xref: /linux/drivers/md/raid5.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53 
54 #include <linux/raid/bitmap.h>
55 
56 /*
57  * Stripe cache
58  */
59 
60 #define NR_STRIPES		256
61 #define STRIPE_SIZE		PAGE_SIZE
62 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
63 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
64 #define	IO_THRESHOLD		1
65 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK		(NR_HASH - 1)
67 
68 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69 
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_DEBUG	0
84 #define RAID5_PARANOIA	1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90 
91 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
92 #if RAID5_DEBUG
93 #define inline
94 #define __inline__
95 #endif
96 
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
101 
102 static inline int raid6_next_disk(int disk, int raid_disks)
103 {
104 	disk++;
105 	return (disk < raid_disks) ? disk : 0;
106 }
107 static void print_raid5_conf (raid5_conf_t *conf);
108 
109 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
110 {
111 	if (atomic_dec_and_test(&sh->count)) {
112 		BUG_ON(!list_empty(&sh->lru));
113 		BUG_ON(atomic_read(&conf->active_stripes)==0);
114 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
115 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
116 				list_add_tail(&sh->lru, &conf->delayed_list);
117 				blk_plug_device(conf->mddev->queue);
118 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
119 				   sh->bm_seq - conf->seq_write > 0) {
120 				list_add_tail(&sh->lru, &conf->bitmap_list);
121 				blk_plug_device(conf->mddev->queue);
122 			} else {
123 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
124 				list_add_tail(&sh->lru, &conf->handle_list);
125 			}
126 			md_wakeup_thread(conf->mddev->thread);
127 		} else {
128 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
129 				atomic_dec(&conf->preread_active_stripes);
130 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
131 					md_wakeup_thread(conf->mddev->thread);
132 			}
133 			atomic_dec(&conf->active_stripes);
134 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
135 				list_add_tail(&sh->lru, &conf->inactive_list);
136 				wake_up(&conf->wait_for_stripe);
137 			}
138 		}
139 	}
140 }
141 static void release_stripe(struct stripe_head *sh)
142 {
143 	raid5_conf_t *conf = sh->raid_conf;
144 	unsigned long flags;
145 
146 	spin_lock_irqsave(&conf->device_lock, flags);
147 	__release_stripe(conf, sh);
148 	spin_unlock_irqrestore(&conf->device_lock, flags);
149 }
150 
151 static inline void remove_hash(struct stripe_head *sh)
152 {
153 	PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
154 
155 	hlist_del_init(&sh->hash);
156 }
157 
158 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
159 {
160 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
161 
162 	PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
163 
164 	CHECK_DEVLOCK();
165 	hlist_add_head(&sh->hash, hp);
166 }
167 
168 
169 /* find an idle stripe, make sure it is unhashed, and return it. */
170 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
171 {
172 	struct stripe_head *sh = NULL;
173 	struct list_head *first;
174 
175 	CHECK_DEVLOCK();
176 	if (list_empty(&conf->inactive_list))
177 		goto out;
178 	first = conf->inactive_list.next;
179 	sh = list_entry(first, struct stripe_head, lru);
180 	list_del_init(first);
181 	remove_hash(sh);
182 	atomic_inc(&conf->active_stripes);
183 out:
184 	return sh;
185 }
186 
187 static void shrink_buffers(struct stripe_head *sh, int num)
188 {
189 	struct page *p;
190 	int i;
191 
192 	for (i=0; i<num ; i++) {
193 		p = sh->dev[i].page;
194 		if (!p)
195 			continue;
196 		sh->dev[i].page = NULL;
197 		put_page(p);
198 	}
199 }
200 
201 static int grow_buffers(struct stripe_head *sh, int num)
202 {
203 	int i;
204 
205 	for (i=0; i<num; i++) {
206 		struct page *page;
207 
208 		if (!(page = alloc_page(GFP_KERNEL))) {
209 			return 1;
210 		}
211 		sh->dev[i].page = page;
212 	}
213 	return 0;
214 }
215 
216 static void raid5_build_block (struct stripe_head *sh, int i);
217 
218 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
219 {
220 	raid5_conf_t *conf = sh->raid_conf;
221 	int i;
222 
223 	BUG_ON(atomic_read(&sh->count) != 0);
224 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
225 
226 	CHECK_DEVLOCK();
227 	PRINTK("init_stripe called, stripe %llu\n",
228 		(unsigned long long)sh->sector);
229 
230 	remove_hash(sh);
231 
232 	sh->sector = sector;
233 	sh->pd_idx = pd_idx;
234 	sh->state = 0;
235 
236 	sh->disks = disks;
237 
238 	for (i = sh->disks; i--; ) {
239 		struct r5dev *dev = &sh->dev[i];
240 
241 		if (dev->toread || dev->towrite || dev->written ||
242 		    test_bit(R5_LOCKED, &dev->flags)) {
243 			printk("sector=%llx i=%d %p %p %p %d\n",
244 			       (unsigned long long)sh->sector, i, dev->toread,
245 			       dev->towrite, dev->written,
246 			       test_bit(R5_LOCKED, &dev->flags));
247 			BUG();
248 		}
249 		dev->flags = 0;
250 		raid5_build_block(sh, i);
251 	}
252 	insert_hash(conf, sh);
253 }
254 
255 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
256 {
257 	struct stripe_head *sh;
258 	struct hlist_node *hn;
259 
260 	CHECK_DEVLOCK();
261 	PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
262 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
263 		if (sh->sector == sector && sh->disks == disks)
264 			return sh;
265 	PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
266 	return NULL;
267 }
268 
269 static void unplug_slaves(mddev_t *mddev);
270 static void raid5_unplug_device(request_queue_t *q);
271 
272 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
273 					     int pd_idx, int noblock)
274 {
275 	struct stripe_head *sh;
276 
277 	PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
278 
279 	spin_lock_irq(&conf->device_lock);
280 
281 	do {
282 		wait_event_lock_irq(conf->wait_for_stripe,
283 				    conf->quiesce == 0,
284 				    conf->device_lock, /* nothing */);
285 		sh = __find_stripe(conf, sector, disks);
286 		if (!sh) {
287 			if (!conf->inactive_blocked)
288 				sh = get_free_stripe(conf);
289 			if (noblock && sh == NULL)
290 				break;
291 			if (!sh) {
292 				conf->inactive_blocked = 1;
293 				wait_event_lock_irq(conf->wait_for_stripe,
294 						    !list_empty(&conf->inactive_list) &&
295 						    (atomic_read(&conf->active_stripes)
296 						     < (conf->max_nr_stripes *3/4)
297 						     || !conf->inactive_blocked),
298 						    conf->device_lock,
299 						    raid5_unplug_device(conf->mddev->queue)
300 					);
301 				conf->inactive_blocked = 0;
302 			} else
303 				init_stripe(sh, sector, pd_idx, disks);
304 		} else {
305 			if (atomic_read(&sh->count)) {
306 			  BUG_ON(!list_empty(&sh->lru));
307 			} else {
308 				if (!test_bit(STRIPE_HANDLE, &sh->state))
309 					atomic_inc(&conf->active_stripes);
310 				if (list_empty(&sh->lru) &&
311 				    !test_bit(STRIPE_EXPANDING, &sh->state))
312 					BUG();
313 				list_del_init(&sh->lru);
314 			}
315 		}
316 	} while (sh == NULL);
317 
318 	if (sh)
319 		atomic_inc(&sh->count);
320 
321 	spin_unlock_irq(&conf->device_lock);
322 	return sh;
323 }
324 
325 static int grow_one_stripe(raid5_conf_t *conf)
326 {
327 	struct stripe_head *sh;
328 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
329 	if (!sh)
330 		return 0;
331 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
332 	sh->raid_conf = conf;
333 	spin_lock_init(&sh->lock);
334 
335 	if (grow_buffers(sh, conf->raid_disks)) {
336 		shrink_buffers(sh, conf->raid_disks);
337 		kmem_cache_free(conf->slab_cache, sh);
338 		return 0;
339 	}
340 	sh->disks = conf->raid_disks;
341 	/* we just created an active stripe so... */
342 	atomic_set(&sh->count, 1);
343 	atomic_inc(&conf->active_stripes);
344 	INIT_LIST_HEAD(&sh->lru);
345 	release_stripe(sh);
346 	return 1;
347 }
348 
349 static int grow_stripes(raid5_conf_t *conf, int num)
350 {
351 	kmem_cache_t *sc;
352 	int devs = conf->raid_disks;
353 
354 	sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
355 	sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
356 	conf->active_name = 0;
357 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
358 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
359 			       0, 0, NULL, NULL);
360 	if (!sc)
361 		return 1;
362 	conf->slab_cache = sc;
363 	conf->pool_size = devs;
364 	while (num--)
365 		if (!grow_one_stripe(conf))
366 			return 1;
367 	return 0;
368 }
369 
370 #ifdef CONFIG_MD_RAID5_RESHAPE
371 static int resize_stripes(raid5_conf_t *conf, int newsize)
372 {
373 	/* Make all the stripes able to hold 'newsize' devices.
374 	 * New slots in each stripe get 'page' set to a new page.
375 	 *
376 	 * This happens in stages:
377 	 * 1/ create a new kmem_cache and allocate the required number of
378 	 *    stripe_heads.
379 	 * 2/ gather all the old stripe_heads and tranfer the pages across
380 	 *    to the new stripe_heads.  This will have the side effect of
381 	 *    freezing the array as once all stripe_heads have been collected,
382 	 *    no IO will be possible.  Old stripe heads are freed once their
383 	 *    pages have been transferred over, and the old kmem_cache is
384 	 *    freed when all stripes are done.
385 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
386 	 *    we simple return a failre status - no need to clean anything up.
387 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
388 	 *    If this fails, we don't bother trying the shrink the
389 	 *    stripe_heads down again, we just leave them as they are.
390 	 *    As each stripe_head is processed the new one is released into
391 	 *    active service.
392 	 *
393 	 * Once step2 is started, we cannot afford to wait for a write,
394 	 * so we use GFP_NOIO allocations.
395 	 */
396 	struct stripe_head *osh, *nsh;
397 	LIST_HEAD(newstripes);
398 	struct disk_info *ndisks;
399 	int err = 0;
400 	kmem_cache_t *sc;
401 	int i;
402 
403 	if (newsize <= conf->pool_size)
404 		return 0; /* never bother to shrink */
405 
406 	/* Step 1 */
407 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
408 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
409 			       0, 0, NULL, NULL);
410 	if (!sc)
411 		return -ENOMEM;
412 
413 	for (i = conf->max_nr_stripes; i; i--) {
414 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
415 		if (!nsh)
416 			break;
417 
418 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
419 
420 		nsh->raid_conf = conf;
421 		spin_lock_init(&nsh->lock);
422 
423 		list_add(&nsh->lru, &newstripes);
424 	}
425 	if (i) {
426 		/* didn't get enough, give up */
427 		while (!list_empty(&newstripes)) {
428 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
429 			list_del(&nsh->lru);
430 			kmem_cache_free(sc, nsh);
431 		}
432 		kmem_cache_destroy(sc);
433 		return -ENOMEM;
434 	}
435 	/* Step 2 - Must use GFP_NOIO now.
436 	 * OK, we have enough stripes, start collecting inactive
437 	 * stripes and copying them over
438 	 */
439 	list_for_each_entry(nsh, &newstripes, lru) {
440 		spin_lock_irq(&conf->device_lock);
441 		wait_event_lock_irq(conf->wait_for_stripe,
442 				    !list_empty(&conf->inactive_list),
443 				    conf->device_lock,
444 				    unplug_slaves(conf->mddev)
445 			);
446 		osh = get_free_stripe(conf);
447 		spin_unlock_irq(&conf->device_lock);
448 		atomic_set(&nsh->count, 1);
449 		for(i=0; i<conf->pool_size; i++)
450 			nsh->dev[i].page = osh->dev[i].page;
451 		for( ; i<newsize; i++)
452 			nsh->dev[i].page = NULL;
453 		kmem_cache_free(conf->slab_cache, osh);
454 	}
455 	kmem_cache_destroy(conf->slab_cache);
456 
457 	/* Step 3.
458 	 * At this point, we are holding all the stripes so the array
459 	 * is completely stalled, so now is a good time to resize
460 	 * conf->disks.
