(workers);
5275 		kfree(conf->worker_groups);
5276 		conf->worker_groups = NULL;
5277 		return -ENOMEM;
5278 	}
5279 
5280 	for (i = 0; i < conf->group_cnt; i++) {
5281 		struct r5worker_group *group;
5282 
5283 		group = &conf->worker_groups[i];
5284 		INIT_LIST_HEAD(&group->handle_list);
5285 		group->conf = conf;
5286 		group->workers = workers + i * cnt;
5287 
5288 		for (j = 0; j < cnt; j++) {
5289 			group->workers[j].group = group;
5290 			INIT_WORK(&group->workers[j].work, raid5_do_work);
5291 		}
5292 	}
5293 
5294 	return 0;
5295 }
5296 
5297 static void free_thread_groups(struct r5conf *conf)
5298 {
5299 	if (conf->worker_groups)
5300 		kfree(conf->worker_groups[0].workers);
5301 	kfree(conf->worker_groups);
5302 	conf->worker_groups = NULL;
5303 }
5304 
5305 static sector_t
5306 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5307 {
5308 	struct r5conf *conf = mddev->private;
5309 
5310 	if (!sectors)
5311 		sectors = mddev->dev_sectors;
5312 	if (!raid_disks)
5313 		/* size is defined by the smallest of previous and new size */
5314 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5315 
5316 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5317 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5318 	return sectors * (raid_disks - conf->max_degraded);
5319 }
5320 
5321 static void raid5_free_percpu(struct r5conf *conf)
5322 {
5323 	struct raid5_percpu *percpu;
5324 	unsigned long cpu;
5325 
5326 	if (!conf->percpu)
5327 		return;
5328 
5329 	get_online_cpus();
5330 	for_each_possible_cpu(cpu) {
5331 		percpu = per_cpu_ptr(conf->percpu, cpu);
5332 		safe_put_page(percpu->spare_page);
5333 		kfree(percpu->scribble);
5334 	}
5335 #ifdef CONFIG_HOTPLUG_CPU
5336 	unregister_cpu_notifier(&conf->cpu_notify);
5337 #endif
5338 	put_online_cpus();
5339 
5340 	free_percpu(conf->percpu);
5341 }
5342 
5343 static void free_conf(struct r5conf *conf)
5344 {
5345 	free_thread_groups(conf);
5346 	shrink_stripes(conf);
5347 	raid5_free_percpu(conf);
5348 	kfree(conf->disks);
5349 	kfree(conf->stripe_hashtbl);
5350 	kfree(conf);
5351 }
5352 
5353 #ifdef CONFIG_HOTPLUG_CPU
5354 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5355 			      void *hcpu)
5356 {
5357 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5358 	long cpu = (long)hcpu;
5359 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5360 
5361 	switch (action) {
5362 	case CPU_UP_PREPARE:
5363 	case CPU_UP_PREPARE_FROZEN:
5364 		if (conf->level == 6 && !percpu->spare_page)
5365 			percpu->spare_page = alloc_page(GFP_KERNEL);
5366 		if (!percpu->scribble)
5367 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5368 
5369 		if (!percpu->scribble ||
5370 		    (conf->level == 6 && !percpu->spare_page)) {
5371 			safe_put_page(percpu->spare_page);
5372 			kfree(percpu->scribble);
5373 			pr_err("%s: failed memory allocation for cpu%ld\n",
5374 			       __func__, cpu);
5375 			return notifier_from_errno(-ENOMEM);
5376 		}
5377 		break;
5378 	case CPU_DEAD:
5379 	case CPU_DEAD_FROZEN:
5380 		safe_put_page(percpu->spare_page);
5381 		kfree(percpu->scribble);
5382 		percpu->spare_page = NULL;
5383 		percpu->scribble = NULL;
5384 		break;
5385 	default:
5386 		break;
5387 	}
5388 	return NOTIFY_OK;
5389 }
5390 #endif
5391 
5392 static int raid5_alloc_percpu(struct r5conf *conf)
5393 {
5394 	unsigned long cpu;
5395 	struct page *spare_page;
5396 	struct raid5_percpu __percpu *allcpus;
5397 	void *scribble;
5398 	int err;
5399 
5400 	allcpus = alloc_percpu(struct raid5_percpu);
5401 	if (!allcpus)
5402 		return -ENOMEM;
5403 	conf->percpu = allcpus;
5404 
5405 	get_online_cpus();
5406 	err = 0;
5407 	for_each_present_cpu(cpu) {
5408 		if (conf->level == 6) {
5409 			spare_page = alloc_page(GFP_KERNEL);
5410 			if (!spare_page) {
5411 				err = -ENOMEM;
5412 				break;
5413 			}
5414 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5415 		}
5416 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5417 		if (!scribble) {
5418 			err = -ENOMEM;
5419 			break;
5420 		}
5421 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5422 	}
5423 #ifdef CONFIG_HOTPLUG_CPU
5424 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5425 	conf->cpu_notify.priority = 0;
5426 	if (err == 0)
5427 		err = register_cpu_notifier(&conf->cpu_notify);
5428 #endif
5429 	put_online_cpus();
5430 
5431 	return err;
5432 }
5433 
5434 static struct r5conf *setup_conf(struct mddev *mddev)
5435 {
5436 	struct r5conf *conf;
5437 	int raid_disk, memory, max_disks;
5438 	struct md_rdev *rdev;
5439 	struct disk_info *disk;
5440 	char pers_name[6];
5441 
5442 	if (mddev->new_level != 5
5443 	    && mddev->new_level != 4
5444 	    && mddev->new_level != 6) {
5445 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5446 		       mdname(mddev), mddev->new_level);
5447 		return ERR_PTR(-EIO);
5448 	}
5449 	if ((mddev->new_level == 5
5450 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5451 	    (mddev->new_level == 6
5452 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5453 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5454 		       mdname(mddev), mddev->new_layout);
5455 		return ERR_PTR(-EIO);
5456 	}
5457 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5458 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5459 		       mdname(mddev), mddev->raid_disks);
5460 		return ERR_PTR(-EINVAL);
5461 	}
5462 
5463 	if (!mddev->new_chunk_sectors ||
5464 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5465 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5466 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5467 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5468 		return ERR_PTR(-EINVAL);
5469 	}
5470 
5471 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5472 	if (conf == NULL)
5473 		goto abort;
5474 	/* Don't enable multi-threading by default*/
5475 	if (alloc_thread_groups(conf, 0))
5476 		goto abort;
5477 	spin_lock_init(&conf->device_lock);
5478 	seqcount_init(&conf->gen_lock);
5479 	init_waitqueue_head(&conf->wait_for_stripe);
5480 	init_waitqueue_head(&conf->wait_for_overlap);
5481 	INIT_LIST_HEAD(&conf->handle_list);
5482 	INIT_LIST_HEAD(&conf->hold_list);
5483 	INIT_LIST_HEAD(&conf->delayed_list);
5484 	INIT_LIST_HEAD(&conf->bitmap_list);
