xref: /linux/drivers/md/raid5.c (revision 18f90d372cf35b387663f1567de701e5393f6eb5)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 
58 #include <trace/events/block.h>
59 #include <linux/list_sort.h>
60 
61 #include "md.h"
62 #include "raid5.h"
63 #include "raid0.h"
64 #include "md-bitmap.h"
65 #include "raid5-log.h"
66 
67 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
68 
69 #define cpu_to_group(cpu) cpu_to_node(cpu)
70 #define ANY_GROUP NUMA_NO_NODE
71 
72 static bool devices_handle_discard_safely = false;
73 module_param(devices_handle_discard_safely, bool, 0644);
74 MODULE_PARM_DESC(devices_handle_discard_safely,
75 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
76 static struct workqueue_struct *raid5_wq;
77 
78 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
79 {
80 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
81 	return &conf->stripe_hashtbl[hash];
82 }
83 
84 static inline int stripe_hash_locks_hash(sector_t sect)
85 {
86 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
87 }
88 
89 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
90 {
91 	spin_lock_irq(conf->hash_locks + hash);
92 	spin_lock(&conf->device_lock);
93 }
94 
95 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
96 {
97 	spin_unlock(&conf->device_lock);
98 	spin_unlock_irq(conf->hash_locks + hash);
99 }
100 
101 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
102 {
103 	int i;
104 	spin_lock_irq(conf->hash_locks);
105 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
106 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
107 	spin_lock(&conf->device_lock);
108 }
109 
110 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	spin_unlock(&conf->device_lock);
114 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 		spin_unlock(conf->hash_locks + i);
116 	spin_unlock_irq(conf->hash_locks);
117 }
118 
119 /* Find first data disk in a raid6 stripe */
120 static inline int raid6_d0(struct stripe_head *sh)
121 {
122 	if (sh->ddf_layout)
123 		/* ddf always start from first device */
124 		return 0;
125 	/* md starts just after Q block */
126 	if (sh->qd_idx == sh->disks - 1)
127 		return 0;
128 	else
129 		return sh->qd_idx + 1;
130 }
131 static inline int raid6_next_disk(int disk, int raid_disks)
132 {
133 	disk++;
134 	return (disk < raid_disks) ? disk : 0;
135 }
136 
137 /* When walking through the disks in a raid5, starting at raid6_d0,
138  * We need to map each disk to a 'slot', where the data disks are slot
139  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140  * is raid_disks-1.  This help does that mapping.
141  */
142 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 			     int *count, int syndrome_disks)
144 {
145 	int slot = *count;
146 
147 	if (sh->ddf_layout)
148 		(*count)++;
149 	if (idx == sh->pd_idx)
150 		return syndrome_disks;
151 	if (idx == sh->qd_idx)
152 		return syndrome_disks + 1;
153 	if (!sh->ddf_layout)
154 		(*count)++;
155 	return slot;
156 }
157 
158 static void print_raid5_conf (struct r5conf *conf);
159 
160 static int stripe_operations_active(struct stripe_head *sh)
161 {
162 	return sh->check_state || sh->reconstruct_state ||
163 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165 }
166 
167 static bool stripe_is_lowprio(struct stripe_head *sh)
168 {
169 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
172 }
173 
174 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175 {
176 	struct r5conf *conf = sh->raid_conf;
177 	struct r5worker_group *group;
178 	int thread_cnt;
179 	int i, cpu = sh->cpu;
180 
181 	if (!cpu_online(cpu)) {
182 		cpu = cpumask_any(cpu_online_mask);
183 		sh->cpu = cpu;
184 	}
185 
186 	if (list_empty(&sh->lru)) {
187 		struct r5worker_group *group;
188 		group = conf->worker_groups + cpu_to_group(cpu);
189 		if (stripe_is_lowprio(sh))
190 			list_add_tail(&sh->lru, &group->loprio_list);
191 		else
192 			list_add_tail(&sh->lru, &group->handle_list);
193 		group->stripes_cnt++;
194 		sh->group = group;
195 	}
196 
197 	if (conf->worker_cnt_per_group == 0) {
198 		md_wakeup_thread(conf->mddev->thread);
199 		return;
200 	}
201 
202 	group = conf->worker_groups + cpu_to_group(sh->cpu);
203 
204 	group->workers[0].working = true;
205 	/* at least one worker should run to avoid race */
206 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
207 
208 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
209 	/* wakeup more workers */
210 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
211 		if (group->workers[i].working == false) {
212 			group->workers[i].working = true;
213 			queue_work_on(sh->cpu, raid5_wq,
214 				      &group->workers[i].work);
215 			thread_cnt--;
216 		}
217 	}
218 }
219 
220 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
221 			      struct list_head *temp_inactive_list)
222 {
223 	int i;
224 	int injournal = 0;	/* number of date pages with R5_InJournal */
225 
226 	BUG_ON(!list_empty(&sh->lru));
227 	BUG_ON(atomic_read(&conf->active_stripes)==0);
228 
229 	if (r5c_is_writeback(conf->log))
230 		for (i = sh->disks; i--; )
231 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
232 				injournal++;
233 	/*
234 	 * In the following cases, the stripe cannot be released to cached
235 	 * lists. Therefore, we make the stripe write out and set
236 	 * STRIPE_HANDLE:
237 	 *   1. when quiesce in r5c write back;
238 	 *   2. when resync is requested fot the stripe.
239 	 */
240 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
241 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
242 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
243 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
244 			r5c_make_stripe_write_out(sh);
245 		set_bit(STRIPE_HANDLE, &sh->state);
246 	}
247 
248 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
249 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
250 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
251 			list_add_tail(&sh->lru, &conf->delayed_list);
252 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
253 			   sh->bm_seq - conf->seq_write > 0)
254 			list_add_tail(&sh->lru, &conf->bitmap_list);
255 		else {
256 			clear_bit(STRIPE_DELAYED, &sh->state);
257 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
258 			if (conf->worker_cnt_per_group == 0) {
259 				if (stripe_is_lowprio(sh))
260 					list_add_tail(&sh->lru,
261 							&conf->loprio_list);
262 				else
263 					list_add_tail(&sh->lru,
264 							&conf->handle_list);
265 			} else {
266 				raid5_wakeup_stripe_thread(sh);
267 				return;
268 			}
269 		}
270 		md_wakeup_thread(conf->mddev->thread);
271 	} else {
272 		BUG_ON(stripe_operations_active(sh));
273 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
274 			if (atomic_dec_return(&conf->preread_active_stripes)
275 			    < IO_THRESHOLD)
276 				md_wakeup_thread(conf->mddev->thread);
277 		atomic_dec(&conf->active_stripes);
278 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
279 			if (!r5c_is_writeback(conf->log))
280 				list_add_tail(&sh->lru, temp_inactive_list);
281 			else {
282 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
283 				if (injournal == 0)
284 					list_add_tail(&sh->lru, temp_inactive_list);
285 				else if (injournal == conf->raid_disks - conf->max_degraded) {
286 					/* full stripe */
287 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
288 						atomic_inc(&conf->r5c_cached_full_stripes);
289 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
290 						atomic_dec(&conf->r5c_cached_partial_stripes);
291 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
292 					r5c_check_cached_full_stripe(conf);
293 				} else
294 					/*
295 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
296 					 * r5c_try_caching_write(). No need to
297 					 * set it again.
298 					 */
299 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
300 			}
301 		}
302 	}
303 }
304 
305 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
306 			     struct list_head *temp_inactive_list)
307 {
308 	if (atomic_dec_and_test(&sh->count))
309 		do_release_stripe(conf, sh, temp_inactive_list);
310 }
311 
312 /*
313  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
314  *
315  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
316  * given time. Adding stripes only takes device lock, while deleting stripes
317  * only takes hash lock.
318  */
319 static void release_inactive_stripe_list(struct r5conf *conf,
320 					 struct list_head *temp_inactive_list,
321 					 int hash)
322 {
323 	int size;
324 	bool do_wakeup = false;
325 	unsigned long flags;
326 
327 	if (hash == NR_STRIPE_HASH_LOCKS) {
328 		size = NR_STRIPE_HASH_LOCKS;
329 		hash = NR_STRIPE_HASH_LOCKS - 1;
330 	} else
331 		size = 1;
332 	while (size) {
333 		struct list_head *list = &temp_inactive_list[size - 1];
334 
335 		/*
336 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
337 		 * remove stripes from the list
338 		 */
339 		if (!list_empty_careful(list)) {
340 			spin_lock_irqsave(conf->hash_locks + hash, flags);
341 			if (list_empty(conf->inactive_list + hash) &&
342 			    !list_empty(list))
343 				atomic_dec(&conf->empty_inactive_list_nr);
344 			list_splice_tail_init(list, conf->inactive_list + hash);
345 			do_wakeup = true;
346 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
347 		}
348 		size--;
349 		hash--;
350 	}
351 
352 	if (do_wakeup) {
353 		wake_up(&conf->wait_for_stripe);
354 		if (atomic_read(&conf->active_stripes) == 0)
355 			wake_up(&conf->wait_for_quiescent);
356 		if (conf->retry_read_aligned)
357 			md_wakeup_thread(conf->mddev->thread);
358 	}
359 }
360 
361 /* should hold conf->device_lock already */
362 static int release_stripe_list(struct r5conf *conf,
363 			       struct list_head *temp_inactive_list)
364 {
365 	struct stripe_head *sh, *t;
366 	int count = 0;
367 	struct llist_node *head;
368 
369 	head = llist_del_all(&conf->released_stripes);
370 	head = llist_reverse_order(head);
371 	llist_for_each_entry_safe(sh, t, head, release_list) {
372 		int hash;
373 
374 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
375 		smp_mb();
376 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
377 		/*
378 		 * Don't worry the bit is set here, because if the bit is set
379 		 * again, the count is always > 1. This is true for
380 		 * STRIPE_ON_UNPLUG_LIST bit too.
381 		 */
382 		hash = sh->hash_lock_index;
383 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
384 		count++;
385 	}
386 
387 	return count;
388 }
389 
390 void raid5_release_stripe(struct stripe_head *sh)
391 {
392 	struct r5conf *conf = sh->raid_conf;
393 	unsigned long flags;
394 	struct list_head list;
395 	int hash;
396 	bool wakeup;
397 
398 	/* Avoid release_list until the last reference.
399 	 */
400 	if (atomic_add_unless(&sh->count, -1, 1))
401 		return;
402 
403 	if (unlikely(!conf->mddev->thread) ||
404 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
405 		goto slow_path;
406 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
407 	if (wakeup)
408 		md_wakeup_thread(conf->mddev->thread);
409 	return;
410 slow_path:
411 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
412 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
413 		INIT_LIST_HEAD(&list);
414 		hash = sh->hash_lock_index;
415 		do_release_stripe(conf, sh, &list);
416 		spin_unlock_irqrestore(&conf->device_lock, flags);
417 		release_inactive_stripe_list(conf, &list, hash);
418 	}
419 }
420 
421 static inline void remove_hash(struct stripe_head *sh)
422 {
423 	pr_debug("remove_hash(), stripe %llu\n",
424 		(unsigned long long)sh->sector);
425 
426 	hlist_del_init(&sh->hash);
427 }
428 
429 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
430 {
431 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
432 
433 	pr_debug("insert_hash(), stripe %llu\n",
434 		(unsigned long long)sh->sector);
435 
436 	hlist_add_head(&sh->hash, hp);
437 }
438 
439 /* find an idle stripe, make sure it is unhashed, and return it. */
440 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
441 {
442 	struct stripe_head *sh = NULL;
443 	struct list_head *first;
444 
445 	if (list_empty(conf->inactive_list + hash))
446 		goto out;
447 	first = (conf->inactive_list + hash)->next;
448 	sh = list_entry(first, struct stripe_head, lru);
449 	list_del_init(first);
450 	remove_hash(sh);
451 	atomic_inc(&conf->active_stripes);
452 	BUG_ON(hash != sh->hash_lock_index);
453 	if (list_empty(conf->inactive_list + hash))
454 		atomic_inc(&conf->empty_inactive_list_nr);
455 out:
456 	return sh;
457 }
458 
459 static void shrink_buffers(struct stripe_head *sh)
460 {
461 	struct page *p;
462 	int i;
463 	int num = sh->raid_conf->pool_size;
464 
465 	for (i = 0; i < num ; i++) {
466 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
467 		p = sh->dev[i].page;
468 		if (!p)
469 			continue;
470 		sh->dev[i].page = NULL;
471 		put_page(p);
472 	}
473 }
474 
475 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
476 {
477 	int i;
478 	int num = sh->raid_conf->pool_size;
479 
480 	for (i = 0; i < num; i++) {
481 		struct page *page;
482 
483 		if (!(page = alloc_page(gfp))) {
484 			return 1;
485 		}
486 		sh->dev[i].page = page;
487 		sh->dev[i].orig_page = page;
488 	}
489 
490 	return 0;
491 }
492 
493 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
494 			    struct stripe_head *sh);
495 
496 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
497 {
498 	struct r5conf *conf = sh->raid_conf;
499 	int i, seq;
500 
501 	BUG_ON(atomic_read(&sh->count) != 0);
502 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
503 	BUG_ON(stripe_operations_active(sh));
504 	BUG_ON(sh->batch_head);
505 
506 	pr_debug("init_stripe called, stripe %llu\n",
507 		(unsigned long long)sector);
508 retry:
509 	seq = read_seqcount_begin(&conf->gen_lock);
510 	sh->generation = conf->generation - previous;
511 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
512 	sh->sector = sector;
513 	stripe_set_idx(sector, conf, previous, sh);
514 	sh->state = 0;
515 
516 	for (i = sh->disks; i--; ) {
517 		struct r5dev *dev = &sh->dev[i];
518 
519 		if (dev->toread || dev->read || dev->towrite || dev->written ||
520 		    test_bit(R5_LOCKED, &dev->flags)) {
521 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
522 			       (unsigned long long)sh->sector, i, dev->toread,
523 			       dev->read, dev->towrite, dev->written,
524 			       test_bit(R5_LOCKED, &dev->flags));
525 			WARN_ON(1);
526 		}
527 		dev->flags = 0;
528 		dev->sector = raid5_compute_blocknr(sh, i, previous);
529 	}
530 	if (read_seqcount_retry(&conf->gen_lock, seq))
531 		goto retry;
532 	sh->overwrite_disks = 0;
533 	insert_hash(conf, sh);
534 	sh->cpu = smp_processor_id();
535 	set_bit(STRIPE_BATCH_READY, &sh->state);
536 }
537 
538 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
539 					 short generation)
540 {
541 	struct stripe_head *sh;
542 
543 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
544 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
545 		if (sh->sector == sector && sh->generation == generation)
546 			return sh;
547 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
548 	return NULL;
549 }
550 
551 /*
552  * Need to check if array has failed when deciding whether to:
553  *  - start an array
554  *  - remove non-faulty devices
555  *  - add a spare
556  *  - allow a reshape
557  * This determination is simple when no reshape is happening.
558  * However if there is a reshape, we need to carefully check
559  * both the before and after sections.
560  * This is because some failed devices may only affect one
561  * of the two sections, and some non-in_sync devices may
562  * be insync in the section most affected by failed devices.
563  */
564 int raid5_calc_degraded(struct r5conf *conf)
565 {
566 	int degraded, degraded2;
567 	int i;
568 
569 	rcu_read_lock();
570 	degraded = 0;
571 	for (i = 0; i < conf->previous_raid_disks; i++) {
572 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
573 		if (rdev && test_bit(Faulty, &rdev->flags))
574 			rdev = rcu_dereference(conf->disks[i].replacement);
575 		if (!rdev || test_bit(Faulty, &rdev->flags))
576 			degraded++;
577 		else if (test_bit(In_sync, &rdev->flags))
578 			;
579 		else
580 			/* not in-sync or faulty.
581 			 * If the reshape increases the number of devices,
582 			 * this is being recovered by the reshape, so
583 			 * this 'previous' section is not in_sync.
584 			 * If the number of devices is being reduced however,
585 			 * the device can only be part of the array if
586 			 * we are reverting a reshape, so this section will
587 			 * be in-sync.
588 			 */
589 			if (conf->raid_disks >= conf->previous_raid_disks)
590 				degraded++;
591 	}
592 	rcu_read_unlock();
593 	if (conf->raid_disks == conf->previous_raid_disks)
594 		return degraded;
595 	rcu_read_lock();
596 	degraded2 = 0;
597 	for (i = 0; i < conf->raid_disks; i++) {
598 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
599 		if (rdev && test_bit(Faulty, &rdev->flags))
600 			rdev = rcu_dereference(conf->disks[i].replacement);
601 		if (!rdev || test_bit(Faulty, &rdev->flags))
602 			degraded2++;
603 		else if (test_bit(In_sync, &rdev->flags))
604 			;
605 		else
606 			/* not in-sync or faulty.
607 			 * If reshape increases the number of devices, this
608 			 * section has already been recovered, else it
609 			 * almost certainly hasn't.
610 			 */
611 			if (conf->raid_disks <= conf->previous_raid_disks)
612 				degraded2++;
613 	}
614 	rcu_read_unlock();
615 	if (degraded2 > degraded)
616 		return degraded2;
617 	return degraded;
618 }
619 
620 static int has_failed(struct r5conf *conf)
621 {
622 	int degraded;
623 
624 	if (conf->mddev->reshape_position == MaxSector)
625 		return conf->mddev->degraded > conf->max_degraded;
626 
627 	degraded = raid5_calc_degraded(conf);
628 	if (degraded > conf->max_degraded)
629 		return 1;
630 	return 0;
631 }
632 
633 struct stripe_head *
634 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
635 			int previous, int noblock, int noquiesce)
636 {
637 	struct stripe_head *sh;
638 	int hash = stripe_hash_locks_hash(sector);
639 	int inc_empty_inactive_list_flag;
640 
641 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
642 
643 	spin_lock_irq(conf->hash_locks + hash);
644 
645 	do {
646 		wait_event_lock_irq(conf->wait_for_quiescent,
647 				    conf->quiesce == 0 || noquiesce,
648 				    *(conf->hash_locks + hash));
649 		sh = __find_stripe(conf, sector, conf->generation - previous);
650 		if (!sh) {
651 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
652 				sh = get_free_stripe(conf, hash);
653 				if (!sh && !test_bit(R5_DID_ALLOC,
654 						     &conf->cache_state))
655 					set_bit(R5_ALLOC_MORE,
656 						&conf->cache_state);
657 			}
658 			if (noblock && sh == NULL)
659 				break;
660 
661 			r5c_check_stripe_cache_usage(conf);
662 			if (!sh) {
663 				set_bit(R5_INACTIVE_BLOCKED,
664 					&conf->cache_state);
665 				r5l_wake_reclaim(conf->log, 0);
666 				wait_event_lock_irq(
667 					conf->wait_for_stripe,
668 					!list_empty(conf->inactive_list + hash) &&
669 					(atomic_read(&conf->active_stripes)
670 					 < (conf->max_nr_stripes * 3 / 4)
671 					 || !test_bit(R5_INACTIVE_BLOCKED,
672 						      &conf->cache_state)),
673 					*(conf->hash_locks + hash));
674 				clear_bit(R5_INACTIVE_BLOCKED,
675 					  &conf->cache_state);
676 			} else {
677 				init_stripe(sh, sector, previous);
678 				atomic_inc(&sh->count);
679 			}
680 		} else if (!atomic_inc_not_zero(&sh->count)) {
681 			spin_lock(&conf->device_lock);
682 			if (!atomic_read(&sh->count)) {
683 				if (!test_bit(STRIPE_HANDLE, &sh->state))
684 					atomic_inc(&conf->active_stripes);
685 				BUG_ON(list_empty(&sh->lru) &&
686 				       !test_bit(STRIPE_EXPANDING, &sh->state));
687 				inc_empty_inactive_list_flag = 0;
688 				if (!list_empty(conf->inactive_list + hash))
689 					inc_empty_inactive_list_flag = 1;
690 				list_del_init(&sh->lru);
691 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
692 					atomic_inc(&conf->empty_inactive_list_nr);
693 				if (sh->group) {
694 					sh->group->stripes_cnt--;
695 					sh->group = NULL;
696 				}
697 			}
698 			atomic_inc(&sh->count);
699 			spin_unlock(&conf->device_lock);
700 		}
701 	} while (sh == NULL);
702 
703 	spin_unlock_irq(conf->hash_locks + hash);
704 	return sh;
705 }
706 
707 static bool is_full_stripe_write(struct stripe_head *sh)
708 {
709 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
710 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
711 }
712 
713 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
714 {
715 	if (sh1 > sh2) {
716 		spin_lock_irq(&sh2->stripe_lock);
717 		spin_lock_nested(&sh1->stripe_lock, 1);
718 	} else {
719 		spin_lock_irq(&sh1->stripe_lock);
720 		spin_lock_nested(&sh2->stripe_lock, 1);
721 	}
722 }
723 
724 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
725 {
726 	spin_unlock(&sh1->stripe_lock);
727 	spin_unlock_irq(&sh2->stripe_lock);
728 }
729 
730 /* Only freshly new full stripe normal write stripe can be added to a batch list */
731 static bool stripe_can_batch(struct stripe_head *sh)
732 {
733 	struct r5conf *conf = sh->raid_conf;
734 
735 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
736 		return false;
737 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
738 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
739 		is_full_stripe_write(sh);
740 }
741 
742 /* we only do back search */
743 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
744 {
745 	struct stripe_head *head;
746 	sector_t head_sector, tmp_sec;
747 	int hash;
748 	int dd_idx;
749 	int inc_empty_inactive_list_flag;
750 
751 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
752 	tmp_sec = sh->sector;
753 	if (!sector_div(tmp_sec, conf->chunk_sectors))
754 		return;
755 	head_sector = sh->sector - STRIPE_SECTORS;
756 
757 	hash = stripe_hash_locks_hash(head_sector);
758 	spin_lock_irq(conf->hash_locks + hash);
759 	head = __find_stripe(conf, head_sector, conf->generation);
760 	if (head && !atomic_inc_not_zero(&head->count)) {
761 		spin_lock(&conf->device_lock);
762 		if (!atomic_read(&head->count)) {
763 			if (!test_bit(STRIPE_HANDLE, &head->state))
764 				atomic_inc(&conf->active_stripes);
765 			BUG_ON(list_empty(&head->lru) &&
766 			       !test_bit(STRIPE_EXPANDING, &head->state));
767 			inc_empty_inactive_list_flag = 0;
768 			if (!list_empty(conf->inactive_list + hash))
769 				inc_empty_inactive_list_flag = 1;
770 			list_del_init(&head->lru);
771 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
772 				atomic_inc(&conf->empty_inactive_list_nr);
773 			if (head->group) {
774 				head->group->stripes_cnt--;
775 				head->group = NULL;
776 			}
777 		}
778 		atomic_inc(&head->count);
779 		spin_unlock(&conf->device_lock);
780 	}
781 	spin_unlock_irq(conf->hash_locks + hash);
782 
783 	if (!head)
784 		return;
785 	if (!stripe_can_batch(head))
786 		goto out;
787 
788 	lock_two_stripes(head, sh);
789 	/* clear_batch_ready clear the flag */
790 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
791 		goto unlock_out;
792 
793 	if (sh->batch_head)
794 		goto unlock_out;
795 
796 	dd_idx = 0;
797 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
798 		dd_idx++;
799 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
800 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
801 		goto unlock_out;
802 
803 	if (head->batch_head) {
804 		spin_lock(&head->batch_head->batch_lock);
805 		/* This batch list is already running */
806 		if (!stripe_can_batch(head)) {
807 			spin_unlock(&head->batch_head->batch_lock);
808 			goto unlock_out;
809 		}
810 		/*
811 		 * We must assign batch_head of this stripe within the
812 		 * batch_lock, otherwise clear_batch_ready of batch head
813 		 * stripe could clear BATCH_READY bit of this stripe and
814 		 * this stripe->batch_head doesn't get assigned, which
815 		 * could confuse clear_batch_ready for this stripe
816 		 */
817 		sh->batch_head = head->batch_head;
818 
819 		/*
820 		 * at this point, head's BATCH_READY could be cleared, but we
821 		 * can still add the stripe to batch list
822 		 */
823 		list_add(&sh->batch_list, &head->batch_list);
824 		spin_unlock(&head->batch_head->batch_lock);
825 	} else {
826 		head->batch_head = head;
827 		sh->batch_head = head->batch_head;
828 		spin_lock(&head->batch_lock);
829 		list_add_tail(&sh->batch_list, &head->batch_list);
830 		spin_unlock(&head->batch_lock);
831 	}
832 
833 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
834 		if (atomic_dec_return(&conf->preread_active_stripes)
835 		    < IO_THRESHOLD)
836 			md_wakeup_thread(conf->mddev->thread);
837 
838 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
839 		int seq = sh->bm_seq;
840 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
841 		    sh->batch_head->bm_seq > seq)
842 			seq = sh->batch_head->bm_seq;
843 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
844 		sh->batch_head->bm_seq = seq;
845 	}
846 
847 	atomic_inc(&sh->count);
848 unlock_out:
849 	unlock_two_stripes(head, sh);
850 out:
851 	raid5_release_stripe(head);
852 }
853 
854 /* Determine if 'data_offset' or 'new_data_offset' should be used
855  * in this stripe_head.
856  */
857 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
858 {
859 	sector_t progress = conf->reshape_progress;
860 	/* Need a memory barrier to make sure we see the value
861 	 * of conf->generation, or ->data_offset that was set before
862 	 * reshape_progress was updated.
863 	 */
864 	smp_rmb();
865 	if (progress == MaxSector)
866 		return 0;
867 	if (sh->generation == conf->generation - 1)
868 		return 0;
869 	/* We are in a reshape, and this is a new-generation stripe,
870 	 * so use new_data_offset.
871 	 */
872 	return 1;
873 }
874 
875 static void dispatch_bio_list(struct bio_list *tmp)
876 {
877 	struct bio *bio;
878 
879 	while ((bio = bio_list_pop(tmp)))
880 		generic_make_request(bio);
881 }
882 
883 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
884 {
885 	const struct r5pending_data *da = list_entry(a,
886 				struct r5pending_data, sibling);
887 	const struct r5pending_data *db = list_entry(b,
888 				struct r5pending_data, sibling);
889 	if (da->sector > db->sector)
890 		return 1;
891 	if (da->sector < db->sector)
892 		return -1;
893 	return 0;
894 }
895 
896 static void dispatch_defer_bios(struct r5conf *conf, int target,
897 				struct bio_list *list)
898 {
899 	struct r5pending_data *data;
900 	struct list_head *first, *next = NULL;
901 	int cnt = 0;
902 
903 	if (conf->pending_data_cnt == 0)
904 		return;
905 
906 	list_sort(NULL, &conf->pending_list, cmp_stripe);
907 
908 	first = conf->pending_list.next;
909 
910 	/* temporarily move the head */
911 	if (conf->next_pending_data)
912 		list_move_tail(&conf->pending_list,
913 				&conf->next_pending_data->sibling);
914 
915 	while (!list_empty(&conf->pending_list)) {
916 		data = list_first_entry(&conf->pending_list,
917 			struct r5pending_data, sibling);
918 		if (&data->sibling == first)
919 			first = data->sibling.next;
920 		next = data->sibling.next;
921 
922 		bio_list_merge(list, &data->bios);
923 		list_move(&data->sibling, &conf->free_list);
924 		cnt++;
925 		if (cnt >= target)
926 			break;
927 	}
928 	conf->pending_data_cnt -= cnt;
929 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
930 
931 	if (next != &conf->pending_list)
932 		conf->next_pending_data = list_entry(next,
933 				struct r5pending_data, sibling);
934 	else
935 		conf->next_pending_data = NULL;
936 	/* list isn't empty */
937 	if (first != &conf->pending_list)
938 		list_move_tail(&conf->pending_list, first);
939 }
940 
941 static void flush_deferred_bios(struct r5conf *conf)
942 {
943 	struct bio_list tmp = BIO_EMPTY_LIST;
944 
945 	if (conf->pending_data_cnt == 0)
946 		return;
947 
948 	spin_lock(&conf->pending_bios_lock);
949 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
950 	BUG_ON(conf->pending_data_cnt != 0);
951 	spin_unlock(&conf->pending_bios_lock);
952 
953 	dispatch_bio_list(&tmp);
954 }
955 
956 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
957 				struct bio_list *bios)
958 {
959 	struct bio_list tmp = BIO_EMPTY_LIST;
960 	struct r5pending_data *ent;
961 
962 	spin_lock(&conf->pending_bios_lock);
963 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
964 							sibling);
965 	list_move_tail(&ent->sibling, &conf->pending_list);
966 	ent->sector = sector;
967 	bio_list_init(&ent->bios);
968 	bio_list_merge(&ent->bios, bios);
969 	conf->pending_data_cnt++;
970 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
971 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
972 
973 	spin_unlock(&conf->pending_bios_lock);
974 
975 	dispatch_bio_list(&tmp);
976 }
977 
978 static void
979 raid5_end_read_request(struct bio *bi);
980 static void
981 raid5_end_write_request(struct bio *bi);
982 
983 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
984 {
985 	struct r5conf *conf = sh->raid_conf;
986 	int i, disks = sh->disks;
987 	struct stripe_head *head_sh = sh;
988 	struct bio_list pending_bios = BIO_EMPTY_LIST;
989 	bool should_defer;
990 
991 	might_sleep();
992 
993 	if (log_stripe(sh, s) == 0)
994 		return;
995 
996 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
997 
998 	for (i = disks; i--; ) {
999 		int op, op_flags = 0;
1000 		int replace_only = 0;
1001 		struct bio *bi, *rbi;
1002 		struct md_rdev *rdev, *rrdev = NULL;
1003 
1004 		sh = head_sh;
1005 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1006 			op = REQ_OP_WRITE;
1007 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1008 				op_flags = REQ_FUA;
1009 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1010 				op = REQ_OP_DISCARD;
1011 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1012 			op = REQ_OP_READ;
1013 		else if (test_and_clear_bit(R5_WantReplace,
1014 					    &sh->dev[i].flags)) {
1015 			op = REQ_OP_WRITE;
1016 			replace_only = 1;
1017 		} else
1018 			continue;
1019 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1020 			op_flags |= REQ_SYNC;
1021 
1022 again:
1023 		bi = &sh->dev[i].req;
1024 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1025 
1026 		rcu_read_lock();
1027 		rrdev = rcu_dereference(conf->disks[i].replacement);
1028 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1029 		rdev = rcu_dereference(conf->disks[i].rdev);
1030 		if (!rdev) {
1031 			rdev = rrdev;
1032 			rrdev = NULL;
1033 		}
1034 		if (op_is_write(op)) {
1035 			if (replace_only)
1036 				rdev = NULL;
1037 			if (rdev == rrdev)
1038 				/* We raced and saw duplicates */
1039 				rrdev = NULL;
1040 		} else {
1041 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1042 				rdev = rrdev;
1043 			rrdev = NULL;
1044 		}
1045 
1046 		if (rdev && test_bit(Faulty, &rdev->flags))
1047 			rdev = NULL;
1048 		if (rdev)
1049 			atomic_inc(&rdev->nr_pending);
1050 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1051 			rrdev = NULL;
1052 		if (rrdev)
1053 			atomic_inc(&rrdev->nr_pending);
1054 		rcu_read_unlock();
1055 
1056 		/* We have already checked bad blocks for reads.  Now
1057 		 * need to check for writes.  We never accept write errors
1058 		 * on the replacement, so we don't to check rrdev.
1059 		 */
1060 		while (op_is_write(op) && rdev &&
1061 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1062 			sector_t first_bad;
1063 			int bad_sectors;
1064 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1065 					      &first_bad, &bad_sectors);
1066 			if (!bad)
1067 				break;
1068 
1069 			if (bad < 0) {
1070 				set_bit(BlockedBadBlocks, &rdev->flags);
1071 				if (!conf->mddev->external &&
1072 				    conf->mddev->sb_flags) {
1073 					/* It is very unlikely, but we might
1074 					 * still need to write out the
1075 					 * bad block log - better give it
1076 					 * a chance*/
1077 					md_check_recovery(conf->mddev);
1078 				}
1079 				/*
1080 				 * Because md_wait_for_blocked_rdev
1081 				 * will dec nr_pending, we must
1082 				 * increment it first.