461 	 */
462 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
463 	if (ndisks) {
464 		for (i=0; i<conf->raid_disks; i++)
465 			ndisks[i] = conf->disks[i];
466 		kfree(conf->disks);
467 		conf->disks = ndisks;
468 	} else
469 		err = -ENOMEM;
470 
471 	/* Step 4, return new stripes to service */
472 	while(!list_empty(&newstripes)) {
473 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
474 		list_del_init(&nsh->lru);
475 		for (i=conf->raid_disks; i < newsize; i++)
476 			if (nsh->dev[i].page == NULL) {
477 				struct page *p = alloc_page(GFP_NOIO);
478 				nsh->dev[i].page = p;
479 				if (!p)
480 					err = -ENOMEM;
481 			}
482 		release_stripe(nsh);
483 	}
484 	/* critical section pass, GFP_NOIO no longer needed */
485 
486 	conf->slab_cache = sc;
487 	conf->active_name = 1-conf->active_name;
488 	conf->pool_size = newsize;
489 	return err;
490 }
491 #endif
492 
493 static int drop_one_stripe(raid5_conf_t *conf)
494 {
495 	struct stripe_head *sh;
496 
497 	spin_lock_irq(&conf->device_lock);
498 	sh = get_free_stripe(conf);
499 	spin_unlock_irq(&conf->device_lock);
500 	if (!sh)
501 		return 0;
502 	BUG_ON(atomic_read(&sh->count));
503 	shrink_buffers(sh, conf->pool_size);
504 	kmem_cache_free(conf->slab_cache, sh);
505 	atomic_dec(&conf->active_stripes);
506 	return 1;
507 }
508 
509 static void shrink_stripes(raid5_conf_t *conf)
510 {
511 	while (drop_one_stripe(conf))
512 		;
513 
514 	if (conf->slab_cache)
515 		kmem_cache_destroy(conf->slab_cache);
516 	conf->slab_cache = NULL;
517 }
518 
519 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
520 				   int error)
521 {
522  	struct stripe_head *sh = bi->bi_private;
523 	raid5_conf_t *conf = sh->raid_conf;
524 	int disks = sh->disks, i;
525 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
526 	char b[BDEVNAME_SIZE];
527 	mdk_rdev_t *rdev;
528 
529 	if (bi->bi_size)
530 		return 1;
531 
532 	for (i=0 ; i<disks; i++)
533 		if (bi == &sh->dev[i].req)
534 			break;
535 
536 	PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
537 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
538 		uptodate);
539 	if (i == disks) {
540 		BUG();
541 		return 0;
542 	}
543 
544 	if (uptodate) {
545 #if 0
546 		struct bio *bio;
547 		unsigned long flags;
548 		spin_lock_irqsave(&conf->device_lock, flags);
549 		/* we can return a buffer if we bypassed the cache or
550 		 * if the top buffer is not in highmem.  If there are
551 		 * multiple buffers, leave the extra work to
552 		 * handle_stripe
553 		 */
554 		buffer = sh->bh_read[i];
555 		if (buffer &&
556 		    (!PageHighMem(buffer->b_page)
557 		     || buffer->b_page == bh->b_page )
558 			) {
559 			sh->bh_read[i] = buffer->b_reqnext;
560 			buffer->b_reqnext = NULL;
561 		} else
562 			buffer = NULL;
563 		spin_unlock_irqrestore(&conf->device_lock, flags);
564 		if (sh->bh_page[i]==bh->b_page)
565 			set_buffer_uptodate(bh);
566 		if (buffer) {
567 			if (buffer->b_page != bh->b_page)
568 				memcpy(buffer->b_data, bh->b_data, bh->b_size);
569 			buffer->b_end_io(buffer, 1);
570 		}
571 #else
572 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
573 #endif
574 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
575 			rdev = conf->disks[i].rdev;
576 			printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
577 			       mdname(conf->mddev), STRIPE_SECTORS,
578 			       (unsigned long long)sh->sector + rdev->data_offset,
579 			       bdevname(rdev->bdev, b));
580 			clear_bit(R5_ReadError, &sh->dev[i].flags);
581 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
582 		}
583 		if (atomic_read(&conf->disks[i].rdev->read_errors))
584 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
585 	} else {
586 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
587 		int retry = 0;
588 		rdev = conf->disks[i].rdev;
589 
590 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
591 		atomic_inc(&rdev->read_errors);
592 		if (conf->mddev->degraded)
593 			printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
594 			       mdname(conf->mddev),
595 			       (unsigned long long)sh->sector + rdev->data_offset,
596 			       bdn);
597 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
598 			/* Oh, no!!! */
599 			printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
600 			       mdname(conf->mddev),
601 			       (unsigned long long)sh->sector + rdev->data_offset,
602 			       bdn);
603 		else if (atomic_read(&rdev->read_errors)
604 			 > conf->max_nr_stripes)
605 			printk(KERN_WARNING
606 			       "raid5:%s: Too many read errors, failing device %s.\n",
607 			       mdname(conf->mddev), bdn);
608 		else
609 			retry = 1;
610 		if (retry)
611 			set_bit(R5_ReadError, &sh->dev[i].flags);
612 		else {
613 			clear_bit(R5_ReadError, &sh->dev[i].flags);
614 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
615 			md_error(conf->mddev, rdev);
616 		}
617 	}
618 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
619 #if 0
620 	/* must restore b_page before unlocking buffer... */
621 	if (sh->bh_page[i] != bh->b_page) {
622 		bh->b_page = sh->bh_page[i];
623 		bh->b_data = page_address(bh->b_page);
624 		clear_buffer_uptodate(bh);
625 	}
626 #endif
627 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
628 	set_bit(STRIPE_HANDLE, &sh->state);
629 	release_stripe(sh);
630 	return 0;
631 }
632 
633 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
634 				    int error)
635 {
636  	struct stripe_head *sh = bi->bi_private;
637 	raid5_conf_t *conf = sh->raid_conf;
638 	int disks = sh->disks, i;
639 	unsigned long flags;
640 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
641 
642 	if (bi->bi_size)
643 		return 1;
644 
645 	for (i=0 ; i<disks; i++)
646 		if (bi == &sh->dev[i].req)
647 			break;
648 
649 	PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
650 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
651 		uptodate);
652 	if (i == disks) {
653 		BUG();
654 		return 0;
655 	}
656 
657 	spin_lock_irqsave(&conf->device_lock, flags);
658 	if (!uptodate)
659 		md_error(conf->mddev, conf->disks[i].rdev);
660 
661 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
662 
663 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
664 	set_bit(STRIPE_HANDLE, &sh->state);
665 	__release_stripe(conf, sh);
666 	spin_unlock_irqrestore(&conf->device_lock, flags);
667 	return 0;
668 }
669 
670 
671 static sector_t compute_blocknr(struct stripe_head *sh, int i);
672 
673 static void raid5_build_block (struct stripe_head *sh, int i)
674 {
675 	struct r5dev *dev = &sh->dev[i];
676 
677 	bio_init(&dev->req);
678 	dev->req.bi_io_vec = &dev->vec;
679 	dev->req.bi_vcnt++;
680 	dev->req.bi_max_vecs++;
681 	dev->vec.bv_page = dev->page;
682 	dev->vec.bv_len = STRIPE_SIZE;
683 	dev->vec.bv_offset = 0;
684 
685 	dev->req.bi_sector = sh->sector;
686 	dev->req.bi_private = sh;
687 
688 	dev->flags = 0;
689 	dev->sector = compute_blocknr(sh, i);
690 }
691 
692 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
693 {
694 	char b[BDEVNAME_SIZE];
695 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
696 	PRINTK("raid5: error called\n");
697 
698 	if (!test_bit(Faulty, &rdev->flags)) {
699 		mddev->sb_dirty = 1;
700 		if (test_bit(In_sync, &rdev->flags)) {
701 			conf->working_disks--;
702 			mddev->degraded++;
703 			conf->failed_disks++;
704 			clear_bit(In_sync, &rdev->flags);
705 			/*
706 			 * if recovery was running, make sure it aborts.
707 			 */
708 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
709 		}
710 		set_bit(Faulty, &rdev->flags);
711 		printk (KERN_ALERT
712 			"raid5: Disk failure on %s, disabling device."
713 			" Operation continuing on %d devices\n",
714 			bdevname(rdev->bdev,b), conf->working_disks);
715 	}
716 }
717 
718 /*
719  * Input: a 'big' sector number,
720  * Output: index of the data and parity disk, and the sector # in them.
721  */
722 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
723 			unsigned int data_disks, unsigned int * dd_idx,
724 			unsigned int * pd_idx, raid5_conf_t *conf)
725 {
726 	long stripe;
727 	unsigned long chunk_number;
728 	unsigned int chunk_offset;
729 	sector_t new_sector;
730 	int sectors_per_chunk = conf->chunk_size >> 9;
731 
732 	/* First compute the information on this sector */
733 
734 	/*
735 	 * Compute the chunk number and the sector offset inside the chunk
736 	 */
737 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
738 	chunk_number = r_sector;
739 	BUG_ON(r_sector != chunk_number);
740 
741 	/*
742 	 * Compute the stripe number
743 	 */
744 	stripe = chunk_number / data_disks;
745 
746 	/*
747 	 * Compute the data disk and parity disk indexes inside the stripe
748 	 */
749 	*dd_idx = chunk_number % data_disks;
750 
751 	/*
752 	 * Select the parity disk based on the user selected algorithm.
753 	 */
754 	switch(conf->level) {
755 	case 4:
756 		*pd_idx = data_disks;
757 		break;
758 	case 5:
759 		switch (conf->algorithm) {
760 		case ALGORITHM_LEFT_ASYMMETRIC:
761 			*pd_idx = data_disks - stripe % raid_disks;
762 			if (*dd_idx >= *pd_idx)
763 				(*dd_idx)++;
764 			break;
765 		case ALGORITHM_RIGHT_ASYMMETRIC:
766 			*pd_idx = stripe % raid_disks;
767 			if (*dd_idx >= *pd_idx)
768 				(*dd_idx)++;
769 			break;
770 		case ALGORITHM_LEFT_SYMMETRIC:
771 			*pd_idx = data_disks - stripe % raid_disks;
772 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
773 			break;
774 		case ALGORITHM_RIGHT_SYMMETRIC:
775 			*pd_idx = stripe % raid_disks;
776 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
777 			break;
778 		default:
779 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
780 				conf->algorithm);
781 		}
782 		break;
783 	case 6:
784 
785 		/**** FIX THIS ****/
786 		switch (conf->algorithm) {
787 		case ALGORITHM_LEFT_ASYMMETRIC:
788 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
789 			if (*pd_idx == raid_disks-1)
790 				(*dd_idx)++; 	/* Q D D D P */
791 			else if (*dd_idx >= *pd_idx)
792 				(*dd_idx) += 2; /* D D P Q D */
793 			break;
794 		case ALGORITHM_RIGHT_ASYMMETRIC:
795 			*pd_idx = stripe % raid_disks;
796 			if (*pd_idx == raid_disks-1)
797 				(*dd_idx)++; 	/* Q D D D P */
798 			else if (*dd_idx >= *pd_idx)
799 				(*dd_idx) += 2; /* D D P Q D */
800 			break;
801 		case ALGORITHM_LEFT_SYMMETRIC:
802 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
803 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
804 			break;
805 		case ALGORITHM_RIGHT_SYMMETRIC:
806 			*pd_idx = stripe % raid_disks;
807 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
808 			break;
809 		default:
810 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
811 				conf->algorithm);
812 		}
813 		break;
814 	}
815 
816 	/*
817 	 * Finally, compute the new sector number
818 	 */
819 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
820 	return new_sector;
821 }
822 
823 
824 static sector_t compute_blocknr(struct stripe_head *sh, int i)
825 {
826 	raid5_conf_t *conf = sh->raid_conf;
827 	int raid_disks = sh->disks, data_disks = raid_disks - 1;
828 	sector_t new_sector = sh->sector, check;
829 	int sectors_per_chunk = conf->chunk_size >> 9;
830 	sector_t stripe;
831 	int chunk_offset;
832 	int chunk_number, dummy1, dummy2, dd_idx = i;
833 	sector_t r_sector;
834 
835 
836 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
837 	stripe = new_sector;
838 	BUG_ON(new_sector != stripe);
839 
840 	if (i == sh->pd_idx)
841 		return 0;
842 	switch(conf->level) {
843 	case 4: break;
844 	case 5:
845 		switch (conf->algorithm) {
846 		case ALGORITHM_LEFT_ASYMMETRIC:
847 		case ALGORITHM_RIGHT_ASYMMETRIC:
848 			if (i > sh->pd_idx)
849 				i--;
850 			break;
851 		case ALGORITHM_LEFT_SYMMETRIC:
852 		case ALGORITHM_RIGHT_SYMMETRIC:
853 			if (i < sh->pd_idx)
854 				i += raid_disks;
855 			i -= (sh->pd_idx + 1);
856 			break;
857 		default:
858 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
859 			       conf->algorithm);
860 		}
861 		break;
862 	case 6:
863 		data_disks = raid_disks - 2;
864 		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
865 			return 0; /* It is the Q disk */
866 		switch (conf->algorithm) {
867 		case ALGORITHM_LEFT_ASYMMETRIC:
868 		case ALGORITHM_RIGHT_ASYMMETRIC:
869 		  	if (sh->pd_idx == raid_disks-1)
870 				i--; 	/* Q D D D P */
871 			else if (i > sh->pd_idx)
872 				i -= 2; /* D D P Q D */
873 			break;
874 		case ALGORITHM_LEFT_SYMMETRIC:
875 		case ALGORITHM_RIGHT_SYMMETRIC:
876 			if (sh->pd_idx == raid_disks-1)
877 				i--; /* Q D D D P */
878 			else {
879 				/* D D P Q D */
880 				if (i < sh->pd_idx)
881 					i += raid_disks;
882 				i -= (sh->pd_idx + 2);
883 			}
884 			break;
885 		default:
886 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
887 				conf->algorithm);
888 		}
889 		break;
890 	}
891 
892 	chunk_number = stripe * data_disks + i;
893 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
894 
895 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
896 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
897 		printk(KERN_ERR "compute_blocknr: map not correct\n");
898 		return 0;
899 	}
900 	return r_sector;
901 }
902 
903 
904 
905 /*
906  * Copy data between a page in the stripe cache, and one or more bion
907  * The page could align with the middle of the bio, or there could be
908  * several bion, each with several bio_vecs, which cover part of the page
909  * Multiple bion are linked together on bi_next.  There may be extras
910  * at the end of this list.  We ignore them.
911  */
912 static void copy_data(int frombio, struct bio *bio,
913 		     struct page *page,
914 		     sector_t sector)
915 {
916 	char *pa = page_address(page);
917 	struct bio_vec *bvl;
918 	int i;
919 	int page_offset;
920 
921 	if (bio->bi_sector >= sector)
922 		page_offset = (signed)(bio->bi_sector - sector) * 512;
923 	else
924 		page_offset = (signed)(sector - bio->bi_sector) * -512;
925 	bio_for_each_segment(bvl, bio, i) {
926 		int len = bio_iovec_idx(bio,i)->bv_len;
927 		int clen;
928 		int b_offset = 0;
929 
930 		if (page_offset < 0) {
931 			b_offset = -page_offset;
932 			page_offset += b_offset;
933 			len -= b_offset;
934 		}
935 
936 		if (len > 0 && page_offset + len > STRIPE_SIZE)
937 			clen = STRIPE_SIZE - page_offset;
938 		else clen = len;
939 
940 		if (clen > 0) {
941 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
942 			if (frombio)
943 				memcpy(pa+page_offset, ba+b_offset, clen);
944 			else
945 				memcpy(ba+b_offset, pa+page_offset, clen);
946 			__bio_kunmap_atomic(ba, KM_USER0);
947 		}
948 		if (clen < len) /* hit end of page */
949 			break;
950 		page_offset +=  len;
951 	}
952 }
953 
954 #define check_xor() 	do { 						\
955 			   if (count == MAX_XOR_BLOCKS) {		\
956 				xor_block(count, STRIPE_SIZE, ptr);	\
957 				count = 1;				\
958 			   }						\
959 			} while(0)
960 
961 
962 static void compute_block(struct stripe_head *sh, int dd_idx)
963 {
964 	int i, count, disks = sh->disks;
965 	void *ptr[MAX_XOR_BLOCKS], *p;
966 
967 	PRINTK("compute_block, stripe %llu, idx %d\n",
968 		(unsigned long long)sh->sector, dd_idx);
969 
970 	ptr[0] = page_address(sh->dev[dd_idx].page);
971 	memset(ptr[0], 0, STRIPE_SIZE);
972 	count = 1;
973 	for (i = disks ; i--; ) {
974 		if (i == dd_idx)
975 			continue;
976 		p = page_address(sh->dev[i].page);
977 		if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
978 			ptr[count++] = p;
979 		else
980 			printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
981 				" not present\n", dd_idx,
982 				(unsigned long long)sh->sector, i);
983 
984 		check_xor();
985 	}
986 	if (count != 1)
987 		xor_block(count, STRIPE_SIZE, ptr);
988 	set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
989 }
990 
991 static void compute_parity5(struct stripe_head *sh, int method)
992 {
993 	raid5_conf_t *conf = sh->raid_conf;
994 	int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
995 	void *ptr[MAX_XOR_BLOCKS];
996 	struct bio *chosen;
997 
998 	PRINTK("compute_parity5, stripe %llu, method %d\n",
999 		(unsigned long long)sh->sector, method);
1000 
1001 	count = 1;
1002 	ptr[0] = page_address(sh->dev[pd_idx].page);
1003 	switch(method) {
1004 	case READ_MODIFY_WRITE:
1005 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
1006 		for (i=disks ; i-- ;) {
1007 			if (i==pd_idx)
1008 				continue;
1009 			if (sh->dev[i].towrite &&
1010 			    test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1011 				ptr[count++] = page_address(sh->dev[i].page);
1012 				chosen = sh->dev[i].towrite;
1013 				sh->dev[i].towrite = NULL;
1014 
1015 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1016 					wake_up(&conf->wait_for_overlap);
1017 
1018 				BUG_ON(sh->dev[i].written);
1019 				sh->dev[i].written = chosen;
1020 				check_xor();
1021 			}
1022 		}
1023 		break;
1024 	case RECONSTRUCT_WRITE:
1025 		memset(ptr[0], 0, STRIPE_SIZE);
1026 		for (i= disks; i-- ;)
1027 			if (i!=pd_idx && sh->dev[i].towrite) {
1028 				chosen = sh->dev[i].towrite;
1029 				sh->dev[i].towrite = NULL;
1030 
1031 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1032 					wake_up(&conf->wait_for_overlap);
1033 
1034 				BUG_ON(sh->dev[i].written);
1035 				sh->dev[i].written = chosen;
1036 			}
1037 		break;
1038 	case CHECK_PARITY:
1039 		break;
1040 	}
1041 	if (count>1) {
1042 		xor_block(count, STRIPE_SIZE, ptr);
1043 		count = 1;
1044 	}
1045 
1046 	for (i = disks; i--;)