5485 	INIT_LIST_HEAD(&conf->inactive_list);
5486 	init_llist_head(&conf->released_stripes);
5487 	atomic_set(&conf->active_stripes, 0);
5488 	atomic_set(&conf->preread_active_stripes, 0);
5489 	atomic_set(&conf->active_aligned_reads, 0);
5490 	conf->bypass_threshold = BYPASS_THRESHOLD;
5491 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5492 
5493 	conf->raid_disks = mddev->raid_disks;
5494 	if (mddev->reshape_position == MaxSector)
5495 		conf->previous_raid_disks = mddev->raid_disks;
5496 	else
5497 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5498 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5499 	conf->scribble_len = scribble_len(max_disks);
5500 
5501 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5502 			      GFP_KERNEL);
5503 	if (!conf->disks)
5504 		goto abort;
5505 
5506 	conf->mddev = mddev;
5507 
5508 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5509 		goto abort;
5510 
5511 	conf->level = mddev->new_level;
5512 	if (raid5_alloc_percpu(conf) != 0)
5513 		goto abort;
5514 
5515 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5516 
5517 	rdev_for_each(rdev, mddev) {
5518 		raid_disk = rdev->raid_disk;
5519 		if (raid_disk >= max_disks
5520 		    || raid_disk < 0)
5521 			continue;
5522 		disk = conf->disks + raid_disk;
5523 
5524 		if (test_bit(Replacement, &rdev->flags)) {
5525 			if (disk->replacement)
5526 				goto abort;
5527 			disk->replacement = rdev;
5528 		} else {
5529 			if (disk->rdev)
5530 				goto abort;
5531 			disk->rdev = rdev;
5532 		}
5533 
5534 		if (test_bit(In_sync, &rdev->flags)) {
5535 			char b[BDEVNAME_SIZE];
5536 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5537 			       " disk %d\n",
5538 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5539 		} else if (rdev->saved_raid_disk != raid_disk)
5540 			/* Cannot rely on bitmap to complete recovery */
5541 			conf->fullsync = 1;
5542 	}
5543 
5544 	conf->chunk_sectors = mddev->new_chunk_sectors;
5545 	conf->level = mddev->new_level;
5546 	if (conf->level == 6)
5547 		conf->max_degraded = 2;
5548 	else
5549 		conf->max_degraded = 1;
5550 	conf->algorithm = mddev->new_layout;
5551 	conf->max_nr_stripes = NR_STRIPES;
5552 	conf->reshape_progress = mddev->reshape_position;
5553 	if (conf->reshape_progress != MaxSector) {
5554 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5555 		conf->prev_algo = mddev->layout;
5556 	}
5557 
5558 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5559 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5560 	if (grow_stripes(conf, conf->max_nr_stripes)) {
5561 		printk(KERN_ERR
5562 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5563 		       mdname(mddev), memory);
5564 		goto abort;
5565 	} else
5566 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5567 		       mdname(mddev), memory);
5568 
5569 	sprintf(pers_name, "raid%d", mddev->new_level);
5570 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5571 	if (!conf->thread) {
5572 		printk(KERN_ERR
5573 		       "md/raid:%s: couldn't allocate thread.\n",
5574 		       mdname(mddev));
5575 		goto abort;
5576 	}
5577 
5578 	return conf;
5579 
5580  abort:
5581 	if (conf) {
5582 		free_conf(conf);
5583 		return ERR_PTR(-EIO);
5584 	} else
5585 		return ERR_PTR(-ENOMEM);
5586 }
5587 
5588 
5589 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5590 {
5591 	switch (algo) {
5592 	case ALGORITHM_PARITY_0:
5593 		if (raid_disk < max_degraded)
5594 			return 1;
5595 		break;
5596 	case ALGORITHM_PARITY_N:
5597 		if (raid_disk >= raid_disks - max_degraded)
5598 			return 1;
5599 		break;
5600 	case ALGORITHM_PARITY_0_6:
5601 		if (raid_disk == 0 ||
5602 		    raid_disk == raid_disks - 1)
5603 			return 1;
5604 		break;
5605 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5606 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5607 	case ALGORITHM_LEFT_SYMMETRIC_6:
5608 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5609 		if (raid_disk == raid_disks - 1)
5610 			return 1;
5611 	}
5612 	return 0;
5613 }
5614 
5615 static int run(struct mddev *mddev)
5616 {
5617 	struct r5conf *conf;
5618 	int working_disks = 0;
5619 	int dirty_parity_disks = 0;
5620 	struct md_rdev *rdev;
5621 	sector_t reshape_offset = 0;
5622 	int i;
5623 	long long min_offset_diff = 0;
5624 	int first = 1;
5625 
5626 	if (mddev->recovery_cp != MaxSector)
5627 		printk(KERN_NOTICE "md/raid:%s: not clean"
5628 		       " -- starting background reconstruction\n",
5629 		       mdname(mddev));
5630 
5631 	rdev_for_each(rdev, mddev) {
5632 		long long diff;
5633 		if (rdev->raid_disk < 0)
5634 			continue;
5635 		diff = (rdev->new_data_offset - rdev->data_offset);
5636 		if (first) {
5637 			min_offset_diff = diff;
5638 			first = 0;
5639 		} else if (mddev->reshape_backwards &&
5640 			 diff < min_offset_diff)
5641 			min_offset_diff = diff;
5642 		else if (!mddev->reshape_backwards &&
5643 			 diff > min_offset_diff)
5644 			min_offset_diff = diff;
5645 	}
5646 
5647 	if (mddev->reshape_position != MaxSector) {
5648 		/* Check that we can continue the reshape.
5649 		 * Difficulties arise if the stripe we would write to
5650 		 * next is at or after the stripe we would read from next.
5651 		 * For a reshape that changes the number of devices, this
5652 		 * is only possible for a very short time, and mdadm makes
5653 		 * sure that time appears to have past before assembling
5654 		 * the array.  So we fail if that time hasn't passed.
5655 		 * For a reshape that keeps the number of devices the same
5656 		 * mdadm must be monitoring the reshape can keeping the
5657 		 * critical areas read-only and backed up.  It will start
5658 		 * the array in read-only mode, so we check for that.
5659 		 */
5660 		sector_t here_new, here_old;
5661 		int old_disks;
5662 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5663 
5664 		if (mddev->new_level != mddev->level) {
5665 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5666 			       "required - aborting.\n",
5667 			       mdname(mddev));
5668 			return -EINVAL;
5669 		}
5670 		old_disks = mddev->raid_disks - mddev->delta_disks;
5671 		/* reshape_position must be on a new-stripe boundary, and one
5672 		 * further up in new geometry must map after here in old
5673 		 * geometry.