1083 				 */
1084 				atomic_inc(&rdev->nr_pending);
1085 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1086 			} else {
1087 				/* Acknowledged bad block - skip the write */
1088 				rdev_dec_pending(rdev, conf->mddev);
1089 				rdev = NULL;
1090 			}
1091 		}
1092 
1093 		if (rdev) {
1094 			if (s->syncing || s->expanding || s->expanded
1095 			    || s->replacing)
1096 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1097 
1098 			set_bit(STRIPE_IO_STARTED, &sh->state);
1099 
1100 			bio_set_dev(bi, rdev->bdev);
1101 			bio_set_op_attrs(bi, op, op_flags);
1102 			bi->bi_end_io = op_is_write(op)
1103 				? raid5_end_write_request
1104 				: raid5_end_read_request;
1105 			bi->bi_private = sh;
1106 
1107 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1108 				__func__, (unsigned long long)sh->sector,
1109 				bi->bi_opf, i);
1110 			atomic_inc(&sh->count);
1111 			if (sh != head_sh)
1112 				atomic_inc(&head_sh->count);
1113 			if (use_new_offset(conf, sh))
1114 				bi->bi_iter.bi_sector = (sh->sector
1115 						 + rdev->new_data_offset);
1116 			else
1117 				bi->bi_iter.bi_sector = (sh->sector
1118 						 + rdev->data_offset);
1119 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1120 				bi->bi_opf |= REQ_NOMERGE;
1121 
1122 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1123 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1124 
1125 			if (!op_is_write(op) &&
1126 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1127 				/*
1128 				 * issuing read for a page in journal, this
1129 				 * must be preparing for prexor in rmw; read
1130 				 * the data into orig_page
1131 				 */
1132 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1133 			else
1134 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1135 			bi->bi_vcnt = 1;
1136 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1137 			bi->bi_io_vec[0].bv_offset = 0;
1138 			bi->bi_iter.bi_size = STRIPE_SIZE;
1139 			bi->bi_write_hint = sh->dev[i].write_hint;
1140 			if (!rrdev)
1141 				sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1142 			/*
1143 			 * If this is discard request, set bi_vcnt 0. We don't
1144 			 * want to confuse SCSI because SCSI will replace payload
1145 			 */
1146 			if (op == REQ_OP_DISCARD)
1147 				bi->bi_vcnt = 0;
1148 			if (rrdev)
1149 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1150 
1151 			if (conf->mddev->gendisk)
1152 				trace_block_bio_remap(bi->bi_disk->queue,
1153 						      bi, disk_devt(conf->mddev->gendisk),
1154 						      sh->dev[i].sector);
1155 			if (should_defer && op_is_write(op))
1156 				bio_list_add(&pending_bios, bi);
1157 			else
1158 				generic_make_request(bi);
1159 		}
1160 		if (rrdev) {
1161 			if (s->syncing || s->expanding || s->expanded
1162 			    || s->replacing)
1163 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1164 
1165 			set_bit(STRIPE_IO_STARTED, &sh->state);
1166 
1167 			bio_set_dev(rbi, rrdev->bdev);
1168 			bio_set_op_attrs(rbi, op, op_flags);
1169 			BUG_ON(!op_is_write(op));
1170 			rbi->bi_end_io = raid5_end_write_request;
1171 			rbi->bi_private = sh;
1172 
1173 			pr_debug("%s: for %llu schedule op %d on "
1174 				 "replacement disc %d\n",
1175 				__func__, (unsigned long long)sh->sector,
1176 				rbi->bi_opf, i);
1177 			atomic_inc(&sh->count);
1178 			if (sh != head_sh)
1179 				atomic_inc(&head_sh->count);
1180 			if (use_new_offset(conf, sh))
1181 				rbi->bi_iter.bi_sector = (sh->sector
1182 						  + rrdev->new_data_offset);
1183 			else
1184 				rbi->bi_iter.bi_sector = (sh->sector
1185 						  + rrdev->data_offset);
1186 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1187 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1188 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1189 			rbi->bi_vcnt = 1;
1190 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1191 			rbi->bi_io_vec[0].bv_offset = 0;
1192 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1193 			rbi->bi_write_hint = sh->dev[i].write_hint;
1194 			sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1195 			/*
1196 			 * If this is discard request, set bi_vcnt 0. We don't
1197 			 * want to confuse SCSI because SCSI will replace payload
1198 			 */
1199 			if (op == REQ_OP_DISCARD)
1200 				rbi->bi_vcnt = 0;
1201 			if (conf->mddev->gendisk)
1202 				trace_block_bio_remap(rbi->bi_disk->queue,
1203 						      rbi, disk_devt(conf->mddev->gendisk),
1204 						      sh->dev[i].sector);
1205 			if (should_defer && op_is_write(op))
1206 				bio_list_add(&pending_bios, rbi);
1207 			else
1208 				generic_make_request(rbi);
1209 		}
1210 		if (!rdev && !rrdev) {
1211 			if (op_is_write(op))
1212 				set_bit(STRIPE_DEGRADED, &sh->state);
1213 			pr_debug("skip op %d on disc %d for sector %llu\n",
1214 				bi->bi_opf, i, (unsigned long long)sh->sector);
1215 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1216 			set_bit(STRIPE_HANDLE, &sh->state);
1217 		}
1218 
1219 		if (!head_sh->batch_head)
1220 			continue;
1221 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1222 				      batch_list);
1223 		if (sh != head_sh)
1224 			goto again;
1225 	}
1226 
1227 	if (should_defer && !bio_list_empty(&pending_bios))
1228 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1229 }
1230 
1231 static struct dma_async_tx_descriptor *
1232 async_copy_data(int frombio, struct bio *bio, struct page **page,
1233 	sector_t sector, struct dma_async_tx_descriptor *tx,
1234 	struct stripe_head *sh, int no_skipcopy)
1235 {
1236 	struct bio_vec bvl;
1237 	struct bvec_iter iter;
1238 	struct page *bio_page;
1239 	int page_offset;
1240 	struct async_submit_ctl submit;
1241 	enum async_tx_flags flags = 0;
1242 
1243 	if (bio->bi_iter.bi_sector >= sector)
1244 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1245 	else
1246 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1247 
1248 	if (frombio)
1249 		flags |= ASYNC_TX_FENCE;
1250 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1251 
1252 	bio_for_each_segment(bvl, bio, iter) {
1253 		int len = bvl.bv_len;
1254 		int clen;
1255 		int b_offset = 0;
1256 
1257 		if (page_offset < 0) {
1258 			b_offset = -page_offset;
1259 			page_offset += b_offset;
1260 			len -= b_offset;
1261 		}
1262 
1263 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1264 			clen = STRIPE_SIZE - page_offset;
1265 		else
1266 			clen = len;
1267 
1268 		if (clen > 0) {
1269 			b_offset += bvl.bv_offset;
1270 			bio_page = bvl.bv_page;
1271 			if (frombio) {
1272 				if (sh->raid_conf->skip_copy &&
1273 				    b_offset == 0 && page_offset == 0 &&
1274 				    clen == STRIPE_SIZE &&
1275 				    !no_skipcopy)
1276 					*page = bio_page;
1277 				else
1278 					tx = async_memcpy(*page, bio_page, page_offset,
1279 						  b_offset, clen, &submit);
1280 			} else
1281 				tx = async_memcpy(bio_page, *page, b_offset,
1282 						  page_offset, clen, &submit);
1283 		}
1284 		/* chain the operations */
1285 		submit.depend_tx = tx;
1286 
1287 		if (clen < len) /* hit end of page */
1288 			break;
1289 		page_offset +=  len;
1290 	}
1291 
1292 	return tx;
1293 }
1294 
1295 static void ops_complete_biofill(void *stripe_head_ref)
1296 {
1297 	struct stripe_head *sh = stripe_head_ref;
1298 	int i;
1299 
1300 	pr_debug("%s: stripe %llu\n", __func__,
1301 		(unsigned long long)sh->sector);
1302 
1303 	/* clear completed biofills */
1304 	for (i = sh->disks; i--; ) {
1305 		struct r5dev *dev = &sh->dev[i];
1306 
1307 		/* acknowledge completion of a biofill operation */
1308 		/* and check if we need to reply to a read request,
1309 		 * new R5_Wantfill requests are held off until
1310 		 * !STRIPE_BIOFILL_RUN
1311 		 */
1312 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1313 			struct bio *rbi, *rbi2;
1314 
1315 			BUG_ON(!dev->read);
1316 			rbi = dev->read;
1317 			dev->read = NULL;
1318 			while (rbi && rbi->bi_iter.bi_sector <
1319 				dev->sector + STRIPE_SECTORS) {
1320 				rbi2 = r5_next_bio(rbi, dev->sector);
1321 				bio_endio(rbi);
1322 				rbi = rbi2;
1323 			}
1324 		}
1325 	}
1326 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1327 
1328 	set_bit(STRIPE_HANDLE, &sh->state);
1329 	raid5_release_stripe(sh);
1330 }
1331 
1332 static void ops_run_biofill(struct stripe_head *sh)
1333 {
1334 	struct dma_async_tx_descriptor *tx = NULL;
1335 	struct async_submit_ctl submit;
1336 	int i;
1337 
1338 	BUG_ON(sh->batch_head);
1339 	pr_debug("%s: stripe %llu\n", __func__,
1340 		(unsigned long long)sh->sector);
1341 
1342 	for (i = sh->disks; i--; ) {
1343 		struct r5dev *dev = &sh->dev[i];
1344 		if (test_bit(R5_Wantfill, &dev->flags)) {
1345 			struct bio *rbi;
1346 			spin_lock_irq(&sh->stripe_lock);
1347 			dev->read = rbi = dev->toread;
1348 			dev->toread = NULL;
1349 			spin_unlock_irq(&sh->stripe_lock);
1350 			while (rbi && rbi->bi_iter.bi_sector <
1351 				dev->sector + STRIPE_SECTORS) {
1352 				tx = async_copy_data(0, rbi, &dev->page,
1353 						     dev->sector, tx, sh, 0);
1354 				rbi = r5_next_bio(rbi, dev->sector);
1355 			}
1356 		}
1357 	}
1358 
1359 	atomic_inc(&sh->count);
1360 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1361 	async_trigger_callback(&submit);
1362 }
1363 
1364 static void mark_target_uptodate(struct stripe_head *sh, int target)
1365 {
1366 	struct r5dev *tgt;
1367 
1368 	if (target < 0)
1369 		return;
1370 
1371 	tgt = &sh->dev[target];
1372 	set_bit(R5_UPTODATE, &tgt->flags);
1373 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1374 	clear_bit(R5_Wantcompute, &tgt->flags);
1375 }
1376 
1377 static void ops_complete_compute(void *stripe_head_ref)
1378 {
1379 	struct stripe_head *sh = stripe_head_ref;
1380 
1381 	pr_debug("%s: stripe %llu\n", __func__,
1382 		(unsigned long long)sh->sector);
1383 
1384 	/* mark the computed target(s) as uptodate */
1385 	mark_target_uptodate(sh, sh->ops.target);
1386 	mark_target_uptodate(sh, sh->ops.target2);
1387 
1388 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1389 	if (sh->check_state == check_state_compute_run)
1390 		sh->check_state = check_state_compute_result;
1391 	set_bit(STRIPE_HANDLE, &sh->state);
1392 	raid5_release_stripe(sh);
1393 }
1394 
1395 /* return a pointer to the address conversion region of the scribble buffer */
1396 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1397 {
1398 	return percpu->scribble + i * percpu->scribble_obj_size;
1399 }
1400 
1401 /* return a pointer to the address conversion region of the scribble buffer */
1402 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1403 				 struct raid5_percpu *percpu, int i)
1404 {
1405 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1406 }
1407 
1408 static struct dma_async_tx_descriptor *
1409 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1410 {
1411 	int disks = sh->disks;
1412 	struct page **xor_srcs = to_addr_page(percpu, 0);
1413 	int target = sh->ops.target;
1414 	struct r5dev *tgt = &sh->dev[target];
1415 	struct page *xor_dest = tgt->page;
1416 	int count = 0;
1417 	struct dma_async_tx_descriptor *tx;
1418 	struct async_submit_ctl submit;
1419 	int i;
1420 
1421 	BUG_ON(sh->batch_head);
1422 
1423 	pr_debug("%s: stripe %llu block: %d\n",
1424 		__func__, (unsigned long long)sh->sector, target);
1425 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1426 
1427 	for (i = disks; i--; )
1428 		if (i != target)
1429 			xor_srcs[count++] = sh->dev[i].page;
1430 
1431 	atomic_inc(&sh->count);
1432 
1433 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1434 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1435 	if (unlikely(count == 1))
1436 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1437 	else
1438 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1439 
1440 	return tx;
1441 }
1442 
1443 /* set_syndrome_sources - populate source buffers for gen_syndrome
1444  * @srcs - (struct page *) array of size sh->disks
1445  * @sh - stripe_head to parse
1446  *
1447  * Populates srcs in proper layout order for the stripe and returns the
1448  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1449  * destination buffer is recorded in srcs[count] and the Q destination
1450  * is recorded in srcs[count+1]].
1451  */
1452 static int set_syndrome_sources(struct page **srcs,
1453 				struct stripe_head *sh,
1454 				int srctype)
1455 {
1456 	int disks = sh->disks;
1457 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1458 	int d0_idx = raid6_d0(sh);
1459 	int count;
1460 	int i;
1461 
1462 	for (i = 0; i < disks; i++)
1463 		srcs[i] = NULL;
1464 
1465 	count = 0;
1466 	i = d0_idx;
1467 	do {
1468 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1469 		struct r5dev *dev = &sh->dev[i];
1470 
1471 		if (i == sh->qd_idx || i == sh->pd_idx ||
1472 		    (srctype == SYNDROME_SRC_ALL) ||
1473 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1474 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1475 		      test_bit(R5_InJournal, &dev->flags))) ||
1476 		    (srctype == SYNDROME_SRC_WRITTEN &&
1477 		     (dev->written ||
1478 		      test_bit(R5_InJournal, &dev->flags)))) {
1479 			if (test_bit(R5_InJournal, &dev->flags))
1480 				srcs[slot] = sh->dev[i].orig_page;
1481 			else
1482 				srcs[slot] = sh->dev[i].page;
1483 		}
1484 		i = raid6_next_disk(i, disks);
1485 	} while (i != d0_idx);
1486 
1487 	return syndrome_disks;
1488 }
1489 
1490 static struct dma_async_tx_descriptor *
1491 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1492 {
1493 	int disks = sh->disks;
1494 	struct page **blocks = to_addr_page(percpu, 0);
1495 	int target;
1496 	int qd_idx = sh->qd_idx;
1497 	struct dma_async_tx_descriptor *tx;
1498 	struct async_submit_ctl submit;
1499 	struct r5dev *tgt;
1500 	struct page *dest;
1501 	int i;
1502 	int count;
1503 
1504 	BUG_ON(sh->batch_head);
1505 	if (sh->ops.target < 0)
1506 		target = sh->ops.target2;
1507 	else if (sh->ops.target2 < 0)
1508 		target = sh->ops.target;
1509 	else
1510 		/* we should only have one valid target */
1511 		BUG();
1512 	BUG_ON(target < 0);
1513 	pr_debug("%s: stripe %llu block: %d\n",
1514 		__func__, (unsigned long long)sh->sector, target);
1515 
1516 	tgt = &sh->dev[target];
1517 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1518 	dest = tgt->page;
1519 
1520 	atomic_inc(&sh->count);
1521 
1522 	if (target == qd_idx) {
1523 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1524 		blocks[count] = NULL; /* regenerating p is not necessary */
1525 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1526 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527 				  ops_complete_compute, sh,
1528 				  to_addr_conv(sh, percpu, 0));
1529 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1530 	} else {
1531 		/* Compute any data- or p-drive using XOR */
1532 		count = 0;
1533 		for (i = disks; i-- ; ) {
1534 			if (i == target || i == qd_idx)
1535 				continue;
1536 			blocks[count++] = sh->dev[i].page;
1537 		}
1538 
1539 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1540 				  NULL, ops_complete_compute, sh,
1541 				  to_addr_conv(sh, percpu, 0));
1542 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1543 	}
1544 
1545 	return tx;
1546 }
1547 
1548 static struct dma_async_tx_descriptor *
1549 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1550 {
1551 	int i, count, disks = sh->disks;
1552 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1553 	int d0_idx = raid6_d0(sh);
1554 	int faila = -1, failb = -1;
1555 	int target = sh->ops.target;
1556 	int target2 = sh->ops.target2;
1557 	struct r5dev *tgt = &sh->dev[target];
1558 	struct r5dev *tgt2 = &sh->dev[target2];
1559 	struct dma_async_tx_descriptor *tx;
1560 	struct page **blocks = to_addr_page(percpu, 0);
1561 	struct async_submit_ctl submit;
1562 
1563 	BUG_ON(sh->batch_head);
1564 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1565 		 __func__, (unsigned long long)sh->sector, target, target2);
1566 	BUG_ON(target < 0 || target2 < 0);
1567 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1568 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1569 
1570 	/* we need to open-code set_syndrome_sources to handle the
1571 	 * slot number conversion for 'faila' and 'failb'
1572 	 */
1573 	for (i = 0; i < disks ; i++)
1574 		blocks[i] = NULL;
1575 	count = 0;
1576 	i = d0_idx;
1577 	do {
1578 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1579 
1580 		blocks[slot] = sh->dev[i].page;
1581 
1582 		if (i == target)
1583 			faila = slot;
1584 		if (i == target2)
1585 			failb = slot;
1586 		i = raid6_next_disk(i, disks);
1587 	} while (i != d0_idx);
1588 
1589 	BUG_ON(faila == failb);
1590 	if (failb < faila)
1591 		swap(faila, failb);
1592 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1593 		 __func__, (unsigned long long)sh->sector, faila, failb);
1594 
1595 	atomic_inc(&sh->count);
1596 
1597 	if (failb == syndrome_disks+1) {
1598 		/* Q disk is one of the missing disks */
1599 		if (faila == syndrome_disks) {
1600 			/* Missing P+Q, just recompute */
1601 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1602 					  ops_complete_compute, sh,
1603 					  to_addr_conv(sh, percpu, 0));
1604 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1605 						  STRIPE_SIZE, &submit);
1606 		} else {
1607 			struct page *dest;
1608 			int data_target;
1609 			int qd_idx = sh->qd_idx;
1610 
1611 			/* Missing D+Q: recompute D from P, then recompute Q */
1612 			if (target == qd_idx)
1613 				data_target = target2;
1614 			else
1615 				data_target = target;
1616 
1617 			count = 0;
1618 			for (i = disks; i-- ; ) {
1619 				if (i == data_target || i == qd_idx)
1620 					continue;
1621 				blocks[count++] = sh->dev[i].page;
1622 			}
1623 			dest = sh->dev[data_target].page;
1624 			init_async_submit(&submit,
1625 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1626 					  NULL, NULL, NULL,
1627 					  to_addr_conv(sh, percpu, 0));
1628 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1629 				       &submit);
1630 
1631 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1632 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1633 					  ops_complete_compute, sh,
1634 					  to_addr_conv(sh, percpu, 0));
1635 			return async_gen_syndrome(blocks, 0, count+2,
1636 						  STRIPE_SIZE, &submit);
1637 		}
1638 	} else {
1639 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1640 				  ops_complete_compute, sh,
1641 				  to_addr_conv(sh, percpu, 0));
1642 		if (failb == syndrome_disks) {
1643 			/* We're missing D+P. */
1644 			return async_raid6_datap_recov(syndrome_disks+2,
1645 						       STRIPE_SIZE, faila,
1646 						       blocks, &submit);
1647 		} else {
1648 			/* We're missing D+D. */
1649 			return async_raid6_2data_recov(syndrome_disks+2,
1650 						       STRIPE_SIZE, faila, failb,
1651 						       blocks, &submit);
1652 		}
1653 	}
1654 }
1655 
1656 static void ops_complete_prexor(void *stripe_head_ref)
1657 {
1658 	struct stripe_head *sh = stripe_head_ref;
1659 
1660 	pr_debug("%s: stripe %llu\n", __func__,
1661 		(unsigned long long)sh->sector);
1662 
1663 	if (r5c_is_writeback(sh->raid_conf->log))
1664 		/*
1665 		 * raid5-cache write back uses orig_page during prexor.
1666 		 * After prexor, it is time to free orig_page
1667 		 */
1668 		r5c_release_extra_page(sh);
1669 }
1670 
1671 static struct dma_async_tx_descriptor *
1672 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1673 		struct dma_async_tx_descriptor *tx)
1674 {
1675 	int disks = sh->disks;
1676 	struct page **xor_srcs = to_addr_page(percpu, 0);
1677 	int count = 0, pd_idx = sh->pd_idx, i;
1678 	struct async_submit_ctl submit;
1679 
1680 	/* existing parity data subtracted */
1681 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1682 
1683 	BUG_ON(sh->batch_head);
1684 	pr_debug("%s: stripe %llu\n", __func__,
1685 		(unsigned long long)sh->sector);
1686 
1687 	for (i = disks; i--; ) {
1688 		struct r5dev *dev = &sh->dev[i];
1689 		/* Only process blocks that are known to be uptodate */
1690 		if (test_bit(R5_InJournal, &dev->flags))
1691 			xor_srcs[count++] = dev->orig_page;
1692 		else if (test_bit(R5_Wantdrain, &dev->flags))
1693 			xor_srcs[count++] = dev->page;
1694 	}
1695 
1696 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1697 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1698 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1699 
1700 	return tx;
1701 }
1702 
1703 static struct dma_async_tx_descriptor *
1704 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1705 		struct dma_async_tx_descriptor *tx)
1706 {
1707 	struct page **blocks = to_addr_page(percpu, 0);
1708 	int count;
1709 	struct async_submit_ctl submit;
1710 
1711 	pr_debug("%s: stripe %llu\n", __func__,
1712 		(unsigned long long)sh->sector);
1713 
1714 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1715 
1716 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1717 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1718 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1719 
1720 	return tx;
1721 }
1722 
1723 static struct dma_async_tx_descriptor *
1724 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1725 {
1726 	struct r5conf *conf = sh->raid_conf;
1727 	int disks = sh->disks;
1728 	int i;
1729 	struct stripe_head *head_sh = sh;
1730 
1731 	pr_debug("%s: stripe %llu\n", __func__,
1732 		(unsigned long long)sh->sector);
1733 
1734 	for (i = disks; i--; ) {
1735 		struct r5dev *dev;
1736 		struct bio *chosen;
1737 
1738 		sh = head_sh;
1739 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1740 			struct bio *wbi;
1741 
1742 again:
1743 			dev = &sh->dev[i];
1744 			/*
1745 			 * clear R5_InJournal, so when rewriting a page in
1746 			 * journal, it is not skipped by r5l_log_stripe()
1747 			 */
1748 			clear_bit(R5_InJournal, &dev->flags);
1749 			spin_lock_irq(&sh->stripe_lock);
1750 			chosen = dev->towrite;
1751 			dev->towrite = NULL;
1752 			sh->overwrite_disks = 0;
1753 			BUG_ON(dev->written);
1754 			wbi = dev->written = chosen;
1755 			spin_unlock_irq(&sh->stripe_lock);
1756 			WARN_ON(dev->page != dev->orig_page);
1757 
1758 			while (wbi && wbi->bi_iter.bi_sector <
1759 				dev->sector + STRIPE_SECTORS) {
1760 				if (wbi->bi_opf & REQ_FUA)
1761 					set_bit(R5_WantFUA, &dev->flags);
1762 				if (wbi->bi_opf & REQ_SYNC)
1763 					set_bit(R5_SyncIO, &dev->flags);
1764 				if (bio_op(wbi) == REQ_OP_DISCARD)
1765 					set_bit(R5_Discard, &dev->flags);
1766 				else {
1767 					tx = async_copy_data(1, wbi, &dev->page,
1768 							     dev->sector, tx, sh,
1769 							     r5c_is_writeback(conf->log));
1770 					if (dev->page != dev->orig_page &&
1771 					    !r5c_is_writeback(conf->log)) {
1772 						set_bit(R5_SkipCopy, &dev->flags);
1773 						clear_bit(R5_UPTODATE, &dev->flags);
1774 						clear_bit(R5_OVERWRITE, &dev->flags);
1775 					}
1776 				}
1777 				wbi = r5_next_bio(wbi, dev->sector);
1778 			}
1779 
1780 			if (head_sh->batch_head) {
1781 				sh = list_first_entry(&sh->batch_list,
1782 						      struct stripe_head,
1783 						      batch_list);
1784 				if (sh == head_sh)
1785 					continue;
1786 				goto again;
1787 			}
1788 		}
1789 	}
1790 
1791 	return tx;
1792 }
1793 
1794 static void ops_complete_reconstruct(void *stripe_head_ref)
1795 {
1796 	struct stripe_head *sh = stripe_head_ref;
1797 	int disks = sh->disks;
1798 	int pd_idx = sh->pd_idx;
1799 	int qd_idx = sh->qd_idx;
1800 	int i;
1801 	bool fua = false, sync = false, discard = false;
1802 
1803 	pr_debug("%s: stripe %llu\n", __func__,
1804 		(unsigned long long)sh->sector);
1805 
1806 	for (i = disks; i--; ) {
1807 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1808 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1809 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1810 	}
1811 
1812 	for (i = disks; i--; ) {
1813 		struct r5dev *dev = &sh->dev[i];
1814 
1815 		if (dev->written || i == pd_idx || i == qd_idx) {
1816 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1817 				set_bit(R5_UPTODATE, &dev->flags);
1818 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1819 					set_bit(R5_Expanded, &dev->flags);
1820 			}
1821 			if (fua)
1822 				set_bit(R5_WantFUA, &dev->flags);
1823 			if (sync)
1824 				set_bit(R5_SyncIO, &dev->flags);
1825 		}
1826 	}
1827 
1828 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1829 		sh->reconstruct_state = reconstruct_state_drain_result;
1830 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1831 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1832 	else {
1833 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1834 		sh->reconstruct_state = reconstruct_state_result;
1835 	}
1836 
1837 	set_bit(STRIPE_HANDLE, &sh->state);
1838 	raid5_release_stripe(sh);
1839 }
1840 
1841 static void
1842 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1843 		     struct dma_async_tx_descriptor *tx)
1844 {
1845 	int disks = sh->disks;
1846 	struct page **xor_srcs;
1847 	struct async_submit_ctl submit;
1848 	int count, pd_idx = sh->pd_idx, i;
1849 	struct page *xor_dest;
1850 	int prexor = 0;
1851 	unsigned long flags;
1852 	int j = 0;
1853 	struct stripe_head *head_sh = sh;
1854 	int last_stripe;
1855 
1856 	pr_debug("%s: stripe %llu\n", __func__,
1857 		(unsigned long long)sh->sector);
1858 
1859 	for (i = 0; i < sh->disks; i++) {
1860 		if (pd_idx == i)
1861 			continue;
1862 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1863 			break;
1864 	}
1865 	if (i >= sh->disks) {
1866 		atomic_inc(&sh->count);
1867 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1868 		ops_complete_reconstruct(sh);
1869 		return;
1870 	}
1871 again:
1872 	count = 0;
1873 	xor_srcs = to_addr_page(percpu, j);
1874 	/* check if prexor is active which means only process blocks
1875 	 * that are part of a read-modify-write (written)
1876 	 */
1877 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1878 		prexor = 1;
1879 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1880 		for (i = disks; i--; ) {
1881 			struct r5dev *dev = &sh->dev[i];
1882 			if (head_sh->dev[i].written ||
1883 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1884 				xor_srcs[count++] = dev->page;
1885 		}
1886 	} else {
1887 		xor_dest = sh->dev[pd_idx].page;
1888 		for (i = disks; i--; ) {
1889 			struct r5dev *dev = &sh->dev[i];
1890 			if (i != pd_idx)
1891 				xor_srcs[count++] = dev->page;
1892 		}
1893 	}
1894 
1895 	/* 1/ if we prexor'd then the dest is reused as a source
1896 	 * 2/ if we did not prexor then we are redoing the parity
1897 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1898 	 * for the synchronous xor case
1899 	 */
1900 	last_stripe = !head_sh->batch_head ||
1901 		list_first_entry(&sh->batch_list,
1902 				 struct stripe_head, batch_list) == head_sh;
1903 	if (last_stripe) {
1904 		flags = ASYNC_TX_ACK |
1905 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1906 
1907 		atomic_inc(&head_sh->count);
1908 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1909 				  to_addr_conv(sh, percpu, j));
1910 	} else {
1911 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1912 		init_async_submit(&submit, flags, tx, NULL, NULL,
1913 				  to_addr_conv(sh, percpu, j));
1914 	}
1915 
1916 	if (unlikely(count == 1))
1917 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1918 	else
1919 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1920 	if (!last_stripe) {
1921 		j++;
1922 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1923 				      batch_list);
1924 		goto again;
1925 	}
1926 }
1927 
1928 static void
1929 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1930 		     struct dma_async_tx_descriptor *tx)
1931 {
1932 	struct async_submit_ctl submit;
1933 	struct page **blocks;
1934 	int count, i, j = 0;
1935 	struct stripe_head *head_sh = sh;
1936 	int last_stripe;
1937 	int synflags;
1938 	unsigned long txflags;
1939 
1940 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1941 
1942 	for (i = 0; i < sh->disks; i++) {
1943 		if (sh->pd_idx == i || sh->qd_idx == i)
1944 			continue;
1945 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1946 			break;
1947 	}
1948 	if (i >= sh->disks) {
1949 		atomic_inc(&sh->count);
1950 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1951 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1952 		ops_complete_reconstruct(sh);
1953 		return;
1954 	}
1955 
1956 again:
1957 	blocks = to_addr_page(percpu, j);
1958 
1959 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1960 		synflags = SYNDROME_SRC_WRITTEN;
1961 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1962 	} else {
1963 		synflags = SYNDROME_SRC_ALL;
1964 		txflags = ASYNC_TX_ACK;
1965 	}
1966 
1967 	count = set_syndrome_sources(blocks, sh, synflags);
1968 	last_stripe = !head_sh->batch_head ||
1969 		list_first_entry(&sh->batch_list,
1970 				 struct stripe_head, batch_list) == head_sh;
1971 
1972 	if (last_stripe) {
1973 		atomic_inc(&head_sh->count);
1974 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1975 				  head_sh, to_addr_conv(sh, percpu, j));
1976 	} else
1977 		init_async_submit(&submit, 0, tx, NULL, NULL,
1978 				  to_addr_conv(sh, percpu, j));
1979 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1980 	if (!last_stripe) {
1981 		j++;
1982 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1983 				      batch_list);
1984 		goto again;
1985 	}
1986 }
1987 
1988 static void ops_complete_check(void *stripe_head_ref)
1989 {
1990 	struct stripe_head *sh = stripe_head_ref;
1991 
1992 	pr_debug("%s: stripe %llu\n", __func__,
1993 		(unsigned long long)sh->sector);
1994 
1995 	sh->check_state = check_state_check_result;
1996 	set_bit(STRIPE_HANDLE, &sh->state);
1997 	raid5_release_stripe(sh);
1998 }
1999 
2000 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2001 {
2002 	int disks = sh->disks;
2003 	int pd_idx = sh->pd_idx;
2004 	int qd_idx = sh->qd_idx;
2005 	struct page *xor_dest;
2006 	struct page **xor_srcs = to_addr_page(percpu, 0);
2007 	struct dma_async_tx_descriptor *tx;
2008 	struct async_submit_ctl submit;
2009 	int count;
2010 	int i;
2011 
2012 	pr_debug("%s: stripe %llu\n", __func__,
2013 		(unsigned long long)sh->sector);
2014 
2015 	BUG_ON(sh->batch_head);
2016 	count = 0;
2017 	xor_dest = sh->dev[pd_idx].page;
2018 	xor_srcs[count++] = xor_dest;
2019 	for (i = disks; i--; ) {
2020 		if (i == pd_idx || i == qd_idx)
2021 			continue;
2022 		xor_srcs[count++] = sh->dev[i].page;
2023 	}
2024 
2025 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2026 			  to_addr_conv(sh, percpu, 0));
2027 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2028 			   &sh->ops.zero_sum_result, &submit);
2029 
2030 	atomic_inc(&sh->count);
2031 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2032 	tx = async_trigger_callback(&submit);
2033 }
2034 
2035 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2036 {
2037 	struct page **srcs = to_addr_page(percpu, 0);
2038 	struct async_submit_ctl submit;
2039 	int count;
2040 
2041 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2042 		(unsigned long long)sh->sector, checkp);
2043 
2044 	BUG_ON(sh->batch_head);
2045 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2046 	if (!checkp)
2047 		srcs[count] = NULL;
2048 
2049 	atomic_inc(&sh->count);
2050 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2051 			  sh, to_addr_conv(sh, percpu, 0));
2052 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2053 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2054 }
2055 
2056 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2057 {
2058 	int overlap_clear = 0, i, disks = sh->disks;
2059 	struct dma_async_tx_descriptor *tx = NULL;
2060 	struct r5conf *conf = sh->raid_conf;
2061 	int level = conf->level;
2062 	struct raid5_percpu *percpu;
2063 	unsigned long cpu;
2064 
2065 	cpu = get_cpu();
2066 	percpu = per_cpu_ptr(conf->percpu, cpu);
2067 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2068 		ops_run_biofill(sh);
2069 		overlap_clear++;
2070 	}
2071 
2072 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2073 		if (level < 6)
2074 			tx = ops_run_compute5(sh, percpu);
2075 		else {
2076 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2077 				tx = ops_run_compute6_1(sh, percpu);
2078 			else
2079 				tx = ops_run_compute6_2(sh, percpu);
2080 		}
2081 		/* terminate the chain if reconstruct is not set to be run */
2082 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2083 			async_tx_ack(tx);
2084 	}
2085 
2086 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2087 		if (level < 6)
2088 			tx = ops_run_prexor5(sh, percpu, tx);
2089 		else
2090 			tx = ops_run_prexor6(sh, percpu, tx);
2091 	}
2092 
2093 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2094 		tx = ops_run_partial_parity(sh, percpu, tx);
2095 
2096 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2097 		tx = ops_run_biodrain(sh, tx);
2098 		overlap_clear++;
2099 	}
2100 
2101 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2102 		if (level < 6)
2103 			ops_run_reconstruct5(sh, percpu, tx);
2104 		else
2105 			ops_run_reconstruct6(sh, percpu, tx);
2106 	}
2107 
2108 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2109 		if (sh->check_state == check_state_run)
2110 			ops_run_check_p(sh, percpu);
2111 		else if (sh->check_state == check_state_run_q)
2112 			ops_run_check_pq(sh, percpu, 0);
2113 		else if (sh->check_state == check_state_run_pq)
2114 			ops_run_check_pq(sh, percpu, 1);
2115 		else
2116 			BUG();
2117 	}
2118 
2119 	if (overlap_clear && !sh->batch_head)
2120 		for (i = disks; i--; ) {
2121 			struct r5dev *dev = &sh->dev[i];
2122 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2123 				wake_up(&sh->raid_conf->wait_for_overlap);
2124 		}
2125 	put_cpu();
2126 }
2127 
2128 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2129 {
2130 	if (sh->ppl_page)
2131 		__free_page(sh->ppl_page);
2132 	kmem_cache_free(sc, sh);
2133 }
2134 
2135 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2136 	int disks, struct r5conf *conf)
2137 {
2138 	struct stripe_head *sh;
2139 	int i;
2140 
2141 	sh = kmem_cache_zalloc(sc, gfp);
2142 	if (sh) {
2143 		spin_lock_init(&sh->stripe_lock);
2144 		spin_lock_init(&sh->batch_lock);
2145 		INIT_LIST_HEAD(&sh->batch_list);
2146 		INIT_LIST_HEAD(&sh->lru);
2147 		INIT_LIST_HEAD(&sh->r5c);
2148 		INIT_LIST_HEAD(&sh->log_list);
2149 		atomic_set(&sh->count, 1);
2150 		sh->raid_conf = conf;
2151 		sh->log_start = MaxSector;
2152 		for (i = 0; i < disks; i++) {
2153 			struct r5dev *dev = &sh->dev[i];
2154 
2155 			bio_init(&dev->req, &dev->vec, 1);
2156 			bio_init(&dev->rreq, &dev->rvec, 1);
2157 		}
2158 
2159 		if (raid5_has_ppl(conf)) {
2160 			sh->ppl_page = alloc_page(gfp);
2161 			if (!sh->ppl_page) {
2162 				free_stripe(sc, sh);
2163 				sh = NULL;
2164 			}
2165 		}
2166 	}
2167 	return sh;
2168 }
2169 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2170 {
2171 	struct stripe_head *sh;
2172 
2173 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2174 	if (!sh)
2175 		return 0;
2176 
2177 	if (grow_buffers(sh, gfp)) {
2178 		shrink_buffers(sh);
2179 		free_stripe(conf->slab_cache, sh);
2180 		return 0;
2181 	}
2182 	sh->hash_lock_index =
2183 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2184 	/* we just created an active stripe so... */
2185 	atomic_inc(&conf->active_stripes);
2186 
2187 	raid5_release_stripe(sh);
2188 	conf->max_nr_stripes++;
2189 	return 1;
2190 }
2191 
2192 static int grow_stripes(struct r5conf *conf, int num)
2193 {
2194 	struct kmem_cache *sc;
2195 	size_t namelen = sizeof(conf->cache_name[0]);
2196 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2197 
2198 	if (conf->mddev->gendisk)
2199 		snprintf(conf->cache_name[0], namelen,
2200 			"raid%d-%s", conf->level, mdname(conf->mddev));
2201 	else
2202 		snprintf(conf->cache_name[0], namelen,
2203 			"raid%d-%p", conf->level, conf->mddev);
2204 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2205 
2206 	conf->active_name = 0;
2207 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2208 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2209 			       0, 0, NULL);
2210 	if (!sc)
2211 		return 1;
2212 	conf->slab_cache = sc;
2213 	conf->pool_size = devs;
2214 	while (num--)
2215 		if (!grow_one_stripe(conf, GFP_KERNEL))
2216 			return 1;
2217 
2218 	return 0;
2219 }
2220 
2221 /**
2222  * scribble_len - return the required size of the scribble region
2223  * @num - total number of disks in the array
2224  *
2225  * The size must be enough to contain:
2226  * 1/ a struct page pointer for each device in the array +2
2227  * 2/ room to convert each entry in (1) to its corresponding dma
2228  *    (dma_map_page()) or page (page_address()) address.
2229  *
2230  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2231  * calculate over all devices (not just the data blocks), using zeros in place
2232  * of the P and Q blocks.
