1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <trace/events/block.h> 57 58 #include "md.h" 59 #include "raid5.h" 60 #include "raid0.h" 61 #include "bitmap.h" 62 63 /* 64 * Stripe cache 65 */ 66 67 #define NR_STRIPES 256 68 #define STRIPE_SIZE PAGE_SIZE 69 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 70 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 71 #define IO_THRESHOLD 1 72 #define BYPASS_THRESHOLD 1 73 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 74 #define HASH_MASK (NR_HASH - 1) 75 76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 77 { 78 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 79 return &conf->stripe_hashtbl[hash]; 80 } 81 82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 83 * order without overlap. There may be several bio's per stripe+device, and 84 * a bio could span several devices. 85 * When walking this list for a particular stripe+device, we must never proceed 86 * beyond a bio that extends past this device, as the next bio might no longer 87 * be valid. 88 * This function is used to determine the 'next' bio in the list, given the sector 89 * of the current stripe+device 90 */ 91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 92 { 93 int sectors = bio_sectors(bio); 94 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS) 95 return bio->bi_next; 96 else 97 return NULL; 98 } 99 100 /* 101 * We maintain a biased count of active stripes in the bottom 16 bits of 102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 103 */ 104 static inline int raid5_bi_processed_stripes(struct bio *bio) 105 { 106 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 107 return (atomic_read(segments) >> 16) & 0xffff; 108 } 109 110 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 111 { 112 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 113 return atomic_sub_return(1, segments) & 0xffff; 114 } 115 116 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 117 { 118 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 119 atomic_inc(segments); 120 } 121 122 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 123 unsigned int cnt) 124 { 125 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 126 int old, new; 127 128 do { 129 old = atomic_read(segments); 130 new = (old & 0xffff) | (cnt << 16); 131 } while (atomic_cmpxchg(segments, old, new) != old); 132 } 133 134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 135 { 136 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 137 atomic_set(segments, cnt); 138 } 139 140 /* Find first data disk in a raid6 stripe */ 141 static inline int raid6_d0(struct stripe_head *sh) 142 { 143 if (sh->ddf_layout) 144 /* ddf always start from first device */ 145 return 0; 146 /* md starts just after Q block */ 147 if (sh->qd_idx == sh->disks - 1) 148 return 0; 149 else 150 return sh->qd_idx + 1; 151 } 152 static inline int raid6_next_disk(int disk, int raid_disks) 153 { 154 disk++; 155 return (disk < raid_disks) ? disk : 0; 156 } 157 158 /* When walking through the disks in a raid5, starting at raid6_d0, 159 * We need to map each disk to a 'slot', where the data disks are slot 160 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 161 * is raid_disks-1. This help does that mapping. 162 */ 163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 164 int *count, int syndrome_disks) 165 { 166 int slot = *count; 167 168 if (sh->ddf_layout) 169 (*count)++; 170 if (idx == sh->pd_idx) 171 return syndrome_disks; 172 if (idx == sh->qd_idx) 173 return syndrome_disks + 1; 174 if (!sh->ddf_layout) 175 (*count)++; 176 return slot; 177 } 178 179 static void return_io(struct bio *return_bi) 180 { 181 struct bio *bi = return_bi; 182 while (bi) { 183 184 return_bi = bi->bi_next; 185 bi->bi_next = NULL; 186 bi->bi_size = 0; 187 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 188 bi, 0); 189 bio_endio(bi, 0); 190 bi = return_bi; 191 } 192 } 193 194 static void print_raid5_conf (struct r5conf *conf); 195 196 static int stripe_operations_active(struct stripe_head *sh) 197 { 198 return sh->check_state || sh->reconstruct_state || 199 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 200 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 201 } 202 203 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh) 204 { 205 BUG_ON(!list_empty(&sh->lru)); 206 BUG_ON(atomic_read(&conf->active_stripes)==0); 207 if (test_bit(STRIPE_HANDLE, &sh->state)) { 208 if (test_bit(STRIPE_DELAYED, &sh->state) && 209 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 210 list_add_tail(&sh->lru, &conf->delayed_list); 211 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 212 sh->bm_seq - conf->seq_write > 0) 213 list_add_tail(&sh->lru, &conf->bitmap_list); 214 else { 215 clear_bit(STRIPE_DELAYED, &sh->state); 216 clear_bit(STRIPE_BIT_DELAY, &sh->state); 217 list_add_tail(&sh->lru, &conf->handle_list); 218 } 219 md_wakeup_thread(conf->mddev->thread); 220 } else { 221 BUG_ON(stripe_operations_active(sh)); 222 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 223 if (atomic_dec_return(&conf->preread_active_stripes) 224 < IO_THRESHOLD) 225 md_wakeup_thread(conf->mddev->thread); 226 atomic_dec(&conf->active_stripes); 227 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 228 list_add_tail(&sh->lru, &conf->inactive_list); 229 wake_up(&conf->wait_for_stripe); 230 if (conf->retry_read_aligned) 231 md_wakeup_thread(conf->mddev->thread); 232 } 233 } 234 } 235 236 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh) 237 { 238 if (atomic_dec_and_test(&sh->count)) 239 do_release_stripe(conf, sh); 240 } 241 242 static void release_stripe(struct stripe_head *sh) 243 { 244 struct r5conf *conf = sh->raid_conf; 245 unsigned long flags; 246 247 local_irq_save(flags); 248 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 249 do_release_stripe(conf, sh); 250 spin_unlock(&conf->device_lock); 251 } 252 local_irq_restore(flags); 253 } 254 255 static inline void remove_hash(struct stripe_head *sh) 256 { 257 pr_debug("remove_hash(), stripe %llu\n", 258 (unsigned long long)sh->sector); 259 260 hlist_del_init(&sh->hash); 261 } 262 263 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 264 { 265 struct hlist_head *hp = stripe_hash(conf, sh->sector); 266 267 pr_debug("insert_hash(), stripe %llu\n", 268 (unsigned long long)sh->sector); 269 270 hlist_add_head(&sh->hash, hp); 271 } 272 273 274 /* find an idle stripe, make sure it is unhashed, and return it. */ 275 static struct stripe_head *get_free_stripe(struct r5conf *conf) 276 { 277 struct stripe_head *sh = NULL; 278 struct list_head *first; 279 280 if (list_empty(&conf->inactive_list)) 281 goto out; 282 first = conf->inactive_list.next; 283 sh = list_entry(first, struct stripe_head, lru); 284 list_del_init(first); 285 remove_hash(sh); 286 atomic_inc(&conf->active_stripes); 287 out: 288 return sh; 289 } 290 291 static void shrink_buffers(struct stripe_head *sh) 292 { 293 struct page *p; 294 int i; 295 int num = sh->raid_conf->pool_size; 296 297 for (i = 0; i < num ; i++) { 298 p = sh->dev[i].page; 299 if (!p) 300 continue; 301 sh->dev[i].page = NULL; 302 put_page(p); 303 } 304 } 305 306 static int grow_buffers(struct stripe_head *sh) 307 { 308 int i; 309 int num = sh->raid_conf->pool_size; 310 311 for (i = 0; i < num; i++) { 312 struct page *page; 313 314 if (!(page = alloc_page(GFP_KERNEL))) { 315 return 1; 316 } 317 sh->dev[i].page = page; 318 } 319 return 0; 320 } 321 322 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 324 struct stripe_head *sh); 325 326 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 327 { 328 struct r5conf *conf = sh->raid_conf; 329 int i; 330 331 BUG_ON(atomic_read(&sh->count) != 0); 332 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 333 BUG_ON(stripe_operations_active(sh)); 334 335 pr_debug("init_stripe called, stripe %llu\n", 336 (unsigned long long)sh->sector); 337 338 remove_hash(sh); 339 340 sh->generation = conf->generation - previous; 341 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 342 sh->sector = sector; 343 stripe_set_idx(sector, conf, previous, sh); 344 sh->state = 0; 345 346 347 for (i = sh->disks; i--; ) { 348 struct r5dev *dev = &sh->dev[i]; 349 350 if (dev->toread || dev->read || dev->towrite || dev->written || 351 test_bit(R5_LOCKED, &dev->flags)) { 352 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 353 (unsigned long long)sh->sector, i, dev->toread, 354 dev->read, dev->towrite, dev->written, 355 test_bit(R5_LOCKED, &dev->flags)); 356 WARN_ON(1); 357 } 358 dev->flags = 0; 359 raid5_build_block(sh, i, previous); 360 } 361 insert_hash(conf, sh); 362 } 363 364 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 365 short generation) 366 { 367 struct stripe_head *sh; 368 369 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 370 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 371 if (sh->sector == sector && sh->generation == generation) 372 return sh; 373 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 374 return NULL; 375 } 376 377 /* 378 * Need to check if array has failed when deciding whether to: 379 * - start an array 380 * - remove non-faulty devices 381 * - add a spare 382 * - allow a reshape 383 * This determination is simple when no reshape is happening. 384 * However if there is a reshape, we need to carefully check 385 * both the before and after sections. 386 * This is because some failed devices may only affect one 387 * of the two sections, and some non-in_sync devices may 388 * be insync in the section most affected by failed devices. 389 */ 390 static int calc_degraded(struct r5conf *conf) 391 { 392 int degraded, degraded2; 393 int i; 394 395 rcu_read_lock(); 396 degraded = 0; 397 for (i = 0; i < conf->previous_raid_disks; i++) { 398 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 399 if (rdev && test_bit(Faulty, &rdev->flags)) 400 rdev = rcu_dereference(conf->disks[i].replacement); 401 if (!rdev || test_bit(Faulty, &rdev->flags)) 402 degraded++; 403 else if (test_bit(In_sync, &rdev->flags)) 404 ; 405 else 406 /* not in-sync or faulty. 407 * If the reshape increases the number of devices, 408 * this is being recovered by the reshape, so 409 * this 'previous' section is not in_sync. 410 * If the number of devices is being reduced however, 411 * the device can only be part of the array if 412 * we are reverting a reshape, so this section will 413 * be in-sync. 414 */ 415 if (conf->raid_disks >= conf->previous_raid_disks) 416 degraded++; 417 } 418 rcu_read_unlock(); 419 if (conf->raid_disks == conf->previous_raid_disks) 420 return degraded; 421 rcu_read_lock(); 422 degraded2 = 0; 423 for (i = 0; i < conf->raid_disks; i++) { 424 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 425 if (rdev && test_bit(Faulty, &rdev->flags)) 426 rdev = rcu_dereference(conf->disks[i].replacement); 427 if (!rdev || test_bit(Faulty, &rdev->flags)) 428 degraded2++; 429 else if (test_bit(In_sync, &rdev->flags)) 430 ; 431 else 432 /* not in-sync or faulty. 433 * If reshape increases the number of devices, this 434 * section has already been recovered, else it 435 * almost certainly hasn't. 436 */ 437 if (conf->raid_disks <= conf->previous_raid_disks) 438 degraded2++; 439 } 440 rcu_read_unlock(); 441 if (degraded2 > degraded) 442 return degraded2; 443 return degraded; 444 } 445 446 static int has_failed(struct r5conf *conf) 447 { 448 int degraded; 449 450 if (conf->mddev->reshape_position == MaxSector) 451 return conf->mddev->degraded > conf->max_degraded; 452 453 degraded = calc_degraded(conf); 454 if (degraded > conf->max_degraded) 455 return 1; 456 return 0; 457 } 458 459 static struct stripe_head * 460 get_active_stripe(struct r5conf *conf, sector_t sector, 461 int previous, int noblock, int noquiesce) 462 { 463 struct stripe_head *sh; 464 465 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 466 467 spin_lock_irq(&conf->device_lock); 468 469 do { 470 wait_event_lock_irq(conf->wait_for_stripe, 471 conf->quiesce == 0 || noquiesce, 472 conf->device_lock); 473 sh = __find_stripe(conf, sector, conf->generation - previous); 474 if (!sh) { 475 if (!conf->inactive_blocked) 476 sh = get_free_stripe(conf); 477 if (noblock && sh == NULL) 478 break; 479 if (!sh) { 480 conf->inactive_blocked = 1; 481 wait_event_lock_irq(conf->wait_for_stripe, 482 !list_empty(&conf->inactive_list) && 483 (atomic_read(&conf->active_stripes) 484 < (conf->max_nr_stripes *3/4) 485 || !conf->inactive_blocked), 486 conf->device_lock); 487 conf->inactive_blocked = 0; 488 } else 489 init_stripe(sh, sector, previous); 490 } else { 491 if (atomic_read(&sh->count)) { 492 BUG_ON(!list_empty(&sh->lru) 493 && !test_bit(STRIPE_EXPANDING, &sh->state) 494 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)); 495 } else { 496 if (!test_bit(STRIPE_HANDLE, &sh->state)) 497 atomic_inc(&conf->active_stripes); 498 if (list_empty(&sh->lru) && 499 !test_bit(STRIPE_EXPANDING, &sh->state)) 500 BUG(); 501 list_del_init(&sh->lru); 502 } 503 } 504 } while (sh == NULL); 505 506 if (sh) 507 atomic_inc(&sh->count); 508 509 spin_unlock_irq(&conf->device_lock); 510 return sh; 511 } 512 513 /* Determine if 'data_offset' or 'new_data_offset' should be used 514 * in this stripe_head. 515 */ 516 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 517 { 518 sector_t progress = conf->reshape_progress; 519 /* Need a memory barrier to make sure we see the value 520 * of conf->generation, or ->data_offset that was set before 521 * reshape_progress was updated. 522 */ 523 smp_rmb(); 524 if (progress == MaxSector) 525 return 0; 526 if (sh->generation == conf->generation - 1) 527 return 0; 528 /* We are in a reshape, and this is a new-generation stripe, 529 * so use new_data_offset. 530 */ 531 return 1; 532 } 533 534 static void 535 raid5_end_read_request(struct bio *bi, int error); 536 static void 537 raid5_end_write_request(struct bio *bi, int error); 538 539 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 540 { 541 struct r5conf *conf = sh->raid_conf; 542 int i, disks = sh->disks; 543 544 might_sleep(); 545 546 for (i = disks; i--; ) { 547 int rw; 548 int replace_only = 0; 549 struct bio *bi, *rbi; 550 struct md_rdev *rdev, *rrdev = NULL; 551 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 552 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 553 rw = WRITE_FUA; 554 else 555 rw = WRITE; 556 if (test_bit(R5_Discard, &sh->dev[i].flags)) 557 rw |= REQ_DISCARD; 558 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 559 rw = READ; 560 else if (test_and_clear_bit(R5_WantReplace, 561 &sh->dev[i].flags)) { 562 rw = WRITE; 563 replace_only = 1; 564 } else 565 continue; 566 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 567 rw |= REQ_SYNC; 568 569 bi = &sh->dev[i].req; 570 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 571 572 rcu_read_lock(); 573 rrdev = rcu_dereference(conf->disks[i].replacement); 574 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 575 rdev = rcu_dereference(conf->disks[i].rdev); 576 if (!rdev) { 577 rdev = rrdev; 578 rrdev = NULL; 579 } 580 if (rw & WRITE) { 581 if (replace_only) 582 rdev = NULL; 583 if (rdev == rrdev) 584 /* We raced and saw duplicates */ 585 rrdev = NULL; 586 } else { 587 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev) 588 rdev = rrdev; 589 rrdev = NULL; 590 } 591 592 if (rdev && test_bit(Faulty, &rdev->flags)) 593 rdev = NULL; 594 if (rdev) 595 atomic_inc(&rdev->nr_pending); 596 if (rrdev && test_bit(Faulty, &rrdev->flags)) 597 rrdev = NULL; 598 if (rrdev) 599 atomic_inc(&rrdev->nr_pending); 600 rcu_read_unlock(); 601 602 /* We have already checked bad blocks for reads. Now 603 * need to check for writes. We never accept write errors 604 * on the replacement, so we don't to check rrdev. 605 */ 606 while ((rw & WRITE) && rdev && 607 test_bit(WriteErrorSeen, &rdev->flags)) { 608 sector_t first_bad; 609 int bad_sectors; 610 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 611 &first_bad, &bad_sectors); 612 if (!bad) 613 break; 614 615 if (bad < 0) { 616 set_bit(BlockedBadBlocks, &rdev->flags); 617 if (!conf->mddev->external && 618 conf->mddev->flags) { 619 /* It is very unlikely, but we might 620 * still need to write out the 621 * bad block log - better give it 622 * a chance*/ 623 md_check_recovery(conf->mddev); 624 } 625 /* 626 * Because md_wait_for_blocked_rdev 627 * will dec nr_pending, we must 628 * increment it first. 629 */ 630 atomic_inc(&rdev->nr_pending); 631 md_wait_for_blocked_rdev(rdev, conf->mddev); 632 } else { 633 /* Acknowledged bad block - skip the write */ 634 rdev_dec_pending(rdev, conf->mddev); 635 rdev = NULL; 636 } 637 } 638 639 if (rdev) { 640 if (s->syncing || s->expanding || s->expanded 641 || s->replacing) 642 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 643 644 set_bit(STRIPE_IO_STARTED, &sh->state); 645 646 bio_reset(bi); 647 bi->bi_bdev = rdev->bdev; 648 bi->bi_rw = rw; 649 bi->bi_end_io = (rw & WRITE) 650 ? raid5_end_write_request 651 : raid5_end_read_request; 652 bi->bi_private = sh; 653 654 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 655 __func__, (unsigned long long)sh->sector, 656 bi->bi_rw, i); 657 atomic_inc(&sh->count); 658 if (use_new_offset(conf, sh)) 659 bi->bi_sector = (sh->sector 660 + rdev->new_data_offset); 661 else 662 bi->bi_sector = (sh->sector 663 + rdev->data_offset); 664 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 665 bi->bi_rw |= REQ_FLUSH; 666 667 bi->bi_vcnt = 1; 668 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 669 bi->bi_io_vec[0].bv_offset = 0; 670 bi->bi_size = STRIPE_SIZE; 671 if (rrdev) 672 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 673 674 if (conf->mddev->gendisk) 675 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 676 bi, disk_devt(conf->mddev->gendisk), 677 sh->dev[i].sector); 678 generic_make_request(bi); 679 } 680 if (rrdev) { 681 if (s->syncing || s->expanding || s->expanded 682 || s->replacing) 683 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 684 685 set_bit(STRIPE_IO_STARTED, &sh->state); 686 687 bio_reset(rbi); 688 rbi->bi_bdev = rrdev->bdev; 689 rbi->bi_rw = rw; 690 BUG_ON(!(rw & WRITE)); 691 rbi->bi_end_io = raid5_end_write_request; 692 rbi->bi_private = sh; 693 694 pr_debug("%s: for %llu schedule op %ld on " 695 "replacement disc %d\n", 696 __func__, (unsigned long long)sh->sector, 697 rbi->bi_rw, i); 698 atomic_inc(&sh->count); 699 if (use_new_offset(conf, sh)) 700 rbi->bi_sector = (sh->sector 701 + rrdev->new_data_offset); 702 else 703 rbi->bi_sector = (sh->sector 704 + rrdev->data_offset); 705 rbi->bi_vcnt = 1; 706 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 707 rbi->bi_io_vec[0].bv_offset = 0; 708 rbi->bi_size = STRIPE_SIZE; 709 if (conf->mddev->gendisk) 710 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 711 rbi, disk_devt(conf->mddev->gendisk), 712 sh->dev[i].sector); 713 generic_make_request(rbi); 714 } 715 if (!rdev && !rrdev) { 716 if (rw & WRITE) 717 set_bit(STRIPE_DEGRADED, &sh->state); 718 pr_debug("skip op %ld on disc %d for sector %llu\n", 719 bi->bi_rw, i, (unsigned long long)sh->sector); 720 clear_bit(R5_LOCKED, &sh->dev[i].flags); 721 set_bit(STRIPE_HANDLE, &sh->state); 722 } 723 } 724 } 725 726 static struct dma_async_tx_descriptor * 727 async_copy_data(int frombio, struct bio *bio, struct page *page, 728 sector_t sector, struct dma_async_tx_descriptor *tx) 729 { 730 struct bio_vec *bvl; 731 struct page *bio_page; 732 int i; 733 int page_offset; 734 struct async_submit_ctl submit; 735 enum async_tx_flags flags = 0; 736 737 if (bio->bi_sector >= sector) 738 page_offset = (signed)(bio->bi_sector - sector) * 512; 739 else 740 page_offset = (signed)(sector - bio->bi_sector) * -512; 741 742 if (frombio) 743 flags |= ASYNC_TX_FENCE; 744 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 745 746 bio_for_each_segment(bvl, bio, i) { 747 int len = bvl->bv_len; 748 int clen; 749 int b_offset = 0; 750 751 if (page_offset < 0) { 752 b_offset = -page_offset; 753 page_offset += b_offset; 754 len -= b_offset; 755 } 756 757 if (len > 0 && page_offset + len > STRIPE_SIZE) 758 clen = STRIPE_SIZE - page_offset; 759 else 760 clen = len; 761 762 if (clen > 0) { 763 b_offset += bvl->bv_offset; 764 bio_page = bvl->bv_page; 765 if (frombio) 766 tx = async_memcpy(page, bio_page, page_offset, 767 b_offset, clen, &submit); 768 else 769 tx = async_memcpy(bio_page, page, b_offset, 770 page_offset, clen, &submit); 771 } 772 /* chain the operations */ 773 submit.depend_tx = tx; 774 775 if (clen < len) /* hit end of page */ 776 break; 777 page_offset += len; 778 } 779 780 return tx; 781 } 782 783 static void ops_complete_biofill(void *stripe_head_ref) 784 { 785 struct stripe_head *sh = stripe_head_ref; 786 struct bio *return_bi = NULL; 787 int i; 788 789 pr_debug("%s: stripe %llu\n", __func__, 790 (unsigned long long)sh->sector); 791 792 /* clear completed biofills */ 793 for (i = sh->disks; i--; ) { 794 struct r5dev *dev = &sh->dev[i]; 795 796 /* acknowledge completion of a biofill operation */ 797 /* and check if we need to reply to a read request, 798 * new R5_Wantfill requests are held off until 799 * !STRIPE_BIOFILL_RUN 800 */ 801 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 802 struct bio *rbi, *rbi2; 803 804 BUG_ON(!dev->read); 805 rbi = dev->read; 806 dev->read = NULL; 807 while (rbi && rbi->bi_sector < 808 dev->sector + STRIPE_SECTORS) { 809 rbi2 = r5_next_bio(rbi, dev->sector); 810 if (!raid5_dec_bi_active_stripes(rbi)) { 811 rbi->bi_next = return_bi; 812 return_bi = rbi; 813 } 814 rbi = rbi2; 815 } 816 } 817 } 818 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 819 820 return_io(return_bi); 821 822 set_bit(STRIPE_HANDLE, &sh->state); 823 release_stripe(sh); 824 } 825 826 static void ops_run_biofill(struct stripe_head *sh) 827 { 828 struct dma_async_tx_descriptor *tx = NULL; 829 struct async_submit_ctl submit; 830 int i; 831 832 pr_debug("%s: stripe %llu\n", __func__, 833 (unsigned long long)sh->sector); 834 835 for (i = sh->disks; i--; ) { 836 struct r5dev *dev = &sh->dev[i]; 837 if (test_bit(R5_Wantfill, &dev->flags)) { 838 struct bio *rbi; 839 spin_lock_irq(&sh->stripe_lock); 840 dev->read = rbi = dev->toread; 841 dev->toread = NULL; 842 spin_unlock_irq(&sh->stripe_lock); 843 while (rbi && rbi->bi_sector < 844 dev->sector + STRIPE_SECTORS) { 845 tx = async_copy_data(0, rbi, dev->page, 846 dev->sector, tx); 847 rbi = r5_next_bio(rbi, dev->sector); 848 } 849 } 850 } 851 852 atomic_inc(&sh->count); 853 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 854 async_trigger_callback(&submit); 855 } 856 857 static void mark_target_uptodate(struct stripe_head *sh, int target) 858 { 859 struct r5dev *tgt; 860 861 if (target < 0) 862 return; 863 864 tgt = &sh->dev[target]; 865 set_bit(R5_UPTODATE, &tgt->flags); 866 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 867 clear_bit(R5_Wantcompute, &tgt->flags); 868 } 869 870 static void ops_complete_compute(void *stripe_head_ref) 871 { 872 struct stripe_head *sh = stripe_head_ref; 873 874 pr_debug("%s: stripe %llu\n", __func__, 875 (unsigned long long)sh->sector); 876 877 /* mark the computed target(s) as uptodate */ 878 mark_target_uptodate(sh, sh->ops.target); 879 mark_target_uptodate(sh, sh->ops.target2); 880 881 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 882 if (sh->check_state == check_state_compute_run) 883 sh->check_state = check_state_compute_result; 884 set_bit(STRIPE_HANDLE, &sh->state); 885 release_stripe(sh); 886 } 887 888 /* return a pointer to the address conversion region of the scribble buffer */ 889 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 890 struct raid5_percpu *percpu) 891 { 892 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); 893 } 894 895 static struct dma_async_tx_descriptor * 896 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 897 { 898 int disks = sh->disks; 899 struct page **xor_srcs = percpu->scribble; 900 int target = sh->ops.target; 901 struct r5dev *tgt = &sh->dev[target]; 902 struct page *xor_dest = tgt->page; 903 int count = 0; 904 struct dma_async_tx_descriptor *tx; 905 struct async_submit_ctl submit; 906 int i; 907 908 pr_debug("%s: stripe %llu block: %d\n", 909 __func__, (unsigned long long)sh->sector, target); 910 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 911 912 for (i = disks; i--; ) 913 if (i != target) 914 xor_srcs[count++] = sh->dev[i].page; 915 916 atomic_inc(&sh->count); 917 918 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 919 ops_complete_compute, sh, to_addr_conv(sh, percpu)); 920 if (unlikely(count == 1)) 921 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 922 else 923 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 924 925 return tx; 926 } 927 928 /* set_syndrome_sources - populate source buffers for gen_syndrome 929 * @srcs - (struct page *) array of size sh->disks 930 * @sh - stripe_head to parse 931 * 932 * Populates srcs in proper layout order for the stripe and returns the 933 * 'count' of sources to be used in a call to async_gen_syndrome. The P 934 * destination buffer is recorded in srcs[count] and the Q destination 935 * is recorded in srcs[count+1]]. 