1047 		if (sh->dev[i].written) {
1048 			sector_t sector = sh->dev[i].sector;
1049 			struct bio *wbi = sh->dev[i].written;
1050 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1051 				copy_data(1, wbi, sh->dev[i].page, sector);
1052 				wbi = r5_next_bio(wbi, sector);
1053 			}
1054 
1055 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1056 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1057 		}
1058 
1059 	switch(method) {
1060 	case RECONSTRUCT_WRITE:
1061 	case CHECK_PARITY:
1062 		for (i=disks; i--;)
1063 			if (i != pd_idx) {
1064 				ptr[count++] = page_address(sh->dev[i].page);
1065 				check_xor();
1066 			}
1067 		break;
1068 	case READ_MODIFY_WRITE:
1069 		for (i = disks; i--;)
1070 			if (sh->dev[i].written) {
1071 				ptr[count++] = page_address(sh->dev[i].page);
1072 				check_xor();
1073 			}
1074 	}
1075 	if (count != 1)
1076 		xor_block(count, STRIPE_SIZE, ptr);
1077 
1078 	if (method != CHECK_PARITY) {
1079 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1080 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1081 	} else
1082 		clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1083 }
1084 
1085 static void compute_parity6(struct stripe_head *sh, int method)
1086 {
1087 	raid6_conf_t *conf = sh->raid_conf;
1088 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
1089 	struct bio *chosen;
1090 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1091 	void *ptrs[disks];
1092 
1093 	qd_idx = raid6_next_disk(pd_idx, disks);
1094 	d0_idx = raid6_next_disk(qd_idx, disks);
1095 
1096 	PRINTK("compute_parity, stripe %llu, method %d\n",
1097 		(unsigned long long)sh->sector, method);
1098 
1099 	switch(method) {
1100 	case READ_MODIFY_WRITE:
1101 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1102 	case RECONSTRUCT_WRITE:
1103 		for (i= disks; i-- ;)
1104 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1105 				chosen = sh->dev[i].towrite;
1106 				sh->dev[i].towrite = NULL;
1107 
1108 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1109 					wake_up(&conf->wait_for_overlap);
1110 
1111 				if (sh->dev[i].written) BUG();
1112 				sh->dev[i].written = chosen;
1113 			}
1114 		break;
1115 	case CHECK_PARITY:
1116 		BUG();		/* Not implemented yet */
1117 	}
1118 
1119 	for (i = disks; i--;)
1120 		if (sh->dev[i].written) {
1121 			sector_t sector = sh->dev[i].sector;
1122 			struct bio *wbi = sh->dev[i].written;
1123 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1124 				copy_data(1, wbi, sh->dev[i].page, sector);
1125 				wbi = r5_next_bio(wbi, sector);
1126 			}
1127 
1128 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1129 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1130 		}
1131 
1132 //	switch(method) {
1133 //	case RECONSTRUCT_WRITE:
1134 //	case CHECK_PARITY:
1135 //	case UPDATE_PARITY:
1136 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1137 		/* FIX: Is this ordering of drives even remotely optimal? */
1138 		count = 0;
1139 		i = d0_idx;
1140 		do {
1141 			ptrs[count++] = page_address(sh->dev[i].page);
1142 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1143 				printk("block %d/%d not uptodate on parity calc\n", i,count);
1144 			i = raid6_next_disk(i, disks);
1145 		} while ( i != d0_idx );
1146 //		break;
1147 //	}
1148 
1149 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1150 
1151 	switch(method) {
1152 	case RECONSTRUCT_WRITE:
1153 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1154 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1155 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1156 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1157 		break;
1158 	case UPDATE_PARITY:
1159 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1160 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1161 		break;
1162 	}
1163 }
1164 
1165 
1166 /* Compute one missing block */
1167 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1168 {
1169 	raid6_conf_t *conf = sh->raid_conf;
1170 	int i, count, disks = conf->raid_disks;
1171 	void *ptr[MAX_XOR_BLOCKS], *p;
1172 	int pd_idx = sh->pd_idx;
1173 	int qd_idx = raid6_next_disk(pd_idx, disks);
1174 
1175 	PRINTK("compute_block_1, stripe %llu, idx %d\n",
1176 		(unsigned long long)sh->sector, dd_idx);
1177 
1178 	if ( dd_idx == qd_idx ) {
1179 		/* We're actually computing the Q drive */
1180 		compute_parity6(sh, UPDATE_PARITY);
1181 	} else {
1182 		ptr[0] = page_address(sh->dev[dd_idx].page);
1183 		if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
1184 		count = 1;
1185 		for (i = disks ; i--; ) {
1186 			if (i == dd_idx || i == qd_idx)
1187 				continue;
1188 			p = page_address(sh->dev[i].page);
1189 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1190 				ptr[count++] = p;
1191 			else
1192 				printk("compute_block() %d, stripe %llu, %d"
1193 				       " not present\n", dd_idx,
1194 				       (unsigned long long)sh->sector, i);
1195 
1196 			check_xor();
1197 		}
1198 		if (count != 1)
1199 			xor_block(count, STRIPE_SIZE, ptr);
1200 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1201 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1202 	}
1203 }
1204 
1205 /* Compute two missing blocks */
1206 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1207 {
1208 	raid6_conf_t *conf = sh->raid_conf;
1209 	int i, count, disks = conf->raid_disks;
1210 	int pd_idx = sh->pd_idx;
1211 	int qd_idx = raid6_next_disk(pd_idx, disks);
1212 	int d0_idx = raid6_next_disk(qd_idx, disks);
1213 	int faila, failb;
1214 
1215 	/* faila and failb are disk numbers relative to d0_idx */
1216 	/* pd_idx become disks-2 and qd_idx become disks-1 */
1217 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1218 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1219 
1220 	BUG_ON(faila == failb);
1221 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1222 
1223 	PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1224 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1225 
1226 	if ( failb == disks-1 ) {
1227 		/* Q disk is one of the missing disks */
1228 		if ( faila == disks-2 ) {
1229 			/* Missing P+Q, just recompute */
1230 			compute_parity6(sh, UPDATE_PARITY);
1231 			return;
1232 		} else {
1233 			/* We're missing D+Q; recompute D from P */
1234 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1235 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1236 			return;
1237 		}
1238 	}
1239 
1240 	/* We're missing D+P or D+D; build pointer table */
1241 	{
1242 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1243 		void *ptrs[disks];
1244 
1245 		count = 0;
1246 		i = d0_idx;
1247 		do {
1248 			ptrs[count++] = page_address(sh->dev[i].page);
1249 			i = raid6_next_disk(i, disks);
1250 			if (i != dd_idx1 && i != dd_idx2 &&
1251 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1252 				printk("compute_2 with missing block %d/%d\n", count, i);
1253 		} while ( i != d0_idx );
1254 
1255 		if ( failb == disks-2 ) {
1256 			/* We're missing D+P. */
1257 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1258 		} else {
1259 			/* We're missing D+D. */
1260 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1261 		}
1262 
1263 		/* Both the above update both missing blocks */
1264 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1265 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1266 	}
1267 }
1268 
1269 
1270 
1271 /*
1272  * Each stripe/dev can have one or more bion attached.
1273  * toread/towrite point to the first in a chain.
1274  * The bi_next chain must be in order.
1275  */
1276 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1277 {
1278 	struct bio **bip;
1279 	raid5_conf_t *conf = sh->raid_conf;
1280 	int firstwrite=0;
1281 
1282 	PRINTK("adding bh b#%llu to stripe s#%llu\n",
1283 		(unsigned long long)bi->bi_sector,
1284 		(unsigned long long)sh->sector);
1285 
1286 
1287 	spin_lock(&sh->lock);
1288 	spin_lock_irq(&conf->device_lock);
1289 	if (forwrite) {
1290 		bip = &sh->dev[dd_idx].towrite;
1291 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1292 			firstwrite = 1;
1293 	} else
1294 		bip = &sh->dev[dd_idx].toread;
1295 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1296 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1297 			goto overlap;
1298 		bip = & (*bip)->bi_next;
1299 	}
1300 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1301 		goto overlap;
1302 
1303 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1304 	if (*bip)
1305 		bi->bi_next = *bip;
1306 	*bip = bi;
1307 	bi->bi_phys_segments ++;
1308 	spin_unlock_irq(&conf->device_lock);
1309 	spin_unlock(&sh->lock);
1310 
1311 	PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1312 		(unsigned long long)bi->bi_sector,
1313 		(unsigned long long)sh->sector, dd_idx);
1314 
1315 	if (conf->mddev->bitmap && firstwrite) {
1316 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1317 				  STRIPE_SECTORS, 0);
1318 		sh->bm_seq = conf->seq_flush+1;
1319 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1320 	}
1321 
1322 	if (forwrite) {
1323 		/* check if page is covered */
1324 		sector_t sector = sh->dev[dd_idx].sector;
1325 		for (bi=sh->dev[dd_idx].towrite;
1326 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1327 			     bi && bi->bi_sector <= sector;
1328 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1329 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1330 				sector = bi->bi_sector + (bi->bi_size>>9);
1331 		}
1332 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1333 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1334 	}
1335 	return 1;
1336 
1337  overlap:
1338 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1339 	spin_unlock_irq(&conf->device_lock);
1340 	spin_unlock(&sh->lock);
1341 	return 0;
1342 }
1343 
1344 static void end_reshape(raid5_conf_t *conf);
1345 
1346 static int page_is_zero(struct page *p)
1347 {
1348 	char *a = page_address(p);
1349 	return ((*(u32*)a) == 0 &&
1350 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1351 }
1352 
1353 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1354 {
1355 	int sectors_per_chunk = conf->chunk_size >> 9;
1356 	sector_t x = stripe;
1357 	int pd_idx, dd_idx;
1358 	int chunk_offset = sector_div(x, sectors_per_chunk);
1359 	stripe = x;
1360 	raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1361 			     + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1362 	return pd_idx;
1363 }
1364 
1365 
1366 /*
1367  * handle_stripe - do things to a stripe.
1368  *
1369  * We lock the stripe and then examine the state of various bits
1370  * to see what needs to be done.
1371  * Possible results:
1372  *    return some read request which now have data
1373  *    return some write requests which are safely on disc
1374  *    schedule a read on some buffers
1375  *    schedule a write of some buffers
1376  *    return confirmation of parity correctness
1377  *
1378  * Parity calculations are done inside the stripe lock
1379  * buffers are taken off read_list or write_list, and bh_cache buffers
1380  * get BH_Lock set before the stripe lock is released.
1381  *
1382  */
1383 
1384 static void handle_stripe5(struct stripe_head *sh)
1385 {
1386 	raid5_conf_t *conf = sh->raid_conf;
1387 	int disks = sh->disks;
1388 	struct bio *return_bi= NULL;
1389 	struct bio *bi;
1390 	int i;
1391 	int syncing, expanding, expanded;
1392 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1393 	int non_overwrite = 0;
1394 	int failed_num=0;
1395 	struct r5dev *dev;
1396 
1397 	PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1398 		(unsigned long long)sh->sector, atomic_read(&sh->count),
1399 		sh->pd_idx);
1400 
1401 	spin_lock(&sh->lock);
1402 	clear_bit(STRIPE_HANDLE, &sh->state);
1403 	clear_bit(STRIPE_DELAYED, &sh->state);
1404 
1405 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
1406 	expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1407 	expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1408 	/* Now to look around and see what can be done */
1409 
1410 	rcu_read_lock();
1411 	for (i=disks; i--; ) {
1412 		mdk_rdev_t *rdev;
1413 		dev = &sh->dev[i];
1414 		clear_bit(R5_Insync, &dev->flags);
1415 
1416 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1417 			i, dev->flags, dev->toread, dev->towrite, dev->written);
1418 		/* maybe we can reply to a read */
1419 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1420 			struct bio *rbi, *rbi2;
1421 			PRINTK("Return read for disc %d\n", i);
1422 			spin_lock_irq(&conf->device_lock);
1423 			rbi = dev->toread;
1424 			dev->toread = NULL;
1425 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1426 				wake_up(&conf->wait_for_overlap);
1427 			spin_unlock_irq(&conf->device_lock);
1428 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1429 				copy_data(0, rbi, dev->page, dev->sector);
1430 				rbi2 = r5_next_bio(rbi, dev->sector);
1431 				spin_lock_irq(&conf->device_lock);
1432 				if (--rbi->bi_phys_segments == 0) {
1433 					rbi->bi_next = return_bi;
1434 					return_bi = rbi;
1435 				}
1436 				spin_unlock_irq(&conf->device_lock);
1437 				rbi = rbi2;
1438 			}
1439 		}
1440 
1441 		/* now count some things */
1442 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1443 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1444 
1445 
1446 		if (dev->toread) to_read++;
1447 		if (dev->towrite) {
1448 			to_write++;
1449 			if (!test_bit(R5_OVERWRITE, &dev->flags))
1450 				non_overwrite++;
1451 		}
1452 		if (dev->written) written++;
1453 		rdev = rcu_dereference(conf->disks[i].rdev);
1454 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1455 			/* The ReadError flag will just be confusing now */
1456 			clear_bit(R5_ReadError, &dev->flags);
1457 			clear_bit(R5_ReWrite, &dev->flags);
1458 		}
1459 		if (!rdev || !test_bit(In_sync, &rdev->flags)
1460 		    || test_bit(R5_ReadError, &dev->flags)) {
1461 			failed++;
1462 			failed_num = i;
1463 		} else
1464 			set_bit(R5_Insync, &dev->flags);
1465 	}
1466 	rcu_read_unlock();
1467 	PRINTK("locked=%d uptodate=%d to_read=%d"
1468 		" to_write=%d failed=%d failed_num=%d\n",
1469 		locked, uptodate, to_read, to_write, failed, failed_num);
1470 	/* check if the array has lost two devices and, if so, some requests might
1471 	 * need to be failed
1472 	 */
1473 	if (failed > 1 && to_read+to_write+written) {
1474 		for (i=disks; i--; ) {
1475 			int bitmap_end = 0;
1476 
1477 			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1478 				mdk_rdev_t *rdev;
1479 				rcu_read_lock();
1480 				rdev = rcu_dereference(conf->disks[i].rdev);
1481 				if (rdev && test_bit(In_sync, &rdev->flags))
1482 					/* multiple read failures in one stripe */
1483 					md_error(conf->mddev, rdev);
1484 				rcu_read_unlock();
1485 			}
1486 
1487 			spin_lock_irq(&conf->device_lock);
1488 			/* fail all writes first */
1489 			bi = sh->dev[i].towrite;
1490 			sh->dev[i].towrite = NULL;
1491 			if (bi) { to_write--; bitmap_end = 1; }
1492 
1493 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1494 				wake_up(&conf->wait_for_overlap);
1495 
1496 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1497 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1498 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1499 				if (--bi->bi_phys_segments == 0) {
1500 					md_write_end(conf->mddev);
1501 					bi->bi_next = return_bi;
1502 					return_bi = bi;
1503 				}
1504 				bi = nextbi;
1505 			}
1506 			/* and fail all 'written' */
1507 			bi = sh->dev[i].written;
1508 			sh->dev[i].written = NULL;
1509 			if (bi) bitmap_end = 1;
1510 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1511 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1512 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1513 				if (--bi->bi_phys_segments == 0) {
1514 					md_write_end(conf->mddev);
1515 					bi->bi_next = return_bi;
1516 					return_bi = bi;
1517 				}
1518 				bi = bi2;
1519 			}
1520 
1521 			/* fail any reads if this device is non-operational */
1522 			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1523 			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
1524 				bi = sh->dev[i].toread;
1525 				sh->dev[i].toread = NULL;
1526 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1527 					wake_up(&conf->wait_for_overlap);
1528 				if (bi) to_read--;
1529 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1530 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1531 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
1532 					if (--bi->bi_phys_segments == 0) {
1533 						bi->bi_next = return_bi;
1534 						return_bi = bi;
1535 					}
1536 					bi = nextbi;
1537 				}
1538 			}
1539 			spin_unlock_irq(&conf->device_lock);
1540 			if (bitmap_end)
1541 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1542 						STRIPE_SECTORS, 0, 0);
1543 		}
1544 	}
1545 	if (failed > 1 && syncing) {
1546 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1547 		clear_bit(STRIPE_SYNCING, &sh->state);
1548 		syncing = 0;
1549 	}
1550 
1551 	/* might be able to return some write requests if the parity block
1552 	 * is safe, or on a failed drive
1553 	 */
1554 	dev = &sh->dev[sh->pd_idx];
1555 	if ( written &&
1556 	     ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1557 		test_bit(R5_UPTODATE, &dev->flags))
1558 	       || (failed == 1 && failed_num == sh->pd_idx))
1559 	    ) {
1560 	    /* any written block on an uptodate or failed drive can be returned.