2233  */
2234 static int scribble_alloc(struct raid5_percpu *percpu,
2235 			  int num, int cnt, gfp_t flags)
2236 {
2237 	size_t obj_size =
2238 		sizeof(struct page *) * (num+2) +
2239 		sizeof(addr_conv_t) * (num+2);
2240 	void *scribble;
2241 
2242 	scribble = kvmalloc_array(cnt, obj_size, flags);
2243 	if (!scribble)
2244 		return -ENOMEM;
2245 
2246 	kvfree(percpu->scribble);
2247 
2248 	percpu->scribble = scribble;
2249 	percpu->scribble_obj_size = obj_size;
2250 	return 0;
2251 }
2252 
2253 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2254 {
2255 	unsigned long cpu;
2256 	int err = 0;
2257 
2258 	/*
2259 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2260 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2261 	 * should equal to new_disks and new_sectors
2262 	 */
2263 	if (conf->scribble_disks >= new_disks &&
2264 	    conf->scribble_sectors >= new_sectors)
2265 		return 0;
2266 	mddev_suspend(conf->mddev);
2267 	get_online_cpus();
2268 
2269 	for_each_present_cpu(cpu) {
2270 		struct raid5_percpu *percpu;
2271 
2272 		percpu = per_cpu_ptr(conf->percpu, cpu);
2273 		err = scribble_alloc(percpu, new_disks,
2274 				     new_sectors / STRIPE_SECTORS,
2275 				     GFP_NOIO);
2276 		if (err)
2277 			break;
2278 	}
2279 
2280 	put_online_cpus();
2281 	mddev_resume(conf->mddev);
2282 	if (!err) {
2283 		conf->scribble_disks = new_disks;
2284 		conf->scribble_sectors = new_sectors;
2285 	}
2286 	return err;
2287 }
2288 
2289 static int resize_stripes(struct r5conf *conf, int newsize)
2290 {
2291 	/* Make all the stripes able to hold 'newsize' devices.
2292 	 * New slots in each stripe get 'page' set to a new page.
2293 	 *
2294 	 * This happens in stages:
2295 	 * 1/ create a new kmem_cache and allocate the required number of
2296 	 *    stripe_heads.
2297 	 * 2/ gather all the old stripe_heads and transfer the pages across
2298 	 *    to the new stripe_heads.  This will have the side effect of
2299 	 *    freezing the array as once all stripe_heads have been collected,
2300 	 *    no IO will be possible.  Old stripe heads are freed once their
2301 	 *    pages have been transferred over, and the old kmem_cache is
2302 	 *    freed when all stripes are done.
2303 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2304 	 *    we simple return a failure status - no need to clean anything up.
2305 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2306 	 *    If this fails, we don't bother trying the shrink the
2307 	 *    stripe_heads down again, we just leave them as they are.
2308 	 *    As each stripe_head is processed the new one is released into
2309 	 *    active service.
2310 	 *
2311 	 * Once step2 is started, we cannot afford to wait for a write,
2312 	 * so we use GFP_NOIO allocations.
2313 	 */
2314 	struct stripe_head *osh, *nsh;
2315 	LIST_HEAD(newstripes);
2316 	struct disk_info *ndisks;
2317 	int err = 0;
2318 	struct kmem_cache *sc;
2319 	int i;
2320 	int hash, cnt;
2321 
2322 	md_allow_write(conf->mddev);
2323 
2324 	/* Step 1 */
2325 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2326 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2327 			       0, 0, NULL);
2328 	if (!sc)
2329 		return -ENOMEM;
2330 
2331 	/* Need to ensure auto-resizing doesn't interfere */
2332 	mutex_lock(&conf->cache_size_mutex);
2333 
2334 	for (i = conf->max_nr_stripes; i; i--) {
2335 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2336 		if (!nsh)
2337 			break;
2338 
2339 		list_add(&nsh->lru, &newstripes);
2340 	}
2341 	if (i) {
2342 		/* didn't get enough, give up */
2343 		while (!list_empty(&newstripes)) {
2344 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2345 			list_del(&nsh->lru);
2346 			free_stripe(sc, nsh);
2347 		}
2348 		kmem_cache_destroy(sc);
2349 		mutex_unlock(&conf->cache_size_mutex);
2350 		return -ENOMEM;
2351 	}
2352 	/* Step 2 - Must use GFP_NOIO now.
2353 	 * OK, we have enough stripes, start collecting inactive
2354 	 * stripes and copying them over
2355 	 */
2356 	hash = 0;
2357 	cnt = 0;
2358 	list_for_each_entry(nsh, &newstripes, lru) {
2359 		lock_device_hash_lock(conf, hash);
2360 		wait_event_cmd(conf->wait_for_stripe,
2361 				    !list_empty(conf->inactive_list + hash),
2362 				    unlock_device_hash_lock(conf, hash),
2363 				    lock_device_hash_lock(conf, hash));
2364 		osh = get_free_stripe(conf, hash);
2365 		unlock_device_hash_lock(conf, hash);
2366 
2367 		for(i=0; i<conf->pool_size; i++) {
2368 			nsh->dev[i].page = osh->dev[i].page;
2369 			nsh->dev[i].orig_page = osh->dev[i].page;
2370 		}
2371 		nsh->hash_lock_index = hash;
2372 		free_stripe(conf->slab_cache, osh);
2373 		cnt++;
2374 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2375 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2376 			hash++;
2377 			cnt = 0;
2378 		}
2379 	}
2380 	kmem_cache_destroy(conf->slab_cache);
2381 
2382 	/* Step 3.
2383 	 * At this point, we are holding all the stripes so the array
2384 	 * is completely stalled, so now is a good time to resize
2385 	 * conf->disks and the scribble region
2386 	 */
2387 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2388 	if (ndisks) {
2389 		for (i = 0; i < conf->pool_size; i++)
2390 			ndisks[i] = conf->disks[i];
2391 
2392 		for (i = conf->pool_size; i < newsize; i++) {
2393 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2394 			if (!ndisks[i].extra_page)
2395 				err = -ENOMEM;
2396 		}
2397 
2398 		if (err) {
2399 			for (i = conf->pool_size; i < newsize; i++)
2400 				if (ndisks[i].extra_page)
2401 					put_page(ndisks[i].extra_page);
2402 			kfree(ndisks);
2403 		} else {
2404 			kfree(conf->disks);
2405 			conf->disks = ndisks;
2406 		}
2407 	} else
2408 		err = -ENOMEM;
2409 
2410 	mutex_unlock(&conf->cache_size_mutex);
2411 
2412 	conf->slab_cache = sc;
2413 	conf->active_name = 1-conf->active_name;
2414 
2415 	/* Step 4, return new stripes to service */
2416 	while(!list_empty(&newstripes)) {
2417 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2418 		list_del_init(&nsh->lru);
2419 
2420 		for (i=conf->raid_disks; i < newsize; i++)
2421 			if (nsh->dev[i].page == NULL) {
2422 				struct page *p = alloc_page(GFP_NOIO);
2423 				nsh->dev[i].page = p;
2424 				nsh->dev[i].orig_page = p;
2425 				if (!p)
2426 					err = -ENOMEM;
2427 			}
2428 		raid5_release_stripe(nsh);
2429 	}
2430 	/* critical section pass, GFP_NOIO no longer needed */
2431 
2432 	if (!err)
2433 		conf->pool_size = newsize;
2434 	return err;
2435 }
2436 
2437 static int drop_one_stripe(struct r5conf *conf)
2438 {
2439 	struct stripe_head *sh;
2440 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2441 
2442 	spin_lock_irq(conf->hash_locks + hash);
2443 	sh = get_free_stripe(conf, hash);
2444 	spin_unlock_irq(conf->hash_locks + hash);
2445 	if (!sh)
2446 		return 0;
2447 	BUG_ON(atomic_read(&sh->count));
2448 	shrink_buffers(sh);
2449 	free_stripe(conf->slab_cache, sh);
2450 	atomic_dec(&conf->active_stripes);
2451 	conf->max_nr_stripes--;
2452 	return 1;
2453 }
2454 
2455 static void shrink_stripes(struct r5conf *conf)
2456 {
2457 	while (conf->max_nr_stripes &&
2458 	       drop_one_stripe(conf))
2459 		;
2460 
2461 	kmem_cache_destroy(conf->slab_cache);
2462 	conf->slab_cache = NULL;
2463 }
2464 
2465 static void raid5_end_read_request(struct bio * bi)
2466 {
2467 	struct stripe_head *sh = bi->bi_private;
2468 	struct r5conf *conf = sh->raid_conf;
2469 	int disks = sh->disks, i;
2470 	char b[BDEVNAME_SIZE];
2471 	struct md_rdev *rdev = NULL;
2472 	sector_t s;
2473 
2474 	for (i=0 ; i<disks; i++)
2475 		if (bi == &sh->dev[i].req)
2476 			break;
2477 
2478 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2479 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2480 		bi->bi_status);
2481 	if (i == disks) {
2482 		bio_reset(bi);
2483 		BUG();
2484 		return;
2485 	}
2486 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2487 		/* If replacement finished while this request was outstanding,
2488 		 * 'replacement' might be NULL already.
2489 		 * In that case it moved down to 'rdev'.
2490 		 * rdev is not removed until all requests are finished.
2491 		 */
2492 		rdev = conf->disks[i].replacement;
2493 	if (!rdev)
2494 		rdev = conf->disks[i].rdev;
2495 
2496 	if (use_new_offset(conf, sh))
2497 		s = sh->sector + rdev->new_data_offset;
2498 	else
2499 		s = sh->sector + rdev->data_offset;
2500 	if (!bi->bi_status) {
2501 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2502 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2503 			/* Note that this cannot happen on a
2504 			 * replacement device.  We just fail those on
2505 			 * any error
2506 			 */
2507 			pr_info_ratelimited(
2508 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2509 				mdname(conf->mddev), STRIPE_SECTORS,
2510 				(unsigned long long)s,
2511 				bdevname(rdev->bdev, b));
2512 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2513 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2514 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2515 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2516 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2517 
2518 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2519 			/*
2520 			 * end read for a page in journal, this
2521 			 * must be preparing for prexor in rmw
2522 			 */
2523 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2524 
2525 		if (atomic_read(&rdev->read_errors))
2526 			atomic_set(&rdev->read_errors, 0);
2527 	} else {
2528 		const char *bdn = bdevname(rdev->bdev, b);
2529 		int retry = 0;
2530 		int set_bad = 0;
2531 
2532 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2533 		atomic_inc(&rdev->read_errors);
2534 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2535 			pr_warn_ratelimited(
2536 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2537 				mdname(conf->mddev),
2538 				(unsigned long long)s,
2539 				bdn);
2540 		else if (conf->mddev->degraded >= conf->max_degraded) {
2541 			set_bad = 1;
2542 			pr_warn_ratelimited(
2543 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2544 				mdname(conf->mddev),
2545 				(unsigned long long)s,
2546 				bdn);
2547 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2548 			/* Oh, no!!! */
2549 			set_bad = 1;
2550 			pr_warn_ratelimited(
2551 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2552 				mdname(conf->mddev),
2553 				(unsigned long long)s,
2554 				bdn);
2555 		} else if (atomic_read(&rdev->read_errors)
2556 			 > conf->max_nr_stripes)
2557 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2558 			       mdname(conf->mddev), bdn);
2559 		else
2560 			retry = 1;
2561 		if (set_bad && test_bit(In_sync, &rdev->flags)
2562 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2563 			retry = 1;
2564 		if (retry)
2565 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2566 				set_bit(R5_ReadError, &sh->dev[i].flags);
2567 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2568 			} else
2569 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2570 		else {
2571 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2572 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2573 			if (!(set_bad
2574 			      && test_bit(In_sync, &rdev->flags)
2575 			      && rdev_set_badblocks(
2576 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2577 				md_error(conf->mddev, rdev);
2578 		}
2579 	}
2580 	rdev_dec_pending(rdev, conf->mddev);
2581 	bio_reset(bi);
2582 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2583 	set_bit(STRIPE_HANDLE, &sh->state);
2584 	raid5_release_stripe(sh);
2585 }
2586 
2587 static void raid5_end_write_request(struct bio *bi)
2588 {
2589 	struct stripe_head *sh = bi->bi_private;
2590 	struct r5conf *conf = sh->raid_conf;
2591 	int disks = sh->disks, i;
2592 	struct md_rdev *uninitialized_var(rdev);
2593 	sector_t first_bad;
2594 	int bad_sectors;
2595 	int replacement = 0;
2596 
2597 	for (i = 0 ; i < disks; i++) {
2598 		if (bi == &sh->dev[i].req) {
2599 			rdev = conf->disks[i].rdev;
2600 			break;
2601 		}
2602 		if (bi == &sh->dev[i].rreq) {
2603 			rdev = conf->disks[i].replacement;
2604 			if (rdev)
2605 				replacement = 1;
2606 			else
2607 				/* rdev was removed and 'replacement'
2608 				 * replaced it.  rdev is not removed
2609 				 * until all requests are finished.
2610 				 */
2611 				rdev = conf->disks[i].rdev;
2612 			break;
2613 		}
2614 	}
2615 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2616 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2617 		bi->bi_status);
2618 	if (i == disks) {
2619 		bio_reset(bi);
2620 		BUG();
2621 		return;
2622 	}
2623 
2624 	if (replacement) {
2625 		if (bi->bi_status)
2626 			md_error(conf->mddev, rdev);
2627 		else if (is_badblock(rdev, sh->sector,
2628 				     STRIPE_SECTORS,
2629 				     &first_bad, &bad_sectors))
2630 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2631 	} else {
2632 		if (bi->bi_status) {
2633 			set_bit(STRIPE_DEGRADED, &sh->state);
2634 			set_bit(WriteErrorSeen, &rdev->flags);
2635 			set_bit(R5_WriteError, &sh->dev[i].flags);
2636 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2637 				set_bit(MD_RECOVERY_NEEDED,
2638 					&rdev->mddev->recovery);
2639 		} else if (is_badblock(rdev, sh->sector,
2640 				       STRIPE_SECTORS,
2641 				       &first_bad, &bad_sectors)) {
2642 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2643 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2644 				/* That was a successful write so make
2645 				 * sure it looks like we already did
2646 				 * a re-write.
2647 				 */
2648 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2649 		}
2650 	}
2651 	rdev_dec_pending(rdev, conf->mddev);
2652 
2653 	if (sh->batch_head && bi->bi_status && !replacement)
2654 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2655 
2656 	bio_reset(bi);
2657 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2658 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2659 	set_bit(STRIPE_HANDLE, &sh->state);
2660 	raid5_release_stripe(sh);
2661 
2662 	if (sh->batch_head && sh != sh->batch_head)
2663 		raid5_release_stripe(sh->batch_head);
2664 }
2665 
2666 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2667 {
2668 	char b[BDEVNAME_SIZE];
2669 	struct r5conf *conf = mddev->private;
2670 	unsigned long flags;
2671 	pr_debug("raid456: error called\n");
2672 
2673 	spin_lock_irqsave(&conf->device_lock, flags);
2674 
2675 	if (test_bit(In_sync, &rdev->flags) &&
2676 	    mddev->degraded == conf->max_degraded) {
2677 		/*
2678 		 * Don't allow to achieve failed state
2679 		 * Don't try to recover this device
2680 		 */
2681 		conf->recovery_disabled = mddev->recovery_disabled;
2682 		spin_unlock_irqrestore(&conf->device_lock, flags);
2683 		return;
2684 	}
2685 
2686 	set_bit(Faulty, &rdev->flags);
2687 	clear_bit(In_sync, &rdev->flags);
2688 	mddev->degraded = raid5_calc_degraded(conf);
2689 	spin_unlock_irqrestore(&conf->device_lock, flags);
2690 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2691 
2692 	set_bit(Blocked, &rdev->flags);
2693 	set_mask_bits(&mddev->sb_flags, 0,
2694 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2695 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2696 		"md/raid:%s: Operation continuing on %d devices.\n",
2697 		mdname(mddev),
2698 		bdevname(rdev->bdev, b),
2699 		mdname(mddev),
2700 		conf->raid_disks - mddev->degraded);
2701 	r5c_update_on_rdev_error(mddev, rdev);
2702 }
2703 
2704 /*
2705  * Input: a 'big' sector number,
2706  * Output: index of the data and parity disk, and the sector # in them.
2707  */
2708 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2709 			      int previous, int *dd_idx,
2710 			      struct stripe_head *sh)
2711 {
2712 	sector_t stripe, stripe2;
2713 	sector_t chunk_number;
2714 	unsigned int chunk_offset;
2715 	int pd_idx, qd_idx;
2716 	int ddf_layout = 0;
2717 	sector_t new_sector;
2718 	int algorithm = previous ? conf->prev_algo
2719 				 : conf->algorithm;
2720 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2721 					 : conf->chunk_sectors;
2722 	int raid_disks = previous ? conf->previous_raid_disks
2723 				  : conf->raid_disks;
2724 	int data_disks = raid_disks - conf->max_degraded;
2725 
2726 	/* First compute the information on this sector */
2727 
2728 	/*
2729 	 * Compute the chunk number and the sector offset inside the chunk
2730 	 */
2731 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2732 	chunk_number = r_sector;
2733 
2734 	/*
2735 	 * Compute the stripe number
2736 	 */
2737 	stripe = chunk_number;
2738 	*dd_idx = sector_div(stripe, data_disks);
2739 	stripe2 = stripe;
2740 	/*
2741 	 * Select the parity disk based on the user selected algorithm.
2742 	 */
2743 	pd_idx = qd_idx = -1;
2744 	switch(conf->level) {
2745 	case 4:
2746 		pd_idx = data_disks;
2747 		break;
2748 	case 5:
2749 		switch (algorithm) {
2750 		case ALGORITHM_LEFT_ASYMMETRIC:
2751 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2752 			if (*dd_idx >= pd_idx)
2753 				(*dd_idx)++;
2754 			break;
2755 		case ALGORITHM_RIGHT_ASYMMETRIC:
2756 			pd_idx = sector_div(stripe2, raid_disks);
2757 			if (*dd_idx >= pd_idx)
2758 				(*dd_idx)++;
2759 			break;
2760 		case ALGORITHM_LEFT_SYMMETRIC:
2761 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2762 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2763 			break;
2764 		case ALGORITHM_RIGHT_SYMMETRIC:
2765 			pd_idx = sector_div(stripe2, raid_disks);
2766 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2767 			break;
2768 		case ALGORITHM_PARITY_0:
2769 			pd_idx = 0;
2770 			(*dd_idx)++;
2771 			break;
2772 		case ALGORITHM_PARITY_N:
2773 			pd_idx = data_disks;
2774 			break;
2775 		default:
2776 			BUG();
2777 		}
2778 		break;
2779 	case 6:
2780 
2781 		switch (algorithm) {
2782 		case ALGORITHM_LEFT_ASYMMETRIC:
2783 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2784 			qd_idx = pd_idx + 1;
2785 			if (pd_idx == raid_disks-1) {
2786 				(*dd_idx)++;	/* Q D D D P */
2787 				qd_idx = 0;
2788 			} else if (*dd_idx >= pd_idx)
2789 				(*dd_idx) += 2; /* D D P Q D */
2790 			break;
2791 		case ALGORITHM_RIGHT_ASYMMETRIC:
2792 			pd_idx = sector_div(stripe2, raid_disks);
2793 			qd_idx = pd_idx + 1;
2794 			if (pd_idx == raid_disks-1) {
2795 				(*dd_idx)++;	/* Q D D D P */
2796 				qd_idx = 0;
2797 			} else if (*dd_idx >= pd_idx)
2798 				(*dd_idx) += 2; /* D D P Q D */
2799 			break;
2800 		case ALGORITHM_LEFT_SYMMETRIC:
2801 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2802 			qd_idx = (pd_idx + 1) % raid_disks;
2803 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2804 			break;
2805 		case ALGORITHM_RIGHT_SYMMETRIC:
2806 			pd_idx = sector_div(stripe2, raid_disks);
2807 			qd_idx = (pd_idx + 1) % raid_disks;
2808 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2809 			break;
2810 
2811 		case ALGORITHM_PARITY_0:
2812 			pd_idx = 0;
2813 			qd_idx = 1;
2814 			(*dd_idx) += 2;
2815 			break;
2816 		case ALGORITHM_PARITY_N:
2817 			pd_idx = data_disks;
2818 			qd_idx = data_disks + 1;
2819 			break;
2820 
2821 		case ALGORITHM_ROTATING_ZERO_RESTART:
2822 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2823 			 * of blocks for computing Q is different.
2824 			 */
2825 			pd_idx = sector_div(stripe2, raid_disks);
2826 			qd_idx = pd_idx + 1;
2827 			if (pd_idx == raid_disks-1) {
2828 				(*dd_idx)++;	/* Q D D D P */
2829 				qd_idx = 0;
2830 			} else if (*dd_idx >= pd_idx)
2831 				(*dd_idx) += 2; /* D D P Q D */
2832 			ddf_layout = 1;
2833 			break;
2834 
2835 		case ALGORITHM_ROTATING_N_RESTART:
2836 			/* Same a left_asymmetric, by first stripe is
2837 			 * D D D P Q  rather than
2838 			 * Q D D D P
2839 			 */
2840 			stripe2 += 1;
2841 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2842 			qd_idx = pd_idx + 1;
2843 			if (pd_idx == raid_disks-1) {
2844 				(*dd_idx)++;	/* Q D D D P */
2845 				qd_idx = 0;
2846 			} else if (*dd_idx >= pd_idx)
2847 				(*dd_idx) += 2; /* D D P Q D */
2848 			ddf_layout = 1;
2849 			break;
2850 
2851 		case ALGORITHM_ROTATING_N_CONTINUE:
2852 			/* Same as left_symmetric but Q is before P */
2853 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2854 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2855 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2856 			ddf_layout = 1;
2857 			break;
2858 
2859 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2860 			/* RAID5 left_asymmetric, with Q on last device */
2861 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2862 			if (*dd_idx >= pd_idx)
2863 				(*dd_idx)++;
2864 			qd_idx = raid_disks - 1;
2865 			break;
2866 
2867 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2868 			pd_idx = sector_div(stripe2, raid_disks-1);
2869 			if (*dd_idx >= pd_idx)
2870 				(*dd_idx)++;
2871 			qd_idx = raid_disks - 1;
2872 			break;
2873 
2874 		case ALGORITHM_LEFT_SYMMETRIC_6:
2875 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2876 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2877 			qd_idx = raid_disks - 1;
2878 			break;
2879 
2880 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2881 			pd_idx = sector_div(stripe2, raid_disks-1);
2882 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2883 			qd_idx = raid_disks - 1;
2884 			break;
2885 
2886 		case ALGORITHM_PARITY_0_6:
2887 			pd_idx = 0;
2888 			(*dd_idx)++;
2889 			qd_idx = raid_disks - 1;
2890 			break;
2891 
2892 		default:
2893 			BUG();
2894 		}
2895 		break;
2896 	}
2897 
2898 	if (sh) {
2899 		sh->pd_idx = pd_idx;
2900 		sh->qd_idx = qd_idx;
2901 		sh->ddf_layout = ddf_layout;
2902 	}
2903 	/*
2904 	 * Finally, compute the new sector number
2905 	 */
2906 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2907 	return new_sector;
2908 }
2909 
2910 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2911 {
2912 	struct r5conf *conf = sh->raid_conf;
2913 	int raid_disks = sh->disks;
2914 	int data_disks = raid_disks - conf->max_degraded;
2915 	sector_t new_sector = sh->sector, check;
2916 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2917 					 : conf->chunk_sectors;
2918 	int algorithm = previous ? conf->prev_algo
2919 				 : conf->algorithm;
2920 	sector_t stripe;
2921 	int chunk_offset;
2922 	sector_t chunk_number;
2923 	int dummy1, dd_idx = i;
2924 	sector_t r_sector;
2925 	struct stripe_head sh2;
2926 
2927 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2928 	stripe = new_sector;
2929 
2930 	if (i == sh->pd_idx)
2931 		return 0;
2932 	switch(conf->level) {
2933 	case 4: break;
2934 	case 5:
2935 		switch (algorithm) {
2936 		case ALGORITHM_LEFT_ASYMMETRIC:
2937 		case ALGORITHM_RIGHT_ASYMMETRIC:
2938 			if (i > sh->pd_idx)
2939 				i--;
2940 			break;
2941 		case ALGORITHM_LEFT_SYMMETRIC:
2942 		case ALGORITHM_RIGHT_SYMMETRIC:
2943 			if (i < sh->pd_idx)
2944 				i += raid_disks;
2945 			i -= (sh->pd_idx + 1);
2946 			break;
2947 		case ALGORITHM_PARITY_0:
2948 			i -= 1;
2949 			break;
2950 		case ALGORITHM_PARITY_N:
2951 			break;
2952 		default:
2953 			BUG();
2954 		}
2955 		break;
2956 	case 6:
2957 		if (i == sh->qd_idx)
2958 			return 0; /* It is the Q disk */
2959 		switch (algorithm) {
2960 		case ALGORITHM_LEFT_ASYMMETRIC:
2961 		case ALGORITHM_RIGHT_ASYMMETRIC:
2962 		case ALGORITHM_ROTATING_ZERO_RESTART:
2963 		case ALGORITHM_ROTATING_N_RESTART:
2964 			if (sh->pd_idx == raid_disks-1)
2965 				i--;	/* Q D D D P */
2966 			else if (i > sh->pd_idx)
2967 				i -= 2; /* D D P Q D */
2968 			break;
2969 		case ALGORITHM_LEFT_SYMMETRIC:
2970 		case ALGORITHM_RIGHT_SYMMETRIC:
2971 			if (sh->pd_idx == raid_disks-1)
2972 				i--; /* Q D D D P */
2973 			else {
2974 				/* D D P Q D */
2975 				if (i < sh->pd_idx)
2976 					i += raid_disks;
2977 				i -= (sh->pd_idx + 2);
2978 			}
2979 			break;
2980 		case ALGORITHM_PARITY_0:
2981 			i -= 2;
2982 			break;
2983 		case ALGORITHM_PARITY_N:
2984 			break;
2985 		case ALGORITHM_ROTATING_N_CONTINUE:
2986 			/* Like left_symmetric, but P is before Q */
2987 			if (sh->pd_idx == 0)
2988 				i--;	/* P D D D Q */
2989 			else {
2990 				/* D D Q P D */
2991 				if (i < sh->pd_idx)
2992 					i += raid_disks;
2993 				i -= (sh->pd_idx + 1);
2994 			}
2995 			break;
2996 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2997 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2998 			if (i > sh->pd_idx)
2999 				i--;
3000 			break;
3001 		case ALGORITHM_LEFT_SYMMETRIC_6:
3002 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3003 			if (i < sh->pd_idx)
3004 				i += data_disks + 1;
3005 			i -= (sh->pd_idx + 1);
3006 			break;
3007 		case ALGORITHM_PARITY_0_6:
3008 			i -= 1;
3009 			break;
3010 		default:
3011 			BUG();
3012 		}
3013 		break;
3014 	}
3015 
3016 	chunk_number = stripe * data_disks + i;
3017 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3018 
3019 	check = raid5_compute_sector(conf, r_sector,
3020 				     previous, &dummy1, &sh2);
3021 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3022 		|| sh2.qd_idx != sh->qd_idx) {
3023 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3024 			mdname(conf->mddev));
3025 		return 0;
3026 	}
3027 	return r_sector;
3028 }
3029 
3030 /*
3031  * There are cases where we want handle_stripe_dirtying() and
3032  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3033  *
3034  * This function checks whether we want to delay the towrite. Specifically,
3035  * we delay the towrite when:
3036  *
3037  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3038  *      stripe has data in journal (for other devices).
3039  *
3040  *      In this case, when reading data for the non-overwrite dev, it is
3041  *      necessary to handle complex rmw of write back cache (prexor with
3042  *      orig_page, and xor with page). To keep read path simple, we would
3043  *      like to flush data in journal to RAID disks first, so complex rmw
3044  *      is handled in the write patch (handle_stripe_dirtying).
3045  *
3046  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3047  *
3048  *      It is important to be able to flush all stripes in raid5-cache.
3049  *      Therefore, we need reserve some space on the journal device for
3050  *      these flushes. If flush operation includes pending writes to the
3051  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3052  *      for the flush out. If we exclude these pending writes from flush
3053  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3054  *      Therefore, excluding pending writes in these cases enables more
3055  *      efficient use of the journal device.
3056  *
3057  *      Note: To make sure the stripe makes progress, we only delay
3058  *      towrite for stripes with data already in journal (injournal > 0).
3059  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3060  *      no_space_stripes list.
3061  *
3062  *   3. during journal failure
3063  *      In journal failure, we try to flush all cached data to raid disks
3064  *      based on data in stripe cache. The array is read-only to upper
3065  *      layers, so we would skip all pending writes.
3066  *
3067  */
3068 static inline bool delay_towrite(struct r5conf *conf,
3069 				 struct r5dev *dev,
3070 				 struct stripe_head_state *s)
3071 {
3072 	/* case 1 above */
3073 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3074 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3075 		return true;
3076 	/* case 2 above */
3077 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3078 	    s->injournal > 0)
3079 		return true;
3080 	/* case 3 above */
3081 	if (s->log_failed && s->injournal)
3082 		return true;
3083 	return false;
3084 }
3085 
3086 static void
3087 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3088 			 int rcw, int expand)
3089 {
3090 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3091 	struct r5conf *conf = sh->raid_conf;
3092 	int level = conf->level;
3093 
3094 	if (rcw) {
3095 		/*
3096 		 * In some cases, handle_stripe_dirtying initially decided to
3097 		 * run rmw and allocates extra page for prexor. However, rcw is
3098 		 * cheaper later on. We need to free the extra page now,
3099 		 * because we won't be able to do that in ops_complete_prexor().
3100 		 */
3101 		r5c_release_extra_page(sh);
3102 
3103 		for (i = disks; i--; ) {
3104 			struct r5dev *dev = &sh->dev[i];
3105 
3106 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3107 				set_bit(R5_LOCKED, &dev->flags);
3108 				set_bit(R5_Wantdrain, &dev->flags);
3109 				if (!expand)
3110 					clear_bit(R5_UPTODATE, &dev->flags);
3111 				s->locked++;
3112 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3113 				set_bit(R5_LOCKED, &dev->flags);
3114 				s->locked++;
3115 			}
3116 		}
3117 		/* if we are not expanding this is a proper write request, and
3118 		 * there will be bios with new data to be drained into the
3119 		 * stripe cache
3120 		 */
3121 		if (!expand) {
3122 			if (!s->locked)
3123 				/* False alarm, nothing to do */
3124 				return;
3125 			sh->reconstruct_state = reconstruct_state_drain_run;
3126 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3127 		} else
3128 			sh->reconstruct_state = reconstruct_state_run;
3129 
3130 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3131 
3132 		if (s->locked + conf->max_degraded == disks)
3133 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3134 				atomic_inc(&conf->pending_full_writes);
3135 	} else {
3136 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3137 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3138 		BUG_ON(level == 6 &&
3139 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3140 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3141 
3142 		for (i = disks; i--; ) {
3143 			struct r5dev *dev = &sh->dev[i];
3144 			if (i == pd_idx || i == qd_idx)
3145 				continue;
3146 
3147 			if (dev->towrite &&
3148 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3149 			     test_bit(R5_Wantcompute, &dev->flags))) {
3150 				set_bit(R5_Wantdrain, &dev->flags);
3151 				set_bit(R5_LOCKED, &dev->flags);
3152 				clear_bit(R5_UPTODATE, &dev->flags);
3153 				s->locked++;
3154 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3155 				set_bit(R5_LOCKED, &dev->flags);
3156 				s->locked++;
3157 			}
3158 		}
3159 		if (!s->locked)
3160 			/* False alarm - nothing to do */
3161 			return;
3162 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3163 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3164 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3165 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3166 	}
3167 
3168 	/* keep the parity disk(s) locked while asynchronous operations
3169 	 * are in flight
3170 	 */
3171 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3172 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3173 	s->locked++;
3174 
3175 	if (level == 6) {
3176 		int qd_idx = sh->qd_idx;
3177 		struct r5dev *dev = &sh->dev[qd_idx];
3178 
3179 		set_bit(R5_LOCKED, &dev->flags);
3180 		clear_bit(R5_UPTODATE, &dev->flags);
3181 		s->locked++;
3182 	}
3183 
3184 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3185 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3186 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3187 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3188 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3189 
3190 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3191 		__func__, (unsigned long long)sh->sector,
3192 		s->locked, s->ops_request);
3193 }
3194 
3195 /*
3196  * Each stripe/dev can have one or more bion attached.
3197  * toread/towrite point to the first in a chain.
3198  * The bi_next chain must be in order.
3199  */
3200 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3201 			  int forwrite, int previous)
3202 {
3203 	struct bio **bip;
3204 	struct r5conf *conf = sh->raid_conf;
3205 	int firstwrite=0;
3206 
3207 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3208 		(unsigned long long)bi->bi_iter.bi_sector,
3209 		(unsigned long long)sh->sector);
3210 
3211 	spin_lock_irq(&sh->stripe_lock);
3212 	sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3213 	/* Don't allow new IO added to stripes in batch list */
3214 	if (sh->batch_head)
3215 		goto overlap;
3216 	if (forwrite) {
3217 		bip = &sh->dev[dd_idx].towrite;
3218 		if (*bip == NULL)
3219 			firstwrite = 1;
3220 	} else
3221 		bip = &sh->dev[dd_idx].toread;
3222 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3223 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3224 			goto overlap;
3225 		bip = & (*bip)->bi_next;
3226 	}
3227 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3228 		goto overlap;
3229 
3230 	if (forwrite && raid5_has_ppl(conf)) {
3231 		/*
3232 		 * With PPL only writes to consecutive data chunks within a
3233 		 * stripe are allowed because for a single stripe_head we can
3234 		 * only have one PPL entry at a time, which describes one data
3235 		 * range. Not really an overlap, but wait_for_overlap can be
3236 		 * used to handle this.
3237 		 */
3238 		sector_t sector;
3239 		sector_t first = 0;
3240 		sector_t last = 0;
3241 		int count = 0;
3242 		int i;
3243 
3244 		for (i = 0; i < sh->disks; i++) {
3245 			if (i != sh->pd_idx &&
3246 			    (i == dd_idx || sh->dev[i].towrite)) {
3247 				sector = sh->dev[i].sector;
3248 				if (count == 0 || sector < first)
3249 					first = sector;
3250 				if (sector > last)
3251 					last = sector;
3252 				count++;
3253 			}
3254 		}
3255 
3256 		if (first + conf->chunk_sectors * (count - 1) != last)
3257 			goto overlap;
3258 	}
3259 
3260 	if (!forwrite || previous)
3261 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3262 
3263 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3264 	if (*bip)
3265 		bi->bi_next = *bip;
3266 	*bip = bi;
3267 	bio_inc_remaining(bi);
3268 	md_write_inc(conf->mddev, bi);
3269 
3270 	if (forwrite) {
3271 		/* check if page is covered */
3272 		sector_t sector = sh->dev[dd_idx].sector;
3273 		for (bi=sh->dev[dd_idx].towrite;
3274 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3275 			     bi && bi->bi_iter.bi_sector <= sector;
3276 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3277 			if (bio_end_sector(bi) >= sector)
3278 				sector = bio_end_sector(bi);
3279 		}
3280 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3281 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3282 				sh->overwrite_disks++;
3283 	}
3284 
3285 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3286 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3287 		(unsigned long long)sh->sector, dd_idx);
3288 
3289 	if (conf->mddev->bitmap && firstwrite) {
3290 		/* Cannot hold spinlock over bitmap_startwrite,
3291 		 * but must ensure this isn't added to a batch until
3292 		 * we have added to the bitmap and set bm_seq.
3293 		 * So set STRIPE_BITMAP_PENDING to prevent
3294 		 * batching.
3295 		 * If multiple add_stripe_bio() calls race here they
3296 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3297 		 * to complete "bitmap_startwrite" gets to set
3298 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3299 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3300 		 * any more.