936 */ 937 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) 938 { 939 int disks = sh->disks; 940 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 941 int d0_idx = raid6_d0(sh); 942 int count; 943 int i; 944 945 for (i = 0; i < disks; i++) 946 srcs[i] = NULL; 947 948 count = 0; 949 i = d0_idx; 950 do { 951 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 952 953 srcs[slot] = sh->dev[i].page; 954 i = raid6_next_disk(i, disks); 955 } while (i != d0_idx); 956 957 return syndrome_disks; 958 } 959 960 static struct dma_async_tx_descriptor * 961 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 962 { 963 int disks = sh->disks; 964 struct page **blocks = percpu->scribble; 965 int target; 966 int qd_idx = sh->qd_idx; 967 struct dma_async_tx_descriptor *tx; 968 struct async_submit_ctl submit; 969 struct r5dev *tgt; 970 struct page *dest; 971 int i; 972 int count; 973 974 if (sh->ops.target < 0) 975 target = sh->ops.target2; 976 else if (sh->ops.target2 < 0) 977 target = sh->ops.target; 978 else 979 /* we should only have one valid target */ 980 BUG(); 981 BUG_ON(target < 0); 982 pr_debug("%s: stripe %llu block: %d\n", 983 __func__, (unsigned long long)sh->sector, target); 984 985 tgt = &sh->dev[target]; 986 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 987 dest = tgt->page; 988 989 atomic_inc(&sh->count); 990 991 if (target == qd_idx) { 992 count = set_syndrome_sources(blocks, sh); 993 blocks[count] = NULL; /* regenerating p is not necessary */ 994 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 995 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 996 ops_complete_compute, sh, 997 to_addr_conv(sh, percpu)); 998 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 999 } else { 1000 /* Compute any data- or p-drive using XOR */ 1001 count = 0; 1002 for (i = disks; i-- ; ) { 1003 if (i == target || i == qd_idx) 1004 continue; 1005 blocks[count++] = sh->dev[i].page; 1006 } 1007 1008 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1009 NULL, ops_complete_compute, sh, 1010 to_addr_conv(sh, percpu)); 1011 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1012 } 1013 1014 return tx; 1015 } 1016 1017 static struct dma_async_tx_descriptor * 1018 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1019 { 1020 int i, count, disks = sh->disks; 1021 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1022 int d0_idx = raid6_d0(sh); 1023 int faila = -1, failb = -1; 1024 int target = sh->ops.target; 1025 int target2 = sh->ops.target2; 1026 struct r5dev *tgt = &sh->dev[target]; 1027 struct r5dev *tgt2 = &sh->dev[target2]; 1028 struct dma_async_tx_descriptor *tx; 1029 struct page **blocks = percpu->scribble; 1030 struct async_submit_ctl submit; 1031 1032 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1033 __func__, (unsigned long long)sh->sector, target, target2); 1034 BUG_ON(target < 0 || target2 < 0); 1035 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1036 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1037 1038 /* we need to open-code set_syndrome_sources to handle the 1039 * slot number conversion for 'faila' and 'failb' 1040 */ 1041 for (i = 0; i < disks ; i++) 1042 blocks[i] = NULL; 1043 count = 0; 1044 i = d0_idx; 1045 do { 1046 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1047 1048 blocks[slot] = sh->dev[i].page; 1049 1050 if (i == target) 1051 faila = slot; 1052 if (i == target2) 1053 failb = slot; 1054 i = raid6_next_disk(i, disks); 1055 } while (i != d0_idx); 1056 1057 BUG_ON(faila == failb); 1058 if (failb < faila) 1059 swap(faila, failb); 1060 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1061 __func__, (unsigned long long)sh->sector, faila, failb); 1062 1063 atomic_inc(&sh->count); 1064 1065 if (failb == syndrome_disks+1) { 1066 /* Q disk is one of the missing disks */ 1067 if (faila == syndrome_disks) { 1068 /* Missing P+Q, just recompute */ 1069 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1070 ops_complete_compute, sh, 1071 to_addr_conv(sh, percpu)); 1072 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1073 STRIPE_SIZE, &submit); 1074 } else { 1075 struct page *dest; 1076 int data_target; 1077 int qd_idx = sh->qd_idx; 1078 1079 /* Missing D+Q: recompute D from P, then recompute Q */ 1080 if (target == qd_idx) 1081 data_target = target2; 1082 else 1083 data_target = target; 1084 1085 count = 0; 1086 for (i = disks; i-- ; ) { 1087 if (i == data_target || i == qd_idx) 1088 continue; 1089 blocks[count++] = sh->dev[i].page; 1090 } 1091 dest = sh->dev[data_target].page; 1092 init_async_submit(&submit, 1093 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1094 NULL, NULL, NULL, 1095 to_addr_conv(sh, percpu)); 1096 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1097 &submit); 1098 1099 count = set_syndrome_sources(blocks, sh); 1100 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1101 ops_complete_compute, sh, 1102 to_addr_conv(sh, percpu)); 1103 return async_gen_syndrome(blocks, 0, count+2, 1104 STRIPE_SIZE, &submit); 1105 } 1106 } else { 1107 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1108 ops_complete_compute, sh, 1109 to_addr_conv(sh, percpu)); 1110 if (failb == syndrome_disks) { 1111 /* We're missing D+P. */ 1112 return async_raid6_datap_recov(syndrome_disks+2, 1113 STRIPE_SIZE, faila, 1114 blocks, &submit); 1115 } else { 1116 /* We're missing D+D. */ 1117 return async_raid6_2data_recov(syndrome_disks+2, 1118 STRIPE_SIZE, faila, failb, 1119 blocks, &submit); 1120 } 1121 } 1122 } 1123 1124 1125 static void ops_complete_prexor(void *stripe_head_ref) 1126 { 1127 struct stripe_head *sh = stripe_head_ref; 1128 1129 pr_debug("%s: stripe %llu\n", __func__, 1130 (unsigned long long)sh->sector); 1131 } 1132 1133 static struct dma_async_tx_descriptor * 1134 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, 1135 struct dma_async_tx_descriptor *tx) 1136 { 1137 int disks = sh->disks; 1138 struct page **xor_srcs = percpu->scribble; 1139 int count = 0, pd_idx = sh->pd_idx, i; 1140 struct async_submit_ctl submit; 1141 1142 /* existing parity data subtracted */ 1143 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1144 1145 pr_debug("%s: stripe %llu\n", __func__, 1146 (unsigned long long)sh->sector); 1147 1148 for (i = disks; i--; ) { 1149 struct r5dev *dev = &sh->dev[i]; 1150 /* Only process blocks that are known to be uptodate */ 1151 if (test_bit(R5_Wantdrain, &dev->flags)) 1152 xor_srcs[count++] = dev->page; 1153 } 1154 1155 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1156 ops_complete_prexor, sh, to_addr_conv(sh, percpu)); 1157 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1158 1159 return tx; 1160 } 1161 1162 static struct dma_async_tx_descriptor * 1163 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1164 { 1165 int disks = sh->disks; 1166 int i; 1167 1168 pr_debug("%s: stripe %llu\n", __func__, 1169 (unsigned long long)sh->sector); 1170 1171 for (i = disks; i--; ) { 1172 struct r5dev *dev = &sh->dev[i]; 1173 struct bio *chosen; 1174 1175 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 1176 struct bio *wbi; 1177 1178 spin_lock_irq(&sh->stripe_lock); 1179 chosen = dev->towrite; 1180 dev->towrite = NULL; 1181 BUG_ON(dev->written); 1182 wbi = dev->written = chosen; 1183 spin_unlock_irq(&sh->stripe_lock); 1184 1185 while (wbi && wbi->bi_sector < 1186 dev->sector + STRIPE_SECTORS) { 1187 if (wbi->bi_rw & REQ_FUA) 1188 set_bit(R5_WantFUA, &dev->flags); 1189 if (wbi->bi_rw & REQ_SYNC) 1190 set_bit(R5_SyncIO, &dev->flags); 1191 if (wbi->bi_rw & REQ_DISCARD) 1192 set_bit(R5_Discard, &dev->flags); 1193 else 1194 tx = async_copy_data(1, wbi, dev->page, 1195 dev->sector, tx); 1196 wbi = r5_next_bio(wbi, dev->sector); 1197 } 1198 } 1199 } 1200 1201 return tx; 1202 } 1203 1204 static void ops_complete_reconstruct(void *stripe_head_ref) 1205 { 1206 struct stripe_head *sh = stripe_head_ref; 1207 int disks = sh->disks; 1208 int pd_idx = sh->pd_idx; 1209 int qd_idx = sh->qd_idx; 1210 int i; 1211 bool fua = false, sync = false, discard = false; 1212 1213 pr_debug("%s: stripe %llu\n", __func__, 1214 (unsigned long long)sh->sector); 1215 1216 for (i = disks; i--; ) { 1217 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1218 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1219 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1220 } 1221 1222 for (i = disks; i--; ) { 1223 struct r5dev *dev = &sh->dev[i]; 1224 1225 if (dev->written || i == pd_idx || i == qd_idx) { 1226 if (!discard) 1227 set_bit(R5_UPTODATE, &dev->flags); 1228 if (fua) 1229 set_bit(R5_WantFUA, &dev->flags); 1230 if (sync) 1231 set_bit(R5_SyncIO, &dev->flags); 1232 } 1233 } 1234 1235 if (sh->reconstruct_state == reconstruct_state_drain_run) 1236 sh->reconstruct_state = reconstruct_state_drain_result; 1237 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1238 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1239 else { 1240 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1241 sh->reconstruct_state = reconstruct_state_result; 1242 } 1243 1244 set_bit(STRIPE_HANDLE, &sh->state); 1245 release_stripe(sh); 1246 } 1247 1248 static void 1249 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1250 struct dma_async_tx_descriptor *tx) 1251 { 1252 int disks = sh->disks; 1253 struct page **xor_srcs = percpu->scribble; 1254 struct async_submit_ctl submit; 1255 int count = 0, pd_idx = sh->pd_idx, i; 1256 struct page *xor_dest; 1257 int prexor = 0; 1258 unsigned long flags; 1259 1260 pr_debug("%s: stripe %llu\n", __func__, 1261 (unsigned long long)sh->sector); 1262 1263 for (i = 0; i < sh->disks; i++) { 1264 if (pd_idx == i) 1265 continue; 1266 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1267 break; 1268 } 1269 if (i >= sh->disks) { 1270 atomic_inc(&sh->count); 1271 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1272 ops_complete_reconstruct(sh); 1273 return; 1274 } 1275 /* check if prexor is active which means only process blocks 1276 * that are part of a read-modify-write (written) 1277 */ 1278 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1279 prexor = 1; 1280 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1281 for (i = disks; i--; ) { 1282 struct r5dev *dev = &sh->dev[i]; 1283 if (dev->written) 1284 xor_srcs[count++] = dev->page; 1285 } 1286 } else { 1287 xor_dest = sh->dev[pd_idx].page; 1288 for (i = disks; i--; ) { 1289 struct r5dev *dev = &sh->dev[i]; 1290 if (i != pd_idx) 1291 xor_srcs[count++] = dev->page; 1292 } 1293 } 1294 1295 /* 1/ if we prexor'd then the dest is reused as a source 1296 * 2/ if we did not prexor then we are redoing the parity 1297 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1298 * for the synchronous xor case 1299 */ 1300 flags = ASYNC_TX_ACK | 1301 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1302 1303 atomic_inc(&sh->count); 1304 1305 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, 1306 to_addr_conv(sh, percpu)); 1307 if (unlikely(count == 1)) 1308 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1309 else 1310 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1311 } 1312 1313 static void 1314 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1315 struct dma_async_tx_descriptor *tx) 1316 { 1317 struct async_submit_ctl submit; 1318 struct page **blocks = percpu->scribble; 1319 int count, i; 1320 1321 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1322 1323 for (i = 0; i < sh->disks; i++) { 1324 if (sh->pd_idx == i || sh->qd_idx == i) 1325 continue; 1326 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1327 break; 1328 } 1329 if (i >= sh->disks) { 1330 atomic_inc(&sh->count); 1331 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1332 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1333 ops_complete_reconstruct(sh); 1334 return; 1335 } 1336 1337 count = set_syndrome_sources(blocks, sh); 1338 1339 atomic_inc(&sh->count); 1340 1341 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, 1342 sh, to_addr_conv(sh, percpu)); 1343 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1344 } 1345 1346 static void ops_complete_check(void *stripe_head_ref) 1347 { 1348 struct stripe_head *sh = stripe_head_ref; 1349 1350 pr_debug("%s: stripe %llu\n", __func__, 1351 (unsigned long long)sh->sector); 1352 1353 sh->check_state = check_state_check_result; 1354 set_bit(STRIPE_HANDLE, &sh->state); 1355 release_stripe(sh); 1356 } 1357 1358 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1359 { 1360 int disks = sh->disks; 1361 int pd_idx = sh->pd_idx; 1362 int qd_idx = sh->qd_idx; 1363 struct page *xor_dest; 1364 struct page **xor_srcs = percpu->scribble; 1365 struct dma_async_tx_descriptor *tx; 1366 struct async_submit_ctl submit; 1367 int count; 1368 int i; 1369 1370 pr_debug("%s: stripe %llu\n", __func__, 1371 (unsigned long long)sh->sector); 1372 1373 count = 0; 1374 xor_dest = sh->dev[pd_idx].page; 1375 xor_srcs[count++] = xor_dest; 1376 for (i = disks; i--; ) { 1377 if (i == pd_idx || i == qd_idx) 1378 continue; 1379 xor_srcs[count++] = sh->dev[i].page; 1380 } 1381 1382 init_async_submit(&submit, 0, NULL, NULL, NULL, 1383 to_addr_conv(sh, percpu)); 1384 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1385 &sh->ops.zero_sum_result, &submit); 1386 1387 atomic_inc(&sh->count); 1388 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1389 tx = async_trigger_callback(&submit); 1390 } 1391 1392 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1393 { 1394 struct page **srcs = percpu->scribble; 1395 struct async_submit_ctl submit; 1396 int count; 1397 1398 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1399 (unsigned long long)sh->sector, checkp); 1400 1401 count = set_syndrome_sources(srcs, sh); 1402 if (!checkp) 1403 srcs[count] = NULL; 1404 1405 atomic_inc(&sh->count); 1406 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1407 sh, to_addr_conv(sh, percpu)); 1408 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1409 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1410 } 1411 1412 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1413 { 1414 int overlap_clear = 0, i, disks = sh->disks; 1415 struct dma_async_tx_descriptor *tx = NULL; 1416 struct r5conf *conf = sh->raid_conf; 1417 int level = conf->level; 1418 struct raid5_percpu *percpu; 1419 unsigned long cpu; 1420 1421 cpu = get_cpu(); 1422 percpu = per_cpu_ptr(conf->percpu, cpu); 1423 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1424 ops_run_biofill(sh); 1425 overlap_clear++; 1426 } 1427 1428 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1429 if (level < 6) 1430 tx = ops_run_compute5(sh, percpu); 1431 else { 1432 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1433 tx = ops_run_compute6_1(sh, percpu); 1434 else 1435 tx = ops_run_compute6_2(sh, percpu); 1436 } 1437 /* terminate the chain if reconstruct is not set to be run */ 1438 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1439 async_tx_ack(tx); 1440 } 1441 1442 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 1443 tx = ops_run_prexor(sh, percpu, tx); 1444 1445 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1446 tx = ops_run_biodrain(sh, tx); 1447 overlap_clear++; 1448 } 1449 1450 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1451 if (level < 6) 1452 ops_run_reconstruct5(sh, percpu, tx); 1453 else 1454 ops_run_reconstruct6(sh, percpu, tx); 1455 } 1456 1457 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1458 if (sh->check_state == check_state_run) 1459 ops_run_check_p(sh, percpu); 1460 else if (sh->check_state == check_state_run_q) 1461 ops_run_check_pq(sh, percpu, 0); 1462 else if (sh->check_state == check_state_run_pq) 1463 ops_run_check_pq(sh, percpu, 1); 1464 else 1465 BUG(); 1466 } 1467 1468 if (overlap_clear) 1469 for (i = disks; i--; ) { 1470 struct r5dev *dev = &sh->dev[i]; 1471 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1472 wake_up(&sh->raid_conf->wait_for_overlap); 1473 } 1474 put_cpu(); 1475 } 1476 1477 static int grow_one_stripe(struct r5conf *conf) 1478 { 1479 struct stripe_head *sh; 1480 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); 1481 if (!sh) 1482 return 0; 1483 1484 sh->raid_conf = conf; 1485 1486 spin_lock_init(&sh->stripe_lock); 1487 1488 if (grow_buffers(sh)) { 1489 shrink_buffers(sh); 1490 kmem_cache_free(conf->slab_cache, sh); 1491 return 0; 1492 } 1493 /* we just created an active stripe so... */ 1494 atomic_set(&sh->count, 1); 1495 atomic_inc(&conf->active_stripes); 1496 INIT_LIST_HEAD(&sh->lru); 1497 release_stripe(sh); 1498 return 1; 1499 } 1500 1501 static int grow_stripes(struct r5conf *conf, int num) 1502 { 1503 struct kmem_cache *sc; 1504 int devs = max(conf->raid_disks, conf->previous_raid_disks); 1505 1506 if (conf->mddev->gendisk) 1507 sprintf(conf->cache_name[0], 1508 "raid%d-%s", conf->level, mdname(conf->mddev)); 1509 else 1510 sprintf(conf->cache_name[0], 1511 "raid%d-%p", conf->level, conf->mddev); 1512 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 1513 1514 conf->active_name = 0; 1515 sc = kmem_cache_create(conf->cache_name[conf->active_name], 1516 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 1517 0, 0, NULL); 1518 if (!sc) 1519 return 1; 1520 conf->slab_cache = sc; 1521 conf->pool_size = devs; 1522 while (num--) 1523 if (!grow_one_stripe(conf)) 1524 return 1; 1525 return 0; 1526 } 1527 1528 /** 1529 * scribble_len - return the required size of the scribble region 1530 * @num - total number of disks in the array 1531 * 1532 * The size must be enough to contain: 1533 * 1/ a struct page pointer for each device in the array +2 1534 * 2/ room to convert each entry in (1) to its corresponding dma 1535 * (dma_map_page()) or page (page_address()) address. 1536 * 1537 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 1538 * calculate over all devices (not just the data blocks), using zeros in place 1539 * of the P and Q blocks. 1540 */ 1541 static size_t scribble_len(int num) 1542 { 1543 size_t len; 1544 1545 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 1546 1547 return len; 1548 } 1549 1550 static int resize_stripes(struct r5conf *conf, int newsize) 1551 { 1552 /* Make all the stripes able to hold 'newsize' devices. 1553 * New slots in each stripe get 'page' set to a new page. 1554 * 1555 * This happens in stages: 1556 * 1/ create a new kmem_cache and allocate the required number of 1557 * stripe_heads. 1558 * 2/ gather all the old stripe_heads and transfer the pages across 1559 * to the new stripe_heads. This will have the side effect of 1560 * freezing the array as once all stripe_heads have been collected, 1561 * no IO will be possible. Old stripe heads are freed once their 1562 * pages have been transferred over, and the old kmem_cache is 1563 * freed when all stripes are done. 1564 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 1565 * we simple return a failre status - no need to clean anything up. 1566 * 4/ allocate new pages for the new slots in the new stripe_heads. 1567 * If this fails, we don't bother trying the shrink the 1568 * stripe_heads down again, we just leave them as they are. 1569 * As each stripe_head is processed the new one is released into 1570 * active service. 1571 * 1572 * Once step2 is started, we cannot afford to wait for a write, 1573 * so we use GFP_NOIO allocations. 1574 */ 1575 struct stripe_head *osh, *nsh; 1576 LIST_HEAD(newstripes); 1577 struct disk_info *ndisks; 1578 unsigned long cpu; 1579 int err; 1580 struct kmem_cache *sc; 1581 int i; 1582 1583 if (newsize <= conf->pool_size) 1584 return 0; /* never bother to shrink */ 1585 1586 err = md_allow_write(conf->mddev); 1587 if (err) 1588 return err; 1589 1590 /* Step 1 */ 1591 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1592 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1593 0, 0, NULL); 1594 if (!sc) 1595 return -ENOMEM; 1596 1597 for (i = conf->max_nr_stripes; i; i--) { 1598 nsh = kmem_cache_zalloc(sc, GFP_KERNEL); 1599 if (!nsh) 1600 break; 1601 1602 nsh->raid_conf = conf; 1603 spin_lock_init(&nsh->stripe_lock); 1604 1605 list_add(&nsh->lru, &newstripes); 1606 } 1607 if (i) { 1608 /* didn't get enough, give up */ 1609 while (!list_empty(&newstripes)) { 1610 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1611 list_del(&nsh->lru); 1612 kmem_cache_free(sc, nsh); 1613 } 1614 kmem_cache_destroy(sc); 1615 return -ENOMEM; 1616 } 1617 /* Step 2 - Must use GFP_NOIO now. 1618 * OK, we have enough stripes, start collecting inactive 1619 * stripes and copying them over 1620 */ 1621 list_for_each_entry(nsh, &newstripes, lru) { 1622 spin_lock_irq(&conf->device_lock); 1623 wait_event_lock_irq(conf->wait_for_stripe, 1624 !list_empty(&conf->inactive_list), 1625 conf->device_lock); 1626 osh = get_free_stripe(conf); 1627 spin_unlock_irq(&conf->device_lock); 1628 atomic_set(&nsh->count, 1); 1629 for(i=0; i<conf->pool_size; i++) 1630 nsh->dev[i].page = osh->dev[i].page; 1631 for( ; i<newsize; i++) 1632 nsh->dev[i].page = NULL; 1633 kmem_cache_free(conf->slab_cache, osh); 1634 } 1635 kmem_cache_destroy(conf->slab_cache); 1636 1637 /* Step 3. 1638 * At this point, we are holding all the stripes so the array 1639 * is completely stalled, so now is a good time to resize 1640 * conf->disks and the scribble region 1641 */ 1642 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1643 if (ndisks) { 1644 for (i=0; i<conf->raid_disks; i++) 1645 ndisks[i] = conf->disks[i]; 1646 kfree(conf->disks); 1647 conf->disks = ndisks; 1648 } else 1649 err = -ENOMEM; 1650 1651 get_online_cpus(); 1652 conf->scribble_len = scribble_len(newsize); 1653 for_each_present_cpu(cpu) { 1654 struct raid5_percpu *percpu; 1655 void *scribble; 1656 1657 percpu = per_cpu_ptr(conf->percpu, cpu); 1658 scribble = kmalloc(conf->scribble_len, GFP_NOIO); 1659 1660 if (scribble) { 1661 kfree(percpu->scribble); 1662 percpu->scribble = scribble; 1663 } else { 1664 err = -ENOMEM; 1665 break; 1666 } 1667 } 1668 put_online_cpus(); 1669 1670 /* Step 4, return new stripes to service */ 1671 while(!list_empty(&newstripes)) { 1672 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1673 list_del_init(&nsh->lru); 1674 1675 for (i=conf->raid_disks; i < newsize; i++) 1676 if (nsh->dev[i].page == NULL) { 1677 struct page *p = alloc_page(GFP_NOIO); 1678 nsh->dev[i].page = p; 1679 if (!p) 1680 err = -ENOMEM; 1681 } 1682 release_stripe(nsh); 1683 } 1684 /* critical section pass, GFP_NOIO no longer needed */ 1685 1686 conf->slab_cache = sc; 1687 conf->active_name = 1-conf->active_name; 1688 conf->pool_size = newsize; 1689 return err; 1690 } 1691 1692 static int drop_one_stripe(struct r5conf *conf) 1693 { 1694 struct stripe_head *sh; 1695 1696 spin_lock_irq(&conf->device_lock); 1697 sh = get_free_stripe(conf); 1698 spin_unlock_irq(&conf->device_lock); 1699 if (!sh) 1700 return 0; 1701 BUG_ON(atomic_read(&sh->count)); 1702 shrink_buffers(sh); 1703 kmem_cache_free(conf->slab_cache, sh); 1704 atomic_dec(&conf->active_stripes); 1705 return 1; 1706 } 1707 1708 static void shrink_stripes(struct r5conf *conf) 1709 { 1710 while (drop_one_stripe(conf)) 1711 ; 1712 1713 if (conf->slab_cache) 1714 kmem_cache_destroy(conf->slab_cache); 1715 conf->slab_cache = NULL; 1716 } 1717 1718 static void raid5_end_read_request(struct bio * bi, int error) 1719 { 1720 struct stripe_head *sh = bi->bi_private; 1721 struct r5conf *conf = sh->raid_conf; 1722 int disks = sh->disks, i; 1723 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1724 char b[BDEVNAME_SIZE]; 1725 struct md_rdev *rdev = NULL; 1726 sector_t s; 1727 1728 for (i=0 ; i<disks; i++) 1729 if (bi == &sh->dev[i].req) 1730 break; 1731 1732 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1733 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1734 uptodate); 1735 if (i == disks) { 1736 BUG(); 1737 return; 1738 } 1739 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1740 /* If replacement finished while this request was outstanding, 1741 * 'replacement' might be NULL already. 1742 * In that case it moved down to 'rdev'. 1743 * rdev is not removed until all requests are finished. 