5674 		 */
5675 		here_new = mddev->reshape_position;
5676 		if (sector_div(here_new, mddev->new_chunk_sectors *
5677 			       (mddev->raid_disks - max_degraded))) {
5678 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5679 			       "on a stripe boundary\n", mdname(mddev));
5680 			return -EINVAL;
5681 		}
5682 		reshape_offset = here_new * mddev->new_chunk_sectors;
5683 		/* here_new is the stripe we will write to */
5684 		here_old = mddev->reshape_position;
5685 		sector_div(here_old, mddev->chunk_sectors *
5686 			   (old_disks-max_degraded));
5687 		/* here_old is the first stripe that we might need to read
5688 		 * from */
5689 		if (mddev->delta_disks == 0) {
5690 			if ((here_new * mddev->new_chunk_sectors !=
5691 			     here_old * mddev->chunk_sectors)) {
5692 				printk(KERN_ERR "md/raid:%s: reshape position is"
5693 				       " confused - aborting\n", mdname(mddev));
5694 				return -EINVAL;
5695 			}
5696 			/* We cannot be sure it is safe to start an in-place
5697 			 * reshape.  It is only safe if user-space is monitoring
5698 			 * and taking constant backups.
5699 			 * mdadm always starts a situation like this in
5700 			 * readonly mode so it can take control before
5701 			 * allowing any writes.  So just check for that.
5702 			 */
5703 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5704 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5705 				/* not really in-place - so OK */;
5706 			else if (mddev->ro == 0) {
5707 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5708 				       "must be started in read-only mode "
5709 				       "- aborting\n",
5710 				       mdname(mddev));
5711 				return -EINVAL;
5712 			}
5713 		} else if (mddev->reshape_backwards
5714 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5715 		       here_old * mddev->chunk_sectors)
5716 		    : (here_new * mddev->new_chunk_sectors >=
5717 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5718 			/* Reading from the same stripe as writing to - bad */
5719 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5720 			       "auto-recovery - aborting.\n",
5721 			       mdname(mddev));
5722 			return -EINVAL;
5723 		}
5724 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5725 		       mdname(mddev));
5726 		/* OK, we should be able to continue; */
5727 	} else {
5728 		BUG_ON(mddev->level != mddev->new_level);
5729 		BUG_ON(mddev->layout != mddev->new_layout);
5730 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5731 		BUG_ON(mddev->delta_disks != 0);
5732 	}
5733 
5734 	if (mddev->private == NULL)
5735 		conf = setup_conf(mddev);
5736 	else
5737 		conf = mddev->private;
5738 
5739 	if (IS_ERR(conf))
5740 		return PTR_ERR(conf);
5741 
5742 	conf->min_offset_diff = min_offset_diff;
5743 	mddev->thread = conf->thread;
5744 	conf->thread = NULL;
5745 	mddev->private = conf;
5746 
5747 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5748 	     i++) {
5749 		rdev = conf->disks[i].rdev;
5750 		if (!rdev && conf->disks[i].replacement) {
5751 			/* The replacement is all we have yet */
5752 			rdev = conf->disks[i].replacement;
5753 			conf->disks[i].replacement = NULL;
5754 			clear_bit(Replacement, &rdev->flags);
5755 			conf->disks[i].rdev = rdev;
5756 		}
5757 		if (!rdev)
5758 			continue;
5759 		if (conf->disks[i].replacement &&
5760 		    conf->reshape_progress != MaxSector) {
5761 			/* replacements and reshape simply do not mix. */
5762 			printk(KERN_ERR "md: cannot handle concurrent "
5763 			       "replacement and reshape.\n");
5764 			goto abort;
5765 		}
5766 		if (test_bit(In_sync, &rdev->flags)) {
5767 			working_disks++;
5768 			continue;
5769 		}
5770 		/* This disc is not fully in-sync.  However if it
5771 		 * just stored parity (beyond the recovery_offset),
5772 		 * when we don't need to be concerned about the
5773 		 * array being dirty.
5774 		 * When reshape goes 'backwards', we never have
5775 		 * partially completed devices, so we only need
5776 		 * to worry about reshape going forwards.
5777 		 */
5778 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5779 		if (mddev->major_version == 0 &&
5780 		    mddev->minor_version > 90)
5781 			rdev->recovery_offset = reshape_offset;
5782 
5783 		if (rdev->recovery_offset < reshape_offset) {
5784 			/* We need to check old and new layout */
5785 			if (!only_parity(rdev->raid_disk,
5786 					 conf->algorithm,
5787 					 conf->raid_disks,
5788 					 conf->max_degraded))
5789 				continue;
5790 		}
5791 		if (!only_parity(rdev->raid_disk,
5792 				 conf->prev_algo,
5793 				 conf->previous_raid_disks,
5794 				 conf->max_degraded))
5795 			continue;
5796 		dirty_parity_disks++;
5797 	}
5798 
5799 	/*
5800 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5801 	 */
5802 	mddev->degraded = calc_degraded(conf);
5803 
5804 	if (has_failed(conf)) {
5805 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5806 			" (%d/%d failed)\n",
5807 			mdname(mddev), mddev->degraded, conf->raid_disks);
5808 		goto abort;
5809 	}
5810 
5811 	/* device size must be a multiple of chunk size */
5812 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5813 	mddev->resync_max_sectors = mddev->dev_sectors;
5814 
5815 	if (mddev->degraded > dirty_parity_disks &&
5816 	    mddev->recovery_cp != MaxSector) {
5817 		if (mddev->ok_start_degraded)
5818 			printk(KERN_WARNING
5819 			       "md/raid:%s: starting dirty degraded array"
5820 			       " - data corruption possible.\n",
5821 			       mdname(mddev));
5822 		else {
5823 			printk(KERN_ERR
5824 			       "md/raid:%s: cannot start dirty degraded array.\n",
5825 			       mdname(mddev));
5826 			goto abort;
5827 		}
5828 	}
5829 
5830 	if (mddev->degraded == 0)
5831 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5832 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5833 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5834 		       mddev->new_layout);
5835 	else
5836 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5837 		       " out of %d devices, algorithm %d\n",
5838 		       mdname(mddev), conf->level,
5839 		       mddev->raid_disks - mddev->degraded,
5840 		       mddev->raid_disks, mddev->new_layout);
5841 
5842 	print_raid5_conf(conf);
5843 
5844 	if (conf->reshape_progress != MaxSector) {
5845 		conf->reshape_safe = conf->reshape_progress;
5846 		atomic_set(&conf->reshape_stripes, 0);
5847 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5848 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5849 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5850 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5851 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5852 							"reshape");
5853 	}
5854 
5855 
5856 	/* Ok, everything is just fine now */
5857 	if (mddev->to_remove == &raid5_attrs_group)
5858 		mddev->to_remove = NULL;
5859 	else if (mddev->kobj.sd &&
5860 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5861 		printk(KERN_WARNING
5862 		       "raid5: failed to create sysfs attributes for %s\n",
5863 		       mdname(mddev));
5864 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5865 
5866 	if (mddev->queue) {
5867 		int chunk_size;
5868 		bool discard_supported = true;
5869 		/* read-ahead size must cover two whole stripes, which
5870 		 * is 2 * (datadisks) * chunksize where 'n' is the
5871 		 * number of raid devices
5872 		 */
5873 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5874 		int stripe = data_disks *
5875 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5876 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5877 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5878 
5879 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5880 
5881 		mddev->queue->backing_dev_info.congested_data = mddev;
5882 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5883 
5884 		chunk_size = mddev->chunk_sectors << 9;
5885 		blk_queue_io_min(mddev->queue, chunk_size);
5886 		blk_queue_io_opt(mddev->queue, chunk_size *
5887 				 (conf->raid_disks - conf->max_degraded));
5888 		/*
5889 		 * We can only discard a whole stripe. It doesn't make sense to
5890 		 * discard data disk but write parity disk
5891 		 */
5892 		stripe = stripe * PAGE_SIZE;
5893 		/* Round up to power of 2, as discard handling
5894 		 * currently assumes that */
5895 		while ((stripe-1) & stripe)
5896 			stripe = (stripe | (stripe-1)) + 1;
5897 		mddev->queue->limits.discard_alignment = stripe;
5898 		mddev->queue->limits.discard_granularity = stripe;
5899 		/*
5900 		 * unaligned part of discard request will be ignored, so can't
5901 		 * guarantee discard_zerors_data
5902 		 */
5903 		mddev->queue->limits.discard_zeroes_data = 0;
5904 
5905 		blk_queue_max_write_same_sectors(mddev->queue, 0);
5906 
5907 		rdev_for_each(rdev, mddev) {
5908 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5909 					  rdev->data_offset << 9);
5910 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5911 					  rdev->new_data_offset << 9);
5912 			/*
5913 			 * discard_zeroes_data is required, otherwise data
5914 			 * could be lost. Consider a scenario: discard a stripe
5915 			 * (the stripe could be inconsistent if
5916 			 * discard_zeroes_data is 0); write one disk of the
5917 			 * stripe (the stripe could be inconsistent again
5918 			 * depending on which disks are used to calculate
5919 			 * parity); the disk is broken; The stripe data of this
5920 			 * disk is lost.