3301 		 */
3302 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3303 		spin_unlock_irq(&sh->stripe_lock);
3304 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3305 				     STRIPE_SECTORS, 0);
3306 		spin_lock_irq(&sh->stripe_lock);
3307 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3308 		if (!sh->batch_head) {
3309 			sh->bm_seq = conf->seq_flush+1;
3310 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3311 		}
3312 	}
3313 	spin_unlock_irq(&sh->stripe_lock);
3314 
3315 	if (stripe_can_batch(sh))
3316 		stripe_add_to_batch_list(conf, sh);
3317 	return 1;
3318 
3319  overlap:
3320 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3321 	spin_unlock_irq(&sh->stripe_lock);
3322 	return 0;
3323 }
3324 
3325 static void end_reshape(struct r5conf *conf);
3326 
3327 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3328 			    struct stripe_head *sh)
3329 {
3330 	int sectors_per_chunk =
3331 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3332 	int dd_idx;
3333 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3334 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3335 
3336 	raid5_compute_sector(conf,
3337 			     stripe * (disks - conf->max_degraded)
3338 			     *sectors_per_chunk + chunk_offset,
3339 			     previous,
3340 			     &dd_idx, sh);
3341 }
3342 
3343 static void
3344 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3345 		     struct stripe_head_state *s, int disks)
3346 {
3347 	int i;
3348 	BUG_ON(sh->batch_head);
3349 	for (i = disks; i--; ) {
3350 		struct bio *bi;
3351 		int bitmap_end = 0;
3352 
3353 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3354 			struct md_rdev *rdev;
3355 			rcu_read_lock();
3356 			rdev = rcu_dereference(conf->disks[i].rdev);
3357 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3358 			    !test_bit(Faulty, &rdev->flags))
3359 				atomic_inc(&rdev->nr_pending);
3360 			else
3361 				rdev = NULL;
3362 			rcu_read_unlock();
3363 			if (rdev) {
3364 				if (!rdev_set_badblocks(
3365 					    rdev,
3366 					    sh->sector,
3367 					    STRIPE_SECTORS, 0))
3368 					md_error(conf->mddev, rdev);
3369 				rdev_dec_pending(rdev, conf->mddev);
3370 			}
3371 		}
3372 		spin_lock_irq(&sh->stripe_lock);
3373 		/* fail all writes first */
3374 		bi = sh->dev[i].towrite;
3375 		sh->dev[i].towrite = NULL;
3376 		sh->overwrite_disks = 0;
3377 		spin_unlock_irq(&sh->stripe_lock);
3378 		if (bi)
3379 			bitmap_end = 1;
3380 
3381 		log_stripe_write_finished(sh);
3382 
3383 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3384 			wake_up(&conf->wait_for_overlap);
3385 
3386 		while (bi && bi->bi_iter.bi_sector <
3387 			sh->dev[i].sector + STRIPE_SECTORS) {
3388 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3389 
3390 			md_write_end(conf->mddev);
3391 			bio_io_error(bi);
3392 			bi = nextbi;
3393 		}
3394 		if (bitmap_end)
3395 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3396 					   STRIPE_SECTORS, 0, 0);
3397 		bitmap_end = 0;
3398 		/* and fail all 'written' */
3399 		bi = sh->dev[i].written;
3400 		sh->dev[i].written = NULL;
3401 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3402 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3403 			sh->dev[i].page = sh->dev[i].orig_page;
3404 		}
3405 
3406 		if (bi) bitmap_end = 1;
3407 		while (bi && bi->bi_iter.bi_sector <
3408 		       sh->dev[i].sector + STRIPE_SECTORS) {
3409 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3410 
3411 			md_write_end(conf->mddev);
3412 			bio_io_error(bi);
3413 			bi = bi2;
3414 		}
3415 
3416 		/* fail any reads if this device is non-operational and
3417 		 * the data has not reached the cache yet.
3418 		 */
3419 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3420 		    s->failed > conf->max_degraded &&
3421 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3422 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3423 			spin_lock_irq(&sh->stripe_lock);
3424 			bi = sh->dev[i].toread;
3425 			sh->dev[i].toread = NULL;
3426 			spin_unlock_irq(&sh->stripe_lock);
3427 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3428 				wake_up(&conf->wait_for_overlap);
3429 			if (bi)
3430 				s->to_read--;
3431 			while (bi && bi->bi_iter.bi_sector <
3432 			       sh->dev[i].sector + STRIPE_SECTORS) {
3433 				struct bio *nextbi =
3434 					r5_next_bio(bi, sh->dev[i].sector);
3435 
3436 				bio_io_error(bi);
3437 				bi = nextbi;
3438 			}
3439 		}
3440 		if (bitmap_end)
3441 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3442 					   STRIPE_SECTORS, 0, 0);
3443 		/* If we were in the middle of a write the parity block might
3444 		 * still be locked - so just clear all R5_LOCKED flags
3445 		 */
3446 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3447 	}
3448 	s->to_write = 0;
3449 	s->written = 0;
3450 
3451 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3452 		if (atomic_dec_and_test(&conf->pending_full_writes))
3453 			md_wakeup_thread(conf->mddev->thread);
3454 }
3455 
3456 static void
3457 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3458 		   struct stripe_head_state *s)
3459 {
3460 	int abort = 0;
3461 	int i;
3462 
3463 	BUG_ON(sh->batch_head);
3464 	clear_bit(STRIPE_SYNCING, &sh->state);
3465 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3466 		wake_up(&conf->wait_for_overlap);
3467 	s->syncing = 0;
3468 	s->replacing = 0;
3469 	/* There is nothing more to do for sync/check/repair.
3470 	 * Don't even need to abort as that is handled elsewhere
3471 	 * if needed, and not always wanted e.g. if there is a known
3472 	 * bad block here.
3473 	 * For recover/replace we need to record a bad block on all
3474 	 * non-sync devices, or abort the recovery
3475 	 */
3476 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3477 		/* During recovery devices cannot be removed, so
3478 		 * locking and refcounting of rdevs is not needed
3479 		 */
3480 		rcu_read_lock();
3481 		for (i = 0; i < conf->raid_disks; i++) {
3482 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3483 			if (rdev
3484 			    && !test_bit(Faulty, &rdev->flags)
3485 			    && !test_bit(In_sync, &rdev->flags)
3486 			    && !rdev_set_badblocks(rdev, sh->sector,
3487 						   STRIPE_SECTORS, 0))
3488 				abort = 1;
3489 			rdev = rcu_dereference(conf->disks[i].replacement);
3490 			if (rdev
3491 			    && !test_bit(Faulty, &rdev->flags)
3492 			    && !test_bit(In_sync, &rdev->flags)
3493 			    && !rdev_set_badblocks(rdev, sh->sector,
3494 						   STRIPE_SECTORS, 0))
3495 				abort = 1;
3496 		}
3497 		rcu_read_unlock();
3498 		if (abort)
3499 			conf->recovery_disabled =
3500 				conf->mddev->recovery_disabled;
3501 	}
3502 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3503 }
3504 
3505 static int want_replace(struct stripe_head *sh, int disk_idx)
3506 {
3507 	struct md_rdev *rdev;
3508 	int rv = 0;
3509 
3510 	rcu_read_lock();
3511 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3512 	if (rdev
3513 	    && !test_bit(Faulty, &rdev->flags)
3514 	    && !test_bit(In_sync, &rdev->flags)
3515 	    && (rdev->recovery_offset <= sh->sector
3516 		|| rdev->mddev->recovery_cp <= sh->sector))
3517 		rv = 1;
3518 	rcu_read_unlock();
3519 	return rv;
3520 }
3521 
3522 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3523 			   int disk_idx, int disks)
3524 {
3525 	struct r5dev *dev = &sh->dev[disk_idx];
3526 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3527 				  &sh->dev[s->failed_num[1]] };
3528 	int i;
3529 
3530 
3531 	if (test_bit(R5_LOCKED, &dev->flags) ||
3532 	    test_bit(R5_UPTODATE, &dev->flags))
3533 		/* No point reading this as we already have it or have
3534 		 * decided to get it.
3535 		 */
3536 		return 0;
3537 
3538 	if (dev->toread ||
3539 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3540 		/* We need this block to directly satisfy a request */
3541 		return 1;
3542 
3543 	if (s->syncing || s->expanding ||
3544 	    (s->replacing && want_replace(sh, disk_idx)))
3545 		/* When syncing, or expanding we read everything.
3546 		 * When replacing, we need the replaced block.
3547 		 */
3548 		return 1;
3549 
3550 	if ((s->failed >= 1 && fdev[0]->toread) ||
3551 	    (s->failed >= 2 && fdev[1]->toread))
3552 		/* If we want to read from a failed device, then
3553 		 * we need to actually read every other device.
3554 		 */
3555 		return 1;
3556 
3557 	/* Sometimes neither read-modify-write nor reconstruct-write
3558 	 * cycles can work.  In those cases we read every block we
3559 	 * can.  Then the parity-update is certain to have enough to
3560 	 * work with.
3561 	 * This can only be a problem when we need to write something,
3562 	 * and some device has failed.  If either of those tests
3563 	 * fail we need look no further.
3564 	 */
3565 	if (!s->failed || !s->to_write)
3566 		return 0;
3567 
3568 	if (test_bit(R5_Insync, &dev->flags) &&
3569 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3570 		/* Pre-reads at not permitted until after short delay
3571 		 * to gather multiple requests.  However if this
3572 		 * device is no Insync, the block could only be computed
3573 		 * and there is no need to delay that.
3574 		 */
3575 		return 0;
3576 
3577 	for (i = 0; i < s->failed && i < 2; i++) {
3578 		if (fdev[i]->towrite &&
3579 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3580 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3581 			/* If we have a partial write to a failed
3582 			 * device, then we will need to reconstruct
3583 			 * the content of that device, so all other
3584 			 * devices must be read.
3585 			 */
3586 			return 1;
3587 	}
3588 
3589 	/* If we are forced to do a reconstruct-write, either because
3590 	 * the current RAID6 implementation only supports that, or
3591 	 * because parity cannot be trusted and we are currently
3592 	 * recovering it, there is extra need to be careful.
3593 	 * If one of the devices that we would need to read, because
3594 	 * it is not being overwritten (and maybe not written at all)
3595 	 * is missing/faulty, then we need to read everything we can.
3596 	 */
3597 	if (sh->raid_conf->level != 6 &&
3598 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3599 		/* reconstruct-write isn't being forced */
3600 		return 0;
3601 	for (i = 0; i < s->failed && i < 2; i++) {
3602 		if (s->failed_num[i] != sh->pd_idx &&
3603 		    s->failed_num[i] != sh->qd_idx &&
3604 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3605 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3606 			return 1;
3607 	}
3608 
3609 	return 0;
3610 }
3611 
3612 /* fetch_block - checks the given member device to see if its data needs
3613  * to be read or computed to satisfy a request.
3614  *
3615  * Returns 1 when no more member devices need to be checked, otherwise returns
3616  * 0 to tell the loop in handle_stripe_fill to continue
3617  */
3618 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3619 		       int disk_idx, int disks)
3620 {
3621 	struct r5dev *dev = &sh->dev[disk_idx];
3622 
3623 	/* is the data in this block needed, and can we get it? */
3624 	if (need_this_block(sh, s, disk_idx, disks)) {
3625 		/* we would like to get this block, possibly by computing it,
3626 		 * otherwise read it if the backing disk is insync
3627 		 */
3628 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3629 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3630 		BUG_ON(sh->batch_head);
3631 
3632 		/*
3633 		 * In the raid6 case if the only non-uptodate disk is P
3634 		 * then we already trusted P to compute the other failed
3635 		 * drives. It is safe to compute rather than re-read P.
3636 		 * In other cases we only compute blocks from failed
3637 		 * devices, otherwise check/repair might fail to detect
3638 		 * a real inconsistency.
3639 		 */
3640 
3641 		if ((s->uptodate == disks - 1) &&
3642 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3643 		    (s->failed && (disk_idx == s->failed_num[0] ||
3644 				   disk_idx == s->failed_num[1])))) {
3645 			/* have disk failed, and we're requested to fetch it;
3646 			 * do compute it
3647 			 */
3648 			pr_debug("Computing stripe %llu block %d\n",
3649 			       (unsigned long long)sh->sector, disk_idx);
3650 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3651 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3652 			set_bit(R5_Wantcompute, &dev->flags);
3653 			sh->ops.target = disk_idx;
3654 			sh->ops.target2 = -1; /* no 2nd target */
3655 			s->req_compute = 1;
3656 			/* Careful: from this point on 'uptodate' is in the eye
3657 			 * of raid_run_ops which services 'compute' operations
3658 			 * before writes. R5_Wantcompute flags a block that will
3659 			 * be R5_UPTODATE by the time it is needed for a
3660 			 * subsequent operation.
3661 			 */
3662 			s->uptodate++;
3663 			return 1;
3664 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3665 			/* Computing 2-failure is *very* expensive; only
3666 			 * do it if failed >= 2
3667 			 */
3668 			int other;
3669 			for (other = disks; other--; ) {
3670 				if (other == disk_idx)
3671 					continue;
3672 				if (!test_bit(R5_UPTODATE,
3673 				      &sh->dev[other].flags))
3674 					break;
3675 			}
3676 			BUG_ON(other < 0);
3677 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3678 			       (unsigned long long)sh->sector,
3679 			       disk_idx, other);
3680 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3681 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3682 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3683 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3684 			sh->ops.target = disk_idx;
3685 			sh->ops.target2 = other;
3686 			s->uptodate += 2;
3687 			s->req_compute = 1;
3688 			return 1;
3689 		} else if (test_bit(R5_Insync, &dev->flags)) {
3690 			set_bit(R5_LOCKED, &dev->flags);
3691 			set_bit(R5_Wantread, &dev->flags);
3692 			s->locked++;
3693 			pr_debug("Reading block %d (sync=%d)\n",
3694 				disk_idx, s->syncing);
3695 		}
3696 	}
3697 
3698 	return 0;
3699 }
3700 
3701 /**
3702  * handle_stripe_fill - read or compute data to satisfy pending requests.
3703  */
3704 static void handle_stripe_fill(struct stripe_head *sh,
3705 			       struct stripe_head_state *s,
3706 			       int disks)
3707 {
3708 	int i;
3709 
3710 	/* look for blocks to read/compute, skip this if a compute
3711 	 * is already in flight, or if the stripe contents are in the
3712 	 * midst of changing due to a write
3713 	 */
3714 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3715 	    !sh->reconstruct_state) {
3716 
3717 		/*
3718 		 * For degraded stripe with data in journal, do not handle
3719 		 * read requests yet, instead, flush the stripe to raid
3720 		 * disks first, this avoids handling complex rmw of write
3721 		 * back cache (prexor with orig_page, and then xor with
3722 		 * page) in the read path
3723 		 */
3724 		if (s->injournal && s->failed) {
3725 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3726 				r5c_make_stripe_write_out(sh);
3727 			goto out;
3728 		}
3729 
3730 		for (i = disks; i--; )
3731 			if (fetch_block(sh, s, i, disks))
3732 				break;
3733 	}
3734 out:
3735 	set_bit(STRIPE_HANDLE, &sh->state);
3736 }
3737 
3738 static void break_stripe_batch_list(struct stripe_head *head_sh,
3739 				    unsigned long handle_flags);
3740 /* handle_stripe_clean_event
3741  * any written block on an uptodate or failed drive can be returned.
3742  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3743  * never LOCKED, so we don't need to test 'failed' directly.
3744  */
3745 static void handle_stripe_clean_event(struct r5conf *conf,
3746 	struct stripe_head *sh, int disks)
3747 {
3748 	int i;
3749 	struct r5dev *dev;
3750 	int discard_pending = 0;
3751 	struct stripe_head *head_sh = sh;
3752 	bool do_endio = false;
3753 
3754 	for (i = disks; i--; )
3755 		if (sh->dev[i].written) {
3756 			dev = &sh->dev[i];
3757 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3758 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3759 			     test_bit(R5_Discard, &dev->flags) ||
3760 			     test_bit(R5_SkipCopy, &dev->flags))) {
3761 				/* We can return any write requests */
3762 				struct bio *wbi, *wbi2;
3763 				pr_debug("Return write for disc %d\n", i);
3764 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3765 					clear_bit(R5_UPTODATE, &dev->flags);
3766 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3767 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3768 				}
3769 				do_endio = true;
3770 
3771 returnbi:
3772 				dev->page = dev->orig_page;
3773 				wbi = dev->written;
3774 				dev->written = NULL;
3775 				while (wbi && wbi->bi_iter.bi_sector <
3776 					dev->sector + STRIPE_SECTORS) {
3777 					wbi2 = r5_next_bio(wbi, dev->sector);
3778 					md_write_end(conf->mddev);
3779 					bio_endio(wbi);
3780 					wbi = wbi2;
3781 				}
3782 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3783 						   STRIPE_SECTORS,
3784 						   !test_bit(STRIPE_DEGRADED, &sh->state),
3785 						   0);
3786 				if (head_sh->batch_head) {
3787 					sh = list_first_entry(&sh->batch_list,
3788 							      struct stripe_head,
3789 							      batch_list);
3790 					if (sh != head_sh) {
3791 						dev = &sh->dev[i];
3792 						goto returnbi;
3793 					}
3794 				}
3795 				sh = head_sh;
3796 				dev = &sh->dev[i];
3797 			} else if (test_bit(R5_Discard, &dev->flags))
3798 				discard_pending = 1;
3799 		}
3800 
3801 	log_stripe_write_finished(sh);
3802 
3803 	if (!discard_pending &&
3804 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3805 		int hash;
3806 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3807 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3808 		if (sh->qd_idx >= 0) {
3809 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3810 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3811 		}
3812 		/* now that discard is done we can proceed with any sync */
3813 		clear_bit(STRIPE_DISCARD, &sh->state);
3814 		/*
3815 		 * SCSI discard will change some bio fields and the stripe has
3816 		 * no updated data, so remove it from hash list and the stripe
3817 		 * will be reinitialized
3818 		 */
3819 unhash:
3820 		hash = sh->hash_lock_index;
3821 		spin_lock_irq(conf->hash_locks + hash);
3822 		remove_hash(sh);
3823 		spin_unlock_irq(conf->hash_locks + hash);
3824 		if (head_sh->batch_head) {
3825 			sh = list_first_entry(&sh->batch_list,
3826 					      struct stripe_head, batch_list);
3827 			if (sh != head_sh)
3828 					goto unhash;
3829 		}
3830 		sh = head_sh;
3831 
3832 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3833 			set_bit(STRIPE_HANDLE, &sh->state);
3834 
3835 	}
3836 
3837 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3838 		if (atomic_dec_and_test(&conf->pending_full_writes))
3839 			md_wakeup_thread(conf->mddev->thread);
3840 
3841 	if (head_sh->batch_head && do_endio)
3842 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3843 }
3844 
3845 /*
3846  * For RMW in write back cache, we need extra page in prexor to store the
3847  * old data. This page is stored in dev->orig_page.
3848  *
3849  * This function checks whether we have data for prexor. The exact logic
3850  * is:
3851  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3852  */
3853 static inline bool uptodate_for_rmw(struct r5dev *dev)
3854 {
3855 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3856 		(!test_bit(R5_InJournal, &dev->flags) ||
3857 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3858 }
3859 
3860 static int handle_stripe_dirtying(struct r5conf *conf,
3861 				  struct stripe_head *sh,
3862 				  struct stripe_head_state *s,
3863 				  int disks)
3864 {
3865 	int rmw = 0, rcw = 0, i;
3866 	sector_t recovery_cp = conf->mddev->recovery_cp;
3867 
3868 	/* Check whether resync is now happening or should start.
3869 	 * If yes, then the array is dirty (after unclean shutdown or
3870 	 * initial creation), so parity in some stripes might be inconsistent.
3871 	 * In this case, we need to always do reconstruct-write, to ensure
3872 	 * that in case of drive failure or read-error correction, we
3873 	 * generate correct data from the parity.
3874 	 */
3875 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3876 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3877 	     s->failed == 0)) {
3878 		/* Calculate the real rcw later - for now make it
3879 		 * look like rcw is cheaper
3880 		 */
3881 		rcw = 1; rmw = 2;
3882 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3883 			 conf->rmw_level, (unsigned long long)recovery_cp,
3884 			 (unsigned long long)sh->sector);
3885 	} else for (i = disks; i--; ) {
3886 		/* would I have to read this buffer for read_modify_write */
3887 		struct r5dev *dev = &sh->dev[i];
3888 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3889 		     i == sh->pd_idx || i == sh->qd_idx ||
3890 		     test_bit(R5_InJournal, &dev->flags)) &&
3891 		    !test_bit(R5_LOCKED, &dev->flags) &&
3892 		    !(uptodate_for_rmw(dev) ||
3893 		      test_bit(R5_Wantcompute, &dev->flags))) {
3894 			if (test_bit(R5_Insync, &dev->flags))
3895 				rmw++;
3896 			else
3897 				rmw += 2*disks;  /* cannot read it */
3898 		}
3899 		/* Would I have to read this buffer for reconstruct_write */
3900 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3901 		    i != sh->pd_idx && i != sh->qd_idx &&
3902 		    !test_bit(R5_LOCKED, &dev->flags) &&
3903 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3904 		      test_bit(R5_Wantcompute, &dev->flags))) {
3905 			if (test_bit(R5_Insync, &dev->flags))
3906 				rcw++;
3907 			else
3908 				rcw += 2*disks;
3909 		}
3910 	}
3911 
3912 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3913 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3914 	set_bit(STRIPE_HANDLE, &sh->state);
3915 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3916 		/* prefer read-modify-write, but need to get some data */
3917 		if (conf->mddev->queue)
3918 			blk_add_trace_msg(conf->mddev->queue,
3919 					  "raid5 rmw %llu %d",
3920 					  (unsigned long long)sh->sector, rmw);
3921 		for (i = disks; i--; ) {
3922 			struct r5dev *dev = &sh->dev[i];
3923 			if (test_bit(R5_InJournal, &dev->flags) &&
3924 			    dev->page == dev->orig_page &&
3925 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3926 				/* alloc page for prexor */
3927 				struct page *p = alloc_page(GFP_NOIO);
3928 
3929 				if (p) {
3930 					dev->orig_page = p;
3931 					continue;
3932 				}
3933 
3934 				/*
3935 				 * alloc_page() failed, try use
3936 				 * disk_info->extra_page
3937 				 */
3938 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3939 						      &conf->cache_state)) {
3940 					r5c_use_extra_page(sh);
3941 					break;
3942 				}
3943 
3944 				/* extra_page in use, add to delayed_list */
3945 				set_bit(STRIPE_DELAYED, &sh->state);
3946 				s->waiting_extra_page = 1;
3947 				return -EAGAIN;
3948 			}
3949 		}
3950 
3951 		for (i = disks; i--; ) {
3952 			struct r5dev *dev = &sh->dev[i];
3953 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3954 			     i == sh->pd_idx || i == sh->qd_idx ||
3955 			     test_bit(R5_InJournal, &dev->flags)) &&
3956 			    !test_bit(R5_LOCKED, &dev->flags) &&
3957 			    !(uptodate_for_rmw(dev) ||
3958 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3959 			    test_bit(R5_Insync, &dev->flags)) {
3960 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3961 					     &sh->state)) {
3962 					pr_debug("Read_old block %d for r-m-w\n",
3963 						 i);
3964 					set_bit(R5_LOCKED, &dev->flags);
3965 					set_bit(R5_Wantread, &dev->flags);
3966 					s->locked++;
3967 				} else {
3968 					set_bit(STRIPE_DELAYED, &sh->state);
3969 					set_bit(STRIPE_HANDLE, &sh->state);
3970 				}
3971 			}
3972 		}
3973 	}
3974 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3975 		/* want reconstruct write, but need to get some data */
3976 		int qread =0;
3977 		rcw = 0;
3978 		for (i = disks; i--; ) {
3979 			struct r5dev *dev = &sh->dev[i];
3980 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3981 			    i != sh->pd_idx && i != sh->qd_idx &&
3982 			    !test_bit(R5_LOCKED, &dev->flags) &&
3983 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3984 			      test_bit(R5_Wantcompute, &dev->flags))) {
3985 				rcw++;
3986 				if (test_bit(R5_Insync, &dev->flags) &&
3987 				    test_bit(STRIPE_PREREAD_ACTIVE,
3988 					     &sh->state)) {
3989 					pr_debug("Read_old block "
3990 						"%d for Reconstruct\n", i);
3991 					set_bit(R5_LOCKED, &dev->flags);
3992 					set_bit(R5_Wantread, &dev->flags);
3993 					s->locked++;
3994 					qread++;
3995 				} else {
3996 					set_bit(STRIPE_DELAYED, &sh->state);
3997 					set_bit(STRIPE_HANDLE, &sh->state);
3998 				}
3999 			}
4000 		}
4001 		if (rcw && conf->mddev->queue)
4002 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4003 					  (unsigned long long)sh->sector,
4004 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4005 	}
4006 
4007 	if (rcw > disks && rmw > disks &&
4008 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4009 		set_bit(STRIPE_DELAYED, &sh->state);
4010 
4011 	/* now if nothing is locked, and if we have enough data,
4012 	 * we can start a write request
4013 	 */
4014 	/* since handle_stripe can be called at any time we need to handle the
4015 	 * case where a compute block operation has been submitted and then a
4016 	 * subsequent call wants to start a write request.  raid_run_ops only
4017 	 * handles the case where compute block and reconstruct are requested
4018 	 * simultaneously.  If this is not the case then new writes need to be
4019 	 * held off until the compute completes.
4020 	 */
4021 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4022 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4023 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4024 		schedule_reconstruction(sh, s, rcw == 0, 0);
4025 	return 0;
4026 }
4027 
4028 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4029 				struct stripe_head_state *s, int disks)
4030 {
4031 	struct r5dev *dev = NULL;
4032 
4033 	BUG_ON(sh->batch_head);
4034 	set_bit(STRIPE_HANDLE, &sh->state);
4035 
4036 	switch (sh->check_state) {
4037 	case check_state_idle:
4038 		/* start a new check operation if there are no failures */
4039 		if (s->failed == 0) {
4040 			BUG_ON(s->uptodate != disks);
4041 			sh->check_state = check_state_run;
4042 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4043 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4044 			s->uptodate--;
4045 			break;
4046 		}
4047 		dev = &sh->dev[s->failed_num[0]];
4048 		/* fall through */
4049 	case check_state_compute_result:
4050 		sh->check_state = check_state_idle;
4051 		if (!dev)
4052 			dev = &sh->dev[sh->pd_idx];
4053 
4054 		/* check that a write has not made the stripe insync */
4055 		if (test_bit(STRIPE_INSYNC, &sh->state))
4056 			break;
4057 
4058 		/* either failed parity check, or recovery is happening */
4059 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4060 		BUG_ON(s->uptodate != disks);
4061 
4062 		set_bit(R5_LOCKED, &dev->flags);
4063 		s->locked++;
4064 		set_bit(R5_Wantwrite, &dev->flags);
4065 
4066 		clear_bit(STRIPE_DEGRADED, &sh->state);
4067 		set_bit(STRIPE_INSYNC, &sh->state);
4068 		break;
4069 	case check_state_run:
4070 		break; /* we will be called again upon completion */
4071 	case check_state_check_result:
4072 		sh->check_state = check_state_idle;
4073 
4074 		/* if a failure occurred during the check operation, leave
4075 		 * STRIPE_INSYNC not set and let the stripe be handled again
4076 		 */
4077 		if (s->failed)
4078 			break;
4079 
4080 		/* handle a successful check operation, if parity is correct
4081 		 * we are done.  Otherwise update the mismatch count and repair
4082 		 * parity if !MD_RECOVERY_CHECK
4083 		 */
4084 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4085 			/* parity is correct (on disc,
4086 			 * not in buffer any more)
4087 			 */
4088 			set_bit(STRIPE_INSYNC, &sh->state);
4089 		else {
4090 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4091 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4092 				/* don't try to repair!! */
4093 				set_bit(STRIPE_INSYNC, &sh->state);
4094 				pr_warn_ratelimited("%s: mismatch sector in range "
4095 						    "%llu-%llu\n", mdname(conf->mddev),
4096 						    (unsigned long long) sh->sector,
4097 						    (unsigned long long) sh->sector +
4098 						    STRIPE_SECTORS);
4099 			} else {
4100 				sh->check_state = check_state_compute_run;
4101 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4102 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4103 				set_bit(R5_Wantcompute,
4104 					&sh->dev[sh->pd_idx].flags);
4105 				sh->ops.target = sh->pd_idx;
4106 				sh->ops.target2 = -1;
4107 				s->uptodate++;
4108 			}
4109 		}
4110 		break;
4111 	case check_state_compute_run:
4112 		break;
4113 	default:
4114 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4115 		       __func__, sh->check_state,
4116 		       (unsigned long long) sh->sector);
4117 		BUG();
4118 	}
4119 }
4120 
4121 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4122 				  struct stripe_head_state *s,
4123 				  int disks)
4124 {
4125 	int pd_idx = sh->pd_idx;
4126 	int qd_idx = sh->qd_idx;
4127 	struct r5dev *dev;
4128 
4129 	BUG_ON(sh->batch_head);
4130 	set_bit(STRIPE_HANDLE, &sh->state);
4131 
4132 	BUG_ON(s->failed > 2);
4133 
4134 	/* Want to check and possibly repair P and Q.
4135 	 * However there could be one 'failed' device, in which
4136 	 * case we can only check one of them, possibly using the
4137 	 * other to generate missing data
4138 	 */
4139 
4140 	switch (sh->check_state) {
4141 	case check_state_idle:
4142 		/* start a new check operation if there are < 2 failures */
4143 		if (s->failed == s->q_failed) {
4144 			/* The only possible failed device holds Q, so it
4145 			 * makes sense to check P (If anything else were failed,
4146 			 * we would have used P to recreate it).
4147 			 */
4148 			sh->check_state = check_state_run;
4149 		}
4150 		if (!s->q_failed && s->failed < 2) {
4151 			/* Q is not failed, and we didn't use it to generate
4152 			 * anything, so it makes sense to check it
4153 			 */
4154 			if (sh->check_state == check_state_run)
4155 				sh->check_state = check_state_run_pq;
4156 			else
4157 				sh->check_state = check_state_run_q;
4158 		}
4159 
4160 		/* discard potentially stale zero_sum_result */
4161 		sh->ops.zero_sum_result = 0;
4162 
4163 		if (sh->check_state == check_state_run) {
4164 			/* async_xor_zero_sum destroys the contents of P */
4165 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4166 			s->uptodate--;
4167 		}
4168 		if (sh->check_state >= check_state_run &&
4169 		    sh->check_state <= check_state_run_pq) {
4170 			/* async_syndrome_zero_sum preserves P and Q, so
4171 			 * no need to mark them !uptodate here
4172 			 */
4173 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4174 			break;
4175 		}
4176 
4177 		/* we have 2-disk failure */
4178 		BUG_ON(s->failed != 2);
4179 		/* fall through */
4180 	case check_state_compute_result:
4181 		sh->check_state = check_state_idle;
4182 
4183 		/* check that a write has not made the stripe insync */
4184 		if (test_bit(STRIPE_INSYNC, &sh->state))
4185 			break;
4186 
4187 		/* now write out any block on a failed drive,
4188 		 * or P or Q if they were recomputed
4189 		 */
4190 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4191 		if (s->failed == 2) {
4192 			dev = &sh->dev[s->failed_num[1]];
4193 			s->locked++;
4194 			set_bit(R5_LOCKED, &dev->flags);
4195 			set_bit(R5_Wantwrite, &dev->flags);
4196 		}
4197 		if (s->failed >= 1) {
4198 			dev = &sh->dev[s->failed_num[0]];
4199 			s->locked++;
4200 			set_bit(R5_LOCKED, &dev->flags);
4201 			set_bit(R5_Wantwrite, &dev->flags);
4202 		}
4203 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4204 			dev = &sh->dev[pd_idx];
4205 			s->locked++;
4206 			set_bit(R5_LOCKED, &dev->flags);
4207 			set_bit(R5_Wantwrite, &dev->flags);
4208 		}
4209 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4210 			dev = &sh->dev[qd_idx];
4211 			s->locked++;
4212 			set_bit(R5_LOCKED, &dev->flags);
4213 			set_bit(R5_Wantwrite, &dev->flags);
4214 		}
4215 		clear_bit(STRIPE_DEGRADED, &sh->state);
4216 
4217 		set_bit(STRIPE_INSYNC, &sh->state);
4218 		break;
4219 	case check_state_run:
4220 	case check_state_run_q:
4221 	case check_state_run_pq:
4222 		break; /* we will be called again upon completion */
4223 	case check_state_check_result:
4224 		sh->check_state = check_state_idle;
4225 
4226 		/* handle a successful check operation, if parity is correct
4227 		 * we are done.  Otherwise update the mismatch count and repair
4228 		 * parity if !MD_RECOVERY_CHECK
4229 		 */
4230 		if (sh->ops.zero_sum_result == 0) {
4231 			/* both parities are correct */
4232 			if (!s->failed)
4233 				set_bit(STRIPE_INSYNC, &sh->state);
4234 			else {
4235 				/* in contrast to the raid5 case we can validate
4236 				 * parity, but still have a failure to write
4237 				 * back
4238 				 */
4239 				sh->check_state = check_state_compute_result;
4240 				/* Returning at this point means that we may go
4241 				 * off and bring p and/or q uptodate again so
4242 				 * we make sure to check zero_sum_result again
4243 				 * to verify if p or q need writeback
4244 				 */
4245 			}
4246 		} else {
4247 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4248 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4249 				/* don't try to repair!! */
4250 				set_bit(STRIPE_INSYNC, &sh->state);
4251 				pr_warn_ratelimited("%s: mismatch sector in range "
4252 						    "%llu-%llu\n", mdname(conf->mddev),
4253 						    (unsigned long long) sh->sector,
4254 						    (unsigned long long) sh->sector +
4255 						    STRIPE_SECTORS);
4256 			} else {
4257 				int *target = &sh->ops.target;
4258 
4259 				sh->ops.target = -1;
4260 				sh->ops.target2 = -1;
4261 				sh->check_state = check_state_compute_run;
4262 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4263 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4264 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4265 					set_bit(R5_Wantcompute,
4266 						&sh->dev[pd_idx].flags);
4267 					*target = pd_idx;
4268 					target = &sh->ops.target2;
4269 					s->uptodate++;
4270 				}
4271 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4272 					set_bit(R5_Wantcompute,
4273 						&sh->dev[qd_idx].flags);
4274 					*target = qd_idx;
4275 					s->uptodate++;
4276 				}
4277 			}
4278 		}
4279 		break;
4280 	case check_state_compute_run:
4281 		break;
4282 	default:
4283 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4284 			__func__, sh->check_state,
4285 			(unsigned long long) sh->sector);
4286 		BUG();
4287 	}
4288 }
4289 
4290 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4291 {
4292 	int i;
4293 
4294 	/* We have read all the blocks in this stripe and now we need to
4295 	 * copy some of them into a target stripe for expand.