1744 */ 1745 rdev = conf->disks[i].replacement; 1746 if (!rdev) 1747 rdev = conf->disks[i].rdev; 1748 1749 if (use_new_offset(conf, sh)) 1750 s = sh->sector + rdev->new_data_offset; 1751 else 1752 s = sh->sector + rdev->data_offset; 1753 if (uptodate) { 1754 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1755 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1756 /* Note that this cannot happen on a 1757 * replacement device. We just fail those on 1758 * any error 1759 */ 1760 printk_ratelimited( 1761 KERN_INFO 1762 "md/raid:%s: read error corrected" 1763 " (%lu sectors at %llu on %s)\n", 1764 mdname(conf->mddev), STRIPE_SECTORS, 1765 (unsigned long long)s, 1766 bdevname(rdev->bdev, b)); 1767 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 1768 clear_bit(R5_ReadError, &sh->dev[i].flags); 1769 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1770 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 1771 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1772 1773 if (atomic_read(&rdev->read_errors)) 1774 atomic_set(&rdev->read_errors, 0); 1775 } else { 1776 const char *bdn = bdevname(rdev->bdev, b); 1777 int retry = 0; 1778 int set_bad = 0; 1779 1780 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 1781 atomic_inc(&rdev->read_errors); 1782 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1783 printk_ratelimited( 1784 KERN_WARNING 1785 "md/raid:%s: read error on replacement device " 1786 "(sector %llu on %s).\n", 1787 mdname(conf->mddev), 1788 (unsigned long long)s, 1789 bdn); 1790 else if (conf->mddev->degraded >= conf->max_degraded) { 1791 set_bad = 1; 1792 printk_ratelimited( 1793 KERN_WARNING 1794 "md/raid:%s: read error not correctable " 1795 "(sector %llu on %s).\n", 1796 mdname(conf->mddev), 1797 (unsigned long long)s, 1798 bdn); 1799 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 1800 /* Oh, no!!! */ 1801 set_bad = 1; 1802 printk_ratelimited( 1803 KERN_WARNING 1804 "md/raid:%s: read error NOT corrected!! " 1805 "(sector %llu on %s).\n", 1806 mdname(conf->mddev), 1807 (unsigned long long)s, 1808 bdn); 1809 } else if (atomic_read(&rdev->read_errors) 1810 > conf->max_nr_stripes) 1811 printk(KERN_WARNING 1812 "md/raid:%s: Too many read errors, failing device %s.\n", 1813 mdname(conf->mddev), bdn); 1814 else 1815 retry = 1; 1816 if (retry) 1817 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 1818 set_bit(R5_ReadError, &sh->dev[i].flags); 1819 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1820 } else 1821 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1822 else { 1823 clear_bit(R5_ReadError, &sh->dev[i].flags); 1824 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1825 if (!(set_bad 1826 && test_bit(In_sync, &rdev->flags) 1827 && rdev_set_badblocks( 1828 rdev, sh->sector, STRIPE_SECTORS, 0))) 1829 md_error(conf->mddev, rdev); 1830 } 1831 } 1832 rdev_dec_pending(rdev, conf->mddev); 1833 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1834 set_bit(STRIPE_HANDLE, &sh->state); 1835 release_stripe(sh); 1836 } 1837 1838 static void raid5_end_write_request(struct bio *bi, int error) 1839 { 1840 struct stripe_head *sh = bi->bi_private; 1841 struct r5conf *conf = sh->raid_conf; 1842 int disks = sh->disks, i; 1843 struct md_rdev *uninitialized_var(rdev); 1844 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1845 sector_t first_bad; 1846 int bad_sectors; 1847 int replacement = 0; 1848 1849 for (i = 0 ; i < disks; i++) { 1850 if (bi == &sh->dev[i].req) { 1851 rdev = conf->disks[i].rdev; 1852 break; 1853 } 1854 if (bi == &sh->dev[i].rreq) { 1855 rdev = conf->disks[i].replacement; 1856 if (rdev) 1857 replacement = 1; 1858 else 1859 /* rdev was removed and 'replacement' 1860 * replaced it. rdev is not removed 1861 * until all requests are finished. 1862 */ 1863 rdev = conf->disks[i].rdev; 1864 break; 1865 } 1866 } 1867 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 1868 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1869 uptodate); 1870 if (i == disks) { 1871 BUG(); 1872 return; 1873 } 1874 1875 if (replacement) { 1876 if (!uptodate) 1877 md_error(conf->mddev, rdev); 1878 else if (is_badblock(rdev, sh->sector, 1879 STRIPE_SECTORS, 1880 &first_bad, &bad_sectors)) 1881 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 1882 } else { 1883 if (!uptodate) { 1884 set_bit(WriteErrorSeen, &rdev->flags); 1885 set_bit(R5_WriteError, &sh->dev[i].flags); 1886 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1887 set_bit(MD_RECOVERY_NEEDED, 1888 &rdev->mddev->recovery); 1889 } else if (is_badblock(rdev, sh->sector, 1890 STRIPE_SECTORS, 1891 &first_bad, &bad_sectors)) { 1892 set_bit(R5_MadeGood, &sh->dev[i].flags); 1893 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 1894 /* That was a successful write so make 1895 * sure it looks like we already did 1896 * a re-write. 1897 */ 1898 set_bit(R5_ReWrite, &sh->dev[i].flags); 1899 } 1900 } 1901 rdev_dec_pending(rdev, conf->mddev); 1902 1903 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 1904 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1905 set_bit(STRIPE_HANDLE, &sh->state); 1906 release_stripe(sh); 1907 } 1908 1909 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 1910 1911 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 1912 { 1913 struct r5dev *dev = &sh->dev[i]; 1914 1915 bio_init(&dev->req); 1916 dev->req.bi_io_vec = &dev->vec; 1917 dev->req.bi_vcnt++; 1918 dev->req.bi_max_vecs++; 1919 dev->req.bi_private = sh; 1920 dev->vec.bv_page = dev->page; 1921 1922 bio_init(&dev->rreq); 1923 dev->rreq.bi_io_vec = &dev->rvec; 1924 dev->rreq.bi_vcnt++; 1925 dev->rreq.bi_max_vecs++; 1926 dev->rreq.bi_private = sh; 1927 dev->rvec.bv_page = dev->page; 1928 1929 dev->flags = 0; 1930 dev->sector = compute_blocknr(sh, i, previous); 1931 } 1932 1933 static void error(struct mddev *mddev, struct md_rdev *rdev) 1934 { 1935 char b[BDEVNAME_SIZE]; 1936 struct r5conf *conf = mddev->private; 1937 unsigned long flags; 1938 pr_debug("raid456: error called\n"); 1939 1940 spin_lock_irqsave(&conf->device_lock, flags); 1941 clear_bit(In_sync, &rdev->flags); 1942 mddev->degraded = calc_degraded(conf); 1943 spin_unlock_irqrestore(&conf->device_lock, flags); 1944 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1945 1946 set_bit(Blocked, &rdev->flags); 1947 set_bit(Faulty, &rdev->flags); 1948 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1949 printk(KERN_ALERT 1950 "md/raid:%s: Disk failure on %s, disabling device.\n" 1951 "md/raid:%s: Operation continuing on %d devices.\n", 1952 mdname(mddev), 1953 bdevname(rdev->bdev, b), 1954 mdname(mddev), 1955 conf->raid_disks - mddev->degraded); 1956 } 1957 1958 /* 1959 * Input: a 'big' sector number, 1960 * Output: index of the data and parity disk, and the sector # in them. 1961 */ 1962 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 1963 int previous, int *dd_idx, 1964 struct stripe_head *sh) 1965 { 1966 sector_t stripe, stripe2; 1967 sector_t chunk_number; 1968 unsigned int chunk_offset; 1969 int pd_idx, qd_idx; 1970 int ddf_layout = 0; 1971 sector_t new_sector; 1972 int algorithm = previous ? conf->prev_algo 1973 : conf->algorithm; 1974 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 1975 : conf->chunk_sectors; 1976 int raid_disks = previous ? conf->previous_raid_disks 1977 : conf->raid_disks; 1978 int data_disks = raid_disks - conf->max_degraded; 1979 1980 /* First compute the information on this sector */ 1981 1982 /* 1983 * Compute the chunk number and the sector offset inside the chunk 1984 */ 1985 chunk_offset = sector_div(r_sector, sectors_per_chunk); 1986 chunk_number = r_sector; 1987 1988 /* 1989 * Compute the stripe number 1990 */ 1991 stripe = chunk_number; 1992 *dd_idx = sector_div(stripe, data_disks); 1993 stripe2 = stripe; 1994 /* 1995 * Select the parity disk based on the user selected algorithm. 1996 */ 1997 pd_idx = qd_idx = -1; 1998 switch(conf->level) { 1999 case 4: 2000 pd_idx = data_disks; 2001 break; 2002 case 5: 2003 switch (algorithm) { 2004 case ALGORITHM_LEFT_ASYMMETRIC: 2005 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2006 if (*dd_idx >= pd_idx) 2007 (*dd_idx)++; 2008 break; 2009 case ALGORITHM_RIGHT_ASYMMETRIC: 2010 pd_idx = sector_div(stripe2, raid_disks); 2011 if (*dd_idx >= pd_idx) 2012 (*dd_idx)++; 2013 break; 2014 case ALGORITHM_LEFT_SYMMETRIC: 2015 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2016 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2017 break; 2018 case ALGORITHM_RIGHT_SYMMETRIC: 2019 pd_idx = sector_div(stripe2, raid_disks); 2020 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2021 break; 2022 case ALGORITHM_PARITY_0: 2023 pd_idx = 0; 2024 (*dd_idx)++; 2025 break; 2026 case ALGORITHM_PARITY_N: 2027 pd_idx = data_disks; 2028 break; 2029 default: 2030 BUG(); 2031 } 2032 break; 2033 case 6: 2034 2035 switch (algorithm) { 2036 case ALGORITHM_LEFT_ASYMMETRIC: 2037 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2038 qd_idx = pd_idx + 1; 2039 if (pd_idx == raid_disks-1) { 2040 (*dd_idx)++; /* Q D D D P */ 2041 qd_idx = 0; 2042 } else if (*dd_idx >= pd_idx) 2043 (*dd_idx) += 2; /* D D P Q D */ 2044 break; 2045 case ALGORITHM_RIGHT_ASYMMETRIC: 2046 pd_idx = sector_div(stripe2, raid_disks); 2047 qd_idx = pd_idx + 1; 2048 if (pd_idx == raid_disks-1) { 2049 (*dd_idx)++; /* Q D D D P */ 2050 qd_idx = 0; 2051 } else if (*dd_idx >= pd_idx) 2052 (*dd_idx) += 2; /* D D P Q D */ 2053 break; 2054 case ALGORITHM_LEFT_SYMMETRIC: 2055 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2056 qd_idx = (pd_idx + 1) % raid_disks; 2057 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2058 break; 2059 case ALGORITHM_RIGHT_SYMMETRIC: 2060 pd_idx = sector_div(stripe2, raid_disks); 2061 qd_idx = (pd_idx + 1) % raid_disks; 2062 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2063 break; 2064 2065 case ALGORITHM_PARITY_0: 2066 pd_idx = 0; 2067 qd_idx = 1; 2068 (*dd_idx) += 2; 2069 break; 2070 case ALGORITHM_PARITY_N: 2071 pd_idx = data_disks; 2072 qd_idx = data_disks + 1; 2073 break; 2074 2075 case ALGORITHM_ROTATING_ZERO_RESTART: 2076 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2077 * of blocks for computing Q is different. 2078 */ 2079 pd_idx = sector_div(stripe2, raid_disks); 2080 qd_idx = pd_idx + 1; 2081 if (pd_idx == raid_disks-1) { 2082 (*dd_idx)++; /* Q D D D P */ 2083 qd_idx = 0; 2084 } else if (*dd_idx >= pd_idx) 2085 (*dd_idx) += 2; /* D D P Q D */ 2086 ddf_layout = 1; 2087 break; 2088 2089 case ALGORITHM_ROTATING_N_RESTART: 2090 /* Same a left_asymmetric, by first stripe is 2091 * D D D P Q rather than 2092 * Q D D D P 2093 */ 2094 stripe2 += 1; 2095 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2096 qd_idx = pd_idx + 1; 2097 if (pd_idx == raid_disks-1) { 2098 (*dd_idx)++; /* Q D D D P */ 2099 qd_idx = 0; 2100 } else if (*dd_idx >= pd_idx) 2101 (*dd_idx) += 2; /* D D P Q D */ 2102 ddf_layout = 1; 2103 break; 2104 2105 case ALGORITHM_ROTATING_N_CONTINUE: 2106 /* Same as left_symmetric but Q is before P */ 2107 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2108 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2109 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2110 ddf_layout = 1; 2111 break; 2112 2113 case ALGORITHM_LEFT_ASYMMETRIC_6: 2114 /* RAID5 left_asymmetric, with Q on last device */ 2115 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2116 if (*dd_idx >= pd_idx) 2117 (*dd_idx)++; 2118 qd_idx = raid_disks - 1; 2119 break; 2120 2121 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2122 pd_idx = sector_div(stripe2, raid_disks-1); 2123 if (*dd_idx >= pd_idx) 2124 (*dd_idx)++; 2125 qd_idx = raid_disks - 1; 2126 break; 2127 2128 case ALGORITHM_LEFT_SYMMETRIC_6: 2129 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2130 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2131 qd_idx = raid_disks - 1; 2132 break; 2133 2134 case ALGORITHM_RIGHT_SYMMETRIC_6: 2135 pd_idx = sector_div(stripe2, raid_disks-1); 2136 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2137 qd_idx = raid_disks - 1; 2138 break; 2139 2140 case ALGORITHM_PARITY_0_6: 2141 pd_idx = 0; 2142 (*dd_idx)++; 2143 qd_idx = raid_disks - 1; 2144 break; 2145 2146 default: 2147 BUG(); 2148 } 2149 break; 2150 } 2151 2152 if (sh) { 2153 sh->pd_idx = pd_idx; 2154 sh->qd_idx = qd_idx; 2155 sh->ddf_layout = ddf_layout; 2156 } 2157 /* 2158 * Finally, compute the new sector number 2159 */ 2160 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2161 return new_sector; 2162 } 2163 2164 2165 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 2166 { 2167 struct r5conf *conf = sh->raid_conf; 2168 int raid_disks = sh->disks; 2169 int data_disks = raid_disks - conf->max_degraded; 2170 sector_t new_sector = sh->sector, check; 2171 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2172 : conf->chunk_sectors; 2173 int algorithm = previous ? conf->prev_algo 2174 : conf->algorithm; 2175 sector_t stripe; 2176 int chunk_offset; 2177 sector_t chunk_number; 2178 int dummy1, dd_idx = i; 2179 sector_t r_sector; 2180 struct stripe_head sh2; 2181 2182 2183 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2184 stripe = new_sector; 2185 2186 if (i == sh->pd_idx) 2187 return 0; 2188 switch(conf->level) { 2189 case 4: break; 2190 case 5: 2191 switch (algorithm) { 2192 case ALGORITHM_LEFT_ASYMMETRIC: 2193 case ALGORITHM_RIGHT_ASYMMETRIC: 2194 if (i > sh->pd_idx) 2195 i--; 2196 break; 2197 case ALGORITHM_LEFT_SYMMETRIC: 2198 case ALGORITHM_RIGHT_SYMMETRIC: 2199 if (i < sh->pd_idx) 2200 i += raid_disks; 2201 i -= (sh->pd_idx + 1); 2202 break; 2203 case ALGORITHM_PARITY_0: 2204 i -= 1; 2205 break; 2206 case ALGORITHM_PARITY_N: 2207 break; 2208 default: 2209 BUG(); 2210 } 2211 break; 2212 case 6: 2213 if (i == sh->qd_idx) 2214 return 0; /* It is the Q disk */ 2215 switch (algorithm) { 2216 case ALGORITHM_LEFT_ASYMMETRIC: 2217 case ALGORITHM_RIGHT_ASYMMETRIC: 2218 case ALGORITHM_ROTATING_ZERO_RESTART: 2219 case ALGORITHM_ROTATING_N_RESTART: 2220 if (sh->pd_idx == raid_disks-1) 2221 i--; /* Q D D D P */ 2222 else if (i > sh->pd_idx) 2223 i -= 2; /* D D P Q D */ 2224 break; 2225 case ALGORITHM_LEFT_SYMMETRIC: 2226 case ALGORITHM_RIGHT_SYMMETRIC: 2227 if (sh->pd_idx == raid_disks-1) 2228 i--; /* Q D D D P */ 2229 else { 2230 /* D D P Q D */ 2231 if (i < sh->pd_idx) 2232 i += raid_disks; 2233 i -= (sh->pd_idx + 2); 2234 } 2235 break; 2236 case ALGORITHM_PARITY_0: 2237 i -= 2; 2238 break; 2239 case ALGORITHM_PARITY_N: 2240 break; 2241 case ALGORITHM_ROTATING_N_CONTINUE: 2242 /* Like left_symmetric, but P is before Q */ 2243 if (sh->pd_idx == 0) 2244 i--; /* P D D D Q */ 2245 else { 2246 /* D D Q P D */ 2247 if (i < sh->pd_idx) 2248 i += raid_disks; 2249 i -= (sh->pd_idx + 1); 2250 } 2251 break; 2252 case ALGORITHM_LEFT_ASYMMETRIC_6: 2253 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2254 if (i > sh->pd_idx) 2255 i--; 2256 break; 2257 case ALGORITHM_LEFT_SYMMETRIC_6: 2258 case ALGORITHM_RIGHT_SYMMETRIC_6: 2259 if (i < sh->pd_idx) 2260 i += data_disks + 1; 2261 i -= (sh->pd_idx + 1); 2262 break; 2263 case ALGORITHM_PARITY_0_6: 2264 i -= 1; 2265 break; 2266 default: 2267 BUG(); 2268 } 2269 break; 2270 } 2271 2272 chunk_number = stripe * data_disks + i; 2273 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2274 2275 check = raid5_compute_sector(conf, r_sector, 2276 previous, &dummy1, &sh2); 2277 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2278 || sh2.qd_idx != sh->qd_idx) { 2279 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2280 mdname(conf->mddev)); 2281 return 0; 2282 } 2283 return r_sector; 2284 } 2285 2286 2287 static void 2288 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2289 int rcw, int expand) 2290 { 2291 int i, pd_idx = sh->pd_idx, disks = sh->disks; 2292 struct r5conf *conf = sh->raid_conf; 2293 int level = conf->level; 2294 2295 if (rcw) { 2296 2297 for (i = disks; i--; ) { 2298 struct r5dev *dev = &sh->dev[i]; 2299 2300 if (dev->towrite) { 2301 set_bit(R5_LOCKED, &dev->flags); 2302 set_bit(R5_Wantdrain, &dev->flags); 2303 if (!expand) 2304 clear_bit(R5_UPTODATE, &dev->flags); 2305 s->locked++; 2306 } 2307 } 2308 /* if we are not expanding this is a proper write request, and 2309 * there will be bios with new data to be drained into the 2310 * stripe cache 2311 */ 2312 if (!expand) { 2313 if (!s->locked) 2314 /* False alarm, nothing to do */ 2315 return; 2316 sh->reconstruct_state = reconstruct_state_drain_run; 2317 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2318 } else 2319 sh->reconstruct_state = reconstruct_state_run; 2320 2321 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2322 2323 if (s->locked + conf->max_degraded == disks) 2324 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2325 atomic_inc(&conf->pending_full_writes); 2326 } else { 2327 BUG_ON(level == 6); 2328 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2329 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2330 2331 for (i = disks; i--; ) { 2332 struct r5dev *dev = &sh->dev[i]; 2333 if (i == pd_idx) 2334 continue; 2335 2336 if (dev->towrite && 2337 (test_bit(R5_UPTODATE, &dev->flags) || 2338 test_bit(R5_Wantcompute, &dev->flags))) { 2339 set_bit(R5_Wantdrain, &dev->flags); 2340 set_bit(R5_LOCKED, &dev->flags); 2341 clear_bit(R5_UPTODATE, &dev->flags); 2342 s->locked++; 2343 } 2344 } 2345 if (!s->locked) 2346 /* False alarm - nothing to do */ 2347 return; 2348 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2349 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2350 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2351 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2352 } 2353 2354 /* keep the parity disk(s) locked while asynchronous operations 2355 * are in flight 2356 */ 2357 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2358 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2359 s->locked++; 2360 2361 if (level == 6) { 2362 int qd_idx = sh->qd_idx; 2363 struct r5dev *dev = &sh->dev[qd_idx]; 2364 2365 set_bit(R5_LOCKED, &dev->flags); 2366 clear_bit(R5_UPTODATE, &dev->flags); 2367 s->locked++; 2368 } 2369 2370 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2371 __func__, (unsigned long long)sh->sector, 2372 s->locked, s->ops_request); 2373 } 2374 2375 /* 2376 * Each stripe/dev can have one or more bion attached. 2377 * toread/towrite point to the first in a chain. 2378 * The bi_next chain must be in order. 2379 */ 2380 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 2381 { 2382 struct bio **bip; 2383 struct r5conf *conf = sh->raid_conf; 2384 int firstwrite=0; 2385 2386 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2387 (unsigned long long)bi->bi_sector, 2388 (unsigned long long)sh->sector); 2389 2390 /* 2391 * If several bio share a stripe. The bio bi_phys_segments acts as a 2392 * reference count to avoid race. The reference count should already be 2393 * increased before this function is called (for example, in 2394 * make_request()), so other bio sharing this stripe will not free the 2395 * stripe. If a stripe is owned by one stripe, the stripe lock will 2396 * protect it. 2397 */ 2398 spin_lock_irq(&sh->stripe_lock); 2399 if (forwrite) { 2400 bip = &sh->dev[dd_idx].towrite; 2401 if (*bip == NULL) 2402 firstwrite = 1; 2403 } else 2404 bip = &sh->dev[dd_idx].toread; 2405 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 2406 if (bio_end_sector(*bip) > bi->bi_sector) 2407 goto overlap; 2408 bip = & (*bip)->bi_next; 2409 } 2410 if (*bip && (*bip)->bi_sector < bio_end_sector(bi)) 2411 goto overlap; 2412 2413 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2414 if (*bip) 2415 bi->bi_next = *bip; 2416 *bip = bi; 2417 raid5_inc_bi_active_stripes(bi); 2418 2419 if (forwrite) { 2420 /* check if page is covered */ 2421 sector_t sector = sh->dev[dd_idx].sector; 2422 for (bi=sh->dev[dd_idx].towrite; 2423 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2424 bi && bi->bi_sector <= sector; 2425 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2426 if (bio_end_sector(bi) >= sector) 2427 sector = bio_end_sector(bi); 2428 } 2429 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 2430 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 2431 } 2432 2433 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 2434 (unsigned long long)(*bip)->bi_sector, 2435 (unsigned long long)sh->sector, dd_idx); 2436 spin_unlock_irq(&sh->stripe_lock); 2437 2438 if (conf->mddev->bitmap && firstwrite) { 2439 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 2440 STRIPE_SECTORS, 0); 2441 sh->bm_seq = conf->seq_flush+1; 2442 set_bit(STRIPE_BIT_DELAY, &sh->state); 2443 } 2444 return 1; 2445 2446 overlap: 2447 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 2448 spin_unlock_irq(&sh->stripe_lock); 2449 return 0; 2450 } 2451 2452 static void end_reshape(struct r5conf *conf); 2453 2454 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 2455 struct stripe_head *sh) 2456 { 2457 int sectors_per_chunk = 2458 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 2459 int dd_idx; 2460 int chunk_offset = sector_div(stripe, sectors_per_chunk); 2461 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 2462 2463 raid5_compute_sector(conf, 2464 stripe * (disks - conf->max_degraded) 2465 *sectors_per_chunk + chunk_offset, 2466 previous, 2467 &dd_idx, sh); 2468 } 2469 2470 static void 2471 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 2472 struct stripe_head_state *s, int disks, 2473 struct bio **return_bi) 2474 { 2475 int i; 2476 for (i = disks; i--; ) { 2477 struct bio *bi; 2478 int bitmap_end = 0; 2479 2480 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2481 struct md_rdev *rdev; 2482 rcu_read_lock(); 2483 rdev = rcu_dereference(conf->disks[i].rdev); 2484 if (rdev && test_bit(In_sync, &rdev->flags)) 2485 atomic_inc(&rdev->nr_pending); 2486 else 2487 rdev = NULL; 2488 rcu_read_unlock(); 2489 if (rdev) { 2490 if (!rdev_set_badblocks( 2491 rdev, 2492 sh->sector, 2493 STRIPE_SECTORS, 0)) 2494 md_error(conf->mddev, rdev); 2495 rdev_dec_pending(rdev, conf->mddev); 2496 } 2497 } 2498 spin_lock_irq(&sh->stripe_lock); 2499 /* fail all writes first */ 2500 bi = sh->dev[i].towrite; 2501 sh->dev[i].towrite = NULL; 2502 spin_unlock_irq(&sh->stripe_lock); 2503 if (bi) 2504 bitmap_end = 1; 2505 2506 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2507 wake_up(&conf->wait_for_overlap); 2508 2509 while (bi && bi->bi_sector < 2510 sh->dev[i].sector + STRIPE_SECTORS) { 2511 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2512 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2513 if (!raid5_dec_bi_active_stripes(bi)) { 2514 md_write_end(conf->mddev); 2515 bi->bi_next = *return_bi; 2516 *return_bi = bi; 2517 } 2518 bi = nextbi; 2519 } 2520 if (bitmap_end) 2521 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2522 STRIPE_SECTORS, 0, 0); 2523 bitmap_end = 0; 2524 /* and fail all 'written' */ 2525 bi = sh->dev[i].written; 2526 sh->dev[i].written = NULL; 2527 if (bi) bitmap_end = 1; 2528 while (bi && bi->bi_sector < 2529 sh->dev[i].sector + STRIPE_SECTORS) { 2530 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2531 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2532 if (!raid5_dec_bi_active_stripes(bi)) { 2533 md_write_end(conf->mddev); 2534 bi->bi_next = *return_bi; 2535 *return_bi = bi; 2536 } 2537 bi = bi2; 2538 } 2539 2540 /* fail any reads if this device is non-operational and 2541 * the data has not reached the cache yet. 2542 */ 2543 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 2544 (!test_bit(R5_Insync, &sh->dev[i].flags) || 2545 test_bit(R5_ReadError, &sh->dev[i].flags))) { 2546 spin_lock_irq(&sh->stripe_lock); 2547 bi = sh->dev[i].toread; 2548 sh->dev[i].toread = NULL; 2549 spin_unlock_irq(&sh->stripe_lock); 2550 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2551 wake_up(&conf->wait_for_overlap); 2552 while (bi && bi->bi_sector < 2553 sh->dev[i].sector + STRIPE_SECTORS) { 2554 struct bio *nextbi = 2555 r5_next_bio(bi, sh->dev[i].sector); 2556 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2557 if (!raid5_dec_bi_active_stripes(bi)) { 2558 bi->bi_next = *return_bi; 2559 *return_bi = bi; 2560 } 2561 bi = nextbi; 2562 } 2563 } 2564 if (bitmap_end) 2565 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2566 STRIPE_SECTORS, 0, 0); 2567 /* If we were in the middle of a write the parity block might 2568 * still be locked - so just clear all R5_LOCKED flags 2569 */ 2570 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2571 } 2572 2573 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2574 if (atomic_dec_and_test(&conf->pending_full_writes)) 2575 md_wakeup_thread(conf->mddev->thread); 2576 } 2577 2578 static void 2579 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 2580 struct stripe_head_state *s) 2581 { 2582 int abort = 0; 2583 int i; 2584 2585 clear_bit(STRIPE_SYNCING, &sh->state); 2586 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 2587 wake_up(&conf->wait_for_overlap); 2588 s->syncing = 0; 2589 s->replacing = 0; 2590 /* There is nothing more to do for sync/check/repair. 