5921 			 */
5922 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5923 			    !bdev_get_queue(rdev->bdev)->
5924 						limits.discard_zeroes_data)
5925 				discard_supported = false;
5926 		}
5927 
5928 		if (discard_supported &&
5929 		   mddev->queue->limits.max_discard_sectors >= stripe &&
5930 		   mddev->queue->limits.discard_granularity >= stripe)
5931 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5932 						mddev->queue);
5933 		else
5934 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5935 						mddev->queue);
5936 	}
5937 
5938 	return 0;
5939 abort:
5940 	md_unregister_thread(&mddev->thread);
5941 	print_raid5_conf(conf);
5942 	free_conf(conf);
5943 	mddev->private = NULL;
5944 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5945 	return -EIO;
5946 }
5947 
5948 static int stop(struct mddev *mddev)
5949 {
5950 	struct r5conf *conf = mddev->private;
5951 
5952 	md_unregister_thread(&mddev->thread);
5953 	if (mddev->queue)
5954 		mddev->queue->backing_dev_info.congested_fn = NULL;
5955 	free_conf(conf);
5956 	mddev->private = NULL;
5957 	mddev->to_remove = &raid5_attrs_group;
5958 	return 0;
5959 }
5960 
5961 static void status(struct seq_file *seq, struct mddev *mddev)
5962 {
5963 	struct r5conf *conf = mddev->private;
5964 	int i;
5965 
5966 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5967 		mddev->chunk_sectors / 2, mddev->layout);
5968 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5969 	for (i = 0; i < conf->raid_disks; i++)
5970 		seq_printf (seq, "%s",
5971 			       conf->disks[i].rdev &&
5972 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5973 	seq_printf (seq, "]");
5974 }
5975 
5976 static void print_raid5_conf (struct r5conf *conf)
5977 {
5978 	int i;
5979 	struct disk_info *tmp;
5980 
5981 	printk(KERN_DEBUG "RAID conf printout:\n");
5982 	if (!conf) {
5983 		printk("(conf==NULL)\n");
5984 		return;
5985 	}
5986 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5987 	       conf->raid_disks,
5988 	       conf->raid_disks - conf->mddev->degraded);
5989 
5990 	for (i = 0; i < conf->raid_disks; i++) {
5991 		char b[BDEVNAME_SIZE];
5992 		tmp = conf->disks + i;
5993 		if (tmp->rdev)
5994 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5995 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5996 			       bdevname(tmp->rdev->bdev, b));
5997 	}
5998 }
5999 
6000 static int raid5_spare_active(struct mddev *mddev)
6001 {
6002 	int i;
6003 	struct r5conf *conf = mddev->private;
6004 	struct disk_info *tmp;
6005 	int count = 0;
6006 	unsigned long flags;
6007 
6008 	for (i = 0; i < conf->raid_disks; i++) {
6009 		tmp = conf->disks + i;
6010 		if (tmp->replacement
6011 		    && tmp->replacement->recovery_offset == MaxSector
6012 		    && !test_bit(Faulty, &tmp->replacement->flags)
6013 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6014 			/* Replacement has just become active. */
6015 			if (!tmp->rdev
6016 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6017 				count++;
6018 			if (tmp->rdev) {
6019 				/* Replaced device not technically faulty,
6020 				 * but we need to be sure it gets removed
6021 				 * and never re-added.
6022 				 */
6023 				set_bit(Faulty, &tmp->rdev->flags);
6024 				sysfs_notify_dirent_safe(
6025 					tmp->rdev->sysfs_state);
6026 			}
6027 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6028 		} else if (tmp->rdev
6029 		    && tmp->rdev->recovery_offset == MaxSector
6030 		    && !test_bit(Faulty, &tmp->rdev->flags)
6031 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6032 			count++;
6033 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6034 		}
6035 	}
6036 	spin_lock_irqsave(&conf->device_lock, flags);
6037 	mddev->degraded = calc_degraded(conf);
6038 	spin_unlock_irqrestore(&conf->device_lock, flags);
6039 	print_raid5_conf(conf);
6040 	return count;
6041 }
6042 
6043 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6044 {
6045 	struct r5conf *conf = mddev->private;
6046 	int err = 0;
6047 	int number = rdev->raid_disk;
6048 	struct md_rdev **rdevp;
6049 	struct disk_info *p = conf->disks + number;
6050 
6051 	print_raid5_conf(conf);
6052 	if (rdev == p->rdev)
6053 		rdevp = &p->rdev;
6054 	else if (rdev == p->replacement)
6055 		rdevp = &p->replacement;
6056 	else
6057 		return 0;
6058 
6059 	if (number >= conf->raid_disks &&
6060 	    conf->reshape_progress == MaxSector)
6061 		clear_bit(In_sync, &rdev->flags);
6062 
6063 	if (test_bit(In_sync, &rdev->flags) ||
6064 	    atomic_read(&rdev->nr_pending)) {
6065 		err = -EBUSY;
6066 		goto abort;
6067 	}
6068 	/* Only remove non-faulty devices if recovery
6069 	 * isn't possible.