4296 	 */
4297 	struct dma_async_tx_descriptor *tx = NULL;
4298 	BUG_ON(sh->batch_head);
4299 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4300 	for (i = 0; i < sh->disks; i++)
4301 		if (i != sh->pd_idx && i != sh->qd_idx) {
4302 			int dd_idx, j;
4303 			struct stripe_head *sh2;
4304 			struct async_submit_ctl submit;
4305 
4306 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4307 			sector_t s = raid5_compute_sector(conf, bn, 0,
4308 							  &dd_idx, NULL);
4309 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4310 			if (sh2 == NULL)
4311 				/* so far only the early blocks of this stripe
4312 				 * have been requested.  When later blocks
4313 				 * get requested, we will try again
4314 				 */
4315 				continue;
4316 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4317 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4318 				/* must have already done this block */
4319 				raid5_release_stripe(sh2);
4320 				continue;
4321 			}
4322 
4323 			/* place all the copies on one channel */
4324 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4325 			tx = async_memcpy(sh2->dev[dd_idx].page,
4326 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4327 					  &submit);
4328 
4329 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4330 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4331 			for (j = 0; j < conf->raid_disks; j++)
4332 				if (j != sh2->pd_idx &&
4333 				    j != sh2->qd_idx &&
4334 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4335 					break;
4336 			if (j == conf->raid_disks) {
4337 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4338 				set_bit(STRIPE_HANDLE, &sh2->state);
4339 			}
4340 			raid5_release_stripe(sh2);
4341 
4342 		}
4343 	/* done submitting copies, wait for them to complete */
4344 	async_tx_quiesce(&tx);
4345 }
4346 
4347 /*
4348  * handle_stripe - do things to a stripe.
4349  *
4350  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4351  * state of various bits to see what needs to be done.
4352  * Possible results:
4353  *    return some read requests which now have data
4354  *    return some write requests which are safely on storage
4355  *    schedule a read on some buffers
4356  *    schedule a write of some buffers
4357  *    return confirmation of parity correctness
4358  *
4359  */
4360 
4361 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4362 {
4363 	struct r5conf *conf = sh->raid_conf;
4364 	int disks = sh->disks;
4365 	struct r5dev *dev;
4366 	int i;
4367 	int do_recovery = 0;
4368 
4369 	memset(s, 0, sizeof(*s));
4370 
4371 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4372 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4373 	s->failed_num[0] = -1;
4374 	s->failed_num[1] = -1;
4375 	s->log_failed = r5l_log_disk_error(conf);
4376 
4377 	/* Now to look around and see what can be done */
4378 	rcu_read_lock();
4379 	for (i=disks; i--; ) {
4380 		struct md_rdev *rdev;
4381 		sector_t first_bad;
4382 		int bad_sectors;
4383 		int is_bad = 0;
4384 
4385 		dev = &sh->dev[i];
4386 
4387 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4388 			 i, dev->flags,
4389 			 dev->toread, dev->towrite, dev->written);
4390 		/* maybe we can reply to a read
4391 		 *
4392 		 * new wantfill requests are only permitted while
4393 		 * ops_complete_biofill is guaranteed to be inactive
4394 		 */
4395 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4396 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4397 			set_bit(R5_Wantfill, &dev->flags);
4398 
4399 		/* now count some things */
4400 		if (test_bit(R5_LOCKED, &dev->flags))
4401 			s->locked++;
4402 		if (test_bit(R5_UPTODATE, &dev->flags))
4403 			s->uptodate++;
4404 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4405 			s->compute++;
4406 			BUG_ON(s->compute > 2);
4407 		}
4408 
4409 		if (test_bit(R5_Wantfill, &dev->flags))
4410 			s->to_fill++;
4411 		else if (dev->toread)
4412 			s->to_read++;
4413 		if (dev->towrite) {
4414 			s->to_write++;
4415 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4416 				s->non_overwrite++;
4417 		}
4418 		if (dev->written)
4419 			s->written++;
4420 		/* Prefer to use the replacement for reads, but only
4421 		 * if it is recovered enough and has no bad blocks.
4422 		 */
4423 		rdev = rcu_dereference(conf->disks[i].replacement);
4424 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4425 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4426 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4427 				 &first_bad, &bad_sectors))
4428 			set_bit(R5_ReadRepl, &dev->flags);
4429 		else {
4430 			if (rdev && !test_bit(Faulty, &rdev->flags))
4431 				set_bit(R5_NeedReplace, &dev->flags);
4432 			else
4433 				clear_bit(R5_NeedReplace, &dev->flags);
4434 			rdev = rcu_dereference(conf->disks[i].rdev);
4435 			clear_bit(R5_ReadRepl, &dev->flags);
4436 		}
4437 		if (rdev && test_bit(Faulty, &rdev->flags))
4438 			rdev = NULL;
4439 		if (rdev) {
4440 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4441 					     &first_bad, &bad_sectors);
4442 			if (s->blocked_rdev == NULL
4443 			    && (test_bit(Blocked, &rdev->flags)
4444 				|| is_bad < 0)) {
4445 				if (is_bad < 0)
4446 					set_bit(BlockedBadBlocks,
4447 						&rdev->flags);
4448 				s->blocked_rdev = rdev;
4449 				atomic_inc(&rdev->nr_pending);
4450 			}
4451 		}
4452 		clear_bit(R5_Insync, &dev->flags);
4453 		if (!rdev)
4454 			/* Not in-sync */;
4455 		else if (is_bad) {
4456 			/* also not in-sync */
4457 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4458 			    test_bit(R5_UPTODATE, &dev->flags)) {
4459 				/* treat as in-sync, but with a read error
4460 				 * which we can now try to correct
4461 				 */
4462 				set_bit(R5_Insync, &dev->flags);
4463 				set_bit(R5_ReadError, &dev->flags);
4464 			}
4465 		} else if (test_bit(In_sync, &rdev->flags))
4466 			set_bit(R5_Insync, &dev->flags);
4467 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4468 			/* in sync if before recovery_offset */
4469 			set_bit(R5_Insync, &dev->flags);
4470 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4471 			 test_bit(R5_Expanded, &dev->flags))
4472 			/* If we've reshaped into here, we assume it is Insync.
4473 			 * We will shortly update recovery_offset to make
4474 			 * it official.
4475 			 */
4476 			set_bit(R5_Insync, &dev->flags);
4477 
4478 		if (test_bit(R5_WriteError, &dev->flags)) {
4479 			/* This flag does not apply to '.replacement'
4480 			 * only to .rdev, so make sure to check that*/
4481 			struct md_rdev *rdev2 = rcu_dereference(
4482 				conf->disks[i].rdev);
4483 			if (rdev2 == rdev)
4484 				clear_bit(R5_Insync, &dev->flags);
4485 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4486 				s->handle_bad_blocks = 1;
4487 				atomic_inc(&rdev2->nr_pending);
4488 			} else
4489 				clear_bit(R5_WriteError, &dev->flags);
4490 		}
4491 		if (test_bit(R5_MadeGood, &dev->flags)) {
4492 			/* This flag does not apply to '.replacement'
4493 			 * only to .rdev, so make sure to check that*/
4494 			struct md_rdev *rdev2 = rcu_dereference(
4495 				conf->disks[i].rdev);
4496 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4497 				s->handle_bad_blocks = 1;
4498 				atomic_inc(&rdev2->nr_pending);
4499 			} else
4500 				clear_bit(R5_MadeGood, &dev->flags);
4501 		}
4502 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4503 			struct md_rdev *rdev2 = rcu_dereference(
4504 				conf->disks[i].replacement);
4505 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4506 				s->handle_bad_blocks = 1;
4507 				atomic_inc(&rdev2->nr_pending);
4508 			} else
4509 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4510 		}
4511 		if (!test_bit(R5_Insync, &dev->flags)) {
4512 			/* The ReadError flag will just be confusing now */
4513 			clear_bit(R5_ReadError, &dev->flags);
4514 			clear_bit(R5_ReWrite, &dev->flags);
4515 		}
4516 		if (test_bit(R5_ReadError, &dev->flags))
4517 			clear_bit(R5_Insync, &dev->flags);
4518 		if (!test_bit(R5_Insync, &dev->flags)) {
4519 			if (s->failed < 2)
4520 				s->failed_num[s->failed] = i;
4521 			s->failed++;
4522 			if (rdev && !test_bit(Faulty, &rdev->flags))
4523 				do_recovery = 1;
4524 			else if (!rdev) {
4525 				rdev = rcu_dereference(
4526 				    conf->disks[i].replacement);
4527 				if (rdev && !test_bit(Faulty, &rdev->flags))
4528 					do_recovery = 1;
4529 			}
4530 		}
4531 
4532 		if (test_bit(R5_InJournal, &dev->flags))
4533 			s->injournal++;
4534 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4535 			s->just_cached++;
4536 	}
4537 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4538 		/* If there is a failed device being replaced,
4539 		 *     we must be recovering.
4540 		 * else if we are after recovery_cp, we must be syncing
4541 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4542 		 * else we can only be replacing
4543 		 * sync and recovery both need to read all devices, and so
4544 		 * use the same flag.
4545 		 */
4546 		if (do_recovery ||
4547 		    sh->sector >= conf->mddev->recovery_cp ||
4548 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4549 			s->syncing = 1;
4550 		else
4551 			s->replacing = 1;
4552 	}
4553 	rcu_read_unlock();
4554 }
4555 
4556 static int clear_batch_ready(struct stripe_head *sh)
4557 {
4558 	/* Return '1' if this is a member of batch, or
4559 	 * '0' if it is a lone stripe or a head which can now be
4560 	 * handled.
4561 	 */
4562 	struct stripe_head *tmp;
4563 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4564 		return (sh->batch_head && sh->batch_head != sh);
4565 	spin_lock(&sh->stripe_lock);
4566 	if (!sh->batch_head) {
4567 		spin_unlock(&sh->stripe_lock);
4568 		return 0;
4569 	}
4570 
4571 	/*
4572 	 * this stripe could be added to a batch list before we check
4573 	 * BATCH_READY, skips it
4574 	 */
4575 	if (sh->batch_head != sh) {
4576 		spin_unlock(&sh->stripe_lock);
4577 		return 1;
4578 	}
4579 	spin_lock(&sh->batch_lock);
4580 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4581 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4582 	spin_unlock(&sh->batch_lock);
4583 	spin_unlock(&sh->stripe_lock);
4584 
4585 	/*
4586 	 * BATCH_READY is cleared, no new stripes can be added.
4587 	 * batch_list can be accessed without lock
4588 	 */
4589 	return 0;
4590 }
4591 
4592 static void break_stripe_batch_list(struct stripe_head *head_sh,
4593 				    unsigned long handle_flags)
4594 {
4595 	struct stripe_head *sh, *next;
4596 	int i;
4597 	int do_wakeup = 0;
4598 
4599 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4600 
4601 		list_del_init(&sh->batch_list);
4602 
4603 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4604 					  (1 << STRIPE_SYNCING) |
4605 					  (1 << STRIPE_REPLACED) |
4606 					  (1 << STRIPE_DELAYED) |
4607 					  (1 << STRIPE_BIT_DELAY) |
4608 					  (1 << STRIPE_FULL_WRITE) |
4609 					  (1 << STRIPE_BIOFILL_RUN) |
4610 					  (1 << STRIPE_COMPUTE_RUN)  |
4611 					  (1 << STRIPE_OPS_REQ_PENDING) |
4612 					  (1 << STRIPE_DISCARD) |
4613 					  (1 << STRIPE_BATCH_READY) |
4614 					  (1 << STRIPE_BATCH_ERR) |
4615 					  (1 << STRIPE_BITMAP_PENDING)),
4616 			"stripe state: %lx\n", sh->state);
4617 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4618 					      (1 << STRIPE_REPLACED)),
4619 			"head stripe state: %lx\n", head_sh->state);
4620 
4621 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4622 					    (1 << STRIPE_PREREAD_ACTIVE) |
4623 					    (1 << STRIPE_DEGRADED) |
4624 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4625 			      head_sh->state & (1 << STRIPE_INSYNC));
4626 
4627 		sh->check_state = head_sh->check_state;
4628 		sh->reconstruct_state = head_sh->reconstruct_state;
4629 		spin_lock_irq(&sh->stripe_lock);
4630 		sh->batch_head = NULL;
4631 		spin_unlock_irq(&sh->stripe_lock);
4632 		for (i = 0; i < sh->disks; i++) {
4633 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4634 				do_wakeup = 1;
4635 			sh->dev[i].flags = head_sh->dev[i].flags &
4636 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4637 		}
4638 		if (handle_flags == 0 ||
4639 		    sh->state & handle_flags)
4640 			set_bit(STRIPE_HANDLE, &sh->state);
4641 		raid5_release_stripe(sh);
4642 	}
4643 	spin_lock_irq(&head_sh->stripe_lock);
4644 	head_sh->batch_head = NULL;
4645 	spin_unlock_irq(&head_sh->stripe_lock);
4646 	for (i = 0; i < head_sh->disks; i++)
4647 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4648 			do_wakeup = 1;
4649 	if (head_sh->state & handle_flags)
4650 		set_bit(STRIPE_HANDLE, &head_sh->state);
4651 
4652 	if (do_wakeup)
4653 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4654 }
4655 
4656 static void handle_stripe(struct stripe_head *sh)
4657 {
4658 	struct stripe_head_state s;
4659 	struct r5conf *conf = sh->raid_conf;
4660 	int i;
4661 	int prexor;
4662 	int disks = sh->disks;
4663 	struct r5dev *pdev, *qdev;
4664 
4665 	clear_bit(STRIPE_HANDLE, &sh->state);
4666 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4667 		/* already being handled, ensure it gets handled
4668 		 * again when current action finishes */
4669 		set_bit(STRIPE_HANDLE, &sh->state);
4670 		return;
4671 	}
4672 
4673 	if (clear_batch_ready(sh) ) {
4674 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4675 		return;
4676 	}
4677 
4678 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4679 		break_stripe_batch_list(sh, 0);
4680 
4681 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4682 		spin_lock(&sh->stripe_lock);
4683 		/*
4684 		 * Cannot process 'sync' concurrently with 'discard'.
4685 		 * Flush data in r5cache before 'sync'.
4686 		 */
4687 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4688 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4689 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4690 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4691 			set_bit(STRIPE_SYNCING, &sh->state);
4692 			clear_bit(STRIPE_INSYNC, &sh->state);
4693 			clear_bit(STRIPE_REPLACED, &sh->state);
4694 		}
4695 		spin_unlock(&sh->stripe_lock);
4696 	}
4697 	clear_bit(STRIPE_DELAYED, &sh->state);
4698 
4699 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4700 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4701 	       (unsigned long long)sh->sector, sh->state,
4702 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4703 	       sh->check_state, sh->reconstruct_state);
4704 
4705 	analyse_stripe(sh, &s);
4706 
4707 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4708 		goto finish;
4709 
4710 	if (s.handle_bad_blocks ||
4711 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4712 		set_bit(STRIPE_HANDLE, &sh->state);
4713 		goto finish;
4714 	}
4715 
4716 	if (unlikely(s.blocked_rdev)) {
4717 		if (s.syncing || s.expanding || s.expanded ||
4718 		    s.replacing || s.to_write || s.written) {
4719 			set_bit(STRIPE_HANDLE, &sh->state);
4720 			goto finish;
4721 		}
4722 		/* There is nothing for the blocked_rdev to block */
4723 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4724 		s.blocked_rdev = NULL;
4725 	}
4726 
4727 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4728 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4729 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4730 	}
4731 
4732 	pr_debug("locked=%d uptodate=%d to_read=%d"
4733 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4734 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4735 	       s.failed_num[0], s.failed_num[1]);
4736 	/*
4737 	 * check if the array has lost more than max_degraded devices and,
4738 	 * if so, some requests might need to be failed.
4739 	 *
4740 	 * When journal device failed (log_failed), we will only process
4741 	 * the stripe if there is data need write to raid disks
4742 	 */
4743 	if (s.failed > conf->max_degraded ||
4744 	    (s.log_failed && s.injournal == 0)) {
4745 		sh->check_state = 0;
4746 		sh->reconstruct_state = 0;
4747 		break_stripe_batch_list(sh, 0);
4748 		if (s.to_read+s.to_write+s.written)
4749 			handle_failed_stripe(conf, sh, &s, disks);
4750 		if (s.syncing + s.replacing)
4751 			handle_failed_sync(conf, sh, &s);
4752 	}
4753 
4754 	/* Now we check to see if any write operations have recently
4755 	 * completed
4756 	 */
4757 	prexor = 0;
4758 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4759 		prexor = 1;
4760 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4761 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4762 		sh->reconstruct_state = reconstruct_state_idle;
4763 
4764 		/* All the 'written' buffers and the parity block are ready to
4765 		 * be written back to disk
4766 		 */
4767 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4768 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4769 		BUG_ON(sh->qd_idx >= 0 &&
4770 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4771 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4772 		for (i = disks; i--; ) {
4773 			struct r5dev *dev = &sh->dev[i];
4774 			if (test_bit(R5_LOCKED, &dev->flags) &&
4775 				(i == sh->pd_idx || i == sh->qd_idx ||
4776 				 dev->written || test_bit(R5_InJournal,
4777 							  &dev->flags))) {
4778 				pr_debug("Writing block %d\n", i);
4779 				set_bit(R5_Wantwrite, &dev->flags);
4780 				if (prexor)
4781 					continue;
4782 				if (s.failed > 1)
4783 					continue;
4784 				if (!test_bit(R5_Insync, &dev->flags) ||
4785 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4786 				     s.failed == 0))
4787 					set_bit(STRIPE_INSYNC, &sh->state);
4788 			}
4789 		}
4790 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4791 			s.dec_preread_active = 1;
4792 	}
4793 
4794 	/*
4795 	 * might be able to return some write requests if the parity blocks
4796 	 * are safe, or on a failed drive
4797 	 */
4798 	pdev = &sh->dev[sh->pd_idx];
4799 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4800 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4801 	qdev = &sh->dev[sh->qd_idx];
4802 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4803 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4804 		|| conf->level < 6;
4805 
4806 	if (s.written &&
4807 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4808 			     && !test_bit(R5_LOCKED, &pdev->flags)
4809 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4810 				 test_bit(R5_Discard, &pdev->flags))))) &&
4811 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4812 			     && !test_bit(R5_LOCKED, &qdev->flags)
4813 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4814 				 test_bit(R5_Discard, &qdev->flags))))))
4815 		handle_stripe_clean_event(conf, sh, disks);
4816 
4817 	if (s.just_cached)
4818 		r5c_handle_cached_data_endio(conf, sh, disks);
4819 	log_stripe_write_finished(sh);
4820 
4821 	/* Now we might consider reading some blocks, either to check/generate
4822 	 * parity, or to satisfy requests
4823 	 * or to load a block that is being partially written.
4824 	 */
4825 	if (s.to_read || s.non_overwrite
4826 	    || (conf->level == 6 && s.to_write && s.failed)
4827 	    || (s.syncing && (s.uptodate + s.compute < disks))
4828 	    || s.replacing
4829 	    || s.expanding)
4830 		handle_stripe_fill(sh, &s, disks);
4831 
4832 	/*
4833 	 * When the stripe finishes full journal write cycle (write to journal
4834 	 * and raid disk), this is the clean up procedure so it is ready for
4835 	 * next operation.
4836 	 */
4837 	r5c_finish_stripe_write_out(conf, sh, &s);
4838 
4839 	/*
4840 	 * Now to consider new write requests, cache write back and what else,
4841 	 * if anything should be read.  We do not handle new writes when:
4842 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4843 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4844 	 *    block.
4845 	 * 3/ A r5c cache log write is in flight.
4846 	 */
4847 
4848 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4849 		if (!r5c_is_writeback(conf->log)) {
4850 			if (s.to_write)
4851 				handle_stripe_dirtying(conf, sh, &s, disks);
4852 		} else { /* write back cache */
4853 			int ret = 0;
4854 
4855 			/* First, try handle writes in caching phase */
4856 			if (s.to_write)
4857 				ret = r5c_try_caching_write(conf, sh, &s,
4858 							    disks);
4859 			/*
4860 			 * If caching phase failed: ret == -EAGAIN
4861 			 *    OR
4862 			 * stripe under reclaim: !caching && injournal
4863 			 *
4864 			 * fall back to handle_stripe_dirtying()
4865 			 */
4866 			if (ret == -EAGAIN ||
4867 			    /* stripe under reclaim: !caching && injournal */
4868 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4869 			     s.injournal > 0)) {
4870 				ret = handle_stripe_dirtying(conf, sh, &s,
4871 							     disks);
4872 				if (ret == -EAGAIN)
4873 					goto finish;
4874 			}
4875 		}
4876 	}
4877 
4878 	/* maybe we need to check and possibly fix the parity for this stripe
4879 	 * Any reads will already have been scheduled, so we just see if enough
4880 	 * data is available.  The parity check is held off while parity
4881 	 * dependent operations are in flight.
4882 	 */
4883 	if (sh->check_state ||
4884 	    (s.syncing && s.locked == 0 &&
4885 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4886 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4887 		if (conf->level == 6)
4888 			handle_parity_checks6(conf, sh, &s, disks);
4889 		else
4890 			handle_parity_checks5(conf, sh, &s, disks);
4891 	}
4892 
4893 	if ((s.replacing || s.syncing) && s.locked == 0
4894 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4895 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4896 		/* Write out to replacement devices where possible */
4897 		for (i = 0; i < conf->raid_disks; i++)
4898 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4899 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4900 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4901 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4902 				s.locked++;
4903 			}
4904 		if (s.replacing)
4905 			set_bit(STRIPE_INSYNC, &sh->state);
4906 		set_bit(STRIPE_REPLACED, &sh->state);
4907 	}
4908 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4909 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4910 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4911 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4912 		clear_bit(STRIPE_SYNCING, &sh->state);
4913 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4914 			wake_up(&conf->wait_for_overlap);
4915 	}
4916 
4917 	/* If the failed drives are just a ReadError, then we might need
4918 	 * to progress the repair/check process
4919 	 */
4920 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4921 		for (i = 0; i < s.failed; i++) {
4922 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4923 			if (test_bit(R5_ReadError, &dev->flags)
4924 			    && !test_bit(R5_LOCKED, &dev->flags)
4925 			    && test_bit(R5_UPTODATE, &dev->flags)
4926 				) {
4927 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4928 					set_bit(R5_Wantwrite, &dev->flags);
4929 					set_bit(R5_ReWrite, &dev->flags);
4930 					set_bit(R5_LOCKED, &dev->flags);
4931 					s.locked++;
4932 				} else {
4933 					/* let's read it back */
4934 					set_bit(R5_Wantread, &dev->flags);
4935 					set_bit(R5_LOCKED, &dev->flags);
4936 					s.locked++;
4937 				}
4938 			}
4939 		}
4940 
4941 	/* Finish reconstruct operations initiated by the expansion process */
4942 	if (sh->reconstruct_state == reconstruct_state_result) {
4943 		struct stripe_head *sh_src
4944 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4945 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4946 			/* sh cannot be written until sh_src has been read.
4947 			 * so arrange for sh to be delayed a little
4948 			 */
4949 			set_bit(STRIPE_DELAYED, &sh->state);
4950 			set_bit(STRIPE_HANDLE, &sh->state);
4951 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4952 					      &sh_src->state))
4953 				atomic_inc(&conf->preread_active_stripes);
4954 			raid5_release_stripe(sh_src);
4955 			goto finish;
4956 		}
4957 		if (sh_src)
4958 			raid5_release_stripe(sh_src);
4959 
4960 		sh->reconstruct_state = reconstruct_state_idle;
4961 		clear_bit(STRIPE_EXPANDING, &sh->state);
4962 		for (i = conf->raid_disks; i--; ) {
4963 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4964 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4965 			s.locked++;
4966 		}
4967 	}
4968 
4969 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4970 	    !sh->reconstruct_state) {
4971 		/* Need to write out all blocks after computing parity */
4972 		sh->disks = conf->raid_disks;
4973 		stripe_set_idx(sh->sector, conf, 0, sh);
4974 		schedule_reconstruction(sh, &s, 1, 1);
4975 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4976 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4977 		atomic_dec(&conf->reshape_stripes);
4978 		wake_up(&conf->wait_for_overlap);
4979 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4980 	}
4981 
4982 	if (s.expanding && s.locked == 0 &&
4983 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4984 		handle_stripe_expansion(conf, sh);
4985 
4986 finish:
4987 	/* wait for this device to become unblocked */
4988 	if (unlikely(s.blocked_rdev)) {
4989 		if (conf->mddev->external)
4990 			md_wait_for_blocked_rdev(s.blocked_rdev,
4991 						 conf->mddev);
4992 		else
4993 			/* Internal metadata will immediately
4994 			 * be written by raid5d, so we don't
4995 			 * need to wait here.
4996 			 */
4997 			rdev_dec_pending(s.blocked_rdev,
4998 					 conf->mddev);
4999 	}
5000 
5001 	if (s.handle_bad_blocks)
5002 		for (i = disks; i--; ) {
5003 			struct md_rdev *rdev;
5004 			struct r5dev *dev = &sh->dev[i];
5005 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5006 				/* We own a safe reference to the rdev */
5007 				rdev = conf->disks[i].rdev;
5008 				if (!rdev_set_badblocks(rdev, sh->sector,
5009 							STRIPE_SECTORS, 0))
5010 					md_error(conf->mddev, rdev);
5011 				rdev_dec_pending(rdev, conf->mddev);
5012 			}
5013 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5014 				rdev = conf->disks[i].rdev;
5015 				rdev_clear_badblocks(rdev, sh->sector,
5016 						     STRIPE_SECTORS, 0);
5017 				rdev_dec_pending(rdev, conf->mddev);
5018 			}
5019 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5020 				rdev = conf->disks[i].replacement;
5021 				if (!rdev)
5022 					/* rdev have been moved down */
5023 					rdev = conf->disks[i].rdev;
5024 				rdev_clear_badblocks(rdev, sh->sector,
5025 						     STRIPE_SECTORS, 0);
5026 				rdev_dec_pending(rdev, conf->mddev);
5027 			}
5028 		}
5029 
5030 	if (s.ops_request)
5031 		raid_run_ops(sh, s.ops_request);
5032 
5033 	ops_run_io(sh, &s);
5034 
5035 	if (s.dec_preread_active) {
5036 		/* We delay this until after ops_run_io so that if make_request
5037 		 * is waiting on a flush, it won't continue until the writes
5038 		 * have actually been submitted.
5039 		 */
5040 		atomic_dec(&conf->preread_active_stripes);
5041 		if (atomic_read(&conf->preread_active_stripes) <
5042 		    IO_THRESHOLD)
5043 			md_wakeup_thread(conf->mddev->thread);
5044 	}
5045 
5046 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5047 }
5048 
5049 static void raid5_activate_delayed(struct r5conf *conf)
5050 {
5051 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5052 		while (!list_empty(&conf->delayed_list)) {
5053 			struct list_head *l = conf->delayed_list.next;
5054 			struct stripe_head *sh;
5055 			sh = list_entry(l, struct stripe_head, lru);
5056 			list_del_init(l);
5057 			clear_bit(STRIPE_DELAYED, &sh->state);
5058 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5059 				atomic_inc(&conf->preread_active_stripes);
5060 			list_add_tail(&sh->lru, &conf->hold_list);
5061 			raid5_wakeup_stripe_thread(sh);
5062 		}
5063 	}
5064 }
5065 
5066 static void activate_bit_delay(struct r5conf *conf,
5067 	struct list_head *temp_inactive_list)
5068 {
5069 	/* device_lock is held */
5070 	struct list_head head;
5071 	list_add(&head, &conf->bitmap_list);
5072 	list_del_init(&conf->bitmap_list);
5073 	while (!list_empty(&head)) {
5074 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5075 		int hash;
5076 		list_del_init(&sh->lru);
5077 		atomic_inc(&sh->count);
5078 		hash = sh->hash_lock_index;
5079 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5080 	}
5081 }
5082 
5083 static int raid5_congested(struct mddev *mddev, int bits)
5084 {
5085 	struct r5conf *conf = mddev->private;
5086 
5087 	/* No difference between reads and writes.  Just check
5088 	 * how busy the stripe_cache is
5089 	 */
5090 
5091 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5092 		return 1;
5093 
5094 	/* Also checks whether there is pressure on r5cache log space */
5095 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5096 		return 1;
5097 	if (conf->quiesce)
5098 		return 1;
5099 	if (atomic_read(&conf->empty_inactive_list_nr))
5100 		return 1;
5101 
5102 	return 0;
5103 }
5104 
5105 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5106 {
5107 	struct r5conf *conf = mddev->private;
5108 	sector_t sector = bio->bi_iter.bi_sector;
5109 	unsigned int chunk_sectors;
5110 	unsigned int bio_sectors = bio_sectors(bio);
5111 
5112 	WARN_ON_ONCE(bio->bi_partno);
5113 
5114 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5115 	return  chunk_sectors >=
5116 		((sector & (chunk_sectors - 1)) + bio_sectors);
5117 }
5118 
5119 /*
5120  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5121  *  later sampled by raid5d.
5122  */
5123 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5124 {
5125 	unsigned long flags;
5126 
5127 	spin_lock_irqsave(&conf->device_lock, flags);
5128 
5129 	bi->bi_next = conf->retry_read_aligned_list;
5130 	conf->retry_read_aligned_list = bi;
5131 
5132 	spin_unlock_irqrestore(&conf->device_lock, flags);
5133 	md_wakeup_thread(conf->mddev->thread);
5134 }
5135 
5136 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5137 					 unsigned int *offset)
5138 {
5139 	struct bio *bi;
5140 
5141 	bi = conf->retry_read_aligned;
5142 	if (bi) {
5143 		*offset = conf->retry_read_offset;
5144 		conf->retry_read_aligned = NULL;
5145 		return bi;
5146 	}
5147 	bi = conf->retry_read_aligned_list;
5148 	if(bi) {
5149 		conf->retry_read_aligned_list = bi->bi_next;
5150 		bi->bi_next = NULL;
5151 		*offset = 0;
5152 	}
5153 
5154 	return bi;
5155 }
5156 
5157 /*
5158  *  The "raid5_align_endio" should check if the read succeeded and if it
5159  *  did, call bio_endio on the original bio (having bio_put the new bio
5160  *  first).
5161  *  If the read failed..
5162  */
5163 static void raid5_align_endio(struct bio *bi)
5164 {
5165 	struct bio* raid_bi  = bi->bi_private;
5166 	struct mddev *mddev;
5167 	struct r5conf *conf;
5168 	struct md_rdev *rdev;
5169 	blk_status_t error = bi->bi_status;
5170 
5171 	bio_put(bi);
5172 
5173 	rdev = (void*)raid_bi->bi_next;
5174 	raid_bi->bi_next = NULL;
5175 	mddev = rdev->mddev;
5176 	conf = mddev->private;
5177 
5178 	rdev_dec_pending(rdev, conf->mddev);
5179 
5180 	if (!error) {
5181 		bio_endio(raid_bi);
5182 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5183 			wake_up(&conf->wait_for_quiescent);
5184 		return;
5185 	}
5186 
5187 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5188 
5189 	add_bio_to_retry(raid_bi, conf);
5190 }
5191 
5192 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5193 {
5194 	struct r5conf *conf = mddev->private;
5195 	int dd_idx;
5196 	struct bio* align_bi;
5197 	struct md_rdev *rdev;
5198 	sector_t end_sector;
5199 
5200 	if (!in_chunk_boundary(mddev, raid_bio)) {
5201 		pr_debug("%s: non aligned\n", __func__);
5202 		return 0;
5203 	}
5204 	/*
5205 	 * use bio_clone_fast to make a copy of the bio
5206 	 */
5207 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5208 	if (!align_bi)
5209 		return 0;
5210 	/*
5211 	 *   set bi_end_io to a new function, and set bi_private to the
5212 	 *     original bio.
5213 	 */
5214 	align_bi->bi_end_io  = raid5_align_endio;
5215 	align_bi->bi_private = raid_bio;
5216 	/*
5217 	 *	compute position
5218 	 */
5219 	align_bi->bi_iter.bi_sector =
5220 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5221 				     0, &dd_idx, NULL);
5222 
5223 	end_sector = bio_end_sector(align_bi);
5224 	rcu_read_lock();
5225 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5226 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5227 	    rdev->recovery_offset < end_sector) {
5228 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5229 		if (rdev &&
5230 		    (test_bit(Faulty, &rdev->flags) ||
5231 		    !(test_bit(In_sync, &rdev->flags) ||
5232 		      rdev->recovery_offset >= end_sector)))
5233 			rdev = NULL;
5234 	}
5235 
5236 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5237 		rcu_read_unlock();
5238 		bio_put(align_bi);
5239 		return 0;
5240 	}
5241 
5242 	if (rdev) {
5243 		sector_t first_bad;
5244 		int bad_sectors;
5245 
5246 		atomic_inc(&rdev->nr_pending);
5247 		rcu_read_unlock();
5248 		raid_bio->bi_next = (void*)rdev;
5249 		bio_set_dev(align_bi, rdev->bdev);
5250 		bio_clear_flag(align_bi, BIO_SEG_VALID);
5251 
5252 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5253 				bio_sectors(align_bi),
5254 				&first_bad, &bad_sectors)) {
5255 			bio_put(align_bi);
5256 			rdev_dec_pending(rdev, mddev);
5257 			return 0;
5258 		}
5259 
5260 		/* No reshape active, so we can trust rdev->data_offset */
5261 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5262 
5263 		spin_lock_irq(&conf->device_lock);
5264 		wait_event_lock_irq(conf->wait_for_quiescent,
5265 				    conf->quiesce == 0,
5266 				    conf->device_lock);
5267 		atomic_inc(&conf->active_aligned_reads);
5268 		spin_unlock_irq(&conf->device_lock);
5269 
5270 		if (mddev->gendisk)
5271 			trace_block_bio_remap(align_bi->bi_disk->queue,
5272 					      align_bi, disk_devt(mddev->gendisk),
5273 					      raid_bio->bi_iter.bi_sector);
5274 		generic_make_request(align_bi);
5275 		return 1;
5276 	} else {
5277 		rcu_read_unlock();
5278 		bio_put(align_bi);
5279 		return 0;
5280 	}
5281 }
5282 
5283 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5284 {
5285 	struct bio *split;
5286 	sector_t sector = raid_bio->bi_iter.bi_sector;
5287 	unsigned chunk_sects = mddev->chunk_sectors;
5288 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5289 
5290 	if (sectors < bio_sectors(raid_bio)) {
5291 		struct r5conf *conf = mddev->private;
5292 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5293 		bio_chain(split, raid_bio);
5294 		generic_make_request(raid_bio);
5295 		raid_bio = split;
5296 	}
5297 
5298 	if (!raid5_read_one_chunk(mddev, raid_bio))
5299 		return raid_bio;
5300 
5301 	return NULL;
5302 }
5303 
5304 /* __get_priority_stripe - get the next stripe to process
5305  *
5306  * Full stripe writes are allowed to pass preread active stripes up until
5307  * the bypass_threshold is exceeded.  In general the bypass_count
5308  * increments when the handle_list is handled before the hold_list; however, it
5309  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5310  * stripe with in flight i/o.  The bypass_count will be reset when the
5311  * head of the hold_list has changed, i.e. the head was promoted to the
5312  * handle_list.