2591 * Don't even need to abort as that is handled elsewhere 2592 * if needed, and not always wanted e.g. if there is a known 2593 * bad block here. 2594 * For recover/replace we need to record a bad block on all 2595 * non-sync devices, or abort the recovery 2596 */ 2597 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 2598 /* During recovery devices cannot be removed, so 2599 * locking and refcounting of rdevs is not needed 2600 */ 2601 for (i = 0; i < conf->raid_disks; i++) { 2602 struct md_rdev *rdev = conf->disks[i].rdev; 2603 if (rdev 2604 && !test_bit(Faulty, &rdev->flags) 2605 && !test_bit(In_sync, &rdev->flags) 2606 && !rdev_set_badblocks(rdev, sh->sector, 2607 STRIPE_SECTORS, 0)) 2608 abort = 1; 2609 rdev = conf->disks[i].replacement; 2610 if (rdev 2611 && !test_bit(Faulty, &rdev->flags) 2612 && !test_bit(In_sync, &rdev->flags) 2613 && !rdev_set_badblocks(rdev, sh->sector, 2614 STRIPE_SECTORS, 0)) 2615 abort = 1; 2616 } 2617 if (abort) 2618 conf->recovery_disabled = 2619 conf->mddev->recovery_disabled; 2620 } 2621 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 2622 } 2623 2624 static int want_replace(struct stripe_head *sh, int disk_idx) 2625 { 2626 struct md_rdev *rdev; 2627 int rv = 0; 2628 /* Doing recovery so rcu locking not required */ 2629 rdev = sh->raid_conf->disks[disk_idx].replacement; 2630 if (rdev 2631 && !test_bit(Faulty, &rdev->flags) 2632 && !test_bit(In_sync, &rdev->flags) 2633 && (rdev->recovery_offset <= sh->sector 2634 || rdev->mddev->recovery_cp <= sh->sector)) 2635 rv = 1; 2636 2637 return rv; 2638 } 2639 2640 /* fetch_block - checks the given member device to see if its data needs 2641 * to be read or computed to satisfy a request. 2642 * 2643 * Returns 1 when no more member devices need to be checked, otherwise returns 2644 * 0 to tell the loop in handle_stripe_fill to continue 2645 */ 2646 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 2647 int disk_idx, int disks) 2648 { 2649 struct r5dev *dev = &sh->dev[disk_idx]; 2650 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 2651 &sh->dev[s->failed_num[1]] }; 2652 2653 /* is the data in this block needed, and can we get it? */ 2654 if (!test_bit(R5_LOCKED, &dev->flags) && 2655 !test_bit(R5_UPTODATE, &dev->flags) && 2656 (dev->toread || 2657 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2658 s->syncing || s->expanding || 2659 (s->replacing && want_replace(sh, disk_idx)) || 2660 (s->failed >= 1 && fdev[0]->toread) || 2661 (s->failed >= 2 && fdev[1]->toread) || 2662 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && 2663 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || 2664 (sh->raid_conf->level == 6 && s->failed && s->to_write))) { 2665 /* we would like to get this block, possibly by computing it, 2666 * otherwise read it if the backing disk is insync 2667 */ 2668 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 2669 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 2670 if ((s->uptodate == disks - 1) && 2671 (s->failed && (disk_idx == s->failed_num[0] || 2672 disk_idx == s->failed_num[1]))) { 2673 /* have disk failed, and we're requested to fetch it; 2674 * do compute it 2675 */ 2676 pr_debug("Computing stripe %llu block %d\n", 2677 (unsigned long long)sh->sector, disk_idx); 2678 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2679 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2680 set_bit(R5_Wantcompute, &dev->flags); 2681 sh->ops.target = disk_idx; 2682 sh->ops.target2 = -1; /* no 2nd target */ 2683 s->req_compute = 1; 2684 /* Careful: from this point on 'uptodate' is in the eye 2685 * of raid_run_ops which services 'compute' operations 2686 * before writes. R5_Wantcompute flags a block that will 2687 * be R5_UPTODATE by the time it is needed for a 2688 * subsequent operation. 2689 */ 2690 s->uptodate++; 2691 return 1; 2692 } else if (s->uptodate == disks-2 && s->failed >= 2) { 2693 /* Computing 2-failure is *very* expensive; only 2694 * do it if failed >= 2 2695 */ 2696 int other; 2697 for (other = disks; other--; ) { 2698 if (other == disk_idx) 2699 continue; 2700 if (!test_bit(R5_UPTODATE, 2701 &sh->dev[other].flags)) 2702 break; 2703 } 2704 BUG_ON(other < 0); 2705 pr_debug("Computing stripe %llu blocks %d,%d\n", 2706 (unsigned long long)sh->sector, 2707 disk_idx, other); 2708 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2709 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2710 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 2711 set_bit(R5_Wantcompute, &sh->dev[other].flags); 2712 sh->ops.target = disk_idx; 2713 sh->ops.target2 = other; 2714 s->uptodate += 2; 2715 s->req_compute = 1; 2716 return 1; 2717 } else if (test_bit(R5_Insync, &dev->flags)) { 2718 set_bit(R5_LOCKED, &dev->flags); 2719 set_bit(R5_Wantread, &dev->flags); 2720 s->locked++; 2721 pr_debug("Reading block %d (sync=%d)\n", 2722 disk_idx, s->syncing); 2723 } 2724 } 2725 2726 return 0; 2727 } 2728 2729 /** 2730 * handle_stripe_fill - read or compute data to satisfy pending requests. 2731 */ 2732 static void handle_stripe_fill(struct stripe_head *sh, 2733 struct stripe_head_state *s, 2734 int disks) 2735 { 2736 int i; 2737 2738 /* look for blocks to read/compute, skip this if a compute 2739 * is already in flight, or if the stripe contents are in the 2740 * midst of changing due to a write 2741 */ 2742 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 2743 !sh->reconstruct_state) 2744 for (i = disks; i--; ) 2745 if (fetch_block(sh, s, i, disks)) 2746 break; 2747 set_bit(STRIPE_HANDLE, &sh->state); 2748 } 2749 2750 2751 /* handle_stripe_clean_event 2752 * any written block on an uptodate or failed drive can be returned. 2753 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2754 * never LOCKED, so we don't need to test 'failed' directly. 2755 */ 2756 static void handle_stripe_clean_event(struct r5conf *conf, 2757 struct stripe_head *sh, int disks, struct bio **return_bi) 2758 { 2759 int i; 2760 struct r5dev *dev; 2761 int discard_pending = 0; 2762 2763 for (i = disks; i--; ) 2764 if (sh->dev[i].written) { 2765 dev = &sh->dev[i]; 2766 if (!test_bit(R5_LOCKED, &dev->flags) && 2767 (test_bit(R5_UPTODATE, &dev->flags) || 2768 test_bit(R5_Discard, &dev->flags))) { 2769 /* We can return any write requests */ 2770 struct bio *wbi, *wbi2; 2771 pr_debug("Return write for disc %d\n", i); 2772 if (test_and_clear_bit(R5_Discard, &dev->flags)) 2773 clear_bit(R5_UPTODATE, &dev->flags); 2774 wbi = dev->written; 2775 dev->written = NULL; 2776 while (wbi && wbi->bi_sector < 2777 dev->sector + STRIPE_SECTORS) { 2778 wbi2 = r5_next_bio(wbi, dev->sector); 2779 if (!raid5_dec_bi_active_stripes(wbi)) { 2780 md_write_end(conf->mddev); 2781 wbi->bi_next = *return_bi; 2782 *return_bi = wbi; 2783 } 2784 wbi = wbi2; 2785 } 2786 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2787 STRIPE_SECTORS, 2788 !test_bit(STRIPE_DEGRADED, &sh->state), 2789 0); 2790 } else if (test_bit(R5_Discard, &dev->flags)) 2791 discard_pending = 1; 2792 } 2793 if (!discard_pending && 2794 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 2795 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2796 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2797 if (sh->qd_idx >= 0) { 2798 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2799 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 2800 } 2801 /* now that discard is done we can proceed with any sync */ 2802 clear_bit(STRIPE_DISCARD, &sh->state); 2803 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2804 set_bit(STRIPE_HANDLE, &sh->state); 2805 2806 } 2807 2808 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2809 if (atomic_dec_and_test(&conf->pending_full_writes)) 2810 md_wakeup_thread(conf->mddev->thread); 2811 } 2812 2813 static void handle_stripe_dirtying(struct r5conf *conf, 2814 struct stripe_head *sh, 2815 struct stripe_head_state *s, 2816 int disks) 2817 { 2818 int rmw = 0, rcw = 0, i; 2819 sector_t recovery_cp = conf->mddev->recovery_cp; 2820 2821 /* RAID6 requires 'rcw' in current implementation. 2822 * Otherwise, check whether resync is now happening or should start. 2823 * If yes, then the array is dirty (after unclean shutdown or 2824 * initial creation), so parity in some stripes might be inconsistent. 2825 * In this case, we need to always do reconstruct-write, to ensure 2826 * that in case of drive failure or read-error correction, we 2827 * generate correct data from the parity. 2828 */ 2829 if (conf->max_degraded == 2 || 2830 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) { 2831 /* Calculate the real rcw later - for now make it 2832 * look like rcw is cheaper 2833 */ 2834 rcw = 1; rmw = 2; 2835 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n", 2836 conf->max_degraded, (unsigned long long)recovery_cp, 2837 (unsigned long long)sh->sector); 2838 } else for (i = disks; i--; ) { 2839 /* would I have to read this buffer for read_modify_write */ 2840 struct r5dev *dev = &sh->dev[i]; 2841 if ((dev->towrite || i == sh->pd_idx) && 2842 !test_bit(R5_LOCKED, &dev->flags) && 2843 !(test_bit(R5_UPTODATE, &dev->flags) || 2844 test_bit(R5_Wantcompute, &dev->flags))) { 2845 if (test_bit(R5_Insync, &dev->flags)) 2846 rmw++; 2847 else 2848 rmw += 2*disks; /* cannot read it */ 2849 } 2850 /* Would I have to read this buffer for reconstruct_write */ 2851 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 2852 !test_bit(R5_LOCKED, &dev->flags) && 2853 !(test_bit(R5_UPTODATE, &dev->flags) || 2854 test_bit(R5_Wantcompute, &dev->flags))) { 2855 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2856 else 2857 rcw += 2*disks; 2858 } 2859 } 2860 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 2861 (unsigned long long)sh->sector, rmw, rcw); 2862 set_bit(STRIPE_HANDLE, &sh->state); 2863 if (rmw < rcw && rmw > 0) { 2864 /* prefer read-modify-write, but need to get some data */ 2865 if (conf->mddev->queue) 2866 blk_add_trace_msg(conf->mddev->queue, 2867 "raid5 rmw %llu %d", 2868 (unsigned long long)sh->sector, rmw); 2869 for (i = disks; i--; ) { 2870 struct r5dev *dev = &sh->dev[i]; 2871 if ((dev->towrite || i == sh->pd_idx) && 2872 !test_bit(R5_LOCKED, &dev->flags) && 2873 !(test_bit(R5_UPTODATE, &dev->flags) || 2874 test_bit(R5_Wantcompute, &dev->flags)) && 2875 test_bit(R5_Insync, &dev->flags)) { 2876 if ( 2877 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2878 pr_debug("Read_old block " 2879 "%d for r-m-w\n", i); 2880 set_bit(R5_LOCKED, &dev->flags); 2881 set_bit(R5_Wantread, &dev->flags); 2882 s->locked++; 2883 } else { 2884 set_bit(STRIPE_DELAYED, &sh->state); 2885 set_bit(STRIPE_HANDLE, &sh->state); 2886 } 2887 } 2888 } 2889 } 2890 if (rcw <= rmw && rcw > 0) { 2891 /* want reconstruct write, but need to get some data */ 2892 int qread =0; 2893 rcw = 0; 2894 for (i = disks; i--; ) { 2895 struct r5dev *dev = &sh->dev[i]; 2896 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2897 i != sh->pd_idx && i != sh->qd_idx && 2898 !test_bit(R5_LOCKED, &dev->flags) && 2899 !(test_bit(R5_UPTODATE, &dev->flags) || 2900 test_bit(R5_Wantcompute, &dev->flags))) { 2901 rcw++; 2902 if (!test_bit(R5_Insync, &dev->flags)) 2903 continue; /* it's a failed drive */ 2904 if ( 2905 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2906 pr_debug("Read_old block " 2907 "%d for Reconstruct\n", i); 2908 set_bit(R5_LOCKED, &dev->flags); 2909 set_bit(R5_Wantread, &dev->flags); 2910 s->locked++; 2911 qread++; 2912 } else { 2913 set_bit(STRIPE_DELAYED, &sh->state); 2914 set_bit(STRIPE_HANDLE, &sh->state); 2915 } 2916 } 2917 } 2918 if (rcw && conf->mddev->queue) 2919 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 2920 (unsigned long long)sh->sector, 2921 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 2922 } 2923 /* now if nothing is locked, and if we have enough data, 2924 * we can start a write request 2925 */ 2926 /* since handle_stripe can be called at any time we need to handle the 2927 * case where a compute block operation has been submitted and then a 2928 * subsequent call wants to start a write request. raid_run_ops only 2929 * handles the case where compute block and reconstruct are requested 2930 * simultaneously. If this is not the case then new writes need to be 2931 * held off until the compute completes. 2932 */ 2933 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 2934 (s->locked == 0 && (rcw == 0 || rmw == 0) && 2935 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 2936 schedule_reconstruction(sh, s, rcw == 0, 0); 2937 } 2938 2939 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 2940 struct stripe_head_state *s, int disks) 2941 { 2942 struct r5dev *dev = NULL; 2943 2944 set_bit(STRIPE_HANDLE, &sh->state); 2945 2946 switch (sh->check_state) { 2947 case check_state_idle: 2948 /* start a new check operation if there are no failures */ 2949 if (s->failed == 0) { 2950 BUG_ON(s->uptodate != disks); 2951 sh->check_state = check_state_run; 2952 set_bit(STRIPE_OP_CHECK, &s->ops_request); 2953 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2954 s->uptodate--; 2955 break; 2956 } 2957 dev = &sh->dev[s->failed_num[0]]; 2958 /* fall through */ 2959 case check_state_compute_result: 2960 sh->check_state = check_state_idle; 2961 if (!dev) 2962 dev = &sh->dev[sh->pd_idx]; 2963 2964 /* check that a write has not made the stripe insync */ 2965 if (test_bit(STRIPE_INSYNC, &sh->state)) 2966 break; 2967 2968 /* either failed parity check, or recovery is happening */ 2969 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 2970 BUG_ON(s->uptodate != disks); 2971 2972 set_bit(R5_LOCKED, &dev->flags); 2973 s->locked++; 2974 set_bit(R5_Wantwrite, &dev->flags); 2975 2976 clear_bit(STRIPE_DEGRADED, &sh->state); 2977 set_bit(STRIPE_INSYNC, &sh->state); 2978 break; 2979 case check_state_run: 2980 break; /* we will be called again upon completion */ 2981 case check_state_check_result: 2982 sh->check_state = check_state_idle; 2983 2984 /* if a failure occurred during the check operation, leave 2985 * STRIPE_INSYNC not set and let the stripe be handled again 2986 */ 2987 if (s->failed) 2988 break; 2989 2990 /* handle a successful check operation, if parity is correct 2991 * we are done. Otherwise update the mismatch count and repair 2992 * parity if !MD_RECOVERY_CHECK 2993 */ 2994 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 2995 /* parity is correct (on disc, 2996 * not in buffer any more) 2997 */ 2998 set_bit(STRIPE_INSYNC, &sh->state); 2999 else { 3000 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3001 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3002 /* don't try to repair!! */ 3003 set_bit(STRIPE_INSYNC, &sh->state); 3004 else { 3005 sh->check_state = check_state_compute_run; 3006 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3007 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3008 set_bit(R5_Wantcompute, 3009 &sh->dev[sh->pd_idx].flags); 3010 sh->ops.target = sh->pd_idx; 3011 sh->ops.target2 = -1; 3012 s->uptodate++; 3013 } 3014 } 3015 break; 3016 case check_state_compute_run: 3017 break; 3018 default: 3019 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3020 __func__, sh->check_state, 3021 (unsigned long long) sh->sector); 3022 BUG(); 3023 } 3024 } 3025 3026 3027 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3028 struct stripe_head_state *s, 3029 int disks) 3030 { 3031 int pd_idx = sh->pd_idx; 3032 int qd_idx = sh->qd_idx; 3033 struct r5dev *dev; 3034 3035 set_bit(STRIPE_HANDLE, &sh->state); 3036 3037 BUG_ON(s->failed > 2); 3038 3039 /* Want to check and possibly repair P and Q. 3040 * However there could be one 'failed' device, in which 3041 * case we can only check one of them, possibly using the 3042 * other to generate missing data 3043 */ 3044 3045 switch (sh->check_state) { 3046 case check_state_idle: 3047 /* start a new check operation if there are < 2 failures */ 3048 if (s->failed == s->q_failed) { 3049 /* The only possible failed device holds Q, so it 3050 * makes sense to check P (If anything else were failed, 3051 * we would have used P to recreate it). 3052 */ 3053 sh->check_state = check_state_run; 3054 } 3055 if (!s->q_failed && s->failed < 2) { 3056 /* Q is not failed, and we didn't use it to generate 3057 * anything, so it makes sense to check it 3058 */ 3059 if (sh->check_state == check_state_run) 3060 sh->check_state = check_state_run_pq; 3061 else 3062 sh->check_state = check_state_run_q; 3063 } 3064 3065 /* discard potentially stale zero_sum_result */ 3066 sh->ops.zero_sum_result = 0; 3067 3068 if (sh->check_state == check_state_run) { 3069 /* async_xor_zero_sum destroys the contents of P */ 3070 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3071 s->uptodate--; 3072 } 3073 if (sh->check_state >= check_state_run && 3074 sh->check_state <= check_state_run_pq) { 3075 /* async_syndrome_zero_sum preserves P and Q, so 3076 * no need to mark them !uptodate here 3077 */ 3078 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3079 break; 3080 } 3081 3082 /* we have 2-disk failure */ 3083 BUG_ON(s->failed != 2); 3084 /* fall through */ 3085 case check_state_compute_result: 3086 sh->check_state = check_state_idle; 3087 3088 /* check that a write has not made the stripe insync */ 3089 if (test_bit(STRIPE_INSYNC, &sh->state)) 3090 break; 3091 3092 /* now write out any block on a failed drive, 3093 * or P or Q if they were recomputed 3094 */ 3095 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3096 if (s->failed == 2) { 3097 dev = &sh->dev[s->failed_num[1]]; 3098 s->locked++; 3099 set_bit(R5_LOCKED, &dev->flags); 3100 set_bit(R5_Wantwrite, &dev->flags); 3101 } 3102 if (s->failed >= 1) { 3103 dev = &sh->dev[s->failed_num[0]]; 3104 s->locked++; 3105 set_bit(R5_LOCKED, &dev->flags); 3106 set_bit(R5_Wantwrite, &dev->flags); 3107 } 3108 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3109 dev = &sh->dev[pd_idx]; 3110 s->locked++; 3111 set_bit(R5_LOCKED, &dev->flags); 3112 set_bit(R5_Wantwrite, &dev->flags); 3113 } 3114 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3115 dev = &sh->dev[qd_idx]; 3116 s->locked++; 3117 set_bit(R5_LOCKED, &dev->flags); 3118 set_bit(R5_Wantwrite, &dev->flags); 3119 } 3120 clear_bit(STRIPE_DEGRADED, &sh->state); 3121 3122 set_bit(STRIPE_INSYNC, &sh->state); 3123 break; 3124 case check_state_run: 3125 case check_state_run_q: 3126 case check_state_run_pq: 3127 break; /* we will be called again upon completion */ 3128 case check_state_check_result: 3129 sh->check_state = check_state_idle; 3130 3131 /* handle a successful check operation, if parity is correct 3132 * we are done. Otherwise update the mismatch count and repair 3133 * parity if !MD_RECOVERY_CHECK 3134 */ 3135 if (sh->ops.zero_sum_result == 0) { 3136 /* both parities are correct */ 3137 if (!s->failed) 3138 set_bit(STRIPE_INSYNC, &sh->state); 3139 else { 3140 /* in contrast to the raid5 case we can validate 3141 * parity, but still have a failure to write 3142 * back 3143 */ 3144 sh->check_state = check_state_compute_result; 3145 /* Returning at this point means that we may go 3146 * off and bring p and/or q uptodate again so 3147 * we make sure to check zero_sum_result again 3148 * to verify if p or q need writeback 3149 */ 3150 } 3151 } else { 3152 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3153 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3154 /* don't try to repair!! */ 3155 set_bit(STRIPE_INSYNC, &sh->state); 3156 else { 3157 int *target = &sh->ops.target; 3158 3159 sh->ops.target = -1; 3160 sh->ops.target2 = -1; 3161 sh->check_state = check_state_compute_run; 3162 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3163 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3164 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3165 set_bit(R5_Wantcompute, 3166 &sh->dev[pd_idx].flags); 3167 *target = pd_idx; 3168 target = &sh->ops.target2; 3169 s->uptodate++; 3170 } 3171 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3172 set_bit(R5_Wantcompute, 3173 &sh->dev[qd_idx].flags); 3174 *target = qd_idx; 3175 s->uptodate++; 3176 } 3177 } 3178 } 3179 break; 3180 case check_state_compute_run: 3181 break; 3182 default: 3183 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3184 __func__, sh->check_state, 3185 (unsigned long long) sh->sector); 3186 BUG(); 3187 } 3188 } 3189 3190 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3191 { 3192 int i; 3193 3194 /* We have read all the blocks in this stripe and now we need to 3195 * copy some of them into a target stripe for expand. 3196 */ 3197 struct dma_async_tx_descriptor *tx = NULL; 3198 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3199 for (i = 0; i < sh->disks; i++) 3200 if (i != sh->pd_idx && i != sh->qd_idx) { 3201 int dd_idx, j; 3202 struct stripe_head *sh2; 3203 struct async_submit_ctl submit; 3204 3205 sector_t bn = compute_blocknr(sh, i, 1); 3206 sector_t s = raid5_compute_sector(conf, bn, 0, 3207 &dd_idx, NULL); 3208 sh2 = get_active_stripe(conf, s, 0, 1, 1); 3209 if (sh2 == NULL) 3210 /* so far only the early blocks of this stripe 3211 * have been requested. When later blocks 3212 * get requested, we will try again 3213 */ 3214 continue; 3215 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3216 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3217 /* must have already done this block */ 3218 release_stripe(sh2); 3219 continue; 3220 } 3221 3222 /* place all the copies on one channel */ 3223 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3224 tx = async_memcpy(sh2->dev[dd_idx].page, 3225 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3226 &submit); 3227 3228 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3229 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3230 for (j = 0; j < conf->raid_disks; j++) 3231 if (j != sh2->pd_idx && 3232 j != sh2->qd_idx && 3233 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3234 break; 3235 if (j == conf->raid_disks) { 3236 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3237 set_bit(STRIPE_HANDLE, &sh2->state); 3238 } 3239 release_stripe(sh2); 3240 3241 } 3242 /* done submitting copies, wait for them to complete */ 3243 async_tx_quiesce(&tx); 3244 } 3245 3246 /* 3247 * handle_stripe - do things to a stripe. 3248 * 3249 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3250 * state of various bits to see what needs to be done. 3251 * Possible results: 3252 * return some read requests which now have data 3253 * return some write requests which are safely on storage 3254 * schedule a read on some buffers 3255 * schedule a write of some buffers 3256 * return confirmation of parity correctness 3257 * 3258 */ 3259 3260 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 3261 { 3262 struct r5conf *conf = sh->raid_conf; 3263 int disks = sh->disks; 3264 struct r5dev *dev; 3265 int i; 3266 int do_recovery = 0; 3267 3268 memset(s, 0, sizeof(*s)); 3269 3270 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3271 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3272 s->failed_num[0] = -1; 3273 s->failed_num[1] = -1; 3274 3275 /* Now to look around and see what can be done */ 3276 rcu_read_lock(); 3277 for (i=disks; i--; ) { 3278 struct md_rdev *rdev; 3279 sector_t first_bad; 3280 int bad_sectors; 3281 int is_bad = 0; 3282 3283 dev = &sh->dev[i]; 3284 3285 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 3286 i, dev->flags, 3287 dev->toread, dev->towrite, dev->written); 3288 /* maybe we can reply to a read 3289 * 3290 * new wantfill requests are only permitted while 3291 * ops_complete_biofill is guaranteed to be inactive 3292 */ 3293 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3294 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3295 set_bit(R5_Wantfill, &dev->flags); 3296 3297 /* now count some things */ 3298 if (test_bit(R5_LOCKED, &dev->flags)) 3299 s->locked++; 3300 if (test_bit(R5_UPTODATE, &dev->flags)) 3301 s->uptodate++; 3302 if (test_bit(R5_Wantcompute, &dev->flags)) { 3303 s->compute++; 3304 BUG_ON(s->compute > 2); 3305 } 3306 3307 if (test_bit(R5_Wantfill, &dev->flags)) 3308 s->to_fill++; 3309 else if (dev->toread) 3310 s->to_read++; 3311 if (dev->towrite) { 3312 s->to_write++; 3313 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3314 s->non_overwrite++; 3315 } 3316 if (dev->written) 3317 s->written++; 3318 /* Prefer to use the replacement for reads, but only 3319 * if it is recovered enough and has no bad blocks. 3320 */ 3321 rdev = rcu_dereference(conf->disks[i].replacement); 3322 if (rdev && !test_bit(Faulty, &rdev->flags) && 3323 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 3324 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3325 &first_bad, &bad_sectors)) 3326 set_bit(R5_ReadRepl, &dev->flags); 3327 else { 3328 if (rdev) 3329 set_bit(R5_NeedReplace, &dev->flags); 3330 rdev = rcu_dereference(conf->disks[i].rdev); 3331 clear_bit(R5_ReadRepl, &dev->flags); 3332 } 3333 if (rdev && test_bit(Faulty, &rdev->flags)) 3334 rdev = NULL; 3335 if (rdev) { 3336 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3337 &first_bad, &bad_sectors); 3338 if (s->blocked_rdev == NULL 3339 && (test_bit(Blocked, &rdev->flags) 3340 || is_bad < 0)) { 3341 if (is_bad < 0) 3342 set_bit(BlockedBadBlocks, 3343 &rdev->flags); 3344 s->blocked_rdev = rdev; 3345 atomic_inc(&rdev->nr_pending); 3346 } 3347 } 3348 clear_bit(R5_Insync, &dev->flags); 3349 if (!rdev) 3350 /* Not in-sync */; 3351 else if (is_bad) { 3352 /* also not in-sync */ 3353 if (!test_bit(WriteErrorSeen, &rdev->flags) && 3354 test_bit(R5_UPTODATE, &dev->flags)) { 3355 /* treat as in-sync, but with a read error 3356 * which we can now try to correct 3357 */ 3358 set_bit(R5_Insync, &dev->flags); 3359 set_bit(R5_ReadError, &dev->flags); 3360 } 3361 } else if (test_bit(In_sync, &rdev->flags)) 3362 set_bit(R5_Insync, &dev->flags); 3363 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 3364 /* in sync if before recovery_offset */ 3365 set_bit(R5_Insync, &dev->flags); 3366 else if (test_bit(R5_UPTODATE, &dev->flags) && 3367 test_bit(R5_Expanded, &dev->flags)) 3368 /* If we've reshaped into here, we assume it is Insync. 