6070 	 */
6071 	if (!test_bit(Faulty, &rdev->flags) &&
6072 	    mddev->recovery_disabled != conf->recovery_disabled &&
6073 	    !has_failed(conf) &&
6074 	    (!p->replacement || p->replacement == rdev) &&
6075 	    number < conf->raid_disks) {
6076 		err = -EBUSY;
6077 		goto abort;
6078 	}
6079 	*rdevp = NULL;
6080 	synchronize_rcu();
6081 	if (atomic_read(&rdev->nr_pending)) {
6082 		/* lost the race, try later */
6083 		err = -EBUSY;
6084 		*rdevp = rdev;
6085 	} else if (p->replacement) {
6086 		/* We must have just cleared 'rdev' */
6087 		p->rdev = p->replacement;
6088 		clear_bit(Replacement, &p->replacement->flags);
6089 		smp_mb(); /* Make sure other CPUs may see both as identical
6090 			   * but will never see neither - if they are careful
6091 			   */
6092 		p->replacement = NULL;
6093 		clear_bit(WantReplacement, &rdev->flags);
6094 	} else
6095 		/* We might have just removed the Replacement as faulty-
6096 		 * clear the bit just in case
6097 		 */
6098 		clear_bit(WantReplacement, &rdev->flags);
6099 abort:
6100 
6101 	print_raid5_conf(conf);
6102 	return err;
6103 }
6104 
6105 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6106 {
6107 	struct r5conf *conf = mddev->private;
6108 	int err = -EEXIST;
6109 	int disk;
6110 	struct disk_info *p;
6111 	int first = 0;
6112 	int last = conf->raid_disks - 1;
6113 
6114 	if (mddev->recovery_disabled == conf->recovery_disabled)
6115 		return -EBUSY;
6116 
6117 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
6118 		/* no point adding a device */
6119 		return -EINVAL;
6120 
6121 	if (rdev->raid_disk >= 0)
6122 		first = last = rdev->raid_disk;
6123 
6124 	/*
6125 	 * find the disk ... but prefer rdev->saved_raid_disk
6126 	 * if possible.
6127 	 */
6128 	if (rdev->saved_raid_disk >= 0 &&
6129 	    rdev->saved_raid_disk >= first &&
6130 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
6131 		first = rdev->saved_raid_disk;
6132 
6133 	for (disk = first; disk <= last; disk++) {
6134 		p = conf->disks + disk;
6135 		if (p->rdev == NULL) {
6136 			clear_bit(In_sync, &rdev->flags);
6137 			rdev->raid_disk = disk;
6138 			err = 0;
6139 			if (rdev->saved_raid_disk != disk)
6140 				conf->fullsync = 1;
6141 			rcu_assign_pointer(p->rdev, rdev);
6142 			goto out;
6143 		}
6144 	}
6145 	for (disk = first; disk <= last; disk++) {
6146 		p = conf->disks + disk;
6147 		if (test_bit(WantReplacement, &p->rdev->flags) &&
6148 		    p->replacement == NULL) {
6149 			clear_bit(In_sync, &rdev->flags);
6150 			set_bit(Replacement, &rdev->flags);
6151 			rdev->raid_disk = disk;
6152 			err = 0;
6153 			conf->fullsync = 1;
6154 			rcu_assign_pointer(p->replacement, rdev);
6155 			break;
6156 		}
6157 	}
6158 out:
6159 	print_raid5_conf(conf);
6160 	return err;
6161 }
6162 
6163 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6164 {
6165 	/* no resync is happening, and there is enough space
6166 	 * on all devices, so we can resize.
6167 	 * We need to make sure resync covers any new space.
6168 	 * If the array is shrinking we should possibly wait until
6169 	 * any io in the removed space completes, but it hardly seems
6170 	 * worth it.
6171 	 */
6172 	sector_t newsize;
6173 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6174 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6175 	if (mddev->external_size &&
6176 	    mddev->array_sectors > newsize)
6177 		return -EINVAL;
6178 	if (mddev->bitmap) {
6179 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6180 		if (ret)
6181 			return ret;
6182 	}
6183 	md_set_array_sectors(mddev, newsize);
6184 	set_capacity(mddev->gendisk, mddev->array_sectors);
6185 	revalidate_disk(mddev->gendisk);
6186 	if (sectors > mddev->dev_sectors &&
6187 	    mddev->recovery_cp > mddev->dev_sectors) {
6188 		mddev->recovery_cp = mddev->dev_sectors;
6189 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6190 	}
6191 	mddev->dev_sectors = sectors;
6192 	mddev->resync_max_sectors = sectors;
6193 	return 0;
6194 }
6195 
6196 static int check_stripe_cache(struct mddev *mddev)
6197 {
6198 	/* Can only proceed if there are plenty of stripe_heads.
6199 	 * We need a minimum of one full stripe,, and for sensible progress
6200 	 * it is best to have about 4 times that.
6201 	 * If we require 4 times, then the default 256 4K stripe_heads will
6202 	 * allow for chunk sizes up to 256K, which is probably OK.
6203 	 * If the chunk size is greater, user-space should request more
6204 	 * stripe_heads first.
6205 	 */
6206 	struct r5conf *conf = mddev->private;
6207 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6208 	    > conf->max_nr_stripes ||
6209 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6210 	    > conf->max_nr_stripes) {
6211 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6212 		       mdname(mddev),
6213 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6214 			/ STRIPE_SIZE)*4);
6215 		return 0;
6216 	}
6217 	return 1;
6218 }
6219 
6220 static int check_reshape(struct mddev *mddev)
6221 {
6222 	struct r5conf *conf = mddev->private;
6223 
6224 	if (mddev->delta_disks == 0 &&
6225 	    mddev->new_layout == mddev->layout &&
6226 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
6227 		return 0; /* nothing to do */
6228 	if (has_failed(conf))
6229 		return -EINVAL;
6230 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6231 		/* We might be able to shrink, but the devices must
6232 		 * be made bigger first.
6233 		 * For raid6, 4 is the minimum size.
6234 		 * Otherwise 2 is the minimum
6235 		 */
6236 		int min = 2;
6237 		if (mddev->level == 6)
6238 			min = 4;
6239 		if (mddev->raid_disks + mddev->delta_disks < min)
6240 			return -EINVAL;
6241 	}
6242 
6243 	if (!check_stripe_cache(mddev))
6244 		return -ENOSPC;
6245 
6246 	return resize_stripes(conf, (conf->previous_raid_disks
6247 				     + mddev->delta_disks));
6248 }
6249 
6250 static int raid5_start_reshape(struct mddev *mddev)
6251 {
6252 	struct r5conf *conf = mddev->private;
6253 	struct md_rdev *rdev;
6254 	int spares = 0;
6255 	unsigned long flags;
6256 
6257 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6258 		return -EBUSY;
6259 
6260 	if (!check_stripe_cache(mddev))
6261 		return -ENOSPC;
6262 
6263 	if (has_failed(conf))
6264 		return -EINVAL;
6265 
6266 	rdev_for_each(rdev, mddev) {
6267 		if (!test_bit(In_sync, &rdev->flags)
6268 		    && !test_bit(Faulty, &rdev->flags))
6269 			spares++;
6270 	}
6271 
6272 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6273 		/* Not enough devices even to make a degraded array
6274 		 * of that size
6275 		 */
6276 		return -EINVAL;
6277 
6278 	/* Refuse to reduce size of the array.  Any reductions in
6279 	 * array size must be through explicit setting of array_size
6280 	 * attribute.