5313  */
5314 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5315 {
5316 	struct stripe_head *sh, *tmp;
5317 	struct list_head *handle_list = NULL;
5318 	struct r5worker_group *wg;
5319 	bool second_try = !r5c_is_writeback(conf->log) &&
5320 		!r5l_log_disk_error(conf);
5321 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5322 		r5l_log_disk_error(conf);
5323 
5324 again:
5325 	wg = NULL;
5326 	sh = NULL;
5327 	if (conf->worker_cnt_per_group == 0) {
5328 		handle_list = try_loprio ? &conf->loprio_list :
5329 					&conf->handle_list;
5330 	} else if (group != ANY_GROUP) {
5331 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5332 				&conf->worker_groups[group].handle_list;
5333 		wg = &conf->worker_groups[group];
5334 	} else {
5335 		int i;
5336 		for (i = 0; i < conf->group_cnt; i++) {
5337 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5338 				&conf->worker_groups[i].handle_list;
5339 			wg = &conf->worker_groups[i];
5340 			if (!list_empty(handle_list))
5341 				break;
5342 		}
5343 	}
5344 
5345 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5346 		  __func__,
5347 		  list_empty(handle_list) ? "empty" : "busy",
5348 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5349 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5350 
5351 	if (!list_empty(handle_list)) {
5352 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5353 
5354 		if (list_empty(&conf->hold_list))
5355 			conf->bypass_count = 0;
5356 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5357 			if (conf->hold_list.next == conf->last_hold)
5358 				conf->bypass_count++;
5359 			else {
5360 				conf->last_hold = conf->hold_list.next;
5361 				conf->bypass_count -= conf->bypass_threshold;
5362 				if (conf->bypass_count < 0)
5363 					conf->bypass_count = 0;
5364 			}
5365 		}
5366 	} else if (!list_empty(&conf->hold_list) &&
5367 		   ((conf->bypass_threshold &&
5368 		     conf->bypass_count > conf->bypass_threshold) ||
5369 		    atomic_read(&conf->pending_full_writes) == 0)) {
5370 
5371 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5372 			if (conf->worker_cnt_per_group == 0 ||
5373 			    group == ANY_GROUP ||
5374 			    !cpu_online(tmp->cpu) ||
5375 			    cpu_to_group(tmp->cpu) == group) {
5376 				sh = tmp;
5377 				break;
5378 			}
5379 		}
5380 
5381 		if (sh) {
5382 			conf->bypass_count -= conf->bypass_threshold;
5383 			if (conf->bypass_count < 0)
5384 				conf->bypass_count = 0;
5385 		}
5386 		wg = NULL;
5387 	}
5388 
5389 	if (!sh) {
5390 		if (second_try)
5391 			return NULL;
5392 		second_try = true;
5393 		try_loprio = !try_loprio;
5394 		goto again;
5395 	}
5396 
5397 	if (wg) {
5398 		wg->stripes_cnt--;
5399 		sh->group = NULL;
5400 	}
5401 	list_del_init(&sh->lru);
5402 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5403 	return sh;
5404 }
5405 
5406 struct raid5_plug_cb {
5407 	struct blk_plug_cb	cb;
5408 	struct list_head	list;
5409 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5410 };
5411 
5412 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5413 {
5414 	struct raid5_plug_cb *cb = container_of(
5415 		blk_cb, struct raid5_plug_cb, cb);
5416 	struct stripe_head *sh;
5417 	struct mddev *mddev = cb->cb.data;
5418 	struct r5conf *conf = mddev->private;
5419 	int cnt = 0;
5420 	int hash;
5421 
5422 	if (cb->list.next && !list_empty(&cb->list)) {
5423 		spin_lock_irq(&conf->device_lock);
5424 		while (!list_empty(&cb->list)) {
5425 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5426 			list_del_init(&sh->lru);
5427 			/*
5428 			 * avoid race release_stripe_plug() sees
5429 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5430 			 * is still in our list
5431 			 */
5432 			smp_mb__before_atomic();
5433 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5434 			/*
5435 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5436 			 * case, the count is always > 1 here
5437 			 */
5438 			hash = sh->hash_lock_index;
5439 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5440 			cnt++;
5441 		}
5442 		spin_unlock_irq(&conf->device_lock);
5443 	}
5444 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5445 				     NR_STRIPE_HASH_LOCKS);
5446 	if (mddev->queue)
5447 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5448 	kfree(cb);
5449 }
5450 
5451 static void release_stripe_plug(struct mddev *mddev,
5452 				struct stripe_head *sh)
5453 {
5454 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5455 		raid5_unplug, mddev,
5456 		sizeof(struct raid5_plug_cb));
5457 	struct raid5_plug_cb *cb;
5458 
5459 	if (!blk_cb) {
5460 		raid5_release_stripe(sh);
5461 		return;
5462 	}
5463 
5464 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5465 
5466 	if (cb->list.next == NULL) {
5467 		int i;
5468 		INIT_LIST_HEAD(&cb->list);
5469 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5470 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5471 	}
5472 
5473 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5474 		list_add_tail(&sh->lru, &cb->list);
5475 	else
5476 		raid5_release_stripe(sh);
5477 }
5478 
5479 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5480 {
5481 	struct r5conf *conf = mddev->private;
5482 	sector_t logical_sector, last_sector;
5483 	struct stripe_head *sh;
5484 	int stripe_sectors;
5485 
5486 	if (mddev->reshape_position != MaxSector)
5487 		/* Skip discard while reshape is happening */
5488 		return;
5489 
5490 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5491 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5492 
5493 	bi->bi_next = NULL;
5494 
5495 	stripe_sectors = conf->chunk_sectors *
5496 		(conf->raid_disks - conf->max_degraded);
5497 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5498 					       stripe_sectors);
5499 	sector_div(last_sector, stripe_sectors);
5500 
5501 	logical_sector *= conf->chunk_sectors;
5502 	last_sector *= conf->chunk_sectors;
5503 
5504 	for (; logical_sector < last_sector;
5505 	     logical_sector += STRIPE_SECTORS) {
5506 		DEFINE_WAIT(w);
5507 		int d;
5508 	again:
5509 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5510 		prepare_to_wait(&conf->wait_for_overlap, &w,
5511 				TASK_UNINTERRUPTIBLE);
5512 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5513 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5514 			raid5_release_stripe(sh);
5515 			schedule();
5516 			goto again;
5517 		}
5518 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5519 		spin_lock_irq(&sh->stripe_lock);
5520 		for (d = 0; d < conf->raid_disks; d++) {
5521 			if (d == sh->pd_idx || d == sh->qd_idx)
5522 				continue;
5523 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5524 				set_bit(R5_Overlap, &sh->dev[d].flags);
5525 				spin_unlock_irq(&sh->stripe_lock);
5526 				raid5_release_stripe(sh);
5527 				schedule();
5528 				goto again;
5529 			}
5530 		}
5531 		set_bit(STRIPE_DISCARD, &sh->state);
5532 		finish_wait(&conf->wait_for_overlap, &w);
5533 		sh->overwrite_disks = 0;
5534 		for (d = 0; d < conf->raid_disks; d++) {
5535 			if (d == sh->pd_idx || d == sh->qd_idx)
5536 				continue;
5537 			sh->dev[d].towrite = bi;
5538 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5539 			bio_inc_remaining(bi);
5540 			md_write_inc(mddev, bi);
5541 			sh->overwrite_disks++;
5542 		}
5543 		spin_unlock_irq(&sh->stripe_lock);
5544 		if (conf->mddev->bitmap) {
5545 			for (d = 0;
5546 			     d < conf->raid_disks - conf->max_degraded;
5547 			     d++)
5548 				md_bitmap_startwrite(mddev->bitmap,
5549 						     sh->sector,
5550 						     STRIPE_SECTORS,
5551 						     0);
5552 			sh->bm_seq = conf->seq_flush + 1;
5553 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5554 		}
5555 
5556 		set_bit(STRIPE_HANDLE, &sh->state);
5557 		clear_bit(STRIPE_DELAYED, &sh->state);
5558 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5559 			atomic_inc(&conf->preread_active_stripes);
5560 		release_stripe_plug(mddev, sh);
5561 	}
5562 
5563 	bio_endio(bi);
5564 }
5565 
5566 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5567 {
5568 	struct r5conf *conf = mddev->private;
5569 	int dd_idx;
5570 	sector_t new_sector;
5571 	sector_t logical_sector, last_sector;
5572 	struct stripe_head *sh;
5573 	const int rw = bio_data_dir(bi);
5574 	DEFINE_WAIT(w);
5575 	bool do_prepare;
5576 	bool do_flush = false;
5577 
5578 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5579 		int ret = log_handle_flush_request(conf, bi);
5580 
5581 		if (ret == 0)
5582 			return true;
5583 		if (ret == -ENODEV) {
5584 			md_flush_request(mddev, bi);
5585 			return true;
5586 		}
5587 		/* ret == -EAGAIN, fallback */
5588 		/*
5589 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5590 		 * we need to flush journal device
5591 		 */
5592 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5593 	}
5594 
5595 	if (!md_write_start(mddev, bi))
5596 		return false;
5597 	/*
5598 	 * If array is degraded, better not do chunk aligned read because
5599 	 * later we might have to read it again in order to reconstruct
5600 	 * data on failed drives.
5601 	 */
5602 	if (rw == READ && mddev->degraded == 0 &&
5603 	    mddev->reshape_position == MaxSector) {
5604 		bi = chunk_aligned_read(mddev, bi);
5605 		if (!bi)
5606 			return true;
5607 	}
5608 
5609 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5610 		make_discard_request(mddev, bi);
5611 		md_write_end(mddev);
5612 		return true;
5613 	}
5614 
5615 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5616 	last_sector = bio_end_sector(bi);
5617 	bi->bi_next = NULL;
5618 
5619 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5620 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5621 		int previous;
5622 		int seq;
5623 
5624 		do_prepare = false;
5625 	retry:
5626 		seq = read_seqcount_begin(&conf->gen_lock);
5627 		previous = 0;
5628 		if (do_prepare)
5629 			prepare_to_wait(&conf->wait_for_overlap, &w,
5630 				TASK_UNINTERRUPTIBLE);
5631 		if (unlikely(conf->reshape_progress != MaxSector)) {
5632 			/* spinlock is needed as reshape_progress may be
5633 			 * 64bit on a 32bit platform, and so it might be
5634 			 * possible to see a half-updated value
5635 			 * Of course reshape_progress could change after
5636 			 * the lock is dropped, so once we get a reference
5637 			 * to the stripe that we think it is, we will have
5638 			 * to check again.
5639 			 */
5640 			spin_lock_irq(&conf->device_lock);
5641 			if (mddev->reshape_backwards
5642 			    ? logical_sector < conf->reshape_progress
5643 			    : logical_sector >= conf->reshape_progress) {
5644 				previous = 1;
5645 			} else {
5646 				if (mddev->reshape_backwards
5647 				    ? logical_sector < conf->reshape_safe
5648 				    : logical_sector >= conf->reshape_safe) {
5649 					spin_unlock_irq(&conf->device_lock);
5650 					schedule();
5651 					do_prepare = true;
5652 					goto retry;
5653 				}
5654 			}
5655 			spin_unlock_irq(&conf->device_lock);
5656 		}
5657 
5658 		new_sector = raid5_compute_sector(conf, logical_sector,
5659 						  previous,
5660 						  &dd_idx, NULL);
5661 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5662 			(unsigned long long)new_sector,
5663 			(unsigned long long)logical_sector);
5664 
5665 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5666 				       (bi->bi_opf & REQ_RAHEAD), 0);
5667 		if (sh) {
5668 			if (unlikely(previous)) {
5669 				/* expansion might have moved on while waiting for a
5670 				 * stripe, so we must do the range check again.
5671 				 * Expansion could still move past after this
5672 				 * test, but as we are holding a reference to
5673 				 * 'sh', we know that if that happens,
5674 				 *  STRIPE_EXPANDING will get set and the expansion
5675 				 * won't proceed until we finish with the stripe.
5676 				 */
5677 				int must_retry = 0;
5678 				spin_lock_irq(&conf->device_lock);
5679 				if (mddev->reshape_backwards
5680 				    ? logical_sector >= conf->reshape_progress
5681 				    : logical_sector < conf->reshape_progress)
5682 					/* mismatch, need to try again */
5683 					must_retry = 1;
5684 				spin_unlock_irq(&conf->device_lock);
5685 				if (must_retry) {
5686 					raid5_release_stripe(sh);
5687 					schedule();
5688 					do_prepare = true;
5689 					goto retry;
5690 				}
5691 			}
5692 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5693 				/* Might have got the wrong stripe_head
5694 				 * by accident
5695 				 */
5696 				raid5_release_stripe(sh);
5697 				goto retry;
5698 			}
5699 
5700 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5701 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5702 				/* Stripe is busy expanding or
5703 				 * add failed due to overlap.  Flush everything
5704 				 * and wait a while
5705 				 */
5706 				md_wakeup_thread(mddev->thread);
5707 				raid5_release_stripe(sh);
5708 				schedule();
5709 				do_prepare = true;
5710 				goto retry;
5711 			}
5712 			if (do_flush) {
5713 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5714 				/* we only need flush for one stripe */
5715 				do_flush = false;
5716 			}
5717 
5718 			set_bit(STRIPE_HANDLE, &sh->state);
5719 			clear_bit(STRIPE_DELAYED, &sh->state);
5720 			if ((!sh->batch_head || sh == sh->batch_head) &&
5721 			    (bi->bi_opf & REQ_SYNC) &&
5722 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5723 				atomic_inc(&conf->preread_active_stripes);
5724 			release_stripe_plug(mddev, sh);
5725 		} else {
5726 			/* cannot get stripe for read-ahead, just give-up */
5727 			bi->bi_status = BLK_STS_IOERR;
5728 			break;
5729 		}
5730 	}
5731 	finish_wait(&conf->wait_for_overlap, &w);
5732 
5733 	if (rw == WRITE)
5734 		md_write_end(mddev);
5735 	bio_endio(bi);
5736 	return true;
5737 }
5738 
5739 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5740 
5741 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5742 {
5743 	/* reshaping is quite different to recovery/resync so it is
5744 	 * handled quite separately ... here.
5745 	 *
5746 	 * On each call to sync_request, we gather one chunk worth of
5747 	 * destination stripes and flag them as expanding.
5748 	 * Then we find all the source stripes and request reads.
5749 	 * As the reads complete, handle_stripe will copy the data
5750 	 * into the destination stripe and release that stripe.
5751 	 */
5752 	struct r5conf *conf = mddev->private;
5753 	struct stripe_head *sh;
5754 	struct md_rdev *rdev;
5755 	sector_t first_sector, last_sector;
5756 	int raid_disks = conf->previous_raid_disks;
5757 	int data_disks = raid_disks - conf->max_degraded;
5758 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5759 	int i;
5760 	int dd_idx;
5761 	sector_t writepos, readpos, safepos;
5762 	sector_t stripe_addr;
5763 	int reshape_sectors;
5764 	struct list_head stripes;
5765 	sector_t retn;
5766 
5767 	if (sector_nr == 0) {
5768 		/* If restarting in the middle, skip the initial sectors */
5769 		if (mddev->reshape_backwards &&
5770 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5771 			sector_nr = raid5_size(mddev, 0, 0)
5772 				- conf->reshape_progress;
5773 		} else if (mddev->reshape_backwards &&
5774 			   conf->reshape_progress == MaxSector) {
5775 			/* shouldn't happen, but just in case, finish up.*/
5776 			sector_nr = MaxSector;
5777 		} else if (!mddev->reshape_backwards &&
5778 			   conf->reshape_progress > 0)
5779 			sector_nr = conf->reshape_progress;
5780 		sector_div(sector_nr, new_data_disks);
5781 		if (sector_nr) {
5782 			mddev->curr_resync_completed = sector_nr;
5783 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5784 			*skipped = 1;
5785 			retn = sector_nr;
5786 			goto finish;
5787 		}
5788 	}
5789 
5790 	/* We need to process a full chunk at a time.
5791 	 * If old and new chunk sizes differ, we need to process the
5792 	 * largest of these
5793 	 */
5794 
5795 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5796 
5797 	/* We update the metadata at least every 10 seconds, or when
5798 	 * the data about to be copied would over-write the source of
5799 	 * the data at the front of the range.  i.e. one new_stripe
5800 	 * along from reshape_progress new_maps to after where
5801 	 * reshape_safe old_maps to
5802 	 */
5803 	writepos = conf->reshape_progress;
5804 	sector_div(writepos, new_data_disks);
5805 	readpos = conf->reshape_progress;
5806 	sector_div(readpos, data_disks);
5807 	safepos = conf->reshape_safe;
5808 	sector_div(safepos, data_disks);
5809 	if (mddev->reshape_backwards) {
5810 		BUG_ON(writepos < reshape_sectors);
5811 		writepos -= reshape_sectors;
5812 		readpos += reshape_sectors;
5813 		safepos += reshape_sectors;
5814 	} else {
5815 		writepos += reshape_sectors;
5816 		/* readpos and safepos are worst-case calculations.
5817 		 * A negative number is overly pessimistic, and causes
5818 		 * obvious problems for unsigned storage.  So clip to 0.
5819 		 */
5820 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5821 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5822 	}
5823 
5824 	/* Having calculated the 'writepos' possibly use it
5825 	 * to set 'stripe_addr' which is where we will write to.
5826 	 */
5827 	if (mddev->reshape_backwards) {
5828 		BUG_ON(conf->reshape_progress == 0);
5829 		stripe_addr = writepos;
5830 		BUG_ON((mddev->dev_sectors &
5831 			~((sector_t)reshape_sectors - 1))
5832 		       - reshape_sectors - stripe_addr
5833 		       != sector_nr);
5834 	} else {
5835 		BUG_ON(writepos != sector_nr + reshape_sectors);
5836 		stripe_addr = sector_nr;
5837 	}
5838 
5839 	/* 'writepos' is the most advanced device address we might write.
5840 	 * 'readpos' is the least advanced device address we might read.
5841 	 * 'safepos' is the least address recorded in the metadata as having
5842 	 *     been reshaped.
5843 	 * If there is a min_offset_diff, these are adjusted either by
5844 	 * increasing the safepos/readpos if diff is negative, or
5845 	 * increasing writepos if diff is positive.
5846 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5847 	 * ensure safety in the face of a crash - that must be done by userspace
5848 	 * making a backup of the data.  So in that case there is no particular
5849 	 * rush to update metadata.
5850 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5851 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5852 	 * we can be safe in the event of a crash.
5853 	 * So we insist on updating metadata if safepos is behind writepos and
5854 	 * readpos is beyond writepos.
5855 	 * In any case, update the metadata every 10 seconds.
5856 	 * Maybe that number should be configurable, but I'm not sure it is
5857 	 * worth it.... maybe it could be a multiple of safemode_delay???
5858 	 */
5859 	if (conf->min_offset_diff < 0) {
5860 		safepos += -conf->min_offset_diff;
5861 		readpos += -conf->min_offset_diff;
5862 	} else
5863 		writepos += conf->min_offset_diff;
5864 
5865 	if ((mddev->reshape_backwards
5866 	     ? (safepos > writepos && readpos < writepos)
5867 	     : (safepos < writepos && readpos > writepos)) ||
5868 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5869 		/* Cannot proceed until we've updated the superblock... */
5870 		wait_event(conf->wait_for_overlap,
5871 			   atomic_read(&conf->reshape_stripes)==0
5872 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5873 		if (atomic_read(&conf->reshape_stripes) != 0)
5874 			return 0;
5875 		mddev->reshape_position = conf->reshape_progress;
5876 		mddev->curr_resync_completed = sector_nr;
5877 		if (!mddev->reshape_backwards)
5878 			/* Can update recovery_offset */
5879 			rdev_for_each(rdev, mddev)
5880 				if (rdev->raid_disk >= 0 &&
5881 				    !test_bit(Journal, &rdev->flags) &&
5882 				    !test_bit(In_sync, &rdev->flags) &&
5883 				    rdev->recovery_offset < sector_nr)
5884 					rdev->recovery_offset = sector_nr;
5885 
5886 		conf->reshape_checkpoint = jiffies;
5887 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5888 		md_wakeup_thread(mddev->thread);
5889 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5890 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5891 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5892 			return 0;
5893 		spin_lock_irq(&conf->device_lock);
5894 		conf->reshape_safe = mddev->reshape_position;
5895 		spin_unlock_irq(&conf->device_lock);
5896 		wake_up(&conf->wait_for_overlap);
5897 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5898 	}
5899 
5900 	INIT_LIST_HEAD(&stripes);
5901 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5902 		int j;
5903 		int skipped_disk = 0;
5904 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5905 		set_bit(STRIPE_EXPANDING, &sh->state);
5906 		atomic_inc(&conf->reshape_stripes);
5907 		/* If any of this stripe is beyond the end of the old
5908 		 * array, then we need to zero those blocks
5909 		 */
5910 		for (j=sh->disks; j--;) {
5911 			sector_t s;
5912 			if (j == sh->pd_idx)
5913 				continue;
5914 			if (conf->level == 6 &&
5915 			    j == sh->qd_idx)
5916 				continue;
5917 			s = raid5_compute_blocknr(sh, j, 0);
5918 			if (s < raid5_size(mddev, 0, 0)) {
5919 				skipped_disk = 1;
5920 				continue;
5921 			}
5922 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5923 			set_bit(R5_Expanded, &sh->dev[j].flags);
5924 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5925 		}
5926 		if (!skipped_disk) {
5927 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5928 			set_bit(STRIPE_HANDLE, &sh->state);
5929 		}
5930 		list_add(&sh->lru, &stripes);
5931 	}
5932 	spin_lock_irq(&conf->device_lock);
5933 	if (mddev->reshape_backwards)
5934 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5935 	else
5936 		conf->reshape_progress += reshape_sectors * new_data_disks;
5937 	spin_unlock_irq(&conf->device_lock);
5938 	/* Ok, those stripe are ready. We can start scheduling
5939 	 * reads on the source stripes.
5940 	 * The source stripes are determined by mapping the first and last
5941 	 * block on the destination stripes.
5942 	 */
5943 	first_sector =
5944 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5945 				     1, &dd_idx, NULL);
5946 	last_sector =
5947 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5948 					    * new_data_disks - 1),
5949 				     1, &dd_idx, NULL);
5950 	if (last_sector >= mddev->dev_sectors)
5951 		last_sector = mddev->dev_sectors - 1;
5952 	while (first_sector <= last_sector) {
5953 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5954 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5955 		set_bit(STRIPE_HANDLE, &sh->state);
5956 		raid5_release_stripe(sh);
5957 		first_sector += STRIPE_SECTORS;
5958 	}
5959 	/* Now that the sources are clearly marked, we can release
5960 	 * the destination stripes
5961 	 */
5962 	while (!list_empty(&stripes)) {
5963 		sh = list_entry(stripes.next, struct stripe_head, lru);
5964 		list_del_init(&sh->lru);
5965 		raid5_release_stripe(sh);
5966 	}
5967 	/* If this takes us to the resync_max point where we have to pause,
5968 	 * then we need to write out the superblock.
5969 	 */
5970 	sector_nr += reshape_sectors;
5971 	retn = reshape_sectors;
5972 finish:
5973 	if (mddev->curr_resync_completed > mddev->resync_max ||
5974 	    (sector_nr - mddev->curr_resync_completed) * 2
5975 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5976 		/* Cannot proceed until we've updated the superblock... */
5977 		wait_event(conf->wait_for_overlap,
5978 			   atomic_read(&conf->reshape_stripes) == 0
5979 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5980 		if (atomic_read(&conf->reshape_stripes) != 0)
5981 			goto ret;
5982 		mddev->reshape_position = conf->reshape_progress;
5983 		mddev->curr_resync_completed = sector_nr;
5984 		if (!mddev->reshape_backwards)
5985 			/* Can update recovery_offset */
5986 			rdev_for_each(rdev, mddev)
5987 				if (rdev->raid_disk >= 0 &&
5988 				    !test_bit(Journal, &rdev->flags) &&
5989 				    !test_bit(In_sync, &rdev->flags) &&
5990 				    rdev->recovery_offset < sector_nr)
5991 					rdev->recovery_offset = sector_nr;
5992 		conf->reshape_checkpoint = jiffies;
5993 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5994 		md_wakeup_thread(mddev->thread);
5995 		wait_event(mddev->sb_wait,
5996 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5997 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5998 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5999 			goto ret;
6000 		spin_lock_irq(&conf->device_lock);
6001 		conf->reshape_safe = mddev->reshape_position;
6002 		spin_unlock_irq(&conf->device_lock);
6003 		wake_up(&conf->wait_for_overlap);
6004 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6005 	}
6006 ret:
6007 	return retn;
6008 }
6009 
6010 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6011 					  int *skipped)
6012 {
6013 	struct r5conf *conf = mddev->private;
6014 	struct stripe_head *sh;
6015 	sector_t max_sector = mddev->dev_sectors;
6016 	sector_t sync_blocks;
6017 	int still_degraded = 0;
6018 	int i;
6019 
6020 	if (sector_nr >= max_sector) {
6021 		/* just being told to finish up .. nothing much to do */
6022 
6023 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6024 			end_reshape(conf);
6025 			return 0;
6026 		}
6027 
6028 		if (mddev->curr_resync < max_sector) /* aborted */
6029 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6030 					   &sync_blocks, 1);
6031 		else /* completed sync */
6032 			conf->fullsync = 0;
6033 		md_bitmap_close_sync(mddev->bitmap);
6034 
6035 		return 0;
6036 	}
6037 
6038 	/* Allow raid5_quiesce to complete */
6039 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6040 
6041 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6042 		return reshape_request(mddev, sector_nr, skipped);
6043 
6044 	/* No need to check resync_max as we never do more than one
6045 	 * stripe, and as resync_max will always be on a chunk boundary,
6046 	 * if the check in md_do_sync didn't fire, there is no chance
6047 	 * of overstepping resync_max here
6048 	 */
6049 
6050 	/* if there is too many failed drives and we are trying
6051 	 * to resync, then assert that we are finished, because there is
6052 	 * nothing we can do.
6053 	 */
6054 	if (mddev->degraded >= conf->max_degraded &&
6055 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6056 		sector_t rv = mddev->dev_sectors - sector_nr;
6057 		*skipped = 1;
6058 		return rv;
6059 	}
6060 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6061 	    !conf->fullsync &&
6062 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6063 	    sync_blocks >= STRIPE_SECTORS) {
6064 		/* we can skip this block, and probably more */
6065 		sync_blocks /= STRIPE_SECTORS;
6066 		*skipped = 1;
6067 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6068 	}
6069 
6070 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6071 
6072 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6073 	if (sh == NULL) {
6074 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6075 		/* make sure we don't swamp the stripe cache if someone else
6076 		 * is trying to get access
6077 		 */
6078 		schedule_timeout_uninterruptible(1);
6079 	}
6080 	/* Need to check if array will still be degraded after recovery/resync
6081 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6082 	 * one drive while leaving another faulty drive in array.
6083 	 */
6084 	rcu_read_lock();
6085 	for (i = 0; i < conf->raid_disks; i++) {
6086 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6087 
6088 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6089 			still_degraded = 1;
6090 	}
6091 	rcu_read_unlock();
6092 
6093 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6094 
6095 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6096 	set_bit(STRIPE_HANDLE, &sh->state);
6097 
6098 	raid5_release_stripe(sh);
6099 
6100 	return STRIPE_SECTORS;
6101 }
6102 
6103 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6104 			       unsigned int offset)
6105 {
6106 	/* We may not be able to submit a whole bio at once as there
6107 	 * may not be enough stripe_heads available.
6108 	 * We cannot pre-allocate enough stripe_heads as we may need
6109 	 * more than exist in the cache (if we allow ever large chunks).
6110 	 * So we do one stripe head at a time and record in
6111 	 * ->bi_hw_segments how many have been done.
6112 	 *
6113 	 * We *know* that this entire raid_bio is in one chunk, so
6114 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6115 	 */
6116 	struct stripe_head *sh;
6117 	int dd_idx;
6118 	sector_t sector, logical_sector, last_sector;
6119 	int scnt = 0;
6120 	int handled = 0;
6121 
6122 	logical_sector = raid_bio->bi_iter.bi_sector &
6123 		~((sector_t)STRIPE_SECTORS-1);
6124 	sector = raid5_compute_sector(conf, logical_sector,
6125 				      0, &dd_idx, NULL);
6126 	last_sector = bio_end_sector(raid_bio);
6127 
6128 	for (; logical_sector < last_sector;
6129 	     logical_sector += STRIPE_SECTORS,
6130 		     sector += STRIPE_SECTORS,
6131 		     scnt++) {
6132 
6133 		if (scnt < offset)
6134 			/* already done this stripe */
6135 			continue;
6136 
6137 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6138 
6139 		if (!sh) {
6140 			/* failed to get a stripe - must wait */
6141 			conf->retry_read_aligned = raid_bio;
6142 			conf->retry_read_offset = scnt;
6143 			return handled;
6144 		}
6145 
6146 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6147 			raid5_release_stripe(sh);
6148 			conf->retry_read_aligned = raid_bio;
6149 			conf->retry_read_offset = scnt;
6150 			return handled;
6151 		}
6152 
6153 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6154 		handle_stripe(sh);
6155 		raid5_release_stripe(sh);
6156 		handled++;
6157 	}
6158 
6159 	bio_endio(raid_bio);
6160 
6161 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6162 		wake_up(&conf->wait_for_quiescent);
6163 	return handled;
6164 }
6165 
6166 static int handle_active_stripes(struct r5conf *conf, int group,
6167 				 struct r5worker *worker,
6168 				 struct list_head *temp_inactive_list)
6169 {
6170 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6171 	int i, batch_size = 0, hash;
6172 	bool release_inactive = false;
6173 
6174 	while (batch_size < MAX_STRIPE_BATCH &&
6175 			(sh = __get_priority_stripe(conf, group)) != NULL)
6176 		batch[batch_size++] = sh;
6177 
6178 	if (batch_size == 0) {
6179 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6180 			if (!list_empty(temp_inactive_list + i))
6181 				break;
6182 		if (i == NR_STRIPE_HASH_LOCKS) {
6183 			spin_unlock_irq(&conf->device_lock);
6184 			log_flush_stripe_to_raid(conf);
6185 			spin_lock_irq(&conf->device_lock);
6186 			return batch_size;
6187 		}
6188 		release_inactive = true;
6189 	}
6190 	spin_unlock_irq(&conf->device_lock);
6191 
6192 	release_inactive_stripe_list(conf, temp_inactive_list,
6193 				     NR_STRIPE_HASH_LOCKS);
6194 
6195 	r5l_flush_stripe_to_raid(conf->log);
6196 	if (release_inactive) {
6197 		spin_lock_irq(&conf->device_lock);
6198 		return 0;
6199 	}
6200 
6201 	for (i = 0; i < batch_size; i++)
6202 		handle_stripe(batch[i]);
6203 	log_write_stripe_run(conf);
6204 
6205 	cond_resched();
6206 
6207 	spin_lock_irq(&conf->device_lock);
6208 	for (i = 0; i < batch_size; i++) {
6209 		hash = batch[i]->hash_lock_index;
6210 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6211 	}
6212 	return batch_size;
6213 }
6214 
6215 static void raid5_do_work(struct work_struct *work)
6216 {
6217 	struct r5worker *worker = container_of(work, struct r5worker, work);
6218 	struct r5worker_group *group = worker->group;
6219 	struct r5conf *conf = group->conf;
6220 	struct mddev *mddev = conf->mddev;
6221 	int group_id = group - conf->worker_groups;
6222 	int handled;
6223 	struct blk_plug plug;
6224 
6225 	pr_debug("+++ raid5worker active\n");
6226 
6227 	blk_start_plug(&plug);
6228 	handled = 0;
6229 	spin_lock_irq(&conf->device_lock);
6230 	while (1) {
6231 		int batch_size, released;
6232 
6233 		released = release_stripe_list(conf, worker->temp_inactive_list);
6234 
6235 		batch_size = handle_active_stripes(conf, group_id, worker,
6236 						   worker->temp_inactive_list);
6237 		worker->working = false;
6238 		if (!batch_size && !released)
6239 			break;
6240 		handled += batch_size;
6241 		wait_event_lock_irq(mddev->sb_wait,
6242 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6243 			conf->device_lock);
6244 	}
6245 	pr_debug("%d stripes handled\n", handled);
6246 
6247 	spin_unlock_irq(&conf->device_lock);
6248 
6249 	flush_deferred_bios(conf);
6250 
6251 	r5l_flush_stripe_to_raid(conf->log);
6252 
6253 	async_tx_issue_pending_all();
6254 	blk_finish_plug(&plug);
6255 
6256 	pr_debug("--- raid5worker inactive\n");
6257 }
6258 
6259 /*
6260  * This is our raid5 kernel thread.
6261  *
6262  * We scan the hash table for stripes which can be handled now.
6263  * During the scan, completed stripes are saved for us by the interrupt
6264  * handler, so that they will not have to wait for our next wakeup.
