xref: /linux/drivers/md/raid5.c (revision 1cbfb828e05171ca2dd77b5988d068e6872480fe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 #define RAID5_MAX_REQ_STRIPES 256
65 
66 static bool devices_handle_discard_safely = false;
67 module_param(devices_handle_discard_safely, bool, 0644);
68 MODULE_PARM_DESC(devices_handle_discard_safely,
69 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70 static struct workqueue_struct *raid5_wq;
71 
72 static void raid5_quiesce(struct mddev *mddev, int quiesce);
73 
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
77 	return &conf->stripe_hashtbl[hash];
78 }
79 
80 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
81 {
82 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
83 }
84 
85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86 	__acquires(&conf->device_lock)
87 {
88 	spin_lock_irq(conf->hash_locks + hash);
89 	spin_lock(&conf->device_lock);
90 }
91 
92 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
93 	__releases(&conf->device_lock)
94 {
95 	spin_unlock(&conf->device_lock);
96 	spin_unlock_irq(conf->hash_locks + hash);
97 }
98 
99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 	__acquires(&conf->device_lock)
101 {
102 	int i;
103 	spin_lock_irq(conf->hash_locks);
104 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 	spin_lock(&conf->device_lock);
107 }
108 
109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 	__releases(&conf->device_lock)
111 {
112 	int i;
113 	spin_unlock(&conf->device_lock);
114 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 		spin_unlock(conf->hash_locks + i);
116 	spin_unlock_irq(conf->hash_locks);
117 }
118 
119 /* Find first data disk in a raid6 stripe */
120 static inline int raid6_d0(struct stripe_head *sh)
121 {
122 	if (sh->ddf_layout)
123 		/* ddf always start from first device */
124 		return 0;
125 	/* md starts just after Q block */
126 	if (sh->qd_idx == sh->disks - 1)
127 		return 0;
128 	else
129 		return sh->qd_idx + 1;
130 }
131 static inline int raid6_next_disk(int disk, int raid_disks)
132 {
133 	disk++;
134 	return (disk < raid_disks) ? disk : 0;
135 }
136 
137 /* When walking through the disks in a raid5, starting at raid6_d0,
138  * We need to map each disk to a 'slot', where the data disks are slot
139  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140  * is raid_disks-1.  This help does that mapping.
141  */
142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 			     int *count, int syndrome_disks)
144 {
145 	int slot = *count;
146 
147 	if (sh->ddf_layout)
148 		(*count)++;
149 	if (idx == sh->pd_idx)
150 		return syndrome_disks;
151 	if (idx == sh->qd_idx)
152 		return syndrome_disks + 1;
153 	if (!sh->ddf_layout)
154 		(*count)++;
155 	return slot;
156 }
157 
158 static void print_raid5_conf(struct r5conf *conf);
159 
160 static int stripe_operations_active(struct stripe_head *sh)
161 {
162 	return sh->check_state || sh->reconstruct_state ||
163 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165 }
166 
167 static bool stripe_is_lowprio(struct stripe_head *sh)
168 {
169 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
172 }
173 
174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175 	__must_hold(&sh->raid_conf->device_lock)
176 {
177 	struct r5conf *conf = sh->raid_conf;
178 	struct r5worker_group *group;
179 	int thread_cnt;
180 	int i, cpu = sh->cpu;
181 
182 	if (!cpu_online(cpu)) {
183 		cpu = cpumask_any(cpu_online_mask);
184 		sh->cpu = cpu;
185 	}
186 
187 	if (list_empty(&sh->lru)) {
188 		struct r5worker_group *group;
189 		group = conf->worker_groups + cpu_to_group(cpu);
190 		if (stripe_is_lowprio(sh))
191 			list_add_tail(&sh->lru, &group->loprio_list);
192 		else
193 			list_add_tail(&sh->lru, &group->handle_list);
194 		group->stripes_cnt++;
195 		sh->group = group;
196 	}
197 
198 	if (conf->worker_cnt_per_group == 0) {
199 		md_wakeup_thread(conf->mddev->thread);
200 		return;
201 	}
202 
203 	group = conf->worker_groups + cpu_to_group(sh->cpu);
204 
205 	group->workers[0].working = true;
206 	/* at least one worker should run to avoid race */
207 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208 
209 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 	/* wakeup more workers */
211 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 		if (group->workers[i].working == false) {
213 			group->workers[i].working = true;
214 			queue_work_on(sh->cpu, raid5_wq,
215 				      &group->workers[i].work);
216 			thread_cnt--;
217 		}
218 	}
219 }
220 
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 			      struct list_head *temp_inactive_list)
223 	__must_hold(&conf->device_lock)
224 {
225 	int i;
226 	int injournal = 0;	/* number of date pages with R5_InJournal */
227 
228 	BUG_ON(!list_empty(&sh->lru));
229 	BUG_ON(atomic_read(&conf->active_stripes)==0);
230 
231 	if (r5c_is_writeback(conf->log))
232 		for (i = sh->disks; i--; )
233 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 				injournal++;
235 	/*
236 	 * In the following cases, the stripe cannot be released to cached
237 	 * lists. Therefore, we make the stripe write out and set
238 	 * STRIPE_HANDLE:
239 	 *   1. when quiesce in r5c write back;
240 	 *   2. when resync is requested fot the stripe.
241 	 */
242 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
244 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 			r5c_make_stripe_write_out(sh);
247 		set_bit(STRIPE_HANDLE, &sh->state);
248 	}
249 
250 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 			list_add_tail(&sh->lru, &conf->delayed_list);
254 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 			   sh->bm_seq - conf->seq_write > 0)
256 			list_add_tail(&sh->lru, &conf->bitmap_list);
257 		else {
258 			clear_bit(STRIPE_DELAYED, &sh->state);
259 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 			if (conf->worker_cnt_per_group == 0) {
261 				if (stripe_is_lowprio(sh))
262 					list_add_tail(&sh->lru,
263 							&conf->loprio_list);
264 				else
265 					list_add_tail(&sh->lru,
266 							&conf->handle_list);
267 			} else {
268 				raid5_wakeup_stripe_thread(sh);
269 				return;
270 			}
271 		}
272 		md_wakeup_thread(conf->mddev->thread);
273 	} else {
274 		BUG_ON(stripe_operations_active(sh));
275 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 			if (atomic_dec_return(&conf->preread_active_stripes)
277 			    < IO_THRESHOLD)
278 				md_wakeup_thread(conf->mddev->thread);
279 		atomic_dec(&conf->active_stripes);
280 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 			if (!r5c_is_writeback(conf->log))
282 				list_add_tail(&sh->lru, temp_inactive_list);
283 			else {
284 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 				if (injournal == 0)
286 					list_add_tail(&sh->lru, temp_inactive_list);
287 				else if (injournal == conf->raid_disks - conf->max_degraded) {
288 					/* full stripe */
289 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 						atomic_inc(&conf->r5c_cached_full_stripes);
291 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 						atomic_dec(&conf->r5c_cached_partial_stripes);
293 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 					r5c_check_cached_full_stripe(conf);
295 				} else
296 					/*
297 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 					 * r5c_try_caching_write(). No need to
299 					 * set it again.
300 					 */
301 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 			}
303 		}
304 	}
305 }
306 
307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 			     struct list_head *temp_inactive_list)
309 	__must_hold(&conf->device_lock)
310 {
311 	if (atomic_dec_and_test(&sh->count))
312 		do_release_stripe(conf, sh, temp_inactive_list);
313 }
314 
315 /*
316  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317  *
318  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319  * given time. Adding stripes only takes device lock, while deleting stripes
320  * only takes hash lock.
321  */
322 static void release_inactive_stripe_list(struct r5conf *conf,
323 					 struct list_head *temp_inactive_list,
324 					 int hash)
325 {
326 	int size;
327 	bool do_wakeup = false;
328 	unsigned long flags;
329 
330 	if (hash == NR_STRIPE_HASH_LOCKS) {
331 		size = NR_STRIPE_HASH_LOCKS;
332 		hash = NR_STRIPE_HASH_LOCKS - 1;
333 	} else
334 		size = 1;
335 	while (size) {
336 		struct list_head *list = &temp_inactive_list[size - 1];
337 
338 		/*
339 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
340 		 * remove stripes from the list
341 		 */
342 		if (!list_empty_careful(list)) {
343 			spin_lock_irqsave(conf->hash_locks + hash, flags);
344 			if (list_empty(conf->inactive_list + hash) &&
345 			    !list_empty(list))
346 				atomic_dec(&conf->empty_inactive_list_nr);
347 			list_splice_tail_init(list, conf->inactive_list + hash);
348 			do_wakeup = true;
349 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
350 		}
351 		size--;
352 		hash--;
353 	}
354 
355 	if (do_wakeup) {
356 		wake_up(&conf->wait_for_stripe);
357 		if (atomic_read(&conf->active_stripes) == 0)
358 			wake_up(&conf->wait_for_quiescent);
359 		if (conf->retry_read_aligned)
360 			md_wakeup_thread(conf->mddev->thread);
361 	}
362 }
363 
364 static int release_stripe_list(struct r5conf *conf,
365 			       struct list_head *temp_inactive_list)
366 	__must_hold(&conf->device_lock)
367 {
368 	struct stripe_head *sh, *t;
369 	int count = 0;
370 	struct llist_node *head;
371 
372 	head = llist_del_all(&conf->released_stripes);
373 	head = llist_reverse_order(head);
374 	llist_for_each_entry_safe(sh, t, head, release_list) {
375 		int hash;
376 
377 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 		smp_mb();
379 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 		/*
381 		 * Don't worry the bit is set here, because if the bit is set
382 		 * again, the count is always > 1. This is true for
383 		 * STRIPE_ON_UNPLUG_LIST bit too.
384 		 */
385 		hash = sh->hash_lock_index;
386 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
387 		count++;
388 	}
389 
390 	return count;
391 }
392 
393 void raid5_release_stripe(struct stripe_head *sh)
394 {
395 	struct r5conf *conf = sh->raid_conf;
396 	unsigned long flags;
397 	struct list_head list;
398 	int hash;
399 	bool wakeup;
400 
401 	/* Avoid release_list until the last reference.
402 	 */
403 	if (atomic_add_unless(&sh->count, -1, 1))
404 		return;
405 
406 	if (unlikely(!conf->mddev->thread) ||
407 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408 		goto slow_path;
409 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 	if (wakeup)
411 		md_wakeup_thread(conf->mddev->thread);
412 	return;
413 slow_path:
414 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
416 		INIT_LIST_HEAD(&list);
417 		hash = sh->hash_lock_index;
418 		do_release_stripe(conf, sh, &list);
419 		spin_unlock_irqrestore(&conf->device_lock, flags);
420 		release_inactive_stripe_list(conf, &list, hash);
421 	}
422 }
423 
424 static inline void remove_hash(struct stripe_head *sh)
425 {
426 	pr_debug("remove_hash(), stripe %llu\n",
427 		(unsigned long long)sh->sector);
428 
429 	hlist_del_init(&sh->hash);
430 }
431 
432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433 {
434 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
435 
436 	pr_debug("insert_hash(), stripe %llu\n",
437 		(unsigned long long)sh->sector);
438 
439 	hlist_add_head(&sh->hash, hp);
440 }
441 
442 /* find an idle stripe, make sure it is unhashed, and return it. */
443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444 {
445 	struct stripe_head *sh = NULL;
446 	struct list_head *first;
447 
448 	if (list_empty(conf->inactive_list + hash))
449 		goto out;
450 	first = (conf->inactive_list + hash)->next;
451 	sh = list_entry(first, struct stripe_head, lru);
452 	list_del_init(first);
453 	remove_hash(sh);
454 	atomic_inc(&conf->active_stripes);
455 	BUG_ON(hash != sh->hash_lock_index);
456 	if (list_empty(conf->inactive_list + hash))
457 		atomic_inc(&conf->empty_inactive_list_nr);
458 out:
459 	return sh;
460 }
461 
462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
463 static void free_stripe_pages(struct stripe_head *sh)
464 {
465 	int i;
466 	struct page *p;
467 
468 	/* Have not allocate page pool */
469 	if (!sh->pages)
470 		return;
471 
472 	for (i = 0; i < sh->nr_pages; i++) {
473 		p = sh->pages[i];
474 		if (p)
475 			put_page(p);
476 		sh->pages[i] = NULL;
477 	}
478 }
479 
480 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
481 {
482 	int i;
483 	struct page *p;
484 
485 	for (i = 0; i < sh->nr_pages; i++) {
486 		/* The page have allocated. */
487 		if (sh->pages[i])
488 			continue;
489 
490 		p = alloc_page(gfp);
491 		if (!p) {
492 			free_stripe_pages(sh);
493 			return -ENOMEM;
494 		}
495 		sh->pages[i] = p;
496 	}
497 	return 0;
498 }
499 
500 static int
501 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
502 {
503 	int nr_pages, cnt;
504 
505 	if (sh->pages)
506 		return 0;
507 
508 	/* Each of the sh->dev[i] need one conf->stripe_size */
509 	cnt = PAGE_SIZE / conf->stripe_size;
510 	nr_pages = (disks + cnt - 1) / cnt;
511 
512 	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
513 	if (!sh->pages)
514 		return -ENOMEM;
515 	sh->nr_pages = nr_pages;
516 	sh->stripes_per_page = cnt;
517 	return 0;
518 }
519 #endif
520 
521 static void shrink_buffers(struct stripe_head *sh)
522 {
523 	int i;
524 	int num = sh->raid_conf->pool_size;
525 
526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527 	for (i = 0; i < num ; i++) {
528 		struct page *p;
529 
530 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
531 		p = sh->dev[i].page;
532 		if (!p)
533 			continue;
534 		sh->dev[i].page = NULL;
535 		put_page(p);
536 	}
537 #else
538 	for (i = 0; i < num; i++)
539 		sh->dev[i].page = NULL;
540 	free_stripe_pages(sh); /* Free pages */
541 #endif
542 }
543 
544 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
545 {
546 	int i;
547 	int num = sh->raid_conf->pool_size;
548 
549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550 	for (i = 0; i < num; i++) {
551 		struct page *page;
552 
553 		if (!(page = alloc_page(gfp))) {
554 			return 1;
555 		}
556 		sh->dev[i].page = page;
557 		sh->dev[i].orig_page = page;
558 		sh->dev[i].offset = 0;
559 	}
560 #else
561 	if (alloc_stripe_pages(sh, gfp))
562 		return -ENOMEM;
563 
564 	for (i = 0; i < num; i++) {
565 		sh->dev[i].page = raid5_get_dev_page(sh, i);
566 		sh->dev[i].orig_page = sh->dev[i].page;
567 		sh->dev[i].offset = raid5_get_page_offset(sh, i);
568 	}
569 #endif
570 	return 0;
571 }
572 
573 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
574 			    struct stripe_head *sh);
575 
576 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
577 {
578 	struct r5conf *conf = sh->raid_conf;
579 	int i, seq;
580 
581 	BUG_ON(atomic_read(&sh->count) != 0);
582 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
583 	BUG_ON(stripe_operations_active(sh));
584 	BUG_ON(sh->batch_head);
585 
586 	pr_debug("init_stripe called, stripe %llu\n",
587 		(unsigned long long)sector);
588 retry:
589 	seq = read_seqcount_begin(&conf->gen_lock);
590 	sh->generation = conf->generation - previous;
591 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
592 	sh->sector = sector;
593 	stripe_set_idx(sector, conf, previous, sh);
594 	sh->state = 0;
595 
596 	for (i = sh->disks; i--; ) {
597 		struct r5dev *dev = &sh->dev[i];
598 
599 		if (dev->toread || dev->read || dev->towrite || dev->written ||
600 		    test_bit(R5_LOCKED, &dev->flags)) {
601 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602 			       (unsigned long long)sh->sector, i, dev->toread,
603 			       dev->read, dev->towrite, dev->written,
604 			       test_bit(R5_LOCKED, &dev->flags));
605 			WARN_ON(1);
606 		}
607 		dev->flags = 0;
608 		dev->sector = raid5_compute_blocknr(sh, i, previous);
609 	}
610 	if (read_seqcount_retry(&conf->gen_lock, seq))
611 		goto retry;
612 	sh->overwrite_disks = 0;
613 	insert_hash(conf, sh);
614 	sh->cpu = smp_processor_id();
615 	set_bit(STRIPE_BATCH_READY, &sh->state);
616 }
617 
618 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
619 					 short generation)
620 {
621 	struct stripe_head *sh;
622 
623 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
624 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
625 		if (sh->sector == sector && sh->generation == generation)
626 			return sh;
627 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
628 	return NULL;
629 }
630 
631 static struct stripe_head *find_get_stripe(struct r5conf *conf,
632 		sector_t sector, short generation, int hash)
633 {
634 	int inc_empty_inactive_list_flag;
635 	struct stripe_head *sh;
636 
637 	sh = __find_stripe(conf, sector, generation);
638 	if (!sh)
639 		return NULL;
640 
641 	if (atomic_inc_not_zero(&sh->count))
642 		return sh;
643 
644 	/*
645 	 * Slow path. The reference count is zero which means the stripe must
646 	 * be on a list (sh->lru). Must remove the stripe from the list that
647 	 * references it with the device_lock held.
648 	 */
649 
650 	spin_lock(&conf->device_lock);
651 	if (!atomic_read(&sh->count)) {
652 		if (!test_bit(STRIPE_HANDLE, &sh->state))
653 			atomic_inc(&conf->active_stripes);
654 		BUG_ON(list_empty(&sh->lru) &&
655 		       !test_bit(STRIPE_EXPANDING, &sh->state));
656 		inc_empty_inactive_list_flag = 0;
657 		if (!list_empty(conf->inactive_list + hash))
658 			inc_empty_inactive_list_flag = 1;
659 		list_del_init(&sh->lru);
660 		if (list_empty(conf->inactive_list + hash) &&
661 		    inc_empty_inactive_list_flag)
662 			atomic_inc(&conf->empty_inactive_list_nr);
663 		if (sh->group) {
664 			sh->group->stripes_cnt--;
665 			sh->group = NULL;
666 		}
667 	}
668 	atomic_inc(&sh->count);
669 	spin_unlock(&conf->device_lock);
670 
671 	return sh;
672 }
673 
674 /*
675  * Need to check if array has failed when deciding whether to:
676  *  - start an array
677  *  - remove non-faulty devices
678  *  - add a spare
679  *  - allow a reshape
680  * This determination is simple when no reshape is happening.
681  * However if there is a reshape, we need to carefully check
682  * both the before and after sections.
683  * This is because some failed devices may only affect one
684  * of the two sections, and some non-in_sync devices may
685  * be insync in the section most affected by failed devices.
686  *
687  * Most calls to this function hold &conf->device_lock. Calls
688  * in raid5_run() do not require the lock as no other threads
689  * have been started yet.
690  */
691 int raid5_calc_degraded(struct r5conf *conf)
692 {
693 	int degraded, degraded2;
694 	int i;
695 
696 	degraded = 0;
697 	for (i = 0; i < conf->previous_raid_disks; i++) {
698 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
699 
700 		if (rdev && test_bit(Faulty, &rdev->flags))
701 			rdev = READ_ONCE(conf->disks[i].replacement);
702 		if (!rdev || test_bit(Faulty, &rdev->flags))
703 			degraded++;
704 		else if (test_bit(In_sync, &rdev->flags))
705 			;
706 		else
707 			/* not in-sync or faulty.
708 			 * If the reshape increases the number of devices,
709 			 * this is being recovered by the reshape, so
710 			 * this 'previous' section is not in_sync.
711 			 * If the number of devices is being reduced however,
712 			 * the device can only be part of the array if
713 			 * we are reverting a reshape, so this section will
714 			 * be in-sync.
715 			 */
716 			if (conf->raid_disks >= conf->previous_raid_disks)
717 				degraded++;
718 	}
719 	if (conf->raid_disks == conf->previous_raid_disks)
720 		return degraded;
721 	degraded2 = 0;
722 	for (i = 0; i < conf->raid_disks; i++) {
723 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
724 
725 		if (rdev && test_bit(Faulty, &rdev->flags))
726 			rdev = READ_ONCE(conf->disks[i].replacement);
727 		if (!rdev || test_bit(Faulty, &rdev->flags))
728 			degraded2++;
729 		else if (test_bit(In_sync, &rdev->flags))
730 			;
731 		else
732 			/* not in-sync or faulty.
733 			 * If reshape increases the number of devices, this
734 			 * section has already been recovered, else it
735 			 * almost certainly hasn't.
736 			 */
737 			if (conf->raid_disks <= conf->previous_raid_disks)
738 				degraded2++;
739 	}
740 	if (degraded2 > degraded)
741 		return degraded2;
742 	return degraded;
743 }
744 
745 static bool has_failed(struct r5conf *conf)
746 {
747 	int degraded = conf->mddev->degraded;
748 
749 	if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 		return true;
751 
752 	if (conf->mddev->reshape_position != MaxSector)
753 		degraded = raid5_calc_degraded(conf);
754 
755 	return degraded > conf->max_degraded;
756 }
757 
758 enum stripe_result {
759 	STRIPE_SUCCESS = 0,
760 	STRIPE_RETRY,
761 	STRIPE_SCHEDULE_AND_RETRY,
762 	STRIPE_FAIL,
763 	STRIPE_WAIT_RESHAPE,
764 };
765 
766 struct stripe_request_ctx {
767 	/* a reference to the last stripe_head for batching */
768 	struct stripe_head *batch_last;
769 
770 	/* first sector in the request */
771 	sector_t first_sector;
772 
773 	/* last sector in the request */
774 	sector_t last_sector;
775 
776 	/*
777 	 * bitmap to track stripe sectors that have been added to stripes
778 	 * add one to account for unaligned requests
779 	 */
780 	DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
781 
782 	/* the request had REQ_PREFLUSH, cleared after the first stripe_head */
783 	bool do_flush;
784 };
785 
786 /*
787  * Block until another thread clears R5_INACTIVE_BLOCKED or
788  * there are fewer than 3/4 the maximum number of active stripes
789  * and there is an inactive stripe available.
790  */
791 static bool is_inactive_blocked(struct r5conf *conf, int hash)
792 {
793 	if (list_empty(conf->inactive_list + hash))
794 		return false;
795 
796 	if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
797 		return true;
798 
799 	return (atomic_read(&conf->active_stripes) <
800 		(conf->max_nr_stripes * 3 / 4));
801 }
802 
803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
804 		struct stripe_request_ctx *ctx, sector_t sector,
805 		unsigned int flags)
806 {
807 	struct stripe_head *sh;
808 	int hash = stripe_hash_locks_hash(conf, sector);
809 	int previous = !!(flags & R5_GAS_PREVIOUS);
810 
811 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
812 
813 	spin_lock_irq(conf->hash_locks + hash);
814 
815 	for (;;) {
816 		if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
817 			/*
818 			 * Must release the reference to batch_last before
819 			 * waiting, on quiesce, otherwise the batch_last will
820 			 * hold a reference to a stripe and raid5_quiesce()
821 			 * will deadlock waiting for active_stripes to go to
822 			 * zero.
823 			 */
824 			if (ctx && ctx->batch_last) {
825 				raid5_release_stripe(ctx->batch_last);
826 				ctx->batch_last = NULL;
827 			}
828 
829 			wait_event_lock_irq(conf->wait_for_quiescent,
830 					    !conf->quiesce,
831 					    *(conf->hash_locks + hash));
832 		}
833 
834 		sh = find_get_stripe(conf, sector, conf->generation - previous,
835 				     hash);
836 		if (sh)
837 			break;
838 
839 		if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840 			sh = get_free_stripe(conf, hash);
841 			if (sh) {
842 				r5c_check_stripe_cache_usage(conf);
843 				init_stripe(sh, sector, previous);
844 				atomic_inc(&sh->count);
845 				break;
846 			}
847 
848 			if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849 				set_bit(R5_ALLOC_MORE, &conf->cache_state);
850 		}
851 
852 		if (flags & R5_GAS_NOBLOCK)
853 			break;
854 
855 		set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856 		r5l_wake_reclaim(conf->log, 0);
857 
858 		/* release batch_last before wait to avoid risk of deadlock */
859 		if (ctx && ctx->batch_last) {
860 			raid5_release_stripe(ctx->batch_last);
861 			ctx->batch_last = NULL;
862 		}
863 
864 		wait_event_lock_irq(conf->wait_for_stripe,
865 				    is_inactive_blocked(conf, hash),
866 				    *(conf->hash_locks + hash));
867 		clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
868 	}
869 
870 	spin_unlock_irq(conf->hash_locks + hash);
871 	return sh;
872 }
873 
874 static bool is_full_stripe_write(struct stripe_head *sh)
875 {
876 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
877 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
878 }
879 
880 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
881 		__acquires(&sh1->stripe_lock)
882 		__acquires(&sh2->stripe_lock)
883 {
884 	if (sh1 > sh2) {
885 		spin_lock_irq(&sh2->stripe_lock);
886 		spin_lock_nested(&sh1->stripe_lock, 1);
887 	} else {
888 		spin_lock_irq(&sh1->stripe_lock);
889 		spin_lock_nested(&sh2->stripe_lock, 1);
890 	}
891 }
892 
893 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
894 		__releases(&sh1->stripe_lock)
895 		__releases(&sh2->stripe_lock)
896 {
897 	spin_unlock(&sh1->stripe_lock);
898 	spin_unlock_irq(&sh2->stripe_lock);
899 }
900 
901 /* Only freshly new full stripe normal write stripe can be added to a batch list */
902 static bool stripe_can_batch(struct stripe_head *sh)
903 {
904 	struct r5conf *conf = sh->raid_conf;
905 
906 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
907 		return false;
908 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
909 	       is_full_stripe_write(sh);
910 }
911 
912 /* we only do back search */
913 static void stripe_add_to_batch_list(struct r5conf *conf,
914 		struct stripe_head *sh, struct stripe_head *last_sh)
915 {
916 	struct stripe_head *head;
917 	sector_t head_sector, tmp_sec;
918 	int hash;
919 	int dd_idx;
920 
921 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
922 	tmp_sec = sh->sector;
923 	if (!sector_div(tmp_sec, conf->chunk_sectors))
924 		return;
925 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
926 
927 	if (last_sh && head_sector == last_sh->sector) {
928 		head = last_sh;
929 		atomic_inc(&head->count);
930 	} else {
931 		hash = stripe_hash_locks_hash(conf, head_sector);
932 		spin_lock_irq(conf->hash_locks + hash);
933 		head = find_get_stripe(conf, head_sector, conf->generation,
934 				       hash);
935 		spin_unlock_irq(conf->hash_locks + hash);
936 		if (!head)
937 			return;
938 		if (!stripe_can_batch(head))
939 			goto out;
940 	}
941 
942 	lock_two_stripes(head, sh);
943 	/* clear_batch_ready clear the flag */
944 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
945 		goto unlock_out;
946 
947 	if (sh->batch_head)
948 		goto unlock_out;
949 
950 	dd_idx = 0;
951 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
952 		dd_idx++;
953 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
954 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
955 		goto unlock_out;
956 
957 	if (head->batch_head) {
958 		spin_lock(&head->batch_head->batch_lock);
959 		/* This batch list is already running */
960 		if (!stripe_can_batch(head)) {
961 			spin_unlock(&head->batch_head->batch_lock);
962 			goto unlock_out;
963 		}
964 		/*
965 		 * We must assign batch_head of this stripe within the
966 		 * batch_lock, otherwise clear_batch_ready of batch head
967 		 * stripe could clear BATCH_READY bit of this stripe and
968 		 * this stripe->batch_head doesn't get assigned, which
969 		 * could confuse clear_batch_ready for this stripe
970 		 */
971 		sh->batch_head = head->batch_head;
972 
973 		/*
974 		 * at this point, head's BATCH_READY could be cleared, but we
975 		 * can still add the stripe to batch list
976 		 */
977 		list_add(&sh->batch_list, &head->batch_list);
978 		spin_unlock(&head->batch_head->batch_lock);
979 	} else {
980 		head->batch_head = head;
981 		sh->batch_head = head->batch_head;
982 		spin_lock(&head->batch_lock);
983 		list_add_tail(&sh->batch_list, &head->batch_list);
984 		spin_unlock(&head->batch_lock);
985 	}
986 
987 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
988 		if (atomic_dec_return(&conf->preread_active_stripes)
989 		    < IO_THRESHOLD)
990 			md_wakeup_thread(conf->mddev->thread);
991 
992 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
993 		int seq = sh->bm_seq;
994 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
995 		    sh->batch_head->bm_seq > seq)
996 			seq = sh->batch_head->bm_seq;
997 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
998 		sh->batch_head->bm_seq = seq;
999 	}
1000 
1001 	atomic_inc(&sh->count);
1002 unlock_out:
1003 	unlock_two_stripes(head, sh);
1004 out:
1005 	raid5_release_stripe(head);
1006 }
1007 
1008 /* Determine if 'data_offset' or 'new_data_offset' should be used
1009  * in this stripe_head.
1010  */
1011 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1012 {
1013 	sector_t progress = conf->reshape_progress;
1014 	/* Need a memory barrier to make sure we see the value
1015 	 * of conf->generation, or ->data_offset that was set before
1016 	 * reshape_progress was updated.
1017 	 */
1018 	smp_rmb();
1019 	if (progress == MaxSector)
1020 		return 0;
1021 	if (sh->generation == conf->generation - 1)
1022 		return 0;
1023 	/* We are in a reshape, and this is a new-generation stripe,
1024 	 * so use new_data_offset.
1025 	 */
1026 	return 1;
1027 }
1028 
1029 static void dispatch_bio_list(struct bio_list *tmp)
1030 {
1031 	struct bio *bio;
1032 
1033 	while ((bio = bio_list_pop(tmp)))
1034 		submit_bio_noacct(bio);
1035 }
1036 
1037 static int cmp_stripe(void *priv, const struct list_head *a,
1038 		      const struct list_head *b)
1039 {
1040 	const struct r5pending_data *da = list_entry(a,
1041 				struct r5pending_data, sibling);
1042 	const struct r5pending_data *db = list_entry(b,
1043 				struct r5pending_data, sibling);
1044 	if (da->sector > db->sector)
1045 		return 1;
1046 	if (da->sector < db->sector)
1047 		return -1;
1048 	return 0;
1049 }
1050 
1051 static void dispatch_defer_bios(struct r5conf *conf, int target,
1052 				struct bio_list *list)
1053 {
1054 	struct r5pending_data *data;
1055 	struct list_head *first, *next = NULL;
1056 	int cnt = 0;
1057 
1058 	if (conf->pending_data_cnt == 0)
1059 		return;
1060 
1061 	list_sort(NULL, &conf->pending_list, cmp_stripe);
1062 
1063 	first = conf->pending_list.next;
1064 
1065 	/* temporarily move the head */
1066 	if (conf->next_pending_data)
1067 		list_move_tail(&conf->pending_list,
1068 				&conf->next_pending_data->sibling);
1069 
1070 	while (!list_empty(&conf->pending_list)) {
1071 		data = list_first_entry(&conf->pending_list,
1072 			struct r5pending_data, sibling);
1073 		if (&data->sibling == first)
1074 			first = data->sibling.next;
1075 		next = data->sibling.next;
1076 
1077 		bio_list_merge(list, &data->bios);
1078 		list_move(&data->sibling, &conf->free_list);
1079 		cnt++;
1080 		if (cnt >= target)
1081 			break;
1082 	}
1083 	conf->pending_data_cnt -= cnt;
1084 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1085 
1086 	if (next != &conf->pending_list)
1087 		conf->next_pending_data = list_entry(next,
1088 				struct r5pending_data, sibling);
1089 	else
1090 		conf->next_pending_data = NULL;
1091 	/* list isn't empty */
1092 	if (first != &conf->pending_list)
1093 		list_move_tail(&conf->pending_list, first);
1094 }
1095 
1096 static void flush_deferred_bios(struct r5conf *conf)
1097 {
1098 	struct bio_list tmp = BIO_EMPTY_LIST;
1099 
1100 	if (conf->pending_data_cnt == 0)
1101 		return;
1102 
1103 	spin_lock(&conf->pending_bios_lock);
1104 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1105 	BUG_ON(conf->pending_data_cnt != 0);
1106 	spin_unlock(&conf->pending_bios_lock);
1107 
1108 	dispatch_bio_list(&tmp);
1109 }
1110 
1111 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1112 				struct bio_list *bios)
1113 {
1114 	struct bio_list tmp = BIO_EMPTY_LIST;
1115 	struct r5pending_data *ent;
1116 
1117 	spin_lock(&conf->pending_bios_lock);
1118 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1119 							sibling);
1120 	list_move_tail(&ent->sibling, &conf->pending_list);
1121 	ent->sector = sector;
1122 	bio_list_init(&ent->bios);
1123 	bio_list_merge(&ent->bios, bios);
1124 	conf->pending_data_cnt++;
1125 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1126 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1127 
1128 	spin_unlock(&conf->pending_bios_lock);
1129 
1130 	dispatch_bio_list(&tmp);
1131 }
1132 
1133 static void
1134 raid5_end_read_request(struct bio *bi);
1135 static void
1136 raid5_end_write_request(struct bio *bi);
1137 
1138 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1139 {
1140 	struct r5conf *conf = sh->raid_conf;
1141 	int i, disks = sh->disks;
1142 	struct stripe_head *head_sh = sh;
1143 	struct bio_list pending_bios = BIO_EMPTY_LIST;
1144 	struct r5dev *dev;
1145 	bool should_defer;
1146 
1147 	might_sleep();
1148 
1149 	if (log_stripe(sh, s) == 0)
1150 		return;
1151 
1152 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1153 
1154 	for (i = disks; i--; ) {
1155 		enum req_op op;
1156 		blk_opf_t op_flags = 0;
1157 		int replace_only = 0;
1158 		struct bio *bi, *rbi;
1159 		struct md_rdev *rdev, *rrdev = NULL;
1160 
1161 		sh = head_sh;
1162 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1163 			op = REQ_OP_WRITE;
1164 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1165 				op_flags = REQ_FUA;
1166 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1167 				op = REQ_OP_DISCARD;
1168 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1169 			op = REQ_OP_READ;
1170 		else if (test_and_clear_bit(R5_WantReplace,
1171 					    &sh->dev[i].flags)) {
1172 			op = REQ_OP_WRITE;
1173 			replace_only = 1;
1174 		} else
1175 			continue;
1176 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1177 			op_flags |= REQ_SYNC;
1178 
1179 again:
1180 		dev = &sh->dev[i];
1181 		bi = &dev->req;
1182 		rbi = &dev->rreq; /* For writing to replacement */
1183 
1184 		rdev = conf->disks[i].rdev;
1185 		rrdev = conf->disks[i].replacement;
1186 		if (op_is_write(op)) {
1187 			if (replace_only)
1188 				rdev = NULL;
1189 			if (rdev == rrdev)
1190 				/* We raced and saw duplicates */
1191 				rrdev = NULL;
1192 		} else {
1193 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1194 				rdev = rrdev;
1195 			rrdev = NULL;
1196 		}
1197 
1198 		if (rdev && test_bit(Faulty, &rdev->flags))
1199 			rdev = NULL;
1200 		if (rdev)
1201 			atomic_inc(&rdev->nr_pending);
1202 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1203 			rrdev = NULL;
1204 		if (rrdev)
1205 			atomic_inc(&rrdev->nr_pending);
1206 
1207 		/* We have already checked bad blocks for reads.  Now
1208 		 * need to check for writes.  We never accept write errors
1209 		 * on the replacement, so we don't to check rrdev.
1210 		 */
1211 		while (op_is_write(op) && rdev &&
1212 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1213 			int bad = rdev_has_badblock(rdev, sh->sector,
1214 						    RAID5_STRIPE_SECTORS(conf));
1215 			if (!bad)
1216 				break;
1217 
1218 			if (bad < 0) {
1219 				set_bit(BlockedBadBlocks, &rdev->flags);
1220 				if (!conf->mddev->external &&
1221 				    conf->mddev->sb_flags) {
1222 					/* It is very unlikely, but we might
1223 					 * still need to write out the
1224 					 * bad block log - better give it
1225 					 * a chance*/
1226 					md_check_recovery(conf->mddev);
1227 				}
1228 				/*
1229 				 * Because md_wait_for_blocked_rdev
1230 				 * will dec nr_pending, we must
1231 				 * increment it first.