1561 	     * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1562 	     * never LOCKED, so we don't need to test 'failed' directly.
1563 	     */
1564 	    for (i=disks; i--; )
1565 		if (sh->dev[i].written) {
1566 		    dev = &sh->dev[i];
1567 		    if (!test_bit(R5_LOCKED, &dev->flags) &&
1568 			 test_bit(R5_UPTODATE, &dev->flags) ) {
1569 			/* We can return any write requests */
1570 			    struct bio *wbi, *wbi2;
1571 			    int bitmap_end = 0;
1572 			    PRINTK("Return write for disc %d\n", i);
1573 			    spin_lock_irq(&conf->device_lock);
1574 			    wbi = dev->written;
1575 			    dev->written = NULL;
1576 			    while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1577 				    wbi2 = r5_next_bio(wbi, dev->sector);
1578 				    if (--wbi->bi_phys_segments == 0) {
1579 					    md_write_end(conf->mddev);
1580 					    wbi->bi_next = return_bi;
1581 					    return_bi = wbi;
1582 				    }
1583 				    wbi = wbi2;
1584 			    }
1585 			    if (dev->towrite == NULL)
1586 				    bitmap_end = 1;
1587 			    spin_unlock_irq(&conf->device_lock);
1588 			    if (bitmap_end)
1589 				    bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1590 						    STRIPE_SECTORS,
1591 						    !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1592 		    }
1593 		}
1594 	}
1595 
1596 	/* Now we might consider reading some blocks, either to check/generate
1597 	 * parity, or to satisfy requests
1598 	 * or to load a block that is being partially written.
1599 	 */
1600 	if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1601 		for (i=disks; i--;) {
1602 			dev = &sh->dev[i];
1603 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1604 			    (dev->toread ||
1605 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1606 			     syncing ||
1607 			     expanding ||
1608 			     (failed && (sh->dev[failed_num].toread ||
1609 					 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1610 				    )
1611 				) {
1612 				/* we would like to get this block, possibly
1613 				 * by computing it, but we might not be able to
1614 				 */
1615 				if (uptodate == disks-1) {
1616 					PRINTK("Computing block %d\n", i);
1617 					compute_block(sh, i);
1618 					uptodate++;
1619 				} else if (test_bit(R5_Insync, &dev->flags)) {
1620 					set_bit(R5_LOCKED, &dev->flags);
1621 					set_bit(R5_Wantread, &dev->flags);
1622 #if 0
1623 					/* if I am just reading this block and we don't have
1624 					   a failed drive, or any pending writes then sidestep the cache */
1625 					if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1626 					    ! syncing && !failed && !to_write) {
1627 						sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
1628 						sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
1629 					}
1630 #endif
1631 					locked++;
1632 					PRINTK("Reading block %d (sync=%d)\n",
1633 						i, syncing);
1634 				}
1635 			}
1636 		}
1637 		set_bit(STRIPE_HANDLE, &sh->state);
1638 	}
1639 
1640 	/* now to consider writing and what else, if anything should be read */
1641 	if (to_write) {
1642 		int rmw=0, rcw=0;
1643 		for (i=disks ; i--;) {
1644 			/* would I have to read this buffer for read_modify_write */
1645 			dev = &sh->dev[i];
1646 			if ((dev->towrite || i == sh->pd_idx) &&
1647 			    (!test_bit(R5_LOCKED, &dev->flags)
1648 #if 0
1649 || sh->bh_page[i]!=bh->b_page
1650 #endif
1651 				    ) &&
1652 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1653 				if (test_bit(R5_Insync, &dev->flags)
1654 /*				    && !(!mddev->insync && i == sh->pd_idx) */
1655 					)
1656 					rmw++;
1657 				else rmw += 2*disks;  /* cannot read it */
1658 			}
1659 			/* Would I have to read this buffer for reconstruct_write */
1660 			if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1661 			    (!test_bit(R5_LOCKED, &dev->flags)
1662 #if 0
1663 || sh->bh_page[i] != bh->b_page
1664 #endif
1665 				    ) &&
1666 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1667 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
1668 				else rcw += 2*disks;
1669 			}
1670 		}
1671 		PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1672 			(unsigned long long)sh->sector, rmw, rcw);
1673 		set_bit(STRIPE_HANDLE, &sh->state);
1674 		if (rmw < rcw && rmw > 0)
1675 			/* prefer read-modify-write, but need to get some data */
1676 			for (i=disks; i--;) {
1677 				dev = &sh->dev[i];
1678 				if ((dev->towrite || i == sh->pd_idx) &&
1679 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1680 				    test_bit(R5_Insync, &dev->flags)) {
1681 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1682 					{
1683 						PRINTK("Read_old block %d for r-m-w\n", i);
1684 						set_bit(R5_LOCKED, &dev->flags);
1685 						set_bit(R5_Wantread, &dev->flags);
1686 						locked++;
1687 					} else {
1688 						set_bit(STRIPE_DELAYED, &sh->state);
1689 						set_bit(STRIPE_HANDLE, &sh->state);
1690 					}
1691 				}
1692 			}
1693 		if (rcw <= rmw && rcw > 0)
1694 			/* want reconstruct write, but need to get some data */
1695 			for (i=disks; i--;) {
1696 				dev = &sh->dev[i];
1697 				if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1698 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1699 				    test_bit(R5_Insync, &dev->flags)) {
1700 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1701 					{
1702 						PRINTK("Read_old block %d for Reconstruct\n", i);
1703 						set_bit(R5_LOCKED, &dev->flags);
1704 						set_bit(R5_Wantread, &dev->flags);
1705 						locked++;
1706 					} else {
1707 						set_bit(STRIPE_DELAYED, &sh->state);
1708 						set_bit(STRIPE_HANDLE, &sh->state);
1709 					}
1710 				}
1711 			}
1712 		/* now if nothing is locked, and if we have enough data, we can start a write request */
1713 		if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1714 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1715 			PRINTK("Computing parity...\n");
1716 			compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1717 			/* now every locked buffer is ready to be written */
1718 			for (i=disks; i--;)
1719 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1720 					PRINTK("Writing block %d\n", i);
1721 					locked++;
1722 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
1723 					if (!test_bit(R5_Insync, &sh->dev[i].flags)
1724 					    || (i==sh->pd_idx && failed == 0))
1725 						set_bit(STRIPE_INSYNC, &sh->state);
1726 				}
1727 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1728 				atomic_dec(&conf->preread_active_stripes);
1729 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1730 					md_wakeup_thread(conf->mddev->thread);
1731 			}
1732 		}
1733 	}
1734 
1735 	/* maybe we need to check and possibly fix the parity for this stripe
1736 	 * Any reads will already have been scheduled, so we just see if enough data
1737 	 * is available
1738 	 */
1739 	if (syncing && locked == 0 &&
1740 	    !test_bit(STRIPE_INSYNC, &sh->state)) {
1741 		set_bit(STRIPE_HANDLE, &sh->state);
1742 		if (failed == 0) {
1743 			BUG_ON(uptodate != disks);
1744 			compute_parity5(sh, CHECK_PARITY);
1745 			uptodate--;
1746 			if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1747 				/* parity is correct (on disc, not in buffer any more) */
1748 				set_bit(STRIPE_INSYNC, &sh->state);
1749 			} else {
1750 				conf->mddev->resync_mismatches += STRIPE_SECTORS;
1751 				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1752 					/* don't try to repair!! */
1753 					set_bit(STRIPE_INSYNC, &sh->state);
1754 				else {
1755 					compute_block(sh, sh->pd_idx);
1756 					uptodate++;
1757 				}
1758 			}
1759 		}
1760 		if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1761 			/* either failed parity check, or recovery is happening */
1762 			if (failed==0)
1763 				failed_num = sh->pd_idx;
1764 			dev = &sh->dev[failed_num];
1765 			BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1766 			BUG_ON(uptodate != disks);
1767 
1768 			set_bit(R5_LOCKED, &dev->flags);
1769 			set_bit(R5_Wantwrite, &dev->flags);
1770 			clear_bit(STRIPE_DEGRADED, &sh->state);
1771 			locked++;
1772 			set_bit(STRIPE_INSYNC, &sh->state);
1773 		}
1774 	}
1775 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1776 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1777 		clear_bit(STRIPE_SYNCING, &sh->state);
1778 	}
1779 
1780 	/* If the failed drive is just a ReadError, then we might need to progress
1781 	 * the repair/check process
1782 	 */
1783 	if (failed == 1 && ! conf->mddev->ro &&
1784 	    test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1785 	    && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1786 	    && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1787 		) {
1788 		dev = &sh->dev[failed_num];
1789 		if (!test_bit(R5_ReWrite, &dev->flags)) {
1790 			set_bit(R5_Wantwrite, &dev->flags);
1791 			set_bit(R5_ReWrite, &dev->flags);
1792 			set_bit(R5_LOCKED, &dev->flags);
1793 			locked++;
1794 		} else {
1795 			/* let's read it back */
1796 			set_bit(R5_Wantread, &dev->flags);
1797 			set_bit(R5_LOCKED, &dev->flags);
1798 			locked++;
1799 		}
1800 	}
1801 
1802 	if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1803 		/* Need to write out all blocks after computing parity */
1804 		sh->disks = conf->raid_disks;
1805 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1806 		compute_parity5(sh, RECONSTRUCT_WRITE);
1807 		for (i= conf->raid_disks; i--;) {
1808 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1809 			locked++;
1810 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
1811 		}
1812 		clear_bit(STRIPE_EXPANDING, &sh->state);
1813 	} else if (expanded) {
1814 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
1815 		atomic_dec(&conf->reshape_stripes);
1816 		wake_up(&conf->wait_for_overlap);
1817 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1818 	}
1819 
1820 	if (expanding && locked == 0) {
1821 		/* We have read all the blocks in this stripe and now we need to
1822 		 * copy some of them into a target stripe for expand.
1823 		 */
1824 		clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1825 		for (i=0; i< sh->disks; i++)
1826 			if (i != sh->pd_idx) {
1827 				int dd_idx, pd_idx, j;
1828 				struct stripe_head *sh2;
1829 
1830 				sector_t bn = compute_blocknr(sh, i);
1831 				sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1832 								  conf->raid_disks-1,
1833 								  &dd_idx, &pd_idx, conf);
1834 				sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1835 				if (sh2 == NULL)
1836 					/* so far only the early blocks of this stripe
1837 					 * have been requested.  When later blocks
1838 					 * get requested, we will try again
1839 					 */
1840 					continue;
1841 				if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1842 				   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1843 					/* must have already done this block */
1844 					release_stripe(sh2);
1845 					continue;
1846 				}
1847 				memcpy(page_address(sh2->dev[dd_idx].page),
1848 				       page_address(sh->dev[i].page),
1849 				       STRIPE_SIZE);
1850 				set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1851 				set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1852 				for (j=0; j<conf->raid_disks; j++)
1853 					if (j != sh2->pd_idx &&
1854 					    !test_bit(R5_Expanded, &sh2->dev[j].flags))
1855 						break;
1856 				if (j == conf->raid_disks) {
1857 					set_bit(STRIPE_EXPAND_READY, &sh2->state);
1858 					set_bit(STRIPE_HANDLE, &sh2->state);
1859 				}
1860 				release_stripe(sh2);
1861 			}
1862 	}
1863 
1864 	spin_unlock(&sh->lock);
1865 
1866 	while ((bi=return_bi)) {
1867 		int bytes = bi->bi_size;
1868 
1869 		return_bi = bi->bi_next;
1870 		bi->bi_next = NULL;
1871 		bi->bi_size = 0;
1872 		bi->bi_end_io(bi, bytes, 0);
1873 	}
1874 	for (i=disks; i-- ;) {
1875 		int rw;
1876 		struct bio *bi;
1877 		mdk_rdev_t *rdev;
1878 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1879 			rw = 1;
1880 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1881 			rw = 0;
1882 		else
1883 			continue;
1884 
1885 		bi = &sh->dev[i].req;
1886 
1887 		bi->bi_rw = rw;
1888 		if (rw)
1889 			bi->bi_end_io = raid5_end_write_request;
1890 		else
1891 			bi->bi_end_io = raid5_end_read_request;
1892 
1893 		rcu_read_lock();
1894 		rdev = rcu_dereference(conf->disks[i].rdev);
1895 		if (rdev && test_bit(Faulty, &rdev->flags))
1896 			rdev = NULL;
1897 		if (rdev)
1898 			atomic_inc(&rdev->nr_pending);
1899 		rcu_read_unlock();
1900 
1901 		if (rdev) {
1902 			if (syncing || expanding || expanded)
1903 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1904 
1905 			bi->bi_bdev = rdev->bdev;
1906 			PRINTK("for %llu schedule op %ld on disc %d\n",
1907 				(unsigned long long)sh->sector, bi->bi_rw, i);
1908 			atomic_inc(&sh->count);
1909 			bi->bi_sector = sh->sector + rdev->data_offset;
1910 			bi->bi_flags = 1 << BIO_UPTODATE;
1911 			bi->bi_vcnt = 1;
1912 			bi->bi_max_vecs = 1;
1913 			bi->bi_idx = 0;
1914 			bi->bi_io_vec = &sh->dev[i].vec;
1915 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1916 			bi->bi_io_vec[0].bv_offset = 0;
1917 			bi->bi_size = STRIPE_SIZE;
1918 			bi->bi_next = NULL;
1919 			if (rw == WRITE &&
1920 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
1921 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1922 			generic_make_request(bi);
1923 		} else {
1924 			if (rw == 1)
1925 				set_bit(STRIPE_DEGRADED, &sh->state);
1926 			PRINTK("skip op %ld on disc %d for sector %llu\n",
1927 				bi->bi_rw, i, (unsigned long long)sh->sector);
1928 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1929 			set_bit(STRIPE_HANDLE, &sh->state);
1930 		}
1931 	}
1932 }
1933 
1934 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1935 {
1936 	raid6_conf_t *conf = sh->raid_conf;
1937 	int disks = conf->raid_disks;
1938 	struct bio *return_bi= NULL;
1939 	struct bio *bi;
1940 	int i;
1941 	int syncing;
1942 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1943 	int non_overwrite = 0;
1944 	int failed_num[2] = {0, 0};
1945 	struct r5dev *dev, *pdev, *qdev;
1946 	int pd_idx = sh->pd_idx;
1947 	int qd_idx = raid6_next_disk(pd_idx, disks);
1948 	int p_failed, q_failed;
1949 