6265  */
6266 static void raid5d(struct md_thread *thread)
6267 {
6268 	struct mddev *mddev = thread->mddev;
6269 	struct r5conf *conf = mddev->private;
6270 	int handled;
6271 	struct blk_plug plug;
6272 
6273 	pr_debug("+++ raid5d active\n");
6274 
6275 	md_check_recovery(mddev);
6276 
6277 	blk_start_plug(&plug);
6278 	handled = 0;
6279 	spin_lock_irq(&conf->device_lock);
6280 	while (1) {
6281 		struct bio *bio;
6282 		int batch_size, released;
6283 		unsigned int offset;
6284 
6285 		released = release_stripe_list(conf, conf->temp_inactive_list);
6286 		if (released)
6287 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6288 
6289 		if (
6290 		    !list_empty(&conf->bitmap_list)) {
6291 			/* Now is a good time to flush some bitmap updates */
6292 			conf->seq_flush++;
6293 			spin_unlock_irq(&conf->device_lock);
6294 			md_bitmap_unplug(mddev->bitmap);
6295 			spin_lock_irq(&conf->device_lock);
6296 			conf->seq_write = conf->seq_flush;
6297 			activate_bit_delay(conf, conf->temp_inactive_list);
6298 		}
6299 		raid5_activate_delayed(conf);
6300 
6301 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6302 			int ok;
6303 			spin_unlock_irq(&conf->device_lock);
6304 			ok = retry_aligned_read(conf, bio, offset);
6305 			spin_lock_irq(&conf->device_lock);
6306 			if (!ok)
6307 				break;
6308 			handled++;
6309 		}
6310 
6311 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6312 						   conf->temp_inactive_list);
6313 		if (!batch_size && !released)
6314 			break;
6315 		handled += batch_size;
6316 
6317 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6318 			spin_unlock_irq(&conf->device_lock);
6319 			md_check_recovery(mddev);
6320 			spin_lock_irq(&conf->device_lock);
6321 		}
6322 	}
6323 	pr_debug("%d stripes handled\n", handled);
6324 
6325 	spin_unlock_irq(&conf->device_lock);
6326 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6327 	    mutex_trylock(&conf->cache_size_mutex)) {
6328 		grow_one_stripe(conf, __GFP_NOWARN);
6329 		/* Set flag even if allocation failed.  This helps
6330 		 * slow down allocation requests when mem is short
6331 		 */
6332 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6333 		mutex_unlock(&conf->cache_size_mutex);
6334 	}
6335 
6336 	flush_deferred_bios(conf);
6337 
6338 	r5l_flush_stripe_to_raid(conf->log);
6339 
6340 	async_tx_issue_pending_all();
6341 	blk_finish_plug(&plug);
6342 
6343 	pr_debug("--- raid5d inactive\n");
6344 }
6345 
6346 static ssize_t
6347 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6348 {
6349 	struct r5conf *conf;
6350 	int ret = 0;
6351 	spin_lock(&mddev->lock);
6352 	conf = mddev->private;
6353 	if (conf)
6354 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6355 	spin_unlock(&mddev->lock);
6356 	return ret;
6357 }
6358 
6359 int
6360 raid5_set_cache_size(struct mddev *mddev, int size)
6361 {
6362 	int result = 0;
6363 	struct r5conf *conf = mddev->private;
6364 
6365 	if (size <= 16 || size > 32768)
6366 		return -EINVAL;
6367 
6368 	conf->min_nr_stripes = size;
6369 	mutex_lock(&conf->cache_size_mutex);
6370 	while (size < conf->max_nr_stripes &&
6371 	       drop_one_stripe(conf))
6372 		;
6373 	mutex_unlock(&conf->cache_size_mutex);
6374 
6375 	md_allow_write(mddev);
6376 
6377 	mutex_lock(&conf->cache_size_mutex);
6378 	while (size > conf->max_nr_stripes)
6379 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6380 			conf->min_nr_stripes = conf->max_nr_stripes;
6381 			result = -ENOMEM;
6382 			break;
6383 		}
6384 	mutex_unlock(&conf->cache_size_mutex);
6385 
6386 	return result;
6387 }
6388 EXPORT_SYMBOL(raid5_set_cache_size);
6389 
6390 static ssize_t
6391 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6392 {
6393 	struct r5conf *conf;
6394 	unsigned long new;
6395 	int err;
6396 
6397 	if (len >= PAGE_SIZE)
6398 		return -EINVAL;
6399 	if (kstrtoul(page, 10, &new))
6400 		return -EINVAL;
6401 	err = mddev_lock(mddev);
6402 	if (err)
6403 		return err;
6404 	conf = mddev->private;
6405 	if (!conf)
6406 		err = -ENODEV;
6407 	else
6408 		err = raid5_set_cache_size(mddev, new);
6409 	mddev_unlock(mddev);
6410 
6411 	return err ?: len;
6412 }
6413 
6414 static struct md_sysfs_entry
6415 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6416 				raid5_show_stripe_cache_size,
6417 				raid5_store_stripe_cache_size);
6418 
6419 static ssize_t
6420 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6421 {
6422 	struct r5conf *conf = mddev->private;
6423 	if (conf)
6424 		return sprintf(page, "%d\n", conf->rmw_level);
6425 	else
6426 		return 0;
6427 }
6428 
6429 static ssize_t
6430 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6431 {
6432 	struct r5conf *conf = mddev->private;
6433 	unsigned long new;
6434 
6435 	if (!conf)
6436 		return -ENODEV;
6437 
6438 	if (len >= PAGE_SIZE)
6439 		return -EINVAL;
6440 
6441 	if (kstrtoul(page, 10, &new))
6442 		return -EINVAL;
6443 
6444 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6445 		return -EINVAL;
6446 
6447 	if (new != PARITY_DISABLE_RMW &&
6448 	    new != PARITY_ENABLE_RMW &&
6449 	    new != PARITY_PREFER_RMW)
6450 		return -EINVAL;
6451 
6452 	conf->rmw_level = new;
6453 	return len;
6454 }
6455 
6456 static struct md_sysfs_entry
6457 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6458 			 raid5_show_rmw_level,
6459 			 raid5_store_rmw_level);
6460 
6461 
6462 static ssize_t
6463 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6464 {
6465 	struct r5conf *conf;
6466 	int ret = 0;
6467 	spin_lock(&mddev->lock);
6468 	conf = mddev->private;
6469 	if (conf)
6470 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6471 	spin_unlock(&mddev->lock);
6472 	return ret;
6473 }
6474 
6475 static ssize_t
6476 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6477 {
6478 	struct r5conf *conf;
6479 	unsigned long new;
6480 	int err;
6481 
6482 	if (len >= PAGE_SIZE)
6483 		return -EINVAL;
6484 	if (kstrtoul(page, 10, &new))
6485 		return -EINVAL;
6486 
6487 	err = mddev_lock(mddev);
6488 	if (err)
6489 		return err;
6490 	conf = mddev->private;
6491 	if (!conf)
6492 		err = -ENODEV;
6493 	else if (new > conf->min_nr_stripes)
6494 		err = -EINVAL;
6495 	else
6496 		conf->bypass_threshold = new;
6497 	mddev_unlock(mddev);
6498 	return err ?: len;
6499 }
6500 
6501 static struct md_sysfs_entry
6502 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6503 					S_IRUGO | S_IWUSR,
6504 					raid5_show_preread_threshold,
6505 					raid5_store_preread_threshold);
6506 
6507 static ssize_t
6508 raid5_show_skip_copy(struct mddev *mddev, char *page)
6509 {
6510 	struct r5conf *conf;
6511 	int ret = 0;
6512 	spin_lock(&mddev->lock);
6513 	conf = mddev->private;
6514 	if (conf)
6515 		ret = sprintf(page, "%d\n", conf->skip_copy);
6516 	spin_unlock(&mddev->lock);
6517 	return ret;
6518 }
6519 
6520 static ssize_t
6521 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6522 {
6523 	struct r5conf *conf;
6524 	unsigned long new;
6525 	int err;
6526 
6527 	if (len >= PAGE_SIZE)
6528 		return -EINVAL;
6529 	if (kstrtoul(page, 10, &new))
6530 		return -EINVAL;
6531 	new = !!new;
6532 
6533 	err = mddev_lock(mddev);
6534 	if (err)
6535 		return err;
6536 	conf = mddev->private;
6537 	if (!conf)
6538 		err = -ENODEV;
6539 	else if (new != conf->skip_copy) {
6540 		mddev_suspend(mddev);
6541 		conf->skip_copy = new;
6542 		if (new)
6543 			mddev->queue->backing_dev_info->capabilities |=
6544 				BDI_CAP_STABLE_WRITES;
6545 		else
6546 			mddev->queue->backing_dev_info->capabilities &=
6547 				~BDI_CAP_STABLE_WRITES;
6548 		mddev_resume(mddev);
6549 	}
6550 	mddev_unlock(mddev);
6551 	return err ?: len;
6552 }
6553 
6554 static struct md_sysfs_entry
6555 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6556 					raid5_show_skip_copy,
6557 					raid5_store_skip_copy);
6558 
6559 static ssize_t
6560 stripe_cache_active_show(struct mddev *mddev, char *page)
6561 {
6562 	struct r5conf *conf = mddev->private;
6563 	if (conf)
6564 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6565 	else
6566 		return 0;
6567 }
6568 
6569 static struct md_sysfs_entry
6570 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6571 
6572 static ssize_t
6573 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6574 {
6575 	struct r5conf *conf;
6576 	int ret = 0;
6577 	spin_lock(&mddev->lock);
6578 	conf = mddev->private;
6579 	if (conf)
6580 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6581 	spin_unlock(&mddev->lock);
6582 	return ret;
6583 }
6584 
6585 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6586 			       int *group_cnt,
6587 			       int *worker_cnt_per_group,
6588 			       struct r5worker_group **worker_groups);
6589 static ssize_t
6590 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6591 {
6592 	struct r5conf *conf;
6593 	unsigned int new;
6594 	int err;
6595 	struct r5worker_group *new_groups, *old_groups;
6596 	int group_cnt, worker_cnt_per_group;
6597 
6598 	if (len >= PAGE_SIZE)
6599 		return -EINVAL;
6600 	if (kstrtouint(page, 10, &new))
6601 		return -EINVAL;
6602 	/* 8192 should be big enough */
6603 	if (new > 8192)
6604 		return -EINVAL;
6605 
6606 	err = mddev_lock(mddev);
6607 	if (err)
6608 		return err;
6609 	conf = mddev->private;
6610 	if (!conf)
6611 		err = -ENODEV;
6612 	else if (new != conf->worker_cnt_per_group) {
6613 		mddev_suspend(mddev);
6614 
6615 		old_groups = conf->worker_groups;
6616 		if (old_groups)
6617 			flush_workqueue(raid5_wq);
6618 
6619 		err = alloc_thread_groups(conf, new,
6620 					  &group_cnt, &worker_cnt_per_group,
6621 					  &new_groups);
6622 		if (!err) {
6623 			spin_lock_irq(&conf->device_lock);
6624 			conf->group_cnt = group_cnt;
6625 			conf->worker_cnt_per_group = worker_cnt_per_group;
6626 			conf->worker_groups = new_groups;
6627 			spin_unlock_irq(&conf->device_lock);
6628 
6629 			if (old_groups)
6630 				kfree(old_groups[0].workers);
6631 			kfree(old_groups);
6632 		}
6633 		mddev_resume(mddev);
6634 	}
6635 	mddev_unlock(mddev);
6636 
6637 	return err ?: len;
6638 }
6639 
6640 static struct md_sysfs_entry
6641 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6642 				raid5_show_group_thread_cnt,
6643 				raid5_store_group_thread_cnt);
6644 
6645 static struct attribute *raid5_attrs[] =  {
6646 	&raid5_stripecache_size.attr,
6647 	&raid5_stripecache_active.attr,
6648 	&raid5_preread_bypass_threshold.attr,
6649 	&raid5_group_thread_cnt.attr,
6650 	&raid5_skip_copy.attr,
6651 	&raid5_rmw_level.attr,
6652 	&r5c_journal_mode.attr,
6653 	&ppl_write_hint.attr,
6654 	NULL,
6655 };
6656 static struct attribute_group raid5_attrs_group = {
6657 	.name = NULL,
6658 	.attrs = raid5_attrs,
6659 };
6660 
6661 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6662 			       int *group_cnt,
6663 			       int *worker_cnt_per_group,
6664 			       struct r5worker_group **worker_groups)
6665 {
6666 	int i, j, k;
6667 	ssize_t size;
6668 	struct r5worker *workers;
6669 
6670 	*worker_cnt_per_group = cnt;
6671 	if (cnt == 0) {
6672 		*group_cnt = 0;
6673 		*worker_groups = NULL;
6674 		return 0;
6675 	}
6676 	*group_cnt = num_possible_nodes();
6677 	size = sizeof(struct r5worker) * cnt;
6678 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
6679 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6680 				 GFP_NOIO);
6681 	if (!*worker_groups || !workers) {
6682 		kfree(workers);
6683 		kfree(*worker_groups);
6684 		return -ENOMEM;
6685 	}
6686 
6687 	for (i = 0; i < *group_cnt; i++) {
6688 		struct r5worker_group *group;
6689 
6690 		group = &(*worker_groups)[i];
6691 		INIT_LIST_HEAD(&group->handle_list);
6692 		INIT_LIST_HEAD(&group->loprio_list);
6693 		group->conf = conf;
6694 		group->workers = workers + i * cnt;
6695 
6696 		for (j = 0; j < cnt; j++) {
6697 			struct r5worker *worker = group->workers + j;
6698 			worker->group = group;
6699 			INIT_WORK(&worker->work, raid5_do_work);
6700 
6701 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6702 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6703 		}
6704 	}
6705 
6706 	return 0;
6707 }
6708 
6709 static void free_thread_groups(struct r5conf *conf)
6710 {
6711 	if (conf->worker_groups)
6712 		kfree(conf->worker_groups[0].workers);
6713 	kfree(conf->worker_groups);
6714 	conf->worker_groups = NULL;
6715 }
6716 
6717 static sector_t
6718 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6719 {
6720 	struct r5conf *conf = mddev->private;
6721 
6722 	if (!sectors)
6723 		sectors = mddev->dev_sectors;
6724 	if (!raid_disks)
6725 		/* size is defined by the smallest of previous and new size */
6726 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6727 
6728 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6729 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6730 	return sectors * (raid_disks - conf->max_degraded);
6731 }
6732 
6733 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6734 {
6735 	safe_put_page(percpu->spare_page);
6736 	percpu->spare_page = NULL;
6737 	kvfree(percpu->scribble);
6738 	percpu->scribble = NULL;
6739 }
6740 
6741 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6742 {
6743 	if (conf->level == 6 && !percpu->spare_page) {
6744 		percpu->spare_page = alloc_page(GFP_KERNEL);
6745 		if (!percpu->spare_page)
6746 			return -ENOMEM;
6747 	}
6748 
6749 	if (scribble_alloc(percpu,
6750 			   max(conf->raid_disks,
6751 			       conf->previous_raid_disks),
6752 			   max(conf->chunk_sectors,
6753 			       conf->prev_chunk_sectors)
6754 			   / STRIPE_SECTORS,
6755 			   GFP_KERNEL)) {
6756 		free_scratch_buffer(conf, percpu);
6757 		return -ENOMEM;
6758 	}
6759 
6760 	return 0;
6761 }
6762 
6763 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6764 {
6765 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6766 
6767 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6768 	return 0;
6769 }
6770 
6771 static void raid5_free_percpu(struct r5conf *conf)
6772 {
6773 	if (!conf->percpu)
6774 		return;
6775 
6776 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6777 	free_percpu(conf->percpu);
6778 }
6779 
6780 static void free_conf(struct r5conf *conf)
6781 {
6782 	int i;
6783 
6784 	log_exit(conf);
6785 
6786 	unregister_shrinker(&conf->shrinker);
6787 	free_thread_groups(conf);
6788 	shrink_stripes(conf);
6789 	raid5_free_percpu(conf);
6790 	for (i = 0; i < conf->pool_size; i++)
6791 		if (conf->disks[i].extra_page)
6792 			put_page(conf->disks[i].extra_page);
6793 	kfree(conf->disks);
6794 	bioset_exit(&conf->bio_split);
6795 	kfree(conf->stripe_hashtbl);
6796 	kfree(conf->pending_data);
6797 	kfree(conf);
6798 }
6799 
6800 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6801 {
6802 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6803 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6804 
6805 	if (alloc_scratch_buffer(conf, percpu)) {
6806 		pr_warn("%s: failed memory allocation for cpu%u\n",
6807 			__func__, cpu);
6808 		return -ENOMEM;
6809 	}
6810 	return 0;
6811 }
6812 
6813 static int raid5_alloc_percpu(struct r5conf *conf)
6814 {
6815 	int err = 0;
6816 
6817 	conf->percpu = alloc_percpu(struct raid5_percpu);
6818 	if (!conf->percpu)
6819 		return -ENOMEM;
6820 
6821 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6822 	if (!err) {
6823 		conf->scribble_disks = max(conf->raid_disks,
6824 			conf->previous_raid_disks);
6825 		conf->scribble_sectors = max(conf->chunk_sectors,
6826 			conf->prev_chunk_sectors);
6827 	}
6828 	return err;
6829 }
6830 
6831 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6832 				      struct shrink_control *sc)
6833 {
6834 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6835 	unsigned long ret = SHRINK_STOP;
6836 
6837 	if (mutex_trylock(&conf->cache_size_mutex)) {
6838 		ret= 0;
6839 		while (ret < sc->nr_to_scan &&
6840 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6841 			if (drop_one_stripe(conf) == 0) {
6842 				ret = SHRINK_STOP;
6843 				break;
6844 			}
6845 			ret++;
6846 		}
6847 		mutex_unlock(&conf->cache_size_mutex);
6848 	}
6849 	return ret;
6850 }
6851 
6852 static unsigned long raid5_cache_count(struct shrinker *shrink,
6853 				       struct shrink_control *sc)
6854 {
6855 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6856 
6857 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6858 		/* unlikely, but not impossible */
6859 		return 0;
6860 	return conf->max_nr_stripes - conf->min_nr_stripes;
6861 }
6862 
6863 static struct r5conf *setup_conf(struct mddev *mddev)
6864 {
6865 	struct r5conf *conf;
6866 	int raid_disk, memory, max_disks;
6867 	struct md_rdev *rdev;
6868 	struct disk_info *disk;
6869 	char pers_name[6];
6870 	int i;
6871 	int group_cnt, worker_cnt_per_group;
6872 	struct r5worker_group *new_group;
6873 	int ret;
6874 
6875 	if (mddev->new_level != 5
6876 	    && mddev->new_level != 4
6877 	    && mddev->new_level != 6) {
6878 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6879 			mdname(mddev), mddev->new_level);
6880 		return ERR_PTR(-EIO);
6881 	}
6882 	if ((mddev->new_level == 5
6883 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6884 	    (mddev->new_level == 6
6885 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6886 		pr_warn("md/raid:%s: layout %d not supported\n",
6887 			mdname(mddev), mddev->new_layout);
6888 		return ERR_PTR(-EIO);
6889 	}
6890 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6891 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6892 			mdname(mddev), mddev->raid_disks);
6893 		return ERR_PTR(-EINVAL);
6894 	}
6895 
6896 	if (!mddev->new_chunk_sectors ||
6897 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6898 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6899 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6900 			mdname(mddev), mddev->new_chunk_sectors << 9);
6901 		return ERR_PTR(-EINVAL);
6902 	}
6903 
6904 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6905 	if (conf == NULL)
6906 		goto abort;
6907 	INIT_LIST_HEAD(&conf->free_list);
6908 	INIT_LIST_HEAD(&conf->pending_list);
6909 	conf->pending_data = kcalloc(PENDING_IO_MAX,
6910 				     sizeof(struct r5pending_data),
6911 				     GFP_KERNEL);
6912 	if (!conf->pending_data)
6913 		goto abort;
6914 	for (i = 0; i < PENDING_IO_MAX; i++)
6915 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6916 	/* Don't enable multi-threading by default*/
6917 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6918 				 &new_group)) {
6919 		conf->group_cnt = group_cnt;
6920 		conf->worker_cnt_per_group = worker_cnt_per_group;
6921 		conf->worker_groups = new_group;
6922 	} else
6923 		goto abort;
6924 	spin_lock_init(&conf->device_lock);
6925 	seqcount_init(&conf->gen_lock);
6926 	mutex_init(&conf->cache_size_mutex);
6927 	init_waitqueue_head(&conf->wait_for_quiescent);
6928 	init_waitqueue_head(&conf->wait_for_stripe);
6929 	init_waitqueue_head(&conf->wait_for_overlap);
6930 	INIT_LIST_HEAD(&conf->handle_list);
6931 	INIT_LIST_HEAD(&conf->loprio_list);
6932 	INIT_LIST_HEAD(&conf->hold_list);
6933 	INIT_LIST_HEAD(&conf->delayed_list);
6934 	INIT_LIST_HEAD(&conf->bitmap_list);
6935 	init_llist_head(&conf->released_stripes);
6936 	atomic_set(&conf->active_stripes, 0);
6937 	atomic_set(&conf->preread_active_stripes, 0);
6938 	atomic_set(&conf->active_aligned_reads, 0);
6939 	spin_lock_init(&conf->pending_bios_lock);
6940 	conf->batch_bio_dispatch = true;
6941 	rdev_for_each(rdev, mddev) {
6942 		if (test_bit(Journal, &rdev->flags))
6943 			continue;
6944 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6945 			conf->batch_bio_dispatch = false;
6946 			break;
6947 		}
6948 	}
6949 
6950 	conf->bypass_threshold = BYPASS_THRESHOLD;
6951 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6952 
6953 	conf->raid_disks = mddev->raid_disks;
6954 	if (mddev->reshape_position == MaxSector)
6955 		conf->previous_raid_disks = mddev->raid_disks;
6956 	else
6957 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6958 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6959 
6960 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6961 			      GFP_KERNEL);
6962 
6963 	if (!conf->disks)
6964 		goto abort;
6965 
6966 	for (i = 0; i < max_disks; i++) {
6967 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6968 		if (!conf->disks[i].extra_page)
6969 			goto abort;
6970 	}
6971 
6972 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6973 	if (ret)
6974 		goto abort;
6975 	conf->mddev = mddev;
6976 
6977 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6978 		goto abort;
6979 
6980 	/* We init hash_locks[0] separately to that it can be used
6981 	 * as the reference lock in the spin_lock_nest_lock() call
6982 	 * in lock_all_device_hash_locks_irq in order to convince
6983 	 * lockdep that we know what we are doing.
6984 	 */
6985 	spin_lock_init(conf->hash_locks);
6986 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6987 		spin_lock_init(conf->hash_locks + i);
6988 
6989 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6990 		INIT_LIST_HEAD(conf->inactive_list + i);
6991 
6992 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6993 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6994 
6995 	atomic_set(&conf->r5c_cached_full_stripes, 0);
6996 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6997 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6998 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6999 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7000 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7001 
7002 	conf->level = mddev->new_level;
7003 	conf->chunk_sectors = mddev->new_chunk_sectors;
7004 	if (raid5_alloc_percpu(conf) != 0)
7005 		goto abort;
7006 
7007 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7008 
7009 	rdev_for_each(rdev, mddev) {
7010 		raid_disk = rdev->raid_disk;
7011 		if (raid_disk >= max_disks
7012 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7013 			continue;
7014 		disk = conf->disks + raid_disk;
7015 
7016 		if (test_bit(Replacement, &rdev->flags)) {
7017 			if (disk->replacement)
7018 				goto abort;
7019 			disk->replacement = rdev;
7020 		} else {
7021 			if (disk->rdev)
7022 				goto abort;
7023 			disk->rdev = rdev;
7024 		}
7025 
7026 		if (test_bit(In_sync, &rdev->flags)) {
7027 			char b[BDEVNAME_SIZE];
7028 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7029 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7030 		} else if (rdev->saved_raid_disk != raid_disk)
7031 			/* Cannot rely on bitmap to complete recovery */
7032 			conf->fullsync = 1;
7033 	}
7034 
7035 	conf->level = mddev->new_level;
7036 	if (conf->level == 6) {
7037 		conf->max_degraded = 2;
7038 		if (raid6_call.xor_syndrome)
7039 			conf->rmw_level = PARITY_ENABLE_RMW;
7040 		else
7041 			conf->rmw_level = PARITY_DISABLE_RMW;
7042 	} else {
7043 		conf->max_degraded = 1;
7044 		conf->rmw_level = PARITY_ENABLE_RMW;
7045 	}
7046 	conf->algorithm = mddev->new_layout;
7047 	conf->reshape_progress = mddev->reshape_position;
7048 	if (conf->reshape_progress != MaxSector) {
7049 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7050 		conf->prev_algo = mddev->layout;
7051 	} else {
7052 		conf->prev_chunk_sectors = conf->chunk_sectors;
7053 		conf->prev_algo = conf->algorithm;
7054 	}
7055 
7056 	conf->min_nr_stripes = NR_STRIPES;
7057 	if (mddev->reshape_position != MaxSector) {
7058 		int stripes = max_t(int,
7059 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7060 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7061 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7062 		if (conf->min_nr_stripes != NR_STRIPES)
7063 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7064 				mdname(mddev), conf->min_nr_stripes);
7065 	}
7066 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7067 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7068 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7069 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7070 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7071 			mdname(mddev), memory);
7072 		goto abort;
7073 	} else
7074 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7075 	/*
7076 	 * Losing a stripe head costs more than the time to refill it,
7077 	 * it reduces the queue depth and so can hurt throughput.
7078 	 * So set it rather large, scaled by number of devices.
7079 	 */
7080 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7081 	conf->shrinker.scan_objects = raid5_cache_scan;
7082 	conf->shrinker.count_objects = raid5_cache_count;
7083 	conf->shrinker.batch = 128;
7084 	conf->shrinker.flags = 0;
7085 	if (register_shrinker(&conf->shrinker)) {
7086 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7087 			mdname(mddev));
7088 		goto abort;
7089 	}
7090 
7091 	sprintf(pers_name, "raid%d", mddev->new_level);
7092 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7093 	if (!conf->thread) {
7094 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7095 			mdname(mddev));
7096 		goto abort;
7097 	}
7098 
7099 	return conf;
7100 
7101  abort:
7102 	if (conf) {
7103 		free_conf(conf);
7104 		return ERR_PTR(-EIO);
7105 	} else
7106 		return ERR_PTR(-ENOMEM);
7107 }
7108 
7109 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7110 {
7111 	switch (algo) {
7112 	case ALGORITHM_PARITY_0:
7113 		if (raid_disk < max_degraded)
7114 			return 1;
7115 		break;
7116 	case ALGORITHM_PARITY_N:
7117 		if (raid_disk >= raid_disks - max_degraded)
7118 			return 1;
7119 		break;
7120 	case ALGORITHM_PARITY_0_6:
7121 		if (raid_disk == 0 ||
7122 		    raid_disk == raid_disks - 1)
7123 			return 1;
7124 		break;
7125 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7126 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7127 	case ALGORITHM_LEFT_SYMMETRIC_6:
7128 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7129 		if (raid_disk == raid_disks - 1)
7130 			return 1;
7131 	}
7132 	return 0;
7133 }
7134 
7135 static int raid5_run(struct mddev *mddev)
7136 {
7137 	struct r5conf *conf;
7138 	int working_disks = 0;
7139 	int dirty_parity_disks = 0;
7140 	struct md_rdev *rdev;
7141 	struct md_rdev *journal_dev = NULL;
7142 	sector_t reshape_offset = 0;
7143 	int i;
7144 	long long min_offset_diff = 0;
7145 	int first = 1;
7146 
7147 	if (mddev_init_writes_pending(mddev) < 0)
7148 		return -ENOMEM;
7149 
7150 	if (mddev->recovery_cp != MaxSector)
7151 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7152 			  mdname(mddev));
7153 
7154 	rdev_for_each(rdev, mddev) {
7155 		long long diff;
7156 
7157 		if (test_bit(Journal, &rdev->flags)) {
7158 			journal_dev = rdev;
7159 			continue;
7160 		}
7161 		if (rdev->raid_disk < 0)
7162 			continue;
7163 		diff = (rdev->new_data_offset - rdev->data_offset);
7164 		if (first) {
7165 			min_offset_diff = diff;
7166 			first = 0;
7167 		} else if (mddev->reshape_backwards &&
7168 			 diff < min_offset_diff)
7169 			min_offset_diff = diff;
7170 		else if (!mddev->reshape_backwards &&
7171 			 diff > min_offset_diff)
7172 			min_offset_diff = diff;
7173 	}
7174 
7175 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7176 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7177 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7178 			  mdname(mddev));
7179 		return -EINVAL;
7180 	}
7181 
7182 	if (mddev->reshape_position != MaxSector) {
7183 		/* Check that we can continue the reshape.
7184 		 * Difficulties arise if the stripe we would write to
7185 		 * next is at or after the stripe we would read from next.
7186 		 * For a reshape that changes the number of devices, this
7187 		 * is only possible for a very short time, and mdadm makes
7188 		 * sure that time appears to have past before assembling
7189 		 * the array.  So we fail if that time hasn't passed.
7190 		 * For a reshape that keeps the number of devices the same
7191 		 * mdadm must be monitoring the reshape can keeping the
7192 		 * critical areas read-only and backed up.  It will start
7193 		 * the array in read-only mode, so we check for that.
7194 		 */
7195 		sector_t here_new, here_old;
7196 		int old_disks;
7197 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7198 		int chunk_sectors;
7199 		int new_data_disks;
7200 
7201 		if (journal_dev) {
7202 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7203 				mdname(mddev));
7204 			return -EINVAL;
7205 		}
7206 
7207 		if (mddev->new_level != mddev->level) {
7208 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7209 				mdname(mddev));
7210 			return -EINVAL;
7211 		}
7212 		old_disks = mddev->raid_disks - mddev->delta_disks;
7213 		/* reshape_position must be on a new-stripe boundary, and one
7214 		 * further up in new geometry must map after here in old
7215 		 * geometry.
7216 		 * If the chunk sizes are different, then as we perform reshape
7217 		 * in units of the largest of the two, reshape_position needs
7218 		 * be a multiple of the largest chunk size times new data disks.
7219 		 */
7220 		here_new = mddev->reshape_position;
7221 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7222 		new_data_disks = mddev->raid_disks - max_degraded;
7223 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7224 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7225 				mdname(mddev));
7226 			return -EINVAL;
7227 		}
7228 		reshape_offset = here_new * chunk_sectors;
7229 		/* here_new is the stripe we will write to */
7230 		here_old = mddev->reshape_position;
7231 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7232 		/* here_old is the first stripe that we might need to read
7233 		 * from */
7234 		if (mddev->delta_disks == 0) {
7235 			/* We cannot be sure it is safe to start an in-place
7236 			 * reshape.  It is only safe if user-space is monitoring
7237 			 * and taking constant backups.
7238 			 * mdadm always starts a situation like this in
7239 			 * readonly mode so it can take control before
7240 			 * allowing any writes.  So just check for that.
7241 			 */
7242 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7243 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7244 				/* not really in-place - so OK */;
7245 			else if (mddev->ro == 0) {
7246 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7247 					mdname(mddev));
7248 				return -EINVAL;
7249 			}
7250 		} else if (mddev->reshape_backwards
7251 		    ? (here_new * chunk_sectors + min_offset_diff <=
7252 		       here_old * chunk_sectors)
7253 		    : (here_new * chunk_sectors >=
7254 		       here_old * chunk_sectors + (-min_offset_diff))) {
7255 			/* Reading from the same stripe as writing to - bad */
7256 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7257 				mdname(mddev));
7258 			return -EINVAL;
7259 		}
7260 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7261 		/* OK, we should be able to continue; */
7262 	} else {
7263 		BUG_ON(mddev->level != mddev->new_level);
7264 		BUG_ON(mddev->layout != mddev->new_layout);
7265 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7266 		BUG_ON(mddev->delta_disks != 0);
7267 	}
7268 
7269 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7270 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7271 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7272 			mdname(mddev));
7273 		clear_bit(MD_HAS_PPL, &mddev->flags);
7274 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7275 	}
7276 
7277 	if (mddev->private == NULL)
7278 		conf = setup_conf(mddev);
7279 	else
7280 		conf = mddev->private;
7281 
7282 	if (IS_ERR(conf))
7283 		return PTR_ERR(conf);
7284 
7285 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7286 		if (!journal_dev) {
7287 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7288 				mdname(mddev));
7289 			mddev->ro = 1;
7290 			set_disk_ro(mddev->gendisk, 1);
7291 		} else if (mddev->recovery_cp == MaxSector)
7292 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7293 	}
7294 
7295 	conf->min_offset_diff = min_offset_diff;
7296 	mddev->thread = conf->thread;
7297 	conf->thread = NULL;
7298 	mddev->private = conf;
7299 
7300 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7301 	     i++) {
7302 		rdev = conf->disks[i].rdev;
7303 		if (!rdev && conf->disks[i].replacement) {
7304 			/* The replacement is all we have yet */
7305 			rdev = conf->disks[i].replacement;
7306 			conf->disks[i].replacement = NULL;
7307 			clear_bit(Replacement, &rdev->flags);
7308 			conf->disks[i].rdev = rdev;
7309 		}
7310 		if (!rdev)
7311 			continue;
7312 		if (conf->disks[i].replacement &&
7313 		    conf->reshape_progress != MaxSector) {
7314 			/* replacements and reshape simply do not mix. */
7315 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7316 			goto abort;
7317 		}
7318 		if (test_bit(In_sync, &rdev->flags)) {
7319 			working_disks++;
7320 			continue;
7321 		}
7322 		/* This disc is not fully in-sync.  However if it
7323 		 * just stored parity (beyond the recovery_offset),
7324 		 * when we don't need to be concerned about the
7325 		 * array being dirty.
7326 		 * When reshape goes 'backwards', we never have
7327 		 * partially completed devices, so we only need
7328 		 * to worry about reshape going forwards.
7329 		 */
7330 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7331 		if (mddev->major_version == 0 &&
7332 		    mddev->minor_version > 90)
7333 			rdev->recovery_offset = reshape_offset;
7334 
7335 		if (rdev->recovery_offset < reshape_offset) {
7336 			/* We need to check old and new layout */
7337 			if (!only_parity(rdev->raid_disk,
7338 					 conf->algorithm,
7339 					 conf->raid_disks,
7340 					 conf->max_degraded))
7341 				continue;
7342 		}
7343 		if (!only_parity(rdev->raid_disk,
7344 				 conf->prev_algo,
7345 				 conf->previous_raid_disks,
7346 				 conf->max_degraded))
7347 			continue;
7348 		dirty_parity_disks++;
7349 	}
7350 
7351 	/*
7352 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7353 	 */
7354 	mddev->degraded = raid5_calc_degraded(conf);
7355 
7356 	if (has_failed(conf)) {
7357 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7358 			mdname(mddev), mddev->degraded, conf->raid_disks);
7359 		goto abort;
7360 	}
7361 
7362 	/* device size must be a multiple of chunk size */
7363 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7364 	mddev->resync_max_sectors = mddev->dev_sectors;
7365 
7366 	if (mddev->degraded > dirty_parity_disks &&
7367 	    mddev->recovery_cp != MaxSector) {
7368 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7369 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7370 				mdname(mddev));
7371 		else if (mddev->ok_start_degraded)
7372 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7373 				mdname(mddev));
7374 		else {
7375 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7376 				mdname(mddev));
7377 			goto abort;
7378 		}
7379 	}
7380 
7381 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7382 		mdname(mddev), conf->level,
7383 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7384 		mddev->new_layout);
7385 
7386 	print_raid5_conf(conf);
7387 
7388 	if (conf->reshape_progress != MaxSector) {
7389 		conf->reshape_safe = conf->reshape_progress;
7390 		atomic_set(&conf->reshape_stripes, 0);
7391 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7392 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7393 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7394 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7395 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7396 							"reshape");
7397 		if (!mddev->sync_thread)
7398 			goto abort;
7399 	}
7400 
7401 	/* Ok, everything is just fine now */
7402 	if (mddev->to_remove == &raid5_attrs_group)
7403 		mddev->to_remove = NULL;
7404 	else if (mddev->kobj.sd &&
7405 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7406 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7407 			mdname(mddev));
7408 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7409 
7410 	if (mddev->queue) {
7411 		int chunk_size;
7412 		/* read-ahead size must cover two whole stripes, which
7413 		 * is 2 * (datadisks) * chunksize where 'n' is the
7414 		 * number of raid devices
7415 		 */
7416 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7417 		int stripe = data_disks *
7418 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7419 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7420 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7421 
7422 		chunk_size = mddev->chunk_sectors << 9;
7423 		blk_queue_io_min(mddev->queue, chunk_size);
7424 		blk_queue_io_opt(mddev->queue, chunk_size *
7425 				 (conf->raid_disks - conf->max_degraded));
7426 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7427 		/*
7428 		 * We can only discard a whole stripe. It doesn't make sense to
7429 		 * discard data disk but write parity disk
7430 		 */
7431 		stripe = stripe * PAGE_SIZE;
7432 		/* Round up to power of 2, as discard handling
7433 		 * currently assumes that */
7434 		while ((stripe-1) & stripe)
7435 			stripe = (stripe | (stripe-1)) + 1;
7436 		mddev->queue->limits.discard_alignment = stripe;
7437 		mddev->queue->limits.discard_granularity = stripe;
7438 
7439 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7440 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7441 
7442 		rdev_for_each(rdev, mddev) {
7443 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7444 					  rdev->data_offset << 9);
7445 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7446 					  rdev->new_data_offset << 9);
7447 		}
7448 
7449 		/*
7450 		 * zeroing is required, otherwise data
7451 		 * could be lost. Consider a scenario: discard a stripe
7452 		 * (the stripe could be inconsistent if
7453 		 * discard_zeroes_data is 0); write one disk of the
7454 		 * stripe (the stripe could be inconsistent again
7455 		 * depending on which disks are used to calculate
7456 		 * parity); the disk is broken; The stripe data of this
7457 		 * disk is lost.
7458 		 *
7459 		 * We only allow DISCARD if the sysadmin has confirmed that
7460 		 * only safe devices are in use by setting a module parameter.
7461 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7462 		 * requests, as that is required to be safe.