1232 				 */
1233 				atomic_inc(&rdev->nr_pending);
1234 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1235 			} else {
1236 				/* Acknowledged bad block - skip the write */
1237 				rdev_dec_pending(rdev, conf->mddev);
1238 				rdev = NULL;
1239 			}
1240 		}
1241 
1242 		if (rdev) {
1243 			if (s->syncing || s->expanding || s->expanded
1244 			    || s->replacing)
1245 				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1246 
1247 			set_bit(STRIPE_IO_STARTED, &sh->state);
1248 
1249 			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1250 			bi->bi_end_io = op_is_write(op)
1251 				? raid5_end_write_request
1252 				: raid5_end_read_request;
1253 			bi->bi_private = sh;
1254 
1255 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1256 				__func__, (unsigned long long)sh->sector,
1257 				bi->bi_opf, i);
1258 			atomic_inc(&sh->count);
1259 			if (sh != head_sh)
1260 				atomic_inc(&head_sh->count);
1261 			if (use_new_offset(conf, sh))
1262 				bi->bi_iter.bi_sector = (sh->sector
1263 						 + rdev->new_data_offset);
1264 			else
1265 				bi->bi_iter.bi_sector = (sh->sector
1266 						 + rdev->data_offset);
1267 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1268 				bi->bi_opf |= REQ_NOMERGE;
1269 
1270 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1271 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1272 
1273 			if (!op_is_write(op) &&
1274 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1275 				/*
1276 				 * issuing read for a page in journal, this
1277 				 * must be preparing for prexor in rmw; read
1278 				 * the data into orig_page
1279 				 */
1280 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1281 			else
1282 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1283 			bi->bi_vcnt = 1;
1284 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1285 			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1286 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1287 			/*
1288 			 * If this is discard request, set bi_vcnt 0. We don't
1289 			 * want to confuse SCSI because SCSI will replace payload
1290 			 */
1291 			if (op == REQ_OP_DISCARD)
1292 				bi->bi_vcnt = 0;
1293 			if (rrdev)
1294 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1295 
1296 			mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
1297 			if (should_defer && op_is_write(op))
1298 				bio_list_add(&pending_bios, bi);
1299 			else
1300 				submit_bio_noacct(bi);
1301 		}
1302 		if (rrdev) {
1303 			if (s->syncing || s->expanding || s->expanded
1304 			    || s->replacing)
1305 				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1306 
1307 			set_bit(STRIPE_IO_STARTED, &sh->state);
1308 
1309 			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1310 			BUG_ON(!op_is_write(op));
1311 			rbi->bi_end_io = raid5_end_write_request;
1312 			rbi->bi_private = sh;
1313 
1314 			pr_debug("%s: for %llu schedule op %d on "
1315 				 "replacement disc %d\n",
1316 				__func__, (unsigned long long)sh->sector,
1317 				rbi->bi_opf, i);
1318 			atomic_inc(&sh->count);
1319 			if (sh != head_sh)
1320 				atomic_inc(&head_sh->count);
1321 			if (use_new_offset(conf, sh))
1322 				rbi->bi_iter.bi_sector = (sh->sector
1323 						  + rrdev->new_data_offset);
1324 			else
1325 				rbi->bi_iter.bi_sector = (sh->sector
1326 						  + rrdev->data_offset);
1327 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1328 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1329 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1330 			rbi->bi_vcnt = 1;
1331 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1332 			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1333 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1334 			/*
1335 			 * If this is discard request, set bi_vcnt 0. We don't
1336 			 * want to confuse SCSI because SCSI will replace payload
1337 			 */
1338 			if (op == REQ_OP_DISCARD)
1339 				rbi->bi_vcnt = 0;
1340 			mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
1341 			if (should_defer && op_is_write(op))
1342 				bio_list_add(&pending_bios, rbi);
1343 			else
1344 				submit_bio_noacct(rbi);
1345 		}
1346 		if (!rdev && !rrdev) {
1347 			pr_debug("skip op %d on disc %d for sector %llu\n",
1348 				bi->bi_opf, i, (unsigned long long)sh->sector);
1349 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1350 			set_bit(STRIPE_HANDLE, &sh->state);
1351 		}
1352 
1353 		if (!head_sh->batch_head)
1354 			continue;
1355 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1356 				      batch_list);
1357 		if (sh != head_sh)
1358 			goto again;
1359 	}
1360 
1361 	if (should_defer && !bio_list_empty(&pending_bios))
1362 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1363 }
1364 
1365 static struct dma_async_tx_descriptor *
1366 async_copy_data(int frombio, struct bio *bio, struct page **page,
1367 	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1368 	struct stripe_head *sh, int no_skipcopy)
1369 {
1370 	struct bio_vec bvl;
1371 	struct bvec_iter iter;
1372 	struct page *bio_page;
1373 	int page_offset;
1374 	struct async_submit_ctl submit;
1375 	enum async_tx_flags flags = 0;
1376 	struct r5conf *conf = sh->raid_conf;
1377 
1378 	if (bio->bi_iter.bi_sector >= sector)
1379 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1380 	else
1381 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1382 
1383 	if (frombio)
1384 		flags |= ASYNC_TX_FENCE;
1385 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1386 
1387 	bio_for_each_segment(bvl, bio, iter) {
1388 		int len = bvl.bv_len;
1389 		int clen;
1390 		int b_offset = 0;
1391 
1392 		if (page_offset < 0) {
1393 			b_offset = -page_offset;
1394 			page_offset += b_offset;
1395 			len -= b_offset;
1396 		}
1397 
1398 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1399 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1400 		else
1401 			clen = len;
1402 
1403 		if (clen > 0) {
1404 			b_offset += bvl.bv_offset;
1405 			bio_page = bvl.bv_page;
1406 			if (frombio) {
1407 				if (conf->skip_copy &&
1408 				    b_offset == 0 && page_offset == 0 &&
1409 				    clen == RAID5_STRIPE_SIZE(conf) &&
1410 				    !no_skipcopy)
1411 					*page = bio_page;
1412 				else
1413 					tx = async_memcpy(*page, bio_page, page_offset + poff,
1414 						  b_offset, clen, &submit);
1415 			} else
1416 				tx = async_memcpy(bio_page, *page, b_offset,
1417 						  page_offset + poff, clen, &submit);
1418 		}
1419 		/* chain the operations */
1420 		submit.depend_tx = tx;
1421 
1422 		if (clen < len) /* hit end of page */
1423 			break;
1424 		page_offset +=  len;
1425 	}
1426 
1427 	return tx;
1428 }
1429 
1430 static void ops_complete_biofill(void *stripe_head_ref)
1431 {
1432 	struct stripe_head *sh = stripe_head_ref;
1433 	int i;
1434 	struct r5conf *conf = sh->raid_conf;
1435 
1436 	pr_debug("%s: stripe %llu\n", __func__,
1437 		(unsigned long long)sh->sector);
1438 
1439 	/* clear completed biofills */
1440 	for (i = sh->disks; i--; ) {
1441 		struct r5dev *dev = &sh->dev[i];
1442 
1443 		/* acknowledge completion of a biofill operation */
1444 		/* and check if we need to reply to a read request,
1445 		 * new R5_Wantfill requests are held off until
1446 		 * !STRIPE_BIOFILL_RUN
1447 		 */
1448 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1449 			struct bio *rbi, *rbi2;
1450 
1451 			BUG_ON(!dev->read);
1452 			rbi = dev->read;
1453 			dev->read = NULL;
1454 			while (rbi && rbi->bi_iter.bi_sector <
1455 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1456 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1457 				bio_endio(rbi);
1458 				rbi = rbi2;
1459 			}
1460 		}
1461 	}
1462 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1463 
1464 	set_bit(STRIPE_HANDLE, &sh->state);
1465 	raid5_release_stripe(sh);
1466 }
1467 
1468 static void ops_run_biofill(struct stripe_head *sh)
1469 {
1470 	struct dma_async_tx_descriptor *tx = NULL;
1471 	struct async_submit_ctl submit;
1472 	int i;
1473 	struct r5conf *conf = sh->raid_conf;
1474 
1475 	BUG_ON(sh->batch_head);
1476 	pr_debug("%s: stripe %llu\n", __func__,
1477 		(unsigned long long)sh->sector);
1478 
1479 	for (i = sh->disks; i--; ) {
1480 		struct r5dev *dev = &sh->dev[i];
1481 		if (test_bit(R5_Wantfill, &dev->flags)) {
1482 			struct bio *rbi;
1483 			spin_lock_irq(&sh->stripe_lock);
1484 			dev->read = rbi = dev->toread;
1485 			dev->toread = NULL;
1486 			spin_unlock_irq(&sh->stripe_lock);
1487 			while (rbi && rbi->bi_iter.bi_sector <
1488 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1489 				tx = async_copy_data(0, rbi, &dev->page,
1490 						     dev->offset,
1491 						     dev->sector, tx, sh, 0);
1492 				rbi = r5_next_bio(conf, rbi, dev->sector);
1493 			}
1494 		}
1495 	}
1496 
1497 	atomic_inc(&sh->count);
1498 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1499 	async_trigger_callback(&submit);
1500 }
1501 
1502 static void mark_target_uptodate(struct stripe_head *sh, int target)
1503 {
1504 	struct r5dev *tgt;
1505 
1506 	if (target < 0)
1507 		return;
1508 
1509 	tgt = &sh->dev[target];
1510 	set_bit(R5_UPTODATE, &tgt->flags);
1511 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1512 	clear_bit(R5_Wantcompute, &tgt->flags);
1513 }
1514 
1515 static void ops_complete_compute(void *stripe_head_ref)
1516 {
1517 	struct stripe_head *sh = stripe_head_ref;
1518 
1519 	pr_debug("%s: stripe %llu\n", __func__,
1520 		(unsigned long long)sh->sector);
1521 
1522 	/* mark the computed target(s) as uptodate */
1523 	mark_target_uptodate(sh, sh->ops.target);
1524 	mark_target_uptodate(sh, sh->ops.target2);
1525 
1526 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1527 	if (sh->check_state == check_state_compute_run)
1528 		sh->check_state = check_state_compute_result;
1529 	set_bit(STRIPE_HANDLE, &sh->state);
1530 	raid5_release_stripe(sh);
1531 }
1532 
1533 /* return a pointer to the address conversion region of the scribble buffer */
1534 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1535 {
1536 	return percpu->scribble + i * percpu->scribble_obj_size;
1537 }
1538 
1539 /* return a pointer to the address conversion region of the scribble buffer */
1540 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1541 				 struct raid5_percpu *percpu, int i)
1542 {
1543 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1544 }
1545 
1546 /*
1547  * Return a pointer to record offset address.
1548  */
1549 static unsigned int *
1550 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1551 {
1552 	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1553 }
1554 
1555 static struct dma_async_tx_descriptor *
1556 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1557 {
1558 	int disks = sh->disks;
1559 	struct page **xor_srcs = to_addr_page(percpu, 0);
1560 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1561 	int target = sh->ops.target;
1562 	struct r5dev *tgt = &sh->dev[target];
1563 	struct page *xor_dest = tgt->page;
1564 	unsigned int off_dest = tgt->offset;
1565 	int count = 0;
1566 	struct dma_async_tx_descriptor *tx;
1567 	struct async_submit_ctl submit;
1568 	int i;
1569 
1570 	BUG_ON(sh->batch_head);
1571 
1572 	pr_debug("%s: stripe %llu block: %d\n",
1573 		__func__, (unsigned long long)sh->sector, target);
1574 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1575 
1576 	for (i = disks; i--; ) {
1577 		if (i != target) {
1578 			off_srcs[count] = sh->dev[i].offset;
1579 			xor_srcs[count++] = sh->dev[i].page;
1580 		}
1581 	}
1582 
1583 	atomic_inc(&sh->count);
1584 
1585 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1586 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1587 	if (unlikely(count == 1))
1588 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1589 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1590 	else
1591 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1592 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1593 
1594 	return tx;
1595 }
1596 
1597 /* set_syndrome_sources - populate source buffers for gen_syndrome
1598  * @srcs - (struct page *) array of size sh->disks
1599  * @offs - (unsigned int) array of offset for each page
1600  * @sh - stripe_head to parse
1601  *
1602  * Populates srcs in proper layout order for the stripe and returns the
1603  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1604  * destination buffer is recorded in srcs[count] and the Q destination
1605  * is recorded in srcs[count+1]].
1606  */
1607 static int set_syndrome_sources(struct page **srcs,
1608 				unsigned int *offs,
1609 				struct stripe_head *sh,
1610 				int srctype)
1611 {
1612 	int disks = sh->disks;
1613 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1614 	int d0_idx = raid6_d0(sh);
1615 	int count;
1616 	int i;
1617 
1618 	for (i = 0; i < disks; i++)
1619 		srcs[i] = NULL;
1620 
1621 	count = 0;
1622 	i = d0_idx;
1623 	do {
1624 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1625 		struct r5dev *dev = &sh->dev[i];
1626 
1627 		if (i == sh->qd_idx || i == sh->pd_idx ||
1628 		    (srctype == SYNDROME_SRC_ALL) ||
1629 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1630 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1631 		      test_bit(R5_InJournal, &dev->flags))) ||
1632 		    (srctype == SYNDROME_SRC_WRITTEN &&
1633 		     (dev->written ||
1634 		      test_bit(R5_InJournal, &dev->flags)))) {
1635 			if (test_bit(R5_InJournal, &dev->flags))
1636 				srcs[slot] = sh->dev[i].orig_page;
1637 			else
1638 				srcs[slot] = sh->dev[i].page;
1639 			/*
1640 			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1641 			 * not shared page. In that case, dev[i].offset
1642 			 * is 0.
1643 			 */
1644 			offs[slot] = sh->dev[i].offset;
1645 		}
1646 		i = raid6_next_disk(i, disks);
1647 	} while (i != d0_idx);
1648 
1649 	return syndrome_disks;
1650 }
1651 
1652 static struct dma_async_tx_descriptor *
1653 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1654 {
1655 	int disks = sh->disks;
1656 	struct page **blocks = to_addr_page(percpu, 0);
1657 	unsigned int *offs = to_addr_offs(sh, percpu);
1658 	int target;
1659 	int qd_idx = sh->qd_idx;
1660 	struct dma_async_tx_descriptor *tx;
1661 	struct async_submit_ctl submit;
1662 	struct r5dev *tgt;
1663 	struct page *dest;
1664 	unsigned int dest_off;
1665 	int i;
1666 	int count;
1667 
1668 	BUG_ON(sh->batch_head);
1669 	if (sh->ops.target < 0)
1670 		target = sh->ops.target2;
1671 	else if (sh->ops.target2 < 0)
1672 		target = sh->ops.target;
1673 	else
1674 		/* we should only have one valid target */
1675 		BUG();
1676 	BUG_ON(target < 0);
1677 	pr_debug("%s: stripe %llu block: %d\n",
1678 		__func__, (unsigned long long)sh->sector, target);
1679 
1680 	tgt = &sh->dev[target];
1681 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1682 	dest = tgt->page;
1683 	dest_off = tgt->offset;
1684 
1685 	atomic_inc(&sh->count);
1686 
1687 	if (target == qd_idx) {
1688 		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1689 		blocks[count] = NULL; /* regenerating p is not necessary */
1690 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1691 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1692 				  ops_complete_compute, sh,
1693 				  to_addr_conv(sh, percpu, 0));
1694 		tx = async_gen_syndrome(blocks, offs, count+2,
1695 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1696 	} else {
1697 		/* Compute any data- or p-drive using XOR */
1698 		count = 0;
1699 		for (i = disks; i-- ; ) {
1700 			if (i == target || i == qd_idx)
1701 				continue;
1702 			offs[count] = sh->dev[i].offset;
1703 			blocks[count++] = sh->dev[i].page;
1704 		}
1705 
1706 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1707 				  NULL, ops_complete_compute, sh,
1708 				  to_addr_conv(sh, percpu, 0));
1709 		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1710 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1711 	}
1712 
1713 	return tx;
1714 }
1715 
1716 static struct dma_async_tx_descriptor *
1717 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1718 {
1719 	int i, count, disks = sh->disks;
1720 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1721 	int d0_idx = raid6_d0(sh);
1722 	int faila = -1, failb = -1;
1723 	int target = sh->ops.target;
1724 	int target2 = sh->ops.target2;
1725 	struct r5dev *tgt = &sh->dev[target];
1726 	struct r5dev *tgt2 = &sh->dev[target2];
1727 	struct dma_async_tx_descriptor *tx;
1728 	struct page **blocks = to_addr_page(percpu, 0);
1729 	unsigned int *offs = to_addr_offs(sh, percpu);
1730 	struct async_submit_ctl submit;
1731 
1732 	BUG_ON(sh->batch_head);
1733 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1734 		 __func__, (unsigned long long)sh->sector, target, target2);
1735 	BUG_ON(target < 0 || target2 < 0);
1736 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1737 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1738 
1739 	/* we need to open-code set_syndrome_sources to handle the
1740 	 * slot number conversion for 'faila' and 'failb'
1741 	 */
1742 	for (i = 0; i < disks ; i++) {
1743 		offs[i] = 0;
1744 		blocks[i] = NULL;
1745 	}
1746 	count = 0;
1747 	i = d0_idx;
1748 	do {
1749 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1750 
1751 		offs[slot] = sh->dev[i].offset;
1752 		blocks[slot] = sh->dev[i].page;
1753 
1754 		if (i == target)
1755 			faila = slot;
1756 		if (i == target2)
1757 			failb = slot;
1758 		i = raid6_next_disk(i, disks);
1759 	} while (i != d0_idx);
1760 
1761 	BUG_ON(faila == failb);
1762 	if (failb < faila)
1763 		swap(faila, failb);
1764 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1765 		 __func__, (unsigned long long)sh->sector, faila, failb);
1766 
1767 	atomic_inc(&sh->count);
1768 
1769 	if (failb == syndrome_disks+1) {
1770 		/* Q disk is one of the missing disks */
1771 		if (faila == syndrome_disks) {
1772 			/* Missing P+Q, just recompute */
1773 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1774 					  ops_complete_compute, sh,
1775 					  to_addr_conv(sh, percpu, 0));
1776 			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1777 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1778 						  &submit);
1779 		} else {
1780 			struct page *dest;
1781 			unsigned int dest_off;
1782 			int data_target;
1783 			int qd_idx = sh->qd_idx;
1784 
1785 			/* Missing D+Q: recompute D from P, then recompute Q */
1786 			if (target == qd_idx)
1787 				data_target = target2;
1788 			else
1789 				data_target = target;
1790 
1791 			count = 0;
1792 			for (i = disks; i-- ; ) {
1793 				if (i == data_target || i == qd_idx)
1794 					continue;
1795 				offs[count] = sh->dev[i].offset;
1796 				blocks[count++] = sh->dev[i].page;
1797 			}
1798 			dest = sh->dev[data_target].page;
1799 			dest_off = sh->dev[data_target].offset;
1800 			init_async_submit(&submit,
1801 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1802 					  NULL, NULL, NULL,
1803 					  to_addr_conv(sh, percpu, 0));
1804 			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1805 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1806 				       &submit);
1807 
1808 			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1809 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1810 					  ops_complete_compute, sh,
1811 					  to_addr_conv(sh, percpu, 0));
1812 			return async_gen_syndrome(blocks, offs, count+2,
1813 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1814 						  &submit);
1815 		}
1816 	} else {
1817 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1818 				  ops_complete_compute, sh,
1819 				  to_addr_conv(sh, percpu, 0));
1820 		if (failb == syndrome_disks) {
1821 			/* We're missing D+P. */
1822 			return async_raid6_datap_recov(syndrome_disks+2,
1823 						RAID5_STRIPE_SIZE(sh->raid_conf),
1824 						faila,
1825 						blocks, offs, &submit);
1826 		} else {
1827 			/* We're missing D+D. */
1828 			return async_raid6_2data_recov(syndrome_disks+2,
1829 						RAID5_STRIPE_SIZE(sh->raid_conf),
1830 						faila, failb,
1831 						blocks, offs, &submit);
1832 		}
1833 	}
1834 }
1835 
1836 static void ops_complete_prexor(void *stripe_head_ref)
1837 {
1838 	struct stripe_head *sh = stripe_head_ref;
1839 
1840 	pr_debug("%s: stripe %llu\n", __func__,
1841 		(unsigned long long)sh->sector);
1842 
1843 	if (r5c_is_writeback(sh->raid_conf->log))
1844 		/*
1845 		 * raid5-cache write back uses orig_page during prexor.
1846 		 * After prexor, it is time to free orig_page
1847 		 */
1848 		r5c_release_extra_page(sh);
1849 }
1850 
1851 static struct dma_async_tx_descriptor *
1852 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1853 		struct dma_async_tx_descriptor *tx)
1854 {
1855 	int disks = sh->disks;
1856 	struct page **xor_srcs = to_addr_page(percpu, 0);
1857 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1858 	int count = 0, pd_idx = sh->pd_idx, i;
1859 	struct async_submit_ctl submit;
1860 
1861 	/* existing parity data subtracted */
1862 	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1863 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1864 
1865 	BUG_ON(sh->batch_head);
1866 	pr_debug("%s: stripe %llu\n", __func__,
1867 		(unsigned long long)sh->sector);
1868 
1869 	for (i = disks; i--; ) {
1870 		struct r5dev *dev = &sh->dev[i];
1871 		/* Only process blocks that are known to be uptodate */
1872 		if (test_bit(R5_InJournal, &dev->flags)) {
1873 			/*
1874 			 * For this case, PAGE_SIZE must be equal to 4KB and
1875 			 * page offset is zero.
1876 			 */
1877 			off_srcs[count] = dev->offset;
1878 			xor_srcs[count++] = dev->orig_page;
1879 		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1880 			off_srcs[count] = dev->offset;
1881 			xor_srcs[count++] = dev->page;
1882 		}
1883 	}
1884 
1885 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1886 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1887 	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1888 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1889 
1890 	return tx;
1891 }
1892 
1893 static struct dma_async_tx_descriptor *
1894 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1895 		struct dma_async_tx_descriptor *tx)
1896 {
1897 	struct page **blocks = to_addr_page(percpu, 0);
1898 	unsigned int *offs = to_addr_offs(sh, percpu);
1899 	int count;
1900 	struct async_submit_ctl submit;
1901 
1902 	pr_debug("%s: stripe %llu\n", __func__,
1903 		(unsigned long long)sh->sector);
1904 
1905 	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1906 
1907 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1908 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1909 	tx = async_gen_syndrome(blocks, offs, count+2,
1910 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1911 
1912 	return tx;
1913 }
1914 
1915 static struct dma_async_tx_descriptor *
1916 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1917 {
1918 	struct r5conf *conf = sh->raid_conf;
1919 	int disks = sh->disks;
1920 	int i;
1921 	struct stripe_head *head_sh = sh;
1922 
1923 	pr_debug("%s: stripe %llu\n", __func__,
1924 		(unsigned long long)sh->sector);
1925 
1926 	for (i = disks; i--; ) {
1927 		struct r5dev *dev;
1928 		struct bio *chosen;
1929 
1930 		sh = head_sh;
1931 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1932 			struct bio *wbi;
1933 
1934 again:
1935 			dev = &sh->dev[i];
1936 			/*
1937 			 * clear R5_InJournal, so when rewriting a page in
1938 			 * journal, it is not skipped by r5l_log_stripe()
1939 			 */
1940 			clear_bit(R5_InJournal, &dev->flags);
1941 			spin_lock_irq(&sh->stripe_lock);
1942 			chosen = dev->towrite;
1943 			dev->towrite = NULL;
1944 			sh->overwrite_disks = 0;
1945 			BUG_ON(dev->written);
1946 			wbi = dev->written = chosen;
1947 			spin_unlock_irq(&sh->stripe_lock);
1948 			WARN_ON(dev->page != dev->orig_page);
1949 
1950 			while (wbi && wbi->bi_iter.bi_sector <
1951 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1952 				if (wbi->bi_opf & REQ_FUA)
1953 					set_bit(R5_WantFUA, &dev->flags);
1954 				if (wbi->bi_opf & REQ_SYNC)
1955 					set_bit(R5_SyncIO, &dev->flags);
1956 				if (bio_op(wbi) == REQ_OP_DISCARD)
1957 					set_bit(R5_Discard, &dev->flags);
1958 				else {
1959 					tx = async_copy_data(1, wbi, &dev->page,
1960 							     dev->offset,
1961 							     dev->sector, tx, sh,
1962 							     r5c_is_writeback(conf->log));
1963 					if (dev->page != dev->orig_page &&
1964 					    !r5c_is_writeback(conf->log)) {
1965 						set_bit(R5_SkipCopy, &dev->flags);
1966 						clear_bit(R5_UPTODATE, &dev->flags);
1967 						clear_bit(R5_OVERWRITE, &dev->flags);
1968 					}
1969 				}
1970 				wbi = r5_next_bio(conf, wbi, dev->sector);
1971 			}
1972 
1973 			if (head_sh->batch_head) {
1974 				sh = list_first_entry(&sh->batch_list,
1975 						      struct stripe_head,
1976 						      batch_list);
1977 				if (sh == head_sh)
1978 					continue;
1979 				goto again;
1980 			}
1981 		}
1982 	}
1983 
1984 	return tx;
1985 }
1986 
1987 static void ops_complete_reconstruct(void *stripe_head_ref)
1988 {
1989 	struct stripe_head *sh = stripe_head_ref;
1990 	int disks = sh->disks;
1991 	int pd_idx = sh->pd_idx;
1992 	int qd_idx = sh->qd_idx;
1993 	int i;
1994 	bool fua = false, sync = false, discard = false;
1995 
1996 	pr_debug("%s: stripe %llu\n", __func__,
1997 		(unsigned long long)sh->sector);
1998 
1999 	for (i = disks; i--; ) {
2000 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2001 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2002 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2003 	}
2004 
2005 	for (i = disks; i--; ) {
2006 		struct r5dev *dev = &sh->dev[i];
2007 
2008 		if (dev->written || i == pd_idx || i == qd_idx) {
2009 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2010 				set_bit(R5_UPTODATE, &dev->flags);
2011 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2012 					set_bit(R5_Expanded, &dev->flags);
2013 			}
2014 			if (fua)
2015 				set_bit(R5_WantFUA, &dev->flags);
2016 			if (sync)
2017 				set_bit(R5_SyncIO, &dev->flags);
2018 		}
2019 	}
2020 
2021 	if (sh->reconstruct_state == reconstruct_state_drain_run)
2022 		sh->reconstruct_state = reconstruct_state_drain_result;
2023 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2024 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2025 	else {
2026 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2027 		sh->reconstruct_state = reconstruct_state_result;
2028 	}
2029 
2030 	set_bit(STRIPE_HANDLE, &sh->state);
2031 	raid5_release_stripe(sh);
2032 }
2033 
2034 static void
2035 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2036 		     struct dma_async_tx_descriptor *tx)
2037 {
2038 	int disks = sh->disks;
2039 	struct page **xor_srcs;
2040 	unsigned int *off_srcs;
2041 	struct async_submit_ctl submit;
2042 	int count, pd_idx = sh->pd_idx, i;
2043 	struct page *xor_dest;
2044 	unsigned int off_dest;
2045 	int prexor = 0;
2046 	unsigned long flags;
2047 	int j = 0;
2048 	struct stripe_head *head_sh = sh;
2049 	int last_stripe;
2050 
2051 	pr_debug("%s: stripe %llu\n", __func__,
2052 		(unsigned long long)sh->sector);
2053 
2054 	for (i = 0; i < sh->disks; i++) {
2055 		if (pd_idx == i)
2056 			continue;
2057 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2058 			break;
2059 	}
2060 	if (i >= sh->disks) {
2061 		atomic_inc(&sh->count);
2062 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2063 		ops_complete_reconstruct(sh);
2064 		return;
2065 	}
2066 again:
2067 	count = 0;
2068 	xor_srcs = to_addr_page(percpu, j);
2069 	off_srcs = to_addr_offs(sh, percpu);
2070 	/* check if prexor is active which means only process blocks
2071 	 * that are part of a read-modify-write (written)
2072 	 */
2073 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2074 		prexor = 1;
2075 		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2076 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2077 		for (i = disks; i--; ) {
2078 			struct r5dev *dev = &sh->dev[i];
2079 			if (head_sh->dev[i].written ||
2080 			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2081 				off_srcs[count] = dev->offset;
2082 				xor_srcs[count++] = dev->page;
2083 			}
2084 		}
2085 	} else {
2086 		xor_dest = sh->dev[pd_idx].page;
2087 		off_dest = sh->dev[pd_idx].offset;
2088 		for (i = disks; i--; ) {
2089 			struct r5dev *dev = &sh->dev[i];
2090 			if (i != pd_idx) {
2091 				off_srcs[count] = dev->offset;
2092 				xor_srcs[count++] = dev->page;
2093 			}
2094 		}
2095 	}
2096 
2097 	/* 1/ if we prexor'd then the dest is reused as a source
2098 	 * 2/ if we did not prexor then we are redoing the parity
2099 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2100 	 * for the synchronous xor case
2101 	 */
2102 	last_stripe = !head_sh->batch_head ||
2103 		list_first_entry(&sh->batch_list,
2104 				 struct stripe_head, batch_list) == head_sh;
2105 	if (last_stripe) {
2106 		flags = ASYNC_TX_ACK |
2107 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2108 
2109 		atomic_inc(&head_sh->count);
2110 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2111 				  to_addr_conv(sh, percpu, j));
2112 	} else {
2113 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2114 		init_async_submit(&submit, flags, tx, NULL, NULL,
2115 				  to_addr_conv(sh, percpu, j));
2116 	}
2117 
2118 	if (unlikely(count == 1))
2119 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2120 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2121 	else
2122 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2123 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2124 	if (!last_stripe) {
2125 		j++;
2126 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2127 				      batch_list);
2128 		goto again;
2129 	}
2130 }
2131 
2132 static void
2133 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2134 		     struct dma_async_tx_descriptor *tx)
2135 {
2136 	struct async_submit_ctl submit;
2137 	struct page **blocks;
2138 	unsigned int *offs;
2139 	int count, i, j = 0;
2140 	struct stripe_head *head_sh = sh;
2141 	int last_stripe;
2142 	int synflags;
2143 	unsigned long txflags;
2144 
2145 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2146 
2147 	for (i = 0; i < sh->disks; i++) {
2148 		if (sh->pd_idx == i || sh->qd_idx == i)
2149 			continue;
2150 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2151 			break;
2152 	}
2153 	if (i >= sh->disks) {
2154 		atomic_inc(&sh->count);
2155 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2156 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2157 		ops_complete_reconstruct(sh);
2158 		return;
2159 	}
2160 
2161 again:
2162 	blocks = to_addr_page(percpu, j);
2163 	offs = to_addr_offs(sh, percpu);
2164 
2165 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2166 		synflags = SYNDROME_SRC_WRITTEN;
2167 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2168 	} else {
2169 		synflags = SYNDROME_SRC_ALL;
2170 		txflags = ASYNC_TX_ACK;
2171 	}
2172 
2173 	count = set_syndrome_sources(blocks, offs, sh, synflags);
2174 	last_stripe = !head_sh->batch_head ||
2175 		list_first_entry(&sh->batch_list,
2176 				 struct stripe_head, batch_list) == head_sh;
2177 
2178 	if (last_stripe) {
2179 		atomic_inc(&head_sh->count);
2180 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2181 				  head_sh, to_addr_conv(sh, percpu, j));
2182 	} else
2183 		init_async_submit(&submit, 0, tx, NULL, NULL,
2184 				  to_addr_conv(sh, percpu, j));
2185 	tx = async_gen_syndrome(blocks, offs, count+2,
2186 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2187 	if (!last_stripe) {
2188 		j++;
2189 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2190 				      batch_list);
2191 		goto again;
2192 	}
2193 }
2194 
2195 static void ops_complete_check(void *stripe_head_ref)
2196 {
2197 	struct stripe_head *sh = stripe_head_ref;
2198 
2199 	pr_debug("%s: stripe %llu\n", __func__,
2200 		(unsigned long long)sh->sector);
2201 
2202 	sh->check_state = check_state_check_result;
2203 	set_bit(STRIPE_HANDLE, &sh->state);
2204 	raid5_release_stripe(sh);
2205 }
2206 
2207 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2208 {
2209 	int disks = sh->disks;
2210 	int pd_idx = sh->pd_idx;
2211 	int qd_idx = sh->qd_idx;
2212 	struct page *xor_dest;
2213 	unsigned int off_dest;
2214 	struct page **xor_srcs = to_addr_page(percpu, 0);
2215 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2216 	struct dma_async_tx_descriptor *tx;
2217 	struct async_submit_ctl submit;
2218 	int count;
2219 	int i;
2220 
2221 	pr_debug("%s: stripe %llu\n", __func__,
2222 		(unsigned long long)sh->sector);
2223 
2224 	BUG_ON(sh->batch_head);
2225 	count = 0;
2226 	xor_dest = sh->dev[pd_idx].page;
2227 	off_dest = sh->dev[pd_idx].offset;
2228 	off_srcs[count] = off_dest;
2229 	xor_srcs[count++] = xor_dest;
2230 	for (i = disks; i--; ) {
2231 		if (i == pd_idx || i == qd_idx)
2232 			continue;
2233 		off_srcs[count] = sh->dev[i].offset;
2234 		xor_srcs[count++] = sh->dev[i].page;
2235 	}
2236 
2237 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2238 			  to_addr_conv(sh, percpu, 0));
2239 	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2240 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2241 			   &sh->ops.zero_sum_result, &submit);
2242 
2243 	atomic_inc(&sh->count);
2244 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2245 	tx = async_trigger_callback(&submit);
2246 }
2247 
2248 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2249 {
2250 	struct page **srcs = to_addr_page(percpu, 0);
2251 	unsigned int *offs = to_addr_offs(sh, percpu);
2252 	struct async_submit_ctl submit;
2253 	int count;
2254 
2255 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2256 		(unsigned long long)sh->sector, checkp);
2257 
2258 	BUG_ON(sh->batch_head);
2259 	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2260 	if (!checkp)
2261 		srcs[count] = NULL;
2262 
2263 	atomic_inc(&sh->count);
2264 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2265 			  sh, to_addr_conv(sh, percpu, 0));
2266 	async_syndrome_val(srcs, offs, count+2,
2267 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2268 			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2269 }
2270 
2271 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2272 {
2273 	int overlap_clear = 0, i, disks = sh->disks;
2274 	struct dma_async_tx_descriptor *tx = NULL;
2275 	struct r5conf *conf = sh->raid_conf;
2276 	int level = conf->level;
2277 	struct raid5_percpu *percpu;
2278 
2279 	local_lock(&conf->percpu->lock);
2280 	percpu = this_cpu_ptr(conf->percpu);
2281 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2282 		ops_run_biofill(sh);
2283 		overlap_clear++;
2284 	}
2285 
2286 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2287 		if (level < 6)
2288 			tx = ops_run_compute5(sh, percpu);
2289 		else {
2290 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2291 				tx = ops_run_compute6_1(sh, percpu);
2292 			else
2293 				tx = ops_run_compute6_2(sh, percpu);
2294 		}
2295 		/* terminate the chain if reconstruct is not set to be run */
2296 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2297 			async_tx_ack(tx);
2298 	}
2299 
2300 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2301 		if (level < 6)
2302 			tx = ops_run_prexor5(sh, percpu, tx);
2303 		else
2304 			tx = ops_run_prexor6(sh, percpu, tx);
2305 	}
2306 
2307 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2308 		tx = ops_run_partial_parity(sh, percpu, tx);
2309 
2310 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2311 		tx = ops_run_biodrain(sh, tx);
2312 		overlap_clear++;
2313 	}
2314 
2315 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2316 		if (level < 6)
2317 			ops_run_reconstruct5(sh, percpu, tx);
2318 		else
2319 			ops_run_reconstruct6(sh, percpu, tx);
2320 	}
2321 
2322 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2323 		if (sh->check_state == check_state_run)
2324 			ops_run_check_p(sh, percpu);
2325 		else if (sh->check_state == check_state_run_q)
2326 			ops_run_check_pq(sh, percpu, 0);
2327 		else if (sh->check_state == check_state_run_pq)
2328 			ops_run_check_pq(sh, percpu, 1);
2329 		else
2330 			BUG();
2331 	}
2332 
2333 	if (overlap_clear && !sh->batch_head) {
2334 		for (i = disks; i--; ) {
2335 			struct r5dev *dev = &sh->dev[i];
2336 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2337 				wake_up_bit(&dev->flags, R5_Overlap);
2338 		}
2339 	}
2340 	local_unlock(&conf->percpu->lock);
2341 }
2342 
2343 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2344 {
2345 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2346 	kfree(sh->pages);
2347 #endif
2348 	if (sh->ppl_page)
2349 		__free_page(sh->ppl_page);
2350 	kmem_cache_free(sc, sh);
2351 }
2352 
2353 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2354 	int disks, struct r5conf *conf)
2355 {
2356 	struct stripe_head *sh;
2357 
2358 	sh = kmem_cache_zalloc(sc, gfp);
2359 	if (sh) {
2360 		spin_lock_init(&sh->stripe_lock);
2361 		spin_lock_init(&sh->batch_lock);
2362 		INIT_LIST_HEAD(&sh->batch_list);
2363 		INIT_LIST_HEAD(&sh->lru);
2364 		INIT_LIST_HEAD(&sh->r5c);
2365 		INIT_LIST_HEAD(&sh->log_list);
2366 		atomic_set(&sh->count, 1);
2367 		sh->raid_conf = conf;
2368 		sh->log_start = MaxSector;
2369 
2370 		if (raid5_has_ppl(conf)) {
2371 			sh->ppl_page = alloc_page(gfp);
2372 			if (!sh->ppl_page) {
2373 				free_stripe(sc, sh);
2374 				return NULL;
2375 			}
2376 		}
2377 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2378 		if (init_stripe_shared_pages(sh, conf, disks)) {
2379 			free_stripe(sc, sh);
2380 			return NULL;
2381 		}
2382 #endif
2383 	}
2384 	return sh;
2385 }
2386 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2387 {
2388 	struct stripe_head *sh;
2389 
2390 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2391 	if (!sh)
2392 		return 0;
2393 
2394 	if (grow_buffers(sh, gfp)) {
2395 		shrink_buffers(sh);
2396 		free_stripe(conf->slab_cache, sh);
2397 		return 0;
2398 	}
2399 	sh->hash_lock_index =
2400 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2401 	/* we just created an active stripe so... */
2402 	atomic_inc(&conf->active_stripes);
2403 
2404 	raid5_release_stripe(sh);
2405 	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2406 	return 1;
2407 }
2408 
2409 static int grow_stripes(struct r5conf *conf, int num)
2410 {
2411 	struct kmem_cache *sc;
2412 	size_t namelen = sizeof(conf->cache_name[0]);
2413 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2414 
2415 	if (mddev_is_dm(conf->mddev))
2416 		snprintf(conf->cache_name[0], namelen,
2417 			"raid%d-%p", conf->level, conf->mddev);
2418 	else
2419 		snprintf(conf->cache_name[0], namelen,
2420 			"raid%d-%s", conf->level, mdname(conf->mddev));
2421 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2422 
2423 	conf->active_name = 0;
2424 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2425 			       struct_size_t(struct stripe_head, dev, devs),
2426 			       0, 0, NULL);
2427 	if (!sc)
2428 		return 1;
2429 	conf->slab_cache = sc;
2430 	conf->pool_size = devs;
2431 	while (num--)
2432 		if (!grow_one_stripe(conf, GFP_KERNEL))
2433 			return 1;
2434 
2435 	return 0;
2436 }
2437 
2438 /**
2439  * scribble_alloc - allocate percpu scribble buffer for required size
2440  *		    of the scribble region
2441  * @percpu: from for_each_present_cpu() of the caller
2442  * @num: total number of disks in the array
2443  * @cnt: scribble objs count for required size of the scribble region
2444  *
2445  * The scribble buffer size must be enough to contain:
2446  * 1/ a struct page pointer for each device in the array +2
2447  * 2/ room to convert each entry in (1) to its corresponding dma
2448  *    (dma_map_page()) or page (page_address()) address.