3369 * We will shortly update recovery_offset to make 3370 * it official. 3371 */ 3372 set_bit(R5_Insync, &dev->flags); 3373 3374 if (rdev && test_bit(R5_WriteError, &dev->flags)) { 3375 /* This flag does not apply to '.replacement' 3376 * only to .rdev, so make sure to check that*/ 3377 struct md_rdev *rdev2 = rcu_dereference( 3378 conf->disks[i].rdev); 3379 if (rdev2 == rdev) 3380 clear_bit(R5_Insync, &dev->flags); 3381 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3382 s->handle_bad_blocks = 1; 3383 atomic_inc(&rdev2->nr_pending); 3384 } else 3385 clear_bit(R5_WriteError, &dev->flags); 3386 } 3387 if (rdev && test_bit(R5_MadeGood, &dev->flags)) { 3388 /* This flag does not apply to '.replacement' 3389 * only to .rdev, so make sure to check that*/ 3390 struct md_rdev *rdev2 = rcu_dereference( 3391 conf->disks[i].rdev); 3392 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3393 s->handle_bad_blocks = 1; 3394 atomic_inc(&rdev2->nr_pending); 3395 } else 3396 clear_bit(R5_MadeGood, &dev->flags); 3397 } 3398 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 3399 struct md_rdev *rdev2 = rcu_dereference( 3400 conf->disks[i].replacement); 3401 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3402 s->handle_bad_blocks = 1; 3403 atomic_inc(&rdev2->nr_pending); 3404 } else 3405 clear_bit(R5_MadeGoodRepl, &dev->flags); 3406 } 3407 if (!test_bit(R5_Insync, &dev->flags)) { 3408 /* The ReadError flag will just be confusing now */ 3409 clear_bit(R5_ReadError, &dev->flags); 3410 clear_bit(R5_ReWrite, &dev->flags); 3411 } 3412 if (test_bit(R5_ReadError, &dev->flags)) 3413 clear_bit(R5_Insync, &dev->flags); 3414 if (!test_bit(R5_Insync, &dev->flags)) { 3415 if (s->failed < 2) 3416 s->failed_num[s->failed] = i; 3417 s->failed++; 3418 if (rdev && !test_bit(Faulty, &rdev->flags)) 3419 do_recovery = 1; 3420 } 3421 } 3422 if (test_bit(STRIPE_SYNCING, &sh->state)) { 3423 /* If there is a failed device being replaced, 3424 * we must be recovering. 3425 * else if we are after recovery_cp, we must be syncing 3426 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 3427 * else we can only be replacing 3428 * sync and recovery both need to read all devices, and so 3429 * use the same flag. 3430 */ 3431 if (do_recovery || 3432 sh->sector >= conf->mddev->recovery_cp || 3433 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 3434 s->syncing = 1; 3435 else 3436 s->replacing = 1; 3437 } 3438 rcu_read_unlock(); 3439 } 3440 3441 static void handle_stripe(struct stripe_head *sh) 3442 { 3443 struct stripe_head_state s; 3444 struct r5conf *conf = sh->raid_conf; 3445 int i; 3446 int prexor; 3447 int disks = sh->disks; 3448 struct r5dev *pdev, *qdev; 3449 3450 clear_bit(STRIPE_HANDLE, &sh->state); 3451 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 3452 /* already being handled, ensure it gets handled 3453 * again when current action finishes */ 3454 set_bit(STRIPE_HANDLE, &sh->state); 3455 return; 3456 } 3457 3458 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3459 spin_lock(&sh->stripe_lock); 3460 /* Cannot process 'sync' concurrently with 'discard' */ 3461 if (!test_bit(STRIPE_DISCARD, &sh->state) && 3462 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3463 set_bit(STRIPE_SYNCING, &sh->state); 3464 clear_bit(STRIPE_INSYNC, &sh->state); 3465 } 3466 spin_unlock(&sh->stripe_lock); 3467 } 3468 clear_bit(STRIPE_DELAYED, &sh->state); 3469 3470 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 3471 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 3472 (unsigned long long)sh->sector, sh->state, 3473 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 3474 sh->check_state, sh->reconstruct_state); 3475 3476 analyse_stripe(sh, &s); 3477 3478 if (s.handle_bad_blocks) { 3479 set_bit(STRIPE_HANDLE, &sh->state); 3480 goto finish; 3481 } 3482 3483 if (unlikely(s.blocked_rdev)) { 3484 if (s.syncing || s.expanding || s.expanded || 3485 s.replacing || s.to_write || s.written) { 3486 set_bit(STRIPE_HANDLE, &sh->state); 3487 goto finish; 3488 } 3489 /* There is nothing for the blocked_rdev to block */ 3490 rdev_dec_pending(s.blocked_rdev, conf->mddev); 3491 s.blocked_rdev = NULL; 3492 } 3493 3494 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3495 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3496 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3497 } 3498 3499 pr_debug("locked=%d uptodate=%d to_read=%d" 3500 " to_write=%d failed=%d failed_num=%d,%d\n", 3501 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 3502 s.failed_num[0], s.failed_num[1]); 3503 /* check if the array has lost more than max_degraded devices and, 3504 * if so, some requests might need to be failed. 3505 */ 3506 if (s.failed > conf->max_degraded) { 3507 sh->check_state = 0; 3508 sh->reconstruct_state = 0; 3509 if (s.to_read+s.to_write+s.written) 3510 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 3511 if (s.syncing + s.replacing) 3512 handle_failed_sync(conf, sh, &s); 3513 } 3514 3515 /* Now we check to see if any write operations have recently 3516 * completed 3517 */ 3518 prexor = 0; 3519 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 3520 prexor = 1; 3521 if (sh->reconstruct_state == reconstruct_state_drain_result || 3522 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 3523 sh->reconstruct_state = reconstruct_state_idle; 3524 3525 /* All the 'written' buffers and the parity block are ready to 3526 * be written back to disk 3527 */ 3528 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 3529 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 3530 BUG_ON(sh->qd_idx >= 0 && 3531 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 3532 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 3533 for (i = disks; i--; ) { 3534 struct r5dev *dev = &sh->dev[i]; 3535 if (test_bit(R5_LOCKED, &dev->flags) && 3536 (i == sh->pd_idx || i == sh->qd_idx || 3537 dev->written)) { 3538 pr_debug("Writing block %d\n", i); 3539 set_bit(R5_Wantwrite, &dev->flags); 3540 if (prexor) 3541 continue; 3542 if (!test_bit(R5_Insync, &dev->flags) || 3543 ((i == sh->pd_idx || i == sh->qd_idx) && 3544 s.failed == 0)) 3545 set_bit(STRIPE_INSYNC, &sh->state); 3546 } 3547 } 3548 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3549 s.dec_preread_active = 1; 3550 } 3551 3552 /* 3553 * might be able to return some write requests if the parity blocks 3554 * are safe, or on a failed drive 3555 */ 3556 pdev = &sh->dev[sh->pd_idx]; 3557 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 3558 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 3559 qdev = &sh->dev[sh->qd_idx]; 3560 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 3561 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 3562 || conf->level < 6; 3563 3564 if (s.written && 3565 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 3566 && !test_bit(R5_LOCKED, &pdev->flags) 3567 && (test_bit(R5_UPTODATE, &pdev->flags) || 3568 test_bit(R5_Discard, &pdev->flags))))) && 3569 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3570 && !test_bit(R5_LOCKED, &qdev->flags) 3571 && (test_bit(R5_UPTODATE, &qdev->flags) || 3572 test_bit(R5_Discard, &qdev->flags)))))) 3573 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 3574 3575 /* Now we might consider reading some blocks, either to check/generate 3576 * parity, or to satisfy requests 3577 * or to load a block that is being partially written. 3578 */ 3579 if (s.to_read || s.non_overwrite 3580 || (conf->level == 6 && s.to_write && s.failed) 3581 || (s.syncing && (s.uptodate + s.compute < disks)) 3582 || s.replacing 3583 || s.expanding) 3584 handle_stripe_fill(sh, &s, disks); 3585 3586 /* Now to consider new write requests and what else, if anything 3587 * should be read. We do not handle new writes when: 3588 * 1/ A 'write' operation (copy+xor) is already in flight. 3589 * 2/ A 'check' operation is in flight, as it may clobber the parity 3590 * block. 3591 */ 3592 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3593 handle_stripe_dirtying(conf, sh, &s, disks); 3594 3595 /* maybe we need to check and possibly fix the parity for this stripe 3596 * Any reads will already have been scheduled, so we just see if enough 3597 * data is available. The parity check is held off while parity 3598 * dependent operations are in flight. 3599 */ 3600 if (sh->check_state || 3601 (s.syncing && s.locked == 0 && 3602 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3603 !test_bit(STRIPE_INSYNC, &sh->state))) { 3604 if (conf->level == 6) 3605 handle_parity_checks6(conf, sh, &s, disks); 3606 else 3607 handle_parity_checks5(conf, sh, &s, disks); 3608 } 3609 3610 if (s.replacing && s.locked == 0 3611 && !test_bit(STRIPE_INSYNC, &sh->state)) { 3612 /* Write out to replacement devices where possible */ 3613 for (i = 0; i < conf->raid_disks; i++) 3614 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) && 3615 test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 3616 set_bit(R5_WantReplace, &sh->dev[i].flags); 3617 set_bit(R5_LOCKED, &sh->dev[i].flags); 3618 s.locked++; 3619 } 3620 set_bit(STRIPE_INSYNC, &sh->state); 3621 } 3622 if ((s.syncing || s.replacing) && s.locked == 0 && 3623 test_bit(STRIPE_INSYNC, &sh->state)) { 3624 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3625 clear_bit(STRIPE_SYNCING, &sh->state); 3626 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3627 wake_up(&conf->wait_for_overlap); 3628 } 3629 3630 /* If the failed drives are just a ReadError, then we might need 3631 * to progress the repair/check process 3632 */ 3633 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 3634 for (i = 0; i < s.failed; i++) { 3635 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 3636 if (test_bit(R5_ReadError, &dev->flags) 3637 && !test_bit(R5_LOCKED, &dev->flags) 3638 && test_bit(R5_UPTODATE, &dev->flags) 3639 ) { 3640 if (!test_bit(R5_ReWrite, &dev->flags)) { 3641 set_bit(R5_Wantwrite, &dev->flags); 3642 set_bit(R5_ReWrite, &dev->flags); 3643 set_bit(R5_LOCKED, &dev->flags); 3644 s.locked++; 3645 } else { 3646 /* let's read it back */ 3647 set_bit(R5_Wantread, &dev->flags); 3648 set_bit(R5_LOCKED, &dev->flags); 3649 s.locked++; 3650 } 3651 } 3652 } 3653 3654 3655 /* Finish reconstruct operations initiated by the expansion process */ 3656 if (sh->reconstruct_state == reconstruct_state_result) { 3657 struct stripe_head *sh_src 3658 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3659 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 3660 /* sh cannot be written until sh_src has been read. 3661 * so arrange for sh to be delayed a little 3662 */ 3663 set_bit(STRIPE_DELAYED, &sh->state); 3664 set_bit(STRIPE_HANDLE, &sh->state); 3665 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3666 &sh_src->state)) 3667 atomic_inc(&conf->preread_active_stripes); 3668 release_stripe(sh_src); 3669 goto finish; 3670 } 3671 if (sh_src) 3672 release_stripe(sh_src); 3673 3674 sh->reconstruct_state = reconstruct_state_idle; 3675 clear_bit(STRIPE_EXPANDING, &sh->state); 3676 for (i = conf->raid_disks; i--; ) { 3677 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3678 set_bit(R5_LOCKED, &sh->dev[i].flags); 3679 s.locked++; 3680 } 3681 } 3682 3683 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3684 !sh->reconstruct_state) { 3685 /* Need to write out all blocks after computing parity */ 3686 sh->disks = conf->raid_disks; 3687 stripe_set_idx(sh->sector, conf, 0, sh); 3688 schedule_reconstruction(sh, &s, 1, 1); 3689 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3690 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3691 atomic_dec(&conf->reshape_stripes); 3692 wake_up(&conf->wait_for_overlap); 3693 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3694 } 3695 3696 if (s.expanding && s.locked == 0 && 3697 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3698 handle_stripe_expansion(conf, sh); 3699 3700 finish: 3701 /* wait for this device to become unblocked */ 3702 if (unlikely(s.blocked_rdev)) { 3703 if (conf->mddev->external) 3704 md_wait_for_blocked_rdev(s.blocked_rdev, 3705 conf->mddev); 3706 else 3707 /* Internal metadata will immediately 3708 * be written by raid5d, so we don't 3709 * need to wait here. 3710 */ 3711 rdev_dec_pending(s.blocked_rdev, 3712 conf->mddev); 3713 } 3714 3715 if (s.handle_bad_blocks) 3716 for (i = disks; i--; ) { 3717 struct md_rdev *rdev; 3718 struct r5dev *dev = &sh->dev[i]; 3719 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 3720 /* We own a safe reference to the rdev */ 3721 rdev = conf->disks[i].rdev; 3722 if (!rdev_set_badblocks(rdev, sh->sector, 3723 STRIPE_SECTORS, 0)) 3724 md_error(conf->mddev, rdev); 3725 rdev_dec_pending(rdev, conf->mddev); 3726 } 3727 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 3728 rdev = conf->disks[i].rdev; 3729 rdev_clear_badblocks(rdev, sh->sector, 3730 STRIPE_SECTORS, 0); 3731 rdev_dec_pending(rdev, conf->mddev); 3732 } 3733 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 3734 rdev = conf->disks[i].replacement; 3735 if (!rdev) 3736 /* rdev have been moved down */ 3737 rdev = conf->disks[i].rdev; 3738 rdev_clear_badblocks(rdev, sh->sector, 3739 STRIPE_SECTORS, 0); 3740 rdev_dec_pending(rdev, conf->mddev); 3741 } 3742 } 3743 3744 if (s.ops_request) 3745 raid_run_ops(sh, s.ops_request); 3746 3747 ops_run_io(sh, &s); 3748 3749 if (s.dec_preread_active) { 3750 /* We delay this until after ops_run_io so that if make_request 3751 * is waiting on a flush, it won't continue until the writes 3752 * have actually been submitted. 3753 */ 3754 atomic_dec(&conf->preread_active_stripes); 3755 if (atomic_read(&conf->preread_active_stripes) < 3756 IO_THRESHOLD) 3757 md_wakeup_thread(conf->mddev->thread); 3758 } 3759 3760 return_io(s.return_bi); 3761 3762 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 3763 } 3764 3765 static void raid5_activate_delayed(struct r5conf *conf) 3766 { 3767 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 3768 while (!list_empty(&conf->delayed_list)) { 3769 struct list_head *l = conf->delayed_list.next; 3770 struct stripe_head *sh; 3771 sh = list_entry(l, struct stripe_head, lru); 3772 list_del_init(l); 3773 clear_bit(STRIPE_DELAYED, &sh->state); 3774 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3775 atomic_inc(&conf->preread_active_stripes); 3776 list_add_tail(&sh->lru, &conf->hold_list); 3777 } 3778 } 3779 } 3780 3781 static void activate_bit_delay(struct r5conf *conf) 3782 { 3783 /* device_lock is held */ 3784 struct list_head head; 3785 list_add(&head, &conf->bitmap_list); 3786 list_del_init(&conf->bitmap_list); 3787 while (!list_empty(&head)) { 3788 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 3789 list_del_init(&sh->lru); 3790 atomic_inc(&sh->count); 3791 __release_stripe(conf, sh); 3792 } 3793 } 3794 3795 int md_raid5_congested(struct mddev *mddev, int bits) 3796 { 3797 struct r5conf *conf = mddev->private; 3798 3799 /* No difference between reads and writes. Just check 3800 * how busy the stripe_cache is 3801 */ 3802 3803 if (conf->inactive_blocked) 3804 return 1; 3805 if (conf->quiesce) 3806 return 1; 3807 if (list_empty_careful(&conf->inactive_list)) 3808 return 1; 3809 3810 return 0; 3811 } 3812 EXPORT_SYMBOL_GPL(md_raid5_congested); 3813 3814 static int raid5_congested(void *data, int bits) 3815 { 3816 struct mddev *mddev = data; 3817 3818 return mddev_congested(mddev, bits) || 3819 md_raid5_congested(mddev, bits); 3820 } 3821 3822 /* We want read requests to align with chunks where possible, 3823 * but write requests don't need to. 3824 */ 3825 static int raid5_mergeable_bvec(struct request_queue *q, 3826 struct bvec_merge_data *bvm, 3827 struct bio_vec *biovec) 3828 { 3829 struct mddev *mddev = q->queuedata; 3830 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 3831 int max; 3832 unsigned int chunk_sectors = mddev->chunk_sectors; 3833 unsigned int bio_sectors = bvm->bi_size >> 9; 3834 3835 if ((bvm->bi_rw & 1) == WRITE) 3836 return biovec->bv_len; /* always allow writes to be mergeable */ 3837 3838 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3839 chunk_sectors = mddev->new_chunk_sectors; 3840 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 3841 if (max < 0) max = 0; 3842 if (max <= biovec->bv_len && bio_sectors == 0) 3843 return biovec->bv_len; 3844 else 3845 return max; 3846 } 3847 3848 3849 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 3850 { 3851 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3852 unsigned int chunk_sectors = mddev->chunk_sectors; 3853 unsigned int bio_sectors = bio_sectors(bio); 3854 3855 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3856 chunk_sectors = mddev->new_chunk_sectors; 3857 return chunk_sectors >= 3858 ((sector & (chunk_sectors - 1)) + bio_sectors); 3859 } 3860 3861 /* 3862 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 3863 * later sampled by raid5d. 3864 */ 3865 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 3866 { 3867 unsigned long flags; 3868 3869 spin_lock_irqsave(&conf->device_lock, flags); 3870 3871 bi->bi_next = conf->retry_read_aligned_list; 3872 conf->retry_read_aligned_list = bi; 3873 3874 spin_unlock_irqrestore(&conf->device_lock, flags); 3875 md_wakeup_thread(conf->mddev->thread); 3876 } 3877 3878 3879 static struct bio *remove_bio_from_retry(struct r5conf *conf) 3880 { 3881 struct bio *bi; 3882 3883 bi = conf->retry_read_aligned; 3884 if (bi) { 3885 conf->retry_read_aligned = NULL; 3886 return bi; 3887 } 3888 bi = conf->retry_read_aligned_list; 3889 if(bi) { 3890 conf->retry_read_aligned_list = bi->bi_next; 3891 bi->bi_next = NULL; 3892 /* 3893 * this sets the active strip count to 1 and the processed 3894 * strip count to zero (upper 8 bits) 3895 */ 3896 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 3897 } 3898 3899 return bi; 3900 } 3901 3902 3903 /* 3904 * The "raid5_align_endio" should check if the read succeeded and if it 3905 * did, call bio_endio on the original bio (having bio_put the new bio 3906 * first). 3907 * If the read failed.. 3908 */ 3909 static void raid5_align_endio(struct bio *bi, int error) 3910 { 3911 struct bio* raid_bi = bi->bi_private; 3912 struct mddev *mddev; 3913 struct r5conf *conf; 3914 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 3915 struct md_rdev *rdev; 3916 3917 bio_put(bi); 3918 3919 rdev = (void*)raid_bi->bi_next; 3920 raid_bi->bi_next = NULL; 3921 mddev = rdev->mddev; 3922 conf = mddev->private; 3923 3924 rdev_dec_pending(rdev, conf->mddev); 3925 3926 if (!error && uptodate) { 3927 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 3928 raid_bi, 0); 3929 bio_endio(raid_bi, 0); 3930 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3931 wake_up(&conf->wait_for_stripe); 3932 return; 3933 } 3934 3935 3936 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 3937 3938 add_bio_to_retry(raid_bi, conf); 3939 } 3940 3941 static int bio_fits_rdev(struct bio *bi) 3942 { 3943 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 3944 3945 if (bio_sectors(bi) > queue_max_sectors(q)) 3946 return 0; 3947 blk_recount_segments(q, bi); 3948 if (bi->bi_phys_segments > queue_max_segments(q)) 3949 return 0; 3950 3951 if (q->merge_bvec_fn) 3952 /* it's too hard to apply the merge_bvec_fn at this stage, 3953 * just just give up 3954 */ 3955 return 0; 3956 3957 return 1; 3958 } 3959 3960 3961 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) 3962 { 3963 struct r5conf *conf = mddev->private; 3964 int dd_idx; 3965 struct bio* align_bi; 3966 struct md_rdev *rdev; 3967 sector_t end_sector; 3968 3969 if (!in_chunk_boundary(mddev, raid_bio)) { 3970 pr_debug("chunk_aligned_read : non aligned\n"); 3971 return 0; 3972 } 3973 /* 3974 * use bio_clone_mddev to make a copy of the bio 3975 */ 3976 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 3977 if (!align_bi) 3978 return 0; 3979 /* 3980 * set bi_end_io to a new function, and set bi_private to the 3981 * original bio. 3982 */ 3983 align_bi->bi_end_io = raid5_align_endio; 3984 align_bi->bi_private = raid_bio; 3985 /* 3986 * compute position 3987 */ 3988 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, 3989 0, 3990 &dd_idx, NULL); 3991 3992 end_sector = bio_end_sector(align_bi); 3993 rcu_read_lock(); 3994 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 3995 if (!rdev || test_bit(Faulty, &rdev->flags) || 3996 rdev->recovery_offset < end_sector) { 3997 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 3998 if (rdev && 3999 (test_bit(Faulty, &rdev->flags) || 4000 !(test_bit(In_sync, &rdev->flags) || 4001 rdev->recovery_offset >= end_sector))) 4002 rdev = NULL; 4003 } 4004 if (rdev) { 4005 sector_t first_bad; 4006 int bad_sectors; 4007 4008 atomic_inc(&rdev->nr_pending); 4009 rcu_read_unlock(); 4010 raid_bio->bi_next = (void*)rdev; 4011 align_bi->bi_bdev = rdev->bdev; 4012 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 4013 4014 if (!bio_fits_rdev(align_bi) || 4015 is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi), 4016 &first_bad, &bad_sectors)) { 4017 /* too big in some way, or has a known bad block */ 4018 bio_put(align_bi); 4019 rdev_dec_pending(rdev, mddev); 4020 return 0; 4021 } 4022 4023 /* No reshape active, so we can trust rdev->data_offset */ 4024 align_bi->bi_sector += rdev->data_offset; 4025 4026 spin_lock_irq(&conf->device_lock); 4027 wait_event_lock_irq(conf->wait_for_stripe, 4028 conf->quiesce == 0, 4029 conf->device_lock); 4030 atomic_inc(&conf->active_aligned_reads); 4031 spin_unlock_irq(&conf->device_lock); 4032 4033 if (mddev->gendisk) 4034 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4035 align_bi, disk_devt(mddev->gendisk), 4036 raid_bio->bi_sector); 4037 generic_make_request(align_bi); 4038 return 1; 4039 } else { 4040 rcu_read_unlock(); 4041 bio_put(align_bi); 4042 return 0; 4043 } 4044 } 4045 4046 /* __get_priority_stripe - get the next stripe to process 4047 * 4048 * Full stripe writes are allowed to pass preread active stripes up until 4049 * the bypass_threshold is exceeded. In general the bypass_count 4050 * increments when the handle_list is handled before the hold_list; however, it 4051 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4052 * stripe with in flight i/o. The bypass_count will be reset when the 4053 * head of the hold_list has changed, i.e. the head was promoted to the 4054 * handle_list. 4055 */ 4056 static struct stripe_head *__get_priority_stripe(struct r5conf *conf) 4057 { 4058 struct stripe_head *sh; 4059 4060 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4061 __func__, 4062 list_empty(&conf->handle_list) ? "empty" : "busy", 4063 list_empty(&conf->hold_list) ? "empty" : "busy", 4064 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4065 4066 if (!list_empty(&conf->handle_list)) { 4067 sh = list_entry(conf->handle_list.next, typeof(*sh), lru); 4068 4069 if (list_empty(&conf->hold_list)) 4070 conf->bypass_count = 0; 4071 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4072 if (conf->hold_list.next == conf->last_hold) 4073 conf->bypass_count++; 4074 else { 4075 conf->last_hold = conf->hold_list.next; 4076 conf->bypass_count -= conf->bypass_threshold; 4077 if (conf->bypass_count < 0) 4078 conf->bypass_count = 0; 4079 } 4080 } 4081 } else if (!list_empty(&conf->hold_list) && 4082 ((conf->bypass_threshold && 4083 conf->bypass_count > conf->bypass_threshold) || 4084 atomic_read(&conf->pending_full_writes) == 0)) { 4085 sh = list_entry(conf->hold_list.next, 4086 typeof(*sh), lru); 4087 conf->bypass_count -= conf->bypass_threshold; 4088 if (conf->bypass_count < 0) 4089 conf->bypass_count = 0; 4090 } else 4091 return NULL; 4092 4093 list_del_init(&sh->lru); 4094 atomic_inc(&sh->count); 4095 BUG_ON(atomic_read(&sh->count) != 1); 4096 return sh; 4097 } 4098 4099 struct raid5_plug_cb { 4100 struct blk_plug_cb cb; 4101 struct list_head list; 4102 }; 4103 4104 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4105 { 4106 struct raid5_plug_cb *cb = container_of( 4107 blk_cb, struct raid5_plug_cb, cb); 4108 struct stripe_head *sh; 4109 struct mddev *mddev = cb->cb.data; 4110 struct r5conf *conf = mddev->private; 4111 int cnt = 0; 4112 4113 if (cb->list.next && !list_empty(&cb->list)) { 4114 spin_lock_irq(&conf->device_lock); 4115 while (!list_empty(&cb->list)) { 4116 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4117 