1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 #include <trace/events/block.h> 59 60 #include "md.h" 61 #include "raid5.h" 62 #include "raid0.h" 63 #include "bitmap.h" 64 65 #define cpu_to_group(cpu) cpu_to_node(cpu) 66 #define ANY_GROUP NUMA_NO_NODE 67 68 static bool devices_handle_discard_safely = false; 69 module_param(devices_handle_discard_safely, bool, 0644); 70 MODULE_PARM_DESC(devices_handle_discard_safely, 71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 72 static struct workqueue_struct *raid5_wq; 73 /* 74 * Stripe cache 75 */ 76 77 #define NR_STRIPES 256 78 #define STRIPE_SIZE PAGE_SIZE 79 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 80 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 81 #define IO_THRESHOLD 1 82 #define BYPASS_THRESHOLD 1 83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 84 #define HASH_MASK (NR_HASH - 1) 85 #define MAX_STRIPE_BATCH 8 86 87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 88 { 89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 90 return &conf->stripe_hashtbl[hash]; 91 } 92 93 static inline int stripe_hash_locks_hash(sector_t sect) 94 { 95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 96 } 97 98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 99 { 100 spin_lock_irq(conf->hash_locks + hash); 101 spin_lock(&conf->device_lock); 102 } 103 104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 105 { 106 spin_unlock(&conf->device_lock); 107 spin_unlock_irq(conf->hash_locks + hash); 108 } 109 110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 111 { 112 int i; 113 local_irq_disable(); 114 spin_lock(conf->hash_locks); 115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 117 spin_lock(&conf->device_lock); 118 } 119 120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 121 { 122 int i; 123 spin_unlock(&conf->device_lock); 124 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 125 spin_unlock(conf->hash_locks + i - 1); 126 local_irq_enable(); 127 } 128 129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 130 * order without overlap. There may be several bio's per stripe+device, and 131 * a bio could span several devices. 132 * When walking this list for a particular stripe+device, we must never proceed 133 * beyond a bio that extends past this device, as the next bio might no longer 134 * be valid. 135 * This function is used to determine the 'next' bio in the list, given the sector 136 * of the current stripe+device 137 */ 138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 139 { 140 int sectors = bio_sectors(bio); 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS) 142 return bio->bi_next; 143 else 144 return NULL; 145 } 146 147 /* 148 * We maintain a biased count of active stripes in the bottom 16 bits of 149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 150 */ 151 static inline int raid5_bi_processed_stripes(struct bio *bio) 152 { 153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 154 return (atomic_read(segments) >> 16) & 0xffff; 155 } 156 157 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 158 { 159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 160 return atomic_sub_return(1, segments) & 0xffff; 161 } 162 163 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 164 { 165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 166 atomic_inc(segments); 167 } 168 169 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 170 unsigned int cnt) 171 { 172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 173 int old, new; 174 175 do { 176 old = atomic_read(segments); 177 new = (old & 0xffff) | (cnt << 16); 178 } while (atomic_cmpxchg(segments, old, new) != old); 179 } 180 181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 182 { 183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 184 atomic_set(segments, cnt); 185 } 186 187 /* Find first data disk in a raid6 stripe */ 188 static inline int raid6_d0(struct stripe_head *sh) 189 { 190 if (sh->ddf_layout) 191 /* ddf always start from first device */ 192 return 0; 193 /* md starts just after Q block */ 194 if (sh->qd_idx == sh->disks - 1) 195 return 0; 196 else 197 return sh->qd_idx + 1; 198 } 199 static inline int raid6_next_disk(int disk, int raid_disks) 200 { 201 disk++; 202 return (disk < raid_disks) ? disk : 0; 203 } 204 205 /* When walking through the disks in a raid5, starting at raid6_d0, 206 * We need to map each disk to a 'slot', where the data disks are slot 207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 208 * is raid_disks-1. This help does that mapping. 209 */ 210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 211 int *count, int syndrome_disks) 212 { 213 int slot = *count; 214 215 if (sh->ddf_layout) 216 (*count)++; 217 if (idx == sh->pd_idx) 218 return syndrome_disks; 219 if (idx == sh->qd_idx) 220 return syndrome_disks + 1; 221 if (!sh->ddf_layout) 222 (*count)++; 223 return slot; 224 } 225 226 static void return_io(struct bio_list *return_bi) 227 { 228 struct bio *bi; 229 while ((bi = bio_list_pop(return_bi)) != NULL) { 230 bi->bi_iter.bi_size = 0; 231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 232 bi, 0); 233 bio_endio(bi); 234 } 235 } 236 237 static void print_raid5_conf (struct r5conf *conf); 238 239 static int stripe_operations_active(struct stripe_head *sh) 240 { 241 return sh->check_state || sh->reconstruct_state || 242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 243 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 244 } 245 246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 247 { 248 struct r5conf *conf = sh->raid_conf; 249 struct r5worker_group *group; 250 int thread_cnt; 251 int i, cpu = sh->cpu; 252 253 if (!cpu_online(cpu)) { 254 cpu = cpumask_any(cpu_online_mask); 255 sh->cpu = cpu; 256 } 257 258 if (list_empty(&sh->lru)) { 259 struct r5worker_group *group; 260 group = conf->worker_groups + cpu_to_group(cpu); 261 list_add_tail(&sh->lru, &group->handle_list); 262 group->stripes_cnt++; 263 sh->group = group; 264 } 265 266 if (conf->worker_cnt_per_group == 0) { 267 md_wakeup_thread(conf->mddev->thread); 268 return; 269 } 270 271 group = conf->worker_groups + cpu_to_group(sh->cpu); 272 273 group->workers[0].working = true; 274 /* at least one worker should run to avoid race */ 275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 276 277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 278 /* wakeup more workers */ 279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 280 if (group->workers[i].working == false) { 281 group->workers[i].working = true; 282 queue_work_on(sh->cpu, raid5_wq, 283 &group->workers[i].work); 284 thread_cnt--; 285 } 286 } 287 } 288 289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 290 struct list_head *temp_inactive_list) 291 { 292 BUG_ON(!list_empty(&sh->lru)); 293 BUG_ON(atomic_read(&conf->active_stripes)==0); 294 if (test_bit(STRIPE_HANDLE, &sh->state)) { 295 if (test_bit(STRIPE_DELAYED, &sh->state) && 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 297 list_add_tail(&sh->lru, &conf->delayed_list); 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 299 sh->bm_seq - conf->seq_write > 0) 300 list_add_tail(&sh->lru, &conf->bitmap_list); 301 else { 302 clear_bit(STRIPE_DELAYED, &sh->state); 303 clear_bit(STRIPE_BIT_DELAY, &sh->state); 304 if (conf->worker_cnt_per_group == 0) { 305 list_add_tail(&sh->lru, &conf->handle_list); 306 } else { 307 raid5_wakeup_stripe_thread(sh); 308 return; 309 } 310 } 311 md_wakeup_thread(conf->mddev->thread); 312 } else { 313 BUG_ON(stripe_operations_active(sh)); 314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 315 if (atomic_dec_return(&conf->preread_active_stripes) 316 < IO_THRESHOLD) 317 md_wakeup_thread(conf->mddev->thread); 318 atomic_dec(&conf->active_stripes); 319 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 320 list_add_tail(&sh->lru, temp_inactive_list); 321 } 322 } 323 324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 325 struct list_head *temp_inactive_list) 326 { 327 if (atomic_dec_and_test(&sh->count)) 328 do_release_stripe(conf, sh, temp_inactive_list); 329 } 330 331 /* 332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 333 * 334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 335 * given time. Adding stripes only takes device lock, while deleting stripes 336 * only takes hash lock. 337 */ 338 static void release_inactive_stripe_list(struct r5conf *conf, 339 struct list_head *temp_inactive_list, 340 int hash) 341 { 342 int size; 343 bool do_wakeup = false; 344 unsigned long flags; 345 346 if (hash == NR_STRIPE_HASH_LOCKS) { 347 size = NR_STRIPE_HASH_LOCKS; 348 hash = NR_STRIPE_HASH_LOCKS - 1; 349 } else 350 size = 1; 351 while (size) { 352 struct list_head *list = &temp_inactive_list[size - 1]; 353 354 /* 355 * We don't hold any lock here yet, raid5_get_active_stripe() might 356 * remove stripes from the list 357 */ 358 if (!list_empty_careful(list)) { 359 spin_lock_irqsave(conf->hash_locks + hash, flags); 360 if (list_empty(conf->inactive_list + hash) && 361 !list_empty(list)) 362 atomic_dec(&conf->empty_inactive_list_nr); 363 list_splice_tail_init(list, conf->inactive_list + hash); 364 do_wakeup = true; 365 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 366 } 367 size--; 368 hash--; 369 } 370 371 if (do_wakeup) { 372 wake_up(&conf->wait_for_stripe); 373 if (atomic_read(&conf->active_stripes) == 0) 374 wake_up(&conf->wait_for_quiescent); 375 if (conf->retry_read_aligned) 376 md_wakeup_thread(conf->mddev->thread); 377 } 378 } 379 380 /* should hold conf->device_lock already */ 381 static int release_stripe_list(struct r5conf *conf, 382 struct list_head *temp_inactive_list) 383 { 384 struct stripe_head *sh; 385 int count = 0; 386 struct llist_node *head; 387 388 head = llist_del_all(&conf->released_stripes); 389 head = llist_reverse_order(head); 390 while (head) { 391 int hash; 392 393 sh = llist_entry(head, struct stripe_head, release_list); 394 head = llist_next(head); 395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 396 smp_mb(); 397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 398 /* 399 * Don't worry the bit is set here, because if the bit is set 400 * again, the count is always > 1. This is true for 401 * STRIPE_ON_UNPLUG_LIST bit too. 402 */ 403 hash = sh->hash_lock_index; 404 __release_stripe(conf, sh, &temp_inactive_list[hash]); 405 count++; 406 } 407 408 return count; 409 } 410 411 void raid5_release_stripe(struct stripe_head *sh) 412 { 413 struct r5conf *conf = sh->raid_conf; 414 unsigned long flags; 415 struct list_head list; 416 int hash; 417 bool wakeup; 418 419 /* Avoid release_list until the last reference. 420 */ 421 if (atomic_add_unless(&sh->count, -1, 1)) 422 return; 423 424 if (unlikely(!conf->mddev->thread) || 425 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 426 goto slow_path; 427 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 428 if (wakeup) 429 md_wakeup_thread(conf->mddev->thread); 430 return; 431 slow_path: 432 local_irq_save(flags); 433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 434 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 435 INIT_LIST_HEAD(&list); 436 hash = sh->hash_lock_index; 437 do_release_stripe(conf, sh, &list); 438 spin_unlock(&conf->device_lock); 439 release_inactive_stripe_list(conf, &list, hash); 440 } 441 local_irq_restore(flags); 442 } 443 444 static inline void remove_hash(struct stripe_head *sh) 445 { 446 pr_debug("remove_hash(), stripe %llu\n", 447 (unsigned long long)sh->sector); 448 449 hlist_del_init(&sh->hash); 450 } 451 452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 453 { 454 struct hlist_head *hp = stripe_hash(conf, sh->sector); 455 456 pr_debug("insert_hash(), stripe %llu\n", 457 (unsigned long long)sh->sector); 458 459 hlist_add_head(&sh->hash, hp); 460 } 461 462 /* find an idle stripe, make sure it is unhashed, and return it. */ 463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 464 { 465 struct stripe_head *sh = NULL; 466 struct list_head *first; 467 468 if (list_empty(conf->inactive_list + hash)) 469 goto out; 470 first = (conf->inactive_list + hash)->next; 471 sh = list_entry(first, struct stripe_head, lru); 472 list_del_init(first); 473 remove_hash(sh); 474 atomic_inc(&conf->active_stripes); 475 BUG_ON(hash != sh->hash_lock_index); 476 if (list_empty(conf->inactive_list + hash)) 477 atomic_inc(&conf->empty_inactive_list_nr); 478 out: 479 return sh; 480 } 481 482 static void shrink_buffers(struct stripe_head *sh) 483 { 484 struct page *p; 485 int i; 486 int num = sh->raid_conf->pool_size; 487 488 for (i = 0; i < num ; i++) { 489 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 490 p = sh->dev[i].page; 491 if (!p) 492 continue; 493 sh->dev[i].page = NULL; 494 put_page(p); 495 } 496 } 497 498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 499 { 500 int i; 501 int num = sh->raid_conf->pool_size; 502 503 for (i = 0; i < num; i++) { 504 struct page *page; 505 506 if (!(page = alloc_page(gfp))) { 507 return 1; 508 } 509 sh->dev[i].page = page; 510 sh->dev[i].orig_page = page; 511 } 512 return 0; 513 } 514 515 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 517 struct stripe_head *sh); 518 519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 520 { 521 struct r5conf *conf = sh->raid_conf; 522 int i, seq; 523 524 BUG_ON(atomic_read(&sh->count) != 0); 525 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 526 BUG_ON(stripe_operations_active(sh)); 527 BUG_ON(sh->batch_head); 528 529 pr_debug("init_stripe called, stripe %llu\n", 530 (unsigned long long)sector); 531 retry: 532 seq = read_seqcount_begin(&conf->gen_lock); 533 sh->generation = conf->generation - previous; 534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 535 sh->sector = sector; 536 stripe_set_idx(sector, conf, previous, sh); 537 sh->state = 0; 538 539 for (i = sh->disks; i--; ) { 540 struct r5dev *dev = &sh->dev[i]; 541 542 if (dev->toread || dev->read || dev->towrite || dev->written || 543 test_bit(R5_LOCKED, &dev->flags)) { 544 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 545 (unsigned long long)sh->sector, i, dev->toread, 546 dev->read, dev->towrite, dev->written, 547 test_bit(R5_LOCKED, &dev->flags)); 548 WARN_ON(1); 549 } 550 dev->flags = 0; 551 raid5_build_block(sh, i, previous); 552 } 553 if (read_seqcount_retry(&conf->gen_lock, seq)) 554 goto retry; 555 sh->overwrite_disks = 0; 556 insert_hash(conf, sh); 557 sh->cpu = smp_processor_id(); 558 set_bit(STRIPE_BATCH_READY, &sh->state); 559 } 560 561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 562 short generation) 563 { 564 struct stripe_head *sh; 565 566 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 567 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 568 if (sh->sector == sector && sh->generation == generation) 569 return sh; 570 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 571 return NULL; 572 } 573 574 /* 575 * Need to check if array has failed when deciding whether to: 576 * - start an array 577 * - remove non-faulty devices 578 * - add a spare 579 * - allow a reshape 580 * This determination is simple when no reshape is happening. 581 * However if there is a reshape, we need to carefully check 582 * both the before and after sections. 583 * This is because some failed devices may only affect one 584 * of the two sections, and some non-in_sync devices may 585 * be insync in the section most affected by failed devices. 586 */ 587 static int calc_degraded(struct r5conf *conf) 588 { 589 int degraded, degraded2; 590 int i; 591 592 rcu_read_lock(); 593 degraded = 0; 594 for (i = 0; i < conf->previous_raid_disks; i++) { 595 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 596 if (rdev && test_bit(Faulty, &rdev->flags)) 597 rdev = rcu_dereference(conf->disks[i].replacement); 598 if (!rdev || test_bit(Faulty, &rdev->flags)) 599 degraded++; 600 else if (test_bit(In_sync, &rdev->flags)) 601 ; 602 else 603 /* not in-sync or faulty. 