1950 	PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1951 	       (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1952 	       pd_idx, qd_idx);
1953 
1954 	spin_lock(&sh->lock);
1955 	clear_bit(STRIPE_HANDLE, &sh->state);
1956 	clear_bit(STRIPE_DELAYED, &sh->state);
1957 
1958 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
1959 	/* Now to look around and see what can be done */
1960 
1961 	rcu_read_lock();
1962 	for (i=disks; i--; ) {
1963 		mdk_rdev_t *rdev;
1964 		dev = &sh->dev[i];
1965 		clear_bit(R5_Insync, &dev->flags);
1966 
1967 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1968 			i, dev->flags, dev->toread, dev->towrite, dev->written);
1969 		/* maybe we can reply to a read */
1970 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1971 			struct bio *rbi, *rbi2;
1972 			PRINTK("Return read for disc %d\n", i);
1973 			spin_lock_irq(&conf->device_lock);
1974 			rbi = dev->toread;
1975 			dev->toread = NULL;
1976 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1977 				wake_up(&conf->wait_for_overlap);
1978 			spin_unlock_irq(&conf->device_lock);
1979 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1980 				copy_data(0, rbi, dev->page, dev->sector);
1981 				rbi2 = r5_next_bio(rbi, dev->sector);
1982 				spin_lock_irq(&conf->device_lock);
1983 				if (--rbi->bi_phys_segments == 0) {
1984 					rbi->bi_next = return_bi;
1985 					return_bi = rbi;
1986 				}
1987 				spin_unlock_irq(&conf->device_lock);
1988 				rbi = rbi2;
1989 			}
1990 		}
1991 
1992 		/* now count some things */
1993 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1994 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1995 
1996 
1997 		if (dev->toread) to_read++;
1998 		if (dev->towrite) {
1999 			to_write++;
2000 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2001 				non_overwrite++;
2002 		}
2003 		if (dev->written) written++;
2004 		rdev = rcu_dereference(conf->disks[i].rdev);
2005 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2006 			/* The ReadError flag will just be confusing now */
2007 			clear_bit(R5_ReadError, &dev->flags);
2008 			clear_bit(R5_ReWrite, &dev->flags);
2009 		}
2010 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2011 		    || test_bit(R5_ReadError, &dev->flags)) {
2012 			if ( failed < 2 )
2013 				failed_num[failed] = i;
2014 			failed++;
2015 		} else
2016 			set_bit(R5_Insync, &dev->flags);
2017 	}
2018 	rcu_read_unlock();
2019 	PRINTK("locked=%d uptodate=%d to_read=%d"
2020 	       " to_write=%d failed=%d failed_num=%d,%d\n",
2021 	       locked, uptodate, to_read, to_write, failed,
2022 	       failed_num[0], failed_num[1]);
2023 	/* check if the array has lost >2 devices and, if so, some requests might
2024 	 * need to be failed
2025 	 */
2026 	if (failed > 2 && to_read+to_write+written) {
2027 		for (i=disks; i--; ) {
2028 			int bitmap_end = 0;
2029 
2030 			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2031 				mdk_rdev_t *rdev;
2032 				rcu_read_lock();
2033 				rdev = rcu_dereference(conf->disks[i].rdev);
2034 				if (rdev && test_bit(In_sync, &rdev->flags))
2035 					/* multiple read failures in one stripe */
2036 					md_error(conf->mddev, rdev);
2037 				rcu_read_unlock();
2038 			}
2039 
2040 			spin_lock_irq(&conf->device_lock);
2041 			/* fail all writes first */
2042 			bi = sh->dev[i].towrite;
2043 			sh->dev[i].towrite = NULL;
2044 			if (bi) { to_write--; bitmap_end = 1; }
2045 
2046 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2047 				wake_up(&conf->wait_for_overlap);
2048 
2049 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2050 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2051 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2052 				if (--bi->bi_phys_segments == 0) {
2053 					md_write_end(conf->mddev);
2054 					bi->bi_next = return_bi;
2055 					return_bi = bi;
2056 				}
2057 				bi = nextbi;
2058 			}
2059 			/* and fail all 'written' */
2060 			bi = sh->dev[i].written;
2061 			sh->dev[i].written = NULL;
2062 			if (bi) bitmap_end = 1;
2063 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
2064 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2065 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2066 				if (--bi->bi_phys_segments == 0) {
2067 					md_write_end(conf->mddev);
2068 					bi->bi_next = return_bi;
2069 					return_bi = bi;
2070 				}
2071 				bi = bi2;
2072 			}
2073 
2074 			/* fail any reads if this device is non-operational */
2075 			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2076 			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
2077 				bi = sh->dev[i].toread;
2078 				sh->dev[i].toread = NULL;
2079 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2080 					wake_up(&conf->wait_for_overlap);
2081 				if (bi) to_read--;
2082 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2083 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2084 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
2085 					if (--bi->bi_phys_segments == 0) {
2086 						bi->bi_next = return_bi;
2087 						return_bi = bi;
2088 					}
2089 					bi = nextbi;
2090 				}
2091 			}
2092 			spin_unlock_irq(&conf->device_lock);
2093 			if (bitmap_end)
2094 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2095 						STRIPE_SECTORS, 0, 0);
2096 		}
2097 	}
2098 	if (failed > 2 && syncing) {
2099 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2100 		clear_bit(STRIPE_SYNCING, &sh->state);
2101 		syncing = 0;
2102 	}
2103 
2104 	/*
2105 	 * might be able to return some write requests if the parity blocks
2106 	 * are safe, or on a failed drive
2107 	 */
2108 	pdev = &sh->dev[pd_idx];
2109 	p_failed = (failed >= 1 && failed_num[0] == pd_idx)
2110 		|| (failed >= 2 && failed_num[1] == pd_idx);
2111 	qdev = &sh->dev[qd_idx];
2112 	q_failed = (failed >= 1 && failed_num[0] == qd_idx)
2113 		|| (failed >= 2 && failed_num[1] == qd_idx);
2114 
2115 	if ( written &&
2116 	     ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
2117 			     && !test_bit(R5_LOCKED, &pdev->flags)
2118 			     && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
2119 	     ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
2120 			     && !test_bit(R5_LOCKED, &qdev->flags)
2121 			     && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
2122 		/* any written block on an uptodate or failed drive can be
2123 		 * returned.  Note that if we 'wrote' to a failed drive,
2124 		 * it will be UPTODATE, but never LOCKED, so we don't need
2125 		 * to test 'failed' directly.
2126 		 */
2127 		for (i=disks; i--; )
2128 			if (sh->dev[i].written) {
2129 				dev = &sh->dev[i];
2130 				if (!test_bit(R5_LOCKED, &dev->flags) &&
2131 				    test_bit(R5_UPTODATE, &dev->flags) ) {
2132 					/* We can return any write requests */
2133 					int bitmap_end = 0;
2134 					struct bio *wbi, *wbi2;
2135 					PRINTK("Return write for stripe %llu disc %d\n",
2136 					       (unsigned long long)sh->sector, i);
2137 					spin_lock_irq(&conf->device_lock);
2138 					wbi = dev->written;
2139 					dev->written = NULL;
2140 					while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2141 						wbi2 = r5_next_bio(wbi, dev->sector);
2142 						if (--wbi->bi_phys_segments == 0) {
2143 							md_write_end(conf->mddev);
2144 							wbi->bi_next = return_bi;
2145 							return_bi = wbi;
2146 						}
2147 						wbi = wbi2;
2148 					}
2149 					if (dev->towrite == NULL)
2150 						bitmap_end = 1;
2151 					spin_unlock_irq(&conf->device_lock);
2152 					if (bitmap_end)
2153 						bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2154 								STRIPE_SECTORS,
2155 								!test_bit(STRIPE_DEGRADED, &sh->state), 0);
2156 				}
2157 			}
2158 	}
2159 
2160 	/* Now we might consider reading some blocks, either to check/generate
2161 	 * parity, or to satisfy requests
2162 	 * or to load a block that is being partially written.
2163 	 */
2164 	if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
2165 		for (i=disks; i--;) {
2166 			dev = &sh->dev[i];
2167 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2168 			    (dev->toread ||
2169 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2170 			     syncing ||
2171 			     (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
2172 			     (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
2173 				    )
2174 				) {
2175 				/* we would like to get this block, possibly
2176 				 * by computing it, but we might not be able to
2177 				 */
2178 				if (uptodate == disks-1) {
2179 					PRINTK("Computing stripe %llu block %d\n",
2180 					       (unsigned long long)sh->sector, i);
2181 					compute_block_1(sh, i, 0);
2182 					uptodate++;
2183 				} else if ( uptodate == disks-2 && failed >= 2 ) {
2184 					/* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2185 					int other;
2186 					for (other=disks; other--;) {
2187 						if ( other == i )
2188 							continue;
2189 						if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
2190 							break;
2191 					}
2192 					BUG_ON(other < 0);
2193 					PRINTK("Computing stripe %llu blocks %d,%d\n",
2194 					       (unsigned long long)sh->sector, i, other);
2195 					compute_block_2(sh, i, other);
2196 					uptodate += 2;
2197 				} else if (test_bit(R5_Insync, &dev->flags)) {
2198 					set_bit(R5_LOCKED, &dev->flags);
2199 					set_bit(R5_Wantread, &dev->flags);
2200 #if 0
2201 					/* if I am just reading this block and we don't have
2202 					   a failed drive, or any pending writes then sidestep the cache */
2203 					if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
2204 					    ! syncing && !failed && !to_write) {
2205 						sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
2206 						sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
2207 					}
2208 #endif
2209 					locked++;
2210 					PRINTK("Reading block %d (sync=%d)\n",
2211 						i, syncing);
2212 				}
2213 			}
2214 		}
2215 		set_bit(STRIPE_HANDLE, &sh->state);
2216 	}
2217 
2218 	/* now to consider writing and what else, if anything should be read */
2219 	if (to_write) {
2220 		int rcw=0, must_compute=0;
2221 		for (i=disks ; i--;) {
2222 			dev = &sh->dev[i];
2223 			/* Would I have to read this buffer for reconstruct_write */
2224 			if (!test_bit(R5_OVERWRITE, &dev->flags)
2225 			    && i != pd_idx && i != qd_idx
2226 			    && (!test_bit(R5_LOCKED, &dev->flags)
2227 #if 0
2228 				|| sh->bh_page[i] != bh->b_page
2229 #endif
2230 				    ) &&
2231 			    !test_bit(R5_UPTODATE, &dev->flags)) {
2232 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
2233 				else {
2234 					PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
2235 					must_compute++;
2236 				}
2237 			}
2238 		}
2239 		PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2240 		       (unsigned long long)sh->sector, rcw, must_compute);
2241 		set_bit(STRIPE_HANDLE, &sh->state);
2242 
2243 		if (rcw > 0)
2244 			/* want reconstruct write, but need to get some data */
2245 			for (i=disks; i--;) {
2246 				dev = &sh->dev[i];
2247 				if (!test_bit(R5_OVERWRITE, &dev->flags)
2248 				    && !(failed == 0 && (i == pd_idx || i == qd_idx))
2249 				    && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2250 				    test_bit(R5_Insync, &dev->flags)) {
2251 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2252 					{
2253 						PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2254 						       (unsigned long long)sh->sector, i);
2255 						set_bit(R5_LOCKED, &dev->flags);
2256 						set_bit(R5_Wantread, &dev->flags);
2257 						locked++;
2258 					} else {
2259 						PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2260 						       (unsigned long long)sh->sector, i);
2261 						set_bit(STRIPE_DELAYED, &sh->state);
2262 						set_bit(STRIPE_HANDLE, &sh->state);
2263 					}
2264 				}
2265 			}
2266 		/* now if nothing is locked, and if we have enough data, we can start a write request */
2267 		if (locked == 0 && rcw == 0 &&
2268 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2269 			if ( must_compute > 0 ) {
2270 				/* We have failed blocks and need to compute them */
2271 				switch ( failed ) {
2272 				case 0:	BUG();
2273 				case 1: compute_block_1(sh, failed_num[0], 0); break;
2274 				case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
2275 				default: BUG();	/* This request should have been failed? */
2276 				}
2277 			}
2278 
2279 			PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
2280 			compute_parity6(sh, RECONSTRUCT_WRITE);
2281 			/* now every locked buffer is ready to be written */
2282 			for (i=disks; i--;)
2283 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2284 					PRINTK("Writing stripe %llu block %d\n",
2285 					       (unsigned long long)sh->sector, i);
2286 					locked++;
2287 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
2288 				}
2289 			/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2290 			set_bit(STRIPE_INSYNC, &sh->state);
2291 
2292 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2293 				atomic_dec(&conf->preread_active_stripes);
2294 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
2295 					md_wakeup_thread(conf->mddev->thread);
2296 			}
2297 		}
2298 	}
2299 
2300 	/* maybe we need to check and possibly fix the parity for this stripe
2301 	 * Any reads will already have been scheduled, so we just see if enough data
2302 	 * is available
2303 	 */
2304 	if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
2305 		int update_p = 0, update_q = 0;
2306 		struct r5dev *dev;
2307 
2308 		set_bit(STRIPE_HANDLE, &sh->state);
2309 
2310 		BUG_ON(failed>2);
2311 		BUG_ON(uptodate < disks);
2312 		/* Want to check and possibly repair P and Q.
2313 		 * However there could be one 'failed' device, in which
2314 		 * case we can only check one of them, possibly using the
2315 		 * other to generate missing data
2316 		 */
2317 
2318 		/* If !tmp_page, we cannot do the calculations,
2319 		 * but as we have set STRIPE_HANDLE, we will soon be called
2320 		 * by stripe_handle with a tmp_page - just wait until then.
2321 		 */
2322 		if (tmp_page) {
2323 			if (failed == q_failed) {
2324 				/* The only possible failed device holds 'Q', so it makes
2325 				 * sense to check P (If anything else were failed, we would
2326 				 * have used P to recreate it).