2449  *
2450  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2451  * calculate over all devices (not just the data blocks), using zeros in place
2452  * of the P and Q blocks.
2453  */
2454 static int scribble_alloc(struct raid5_percpu *percpu,
2455 			  int num, int cnt)
2456 {
2457 	size_t obj_size =
2458 		sizeof(struct page *) * (num + 2) +
2459 		sizeof(addr_conv_t) * (num + 2) +
2460 		sizeof(unsigned int) * (num + 2);
2461 	void *scribble;
2462 
2463 	/*
2464 	 * If here is in raid array suspend context, it is in memalloc noio
2465 	 * context as well, there is no potential recursive memory reclaim
2466 	 * I/Os with the GFP_KERNEL flag.
2467 	 */
2468 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2469 	if (!scribble)
2470 		return -ENOMEM;
2471 
2472 	kvfree(percpu->scribble);
2473 
2474 	percpu->scribble = scribble;
2475 	percpu->scribble_obj_size = obj_size;
2476 	return 0;
2477 }
2478 
2479 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2480 {
2481 	unsigned long cpu;
2482 	int err = 0;
2483 
2484 	/* Never shrink. */
2485 	if (conf->scribble_disks >= new_disks &&
2486 	    conf->scribble_sectors >= new_sectors)
2487 		return 0;
2488 
2489 	raid5_quiesce(conf->mddev, true);
2490 	cpus_read_lock();
2491 
2492 	for_each_present_cpu(cpu) {
2493 		struct raid5_percpu *percpu;
2494 
2495 		percpu = per_cpu_ptr(conf->percpu, cpu);
2496 		err = scribble_alloc(percpu, new_disks,
2497 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2498 		if (err)
2499 			break;
2500 	}
2501 
2502 	cpus_read_unlock();
2503 	raid5_quiesce(conf->mddev, false);
2504 
2505 	if (!err) {
2506 		conf->scribble_disks = new_disks;
2507 		conf->scribble_sectors = new_sectors;
2508 	}
2509 	return err;
2510 }
2511 
2512 static int resize_stripes(struct r5conf *conf, int newsize)
2513 {
2514 	/* Make all the stripes able to hold 'newsize' devices.
2515 	 * New slots in each stripe get 'page' set to a new page.
2516 	 *
2517 	 * This happens in stages:
2518 	 * 1/ create a new kmem_cache and allocate the required number of
2519 	 *    stripe_heads.
2520 	 * 2/ gather all the old stripe_heads and transfer the pages across
2521 	 *    to the new stripe_heads.  This will have the side effect of
2522 	 *    freezing the array as once all stripe_heads have been collected,
2523 	 *    no IO will be possible.  Old stripe heads are freed once their
2524 	 *    pages have been transferred over, and the old kmem_cache is
2525 	 *    freed when all stripes are done.
2526 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2527 	 *    we simple return a failure status - no need to clean anything up.
2528 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2529 	 *    If this fails, we don't bother trying the shrink the
2530 	 *    stripe_heads down again, we just leave them as they are.
2531 	 *    As each stripe_head is processed the new one is released into
2532 	 *    active service.
2533 	 *
2534 	 * Once step2 is started, we cannot afford to wait for a write,
2535 	 * so we use GFP_NOIO allocations.
2536 	 */
2537 	struct stripe_head *osh, *nsh;
2538 	LIST_HEAD(newstripes);
2539 	struct disk_info *ndisks;
2540 	int err = 0;
2541 	struct kmem_cache *sc;
2542 	int i;
2543 	int hash, cnt;
2544 
2545 	md_allow_write(conf->mddev);
2546 
2547 	/* Step 1 */
2548 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2549 			       struct_size_t(struct stripe_head, dev, newsize),
2550 			       0, 0, NULL);
2551 	if (!sc)
2552 		return -ENOMEM;
2553 
2554 	/* Need to ensure auto-resizing doesn't interfere */
2555 	mutex_lock(&conf->cache_size_mutex);
2556 
2557 	for (i = conf->max_nr_stripes; i; i--) {
2558 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2559 		if (!nsh)
2560 			break;
2561 
2562 		list_add(&nsh->lru, &newstripes);
2563 	}
2564 	if (i) {
2565 		/* didn't get enough, give up */
2566 		while (!list_empty(&newstripes)) {
2567 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2568 			list_del(&nsh->lru);
2569 			free_stripe(sc, nsh);
2570 		}
2571 		kmem_cache_destroy(sc);
2572 		mutex_unlock(&conf->cache_size_mutex);
2573 		return -ENOMEM;
2574 	}
2575 	/* Step 2 - Must use GFP_NOIO now.
2576 	 * OK, we have enough stripes, start collecting inactive
2577 	 * stripes and copying them over
2578 	 */
2579 	hash = 0;
2580 	cnt = 0;
2581 	list_for_each_entry(nsh, &newstripes, lru) {
2582 		lock_device_hash_lock(conf, hash);
2583 		wait_event_cmd(conf->wait_for_stripe,
2584 				    !list_empty(conf->inactive_list + hash),
2585 				    unlock_device_hash_lock(conf, hash),
2586 				    lock_device_hash_lock(conf, hash));
2587 		osh = get_free_stripe(conf, hash);
2588 		unlock_device_hash_lock(conf, hash);
2589 
2590 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2591 	for (i = 0; i < osh->nr_pages; i++) {
2592 		nsh->pages[i] = osh->pages[i];
2593 		osh->pages[i] = NULL;
2594 	}
2595 #endif
2596 		for(i=0; i<conf->pool_size; i++) {
2597 			nsh->dev[i].page = osh->dev[i].page;
2598 			nsh->dev[i].orig_page = osh->dev[i].page;
2599 			nsh->dev[i].offset = osh->dev[i].offset;
2600 		}
2601 		nsh->hash_lock_index = hash;
2602 		free_stripe(conf->slab_cache, osh);
2603 		cnt++;
2604 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2605 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2606 			hash++;
2607 			cnt = 0;
2608 		}
2609 	}
2610 	kmem_cache_destroy(conf->slab_cache);
2611 
2612 	/* Step 3.
2613 	 * At this point, we are holding all the stripes so the array
2614 	 * is completely stalled, so now is a good time to resize
2615 	 * conf->disks and the scribble region
2616 	 */
2617 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2618 	if (ndisks) {
2619 		for (i = 0; i < conf->pool_size; i++)
2620 			ndisks[i] = conf->disks[i];
2621 
2622 		for (i = conf->pool_size; i < newsize; i++) {
2623 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2624 			if (!ndisks[i].extra_page)
2625 				err = -ENOMEM;
2626 		}
2627 
2628 		if (err) {
2629 			for (i = conf->pool_size; i < newsize; i++)
2630 				if (ndisks[i].extra_page)
2631 					put_page(ndisks[i].extra_page);
2632 			kfree(ndisks);
2633 		} else {
2634 			kfree(conf->disks);
2635 			conf->disks = ndisks;
2636 		}
2637 	} else
2638 		err = -ENOMEM;
2639 
2640 	conf->slab_cache = sc;
2641 	conf->active_name = 1-conf->active_name;
2642 
2643 	/* Step 4, return new stripes to service */
2644 	while(!list_empty(&newstripes)) {
2645 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2646 		list_del_init(&nsh->lru);
2647 
2648 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2649 		for (i = 0; i < nsh->nr_pages; i++) {
2650 			if (nsh->pages[i])
2651 				continue;
2652 			nsh->pages[i] = alloc_page(GFP_NOIO);
2653 			if (!nsh->pages[i])
2654 				err = -ENOMEM;
2655 		}
2656 
2657 		for (i = conf->raid_disks; i < newsize; i++) {
2658 			if (nsh->dev[i].page)
2659 				continue;
2660 			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2661 			nsh->dev[i].orig_page = nsh->dev[i].page;
2662 			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2663 		}
2664 #else
2665 		for (i=conf->raid_disks; i < newsize; i++)
2666 			if (nsh->dev[i].page == NULL) {
2667 				struct page *p = alloc_page(GFP_NOIO);
2668 				nsh->dev[i].page = p;
2669 				nsh->dev[i].orig_page = p;
2670 				nsh->dev[i].offset = 0;
2671 				if (!p)
2672 					err = -ENOMEM;
2673 			}
2674 #endif
2675 		raid5_release_stripe(nsh);
2676 	}
2677 	/* critical section pass, GFP_NOIO no longer needed */
2678 
2679 	if (!err)
2680 		conf->pool_size = newsize;
2681 	mutex_unlock(&conf->cache_size_mutex);
2682 
2683 	return err;
2684 }
2685 
2686 static int drop_one_stripe(struct r5conf *conf)
2687 {
2688 	struct stripe_head *sh;
2689 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2690 
2691 	spin_lock_irq(conf->hash_locks + hash);
2692 	sh = get_free_stripe(conf, hash);
2693 	spin_unlock_irq(conf->hash_locks + hash);
2694 	if (!sh)
2695 		return 0;
2696 	BUG_ON(atomic_read(&sh->count));
2697 	shrink_buffers(sh);
2698 	free_stripe(conf->slab_cache, sh);
2699 	atomic_dec(&conf->active_stripes);
2700 	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2701 	return 1;
2702 }
2703 
2704 static void shrink_stripes(struct r5conf *conf)
2705 {
2706 	while (conf->max_nr_stripes &&
2707 	       drop_one_stripe(conf))
2708 		;
2709 
2710 	kmem_cache_destroy(conf->slab_cache);
2711 	conf->slab_cache = NULL;
2712 }
2713 
2714 static void raid5_end_read_request(struct bio * bi)
2715 {
2716 	struct stripe_head *sh = bi->bi_private;
2717 	struct r5conf *conf = sh->raid_conf;
2718 	int disks = sh->disks, i;
2719 	struct md_rdev *rdev = NULL;
2720 	sector_t s;
2721 
2722 	for (i=0 ; i<disks; i++)
2723 		if (bi == &sh->dev[i].req)
2724 			break;
2725 
2726 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2727 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2728 		bi->bi_status);
2729 	if (i == disks) {
2730 		BUG();
2731 		return;
2732 	}
2733 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2734 		/* If replacement finished while this request was outstanding,
2735 		 * 'replacement' might be NULL already.
2736 		 * In that case it moved down to 'rdev'.
2737 		 * rdev is not removed until all requests are finished.
2738 		 */
2739 		rdev = conf->disks[i].replacement;
2740 	if (!rdev)
2741 		rdev = conf->disks[i].rdev;
2742 
2743 	if (use_new_offset(conf, sh))
2744 		s = sh->sector + rdev->new_data_offset;
2745 	else
2746 		s = sh->sector + rdev->data_offset;
2747 	if (!bi->bi_status) {
2748 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2749 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2750 			/* Note that this cannot happen on a
2751 			 * replacement device.  We just fail those on
2752 			 * any error
2753 			 */
2754 			pr_info_ratelimited(
2755 				"md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2756 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2757 				(unsigned long long)s,
2758 				rdev->bdev);
2759 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2760 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2761 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2762 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2763 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2764 
2765 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2766 			/*
2767 			 * end read for a page in journal, this
2768 			 * must be preparing for prexor in rmw
2769 			 */
2770 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2771 
2772 		if (atomic_read(&rdev->read_errors))
2773 			atomic_set(&rdev->read_errors, 0);
2774 	} else {
2775 		int retry = 0;
2776 		int set_bad = 0;
2777 
2778 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2779 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2780 			atomic_inc(&rdev->read_errors);
2781 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2782 			pr_warn_ratelimited(
2783 				"md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2784 				mdname(conf->mddev),
2785 				(unsigned long long)s,
2786 				rdev->bdev);
2787 		else if (conf->mddev->degraded >= conf->max_degraded) {
2788 			set_bad = 1;
2789 			pr_warn_ratelimited(
2790 				"md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2791 				mdname(conf->mddev),
2792 				(unsigned long long)s,
2793 				rdev->bdev);
2794 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2795 			/* Oh, no!!! */
2796 			set_bad = 1;
2797 			pr_warn_ratelimited(
2798 				"md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2799 				mdname(conf->mddev),
2800 				(unsigned long long)s,
2801 				rdev->bdev);
2802 		} else if (atomic_read(&rdev->read_errors)
2803 			 > conf->max_nr_stripes) {
2804 			if (!test_bit(Faulty, &rdev->flags)) {
2805 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2806 				    mdname(conf->mddev),
2807 				    atomic_read(&rdev->read_errors),
2808 				    conf->max_nr_stripes);
2809 				pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2810 				    mdname(conf->mddev), rdev->bdev);
2811 			}
2812 		} else
2813 			retry = 1;
2814 		if (set_bad && test_bit(In_sync, &rdev->flags)
2815 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2816 			retry = 1;
2817 		if (retry)
2818 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2819 				set_bit(R5_ReadError, &sh->dev[i].flags);
2820 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2821 				set_bit(R5_ReadError, &sh->dev[i].flags);
2822 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2823 			} else
2824 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2825 		else {
2826 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2827 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2828 			if (!(set_bad
2829 			      && test_bit(In_sync, &rdev->flags)
2830 			      && rdev_set_badblocks(
2831 				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2832 				md_error(conf->mddev, rdev);
2833 		}
2834 	}
2835 	rdev_dec_pending(rdev, conf->mddev);
2836 	bio_uninit(bi);
2837 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2838 	set_bit(STRIPE_HANDLE, &sh->state);
2839 	raid5_release_stripe(sh);
2840 }
2841 
2842 static void raid5_end_write_request(struct bio *bi)
2843 {
2844 	struct stripe_head *sh = bi->bi_private;
2845 	struct r5conf *conf = sh->raid_conf;
2846 	int disks = sh->disks, i;
2847 	struct md_rdev *rdev;
2848 	int replacement = 0;
2849 
2850 	for (i = 0 ; i < disks; i++) {
2851 		if (bi == &sh->dev[i].req) {
2852 			rdev = conf->disks[i].rdev;
2853 			break;
2854 		}
2855 		if (bi == &sh->dev[i].rreq) {
2856 			rdev = conf->disks[i].replacement;
2857 			if (rdev)
2858 				replacement = 1;
2859 			else
2860 				/* rdev was removed and 'replacement'
2861 				 * replaced it.  rdev is not removed
2862 				 * until all requests are finished.
2863 				 */
2864 				rdev = conf->disks[i].rdev;
2865 			break;
2866 		}
2867 	}
2868 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2869 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2870 		bi->bi_status);
2871 	if (i == disks) {
2872 		BUG();
2873 		return;
2874 	}
2875 
2876 	if (replacement) {
2877 		if (bi->bi_status)
2878 			md_error(conf->mddev, rdev);
2879 		else if (rdev_has_badblock(rdev, sh->sector,
2880 					   RAID5_STRIPE_SECTORS(conf)))
2881 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2882 	} else {
2883 		if (bi->bi_status) {
2884 			set_bit(WriteErrorSeen, &rdev->flags);
2885 			set_bit(R5_WriteError, &sh->dev[i].flags);
2886 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2887 				set_bit(MD_RECOVERY_NEEDED,
2888 					&rdev->mddev->recovery);
2889 		} else if (rdev_has_badblock(rdev, sh->sector,
2890 					     RAID5_STRIPE_SECTORS(conf))) {
2891 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2892 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2893 				/* That was a successful write so make
2894 				 * sure it looks like we already did
2895 				 * a re-write.
2896 				 */
2897 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2898 		}
2899 	}
2900 	rdev_dec_pending(rdev, conf->mddev);
2901 
2902 	if (sh->batch_head && bi->bi_status && !replacement)
2903 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2904 
2905 	bio_uninit(bi);
2906 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2907 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2908 	set_bit(STRIPE_HANDLE, &sh->state);
2909 
2910 	if (sh->batch_head && sh != sh->batch_head)
2911 		raid5_release_stripe(sh->batch_head);
2912 	raid5_release_stripe(sh);
2913 }
2914 
2915 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2916 {
2917 	struct r5conf *conf = mddev->private;
2918 	unsigned long flags;
2919 	pr_debug("raid456: error called\n");
2920 
2921 	pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2922 		mdname(mddev), rdev->bdev);
2923 
2924 	spin_lock_irqsave(&conf->device_lock, flags);
2925 	set_bit(Faulty, &rdev->flags);
2926 	clear_bit(In_sync, &rdev->flags);
2927 	mddev->degraded = raid5_calc_degraded(conf);
2928 
2929 	if (has_failed(conf)) {
2930 		set_bit(MD_BROKEN, &conf->mddev->flags);
2931 		conf->recovery_disabled = mddev->recovery_disabled;
2932 
2933 		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2934 			mdname(mddev), mddev->degraded, conf->raid_disks);
2935 	} else {
2936 		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2937 			mdname(mddev), conf->raid_disks - mddev->degraded);
2938 	}
2939 
2940 	spin_unlock_irqrestore(&conf->device_lock, flags);
2941 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2942 
2943 	set_bit(Blocked, &rdev->flags);
2944 	set_mask_bits(&mddev->sb_flags, 0,
2945 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2946 	r5c_update_on_rdev_error(mddev, rdev);
2947 }
2948 
2949 /*
2950  * Input: a 'big' sector number,
2951  * Output: index of the data and parity disk, and the sector # in them.
2952  */
2953 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2954 			      int previous, int *dd_idx,
2955 			      struct stripe_head *sh)
2956 {
2957 	sector_t stripe, stripe2;
2958 	sector_t chunk_number;
2959 	unsigned int chunk_offset;
2960 	int pd_idx, qd_idx;
2961 	int ddf_layout = 0;
2962 	sector_t new_sector;
2963 	int algorithm = previous ? conf->prev_algo
2964 				 : conf->algorithm;
2965 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2966 					 : conf->chunk_sectors;
2967 	int raid_disks = previous ? conf->previous_raid_disks
2968 				  : conf->raid_disks;
2969 	int data_disks = raid_disks - conf->max_degraded;
2970 
2971 	/* First compute the information on this sector */
2972 
2973 	/*
2974 	 * Compute the chunk number and the sector offset inside the chunk
2975 	 */
2976 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2977 	chunk_number = r_sector;
2978 
2979 	/*
2980 	 * Compute the stripe number
2981 	 */
2982 	stripe = chunk_number;
2983 	*dd_idx = sector_div(stripe, data_disks);
2984 	stripe2 = stripe;
2985 	/*
2986 	 * Select the parity disk based on the user selected algorithm.
2987 	 */
2988 	pd_idx = qd_idx = -1;
2989 	switch(conf->level) {
2990 	case 4:
2991 		pd_idx = data_disks;
2992 		break;
2993 	case 5:
2994 		switch (algorithm) {
2995 		case ALGORITHM_LEFT_ASYMMETRIC:
2996 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2997 			if (*dd_idx >= pd_idx)
2998 				(*dd_idx)++;
2999 			break;
3000 		case ALGORITHM_RIGHT_ASYMMETRIC:
3001 			pd_idx = sector_div(stripe2, raid_disks);
3002 			if (*dd_idx >= pd_idx)
3003 				(*dd_idx)++;
3004 			break;
3005 		case ALGORITHM_LEFT_SYMMETRIC:
3006 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3007 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3008 			break;
3009 		case ALGORITHM_RIGHT_SYMMETRIC:
3010 			pd_idx = sector_div(stripe2, raid_disks);
3011 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3012 			break;
3013 		case ALGORITHM_PARITY_0:
3014 			pd_idx = 0;
3015 			(*dd_idx)++;
3016 			break;
3017 		case ALGORITHM_PARITY_N:
3018 			pd_idx = data_disks;
3019 			break;
3020 		default:
3021 			BUG();
3022 		}
3023 		break;
3024 	case 6:
3025 
3026 		switch (algorithm) {
3027 		case ALGORITHM_LEFT_ASYMMETRIC:
3028 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3029 			qd_idx = pd_idx + 1;
3030 			if (pd_idx == raid_disks-1) {
3031 				(*dd_idx)++;	/* Q D D D P */
3032 				qd_idx = 0;
3033 			} else if (*dd_idx >= pd_idx)
3034 				(*dd_idx) += 2; /* D D P Q D */
3035 			break;
3036 		case ALGORITHM_RIGHT_ASYMMETRIC:
3037 			pd_idx = sector_div(stripe2, raid_disks);
3038 			qd_idx = pd_idx + 1;
3039 			if (pd_idx == raid_disks-1) {
3040 				(*dd_idx)++;	/* Q D D D P */
3041 				qd_idx = 0;
3042 			} else if (*dd_idx >= pd_idx)
3043 				(*dd_idx) += 2; /* D D P Q D */
3044 			break;
3045 		case ALGORITHM_LEFT_SYMMETRIC:
3046 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3047 			qd_idx = (pd_idx + 1) % raid_disks;
3048 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3049 			break;
3050 		case ALGORITHM_RIGHT_SYMMETRIC:
3051 			pd_idx = sector_div(stripe2, raid_disks);
3052 			qd_idx = (pd_idx + 1) % raid_disks;
3053 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3054 			break;
3055 
3056 		case ALGORITHM_PARITY_0:
3057 			pd_idx = 0;
3058 			qd_idx = 1;
3059 			(*dd_idx) += 2;
3060 			break;
3061 		case ALGORITHM_PARITY_N:
3062 			pd_idx = data_disks;
3063 			qd_idx = data_disks + 1;
3064 			break;
3065 
3066 		case ALGORITHM_ROTATING_ZERO_RESTART:
3067 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3068 			 * of blocks for computing Q is different.
3069 			 */
3070 			pd_idx = sector_div(stripe2, raid_disks);
3071 			qd_idx = pd_idx + 1;
3072 			if (pd_idx == raid_disks-1) {
3073 				(*dd_idx)++;	/* Q D D D P */
3074 				qd_idx = 0;
3075 			} else if (*dd_idx >= pd_idx)
3076 				(*dd_idx) += 2; /* D D P Q D */
3077 			ddf_layout = 1;
3078 			break;
3079 
3080 		case ALGORITHM_ROTATING_N_RESTART:
3081 			/* Same a left_asymmetric, by first stripe is
3082 			 * D D D P Q  rather than
3083 			 * Q D D D P
3084 			 */
3085 			stripe2 += 1;
3086 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3087 			qd_idx = pd_idx + 1;
3088 			if (pd_idx == raid_disks-1) {
3089 				(*dd_idx)++;	/* Q D D D P */
3090 				qd_idx = 0;
3091 			} else if (*dd_idx >= pd_idx)
3092 				(*dd_idx) += 2; /* D D P Q D */
3093 			ddf_layout = 1;
3094 			break;
3095 
3096 		case ALGORITHM_ROTATING_N_CONTINUE:
3097 			/* Same as left_symmetric but Q is before P */
3098 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3099 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3100 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3101 			ddf_layout = 1;
3102 			break;
3103 
3104 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3105 			/* RAID5 left_asymmetric, with Q on last device */
3106 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3107 			if (*dd_idx >= pd_idx)
3108 				(*dd_idx)++;
3109 			qd_idx = raid_disks - 1;
3110 			break;
3111 
3112 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3113 			pd_idx = sector_div(stripe2, raid_disks-1);
3114 			if (*dd_idx >= pd_idx)
3115 				(*dd_idx)++;
3116 			qd_idx = raid_disks - 1;
3117 			break;
3118 
3119 		case ALGORITHM_LEFT_SYMMETRIC_6:
3120 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3121 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3122 			qd_idx = raid_disks - 1;
3123 			break;
3124 
3125 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3126 			pd_idx = sector_div(stripe2, raid_disks-1);
3127 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3128 			qd_idx = raid_disks - 1;
3129 			break;
3130 
3131 		case ALGORITHM_PARITY_0_6:
3132 			pd_idx = 0;
3133 			(*dd_idx)++;
3134 			qd_idx = raid_disks - 1;
3135 			break;
3136 
3137 		default:
3138 			BUG();
3139 		}
3140 		break;
3141 	}
3142 
3143 	if (sh) {
3144 		sh->pd_idx = pd_idx;
3145 		sh->qd_idx = qd_idx;
3146 		sh->ddf_layout = ddf_layout;
3147 	}
3148 	/*
3149 	 * Finally, compute the new sector number
3150 	 */
3151 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3152 	return new_sector;
3153 }
3154 
3155 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3156 {
3157 	struct r5conf *conf = sh->raid_conf;
3158 	int raid_disks = sh->disks;
3159 	int data_disks = raid_disks - conf->max_degraded;
3160 	sector_t new_sector = sh->sector, check;
3161 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3162 					 : conf->chunk_sectors;
3163 	int algorithm = previous ? conf->prev_algo
3164 				 : conf->algorithm;
3165 	sector_t stripe;
3166 	int chunk_offset;
3167 	sector_t chunk_number;
3168 	int dummy1, dd_idx = i;
3169 	sector_t r_sector;
3170 	struct stripe_head sh2;
3171 
3172 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3173 	stripe = new_sector;
3174 
3175 	if (i == sh->pd_idx)
3176 		return 0;
3177 	switch(conf->level) {
3178 	case 4: break;
3179 	case 5:
3180 		switch (algorithm) {
3181 		case ALGORITHM_LEFT_ASYMMETRIC:
3182 		case ALGORITHM_RIGHT_ASYMMETRIC:
3183 			if (i > sh->pd_idx)
3184 				i--;
3185 			break;
3186 		case ALGORITHM_LEFT_SYMMETRIC:
3187 		case ALGORITHM_RIGHT_SYMMETRIC:
3188 			if (i < sh->pd_idx)
3189 				i += raid_disks;
3190 			i -= (sh->pd_idx + 1);
3191 			break;
3192 		case ALGORITHM_PARITY_0:
3193 			i -= 1;
3194 			break;
3195 		case ALGORITHM_PARITY_N:
3196 			break;
3197 		default:
3198 			BUG();
3199 		}
3200 		break;
3201 	case 6:
3202 		if (i == sh->qd_idx)
3203 			return 0; /* It is the Q disk */
3204 		switch (algorithm) {
3205 		case ALGORITHM_LEFT_ASYMMETRIC:
3206 		case ALGORITHM_RIGHT_ASYMMETRIC:
3207 		case ALGORITHM_ROTATING_ZERO_RESTART:
3208 		case ALGORITHM_ROTATING_N_RESTART:
3209 			if (sh->pd_idx == raid_disks-1)
3210 				i--;	/* Q D D D P */
3211 			else if (i > sh->pd_idx)
3212 				i -= 2; /* D D P Q D */
3213 			break;
3214 		case ALGORITHM_LEFT_SYMMETRIC:
3215 		case ALGORITHM_RIGHT_SYMMETRIC:
3216 			if (sh->pd_idx == raid_disks-1)
3217 				i--; /* Q D D D P */
3218 			else {
3219 				/* D D P Q D */
3220 				if (i < sh->pd_idx)
3221 					i += raid_disks;
3222 				i -= (sh->pd_idx + 2);
3223 			}
3224 			break;
3225 		case ALGORITHM_PARITY_0:
3226 			i -= 2;
3227 			break;
3228 		case ALGORITHM_PARITY_N:
3229 			break;
3230 		case ALGORITHM_ROTATING_N_CONTINUE:
3231 			/* Like left_symmetric, but P is before Q */
3232 			if (sh->pd_idx == 0)
3233 				i--;	/* P D D D Q */
3234 			else {
3235 				/* D D Q P D */
3236 				if (i < sh->pd_idx)
3237 					i += raid_disks;
3238 				i -= (sh->pd_idx + 1);
3239 			}
3240 			break;
3241 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3242 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3243 			if (i > sh->pd_idx)
3244 				i--;
3245 			break;
3246 		case ALGORITHM_LEFT_SYMMETRIC_6:
3247 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3248 			if (i < sh->pd_idx)
3249 				i += data_disks + 1;
3250 			i -= (sh->pd_idx + 1);
3251 			break;
3252 		case ALGORITHM_PARITY_0_6:
3253 			i -= 1;
3254 			break;
3255 		default:
3256 			BUG();
3257 		}
3258 		break;
3259 	}
3260 
3261 	chunk_number = stripe * data_disks + i;
3262 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3263 
3264 	check = raid5_compute_sector(conf, r_sector,
3265 				     previous, &dummy1, &sh2);
3266 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3267 		|| sh2.qd_idx != sh->qd_idx) {
3268 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3269 			mdname(conf->mddev));
3270 		return 0;
3271 	}
3272 	return r_sector;
3273 }
3274 
3275 /*
3276  * There are cases where we want handle_stripe_dirtying() and
3277  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3278  *
3279  * This function checks whether we want to delay the towrite. Specifically,
3280  * we delay the towrite when:
3281  *
3282  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3283  *      stripe has data in journal (for other devices).
3284  *
3285  *      In this case, when reading data for the non-overwrite dev, it is
3286  *      necessary to handle complex rmw of write back cache (prexor with
3287  *      orig_page, and xor with page). To keep read path simple, we would
3288  *      like to flush data in journal to RAID disks first, so complex rmw
3289  *      is handled in the write patch (handle_stripe_dirtying).
3290  *
3291  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3292  *
3293  *      It is important to be able to flush all stripes in raid5-cache.
3294  *      Therefore, we need reserve some space on the journal device for
3295  *      these flushes. If flush operation includes pending writes to the
3296  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3297  *      for the flush out. If we exclude these pending writes from flush
3298  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3299  *      Therefore, excluding pending writes in these cases enables more
3300  *      efficient use of the journal device.
3301  *
3302  *      Note: To make sure the stripe makes progress, we only delay
3303  *      towrite for stripes with data already in journal (injournal > 0).
3304  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3305  *      no_space_stripes list.
3306  *
3307  *   3. during journal failure
3308  *      In journal failure, we try to flush all cached data to raid disks
3309  *      based on data in stripe cache. The array is read-only to upper
3310  *      layers, so we would skip all pending writes.
3311  *
3312  */
3313 static inline bool delay_towrite(struct r5conf *conf,
3314 				 struct r5dev *dev,
3315 				 struct stripe_head_state *s)
3316 {
3317 	/* case 1 above */
3318 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3319 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3320 		return true;
3321 	/* case 2 above */
3322 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3323 	    s->injournal > 0)
3324 		return true;
3325 	/* case 3 above */
3326 	if (s->log_failed && s->injournal)
3327 		return true;
3328 	return false;
3329 }
3330 
3331 static void
3332 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3333 			 int rcw, int expand)
3334 {
3335 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3336 	struct r5conf *conf = sh->raid_conf;
3337 	int level = conf->level;
3338 
3339 	if (rcw) {
3340 		/*
3341 		 * In some cases, handle_stripe_dirtying initially decided to
3342 		 * run rmw and allocates extra page for prexor. However, rcw is
3343 		 * cheaper later on. We need to free the extra page now,
3344 		 * because we won't be able to do that in ops_complete_prexor().
3345 		 */
3346 		r5c_release_extra_page(sh);
3347 
3348 		for (i = disks; i--; ) {
3349 			struct r5dev *dev = &sh->dev[i];
3350 
3351 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3352 				set_bit(R5_LOCKED, &dev->flags);
3353 				set_bit(R5_Wantdrain, &dev->flags);
3354 				if (!expand)
3355 					clear_bit(R5_UPTODATE, &dev->flags);
3356 				s->locked++;
3357 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3358 				set_bit(R5_LOCKED, &dev->flags);
3359 				s->locked++;
3360 			}
3361 		}
3362 		/* if we are not expanding this is a proper write request, and
3363 		 * there will be bios with new data to be drained into the
3364 		 * stripe cache
3365 		 */
3366 		if (!expand) {
3367 			if (!s->locked)
3368 				/* False alarm, nothing to do */
3369 				return;
3370 			sh->reconstruct_state = reconstruct_state_drain_run;
3371 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3372 		} else
3373 			sh->reconstruct_state = reconstruct_state_run;
3374 
3375 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3376 
3377 		if (s->locked + conf->max_degraded == disks)
3378 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3379 				atomic_inc(&conf->pending_full_writes);
3380 	} else {
3381 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3382 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3383 		BUG_ON(level == 6 &&
3384 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3385 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3386 
3387 		for (i = disks; i--; ) {
3388 			struct r5dev *dev = &sh->dev[i];
3389 			if (i == pd_idx || i == qd_idx)
3390 				continue;
3391 
3392 			if (dev->towrite &&
3393 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3394 			     test_bit(R5_Wantcompute, &dev->flags))) {
3395 				set_bit(R5_Wantdrain, &dev->flags);
3396 				set_bit(R5_LOCKED, &dev->flags);
3397 				clear_bit(R5_UPTODATE, &dev->flags);
3398 				s->locked++;
3399 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3400 				set_bit(R5_LOCKED, &dev->flags);
3401 				s->locked++;
3402 			}
3403 		}
3404 		if (!s->locked)
3405 			/* False alarm - nothing to do */
3406 			return;
3407 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3408 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3409 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3410 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3411 	}
3412 
3413 	/* keep the parity disk(s) locked while asynchronous operations
3414 	 * are in flight
3415 	 */
3416 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3417 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3418 	s->locked++;
3419 
3420 	if (level == 6) {
3421 		int qd_idx = sh->qd_idx;
3422 		struct r5dev *dev = &sh->dev[qd_idx];
3423 
3424 		set_bit(R5_LOCKED, &dev->flags);
3425 		clear_bit(R5_UPTODATE, &dev->flags);
3426 		s->locked++;
3427 	}
3428 
3429 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3430 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3431 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3432 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3433 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3434 
3435 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3436 		__func__, (unsigned long long)sh->sector,
3437 		s->locked, s->ops_request);
3438 }
3439 
3440 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3441 				int dd_idx, int forwrite)
3442 {
3443 	struct r5conf *conf = sh->raid_conf;
3444 	struct bio **bip;
3445 
3446 	pr_debug("checking bi b#%llu to stripe s#%llu\n",
3447 		 bi->bi_iter.bi_sector, sh->sector);
3448 
3449 	/* Don't allow new IO added to stripes in batch list */
3450 	if (sh->batch_head)
3451 		return true;
3452 
3453 	if (forwrite)
3454 		bip = &sh->dev[dd_idx].towrite;
3455 	else
3456 		bip = &sh->dev[dd_idx].toread;
3457 
3458 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3459 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3460 			return true;
3461 		bip = &(*bip)->bi_next;
3462 	}
3463 
3464 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3465 		return true;
3466 
3467 	if (forwrite && raid5_has_ppl(conf)) {
3468 		/*
3469 		 * With PPL only writes to consecutive data chunks within a
3470 		 * stripe are allowed because for a single stripe_head we can
3471 		 * only have one PPL entry at a time, which describes one data
3472 		 * range. Not really an overlap, but R5_Overlap can be
3473 		 * used to handle this.
3474 		 */
3475 		sector_t sector;
3476 		sector_t first = 0;
3477 		sector_t last = 0;
3478 		int count = 0;
3479 		int i;
3480 
3481 		for (i = 0; i < sh->disks; i++) {
3482 			if (i != sh->pd_idx &&
3483 			    (i == dd_idx || sh->dev[i].towrite)) {
3484 				sector = sh->dev[i].sector;
3485 				if (count == 0 || sector < first)
3486 					first = sector;
3487 				if (sector > last)
3488 					last = sector;
3489 				count++;
3490 			}
3491 		}
3492 
3493 		if (first + conf->chunk_sectors * (count - 1) != last)
3494 			return true;
3495 	}
3496 
3497 	return false;
3498 }
3499 
3500 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3501 			     int dd_idx, int forwrite, int previous)
3502 {
3503 	struct r5conf *conf = sh->raid_conf;
3504 	struct bio **bip;
3505 	int firstwrite = 0;
3506 
3507 	if (forwrite) {
3508 		bip = &sh->dev[dd_idx].towrite;
3509 		if (!*bip)
3510 			firstwrite = 1;
3511 	} else {
3512 		bip = &sh->dev[dd_idx].toread;
3513 	}
3514 
3515 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3516 		bip = &(*bip)->bi_next;
3517 
3518 	if (!forwrite || previous)
3519 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3520 
3521 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3522 	if (*bip)
3523 		bi->bi_next = *bip;
3524 	*bip = bi;
3525 	bio_inc_remaining(bi);
3526 	md_write_inc(conf->mddev, bi);
3527 
3528 	if (forwrite) {
3529 		/* check if page is covered */
3530 		sector_t sector = sh->dev[dd_idx].sector;
3531 		for (bi=sh->dev[dd_idx].towrite;
3532 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3533 			     bi && bi->bi_iter.bi_sector <= sector;
3534 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3535 			if (bio_end_sector(bi) >= sector)
3536 				sector = bio_end_sector(bi);
3537 		}
3538 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3539 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3540 				sh->overwrite_disks++;
3541 	}
3542 
3543 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3544 		 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3545 		 sh->dev[dd_idx].sector);
3546 
3547 	if (conf->mddev->bitmap && firstwrite && !sh->batch_head) {
3548 		sh->bm_seq = conf->seq_flush+1;
3549 		set_bit(STRIPE_BIT_DELAY, &sh->state);
3550 	}
3551 }
3552 
3553 /*
3554  * Each stripe/dev can have one or more bios attached.
3555  * toread/towrite point to the first in a chain.
3556  * The bi_next chain must be in order.