604 * If the reshape increases the number of devices, 605 * this is being recovered by the reshape, so 606 * this 'previous' section is not in_sync. 607 * If the number of devices is being reduced however, 608 * the device can only be part of the array if 609 * we are reverting a reshape, so this section will 610 * be in-sync. 611 */ 612 if (conf->raid_disks >= conf->previous_raid_disks) 613 degraded++; 614 } 615 rcu_read_unlock(); 616 if (conf->raid_disks == conf->previous_raid_disks) 617 return degraded; 618 rcu_read_lock(); 619 degraded2 = 0; 620 for (i = 0; i < conf->raid_disks; i++) { 621 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 622 if (rdev && test_bit(Faulty, &rdev->flags)) 623 rdev = rcu_dereference(conf->disks[i].replacement); 624 if (!rdev || test_bit(Faulty, &rdev->flags)) 625 degraded2++; 626 else if (test_bit(In_sync, &rdev->flags)) 627 ; 628 else 629 /* not in-sync or faulty. 630 * If reshape increases the number of devices, this 631 * section has already been recovered, else it 632 * almost certainly hasn't. 633 */ 634 if (conf->raid_disks <= conf->previous_raid_disks) 635 degraded2++; 636 } 637 rcu_read_unlock(); 638 if (degraded2 > degraded) 639 return degraded2; 640 return degraded; 641 } 642 643 static int has_failed(struct r5conf *conf) 644 { 645 int degraded; 646 647 if (conf->mddev->reshape_position == MaxSector) 648 return conf->mddev->degraded > conf->max_degraded; 649 650 degraded = calc_degraded(conf); 651 if (degraded > conf->max_degraded) 652 return 1; 653 return 0; 654 } 655 656 struct stripe_head * 657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 658 int previous, int noblock, int noquiesce) 659 { 660 struct stripe_head *sh; 661 int hash = stripe_hash_locks_hash(sector); 662 663 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 664 665 spin_lock_irq(conf->hash_locks + hash); 666 667 do { 668 wait_event_lock_irq(conf->wait_for_quiescent, 669 conf->quiesce == 0 || noquiesce, 670 *(conf->hash_locks + hash)); 671 sh = __find_stripe(conf, sector, conf->generation - previous); 672 if (!sh) { 673 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 674 sh = get_free_stripe(conf, hash); 675 if (!sh && !test_bit(R5_DID_ALLOC, 676 &conf->cache_state)) 677 set_bit(R5_ALLOC_MORE, 678 &conf->cache_state); 679 } 680 if (noblock && sh == NULL) 681 break; 682 if (!sh) { 683 set_bit(R5_INACTIVE_BLOCKED, 684 &conf->cache_state); 685 wait_event_lock_irq( 686 conf->wait_for_stripe, 687 !list_empty(conf->inactive_list + hash) && 688 (atomic_read(&conf->active_stripes) 689 < (conf->max_nr_stripes * 3 / 4) 690 || !test_bit(R5_INACTIVE_BLOCKED, 691 &conf->cache_state)), 692 *(conf->hash_locks + hash)); 693 clear_bit(R5_INACTIVE_BLOCKED, 694 &conf->cache_state); 695 } else { 696 init_stripe(sh, sector, previous); 697 atomic_inc(&sh->count); 698 } 699 } else if (!atomic_inc_not_zero(&sh->count)) { 700 spin_lock(&conf->device_lock); 701 if (!atomic_read(&sh->count)) { 702 if (!test_bit(STRIPE_HANDLE, &sh->state)) 703 atomic_inc(&conf->active_stripes); 704 BUG_ON(list_empty(&sh->lru) && 705 !test_bit(STRIPE_EXPANDING, &sh->state)); 706 list_del_init(&sh->lru); 707 if (sh->group) { 708 sh->group->stripes_cnt--; 709 sh->group = NULL; 710 } 711 } 712 atomic_inc(&sh->count); 713 spin_unlock(&conf->device_lock); 714 } 715 } while (sh == NULL); 716 717 spin_unlock_irq(conf->hash_locks + hash); 718 return sh; 719 } 720 721 static bool is_full_stripe_write(struct stripe_head *sh) 722 { 723 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 724 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 725 } 726 727 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 728 { 729 local_irq_disable(); 730 if (sh1 > sh2) { 731 spin_lock(&sh2->stripe_lock); 732 spin_lock_nested(&sh1->stripe_lock, 1); 733 } else { 734 spin_lock(&sh1->stripe_lock); 735 spin_lock_nested(&sh2->stripe_lock, 1); 736 } 737 } 738 739 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 740 { 741 spin_unlock(&sh1->stripe_lock); 742 spin_unlock(&sh2->stripe_lock); 743 local_irq_enable(); 744 } 745 746 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 747 static bool stripe_can_batch(struct stripe_head *sh) 748 { 749 struct r5conf *conf = sh->raid_conf; 750 751 if (conf->log) 752 return false; 753 return test_bit(STRIPE_BATCH_READY, &sh->state) && 754 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 755 is_full_stripe_write(sh); 756 } 757 758 /* we only do back search */ 759 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 760 { 761 struct stripe_head *head; 762 sector_t head_sector, tmp_sec; 763 int hash; 764 int dd_idx; 765 766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 767 tmp_sec = sh->sector; 768 if (!sector_div(tmp_sec, conf->chunk_sectors)) 769 return; 770 head_sector = sh->sector - STRIPE_SECTORS; 771 772 hash = stripe_hash_locks_hash(head_sector); 773 spin_lock_irq(conf->hash_locks + hash); 774 head = __find_stripe(conf, head_sector, conf->generation); 775 if (head && !atomic_inc_not_zero(&head->count)) { 776 spin_lock(&conf->device_lock); 777 if (!atomic_read(&head->count)) { 778 if (!test_bit(STRIPE_HANDLE, &head->state)) 779 atomic_inc(&conf->active_stripes); 780 BUG_ON(list_empty(&head->lru) && 781 !test_bit(STRIPE_EXPANDING, &head->state)); 782 list_del_init(&head->lru); 783 if (head->group) { 784 head->group->stripes_cnt--; 785 head->group = NULL; 786 } 787 } 788 atomic_inc(&head->count); 789 spin_unlock(&conf->device_lock); 790 } 791 spin_unlock_irq(conf->hash_locks + hash); 792 793 if (!head) 794 return; 795 if (!stripe_can_batch(head)) 796 goto out; 797 798 lock_two_stripes(head, sh); 799 /* clear_batch_ready clear the flag */ 800 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 801 goto unlock_out; 802 803 if (sh->batch_head) 804 goto unlock_out; 805 806 dd_idx = 0; 807 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 808 dd_idx++; 809 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw) 810 goto unlock_out; 811 812 if (head->batch_head) { 813 spin_lock(&head->batch_head->batch_lock); 814 /* This batch list is already running */ 815 if (!stripe_can_batch(head)) { 816 spin_unlock(&head->batch_head->batch_lock); 817 goto unlock_out; 818 } 819 820 /* 821 * at this point, head's BATCH_READY could be cleared, but we 822 * can still add the stripe to batch list 823 */ 824 list_add(&sh->batch_list, &head->batch_list); 825 spin_unlock(&head->batch_head->batch_lock); 826 827 sh->batch_head = head->batch_head; 828 } else { 829 head->batch_head = head; 830 sh->batch_head = head->batch_head; 831 spin_lock(&head->batch_lock); 832 list_add_tail(&sh->batch_list, &head->batch_list); 833 spin_unlock(&head->batch_lock); 834 } 835 836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 837 if (atomic_dec_return(&conf->preread_active_stripes) 838 < IO_THRESHOLD) 839 md_wakeup_thread(conf->mddev->thread); 840 841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 842 int seq = sh->bm_seq; 843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 844 sh->batch_head->bm_seq > seq) 845 seq = sh->batch_head->bm_seq; 846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 847 sh->batch_head->bm_seq = seq; 848 } 849 850 atomic_inc(&sh->count); 851 unlock_out: 852 unlock_two_stripes(head, sh); 853 out: 854 raid5_release_stripe(head); 855 } 856 857 /* Determine if 'data_offset' or 'new_data_offset' should be used 858 * in this stripe_head. 859 */ 860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 861 { 862 sector_t progress = conf->reshape_progress; 863 /* Need a memory barrier to make sure we see the value 864 * of conf->generation, or ->data_offset that was set before 865 * reshape_progress was updated. 866 */ 867 smp_rmb(); 868 if (progress == MaxSector) 869 return 0; 870 if (sh->generation == conf->generation - 1) 871 return 0; 872 /* We are in a reshape, and this is a new-generation stripe, 873 * so use new_data_offset. 874 */ 875 return 1; 876 } 877 878 static void 879 raid5_end_read_request(struct bio *bi); 880 static void 881 raid5_end_write_request(struct bio *bi); 882 883 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 884 { 885 struct r5conf *conf = sh->raid_conf; 886 int i, disks = sh->disks; 887 struct stripe_head *head_sh = sh; 888 889 might_sleep(); 890 891 if (r5l_write_stripe(conf->log, sh) == 0) 892 return; 893 for (i = disks; i--; ) { 894 int rw; 895 int replace_only = 0; 896 struct bio *bi, *rbi; 897 struct md_rdev *rdev, *rrdev = NULL; 898 899 sh = head_sh; 900 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 901 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 902 rw = WRITE_FUA; 903 else 904 rw = WRITE; 905 if (test_bit(R5_Discard, &sh->dev[i].flags)) 906 rw |= REQ_DISCARD; 907 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 908 rw = READ; 909 else if (test_and_clear_bit(R5_WantReplace, 910 &sh->dev[i].flags)) { 911 rw = WRITE; 912 replace_only = 1; 913 } else 914 continue; 915 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 916 rw |= REQ_SYNC; 917 918 again: 919 bi = &sh->dev[i].req; 920 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 921 922 rcu_read_lock(); 923 rrdev = rcu_dereference(conf->disks[i].replacement); 924 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 925 rdev = rcu_dereference(conf->disks[i].rdev); 926 if (!rdev) { 927 rdev = rrdev; 928 rrdev = NULL; 929 } 930 if (rw & WRITE) { 931 if (replace_only) 932 rdev = NULL; 933 if (rdev == rrdev) 934 /* We raced and saw duplicates */ 935 rrdev = NULL; 936 } else { 937 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 938 rdev = rrdev; 939 rrdev = NULL; 940 } 941 942 if (rdev && test_bit(Faulty, &rdev->flags)) 943 rdev = NULL; 944 if (rdev) 945 atomic_inc(&rdev->nr_pending); 946 if (rrdev && test_bit(Faulty, &rrdev->flags)) 947 rrdev = NULL; 948 if (rrdev) 949 atomic_inc(&rrdev->nr_pending); 950 rcu_read_unlock(); 951 952 /* We have already checked bad blocks for reads. Now 953 * need to check for writes. We never accept write errors 954 * on the replacement, so we don't to check rrdev. 955 */ 956 while ((rw & WRITE) && rdev && 957 test_bit(WriteErrorSeen, &rdev->flags)) { 958 sector_t first_bad; 959 int bad_sectors; 960 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 961 &first_bad, &bad_sectors); 962 if (!bad) 963 break; 964 965 if (bad < 0) { 966 set_bit(BlockedBadBlocks, &rdev->flags); 967 if (!conf->mddev->external && 968 conf->mddev->flags) { 969 /* It is very unlikely, but we might 970 * still need to write out the 971 * bad block log - better give it 972 * a chance*/ 973 md_check_recovery(conf->mddev); 974 } 975 /* 976 * Because md_wait_for_blocked_rdev 977 * will dec nr_pending, we must 978 * increment it first. 979 */ 980 atomic_inc(&rdev->nr_pending); 981 md_wait_for_blocked_rdev(rdev, conf->mddev); 982 } else { 983 /* Acknowledged bad block - skip the write */ 984 rdev_dec_pending(rdev, conf->mddev); 985 rdev = NULL; 986 } 987 } 988 989 if (rdev) { 990 if (s->syncing || s->expanding || s->expanded 991 || s->replacing) 992 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 993 994 set_bit(STRIPE_IO_STARTED, &sh->state); 995 996 bio_reset(bi); 997 bi->bi_bdev = rdev->bdev; 998 bi->bi_rw = rw; 999 bi->bi_end_io = (rw & WRITE) 1000 ? raid5_end_write_request 1001 : raid5_end_read_request; 1002 bi->bi_private = sh; 1003 1004 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 1005 __func__, (unsigned long long)sh->sector, 1006 bi->bi_rw, i); 1007 atomic_inc(&sh->count); 1008 if (sh != head_sh) 1009 atomic_inc(&head_sh->count); 1010 if (use_new_offset(conf, sh)) 1011 bi->bi_iter.bi_sector = (sh->sector 1012 + rdev->new_data_offset); 1013 else 1014 bi->bi_iter.bi_sector = (sh->sector 1015 + rdev->data_offset); 1016 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1017 bi->bi_rw |= REQ_NOMERGE; 1018 1019 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1020 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1021 sh->dev[i].vec.bv_page = sh->dev[i].page; 1022 bi->bi_vcnt = 1; 1023 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1024 bi->bi_io_vec[0].bv_offset = 0; 1025 bi->bi_iter.bi_size = STRIPE_SIZE; 1026 /* 1027 * If this is discard request, set bi_vcnt 0. We don't 1028 * want to confuse SCSI because SCSI will replace payload 1029 */ 1030 if (rw & REQ_DISCARD) 1031 bi->bi_vcnt = 0; 1032 if (rrdev) 1033 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1034 1035 if (conf->mddev->gendisk) 1036 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 1037 bi, disk_devt(conf->mddev->gendisk), 1038 sh->dev[i].sector); 1039 generic_make_request(bi); 1040 } 1041 if (rrdev) { 1042 if (s->syncing || s->expanding || s->expanded 1043 || s->replacing) 1044 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1045 1046 set_bit(STRIPE_IO_STARTED, &sh->state); 1047 1048 bio_reset(rbi); 1049 rbi->bi_bdev = rrdev->bdev; 1050 rbi->bi_rw = rw; 1051 BUG_ON(!(rw & WRITE)); 1052 rbi->bi_end_io = raid5_end_write_request; 1053 rbi->bi_private = sh; 1054 1055 pr_debug("%s: for %llu schedule op %ld on " 1056 "replacement disc %d\n", 1057 __func__, (unsigned long long)sh->sector, 1058 rbi->bi_rw, i); 1059 atomic_inc(&sh->count); 1060 if (sh != head_sh) 1061 atomic_inc(&head_sh->count); 1062 if (use_new_offset(conf, sh)) 1063 rbi->bi_iter.bi_sector = (sh->sector 1064 + rrdev->new_data_offset); 1065 else 1066 rbi->bi_iter.bi_sector = (sh->sector 1067 + rrdev->data_offset); 1068 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1069 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1070 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1071 rbi->bi_vcnt = 1; 1072 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1073 rbi->bi_io_vec[0].bv_offset = 0; 1074 rbi->bi_iter.bi_size = STRIPE_SIZE; 1075 /* 1076 * If this is discard request, set bi_vcnt 0. We don't 1077 * want to confuse SCSI because SCSI will replace payload 1078 */ 1079 if (rw & REQ_DISCARD) 1080 rbi->bi_vcnt = 0; 1081 if (conf->mddev->gendisk) 1082 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 1083 rbi, disk_devt(conf->mddev->gendisk), 1084 sh->dev[i].sector); 1085 generic_make_request(rbi); 1086 } 1087 if (!rdev && !rrdev) { 1088 if (rw & WRITE) 1089 set_bit(STRIPE_DEGRADED, &sh->state); 1090 pr_debug("skip op %ld on disc %d for sector %llu\n", 1091 bi->bi_rw, i, (unsigned long long)sh->sector); 1092 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1093 set_bit(STRIPE_HANDLE, &sh->state); 1094 } 1095 1096 if (!head_sh->batch_head) 1097 continue; 1098 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1099 batch_list); 1100 if (sh != head_sh) 1101 goto again; 1102 } 1103 } 1104 1105 static struct dma_async_tx_descriptor * 1106 async_copy_data(int frombio, struct bio *bio, struct page **page, 1107 sector_t sector, struct dma_async_tx_descriptor *tx, 1108 struct stripe_head *sh) 1109 { 1110 struct bio_vec bvl; 1111 struct bvec_iter iter; 1112 struct page *bio_page; 1113 int page_offset; 1114 struct async_submit_ctl submit; 1115 enum async_tx_flags flags = 0; 1116 1117 if (bio->bi_iter.bi_sector >= sector) 1118 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1119 else 1120 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1121 1122 if (frombio) 1123 flags |= ASYNC_TX_FENCE; 1124 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1125 1126 bio_for_each_segment(bvl, bio, iter) { 1127 int len = bvl.bv_len; 1128 int clen; 1129 int b_offset = 0; 1130 1131 if (page_offset < 0) { 1132 b_offset = -page_offset; 1133 page_offset += b_offset; 1134 len -= b_offset; 1135 } 1136 1137 if (len > 0 && page_offset + len > STRIPE_SIZE) 1138 clen = STRIPE_SIZE - page_offset; 1139 else 1140 clen = len; 1141 1142 if (clen > 0) { 1143 b_offset += bvl.bv_offset; 1144 bio_page = bvl.bv_page; 1145 if (frombio) { 1146 if (sh->raid_conf->skip_copy && 1147 b_offset == 0 && page_offset == 0 && 1148 clen == STRIPE_SIZE) 1149 *page = bio_page; 1150 else 1151 tx = async_memcpy(*page, bio_page, page_offset, 1152 b_offset, clen, &submit); 1153 } else 1154 tx = async_memcpy(bio_page, *page, b_offset, 1155 page_offset, clen, &submit); 1156 } 1157 /* chain the operations */ 1158 submit.depend_tx = tx; 1159 1160 if (clen < len) /* hit end of page */ 1161 break; 1162 page_offset += len; 1163 } 1164 1165 return tx; 1166 } 1167 1168 static void ops_complete_biofill(void *stripe_head_ref) 1169 { 1170 struct