2327 				 */
2328 				compute_block_1(sh, pd_idx, 1);
2329 				if (!page_is_zero(sh->dev[pd_idx].page)) {
2330 					compute_block_1(sh,pd_idx,0);
2331 					update_p = 1;
2332 				}
2333 			}
2334 			if (!q_failed && failed < 2) {
2335 				/* q is not failed, and we didn't use it to generate
2336 				 * anything, so it makes sense to check it
2337 				 */
2338 				memcpy(page_address(tmp_page),
2339 				       page_address(sh->dev[qd_idx].page),
2340 				       STRIPE_SIZE);
2341 				compute_parity6(sh, UPDATE_PARITY);
2342 				if (memcmp(page_address(tmp_page),
2343 					   page_address(sh->dev[qd_idx].page),
2344 					   STRIPE_SIZE)!= 0) {
2345 					clear_bit(STRIPE_INSYNC, &sh->state);
2346 					update_q = 1;
2347 				}
2348 			}
2349 			if (update_p || update_q) {
2350 				conf->mddev->resync_mismatches += STRIPE_SECTORS;
2351 				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2352 					/* don't try to repair!! */
2353 					update_p = update_q = 0;
2354 			}
2355 
2356 			/* now write out any block on a failed drive,
2357 			 * or P or Q if they need it
2358 			 */
2359 
2360 			if (failed == 2) {
2361 				dev = &sh->dev[failed_num[1]];
2362 				locked++;
2363 				set_bit(R5_LOCKED, &dev->flags);
2364 				set_bit(R5_Wantwrite, &dev->flags);
2365 			}
2366 			if (failed >= 1) {
2367 				dev = &sh->dev[failed_num[0]];
2368 				locked++;
2369 				set_bit(R5_LOCKED, &dev->flags);
2370 				set_bit(R5_Wantwrite, &dev->flags);
2371 			}
2372 
2373 			if (update_p) {
2374 				dev = &sh->dev[pd_idx];
2375 				locked ++;
2376 				set_bit(R5_LOCKED, &dev->flags);
2377 				set_bit(R5_Wantwrite, &dev->flags);
2378 			}
2379 			if (update_q) {
2380 				dev = &sh->dev[qd_idx];
2381 				locked++;
2382 				set_bit(R5_LOCKED, &dev->flags);
2383 				set_bit(R5_Wantwrite, &dev->flags);
2384 			}
2385 			clear_bit(STRIPE_DEGRADED, &sh->state);
2386 
2387 			set_bit(STRIPE_INSYNC, &sh->state);
2388 		}
2389 	}
2390 
2391 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2392 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2393 		clear_bit(STRIPE_SYNCING, &sh->state);
2394 	}
2395 
2396 	/* If the failed drives are just a ReadError, then we might need
2397 	 * to progress the repair/check process
2398 	 */
2399 	if (failed <= 2 && ! conf->mddev->ro)
2400 		for (i=0; i<failed;i++) {
2401 			dev = &sh->dev[failed_num[i]];
2402 			if (test_bit(R5_ReadError, &dev->flags)
2403 			    && !test_bit(R5_LOCKED, &dev->flags)
2404 			    && test_bit(R5_UPTODATE, &dev->flags)
2405 				) {
2406 				if (!test_bit(R5_ReWrite, &dev->flags)) {
2407 					set_bit(R5_Wantwrite, &dev->flags);
2408 					set_bit(R5_ReWrite, &dev->flags);
2409 					set_bit(R5_LOCKED, &dev->flags);
2410 				} else {
2411 					/* let's read it back */
2412 					set_bit(R5_Wantread, &dev->flags);
2413 					set_bit(R5_LOCKED, &dev->flags);
2414 				}
2415 			}
2416 		}
2417 	spin_unlock(&sh->lock);
2418 
2419 	while ((bi=return_bi)) {
2420 		int bytes = bi->bi_size;
2421 
2422 		return_bi = bi->bi_next;
2423 		bi->bi_next = NULL;
2424 		bi->bi_size = 0;
2425 		bi->bi_end_io(bi, bytes, 0);
2426 	}
2427 	for (i=disks; i-- ;) {
2428 		int rw;
2429 		struct bio *bi;
2430 		mdk_rdev_t *rdev;
2431 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
2432 			rw = 1;
2433 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
2434 			rw = 0;
2435 		else
2436 			continue;
2437 
2438 		bi = &sh->dev[i].req;
2439 
2440 		bi->bi_rw = rw;
2441 		if (rw)
2442 			bi->bi_end_io = raid5_end_write_request;
2443 		else
2444 			bi->bi_end_io = raid5_end_read_request;
2445 
2446 		rcu_read_lock();
2447 		rdev = rcu_dereference(conf->disks[i].rdev);
2448 		if (rdev && test_bit(Faulty, &rdev->flags))
2449 			rdev = NULL;
2450 		if (rdev)
2451 			atomic_inc(&rdev->nr_pending);
2452 		rcu_read_unlock();
2453 
2454 		if (rdev) {
2455 			if (syncing)
2456 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2457 
2458 			bi->bi_bdev = rdev->bdev;
2459 			PRINTK("for %llu schedule op %ld on disc %d\n",
2460 				(unsigned long long)sh->sector, bi->bi_rw, i);
2461 			atomic_inc(&sh->count);
2462 			bi->bi_sector = sh->sector + rdev->data_offset;
2463 			bi->bi_flags = 1 << BIO_UPTODATE;
2464 			bi->bi_vcnt = 1;
2465 			bi->bi_max_vecs = 1;
2466 			bi->bi_idx = 0;
2467 			bi->bi_io_vec = &sh->dev[i].vec;
2468 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2469 			bi->bi_io_vec[0].bv_offset = 0;
2470 			bi->bi_size = STRIPE_SIZE;
2471 			bi->bi_next = NULL;
2472 			if (rw == WRITE &&
2473 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
2474 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2475 			generic_make_request(bi);
2476 		} else {
2477 			if (rw == 1)
2478 				set_bit(STRIPE_DEGRADED, &sh->state);
2479 			PRINTK("skip op %ld on disc %d for sector %llu\n",
2480 				bi->bi_rw, i, (unsigned long long)sh->sector);
2481 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
2482 			set_bit(STRIPE_HANDLE, &sh->state);
2483 		}
2484 	}
2485 }
2486 
2487 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2488 {
2489 	if (sh->raid_conf->level == 6)
2490 		handle_stripe6(sh, tmp_page);
2491 	else
2492 		handle_stripe5(sh);
2493 }
2494 
2495 
2496 
2497 static void raid5_activate_delayed(raid5_conf_t *conf)
2498 {
2499 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2500 		while (!list_empty(&conf->delayed_list)) {
2501 			struct list_head *l = conf->delayed_list.next;
2502 			struct stripe_head *sh;
2503 			sh = list_entry(l, struct stripe_head, lru);
2504 			list_del_init(l);
2505 			clear_bit(STRIPE_DELAYED, &sh->state);
2506 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2507 				atomic_inc(&conf->preread_active_stripes);
2508 			list_add_tail(&sh->lru, &conf->handle_list);
2509 		}
2510 	}
2511 }
2512 
2513 static void activate_bit_delay(raid5_conf_t *conf)
2514 {
2515 	/* device_lock is held */
2516 	struct list_head head;
2517 	list_add(&head, &conf->bitmap_list);
2518 	list_del_init(&conf->bitmap_list);
2519 	while (!list_empty(&head)) {
2520 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2521 		list_del_init(&sh->lru);
2522 		atomic_inc(&sh->count);
2523 		__release_stripe(conf, sh);
2524 	}
2525 }
2526 
2527 static void unplug_slaves(mddev_t *mddev)
2528 {
2529 	raid5_conf_t *conf = mddev_to_conf(mddev);
2530 	int i;
2531 
2532 	rcu_read_lock();
2533 	for (i=0; i<mddev->raid_disks; i++) {
2534 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2535 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2536 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2537 
2538 			atomic_inc(&rdev->nr_pending);
2539 			rcu_read_unlock();
2540 
2541 			if (r_queue->unplug_fn)
2542 				r_queue->unplug_fn(r_queue);
2543 
2544 			rdev_dec_pending(rdev, mddev);
2545 			rcu_read_lock();
2546 		}
2547 	}
2548 	rcu_read_unlock();
2549 }
2550 
2551 static void raid5_unplug_device(request_queue_t *q)
2552 {
2553 	mddev_t *mddev = q->queuedata;
2554 	raid5_conf_t *conf = mddev_to_conf(mddev);
2555 	unsigned long flags;
2556 
2557 	spin_lock_irqsave(&conf->device_lock, flags);
2558 
2559 	if (blk_remove_plug(q)) {
2560 		conf->seq_flush++;
2561 		raid5_activate_delayed(conf);
2562 	}
2563 	md_wakeup_thread(mddev->thread);
2564 
2565 	spin_unlock_irqrestore(&conf->device_lock, flags);
2566 
2567 	unplug_slaves(mddev);
2568 }
2569 
2570 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2571 			     sector_t *error_sector)
2572 {
2573 	mddev_t *mddev = q->queuedata;
2574 	raid5_conf_t *conf = mddev_to_conf(mddev);
2575 	int i, ret = 0;
2576 
2577 	rcu_read_lock();
2578 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
2579 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2580 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
2581 			struct block_device *bdev = rdev->bdev;
2582 			request_queue_t *r_queue = bdev_get_queue(bdev);
2583 
2584 			if (!r_queue->issue_flush_fn)
2585 				ret = -EOPNOTSUPP;
2586 			else {
2587 				atomic_inc(&rdev->nr_pending);
2588 				rcu_read_unlock();
2589 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2590 							      error_sector);
2591 				rdev_dec_pending(rdev, mddev);
2592 				rcu_read_lock();
2593 			}
2594 		}
2595 	}
2596 	rcu_read_unlock();
2597 	return ret;
2598 }
2599 
2600 static int make_request(request_queue_t *q, struct bio * bi)
2601 {
2602 	mddev_t *mddev = q->queuedata;
2603 	raid5_conf_t *conf = mddev_to_conf(mddev);
2604 	unsigned int dd_idx, pd_idx;
2605 	sector_t new_sector;
2606 	sector_t logical_sector, last_sector;
2607 	struct stripe_head *sh;
2608 	const int rw = bio_data_dir(bi);
2609 	int remaining;
2610 
2611 	if (unlikely(bio_barrier(bi))) {
2612 		bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2613 		return 0;
2614 	}
2615 
2616 	md_write_start(mddev, bi);
2617 
2618 	disk_stat_inc(mddev->gendisk, ios[rw]);
2619 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
2620 
2621 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2622 	last_sector = bi->bi_sector + (bi->bi_size>>9);
2623 	bi->bi_next = NULL;
2624 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
2625 
2626 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2627 		DEFINE_WAIT(w);
2628 		int disks, data_disks;
2629 
2630 	retry:
2631 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
2632 		if (likely(conf->expand_progress == MaxSector))
2633 			disks = conf->raid_disks;
2634 		else {
2635 			/* spinlock is needed as expand_progress may be
2636 			 * 64bit on a 32bit platform, and so it might be
2637 			 * possible to see a half-updated value
2638 			 * Ofcourse expand_progress could change after
2639 			 * the lock is dropped, so once we get a reference
2640 			 * to the stripe that we think it is, we will have
2641 			 * to check again.
2642 			 */
2643 			spin_lock_irq(&conf->device_lock);
2644 			disks = conf->raid_disks;
2645 			if (logical_sector >= conf->expand_progress)
2646 				disks = conf->previous_raid_disks;
2647 			else {
2648 				if (logical_sector >= conf->expand_lo) {
2649 					spin_unlock_irq(&conf->device_lock);
2650 					schedule();
2651 					goto retry;
2652 				}
2653 			}
2654 			spin_unlock_irq(&conf->device_lock);
2655 		}
2656 		data_disks = disks - conf->max_degraded;
2657 
2658  		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
2659 						  &dd_idx, &pd_idx, conf);
2660 		PRINTK("raid5: make_request, sector %llu logical %llu\n",
2661 			(unsigned long long)new_sector,
2662 			(unsigned long long)logical_sector);
2663 
2664 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
2665 		if (sh) {
2666 			if (unlikely(conf->expand_progress != MaxSector)) {
2667 				/* expansion might have moved on while waiting for a
2668 				 * stripe, so we must do the range check again.
2669 				 * Expansion could still move past after this
2670 				 * test, but as we are holding a reference to
2671 				 * 'sh', we know that if that happens,
2672 				 *  STRIPE_EXPANDING will get set and the expansion
2673 				 * won't proceed until we finish with the stripe.
2674 				 */
2675 				int must_retry = 0;
2676 				spin_lock_irq(&conf->device_lock);
2677 				if (logical_sector <  conf->expand_progress &&
2678 				    disks == conf->previous_raid_disks)
2679 					/* mismatch, need to try again */
2680 					must_retry = 1;
2681 				spin_unlock_irq(&conf->device_lock);
2682 				if (must_retry) {
2683 					release_stripe(sh);
2684 					goto retry;
2685 				}
2686 			}
2687 			/* FIXME what if we get a false positive because these
2688 			 * are being updated.
2689 			 */
2690 			if (logical_sector >= mddev->suspend_lo &&
2691 			    logical_sector < mddev->suspend_hi) {
2692 				release_stripe(sh);
2693 				schedule();
2694 				goto retry;
2695 			}
2696 
2697 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2698 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2699 				/* Stripe is busy expanding or
2700 				 * add failed due to overlap.  Flush everything
2701 				 * and wait a while
2702 				 */
2703 				raid5_unplug_device(mddev->queue);
2704 				release_stripe(sh);
2705 				schedule();
2706 				goto retry;
2707 			}
2708 			finish_wait(&conf->wait_for_overlap, &w);
2709 			handle_stripe(sh, NULL);
2710 			release_stripe(sh);
2711 		} else {
2712 			/* cannot get stripe for read-ahead, just give-up */
2713 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2714 			finish_wait(&conf->wait_for_overlap, &w);
2715 			break;
2716 		}
2717 
2718 	}
2719 	spin_lock_irq(&conf->device_lock);
2720 	remaining = --bi->bi_phys_segments;
2721 	spin_unlock_irq(&conf->device_lock);
2722 	if (remaining == 0) {
2723 		int bytes = bi->bi_size;
2724 
2725 		if ( rw == WRITE )
2726 			md_write_end(mddev);
2727 		bi->bi_size = 0;
2728 		bi->bi_end_io(bi, bytes, 0);
2729 	}
2730 	return 0;
2731 }
2732 
2733 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
2734 {
2735 	/* reshaping is quite different to recovery/resync so it is
2736 	 * handled quite separately ... here.
2737 	 *
2738 	 * On each call to sync_request, we gather one chunk worth of
2739 	 * destination stripes and flag them as expanding.
2740 	 * Then we find all the source stripes and request reads.
2741 	 * As the reads complete, handle_stripe will copy the data
2742 	 * into the destination stripe and release that stripe.
2743 	 */
2744 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2745 	struct stripe_head *sh;
2746 	int pd_idx;
2747 	sector_t first_sector, last_sector;
2748 	int raid_disks;
2749 	int data_disks;
2750 	int i;
2751 	int dd_idx;
2752 	sector_t writepos, safepos, gap;
2753 
2754 	if (sector_nr == 0 &&
2755 	    conf->expand_progress != 0) {
2756 		/* restarting in the middle, skip the initial sectors */
2757 		sector_nr = conf->expand_progress;
2758 		sector_div(sector_nr, conf->raid_disks-1);
2759 		*skipped = 1;
2760 		return sector_nr;
2761 	}
2762 
2763 	/* we update the metadata when there is more than 3Meg
2764 	 * in the block range (that is rather arbitrary, should
2765 	 * probably be time based) or when the data about to be
2766 	 * copied would over-write the source of the data at
2767 	 * the front of the range.
2768 	 * i.e. one new_stripe forward from expand_progress new_maps
2769 	 * to after where expand_lo old_maps to
2770 	 */
2771 	writepos = conf->expand_progress +
2772 		conf->chunk_size/512*(conf->raid_disks-1);
2773 	sector_div(writepos, conf->raid_disks-1);
2774 	safepos = conf->expand_lo;
2775 	sector_div(safepos, conf->previous_raid_disks-1);
2776 	gap = conf->expand_progress - conf->expand_lo;
2777 
2778 	if (writepos >= safepos ||
2779 	    gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
2780 		/* Cannot proceed until we've updated the superblock... */
2781 		wait_event(conf->wait_for_overlap,
2782 			   atomic_read(&conf->reshape_stripes)==0);
2783 		mddev->reshape_position = conf->expand_progress;
2784 		mddev->sb_dirty = 1;
2785 		md_wakeup_thread(mddev->thread);
2786 		wait_event(mddev->sb_wait, mddev->sb_dirty == 0 ||
2787 			   kthread_should_stop());
2788 		spin_lock_irq(&conf->device_lock);
2789 		conf->expand_lo = mddev->reshape_position;
2790 		spin_unlock_irq(&conf->device_lock);
2791 		wake_up(&conf->wait_for_overlap);
2792 	}
2793 
2794 	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
2795 		int j;
2796 		int skipped = 0;
2797 		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
2798 		sh = get_active_stripe(conf, sector_nr+i,
2799 				       conf->raid_disks, pd_idx, 0);
2800 		set_bit(STRIPE_EXPANDING, &sh->state);
2801 		atomic_inc(&conf->reshape_stripes);
2802 		/* If any of this stripe is beyond the end of the old
2803 		 * array, then we need to zero those blocks
2804 		 */
2805 		for (j=sh->disks; j--;) {
2806 			sector_t s;
2807 			if (j == sh->pd_idx)
2808 				continue;
2809 			s = compute_blocknr(sh, j);
2810 			if (s < (mddev->array_size<<1)) {
2811 				skipped = 1;
2812 				continue;
2813 			}
2814 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
2815 			set_bit(R5_Expanded, &sh->dev[j].flags);
2816 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
2817 		}
2818 		if (!skipped) {
2819 			set_bit(STRIPE_EXPAND_READY, &sh->state);
2820 			set_bit(STRIPE_HANDLE, &sh->state);
2821 		}
2822 		release_stripe(sh);
2823 	}
2824 	spin_lock_irq(&conf->device_lock);
2825 	conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
2826 	spin_unlock_irq(&conf->device_lock);
2827 	/* Ok, those stripe are ready. We can start scheduling
2828 	 * reads on the source stripes.
2829 	 * The source stripes are determined by mapping the first and last
2830 	 * block on the destination stripes.