list_del_init(&sh->lru); 4118 /* 4119 * avoid race release_stripe_plug() sees 4120 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4121 * is still in our list 4122 */ 4123 smp_mb__before_clear_bit(); 4124 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 4125 __release_stripe(conf, sh); 4126 cnt++; 4127 } 4128 spin_unlock_irq(&conf->device_lock); 4129 } 4130 if (mddev->queue) 4131 trace_block_unplug(mddev->queue, cnt, !from_schedule); 4132 kfree(cb); 4133 } 4134 4135 static void release_stripe_plug(struct mddev *mddev, 4136 struct stripe_head *sh) 4137 { 4138 struct blk_plug_cb *blk_cb = blk_check_plugged( 4139 raid5_unplug, mddev, 4140 sizeof(struct raid5_plug_cb)); 4141 struct raid5_plug_cb *cb; 4142 4143 if (!blk_cb) { 4144 release_stripe(sh); 4145 return; 4146 } 4147 4148 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 4149 4150 if (cb->list.next == NULL) 4151 INIT_LIST_HEAD(&cb->list); 4152 4153 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 4154 list_add_tail(&sh->lru, &cb->list); 4155 else 4156 release_stripe(sh); 4157 } 4158 4159 static void make_discard_request(struct mddev *mddev, struct bio *bi) 4160 { 4161 struct r5conf *conf = mddev->private; 4162 sector_t logical_sector, last_sector; 4163 struct stripe_head *sh; 4164 int remaining; 4165 int stripe_sectors; 4166 4167 if (mddev->reshape_position != MaxSector) 4168 /* Skip discard while reshape is happening */ 4169 return; 4170 4171 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4172 last_sector = bi->bi_sector + (bi->bi_size>>9); 4173 4174 bi->bi_next = NULL; 4175 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4176 4177 stripe_sectors = conf->chunk_sectors * 4178 (conf->raid_disks - conf->max_degraded); 4179 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 4180 stripe_sectors); 4181 sector_div(last_sector, stripe_sectors); 4182 4183 logical_sector *= conf->chunk_sectors; 4184 last_sector *= conf->chunk_sectors; 4185 4186 for (; logical_sector < last_sector; 4187 logical_sector += STRIPE_SECTORS) { 4188 DEFINE_WAIT(w); 4189 int d; 4190 again: 4191 sh = get_active_stripe(conf, logical_sector, 0, 0, 0); 4192 prepare_to_wait(&conf->wait_for_overlap, &w, 4193 TASK_UNINTERRUPTIBLE); 4194 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4195 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4196 release_stripe(sh); 4197 schedule(); 4198 goto again; 4199 } 4200 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4201 spin_lock_irq(&sh->stripe_lock); 4202 for (d = 0; d < conf->raid_disks; d++) { 4203 if (d == sh->pd_idx || d == sh->qd_idx) 4204 continue; 4205 if (sh->dev[d].towrite || sh->dev[d].toread) { 4206 set_bit(R5_Overlap, &sh->dev[d].flags); 4207 spin_unlock_irq(&sh->stripe_lock); 4208 release_stripe(sh); 4209 schedule(); 4210 goto again; 4211 } 4212 } 4213 set_bit(STRIPE_DISCARD, &sh->state); 4214 finish_wait(&conf->wait_for_overlap, &w); 4215 for (d = 0; d < conf->raid_disks; d++) { 4216 if (d == sh->pd_idx || d == sh->qd_idx) 4217 continue; 4218 sh->dev[d].towrite = bi; 4219 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 4220 raid5_inc_bi_active_stripes(bi); 4221 } 4222 spin_unlock_irq(&sh->stripe_lock); 4223 if (conf->mddev->bitmap) { 4224 for (d = 0; 4225 d < conf->raid_disks - conf->max_degraded; 4226 d++) 4227 bitmap_startwrite(mddev->bitmap, 4228 sh->sector, 4229 STRIPE_SECTORS, 4230 0); 4231 sh->bm_seq = conf->seq_flush + 1; 4232 set_bit(STRIPE_BIT_DELAY, &sh->state); 4233 } 4234 4235 set_bit(STRIPE_HANDLE, &sh->state); 4236 clear_bit(STRIPE_DELAYED, &sh->state); 4237 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4238 atomic_inc(&conf->preread_active_stripes); 4239 release_stripe_plug(mddev, sh); 4240 } 4241 4242 remaining = raid5_dec_bi_active_stripes(bi); 4243 if (remaining == 0) { 4244 md_write_end(mddev); 4245 bio_endio(bi, 0); 4246 } 4247 } 4248 4249 static void make_request(struct mddev *mddev, struct bio * bi) 4250 { 4251 struct r5conf *conf = mddev->private; 4252 int dd_idx; 4253 sector_t new_sector; 4254 sector_t logical_sector, last_sector; 4255 struct stripe_head *sh; 4256 const int rw = bio_data_dir(bi); 4257 int remaining; 4258 4259 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 4260 md_flush_request(mddev, bi); 4261 return; 4262 } 4263 4264 md_write_start(mddev, bi); 4265 4266 if (rw == READ && 4267 mddev->reshape_position == MaxSector && 4268 chunk_aligned_read(mddev,bi)) 4269 return; 4270 4271 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 4272 make_discard_request(mddev, bi); 4273 return; 4274 } 4275 4276 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4277 last_sector = bio_end_sector(bi); 4278 bi->bi_next = NULL; 4279 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4280 4281 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 4282 DEFINE_WAIT(w); 4283 int previous; 4284 4285 retry: 4286 previous = 0; 4287 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 4288 if (unlikely(conf->reshape_progress != MaxSector)) { 4289 /* spinlock is needed as reshape_progress may be 4290 * 64bit on a 32bit platform, and so it might be 4291 * possible to see a half-updated value 4292 * Of course reshape_progress could change after 4293 * the lock is dropped, so once we get a reference 4294 * to the stripe that we think it is, we will have 4295 * to check again. 4296 */ 4297 spin_lock_irq(&conf->device_lock); 4298 if (mddev->reshape_backwards 4299 ? logical_sector < conf->reshape_progress 4300 : logical_sector >= conf->reshape_progress) { 4301 previous = 1; 4302 } else { 4303 if (mddev->reshape_backwards 4304 ? logical_sector < conf->reshape_safe 4305 : logical_sector >= conf->reshape_safe) { 4306 spin_unlock_irq(&conf->device_lock); 4307 schedule(); 4308 goto retry; 4309 } 4310 } 4311 spin_unlock_irq(&conf->device_lock); 4312 } 4313 4314 new_sector = raid5_compute_sector(conf, logical_sector, 4315 previous, 4316 &dd_idx, NULL); 4317 pr_debug("raid456: make_request, sector %llu logical %llu\n", 4318 (unsigned long long)new_sector, 4319 (unsigned long long)logical_sector); 4320 4321 sh = get_active_stripe(conf, new_sector, previous, 4322 (bi->bi_rw&RWA_MASK), 0); 4323 if (sh) { 4324 if (unlikely(previous)) { 4325 /* expansion might have moved on while waiting for a 4326 * stripe, so we must do the range check again. 4327 * Expansion could still move past after this 4328 * test, but as we are holding a reference to 4329 * 'sh', we know that if that happens, 4330 * STRIPE_EXPANDING will get set and the expansion 4331 * won't proceed until we finish with the stripe. 4332 */ 4333 int must_retry = 0; 4334 spin_lock_irq(&conf->device_lock); 4335 if (mddev->reshape_backwards 4336 ? logical_sector >= conf->reshape_progress 4337 : logical_sector < conf->reshape_progress) 4338 /* mismatch, need to try again */ 4339 must_retry = 1; 4340 spin_unlock_irq(&conf->device_lock); 4341 if (must_retry) { 4342 release_stripe(sh); 4343 schedule(); 4344 goto retry; 4345 } 4346 } 4347 4348 if (rw == WRITE && 4349 logical_sector >= mddev->suspend_lo && 4350 logical_sector < mddev->suspend_hi) { 4351 release_stripe(sh); 4352 /* As the suspend_* range is controlled by 4353 * userspace, we want an interruptible 4354 * wait. 4355 */ 4356 flush_signals(current); 4357 prepare_to_wait(&conf->wait_for_overlap, 4358 &w, TASK_INTERRUPTIBLE); 4359 if (logical_sector >= mddev->suspend_lo && 4360 logical_sector < mddev->suspend_hi) 4361 schedule(); 4362 goto retry; 4363 } 4364 4365 if (test_bit(STRIPE_EXPANDING, &sh->state) || 4366 !add_stripe_bio(sh, bi, dd_idx, rw)) { 4367 /* Stripe is busy expanding or 4368 * add failed due to overlap. Flush everything 4369 * and wait a while 4370 */ 4371 md_wakeup_thread(mddev->thread); 4372 release_stripe(sh); 4373 schedule(); 4374 goto retry; 4375 } 4376 finish_wait(&conf->wait_for_overlap, &w); 4377 set_bit(STRIPE_HANDLE, &sh->state); 4378 clear_bit(STRIPE_DELAYED, &sh->state); 4379 if ((bi->bi_rw & REQ_SYNC) && 4380 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4381 atomic_inc(&conf->preread_active_stripes); 4382 release_stripe_plug(mddev, sh); 4383 } else { 4384 /* cannot get stripe for read-ahead, just give-up */ 4385 clear_bit(BIO_UPTODATE, &bi->bi_flags); 4386 finish_wait(&conf->wait_for_overlap, &w); 4387 break; 4388 } 4389 } 4390 4391 remaining = raid5_dec_bi_active_stripes(bi); 4392 if (remaining == 0) { 4393 4394 if ( rw == WRITE ) 4395 md_write_end(mddev); 4396 4397 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 4398 bi, 0); 4399 bio_endio(bi, 0); 4400 } 4401 } 4402 4403 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 4404 4405 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 4406 { 4407 /* reshaping is quite different to recovery/resync so it is 4408 * handled quite separately ... here. 4409 * 4410 * On each call to sync_request, we gather one chunk worth of 4411 * destination stripes and flag them as expanding. 4412 * Then we find all the source stripes and request reads. 4413 * As the reads complete, handle_stripe will copy the data 4414 * into the destination stripe and release that stripe. 4415 */ 4416 struct r5conf *conf = mddev->private; 4417 struct stripe_head *sh; 4418 sector_t first_sector, last_sector; 4419 int raid_disks = conf->previous_raid_disks; 4420 int data_disks = raid_disks - conf->max_degraded; 4421 int new_data_disks = conf->raid_disks - conf->max_degraded; 4422 int i; 4423 int dd_idx; 4424 sector_t writepos, readpos, safepos; 4425 sector_t stripe_addr; 4426 int reshape_sectors; 4427 struct list_head stripes; 4428 4429 if (sector_nr == 0) { 4430 /* If restarting in the middle, skip the initial sectors */ 4431 if (mddev->reshape_backwards && 4432 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 4433 sector_nr = raid5_size(mddev, 0, 0) 4434 - conf->reshape_progress; 4435 } else if (!mddev->reshape_backwards && 4436 conf->reshape_progress > 0) 4437 sector_nr = conf->reshape_progress; 4438 sector_div(sector_nr, new_data_disks); 4439 if (sector_nr) { 4440 mddev->curr_resync_completed = sector_nr; 4441 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4442 *skipped = 1; 4443 return sector_nr; 4444 } 4445 } 4446 4447 /* We need to process a full chunk at a time. 4448 * If old and new chunk sizes differ, we need to process the 4449 * largest of these 4450 */ 4451 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 4452 reshape_sectors = mddev->new_chunk_sectors; 4453 else 4454 reshape_sectors = mddev->chunk_sectors; 4455 4456 /* We update the metadata at least every 10 seconds, or when 4457 * the data about to be copied would over-write the source of 4458 * the data at the front of the range. i.e. one new_stripe 4459 * along from reshape_progress new_maps to after where 4460 * reshape_safe old_maps to 4461 */ 4462 writepos = conf->reshape_progress; 4463 sector_div(writepos, new_data_disks); 4464 readpos = conf->reshape_progress; 4465 sector_div(readpos, data_disks); 4466 safepos = conf->reshape_safe; 4467 sector_div(safepos, data_disks); 4468 if (mddev->reshape_backwards) { 4469 writepos -= min_t(sector_t, reshape_sectors, writepos); 4470 readpos += reshape_sectors; 4471 safepos += reshape_sectors; 4472 } else { 4473 writepos += reshape_sectors; 4474 readpos -= min_t(sector_t, reshape_sectors, readpos); 4475 safepos -= min_t(sector_t, reshape_sectors, safepos); 4476 } 4477 4478 /* Having calculated the 'writepos' possibly use it 4479 * to set 'stripe_addr' which is where we will write to. 4480 */ 4481 if (mddev->reshape_backwards) { 4482 BUG_ON(conf->reshape_progress == 0); 4483 stripe_addr = writepos; 4484 BUG_ON((mddev->dev_sectors & 4485 ~((sector_t)reshape_sectors - 1)) 4486 - reshape_sectors - stripe_addr 4487 != sector_nr); 4488 } else { 4489 BUG_ON(writepos != sector_nr + reshape_sectors); 4490 stripe_addr = sector_nr; 4491 } 4492 4493 /* 'writepos' is the most advanced device address we might write. 4494 * 'readpos' is the least advanced device address we might read. 4495 * 'safepos' is the least address recorded in the metadata as having 4496 * been reshaped. 4497 * If there is a min_offset_diff, these are adjusted either by 4498 * increasing the safepos/readpos if diff is negative, or 4499 * increasing writepos if diff is positive. 4500 * If 'readpos' is then behind 'writepos', there is no way that we can 4501 * ensure safety in the face of a crash - that must be done by userspace 4502 * making a backup of the data. So in that case there is no particular 4503 * rush to update metadata. 4504 * Otherwise if 'safepos' is behind 'writepos', then we really need to 4505 * update the metadata to advance 'safepos' to match 'readpos' so that 4506 * we can be safe in the event of a crash. 4507 * So we insist on updating metadata if safepos is behind writepos and 4508 * readpos is beyond writepos. 4509 * In any case, update the metadata every 10 seconds. 4510 * Maybe that number should be configurable, but I'm not sure it is 4511 * worth it.... maybe it could be a multiple of safemode_delay??? 4512 */ 4513 if (conf->min_offset_diff < 0) { 4514 safepos += -conf->min_offset_diff; 4515 readpos += -conf->min_offset_diff; 4516 } else 4517 writepos += conf->min_offset_diff; 4518 4519 if ((mddev->reshape_backwards 4520 ? (safepos > writepos && readpos < writepos) 4521 : (safepos < writepos && readpos > writepos)) || 4522 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4523 /* Cannot proceed until we've updated the superblock... */ 4524 wait_event(conf->wait_for_overlap, 4525 atomic_read(&conf->reshape_stripes)==0); 4526 mddev->reshape_position = conf->reshape_progress; 4527 mddev->curr_resync_completed = sector_nr; 4528 conf->reshape_checkpoint = jiffies; 4529 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4530 md_wakeup_thread(mddev->thread); 4531 wait_event(mddev->sb_wait, mddev->flags == 0 || 4532 kthread_should_stop()); 4533 spin_lock_irq(&conf->device_lock); 4534 conf->reshape_safe = mddev->reshape_position; 4535 spin_unlock_irq(&conf->device_lock); 4536 wake_up(&conf->wait_for_overlap); 4537 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4538 } 4539 4540 INIT_LIST_HEAD(&stripes); 4541 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 4542 int j; 4543 int skipped_disk = 0; 4544 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 4545 set_bit(STRIPE_EXPANDING, &sh->state); 4546 atomic_inc(&conf->reshape_stripes); 4547 /* If any of this stripe is beyond the end of the old 4548 * array, then we need to zero those blocks 4549 */ 4550 for (j=sh->disks; j--;) { 4551 sector_t s; 4552 if (j == sh->pd_idx) 4553 continue; 4554 if (conf->level == 6 && 4555 j == sh->qd_idx) 4556 continue; 4557 s = compute_blocknr(sh, j, 0); 4558 if (s < raid5_size(mddev, 0, 0)) { 4559 skipped_disk = 1; 4560 continue; 4561 } 4562 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 4563 set_bit(R5_Expanded, &sh->dev[j].flags); 4564 set_bit(R5_UPTODATE, &sh->dev[j].flags); 4565 } 4566 if (!skipped_disk) { 4567 set_bit(STRIPE_EXPAND_READY, &sh->state); 4568 set_bit(STRIPE_HANDLE, &sh->state); 4569 } 4570 list_add(&sh->lru, &stripes); 4571 } 4572 spin_lock_irq(&conf->device_lock); 4573 if (mddev->reshape_backwards) 4574 conf->reshape_progress -= reshape_sectors * new_data_disks; 4575 else 4576 conf->reshape_progress += reshape_sectors * new_data_disks; 4577 spin_unlock_irq(&conf->device_lock); 4578 /* Ok, those stripe are ready. We can start scheduling 4579 * reads on the source stripes. 4580 * The source stripes are determined by mapping the first and last 4581 * block on the destination stripes. 4582 */ 4583 first_sector = 4584 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 4585 1, &dd_idx, NULL); 4586 last_sector = 4587 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 4588 * new_data_disks - 1), 4589 1, &dd_idx, NULL); 4590 if (last_sector >= mddev->dev_sectors) 4591 last_sector = mddev->dev_sectors - 1; 4592 while (first_sector <= last_sector) { 4593 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 4594 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4595 set_bit(STRIPE_HANDLE, &sh->state); 4596 release_stripe(sh); 4597 first_sector += STRIPE_SECTORS; 4598 } 4599 /* Now that the sources are clearly marked, we can release 4600 * the destination stripes 4601 */ 4602 while (!list_empty(&stripes)) { 4603 sh = list_entry(stripes.next, struct stripe_head, lru); 4604 list_del_init(&sh->lru); 4605 release_stripe(sh); 4606 } 4607 /* If this takes us to the resync_max point where we have to pause, 4608 * then we need to write out the superblock. 4609 */ 4610 sector_nr += reshape_sectors; 4611 if ((sector_nr - mddev->curr_resync_completed) * 2 4612 >= mddev->resync_max - mddev->curr_resync_completed) { 4613 /* Cannot proceed until we've updated the superblock... */ 4614 wait_event(conf->wait_for_overlap, 4615 atomic_read(&conf->reshape_stripes) == 0); 4616 mddev->reshape_position = conf->reshape_progress; 4617 mddev->curr_resync_completed = sector_nr; 4618 conf->reshape_checkpoint = jiffies; 4619 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4620 md_wakeup_thread(mddev->thread); 4621 wait_event(mddev->sb_wait, 4622 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 4623 || kthread_should_stop()); 4624 spin_lock_irq(&conf->device_lock); 4625 conf->reshape_safe = mddev->reshape_position; 4626 spin_unlock_irq(&conf->device_lock); 4627 wake_up(&conf->wait_for_overlap); 4628 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4629 } 4630 return reshape_sectors; 4631 } 4632 4633 /* FIXME go_faster isn't used */ 4634 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 4635 { 4636 struct r5conf *conf = mddev->private; 4637 struct stripe_head *sh; 4638 sector_t max_sector = mddev->dev_sectors; 4639 sector_t sync_blocks; 4640 int still_degraded = 0; 4641 int i; 4642 4643 if (sector_nr >= max_sector) { 4644 /* just being told to finish up .. nothing much to do */ 4645 4646 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 4647 end_reshape(conf); 4648 return 0; 4649 } 4650 4651 if (mddev->curr_resync < max_sector) /* aborted */ 4652 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 4653 &sync_blocks, 1); 4654 else /* completed sync */ 4655 conf->fullsync = 0; 4656 bitmap_close_sync(mddev->bitmap); 4657 4658 return 0; 4659 } 4660 4661 /* Allow raid5_quiesce to complete */ 4662 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 4663 4664 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4665 return reshape_request(mddev, sector_nr, skipped); 4666 4667 /* No need to check resync_max as we never do more than one 4668 * stripe, and as resync_max will always be on a chunk boundary, 4669 * if the check in md_do_sync didn't fire, there is no chance 4670 * of overstepping resync_max here 4671 */ 4672 4673 /* if there is too many failed drives and we are trying 4674 * to resync, then assert that we are finished, because there is 4675 * nothing we can do. 4676 */ 4677 if (mddev->degraded >= conf->max_degraded && 4678 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4679 sector_t rv = mddev->dev_sectors - sector_nr; 4680 *skipped = 1; 4681 return rv; 4682 } 4683 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 4684 !conf->fullsync && 4685 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 4686 sync_blocks >= STRIPE_SECTORS) { 4687 /* we can skip this block, and probably more */ 4688 sync_blocks /= STRIPE_SECTORS; 4689 *skipped = 1; 4690 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 4691 } 4692 4693 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 4694 4695 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 4696 if (sh == NULL) { 4697 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 4698 /* make sure we don't swamp the stripe cache if someone else 4699 * is trying to get access 4700 */ 4701 schedule_timeout_uninterruptible(1); 4702 } 4703 /* Need to check if array will still be degraded after recovery/resync 4704 * We don't need to check the 'failed' flag as when that gets set, 4705 * recovery aborts. 4706 */ 4707 for (i = 0; i < conf->raid_disks; i++) 4708 if (conf->disks[i].rdev == NULL) 4709 still_degraded = 1; 4710 4711 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 4712 4713 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 4714 4715 handle_stripe(sh); 4716 release_stripe(sh); 4717 4718 return STRIPE_SECTORS; 4719 } 4720 4721 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 4722 { 4723 /* We may not be able to submit a whole bio at once as there 4724 * may not be enough stripe_heads available. 4725 * We cannot pre-allocate enough stripe_heads as we may need 4726 * more than exist in the cache (if we allow ever large chunks). 4727 * So we do one stripe head at a time and record in 4728 * ->bi_hw_segments how many have been done. 4729 * 4730 * We *know* that this entire raid_bio is in one chunk, so 4731 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 4732 */ 4733 struct stripe_head *sh; 4734 int dd_idx; 4735 sector_t sector, logical_sector, last_sector; 4736 int scnt = 0; 4737 int remaining; 4738 int handled = 0; 4739 4740 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4741 sector = raid5_compute_sector(conf, logical_sector, 4742 0, &dd_idx, NULL); 4743 last_sector = bio_end_sector(raid_bio); 4744 4745 for (; logical_sector < last_sector; 4746 logical_sector += STRIPE_SECTORS, 4747 sector += STRIPE_SECTORS, 4748 scnt++) { 4749 4750 if (scnt < raid5_bi_processed_stripes(raid_bio)) 4751 /* already done this stripe */ 4752 continue; 4753 4754 sh = get_active_stripe(conf, sector, 0, 1, 0); 4755 4756 if (!sh) { 4757 /* failed to get a stripe - must wait */ 4758 raid5_set_bi_processed_stripes(raid_bio, scnt); 4759 conf->retry_read_aligned = raid_bio; 4760 return handled; 4761 } 4762 4763 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 4764 release_stripe(sh); 4765 raid5_set_bi_processed_stripes(raid_bio, scnt); 4766 conf->retry_read_aligned = raid_bio; 4767 return handled; 4768 } 4769 4770 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 4771 handle_stripe(sh); 4772 release_stripe(sh); 4773 handled++; 4774 } 4775 remaining = raid5_dec_bi_active_stripes(raid_bio); 4776 if (remaining == 0) { 4777 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 4778 raid_bio, 0); 4779 bio_endio(raid_bio, 0); 4780 } 4781 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4782 wake_up(&conf->wait_for_stripe); 4783 return handled; 4784 } 4785 4786 #define MAX_STRIPE_BATCH 8 4787 static int handle_active_stripes(struct r5conf *conf) 4788 { 4789 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 4790 int i, batch_size = 0; 4791 4792 while (batch_size < MAX_STRIPE_BATCH && 4793 (sh = __get_priority_stripe(conf)) != NULL) 4794 batch[batch_size++] = sh; 4795 4796 if (batch_size == 0) 4797 return batch_size; 4798 spin_unlock_irq(&conf->device_lock); 4799 4800 for (i = 0; i < batch_size; i++) 4801 handle_stripe(batch[i]); 4802 4803 cond_resched(); 4804 4805 spin_lock_irq(&conf->device_lock); 4806 for (i = 0; i < batch_size; i++) 4807 __release_stripe(conf, batch[i]); 4808 return batch_size; 4809 } 4810 4811 /* 4812 * This is our raid5 kernel thread. 4813 * 4814 * We scan the hash table for stripes which can be handled now. 4815 * During the scan, completed stripes are saved for us by the interrupt 4816 * handler, so that they will not have to wait for our next wakeup. 