stripe_head *sh = stripe_head_ref; 1171 struct bio_list return_bi = BIO_EMPTY_LIST; 1172 int i; 1173 1174 pr_debug("%s: stripe %llu\n", __func__, 1175 (unsigned long long)sh->sector); 1176 1177 /* clear completed biofills */ 1178 for (i = sh->disks; i--; ) { 1179 struct r5dev *dev = &sh->dev[i]; 1180 1181 /* acknowledge completion of a biofill operation */ 1182 /* and check if we need to reply to a read request, 1183 * new R5_Wantfill requests are held off until 1184 * !STRIPE_BIOFILL_RUN 1185 */ 1186 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1187 struct bio *rbi, *rbi2; 1188 1189 BUG_ON(!dev->read); 1190 rbi = dev->read; 1191 dev->read = NULL; 1192 while (rbi && rbi->bi_iter.bi_sector < 1193 dev->sector + STRIPE_SECTORS) { 1194 rbi2 = r5_next_bio(rbi, dev->sector); 1195 if (!raid5_dec_bi_active_stripes(rbi)) 1196 bio_list_add(&return_bi, rbi); 1197 rbi = rbi2; 1198 } 1199 } 1200 } 1201 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1202 1203 return_io(&return_bi); 1204 1205 set_bit(STRIPE_HANDLE, &sh->state); 1206 raid5_release_stripe(sh); 1207 } 1208 1209 static void ops_run_biofill(struct stripe_head *sh) 1210 { 1211 struct dma_async_tx_descriptor *tx = NULL; 1212 struct async_submit_ctl submit; 1213 int i; 1214 1215 BUG_ON(sh->batch_head); 1216 pr_debug("%s: stripe %llu\n", __func__, 1217 (unsigned long long)sh->sector); 1218 1219 for (i = sh->disks; i--; ) { 1220 struct r5dev *dev = &sh->dev[i]; 1221 if (test_bit(R5_Wantfill, &dev->flags)) { 1222 struct bio *rbi; 1223 spin_lock_irq(&sh->stripe_lock); 1224 dev->read = rbi = dev->toread; 1225 dev->toread = NULL; 1226 spin_unlock_irq(&sh->stripe_lock); 1227 while (rbi && rbi->bi_iter.bi_sector < 1228 dev->sector + STRIPE_SECTORS) { 1229 tx = async_copy_data(0, rbi, &dev->page, 1230 dev->sector, tx, sh); 1231 rbi = r5_next_bio(rbi, dev->sector); 1232 } 1233 } 1234 } 1235 1236 atomic_inc(&sh->count); 1237 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1238 async_trigger_callback(&submit); 1239 } 1240 1241 static void mark_target_uptodate(struct stripe_head *sh, int target) 1242 { 1243 struct r5dev *tgt; 1244 1245 if (target < 0) 1246 return; 1247 1248 tgt = &sh->dev[target]; 1249 set_bit(R5_UPTODATE, &tgt->flags); 1250 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1251 clear_bit(R5_Wantcompute, &tgt->flags); 1252 } 1253 1254 static void ops_complete_compute(void *stripe_head_ref) 1255 { 1256 struct stripe_head *sh = stripe_head_ref; 1257 1258 pr_debug("%s: stripe %llu\n", __func__, 1259 (unsigned long long)sh->sector); 1260 1261 /* mark the computed target(s) as uptodate */ 1262 mark_target_uptodate(sh, sh->ops.target); 1263 mark_target_uptodate(sh, sh->ops.target2); 1264 1265 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1266 if (sh->check_state == check_state_compute_run) 1267 sh->check_state = check_state_compute_result; 1268 set_bit(STRIPE_HANDLE, &sh->state); 1269 raid5_release_stripe(sh); 1270 } 1271 1272 /* return a pointer to the address conversion region of the scribble buffer */ 1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1274 struct raid5_percpu *percpu, int i) 1275 { 1276 void *addr; 1277 1278 addr = flex_array_get(percpu->scribble, i); 1279 return addr + sizeof(struct page *) * (sh->disks + 2); 1280 } 1281 1282 /* return a pointer to the address conversion region of the scribble buffer */ 1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1284 { 1285 void *addr; 1286 1287 addr = flex_array_get(percpu->scribble, i); 1288 return addr; 1289 } 1290 1291 static struct dma_async_tx_descriptor * 1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1293 { 1294 int disks = sh->disks; 1295 struct page **xor_srcs = to_addr_page(percpu, 0); 1296 int target = sh->ops.target; 1297 struct r5dev *tgt = &sh->dev[target]; 1298 struct page *xor_dest = tgt->page; 1299 int count = 0; 1300 struct dma_async_tx_descriptor *tx; 1301 struct async_submit_ctl submit; 1302 int i; 1303 1304 BUG_ON(sh->batch_head); 1305 1306 pr_debug("%s: stripe %llu block: %d\n", 1307 __func__, (unsigned long long)sh->sector, target); 1308 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1309 1310 for (i = disks; i--; ) 1311 if (i != target) 1312 xor_srcs[count++] = sh->dev[i].page; 1313 1314 atomic_inc(&sh->count); 1315 1316 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1317 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1318 if (unlikely(count == 1)) 1319 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1320 else 1321 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1322 1323 return tx; 1324 } 1325 1326 /* set_syndrome_sources - populate source buffers for gen_syndrome 1327 * @srcs - (struct page *) array of size sh->disks 1328 * @sh - stripe_head to parse 1329 * 1330 * Populates srcs in proper layout order for the stripe and returns the 1331 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1332 * destination buffer is recorded in srcs[count] and the Q destination 1333 * is recorded in srcs[count+1]]. 1334 */ 1335 static int set_syndrome_sources(struct page **srcs, 1336 struct stripe_head *sh, 1337 int srctype) 1338 { 1339 int disks = sh->disks; 1340 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1341 int d0_idx = raid6_d0(sh); 1342 int count; 1343 int i; 1344 1345 for (i = 0; i < disks; i++) 1346 srcs[i] = NULL; 1347 1348 count = 0; 1349 i = d0_idx; 1350 do { 1351 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1352 struct r5dev *dev = &sh->dev[i]; 1353 1354 if (i == sh->qd_idx || i == sh->pd_idx || 1355 (srctype == SYNDROME_SRC_ALL) || 1356 (srctype == SYNDROME_SRC_WANT_DRAIN && 1357 test_bit(R5_Wantdrain, &dev->flags)) || 1358 (srctype == SYNDROME_SRC_WRITTEN && 1359 dev->written)) 1360 srcs[slot] = sh->dev[i].page; 1361 i = raid6_next_disk(i, disks); 1362 } while (i != d0_idx); 1363 1364 return syndrome_disks; 1365 } 1366 1367 static struct dma_async_tx_descriptor * 1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1369 { 1370 int disks = sh->disks; 1371 struct page **blocks = to_addr_page(percpu, 0); 1372 int target; 1373 int qd_idx = sh->qd_idx; 1374 struct dma_async_tx_descriptor *tx; 1375 struct async_submit_ctl submit; 1376 struct r5dev *tgt; 1377 struct page *dest; 1378 int i; 1379 int count; 1380 1381 BUG_ON(sh->batch_head); 1382 if (sh->ops.target < 0) 1383 target = sh->ops.target2; 1384 else if (sh->ops.target2 < 0) 1385 target = sh->ops.target; 1386 else 1387 /* we should only have one valid target */ 1388 BUG(); 1389 BUG_ON(target < 0); 1390 pr_debug("%s: stripe %llu block: %d\n", 1391 __func__, (unsigned long long)sh->sector, target); 1392 1393 tgt = &sh->dev[target]; 1394 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1395 dest = tgt->page; 1396 1397 atomic_inc(&sh->count); 1398 1399 if (target == qd_idx) { 1400 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1401 blocks[count] = NULL; /* regenerating p is not necessary */ 1402 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1403 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1404 ops_complete_compute, sh, 1405 to_addr_conv(sh, percpu, 0)); 1406 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1407 } else { 1408 /* Compute any data- or p-drive using XOR */ 1409 count = 0; 1410 for (i = disks; i-- ; ) { 1411 if (i == target || i == qd_idx) 1412 continue; 1413 blocks[count++] = sh->dev[i].page; 1414 } 1415 1416 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1417 NULL, ops_complete_compute, sh, 1418 to_addr_conv(sh, percpu, 0)); 1419 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1420 } 1421 1422 return tx; 1423 } 1424 1425 static struct dma_async_tx_descriptor * 1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1427 { 1428 int i, count, disks = sh->disks; 1429 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1430 int d0_idx = raid6_d0(sh); 1431 int faila = -1, failb = -1; 1432 int target = sh->ops.target; 1433 int target2 = sh->ops.target2; 1434 struct r5dev *tgt = &sh->dev[target]; 1435 struct r5dev *tgt2 = &sh->dev[target2]; 1436 struct dma_async_tx_descriptor *tx; 1437 struct page **blocks = to_addr_page(percpu, 0); 1438 struct async_submit_ctl submit; 1439 1440 BUG_ON(sh->batch_head); 1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1442 __func__, (unsigned long long)sh->sector, target, target2); 1443 BUG_ON(target < 0 || target2 < 0); 1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1445 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1446 1447 /* we need to open-code set_syndrome_sources to handle the 1448 * slot number conversion for 'faila' and 'failb' 1449 */ 1450 for (i = 0; i < disks ; i++) 1451 blocks[i] = NULL; 1452 count = 0; 1453 i = d0_idx; 1454 do { 1455 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1456 1457 blocks[slot] = sh->dev[i].page; 1458 1459 if (i == target) 1460 faila = slot; 1461 if (i == target2) 1462 failb = slot; 1463 i = raid6_next_disk(i, disks); 1464 } while (i != d0_idx); 1465 1466 BUG_ON(faila == failb); 1467 if (failb < faila) 1468 swap(faila, failb); 1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1470 __func__, (unsigned long long)sh->sector, faila, failb); 1471 1472 atomic_inc(&sh->count); 1473 1474 if (failb == syndrome_disks+1) { 1475 /* Q disk is one of the missing disks */ 1476 if (faila == syndrome_disks) { 1477 /* Missing P+Q, just recompute */ 1478 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1479 ops_complete_compute, sh, 1480 to_addr_conv(sh, percpu, 0)); 1481 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1482 STRIPE_SIZE, &submit); 1483 } else { 1484 struct page *dest; 1485 int data_target; 1486 int qd_idx = sh->qd_idx; 1487 1488 /* Missing D+Q: recompute D from P, then recompute Q */ 1489 if (target == qd_idx) 1490 data_target = target2; 1491 else 1492 data_target = target; 1493 1494 count = 0; 1495 for (i = disks; i-- ; ) { 1496 if (i == data_target || i == qd_idx) 1497 continue; 1498 blocks[count++] = sh->dev[i].page; 1499 } 1500 dest = sh->dev[data_target].page; 1501 init_async_submit(&submit, 1502 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1503 NULL, NULL, NULL, 1504 to_addr_conv(sh, percpu, 0)); 1505 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1506 &submit); 1507 1508 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1509 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1510 ops_complete_compute, sh, 1511 to_addr_conv(sh, percpu, 0)); 1512 return async_gen_syndrome(blocks, 0, count+2, 1513 STRIPE_SIZE, &submit); 1514 } 1515 } else { 1516 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1517 ops_complete_compute, sh, 1518 to_addr_conv(sh, percpu, 0)); 1519 if (failb == syndrome_disks) { 1520 /* We're missing D+P. */ 1521 return async_raid6_datap_recov(syndrome_disks+2, 1522 STRIPE_SIZE, faila, 1523 blocks, &submit); 1524 } else { 1525 /* We're missing D+D. */ 1526 return async_raid6_2data_recov(syndrome_disks+2, 1527 STRIPE_SIZE, faila, failb, 1528 blocks, &submit); 1529 } 1530 } 1531 } 1532 1533 static void ops_complete_prexor(void *stripe_head_ref) 1534 { 1535 struct stripe_head *sh = stripe_head_ref; 1536 1537 pr_debug("%s: stripe %llu\n", __func__, 1538 (unsigned long long)sh->sector); 1539 } 1540 1541 static struct dma_async_tx_descriptor * 1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1543 struct dma_async_tx_descriptor *tx) 1544 { 1545 int disks = sh->disks; 1546 struct page **xor_srcs = to_addr_page(percpu, 0); 1547 int count = 0, pd_idx = sh->pd_idx, i; 1548 struct async_submit_ctl submit; 1549 1550 /* existing parity data subtracted */ 1551 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1552 1553 BUG_ON(sh->batch_head); 1554 pr_debug("%s: stripe %llu\n", __func__, 1555 (unsigned long long)sh->sector); 1556 1557 for (i = disks; i--; ) { 1558 struct r5dev *dev = &sh->dev[i]; 1559 /* Only process blocks that are known to be uptodate */ 1560 if (test_bit(R5_Wantdrain, &dev->flags)) 1561 xor_srcs[count++] = dev->page; 1562 } 1563 1564 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1565 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1566 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1567 1568 return tx; 1569 } 1570 1571 static struct dma_async_tx_descriptor * 1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1573 struct dma_async_tx_descriptor *tx) 1574 { 1575 struct page **blocks = to_addr_page(percpu, 0); 1576 int count; 1577 struct async_submit_ctl submit; 1578 1579 pr_debug("%s: stripe %llu\n", __func__, 1580 (unsigned long long)sh->sector); 1581 1582 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1583 1584 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1585 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1586 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1587 1588 return tx; 1589 } 1590 1591 static struct dma_async_tx_descriptor * 1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1593 { 1594 int disks = sh->disks; 1595 int i; 1596 struct stripe_head *head_sh = sh; 1597 1598 pr_debug("%s: stripe %llu\n", __func__, 1599 (unsigned long long)sh->sector); 1600 1601 for (i = disks; i--; ) { 1602 struct r5dev *dev; 1603 struct bio *chosen; 1604 1605 sh = head_sh; 1606 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1607 struct bio *wbi; 1608 1609 again: 1610 dev = &sh->dev[i]; 1611 spin_lock_irq(&sh->stripe_lock); 1612 chosen = dev->towrite; 1613 dev->towrite = NULL; 1614 sh->overwrite_disks = 0; 1615 BUG_ON(dev->written); 1616 wbi = dev->written = chosen; 1617 spin_unlock_irq(&sh->stripe_lock); 1618 WARN_ON(dev->page != dev->orig_page); 1619 1620 while (wbi && wbi->bi_iter.bi_sector < 1621 dev->sector + STRIPE_SECTORS) { 1622 if (wbi->bi_rw & REQ_FUA) 1623 set_bit(R5_WantFUA, &dev->flags); 1624 if (wbi->bi_rw & REQ_SYNC) 1625 set_bit(R5_SyncIO, &dev->flags); 1626 if (wbi->bi_rw & REQ_DISCARD) 1627 set_bit(R5_Discard, &dev->flags); 1628 else { 1629 tx = async_copy_data(1, wbi, &dev->page, 1630 dev->sector, tx, sh); 1631 if (dev->page != dev->orig_page) { 1632 set_bit(R5_SkipCopy, &dev->flags); 1633 clear_bit(R5_UPTODATE, &dev->flags); 1634 clear_bit(R5_OVERWRITE, &dev->flags); 1635 } 1636 } 1637 wbi = r5_next_bio(wbi, dev->sector); 1638 } 1639 1640 if (head_sh->batch_head) { 1641 sh = list_first_entry(&sh->batch_list, 1642 struct stripe_head, 1643 batch_list); 1644 if (sh == head_sh) 1645 continue; 1646 goto again; 1647 } 1648 } 1649 } 1650 1651 return tx; 1652 } 1653 1654 static void ops_complete_reconstruct(void *stripe_head_ref) 1655 { 1656 struct stripe_head *sh = stripe_head_ref; 1657 int disks = sh->disks; 1658 int pd_idx = sh->pd_idx; 1659 int qd_idx = sh->qd_idx; 1660 int i; 1661 bool fua = false, sync = false, discard = false; 1662 1663 pr_debug("%s: stripe %llu\n", __func__, 1664 (unsigned long long)sh->sector); 1665 1666 for (i = disks; i--; ) { 1667 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1668 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1669 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1670 } 1671 1672 for (i = disks; i--; ) { 1673 struct r5dev *dev = &sh->dev[i]; 1674 1675 if (dev->written || i == pd_idx || i == qd_idx) { 1676 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1677 set_bit(R5_UPTODATE, &dev->flags); 1678 if (fua) 1679 set_bit(R5_WantFUA, &dev->flags); 1680 if (sync) 1681 set_bit(R5_SyncIO, &dev->flags); 1682 } 1683 } 1684 1685 if (sh->reconstruct_state == reconstruct_state_drain_run) 1686 sh->reconstruct_state = reconstruct_state_drain_result; 1687 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1688 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1689 else { 1690 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1691 sh->reconstruct_state = reconstruct_state_result; 1692 } 1693 1694 set_bit(STRIPE_HANDLE, &sh->state); 1695 raid5_release_stripe(sh); 1696 } 1697 1698 static void 1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1700 struct dma_async_tx_descriptor *tx) 1701 { 1702 int disks = sh->disks; 1703 struct page **xor_srcs; 1704 struct async_submit_ctl submit; 1705 int count, pd_idx = sh->pd_idx, i; 1706 struct page *xor_dest; 1707 int prexor = 0; 1708 unsigned long flags; 1709 int j = 0; 1710 struct stripe_head *head_sh = sh; 1711 int last_stripe; 1712 1713 pr_debug("%s: stripe %llu\n", __func__, 1714 (unsigned long long)sh->sector); 1715 1716 for (i = 0; i < sh->disks; i++) { 1717 if (pd_idx == i) 1718 continue; 1719 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1720 break; 1721 } 1722 if (i >= sh->disks) { 1723 atomic_inc(&sh->count); 1724 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1725 ops_complete_reconstruct(sh); 1726 return; 1727 } 1728 again: 1729 count = 0; 1730 xor_srcs = to_addr_page(percpu, j); 1731 /* check if prexor is active which means only process blocks 1732 * that are part of a read-modify-write (written) 1733 */ 1734 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1735 prexor = 1; 1736 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1737 for (i = disks; i--; ) { 1738 struct r5dev *dev = &sh->dev[i]; 1739 if (head_sh->dev[i].written) 1740 xor_srcs[count++] = dev->page; 1741 } 1742 } else { 1743 xor_dest = sh->dev[pd_idx].page; 1744 for (i = disks; i--; ) { 1745 struct r5dev *dev = &sh->dev[i]; 1746 if (i != pd_idx) 1747 xor_srcs[count++] = dev->page; 1748 } 1749 } 1750 1751 /* 1/ if we prexor'd then the dest is reused as a source 1752 * 2/ if we did not prexor then we are redoing the parity 1753 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1754 * for the synchronous xor case 1755 */ 1756 last_stripe = !head_sh->batch_head || 1757 list_first_entry(&sh->batch_list, 1758 struct stripe_head, batch_list) == head_sh; 1759 if (last_stripe) { 1760 flags = ASYNC_TX_ACK | 1761 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1762 1763 atomic_inc(&head_sh->count); 1764 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1765 to_addr_conv(sh, percpu, j)); 1766 } else { 1767 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1768 init_async_submit(&submit, flags, tx, NULL, NULL, 1769 to_addr_conv(sh, percpu, j)); 1770 } 1771 1772 if (unlikely(count == 1)) 1773 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1774 else 1775 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1776 if (!last_stripe) { 1777 j++; 1778 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1779 batch_list); 1780 goto again; 1781 } 1782 } 1783 1784 static void 1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1786 struct dma_async_tx_descriptor *tx) 1787 { 1788 struct async_submit_ctl submit; 1789 struct page **blocks; 1790 int count, i, j = 0; 1791 struct stripe_head *head_sh = sh; 1792 int last_stripe; 1793 int synflags; 1794 unsigned long txflags; 1795 1796 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1797 1798 for (i = 0; i < sh->disks; i++) { 1799 if (sh->pd_idx == i || sh->qd_idx == i) 1800 continue; 1801 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1802 break; 1803 } 1804 if (i >= sh->disks) { 1805 atomic_inc(&sh->count); 1806 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1807 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1808 ops_complete_reconstruct(sh); 1809 return; 1810 } 1811 1812 again: 1813 blocks = to_addr_page(percpu, j); 1814 1815 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1816 synflags = SYNDROME_SRC_WRITTEN; 1817 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1818 } else { 1819 synflags = SYNDROME_SRC_ALL; 1820 txflags = ASYNC_TX_ACK; 1821 } 1822 1823 count = set_syndrome_sources(blocks, sh, synflags); 1824 last_stripe = !head_sh->batch_head || 1825 list_first_entry(&sh->batch_list, 1826 struct stripe_head, batch_list) == head_sh; 1827 1828 if (last_stripe) { 1829 atomic_inc(&head_sh->count); 1830 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1831 head_sh, to_addr_conv(sh, percpu, j)); 1832 } else 1833 init_async_submit(&submit, 0, tx, NULL, NULL, 1834 to_addr_conv(sh, percpu, j)); 1835 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1836 if (!last_stripe) { 1837 j++; 1838 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1839 batch_list); 1840 goto again; 1841 } 1842 } 1843 1844 static void ops_complete_check(void *stripe_head_ref) 1845 { 1846 struct stripe_head *sh = stripe_head_ref; 1847 1848 pr_debug("%s: stripe %llu\n", __func__, 1849 (unsigned long long)sh->sector); 1850 1851 sh->check_state = check_state_check_result; 1852 set_bit(STRIPE_HANDLE, &sh->state); 1853 raid5_release_stripe(sh); 1854 } 1855 1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1857 { 1858 int disks = sh->disks; 1859 int pd_idx = sh->pd_idx; 1860 int qd_idx = sh->qd_idx; 1861 struct page *xor_dest; 1862 struct page **xor_srcs = to_addr_page(percpu, 0); 1863 struct dma_async_tx_descriptor *tx; 1864 struct async_submit_ctl submit; 1865 int count; 1866 int i; 1867 1868 pr_debug("%s: stripe %llu\n", __func__, 1869 (unsigned long long)sh->sector); 1870 1871 BUG_ON(sh->batch_head); 1872 count = 0; 1873 xor_dest = sh->dev[pd_idx].page; 1874 xor_srcs[count++] = xor_dest; 1875 for (i = disks; i--; ) { 1876 if (i == pd_idx || i == qd_idx) 1877 continue; 1878 xor_srcs[count++] = sh->dev[i].page; 1879 } 1880 1881 init_async_submit(&submit, 0, NULL, NULL, NULL, 1882 to_addr_conv(sh, percpu, 0)); 1883 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1884 &sh->ops.zero_sum_result, &submit); 1885 1886 atomic_inc(&sh->count); 1887 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1888 tx = async_trigger_callback(&submit); 1889 } 1890 1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1892 { 1893 struct page **srcs = to_addr_page(percpu, 0); 1894 struct async_submit_ctl submit; 1895 int count; 1896 1897 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1898 (unsigned long long)sh->sector, checkp); 1899 1900 BUG_ON(sh->batch_head); 1901 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 1902 if (!checkp) 1903 srcs[count] = NULL; 1904 1905 atomic_inc(&sh->count); 1906 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1907 sh, to_addr_conv(sh, percpu, 0)); 1908 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1909 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1910 } 1911 1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1913 { 1914 int overlap_clear = 0, i, disks = sh->disks; 1915 struct dma_async_tx_descriptor *tx = NULL; 1916 struct r5conf *conf = sh->raid_conf; 1917 int level = conf->level; 1918 struct raid5_percpu *percpu; 1919 unsigned long cpu; 1920 1921 cpu = get_cpu(); 1922 percpu = per_cpu_ptr(conf->percpu, cpu); 1923 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1924 ops_run_biofill(sh); 1925 overlap_clear++; 1926 } 1927 1928 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1929 if (level < 6) 1930 tx = ops_run_compute5(sh, percpu); 1931 else { 1932 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1933 tx = ops_run_compute6_1(sh, percpu); 1934 else 1935 tx = ops_run_compute6_2(sh, percpu); 1936 } 1937 /* terminate the chain if reconstruct is not set to be run */ 1938 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1939 async_tx_ack(tx); 1940 } 1941 1942 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 1943 if (level < 6) 1944 tx = ops_run_prexor5(sh, percpu, tx); 1945 else 1946 tx = ops_run_prexor6(sh, percpu, tx); 1947 } 1948 1949 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1950 tx = ops_run_biodrain(sh, tx); 1951 overlap_clear++; 1952 } 1953 1954 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1955 if (level < 6) 1956 ops_run_reconstruct5(sh, percpu, tx); 1957 else 1958 ops_run_reconstruct6(sh, percpu, tx); 1959 } 1960 1961 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1962 if (sh->check_state == check_state_run) 1963 ops_run_check_p(sh, percpu); 1964 else if (sh->check_state == check_state_run_q) 1965 ops_run_check_pq(sh, percpu, 0); 1966 else if (sh->check_state == check_state_run_pq) 1967 ops_run_check_pq(sh, percpu, 1); 1968 else 1969 BUG(); 1970 } 1971 1972 if (overlap_clear && !sh->batch_head) 1973 for (i = disks; i--; ) { 1974 struct r5dev *dev = &sh->dev[i]; 1975 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1976 wake_up(&sh->raid_conf->wait_for_overlap); 1977 } 1978 put_cpu(); 1979 } 1980 1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp) 1982 { 1983 struct stripe_head *sh; 1984 1985 sh = kmem_cache_zalloc(sc, gfp); 1986 if (sh) { 1987 spin_lock_init(&sh->stripe_lock); 1988 spin_lock_init(&sh->batch_lock); 1989 INIT_LIST_HEAD(&sh->batch_list); 1990 INIT_LIST_HEAD(&sh->lru); 1991 atomic_set(&sh->count, 1); 1992 } 1993 return sh; 1994 } 1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 1996 { 1997 struct stripe_head *sh; 1998 1999 sh = alloc_stripe(conf->slab_cache, gfp); 2000 if (!sh) 2001 return 0; 2002 2003 sh->raid_conf = conf; 2004 2005 if (grow_buffers(sh, gfp)) { 2006 shrink_buffers(sh); 2007 kmem_cache_free(conf->slab_cache, sh); 2008 return 0; 2009 } 2010 sh->hash_lock_index = 2011 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2012 /* we just created an active stripe so... */ 2013 atomic_inc(&conf->active_stripes); 2014 2015 raid5_release_stripe(sh); 2016 conf->max_nr_stripes++; 2017 return 1; 2018 } 2019 2020 static int grow_stripes(struct r5conf *conf, int num) 2021 { 2022 struct kmem_cache *sc; 2023 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2024 2025 if (conf->mddev->gendisk) 2026 sprintf(conf->cache_name[0], 2027 "raid%d-%s", conf->level, mdname(conf->mddev)); 2028 else 2029 sprintf(conf->cache_name[0], 2030 "raid%d-%p", conf->level, conf->mddev); 2031 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 2032 2033 conf->active_name = 0; 2034 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2035 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2036 0, 0, NULL); 2037 if (!sc) 2038 return 1; 2039 conf->slab_cache = sc; 2040 conf->pool_size = devs; 2041 while (num--) 2042 if (!grow_one_stripe(conf, GFP_KERNEL)) 2043 return 1; 2044 2045 return 0; 2046 } 2047 2048 /** 2049 * scribble_len - return the required size of the scribble region 2050 * @num - total number of disks in the array 2051 * 2052 * The size must be enough to contain: 2053 * 1/ a struct page pointer for each device in the array +2 2054 * 2/ room to convert each entry in (1) to its corresponding dma 2055 * (dma_map_page()) or page (page_address()) address. 2056 * 2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2058 * calculate over all devices (not just the data blocks), using zeros in place 2059 * of the P and Q blocks. 2060 */ 2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2062 { 2063 struct flex_array *ret; 2064 size_t len; 2065 2066 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2067 ret = flex_array_alloc(len, cnt, flags); 2068 if (!ret) 2069 return NULL; 2070 /* always prealloc all elements, so no locking is required */ 2071 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2072 flex_array_free(ret); 2073 return NULL; 2074 } 2075 return ret; 2076 } 2077 2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2079 { 2080 unsigned long cpu; 2081 int err = 0; 2082 2083 /* 2084 * Never shrink. And mddev_suspend() could deadlock if this is called 2085 * from raid5d. In that case, scribble_disks and scribble_sectors 2086 * should equal to new_disks and new_sectors 2087 */ 2088 if (conf->scribble_disks >= new_disks && 2089 conf->scribble_sectors >= new_sectors) 2090 return 0; 2091 mddev_suspend(conf->mddev); 2092 get_online_cpus(); 2093 for_each_present_cpu(cpu) { 2094 struct raid5_percpu *percpu; 2095 struct flex_array *scribble; 2096 2097 percpu = per_cpu_ptr(conf->percpu, cpu); 2098 scribble = scribble_alloc(new_disks, 2099 new_sectors / STRIPE_SECTORS, 2100 GFP_NOIO); 2101 2102 if (scribble) { 2103 flex_array_free(percpu->scribble); 2104 percpu->scribble = scribble; 2105 } else { 2106 err = -ENOMEM; 2107 break; 2108 } 2109 } 2110 put_online_cpus(); 2111 mddev_resume(conf->mddev); 2112 if (!err) { 2113 conf->scribble_disks = new_disks; 2114 conf->scribble_sectors = new_sectors; 2115 } 2116 return err; 2117 } 2118 2119 static int resize_stripes(struct r5conf *conf, int newsize) 2120 { 2121 /* Make all the stripes able to hold 'newsize' devices. 2122 * New slots in each stripe get 'page' set to a new page. 2123 * 2124 * This happens in stages: 2125 * 1/ create a new kmem_cache and allocate the required number of 2126 * stripe_heads. 2127 * 2/ gather all the old stripe_heads and transfer the pages across 2128 * to the new stripe_heads. This will have the side effect of 2129 * freezing the array as once all stripe_heads have been collected, 2130 * no IO will be possible. Old stripe heads are freed once their 2131 * pages have been transferred over, and the old kmem_cache is 2132 * freed when all stripes are done. 2133 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2134 * we simple return a failre status - no need to clean anything up. 2135 * 4/ allocate new pages for the new slots in the new stripe_heads. 2136 * If this fails, we don't bother trying the shrink the 2137 * stripe_heads down again, we just leave them as they are. 2138 * As each stripe_head is processed the new one is released into 2139 * active service. 2140 * 2141 * Once step2 is started, we cannot afford to wait for a write, 2142 * so we use GFP_NOIO allocations. 2143 */ 2144 struct stripe_head *osh, *nsh; 2145 LIST_HEAD(newstripes); 2146 struct disk_info *ndisks; 2147 int err; 2148 struct kmem_cache *sc; 2149 int i; 2150 int hash, cnt; 2151 2152 if (newsize <= conf->pool_size) 2153 return 0; /* never bother to shrink */ 2154 2155 err = md_allow_write(conf->mddev); 2156 if (err) 2157 return err; 2158 2159 /* Step 1 */ 2160 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2161 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2162 0, 0, NULL); 2163 if (!sc) 2164 return -ENOMEM; 2165 2166 /* Need to ensure auto-resizing doesn't interfere */ 2167 mutex_lock(&conf->cache_size_mutex); 2168 2169 for (i = conf->max_nr_stripes; i; i--) { 2170 nsh = alloc_stripe(sc, GFP_KERNEL); 2171 if (!nsh) 2172 break; 2173 2174 nsh->raid_conf = conf; 2175 list_add(&nsh->lru, &newstripes); 2176 } 2177 if (i) { 2178 /* didn't get enough, give up */ 2179 while (!list_empty(&newstripes)) { 2180 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2181 list_del(&nsh->lru); 2182 kmem_cache_free(sc, nsh); 2183 } 2184 kmem_cache_destroy(sc); 2185 mutex_unlock(&conf->cache_size_mutex); 2186 return -ENOMEM; 2187 } 2188 /* Step 2 - Must use GFP_NOIO now. 2189 * OK, we have enough stripes, start collecting inactive 2190 * stripes and copying them over 2191 */ 2192 hash = 0; 2193 cnt = 0; 2194 list_for_each_entry(nsh, &newstripes, lru) { 2195 lock_device_hash_lock(conf, hash); 2196 wait_event_cmd(conf->wait_for_stripe, 2197 !list_empty(conf->inactive_list + hash), 2198 unlock_device_hash_lock(conf, hash), 2199 lock_device_hash_lock(conf, hash)); 2200 osh = get_free_stripe(conf, hash); 2201 unlock_device_hash_lock(conf, hash); 2202 2203 for(i=0; i<conf->pool_size; i++) { 2204 nsh->dev[i].page = osh->dev[i].page; 2205 nsh->dev[i].orig_page = osh->dev[i].page; 2206 } 2207 nsh->hash_lock_index = hash; 2208 kmem_cache_free(conf->slab_cache, osh); 2209 cnt++; 2210 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2211 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2212 hash++; 2213 cnt = 0; 2214 } 2215 } 2216 kmem_cache_destroy(conf->slab_cache); 2217 2218 /* Step 3. 