2831 	 */
2832 	raid_disks = conf->previous_raid_disks;
2833 	data_disks = raid_disks - 1;
2834 	first_sector =
2835 		raid5_compute_sector(sector_nr*(conf->raid_disks-1),
2836 				     raid_disks, data_disks,
2837 				     &dd_idx, &pd_idx, conf);
2838 	last_sector =
2839 		raid5_compute_sector((sector_nr+conf->chunk_size/512)
2840 				     *(conf->raid_disks-1) -1,
2841 				     raid_disks, data_disks,
2842 				     &dd_idx, &pd_idx, conf);
2843 	if (last_sector >= (mddev->size<<1))
2844 		last_sector = (mddev->size<<1)-1;
2845 	while (first_sector <= last_sector) {
2846 		pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2847 		sh = get_active_stripe(conf, first_sector,
2848 				       conf->previous_raid_disks, pd_idx, 0);
2849 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2850 		set_bit(STRIPE_HANDLE, &sh->state);
2851 		release_stripe(sh);
2852 		first_sector += STRIPE_SECTORS;
2853 	}
2854 	return conf->chunk_size>>9;
2855 }
2856 
2857 /* FIXME go_faster isn't used */
2858 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2859 {
2860 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2861 	struct stripe_head *sh;
2862 	int pd_idx;
2863 	int raid_disks = conf->raid_disks;
2864 	sector_t max_sector = mddev->size << 1;
2865 	int sync_blocks;
2866 	int still_degraded = 0;
2867 	int i;
2868 
2869 	if (sector_nr >= max_sector) {
2870 		/* just being told to finish up .. nothing much to do */
2871 		unplug_slaves(mddev);
2872 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2873 			end_reshape(conf);
2874 			return 0;
2875 		}
2876 
2877 		if (mddev->curr_resync < max_sector) /* aborted */
2878 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2879 					&sync_blocks, 1);
2880 		else /* completed sync */
2881 			conf->fullsync = 0;
2882 		bitmap_close_sync(mddev->bitmap);
2883 
2884 		return 0;
2885 	}
2886 
2887 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2888 		return reshape_request(mddev, sector_nr, skipped);
2889 
2890 	/* if there is too many failed drives and we are trying
2891 	 * to resync, then assert that we are finished, because there is
2892 	 * nothing we can do.
2893 	 */
2894 	if (mddev->degraded >= conf->max_degraded &&
2895 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2896 		sector_t rv = (mddev->size << 1) - sector_nr;
2897 		*skipped = 1;
2898 		return rv;
2899 	}
2900 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2901 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2902 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2903 		/* we can skip this block, and probably more */
2904 		sync_blocks /= STRIPE_SECTORS;
2905 		*skipped = 1;
2906 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2907 	}
2908 
2909 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
2910 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
2911 	if (sh == NULL) {
2912 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
2913 		/* make sure we don't swamp the stripe cache if someone else
2914 		 * is trying to get access
2915 		 */
2916 		schedule_timeout_uninterruptible(1);
2917 	}
2918 	/* Need to check if array will still be degraded after recovery/resync
2919 	 * We don't need to check the 'failed' flag as when that gets set,
2920 	 * recovery aborts.
2921 	 */
2922 	for (i=0; i<mddev->raid_disks; i++)
2923 		if (conf->disks[i].rdev == NULL)
2924 			still_degraded = 1;
2925 
2926 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
2927 
2928 	spin_lock(&sh->lock);
2929 	set_bit(STRIPE_SYNCING, &sh->state);
2930 	clear_bit(STRIPE_INSYNC, &sh->state);
2931 	spin_unlock(&sh->lock);
2932 
2933 	handle_stripe(sh, NULL);
2934 	release_stripe(sh);
2935 
2936 	return STRIPE_SECTORS;
2937 }
2938 
2939 /*
2940  * This is our raid5 kernel thread.
2941  *
2942  * We scan the hash table for stripes which can be handled now.
2943  * During the scan, completed stripes are saved for us by the interrupt
2944  * handler, so that they will not have to wait for our next wakeup.
2945  */
2946 static void raid5d (mddev_t *mddev)
2947 {
2948 	struct stripe_head *sh;
2949 	raid5_conf_t *conf = mddev_to_conf(mddev);
2950 	int handled;
2951 
2952 	PRINTK("+++ raid5d active\n");
2953 
2954 	md_check_recovery(mddev);
2955 
2956 	handled = 0;
2957 	spin_lock_irq(&conf->device_lock);
2958 	while (1) {
2959 		struct list_head *first;
2960 
2961 		if (conf->seq_flush != conf->seq_write) {
2962 			int seq = conf->seq_flush;
2963 			spin_unlock_irq(&conf->device_lock);
2964 			bitmap_unplug(mddev->bitmap);
2965 			spin_lock_irq(&conf->device_lock);
2966 			conf->seq_write = seq;
2967 			activate_bit_delay(conf);
2968 		}
2969 
2970 		if (list_empty(&conf->handle_list) &&
2971 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2972 		    !blk_queue_plugged(mddev->queue) &&
2973 		    !list_empty(&conf->delayed_list))
2974 			raid5_activate_delayed(conf);
2975 
2976 		if (list_empty(&conf->handle_list))
2977 			break;
2978 
2979 		first = conf->handle_list.next;
2980 		sh = list_entry(first, struct stripe_head, lru);
2981 
2982 		list_del_init(first);
2983 		atomic_inc(&sh->count);
2984 		BUG_ON(atomic_read(&sh->count)!= 1);
2985 		spin_unlock_irq(&conf->device_lock);
2986 
2987 		handled++;
2988 		handle_stripe(sh, conf->spare_page);
2989 		release_stripe(sh);
2990 
2991 		spin_lock_irq(&conf->device_lock);
2992 	}
2993 	PRINTK("%d stripes handled\n", handled);
2994 
2995 	spin_unlock_irq(&conf->device_lock);
2996 
2997 	unplug_slaves(mddev);
2998 
2999 	PRINTK("--- raid5d inactive\n");
3000 }
3001 
3002 static ssize_t
3003 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3004 {
3005 	raid5_conf_t *conf = mddev_to_conf(mddev);
3006 	if (conf)
3007 		return sprintf(page, "%d\n", conf->max_nr_stripes);
3008 	else
3009 		return 0;
3010 }
3011 
3012 static ssize_t
3013 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3014 {
3015 	raid5_conf_t *conf = mddev_to_conf(mddev);
3016 	char *end;
3017 	int new;
3018 	if (len >= PAGE_SIZE)
3019 		return -EINVAL;
3020 	if (!conf)
3021 		return -ENODEV;
3022 
3023 	new = simple_strtoul(page, &end, 10);
3024 	if (!*page || (*end && *end != '\n') )
3025 		return -EINVAL;
3026 	if (new <= 16 || new > 32768)
3027 		return -EINVAL;
3028 	while (new < conf->max_nr_stripes) {
3029 		if (drop_one_stripe(conf))
3030 			conf->max_nr_stripes--;
3031 		else
3032 			break;
3033 	}
3034 	while (new > conf->max_nr_stripes) {
3035 		if (grow_one_stripe(conf))
3036 			conf->max_nr_stripes++;
3037 		else break;
3038 	}
3039 	return len;
3040 }
3041 
3042 static struct md_sysfs_entry
3043 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3044 				raid5_show_stripe_cache_size,
3045 				raid5_store_stripe_cache_size);
3046 
3047 static ssize_t
3048 stripe_cache_active_show(mddev_t *mddev, char *page)
3049 {
3050 	raid5_conf_t *conf = mddev_to_conf(mddev);
3051 	if (conf)
3052 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3053 	else
3054 		return 0;
3055 }
3056 
3057 static struct md_sysfs_entry
3058 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3059 
3060 static struct attribute *raid5_attrs[] =  {
3061 	&raid5_stripecache_size.attr,
3062 	&raid5_stripecache_active.attr,
3063 	NULL,
3064 };
3065 static struct attribute_group raid5_attrs_group = {
3066 	.name = NULL,
3067 	.attrs = raid5_attrs,
3068 };
3069 
3070 static int run(mddev_t *mddev)
3071 {
3072 	raid5_conf_t *conf;
3073 	int raid_disk, memory;
3074 	mdk_rdev_t *rdev;
3075 	struct disk_info *disk;
3076 	struct list_head *tmp;
3077 
3078 	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3079 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
3080 		       mdname(mddev), mddev->level);
3081 		return -EIO;
3082 	}
3083 
3084 	if (mddev->reshape_position != MaxSector) {
3085 		/* Check that we can continue the reshape.
3086 		 * Currently only disks can change, it must
3087 		 * increase, and we must be past the point where
3088 		 * a stripe over-writes itself
3089 		 */
3090 		sector_t here_new, here_old;
3091 		int old_disks;
3092 
3093 		if (mddev->new_level != mddev->level ||
3094 		    mddev->new_layout != mddev->layout ||
3095 		    mddev->new_chunk != mddev->chunk_size) {
3096 			printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
3097 			       mdname(mddev));
3098 			return -EINVAL;
3099 		}
3100 		if (mddev->delta_disks <= 0) {
3101 			printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3102 			       mdname(mddev));
3103 			return -EINVAL;
3104 		}
3105 		old_disks = mddev->raid_disks - mddev->delta_disks;
3106 		/* reshape_position must be on a new-stripe boundary, and one
3107 		 * further up in new geometry must map after here in old geometry.
3108 		 */
3109 		here_new = mddev->reshape_position;
3110 		if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
3111 			printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
3112 			return -EINVAL;
3113 		}
3114 		/* here_new is the stripe we will write to */
3115 		here_old = mddev->reshape_position;
3116 		sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
3117 		/* here_old is the first stripe that we might need to read from */
3118 		if (here_new >= here_old) {
3119 			/* Reading from the same stripe as writing to - bad */
3120 			printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
3121 			return -EINVAL;
3122 		}
3123 		printk(KERN_INFO "raid5: reshape will continue\n");
3124 		/* OK, we should be able to continue; */
3125 	}
3126 
3127 
3128 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
3129 	if ((conf = mddev->private) == NULL)
3130 		goto abort;
3131 	if (mddev->reshape_position == MaxSector) {
3132 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3133 	} else {
3134 		conf->raid_disks = mddev->raid_disks;
3135 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3136 	}
3137 
3138 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
3139 			      GFP_KERNEL);
3140 	if (!conf->disks)
3141 		goto abort;
3142 
3143 	conf->mddev = mddev;
3144 
3145 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
3146 		goto abort;
3147 
3148 	if (mddev->level == 6) {
3149 		conf->spare_page = alloc_page(GFP_KERNEL);
3150 		if (!conf->spare_page)
3151 			goto abort;
3152 	}
3153 	spin_lock_init(&conf->device_lock);
3154 	init_waitqueue_head(&conf->wait_for_stripe);
3155 	init_waitqueue_head(&conf->wait_for_overlap);
3156 	INIT_LIST_HEAD(&conf->handle_list);
3157 	INIT_LIST_HEAD(&conf->delayed_list);
3158 	INIT_LIST_HEAD(&conf->bitmap_list);
3159 	INIT_LIST_HEAD(&conf->inactive_list);
3160 	atomic_set(&conf->active_stripes, 0);
3161 	atomic_set(&conf->preread_active_stripes, 0);
3162 
3163 	PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3164 
3165 	ITERATE_RDEV(mddev,rdev,tmp) {
3166 		raid_disk = rdev->raid_disk;
3167 		if (raid_disk >= conf->raid_disks
3168 		    || raid_disk < 0)
3169 			continue;
3170 		disk = conf->disks + raid_disk;
3171 
3172 		disk->rdev = rdev;
3173 
3174 		if (test_bit(In_sync, &rdev->flags)) {
3175 			char b[BDEVNAME_SIZE];
3176 			printk(KERN_INFO "raid5: device %s operational as raid"
3177 				" disk %d\n", bdevname(rdev->bdev,b),
3178 				raid_disk);
3179 			conf->working_disks++;
3180 		}
3181 	}
3182 
3183 	/*
3184 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
3185 	 */
3186 	mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
3187 	conf->mddev = mddev;
3188 	conf->chunk_size = mddev->chunk_size;
3189 	conf->level = mddev->level;
3190 	if (conf->level == 6)
3191 		conf->max_degraded = 2;
3192 	else
3193 		conf->max_degraded = 1;
3194 	conf->algorithm = mddev->layout;
3195 	conf->max_nr_stripes = NR_STRIPES;
3196 	conf->expand_progress = mddev->reshape_position;
3197 
3198 	/* device size must be a multiple of chunk size */
3199 	mddev->size &= ~(mddev->chunk_size/1024 -1);
3200 	mddev->resync_max_sectors = mddev->size << 1;
3201 
3202 	if (conf->level == 6 && conf->raid_disks < 4) {
3203 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3204 		       mdname(mddev), conf->raid_disks);
3205 		goto abort;
3206 	}
3207 	if (!conf->chunk_size || conf->chunk_size % 4) {
3208 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3209 			conf->chunk_size, mdname(mddev));
3210 		goto abort;
3211 	}
3212 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3213 		printk(KERN_ERR
3214 			"raid5: unsupported parity algorithm %d for %s\n",
3215 			conf->algorithm, mdname(mddev));
3216 		goto abort;
3217 	}
3218 	if (mddev->degraded > conf->max_degraded) {
3219 		printk(KERN_ERR "raid5: not enough operational devices for %s"
3220 			" (%d/%d failed)\n",
3221 			mdname(mddev), conf->failed_disks, conf->raid_disks);
3222 		goto abort;
3223 	}
3224 
3225 	if (mddev->degraded > 0 &&
3226 	    mddev->recovery_cp != MaxSector) {
3227 		if (mddev->ok_start_degraded)
3228 			printk(KERN_WARNING
3229 			       "raid5: starting dirty degraded array: %s"
3230 			       "- data corruption possible.\n",
3231 			       mdname(mddev));
3232 		else {
3233 			printk(KERN_ERR
3234 			       "raid5: cannot start dirty degraded array for %s\n",
3235 			       mdname(mddev));
3236 			goto abort;
3237 		}
3238 	}
3239 
3240 	{
3241 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3242 		if (!mddev->thread) {
3243 			printk(KERN_ERR
3244 				"raid5: couldn't allocate thread for %s\n",
3245 				mdname(mddev));
3246 			goto abort;
3247 		}
3248 	}
3249 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
3250 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3251 	if (grow_stripes(conf, conf->max_nr_stripes)) {
3252 		printk(KERN_ERR
3253 			"raid5: couldn't allocate %dkB for buffers\n", memory);
3254 		shrink_stripes(conf);
3255 		md_unregister_thread(mddev->thread);
3256 		goto abort;
3257 	} else
3258 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3259 			memory, mdname(mddev));
3260 
3261 	if (mddev->degraded == 0)
3262 		printk("raid5: raid level %d set %s active with %d out of %d"
3263 			" devices, algorithm %d\n", conf->level, mdname(mddev),
3264 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3265 			conf->algorithm);
3266 	else
3267 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3268 			" out of %d devices, algorithm %d\n", conf->level,
3269 			mdname(mddev), mddev->raid_disks - mddev->degraded,
3270 			mddev->raid_disks, conf->algorithm);
3271 
3272 	print_raid5_conf(conf);
3273 
3274 	if (conf->expand_progress != MaxSector) {
3275 		printk("...ok start reshape thread\n");
3276 		conf->expand_lo = conf->expand_progress;
3277 		atomic_set(&conf->reshape_stripes, 0);
3278 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3279 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3280 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3281 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3282 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3283 							"%s_reshape");
3284 	}
3285 
3286 	/* read-ahead size must cover two whole stripes, which is
3287 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3288 	 */
3289 	{
3290 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
3291 		int stripe = data_disks *
3292 			(mddev->chunk_size / PAGE_SIZE);
3293 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3294 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3295 	}
3296 
3297 	/* Ok, everything is just fine now */
3298 	sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
3299 
3300 	mddev->queue->unplug_fn = raid5_unplug_device;
3301 	mddev->queue->issue_flush_fn = raid5_issue_flush;
3302 	mddev->array_size =  mddev->size * (conf->previous_raid_disks -
3303 					    conf->max_degraded);
3304 
3305 	return 0;
3306 abort:
3307 	if (conf) {
3308 		print_raid5_conf(conf);
3309 		safe_put_page(conf->spare_page);
3310 		kfree(conf->disks);
3311 		kfree(conf->stripe_hashtbl);
3312 		kfree(conf);
3313 	}
3314 	mddev->private = NULL;
3315 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3316 	return -EIO;
3317 }
3318 
3319 
3320 
3321 static int stop(mddev_t *mddev)
3322 {
3323 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3324 
3325 	md_unregister_thread(mddev->thread);
3326 	mddev->thread = NULL;
3327 	shrink_stripes(conf);
3328 	kfree(conf->stripe_hashtbl);
3329 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3330 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
3331 	kfree(conf->disks);
3332 	kfree(conf);
3333 	mddev->private = NULL;
3334 	return 0;
3335 }
3336 
3337 #if RAID5_DEBUG
3338 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
3339 {
3340 	int i;
3341 
3342 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3343 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3344 	seq_printf(seq, "sh %llu,  count %d.\n",
3345 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
3346 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
3347 	for (i = 0; i < sh->disks; i++) {
3348 		seq_printf(seq, "(cache%d: %p %ld) ",
3349 			   i, sh->dev[i].page, sh->dev[i].flags);
3350 	}
3351 	seq_printf(seq, "\n");
3352 }
3353 
3354 static void printall (struct seq_file *seq, raid5_conf_t *conf)
3355 {
3356 	struct stripe_head *sh;
3357 	struct hlist_node *hn;
3358 	int i;
3359 
3360 	spin_lock_irq(&conf->device_lock);
3361 	for (i = 0; i < NR_HASH; i++) {
3362 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
3363 			if (sh->raid_conf != conf)
3364 				continue;
3365 			print_sh(seq, sh);
3366 		}
3367 	}
3368 	spin_unlock_irq(&conf->device_lock);
3369 }
3370 #endif
3371 
3372 static void status (struct seq_file *seq, mddev_t *mddev)
3373 {
3374 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3375 	int i;
3376 
3377 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
3378 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
3379 	for (i = 0; i < conf->raid_disks; i++)
3380 		seq_printf (seq, "%s",
3381 			       conf->disks[i].rdev &&
3382 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
3383 	seq_printf (seq, "]");
3384 #if RAID5_DEBUG
3385 	seq_printf (seq, "\n");
3386 	printall(seq, conf);
3387 #endif
3388 }
3389 
3390 static void print_raid5_conf (raid5_conf_t *conf)
3391 {
3392 	int i;
3393 	struct disk_info *tmp;
3394 
3395 	printk("RAID5 conf printout:\n");
3396 	if (!conf) {
3397 		printk("(conf==NULL)\n");
3398 		return;
3399 	}
3400 	printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
3401 		 conf->working_disks, conf->failed_disks);
3402 
3403 	for (i = 0; i < conf->raid_disks; i++) {
3404 		char b[BDEVNAME_SIZE];
3405 		tmp = conf->disks + i;
3406 		if (tmp->rdev)
3407 		printk(" disk %d, o:%d, dev:%s\n",
3408 			i, !test_bit(Faulty, &tmp->rdev->flags),
3409 			bdevname(tmp->rdev->bdev,b));
3410 	}
3411 }
3412 
3413 static int raid5_spare_active(mddev_t *mddev)
3414 {
3415 	int i;
3416 	raid5_conf_t *conf = mddev->private;
3417 	struct disk_info *tmp;
3418 
3419 	for (i = 0; i < conf->raid_disks; i++) {
3420 		tmp = conf->disks + i;
3421 		if (tmp->rdev
3422 		    && !test_bit(Faulty, &tmp->rdev->flags)
3423 		    && !test_bit(In_sync, &tmp->rdev->flags)) {
3424 			mddev->degraded--;
3425 			conf->failed_disks--;
3426 			conf->working_disks++;
3427 			set_bit(In_sync, &tmp->rdev->flags);
3428 		}
3429 	}
3430 	print_raid5_conf(conf);
3431 	return 0;
3432 }
3433 
3434 static int raid5_remove_disk(mddev_t *mddev, int number)
3435 {
3436 	raid5_conf_t *conf = mddev->private;
3437 	int err = 0;
3438 	mdk_rdev_t *rdev;
3439 	struct disk_info *p = conf->disks + number;
3440 
3441 	print_raid5_conf(conf);
3442 	rdev = p->rdev;
3443 	if (rdev) {
3444 		if (test_bit(In_sync, &rdev->flags) ||
3445 		    atomic_read(&rdev->nr_pending)) {
3446 			err = -EBUSY;
3447 			goto abort;
3448 		}
3449 		p->rdev = NULL;
3450 		synchronize_rcu();
3451 		if (atomic_read(&rdev->nr_pending)) {
3452 			/* lost the race, try later */
3453 			err = -EBUSY;
3454 			p->rdev = rdev;
3455 		}
3456 	}
3457 abort:
3458 
3459 	print_raid5_conf(conf);
3460 	return err;
3461 }
3462 
3463 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3464 {
3465 	raid5_conf_t *conf = mddev->private;
3466 	int found = 0;
3467 	int disk;
3468 	struct disk_info *p;
3469 
3470 	if (mddev->degraded > conf->max_degraded)
3471 		/* no point adding a device */
3472 		return 0;
3473 
3474 	/*
3475 	 * find the disk ... but prefer rdev->saved_raid_disk
3476 	 * if possible.