3557  */
3558 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3559 			   int dd_idx, int forwrite, int previous)
3560 {
3561 	spin_lock_irq(&sh->stripe_lock);
3562 
3563 	if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3564 		set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3565 		spin_unlock_irq(&sh->stripe_lock);
3566 		return false;
3567 	}
3568 
3569 	__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3570 	spin_unlock_irq(&sh->stripe_lock);
3571 	return true;
3572 }
3573 
3574 static void end_reshape(struct r5conf *conf);
3575 
3576 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3577 			    struct stripe_head *sh)
3578 {
3579 	int sectors_per_chunk =
3580 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3581 	int dd_idx;
3582 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3583 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3584 
3585 	raid5_compute_sector(conf,
3586 			     stripe * (disks - conf->max_degraded)
3587 			     *sectors_per_chunk + chunk_offset,
3588 			     previous,
3589 			     &dd_idx, sh);
3590 }
3591 
3592 static void
3593 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3594 		     struct stripe_head_state *s, int disks)
3595 {
3596 	int i;
3597 	BUG_ON(sh->batch_head);
3598 	for (i = disks; i--; ) {
3599 		struct bio *bi;
3600 
3601 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3602 			struct md_rdev *rdev = conf->disks[i].rdev;
3603 
3604 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3605 			    !test_bit(Faulty, &rdev->flags))
3606 				atomic_inc(&rdev->nr_pending);
3607 			else
3608 				rdev = NULL;
3609 			if (rdev) {
3610 				if (!rdev_set_badblocks(
3611 					    rdev,
3612 					    sh->sector,
3613 					    RAID5_STRIPE_SECTORS(conf), 0))
3614 					md_error(conf->mddev, rdev);
3615 				rdev_dec_pending(rdev, conf->mddev);
3616 			}
3617 		}
3618 		spin_lock_irq(&sh->stripe_lock);
3619 		/* fail all writes first */
3620 		bi = sh->dev[i].towrite;
3621 		sh->dev[i].towrite = NULL;
3622 		sh->overwrite_disks = 0;
3623 		spin_unlock_irq(&sh->stripe_lock);
3624 
3625 		log_stripe_write_finished(sh);
3626 
3627 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3628 			wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3629 
3630 		while (bi && bi->bi_iter.bi_sector <
3631 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3632 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3633 
3634 			md_write_end(conf->mddev);
3635 			bio_io_error(bi);
3636 			bi = nextbi;
3637 		}
3638 		/* and fail all 'written' */
3639 		bi = sh->dev[i].written;
3640 		sh->dev[i].written = NULL;
3641 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3642 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3643 			sh->dev[i].page = sh->dev[i].orig_page;
3644 		}
3645 
3646 		while (bi && bi->bi_iter.bi_sector <
3647 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3648 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3649 
3650 			md_write_end(conf->mddev);
3651 			bio_io_error(bi);
3652 			bi = bi2;
3653 		}
3654 
3655 		/* fail any reads if this device is non-operational and
3656 		 * the data has not reached the cache yet.
3657 		 */
3658 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3659 		    s->failed > conf->max_degraded &&
3660 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3661 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3662 			spin_lock_irq(&sh->stripe_lock);
3663 			bi = sh->dev[i].toread;
3664 			sh->dev[i].toread = NULL;
3665 			spin_unlock_irq(&sh->stripe_lock);
3666 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3667 				wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3668 			if (bi)
3669 				s->to_read--;
3670 			while (bi && bi->bi_iter.bi_sector <
3671 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3672 				struct bio *nextbi =
3673 					r5_next_bio(conf, bi, sh->dev[i].sector);
3674 
3675 				bio_io_error(bi);
3676 				bi = nextbi;
3677 			}
3678 		}
3679 		/* If we were in the middle of a write the parity block might
3680 		 * still be locked - so just clear all R5_LOCKED flags
3681 		 */
3682 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3683 	}
3684 	s->to_write = 0;
3685 	s->written = 0;
3686 
3687 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3688 		if (atomic_dec_and_test(&conf->pending_full_writes))
3689 			md_wakeup_thread(conf->mddev->thread);
3690 }
3691 
3692 static void
3693 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3694 		   struct stripe_head_state *s)
3695 {
3696 	int abort = 0;
3697 	int i;
3698 
3699 	BUG_ON(sh->batch_head);
3700 	clear_bit(STRIPE_SYNCING, &sh->state);
3701 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3702 		wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
3703 	s->syncing = 0;
3704 	s->replacing = 0;
3705 	/* There is nothing more to do for sync/check/repair.
3706 	 * Don't even need to abort as that is handled elsewhere
3707 	 * if needed, and not always wanted e.g. if there is a known
3708 	 * bad block here.
3709 	 * For recover/replace we need to record a bad block on all
3710 	 * non-sync devices, or abort the recovery
3711 	 */
3712 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3713 		/* During recovery devices cannot be removed, so
3714 		 * locking and refcounting of rdevs is not needed
3715 		 */
3716 		for (i = 0; i < conf->raid_disks; i++) {
3717 			struct md_rdev *rdev = conf->disks[i].rdev;
3718 
3719 			if (rdev
3720 			    && !test_bit(Faulty, &rdev->flags)
3721 			    && !test_bit(In_sync, &rdev->flags)
3722 			    && !rdev_set_badblocks(rdev, sh->sector,
3723 						   RAID5_STRIPE_SECTORS(conf), 0))
3724 				abort = 1;
3725 			rdev = conf->disks[i].replacement;
3726 
3727 			if (rdev
3728 			    && !test_bit(Faulty, &rdev->flags)
3729 			    && !test_bit(In_sync, &rdev->flags)
3730 			    && !rdev_set_badblocks(rdev, sh->sector,
3731 						   RAID5_STRIPE_SECTORS(conf), 0))
3732 				abort = 1;
3733 		}
3734 		if (abort)
3735 			conf->recovery_disabled =
3736 				conf->mddev->recovery_disabled;
3737 	}
3738 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3739 }
3740 
3741 static int want_replace(struct stripe_head *sh, int disk_idx)
3742 {
3743 	struct md_rdev *rdev;
3744 	int rv = 0;
3745 
3746 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3747 	if (rdev
3748 	    && !test_bit(Faulty, &rdev->flags)
3749 	    && !test_bit(In_sync, &rdev->flags)
3750 	    && (rdev->recovery_offset <= sh->sector
3751 		|| rdev->mddev->recovery_cp <= sh->sector))
3752 		rv = 1;
3753 	return rv;
3754 }
3755 
3756 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3757 			   int disk_idx, int disks)
3758 {
3759 	struct r5dev *dev = &sh->dev[disk_idx];
3760 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3761 				  &sh->dev[s->failed_num[1]] };
3762 	int i;
3763 	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3764 
3765 
3766 	if (test_bit(R5_LOCKED, &dev->flags) ||
3767 	    test_bit(R5_UPTODATE, &dev->flags))
3768 		/* No point reading this as we already have it or have
3769 		 * decided to get it.
3770 		 */
3771 		return 0;
3772 
3773 	if (dev->toread ||
3774 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3775 		/* We need this block to directly satisfy a request */
3776 		return 1;
3777 
3778 	if (s->syncing || s->expanding ||
3779 	    (s->replacing && want_replace(sh, disk_idx)))
3780 		/* When syncing, or expanding we read everything.
3781 		 * When replacing, we need the replaced block.
3782 		 */
3783 		return 1;
3784 
3785 	if ((s->failed >= 1 && fdev[0]->toread) ||
3786 	    (s->failed >= 2 && fdev[1]->toread))
3787 		/* If we want to read from a failed device, then
3788 		 * we need to actually read every other device.
3789 		 */
3790 		return 1;
3791 
3792 	/* Sometimes neither read-modify-write nor reconstruct-write
3793 	 * cycles can work.  In those cases we read every block we
3794 	 * can.  Then the parity-update is certain to have enough to
3795 	 * work with.
3796 	 * This can only be a problem when we need to write something,
3797 	 * and some device has failed.  If either of those tests
3798 	 * fail we need look no further.
3799 	 */
3800 	if (!s->failed || !s->to_write)
3801 		return 0;
3802 
3803 	if (test_bit(R5_Insync, &dev->flags) &&
3804 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3805 		/* Pre-reads at not permitted until after short delay
3806 		 * to gather multiple requests.  However if this
3807 		 * device is no Insync, the block could only be computed
3808 		 * and there is no need to delay that.
3809 		 */
3810 		return 0;
3811 
3812 	for (i = 0; i < s->failed && i < 2; i++) {
3813 		if (fdev[i]->towrite &&
3814 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3815 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3816 			/* If we have a partial write to a failed
3817 			 * device, then we will need to reconstruct
3818 			 * the content of that device, so all other
3819 			 * devices must be read.
3820 			 */
3821 			return 1;
3822 
3823 		if (s->failed >= 2 &&
3824 		    (fdev[i]->towrite ||
3825 		     s->failed_num[i] == sh->pd_idx ||
3826 		     s->failed_num[i] == sh->qd_idx) &&
3827 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3828 			/* In max degraded raid6, If the failed disk is P, Q,
3829 			 * or we want to read the failed disk, we need to do
3830 			 * reconstruct-write.
3831 			 */
3832 			force_rcw = true;
3833 	}
3834 
3835 	/* If we are forced to do a reconstruct-write, because parity
3836 	 * cannot be trusted and we are currently recovering it, there
3837 	 * is extra need to be careful.
3838 	 * If one of the devices that we would need to read, because
3839 	 * it is not being overwritten (and maybe not written at all)
3840 	 * is missing/faulty, then we need to read everything we can.
3841 	 */
3842 	if (!force_rcw &&
3843 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3844 		/* reconstruct-write isn't being forced */
3845 		return 0;
3846 	for (i = 0; i < s->failed && i < 2; i++) {
3847 		if (s->failed_num[i] != sh->pd_idx &&
3848 		    s->failed_num[i] != sh->qd_idx &&
3849 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3850 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3851 			return 1;
3852 	}
3853 
3854 	return 0;
3855 }
3856 
3857 /* fetch_block - checks the given member device to see if its data needs
3858  * to be read or computed to satisfy a request.
3859  *
3860  * Returns 1 when no more member devices need to be checked, otherwise returns
3861  * 0 to tell the loop in handle_stripe_fill to continue
3862  */
3863 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3864 		       int disk_idx, int disks)
3865 {
3866 	struct r5dev *dev = &sh->dev[disk_idx];
3867 
3868 	/* is the data in this block needed, and can we get it? */
3869 	if (need_this_block(sh, s, disk_idx, disks)) {
3870 		/* we would like to get this block, possibly by computing it,
3871 		 * otherwise read it if the backing disk is insync
3872 		 */
3873 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3874 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3875 		BUG_ON(sh->batch_head);
3876 
3877 		/*
3878 		 * In the raid6 case if the only non-uptodate disk is P
3879 		 * then we already trusted P to compute the other failed
3880 		 * drives. It is safe to compute rather than re-read P.
3881 		 * In other cases we only compute blocks from failed
3882 		 * devices, otherwise check/repair might fail to detect
3883 		 * a real inconsistency.
3884 		 */
3885 
3886 		if ((s->uptodate == disks - 1) &&
3887 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3888 		    (s->failed && (disk_idx == s->failed_num[0] ||
3889 				   disk_idx == s->failed_num[1])))) {
3890 			/* have disk failed, and we're requested to fetch it;
3891 			 * do compute it
3892 			 */
3893 			pr_debug("Computing stripe %llu block %d\n",
3894 			       (unsigned long long)sh->sector, disk_idx);
3895 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3896 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3897 			set_bit(R5_Wantcompute, &dev->flags);
3898 			sh->ops.target = disk_idx;
3899 			sh->ops.target2 = -1; /* no 2nd target */
3900 			s->req_compute = 1;
3901 			/* Careful: from this point on 'uptodate' is in the eye
3902 			 * of raid_run_ops which services 'compute' operations
3903 			 * before writes. R5_Wantcompute flags a block that will
3904 			 * be R5_UPTODATE by the time it is needed for a
3905 			 * subsequent operation.
3906 			 */
3907 			s->uptodate++;
3908 			return 1;
3909 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3910 			/* Computing 2-failure is *very* expensive; only
3911 			 * do it if failed >= 2
3912 			 */
3913 			int other;
3914 			for (other = disks; other--; ) {
3915 				if (other == disk_idx)
3916 					continue;
3917 				if (!test_bit(R5_UPTODATE,
3918 				      &sh->dev[other].flags))
3919 					break;
3920 			}
3921 			BUG_ON(other < 0);
3922 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3923 			       (unsigned long long)sh->sector,
3924 			       disk_idx, other);
3925 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3926 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3927 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3928 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3929 			sh->ops.target = disk_idx;
3930 			sh->ops.target2 = other;
3931 			s->uptodate += 2;
3932 			s->req_compute = 1;
3933 			return 1;
3934 		} else if (test_bit(R5_Insync, &dev->flags)) {
3935 			set_bit(R5_LOCKED, &dev->flags);
3936 			set_bit(R5_Wantread, &dev->flags);
3937 			s->locked++;
3938 			pr_debug("Reading block %d (sync=%d)\n",
3939 				disk_idx, s->syncing);
3940 		}
3941 	}
3942 
3943 	return 0;
3944 }
3945 
3946 /*
3947  * handle_stripe_fill - read or compute data to satisfy pending requests.
3948  */
3949 static void handle_stripe_fill(struct stripe_head *sh,
3950 			       struct stripe_head_state *s,
3951 			       int disks)
3952 {
3953 	int i;
3954 
3955 	/* look for blocks to read/compute, skip this if a compute
3956 	 * is already in flight, or if the stripe contents are in the
3957 	 * midst of changing due to a write
3958 	 */
3959 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3960 	    !sh->reconstruct_state) {
3961 
3962 		/*
3963 		 * For degraded stripe with data in journal, do not handle
3964 		 * read requests yet, instead, flush the stripe to raid
3965 		 * disks first, this avoids handling complex rmw of write
3966 		 * back cache (prexor with orig_page, and then xor with
3967 		 * page) in the read path
3968 		 */
3969 		if (s->to_read && s->injournal && s->failed) {
3970 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3971 				r5c_make_stripe_write_out(sh);
3972 			goto out;
3973 		}
3974 
3975 		for (i = disks; i--; )
3976 			if (fetch_block(sh, s, i, disks))
3977 				break;
3978 	}
3979 out:
3980 	set_bit(STRIPE_HANDLE, &sh->state);
3981 }
3982 
3983 static void break_stripe_batch_list(struct stripe_head *head_sh,
3984 				    unsigned long handle_flags);
3985 /* handle_stripe_clean_event
3986  * any written block on an uptodate or failed drive can be returned.
3987  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3988  * never LOCKED, so we don't need to test 'failed' directly.
3989  */
3990 static void handle_stripe_clean_event(struct r5conf *conf,
3991 	struct stripe_head *sh, int disks)
3992 {
3993 	int i;
3994 	struct r5dev *dev;
3995 	int discard_pending = 0;
3996 	struct stripe_head *head_sh = sh;
3997 	bool do_endio = false;
3998 
3999 	for (i = disks; i--; )
4000 		if (sh->dev[i].written) {
4001 			dev = &sh->dev[i];
4002 			if (!test_bit(R5_LOCKED, &dev->flags) &&
4003 			    (test_bit(R5_UPTODATE, &dev->flags) ||
4004 			     test_bit(R5_Discard, &dev->flags) ||
4005 			     test_bit(R5_SkipCopy, &dev->flags))) {
4006 				/* We can return any write requests */
4007 				struct bio *wbi, *wbi2;
4008 				pr_debug("Return write for disc %d\n", i);
4009 				if (test_and_clear_bit(R5_Discard, &dev->flags))
4010 					clear_bit(R5_UPTODATE, &dev->flags);
4011 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4012 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4013 				}
4014 				do_endio = true;
4015 
4016 returnbi:
4017 				dev->page = dev->orig_page;
4018 				wbi = dev->written;
4019 				dev->written = NULL;
4020 				while (wbi && wbi->bi_iter.bi_sector <
4021 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4022 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
4023 					md_write_end(conf->mddev);
4024 					bio_endio(wbi);
4025 					wbi = wbi2;
4026 				}
4027 
4028 				if (head_sh->batch_head) {
4029 					sh = list_first_entry(&sh->batch_list,
4030 							      struct stripe_head,
4031 							      batch_list);
4032 					if (sh != head_sh) {
4033 						dev = &sh->dev[i];
4034 						goto returnbi;
4035 					}
4036 				}
4037 				sh = head_sh;
4038 				dev = &sh->dev[i];
4039 			} else if (test_bit(R5_Discard, &dev->flags))
4040 				discard_pending = 1;
4041 		}
4042 
4043 	log_stripe_write_finished(sh);
4044 
4045 	if (!discard_pending &&
4046 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4047 		int hash;
4048 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4049 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4050 		if (sh->qd_idx >= 0) {
4051 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4052 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4053 		}
4054 		/* now that discard is done we can proceed with any sync */
4055 		clear_bit(STRIPE_DISCARD, &sh->state);
4056 		/*
4057 		 * SCSI discard will change some bio fields and the stripe has
4058 		 * no updated data, so remove it from hash list and the stripe
4059 		 * will be reinitialized
4060 		 */
4061 unhash:
4062 		hash = sh->hash_lock_index;
4063 		spin_lock_irq(conf->hash_locks + hash);
4064 		remove_hash(sh);
4065 		spin_unlock_irq(conf->hash_locks + hash);
4066 		if (head_sh->batch_head) {
4067 			sh = list_first_entry(&sh->batch_list,
4068 					      struct stripe_head, batch_list);
4069 			if (sh != head_sh)
4070 					goto unhash;
4071 		}
4072 		sh = head_sh;
4073 
4074 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4075 			set_bit(STRIPE_HANDLE, &sh->state);
4076 
4077 	}
4078 
4079 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4080 		if (atomic_dec_and_test(&conf->pending_full_writes))
4081 			md_wakeup_thread(conf->mddev->thread);
4082 
4083 	if (head_sh->batch_head && do_endio)
4084 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4085 }
4086 
4087 /*
4088  * For RMW in write back cache, we need extra page in prexor to store the
4089  * old data. This page is stored in dev->orig_page.
4090  *
4091  * This function checks whether we have data for prexor. The exact logic
4092  * is:
4093  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4094  */
4095 static inline bool uptodate_for_rmw(struct r5dev *dev)
4096 {
4097 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4098 		(!test_bit(R5_InJournal, &dev->flags) ||
4099 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4100 }
4101 
4102 static int handle_stripe_dirtying(struct r5conf *conf,
4103 				  struct stripe_head *sh,
4104 				  struct stripe_head_state *s,
4105 				  int disks)
4106 {
4107 	int rmw = 0, rcw = 0, i;
4108 	sector_t recovery_cp = conf->mddev->recovery_cp;
4109 
4110 	/* Check whether resync is now happening or should start.
4111 	 * If yes, then the array is dirty (after unclean shutdown or
4112 	 * initial creation), so parity in some stripes might be inconsistent.
4113 	 * In this case, we need to always do reconstruct-write, to ensure
4114 	 * that in case of drive failure or read-error correction, we
4115 	 * generate correct data from the parity.
4116 	 */
4117 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4118 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4119 	     s->failed == 0)) {
4120 		/* Calculate the real rcw later - for now make it
4121 		 * look like rcw is cheaper
4122 		 */
4123 		rcw = 1; rmw = 2;
4124 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4125 			 conf->rmw_level, (unsigned long long)recovery_cp,
4126 			 (unsigned long long)sh->sector);
4127 	} else for (i = disks; i--; ) {
4128 		/* would I have to read this buffer for read_modify_write */
4129 		struct r5dev *dev = &sh->dev[i];
4130 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4131 		     i == sh->pd_idx || i == sh->qd_idx ||
4132 		     test_bit(R5_InJournal, &dev->flags)) &&
4133 		    !test_bit(R5_LOCKED, &dev->flags) &&
4134 		    !(uptodate_for_rmw(dev) ||
4135 		      test_bit(R5_Wantcompute, &dev->flags))) {
4136 			if (test_bit(R5_Insync, &dev->flags))
4137 				rmw++;
4138 			else
4139 				rmw += 2*disks;  /* cannot read it */
4140 		}
4141 		/* Would I have to read this buffer for reconstruct_write */
4142 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4143 		    i != sh->pd_idx && i != sh->qd_idx &&
4144 		    !test_bit(R5_LOCKED, &dev->flags) &&
4145 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4146 		      test_bit(R5_Wantcompute, &dev->flags))) {
4147 			if (test_bit(R5_Insync, &dev->flags))
4148 				rcw++;
4149 			else
4150 				rcw += 2*disks;
4151 		}
4152 	}
4153 
4154 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4155 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4156 	set_bit(STRIPE_HANDLE, &sh->state);
4157 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4158 		/* prefer read-modify-write, but need to get some data */
4159 		mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4160 				sh->sector, rmw);
4161 
4162 		for (i = disks; i--; ) {
4163 			struct r5dev *dev = &sh->dev[i];
4164 			if (test_bit(R5_InJournal, &dev->flags) &&
4165 			    dev->page == dev->orig_page &&
4166 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4167 				/* alloc page for prexor */
4168 				struct page *p = alloc_page(GFP_NOIO);
4169 
4170 				if (p) {
4171 					dev->orig_page = p;
4172 					continue;
4173 				}
4174 
4175 				/*
4176 				 * alloc_page() failed, try use
4177 				 * disk_info->extra_page
4178 				 */
4179 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4180 						      &conf->cache_state)) {
4181 					r5c_use_extra_page(sh);
4182 					break;
4183 				}
4184 
4185 				/* extra_page in use, add to delayed_list */
4186 				set_bit(STRIPE_DELAYED, &sh->state);
4187 				s->waiting_extra_page = 1;
4188 				return -EAGAIN;
4189 			}
4190 		}
4191 
4192 		for (i = disks; i--; ) {
4193 			struct r5dev *dev = &sh->dev[i];
4194 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4195 			     i == sh->pd_idx || i == sh->qd_idx ||
4196 			     test_bit(R5_InJournal, &dev->flags)) &&
4197 			    !test_bit(R5_LOCKED, &dev->flags) &&
4198 			    !(uptodate_for_rmw(dev) ||
4199 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4200 			    test_bit(R5_Insync, &dev->flags)) {
4201 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4202 					     &sh->state)) {
4203 					pr_debug("Read_old block %d for r-m-w\n",
4204 						 i);
4205 					set_bit(R5_LOCKED, &dev->flags);
4206 					set_bit(R5_Wantread, &dev->flags);
4207 					s->locked++;
4208 				} else
4209 					set_bit(STRIPE_DELAYED, &sh->state);
4210 			}
4211 		}
4212 	}
4213 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4214 		/* want reconstruct write, but need to get some data */
4215 		int qread =0;
4216 		rcw = 0;
4217 		for (i = disks; i--; ) {
4218 			struct r5dev *dev = &sh->dev[i];
4219 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4220 			    i != sh->pd_idx && i != sh->qd_idx &&
4221 			    !test_bit(R5_LOCKED, &dev->flags) &&
4222 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4223 			      test_bit(R5_Wantcompute, &dev->flags))) {
4224 				rcw++;
4225 				if (test_bit(R5_Insync, &dev->flags) &&
4226 				    test_bit(STRIPE_PREREAD_ACTIVE,
4227 					     &sh->state)) {
4228 					pr_debug("Read_old block "
4229 						"%d for Reconstruct\n", i);
4230 					set_bit(R5_LOCKED, &dev->flags);
4231 					set_bit(R5_Wantread, &dev->flags);
4232 					s->locked++;
4233 					qread++;
4234 				} else
4235 					set_bit(STRIPE_DELAYED, &sh->state);
4236 			}
4237 		}
4238 		if (rcw && !mddev_is_dm(conf->mddev))
4239 			blk_add_trace_msg(conf->mddev->gendisk->queue,
4240 				"raid5 rcw %llu %d %d %d",
4241 				(unsigned long long)sh->sector, rcw, qread,
4242 				test_bit(STRIPE_DELAYED, &sh->state));
4243 	}
4244 
4245 	if (rcw > disks && rmw > disks &&
4246 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4247 		set_bit(STRIPE_DELAYED, &sh->state);
4248 
4249 	/* now if nothing is locked, and if we have enough data,
4250 	 * we can start a write request
4251 	 */
4252 	/* since handle_stripe can be called at any time we need to handle the
4253 	 * case where a compute block operation has been submitted and then a
4254 	 * subsequent call wants to start a write request.  raid_run_ops only
4255 	 * handles the case where compute block and reconstruct are requested
4256 	 * simultaneously.  If this is not the case then new writes need to be
4257 	 * held off until the compute completes.
4258 	 */
4259 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4260 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4261 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4262 		schedule_reconstruction(sh, s, rcw == 0, 0);
4263 	return 0;
4264 }
4265 
4266 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4267 				struct stripe_head_state *s, int disks)
4268 {
4269 	struct r5dev *dev = NULL;
4270 
4271 	BUG_ON(sh->batch_head);
4272 	set_bit(STRIPE_HANDLE, &sh->state);
4273 
4274 	switch (sh->check_state) {
4275 	case check_state_idle:
4276 		/* start a new check operation if there are no failures */
4277 		if (s->failed == 0) {
4278 			BUG_ON(s->uptodate != disks);
4279 			sh->check_state = check_state_run;
4280 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4281 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4282 			s->uptodate--;
4283 			break;
4284 		}
4285 		dev = &sh->dev[s->failed_num[0]];
4286 		fallthrough;
4287 	case check_state_compute_result:
4288 		sh->check_state = check_state_idle;
4289 		if (!dev)
4290 			dev = &sh->dev[sh->pd_idx];
4291 
4292 		/* check that a write has not made the stripe insync */
4293 		if (test_bit(STRIPE_INSYNC, &sh->state))
4294 			break;
4295 
4296 		/* either failed parity check, or recovery is happening */
4297 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4298 		BUG_ON(s->uptodate != disks);
4299 
4300 		set_bit(R5_LOCKED, &dev->flags);
4301 		s->locked++;
4302 		set_bit(R5_Wantwrite, &dev->flags);
4303 
4304 		set_bit(STRIPE_INSYNC, &sh->state);
4305 		break;
4306 	case check_state_run:
4307 		break; /* we will be called again upon completion */
4308 	case check_state_check_result:
4309 		sh->check_state = check_state_idle;
4310 
4311 		/* if a failure occurred during the check operation, leave
4312 		 * STRIPE_INSYNC not set and let the stripe be handled again
4313 		 */
4314 		if (s->failed)
4315 			break;
4316 
4317 		/* handle a successful check operation, if parity is correct
4318 		 * we are done.  Otherwise update the mismatch count and repair
4319 		 * parity if !MD_RECOVERY_CHECK
4320 		 */
4321 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4322 			/* parity is correct (on disc,
4323 			 * not in buffer any more)
4324 			 */
4325 			set_bit(STRIPE_INSYNC, &sh->state);
4326 		else {
4327 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4328 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4329 				/* don't try to repair!! */
4330 				set_bit(STRIPE_INSYNC, &sh->state);
4331 				pr_warn_ratelimited("%s: mismatch sector in range "
4332 						    "%llu-%llu\n", mdname(conf->mddev),
4333 						    (unsigned long long) sh->sector,
4334 						    (unsigned long long) sh->sector +
4335 						    RAID5_STRIPE_SECTORS(conf));
4336 			} else {
4337 				sh->check_state = check_state_compute_run;
4338 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4339 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4340 				set_bit(R5_Wantcompute,
4341 					&sh->dev[sh->pd_idx].flags);
4342 				sh->ops.target = sh->pd_idx;
4343 				sh->ops.target2 = -1;
4344 				s->uptodate++;
4345 			}
4346 		}
4347 		break;
4348 	case check_state_compute_run:
4349 		break;
4350 	default:
4351 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4352 		       __func__, sh->check_state,
4353 		       (unsigned long long) sh->sector);
4354 		BUG();
4355 	}
4356 }
4357 
4358 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4359 				  struct stripe_head_state *s,
4360 				  int disks)
4361 {
4362 	int pd_idx = sh->pd_idx;
4363 	int qd_idx = sh->qd_idx;
4364 	struct r5dev *dev;
4365 
4366 	BUG_ON(sh->batch_head);
4367 	set_bit(STRIPE_HANDLE, &sh->state);
4368 
4369 	BUG_ON(s->failed > 2);
4370 
4371 	/* Want to check and possibly repair P and Q.
4372 	 * However there could be one 'failed' device, in which
4373 	 * case we can only check one of them, possibly using the
4374 	 * other to generate missing data
4375 	 */
4376 
4377 	switch (sh->check_state) {
4378 	case check_state_idle:
4379 		/* start a new check operation if there are < 2 failures */
4380 		if (s->failed == s->q_failed) {
4381 			/* The only possible failed device holds Q, so it
4382 			 * makes sense to check P (If anything else were failed,
4383 			 * we would have used P to recreate it).
4384 			 */
4385 			sh->check_state = check_state_run;
4386 		}
4387 		if (!s->q_failed && s->failed < 2) {
4388 			/* Q is not failed, and we didn't use it to generate
4389 			 * anything, so it makes sense to check it
4390 			 */
4391 			if (sh->check_state == check_state_run)
4392 				sh->check_state = check_state_run_pq;
4393 			else
4394 				sh->check_state = check_state_run_q;
4395 		}
4396 
4397 		/* discard potentially stale zero_sum_result */
4398 		sh->ops.zero_sum_result = 0;
4399 
4400 		if (sh->check_state == check_state_run) {
4401 			/* async_xor_zero_sum destroys the contents of P */
4402 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4403 			s->uptodate--;
4404 		}
4405 		if (sh->check_state >= check_state_run &&
4406 		    sh->check_state <= check_state_run_pq) {
4407 			/* async_syndrome_zero_sum preserves P and Q, so
4408 			 * no need to mark them !uptodate here
4409 			 */
4410 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4411 			break;
4412 		}
4413 
4414 		/* we have 2-disk failure */
4415 		BUG_ON(s->failed != 2);
4416 		fallthrough;
4417 	case check_state_compute_result:
4418 		sh->check_state = check_state_idle;
4419 
4420 		/* check that a write has not made the stripe insync */
4421 		if (test_bit(STRIPE_INSYNC, &sh->state))
4422 			break;
4423 
4424 		/* now write out any block on a failed drive,
4425 		 * or P or Q if they were recomputed
4426 		 */
4427 		dev = NULL;
4428 		if (s->failed == 2) {
4429 			dev = &sh->dev[s->failed_num[1]];
4430 			s->locked++;
4431 			set_bit(R5_LOCKED, &dev->flags);
4432 			set_bit(R5_Wantwrite, &dev->flags);
4433 		}
4434 		if (s->failed >= 1) {
4435 			dev = &sh->dev[s->failed_num[0]];
4436 			s->locked++;
4437 			set_bit(R5_LOCKED, &dev->flags);
4438 			set_bit(R5_Wantwrite, &dev->flags);
4439 		}
4440 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4441 			dev = &sh->dev[pd_idx];
4442 			s->locked++;
4443 			set_bit(R5_LOCKED, &dev->flags);
4444 			set_bit(R5_Wantwrite, &dev->flags);
4445 		}
4446 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4447 			dev = &sh->dev[qd_idx];
4448 			s->locked++;
4449 			set_bit(R5_LOCKED, &dev->flags);
4450 			set_bit(R5_Wantwrite, &dev->flags);
4451 		}
4452 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4453 			      "%s: disk%td not up to date\n",
4454 			      mdname(conf->mddev),
4455 			      dev - (struct r5dev *) &sh->dev)) {
4456 			clear_bit(R5_LOCKED, &dev->flags);
4457 			clear_bit(R5_Wantwrite, &dev->flags);
4458 			s->locked--;
4459 		}
4460 
4461 		set_bit(STRIPE_INSYNC, &sh->state);
4462 		break;
4463 	case check_state_run:
4464 	case check_state_run_q:
4465 	case check_state_run_pq:
4466 		break; /* we will be called again upon completion */
4467 	case check_state_check_result:
4468 		sh->check_state = check_state_idle;
4469 
4470 		/* handle a successful check operation, if parity is correct
4471 		 * we are done.  Otherwise update the mismatch count and repair
4472 		 * parity if !MD_RECOVERY_CHECK
4473 		 */
4474 		if (sh->ops.zero_sum_result == 0) {
4475 			/* both parities are correct */
4476 			if (!s->failed)
4477 				set_bit(STRIPE_INSYNC, &sh->state);
4478 			else {
4479 				/* in contrast to the raid5 case we can validate
4480 				 * parity, but still have a failure to write
4481 				 * back
4482 				 */
4483 				sh->check_state = check_state_compute_result;
4484 				/* Returning at this point means that we may go
4485 				 * off and bring p and/or q uptodate again so
4486 				 * we make sure to check zero_sum_result again
4487 				 * to verify if p or q need writeback
4488 				 */
4489 			}
4490 		} else {
4491 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4492 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4493 				/* don't try to repair!! */
4494 				set_bit(STRIPE_INSYNC, &sh->state);
4495 				pr_warn_ratelimited("%s: mismatch sector in range "
4496 						    "%llu-%llu\n", mdname(conf->mddev),
4497 						    (unsigned long long) sh->sector,
4498 						    (unsigned long long) sh->sector +
4499 						    RAID5_STRIPE_SECTORS(conf));
4500 			} else {
4501 				int *target = &sh->ops.target;
4502 
4503 				sh->ops.target = -1;
4504 				sh->ops.target2 = -1;
4505 				sh->check_state = check_state_compute_run;
4506 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4507 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4508 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4509 					set_bit(R5_Wantcompute,
4510 						&sh->dev[pd_idx].flags);
4511 					*target = pd_idx;
4512 					target = &sh->ops.target2;
4513 					s->uptodate++;
4514 				}
4515 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4516 					set_bit(R5_Wantcompute,
4517 						&sh->dev[qd_idx].flags);
4518 					*target = qd_idx;
4519 					s->uptodate++;
4520 				}
4521 			}
4522 		}
4523 		break;
4524 	case check_state_compute_run:
4525 		break;
4526 	default:
4527 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4528 			__func__, sh->check_state,
4529 			(unsigned long long) sh->sector);
4530 		BUG();
4531 	}
4532 }
4533 
4534 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4535 {
4536 	int i;
4537 
4538 	/* We have read all the blocks in this stripe and now we need to
4539 	 * copy some of them into a target stripe for expand.
4540 	 */
4541 	struct dma_async_tx_descriptor *tx = NULL;
4542 	BUG_ON(sh->batch_head);
4543 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4544 	for (i = 0; i < sh->disks; i++)
4545 		if (i != sh->pd_idx && i != sh->qd_idx) {
4546 			int dd_idx, j;
4547 			struct stripe_head *sh2;
4548 			struct async_submit_ctl submit;
4549 
4550 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4551 			sector_t s = raid5_compute_sector(conf, bn, 0,
4552 							  &dd_idx, NULL);
4553 			sh2 = raid5_get_active_stripe(conf, NULL, s,
4554 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4555 			if (sh2 == NULL)
4556 				/* so far only the early blocks of this stripe
4557 				 * have been requested.  When later blocks
4558 				 * get requested, we will try again
4559 				 */
4560 				continue;
4561 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4562 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4563 				/* must have already done this block */
4564 				raid5_release_stripe(sh2);
4565 				continue;
4566 			}
4567 
4568 			/* place all the copies on one channel */
4569 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4570 			tx = async_memcpy(sh2->dev[dd_idx].page,
4571 					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4572 					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4573 					  &submit);
4574 
4575 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4576 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4577 			for (j = 0; j < conf->raid_disks; j++)
4578 				if (j != sh2->pd_idx &&
4579 				    j != sh2->qd_idx &&
4580 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4581 					break;
4582 			if (j == conf->raid_disks) {
4583 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4584 				set_bit(STRIPE_HANDLE, &sh2->state);
4585 			}
4586 			raid5_release_stripe(sh2);
4587 
4588 		}
4589 	/* done submitting copies, wait for them to complete */
4590 	async_tx_quiesce(&tx);
4591 }
4592 
4593 /*
4594  * handle_stripe - do things to a stripe.
4595  *
4596  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4597  * state of various bits to see what needs to be done.
4598  * Possible results:
4599  *    return some read requests which now have data
4600  *    return some write requests which are safely on storage
4601  *    schedule a read on some buffers
4602  *    schedule a write of some buffers
4603  *    return confirmation of parity correctness
4604  *
4605  */
4606 
4607 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4608 {
4609 	struct r5conf *conf = sh->raid_conf;
4610 	int disks = sh->disks;
4611 	struct r5dev *dev;
4612 	int i;
4613 	int do_recovery = 0;
4614 
4615 	memset(s, 0, sizeof(*s));
4616 
4617 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4618 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4619 	s->failed_num[0] = -1;
4620 	s->failed_num[1] = -1;
4621 	s->log_failed = r5l_log_disk_error(conf);
4622 
4623 	/* Now to look around and see what can be done */
4624 	for (i=disks; i--; ) {
4625 		struct md_rdev *rdev;
4626 		int is_bad = 0;
4627 
4628 		dev = &sh->dev[i];
4629 
4630 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4631 			 i, dev->flags,
4632 			 dev->toread, dev->towrite, dev->written);
4633 		/* maybe we can reply to a read
4634 		 *
4635 		 * new wantfill requests are only permitted while
4636 		 * ops_complete_biofill is guaranteed to be inactive
4637 		 */
4638 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4639 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4640 			set_bit(R5_Wantfill, &dev->flags);
4641 
4642 		/* now count some things */
4643 		if (test_bit(R5_LOCKED, &dev->flags))
4644 			s->locked++;
4645 		if (test_bit(R5_UPTODATE, &dev->flags))
4646 			s->uptodate++;
4647 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4648 			s->compute++;
4649 			BUG_ON(s->compute > 2);
4650 		}
4651 
4652 		if (test_bit(R5_Wantfill, &dev->flags))
4653 			s->to_fill++;
4654 		else if (dev->toread)
4655 			s->to_read++;
4656 		if (dev->towrite) {
4657 			s->to_write++;
4658 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4659 				s->non_overwrite++;
4660 		}
4661 		if (dev->written)
4662 			s->written++;
4663 		/* Prefer to use the replacement for reads, but only
4664 		 * if it is recovered enough and has no bad blocks.