6281 	 */
6282 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6283 	    < mddev->array_sectors) {
6284 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
6285 		       "before number of disks\n", mdname(mddev));
6286 		return -EINVAL;
6287 	}
6288 
6289 	atomic_set(&conf->reshape_stripes, 0);
6290 	spin_lock_irq(&conf->device_lock);
6291 	write_seqcount_begin(&conf->gen_lock);
6292 	conf->previous_raid_disks = conf->raid_disks;
6293 	conf->raid_disks += mddev->delta_disks;
6294 	conf->prev_chunk_sectors = conf->chunk_sectors;
6295 	conf->chunk_sectors = mddev->new_chunk_sectors;
6296 	conf->prev_algo = conf->algorithm;
6297 	conf->algorithm = mddev->new_layout;
6298 	conf->generation++;
6299 	/* Code that selects data_offset needs to see the generation update
6300 	 * if reshape_progress has been set - so a memory barrier needed.
6301 	 */
6302 	smp_mb();
6303 	if (mddev->reshape_backwards)
6304 		conf->reshape_progress = raid5_size(mddev, 0, 0);
6305 	else
6306 		conf->reshape_progress = 0;
6307 	conf->reshape_safe = conf->reshape_progress;
6308 	write_seqcount_end(&conf->gen_lock);
6309 	spin_unlock_irq(&conf->device_lock);
6310 
6311 	/* Now make sure any requests that proceeded on the assumption
6312 	 * the reshape wasn't running - like Discard or Read - have
6313 	 * completed.
6314 	 */
6315 	mddev_suspend(mddev);
6316 	mddev_resume(mddev);
6317 
6318 	/* Add some new drives, as many as will fit.
6319 	 * We know there are enough to make the newly sized array work.
6320 	 * Don't add devices if we are reducing the number of
6321 	 * devices in the array.  This is because it is not possible
6322 	 * to correctly record the "partially reconstructed" state of
6323 	 * such devices during the reshape and confusion could result.
6324 	 */
6325 	if (mddev->delta_disks >= 0) {
6326 		rdev_for_each(rdev, mddev)
6327 			if (rdev->raid_disk < 0 &&
6328 			    !test_bit(Faulty, &rdev->flags)) {
6329 				if (raid5_add_disk(mddev, rdev) == 0) {
6330 					if (rdev->raid_disk
6331 					    >= conf->previous_raid_disks)
6332 						set_bit(In_sync, &rdev->flags);
6333 					else
6334 						rdev->recovery_offset = 0;
6335 
6336 					if (sysfs_link_rdev(mddev, rdev))
6337 						/* Failure here is OK */;
6338 				}
6339 			} else if (rdev->raid_disk >= conf->previous_raid_disks
6340 				   && !test_bit(Faulty, &rdev->flags)) {
6341 				/* This is a spare that was manually added */
6342 				set_bit(In_sync, &rdev->flags);
6343 			}
6344 
6345 		/* When a reshape changes the number of devices,
6346 		 * ->degraded is measured against the larger of the
6347 		 * pre and post number of devices.
6348 		 */
6349 		spin_lock_irqsave(&conf->device_lock, flags);
6350 		mddev->degraded = calc_degraded(conf);
6351 		spin_unlock_irqrestore(&conf->device_lock, flags);
6352 	}
6353 	mddev->raid_disks = conf->raid_disks;
6354 	mddev->reshape_position = conf->reshape_progress;
6355 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6356 
6357 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6358 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6359 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6360 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6361 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6362 						"reshape");
6363 	if (!mddev->sync_thread) {
6364 		mddev->recovery = 0;
6365 		spin_lock_irq(&conf->device_lock);
6366 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6367 		rdev_for_each(rdev, mddev)
6368 			rdev->new_data_offset = rdev->data_offset;
6369 		smp_wmb();
6370 		conf->reshape_progress = MaxSector;
6371 		mddev->reshape_position = MaxSector;
6372 		spin_unlock_irq(&conf->device_lock);
6373 		return -EAGAIN;
6374 	}
6375 	conf->reshape_checkpoint = jiffies;
6376 	md_wakeup_thread(mddev->sync_thread);
6377 	md_new_event(mddev);
6378 	return 0;
6379 }
6380 
6381 /* This is called from the reshape thread and should make any
6382  * changes needed in 'conf'
6383  */
6384 static void end_reshape(struct r5conf *conf)
6385 {
6386 
6387 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6388 		struct md_rdev *rdev;
6389 
6390 		spin_lock_irq(&conf->device_lock);
6391 		conf->previous_raid_disks = conf->raid_disks;
6392 		rdev_for_each(rdev, conf->mddev)
6393 			rdev->data_offset = rdev->new_data_offset;
6394 		smp_wmb();
6395 		conf->reshape_progress = MaxSector;
6396 		spin_unlock_irq(&conf->device_lock);
6397 		wake_up(&conf->wait_for_overlap);
6398 
6399 		/* read-ahead size must cover two whole stripes, which is
6400 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6401 		 */
6402 		if (conf->mddev->queue) {
6403 			int data_disks = conf->raid_disks - conf->max_degraded;
6404 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6405 						   / PAGE_SIZE);
6406 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6407 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6408 		}
6409 	}
6410 }
6411 
6412 /* This is called from the raid5d thread with mddev_lock held.
6413  * It makes config changes to the device.