3477 	 */
3478 	if (rdev->saved_raid_disk >= 0 &&
3479 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
3480 		disk = rdev->saved_raid_disk;
3481 	else
3482 		disk = 0;
3483 	for ( ; disk < conf->raid_disks; disk++)
3484 		if ((p=conf->disks + disk)->rdev == NULL) {
3485 			clear_bit(In_sync, &rdev->flags);
3486 			rdev->raid_disk = disk;
3487 			found = 1;
3488 			if (rdev->saved_raid_disk != disk)
3489 				conf->fullsync = 1;
3490 			rcu_assign_pointer(p->rdev, rdev);
3491 			break;
3492 		}
3493 	print_raid5_conf(conf);
3494 	return found;
3495 }
3496 
3497 static int raid5_resize(mddev_t *mddev, sector_t sectors)
3498 {
3499 	/* no resync is happening, and there is enough space
3500 	 * on all devices, so we can resize.
3501 	 * We need to make sure resync covers any new space.
3502 	 * If the array is shrinking we should possibly wait until
3503 	 * any io in the removed space completes, but it hardly seems
3504 	 * worth it.
3505 	 */
3506 	raid5_conf_t *conf = mddev_to_conf(mddev);
3507 
3508 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
3509 	mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
3510 	set_capacity(mddev->gendisk, mddev->array_size << 1);
3511 	mddev->changed = 1;
3512 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
3513 		mddev->recovery_cp = mddev->size << 1;
3514 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3515 	}
3516 	mddev->size = sectors /2;
3517 	mddev->resync_max_sectors = sectors;
3518 	return 0;
3519 }
3520 
3521 #ifdef CONFIG_MD_RAID5_RESHAPE
3522 static int raid5_check_reshape(mddev_t *mddev)
3523 {
3524 	raid5_conf_t *conf = mddev_to_conf(mddev);
3525 	int err;
3526 
3527 	if (mddev->delta_disks < 0 ||
3528 	    mddev->new_level != mddev->level)
3529 		return -EINVAL; /* Cannot shrink array or change level yet */
3530 	if (mddev->delta_disks == 0)
3531 		return 0; /* nothing to do */
3532 
3533 	/* Can only proceed if there are plenty of stripe_heads.
3534 	 * We need a minimum of one full stripe,, and for sensible progress
3535 	 * it is best to have about 4 times that.
3536 	 * If we require 4 times, then the default 256 4K stripe_heads will
3537 	 * allow for chunk sizes up to 256K, which is probably OK.
3538 	 * If the chunk size is greater, user-space should request more
3539 	 * stripe_heads first.
3540 	 */
3541 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3542 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
3543 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
3544 		       (mddev->chunk_size / STRIPE_SIZE)*4);
3545 		return -ENOSPC;
3546 	}
3547 
3548 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3549 	if (err)
3550 		return err;
3551 
3552 	/* looks like we might be able to manage this */
3553 	return 0;
3554 }
3555 
3556 static int raid5_start_reshape(mddev_t *mddev)
3557 {
3558 	raid5_conf_t *conf = mddev_to_conf(mddev);
3559 	mdk_rdev_t *rdev;
3560 	struct list_head *rtmp;
3561 	int spares = 0;
3562 	int added_devices = 0;
3563 
3564 	if (mddev->degraded ||
3565 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3566 		return -EBUSY;
3567 
3568 	ITERATE_RDEV(mddev, rdev, rtmp)
3569 		if (rdev->raid_disk < 0 &&
3570 		    !test_bit(Faulty, &rdev->flags))
3571 			spares++;
3572 
3573 	if (spares < mddev->delta_disks-1)
3574 		/* Not enough devices even to make a degraded array
3575 		 * of that size
3576 		 */
3577 		return -EINVAL;
3578 
3579 	atomic_set(&conf->reshape_stripes, 0);
3580 	spin_lock_irq(&conf->device_lock);
3581 	conf->previous_raid_disks = conf->raid_disks;
3582 	conf->raid_disks += mddev->delta_disks;
3583 	conf->expand_progress = 0;
3584 	conf->expand_lo = 0;
3585 	spin_unlock_irq(&conf->device_lock);
3586 
3587 	/* Add some new drives, as many as will fit.
3588 	 * We know there are enough to make the newly sized array work.
3589 	 */
3590 	ITERATE_RDEV(mddev, rdev, rtmp)
3591 		if (rdev->raid_disk < 0 &&
3592 		    !test_bit(Faulty, &rdev->flags)) {
3593 			if (raid5_add_disk(mddev, rdev)) {
3594 				char nm[20];
3595 				set_bit(In_sync, &rdev->flags);
3596 				conf->working_disks++;
3597 				added_devices++;
3598 				rdev->recovery_offset = 0;
3599 				sprintf(nm, "rd%d", rdev->raid_disk);
3600 				sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3601 			} else
3602 				break;
3603 		}
3604 
3605 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
3606 	mddev->raid_disks = conf->raid_disks;
3607 	mddev->reshape_position = 0;
3608 	mddev->sb_dirty = 1;
3609 
3610 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3611 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3612 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3613 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3614 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3615 						"%s_reshape");
3616 	if (!mddev->sync_thread) {
3617 		mddev->recovery = 0;
3618 		spin_lock_irq(&conf->device_lock);
3619 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3620 		conf->expand_progress = MaxSector;
3621 		spin_unlock_irq(&conf->device_lock);
3622 		return -EAGAIN;
3623 	}
3624 	md_wakeup_thread(mddev->sync_thread);
3625 	md_new_event(mddev);
3626 	return 0;
3627 }
3628 #endif
3629 
3630 static void end_reshape(raid5_conf_t *conf)
3631 {
3632 	struct block_device *bdev;
3633 
3634 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
3635 		conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
3636 		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
3637 		conf->mddev->changed = 1;
3638 
3639 		bdev = bdget_disk(conf->mddev->gendisk, 0);
3640 		if (bdev) {
3641 			mutex_lock(&bdev->bd_inode->i_mutex);
3642 			i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
3643 			mutex_unlock(&bdev->bd_inode->i_mutex);
3644 			bdput(bdev);
3645 		}
3646 		spin_lock_irq(&conf->device_lock);
3647 		conf->expand_progress = MaxSector;
3648 		spin_unlock_irq(&conf->device_lock);
3649 		conf->mddev->reshape_position = MaxSector;
3650 
3651 		/* read-ahead size must cover two whole stripes, which is
3652 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3653 		 */
3654 		{
3655 			int data_disks = conf->previous_raid_disks - conf->max_degraded;
3656 			int stripe = data_disks *
3657 				(conf->mddev->chunk_size / PAGE_SIZE);
3658 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3659 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3660 		}
3661 	}
3662 }
3663 
3664 static void raid5_quiesce(mddev_t *mddev, int state)
3665 {
3666 	raid5_conf_t *conf = mddev_to_conf(mddev);
3667 
3668 	switch(state) {
3669 	case 2: /* resume for a suspend */
3670 		wake_up(&conf->wait_for_overlap);
3671 		break;
3672 
3673 	case 1: /* stop all writes */
3674 		spin_lock_irq(&conf->device_lock);
3675 		conf->quiesce = 1;
3676 		wait_event_lock_irq(conf->wait_for_stripe,
3677 				    atomic_read(&conf->active_stripes) == 0,
3678 				    conf->device_lock, /* nothing */);
3679 		spin_unlock_irq(&conf->device_lock);
3680 		break;
3681 
3682 	case 0: /* re-enable writes */
3683 		spin_lock_irq(&conf->device_lock);
3684 		conf->quiesce = 0;
3685 		wake_up(&conf->wait_for_stripe);
3686 		wake_up(&conf->wait_for_overlap);
3687 		spin_unlock_irq(&conf->device_lock);
3688 		break;
3689 	}
3690 }
3691 
3692 static struct mdk_personality raid6_personality =
3693 {
3694 	.name		= "raid6",
3695 	.level		= 6,
3696 	.owner		= THIS_MODULE,
3697 	.make_request	= make_request,
3698 	.run		= run,
3699 	.stop		= stop,
3700 	.status		= status,
3701 	.error_handler	= error,
3702 	.hot_add_disk	= raid5_add_disk,
3703 	.hot_remove_disk= raid5_remove_disk,
3704 	.spare_active	= raid5_spare_active,
3705 	.sync_request	= sync_request,
3706 	.resize		= raid5_resize,
3707 	.quiesce	= raid5_quiesce,
3708 };
3709 static struct mdk_personality raid5_personality =
3710 {
3711 	.name		= "raid5",
3712 	.level		= 5,
3713 	.owner		= THIS_MODULE,
3714 	.make_request	= make_request,
3715 	.run		= run,
3716 	.stop		= stop,
3717 	.status		= status,
3718 	.error_handler	= error,
3719 	.hot_add_disk	= raid5_add_disk,
3720 	.hot_remove_disk= raid5_remove_disk,
3721 	.spare_active	= raid5_spare_active,
3722 	.sync_request	= sync_request,
3723 	.resize		= raid5_resize,
3724 #ifdef CONFIG_MD_RAID5_RESHAPE
3725 	.check_reshape	= raid5_check_reshape,
3726 	.start_reshape  = raid5_start_reshape,
3727 #endif
3728 	.quiesce	= raid5_quiesce,
3729 };
3730 
3731 static struct mdk_personality raid4_personality =
3732 {
3733 	.name		= "raid4",
3734 	.level		= 4,
3735 	.owner		= THIS_MODULE,
3736 	.make_request	= make_request,
3737 	.run		= run,
3738 	.stop		= stop,
3739 	.status		= status,
3740 	.error_handler	= error,
3741 	.hot_add_disk	= raid5_add_disk,
3742 	.hot_remove_disk= raid5_remove_disk,
3743 	.spare_active	= raid5_spare_active,
3744 	.sync_request	= sync_request,
3745 	.resize		= raid5_resize,
3746 	.quiesce	= raid5_quiesce,
3747 };
3748 
3749 static int __init raid5_init(void)
3750 {
3751 	int e;
3752 
3753 	e = raid6_select_algo();
3754 	if ( e )
3755 		return e;
3756 	register_md_personality(&raid6_personality);
3757 	register_md_personality(&raid5_personality);
3758 	register_md_personality(&raid4_personality);
3759 	return 0;
3760 }
3761 
3762 static void raid5_exit(void)
3763 {
3764 	unregister_md_personality(&raid6_personality);
3765 	unregister_md_personality(&raid5_personality);
3766 	unregister_md_personality(&raid4_personality);
3767 }
3768 
3769 module_init(raid5_init);
3770 module_exit(raid5_exit);
3771 MODULE_LICENSE("GPL");
3772 MODULE_ALIAS("md-personality-4"); /* RAID5 */
3773 MODULE_ALIAS("md-raid5");
3774 MODULE_ALIAS("md-raid4");
3775 MODULE_ALIAS("md-level-5");
3776 MODULE_ALIAS("md-level-4");
3777 MODULE_ALIAS("md-personality-8"); /* RAID6 */
3778 MODULE_ALIAS("md-raid6");
3779 MODULE_ALIAS("md-level-6");
3780 
3781 /* This used to be two separate modules, they were: */
3782 MODULE_ALIAS("raid5");
3783 MODULE_ALIAS("raid6");
3784