4665 		 */
4666 		rdev = conf->disks[i].replacement;
4667 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4668 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4669 		    !rdev_has_badblock(rdev, sh->sector,
4670 				       RAID5_STRIPE_SECTORS(conf)))
4671 			set_bit(R5_ReadRepl, &dev->flags);
4672 		else {
4673 			if (rdev && !test_bit(Faulty, &rdev->flags))
4674 				set_bit(R5_NeedReplace, &dev->flags);
4675 			else
4676 				clear_bit(R5_NeedReplace, &dev->flags);
4677 			rdev = conf->disks[i].rdev;
4678 			clear_bit(R5_ReadRepl, &dev->flags);
4679 		}
4680 		if (rdev && test_bit(Faulty, &rdev->flags))
4681 			rdev = NULL;
4682 		if (rdev) {
4683 			is_bad = rdev_has_badblock(rdev, sh->sector,
4684 						   RAID5_STRIPE_SECTORS(conf));
4685 			if (s->blocked_rdev == NULL) {
4686 				if (is_bad < 0)
4687 					set_bit(BlockedBadBlocks, &rdev->flags);
4688 				if (rdev_blocked(rdev)) {
4689 					s->blocked_rdev = rdev;
4690 					atomic_inc(&rdev->nr_pending);
4691 				}
4692 			}
4693 		}
4694 		clear_bit(R5_Insync, &dev->flags);
4695 		if (!rdev)
4696 			/* Not in-sync */;
4697 		else if (is_bad) {
4698 			/* also not in-sync */
4699 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4700 			    test_bit(R5_UPTODATE, &dev->flags)) {
4701 				/* treat as in-sync, but with a read error
4702 				 * which we can now try to correct
4703 				 */
4704 				set_bit(R5_Insync, &dev->flags);
4705 				set_bit(R5_ReadError, &dev->flags);
4706 			}
4707 		} else if (test_bit(In_sync, &rdev->flags))
4708 			set_bit(R5_Insync, &dev->flags);
4709 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4710 			/* in sync if before recovery_offset */
4711 			set_bit(R5_Insync, &dev->flags);
4712 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4713 			 test_bit(R5_Expanded, &dev->flags))
4714 			/* If we've reshaped into here, we assume it is Insync.
4715 			 * We will shortly update recovery_offset to make
4716 			 * it official.
4717 			 */
4718 			set_bit(R5_Insync, &dev->flags);
4719 
4720 		if (test_bit(R5_WriteError, &dev->flags)) {
4721 			/* This flag does not apply to '.replacement'
4722 			 * only to .rdev, so make sure to check that*/
4723 			struct md_rdev *rdev2 = conf->disks[i].rdev;
4724 
4725 			if (rdev2 == rdev)
4726 				clear_bit(R5_Insync, &dev->flags);
4727 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4728 				s->handle_bad_blocks = 1;
4729 				atomic_inc(&rdev2->nr_pending);
4730 			} else
4731 				clear_bit(R5_WriteError, &dev->flags);
4732 		}
4733 		if (test_bit(R5_MadeGood, &dev->flags)) {
4734 			/* This flag does not apply to '.replacement'
4735 			 * only to .rdev, so make sure to check that*/
4736 			struct md_rdev *rdev2 = conf->disks[i].rdev;
4737 
4738 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4739 				s->handle_bad_blocks = 1;
4740 				atomic_inc(&rdev2->nr_pending);
4741 			} else
4742 				clear_bit(R5_MadeGood, &dev->flags);
4743 		}
4744 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4745 			struct md_rdev *rdev2 = conf->disks[i].replacement;
4746 
4747 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4748 				s->handle_bad_blocks = 1;
4749 				atomic_inc(&rdev2->nr_pending);
4750 			} else
4751 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4752 		}
4753 		if (!test_bit(R5_Insync, &dev->flags)) {
4754 			/* The ReadError flag will just be confusing now */
4755 			clear_bit(R5_ReadError, &dev->flags);
4756 			clear_bit(R5_ReWrite, &dev->flags);
4757 		}
4758 		if (test_bit(R5_ReadError, &dev->flags))
4759 			clear_bit(R5_Insync, &dev->flags);
4760 		if (!test_bit(R5_Insync, &dev->flags)) {
4761 			if (s->failed < 2)
4762 				s->failed_num[s->failed] = i;
4763 			s->failed++;
4764 			if (rdev && !test_bit(Faulty, &rdev->flags))
4765 				do_recovery = 1;
4766 			else if (!rdev) {
4767 				rdev = conf->disks[i].replacement;
4768 				if (rdev && !test_bit(Faulty, &rdev->flags))
4769 					do_recovery = 1;
4770 			}
4771 		}
4772 
4773 		if (test_bit(R5_InJournal, &dev->flags))
4774 			s->injournal++;
4775 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4776 			s->just_cached++;
4777 	}
4778 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4779 		/* If there is a failed device being replaced,
4780 		 *     we must be recovering.
4781 		 * else if we are after recovery_cp, we must be syncing
4782 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4783 		 * else we can only be replacing
4784 		 * sync and recovery both need to read all devices, and so
4785 		 * use the same flag.
4786 		 */
4787 		if (do_recovery ||
4788 		    sh->sector >= conf->mddev->recovery_cp ||
4789 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4790 			s->syncing = 1;
4791 		else
4792 			s->replacing = 1;
4793 	}
4794 }
4795 
4796 /*
4797  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4798  * a head which can now be handled.
4799  */
4800 static int clear_batch_ready(struct stripe_head *sh)
4801 {
4802 	struct stripe_head *tmp;
4803 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4804 		return (sh->batch_head && sh->batch_head != sh);
4805 	spin_lock(&sh->stripe_lock);
4806 	if (!sh->batch_head) {
4807 		spin_unlock(&sh->stripe_lock);
4808 		return 0;
4809 	}
4810 
4811 	/*
4812 	 * this stripe could be added to a batch list before we check
4813 	 * BATCH_READY, skips it
4814 	 */
4815 	if (sh->batch_head != sh) {
4816 		spin_unlock(&sh->stripe_lock);
4817 		return 1;
4818 	}
4819 	spin_lock(&sh->batch_lock);
4820 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4821 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4822 	spin_unlock(&sh->batch_lock);
4823 	spin_unlock(&sh->stripe_lock);
4824 
4825 	/*
4826 	 * BATCH_READY is cleared, no new stripes can be added.
4827 	 * batch_list can be accessed without lock
4828 	 */
4829 	return 0;
4830 }
4831 
4832 static void break_stripe_batch_list(struct stripe_head *head_sh,
4833 				    unsigned long handle_flags)
4834 {
4835 	struct stripe_head *sh, *next;
4836 	int i;
4837 
4838 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4839 
4840 		list_del_init(&sh->batch_list);
4841 
4842 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4843 					  (1 << STRIPE_SYNCING) |
4844 					  (1 << STRIPE_REPLACED) |
4845 					  (1 << STRIPE_DELAYED) |
4846 					  (1 << STRIPE_BIT_DELAY) |
4847 					  (1 << STRIPE_FULL_WRITE) |
4848 					  (1 << STRIPE_BIOFILL_RUN) |
4849 					  (1 << STRIPE_COMPUTE_RUN)  |
4850 					  (1 << STRIPE_DISCARD) |
4851 					  (1 << STRIPE_BATCH_READY) |
4852 					  (1 << STRIPE_BATCH_ERR)),
4853 			"stripe state: %lx\n", sh->state);
4854 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4855 					      (1 << STRIPE_REPLACED)),
4856 			"head stripe state: %lx\n", head_sh->state);
4857 
4858 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4859 					    (1 << STRIPE_PREREAD_ACTIVE) |
4860 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4861 			      head_sh->state & (1 << STRIPE_INSYNC));
4862 
4863 		sh->check_state = head_sh->check_state;
4864 		sh->reconstruct_state = head_sh->reconstruct_state;
4865 		spin_lock_irq(&sh->stripe_lock);
4866 		sh->batch_head = NULL;
4867 		spin_unlock_irq(&sh->stripe_lock);
4868 		for (i = 0; i < sh->disks; i++) {
4869 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4870 				wake_up_bit(&sh->dev[i].flags, R5_Overlap);
4871 			sh->dev[i].flags = head_sh->dev[i].flags &
4872 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4873 		}
4874 		if (handle_flags == 0 ||
4875 		    sh->state & handle_flags)
4876 			set_bit(STRIPE_HANDLE, &sh->state);
4877 		raid5_release_stripe(sh);
4878 	}
4879 	spin_lock_irq(&head_sh->stripe_lock);
4880 	head_sh->batch_head = NULL;
4881 	spin_unlock_irq(&head_sh->stripe_lock);
4882 	for (i = 0; i < head_sh->disks; i++)
4883 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4884 			wake_up_bit(&head_sh->dev[i].flags, R5_Overlap);
4885 	if (head_sh->state & handle_flags)
4886 		set_bit(STRIPE_HANDLE, &head_sh->state);
4887 }
4888 
4889 static void handle_stripe(struct stripe_head *sh)
4890 {
4891 	struct stripe_head_state s;
4892 	struct r5conf *conf = sh->raid_conf;
4893 	int i;
4894 	int prexor;
4895 	int disks = sh->disks;
4896 	struct r5dev *pdev, *qdev;
4897 
4898 	clear_bit(STRIPE_HANDLE, &sh->state);
4899 
4900 	/*
4901 	 * handle_stripe should not continue handle the batched stripe, only
4902 	 * the head of batch list or lone stripe can continue. Otherwise we
4903 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4904 	 * is set for the batched stripe.
4905 	 */
4906 	if (clear_batch_ready(sh))
4907 		return;
4908 
4909 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4910 		/* already being handled, ensure it gets handled
4911 		 * again when current action finishes */
4912 		set_bit(STRIPE_HANDLE, &sh->state);
4913 		return;
4914 	}
4915 
4916 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4917 		break_stripe_batch_list(sh, 0);
4918 
4919 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4920 		spin_lock(&sh->stripe_lock);
4921 		/*
4922 		 * Cannot process 'sync' concurrently with 'discard'.
4923 		 * Flush data in r5cache before 'sync'.
4924 		 */
4925 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4926 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4927 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4928 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4929 			set_bit(STRIPE_SYNCING, &sh->state);
4930 			clear_bit(STRIPE_INSYNC, &sh->state);
4931 			clear_bit(STRIPE_REPLACED, &sh->state);
4932 		}
4933 		spin_unlock(&sh->stripe_lock);
4934 	}
4935 	clear_bit(STRIPE_DELAYED, &sh->state);
4936 
4937 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4938 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4939 	       (unsigned long long)sh->sector, sh->state,
4940 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4941 	       sh->check_state, sh->reconstruct_state);
4942 
4943 	analyse_stripe(sh, &s);
4944 
4945 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4946 		goto finish;
4947 
4948 	if (s.handle_bad_blocks ||
4949 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4950 		set_bit(STRIPE_HANDLE, &sh->state);
4951 		goto finish;
4952 	}
4953 
4954 	if (unlikely(s.blocked_rdev)) {
4955 		if (s.syncing || s.expanding || s.expanded ||
4956 		    s.replacing || s.to_write || s.written) {
4957 			set_bit(STRIPE_HANDLE, &sh->state);
4958 			goto finish;
4959 		}
4960 		/* There is nothing for the blocked_rdev to block */
4961 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4962 		s.blocked_rdev = NULL;
4963 	}
4964 
4965 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4966 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4967 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4968 	}
4969 
4970 	pr_debug("locked=%d uptodate=%d to_read=%d"
4971 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4972 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4973 	       s.failed_num[0], s.failed_num[1]);
4974 	/*
4975 	 * check if the array has lost more than max_degraded devices and,
4976 	 * if so, some requests might need to be failed.
4977 	 *
4978 	 * When journal device failed (log_failed), we will only process
4979 	 * the stripe if there is data need write to raid disks
4980 	 */
4981 	if (s.failed > conf->max_degraded ||
4982 	    (s.log_failed && s.injournal == 0)) {
4983 		sh->check_state = 0;
4984 		sh->reconstruct_state = 0;
4985 		break_stripe_batch_list(sh, 0);
4986 		if (s.to_read+s.to_write+s.written)
4987 			handle_failed_stripe(conf, sh, &s, disks);
4988 		if (s.syncing + s.replacing)
4989 			handle_failed_sync(conf, sh, &s);
4990 	}
4991 
4992 	/* Now we check to see if any write operations have recently
4993 	 * completed
4994 	 */
4995 	prexor = 0;
4996 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4997 		prexor = 1;
4998 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4999 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5000 		sh->reconstruct_state = reconstruct_state_idle;
5001 
5002 		/* All the 'written' buffers and the parity block are ready to
5003 		 * be written back to disk
5004 		 */
5005 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5006 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5007 		BUG_ON(sh->qd_idx >= 0 &&
5008 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5009 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5010 		for (i = disks; i--; ) {
5011 			struct r5dev *dev = &sh->dev[i];
5012 			if (test_bit(R5_LOCKED, &dev->flags) &&
5013 				(i == sh->pd_idx || i == sh->qd_idx ||
5014 				 dev->written || test_bit(R5_InJournal,
5015 							  &dev->flags))) {
5016 				pr_debug("Writing block %d\n", i);
5017 				set_bit(R5_Wantwrite, &dev->flags);
5018 				if (prexor)
5019 					continue;
5020 				if (s.failed > 1)
5021 					continue;
5022 				if (!test_bit(R5_Insync, &dev->flags) ||
5023 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5024 				     s.failed == 0))
5025 					set_bit(STRIPE_INSYNC, &sh->state);
5026 			}
5027 		}
5028 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5029 			s.dec_preread_active = 1;
5030 	}
5031 
5032 	/*
5033 	 * might be able to return some write requests if the parity blocks
5034 	 * are safe, or on a failed drive
5035 	 */
5036 	pdev = &sh->dev[sh->pd_idx];
5037 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5038 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5039 	qdev = &sh->dev[sh->qd_idx];
5040 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5041 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5042 		|| conf->level < 6;
5043 
5044 	if (s.written &&
5045 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5046 			     && !test_bit(R5_LOCKED, &pdev->flags)
5047 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5048 				 test_bit(R5_Discard, &pdev->flags))))) &&
5049 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5050 			     && !test_bit(R5_LOCKED, &qdev->flags)
5051 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5052 				 test_bit(R5_Discard, &qdev->flags))))))
5053 		handle_stripe_clean_event(conf, sh, disks);
5054 
5055 	if (s.just_cached)
5056 		r5c_handle_cached_data_endio(conf, sh, disks);
5057 	log_stripe_write_finished(sh);
5058 
5059 	/* Now we might consider reading some blocks, either to check/generate
5060 	 * parity, or to satisfy requests
5061 	 * or to load a block that is being partially written.
5062 	 */
5063 	if (s.to_read || s.non_overwrite
5064 	    || (s.to_write && s.failed)
5065 	    || (s.syncing && (s.uptodate + s.compute < disks))
5066 	    || s.replacing
5067 	    || s.expanding)
5068 		handle_stripe_fill(sh, &s, disks);
5069 
5070 	/*
5071 	 * When the stripe finishes full journal write cycle (write to journal
5072 	 * and raid disk), this is the clean up procedure so it is ready for
5073 	 * next operation.
5074 	 */
5075 	r5c_finish_stripe_write_out(conf, sh, &s);
5076 
5077 	/*
5078 	 * Now to consider new write requests, cache write back and what else,
5079 	 * if anything should be read.  We do not handle new writes when:
5080 	 * 1/ A 'write' operation (copy+xor) is already in flight.
5081 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5082 	 *    block.
5083 	 * 3/ A r5c cache log write is in flight.
5084 	 */
5085 
5086 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5087 		if (!r5c_is_writeback(conf->log)) {
5088 			if (s.to_write)
5089 				handle_stripe_dirtying(conf, sh, &s, disks);
5090 		} else { /* write back cache */
5091 			int ret = 0;
5092 
5093 			/* First, try handle writes in caching phase */
5094 			if (s.to_write)
5095 				ret = r5c_try_caching_write(conf, sh, &s,
5096 							    disks);
5097 			/*
5098 			 * If caching phase failed: ret == -EAGAIN
5099 			 *    OR
5100 			 * stripe under reclaim: !caching && injournal
5101 			 *
5102 			 * fall back to handle_stripe_dirtying()
5103 			 */
5104 			if (ret == -EAGAIN ||
5105 			    /* stripe under reclaim: !caching && injournal */
5106 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5107 			     s.injournal > 0)) {
5108 				ret = handle_stripe_dirtying(conf, sh, &s,
5109 							     disks);
5110 				if (ret == -EAGAIN)
5111 					goto finish;
5112 			}
5113 		}
5114 	}
5115 
5116 	/* maybe we need to check and possibly fix the parity for this stripe
5117 	 * Any reads will already have been scheduled, so we just see if enough
5118 	 * data is available.  The parity check is held off while parity
5119 	 * dependent operations are in flight.
5120 	 */
5121 	if (sh->check_state ||
5122 	    (s.syncing && s.locked == 0 &&
5123 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5124 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5125 		if (conf->level == 6)
5126 			handle_parity_checks6(conf, sh, &s, disks);
5127 		else
5128 			handle_parity_checks5(conf, sh, &s, disks);
5129 	}
5130 
5131 	if ((s.replacing || s.syncing) && s.locked == 0
5132 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5133 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5134 		/* Write out to replacement devices where possible */
5135 		for (i = 0; i < conf->raid_disks; i++)
5136 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5137 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5138 				set_bit(R5_WantReplace, &sh->dev[i].flags);
5139 				set_bit(R5_LOCKED, &sh->dev[i].flags);
5140 				s.locked++;
5141 			}
5142 		if (s.replacing)
5143 			set_bit(STRIPE_INSYNC, &sh->state);
5144 		set_bit(STRIPE_REPLACED, &sh->state);
5145 	}
5146 	if ((s.syncing || s.replacing) && s.locked == 0 &&
5147 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5148 	    test_bit(STRIPE_INSYNC, &sh->state)) {
5149 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5150 		clear_bit(STRIPE_SYNCING, &sh->state);
5151 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5152 			wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
5153 	}
5154 
5155 	/* If the failed drives are just a ReadError, then we might need
5156 	 * to progress the repair/check process
5157 	 */
5158 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5159 		for (i = 0; i < s.failed; i++) {
5160 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5161 			if (test_bit(R5_ReadError, &dev->flags)
5162 			    && !test_bit(R5_LOCKED, &dev->flags)
5163 			    && test_bit(R5_UPTODATE, &dev->flags)
5164 				) {
5165 				if (!test_bit(R5_ReWrite, &dev->flags)) {
5166 					set_bit(R5_Wantwrite, &dev->flags);
5167 					set_bit(R5_ReWrite, &dev->flags);
5168 				} else
5169 					/* let's read it back */
5170 					set_bit(R5_Wantread, &dev->flags);
5171 				set_bit(R5_LOCKED, &dev->flags);
5172 				s.locked++;
5173 			}
5174 		}
5175 
5176 	/* Finish reconstruct operations initiated by the expansion process */
5177 	if (sh->reconstruct_state == reconstruct_state_result) {
5178 		struct stripe_head *sh_src
5179 			= raid5_get_active_stripe(conf, NULL, sh->sector,
5180 					R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5181 					R5_GAS_NOQUIESCE);
5182 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5183 			/* sh cannot be written until sh_src has been read.
5184 			 * so arrange for sh to be delayed a little
5185 			 */
5186 			set_bit(STRIPE_DELAYED, &sh->state);
5187 			set_bit(STRIPE_HANDLE, &sh->state);
5188 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5189 					      &sh_src->state))
5190 				atomic_inc(&conf->preread_active_stripes);
5191 			raid5_release_stripe(sh_src);
5192 			goto finish;
5193 		}
5194 		if (sh_src)
5195 			raid5_release_stripe(sh_src);
5196 
5197 		sh->reconstruct_state = reconstruct_state_idle;
5198 		clear_bit(STRIPE_EXPANDING, &sh->state);
5199 		for (i = conf->raid_disks; i--; ) {
5200 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5201 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5202 			s.locked++;
5203 		}
5204 	}
5205 
5206 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5207 	    !sh->reconstruct_state) {
5208 		/* Need to write out all blocks after computing parity */
5209 		sh->disks = conf->raid_disks;
5210 		stripe_set_idx(sh->sector, conf, 0, sh);
5211 		schedule_reconstruction(sh, &s, 1, 1);
5212 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5213 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5214 		atomic_dec(&conf->reshape_stripes);
5215 		wake_up(&conf->wait_for_reshape);
5216 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5217 	}
5218 
5219 	if (s.expanding && s.locked == 0 &&
5220 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5221 		handle_stripe_expansion(conf, sh);
5222 
5223 finish:
5224 	/* wait for this device to become unblocked */
5225 	if (unlikely(s.blocked_rdev)) {
5226 		if (conf->mddev->external)
5227 			md_wait_for_blocked_rdev(s.blocked_rdev,
5228 						 conf->mddev);
5229 		else
5230 			/* Internal metadata will immediately
5231 			 * be written by raid5d, so we don't
5232 			 * need to wait here.
5233 			 */
5234 			rdev_dec_pending(s.blocked_rdev,
5235 					 conf->mddev);
5236 	}
5237 
5238 	if (s.handle_bad_blocks)
5239 		for (i = disks; i--; ) {
5240 			struct md_rdev *rdev;
5241 			struct r5dev *dev = &sh->dev[i];
5242 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5243 				/* We own a safe reference to the rdev */
5244 				rdev = conf->disks[i].rdev;
5245 				if (!rdev_set_badblocks(rdev, sh->sector,
5246 							RAID5_STRIPE_SECTORS(conf), 0))
5247 					md_error(conf->mddev, rdev);
5248 				rdev_dec_pending(rdev, conf->mddev);
5249 			}
5250 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5251 				rdev = conf->disks[i].rdev;
5252 				rdev_clear_badblocks(rdev, sh->sector,
5253 						     RAID5_STRIPE_SECTORS(conf), 0);
5254 				rdev_dec_pending(rdev, conf->mddev);
5255 			}
5256 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5257 				rdev = conf->disks[i].replacement;
5258 				if (!rdev)
5259 					/* rdev have been moved down */
5260 					rdev = conf->disks[i].rdev;
5261 				rdev_clear_badblocks(rdev, sh->sector,
5262 						     RAID5_STRIPE_SECTORS(conf), 0);
5263 				rdev_dec_pending(rdev, conf->mddev);
5264 			}
5265 		}
5266 
5267 	if (s.ops_request)
5268 		raid_run_ops(sh, s.ops_request);
5269 
5270 	ops_run_io(sh, &s);
5271 
5272 	if (s.dec_preread_active) {
5273 		/* We delay this until after ops_run_io so that if make_request
5274 		 * is waiting on a flush, it won't continue until the writes
5275 		 * have actually been submitted.
5276 		 */
5277 		atomic_dec(&conf->preread_active_stripes);
5278 		if (atomic_read(&conf->preread_active_stripes) <
5279 		    IO_THRESHOLD)
5280 			md_wakeup_thread(conf->mddev->thread);
5281 	}
5282 
5283 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5284 }
5285 
5286 static void raid5_activate_delayed(struct r5conf *conf)
5287 	__must_hold(&conf->device_lock)
5288 {
5289 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5290 		while (!list_empty(&conf->delayed_list)) {
5291 			struct list_head *l = conf->delayed_list.next;
5292 			struct stripe_head *sh;
5293 			sh = list_entry(l, struct stripe_head, lru);
5294 			list_del_init(l);
5295 			clear_bit(STRIPE_DELAYED, &sh->state);
5296 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5297 				atomic_inc(&conf->preread_active_stripes);
5298 			list_add_tail(&sh->lru, &conf->hold_list);
5299 			raid5_wakeup_stripe_thread(sh);
5300 		}
5301 	}
5302 }
5303 
5304 static void activate_bit_delay(struct r5conf *conf,
5305 		struct list_head *temp_inactive_list)
5306 	__must_hold(&conf->device_lock)
5307 {
5308 	struct list_head head;
5309 	list_add(&head, &conf->bitmap_list);
5310 	list_del_init(&conf->bitmap_list);
5311 	while (!list_empty(&head)) {
5312 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5313 		int hash;
5314 		list_del_init(&sh->lru);
5315 		atomic_inc(&sh->count);
5316 		hash = sh->hash_lock_index;
5317 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5318 	}
5319 }
5320 
5321 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5322 {
5323 	struct r5conf *conf = mddev->private;
5324 	sector_t sector = bio->bi_iter.bi_sector;
5325 	unsigned int chunk_sectors;
5326 	unsigned int bio_sectors = bio_sectors(bio);
5327 
5328 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5329 	return  chunk_sectors >=
5330 		((sector & (chunk_sectors - 1)) + bio_sectors);
5331 }
5332 
5333 /*
5334  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5335  *  later sampled by raid5d.
5336  */
5337 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5338 {
5339 	unsigned long flags;
5340 
5341 	spin_lock_irqsave(&conf->device_lock, flags);
5342 
5343 	bi->bi_next = conf->retry_read_aligned_list;
5344 	conf->retry_read_aligned_list = bi;
5345 
5346 	spin_unlock_irqrestore(&conf->device_lock, flags);
5347 	md_wakeup_thread(conf->mddev->thread);
5348 }
5349 
5350 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5351 					 unsigned int *offset)
5352 {
5353 	struct bio *bi;
5354 
5355 	bi = conf->retry_read_aligned;
5356 	if (bi) {
5357 		*offset = conf->retry_read_offset;
5358 		conf->retry_read_aligned = NULL;
5359 		return bi;
5360 	}
5361 	bi = conf->retry_read_aligned_list;
5362 	if(bi) {
5363 		conf->retry_read_aligned_list = bi->bi_next;
5364 		bi->bi_next = NULL;
5365 		*offset = 0;
5366 	}
5367 
5368 	return bi;
5369 }
5370 
5371 /*
5372  *  The "raid5_align_endio" should check if the read succeeded and if it
5373  *  did, call bio_endio on the original bio (having bio_put the new bio
5374  *  first).
5375  *  If the read failed..
5376  */
5377 static void raid5_align_endio(struct bio *bi)
5378 {
5379 	struct bio *raid_bi = bi->bi_private;
5380 	struct md_rdev *rdev = (void *)raid_bi->bi_next;
5381 	struct mddev *mddev = rdev->mddev;
5382 	struct r5conf *conf = mddev->private;
5383 	blk_status_t error = bi->bi_status;
5384 
5385 	bio_put(bi);
5386 	raid_bi->bi_next = NULL;
5387 	rdev_dec_pending(rdev, conf->mddev);
5388 
5389 	if (!error) {
5390 		bio_endio(raid_bi);
5391 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5392 			wake_up(&conf->wait_for_quiescent);
5393 		return;
5394 	}
5395 
5396 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5397 
5398 	add_bio_to_retry(raid_bi, conf);
5399 }
5400 
5401 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5402 {
5403 	struct r5conf *conf = mddev->private;
5404 	struct bio *align_bio;
5405 	struct md_rdev *rdev;
5406 	sector_t sector, end_sector;
5407 	int dd_idx;
5408 	bool did_inc;
5409 
5410 	if (!in_chunk_boundary(mddev, raid_bio)) {
5411 		pr_debug("%s: non aligned\n", __func__);
5412 		return 0;
5413 	}
5414 
5415 	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5416 				      &dd_idx, NULL);
5417 	end_sector = sector + bio_sectors(raid_bio);
5418 
5419 	if (r5c_big_stripe_cached(conf, sector))
5420 		return 0;
5421 
5422 	rdev = conf->disks[dd_idx].replacement;
5423 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5424 	    rdev->recovery_offset < end_sector) {
5425 		rdev = conf->disks[dd_idx].rdev;
5426 		if (!rdev)
5427 			return 0;
5428 		if (test_bit(Faulty, &rdev->flags) ||
5429 		    !(test_bit(In_sync, &rdev->flags) ||
5430 		      rdev->recovery_offset >= end_sector))
5431 			return 0;
5432 	}
5433 
5434 	atomic_inc(&rdev->nr_pending);
5435 
5436 	if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
5437 		rdev_dec_pending(rdev, mddev);
5438 		return 0;
5439 	}
5440 
5441 	md_account_bio(mddev, &raid_bio);
5442 	raid_bio->bi_next = (void *)rdev;
5443 
5444 	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5445 				    &mddev->bio_set);
5446 	align_bio->bi_end_io = raid5_align_endio;
5447 	align_bio->bi_private = raid_bio;
5448 	align_bio->bi_iter.bi_sector = sector;
5449 
5450 	/* No reshape active, so we can trust rdev->data_offset */
5451 	align_bio->bi_iter.bi_sector += rdev->data_offset;
5452 
5453 	did_inc = false;
5454 	if (conf->quiesce == 0) {
5455 		atomic_inc(&conf->active_aligned_reads);
5456 		did_inc = true;
5457 	}
5458 	/* need a memory barrier to detect the race with raid5_quiesce() */
5459 	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5460 		/* quiesce is in progress, so we need to undo io activation and wait
5461 		 * for it to finish
5462 		 */
5463 		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5464 			wake_up(&conf->wait_for_quiescent);
5465 		spin_lock_irq(&conf->device_lock);
5466 		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5467 				    conf->device_lock);
5468 		atomic_inc(&conf->active_aligned_reads);
5469 		spin_unlock_irq(&conf->device_lock);
5470 	}
5471 
5472 	mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
5473 	submit_bio_noacct(align_bio);
5474 	return 1;
5475 }
5476 
5477 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5478 {
5479 	struct bio *split;
5480 	sector_t sector = raid_bio->bi_iter.bi_sector;
5481 	unsigned chunk_sects = mddev->chunk_sectors;
5482 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5483 
5484 	if (sectors < bio_sectors(raid_bio)) {
5485 		struct r5conf *conf = mddev->private;
5486 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5487 		bio_chain(split, raid_bio);
5488 		submit_bio_noacct(raid_bio);
5489 		raid_bio = split;
5490 	}
5491 
5492 	if (!raid5_read_one_chunk(mddev, raid_bio))
5493 		return raid_bio;
5494 
5495 	return NULL;
5496 }
5497 
5498 /* __get_priority_stripe - get the next stripe to process
5499  *
5500  * Full stripe writes are allowed to pass preread active stripes up until
5501  * the bypass_threshold is exceeded.  In general the bypass_count
5502  * increments when the handle_list is handled before the hold_list; however, it
5503  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5504  * stripe with in flight i/o.  The bypass_count will be reset when the
5505  * head of the hold_list has changed, i.e. the head was promoted to the
5506  * handle_list.
5507  */
5508 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5509 	__must_hold(&conf->device_lock)
5510 {
5511 	struct stripe_head *sh, *tmp;
5512 	struct list_head *handle_list = NULL;
5513 	struct r5worker_group *wg;
5514 	bool second_try = !r5c_is_writeback(conf->log) &&
5515 		!r5l_log_disk_error(conf);
5516 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5517 		r5l_log_disk_error(conf);
5518 
5519 again:
5520 	wg = NULL;
5521 	sh = NULL;
5522 	if (conf->worker_cnt_per_group == 0) {
5523 		handle_list = try_loprio ? &conf->loprio_list :
5524 					&conf->handle_list;
5525 	} else if (group != ANY_GROUP) {
5526 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5527 				&conf->worker_groups[group].handle_list;
5528 		wg = &conf->worker_groups[group];
5529 	} else {
5530 		int i;
5531 		for (i = 0; i < conf->group_cnt; i++) {
5532 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5533 				&conf->worker_groups[i].handle_list;
5534 			wg = &conf->worker_groups[i];
5535 			if (!list_empty(handle_list))
5536 				break;
5537 		}
5538 	}
5539 
5540 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5541 		  __func__,
5542 		  list_empty(handle_list) ? "empty" : "busy",
5543 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5544 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5545 
5546 	if (!list_empty(handle_list)) {
5547 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5548 
5549 		if (list_empty(&conf->hold_list))
5550 			conf->bypass_count = 0;
5551 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5552 			if (conf->hold_list.next == conf->last_hold)
5553 				conf->bypass_count++;
5554 			else {
5555 				conf->last_hold = conf->hold_list.next;
5556 				conf->bypass_count -= conf->bypass_threshold;
5557 				if (conf->bypass_count < 0)
5558 					conf->bypass_count = 0;
5559 			}
5560 		}
5561 	} else if (!list_empty(&conf->hold_list) &&
5562 		   ((conf->bypass_threshold &&
5563 		     conf->bypass_count > conf->bypass_threshold) ||
5564 		    atomic_read(&conf->pending_full_writes) == 0)) {
5565 
5566 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5567 			if (conf->worker_cnt_per_group == 0 ||
5568 			    group == ANY_GROUP ||
5569 			    !cpu_online(tmp->cpu) ||
5570 			    cpu_to_group(tmp->cpu) == group) {
5571 				sh = tmp;
5572 				break;
5573 			}
5574 		}
5575 
5576 		if (sh) {
5577 			conf->bypass_count -= conf->bypass_threshold;
5578 			if (conf->bypass_count < 0)
5579 				conf->bypass_count = 0;
5580 		}
5581 		wg = NULL;
5582 	}
5583 
5584 	if (!sh) {
5585 		if (second_try)
5586 			return NULL;
5587 		second_try = true;
5588 		try_loprio = !try_loprio;
5589 		goto again;
5590 	}
5591 
5592 	if (wg) {
5593 		wg->stripes_cnt--;
5594 		sh->group = NULL;
5595 	}
5596 	list_del_init(&sh->lru);
5597 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5598 	return sh;
5599 }
5600 
5601 struct raid5_plug_cb {
5602 	struct blk_plug_cb	cb;
5603 	struct list_head	list;
5604 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5605 };
5606 
5607 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5608 {
5609 	struct raid5_plug_cb *cb = container_of(
5610 		blk_cb, struct raid5_plug_cb, cb);
5611 	struct stripe_head *sh;
5612 	struct mddev *mddev = cb->cb.data;
5613 	struct r5conf *conf = mddev->private;
5614 	int cnt = 0;
5615 	int hash;
5616 
5617 	if (cb->list.next && !list_empty(&cb->list)) {
5618 		spin_lock_irq(&conf->device_lock);
5619 		while (!list_empty(&cb->list)) {
5620 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5621 			list_del_init(&sh->lru);
5622 			/*
5623 			 * avoid race release_stripe_plug() sees
5624 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5625 			 * is still in our list
5626 			 */
5627 			smp_mb__before_atomic();
5628 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5629 			/*
5630 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5631 			 * case, the count is always > 1 here
5632 			 */
5633 			hash = sh->hash_lock_index;
5634 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5635 			cnt++;
5636 		}
5637 		spin_unlock_irq(&conf->device_lock);
5638 	}
5639 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5640 				     NR_STRIPE_HASH_LOCKS);
5641 	if (!mddev_is_dm(mddev))
5642 		trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
5643 	kfree(cb);
5644 }
5645 
5646 static void release_stripe_plug(struct mddev *mddev,
5647 				struct stripe_head *sh)
5648 {
5649 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5650 		raid5_unplug, mddev,
5651 		sizeof(struct raid5_plug_cb));
5652 	struct raid5_plug_cb *cb;
5653 
5654 	if (!blk_cb) {
5655 		raid5_release_stripe(sh);
5656 		return;
5657 	}
5658 
5659 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5660 
5661 	if (cb->list.next == NULL) {
5662 		int i;
5663 		INIT_LIST_HEAD(&cb->list);
5664 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5665 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5666 	}
5667 
5668 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5669 		list_add_tail(&sh->lru, &cb->list);
5670 	else
5671 		raid5_release_stripe(sh);
5672 }
5673 
5674 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5675 {
5676 	struct r5conf *conf = mddev->private;
5677 	sector_t logical_sector, last_sector;
5678 	struct stripe_head *sh;
5679 	int stripe_sectors;
5680 
5681 	/* We need to handle this when io_uring supports discard/trim */
5682 	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5683 		return;
5684 
5685 	if (mddev->reshape_position != MaxSector)
5686 		/* Skip discard while reshape is happening */
5687 		return;
5688 
5689 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5690 	last_sector = bio_end_sector(bi);
5691 
5692 	bi->bi_next = NULL;
5693 
5694 	stripe_sectors = conf->chunk_sectors *
5695 		(conf->raid_disks - conf->max_degraded);
5696 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5697 					       stripe_sectors);
5698 	sector_div(last_sector, stripe_sectors);
5699 
5700 	logical_sector *= conf->chunk_sectors;
5701 	last_sector *= conf->chunk_sectors;
5702 
5703 	for (; logical_sector < last_sector;
5704 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5705 		DEFINE_WAIT(w);
5706 		int d;
5707 	again:
5708 		sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5709 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5710 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5711 			raid5_release_stripe(sh);
5712 			wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap,
5713 				    TASK_UNINTERRUPTIBLE);
5714 			goto again;
5715 		}
5716 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5717 		spin_lock_irq(&sh->stripe_lock);
5718 		for (d = 0; d < conf->raid_disks; d++) {
5719 			if (d == sh->pd_idx || d == sh->qd_idx)
5720 				continue;
5721 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5722 				set_bit(R5_Overlap, &sh->dev[d].flags);
5723 				spin_unlock_irq(&sh->stripe_lock);
5724 				raid5_release_stripe(sh);
5725 				wait_on_bit(&sh->dev[d].flags, R5_Overlap,
5726 					    TASK_UNINTERRUPTIBLE);
5727 				goto again;
5728 			}
5729 		}
5730 		set_bit(STRIPE_DISCARD, &sh->state);
5731 		sh->overwrite_disks = 0;
5732 		for (d = 0; d < conf->raid_disks; d++) {
5733 			if (d == sh->pd_idx || d == sh->qd_idx)
5734 				continue;
5735 			sh->dev[d].towrite = bi;
5736 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5737 			bio_inc_remaining(bi);
5738 			md_write_inc(mddev, bi);
5739 			sh->overwrite_disks++;
5740 		}
5741 		spin_unlock_irq(&sh->stripe_lock);
5742 		if (conf->mddev->bitmap) {
5743 			sh->bm_seq = conf->seq_flush + 1;
5744 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5745 		}
5746 
5747 		set_bit(STRIPE_HANDLE, &sh->state);
5748 		clear_bit(STRIPE_DELAYED, &sh->state);
5749 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5750 			atomic_inc(&conf->preread_active_stripes);
5751 		release_stripe_plug(mddev, sh);
5752 	}
5753 
5754 	bio_endio(bi);
5755 }
5756 
5757 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5758 			     sector_t reshape_sector)
5759 {
5760 	return mddev->reshape_backwards ? sector < reshape_sector :
5761 					  sector >= reshape_sector;
5762 }
5763 
5764 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5765 				   sector_t max, sector_t reshape_sector)
5766 {
5767 	return mddev->reshape_backwards ? max < reshape_sector :
5768 					  min >= reshape_sector;
5769 }
5770 
5771 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5772 				    struct stripe_head *sh)
5773 {
5774 	sector_t max_sector = 0, min_sector = MaxSector;
5775 	bool ret = false;
5776 	int dd_idx;
5777 
5778 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5779 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5780 			continue;
5781 
5782 		min_sector = min(min_sector, sh->dev[dd_idx].sector);
5783 		max_sector = max(max_sector, sh->dev[dd_idx].sector);
5784 	}
5785 
5786 	spin_lock_irq(&conf->device_lock);
5787 
5788 	if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5789 				     conf->reshape_progress))
5790 		/* mismatch, need to try again */
5791 		ret = true;
5792 
5793 	spin_unlock_irq(&conf->device_lock);
5794 
5795 	return ret;
5796 }
5797 
5798 static int add_all_stripe_bios(struct r5conf *conf,
5799 		struct stripe_request_ctx *ctx, struct stripe_head *sh,
5800 		struct bio *bi, int forwrite, int previous)
5801 {
5802 	int dd_idx;
5803 
5804 	spin_lock_irq(&sh->stripe_lock);
5805 
5806 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5807 		struct r5dev *dev = &sh->dev[dd_idx];
5808 
5809 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5810 			continue;
5811 
5812 		if (dev->sector < ctx->first_sector ||
5813 		    dev->sector >= ctx->last_sector)
5814 			continue;
5815 
5816 		if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5817 			set_bit(R5_Overlap, &dev->flags);
5818 			spin_unlock_irq(&sh->stripe_lock);
5819 			raid5_release_stripe(sh);
5820 			/* release batch_last before wait to avoid risk of deadlock */
5821 			if (ctx->batch_last) {
5822 				raid5_release_stripe(ctx->batch_last);
5823 				ctx->batch_last = NULL;
5824 			}
5825 			md_wakeup_thread(conf->mddev->thread);
5826 			wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE);
5827 			return 0;
5828 		}
5829 	}
5830 
5831 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5832 		struct r5dev *dev = &sh->dev[dd_idx];
5833 
5834 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5835 			continue;
5836 
5837 		if (dev->sector < ctx->first_sector ||
5838 		    dev->sector >= ctx->last_sector)
5839 			continue;
5840 
5841 		__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5842 		clear_bit((dev->sector - ctx->first_sector) >>
5843 			  RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5844 	}
5845 
5846 	spin_unlock_irq(&sh->stripe_lock);
5847 	return 1;
5848 }
5849 
5850 enum reshape_loc {
5851 	LOC_NO_RESHAPE,
5852 	LOC_AHEAD_OF_RESHAPE,
5853 	LOC_INSIDE_RESHAPE,
5854 	LOC_BEHIND_RESHAPE,
5855 };
5856 
5857 static enum reshape_loc get_reshape_loc(struct mddev *mddev,
5858 		struct r5conf *conf, sector_t logical_sector)
5859 {
5860 	sector_t reshape_progress, reshape_safe;
5861 	/*
5862 	 * Spinlock is needed as reshape_progress may be
5863 	 * 64bit on a 32bit platform, and so it might be
5864 	 * possible to see a half-updated value
5865 	 * Of course reshape_progress could change after
5866 	 * the lock is dropped, so once we get a reference
5867 	 * to the stripe that we think it is, we will have
5868 	 * to check again.