2219 * At this point, we are holding all the stripes so the array 2220 * is completely stalled, so now is a good time to resize 2221 * conf->disks and the scribble region 2222 */ 2223 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 2224 if (ndisks) { 2225 for (i=0; i<conf->raid_disks; i++) 2226 ndisks[i] = conf->disks[i]; 2227 kfree(conf->disks); 2228 conf->disks = ndisks; 2229 } else 2230 err = -ENOMEM; 2231 2232 mutex_unlock(&conf->cache_size_mutex); 2233 /* Step 4, return new stripes to service */ 2234 while(!list_empty(&newstripes)) { 2235 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2236 list_del_init(&nsh->lru); 2237 2238 for (i=conf->raid_disks; i < newsize; i++) 2239 if (nsh->dev[i].page == NULL) { 2240 struct page *p = alloc_page(GFP_NOIO); 2241 nsh->dev[i].page = p; 2242 nsh->dev[i].orig_page = p; 2243 if (!p) 2244 err = -ENOMEM; 2245 } 2246 raid5_release_stripe(nsh); 2247 } 2248 /* critical section pass, GFP_NOIO no longer needed */ 2249 2250 conf->slab_cache = sc; 2251 conf->active_name = 1-conf->active_name; 2252 if (!err) 2253 conf->pool_size = newsize; 2254 return err; 2255 } 2256 2257 static int drop_one_stripe(struct r5conf *conf) 2258 { 2259 struct stripe_head *sh; 2260 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2261 2262 spin_lock_irq(conf->hash_locks + hash); 2263 sh = get_free_stripe(conf, hash); 2264 spin_unlock_irq(conf->hash_locks + hash); 2265 if (!sh) 2266 return 0; 2267 BUG_ON(atomic_read(&sh->count)); 2268 shrink_buffers(sh); 2269 kmem_cache_free(conf->slab_cache, sh); 2270 atomic_dec(&conf->active_stripes); 2271 conf->max_nr_stripes--; 2272 return 1; 2273 } 2274 2275 static void shrink_stripes(struct r5conf *conf) 2276 { 2277 while (conf->max_nr_stripes && 2278 drop_one_stripe(conf)) 2279 ; 2280 2281 kmem_cache_destroy(conf->slab_cache); 2282 conf->slab_cache = NULL; 2283 } 2284 2285 static void raid5_end_read_request(struct bio * bi) 2286 { 2287 struct stripe_head *sh = bi->bi_private; 2288 struct r5conf *conf = sh->raid_conf; 2289 int disks = sh->disks, i; 2290 char b[BDEVNAME_SIZE]; 2291 struct md_rdev *rdev = NULL; 2292 sector_t s; 2293 2294 for (i=0 ; i<disks; i++) 2295 if (bi == &sh->dev[i].req) 2296 break; 2297 2298 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2299 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2300 bi->bi_error); 2301 if (i == disks) { 2302 BUG(); 2303 return; 2304 } 2305 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2306 /* If replacement finished while this request was outstanding, 2307 * 'replacement' might be NULL already. 2308 * In that case it moved down to 'rdev'. 2309 * rdev is not removed until all requests are finished. 2310 */ 2311 rdev = conf->disks[i].replacement; 2312 if (!rdev) 2313 rdev = conf->disks[i].rdev; 2314 2315 if (use_new_offset(conf, sh)) 2316 s = sh->sector + rdev->new_data_offset; 2317 else 2318 s = sh->sector + rdev->data_offset; 2319 if (!bi->bi_error) { 2320 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2321 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2322 /* Note that this cannot happen on a 2323 * replacement device. We just fail those on 2324 * any error 2325 */ 2326 printk_ratelimited( 2327 KERN_INFO 2328 "md/raid:%s: read error corrected" 2329 " (%lu sectors at %llu on %s)\n", 2330 mdname(conf->mddev), STRIPE_SECTORS, 2331 (unsigned long long)s, 2332 bdevname(rdev->bdev, b)); 2333 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2334 clear_bit(R5_ReadError, &sh->dev[i].flags); 2335 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2336 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2337 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2338 2339 if (atomic_read(&rdev->read_errors)) 2340 atomic_set(&rdev->read_errors, 0); 2341 } else { 2342 const char *bdn = bdevname(rdev->bdev, b); 2343 int retry = 0; 2344 int set_bad = 0; 2345 2346 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2347 atomic_inc(&rdev->read_errors); 2348 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2349 printk_ratelimited( 2350 KERN_WARNING 2351 "md/raid:%s: read error on replacement device " 2352 "(sector %llu on %s).\n", 2353 mdname(conf->mddev), 2354 (unsigned long long)s, 2355 bdn); 2356 else if (conf->mddev->degraded >= conf->max_degraded) { 2357 set_bad = 1; 2358 printk_ratelimited( 2359 KERN_WARNING 2360 "md/raid:%s: read error not correctable " 2361 "(sector %llu on %s).\n", 2362 mdname(conf->mddev), 2363 (unsigned long long)s, 2364 bdn); 2365 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2366 /* Oh, no!!! */ 2367 set_bad = 1; 2368 printk_ratelimited( 2369 KERN_WARNING 2370 "md/raid:%s: read error NOT corrected!! " 2371 "(sector %llu on %s).\n", 2372 mdname(conf->mddev), 2373 (unsigned long long)s, 2374 bdn); 2375 } else if (atomic_read(&rdev->read_errors) 2376 > conf->max_nr_stripes) 2377 printk(KERN_WARNING 2378 "md/raid:%s: Too many read errors, failing device %s.\n", 2379 mdname(conf->mddev), bdn); 2380 else 2381 retry = 1; 2382 if (set_bad && test_bit(In_sync, &rdev->flags) 2383 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2384 retry = 1; 2385 if (retry) 2386 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2387 set_bit(R5_ReadError, &sh->dev[i].flags); 2388 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2389 } else 2390 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2391 else { 2392 clear_bit(R5_ReadError, &sh->dev[i].flags); 2393 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2394 if (!(set_bad 2395 && test_bit(In_sync, &rdev->flags) 2396 && rdev_set_badblocks( 2397 rdev, sh->sector, STRIPE_SECTORS, 0))) 2398 md_error(conf->mddev, rdev); 2399 } 2400 } 2401 rdev_dec_pending(rdev, conf->mddev); 2402 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2403 set_bit(STRIPE_HANDLE, &sh->state); 2404 raid5_release_stripe(sh); 2405 } 2406 2407 static void raid5_end_write_request(struct bio *bi) 2408 { 2409 struct stripe_head *sh = bi->bi_private; 2410 struct r5conf *conf = sh->raid_conf; 2411 int disks = sh->disks, i; 2412 struct md_rdev *uninitialized_var(rdev); 2413 sector_t first_bad; 2414 int bad_sectors; 2415 int replacement = 0; 2416 2417 for (i = 0 ; i < disks; i++) { 2418 if (bi == &sh->dev[i].req) { 2419 rdev = conf->disks[i].rdev; 2420 break; 2421 } 2422 if (bi == &sh->dev[i].rreq) { 2423 rdev = conf->disks[i].replacement; 2424 if (rdev) 2425 replacement = 1; 2426 else 2427 /* rdev was removed and 'replacement' 2428 * replaced it. rdev is not removed 2429 * until all requests are finished. 2430 */ 2431 rdev = conf->disks[i].rdev; 2432 break; 2433 } 2434 } 2435 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2436 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2437 bi->bi_error); 2438 if (i == disks) { 2439 BUG(); 2440 return; 2441 } 2442 2443 if (replacement) { 2444 if (bi->bi_error) 2445 md_error(conf->mddev, rdev); 2446 else if (is_badblock(rdev, sh->sector, 2447 STRIPE_SECTORS, 2448 &first_bad, &bad_sectors)) 2449 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2450 } else { 2451 if (bi->bi_error) { 2452 set_bit(STRIPE_DEGRADED, &sh->state); 2453 set_bit(WriteErrorSeen, &rdev->flags); 2454 set_bit(R5_WriteError, &sh->dev[i].flags); 2455 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2456 set_bit(MD_RECOVERY_NEEDED, 2457 &rdev->mddev->recovery); 2458 } else if (is_badblock(rdev, sh->sector, 2459 STRIPE_SECTORS, 2460 &first_bad, &bad_sectors)) { 2461 set_bit(R5_MadeGood, &sh->dev[i].flags); 2462 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2463 /* That was a successful write so make 2464 * sure it looks like we already did 2465 * a re-write. 2466 */ 2467 set_bit(R5_ReWrite, &sh->dev[i].flags); 2468 } 2469 } 2470 rdev_dec_pending(rdev, conf->mddev); 2471 2472 if (sh->batch_head && bi->bi_error && !replacement) 2473 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2474 2475 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2476 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2477 set_bit(STRIPE_HANDLE, &sh->state); 2478 raid5_release_stripe(sh); 2479 2480 if (sh->batch_head && sh != sh->batch_head) 2481 raid5_release_stripe(sh->batch_head); 2482 } 2483 2484 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2485 { 2486 struct r5dev *dev = &sh->dev[i]; 2487 2488 bio_init(&dev->req); 2489 dev->req.bi_io_vec = &dev->vec; 2490 dev->req.bi_max_vecs = 1; 2491 dev->req.bi_private = sh; 2492 2493 bio_init(&dev->rreq); 2494 dev->rreq.bi_io_vec = &dev->rvec; 2495 dev->rreq.bi_max_vecs = 1; 2496 dev->rreq.bi_private = sh; 2497 2498 dev->flags = 0; 2499 dev->sector = raid5_compute_blocknr(sh, i, previous); 2500 } 2501 2502 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2503 { 2504 char b[BDEVNAME_SIZE]; 2505 struct r5conf *conf = mddev->private; 2506 unsigned long flags; 2507 pr_debug("raid456: error called\n"); 2508 2509 spin_lock_irqsave(&conf->device_lock, flags); 2510 clear_bit(In_sync, &rdev->flags); 2511 mddev->degraded = calc_degraded(conf); 2512 spin_unlock_irqrestore(&conf->device_lock, flags); 2513 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2514 2515 set_bit(Blocked, &rdev->flags); 2516 set_bit(Faulty, &rdev->flags); 2517 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2518 set_bit(MD_CHANGE_PENDING, &mddev->flags); 2519 printk(KERN_ALERT 2520 "md/raid:%s: Disk failure on %s, disabling device.\n" 2521 "md/raid:%s: Operation continuing on %d devices.\n", 2522 mdname(mddev), 2523 bdevname(rdev->bdev, b), 2524 mdname(mddev), 2525 conf->raid_disks - mddev->degraded); 2526 } 2527 2528 /* 2529 * Input: a 'big' sector number, 2530 * Output: index of the data and parity disk, and the sector # in them. 2531 */ 2532 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2533 int previous, int *dd_idx, 2534 struct stripe_head *sh) 2535 { 2536 sector_t stripe, stripe2; 2537 sector_t chunk_number; 2538 unsigned int chunk_offset; 2539 int pd_idx, qd_idx; 2540 int ddf_layout = 0; 2541 sector_t new_sector; 2542 int algorithm = previous ? conf->prev_algo 2543 : conf->algorithm; 2544 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2545 : conf->chunk_sectors; 2546 int raid_disks = previous ? conf->previous_raid_disks 2547 : conf->raid_disks; 2548 int data_disks = raid_disks - conf->max_degraded; 2549 2550 /* First compute the information on this sector */ 2551 2552 /* 2553 * Compute the chunk number and the sector offset inside the chunk 2554 */ 2555 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2556 chunk_number = r_sector; 2557 2558 /* 2559 * Compute the stripe number 2560 */ 2561 stripe = chunk_number; 2562 *dd_idx = sector_div(stripe, data_disks); 2563 stripe2 = stripe; 2564 /* 2565 * Select the parity disk based on the user selected algorithm. 2566 */ 2567 pd_idx = qd_idx = -1; 2568 switch(conf->level) { 2569 case 4: 2570 pd_idx = data_disks; 2571 break; 2572 case 5: 2573 switch (algorithm) { 2574 case ALGORITHM_LEFT_ASYMMETRIC: 2575 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2576 if (*dd_idx >= pd_idx) 2577 (*dd_idx)++; 2578 break; 2579 case ALGORITHM_RIGHT_ASYMMETRIC: 2580 pd_idx = sector_div(stripe2, raid_disks); 2581 if (*dd_idx >= pd_idx) 2582 (*dd_idx)++; 2583 break; 2584 case ALGORITHM_LEFT_SYMMETRIC: 2585 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2586 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2587 break; 2588 case ALGORITHM_RIGHT_SYMMETRIC: 2589 pd_idx = sector_div(stripe2, raid_disks); 2590 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2591 break; 2592 case ALGORITHM_PARITY_0: 2593 pd_idx = 0; 2594 (*dd_idx)++; 2595 break; 2596 case ALGORITHM_PARITY_N: 2597 pd_idx = data_disks; 2598 break; 2599 default: 2600 BUG(); 2601 } 2602 break; 2603 case 6: 2604 2605 switch (algorithm) { 2606 case ALGORITHM_LEFT_ASYMMETRIC: 2607 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2608 qd_idx = pd_idx + 1; 2609 if (pd_idx == raid_disks-1) { 2610 (*dd_idx)++; /* Q D D D P */ 2611 qd_idx = 0; 2612 } else if (*dd_idx >= pd_idx) 2613 (*dd_idx) += 2; /* D D P Q D */ 2614 break; 2615 case ALGORITHM_RIGHT_ASYMMETRIC: 2616 pd_idx = sector_div(stripe2, raid_disks); 2617 qd_idx = pd_idx + 1; 2618 if (pd_idx == raid_disks-1) { 2619 (*dd_idx)++; /* Q D D D P */ 2620 qd_idx = 0; 2621 } else if (*dd_idx >= pd_idx) 2622 (*dd_idx) += 2; /* D D P Q D */ 2623 break; 2624 case ALGORITHM_LEFT_SYMMETRIC: 2625 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2626 qd_idx = (pd_idx + 1) % raid_disks; 2627 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2628 break; 2629 case ALGORITHM_RIGHT_SYMMETRIC: 2630 pd_idx = sector_div(stripe2, raid_disks); 2631 qd_idx = (pd_idx + 1) % raid_disks; 2632 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2633 break; 2634 2635 case ALGORITHM_PARITY_0: 2636 pd_idx = 0; 2637 qd_idx = 1; 2638 (*dd_idx) += 2; 2639 break; 2640 case ALGORITHM_PARITY_N: 2641 pd_idx = data_disks; 2642 qd_idx = data_disks + 1; 2643 break; 2644 2645 case ALGORITHM_ROTATING_ZERO_RESTART: 2646 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2647 * of blocks for computing Q is different. 2648 */ 2649 pd_idx = sector_div(stripe2, raid_disks); 2650 qd_idx = pd_idx + 1; 2651 if (pd_idx == raid_disks-1) { 2652 (*dd_idx)++; /* Q D D D P */ 2653 qd_idx = 0; 2654 } else if (*dd_idx >= pd_idx) 2655 (*dd_idx) += 2; /* D D P Q D */ 2656 ddf_layout = 1; 2657 break; 2658 2659 case ALGORITHM_ROTATING_N_RESTART: 2660 /* Same a left_asymmetric, by first stripe is 2661 * D D D P Q rather than 2662 * Q D D D P 2663 */ 2664 stripe2 += 1; 2665 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2666 qd_idx = pd_idx + 1; 2667 if (pd_idx == raid_disks-1) { 2668 (*dd_idx)++; /* Q D D D P */ 2669 qd_idx = 0; 2670 } else if (*dd_idx >= pd_idx) 2671 (*dd_idx) += 2; /* D D P Q D */ 2672 ddf_layout = 1; 2673 break; 2674 2675 case ALGORITHM_ROTATING_N_CONTINUE: 2676 /* Same as left_symmetric but Q is before P */ 2677 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2678 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2679 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2680 ddf_layout = 1; 2681 break; 2682 2683 case ALGORITHM_LEFT_ASYMMETRIC_6: 2684 /* RAID5 left_asymmetric, with Q on last device */ 2685 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2686 if (*dd_idx >= pd_idx) 2687 (*dd_idx)++; 2688 qd_idx = raid_disks - 1; 2689 break; 2690 2691 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2692 pd_idx = sector_div(stripe2, raid_disks-1); 2693 if (*dd_idx >= pd_idx) 2694 (*dd_idx)++; 2695 qd_idx = raid_disks - 1; 2696 break; 2697 2698 case ALGORITHM_LEFT_SYMMETRIC_6: 2699 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2700 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2701 qd_idx = raid_disks - 1; 2702 break; 2703 2704 case ALGORITHM_RIGHT_SYMMETRIC_6: 2705 pd_idx = sector_div(stripe2, raid_disks-1); 2706 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2707 qd_idx = raid_disks - 1; 2708 break; 2709 2710 case ALGORITHM_PARITY_0_6: 2711 pd_idx = 0; 2712 (*dd_idx)++; 2713 qd_idx = raid_disks - 1; 2714 break; 2715 2716 default: 2717 BUG(); 2718 } 2719 break; 2720 } 2721 2722 if (sh) { 2723 sh->pd_idx = pd_idx; 2724 sh->qd_idx = qd_idx; 2725 sh->ddf_layout = ddf_layout; 2726 } 2727 /* 2728 * Finally, compute the new sector number 2729 */ 2730 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2731 return new_sector; 2732 } 2733 2734 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2735 { 2736 struct r5conf *conf = sh->raid_conf; 2737 int raid_disks = sh->disks; 2738 int data_disks = raid_disks - conf->max_degraded; 2739 sector_t new_sector = sh->sector, check; 2740 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2741 : conf->chunk_sectors; 2742 int algorithm = previous ? conf->prev_algo 2743 : conf->algorithm; 2744 sector_t stripe; 2745 int chunk_offset; 2746 sector_t chunk_number; 2747 int dummy1, dd_idx = i; 2748 sector_t r_sector; 2749 struct stripe_head sh2; 2750 2751 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2752 stripe = new_sector; 2753 2754 if (i == sh->pd_idx) 2755 return 0; 2756 switch(conf->level) { 2757 case 4: break; 2758 case 5: 2759 switch (algorithm) { 2760 case ALGORITHM_LEFT_ASYMMETRIC: 2761 case ALGORITHM_RIGHT_ASYMMETRIC: 2762 if (i > sh->pd_idx) 2763 i--; 2764 break; 2765 case ALGORITHM_LEFT_SYMMETRIC: 2766 case ALGORITHM_RIGHT_SYMMETRIC: 2767 if (i < sh->pd_idx) 2768 i += raid_disks; 2769 i -= (sh->pd_idx + 1); 2770 break; 2771 case ALGORITHM_PARITY_0: 2772 i -= 1; 2773 break; 2774 case ALGORITHM_PARITY_N: 2775 break; 2776 default: 2777 BUG(); 2778 } 2779 break; 2780 case 6: 2781 if (i == sh->qd_idx) 2782 return 0; /* It is the Q disk */ 2783 switch (algorithm) { 2784 case ALGORITHM_LEFT_ASYMMETRIC: 2785 case ALGORITHM_RIGHT_ASYMMETRIC: 2786 case ALGORITHM_ROTATING_ZERO_RESTART: 2787 case ALGORITHM_ROTATING_N_RESTART: 2788 if (sh->pd_idx == raid_disks-1) 2789 i--; /* Q D D D P */ 2790 else if (i > sh->pd_idx) 2791 i -= 2; /* D D P Q D */ 2792 break; 2793 case ALGORITHM_LEFT_SYMMETRIC: 2794 case ALGORITHM_RIGHT_SYMMETRIC: 2795 if (sh->pd_idx == raid_disks-1) 2796 i--; /* Q D D D P */ 