4817 */ 4818 static void raid5d(struct md_thread *thread) 4819 { 4820 struct mddev *mddev = thread->mddev; 4821 struct r5conf *conf = mddev->private; 4822 int handled; 4823 struct blk_plug plug; 4824 4825 pr_debug("+++ raid5d active\n"); 4826 4827 md_check_recovery(mddev); 4828 4829 blk_start_plug(&plug); 4830 handled = 0; 4831 spin_lock_irq(&conf->device_lock); 4832 while (1) { 4833 struct bio *bio; 4834 int batch_size; 4835 4836 if ( 4837 !list_empty(&conf->bitmap_list)) { 4838 /* Now is a good time to flush some bitmap updates */ 4839 conf->seq_flush++; 4840 spin_unlock_irq(&conf->device_lock); 4841 bitmap_unplug(mddev->bitmap); 4842 spin_lock_irq(&conf->device_lock); 4843 conf->seq_write = conf->seq_flush; 4844 activate_bit_delay(conf); 4845 } 4846 raid5_activate_delayed(conf); 4847 4848 while ((bio = remove_bio_from_retry(conf))) { 4849 int ok; 4850 spin_unlock_irq(&conf->device_lock); 4851 ok = retry_aligned_read(conf, bio); 4852 spin_lock_irq(&conf->device_lock); 4853 if (!ok) 4854 break; 4855 handled++; 4856 } 4857 4858 batch_size = handle_active_stripes(conf); 4859 if (!batch_size) 4860 break; 4861 handled += batch_size; 4862 4863 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 4864 spin_unlock_irq(&conf->device_lock); 4865 md_check_recovery(mddev); 4866 spin_lock_irq(&conf->device_lock); 4867 } 4868 } 4869 pr_debug("%d stripes handled\n", handled); 4870 4871 spin_unlock_irq(&conf->device_lock); 4872 4873 async_tx_issue_pending_all(); 4874 blk_finish_plug(&plug); 4875 4876 pr_debug("--- raid5d inactive\n"); 4877 } 4878 4879 static ssize_t 4880 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 4881 { 4882 struct r5conf *conf = mddev->private; 4883 if (conf) 4884 return sprintf(page, "%d\n", conf->max_nr_stripes); 4885 else 4886 return 0; 4887 } 4888 4889 int 4890 raid5_set_cache_size(struct mddev *mddev, int size) 4891 { 4892 struct r5conf *conf = mddev->private; 4893 int err; 4894 4895 if (size <= 16 || size > 32768) 4896 return -EINVAL; 4897 while (size < conf->max_nr_stripes) { 4898 if (drop_one_stripe(conf)) 4899 conf->max_nr_stripes--; 4900 else 4901 break; 4902 } 4903 err = md_allow_write(mddev); 4904 if (err) 4905 return err; 4906 while (size > conf->max_nr_stripes) { 4907 if (grow_one_stripe(conf)) 4908 conf->max_nr_stripes++; 4909 else break; 4910 } 4911 return 0; 4912 } 4913 EXPORT_SYMBOL(raid5_set_cache_size); 4914 4915 static ssize_t 4916 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 4917 { 4918 struct r5conf *conf = mddev->private; 4919 unsigned long new; 4920 int err; 4921 4922 if (len >= PAGE_SIZE) 4923 return -EINVAL; 4924 if (!conf) 4925 return -ENODEV; 4926 4927 if (kstrtoul(page, 10, &new)) 4928 return -EINVAL; 4929 err = raid5_set_cache_size(mddev, new); 4930 if (err) 4931 return err; 4932 return len; 4933 } 4934 4935 static struct md_sysfs_entry 4936 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 4937 raid5_show_stripe_cache_size, 4938 raid5_store_stripe_cache_size); 4939 4940 static ssize_t 4941 raid5_show_preread_threshold(struct mddev *mddev, char *page) 4942 { 4943 struct r5conf *conf = mddev->private; 4944 if (conf) 4945 return sprintf(page, "%d\n", conf->bypass_threshold); 4946 else 4947 return 0; 4948 } 4949 4950 static ssize_t 4951 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 4952 { 4953 struct r5conf *conf = mddev->private; 4954 unsigned long new; 4955 if (len >= PAGE_SIZE) 4956 return -EINVAL; 4957 if (!conf) 4958 return -ENODEV; 4959 4960 if (kstrtoul(page, 10, &new)) 4961 return -EINVAL; 4962 if (new > conf->max_nr_stripes) 4963 return -EINVAL; 4964 conf->bypass_threshold = new; 4965 return len; 4966 } 4967 4968 static struct md_sysfs_entry 4969 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 4970 S_IRUGO | S_IWUSR, 4971 raid5_show_preread_threshold, 4972 raid5_store_preread_threshold); 4973 4974 static ssize_t 4975 stripe_cache_active_show(struct mddev *mddev, char *page) 4976 { 4977 struct r5conf *conf = mddev->private; 4978 if (conf) 4979 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 4980 else 4981 return 0; 4982 } 4983 4984 static struct md_sysfs_entry 4985 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 4986 4987 static struct attribute *raid5_attrs[] = { 4988 &raid5_stripecache_size.attr, 4989 &raid5_stripecache_active.attr, 4990 &raid5_preread_bypass_threshold.attr, 4991 NULL, 4992 }; 4993 static struct attribute_group raid5_attrs_group = { 4994 .name = NULL, 4995 .attrs = raid5_attrs, 4996 }; 4997 4998 static sector_t 4999 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 5000 { 5001 struct r5conf *conf = mddev->private; 5002 5003 if (!sectors) 5004 sectors = mddev->dev_sectors; 5005 if (!raid_disks) 5006 /* size is defined by the smallest of previous and new size */ 5007 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 5008 5009 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5010 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 5011 return sectors * (raid_disks - conf->max_degraded); 5012 } 5013 5014 static void raid5_free_percpu(struct r5conf *conf) 5015 { 5016 struct raid5_percpu *percpu; 5017 unsigned long cpu; 5018 5019 if (!conf->percpu) 5020 return; 5021 5022 get_online_cpus(); 5023 for_each_possible_cpu(cpu) { 5024 percpu = per_cpu_ptr(conf->percpu, cpu); 5025 safe_put_page(percpu->spare_page); 5026 kfree(percpu->scribble); 5027 } 5028 #ifdef CONFIG_HOTPLUG_CPU 5029 unregister_cpu_notifier(&conf->cpu_notify); 5030 #endif 5031 put_online_cpus(); 5032 5033 free_percpu(conf->percpu); 5034 } 5035 5036 static void free_conf(struct r5conf *conf) 5037 { 5038 shrink_stripes(conf); 5039 raid5_free_percpu(conf); 5040 kfree(conf->disks); 5041 kfree(conf->stripe_hashtbl); 5042 kfree(conf); 5043 } 5044 5045 #ifdef CONFIG_HOTPLUG_CPU 5046 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 5047 void *hcpu) 5048 { 5049 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 5050 long cpu = (long)hcpu; 5051 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 5052 5053 switch (action) { 5054 case CPU_UP_PREPARE: 5055 case CPU_UP_PREPARE_FROZEN: 5056 if (conf->level == 6 && !percpu->spare_page) 5057 percpu->spare_page = alloc_page(GFP_KERNEL); 5058 if (!percpu->scribble) 5059 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5060 5061 if (!percpu->scribble || 5062 (conf->level == 6 && !percpu->spare_page)) { 5063 safe_put_page(percpu->spare_page); 5064 kfree(percpu->scribble); 5065 pr_err("%s: failed memory allocation for cpu%ld\n", 5066 __func__, cpu); 5067 return notifier_from_errno(-ENOMEM); 5068 } 5069 break; 5070 case CPU_DEAD: 5071 case CPU_DEAD_FROZEN: 5072 safe_put_page(percpu->spare_page); 5073 kfree(percpu->scribble); 5074 percpu->spare_page = NULL; 5075 percpu->scribble = NULL; 5076 break; 5077 default: 5078 break; 5079 } 5080 return NOTIFY_OK; 5081 } 5082 #endif 5083 5084 static int raid5_alloc_percpu(struct r5conf *conf) 5085 { 5086 unsigned long cpu; 5087 struct page *spare_page; 5088 struct raid5_percpu __percpu *allcpus; 5089 void *scribble; 5090 int err; 5091 5092 allcpus = alloc_percpu(struct raid5_percpu); 5093 if (!allcpus) 5094 return -ENOMEM; 5095 conf->percpu = allcpus; 5096 5097 get_online_cpus(); 5098 err = 0; 5099 for_each_present_cpu(cpu) { 5100 if (conf->level == 6) { 5101 spare_page = alloc_page(GFP_KERNEL); 5102 if (!spare_page) { 5103 err = -ENOMEM; 5104 break; 5105 } 5106 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; 5107 } 5108 scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5109 if (!scribble) { 5110 err = -ENOMEM; 5111 break; 5112 } 5113 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; 5114 } 5115 #ifdef CONFIG_HOTPLUG_CPU 5116 conf->cpu_notify.notifier_call = raid456_cpu_notify; 5117 conf->cpu_notify.priority = 0; 5118 if (err == 0) 5119 err = register_cpu_notifier(&conf->cpu_notify); 5120 #endif 5121 put_online_cpus(); 5122 5123 return err; 5124 } 5125 5126 static struct r5conf *setup_conf(struct mddev *mddev) 5127 { 5128 struct r5conf *conf; 5129 int raid_disk, memory, max_disks; 5130 struct md_rdev *rdev; 5131 struct disk_info *disk; 5132 char pers_name[6]; 5133 5134 if (mddev->new_level != 5 5135 && mddev->new_level != 4 5136 && mddev->new_level != 6) { 5137 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 5138 mdname(mddev), mddev->new_level); 5139 return ERR_PTR(-EIO); 5140 } 5141 if ((mddev->new_level == 5 5142 && !algorithm_valid_raid5(mddev->new_layout)) || 5143 (mddev->new_level == 6 5144 && !algorithm_valid_raid6(mddev->new_layout))) { 5145 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 5146 mdname(mddev), mddev->new_layout); 5147 return ERR_PTR(-EIO); 5148 } 5149 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 5150 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 5151 mdname(mddev), mddev->raid_disks); 5152 return ERR_PTR(-EINVAL); 5153 } 5154 5155 if (!mddev->new_chunk_sectors || 5156 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 5157 !is_power_of_2(mddev->new_chunk_sectors)) { 5158 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 5159 mdname(mddev), mddev->new_chunk_sectors << 9); 5160 return ERR_PTR(-EINVAL); 5161 } 5162 5163 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 5164 if (conf == NULL) 5165 goto abort; 5166 spin_lock_init(&conf->device_lock); 5167 init_waitqueue_head(&conf->wait_for_stripe); 5168 init_waitqueue_head(&conf->wait_for_overlap); 5169 INIT_LIST_HEAD(&conf->handle_list); 5170 INIT_LIST_HEAD(&conf->hold_list); 5171 INIT_LIST_HEAD(&conf->delayed_list); 5172 INIT_LIST_HEAD(&conf->bitmap_list); 5173 INIT_LIST_HEAD(&conf->inactive_list); 5174 atomic_set(&conf->active_stripes, 0); 5175 atomic_set(&conf->preread_active_stripes, 0); 5176 atomic_set(&conf->active_aligned_reads, 0); 5177 conf->bypass_threshold = BYPASS_THRESHOLD; 5178 conf->recovery_disabled = mddev->recovery_disabled - 1; 5179 5180 conf->raid_disks = mddev->raid_disks; 5181 if (mddev->reshape_position == MaxSector) 5182 conf->previous_raid_disks = mddev->raid_disks; 5183 else 5184 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 5185 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 5186 conf->scribble_len = scribble_len(max_disks); 5187 5188 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 5189 GFP_KERNEL); 5190 if (!conf->disks) 5191 goto abort; 5192 5193 conf->mddev = mddev; 5194 5195 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 5196 goto abort; 5197 5198 conf->level = mddev->new_level; 5199 if (raid5_alloc_percpu(conf) != 0) 5200 goto abort; 5201 5202 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 5203 5204 rdev_for_each(rdev, mddev) { 5205 raid_disk = rdev->raid_disk; 5206 if (raid_disk >= max_disks 5207 || raid_disk < 0) 5208 continue; 5209 disk = conf->disks + raid_disk; 5210 5211 if (test_bit(Replacement, &rdev->flags)) { 5212 if (disk->replacement) 5213 goto abort; 5214 disk->replacement = rdev; 5215 } else { 5216 if (disk->rdev) 5217 goto abort; 5218 disk->rdev = rdev; 5219 } 5220 5221 if (test_bit(In_sync, &rdev->flags)) { 5222 char b[BDEVNAME_SIZE]; 5223 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 5224 " disk %d\n", 5225 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 5226 } else if (rdev->saved_raid_disk != raid_disk) 5227 /* Cannot rely on bitmap to complete recovery */ 5228 conf->fullsync = 1; 5229 } 5230 5231 conf->chunk_sectors = mddev->new_chunk_sectors; 5232 conf->level = mddev->new_level; 5233 if (conf->level == 6) 5234 conf->max_degraded = 2; 5235 else 5236 conf->max_degraded = 1; 5237 conf->algorithm = mddev->new_layout; 5238 conf->max_nr_stripes = NR_STRIPES; 5239 conf->reshape_progress = mddev->reshape_position; 5240 if (conf->reshape_progress != MaxSector) { 5241 conf->prev_chunk_sectors = mddev->chunk_sectors; 5242 conf->prev_algo = mddev->layout; 5243 } 5244 5245 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 5246 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 5247 if (grow_stripes(conf, conf->max_nr_stripes)) { 5248 printk(KERN_ERR 5249 "md/raid:%s: couldn't allocate %dkB for buffers\n", 5250 mdname(mddev), memory); 5251 goto abort; 5252 } else 5253 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 5254 mdname(mddev), memory); 5255 5256 sprintf(pers_name, "raid%d", mddev->new_level); 5257 conf->thread = md_register_thread(raid5d, mddev, pers_name); 5258 if (!conf->thread) { 5259 printk(KERN_ERR 5260 "md/raid:%s: couldn't allocate thread.\n", 5261 mdname(mddev)); 5262 goto abort; 5263 } 5264 5265 return conf; 5266 5267 abort: 5268 if (conf) { 5269 free_conf(conf); 5270 return ERR_PTR(-EIO); 5271 } else 5272 return ERR_PTR(-ENOMEM); 5273 } 5274 5275 5276 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 5277 { 5278 switch (algo) { 5279 case ALGORITHM_PARITY_0: 5280 if (raid_disk < max_degraded) 5281 return 1; 5282 break; 5283 case ALGORITHM_PARITY_N: 5284 if (raid_disk >= raid_disks - max_degraded) 5285 return 1; 5286 break; 5287 case ALGORITHM_PARITY_0_6: 5288 if (raid_disk == 0 || 5289 raid_disk == raid_disks - 1) 5290 return 1; 5291 break; 5292 case ALGORITHM_LEFT_ASYMMETRIC_6: 5293 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5294 case ALGORITHM_LEFT_SYMMETRIC_6: 5295 case ALGORITHM_RIGHT_SYMMETRIC_6: 5296 if (raid_disk == raid_disks - 1) 5297 return 1; 5298 } 5299 return 0; 5300 } 5301 5302 static int run(struct mddev *mddev) 5303 { 5304 struct r5conf *conf; 5305 int working_disks = 0; 5306 int dirty_parity_disks = 0; 5307 struct md_rdev *rdev; 5308 sector_t reshape_offset = 0; 5309 int i; 5310 long long min_offset_diff = 0; 5311 int first = 1; 5312 5313 if (mddev->recovery_cp != MaxSector) 5314 printk(KERN_NOTICE "md/raid:%s: not clean" 5315 " -- starting background reconstruction\n", 5316 mdname(mddev)); 5317 5318 rdev_for_each(rdev, mddev) { 5319 long long diff; 5320 if (rdev->raid_disk < 0) 5321 continue; 5322 diff = (rdev->new_data_offset - rdev->data_offset); 5323 if (first) { 5324 min_offset_diff = diff; 5325 first = 0; 5326 } else if (mddev->reshape_backwards && 5327 diff < min_offset_diff) 5328 min_offset_diff = diff; 5329 else if (!mddev->reshape_backwards && 5330 diff > min_offset_diff) 5331 min_offset_diff = diff; 5332 } 5333 5334 if (mddev->reshape_position != MaxSector) { 5335 /* Check that we can continue the reshape. 5336 * Difficulties arise if the stripe we would write to 5337 * next is at or after the stripe we would read from next. 5338 * For a reshape that changes the number of devices, this 5339 * is only possible for a very short time, and mdadm makes 5340 * sure that time appears to have past before assembling 5341 * the array. So we fail if that time hasn't passed. 5342 * For a reshape that keeps the number of devices the same 5343 * mdadm must be monitoring the reshape can keeping the 5344 * critical areas read-only and backed up. It will start 5345 * the array in read-only mode, so we check for that. 5346 */ 5347 sector_t here_new, here_old; 5348 int old_disks; 5349 int max_degraded = (mddev->level == 6 ? 2 : 1); 5350 5351 if (mddev->new_level != mddev->level) { 5352 printk(KERN_ERR "md/raid:%s: unsupported reshape " 5353 "required - aborting.\n", 5354 mdname(mddev)); 5355 return -EINVAL; 5356 } 5357 old_disks = mddev->raid_disks - mddev->delta_disks; 5358 /* reshape_position must be on a new-stripe boundary, and one 5359 * further up in new geometry must map after here in old 5360 * geometry. 5361 */ 5362 here_new = mddev->reshape_position; 5363 if (sector_div(here_new, mddev->new_chunk_sectors * 5364 (mddev->raid_disks - max_degraded))) { 5365 printk(KERN_ERR "md/raid:%s: reshape_position not " 5366 "on a stripe boundary\n", mdname(mddev)); 5367 return -EINVAL; 5368 } 5369 reshape_offset = here_new * mddev->new_chunk_sectors; 5370 /* here_new is the stripe we will write to */ 5371 here_old = mddev->reshape_position; 5372 sector_div(here_old, mddev->chunk_sectors * 5373 (old_disks-max_degraded)); 5374 /* here_old is the first stripe that we might need to read 5375 * from */ 5376 if (mddev->delta_disks == 0) { 5377 if ((here_new * mddev->new_chunk_sectors != 5378 here_old * mddev->chunk_sectors)) { 5379 printk(KERN_ERR "md/raid:%s: reshape position is" 5380 " confused - aborting\n", mdname(mddev)); 5381 return -EINVAL; 5382 } 5383 /* We cannot be sure it is safe to start an in-place 5384 * reshape. It is only safe if user-space is monitoring 5385 * and taking constant backups. 5386 * mdadm always starts a situation like this in 5387 * readonly mode so it can take control before 5388 * allowing any writes. So just check for that. 5389 */ 5390 if (abs(min_offset_diff) >= mddev->chunk_sectors && 5391 abs(min_offset_diff) >= mddev->new_chunk_sectors) 5392 /* not really in-place - so OK */; 5393 else if (mddev->ro == 0) { 5394 printk(KERN_ERR "md/raid:%s: in-place reshape " 5395 "must be started in read-only mode " 5396 "- aborting\n", 5397 mdname(mddev)); 5398 return -EINVAL; 5399 } 5400 } else if (mddev->reshape_backwards 5401 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <= 5402 here_old * mddev->chunk_sectors) 5403 : (here_new * mddev->new_chunk_sectors >= 5404 here_old * mddev->chunk_sectors + (-min_offset_diff))) { 5405 /* Reading from the same stripe as writing to - bad */ 5406 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 5407 "auto-recovery - aborting.\n", 5408 mdname(mddev)); 5409 return -EINVAL; 5410 } 5411 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 5412 mdname(mddev)); 5413 /* OK, we should be able to continue; */ 5414 } else { 5415 BUG_ON(mddev->level != mddev->new_level); 5416 BUG_ON(mddev->layout != mddev->new_layout); 5417 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 5418 BUG_ON(mddev->delta_disks != 0); 5419 } 5420 5421 if (mddev->private == NULL) 5422 conf = setup_conf(mddev); 5423 else 5424 conf = mddev->private; 5425 5426 if (IS_ERR(conf)) 5427 return PTR_ERR(conf); 5428 5429 conf->min_offset_diff = min_offset_diff; 5430 mddev->thread = conf->thread; 5431 conf->thread = NULL; 5432 mddev->private = conf; 5433 5434 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 5435 i++) { 5436 rdev = conf->disks[i].rdev; 5437 if (!rdev && conf->disks[i].replacement) { 5438 /* The replacement is all we have yet */ 5439 rdev = conf->disks[i].replacement; 5440 conf->disks[i].replacement = NULL; 5441 clear_bit(Replacement, &rdev->flags); 5442 conf->disks[i].rdev = rdev; 5443 } 5444 if (!rdev) 5445 continue; 5446 if (conf->disks[i].replacement && 5447 conf->reshape_progress != MaxSector) { 5448 /* replacements and reshape simply do not mix. */ 5449 printk(KERN_ERR "md: cannot handle concurrent " 5450 "replacement and reshape.\n"); 5451 goto abort; 5452 } 5453 if (test_bit(In_sync, &rdev->flags)) { 5454 working_disks++; 5455 continue; 5456 } 5457 /* This disc is not fully in-sync. However if it 5458 * just stored parity (beyond the recovery_offset), 5459 * when we don't need to be concerned about the 5460 * array being dirty. 5461 * When reshape goes 'backwards', we never have 5462 * partially completed devices, so we only need 5463 * to worry about reshape going forwards. 5464 */ 5465 /* Hack because v0.91 doesn't store recovery_offset properly. */ 5466 if (mddev->major_version == 0 && 5467 mddev->minor_version > 90) 5468 rdev->recovery_offset = reshape_offset; 5469 5470 if (rdev->recovery_offset < reshape_offset) { 5471 /* We need to check old and new layout */ 5472 if (!only_parity(rdev->raid_disk, 5473 conf->algorithm, 5474 conf->raid_disks, 5475 conf->max_degraded)) 5476 continue; 5477 } 5478 if (!only_parity(rdev->raid_disk, 5479 conf->prev_algo, 5480 conf->previous_raid_disks, 5481 conf->max_degraded)) 5482 continue; 5483 dirty_parity_disks++; 5484 } 5485 5486 /* 5487 * 0 for a fully functional array, 1 or 2 for a degraded array. 5488 */ 5489 mddev->degraded = calc_degraded(conf); 5490 5491 if (has_failed(conf)) { 5492 printk(KERN_ERR "md/raid:%s: not enough operational devices" 5493 " (%d/%d failed)\n", 5494 mdname(mddev), mddev->degraded, conf->raid_disks); 5495 goto abort; 5496 } 5497 5498 /* device size must be a multiple of chunk size */ 5499 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 5500 mddev->resync_max_sectors = mddev->dev_sectors; 5501 5502 if (mddev->degraded > dirty_parity_disks && 5503 mddev->recovery_cp != MaxSector) { 5504 if (mddev->ok_start_degraded) 5505 printk(KERN_WARNING 5506 "md/raid:%s: starting dirty degraded array" 5507 " - data corruption possible.\n", 5508 mdname(mddev)); 5509 else { 5510 printk(KERN_ERR 5511 "md/raid:%s: cannot start dirty degraded array.\n", 5512 mdname(mddev)); 5513 goto abort; 5514 } 5515 } 5516 5517 if (mddev->degraded == 0) 5518 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 5519 " devices, algorithm %d\n", mdname(mddev), conf->level, 5520 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 5521 mddev->new_layout); 5522 else 5523 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 5524 " out of %d devices, algorithm %d\n", 5525 mdname(mddev), conf->level, 5526 mddev->raid_disks - mddev->degraded, 5527 mddev->raid_disks, mddev->new_layout); 5528 5529 print_raid5_conf(conf); 5530 5531 if (conf->reshape_progress != MaxSector) { 5532 conf->reshape_safe = conf->reshape_progress; 5533 atomic_set(&conf->reshape_stripes, 0); 5534 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5535 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5536 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5537 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5538 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 5539 "reshape"); 5540 } 5541 5542 5543 /* Ok, everything is just fine now */ 5544 if (mddev->to_remove == &raid5_attrs_group) 5545 mddev->to_remove = NULL; 5546 else if (mddev->kobj.sd && 5547 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 5548 printk(KERN_WARNING 5549 "raid5: failed to create sysfs attributes for %s\n", 5550 mdname(mddev)); 5551 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 5552 5553 if (mddev->queue) { 5554 int chunk_size; 5555 bool discard_supported = true; 5556 /* read-ahead size must cover two whole stripes, which 5557 * is 2 * (datadisks) * chunksize where 'n' is the 5558 * number of raid devices 5559 */ 5560 int data_disks = conf->previous_raid_disks - conf->max_degraded; 5561 int stripe = data_disks * 5562 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 5563 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 5564 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 5565 5566 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 5567 5568 mddev->queue->backing_dev_info.congested_data = mddev; 5569 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 5570 5571 chunk_size = mddev->chunk_sectors << 9; 5572 blk_queue_io_min(mddev->queue, chunk_size); 5573 blk_queue_io_opt(mddev->queue, chunk_size * 5574 (conf->raid_disks - conf->max_degraded)); 5575 /* 5576 * We can only discard a whole stripe. It doesn't make sense to 5577 * discard data disk but write parity disk 5578 */ 5579 stripe = stripe * PAGE_SIZE; 5580 /* Round up to power of 2, as discard handling 5581 * currently assumes that */ 5582 while ((stripe-1) & stripe) 5583 stripe = (stripe | (stripe-1)) + 1; 5584 mddev->queue->limits.discard_alignment = stripe; 5585 mddev->queue->limits.discard_granularity = stripe; 5586 /* 5587 * unaligned part of discard request will be ignored, so can't 5588 * guarantee discard_zerors_data 5589 */ 5590 mddev->queue->limits.discard_zeroes_data = 0; 5591 5592 blk_queue_max_write_same_sectors(mddev->queue, 0); 5593 5594 rdev_for_each(rdev, mddev) { 5595 disk_stack_limits(mddev->gendisk, rdev->bdev, 5596 rdev->data_offset << 9); 5597 disk_stack_limits(mddev->gendisk, rdev->bdev, 5598 rdev->new_data_offset << 9); 5599 /* 5600 * discard_zeroes_data is required, otherwise data 5601 * could be lost. Consider a scenario: discard a stripe 5602 * (the stripe could be inconsistent if 5603 * discard_zeroes_data is 0); write one disk of the 5604 * stripe (the stripe could be inconsistent again 5605 * depending on which disks are used to calculate 5606 * parity); the disk is broken; The stripe data of this 5607 * disk is lost. 5608 */ 5609 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 5610 !bdev_get_queue(rdev->bdev)-> 5611 limits.discard_zeroes_data) 5612 discard_supported = false; 5613 } 5614 5615 if (discard_supported && 5616 mddev->queue->limits.max_discard_sectors >= stripe && 5617 mddev->queue->limits.discard_granularity >= stripe) 5618 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 5619 mddev->queue); 5620 else 5621 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 5622 mddev->queue); 5623 } 5624 5625 return 0; 5626 abort: 5627 md_unregister_thread(&mddev->thread); 5628 print_raid5_conf(conf); 5629 free_conf(conf); 5630 mddev->private = NULL; 5631 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 5632 return -EIO; 5633 } 5634 5635 static int stop(struct mddev *mddev) 5636 { 5637 struct r5conf *conf = mddev->private; 5638 5639 md_unregister_thread(&mddev->thread); 5640 if (mddev->queue) 5641 mddev->queue->backing_dev_info.congested_fn = NULL; 5642 free_conf(conf); 5643 mddev->private = NULL; 5644 mddev->to_remove = &raid5_attrs_group; 5645 return 0; 5646 } 5647 5648 static void status(struct seq_file *seq, struct mddev *mddev) 5649 { 5650 struct r5conf *conf = mddev->private; 5651 int i; 5652 5653 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 5654 mddev->chunk_sectors / 2, mddev->layout); 5655 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 5656 for (i = 0; i < conf->raid_disks; i++) 5657 seq_printf (seq, "%s", 5658 conf->disks[i].rdev && 5659 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 5660 seq_printf (seq, "]"); 5661 } 5662 5663 static void print_raid5_conf (struct r5conf *conf) 5664 { 5665 int i; 5666 struct disk_info *tmp; 5667 5668 printk(KERN_DEBUG "RAID conf printout:\n"); 5669 if (!conf) { 5670 printk("(conf==NULL)\n"); 5671 return; 5672 } 5673 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 5674 conf->raid_disks, 5675 conf->raid_disks - conf->mddev->degraded); 5676 5677 for (i = 0; i < conf->raid_disks; i++) { 5678 char b[BDEVNAME_SIZE]; 5679 tmp = conf->disks + i; 5680 if (tmp->rdev) 5681 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 5682 i, !test_bit(Faulty, &tmp->rdev->flags), 5683 bdevname(tmp->rdev->bdev, b)); 5684 } 5685 } 5686 5687 static int raid5_spare_active(struct mddev *mddev) 5688 { 5689 int i; 5690 struct r5conf *conf = mddev->private; 5691 struct disk_info *tmp; 5692 int count = 0; 5693 unsigned long flags; 5694 5695 for (i = 0; i < conf->raid_disks; i++) { 5696 tmp = conf->disks + i; 5697 if (tmp->replacement 5698 && tmp->replacement->recovery_offset == MaxSector 5699 && !test_bit(Faulty, &tmp->replacement->flags) 5700 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 5701 /* Replacement has just become active. */ 5702 if (!tmp->rdev 5703 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 5704 count++; 5705 if (tmp->rdev) { 5706 /* Replaced device not technically faulty, 5707 * but we need to be sure it gets removed 5708 * and never re-added. 