5869 	 */
5870 	spin_lock_irq(&conf->device_lock);
5871 	reshape_progress = conf->reshape_progress;
5872 	reshape_safe = conf->reshape_safe;
5873 	spin_unlock_irq(&conf->device_lock);
5874 	if (reshape_progress == MaxSector)
5875 		return LOC_NO_RESHAPE;
5876 	if (ahead_of_reshape(mddev, logical_sector, reshape_progress))
5877 		return LOC_AHEAD_OF_RESHAPE;
5878 	if (ahead_of_reshape(mddev, logical_sector, reshape_safe))
5879 		return LOC_INSIDE_RESHAPE;
5880 	return LOC_BEHIND_RESHAPE;
5881 }
5882 
5883 static void raid5_bitmap_sector(struct mddev *mddev, sector_t *offset,
5884 				unsigned long *sectors)
5885 {
5886 	struct r5conf *conf = mddev->private;
5887 	sector_t start = *offset;
5888 	sector_t end = start + *sectors;
5889 	sector_t prev_start = start;
5890 	sector_t prev_end = end;
5891 	int sectors_per_chunk;
5892 	enum reshape_loc loc;
5893 	int dd_idx;
5894 
5895 	sectors_per_chunk = conf->chunk_sectors *
5896 		(conf->raid_disks - conf->max_degraded);
5897 	start = round_down(start, sectors_per_chunk);
5898 	end = round_up(end, sectors_per_chunk);
5899 
5900 	start = raid5_compute_sector(conf, start, 0, &dd_idx, NULL);
5901 	end = raid5_compute_sector(conf, end, 0, &dd_idx, NULL);
5902 
5903 	/*
5904 	 * For LOC_INSIDE_RESHAPE, this IO will wait for reshape to make
5905 	 * progress, hence it's the same as LOC_BEHIND_RESHAPE.
5906 	 */
5907 	loc = get_reshape_loc(mddev, conf, prev_start);
5908 	if (likely(loc != LOC_AHEAD_OF_RESHAPE)) {
5909 		*offset = start;
5910 		*sectors = end - start;
5911 		return;
5912 	}
5913 
5914 	sectors_per_chunk = conf->prev_chunk_sectors *
5915 		(conf->previous_raid_disks - conf->max_degraded);
5916 	prev_start = round_down(prev_start, sectors_per_chunk);
5917 	prev_end = round_down(prev_end, sectors_per_chunk);
5918 
5919 	prev_start = raid5_compute_sector(conf, prev_start, 1, &dd_idx, NULL);
5920 	prev_end = raid5_compute_sector(conf, prev_end, 1, &dd_idx, NULL);
5921 
5922 	/*
5923 	 * for LOC_AHEAD_OF_RESHAPE, reshape can make progress before this IO
5924 	 * is handled in make_stripe_request(), we can't know this here hence
5925 	 * we set bits for both.
5926 	 */
5927 	*offset = min(start, prev_start);
5928 	*sectors = max(end, prev_end) - *offset;
5929 }
5930 
5931 static enum stripe_result make_stripe_request(struct mddev *mddev,
5932 		struct r5conf *conf, struct stripe_request_ctx *ctx,
5933 		sector_t logical_sector, struct bio *bi)
5934 {
5935 	const int rw = bio_data_dir(bi);
5936 	enum stripe_result ret;
5937 	struct stripe_head *sh;
5938 	sector_t new_sector;
5939 	int previous = 0, flags = 0;
5940 	int seq, dd_idx;
5941 
5942 	seq = read_seqcount_begin(&conf->gen_lock);
5943 
5944 	if (unlikely(conf->reshape_progress != MaxSector)) {
5945 		enum reshape_loc loc = get_reshape_loc(mddev, conf,
5946 						       logical_sector);
5947 		if (loc == LOC_INSIDE_RESHAPE) {
5948 			ret = STRIPE_SCHEDULE_AND_RETRY;
5949 			goto out;
5950 		}
5951 		if (loc == LOC_AHEAD_OF_RESHAPE)
5952 			previous = 1;
5953 	}
5954 
5955 	new_sector = raid5_compute_sector(conf, logical_sector, previous,
5956 					  &dd_idx, NULL);
5957 	pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5958 		 new_sector, logical_sector);
5959 
5960 	if (previous)
5961 		flags |= R5_GAS_PREVIOUS;
5962 	if (bi->bi_opf & REQ_RAHEAD)
5963 		flags |= R5_GAS_NOBLOCK;
5964 	sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5965 	if (unlikely(!sh)) {
5966 		/* cannot get stripe, just give-up */
5967 		bi->bi_status = BLK_STS_IOERR;
5968 		return STRIPE_FAIL;
5969 	}
5970 
5971 	if (unlikely(previous) &&
5972 	    stripe_ahead_of_reshape(mddev, conf, sh)) {
5973 		/*
5974 		 * Expansion moved on while waiting for a stripe.
5975 		 * Expansion could still move past after this
5976 		 * test, but as we are holding a reference to
5977 		 * 'sh', we know that if that happens,
5978 		 *  STRIPE_EXPANDING will get set and the expansion
5979 		 * won't proceed until we finish with the stripe.
5980 		 */
5981 		ret = STRIPE_SCHEDULE_AND_RETRY;
5982 		goto out_release;
5983 	}
5984 
5985 	if (read_seqcount_retry(&conf->gen_lock, seq)) {
5986 		/* Might have got the wrong stripe_head by accident */
5987 		ret = STRIPE_RETRY;
5988 		goto out_release;
5989 	}
5990 
5991 	if (test_bit(STRIPE_EXPANDING, &sh->state)) {
5992 		md_wakeup_thread(mddev->thread);
5993 		ret = STRIPE_SCHEDULE_AND_RETRY;
5994 		goto out_release;
5995 	}
5996 
5997 	if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5998 		ret = STRIPE_RETRY;
5999 		goto out;
6000 	}
6001 
6002 	if (stripe_can_batch(sh)) {
6003 		stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6004 		if (ctx->batch_last)
6005 			raid5_release_stripe(ctx->batch_last);
6006 		atomic_inc(&sh->count);
6007 		ctx->batch_last = sh;
6008 	}
6009 
6010 	if (ctx->do_flush) {
6011 		set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6012 		/* we only need flush for one stripe */
6013 		ctx->do_flush = false;
6014 	}
6015 
6016 	set_bit(STRIPE_HANDLE, &sh->state);
6017 	clear_bit(STRIPE_DELAYED, &sh->state);
6018 	if ((!sh->batch_head || sh == sh->batch_head) &&
6019 	    (bi->bi_opf & REQ_SYNC) &&
6020 	    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6021 		atomic_inc(&conf->preread_active_stripes);
6022 
6023 	release_stripe_plug(mddev, sh);
6024 	return STRIPE_SUCCESS;
6025 
6026 out_release:
6027 	raid5_release_stripe(sh);
6028 out:
6029 	if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6030 		bi->bi_status = BLK_STS_RESOURCE;
6031 		ret = STRIPE_WAIT_RESHAPE;
6032 		pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6033 	}
6034 	return ret;
6035 }
6036 
6037 /*
6038  * If the bio covers multiple data disks, find sector within the bio that has
6039  * the lowest chunk offset in the first chunk.
6040  */
6041 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6042 					      struct bio *bi)
6043 {
6044 	int sectors_per_chunk = conf->chunk_sectors;
6045 	int raid_disks = conf->raid_disks;
6046 	int dd_idx;
6047 	struct stripe_head sh;
6048 	unsigned int chunk_offset;
6049 	sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6050 	sector_t sector;
6051 
6052 	/* We pass in fake stripe_head to get back parity disk numbers */
6053 	sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6054 	chunk_offset = sector_div(sector, sectors_per_chunk);
6055 	if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6056 		return r_sector;
6057 	/*
6058 	 * Bio crosses to the next data disk. Check whether it's in the same
6059 	 * chunk.
6060 	 */
6061 	dd_idx++;
6062 	while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6063 		dd_idx++;
6064 	if (dd_idx >= raid_disks)
6065 		return r_sector;
6066 	return r_sector + sectors_per_chunk - chunk_offset;
6067 }
6068 
6069 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6070 {
6071 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
6072 	bool on_wq;
6073 	struct r5conf *conf = mddev->private;
6074 	sector_t logical_sector;
6075 	struct stripe_request_ctx ctx = {};
6076 	const int rw = bio_data_dir(bi);
6077 	enum stripe_result res;
6078 	int s, stripe_cnt;
6079 
6080 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6081 		int ret = log_handle_flush_request(conf, bi);
6082 
6083 		if (ret == 0)
6084 			return true;
6085 		if (ret == -ENODEV) {
6086 			if (md_flush_request(mddev, bi))
6087 				return true;
6088 		}
6089 		/* ret == -EAGAIN, fallback */
6090 		/*
6091 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6092 		 * we need to flush journal device
6093 		 */
6094 		ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6095 	}
6096 
6097 	md_write_start(mddev, bi);
6098 	/*
6099 	 * If array is degraded, better not do chunk aligned read because
6100 	 * later we might have to read it again in order to reconstruct
6101 	 * data on failed drives.
6102 	 */
6103 	if (rw == READ && mddev->degraded == 0 &&
6104 	    mddev->reshape_position == MaxSector) {
6105 		bi = chunk_aligned_read(mddev, bi);
6106 		if (!bi)
6107 			return true;
6108 	}
6109 
6110 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6111 		make_discard_request(mddev, bi);
6112 		md_write_end(mddev);
6113 		return true;
6114 	}
6115 
6116 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6117 	ctx.first_sector = logical_sector;
6118 	ctx.last_sector = bio_end_sector(bi);
6119 	bi->bi_next = NULL;
6120 
6121 	stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6122 					   RAID5_STRIPE_SECTORS(conf));
6123 	bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6124 
6125 	pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6126 		 bi->bi_iter.bi_sector, ctx.last_sector);
6127 
6128 	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6129 	if ((bi->bi_opf & REQ_NOWAIT) &&
6130 	    (conf->reshape_progress != MaxSector) &&
6131 	    get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) {
6132 		bio_wouldblock_error(bi);
6133 		if (rw == WRITE)
6134 			md_write_end(mddev);
6135 		return true;
6136 	}
6137 	md_account_bio(mddev, &bi);
6138 
6139 	/*
6140 	 * Lets start with the stripe with the lowest chunk offset in the first
6141 	 * chunk. That has the best chances of creating IOs adjacent to
6142 	 * previous IOs in case of sequential IO and thus creates the most
6143 	 * sequential IO pattern. We don't bother with the optimization when
6144 	 * reshaping as the performance benefit is not worth the complexity.
6145 	 */
6146 	if (likely(conf->reshape_progress == MaxSector)) {
6147 		logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6148 		on_wq = false;
6149 	} else {
6150 		add_wait_queue(&conf->wait_for_reshape, &wait);
6151 		on_wq = true;
6152 	}
6153 	s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6154 
6155 	while (1) {
6156 		res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6157 					  bi);
6158 		if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6159 			break;
6160 
6161 		if (res == STRIPE_RETRY)
6162 			continue;
6163 
6164 		if (res == STRIPE_SCHEDULE_AND_RETRY) {
6165 			WARN_ON_ONCE(!on_wq);
6166 			/*
6167 			 * Must release the reference to batch_last before
6168 			 * scheduling and waiting for work to be done,
6169 			 * otherwise the batch_last stripe head could prevent
6170 			 * raid5_activate_delayed() from making progress
6171 			 * and thus deadlocking.
6172 			 */
6173 			if (ctx.batch_last) {
6174 				raid5_release_stripe(ctx.batch_last);
6175 				ctx.batch_last = NULL;
6176 			}
6177 
6178 			wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6179 				   MAX_SCHEDULE_TIMEOUT);
6180 			continue;
6181 		}
6182 
6183 		s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6184 		if (s == stripe_cnt)
6185 			break;
6186 
6187 		logical_sector = ctx.first_sector +
6188 			(s << RAID5_STRIPE_SHIFT(conf));
6189 	}
6190 	if (unlikely(on_wq))
6191 		remove_wait_queue(&conf->wait_for_reshape, &wait);
6192 
6193 	if (ctx.batch_last)
6194 		raid5_release_stripe(ctx.batch_last);
6195 
6196 	if (rw == WRITE)
6197 		md_write_end(mddev);
6198 	if (res == STRIPE_WAIT_RESHAPE) {
6199 		md_free_cloned_bio(bi);
6200 		return false;
6201 	}
6202 
6203 	bio_endio(bi);
6204 	return true;
6205 }
6206 
6207 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6208 
6209 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6210 {
6211 	/* reshaping is quite different to recovery/resync so it is
6212 	 * handled quite separately ... here.
6213 	 *
6214 	 * On each call to sync_request, we gather one chunk worth of
6215 	 * destination stripes and flag them as expanding.
6216 	 * Then we find all the source stripes and request reads.
6217 	 * As the reads complete, handle_stripe will copy the data
6218 	 * into the destination stripe and release that stripe.
6219 	 */
6220 	struct r5conf *conf = mddev->private;
6221 	struct stripe_head *sh;
6222 	struct md_rdev *rdev;
6223 	sector_t first_sector, last_sector;
6224 	int raid_disks = conf->previous_raid_disks;
6225 	int data_disks = raid_disks - conf->max_degraded;
6226 	int new_data_disks = conf->raid_disks - conf->max_degraded;
6227 	int i;
6228 	int dd_idx;
6229 	sector_t writepos, readpos, safepos;
6230 	sector_t stripe_addr;
6231 	int reshape_sectors;
6232 	struct list_head stripes;
6233 	sector_t retn;
6234 
6235 	if (sector_nr == 0) {
6236 		/* If restarting in the middle, skip the initial sectors */
6237 		if (mddev->reshape_backwards &&
6238 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6239 			sector_nr = raid5_size(mddev, 0, 0)
6240 				- conf->reshape_progress;
6241 		} else if (mddev->reshape_backwards &&
6242 			   conf->reshape_progress == MaxSector) {
6243 			/* shouldn't happen, but just in case, finish up.*/
6244 			sector_nr = MaxSector;
6245 		} else if (!mddev->reshape_backwards &&
6246 			   conf->reshape_progress > 0)
6247 			sector_nr = conf->reshape_progress;
6248 		sector_div(sector_nr, new_data_disks);
6249 		if (sector_nr) {
6250 			mddev->curr_resync_completed = sector_nr;
6251 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
6252 			*skipped = 1;
6253 			retn = sector_nr;
6254 			goto finish;
6255 		}
6256 	}
6257 
6258 	/* We need to process a full chunk at a time.
6259 	 * If old and new chunk sizes differ, we need to process the
6260 	 * largest of these
6261 	 */
6262 
6263 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6264 
6265 	/* We update the metadata at least every 10 seconds, or when
6266 	 * the data about to be copied would over-write the source of
6267 	 * the data at the front of the range.  i.e. one new_stripe
6268 	 * along from reshape_progress new_maps to after where
6269 	 * reshape_safe old_maps to
6270 	 */
6271 	writepos = conf->reshape_progress;
6272 	sector_div(writepos, new_data_disks);
6273 	readpos = conf->reshape_progress;
6274 	sector_div(readpos, data_disks);
6275 	safepos = conf->reshape_safe;
6276 	sector_div(safepos, data_disks);
6277 	if (mddev->reshape_backwards) {
6278 		if (WARN_ON(writepos < reshape_sectors))
6279 			return MaxSector;
6280 
6281 		writepos -= reshape_sectors;
6282 		readpos += reshape_sectors;
6283 		safepos += reshape_sectors;
6284 	} else {
6285 		writepos += reshape_sectors;
6286 		/* readpos and safepos are worst-case calculations.
6287 		 * A negative number is overly pessimistic, and causes
6288 		 * obvious problems for unsigned storage.  So clip to 0.
6289 		 */
6290 		readpos -= min_t(sector_t, reshape_sectors, readpos);
6291 		safepos -= min_t(sector_t, reshape_sectors, safepos);
6292 	}
6293 
6294 	/* Having calculated the 'writepos' possibly use it
6295 	 * to set 'stripe_addr' which is where we will write to.
6296 	 */
6297 	if (mddev->reshape_backwards) {
6298 		if (WARN_ON(conf->reshape_progress == 0))
6299 			return MaxSector;
6300 
6301 		stripe_addr = writepos;
6302 		if (WARN_ON((mddev->dev_sectors &
6303 		    ~((sector_t)reshape_sectors - 1)) -
6304 		    reshape_sectors - stripe_addr != sector_nr))
6305 			return MaxSector;
6306 	} else {
6307 		if (WARN_ON(writepos != sector_nr + reshape_sectors))
6308 			return MaxSector;
6309 
6310 		stripe_addr = sector_nr;
6311 	}
6312 
6313 	/* 'writepos' is the most advanced device address we might write.
6314 	 * 'readpos' is the least advanced device address we might read.
6315 	 * 'safepos' is the least address recorded in the metadata as having
6316 	 *     been reshaped.
6317 	 * If there is a min_offset_diff, these are adjusted either by
6318 	 * increasing the safepos/readpos if diff is negative, or
6319 	 * increasing writepos if diff is positive.
6320 	 * If 'readpos' is then behind 'writepos', there is no way that we can
6321 	 * ensure safety in the face of a crash - that must be done by userspace
6322 	 * making a backup of the data.  So in that case there is no particular
6323 	 * rush to update metadata.
6324 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6325 	 * update the metadata to advance 'safepos' to match 'readpos' so that
6326 	 * we can be safe in the event of a crash.
6327 	 * So we insist on updating metadata if safepos is behind writepos and
6328 	 * readpos is beyond writepos.
6329 	 * In any case, update the metadata every 10 seconds.
6330 	 * Maybe that number should be configurable, but I'm not sure it is
6331 	 * worth it.... maybe it could be a multiple of safemode_delay???
6332 	 */
6333 	if (conf->min_offset_diff < 0) {
6334 		safepos += -conf->min_offset_diff;
6335 		readpos += -conf->min_offset_diff;
6336 	} else
6337 		writepos += conf->min_offset_diff;
6338 
6339 	if ((mddev->reshape_backwards
6340 	     ? (safepos > writepos && readpos < writepos)
6341 	     : (safepos < writepos && readpos > writepos)) ||
6342 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6343 		/* Cannot proceed until we've updated the superblock... */
6344 		wait_event(conf->wait_for_reshape,
6345 			   atomic_read(&conf->reshape_stripes)==0
6346 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6347 		if (atomic_read(&conf->reshape_stripes) != 0)
6348 			return 0;
6349 		mddev->reshape_position = conf->reshape_progress;
6350 		mddev->curr_resync_completed = sector_nr;
6351 		if (!mddev->reshape_backwards)
6352 			/* Can update recovery_offset */
6353 			rdev_for_each(rdev, mddev)
6354 				if (rdev->raid_disk >= 0 &&
6355 				    !test_bit(Journal, &rdev->flags) &&
6356 				    !test_bit(In_sync, &rdev->flags) &&
6357 				    rdev->recovery_offset < sector_nr)
6358 					rdev->recovery_offset = sector_nr;
6359 
6360 		conf->reshape_checkpoint = jiffies;
6361 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6362 		md_wakeup_thread(mddev->thread);
6363 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6364 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6365 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6366 			return 0;
6367 		spin_lock_irq(&conf->device_lock);
6368 		conf->reshape_safe = mddev->reshape_position;
6369 		spin_unlock_irq(&conf->device_lock);
6370 		wake_up(&conf->wait_for_reshape);
6371 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6372 	}
6373 
6374 	INIT_LIST_HEAD(&stripes);
6375 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6376 		int j;
6377 		int skipped_disk = 0;
6378 		sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6379 					     R5_GAS_NOQUIESCE);
6380 		set_bit(STRIPE_EXPANDING, &sh->state);
6381 		atomic_inc(&conf->reshape_stripes);
6382 		/* If any of this stripe is beyond the end of the old
6383 		 * array, then we need to zero those blocks
6384 		 */
6385 		for (j=sh->disks; j--;) {
6386 			sector_t s;
6387 			if (j == sh->pd_idx)
6388 				continue;
6389 			if (conf->level == 6 &&
6390 			    j == sh->qd_idx)
6391 				continue;
6392 			s = raid5_compute_blocknr(sh, j, 0);
6393 			if (s < raid5_size(mddev, 0, 0)) {
6394 				skipped_disk = 1;
6395 				continue;
6396 			}
6397 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6398 			set_bit(R5_Expanded, &sh->dev[j].flags);
6399 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6400 		}
6401 		if (!skipped_disk) {
6402 			set_bit(STRIPE_EXPAND_READY, &sh->state);
6403 			set_bit(STRIPE_HANDLE, &sh->state);
6404 		}
6405 		list_add(&sh->lru, &stripes);
6406 	}
6407 	spin_lock_irq(&conf->device_lock);
6408 	if (mddev->reshape_backwards)
6409 		conf->reshape_progress -= reshape_sectors * new_data_disks;
6410 	else
6411 		conf->reshape_progress += reshape_sectors * new_data_disks;
6412 	spin_unlock_irq(&conf->device_lock);
6413 	/* Ok, those stripe are ready. We can start scheduling
6414 	 * reads on the source stripes.
6415 	 * The source stripes are determined by mapping the first and last
6416 	 * block on the destination stripes.
6417 	 */
6418 	first_sector =
6419 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6420 				     1, &dd_idx, NULL);
6421 	last_sector =
6422 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6423 					    * new_data_disks - 1),
6424 				     1, &dd_idx, NULL);
6425 	if (last_sector >= mddev->dev_sectors)
6426 		last_sector = mddev->dev_sectors - 1;
6427 	while (first_sector <= last_sector) {
6428 		sh = raid5_get_active_stripe(conf, NULL, first_sector,
6429 				R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6430 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6431 		set_bit(STRIPE_HANDLE, &sh->state);
6432 		raid5_release_stripe(sh);
6433 		first_sector += RAID5_STRIPE_SECTORS(conf);
6434 	}
6435 	/* Now that the sources are clearly marked, we can release
6436 	 * the destination stripes
6437 	 */
6438 	while (!list_empty(&stripes)) {
6439 		sh = list_entry(stripes.next, struct stripe_head, lru);
6440 		list_del_init(&sh->lru);
6441 		raid5_release_stripe(sh);
6442 	}
6443 	/* If this takes us to the resync_max point where we have to pause,
6444 	 * then we need to write out the superblock.
6445 	 */
6446 	sector_nr += reshape_sectors;
6447 	retn = reshape_sectors;
6448 finish:
6449 	if (mddev->curr_resync_completed > mddev->resync_max ||
6450 	    (sector_nr - mddev->curr_resync_completed) * 2
6451 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6452 		/* Cannot proceed until we've updated the superblock... */
6453 		wait_event(conf->wait_for_reshape,
6454 			   atomic_read(&conf->reshape_stripes) == 0
6455 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6456 		if (atomic_read(&conf->reshape_stripes) != 0)
6457 			goto ret;
6458 		mddev->reshape_position = conf->reshape_progress;
6459 		mddev->curr_resync_completed = sector_nr;
6460 		if (!mddev->reshape_backwards)
6461 			/* Can update recovery_offset */
6462 			rdev_for_each(rdev, mddev)
6463 				if (rdev->raid_disk >= 0 &&
6464 				    !test_bit(Journal, &rdev->flags) &&
6465 				    !test_bit(In_sync, &rdev->flags) &&
6466 				    rdev->recovery_offset < sector_nr)
6467 					rdev->recovery_offset = sector_nr;
6468 		conf->reshape_checkpoint = jiffies;
6469 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6470 		md_wakeup_thread(mddev->thread);
6471 		wait_event(mddev->sb_wait,
6472 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6473 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6474 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6475 			goto ret;
6476 		spin_lock_irq(&conf->device_lock);
6477 		conf->reshape_safe = mddev->reshape_position;
6478 		spin_unlock_irq(&conf->device_lock);
6479 		wake_up(&conf->wait_for_reshape);
6480 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6481 	}
6482 ret:
6483 	return retn;
6484 }
6485 
6486 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6487 					  sector_t max_sector, int *skipped)
6488 {
6489 	struct r5conf *conf = mddev->private;
6490 	struct stripe_head *sh;
6491 	sector_t sync_blocks;
6492 	bool still_degraded = false;
6493 	int i;
6494 
6495 	if (sector_nr >= max_sector) {
6496 		/* just being told to finish up .. nothing much to do */
6497 
6498 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6499 			end_reshape(conf);
6500 			return 0;
6501 		}
6502 
6503 		if (mddev->curr_resync < max_sector) /* aborted */
6504 			mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
6505 						    &sync_blocks);
6506 		else /* completed sync */
6507 			conf->fullsync = 0;
6508 		mddev->bitmap_ops->close_sync(mddev);
6509 
6510 		return 0;
6511 	}
6512 
6513 	/* Allow raid5_quiesce to complete */
6514 	wait_event(conf->wait_for_reshape, conf->quiesce != 2);
6515 
6516 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6517 		return reshape_request(mddev, sector_nr, skipped);
6518 
6519 	/* No need to check resync_max as we never do more than one
6520 	 * stripe, and as resync_max will always be on a chunk boundary,
6521 	 * if the check in md_do_sync didn't fire, there is no chance
6522 	 * of overstepping resync_max here
6523 	 */
6524 
6525 	/* if there is too many failed drives and we are trying
6526 	 * to resync, then assert that we are finished, because there is
6527 	 * nothing we can do.
6528 	 */
6529 	if (mddev->degraded >= conf->max_degraded &&
6530 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6531 		sector_t rv = mddev->dev_sectors - sector_nr;
6532 		*skipped = 1;
6533 		return rv;
6534 	}
6535 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6536 	    !conf->fullsync &&
6537 	    !mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6538 					   true) &&
6539 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6540 		/* we can skip this block, and probably more */
6541 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6542 		*skipped = 1;
6543 		/* keep things rounded to whole stripes */
6544 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6545 	}
6546 
6547 	mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false);
6548 
6549 	sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6550 				     R5_GAS_NOBLOCK);
6551 	if (sh == NULL) {
6552 		sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6553 		/* make sure we don't swamp the stripe cache if someone else
6554 		 * is trying to get access
6555 		 */
6556 		schedule_timeout_uninterruptible(1);
6557 	}
6558 	/* Need to check if array will still be degraded after recovery/resync
6559 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6560 	 * one drive while leaving another faulty drive in array.
6561 	 */
6562 	for (i = 0; i < conf->raid_disks; i++) {
6563 		struct md_rdev *rdev = conf->disks[i].rdev;
6564 
6565 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6566 			still_degraded = true;
6567 	}
6568 
6569 	mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6570 				      still_degraded);
6571 
6572 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6573 	set_bit(STRIPE_HANDLE, &sh->state);
6574 
6575 	raid5_release_stripe(sh);
6576 
6577 	return RAID5_STRIPE_SECTORS(conf);
6578 }
6579 
6580 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6581 			       unsigned int offset)
6582 {
6583 	/* We may not be able to submit a whole bio at once as there
6584 	 * may not be enough stripe_heads available.
6585 	 * We cannot pre-allocate enough stripe_heads as we may need
6586 	 * more than exist in the cache (if we allow ever large chunks).
6587 	 * So we do one stripe head at a time and record in
6588 	 * ->bi_hw_segments how many have been done.
6589 	 *
6590 	 * We *know* that this entire raid_bio is in one chunk, so
6591 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6592 	 */
6593 	struct stripe_head *sh;
6594 	int dd_idx;
6595 	sector_t sector, logical_sector, last_sector;
6596 	int scnt = 0;
6597 	int handled = 0;
6598 
6599 	logical_sector = raid_bio->bi_iter.bi_sector &
6600 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6601 	sector = raid5_compute_sector(conf, logical_sector,
6602 				      0, &dd_idx, NULL);
6603 	last_sector = bio_end_sector(raid_bio);
6604 
6605 	for (; logical_sector < last_sector;
6606 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6607 		     sector += RAID5_STRIPE_SECTORS(conf),
6608 		     scnt++) {
6609 
6610 		if (scnt < offset)
6611 			/* already done this stripe */
6612 			continue;
6613 
6614 		sh = raid5_get_active_stripe(conf, NULL, sector,
6615 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6616 		if (!sh) {
6617 			/* failed to get a stripe - must wait */
6618 			conf->retry_read_aligned = raid_bio;
6619 			conf->retry_read_offset = scnt;
6620 			return handled;
6621 		}
6622 
6623 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6624 			raid5_release_stripe(sh);
6625 			conf->retry_read_aligned = raid_bio;
6626 			conf->retry_read_offset = scnt;
6627 			return handled;
6628 		}
6629 
6630 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6631 		handle_stripe(sh);
6632 		raid5_release_stripe(sh);
6633 		handled++;
6634 	}
6635 
6636 	bio_endio(raid_bio);
6637 
6638 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6639 		wake_up(&conf->wait_for_quiescent);
6640 	return handled;
6641 }
6642 
6643 static int handle_active_stripes(struct r5conf *conf, int group,
6644 				 struct r5worker *worker,
6645 				 struct list_head *temp_inactive_list)
6646 		__must_hold(&conf->device_lock)
6647 {
6648 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6649 	int i, batch_size = 0, hash;
6650 	bool release_inactive = false;
6651 
6652 	while (batch_size < MAX_STRIPE_BATCH &&
6653 			(sh = __get_priority_stripe(conf, group)) != NULL)
6654 		batch[batch_size++] = sh;
6655 
6656 	if (batch_size == 0) {
6657 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6658 			if (!list_empty(temp_inactive_list + i))
6659 				break;
6660 		if (i == NR_STRIPE_HASH_LOCKS) {
6661 			spin_unlock_irq(&conf->device_lock);
6662 			log_flush_stripe_to_raid(conf);
6663 			spin_lock_irq(&conf->device_lock);
6664 			return batch_size;
6665 		}
6666 		release_inactive = true;
6667 	}
6668 	spin_unlock_irq(&conf->device_lock);
6669 
6670 	release_inactive_stripe_list(conf, temp_inactive_list,
6671 				     NR_STRIPE_HASH_LOCKS);
6672 
6673 	r5l_flush_stripe_to_raid(conf->log);
6674 	if (release_inactive) {
6675 		spin_lock_irq(&conf->device_lock);
6676 		return 0;
6677 	}
6678 
6679 	for (i = 0; i < batch_size; i++)
6680 		handle_stripe(batch[i]);
6681 	log_write_stripe_run(conf);
6682 
6683 	cond_resched();
6684 
6685 	spin_lock_irq(&conf->device_lock);
6686 	for (i = 0; i < batch_size; i++) {
6687 		hash = batch[i]->hash_lock_index;
6688 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6689 	}
6690 	return batch_size;
6691 }
6692 
6693 static void raid5_do_work(struct work_struct *work)
6694 {
6695 	struct r5worker *worker = container_of(work, struct r5worker, work);
6696 	struct r5worker_group *group = worker->group;
6697 	struct r5conf *conf = group->conf;
6698 	struct mddev *mddev = conf->mddev;
6699 	int group_id = group - conf->worker_groups;
6700 	int handled;
6701 	struct blk_plug plug;
6702 
6703 	pr_debug("+++ raid5worker active\n");
6704 
6705 	blk_start_plug(&plug);
6706 	handled = 0;
6707 	spin_lock_irq(&conf->device_lock);
6708 	while (1) {
6709 		int batch_size, released;
6710 
6711 		released = release_stripe_list(conf, worker->temp_inactive_list);
6712 
6713 		batch_size = handle_active_stripes(conf, group_id, worker,
6714 						   worker->temp_inactive_list);
6715 		worker->working = false;
6716 		if (!batch_size && !released)
6717 			break;
6718 		handled += batch_size;
6719 		wait_event_lock_irq(mddev->sb_wait,
6720 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6721 			conf->device_lock);
6722 	}
6723 	pr_debug("%d stripes handled\n", handled);
6724 
6725 	spin_unlock_irq(&conf->device_lock);
6726 
6727 	flush_deferred_bios(conf);
6728 
6729 	r5l_flush_stripe_to_raid(conf->log);
6730 
6731 	async_tx_issue_pending_all();
6732 	blk_finish_plug(&plug);
6733 
6734 	pr_debug("--- raid5worker inactive\n");
6735 }
6736 
6737 /*
6738  * This is our raid5 kernel thread.
6739  *
6740  * We scan the hash table for stripes which can be handled now.
6741  * During the scan, completed stripes are saved for us by the interrupt
6742  * handler, so that they will not have to wait for our next wakeup.