7463 		 */
7464 		if (devices_handle_discard_safely &&
7465 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7466 		    mddev->queue->limits.discard_granularity >= stripe)
7467 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7468 						mddev->queue);
7469 		else
7470 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7471 						mddev->queue);
7472 
7473 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7474 	}
7475 
7476 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7477 		goto abort;
7478 
7479 	return 0;
7480 abort:
7481 	md_unregister_thread(&mddev->thread);
7482 	print_raid5_conf(conf);
7483 	free_conf(conf);
7484 	mddev->private = NULL;
7485 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7486 	return -EIO;
7487 }
7488 
7489 static void raid5_free(struct mddev *mddev, void *priv)
7490 {
7491 	struct r5conf *conf = priv;
7492 
7493 	free_conf(conf);
7494 	mddev->to_remove = &raid5_attrs_group;
7495 }
7496 
7497 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7498 {
7499 	struct r5conf *conf = mddev->private;
7500 	int i;
7501 
7502 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7503 		conf->chunk_sectors / 2, mddev->layout);
7504 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7505 	rcu_read_lock();
7506 	for (i = 0; i < conf->raid_disks; i++) {
7507 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7508 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7509 	}
7510 	rcu_read_unlock();
7511 	seq_printf (seq, "]");
7512 }
7513 
7514 static void print_raid5_conf (struct r5conf *conf)
7515 {
7516 	int i;
7517 	struct disk_info *tmp;
7518 
7519 	pr_debug("RAID conf printout:\n");
7520 	if (!conf) {
7521 		pr_debug("(conf==NULL)\n");
7522 		return;
7523 	}
7524 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7525 	       conf->raid_disks,
7526 	       conf->raid_disks - conf->mddev->degraded);
7527 
7528 	for (i = 0; i < conf->raid_disks; i++) {
7529 		char b[BDEVNAME_SIZE];
7530 		tmp = conf->disks + i;
7531 		if (tmp->rdev)
7532 			pr_debug(" disk %d, o:%d, dev:%s\n",
7533 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7534 			       bdevname(tmp->rdev->bdev, b));
7535 	}
7536 }
7537 
7538 static int raid5_spare_active(struct mddev *mddev)
7539 {
7540 	int i;
7541 	struct r5conf *conf = mddev->private;
7542 	struct disk_info *tmp;
7543 	int count = 0;
7544 	unsigned long flags;
7545 
7546 	for (i = 0; i < conf->raid_disks; i++) {
7547 		tmp = conf->disks + i;
7548 		if (tmp->replacement
7549 		    && tmp->replacement->recovery_offset == MaxSector
7550 		    && !test_bit(Faulty, &tmp->replacement->flags)
7551 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7552 			/* Replacement has just become active. */
7553 			if (!tmp->rdev
7554 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7555 				count++;
7556 			if (tmp->rdev) {
7557 				/* Replaced device not technically faulty,
7558 				 * but we need to be sure it gets removed
7559 				 * and never re-added.
7560 				 */
7561 				set_bit(Faulty, &tmp->rdev->flags);
7562 				sysfs_notify_dirent_safe(
7563 					tmp->rdev->sysfs_state);
7564 			}
7565 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7566 		} else if (tmp->rdev
7567 		    && tmp->rdev->recovery_offset == MaxSector
7568 		    && !test_bit(Faulty, &tmp->rdev->flags)
7569 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7570 			count++;
7571 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7572 		}
7573 	}
7574 	spin_lock_irqsave(&conf->device_lock, flags);
7575 	mddev->degraded = raid5_calc_degraded(conf);
7576 	spin_unlock_irqrestore(&conf->device_lock, flags);
7577 	print_raid5_conf(conf);
7578 	return count;
7579 }
7580 
7581 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7582 {
7583 	struct r5conf *conf = mddev->private;
7584 	int err = 0;
7585 	int number = rdev->raid_disk;
7586 	struct md_rdev **rdevp;
7587 	struct disk_info *p = conf->disks + number;
7588 
7589 	print_raid5_conf(conf);
7590 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7591 		/*
7592 		 * we can't wait pending write here, as this is called in
7593 		 * raid5d, wait will deadlock.
7594 		 * neilb: there is no locking about new writes here,
7595 		 * so this cannot be safe.
7596 		 */
7597 		if (atomic_read(&conf->active_stripes) ||
7598 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7599 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7600 			return -EBUSY;
7601 		}
7602 		log_exit(conf);
7603 		return 0;
7604 	}
7605 	if (rdev == p->rdev)
7606 		rdevp = &p->rdev;
7607 	else if (rdev == p->replacement)
7608 		rdevp = &p->replacement;
7609 	else
7610 		return 0;
7611 
7612 	if (number >= conf->raid_disks &&
7613 	    conf->reshape_progress == MaxSector)
7614 		clear_bit(In_sync, &rdev->flags);
7615 
7616 	if (test_bit(In_sync, &rdev->flags) ||
7617 	    atomic_read(&rdev->nr_pending)) {
7618 		err = -EBUSY;
7619 		goto abort;
7620 	}
7621 	/* Only remove non-faulty devices if recovery
7622 	 * isn't possible.
7623 	 */
7624 	if (!test_bit(Faulty, &rdev->flags) &&
7625 	    mddev->recovery_disabled != conf->recovery_disabled &&
7626 	    !has_failed(conf) &&
7627 	    (!p->replacement || p->replacement == rdev) &&
7628 	    number < conf->raid_disks) {
7629 		err = -EBUSY;
7630 		goto abort;
7631 	}
7632 	*rdevp = NULL;
7633 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7634 		synchronize_rcu();
7635 		if (atomic_read(&rdev->nr_pending)) {
7636 			/* lost the race, try later */
7637 			err = -EBUSY;
7638 			*rdevp = rdev;
7639 		}
7640 	}
7641 	if (!err) {
7642 		err = log_modify(conf, rdev, false);
7643 		if (err)
7644 			goto abort;
7645 	}
7646 	if (p->replacement) {
7647 		/* We must have just cleared 'rdev' */
7648 		p->rdev = p->replacement;
7649 		clear_bit(Replacement, &p->replacement->flags);
7650 		smp_mb(); /* Make sure other CPUs may see both as identical
7651 			   * but will never see neither - if they are careful
7652 			   */
7653 		p->replacement = NULL;
7654 
7655 		if (!err)
7656 			err = log_modify(conf, p->rdev, true);
7657 	}
7658 
7659 	clear_bit(WantReplacement, &rdev->flags);
7660 abort:
7661 
7662 	print_raid5_conf(conf);
7663 	return err;
7664 }
7665 
7666 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7667 {
7668 	struct r5conf *conf = mddev->private;
7669 	int err = -EEXIST;
7670 	int disk;
7671 	struct disk_info *p;
7672 	int first = 0;
7673 	int last = conf->raid_disks - 1;
7674 
7675 	if (test_bit(Journal, &rdev->flags)) {
7676 		if (conf->log)
7677 			return -EBUSY;
7678 
7679 		rdev->raid_disk = 0;
7680 		/*
7681 		 * The array is in readonly mode if journal is missing, so no
7682 		 * write requests running. We should be safe
7683 		 */
7684 		log_init(conf, rdev, false);
7685 		return 0;
7686 	}
7687 	if (mddev->recovery_disabled == conf->recovery_disabled)
7688 		return -EBUSY;
7689 
7690 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7691 		/* no point adding a device */
7692 		return -EINVAL;
7693 
7694 	if (rdev->raid_disk >= 0)
7695 		first = last = rdev->raid_disk;
7696 
7697 	/*
7698 	 * find the disk ... but prefer rdev->saved_raid_disk
7699 	 * if possible.
7700 	 */
7701 	if (rdev->saved_raid_disk >= 0 &&
7702 	    rdev->saved_raid_disk >= first &&
7703 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7704 		first = rdev->saved_raid_disk;
7705 
7706 	for (disk = first; disk <= last; disk++) {
7707 		p = conf->disks + disk;
7708 		if (p->rdev == NULL) {
7709 			clear_bit(In_sync, &rdev->flags);
7710 			rdev->raid_disk = disk;
7711 			if (rdev->saved_raid_disk != disk)
7712 				conf->fullsync = 1;
7713 			rcu_assign_pointer(p->rdev, rdev);
7714 
7715 			err = log_modify(conf, rdev, true);
7716 
7717 			goto out;
7718 		}
7719 	}
7720 	for (disk = first; disk <= last; disk++) {
7721 		p = conf->disks + disk;
7722 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7723 		    p->replacement == NULL) {
7724 			clear_bit(In_sync, &rdev->flags);
7725 			set_bit(Replacement, &rdev->flags);
7726 			rdev->raid_disk = disk;
7727 			err = 0;
7728 			conf->fullsync = 1;
7729 			rcu_assign_pointer(p->replacement, rdev);
7730 			break;
7731 		}
7732 	}
7733 out:
7734 	print_raid5_conf(conf);
7735 	return err;
7736 }
7737 
7738 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7739 {
7740 	/* no resync is happening, and there is enough space
7741 	 * on all devices, so we can resize.
7742 	 * We need to make sure resync covers any new space.
7743 	 * If the array is shrinking we should possibly wait until
7744 	 * any io in the removed space completes, but it hardly seems
7745 	 * worth it.
7746 	 */
7747 	sector_t newsize;
7748 	struct r5conf *conf = mddev->private;
7749 
7750 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
7751 		return -EINVAL;
7752 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7753 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7754 	if (mddev->external_size &&
7755 	    mddev->array_sectors > newsize)
7756 		return -EINVAL;
7757 	if (mddev->bitmap) {
7758 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7759 		if (ret)
7760 			return ret;
7761 	}
7762 	md_set_array_sectors(mddev, newsize);
7763 	if (sectors > mddev->dev_sectors &&
7764 	    mddev->recovery_cp > mddev->dev_sectors) {
7765 		mddev->recovery_cp = mddev->dev_sectors;
7766 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7767 	}
7768 	mddev->dev_sectors = sectors;
7769 	mddev->resync_max_sectors = sectors;
7770 	return 0;
7771 }
7772 
7773 static int check_stripe_cache(struct mddev *mddev)
7774 {
7775 	/* Can only proceed if there are plenty of stripe_heads.
7776 	 * We need a minimum of one full stripe,, and for sensible progress
7777 	 * it is best to have about 4 times that.
7778 	 * If we require 4 times, then the default 256 4K stripe_heads will
7779 	 * allow for chunk sizes up to 256K, which is probably OK.
7780 	 * If the chunk size is greater, user-space should request more
7781 	 * stripe_heads first.
7782 	 */
7783 	struct r5conf *conf = mddev->private;
7784 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7785 	    > conf->min_nr_stripes ||
7786 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7787 	    > conf->min_nr_stripes) {
7788 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7789 			mdname(mddev),
7790 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7791 			 / STRIPE_SIZE)*4);
7792 		return 0;
7793 	}
7794 	return 1;
7795 }
7796 
7797 static int check_reshape(struct mddev *mddev)
7798 {
7799 	struct r5conf *conf = mddev->private;
7800 
7801 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
7802 		return -EINVAL;
7803 	if (mddev->delta_disks == 0 &&
7804 	    mddev->new_layout == mddev->layout &&
7805 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7806 		return 0; /* nothing to do */
7807 	if (has_failed(conf))
7808 		return -EINVAL;
7809 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7810 		/* We might be able to shrink, but the devices must
7811 		 * be made bigger first.
7812 		 * For raid6, 4 is the minimum size.
7813 		 * Otherwise 2 is the minimum
7814 		 */
7815 		int min = 2;
7816 		if (mddev->level == 6)
7817 			min = 4;
7818 		if (mddev->raid_disks + mddev->delta_disks < min)
7819 			return -EINVAL;
7820 	}
7821 
7822 	if (!check_stripe_cache(mddev))
7823 		return -ENOSPC;
7824 
7825 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7826 	    mddev->delta_disks > 0)
7827 		if (resize_chunks(conf,
7828 				  conf->previous_raid_disks
7829 				  + max(0, mddev->delta_disks),
7830 				  max(mddev->new_chunk_sectors,
7831 				      mddev->chunk_sectors)
7832 			    ) < 0)
7833 			return -ENOMEM;
7834 
7835 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7836 		return 0; /* never bother to shrink */
7837 	return resize_stripes(conf, (conf->previous_raid_disks
7838 				     + mddev->delta_disks));
7839 }
7840 
7841 static int raid5_start_reshape(struct mddev *mddev)
7842 {
7843 	struct r5conf *conf = mddev->private;
7844 	struct md_rdev *rdev;
7845 	int spares = 0;
7846 	unsigned long flags;
7847 
7848 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7849 		return -EBUSY;
7850 
7851 	if (!check_stripe_cache(mddev))
7852 		return -ENOSPC;
7853 
7854 	if (has_failed(conf))
7855 		return -EINVAL;
7856 
7857 	rdev_for_each(rdev, mddev) {
7858 		if (!test_bit(In_sync, &rdev->flags)
7859 		    && !test_bit(Faulty, &rdev->flags))
7860 			spares++;
7861 	}
7862 
7863 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7864 		/* Not enough devices even to make a degraded array
7865 		 * of that size
7866 		 */
7867 		return -EINVAL;
7868 
7869 	/* Refuse to reduce size of the array.  Any reductions in
7870 	 * array size must be through explicit setting of array_size
7871 	 * attribute.
7872 	 */
7873 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7874 	    < mddev->array_sectors) {
7875 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7876 			mdname(mddev));
7877 		return -EINVAL;
7878 	}
7879 
7880 	atomic_set(&conf->reshape_stripes, 0);
7881 	spin_lock_irq(&conf->device_lock);
7882 	write_seqcount_begin(&conf->gen_lock);
7883 	conf->previous_raid_disks = conf->raid_disks;
7884 	conf->raid_disks += mddev->delta_disks;
7885 	conf->prev_chunk_sectors = conf->chunk_sectors;
7886 	conf->chunk_sectors = mddev->new_chunk_sectors;
7887 	conf->prev_algo = conf->algorithm;
7888 	conf->algorithm = mddev->new_layout;
7889 	conf->generation++;
7890 	/* Code that selects data_offset needs to see the generation update
7891 	 * if reshape_progress has been set - so a memory barrier needed.
7892 	 */
7893 	smp_mb();
7894 	if (mddev->reshape_backwards)
7895 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7896 	else
7897 		conf->reshape_progress = 0;
7898 	conf->reshape_safe = conf->reshape_progress;
7899 	write_seqcount_end(&conf->gen_lock);
7900 	spin_unlock_irq(&conf->device_lock);
7901 
7902 	/* Now make sure any requests that proceeded on the assumption
7903 	 * the reshape wasn't running - like Discard or Read - have
7904 	 * completed.
7905 	 */
7906 	mddev_suspend(mddev);
7907 	mddev_resume(mddev);
7908 
7909 	/* Add some new drives, as many as will fit.
7910 	 * We know there are enough to make the newly sized array work.
7911 	 * Don't add devices if we are reducing the number of
7912 	 * devices in the array.  This is because it is not possible
7913 	 * to correctly record the "partially reconstructed" state of
7914 	 * such devices during the reshape and confusion could result.
7915 	 */
7916 	if (mddev->delta_disks >= 0) {
7917 		rdev_for_each(rdev, mddev)
7918 			if (rdev->raid_disk < 0 &&
7919 			    !test_bit(Faulty, &rdev->flags)) {
7920 				if (raid5_add_disk(mddev, rdev) == 0) {
7921 					if (rdev->raid_disk
7922 					    >= conf->previous_raid_disks)
7923 						set_bit(In_sync, &rdev->flags);
7924 					else
7925 						rdev->recovery_offset = 0;
7926 
7927 					if (sysfs_link_rdev(mddev, rdev))
7928 						/* Failure here is OK */;
7929 				}
7930 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7931 				   && !test_bit(Faulty, &rdev->flags)) {
7932 				/* This is a spare that was manually added */
7933 				set_bit(In_sync, &rdev->flags);
7934 			}
7935 
7936 		/* When a reshape changes the number of devices,
7937 		 * ->degraded is measured against the larger of the
7938 		 * pre and post number of devices.
7939 		 */
7940 		spin_lock_irqsave(&conf->device_lock, flags);
7941 		mddev->degraded = raid5_calc_degraded(conf);
7942 		spin_unlock_irqrestore(&conf->device_lock, flags);
7943 	}
7944 	mddev->raid_disks = conf->raid_disks;
7945 	mddev->reshape_position = conf->reshape_progress;
7946 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7947 
7948 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7949 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7950 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7951 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7952 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7953 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7954 						"reshape");
7955 	if (!mddev->sync_thread) {
7956 		mddev->recovery = 0;
7957 		spin_lock_irq(&conf->device_lock);
7958 		write_seqcount_begin(&conf->gen_lock);
7959 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7960 		mddev->new_chunk_sectors =
7961 			conf->chunk_sectors = conf->prev_chunk_sectors;
7962 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7963 		rdev_for_each(rdev, mddev)
7964 			rdev->new_data_offset = rdev->data_offset;
7965 		smp_wmb();
7966 		conf->generation --;
7967 		conf->reshape_progress = MaxSector;
7968 		mddev->reshape_position = MaxSector;
7969 		write_seqcount_end(&conf->gen_lock);
7970 		spin_unlock_irq(&conf->device_lock);
7971 		return -EAGAIN;
7972 	}
7973 	conf->reshape_checkpoint = jiffies;
7974 	md_wakeup_thread(mddev->sync_thread);
7975 	md_new_event(mddev);
7976 	return 0;
7977 }
7978 
7979 /* This is called from the reshape thread and should make any
7980  * changes needed in 'conf'
7981  */
7982 static void end_reshape(struct r5conf *conf)
7983 {
7984 
7985 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7986 		struct md_rdev *rdev;
7987 
7988 		spin_lock_irq(&conf->device_lock);
7989 		conf->previous_raid_disks = conf->raid_disks;
7990 		md_finish_reshape(conf->mddev);
7991 		smp_wmb();
7992 		conf->reshape_progress = MaxSector;
7993 		conf->mddev->reshape_position = MaxSector;
7994 		rdev_for_each(rdev, conf->mddev)
7995 			if (rdev->raid_disk >= 0 &&
7996 			    !test_bit(Journal, &rdev->flags) &&
7997 			    !test_bit(In_sync, &rdev->flags))
7998 				rdev->recovery_offset = MaxSector;
7999 		spin_unlock_irq(&conf->device_lock);
8000 		wake_up(&conf->wait_for_overlap);
8001 
8002 		/* read-ahead size must cover two whole stripes, which is
8003 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8004 		 */
8005 		if (conf->mddev->queue) {
8006 			int data_disks = conf->raid_disks - conf->max_degraded;
8007 			int stripe = data_disks * ((conf->chunk_sectors << 9)
8008 						   / PAGE_SIZE);
8009 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8010 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8011 		}
8012 	}
8013 }
8014 
8015 /* This is called from the raid5d thread with mddev_lock held.
8016  * It makes config changes to the device.
8017  */
8018 static void raid5_finish_reshape(struct mddev *mddev)
8019 {
8020 	struct r5conf *conf = mddev->private;
8021 
8022 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8023 
8024 		if (mddev->delta_disks <= 0) {
8025 			int d;
8026 			spin_lock_irq(&conf->device_lock);
8027 			mddev->degraded = raid5_calc_degraded(conf);
8028 			spin_unlock_irq(&conf->device_lock);
8029 			for (d = conf->raid_disks ;
8030 			     d < conf->raid_disks - mddev->delta_disks;
8031 			     d++) {
8032 				struct md_rdev *rdev = conf->disks[d].rdev;
8033 				if (rdev)
8034 					clear_bit(In_sync, &rdev->flags);
8035 				rdev = conf->disks[d].replacement;
8036 				if (rdev)
8037 					clear_bit(In_sync, &rdev->flags);
8038 			}
8039 		}
8040 		mddev->layout = conf->algorithm;
8041 		mddev->chunk_sectors = conf->chunk_sectors;
8042 		mddev->reshape_position = MaxSector;
8043 		mddev->delta_disks = 0;
8044 		mddev->reshape_backwards = 0;
8045 	}
8046 }
8047 
8048 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8049 {
8050 	struct r5conf *conf = mddev->private;
8051 
8052 	if (quiesce) {
8053 		/* stop all writes */
8054 		lock_all_device_hash_locks_irq(conf);
8055 		/* '2' tells resync/reshape to pause so that all
8056 		 * active stripes can drain
8057 		 */
8058 		r5c_flush_cache(conf, INT_MAX);
8059 		conf->quiesce = 2;
8060 		wait_event_cmd(conf->wait_for_quiescent,
8061 				    atomic_read(&conf->active_stripes) == 0 &&
8062 				    atomic_read(&conf->active_aligned_reads) == 0,
8063 				    unlock_all_device_hash_locks_irq(conf),
8064 				    lock_all_device_hash_locks_irq(conf));
8065 		conf->quiesce = 1;
8066 		unlock_all_device_hash_locks_irq(conf);
8067 		/* allow reshape to continue */
8068 		wake_up(&conf->wait_for_overlap);
8069 	} else {
8070 		/* re-enable writes */
8071 		lock_all_device_hash_locks_irq(conf);
8072 		conf->quiesce = 0;
8073 		wake_up(&conf->wait_for_quiescent);
8074 		wake_up(&conf->wait_for_overlap);
8075 		unlock_all_device_hash_locks_irq(conf);
8076 	}
8077 	log_quiesce(conf, quiesce);
8078 }
8079 
8080 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8081 {
8082 	struct r0conf *raid0_conf = mddev->private;
8083 	sector_t sectors;
8084 
8085 	/* for raid0 takeover only one zone is supported */
8086 	if (raid0_conf->nr_strip_zones > 1) {
8087 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8088 			mdname(mddev));
8089 		return ERR_PTR(-EINVAL);
8090 	}
8091 
8092 	sectors = raid0_conf->strip_zone[0].zone_end;
8093 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8094 	mddev->dev_sectors = sectors;
8095 	mddev->new_level = level;
8096 	mddev->new_layout = ALGORITHM_PARITY_N;
8097 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8098 	mddev->raid_disks += 1;
8099 	mddev->delta_disks = 1;
8100 	/* make sure it will be not marked as dirty */
8101 	mddev->recovery_cp = MaxSector;
8102 
8103 	return setup_conf(mddev);
8104 }
8105 
8106 static void *raid5_takeover_raid1(struct mddev *mddev)
8107 {
8108 	int chunksect;
8109 	void *ret;
8110 
8111 	if (mddev->raid_disks != 2 ||
8112 	    mddev->degraded > 1)
8113 		return ERR_PTR(-EINVAL);
8114 
8115 	/* Should check if there are write-behind devices? */
8116 
8117 	chunksect = 64*2; /* 64K by default */
8118 
8119 	/* The array must be an exact multiple of chunksize */
8120 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8121 		chunksect >>= 1;
8122 
8123 	if ((chunksect<<9) < STRIPE_SIZE)
8124 		/* array size does not allow a suitable chunk size */
8125 		return ERR_PTR(-EINVAL);
8126 
8127 	mddev->new_level = 5;
8128 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8129 	mddev->new_chunk_sectors = chunksect;
8130 
8131 	ret = setup_conf(mddev);
8132 	if (!IS_ERR(ret))
8133 		mddev_clear_unsupported_flags(mddev,
8134 			UNSUPPORTED_MDDEV_FLAGS);
8135 	return ret;
8136 }
8137 
8138 static void *raid5_takeover_raid6(struct mddev *mddev)
8139 {
8140 	int new_layout;
8141 
8142 	switch (mddev->layout) {
8143 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8144 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8145 		break;
8146 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8147 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8148 		break;
8149 	case ALGORITHM_LEFT_SYMMETRIC_6:
8150 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8151 		break;
8152 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8153 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8154 		break;
8155 	case ALGORITHM_PARITY_0_6:
8156 		new_layout = ALGORITHM_PARITY_0;
8157 		break;
8158 	case ALGORITHM_PARITY_N:
8159 		new_layout = ALGORITHM_PARITY_N;
8160 		break;
8161 	default:
8162 		return ERR_PTR(-EINVAL);
8163 	}
8164 	mddev->new_level = 5;
8165 	mddev->new_layout = new_layout;
8166 	mddev->delta_disks = -1;
8167 	mddev->raid_disks -= 1;
8168 	return setup_conf(mddev);
8169 }
8170 
8171 static int raid5_check_reshape(struct mddev *mddev)
8172 {
8173 	/* For a 2-drive array, the layout and chunk size can be changed
8174 	 * immediately as not restriping is needed.
8175 	 * For larger arrays we record the new value - after validation
8176 	 * to be used by a reshape pass.
8177 	 */
8178 	struct r5conf *conf = mddev->private;
8179 	int new_chunk = mddev->new_chunk_sectors;
8180 
8181 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8182 		return -EINVAL;
8183 	if (new_chunk > 0) {
8184 		if (!is_power_of_2(new_chunk))
8185 			return -EINVAL;
8186 		if (new_chunk < (PAGE_SIZE>>9))
8187 			return -EINVAL;
8188 		if (mddev->array_sectors & (new_chunk-1))
8189 			/* not factor of array size */
8190 			return -EINVAL;
8191 	}
8192 
8193 	/* They look valid */
8194 
8195 	if (mddev->raid_disks == 2) {
8196 		/* can make the change immediately */
8197 		if (mddev->new_layout >= 0) {
8198 			conf->algorithm = mddev->new_layout;
8199 			mddev->layout = mddev->new_layout;
8200 		}
8201 		if (new_chunk > 0) {
8202 			conf->chunk_sectors = new_chunk ;
8203 			mddev->chunk_sectors = new_chunk;
8204 		}
8205 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8206 		md_wakeup_thread(mddev->thread);
8207 	}
8208 	return check_reshape(mddev);
8209 }
8210 
8211 static int raid6_check_reshape(struct mddev *mddev)
8212 {
8213 	int new_chunk = mddev->new_chunk_sectors;
8214 
8215 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8216 		return -EINVAL;
8217 	if (new_chunk > 0) {
8218 		if (!is_power_of_2(new_chunk))
8219 			return -EINVAL;
8220 		if (new_chunk < (PAGE_SIZE >> 9))
8221 			return -EINVAL;
8222 		if (mddev->array_sectors & (new_chunk-1))
8223 			/* not factor of array size */
8224 			return -EINVAL;
8225 	}
8226 
8227 	/* They look valid */
8228 	return check_reshape(mddev);
8229 }
8230 
8231 static void *raid5_takeover(struct mddev *mddev)
8232 {
8233 	/* raid5 can take over:
8234 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8235 	 *  raid1 - if there are two drives.  We need to know the chunk size
8236 	 *  raid4 - trivial - just use a raid4 layout.
8237 	 *  raid6 - Providing it is a *_6 layout
8238 	 */
8239 	if (mddev->level == 0)
8240 		return raid45_takeover_raid0(mddev, 5);
8241 	if (mddev->level == 1)
8242 		return raid5_takeover_raid1(mddev);
8243 	if (mddev->level == 4) {
8244 		mddev->new_layout = ALGORITHM_PARITY_N;
8245 		mddev->new_level = 5;
8246 		return setup_conf(mddev);
8247 	}
8248 	if (mddev->level == 6)
8249 		return raid5_takeover_raid6(mddev);
8250 
8251 	return ERR_PTR(-EINVAL);
8252 }
8253 
8254 static void *raid4_takeover(struct mddev *mddev)
8255 {
8256 	/* raid4 can take over:
8257 	 *  raid0 - if there is only one strip zone
8258 	 *  raid5 - if layout is right
8259 	 */
8260 	if (mddev->level == 0)
8261 		return raid45_takeover_raid0(mddev, 4);
8262 	if (mddev->level == 5 &&
8263 	    mddev->layout == ALGORITHM_PARITY_N) {
8264 		mddev->new_layout = 0;
8265 		mddev->new_level = 4;
8266 		return setup_conf(mddev);
8267 	}
8268 	return ERR_PTR(-EINVAL);
8269 }
8270 
8271 static struct md_personality raid5_personality;
8272 
8273 static void *raid6_takeover(struct mddev *mddev)
8274 {
8275 	/* Currently can only take over a raid5.  We map the
8276 	 * personality to an equivalent raid6 personality
8277 	 * with the Q block at the end.
8278 	 */
8279 	int new_layout;
8280 
8281 	if (mddev->pers != &raid5_personality)
8282 		return ERR_PTR(-EINVAL);
8283 	if (mddev->degraded > 1)
8284 		return ERR_PTR(-EINVAL);
8285 	if (mddev->raid_disks > 253)
8286 		return ERR_PTR(-EINVAL);
8287 	if (mddev->raid_disks < 3)
8288 		return ERR_PTR(-EINVAL);
8289 
8290 	switch (mddev->layout) {
8291 	case ALGORITHM_LEFT_ASYMMETRIC:
8292 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8293 		break;
8294 	case ALGORITHM_RIGHT_ASYMMETRIC:
8295 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8296 		break;
8297 	case ALGORITHM_LEFT_SYMMETRIC:
8298 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8299 		break;
8300 	case ALGORITHM_RIGHT_SYMMETRIC:
8301 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8302 		break;
8303 	case ALGORITHM_PARITY_0:
8304 		new_layout = ALGORITHM_PARITY_0_6;
8305 		break;
8306 	case ALGORITHM_PARITY_N:
8307 		new_layout = ALGORITHM_PARITY_N;
8308 		break;
8309 	default:
8310 		return ERR_PTR(-EINVAL);
8311 	}
8312 	mddev->new_level = 6;
8313 	mddev->new_layout = new_layout;
8314 	mddev->delta_disks = 1;
8315 	mddev->raid_disks += 1;
8316 	return setup_conf(mddev);
8317 }
8318 
8319 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8320 {
8321 	struct r5conf *conf;
8322 	int err;
8323 
8324 	err = mddev_lock(mddev);
8325 	if (err)
8326 		return err;
8327 	conf = mddev->private;
8328 	if (!conf) {
8329 		mddev_unlock(mddev);
8330 		return -ENODEV;
8331 	}
8332 
8333 	if (strncmp(buf, "ppl", 3) == 0) {
8334 		/* ppl only works with RAID 5 */
8335 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8336 			err = log_init(conf, NULL, true);
8337 			if (!err) {
8338 				err = resize_stripes(conf, conf->pool_size);
8339 				if (err)
8340 					log_exit(conf);
8341 			}
8342 		} else
8343 			err = -EINVAL;
8344 	} else if (strncmp(buf, "resync", 6) == 0) {
8345 		if (raid5_has_ppl(conf)) {
8346 			mddev_suspend(mddev);
8347 			log_exit(conf);
8348 			mddev_resume(mddev);
8349 			err = resize_stripes(conf, conf->pool_size);
8350 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8351 			   r5l_log_disk_error(conf)) {
8352 			bool journal_dev_exists = false;
8353 			struct md_rdev *rdev;
8354 
8355 			rdev_for_each(rdev, mddev)
8356 				if (test_bit(Journal, &rdev->flags)) {
8357 					journal_dev_exists = true;
8358 					break;
8359 				}
8360 
8361 			if (!journal_dev_exists) {
8362 				mddev_suspend(mddev);
8363 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8364 				mddev_resume(mddev);
8365 			} else  /* need remove journal device first */
8366 				err = -EBUSY;
8367 		} else
8368 			err = -EINVAL;
8369 	} else {
8370 		err = -EINVAL;
8371 	}
8372 
8373 	if (!err)
8374 		md_update_sb(mddev, 1);
8375 
8376 	mddev_unlock(mddev);
8377 
8378 	return err;
8379 }
8380 
8381 static int raid5_start(struct mddev *mddev)
8382 {
8383 	struct r5conf *conf = mddev->private;
8384 
8385 	return r5l_start(conf->log);
8386 }
8387 
8388 static struct md_personality raid6_personality =
8389 {
8390 	.name		= "raid6",
8391 	.level		= 6,
8392 	.owner		= THIS_MODULE,
8393 	.make_request	= raid5_make_request,
8394 	.run		= raid5_run,
8395 	.start		= raid5_start,
8396 	.free		= raid5_free,
8397 	.status		= raid5_status,
8398 	.error_handler	= raid5_error,
8399 	.hot_add_disk	= raid5_add_disk,
8400 	.hot_remove_disk= raid5_remove_disk,
8401 	.spare_active	= raid5_spare_active,
8402 	.sync_request	= raid5_sync_request,
8403 	.resize		= raid5_resize,
8404 	.size		= raid5_size,
8405 	.check_reshape	= raid6_check_reshape,
8406 	.start_reshape  = raid5_start_reshape,
8407 	.finish_reshape = raid5_finish_reshape,
8408 	.quiesce	= raid5_quiesce,
8409 	.takeover	= raid6_takeover,
8410 	.congested	= raid5_congested,
8411 	.change_consistency_policy = raid5_change_consistency_policy,
8412 };
8413 static struct md_personality raid5_personality =
8414 {
8415 	.name		= "raid5",
8416 	.level		= 5,
8417 	.owner		= THIS_MODULE,
8418 	.make_request	= raid5_make_request,
8419 	.run		= raid5_run,
8420 	.start		= raid5_start,
8421 	.free		= raid5_free,
8422 	.status		= raid5_status,
8423 	.error_handler	= raid5_error,
8424 	.hot_add_disk	= raid5_add_disk,
8425 	.hot_remove_disk= raid5_remove_disk,
8426 	.spare_active	= raid5_spare_active,
8427 	.sync_request	= raid5_sync_request,
8428 	.resize		= raid5_resize,
8429 	.size		= raid5_size,
8430 	.check_reshape	= raid5_check_reshape,
8431 	.start_reshape  = raid5_start_reshape,
8432 	.finish_reshape = raid5_finish_reshape,
8433 	.quiesce	= raid5_quiesce,
8434 	.takeover	= raid5_takeover,
8435 	.congested	= raid5_congested,
8436 	.change_consistency_policy = raid5_change_consistency_policy,
8437 };
8438 
8439 static struct md_personality raid4_personality =
8440 {
8441 	.name		= "raid4",
8442 	.level		= 4,
8443 	.owner		= THIS_MODULE,
8444 	.make_request	= raid5_make_request,
8445 	.run		= raid5_run,
8446 	.start		= raid5_start,
8447 	.free		= raid5_free,
8448 	.status		= raid5_status,
8449 	.error_handler	= raid5_error,
8450 	.hot_add_disk	= raid5_add_disk,
8451 	.hot_remove_disk= raid5_remove_disk,
8452 	.spare_active	= raid5_spare_active,
8453 	.sync_request	= raid5_sync_request,
8454 	.resize		= raid5_resize,
8455 	.size		= raid5_size,
8456 	.check_reshape	= raid5_check_reshape,
8457 	.start_reshape  = raid5_start_reshape,
8458 	.finish_reshape = raid5_finish_reshape,
8459 	.quiesce	= raid5_quiesce,
8460 	.takeover	= raid4_takeover,
8461 	.congested	= raid5_congested,
8462 	.change_consistency_policy = raid5_change_consistency_policy,
8463 };
8464 
8465 static int __init raid5_init(void)
8466 {
8467 	int ret;
8468 
8469 	raid5_wq = alloc_workqueue("raid5wq",
8470 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8471 	if (!raid5_wq)
8472 		return -ENOMEM;
8473 
8474 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8475 				      "md/raid5:prepare",
8476 				      raid456_cpu_up_prepare,
8477 				      raid456_cpu_dead);
8478 	if (ret) {
8479 		destroy_workqueue(raid5_wq);
8480 		return ret;
8481 	}
8482 	register_md_personality(&raid6_personality);
8483 	register_md_personality(&raid5_personality);
8484 	register_md_personality(&raid4_personality);
8485 	return 0;
8486 }
8487 
8488 static void raid5_exit(void)
8489 {
8490 	unregister_md_personality(&raid6_personality);
8491 	unregister_md_personality(&raid5_personality);
8492 	unregister_md_personality(&raid4_personality);
8493 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8494 	destroy_workqueue(raid5_wq);
8495 }
8496 
8497 module_init(raid5_init);
8498 module_exit(raid5_exit);
8499 MODULE_LICENSE("GPL");
8500 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8501 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8502 MODULE_ALIAS("md-raid5");
8503 MODULE_ALIAS("md-raid4");
8504 MODULE_ALIAS("md-level-5");
8505 MODULE_ALIAS("md-level-4");
8506 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8507 MODULE_ALIAS("md-raid6");
8508 MODULE_ALIAS("md-level-6");
8509 
8510 /* This used to be two separate modules, they were: */
8511 MODULE_ALIAS("raid5");
8512 MODULE_ALIAS("raid6");
8513