5709 */ 5710 set_bit(Faulty, &tmp->rdev->flags); 5711 sysfs_notify_dirent_safe( 5712 tmp->rdev->sysfs_state); 5713 } 5714 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 5715 } else if (tmp->rdev 5716 && tmp->rdev->recovery_offset == MaxSector 5717 && !test_bit(Faulty, &tmp->rdev->flags) 5718 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 5719 count++; 5720 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 5721 } 5722 } 5723 spin_lock_irqsave(&conf->device_lock, flags); 5724 mddev->degraded = calc_degraded(conf); 5725 spin_unlock_irqrestore(&conf->device_lock, flags); 5726 print_raid5_conf(conf); 5727 return count; 5728 } 5729 5730 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 5731 { 5732 struct r5conf *conf = mddev->private; 5733 int err = 0; 5734 int number = rdev->raid_disk; 5735 struct md_rdev **rdevp; 5736 struct disk_info *p = conf->disks + number; 5737 5738 print_raid5_conf(conf); 5739 if (rdev == p->rdev) 5740 rdevp = &p->rdev; 5741 else if (rdev == p->replacement) 5742 rdevp = &p->replacement; 5743 else 5744 return 0; 5745 5746 if (number >= conf->raid_disks && 5747 conf->reshape_progress == MaxSector) 5748 clear_bit(In_sync, &rdev->flags); 5749 5750 if (test_bit(In_sync, &rdev->flags) || 5751 atomic_read(&rdev->nr_pending)) { 5752 err = -EBUSY; 5753 goto abort; 5754 } 5755 /* Only remove non-faulty devices if recovery 5756 * isn't possible. 5757 */ 5758 if (!test_bit(Faulty, &rdev->flags) && 5759 mddev->recovery_disabled != conf->recovery_disabled && 5760 !has_failed(conf) && 5761 (!p->replacement || p->replacement == rdev) && 5762 number < conf->raid_disks) { 5763 err = -EBUSY; 5764 goto abort; 5765 } 5766 *rdevp = NULL; 5767 synchronize_rcu(); 5768 if (atomic_read(&rdev->nr_pending)) { 5769 /* lost the race, try later */ 5770 err = -EBUSY; 5771 *rdevp = rdev; 5772 } else if (p->replacement) { 5773 /* We must have just cleared 'rdev' */ 5774 p->rdev = p->replacement; 5775 clear_bit(Replacement, &p->replacement->flags); 5776 smp_mb(); /* Make sure other CPUs may see both as identical 5777 * but will never see neither - if they are careful 5778 */ 5779 p->replacement = NULL; 5780 clear_bit(WantReplacement, &rdev->flags); 5781 } else 5782 /* We might have just removed the Replacement as faulty- 5783 * clear the bit just in case 5784 */ 5785 clear_bit(WantReplacement, &rdev->flags); 5786 abort: 5787 5788 print_raid5_conf(conf); 5789 return err; 5790 } 5791 5792 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 5793 { 5794 struct r5conf *conf = mddev->private; 5795 int err = -EEXIST; 5796 int disk; 5797 struct disk_info *p; 5798 int first = 0; 5799 int last = conf->raid_disks - 1; 5800 5801 if (mddev->recovery_disabled == conf->recovery_disabled) 5802 return -EBUSY; 5803 5804 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 5805 /* no point adding a device */ 5806 return -EINVAL; 5807 5808 if (rdev->raid_disk >= 0) 5809 first = last = rdev->raid_disk; 5810 5811 /* 5812 * find the disk ... but prefer rdev->saved_raid_disk 5813 * if possible. 5814 */ 5815 if (rdev->saved_raid_disk >= 0 && 5816 rdev->saved_raid_disk >= first && 5817 conf->disks[rdev->saved_raid_disk].rdev == NULL) 5818 first = rdev->saved_raid_disk; 5819 5820 for (disk = first; disk <= last; disk++) { 5821 p = conf->disks + disk; 5822 if (p->rdev == NULL) { 5823 clear_bit(In_sync, &rdev->flags); 5824 rdev->raid_disk = disk; 5825 err = 0; 5826 if (rdev->saved_raid_disk != disk) 5827 conf->fullsync = 1; 5828 rcu_assign_pointer(p->rdev, rdev); 5829 goto out; 5830 } 5831 } 5832 for (disk = first; disk <= last; disk++) { 5833 p = conf->disks + disk; 5834 if (test_bit(WantReplacement, &p->rdev->flags) && 5835 p->replacement == NULL) { 5836 clear_bit(In_sync, &rdev->flags); 5837 set_bit(Replacement, &rdev->flags); 5838 rdev->raid_disk = disk; 5839 err = 0; 5840 conf->fullsync = 1; 5841 rcu_assign_pointer(p->replacement, rdev); 5842 break; 5843 } 5844 } 5845 out: 5846 print_raid5_conf(conf); 5847 return err; 5848 } 5849 5850 static int raid5_resize(struct mddev *mddev, sector_t sectors) 5851 { 5852 /* no resync is happening, and there is enough space 5853 * on all devices, so we can resize. 5854 * We need to make sure resync covers any new space. 5855 * If the array is shrinking we should possibly wait until 5856 * any io in the removed space completes, but it hardly seems 5857 * worth it. 5858 */ 5859 sector_t newsize; 5860 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5861 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 5862 if (mddev->external_size && 5863 mddev->array_sectors > newsize) 5864 return -EINVAL; 5865 if (mddev->bitmap) { 5866 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 5867 if (ret) 5868 return ret; 5869 } 5870 md_set_array_sectors(mddev, newsize); 5871 set_capacity(mddev->gendisk, mddev->array_sectors); 5872 revalidate_disk(mddev->gendisk); 5873 if (sectors > mddev->dev_sectors && 5874 mddev->recovery_cp > mddev->dev_sectors) { 5875 mddev->recovery_cp = mddev->dev_sectors; 5876 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5877 } 5878 mddev->dev_sectors = sectors; 5879 mddev->resync_max_sectors = sectors; 5880 return 0; 5881 } 5882 5883 static int check_stripe_cache(struct mddev *mddev) 5884 { 5885 /* Can only proceed if there are plenty of stripe_heads. 5886 * We need a minimum of one full stripe,, and for sensible progress 5887 * it is best to have about 4 times that. 5888 * If we require 4 times, then the default 256 4K stripe_heads will 5889 * allow for chunk sizes up to 256K, which is probably OK. 5890 * If the chunk size is greater, user-space should request more 5891 * stripe_heads first. 5892 */ 5893 struct r5conf *conf = mddev->private; 5894 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 5895 > conf->max_nr_stripes || 5896 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 5897 > conf->max_nr_stripes) { 5898 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 5899 mdname(mddev), 5900 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 5901 / STRIPE_SIZE)*4); 5902 return 0; 5903 } 5904 return 1; 5905 } 5906 5907 static int check_reshape(struct mddev *mddev) 5908 { 5909 struct r5conf *conf = mddev->private; 5910 5911 if (mddev->delta_disks == 0 && 5912 mddev->new_layout == mddev->layout && 5913 mddev->new_chunk_sectors == mddev->chunk_sectors) 5914 return 0; /* nothing to do */ 5915 if (has_failed(conf)) 5916 return -EINVAL; 5917 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 5918 /* We might be able to shrink, but the devices must 5919 * be made bigger first. 5920 * For raid6, 4 is the minimum size. 5921 * Otherwise 2 is the minimum 5922 */ 5923 int min = 2; 5924 if (mddev->level == 6) 5925 min = 4; 5926 if (mddev->raid_disks + mddev->delta_disks < min) 5927 return -EINVAL; 5928 } 5929 5930 if (!check_stripe_cache(mddev)) 5931 return -ENOSPC; 5932 5933 return resize_stripes(conf, (conf->previous_raid_disks 5934 + mddev->delta_disks)); 5935 } 5936 5937 static int raid5_start_reshape(struct mddev *mddev) 5938 { 5939 struct r5conf *conf = mddev->private; 5940 struct md_rdev *rdev; 5941 int spares = 0; 5942 unsigned long flags; 5943 5944 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5945 return -EBUSY; 5946 5947 if (!check_stripe_cache(mddev)) 5948 return -ENOSPC; 5949 5950 if (has_failed(conf)) 5951 return -EINVAL; 5952 5953 rdev_for_each(rdev, mddev) { 5954 if (!test_bit(In_sync, &rdev->flags) 5955 && !test_bit(Faulty, &rdev->flags)) 5956 spares++; 5957 } 5958 5959 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 5960 /* Not enough devices even to make a degraded array 5961 * of that size 5962 */ 5963 return -EINVAL; 5964 5965 /* Refuse to reduce size of the array. Any reductions in 5966 * array size must be through explicit setting of array_size 5967 * attribute. 5968 */ 5969 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 5970 < mddev->array_sectors) { 5971 printk(KERN_ERR "md/raid:%s: array size must be reduced " 5972 "before number of disks\n", mdname(mddev)); 5973 return -EINVAL; 5974 } 5975 5976 atomic_set(&conf->reshape_stripes, 0); 5977 spin_lock_irq(&conf->device_lock); 5978 conf->previous_raid_disks = conf->raid_disks; 5979 conf->raid_disks += mddev->delta_disks; 5980 conf->prev_chunk_sectors = conf->chunk_sectors; 5981 conf->chunk_sectors = mddev->new_chunk_sectors; 5982 conf->prev_algo = conf->algorithm; 5983 conf->algorithm = mddev->new_layout; 5984 conf->generation++; 5985 /* Code that selects data_offset needs to see the generation update 5986 * if reshape_progress has been set - so a memory barrier needed. 5987 */ 5988 smp_mb(); 5989 if (mddev->reshape_backwards) 5990 conf->reshape_progress = raid5_size(mddev, 0, 0); 5991 else 5992 conf->reshape_progress = 0; 5993 conf->reshape_safe = conf->reshape_progress; 5994 spin_unlock_irq(&conf->device_lock); 5995 5996 /* Add some new drives, as many as will fit. 5997 * We know there are enough to make the newly sized array work. 5998 * Don't add devices if we are reducing the number of 5999 * devices in the array. This is because it is not possible 6000 * to correctly record the "partially reconstructed" state of 6001 * such devices during the reshape and confusion could result. 6002 */ 6003 if (mddev->delta_disks >= 0) { 6004 rdev_for_each(rdev, mddev) 6005 if (rdev->raid_disk < 0 && 6006 !test_bit(Faulty, &rdev->flags)) { 6007 if (raid5_add_disk(mddev, rdev) == 0) { 6008 if (rdev->raid_disk 6009 >= conf->previous_raid_disks) 6010 set_bit(In_sync, &rdev->flags); 6011 else 6012 rdev->recovery_offset = 0; 6013 6014 if (sysfs_link_rdev(mddev, rdev)) 6015 /* Failure here is OK */; 6016 } 6017 } else if (rdev->raid_disk >= conf->previous_raid_disks 6018 && !test_bit(Faulty, &rdev->flags)) { 6019 /* This is a spare that was manually added */ 6020 set_bit(In_sync, &rdev->flags); 6021 } 6022 6023 /* When a reshape changes the number of devices, 6024 * ->degraded is measured against the larger of the 6025 * pre and post number of devices. 6026 */ 6027 spin_lock_irqsave(&conf->device_lock, flags); 6028 mddev->degraded = calc_degraded(conf); 6029 spin_unlock_irqrestore(&conf->device_lock, flags); 6030 } 6031 mddev->raid_disks = conf->raid_disks; 6032 mddev->reshape_position = conf->reshape_progress; 6033 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6034 6035 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6036 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6037 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6038 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6039 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6040 "reshape"); 6041 if (!mddev->sync_thread) { 6042 mddev->recovery = 0; 6043 spin_lock_irq(&conf->device_lock); 6044 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 6045 rdev_for_each(rdev, mddev) 6046 rdev->new_data_offset = rdev->data_offset; 6047 smp_wmb(); 6048 conf->reshape_progress = MaxSector; 6049 mddev->reshape_position = MaxSector; 6050 spin_unlock_irq(&conf->device_lock); 6051 return -EAGAIN; 6052 } 6053 conf->reshape_checkpoint = jiffies; 6054 md_wakeup_thread(mddev->sync_thread); 6055 md_new_event(mddev); 6056 return 0; 6057 } 6058 6059 /* This is called from the reshape thread and should make any 6060 * changes needed in 'conf' 6061 */ 6062 static void end_reshape(struct r5conf *conf) 6063 { 6064 6065 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 6066 struct md_rdev *rdev; 6067 6068 spin_lock_irq(&conf->device_lock); 6069 conf->previous_raid_disks = conf->raid_disks; 6070 rdev_for_each(rdev, conf->mddev) 6071 rdev->data_offset = rdev->new_data_offset; 6072 smp_wmb(); 6073 conf->reshape_progress = MaxSector; 6074 spin_unlock_irq(&conf->device_lock); 6075 wake_up(&conf->wait_for_overlap); 6076 6077 /* read-ahead size must cover two whole stripes, which is 6078 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 6079 */ 6080 if (conf->mddev->queue) { 6081 int data_disks = conf->raid_disks - conf->max_degraded; 6082 int stripe = data_disks * ((conf->chunk_sectors << 9) 6083 / PAGE_SIZE); 6084 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6085 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6086 } 6087 } 6088 } 6089 6090 /* This is called from the raid5d thread with mddev_lock held. 6091 * It makes config changes to the device. 6092 */ 6093 static void raid5_finish_reshape(struct mddev *mddev) 6094 { 6095 struct r5conf *conf = mddev->private; 6096 6097 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6098 6099 if (mddev->delta_disks > 0) { 6100 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6101 set_capacity(mddev->gendisk, mddev->array_sectors); 6102 revalidate_disk(mddev->gendisk); 6103 } else { 6104 int d; 6105 spin_lock_irq(&conf->device_lock); 6106 mddev->degraded = calc_degraded(conf); 6107 spin_unlock_irq(&conf->device_lock); 6108 for (d = conf->raid_disks ; 6109 d < conf->raid_disks - mddev->delta_disks; 6110 d++) { 6111 struct md_rdev *rdev = conf->disks[d].rdev; 6112 if (rdev) 6113 clear_bit(In_sync, &rdev->flags); 6114 rdev = conf->disks[d].replacement; 6115 if (rdev) 6116 clear_bit(In_sync, &rdev->flags); 6117 } 6118 } 6119 mddev->layout = conf->algorithm; 6120 mddev->chunk_sectors = conf->chunk_sectors; 6121 mddev->reshape_position = MaxSector; 6122 mddev->delta_disks = 0; 6123 mddev->reshape_backwards = 0; 6124 } 6125 } 6126 6127 static void raid5_quiesce(struct mddev *mddev, int state) 6128 { 6129 struct r5conf *conf = mddev->private; 6130 6131 switch(state) { 6132 case 2: /* resume for a suspend */ 6133 wake_up(&conf->wait_for_overlap); 6134 break; 6135 6136 case 1: /* stop all writes */ 6137 spin_lock_irq(&conf->device_lock); 6138 /* '2' tells resync/reshape to pause so that all 6139 * active stripes can drain 6140 */ 6141 conf->quiesce = 2; 6142 wait_event_lock_irq(conf->wait_for_stripe, 6143 atomic_read(&conf->active_stripes) == 0 && 6144 atomic_read(&conf->active_aligned_reads) == 0, 6145 conf->device_lock); 6146 conf->quiesce = 1; 6147 spin_unlock_irq(&conf->device_lock); 6148 /* allow reshape to continue */ 6149 wake_up(&conf->wait_for_overlap); 6150 break; 6151 6152 case 0: /* re-enable writes */ 6153 spin_lock_irq(&conf->device_lock); 6154 conf->quiesce = 0; 6155 wake_up(&conf->wait_for_stripe); 6156 wake_up(&conf->wait_for_overlap); 6157 spin_unlock_irq(&conf->device_lock); 6158 break; 6159 } 6160 } 6161 6162 6163 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 6164 { 6165 struct r0conf *raid0_conf = mddev->private; 6166 sector_t sectors; 6167 6168 /* for raid0 takeover only one zone is supported */ 6169 if (raid0_conf->nr_strip_zones > 1) { 6170 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 6171 mdname(mddev)); 6172 return ERR_PTR(-EINVAL); 6173 } 6174 6175 sectors = raid0_conf->strip_zone[0].zone_end; 6176 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 6177 mddev->dev_sectors = sectors; 6178 mddev->new_level = level; 6179 mddev->new_layout = ALGORITHM_PARITY_N; 6180 mddev->new_chunk_sectors = mddev->chunk_sectors; 6181 mddev->raid_disks += 1; 6182 mddev->delta_disks = 1; 6183 /* make sure it will be not marked as dirty */ 6184 mddev->recovery_cp = MaxSector; 6185 6186 return setup_conf(mddev); 6187 } 6188 6189 6190 static void *raid5_takeover_raid1(struct mddev *mddev) 6191 { 6192 int chunksect; 6193 6194 if (mddev->raid_disks != 2 || 6195 mddev->degraded > 1) 6196 return ERR_PTR(-EINVAL); 6197 6198 /* Should check if there are write-behind devices? */ 6199 6200 chunksect = 64*2; /* 64K by default */ 6201 6202 /* The array must be an exact multiple of chunksize */ 6203 while (chunksect && (mddev->array_sectors & (chunksect-1))) 6204 chunksect >>= 1; 6205 6206 if ((chunksect<<9) < STRIPE_SIZE) 6207 /* array size does not allow a suitable chunk size */ 6208 return ERR_PTR(-EINVAL); 6209 6210 mddev->new_level = 5; 6211 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 6212 mddev->new_chunk_sectors = chunksect; 6213 6214 return setup_conf(mddev); 6215 } 6216 6217 static void *raid5_takeover_raid6(struct mddev *mddev) 6218 { 6219 int new_layout; 6220 6221 switch (mddev->layout) { 6222 case ALGORITHM_LEFT_ASYMMETRIC_6: 6223 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 6224 break; 6225 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6226 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 6227 break; 6228 case ALGORITHM_LEFT_SYMMETRIC_6: 6229 new_layout = ALGORITHM_LEFT_SYMMETRIC; 6230 break; 6231 case ALGORITHM_RIGHT_SYMMETRIC_6: 6232 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 6233 break; 6234 case ALGORITHM_PARITY_0_6: 6235 new_layout = ALGORITHM_PARITY_0; 6236 break; 6237 case ALGORITHM_PARITY_N: 6238 new_layout = ALGORITHM_PARITY_N; 6239 break; 6240 default: 6241 return ERR_PTR(-EINVAL); 6242 } 6243 mddev->new_level = 5; 6244 mddev->new_layout = new_layout; 6245 mddev->delta_disks = -1; 6246 mddev->raid_disks -= 1; 6247 return setup_conf(mddev); 6248 } 6249 6250 6251 static int raid5_check_reshape(struct mddev *mddev) 6252 { 6253 /* For a 2-drive array, the layout and chunk size can be changed 6254 * immediately as not restriping is needed. 6255 * For larger arrays we record the new value - after validation 6256 * to be used by a reshape pass. 6257 */ 6258 struct r5conf *conf = mddev->private; 6259 int new_chunk = mddev->new_chunk_sectors; 6260 6261 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 6262 return -EINVAL; 6263 if (new_chunk > 0) { 6264 if (!is_power_of_2(new_chunk)) 6265 return -EINVAL; 6266 if (new_chunk < (PAGE_SIZE>>9)) 6267 return -EINVAL; 6268 if (mddev->array_sectors & (new_chunk-1)) 6269 /* not factor of array size */ 6270 return -EINVAL; 6271 } 6272 6273 /* They look valid */ 6274 6275 if (mddev->raid_disks == 2) { 6276 /* can make the change immediately */ 6277 if (mddev->new_layout >= 0) { 6278 conf->algorithm = mddev->new_layout; 6279 mddev->layout = mddev->new_layout; 6280 } 6281 if (new_chunk > 0) { 6282 conf->chunk_sectors = new_chunk ; 6283 mddev->chunk_sectors = new_chunk; 6284 } 6285 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6286 md_wakeup_thread(mddev->thread); 6287 } 6288 return check_reshape(mddev); 6289 } 6290 6291 static int raid6_check_reshape(struct mddev *mddev) 6292 { 6293 int new_chunk = mddev->new_chunk_sectors; 6294 6295 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 6296 return -EINVAL; 6297 if (new_chunk > 0) { 6298 if (!is_power_of_2(new_chunk)) 6299 return -EINVAL; 6300 if (new_chunk < (PAGE_SIZE >> 9)) 6301 return -EINVAL; 6302 if (mddev->array_sectors & (new_chunk-1)) 6303 /* not factor of array size */ 6304 return -EINVAL; 6305 } 6306 6307 /* They look valid */ 6308 return check_reshape(mddev); 6309 } 6310 6311 static void *raid5_takeover(struct mddev *mddev) 6312 { 6313 /* raid5 can take over: 6314 * raid0 - if there is only one strip zone - make it a raid4 layout 6315 * raid1 - if there are two drives. We need to know the chunk size 6316 * raid4 - trivial - just use a raid4 layout. 6317 * raid6 - Providing it is a *_6 layout 6318 */ 6319 if (mddev->level == 0) 6320 return raid45_takeover_raid0(mddev, 5); 6321 if (mddev->level == 1) 6322 return raid5_takeover_raid1(mddev); 6323 if (mddev->level == 4) { 6324 mddev->new_layout = ALGORITHM_PARITY_N; 6325 mddev->new_level = 5; 6326 return setup_conf(mddev); 6327 } 6328 if (mddev->level == 6) 6329 return raid5_takeover_raid6(mddev); 6330 6331 return ERR_PTR(-EINVAL); 6332 } 6333 6334 static void *raid4_takeover(struct mddev *mddev) 6335 { 6336 /* raid4 can take over: 6337 * raid0 - if there is only one strip zone 6338 * raid5 - if layout is right 6339 */ 6340 if (mddev->level == 0) 6341 return raid45_takeover_raid0(mddev, 4); 6342 if (mddev->level == 5 && 6343 mddev->layout == ALGORITHM_PARITY_N) { 6344 mddev->new_layout = 0; 6345 mddev->new_level = 4; 6346 return setup_conf(mddev); 6347 } 6348 return ERR_PTR(-EINVAL); 6349 } 6350 6351 static struct md_personality raid5_personality; 6352 6353 static void *raid6_takeover(struct mddev *mddev) 6354 { 6355 /* Currently can only take over a raid5. We map the 6356 * personality to an equivalent raid6 personality 6357 * with the Q block at the end. 6358 */ 6359 int new_layout; 6360 6361 if (mddev->pers != &raid5_personality) 6362 return ERR_PTR(-EINVAL); 6363 if (mddev->degraded > 1) 6364 return ERR_PTR(-EINVAL); 6365 if (mddev->raid_disks > 253) 6366 return ERR_PTR(-EINVAL); 6367 if (mddev->raid_disks < 3) 6368 return ERR_PTR(-EINVAL); 6369 6370 switch (mddev->layout) { 6371 case ALGORITHM_LEFT_ASYMMETRIC: 6372 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 6373 break; 6374 case ALGORITHM_RIGHT_ASYMMETRIC: 6375 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 6376 break; 6377 case ALGORITHM_LEFT_SYMMETRIC: 6378 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 6379 break; 6380 case ALGORITHM_RIGHT_SYMMETRIC: 6381 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 6382 break; 6383 case ALGORITHM_PARITY_0: 6384 new_layout = ALGORITHM_PARITY_0_6; 6385 break; 6386 case ALGORITHM_PARITY_N: 6387 new_layout = ALGORITHM_PARITY_N; 6388 break; 6389 default: 6390 return ERR_PTR(-EINVAL); 6391 } 6392 mddev->new_level = 6; 6393 mddev->new_layout = new_layout; 6394 mddev->delta_disks = 1; 6395 mddev->raid_disks += 1; 6396 return setup_conf(mddev); 6397 } 6398 6399 6400 static struct md_personality raid6_personality = 6401 { 6402 .name = "raid6", 6403 .level = 6, 6404 .owner = THIS_MODULE, 6405 .make_request = make_request, 6406 .run = run, 6407 .stop = stop, 6408 .status = status, 6409 .error_handler = error, 6410 .hot_add_disk = raid5_add_disk, 6411 .hot_remove_disk= raid5_remove_disk, 6412 .spare_active = raid5_spare_active, 6413 .sync_request = sync_request, 6414 .resize = raid5_resize, 6415 .size = raid5_size, 6416 .check_reshape = raid6_check_reshape, 6417 .start_reshape = raid5_start_reshape, 6418 .finish_reshape = raid5_finish_reshape, 6419 .quiesce = raid5_quiesce, 6420 .takeover = raid6_takeover, 6421 }; 6422 static struct md_personality raid5_personality = 6423 { 6424 .name = "raid5", 6425 .level = 5, 6426 .owner = THIS_MODULE, 6427 .make_request = make_request, 6428 .run = run, 6429 .stop = stop, 6430 .status = status, 6431 .error_handler = error, 6432 .hot_add_disk = raid5_add_disk, 6433 .hot_remove_disk= raid5_remove_disk, 6434 .spare_active = raid5_spare_active, 6435 .sync_request = sync_request, 6436 .resize = raid5_resize, 6437 .size = raid5_size, 6438 .check_reshape = raid5_check_reshape, 6439 .start_reshape = raid5_start_reshape, 6440 .finish_reshape = raid5_finish_reshape, 6441 .quiesce = raid5_quiesce, 6442 .takeover = raid5_takeover, 6443 }; 6444 6445 static struct md_personality raid4_personality = 6446 { 6447 .name = "raid4", 6448 .level = 4, 6449 .owner = THIS_MODULE, 6450 .make_request = make_request, 6451 .run = run, 6452 .stop = stop, 6453 .status = status, 6454 .error_handler = error, 6455 .hot_add_disk = raid5_add_disk, 6456 .hot_remove_disk= raid5_remove_disk, 6457 .spare_active = raid5_spare_active, 6458 .sync_request = sync_request, 6459 .resize = raid5_resize, 6460 .size = raid5_size, 6461 .check_reshape = raid5_check_reshape, 6462 .start_reshape = raid5_start_reshape, 6463 .finish_reshape = raid5_finish_reshape, 6464 .quiesce = raid5_quiesce, 6465 .takeover = raid4_takeover, 6466 }; 6467 6468 static int __init raid5_init(void) 6469 { 6470 register_md_personality(&raid6_personality); 6471 register_md_personality(&raid5_personality); 6472 register_md_personality(&raid4_personality); 6473 return 0; 6474 } 6475 6476 static void raid5_exit(void) 6477 { 6478 unregister_md_personality(&raid6_personality); 6479 unregister_md_personality(&raid5_personality); 6480 unregister_md_personality(&raid4_personality); 6481 } 6482 6483 module_init(raid5_init); 6484 module_exit(raid5_exit); 6485 MODULE_LICENSE("GPL"); 6486 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 6487 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 6488 MODULE_ALIAS("md-raid5"); 6489 MODULE_ALIAS("md-raid4"); 6490 MODULE_ALIAS("md-level-5"); 6491 MODULE_ALIAS("md-level-4"); 6492 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 6493 MODULE_ALIAS("md-raid6"); 6494 MODULE_ALIAS("md-level-6"); 6495 6496 /* This used to be two separate modules, they were: */ 6497 MODULE_ALIAS("raid5"); 6498 MODULE_ALIAS("raid6"); 6499