6743  */
6744 static void raid5d(struct md_thread *thread)
6745 {
6746 	struct mddev *mddev = thread->mddev;
6747 	struct r5conf *conf = mddev->private;
6748 	int handled;
6749 	struct blk_plug plug;
6750 
6751 	pr_debug("+++ raid5d active\n");
6752 
6753 	md_check_recovery(mddev);
6754 
6755 	blk_start_plug(&plug);
6756 	handled = 0;
6757 	spin_lock_irq(&conf->device_lock);
6758 	while (1) {
6759 		struct bio *bio;
6760 		int batch_size, released;
6761 		unsigned int offset;
6762 
6763 		if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6764 			break;
6765 
6766 		released = release_stripe_list(conf, conf->temp_inactive_list);
6767 		if (released)
6768 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6769 
6770 		if (
6771 		    !list_empty(&conf->bitmap_list)) {
6772 			/* Now is a good time to flush some bitmap updates */
6773 			conf->seq_flush++;
6774 			spin_unlock_irq(&conf->device_lock);
6775 			mddev->bitmap_ops->unplug(mddev, true);
6776 			spin_lock_irq(&conf->device_lock);
6777 			conf->seq_write = conf->seq_flush;
6778 			activate_bit_delay(conf, conf->temp_inactive_list);
6779 		}
6780 		raid5_activate_delayed(conf);
6781 
6782 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6783 			int ok;
6784 			spin_unlock_irq(&conf->device_lock);
6785 			ok = retry_aligned_read(conf, bio, offset);
6786 			spin_lock_irq(&conf->device_lock);
6787 			if (!ok)
6788 				break;
6789 			handled++;
6790 		}
6791 
6792 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6793 						   conf->temp_inactive_list);
6794 		if (!batch_size && !released)
6795 			break;
6796 		handled += batch_size;
6797 
6798 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6799 			spin_unlock_irq(&conf->device_lock);
6800 			md_check_recovery(mddev);
6801 			spin_lock_irq(&conf->device_lock);
6802 		}
6803 	}
6804 	pr_debug("%d stripes handled\n", handled);
6805 
6806 	spin_unlock_irq(&conf->device_lock);
6807 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6808 	    mutex_trylock(&conf->cache_size_mutex)) {
6809 		grow_one_stripe(conf, __GFP_NOWARN);
6810 		/* Set flag even if allocation failed.  This helps
6811 		 * slow down allocation requests when mem is short
6812 		 */
6813 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6814 		mutex_unlock(&conf->cache_size_mutex);
6815 	}
6816 
6817 	flush_deferred_bios(conf);
6818 
6819 	r5l_flush_stripe_to_raid(conf->log);
6820 
6821 	async_tx_issue_pending_all();
6822 	blk_finish_plug(&plug);
6823 
6824 	pr_debug("--- raid5d inactive\n");
6825 }
6826 
6827 static ssize_t
6828 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6829 {
6830 	struct r5conf *conf;
6831 	int ret = 0;
6832 	spin_lock(&mddev->lock);
6833 	conf = mddev->private;
6834 	if (conf)
6835 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6836 	spin_unlock(&mddev->lock);
6837 	return ret;
6838 }
6839 
6840 int
6841 raid5_set_cache_size(struct mddev *mddev, int size)
6842 {
6843 	int result = 0;
6844 	struct r5conf *conf = mddev->private;
6845 
6846 	if (size <= 16 || size > 32768)
6847 		return -EINVAL;
6848 
6849 	WRITE_ONCE(conf->min_nr_stripes, size);
6850 	mutex_lock(&conf->cache_size_mutex);
6851 	while (size < conf->max_nr_stripes &&
6852 	       drop_one_stripe(conf))
6853 		;
6854 	mutex_unlock(&conf->cache_size_mutex);
6855 
6856 	md_allow_write(mddev);
6857 
6858 	mutex_lock(&conf->cache_size_mutex);
6859 	while (size > conf->max_nr_stripes)
6860 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6861 			WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6862 			result = -ENOMEM;
6863 			break;
6864 		}
6865 	mutex_unlock(&conf->cache_size_mutex);
6866 
6867 	return result;
6868 }
6869 EXPORT_SYMBOL(raid5_set_cache_size);
6870 
6871 static ssize_t
6872 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6873 {
6874 	struct r5conf *conf;
6875 	unsigned long new;
6876 	int err;
6877 
6878 	if (len >= PAGE_SIZE)
6879 		return -EINVAL;
6880 	if (kstrtoul(page, 10, &new))
6881 		return -EINVAL;
6882 	err = mddev_lock(mddev);
6883 	if (err)
6884 		return err;
6885 	conf = mddev->private;
6886 	if (!conf)
6887 		err = -ENODEV;
6888 	else
6889 		err = raid5_set_cache_size(mddev, new);
6890 	mddev_unlock(mddev);
6891 
6892 	return err ?: len;
6893 }
6894 
6895 static struct md_sysfs_entry
6896 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6897 				raid5_show_stripe_cache_size,
6898 				raid5_store_stripe_cache_size);
6899 
6900 static ssize_t
6901 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6902 {
6903 	struct r5conf *conf = mddev->private;
6904 	if (conf)
6905 		return sprintf(page, "%d\n", conf->rmw_level);
6906 	else
6907 		return 0;
6908 }
6909 
6910 static ssize_t
6911 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6912 {
6913 	struct r5conf *conf = mddev->private;
6914 	unsigned long new;
6915 
6916 	if (!conf)
6917 		return -ENODEV;
6918 
6919 	if (len >= PAGE_SIZE)
6920 		return -EINVAL;
6921 
6922 	if (kstrtoul(page, 10, &new))
6923 		return -EINVAL;
6924 
6925 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6926 		return -EINVAL;
6927 
6928 	if (new != PARITY_DISABLE_RMW &&
6929 	    new != PARITY_ENABLE_RMW &&
6930 	    new != PARITY_PREFER_RMW)
6931 		return -EINVAL;
6932 
6933 	conf->rmw_level = new;
6934 	return len;
6935 }
6936 
6937 static struct md_sysfs_entry
6938 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6939 			 raid5_show_rmw_level,
6940 			 raid5_store_rmw_level);
6941 
6942 static ssize_t
6943 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6944 {
6945 	struct r5conf *conf;
6946 	int ret = 0;
6947 
6948 	spin_lock(&mddev->lock);
6949 	conf = mddev->private;
6950 	if (conf)
6951 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6952 	spin_unlock(&mddev->lock);
6953 	return ret;
6954 }
6955 
6956 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6957 static ssize_t
6958 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6959 {
6960 	struct r5conf *conf;
6961 	unsigned long new;
6962 	int err;
6963 	int size;
6964 
6965 	if (len >= PAGE_SIZE)
6966 		return -EINVAL;
6967 	if (kstrtoul(page, 10, &new))
6968 		return -EINVAL;
6969 
6970 	/*
6971 	 * The value should not be bigger than PAGE_SIZE. It requires to
6972 	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6973 	 * of two.
6974 	 */
6975 	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6976 			new > PAGE_SIZE || new == 0 ||
6977 			new != roundup_pow_of_two(new))
6978 		return -EINVAL;
6979 
6980 	err = mddev_suspend_and_lock(mddev);
6981 	if (err)
6982 		return err;
6983 
6984 	conf = mddev->private;
6985 	if (!conf) {
6986 		err = -ENODEV;
6987 		goto out_unlock;
6988 	}
6989 
6990 	if (new == conf->stripe_size)
6991 		goto out_unlock;
6992 
6993 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6994 			conf->stripe_size, new);
6995 
6996 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6997 	    mddev->reshape_position != MaxSector || mddev->sysfs_active) {
6998 		err = -EBUSY;
6999 		goto out_unlock;
7000 	}
7001 
7002 	mutex_lock(&conf->cache_size_mutex);
7003 	size = conf->max_nr_stripes;
7004 
7005 	shrink_stripes(conf);
7006 
7007 	conf->stripe_size = new;
7008 	conf->stripe_shift = ilog2(new) - 9;
7009 	conf->stripe_sectors = new >> 9;
7010 	if (grow_stripes(conf, size)) {
7011 		pr_warn("md/raid:%s: couldn't allocate buffers\n",
7012 				mdname(mddev));
7013 		err = -ENOMEM;
7014 	}
7015 	mutex_unlock(&conf->cache_size_mutex);
7016 
7017 out_unlock:
7018 	mddev_unlock_and_resume(mddev);
7019 	return err ?: len;
7020 }
7021 
7022 static struct md_sysfs_entry
7023 raid5_stripe_size = __ATTR(stripe_size, 0644,
7024 			 raid5_show_stripe_size,
7025 			 raid5_store_stripe_size);
7026 #else
7027 static struct md_sysfs_entry
7028 raid5_stripe_size = __ATTR(stripe_size, 0444,
7029 			 raid5_show_stripe_size,
7030 			 NULL);
7031 #endif
7032 
7033 static ssize_t
7034 raid5_show_preread_threshold(struct mddev *mddev, char *page)
7035 {
7036 	struct r5conf *conf;
7037 	int ret = 0;
7038 	spin_lock(&mddev->lock);
7039 	conf = mddev->private;
7040 	if (conf)
7041 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
7042 	spin_unlock(&mddev->lock);
7043 	return ret;
7044 }
7045 
7046 static ssize_t
7047 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7048 {
7049 	struct r5conf *conf;
7050 	unsigned long new;
7051 	int err;
7052 
7053 	if (len >= PAGE_SIZE)
7054 		return -EINVAL;
7055 	if (kstrtoul(page, 10, &new))
7056 		return -EINVAL;
7057 
7058 	err = mddev_lock(mddev);
7059 	if (err)
7060 		return err;
7061 	conf = mddev->private;
7062 	if (!conf)
7063 		err = -ENODEV;
7064 	else if (new > conf->min_nr_stripes)
7065 		err = -EINVAL;
7066 	else
7067 		conf->bypass_threshold = new;
7068 	mddev_unlock(mddev);
7069 	return err ?: len;
7070 }
7071 
7072 static struct md_sysfs_entry
7073 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7074 					S_IRUGO | S_IWUSR,
7075 					raid5_show_preread_threshold,
7076 					raid5_store_preread_threshold);
7077 
7078 static ssize_t
7079 raid5_show_skip_copy(struct mddev *mddev, char *page)
7080 {
7081 	struct r5conf *conf;
7082 	int ret = 0;
7083 	spin_lock(&mddev->lock);
7084 	conf = mddev->private;
7085 	if (conf)
7086 		ret = sprintf(page, "%d\n", conf->skip_copy);
7087 	spin_unlock(&mddev->lock);
7088 	return ret;
7089 }
7090 
7091 static ssize_t
7092 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7093 {
7094 	struct r5conf *conf;
7095 	unsigned long new;
7096 	int err;
7097 
7098 	if (len >= PAGE_SIZE)
7099 		return -EINVAL;
7100 	if (kstrtoul(page, 10, &new))
7101 		return -EINVAL;
7102 	new = !!new;
7103 
7104 	err = mddev_suspend_and_lock(mddev);
7105 	if (err)
7106 		return err;
7107 	conf = mddev->private;
7108 	if (!conf)
7109 		err = -ENODEV;
7110 	else if (new != conf->skip_copy) {
7111 		struct request_queue *q = mddev->gendisk->queue;
7112 		struct queue_limits lim = queue_limits_start_update(q);
7113 
7114 		conf->skip_copy = new;
7115 		if (new)
7116 			lim.features |= BLK_FEAT_STABLE_WRITES;
7117 		else
7118 			lim.features &= ~BLK_FEAT_STABLE_WRITES;
7119 		err = queue_limits_commit_update(q, &lim);
7120 	}
7121 	mddev_unlock_and_resume(mddev);
7122 	return err ?: len;
7123 }
7124 
7125 static struct md_sysfs_entry
7126 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7127 					raid5_show_skip_copy,
7128 					raid5_store_skip_copy);
7129 
7130 static ssize_t
7131 stripe_cache_active_show(struct mddev *mddev, char *page)
7132 {
7133 	struct r5conf *conf = mddev->private;
7134 	if (conf)
7135 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7136 	else
7137 		return 0;
7138 }
7139 
7140 static struct md_sysfs_entry
7141 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7142 
7143 static ssize_t
7144 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7145 {
7146 	struct r5conf *conf;
7147 	int ret = 0;
7148 	spin_lock(&mddev->lock);
7149 	conf = mddev->private;
7150 	if (conf)
7151 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7152 	spin_unlock(&mddev->lock);
7153 	return ret;
7154 }
7155 
7156 static int alloc_thread_groups(struct r5conf *conf, int cnt,
7157 			       int *group_cnt,
7158 			       struct r5worker_group **worker_groups);
7159 static ssize_t
7160 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7161 {
7162 	struct r5conf *conf;
7163 	unsigned int new;
7164 	int err;
7165 	struct r5worker_group *new_groups, *old_groups;
7166 	int group_cnt;
7167 
7168 	if (len >= PAGE_SIZE)
7169 		return -EINVAL;
7170 	if (kstrtouint(page, 10, &new))
7171 		return -EINVAL;
7172 	/* 8192 should be big enough */
7173 	if (new > 8192)
7174 		return -EINVAL;
7175 
7176 	err = mddev_suspend_and_lock(mddev);
7177 	if (err)
7178 		return err;
7179 	raid5_quiesce(mddev, true);
7180 
7181 	conf = mddev->private;
7182 	if (!conf)
7183 		err = -ENODEV;
7184 	else if (new != conf->worker_cnt_per_group) {
7185 		old_groups = conf->worker_groups;
7186 		if (old_groups)
7187 			flush_workqueue(raid5_wq);
7188 
7189 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7190 		if (!err) {
7191 			spin_lock_irq(&conf->device_lock);
7192 			conf->group_cnt = group_cnt;
7193 			conf->worker_cnt_per_group = new;
7194 			conf->worker_groups = new_groups;
7195 			spin_unlock_irq(&conf->device_lock);
7196 
7197 			if (old_groups)
7198 				kfree(old_groups[0].workers);
7199 			kfree(old_groups);
7200 		}
7201 	}
7202 
7203 	raid5_quiesce(mddev, false);
7204 	mddev_unlock_and_resume(mddev);
7205 
7206 	return err ?: len;
7207 }
7208 
7209 static struct md_sysfs_entry
7210 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7211 				raid5_show_group_thread_cnt,
7212 				raid5_store_group_thread_cnt);
7213 
7214 static struct attribute *raid5_attrs[] =  {
7215 	&raid5_stripecache_size.attr,
7216 	&raid5_stripecache_active.attr,
7217 	&raid5_preread_bypass_threshold.attr,
7218 	&raid5_group_thread_cnt.attr,
7219 	&raid5_skip_copy.attr,
7220 	&raid5_rmw_level.attr,
7221 	&raid5_stripe_size.attr,
7222 	&r5c_journal_mode.attr,
7223 	&ppl_write_hint.attr,
7224 	NULL,
7225 };
7226 static const struct attribute_group raid5_attrs_group = {
7227 	.name = NULL,
7228 	.attrs = raid5_attrs,
7229 };
7230 
7231 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7232 			       struct r5worker_group **worker_groups)
7233 {
7234 	int i, j, k;
7235 	ssize_t size;
7236 	struct r5worker *workers;
7237 
7238 	if (cnt == 0) {
7239 		*group_cnt = 0;
7240 		*worker_groups = NULL;
7241 		return 0;
7242 	}
7243 	*group_cnt = num_possible_nodes();
7244 	size = sizeof(struct r5worker) * cnt;
7245 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
7246 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7247 				 GFP_NOIO);
7248 	if (!*worker_groups || !workers) {
7249 		kfree(workers);
7250 		kfree(*worker_groups);
7251 		return -ENOMEM;
7252 	}
7253 
7254 	for (i = 0; i < *group_cnt; i++) {
7255 		struct r5worker_group *group;
7256 
7257 		group = &(*worker_groups)[i];
7258 		INIT_LIST_HEAD(&group->handle_list);
7259 		INIT_LIST_HEAD(&group->loprio_list);
7260 		group->conf = conf;
7261 		group->workers = workers + i * cnt;
7262 
7263 		for (j = 0; j < cnt; j++) {
7264 			struct r5worker *worker = group->workers + j;
7265 			worker->group = group;
7266 			INIT_WORK(&worker->work, raid5_do_work);
7267 
7268 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7269 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7270 		}
7271 	}
7272 
7273 	return 0;
7274 }
7275 
7276 static void free_thread_groups(struct r5conf *conf)
7277 {
7278 	if (conf->worker_groups)
7279 		kfree(conf->worker_groups[0].workers);
7280 	kfree(conf->worker_groups);
7281 	conf->worker_groups = NULL;
7282 }
7283 
7284 static sector_t
7285 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7286 {
7287 	struct r5conf *conf = mddev->private;
7288 
7289 	if (!sectors)
7290 		sectors = mddev->dev_sectors;
7291 	if (!raid_disks)
7292 		/* size is defined by the smallest of previous and new size */
7293 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7294 
7295 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7296 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7297 	return sectors * (raid_disks - conf->max_degraded);
7298 }
7299 
7300 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7301 {
7302 	safe_put_page(percpu->spare_page);
7303 	percpu->spare_page = NULL;
7304 	kvfree(percpu->scribble);
7305 	percpu->scribble = NULL;
7306 }
7307 
7308 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7309 {
7310 	if (conf->level == 6 && !percpu->spare_page) {
7311 		percpu->spare_page = alloc_page(GFP_KERNEL);
7312 		if (!percpu->spare_page)
7313 			return -ENOMEM;
7314 	}
7315 
7316 	if (scribble_alloc(percpu,
7317 			   max(conf->raid_disks,
7318 			       conf->previous_raid_disks),
7319 			   max(conf->chunk_sectors,
7320 			       conf->prev_chunk_sectors)
7321 			   / RAID5_STRIPE_SECTORS(conf))) {
7322 		free_scratch_buffer(conf, percpu);
7323 		return -ENOMEM;
7324 	}
7325 
7326 	local_lock_init(&percpu->lock);
7327 	return 0;
7328 }
7329 
7330 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7331 {
7332 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7333 
7334 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7335 	return 0;
7336 }
7337 
7338 static void raid5_free_percpu(struct r5conf *conf)
7339 {
7340 	if (!conf->percpu)
7341 		return;
7342 
7343 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7344 	free_percpu(conf->percpu);
7345 }
7346 
7347 static void free_conf(struct r5conf *conf)
7348 {
7349 	int i;
7350 
7351 	log_exit(conf);
7352 
7353 	shrinker_free(conf->shrinker);
7354 	free_thread_groups(conf);
7355 	shrink_stripes(conf);
7356 	raid5_free_percpu(conf);
7357 	for (i = 0; i < conf->pool_size; i++)
7358 		if (conf->disks[i].extra_page)
7359 			put_page(conf->disks[i].extra_page);
7360 	kfree(conf->disks);
7361 	bioset_exit(&conf->bio_split);
7362 	kfree(conf->stripe_hashtbl);
7363 	kfree(conf->pending_data);
7364 	kfree(conf);
7365 }
7366 
7367 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7368 {
7369 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7370 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7371 
7372 	if (alloc_scratch_buffer(conf, percpu)) {
7373 		pr_warn("%s: failed memory allocation for cpu%u\n",
7374 			__func__, cpu);
7375 		return -ENOMEM;
7376 	}
7377 	return 0;
7378 }
7379 
7380 static int raid5_alloc_percpu(struct r5conf *conf)
7381 {
7382 	int err = 0;
7383 
7384 	conf->percpu = alloc_percpu(struct raid5_percpu);
7385 	if (!conf->percpu)
7386 		return -ENOMEM;
7387 
7388 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7389 	if (!err) {
7390 		conf->scribble_disks = max(conf->raid_disks,
7391 			conf->previous_raid_disks);
7392 		conf->scribble_sectors = max(conf->chunk_sectors,
7393 			conf->prev_chunk_sectors);
7394 	}
7395 	return err;
7396 }
7397 
7398 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7399 				      struct shrink_control *sc)
7400 {
7401 	struct r5conf *conf = shrink->private_data;
7402 	unsigned long ret = SHRINK_STOP;
7403 
7404 	if (mutex_trylock(&conf->cache_size_mutex)) {
7405 		ret= 0;
7406 		while (ret < sc->nr_to_scan &&
7407 		       conf->max_nr_stripes > conf->min_nr_stripes) {
7408 			if (drop_one_stripe(conf) == 0) {
7409 				ret = SHRINK_STOP;
7410 				break;
7411 			}
7412 			ret++;
7413 		}
7414 		mutex_unlock(&conf->cache_size_mutex);
7415 	}
7416 	return ret;
7417 }
7418 
7419 static unsigned long raid5_cache_count(struct shrinker *shrink,
7420 				       struct shrink_control *sc)
7421 {
7422 	struct r5conf *conf = shrink->private_data;
7423 	int max_stripes = READ_ONCE(conf->max_nr_stripes);
7424 	int min_stripes = READ_ONCE(conf->min_nr_stripes);
7425 
7426 	if (max_stripes < min_stripes)
7427 		/* unlikely, but not impossible */
7428 		return 0;
7429 	return max_stripes - min_stripes;
7430 }
7431 
7432 static struct r5conf *setup_conf(struct mddev *mddev)
7433 {
7434 	struct r5conf *conf;
7435 	int raid_disk, memory, max_disks;
7436 	struct md_rdev *rdev;
7437 	struct disk_info *disk;
7438 	char pers_name[6];
7439 	int i;
7440 	int group_cnt;
7441 	struct r5worker_group *new_group;
7442 	int ret = -ENOMEM;
7443 
7444 	if (mddev->new_level != 5
7445 	    && mddev->new_level != 4
7446 	    && mddev->new_level != 6) {
7447 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7448 			mdname(mddev), mddev->new_level);
7449 		return ERR_PTR(-EIO);
7450 	}
7451 	if ((mddev->new_level == 5
7452 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7453 	    (mddev->new_level == 6
7454 	     && !algorithm_valid_raid6(mddev->new_layout))) {
7455 		pr_warn("md/raid:%s: layout %d not supported\n",
7456 			mdname(mddev), mddev->new_layout);
7457 		return ERR_PTR(-EIO);
7458 	}
7459 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7460 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7461 			mdname(mddev), mddev->raid_disks);
7462 		return ERR_PTR(-EINVAL);
7463 	}
7464 
7465 	if (!mddev->new_chunk_sectors ||
7466 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7467 	    !is_power_of_2(mddev->new_chunk_sectors)) {
7468 		pr_warn("md/raid:%s: invalid chunk size %d\n",
7469 			mdname(mddev), mddev->new_chunk_sectors << 9);
7470 		return ERR_PTR(-EINVAL);
7471 	}
7472 
7473 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7474 	if (conf == NULL)
7475 		goto abort;
7476 
7477 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7478 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7479 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7480 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7481 #endif
7482 	INIT_LIST_HEAD(&conf->free_list);
7483 	INIT_LIST_HEAD(&conf->pending_list);
7484 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7485 				     sizeof(struct r5pending_data),
7486 				     GFP_KERNEL);
7487 	if (!conf->pending_data)
7488 		goto abort;
7489 	for (i = 0; i < PENDING_IO_MAX; i++)
7490 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7491 	/* Don't enable multi-threading by default*/
7492 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7493 		conf->group_cnt = group_cnt;
7494 		conf->worker_cnt_per_group = 0;
7495 		conf->worker_groups = new_group;
7496 	} else
7497 		goto abort;
7498 	spin_lock_init(&conf->device_lock);
7499 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7500 	mutex_init(&conf->cache_size_mutex);
7501 
7502 	init_waitqueue_head(&conf->wait_for_quiescent);
7503 	init_waitqueue_head(&conf->wait_for_stripe);
7504 	init_waitqueue_head(&conf->wait_for_reshape);
7505 	INIT_LIST_HEAD(&conf->handle_list);
7506 	INIT_LIST_HEAD(&conf->loprio_list);
7507 	INIT_LIST_HEAD(&conf->hold_list);
7508 	INIT_LIST_HEAD(&conf->delayed_list);
7509 	INIT_LIST_HEAD(&conf->bitmap_list);
7510 	init_llist_head(&conf->released_stripes);
7511 	atomic_set(&conf->active_stripes, 0);
7512 	atomic_set(&conf->preread_active_stripes, 0);
7513 	atomic_set(&conf->active_aligned_reads, 0);
7514 	spin_lock_init(&conf->pending_bios_lock);
7515 	conf->batch_bio_dispatch = true;
7516 	rdev_for_each(rdev, mddev) {
7517 		if (test_bit(Journal, &rdev->flags))
7518 			continue;
7519 		if (bdev_nonrot(rdev->bdev)) {
7520 			conf->batch_bio_dispatch = false;
7521 			break;
7522 		}
7523 	}
7524 
7525 	conf->bypass_threshold = BYPASS_THRESHOLD;
7526 	conf->recovery_disabled = mddev->recovery_disabled - 1;
7527 
7528 	conf->raid_disks = mddev->raid_disks;
7529 	if (mddev->reshape_position == MaxSector)
7530 		conf->previous_raid_disks = mddev->raid_disks;
7531 	else
7532 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7533 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7534 
7535 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7536 			      GFP_KERNEL);
7537 
7538 	if (!conf->disks)
7539 		goto abort;
7540 
7541 	for (i = 0; i < max_disks; i++) {
7542 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7543 		if (!conf->disks[i].extra_page)
7544 			goto abort;
7545 	}
7546 
7547 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7548 	if (ret)
7549 		goto abort;
7550 	conf->mddev = mddev;
7551 
7552 	ret = -ENOMEM;
7553 	conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7554 	if (!conf->stripe_hashtbl)
7555 		goto abort;
7556 
7557 	/* We init hash_locks[0] separately to that it can be used
7558 	 * as the reference lock in the spin_lock_nest_lock() call
7559 	 * in lock_all_device_hash_locks_irq in order to convince
7560 	 * lockdep that we know what we are doing.
7561 	 */
7562 	spin_lock_init(conf->hash_locks);
7563 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7564 		spin_lock_init(conf->hash_locks + i);
7565 
7566 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7567 		INIT_LIST_HEAD(conf->inactive_list + i);
7568 
7569 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7570 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7571 
7572 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7573 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7574 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7575 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7576 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7577 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7578 
7579 	conf->level = mddev->new_level;
7580 	conf->chunk_sectors = mddev->new_chunk_sectors;
7581 	ret = raid5_alloc_percpu(conf);
7582 	if (ret)
7583 		goto abort;
7584 
7585 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7586 
7587 	ret = -EIO;
7588 	rdev_for_each(rdev, mddev) {
7589 		raid_disk = rdev->raid_disk;
7590 		if (raid_disk >= max_disks
7591 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7592 			continue;
7593 		disk = conf->disks + raid_disk;
7594 
7595 		if (test_bit(Replacement, &rdev->flags)) {
7596 			if (disk->replacement)
7597 				goto abort;
7598 			disk->replacement = rdev;
7599 		} else {
7600 			if (disk->rdev)
7601 				goto abort;
7602 			disk->rdev = rdev;
7603 		}
7604 
7605 		if (test_bit(In_sync, &rdev->flags)) {
7606 			pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7607 				mdname(mddev), rdev->bdev, raid_disk);
7608 		} else if (rdev->saved_raid_disk != raid_disk)
7609 			/* Cannot rely on bitmap to complete recovery */
7610 			conf->fullsync = 1;
7611 	}
7612 
7613 	conf->level = mddev->new_level;
7614 	if (conf->level == 6) {
7615 		conf->max_degraded = 2;
7616 		if (raid6_call.xor_syndrome)
7617 			conf->rmw_level = PARITY_ENABLE_RMW;
7618 		else
7619 			conf->rmw_level = PARITY_DISABLE_RMW;
7620 	} else {
7621 		conf->max_degraded = 1;
7622 		conf->rmw_level = PARITY_ENABLE_RMW;
7623 	}
7624 	conf->algorithm = mddev->new_layout;
7625 	conf->reshape_progress = mddev->reshape_position;
7626 	if (conf->reshape_progress != MaxSector) {
7627 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7628 		conf->prev_algo = mddev->layout;
7629 	} else {
7630 		conf->prev_chunk_sectors = conf->chunk_sectors;
7631 		conf->prev_algo = conf->algorithm;
7632 	}
7633 
7634 	conf->min_nr_stripes = NR_STRIPES;
7635 	if (mddev->reshape_position != MaxSector) {
7636 		int stripes = max_t(int,
7637 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7638 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7639 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7640 		if (conf->min_nr_stripes != NR_STRIPES)
7641 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7642 				mdname(mddev), conf->min_nr_stripes);
7643 	}
7644 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7645 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7646 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7647 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7648 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7649 			mdname(mddev), memory);
7650 		ret = -ENOMEM;
7651 		goto abort;
7652 	} else
7653 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7654 	/*
7655 	 * Losing a stripe head costs more than the time to refill it,
7656 	 * it reduces the queue depth and so can hurt throughput.
7657 	 * So set it rather large, scaled by number of devices.
7658 	 */
7659 	conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7660 	if (!conf->shrinker) {
7661 		ret = -ENOMEM;
7662 		pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7663 			mdname(mddev));
7664 		goto abort;
7665 	}
7666 
7667 	conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7668 	conf->shrinker->scan_objects = raid5_cache_scan;
7669 	conf->shrinker->count_objects = raid5_cache_count;
7670 	conf->shrinker->batch = 128;
7671 	conf->shrinker->private_data = conf;
7672 
7673 	shrinker_register(conf->shrinker);
7674 
7675 	sprintf(pers_name, "raid%d", mddev->new_level);
7676 	rcu_assign_pointer(conf->thread,
7677 			   md_register_thread(raid5d, mddev, pers_name));
7678 	if (!conf->thread) {
7679 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7680 			mdname(mddev));
7681 		ret = -ENOMEM;
7682 		goto abort;
7683 	}
7684 
7685 	return conf;
7686 
7687  abort:
7688 	if (conf)
7689 		free_conf(conf);
7690 	return ERR_PTR(ret);
7691 }
7692 
7693 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7694 {
7695 	switch (algo) {
7696 	case ALGORITHM_PARITY_0:
7697 		if (raid_disk < max_degraded)
7698 			return 1;
7699 		break;
7700 	case ALGORITHM_PARITY_N:
7701 		if (raid_disk >= raid_disks - max_degraded)
7702 			return 1;
7703 		break;
7704 	case ALGORITHM_PARITY_0_6:
7705 		if (raid_disk == 0 ||
7706 		    raid_disk == raid_disks - 1)
7707 			return 1;
7708 		break;
7709 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7710 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7711 	case ALGORITHM_LEFT_SYMMETRIC_6:
7712 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7713 		if (raid_disk == raid_disks - 1)
7714 			return 1;
7715 	}
7716 	return 0;
7717 }
7718 
7719 static int raid5_set_limits(struct mddev *mddev)
7720 {
7721 	struct r5conf *conf = mddev->private;
7722 	struct queue_limits lim;
7723 	int data_disks, stripe;
7724 	struct md_rdev *rdev;
7725 
7726 	/*
7727 	 * The read-ahead size must cover two whole stripes, which is
7728 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7729 	 */
7730 	data_disks = conf->previous_raid_disks - conf->max_degraded;
7731 
7732 	/*
7733 	 * We can only discard a whole stripe. It doesn't make sense to
7734 	 * discard data disk but write parity disk
7735 	 */
7736 	stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7737 
7738 	md_init_stacking_limits(&lim);
7739 	lim.io_min = mddev->chunk_sectors << 9;
7740 	lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7741 	lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE;
7742 	lim.discard_granularity = stripe;
7743 	lim.max_write_zeroes_sectors = 0;
7744 	mddev_stack_rdev_limits(mddev, &lim, 0);
7745 	rdev_for_each(rdev, mddev)
7746 		queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7747 				mddev->gendisk->disk_name);
7748 
7749 	/*
7750 	 * Zeroing is required for discard, otherwise data could be lost.
7751 	 *
7752 	 * Consider a scenario: discard a stripe (the stripe could be
7753 	 * inconsistent if discard_zeroes_data is 0); write one disk of the
7754 	 * stripe (the stripe could be inconsistent again depending on which
7755 	 * disks are used to calculate parity); the disk is broken; The stripe
7756 	 * data of this disk is lost.
7757 	 *
7758 	 * We only allow DISCARD if the sysadmin has confirmed that only safe
7759 	 * devices are in use by setting a module parameter.  A better idea
7760 	 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7761 	 * required to be safe.
7762 	 */
7763 	if (!devices_handle_discard_safely ||
7764 	    lim.max_discard_sectors < (stripe >> 9) ||
7765 	    lim.discard_granularity < stripe)
7766 		lim.max_hw_discard_sectors = 0;
7767 
7768 	/*
7769 	 * Requests require having a bitmap for each stripe.
7770 	 * Limit the max sectors based on this.
7771 	 */
7772 	lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7773 
7774 	/* No restrictions on the number of segments in the request */
7775 	lim.max_segments = USHRT_MAX;
7776 
7777 	return queue_limits_set(mddev->gendisk->queue, &lim);
7778 }
7779 
7780 static int raid5_run(struct mddev *mddev)
7781 {
7782 	struct r5conf *conf;
7783 	int dirty_parity_disks = 0;
7784 	struct md_rdev *rdev;
7785 	struct md_rdev *journal_dev = NULL;
7786 	sector_t reshape_offset = 0;
7787 	int i;
7788 	long long min_offset_diff = 0;
7789 	int first = 1;
7790 	int ret = -EIO;
7791 
7792 	if (mddev->recovery_cp != MaxSector)
7793 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7794 			  mdname(mddev));
7795 
7796 	rdev_for_each(rdev, mddev) {
7797 		long long diff;
7798 
7799 		if (test_bit(Journal, &rdev->flags)) {
7800 			journal_dev = rdev;
7801 			continue;
7802 		}
7803 		if (rdev->raid_disk < 0)
7804 			continue;
7805 		diff = (rdev->new_data_offset - rdev->data_offset);
7806 		if (first) {
7807 			min_offset_diff = diff;
7808 			first = 0;
7809 		} else if (mddev->reshape_backwards &&
7810 			 diff < min_offset_diff)
7811 			min_offset_diff = diff;
7812 		else if (!mddev->reshape_backwards &&
7813 			 diff > min_offset_diff)
7814 			min_offset_diff = diff;
7815 	}
7816 
7817 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7818 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7819 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7820 			  mdname(mddev));
7821 		return -EINVAL;
7822 	}
7823 
7824 	if (mddev->reshape_position != MaxSector) {
7825 		/* Check that we can continue the reshape.
7826 		 * Difficulties arise if the stripe we would write to
7827 		 * next is at or after the stripe we would read from next.
7828 		 * For a reshape that changes the number of devices, this
7829 		 * is only possible for a very short time, and mdadm makes
7830 		 * sure that time appears to have past before assembling
7831 		 * the array.  So we fail if that time hasn't passed.
7832 		 * For a reshape that keeps the number of devices the same
7833 		 * mdadm must be monitoring the reshape can keeping the
7834 		 * critical areas read-only and backed up.  It will start
7835 		 * the array in read-only mode, so we check for that.
7836 		 */
7837 		sector_t here_new, here_old;
7838 		int old_disks;
7839 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7840 		int chunk_sectors;
7841 		int new_data_disks;
7842 
7843 		if (journal_dev) {
7844 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7845 				mdname(mddev));
7846 			return -EINVAL;
7847 		}
7848 
7849 		if (mddev->new_level != mddev->level) {
7850 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7851 				mdname(mddev));
7852 			return -EINVAL;
7853 		}
7854 		old_disks = mddev->raid_disks - mddev->delta_disks;
7855 		/* reshape_position must be on a new-stripe boundary, and one
7856 		 * further up in new geometry must map after here in old
7857 		 * geometry.
7858 		 * If the chunk sizes are different, then as we perform reshape
7859 		 * in units of the largest of the two, reshape_position needs
7860 		 * be a multiple of the largest chunk size times new data disks.
7861 		 */
7862 		here_new = mddev->reshape_position;
7863 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7864 		new_data_disks = mddev->raid_disks - max_degraded;
7865 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7866 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7867 				mdname(mddev));
7868 			return -EINVAL;
7869 		}
7870 		reshape_offset = here_new * chunk_sectors;
7871 		/* here_new is the stripe we will write to */
7872 		here_old = mddev->reshape_position;
7873 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7874 		/* here_old is the first stripe that we might need to read
7875 		 * from */
7876 		if (mddev->delta_disks == 0) {
7877 			/* We cannot be sure it is safe to start an in-place
7878 			 * reshape.  It is only safe if user-space is monitoring
7879 			 * and taking constant backups.
7880 			 * mdadm always starts a situation like this in
7881 			 * readonly mode so it can take control before
7882 			 * allowing any writes.  So just check for that.
7883 			 */
7884 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7885 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7886 				/* not really in-place - so OK */;
7887 			else if (mddev->ro == 0) {
7888 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7889 					mdname(mddev));
7890 				return -EINVAL;
7891 			}
7892 		} else if (mddev->reshape_backwards
7893 		    ? (here_new * chunk_sectors + min_offset_diff <=
7894 		       here_old * chunk_sectors)
7895 		    : (here_new * chunk_sectors >=
7896 		       here_old * chunk_sectors + (-min_offset_diff))) {
7897 			/* Reading from the same stripe as writing to - bad */
7898 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7899 				mdname(mddev));
7900 			return -EINVAL;
7901 		}
7902 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7903 		/* OK, we should be able to continue; */
7904 	} else {
7905 		BUG_ON(mddev->level != mddev->new_level);
7906 		BUG_ON(mddev->layout != mddev->new_layout);
7907 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7908 		BUG_ON(mddev->delta_disks != 0);
7909 	}
7910 
7911 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7912 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7913 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7914 			mdname(mddev));
7915 		clear_bit(MD_HAS_PPL, &mddev->flags);
7916 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7917 	}
7918 
7919 	if (mddev->private == NULL)
7920 		conf = setup_conf(mddev);
7921 	else
7922 		conf = mddev->private;
7923 
7924 	if (IS_ERR(conf))
7925 		return PTR_ERR(conf);
7926 
7927 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7928 		if (!journal_dev) {
7929 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7930 				mdname(mddev));
7931 			mddev->ro = 1;
7932 			set_disk_ro(mddev->gendisk, 1);
7933 		} else if (mddev->recovery_cp == MaxSector)
7934 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7935 	}
7936 
7937 	conf->min_offset_diff = min_offset_diff;
7938 	rcu_assign_pointer(mddev->thread, conf->thread);
7939 	rcu_assign_pointer(conf->thread, NULL);
7940 	mddev->private = conf;
7941 
7942 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7943 	     i++) {
7944 		rdev = conf->disks[i].rdev;
7945 		if (!rdev)
7946 			continue;
7947 		if (conf->disks[i].replacement &&
7948 		    conf->reshape_progress != MaxSector) {
7949 			/* replacements and reshape simply do not mix. */
7950 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7951 			goto abort;
7952 		}
7953 		if (test_bit(In_sync, &rdev->flags))
7954 			continue;
7955 		/* This disc is not fully in-sync.  However if it
7956 		 * just stored parity (beyond the recovery_offset),
7957 		 * when we don't need to be concerned about the
7958 		 * array being dirty.
7959 		 * When reshape goes 'backwards', we never have
7960 		 * partially completed devices, so we only need
7961 		 * to worry about reshape going forwards.