2797 else { 2798 /* D D P Q D */ 2799 if (i < sh->pd_idx) 2800 i += raid_disks; 2801 i -= (sh->pd_idx + 2); 2802 } 2803 break; 2804 case ALGORITHM_PARITY_0: 2805 i -= 2; 2806 break; 2807 case ALGORITHM_PARITY_N: 2808 break; 2809 case ALGORITHM_ROTATING_N_CONTINUE: 2810 /* Like left_symmetric, but P is before Q */ 2811 if (sh->pd_idx == 0) 2812 i--; /* P D D D Q */ 2813 else { 2814 /* D D Q P D */ 2815 if (i < sh->pd_idx) 2816 i += raid_disks; 2817 i -= (sh->pd_idx + 1); 2818 } 2819 break; 2820 case ALGORITHM_LEFT_ASYMMETRIC_6: 2821 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2822 if (i > sh->pd_idx) 2823 i--; 2824 break; 2825 case ALGORITHM_LEFT_SYMMETRIC_6: 2826 case ALGORITHM_RIGHT_SYMMETRIC_6: 2827 if (i < sh->pd_idx) 2828 i += data_disks + 1; 2829 i -= (sh->pd_idx + 1); 2830 break; 2831 case ALGORITHM_PARITY_0_6: 2832 i -= 1; 2833 break; 2834 default: 2835 BUG(); 2836 } 2837 break; 2838 } 2839 2840 chunk_number = stripe * data_disks + i; 2841 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2842 2843 check = raid5_compute_sector(conf, r_sector, 2844 previous, &dummy1, &sh2); 2845 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2846 || sh2.qd_idx != sh->qd_idx) { 2847 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2848 mdname(conf->mddev)); 2849 return 0; 2850 } 2851 return r_sector; 2852 } 2853 2854 static void 2855 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2856 int rcw, int expand) 2857 { 2858 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 2859 struct r5conf *conf = sh->raid_conf; 2860 int level = conf->level; 2861 2862 if (rcw) { 2863 2864 for (i = disks; i--; ) { 2865 struct r5dev *dev = &sh->dev[i]; 2866 2867 if (dev->towrite) { 2868 set_bit(R5_LOCKED, &dev->flags); 2869 set_bit(R5_Wantdrain, &dev->flags); 2870 if (!expand) 2871 clear_bit(R5_UPTODATE, &dev->flags); 2872 s->locked++; 2873 } 2874 } 2875 /* if we are not expanding this is a proper write request, and 2876 * there will be bios with new data to be drained into the 2877 * stripe cache 2878 */ 2879 if (!expand) { 2880 if (!s->locked) 2881 /* False alarm, nothing to do */ 2882 return; 2883 sh->reconstruct_state = reconstruct_state_drain_run; 2884 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2885 } else 2886 sh->reconstruct_state = reconstruct_state_run; 2887 2888 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2889 2890 if (s->locked + conf->max_degraded == disks) 2891 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2892 atomic_inc(&conf->pending_full_writes); 2893 } else { 2894 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2895 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2896 BUG_ON(level == 6 && 2897 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 2898 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 2899 2900 for (i = disks; i--; ) { 2901 struct r5dev *dev = &sh->dev[i]; 2902 if (i == pd_idx || i == qd_idx) 2903 continue; 2904 2905 if (dev->towrite && 2906 (test_bit(R5_UPTODATE, &dev->flags) || 2907 test_bit(R5_Wantcompute, &dev->flags))) { 2908 set_bit(R5_Wantdrain, &dev->flags); 2909 set_bit(R5_LOCKED, &dev->flags); 2910 clear_bit(R5_UPTODATE, &dev->flags); 2911 s->locked++; 2912 } 2913 } 2914 if (!s->locked) 2915 /* False alarm - nothing to do */ 2916 return; 2917 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2918 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2919 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2920 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2921 } 2922 2923 /* keep the parity disk(s) locked while asynchronous operations 2924 * are in flight 2925 */ 2926 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2927 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2928 s->locked++; 2929 2930 if (level == 6) { 2931 int qd_idx = sh->qd_idx; 2932 struct r5dev *dev = &sh->dev[qd_idx]; 2933 2934 set_bit(R5_LOCKED, &dev->flags); 2935 clear_bit(R5_UPTODATE, &dev->flags); 2936 s->locked++; 2937 } 2938 2939 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2940 __func__, (unsigned long long)sh->sector, 2941 s->locked, s->ops_request); 2942 } 2943 2944 /* 2945 * Each stripe/dev can have one or more bion attached. 2946 * toread/towrite point to the first in a chain. 2947 * The bi_next chain must be in order. 2948 */ 2949 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 2950 int forwrite, int previous) 2951 { 2952 struct bio **bip; 2953 struct r5conf *conf = sh->raid_conf; 2954 int firstwrite=0; 2955 2956 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2957 (unsigned long long)bi->bi_iter.bi_sector, 2958 (unsigned long long)sh->sector); 2959 2960 /* 2961 * If several bio share a stripe. The bio bi_phys_segments acts as a 2962 * reference count to avoid race. The reference count should already be 2963 * increased before this function is called (for example, in 2964 * raid5_make_request()), so other bio sharing this stripe will not free the 2965 * stripe. If a stripe is owned by one stripe, the stripe lock will 2966 * protect it. 2967 */ 2968 spin_lock_irq(&sh->stripe_lock); 2969 /* Don't allow new IO added to stripes in batch list */ 2970 if (sh->batch_head) 2971 goto overlap; 2972 if (forwrite) { 2973 bip = &sh->dev[dd_idx].towrite; 2974 if (*bip == NULL) 2975 firstwrite = 1; 2976 } else 2977 bip = &sh->dev[dd_idx].toread; 2978 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 2979 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 2980 goto overlap; 2981 bip = & (*bip)->bi_next; 2982 } 2983 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 2984 goto overlap; 2985 2986 if (!forwrite || previous) 2987 clear_bit(STRIPE_BATCH_READY, &sh->state); 2988 2989 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2990 if (*bip) 2991 bi->bi_next = *bip; 2992 *bip = bi; 2993 raid5_inc_bi_active_stripes(bi); 2994 2995 if (forwrite) { 2996 /* check if page is covered */ 2997 sector_t sector = sh->dev[dd_idx].sector; 2998 for (bi=sh->dev[dd_idx].towrite; 2999 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3000 bi && bi->bi_iter.bi_sector <= sector; 3001 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3002 if (bio_end_sector(bi) >= sector) 3003 sector = bio_end_sector(bi); 3004 } 3005 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3006 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3007 sh->overwrite_disks++; 3008 } 3009 3010 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3011 (unsigned long long)(*bip)->bi_iter.bi_sector, 3012 (unsigned long long)sh->sector, dd_idx); 3013 3014 if (conf->mddev->bitmap && firstwrite) { 3015 /* Cannot hold spinlock over bitmap_startwrite, 3016 * but must ensure this isn't added to a batch until 3017 * we have added to the bitmap and set bm_seq. 3018 * So set STRIPE_BITMAP_PENDING to prevent 3019 * batching. 3020 * If multiple add_stripe_bio() calls race here they 3021 * much all set STRIPE_BITMAP_PENDING. So only the first one 3022 * to complete "bitmap_startwrite" gets to set 3023 * STRIPE_BIT_DELAY. This is important as once a stripe 3024 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3025 * any more. 3026 */ 3027 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3028 spin_unlock_irq(&sh->stripe_lock); 3029 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3030 STRIPE_SECTORS, 0); 3031 spin_lock_irq(&sh->stripe_lock); 3032 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3033 if (!sh->batch_head) { 3034 sh->bm_seq = conf->seq_flush+1; 3035 set_bit(STRIPE_BIT_DELAY, &sh->state); 3036 } 3037 } 3038 spin_unlock_irq(&sh->stripe_lock); 3039 3040 if (stripe_can_batch(sh)) 3041 stripe_add_to_batch_list(conf, sh); 3042 return 1; 3043 3044 overlap: 3045 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3046 spin_unlock_irq(&sh->stripe_lock); 3047 return 0; 3048 } 3049 3050 static void end_reshape(struct r5conf *conf); 3051 3052 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3053 struct stripe_head *sh) 3054 { 3055 int sectors_per_chunk = 3056 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3057 int dd_idx; 3058 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3059 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3060 3061 raid5_compute_sector(conf, 3062 stripe * (disks - conf->max_degraded) 3063 *sectors_per_chunk + chunk_offset, 3064 previous, 3065 &dd_idx, sh); 3066 } 3067 3068 static void 3069 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3070 struct stripe_head_state *s, int disks, 3071 struct bio_list *return_bi) 3072 { 3073 int i; 3074 BUG_ON(sh->batch_head); 3075 for (i = disks; i--; ) { 3076 struct bio *bi; 3077 int bitmap_end = 0; 3078 3079 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3080 struct md_rdev *rdev; 3081 rcu_read_lock(); 3082 rdev = rcu_dereference(conf->disks[i].rdev); 3083 if (rdev && test_bit(In_sync, &rdev->flags)) 3084 atomic_inc(&rdev->nr_pending); 3085 else 3086 rdev = NULL; 3087 rcu_read_unlock(); 3088 if (rdev) { 3089 if (!rdev_set_badblocks( 3090 rdev, 3091 sh->sector, 3092 STRIPE_SECTORS, 0)) 3093 md_error(conf->mddev, rdev); 3094 rdev_dec_pending(rdev, conf->mddev); 3095 } 3096 } 3097 spin_lock_irq(&sh->stripe_lock); 3098 /* fail all writes first */ 3099 bi = sh->dev[i].towrite; 3100 sh->dev[i].towrite = NULL; 3101 sh->overwrite_disks = 0; 3102 spin_unlock_irq(&sh->stripe_lock); 3103 if (bi) 3104 bitmap_end = 1; 3105 3106 r5l_stripe_write_finished(sh); 3107 3108 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3109 wake_up(&conf->wait_for_overlap); 3110 3111 while (bi && bi->bi_iter.bi_sector < 3112 sh->dev[i].sector + STRIPE_SECTORS) { 3113 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3114 3115 bi->bi_error = -EIO; 3116 if (!raid5_dec_bi_active_stripes(bi)) { 3117 md_write_end(conf->mddev); 3118 bio_list_add(return_bi, bi); 3119 } 3120 bi = nextbi; 3121 } 3122 if (bitmap_end) 3123 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3124 STRIPE_SECTORS, 0, 0); 3125 bitmap_end = 0; 3126 /* and fail all 'written' */ 3127 bi = sh->dev[i].written; 3128 sh->dev[i].written = NULL; 3129 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3130 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3131 sh->dev[i].page = sh->dev[i].orig_page; 3132 } 3133 3134 if (bi) bitmap_end = 1; 3135 while (bi && bi->bi_iter.bi_sector < 3136 sh->dev[i].sector + STRIPE_SECTORS) { 3137 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3138 3139 bi->bi_error = -EIO; 3140 if (!raid5_dec_bi_active_stripes(bi)) { 3141 md_write_end(conf->mddev); 3142 bio_list_add(return_bi, bi); 3143 } 3144 bi = bi2; 3145 } 3146 3147 /* fail any reads if this device is non-operational and 3148 * the data has not reached the cache yet. 3149 */ 3150 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3151 s->failed > conf->max_degraded && 3152 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3153 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3154 spin_lock_irq(&sh->stripe_lock); 3155 bi = sh->dev[i].toread; 3156 sh->dev[i].toread = NULL; 3157 spin_unlock_irq(&sh->stripe_lock); 3158 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3159 wake_up(&conf->wait_for_overlap); 3160 if (bi) 3161 s->to_read--; 3162 while (bi && bi->bi_iter.bi_sector < 3163 sh->dev[i].sector + STRIPE_SECTORS) { 3164 struct bio *nextbi = 3165 r5_next_bio(bi, sh->dev[i].sector); 3166 3167 bi->bi_error = -EIO; 3168 if (!raid5_dec_bi_active_stripes(bi)) 3169 bio_list_add(return_bi, bi); 3170 bi = nextbi; 3171 } 3172 } 3173 if (bitmap_end) 3174 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3175 STRIPE_SECTORS, 0, 0); 3176 /* If we were in the middle of a write the parity block might 3177 * still be locked - so just clear all R5_LOCKED flags 3178 */ 3179 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3180 } 3181 s->to_write = 0; 3182 s->written = 0; 3183 3184 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3185 if (atomic_dec_and_test(&conf->pending_full_writes)) 3186 md_wakeup_thread(conf->mddev->thread); 3187 } 3188 3189 static void 3190 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3191 struct stripe_head_state *s) 3192 { 3193 int abort = 0; 3194 int i; 3195 3196 BUG_ON(sh->batch_head); 3197 clear_bit(STRIPE_SYNCING, &sh->state); 3198 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3199 wake_up(&conf->wait_for_overlap); 3200 s->syncing = 0; 3201 s->replacing = 0; 3202 /* There is nothing more to do for sync/check/repair. 3203 * Don't even need to abort as that is handled elsewhere 3204 * if needed, and not always wanted e.g. if there is a known 3205 * bad block here. 3206 * For recover/replace we need to record a bad block on all 3207 * non-sync devices, or abort the recovery 3208 */ 3209 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3210 /* During recovery devices cannot be removed, so 3211 * locking and refcounting of rdevs is not needed 3212 */ 3213 for (i = 0; i < conf->raid_disks; i++) { 3214 struct md_rdev *rdev = conf->disks[i].rdev; 3215 if (rdev 3216 && !test_bit(Faulty, &rdev->flags) 3217 && !test_bit(In_sync, &rdev->flags) 3218 && !rdev_set_badblocks(rdev, sh->sector, 3219 STRIPE_SECTORS, 0)) 3220 abort = 1; 3221 rdev = conf->disks[i].replacement; 3222 if (rdev 3223 && !test_bit(Faulty, &rdev->flags) 3224 && !test_bit(In_sync, &rdev->flags) 3225 && !rdev_set_badblocks(rdev, sh->sector, 3226 STRIPE_SECTORS, 0)) 3227 abort = 1; 3228 } 3229 if (abort) 3230 conf->recovery_disabled = 3231 conf->mddev->recovery_disabled; 3232 } 3233 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3234 } 3235 3236 static int want_replace(struct stripe_head *sh, int disk_idx) 3237 { 3238 struct md_rdev *rdev; 3239 int rv = 0; 3240 /* Doing recovery so rcu locking not required */ 3241 rdev = sh->raid_conf->disks[disk_idx].replacement; 3242 if (rdev 3243 && !test_bit(Faulty, &rdev->flags) 3244 && !test_bit(In_sync, &rdev->flags) 3245 && (rdev->recovery_offset <= sh->sector 3246 || rdev->mddev->recovery_cp <= sh->sector)) 3247 rv = 1; 3248 3249 return rv; 3250 } 3251 3252 /* fetch_block - checks the given member device to see if its data needs 3253 * to be read or computed to satisfy a request. 3254 * 3255 * Returns 1 when no more member devices need to be checked, otherwise returns 3256 * 0 to tell the loop in handle_stripe_fill to continue 3257 */ 3258 3259 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3260 int disk_idx, int disks) 3261 { 3262 struct r5dev *dev = &sh->dev[disk_idx]; 3263 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3264 &sh->dev[s->failed_num[1]] }; 3265 int i; 3266 3267 3268 if (test_bit(R5_LOCKED, &dev->flags) || 3269 test_bit(R5_UPTODATE, &dev->flags)) 3270 /* No point reading this as we already have it or have 3271 * decided to get it. 3272 */ 3273 return 0; 3274 3275 if (dev->toread || 3276 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3277 /* We need this block to directly satisfy a request */ 3278 return 1; 3279 3280 if (s->syncing || s->expanding || 3281 (s->replacing && want_replace(sh, disk_idx))) 3282 /* When syncing, or expanding we read everything. 3283 * When replacing, we need the replaced block. 3284 */ 3285 return 1; 3286 3287 if ((s->failed >= 1 && fdev[0]->toread) || 3288 (s->failed >= 2 && fdev[1]->toread)) 3289 /* If we want to read from a failed device, then 3290 * we need to actually read every other device. 3291 */ 3292 return 1; 3293 3294 /* Sometimes neither read-modify-write nor reconstruct-write 3295 * cycles can work. In those cases we read every block we 3296 * can. Then the parity-update is certain to have enough to 3297 * work with. 3298 * This can only be a problem when we need to write something, 3299 * and some device has failed. If either of those tests 3300 * fail we need look no further. 