6414  */
6415 static void raid5_finish_reshape(struct mddev *mddev)
6416 {
6417 	struct r5conf *conf = mddev->private;
6418 
6419 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6420 
6421 		if (mddev->delta_disks > 0) {
6422 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6423 			set_capacity(mddev->gendisk, mddev->array_sectors);
6424 			revalidate_disk(mddev->gendisk);
6425 		} else {
6426 			int d;
6427 			spin_lock_irq(&conf->device_lock);
6428 			mddev->degraded = calc_degraded(conf);
6429 			spin_unlock_irq(&conf->device_lock);
6430 			for (d = conf->raid_disks ;
6431 			     d < conf->raid_disks - mddev->delta_disks;
6432 			     d++) {
6433 				struct md_rdev *rdev = conf->disks[d].rdev;
6434 				if (rdev)
6435 					clear_bit(In_sync, &rdev->flags);
6436 				rdev = conf->disks[d].replacement;
6437 				if (rdev)
6438 					clear_bit(In_sync, &rdev->flags);
6439 			}
6440 		}
6441 		mddev->layout = conf->algorithm;
6442 		mddev->chunk_sectors = conf->chunk_sectors;
6443 		mddev->reshape_position = MaxSector;
6444 		mddev->delta_disks = 0;
6445 		mddev->reshape_backwards = 0;
6446 	}
6447 }
6448 
6449 static void raid5_quiesce(struct mddev *mddev, int state)
6450 {
6451 	struct r5conf *conf = mddev->private;
6452 
6453 	switch(state) {
6454 	case 2: /* resume for a suspend */
6455 		wake_up(&conf->wait_for_overlap);
6456 		break;
6457 
6458 	case 1: /* stop all writes */
6459 		spin_lock_irq(&conf->device_lock);
6460 		/* '2' tells resync/reshape to pause so that all
6461 		 * active stripes can drain
6462 		 */
6463 		conf->quiesce = 2;
6464 		wait_event_lock_irq(conf->wait_for_stripe,
6465 				    atomic_read(&conf->active_stripes) == 0 &&
6466 				    atomic_read(&conf->active_aligned_reads) == 0,
6467 				    conf->device_lock);
6468 		conf->quiesce = 1;
6469 		spin_unlock_irq(&conf->device_lock);
6470 		/* allow reshape to continue */
6471 		wake_up(&conf->wait_for_overlap);
6472 		break;
6473 
6474 	case 0: /* re-enable writes */
6475 		spin_lock_irq(&conf->device_lock);
6476 		conf->quiesce = 0;
6477 		wake_up(&conf->wait_for_stripe);
6478 		wake_up(&conf->wait_for_overlap);
6479 		spin_unlock_irq(&conf->device_lock);
6480 		break;
6481 	}
6482 }
6483 
6484 
6485 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6486 {
6487 	struct r0conf *raid0_conf = mddev->private;
6488 	sector_t sectors;
6489 
6490 	/* for raid0 takeover only one zone is supported */
6491 	if (raid0_conf->nr_strip_zones > 1) {
6492 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6493 		       mdname(mddev));
6494 		return ERR_PTR(-EINVAL);
6495 	}
6496 
6497 	sectors = raid0_conf->strip_zone[0].zone_end;
6498 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6499 	mddev->dev_sectors = sectors;
6500 	mddev->new_level = level;
6501 	mddev->new_layout = ALGORITHM_PARITY_N;
6502 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6503 	mddev->raid_disks += 1;
6504 	mddev->delta_disks = 1;
6505 	/* make sure it will be not marked as dirty */
6506 	mddev->recovery_cp = MaxSector;
6507 
6508 	return setup_conf(mddev);
6509 }
6510 
6511 
6512 static void *raid5_takeover_raid1(struct mddev *mddev)
6513 {
6514 	int chunksect;
6515 
6516 	if (mddev->raid_disks != 2 ||
6517 	    mddev->degraded > 1)
6518 		return ERR_PTR(-EINVAL);
6519 
6520 	/* Should check if there are write-behind devices? */
6521 
6522 	chunksect = 64*2; /* 64K by default */
6523 
6524 	/* The array must be an exact multiple of chunksize */
6525 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6526 		chunksect >>= 1;
6527 
6528 	if ((chunksect<<9) < STRIPE_SIZE)
6529 		/* array size does not allow a suitable chunk size */
6530 		return ERR_PTR(-EINVAL);
6531 
6532 	mddev->new_level = 5;
6533 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6534 	mddev->new_chunk_sectors = chunksect;
6535 
6536 	return setup_conf(mddev);
6537 }
6538 
6539 static void *raid5_takeover_raid6(struct mddev *mddev)
6540 {
6541 	int new_layout;
6542 
6543 	switch (mddev->layout) {
6544 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6545 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6546 		break;
6547 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6548 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6549 		break;
6550 	case ALGORITHM_LEFT_SYMMETRIC_6:
6551 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6552 		break;
6553 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6554 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6555 		break;
6556 	case ALGORITHM_PARITY_0_6:
6557 		new_layout = ALGORITHM_PARITY_0;
6558 		break;
6559 	case ALGORITHM_PARITY_N:
6560 		new_layout = ALGORITHM_PARITY_N;
6561 		break;
6562 	default:
6563 		return ERR_PTR(-EINVAL);
6564 	}
6565 	mddev->new_level = 5;
6566 	mddev->new_layout = new_layout;
6567 	mddev->delta_disks = -1;
6568 	mddev->raid_disks -= 1;
6569 	return setup_conf(mddev);
6570 }
6571 
6572 
6573 static int raid5_check_reshape(struct mddev *mddev)
6574 {
6575 	/* For a 2-drive array, the layout and chunk size can be changed
6576 	 * immediately as not restriping is needed.
6577 	 * For larger arrays we record the new value - after validation
6578 	 * to be used by a reshape pass.
6579 	 */
6580 	struct r5conf *conf = mddev->private;
6581 	int new_chunk = mddev->new_chunk_sectors;
6582 
6583 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6584 		return -EINVAL;
6585 	if (new_chunk > 0) {
6586 		if (!is_power_of_2(new_chunk))
6587 			return -EINVAL;
6588 		if (new_chunk < (PAGE_SIZE>>9))
6589 			return -EINVAL;
6590 		if (mddev->array_sectors & (new_chunk-1))
6591 			/* not factor of array size */
6592 			return -EINVAL;
6593 	}
6594 
6595 	/* They look valid */
6596 
6597 	if (mddev->raid_disks == 2) {
6598 		/* can make the change immediately */
6599 		if (mddev->new_layout >= 0) {
6600 			conf->algorithm = mddev->new_layout;
6601 			mddev->layout = mddev->new_layout;
6602 		}
6603 		if (new_chunk > 0) {
6604 			conf->chunk_sectors = new_chunk ;
6605 			mddev->chunk_sectors = new_chunk;
6606 		}
6607 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6608 		md_wakeup_thread(mddev->thread);
6609 	}
6610 	return check_reshape(mddev);
6611 }
6612 
6613 static int raid6_check_reshape(struct mddev *mddev)
6614 {
6615 	int new_chunk = mddev->new_chunk_sectors;
6616 
6617 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6618 		return -EINVAL;
6619 	if (new_chunk > 0) {
6620 		if (!is_power_of_2(new_chunk))
6621 			return -EINVAL;
6622 		if (new_chunk < (PAGE_SIZE >> 9))
6623 			return -EINVAL;
6624 		if (mddev->array_sectors & (new_chunk-1))
6625 			/* not factor of array size */
6626 			return -EINVAL;
6627 	}
6628 
6629 	/* They look valid */
6630 	return check_reshape(mddev);
6631 }
6632 
6633 static void *raid5_takeover(struct mddev *mddev)
6634 {
6635 	/* raid5 can take over:
6636 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6637 	 *  raid1 - if there are two drives.  We need to know the chunk size
6638 	 *  raid4 - trivial - just use a raid4 layout.