7962 		 */
7963 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7964 		if (mddev->major_version == 0 &&
7965 		    mddev->minor_version > 90)
7966 			rdev->recovery_offset = reshape_offset;
7967 
7968 		if (rdev->recovery_offset < reshape_offset) {
7969 			/* We need to check old and new layout */
7970 			if (!only_parity(rdev->raid_disk,
7971 					 conf->algorithm,
7972 					 conf->raid_disks,
7973 					 conf->max_degraded))
7974 				continue;
7975 		}
7976 		if (!only_parity(rdev->raid_disk,
7977 				 conf->prev_algo,
7978 				 conf->previous_raid_disks,
7979 				 conf->max_degraded))
7980 			continue;
7981 		dirty_parity_disks++;
7982 	}
7983 
7984 	/*
7985 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7986 	 */
7987 	mddev->degraded = raid5_calc_degraded(conf);
7988 
7989 	if (has_failed(conf)) {
7990 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7991 			mdname(mddev), mddev->degraded, conf->raid_disks);
7992 		goto abort;
7993 	}
7994 
7995 	/* device size must be a multiple of chunk size */
7996 	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7997 	mddev->resync_max_sectors = mddev->dev_sectors;
7998 
7999 	if (mddev->degraded > dirty_parity_disks &&
8000 	    mddev->recovery_cp != MaxSector) {
8001 		if (test_bit(MD_HAS_PPL, &mddev->flags))
8002 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
8003 				mdname(mddev));
8004 		else if (mddev->ok_start_degraded)
8005 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
8006 				mdname(mddev));
8007 		else {
8008 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8009 				mdname(mddev));
8010 			goto abort;
8011 		}
8012 	}
8013 
8014 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8015 		mdname(mddev), conf->level,
8016 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8017 		mddev->new_layout);
8018 
8019 	print_raid5_conf(conf);
8020 
8021 	if (conf->reshape_progress != MaxSector) {
8022 		conf->reshape_safe = conf->reshape_progress;
8023 		atomic_set(&conf->reshape_stripes, 0);
8024 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8025 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8026 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8027 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8028 	}
8029 
8030 	/* Ok, everything is just fine now */
8031 	if (mddev->to_remove == &raid5_attrs_group)
8032 		mddev->to_remove = NULL;
8033 	else if (mddev->kobj.sd &&
8034 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8035 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
8036 			mdname(mddev));
8037 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8038 
8039 	if (!mddev_is_dm(mddev)) {
8040 		ret = raid5_set_limits(mddev);
8041 		if (ret)
8042 			goto abort;
8043 	}
8044 
8045 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8046 		goto abort;
8047 
8048 	return 0;
8049 abort:
8050 	md_unregister_thread(mddev, &mddev->thread);
8051 	print_raid5_conf(conf);
8052 	free_conf(conf);
8053 	mddev->private = NULL;
8054 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8055 	return ret;
8056 }
8057 
8058 static void raid5_free(struct mddev *mddev, void *priv)
8059 {
8060 	struct r5conf *conf = priv;
8061 
8062 	free_conf(conf);
8063 	mddev->to_remove = &raid5_attrs_group;
8064 }
8065 
8066 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8067 {
8068 	struct r5conf *conf = mddev->private;
8069 	int i;
8070 
8071 	lockdep_assert_held(&mddev->lock);
8072 
8073 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8074 		conf->chunk_sectors / 2, mddev->layout);
8075 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8076 	for (i = 0; i < conf->raid_disks; i++) {
8077 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8078 
8079 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8080 	}
8081 	seq_printf (seq, "]");
8082 }
8083 
8084 static void print_raid5_conf(struct r5conf *conf)
8085 {
8086 	struct md_rdev *rdev;
8087 	int i;
8088 
8089 	pr_debug("RAID conf printout:\n");
8090 	if (!conf) {
8091 		pr_debug("(conf==NULL)\n");
8092 		return;
8093 	}
8094 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8095 	       conf->raid_disks,
8096 	       conf->raid_disks - conf->mddev->degraded);
8097 
8098 	for (i = 0; i < conf->raid_disks; i++) {
8099 		rdev = conf->disks[i].rdev;
8100 		if (rdev)
8101 			pr_debug(" disk %d, o:%d, dev:%pg\n",
8102 			       i, !test_bit(Faulty, &rdev->flags),
8103 			       rdev->bdev);
8104 	}
8105 }
8106 
8107 static int raid5_spare_active(struct mddev *mddev)
8108 {
8109 	int i;
8110 	struct r5conf *conf = mddev->private;
8111 	struct md_rdev *rdev, *replacement;
8112 	int count = 0;
8113 	unsigned long flags;
8114 
8115 	for (i = 0; i < conf->raid_disks; i++) {
8116 		rdev = conf->disks[i].rdev;
8117 		replacement = conf->disks[i].replacement;
8118 		if (replacement
8119 		    && replacement->recovery_offset == MaxSector
8120 		    && !test_bit(Faulty, &replacement->flags)
8121 		    && !test_and_set_bit(In_sync, &replacement->flags)) {
8122 			/* Replacement has just become active. */
8123 			if (!rdev
8124 			    || !test_and_clear_bit(In_sync, &rdev->flags))
8125 				count++;
8126 			if (rdev) {
8127 				/* Replaced device not technically faulty,
8128 				 * but we need to be sure it gets removed
8129 				 * and never re-added.
8130 				 */
8131 				set_bit(Faulty, &rdev->flags);
8132 				sysfs_notify_dirent_safe(
8133 					rdev->sysfs_state);
8134 			}
8135 			sysfs_notify_dirent_safe(replacement->sysfs_state);
8136 		} else if (rdev
8137 		    && rdev->recovery_offset == MaxSector
8138 		    && !test_bit(Faulty, &rdev->flags)
8139 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
8140 			count++;
8141 			sysfs_notify_dirent_safe(rdev->sysfs_state);
8142 		}
8143 	}
8144 	spin_lock_irqsave(&conf->device_lock, flags);
8145 	mddev->degraded = raid5_calc_degraded(conf);
8146 	spin_unlock_irqrestore(&conf->device_lock, flags);
8147 	print_raid5_conf(conf);
8148 	return count;
8149 }
8150 
8151 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8152 {
8153 	struct r5conf *conf = mddev->private;
8154 	int err = 0;
8155 	int number = rdev->raid_disk;
8156 	struct md_rdev **rdevp;
8157 	struct disk_info *p;
8158 	struct md_rdev *tmp;
8159 
8160 	print_raid5_conf(conf);
8161 	if (test_bit(Journal, &rdev->flags) && conf->log) {
8162 		/*
8163 		 * we can't wait pending write here, as this is called in
8164 		 * raid5d, wait will deadlock.
8165 		 * neilb: there is no locking about new writes here,
8166 		 * so this cannot be safe.
8167 		 */
8168 		if (atomic_read(&conf->active_stripes) ||
8169 		    atomic_read(&conf->r5c_cached_full_stripes) ||
8170 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
8171 			return -EBUSY;
8172 		}
8173 		log_exit(conf);
8174 		return 0;
8175 	}
8176 	if (unlikely(number >= conf->pool_size))
8177 		return 0;
8178 	p = conf->disks + number;
8179 	if (rdev == p->rdev)
8180 		rdevp = &p->rdev;
8181 	else if (rdev == p->replacement)
8182 		rdevp = &p->replacement;
8183 	else
8184 		return 0;
8185 
8186 	if (number >= conf->raid_disks &&
8187 	    conf->reshape_progress == MaxSector)
8188 		clear_bit(In_sync, &rdev->flags);
8189 
8190 	if (test_bit(In_sync, &rdev->flags) ||
8191 	    atomic_read(&rdev->nr_pending)) {
8192 		err = -EBUSY;
8193 		goto abort;
8194 	}
8195 	/* Only remove non-faulty devices if recovery
8196 	 * isn't possible.
8197 	 */
8198 	if (!test_bit(Faulty, &rdev->flags) &&
8199 	    mddev->recovery_disabled != conf->recovery_disabled &&
8200 	    !has_failed(conf) &&
8201 	    (!p->replacement || p->replacement == rdev) &&
8202 	    number < conf->raid_disks) {
8203 		err = -EBUSY;
8204 		goto abort;
8205 	}
8206 	WRITE_ONCE(*rdevp, NULL);
8207 	if (!err) {
8208 		err = log_modify(conf, rdev, false);
8209 		if (err)
8210 			goto abort;
8211 	}
8212 
8213 	tmp = p->replacement;
8214 	if (tmp) {
8215 		/* We must have just cleared 'rdev' */
8216 		WRITE_ONCE(p->rdev, tmp);
8217 		clear_bit(Replacement, &tmp->flags);
8218 		WRITE_ONCE(p->replacement, NULL);
8219 
8220 		if (!err)
8221 			err = log_modify(conf, tmp, true);
8222 	}
8223 
8224 	clear_bit(WantReplacement, &rdev->flags);
8225 abort:
8226 
8227 	print_raid5_conf(conf);
8228 	return err;
8229 }
8230 
8231 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8232 {
8233 	struct r5conf *conf = mddev->private;
8234 	int ret, err = -EEXIST;
8235 	int disk;
8236 	struct disk_info *p;
8237 	struct md_rdev *tmp;
8238 	int first = 0;
8239 	int last = conf->raid_disks - 1;
8240 
8241 	if (test_bit(Journal, &rdev->flags)) {
8242 		if (conf->log)
8243 			return -EBUSY;
8244 
8245 		rdev->raid_disk = 0;
8246 		/*
8247 		 * The array is in readonly mode if journal is missing, so no
8248 		 * write requests running. We should be safe
8249 		 */
8250 		ret = log_init(conf, rdev, false);
8251 		if (ret)
8252 			return ret;
8253 
8254 		ret = r5l_start(conf->log);
8255 		if (ret)
8256 			return ret;
8257 
8258 		return 0;
8259 	}
8260 	if (mddev->recovery_disabled == conf->recovery_disabled)
8261 		return -EBUSY;
8262 
8263 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8264 		/* no point adding a device */
8265 		return -EINVAL;
8266 
8267 	if (rdev->raid_disk >= 0)
8268 		first = last = rdev->raid_disk;
8269 
8270 	/*
8271 	 * find the disk ... but prefer rdev->saved_raid_disk
8272 	 * if possible.
8273 	 */
8274 	if (rdev->saved_raid_disk >= first &&
8275 	    rdev->saved_raid_disk <= last &&
8276 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8277 		first = rdev->saved_raid_disk;
8278 
8279 	for (disk = first; disk <= last; disk++) {
8280 		p = conf->disks + disk;
8281 		if (p->rdev == NULL) {
8282 			clear_bit(In_sync, &rdev->flags);
8283 			rdev->raid_disk = disk;
8284 			if (rdev->saved_raid_disk != disk)
8285 				conf->fullsync = 1;
8286 			WRITE_ONCE(p->rdev, rdev);
8287 
8288 			err = log_modify(conf, rdev, true);
8289 
8290 			goto out;
8291 		}
8292 	}
8293 	for (disk = first; disk <= last; disk++) {
8294 		p = conf->disks + disk;
8295 		tmp = p->rdev;
8296 		if (test_bit(WantReplacement, &tmp->flags) &&
8297 		    mddev->reshape_position == MaxSector &&
8298 		    p->replacement == NULL) {
8299 			clear_bit(In_sync, &rdev->flags);
8300 			set_bit(Replacement, &rdev->flags);
8301 			rdev->raid_disk = disk;
8302 			err = 0;
8303 			conf->fullsync = 1;
8304 			WRITE_ONCE(p->replacement, rdev);
8305 			break;
8306 		}
8307 	}
8308 out:
8309 	print_raid5_conf(conf);
8310 	return err;
8311 }
8312 
8313 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8314 {
8315 	/* no resync is happening, and there is enough space
8316 	 * on all devices, so we can resize.
8317 	 * We need to make sure resync covers any new space.
8318 	 * If the array is shrinking we should possibly wait until
8319 	 * any io in the removed space completes, but it hardly seems
8320 	 * worth it.
8321 	 */
8322 	sector_t newsize;
8323 	struct r5conf *conf = mddev->private;
8324 	int ret;
8325 
8326 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8327 		return -EINVAL;
8328 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8329 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8330 	if (mddev->external_size &&
8331 	    mddev->array_sectors > newsize)
8332 		return -EINVAL;
8333 
8334 	ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false);
8335 	if (ret)
8336 		return ret;
8337 
8338 	md_set_array_sectors(mddev, newsize);
8339 	if (sectors > mddev->dev_sectors &&
8340 	    mddev->recovery_cp > mddev->dev_sectors) {
8341 		mddev->recovery_cp = mddev->dev_sectors;
8342 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8343 	}
8344 	mddev->dev_sectors = sectors;
8345 	mddev->resync_max_sectors = sectors;
8346 	return 0;
8347 }
8348 
8349 static int check_stripe_cache(struct mddev *mddev)
8350 {
8351 	/* Can only proceed if there are plenty of stripe_heads.
8352 	 * We need a minimum of one full stripe,, and for sensible progress
8353 	 * it is best to have about 4 times that.
8354 	 * If we require 4 times, then the default 256 4K stripe_heads will
8355 	 * allow for chunk sizes up to 256K, which is probably OK.
8356 	 * If the chunk size is greater, user-space should request more
8357 	 * stripe_heads first.
8358 	 */
8359 	struct r5conf *conf = mddev->private;
8360 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8361 	    > conf->min_nr_stripes ||
8362 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8363 	    > conf->min_nr_stripes) {
8364 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8365 			mdname(mddev),
8366 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8367 			 / RAID5_STRIPE_SIZE(conf))*4);
8368 		return 0;
8369 	}
8370 	return 1;
8371 }
8372 
8373 static int check_reshape(struct mddev *mddev)
8374 {
8375 	struct r5conf *conf = mddev->private;
8376 
8377 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8378 		return -EINVAL;
8379 	if (mddev->delta_disks == 0 &&
8380 	    mddev->new_layout == mddev->layout &&
8381 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8382 		return 0; /* nothing to do */
8383 	if (has_failed(conf))
8384 		return -EINVAL;
8385 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8386 		/* We might be able to shrink, but the devices must
8387 		 * be made bigger first.
8388 		 * For raid6, 4 is the minimum size.
8389 		 * Otherwise 2 is the minimum
8390 		 */
8391 		int min = 2;
8392 		if (mddev->level == 6)
8393 			min = 4;
8394 		if (mddev->raid_disks + mddev->delta_disks < min)
8395 			return -EINVAL;
8396 	}
8397 
8398 	if (!check_stripe_cache(mddev))
8399 		return -ENOSPC;
8400 
8401 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8402 	    mddev->delta_disks > 0)
8403 		if (resize_chunks(conf,
8404 				  conf->previous_raid_disks
8405 				  + max(0, mddev->delta_disks),
8406 				  max(mddev->new_chunk_sectors,
8407 				      mddev->chunk_sectors)
8408 			    ) < 0)
8409 			return -ENOMEM;
8410 
8411 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8412 		return 0; /* never bother to shrink */
8413 	return resize_stripes(conf, (conf->previous_raid_disks
8414 				     + mddev->delta_disks));
8415 }
8416 
8417 static int raid5_start_reshape(struct mddev *mddev)
8418 {
8419 	struct r5conf *conf = mddev->private;
8420 	struct md_rdev *rdev;
8421 	int spares = 0;
8422 	int i;
8423 	unsigned long flags;
8424 
8425 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8426 		return -EBUSY;
8427 
8428 	if (!check_stripe_cache(mddev))
8429 		return -ENOSPC;
8430 
8431 	if (has_failed(conf))
8432 		return -EINVAL;
8433 
8434 	/* raid5 can't handle concurrent reshape and recovery */
8435 	if (mddev->recovery_cp < MaxSector)
8436 		return -EBUSY;
8437 	for (i = 0; i < conf->raid_disks; i++)
8438 		if (conf->disks[i].replacement)
8439 			return -EBUSY;
8440 
8441 	rdev_for_each(rdev, mddev) {
8442 		if (!test_bit(In_sync, &rdev->flags)
8443 		    && !test_bit(Faulty, &rdev->flags))
8444 			spares++;
8445 	}
8446 
8447 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8448 		/* Not enough devices even to make a degraded array
8449 		 * of that size
8450 		 */
8451 		return -EINVAL;
8452 
8453 	/* Refuse to reduce size of the array.  Any reductions in
8454 	 * array size must be through explicit setting of array_size
8455 	 * attribute.
8456 	 */
8457 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8458 	    < mddev->array_sectors) {
8459 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8460 			mdname(mddev));
8461 		return -EINVAL;
8462 	}
8463 
8464 	atomic_set(&conf->reshape_stripes, 0);
8465 	spin_lock_irq(&conf->device_lock);
8466 	write_seqcount_begin(&conf->gen_lock);
8467 	conf->previous_raid_disks = conf->raid_disks;
8468 	conf->raid_disks += mddev->delta_disks;
8469 	conf->prev_chunk_sectors = conf->chunk_sectors;
8470 	conf->chunk_sectors = mddev->new_chunk_sectors;
8471 	conf->prev_algo = conf->algorithm;
8472 	conf->algorithm = mddev->new_layout;
8473 	conf->generation++;
8474 	/* Code that selects data_offset needs to see the generation update
8475 	 * if reshape_progress has been set - so a memory barrier needed.
8476 	 */
8477 	smp_mb();
8478 	if (mddev->reshape_backwards)
8479 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8480 	else
8481 		conf->reshape_progress = 0;
8482 	conf->reshape_safe = conf->reshape_progress;
8483 	write_seqcount_end(&conf->gen_lock);
8484 	spin_unlock_irq(&conf->device_lock);
8485 
8486 	/* Now make sure any requests that proceeded on the assumption
8487 	 * the reshape wasn't running - like Discard or Read - have
8488 	 * completed.
8489 	 */
8490 	raid5_quiesce(mddev, true);
8491 	raid5_quiesce(mddev, false);
8492 
8493 	/* Add some new drives, as many as will fit.
8494 	 * We know there are enough to make the newly sized array work.
8495 	 * Don't add devices if we are reducing the number of
8496 	 * devices in the array.  This is because it is not possible
8497 	 * to correctly record the "partially reconstructed" state of
8498 	 * such devices during the reshape and confusion could result.
8499 	 */
8500 	if (mddev->delta_disks >= 0) {
8501 		rdev_for_each(rdev, mddev)
8502 			if (rdev->raid_disk < 0 &&
8503 			    !test_bit(Faulty, &rdev->flags)) {
8504 				if (raid5_add_disk(mddev, rdev) == 0) {
8505 					if (rdev->raid_disk
8506 					    >= conf->previous_raid_disks)
8507 						set_bit(In_sync, &rdev->flags);
8508 					else
8509 						rdev->recovery_offset = 0;
8510 
8511 					/* Failure here is OK */
8512 					sysfs_link_rdev(mddev, rdev);
8513 				}
8514 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8515 				   && !test_bit(Faulty, &rdev->flags)) {
8516 				/* This is a spare that was manually added */
8517 				set_bit(In_sync, &rdev->flags);
8518 			}
8519 
8520 		/* When a reshape changes the number of devices,
8521 		 * ->degraded is measured against the larger of the
8522 		 * pre and post number of devices.
8523 		 */
8524 		spin_lock_irqsave(&conf->device_lock, flags);
8525 		mddev->degraded = raid5_calc_degraded(conf);
8526 		spin_unlock_irqrestore(&conf->device_lock, flags);
8527 	}
8528 	mddev->raid_disks = conf->raid_disks;
8529 	mddev->reshape_position = conf->reshape_progress;
8530 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8531 
8532 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8533 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8534 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8535 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8536 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8537 	conf->reshape_checkpoint = jiffies;
8538 	md_new_event();
8539 	return 0;
8540 }
8541 
8542 /* This is called from the reshape thread and should make any
8543  * changes needed in 'conf'
8544  */
8545 static void end_reshape(struct r5conf *conf)
8546 {
8547 
8548 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8549 		struct md_rdev *rdev;
8550 
8551 		spin_lock_irq(&conf->device_lock);
8552 		conf->previous_raid_disks = conf->raid_disks;
8553 		md_finish_reshape(conf->mddev);
8554 		smp_wmb();
8555 		conf->reshape_progress = MaxSector;
8556 		conf->mddev->reshape_position = MaxSector;
8557 		rdev_for_each(rdev, conf->mddev)
8558 			if (rdev->raid_disk >= 0 &&
8559 			    !test_bit(Journal, &rdev->flags) &&
8560 			    !test_bit(In_sync, &rdev->flags))
8561 				rdev->recovery_offset = MaxSector;
8562 		spin_unlock_irq(&conf->device_lock);
8563 		wake_up(&conf->wait_for_reshape);
8564 
8565 		mddev_update_io_opt(conf->mddev,
8566 			conf->raid_disks - conf->max_degraded);
8567 	}
8568 }
8569 
8570 /* This is called from the raid5d thread with mddev_lock held.
8571  * It makes config changes to the device.
8572  */
8573 static void raid5_finish_reshape(struct mddev *mddev)
8574 {
8575 	struct r5conf *conf = mddev->private;
8576 	struct md_rdev *rdev;
8577 
8578 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8579 
8580 		if (mddev->delta_disks <= 0) {
8581 			int d;
8582 			spin_lock_irq(&conf->device_lock);
8583 			mddev->degraded = raid5_calc_degraded(conf);
8584 			spin_unlock_irq(&conf->device_lock);
8585 			for (d = conf->raid_disks ;
8586 			     d < conf->raid_disks - mddev->delta_disks;
8587 			     d++) {
8588 				rdev = conf->disks[d].rdev;
8589 				if (rdev)
8590 					clear_bit(In_sync, &rdev->flags);
8591 				rdev = conf->disks[d].replacement;
8592 				if (rdev)
8593 					clear_bit(In_sync, &rdev->flags);
8594 			}
8595 		}
8596 		mddev->layout = conf->algorithm;
8597 		mddev->chunk_sectors = conf->chunk_sectors;
8598 		mddev->reshape_position = MaxSector;
8599 		mddev->delta_disks = 0;
8600 		mddev->reshape_backwards = 0;
8601 	}
8602 }
8603 
8604 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8605 {
8606 	struct r5conf *conf = mddev->private;
8607 
8608 	if (quiesce) {
8609 		/* stop all writes */
8610 		lock_all_device_hash_locks_irq(conf);
8611 		/* '2' tells resync/reshape to pause so that all
8612 		 * active stripes can drain
8613 		 */
8614 		r5c_flush_cache(conf, INT_MAX);
8615 		/* need a memory barrier to make sure read_one_chunk() sees
8616 		 * quiesce started and reverts to slow (locked) path.
8617 		 */
8618 		smp_store_release(&conf->quiesce, 2);
8619 		wait_event_cmd(conf->wait_for_quiescent,
8620 				    atomic_read(&conf->active_stripes) == 0 &&
8621 				    atomic_read(&conf->active_aligned_reads) == 0,
8622 				    unlock_all_device_hash_locks_irq(conf),
8623 				    lock_all_device_hash_locks_irq(conf));
8624 		conf->quiesce = 1;
8625 		unlock_all_device_hash_locks_irq(conf);
8626 		/* allow reshape to continue */
8627 		wake_up(&conf->wait_for_reshape);
8628 	} else {
8629 		/* re-enable writes */
8630 		lock_all_device_hash_locks_irq(conf);
8631 		conf->quiesce = 0;
8632 		wake_up(&conf->wait_for_quiescent);
8633 		wake_up(&conf->wait_for_reshape);
8634 		unlock_all_device_hash_locks_irq(conf);
8635 	}
8636 	log_quiesce(conf, quiesce);
8637 }
8638 
8639 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8640 {
8641 	struct r0conf *raid0_conf = mddev->private;
8642 	sector_t sectors;
8643 
8644 	/* for raid0 takeover only one zone is supported */
8645 	if (raid0_conf->nr_strip_zones > 1) {
8646 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8647 			mdname(mddev));
8648 		return ERR_PTR(-EINVAL);
8649 	}
8650 
8651 	sectors = raid0_conf->strip_zone[0].zone_end;
8652 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8653 	mddev->dev_sectors = sectors;
8654 	mddev->new_level = level;
8655 	mddev->new_layout = ALGORITHM_PARITY_N;
8656 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8657 	mddev->raid_disks += 1;
8658 	mddev->delta_disks = 1;
8659 	/* make sure it will be not marked as dirty */
8660 	mddev->recovery_cp = MaxSector;
8661 
8662 	return setup_conf(mddev);
8663 }
8664 
8665 static void *raid5_takeover_raid1(struct mddev *mddev)
8666 {
8667 	int chunksect;
8668 	void *ret;
8669 
8670 	if (mddev->raid_disks != 2 ||
8671 	    mddev->degraded > 1)
8672 		return ERR_PTR(-EINVAL);
8673 
8674 	/* Should check if there are write-behind devices? */
8675 
8676 	chunksect = 64*2; /* 64K by default */
8677 
8678 	/* The array must be an exact multiple of chunksize */
8679 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8680 		chunksect >>= 1;
8681 
8682 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8683 		/* array size does not allow a suitable chunk size */
8684 		return ERR_PTR(-EINVAL);
8685 
8686 	mddev->new_level = 5;
8687 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8688 	mddev->new_chunk_sectors = chunksect;
8689 
8690 	ret = setup_conf(mddev);
8691 	if (!IS_ERR(ret))
8692 		mddev_clear_unsupported_flags(mddev,
8693 			UNSUPPORTED_MDDEV_FLAGS);
8694 	return ret;
8695 }
8696 
8697 static void *raid5_takeover_raid6(struct mddev *mddev)
8698 {
8699 	int new_layout;
8700 
8701 	switch (mddev->layout) {
8702 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8703 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8704 		break;
8705 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8706 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8707 		break;
8708 	case ALGORITHM_LEFT_SYMMETRIC_6:
8709 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8710 		break;
8711 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8712 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8713 		break;
8714 	case ALGORITHM_PARITY_0_6:
8715 		new_layout = ALGORITHM_PARITY_0;
8716 		break;
8717 	case ALGORITHM_PARITY_N:
8718 		new_layout = ALGORITHM_PARITY_N;
8719 		break;
8720 	default:
8721 		return ERR_PTR(-EINVAL);
8722 	}
8723 	mddev->new_level = 5;
8724 	mddev->new_layout = new_layout;
8725 	mddev->delta_disks = -1;
8726 	mddev->raid_disks -= 1;
8727 	return setup_conf(mddev);
8728 }
8729 
8730 static int raid5_check_reshape(struct mddev *mddev)
8731 {
8732 	/* For a 2-drive array, the layout and chunk size can be changed
8733 	 * immediately as not restriping is needed.
8734 	 * For larger arrays we record the new value - after validation
8735 	 * to be used by a reshape pass.
8736 	 */
8737 	struct r5conf *conf = mddev->private;
8738 	int new_chunk = mddev->new_chunk_sectors;
8739 
8740 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8741 		return -EINVAL;
8742 	if (new_chunk > 0) {
8743 		if (!is_power_of_2(new_chunk))
8744 			return -EINVAL;
8745 		if (new_chunk < (PAGE_SIZE>>9))
8746 			return -EINVAL;
8747 		if (mddev->array_sectors & (new_chunk-1))
8748 			/* not factor of array size */
8749 			return -EINVAL;
8750 	}
8751 
8752 	/* They look valid */
8753 
8754 	if (mddev->raid_disks == 2) {
8755 		/* can make the change immediately */
8756 		if (mddev->new_layout >= 0) {
8757 			conf->algorithm = mddev->new_layout;
8758 			mddev->layout = mddev->new_layout;
8759 		}
8760 		if (new_chunk > 0) {
8761 			conf->chunk_sectors = new_chunk ;
8762 			mddev->chunk_sectors = new_chunk;
8763 		}
8764 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8765 		md_wakeup_thread(mddev->thread);
8766 	}
8767 	return check_reshape(mddev);
8768 }
8769 
8770 static int raid6_check_reshape(struct mddev *mddev)
8771 {
8772 	int new_chunk = mddev->new_chunk_sectors;
8773 
8774 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8775 		return -EINVAL;
8776 	if (new_chunk > 0) {
8777 		if (!is_power_of_2(new_chunk))
8778 			return -EINVAL;
8779 		if (new_chunk < (PAGE_SIZE >> 9))
8780 			return -EINVAL;
8781 		if (mddev->array_sectors & (new_chunk-1))
8782 			/* not factor of array size */
8783 			return -EINVAL;
8784 	}
8785 
8786 	/* They look valid */
8787 	return check_reshape(mddev);
8788 }
8789 
8790 static void *raid5_takeover(struct mddev *mddev)
8791 {
8792 	/* raid5 can take over:
8793 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8794 	 *  raid1 - if there are two drives.  We need to know the chunk size
8795 	 *  raid4 - trivial - just use a raid4 layout.
8796 	 *  raid6 - Providing it is a *_6 layout
8797 	 */
8798 	if (mddev->level == 0)
8799 		return raid45_takeover_raid0(mddev, 5);
8800 	if (mddev->level == 1)
8801 		return raid5_takeover_raid1(mddev);
8802 	if (mddev->level == 4) {
8803 		mddev->new_layout = ALGORITHM_PARITY_N;
8804 		mddev->new_level = 5;
8805 		return setup_conf(mddev);
8806 	}
8807 	if (mddev->level == 6)
8808 		return raid5_takeover_raid6(mddev);
8809 
8810 	return ERR_PTR(-EINVAL);
8811 }
8812 
8813 static void *raid4_takeover(struct mddev *mddev)
8814 {
8815 	/* raid4 can take over:
8816 	 *  raid0 - if there is only one strip zone
8817 	 *  raid5 - if layout is right
8818 	 */
8819 	if (mddev->level == 0)
8820 		return raid45_takeover_raid0(mddev, 4);
8821 	if (mddev->level == 5 &&
8822 	    mddev->layout == ALGORITHM_PARITY_N) {
8823 		mddev->new_layout = 0;
8824 		mddev->new_level = 4;
8825 		return setup_conf(mddev);
8826 	}
8827 	return ERR_PTR(-EINVAL);
8828 }
8829 
8830 static struct md_personality raid5_personality;
8831 
8832 static void *raid6_takeover(struct mddev *mddev)
8833 {
8834 	/* Currently can only take over a raid5.  We map the
8835 	 * personality to an equivalent raid6 personality
8836 	 * with the Q block at the end.
8837 	 */
8838 	int new_layout;
8839 
8840 	if (mddev->pers != &raid5_personality)
8841 		return ERR_PTR(-EINVAL);
8842 	if (mddev->degraded > 1)
8843 		return ERR_PTR(-EINVAL);
8844 	if (mddev->raid_disks > 253)
8845 		return ERR_PTR(-EINVAL);
8846 	if (mddev->raid_disks < 3)
8847 		return ERR_PTR(-EINVAL);
8848 
8849 	switch (mddev->layout) {
8850 	case ALGORITHM_LEFT_ASYMMETRIC:
8851 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8852 		break;
8853 	case ALGORITHM_RIGHT_ASYMMETRIC:
8854 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8855 		break;
8856 	case ALGORITHM_LEFT_SYMMETRIC:
8857 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8858 		break;
8859 	case ALGORITHM_RIGHT_SYMMETRIC:
8860 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8861 		break;
8862 	case ALGORITHM_PARITY_0:
8863 		new_layout = ALGORITHM_PARITY_0_6;
8864 		break;
8865 	case ALGORITHM_PARITY_N:
8866 		new_layout = ALGORITHM_PARITY_N;
8867 		break;
8868 	default:
8869 		return ERR_PTR(-EINVAL);
8870 	}
8871 	mddev->new_level = 6;
8872 	mddev->new_layout = new_layout;
8873 	mddev->delta_disks = 1;
8874 	mddev->raid_disks += 1;
8875 	return setup_conf(mddev);
8876 }
8877 
8878 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8879 {
8880 	struct r5conf *conf;
8881 	int err;
8882 
8883 	err = mddev_suspend_and_lock(mddev);
8884 	if (err)
8885 		return err;
8886 	conf = mddev->private;
8887 	if (!conf) {
8888 		mddev_unlock_and_resume(mddev);
8889 		return -ENODEV;
8890 	}
8891 
8892 	if (strncmp(buf, "ppl", 3) == 0) {
8893 		/* ppl only works with RAID 5 */
8894 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8895 			err = log_init(conf, NULL, true);
8896 			if (!err) {
8897 				err = resize_stripes(conf, conf->pool_size);
8898 				if (err)
8899 					log_exit(conf);
8900 			}
8901 		} else
8902 			err = -EINVAL;
8903 	} else if (strncmp(buf, "resync", 6) == 0) {
8904 		if (raid5_has_ppl(conf)) {
8905 			log_exit(conf);
8906 			err = resize_stripes(conf, conf->pool_size);
8907 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8908 			   r5l_log_disk_error(conf)) {
8909 			bool journal_dev_exists = false;
8910 			struct md_rdev *rdev;
8911 
8912 			rdev_for_each(rdev, mddev)
8913 				if (test_bit(Journal, &rdev->flags)) {
8914 					journal_dev_exists = true;
8915 					break;
8916 				}
8917 
8918 			if (!journal_dev_exists)
8919 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8920 			else  /* need remove journal device first */
8921 				err = -EBUSY;
8922 		} else
8923 			err = -EINVAL;
8924 	} else {
8925 		err = -EINVAL;
8926 	}
8927 
8928 	if (!err)
8929 		md_update_sb(mddev, 1);
8930 
8931 	mddev_unlock_and_resume(mddev);
8932 
8933 	return err;
8934 }
8935 
8936 static int raid5_start(struct mddev *mddev)
8937 {
8938 	struct r5conf *conf = mddev->private;
8939 
8940 	return r5l_start(conf->log);
8941 }
8942 
8943 /*
8944  * This is only used for dm-raid456, caller already frozen sync_thread, hence
8945  * if rehsape is still in progress, io that is waiting for reshape can never be
8946  * done now, hence wake up and handle those IO.
8947  */
8948 static void raid5_prepare_suspend(struct mddev *mddev)
8949 {
8950 	struct r5conf *conf = mddev->private;
8951 
8952 	wake_up(&conf->wait_for_reshape);
8953 }
8954 
8955 static struct md_personality raid6_personality =
8956 {
8957 	.name		= "raid6",
8958 	.level		= 6,
8959 	.owner		= THIS_MODULE,
8960 	.make_request	= raid5_make_request,
8961 	.run		= raid5_run,
8962 	.start		= raid5_start,
8963 	.free		= raid5_free,
8964 	.status		= raid5_status,
8965 	.error_handler	= raid5_error,
8966 	.hot_add_disk	= raid5_add_disk,
8967 	.hot_remove_disk= raid5_remove_disk,
8968 	.spare_active	= raid5_spare_active,
8969 	.sync_request	= raid5_sync_request,
8970 	.resize		= raid5_resize,
8971 	.size		= raid5_size,
8972 	.check_reshape	= raid6_check_reshape,
8973 	.start_reshape  = raid5_start_reshape,
8974 	.finish_reshape = raid5_finish_reshape,
8975 	.quiesce	= raid5_quiesce,
8976 	.takeover	= raid6_takeover,
8977 	.change_consistency_policy = raid5_change_consistency_policy,
8978 	.prepare_suspend = raid5_prepare_suspend,
8979 	.bitmap_sector	= raid5_bitmap_sector,
8980 };
8981 static struct md_personality raid5_personality =
8982 {
8983 	.name		= "raid5",
8984 	.level		= 5,
8985 	.owner		= THIS_MODULE,
8986 	.make_request	= raid5_make_request,
8987 	.run		= raid5_run,
8988 	.start		= raid5_start,
8989 	.free		= raid5_free,
8990 	.status		= raid5_status,
8991 	.error_handler	= raid5_error,
8992 	.hot_add_disk	= raid5_add_disk,
8993 	.hot_remove_disk= raid5_remove_disk,
8994 	.spare_active	= raid5_spare_active,
8995 	.sync_request	= raid5_sync_request,
8996 	.resize		= raid5_resize,
8997 	.size		= raid5_size,
8998 	.check_reshape	= raid5_check_reshape,
8999 	.start_reshape  = raid5_start_reshape,
9000 	.finish_reshape = raid5_finish_reshape,
9001 	.quiesce	= raid5_quiesce,
9002 	.takeover	= raid5_takeover,
9003 	.change_consistency_policy = raid5_change_consistency_policy,
9004 	.prepare_suspend = raid5_prepare_suspend,
9005 	.bitmap_sector	= raid5_bitmap_sector,
9006 };
9007 
9008 static struct md_personality raid4_personality =
9009 {
9010 	.name		= "raid4",
9011 	.level		= 4,
9012 	.owner		= THIS_MODULE,
9013 	.make_request	= raid5_make_request,
9014 	.run		= raid5_run,
9015 	.start		= raid5_start,
9016 	.free		= raid5_free,
9017 	.status		= raid5_status,
9018 	.error_handler	= raid5_error,
9019 	.hot_add_disk	= raid5_add_disk,
9020 	.hot_remove_disk= raid5_remove_disk,
9021 	.spare_active	= raid5_spare_active,
9022 	.sync_request	= raid5_sync_request,
9023 	.resize		= raid5_resize,
9024 	.size		= raid5_size,
9025 	.check_reshape	= raid5_check_reshape,
9026 	.start_reshape  = raid5_start_reshape,
9027 	.finish_reshape = raid5_finish_reshape,
9028 	.quiesce	= raid5_quiesce,
9029 	.takeover	= raid4_takeover,
9030 	.change_consistency_policy = raid5_change_consistency_policy,
9031 	.prepare_suspend = raid5_prepare_suspend,
9032 	.bitmap_sector	= raid5_bitmap_sector,
9033 };
9034 
9035 static int __init raid5_init(void)
9036 {
9037 	int ret;
9038 
9039 	raid5_wq = alloc_workqueue("raid5wq",
9040 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9041 	if (!raid5_wq)
9042 		return -ENOMEM;
9043 
9044 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9045 				      "md/raid5:prepare",
9046 				      raid456_cpu_up_prepare,
9047 				      raid456_cpu_dead);
9048 	if (ret) {
9049 		destroy_workqueue(raid5_wq);
9050 		return ret;
9051 	}
9052 	register_md_personality(&raid6_personality);
9053 	register_md_personality(&raid5_personality);
9054 	register_md_personality(&raid4_personality);
9055 	return 0;
9056 }
9057 
9058 static void raid5_exit(void)
9059 {
9060 	unregister_md_personality(&raid6_personality);
9061 	unregister_md_personality(&raid5_personality);
9062 	unregister_md_personality(&raid4_personality);
9063 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9064 	destroy_workqueue(raid5_wq);
9065 }
9066 
9067 module_init(raid5_init);
9068 module_exit(raid5_exit);
9069 MODULE_LICENSE("GPL");
9070 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9071 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9072 MODULE_ALIAS("md-raid5");
9073 MODULE_ALIAS("md-raid4");
9074 MODULE_ALIAS("md-level-5");
9075 MODULE_ALIAS("md-level-4");
9076 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9077 MODULE_ALIAS("md-raid6");
9078 MODULE_ALIAS("md-level-6");
9079 
9080 /* This used to be two separate modules, they were: */
9081 MODULE_ALIAS("raid5");
9082 MODULE_ALIAS("raid6");
9083