3301 */ 3302 if (!s->failed || !s->to_write) 3303 return 0; 3304 3305 if (test_bit(R5_Insync, &dev->flags) && 3306 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3307 /* Pre-reads at not permitted until after short delay 3308 * to gather multiple requests. However if this 3309 * device is no Insync, the block could only be be computed 3310 * and there is no need to delay that. 3311 */ 3312 return 0; 3313 3314 for (i = 0; i < s->failed && i < 2; i++) { 3315 if (fdev[i]->towrite && 3316 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3317 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3318 /* If we have a partial write to a failed 3319 * device, then we will need to reconstruct 3320 * the content of that device, so all other 3321 * devices must be read. 3322 */ 3323 return 1; 3324 } 3325 3326 /* If we are forced to do a reconstruct-write, either because 3327 * the current RAID6 implementation only supports that, or 3328 * or because parity cannot be trusted and we are currently 3329 * recovering it, there is extra need to be careful. 3330 * If one of the devices that we would need to read, because 3331 * it is not being overwritten (and maybe not written at all) 3332 * is missing/faulty, then we need to read everything we can. 3333 */ 3334 if (sh->raid_conf->level != 6 && 3335 sh->sector < sh->raid_conf->mddev->recovery_cp) 3336 /* reconstruct-write isn't being forced */ 3337 return 0; 3338 for (i = 0; i < s->failed && i < 2; i++) { 3339 if (s->failed_num[i] != sh->pd_idx && 3340 s->failed_num[i] != sh->qd_idx && 3341 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3342 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3343 return 1; 3344 } 3345 3346 return 0; 3347 } 3348 3349 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3350 int disk_idx, int disks) 3351 { 3352 struct r5dev *dev = &sh->dev[disk_idx]; 3353 3354 /* is the data in this block needed, and can we get it? */ 3355 if (need_this_block(sh, s, disk_idx, disks)) { 3356 /* we would like to get this block, possibly by computing it, 3357 * otherwise read it if the backing disk is insync 3358 */ 3359 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3360 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3361 BUG_ON(sh->batch_head); 3362 if ((s->uptodate == disks - 1) && 3363 (s->failed && (disk_idx == s->failed_num[0] || 3364 disk_idx == s->failed_num[1]))) { 3365 /* have disk failed, and we're requested to fetch it; 3366 * do compute it 3367 */ 3368 pr_debug("Computing stripe %llu block %d\n", 3369 (unsigned long long)sh->sector, disk_idx); 3370 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3371 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3372 set_bit(R5_Wantcompute, &dev->flags); 3373 sh->ops.target = disk_idx; 3374 sh->ops.target2 = -1; /* no 2nd target */ 3375 s->req_compute = 1; 3376 /* Careful: from this point on 'uptodate' is in the eye 3377 * of raid_run_ops which services 'compute' operations 3378 * before writes. R5_Wantcompute flags a block that will 3379 * be R5_UPTODATE by the time it is needed for a 3380 * subsequent operation. 3381 */ 3382 s->uptodate++; 3383 return 1; 3384 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3385 /* Computing 2-failure is *very* expensive; only 3386 * do it if failed >= 2 3387 */ 3388 int other; 3389 for (other = disks; other--; ) { 3390 if (other == disk_idx) 3391 continue; 3392 if (!test_bit(R5_UPTODATE, 3393 &sh->dev[other].flags)) 3394 break; 3395 } 3396 BUG_ON(other < 0); 3397 pr_debug("Computing stripe %llu blocks %d,%d\n", 3398 (unsigned long long)sh->sector, 3399 disk_idx, other); 3400 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3401 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3402 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3403 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3404 sh->ops.target = disk_idx; 3405 sh->ops.target2 = other; 3406 s->uptodate += 2; 3407 s->req_compute = 1; 3408 return 1; 3409 } else if (test_bit(R5_Insync, &dev->flags)) { 3410 set_bit(R5_LOCKED, &dev->flags); 3411 set_bit(R5_Wantread, &dev->flags); 3412 s->locked++; 3413 pr_debug("Reading block %d (sync=%d)\n", 3414 disk_idx, s->syncing); 3415 } 3416 } 3417 3418 return 0; 3419 } 3420 3421 /** 3422 * handle_stripe_fill - read or compute data to satisfy pending requests. 3423 */ 3424 static void handle_stripe_fill(struct stripe_head *sh, 3425 struct stripe_head_state *s, 3426 int disks) 3427 { 3428 int i; 3429 3430 /* look for blocks to read/compute, skip this if a compute 3431 * is already in flight, or if the stripe contents are in the 3432 * midst of changing due to a write 3433 */ 3434 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3435 !sh->reconstruct_state) 3436 for (i = disks; i--; ) 3437 if (fetch_block(sh, s, i, disks)) 3438 break; 3439 set_bit(STRIPE_HANDLE, &sh->state); 3440 } 3441 3442 static void break_stripe_batch_list(struct stripe_head *head_sh, 3443 unsigned long handle_flags); 3444 /* handle_stripe_clean_event 3445 * any written block on an uptodate or failed drive can be returned. 3446 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3447 * never LOCKED, so we don't need to test 'failed' directly. 3448 */ 3449 static void handle_stripe_clean_event(struct r5conf *conf, 3450 struct stripe_head *sh, int disks, struct bio_list *return_bi) 3451 { 3452 int i; 3453 struct r5dev *dev; 3454 int discard_pending = 0; 3455 struct stripe_head *head_sh = sh; 3456 bool do_endio = false; 3457 3458 for (i = disks; i--; ) 3459 if (sh->dev[i].written) { 3460 dev = &sh->dev[i]; 3461 if (!test_bit(R5_LOCKED, &dev->flags) && 3462 (test_bit(R5_UPTODATE, &dev->flags) || 3463 test_bit(R5_Discard, &dev->flags) || 3464 test_bit(R5_SkipCopy, &dev->flags))) { 3465 /* We can return any write requests */ 3466 struct bio *wbi, *wbi2; 3467 pr_debug("Return write for disc %d\n", i); 3468 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3469 clear_bit(R5_UPTODATE, &dev->flags); 3470 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3471 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3472 } 3473 do_endio = true; 3474 3475 returnbi: 3476 dev->page = dev->orig_page; 3477 wbi = dev->written; 3478 dev->written = NULL; 3479 while (wbi && wbi->bi_iter.bi_sector < 3480 dev->sector + STRIPE_SECTORS) { 3481 wbi2 = r5_next_bio(wbi, dev->sector); 3482 if (!raid5_dec_bi_active_stripes(wbi)) { 3483 md_write_end(conf->mddev); 3484 bio_list_add(return_bi, wbi); 3485 } 3486 wbi = wbi2; 3487 } 3488 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3489 STRIPE_SECTORS, 3490 !test_bit(STRIPE_DEGRADED, &sh->state), 3491 0); 3492 if (head_sh->batch_head) { 3493 sh = list_first_entry(&sh->batch_list, 3494 struct stripe_head, 3495 batch_list); 3496 if (sh != head_sh) { 3497 dev = &sh->dev[i]; 3498 goto returnbi; 3499 } 3500 } 3501 sh = head_sh; 3502 dev = &sh->dev[i]; 3503 } else if (test_bit(R5_Discard, &dev->flags)) 3504 discard_pending = 1; 3505 WARN_ON(test_bit(R5_SkipCopy, &dev->flags)); 3506 WARN_ON(dev->page != dev->orig_page); 3507 } 3508 3509 r5l_stripe_write_finished(sh); 3510 3511 if (!discard_pending && 3512 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3513 int hash; 3514 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3515 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3516 if (sh->qd_idx >= 0) { 3517 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3518 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3519 } 3520 /* now that discard is done we can proceed with any sync */ 3521 clear_bit(STRIPE_DISCARD, &sh->state); 3522 /* 3523 * SCSI discard will change some bio fields and the stripe has 3524 * no updated data, so remove it from hash list and the stripe 3525 * will be reinitialized 3526 */ 3527 unhash: 3528 hash = sh->hash_lock_index; 3529 spin_lock_irq(conf->hash_locks + hash); 3530 remove_hash(sh); 3531 spin_unlock_irq(conf->hash_locks + hash); 3532 if (head_sh->batch_head) { 3533 sh = list_first_entry(&sh->batch_list, 3534 struct stripe_head, batch_list); 3535 if (sh != head_sh) 3536 goto unhash; 3537 } 3538 sh = head_sh; 3539 3540 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3541 set_bit(STRIPE_HANDLE, &sh->state); 3542 3543 } 3544 3545 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3546 if (atomic_dec_and_test(&conf->pending_full_writes)) 3547 md_wakeup_thread(conf->mddev->thread); 3548 3549 if (head_sh->batch_head && do_endio) 3550 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3551 } 3552 3553 static void handle_stripe_dirtying(struct r5conf *conf, 3554 struct stripe_head *sh, 3555 struct stripe_head_state *s, 3556 int disks) 3557 { 3558 int rmw = 0, rcw = 0, i; 3559 sector_t recovery_cp = conf->mddev->recovery_cp; 3560 3561 /* Check whether resync is now happening or should start. 3562 * If yes, then the array is dirty (after unclean shutdown or 3563 * initial creation), so parity in some stripes might be inconsistent. 3564 * In this case, we need to always do reconstruct-write, to ensure 3565 * that in case of drive failure or read-error correction, we 3566 * generate correct data from the parity. 3567 */ 3568 if (conf->rmw_level == PARITY_DISABLE_RMW || 3569 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3570 s->failed == 0)) { 3571 /* Calculate the real rcw later - for now make it 3572 * look like rcw is cheaper 3573 */ 3574 rcw = 1; rmw = 2; 3575 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3576 conf->rmw_level, (unsigned long long)recovery_cp, 3577 (unsigned long long)sh->sector); 3578 } else for (i = disks; i--; ) { 3579 /* would I have to read this buffer for read_modify_write */ 3580 struct r5dev *dev = &sh->dev[i]; 3581 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3582 !test_bit(R5_LOCKED, &dev->flags) && 3583 !(test_bit(R5_UPTODATE, &dev->flags) || 3584 test_bit(R5_Wantcompute, &dev->flags))) { 3585 if (test_bit(R5_Insync, &dev->flags)) 3586 rmw++; 3587 else 3588 rmw += 2*disks; /* cannot read it */ 3589 } 3590 /* Would I have to read this buffer for reconstruct_write */ 3591 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3592 i != sh->pd_idx && i != sh->qd_idx && 3593 !test_bit(R5_LOCKED, &dev->flags) && 3594 !(test_bit(R5_UPTODATE, &dev->flags) || 3595 test_bit(R5_Wantcompute, &dev->flags))) { 3596 if (test_bit(R5_Insync, &dev->flags)) 3597 rcw++; 3598 else 3599 rcw += 2*disks; 3600 } 3601 } 3602 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3603 (unsigned long long)sh->sector, rmw, rcw); 3604 set_bit(STRIPE_HANDLE, &sh->state); 3605 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) { 3606 /* prefer read-modify-write, but need to get some data */ 3607 if (conf->mddev->queue) 3608 blk_add_trace_msg(conf->mddev->queue, 3609 "raid5 rmw %llu %d", 3610 (unsigned long long)sh->sector, rmw); 3611 for (i = disks; i--; ) { 3612 struct r5dev *dev = &sh->dev[i]; 3613 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3614 !test_bit(R5_LOCKED, &dev->flags) && 3615 !(test_bit(R5_UPTODATE, &dev->flags) || 3616 test_bit(R5_Wantcompute, &dev->flags)) && 3617 test_bit(R5_Insync, &dev->flags)) { 3618 if (test_bit(STRIPE_PREREAD_ACTIVE, 3619 &sh->state)) { 3620 pr_debug("Read_old block %d for r-m-w\n", 3621 i); 3622 set_bit(R5_LOCKED, &dev->flags); 3623 set_bit(R5_Wantread, &dev->flags); 3624 s->locked++; 3625 } else { 3626 set_bit(STRIPE_DELAYED, &sh->state); 3627 set_bit(STRIPE_HANDLE, &sh->state); 3628 } 3629 } 3630 } 3631 } 3632 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) { 3633 /* want reconstruct write, but need to get some data */ 3634 int qread =0; 3635 rcw = 0; 3636 for (i = disks; i--; ) { 3637 struct r5dev *dev = &sh->dev[i]; 3638 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3639 i != sh->pd_idx && i != sh->qd_idx && 3640 !test_bit(R5_LOCKED, &dev->flags) && 3641 !(test_bit(R5_UPTODATE, &dev->flags) || 3642 test_bit(R5_Wantcompute, &dev->flags))) { 3643 rcw++; 3644 if (test_bit(R5_Insync, &dev->flags) && 3645 test_bit(STRIPE_PREREAD_ACTIVE, 3646 &sh->state)) { 3647 pr_debug("Read_old block " 3648 "%d for Reconstruct\n", i); 3649 set_bit(R5_LOCKED, &dev->flags); 3650 set_bit(R5_Wantread, &dev->flags); 3651 s->locked++; 3652 qread++; 3653 } else { 3654 set_bit(STRIPE_DELAYED, &sh->state); 3655 set_bit(STRIPE_HANDLE, &sh->state); 3656 } 3657 } 3658 } 3659 if (rcw && conf->mddev->queue) 3660 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3661 (unsigned long long)sh->sector, 3662 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3663 } 3664 3665 if (rcw > disks && rmw > disks && 3666 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3667 set_bit(STRIPE_DELAYED, &sh->state); 3668 3669 /* now if nothing is locked, and if we have enough data, 3670 * we can start a write request 3671 */ 3672 /* since handle_stripe can be called at any time we need to handle the 3673 * case where a compute block operation has been submitted and then a 3674 * subsequent call wants to start a write request. raid_run_ops only 3675 * handles the case where compute block and reconstruct are requested 3676 * simultaneously. If this is not the case then new writes need to be 3677 * held off until the compute completes. 3678 */ 3679 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3680 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3681 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3682 schedule_reconstruction(sh, s, rcw == 0, 0); 3683 } 3684 3685 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3686 struct stripe_head_state *s, int disks) 3687 { 3688 struct r5dev *dev = NULL; 3689 3690 BUG_ON(sh->batch_head); 3691 set_bit(STRIPE_HANDLE, &sh->state); 3692 3693 switch (sh->check_state) { 3694 case check_state_idle: 3695 /* start a new check operation if there are no failures */ 3696 if (s->failed == 0) { 3697 BUG_ON(s->uptodate != disks); 3698 sh->check_state = check_state_run; 3699 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3700 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3701 s->uptodate--; 3702 break; 3703 } 3704 dev = &sh->dev[s->failed_num[0]]; 3705 /* fall through */ 3706 case check_state_compute_result: 3707 sh->check_state = check_state_idle; 3708 if (!dev) 3709 dev = &sh->dev[sh->pd_idx]; 3710 3711 /* check that a write has not made the stripe insync */ 3712 if (test_bit(STRIPE_INSYNC, &sh->state)) 3713 break; 3714 3715 /* either failed parity check, or recovery is happening */ 3716 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3717 BUG_ON(s->uptodate != disks); 3718 3719 set_bit(R5_LOCKED, &dev->flags); 3720 s->locked++; 3721 set_bit(R5_Wantwrite, &dev->flags); 3722 3723 clear_bit(STRIPE_DEGRADED, &sh->state); 3724 set_bit(STRIPE_INSYNC, &sh->state); 3725 break; 3726 case check_state_run: 3727 break; /* we will be called again upon completion */ 3728 case check_state_check_result: 3729 sh->check_state = check_state_idle; 3730 3731 /* if a failure occurred during the check operation, leave 3732 * STRIPE_INSYNC not set and let the stripe be handled again 3733 */ 3734 if (s->failed) 3735 break; 3736 3737 /* handle a successful check operation, if parity is correct 3738 * we are done. Otherwise update the mismatch count and repair 3739 * parity if !MD_RECOVERY_CHECK 3740 */ 3741 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3742 /* parity is correct (on disc, 3743 * not in buffer any more) 3744 */ 3745 set_bit(STRIPE_INSYNC, &sh->state); 3746 else { 3747 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3748 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3749 /* don't try to repair!! */ 3750 set_bit(STRIPE_INSYNC, &sh->state); 3751 else { 3752 sh->check_state = check_state_compute_run; 3753 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3754 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3755 set_bit(R5_Wantcompute, 3756 &sh->dev[sh->pd_idx].flags); 3757 sh->ops.target = sh->pd_idx; 3758 sh->ops.target2 = -1; 3759 s->uptodate++; 3760 } 3761 } 3762 break; 3763 case check_state_compute_run: 3764 break; 3765 default: 3766 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3767 __func__, sh->check_state, 3768 (unsigned long long) sh->sector); 3769 BUG(); 3770 } 3771 } 3772 3773 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3774 struct stripe_head_state *s, 3775 int disks) 3776 { 3777 int pd_idx = sh->pd_idx; 3778 int qd_idx = sh->qd_idx; 3779 struct r5dev *dev; 3780 3781 BUG_ON(sh->batch_head); 3782 set_bit(STRIPE_HANDLE, &sh->state); 3783 3784 BUG_ON(s->failed > 2); 3785 3786 /* Want to check and possibly repair P and Q. 3787 * However there could be one 'failed' device, in which 3788 * case we can only check one of them, possibly using the 3789 * other to generate missing data 3790 */ 3791 3792 switch (sh->check_state) { 3793 case check_state_idle: 3794 /* start a new check operation if there are < 2 failures */ 3795 if (s->failed == s->q_failed) { 3796 /* The only possible failed device holds Q, so it 3797 * makes sense to check P (If anything else were failed, 3798 * we would have used P to recreate it). 