6639 	 *  raid6 - Providing it is a *_6 layout
6640 	 */
6641 	if (mddev->level == 0)
6642 		return raid45_takeover_raid0(mddev, 5);
6643 	if (mddev->level == 1)
6644 		return raid5_takeover_raid1(mddev);
6645 	if (mddev->level == 4) {
6646 		mddev->new_layout = ALGORITHM_PARITY_N;
6647 		mddev->new_level = 5;
6648 		return setup_conf(mddev);
6649 	}
6650 	if (mddev->level == 6)
6651 		return raid5_takeover_raid6(mddev);
6652 
6653 	return ERR_PTR(-EINVAL);
6654 }
6655 
6656 static void *raid4_takeover(struct mddev *mddev)
6657 {
6658 	/* raid4 can take over:
6659 	 *  raid0 - if there is only one strip zone
6660 	 *  raid5 - if layout is right
6661 	 */
6662 	if (mddev->level == 0)
6663 		return raid45_takeover_raid0(mddev, 4);
6664 	if (mddev->level == 5 &&
6665 	    mddev->layout == ALGORITHM_PARITY_N) {
6666 		mddev->new_layout = 0;
6667 		mddev->new_level = 4;
6668 		return setup_conf(mddev);
6669 	}
6670 	return ERR_PTR(-EINVAL);
6671 }
6672 
6673 static struct md_personality raid5_personality;
6674 
6675 static void *raid6_takeover(struct mddev *mddev)
6676 {
6677 	/* Currently can only take over a raid5.  We map the
6678 	 * personality to an equivalent raid6 personality
6679 	 * with the Q block at the end.
6680 	 */
6681 	int new_layout;
6682 
6683 	if (mddev->pers != &raid5_personality)
6684 		return ERR_PTR(-EINVAL);
6685 	if (mddev->degraded > 1)
6686 		return ERR_PTR(-EINVAL);
6687 	if (mddev->raid_disks > 253)
6688 		return ERR_PTR(-EINVAL);
6689 	if (mddev->raid_disks < 3)
6690 		return ERR_PTR(-EINVAL);
6691 
6692 	switch (mddev->layout) {
6693 	case ALGORITHM_LEFT_ASYMMETRIC:
6694 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6695 		break;
6696 	case ALGORITHM_RIGHT_ASYMMETRIC:
6697 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6698 		break;
6699 	case ALGORITHM_LEFT_SYMMETRIC:
6700 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6701 		break;
6702 	case ALGORITHM_RIGHT_SYMMETRIC:
6703 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6704 		break;
6705 	case ALGORITHM_PARITY_0:
6706 		new_layout = ALGORITHM_PARITY_0_6;
6707 		break;
6708 	case ALGORITHM_PARITY_N:
6709 		new_layout = ALGORITHM_PARITY_N;
6710 		break;
6711 	default:
6712 		return ERR_PTR(-EINVAL);
6713 	}
6714 	mddev->new_level = 6;
6715 	mddev->new_layout = new_layout;
6716 	mddev->delta_disks = 1;
6717 	mddev->raid_disks += 1;
6718 	return setup_conf(mddev);
6719 }
6720 
6721 
6722 static struct md_personality raid6_personality =
6723 {
6724 	.name		= "raid6",
6725 	.level		= 6,
6726 	.owner		= THIS_MODULE,
6727 	.make_request	= make_request,
6728 	.run		= run,
6729 	.stop		= stop,
6730 	.status		= status,
6731 	.error_handler	= error,
6732 	.hot_add_disk	= raid5_add_disk,
6733 	.hot_remove_disk= raid5_remove_disk,
6734 	.spare_active	= raid5_spare_active,
6735 	.sync_request	= sync_request,
6736 	.resize		= raid5_resize,
6737 	.size		= raid5_size,
6738 	.check_reshape	= raid6_check_reshape,
6739 	.start_reshape  = raid5_start_reshape,
6740 	.finish_reshape = raid5_finish_reshape,
6741 	.quiesce	= raid5_quiesce,
6742 	.takeover	= raid6_takeover,
6743 };
6744 static struct md_personality raid5_personality =
6745 {
6746 	.name		= "raid5",
6747 	.level		= 5,
6748 	.owner		= THIS_MODULE,
6749 	.make_request	= make_request,
6750 	.run		= run,
6751 	.stop		= stop,
6752 	.status		= status,
6753 	.error_handler	= error,
6754 	.hot_add_disk	= raid5_add_disk,
6755 	.hot_remove_disk= raid5_remove_disk,
6756 	.spare_active	= raid5_spare_active,
6757 	.sync_request	= sync_request,
6758 	.resize		= raid5_resize,
6759 	.size		= raid5_size,
6760 	.check_reshape	= raid5_check_reshape,
6761 	.start_reshape  = raid5_start_reshape,
6762 	.finish_reshape = raid5_finish_reshape,
6763 	.quiesce	= raid5_quiesce,
6764 	.takeover	= raid5_takeover,
6765 };
6766 
6767 static struct md_personality raid4_personality =
6768 {
6769 	.name		= "raid4",
6770 	.level		= 4,
6771 	.owner		= THIS_MODULE,
6772 	.make_request	= make_request,
6773 	.run		= run,
6774 	.stop		= stop,
6775 	.status		= status,
6776 	.error_handler	= error,
6777 	.hot_add_disk	= raid5_add_disk,
6778 	.hot_remove_disk= raid5_remove_disk,
6779 	.spare_active	= raid5_spare_active,
6780 	.sync_request	= sync_request,
6781 	.resize		= raid5_resize,
6782 	.size		= raid5_size,
6783 	.check_reshape	= raid5_check_reshape,
6784 	.start_reshape  = raid5_start_reshape,
6785 	.finish_reshape = raid5_finish_reshape,
6786 	.quiesce	= raid5_quiesce,
6787 	.takeover	= raid4_takeover,
6788 };
6789 
6790 static int __init raid5_init(void)
6791 {
6792 	raid5_wq = alloc_workqueue("raid5wq",
6793 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
6794 	if (!raid5_wq)
6795 		return -ENOMEM;
6796 	register_md_personality(&raid6_personality);
6797 	register_md_personality(&raid5_personality);
6798 	register_md_personality(&raid4_personality);
6799 	return 0;
6800 }
6801 
6802 static void raid5_exit(void)
6803 {
6804 	unregister_md_personality(&raid6_personality);
6805 	unregister_md_personality(&raid5_personality);
6806 	unregister_md_personality(&raid4_personality);
6807 	destroy_workqueue(raid5_wq);
6808 }
6809 
6810 module_init(raid5_init);
6811 module_exit(raid5_exit);
6812 MODULE_LICENSE("GPL");
6813 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6814 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6815 MODULE_ALIAS("md-raid5");
6816 MODULE_ALIAS("md-raid4");
6817 MODULE_ALIAS("md-level-5");
6818 MODULE_ALIAS("md-level-4");
6819 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6820 MODULE_ALIAS("md-raid6");
6821 MODULE_ALIAS("md-level-6");
6822 
6823 /* This used to be two separate modules, they were: */
6824 MODULE_ALIAS("raid5");
6825 MODULE_ALIAS("raid6");
6826