3799 */ 3800 sh->check_state = check_state_run; 3801 } 3802 if (!s->q_failed && s->failed < 2) { 3803 /* Q is not failed, and we didn't use it to generate 3804 * anything, so it makes sense to check it 3805 */ 3806 if (sh->check_state == check_state_run) 3807 sh->check_state = check_state_run_pq; 3808 else 3809 sh->check_state = check_state_run_q; 3810 } 3811 3812 /* discard potentially stale zero_sum_result */ 3813 sh->ops.zero_sum_result = 0; 3814 3815 if (sh->check_state == check_state_run) { 3816 /* async_xor_zero_sum destroys the contents of P */ 3817 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3818 s->uptodate--; 3819 } 3820 if (sh->check_state >= check_state_run && 3821 sh->check_state <= check_state_run_pq) { 3822 /* async_syndrome_zero_sum preserves P and Q, so 3823 * no need to mark them !uptodate here 3824 */ 3825 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3826 break; 3827 } 3828 3829 /* we have 2-disk failure */ 3830 BUG_ON(s->failed != 2); 3831 /* fall through */ 3832 case check_state_compute_result: 3833 sh->check_state = check_state_idle; 3834 3835 /* check that a write has not made the stripe insync */ 3836 if (test_bit(STRIPE_INSYNC, &sh->state)) 3837 break; 3838 3839 /* now write out any block on a failed drive, 3840 * or P or Q if they were recomputed 3841 */ 3842 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3843 if (s->failed == 2) { 3844 dev = &sh->dev[s->failed_num[1]]; 3845 s->locked++; 3846 set_bit(R5_LOCKED, &dev->flags); 3847 set_bit(R5_Wantwrite, &dev->flags); 3848 } 3849 if (s->failed >= 1) { 3850 dev = &sh->dev[s->failed_num[0]]; 3851 s->locked++; 3852 set_bit(R5_LOCKED, &dev->flags); 3853 set_bit(R5_Wantwrite, &dev->flags); 3854 } 3855 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3856 dev = &sh->dev[pd_idx]; 3857 s->locked++; 3858 set_bit(R5_LOCKED, &dev->flags); 3859 set_bit(R5_Wantwrite, &dev->flags); 3860 } 3861 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3862 dev = &sh->dev[qd_idx]; 3863 s->locked++; 3864 set_bit(R5_LOCKED, &dev->flags); 3865 set_bit(R5_Wantwrite, &dev->flags); 3866 } 3867 clear_bit(STRIPE_DEGRADED, &sh->state); 3868 3869 set_bit(STRIPE_INSYNC, &sh->state); 3870 break; 3871 case check_state_run: 3872 case check_state_run_q: 3873 case check_state_run_pq: 3874 break; /* we will be called again upon completion */ 3875 case check_state_check_result: 3876 sh->check_state = check_state_idle; 3877 3878 /* handle a successful check operation, if parity is correct 3879 * we are done. Otherwise update the mismatch count and repair 3880 * parity if !MD_RECOVERY_CHECK 3881 */ 3882 if (sh->ops.zero_sum_result == 0) { 3883 /* both parities are correct */ 3884 if (!s->failed) 3885 set_bit(STRIPE_INSYNC, &sh->state); 3886 else { 3887 /* in contrast to the raid5 case we can validate 3888 * parity, but still have a failure to write 3889 * back 3890 */ 3891 sh->check_state = check_state_compute_result; 3892 /* Returning at this point means that we may go 3893 * off and bring p and/or q uptodate again so 3894 * we make sure to check zero_sum_result again 3895 * to verify if p or q need writeback 3896 */ 3897 } 3898 } else { 3899 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3900 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3901 /* don't try to repair!! */ 3902 set_bit(STRIPE_INSYNC, &sh->state); 3903 else { 3904 int *target = &sh->ops.target; 3905 3906 sh->ops.target = -1; 3907 sh->ops.target2 = -1; 3908 sh->check_state = check_state_compute_run; 3909 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3910 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3911 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3912 set_bit(R5_Wantcompute, 3913 &sh->dev[pd_idx].flags); 3914 *target = pd_idx; 3915 target = &sh->ops.target2; 3916 s->uptodate++; 3917 } 3918 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3919 set_bit(R5_Wantcompute, 3920 &sh->dev[qd_idx].flags); 3921 *target = qd_idx; 3922 s->uptodate++; 3923 } 3924 } 3925 } 3926 break; 3927 case check_state_compute_run: 3928 break; 3929 default: 3930 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3931 __func__, sh->check_state, 3932 (unsigned long long) sh->sector); 3933 BUG(); 3934 } 3935 } 3936 3937 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3938 { 3939 int i; 3940 3941 /* We have read all the blocks in this stripe and now we need to 3942 * copy some of them into a target stripe for expand. 3943 */ 3944 struct dma_async_tx_descriptor *tx = NULL; 3945 BUG_ON(sh->batch_head); 3946 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3947 for (i = 0; i < sh->disks; i++) 3948 if (i != sh->pd_idx && i != sh->qd_idx) { 3949 int dd_idx, j; 3950 struct stripe_head *sh2; 3951 struct async_submit_ctl submit; 3952 3953 sector_t bn = raid5_compute_blocknr(sh, i, 1); 3954 sector_t s = raid5_compute_sector(conf, bn, 0, 3955 &dd_idx, NULL); 3956 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 3957 if (sh2 == NULL) 3958 /* so far only the early blocks of this stripe 3959 * have been requested. When later blocks 3960 * get requested, we will try again 3961 */ 3962 continue; 3963 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3964 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3965 /* must have already done this block */ 3966 raid5_release_stripe(sh2); 3967 continue; 3968 } 3969 3970 /* place all the copies on one channel */ 3971 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3972 tx = async_memcpy(sh2->dev[dd_idx].page, 3973 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3974 &submit); 3975 3976 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3977 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3978 for (j = 0; j < conf->raid_disks; j++) 3979 if (j != sh2->pd_idx && 3980 j != sh2->qd_idx && 3981 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3982 break; 3983 if (j == conf->raid_disks) { 3984 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3985 set_bit(STRIPE_HANDLE, &sh2->state); 3986 } 3987 raid5_release_stripe(sh2); 3988 3989 } 3990 /* done submitting copies, wait for them to complete */ 3991 async_tx_quiesce(&tx); 3992 } 3993 3994 /* 3995 * handle_stripe - do things to a stripe. 3996 * 3997 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3998 * state of various bits to see what needs to be done. 3999 * Possible results: 4000 * return some read requests which now have data 4001 * return some write requests which are safely on storage 4002 * schedule a read on some buffers 4003 * schedule a write of some buffers 4004 * return confirmation of parity correctness 4005 * 4006 */ 4007 4008 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4009 { 4010 struct r5conf *conf = sh->raid_conf; 4011 int disks = sh->disks; 4012 struct r5dev *dev; 4013 int i; 4014 int do_recovery = 0; 4015 4016 memset(s, 0, sizeof(*s)); 4017 4018 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4019 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4020 s->failed_num[0] = -1; 4021 s->failed_num[1] = -1; 4022 s->log_failed = r5l_log_disk_error(conf); 4023 4024 /* Now to look around and see what can be done */ 4025 rcu_read_lock(); 4026 for (i=disks; i--; ) { 4027 struct md_rdev *rdev; 4028 sector_t first_bad; 4029 int bad_sectors; 4030 int is_bad = 0; 4031 4032 dev = &sh->dev[i]; 4033 4034 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4035 i, dev->flags, 4036 dev->toread, dev->towrite, dev->written); 4037 /* maybe we can reply to a read 4038 * 4039 * new wantfill requests are only permitted while 4040 * ops_complete_biofill is guaranteed to be inactive 4041 */ 4042 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4043 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4044 set_bit(R5_Wantfill, &dev->flags); 4045 4046 /* now count some things */ 4047 if (test_bit(R5_LOCKED, &dev->flags)) 4048 s->locked++; 4049 if (test_bit(R5_UPTODATE, &dev->flags)) 4050 s->uptodate++; 4051 if (test_bit(R5_Wantcompute, &dev->flags)) { 4052 s->compute++; 4053 BUG_ON(s->compute > 2); 4054 } 4055 4056 if (test_bit(R5_Wantfill, &dev->flags)) 4057 s->to_fill++; 4058 else if (dev->toread) 4059 s->to_read++; 4060 if (dev->towrite) { 4061 s->to_write++; 4062 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4063 s->non_overwrite++; 4064 } 4065 if (dev->written) 4066 s->written++; 4067 /* Prefer to use the replacement for reads, but only 4068 * if it is recovered enough and has no bad blocks. 4069 */ 4070 rdev = rcu_dereference(conf->disks[i].replacement); 4071 if (rdev && !test_bit(Faulty, &rdev->flags) && 4072 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4073 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4074 &first_bad, &bad_sectors)) 4075 set_bit(R5_ReadRepl, &dev->flags); 4076 else { 4077 if (rdev && !test_bit(Faulty, &rdev->flags)) 4078 set_bit(R5_NeedReplace, &dev->flags); 4079 else 4080 clear_bit(R5_NeedReplace, &dev->flags); 4081 rdev = rcu_dereference(conf->disks[i].rdev); 4082 clear_bit(R5_ReadRepl, &dev->flags); 4083 } 4084 if (rdev && test_bit(Faulty, &rdev->flags)) 4085 rdev = NULL; 4086 if (rdev) { 4087 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4088 &first_bad, &bad_sectors); 4089 if (s->blocked_rdev == NULL 4090 && (test_bit(Blocked, &rdev->flags) 4091 || is_bad < 0)) { 4092 if (is_bad < 0) 4093 set_bit(BlockedBadBlocks, 4094 &rdev->flags); 4095 s->blocked_rdev = rdev; 4096 atomic_inc(&rdev->nr_pending); 4097 } 4098 } 4099 clear_bit(R5_Insync, &dev->flags); 4100 if (!rdev) 4101 /* Not in-sync */; 4102 else if (is_bad) { 4103 /* also not in-sync */ 4104 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4105 test_bit(R5_UPTODATE, &dev->flags)) { 4106 /* treat as in-sync, but with a read error 4107 * which we can now try to correct 4108 */ 4109 set_bit(R5_Insync, &dev->flags); 4110 set_bit(R5_ReadError, &dev->flags); 4111 } 4112 } else if (test_bit(In_sync, &rdev->flags)) 4113 set_bit(R5_Insync, &dev->flags); 4114 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4115 /* in sync if before recovery_offset */ 4116 set_bit(R5_Insync, &dev->flags); 4117 else if (test_bit(R5_UPTODATE, &dev->flags) && 4118 test_bit(R5_Expanded, &dev->flags)) 4119 /* If we've reshaped into here, we assume it is Insync. 4120 * We will shortly update recovery_offset to make 4121 * it official. 4122 */ 4123 set_bit(R5_Insync, &dev->flags); 4124 4125 if (test_bit(R5_WriteError, &dev->flags)) { 4126 /* This flag does not apply to '.replacement' 4127 * only to .rdev, so make sure to check that*/ 4128 struct md_rdev *rdev2 = rcu_dereference( 4129 conf->disks[i].rdev); 4130 if (rdev2 == rdev) 4131 clear_bit(R5_Insync, &dev->flags); 4132 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4133 s->handle_bad_blocks = 1; 4134 atomic_inc(&rdev2->nr_pending); 4135 } else 4136 clear_bit(R5_WriteError, &dev->flags); 4137 } 4138 if (test_bit(R5_MadeGood, &dev->flags)) { 4139 /* This flag does not apply to '.replacement' 4140 * only to .rdev, so make sure to check that*/ 4141 struct md_rdev *rdev2 = rcu_dereference( 4142 conf->disks[i].rdev); 4143 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4144 s->handle_bad_blocks = 1; 4145 atomic_inc(&rdev2->nr_pending); 4146 } else 4147 clear_bit(R5_MadeGood, &dev->flags); 4148 } 4149 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4150 struct md_rdev *rdev2 = rcu_dereference( 4151 conf->disks[i].replacement); 4152 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4153 s->handle_bad_blocks = 1; 4154 atomic_inc(&rdev2->nr_pending); 4155 } else 4156 clear_bit(R5_MadeGoodRepl, &dev->flags); 4157 } 4158 if (!test_bit(R5_Insync, &dev->flags)) { 4159 /* The ReadError flag will just be confusing now */ 4160 clear_bit(R5_ReadError, &dev->flags); 4161 clear_bit(R5_ReWrite, &dev->flags); 4162 } 4163 if (test_bit(R5_ReadError, &dev->flags)) 4164 clear_bit(R5_Insync, &dev->flags); 4165 if (!test_bit(R5_Insync, &dev->flags)) { 4166 if (s->failed < 2) 4167 s->failed_num[s->failed] = i; 4168 s->failed++; 4169 if (rdev && !test_bit(Faulty, &rdev->flags)) 4170 do_recovery = 1; 4171 } 4172 } 4173 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4174 /* If there is a failed device being replaced, 4175 * we must be recovering. 4176 * else if we are after recovery_cp, we must be syncing 4177 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4178 * else we can only be replacing 4179 * sync and recovery both need to read all devices, and so 4180 * use the same flag. 4181 */ 4182 if (do_recovery || 4183 sh->sector >= conf->mddev->recovery_cp || 4184 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4185 s->syncing = 1; 4186 else 4187 s->replacing = 1; 4188 } 4189 rcu_read_unlock(); 4190 } 4191 4192 static int clear_batch_ready(struct stripe_head *sh) 4193 { 4194 /* Return '1' if this is a member of batch, or 4195 * '0' if it is a lone stripe or a head which can now be 4196 * handled. 4197 */ 4198 struct stripe_head *tmp; 4199 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4200 return (sh->batch_head && sh->batch_head != sh); 4201 spin_lock(&sh->stripe_lock); 4202 if (!sh->batch_head) { 4203 spin_unlock(&sh->stripe_lock); 4204 return 0; 4205 } 4206 4207 /* 4208 * this stripe could be added to a batch list before we check 4209 * BATCH_READY, skips it 4210 */ 4211 if (sh->batch_head != sh) { 4212 spin_unlock(&sh->stripe_lock); 4213 return 1; 4214 } 4215 spin_lock(&sh->batch_lock); 4216 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4217 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4218 spin_unlock(&sh->batch_lock); 4219 spin_unlock(&sh->stripe_lock); 4220 4221 /* 4222 * BATCH_READY is cleared, no new stripes can be added. 4223 * batch_list can be accessed without lock 4224 */ 4225 return 0; 4226 } 4227 4228 static void break_stripe_batch_list(struct stripe_head *head_sh, 4229 unsigned long handle_flags) 4230 { 4231 struct stripe_head *sh, *next; 4232 int i; 4233 int do_wakeup = 0; 4234 4235 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4236 4237 list_del_init(&sh->batch_list); 4238 4239 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4240 (1 << STRIPE_SYNCING) | 4241 (1 << STRIPE_REPLACED) | 4242 (1 << STRIPE_DELAYED) | 4243 (1 << STRIPE_BIT_DELAY) | 4244 (1 << STRIPE_FULL_WRITE) | 4245 (1 << STRIPE_BIOFILL_RUN) | 4246 (1 << STRIPE_COMPUTE_RUN) | 4247 (1 << STRIPE_OPS_REQ_PENDING) | 4248 (1 << STRIPE_DISCARD) | 4249 (1 << STRIPE_BATCH_READY) | 4250 (1 << STRIPE_BATCH_ERR) | 4251 (1 << STRIPE_BITMAP_PENDING)), 4252 "stripe state: %lx\n", sh->state); 4253 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4254 (1 << STRIPE_REPLACED)), 4255 "head stripe state: %lx\n", head_sh->state); 4256 4257 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4258 (1 << STRIPE_PREREAD_ACTIVE) | 4259 (1 << STRIPE_DEGRADED)), 4260 head_sh->state & (1 << STRIPE_INSYNC)); 4261 4262 sh->check_state = head_sh->check_state; 4263 sh->reconstruct_state = head_sh->reconstruct_state; 4264 for (i = 0; i < sh->disks; i++) { 4265 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4266 do_wakeup = 1; 4267 sh->dev[i].flags = head_sh->dev[i].flags & 4268 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4269 } 4270 spin_lock_irq(&sh->stripe_lock); 4271 sh->batch_head = NULL; 4272 spin_unlock_irq(&sh->stripe_lock); 4273 if (handle_flags == 0 || 4274 sh->state & handle_flags) 4275 set_bit(STRIPE_HANDLE, &sh->state); 4276 raid5_release_stripe(sh); 4277 } 4278 spin_lock_irq(&head_sh->stripe_lock); 4279 head_sh->batch_head = NULL; 4280 spin_unlock_irq(&head_sh->stripe_lock); 4281 for (i = 0; i < head_sh->disks; i++) 4282 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4283 do_wakeup = 1; 4284 if (head_sh->state & handle_flags) 4285 set_bit(STRIPE_HANDLE, &head_sh->state); 4286 4287 if (do_wakeup) 4288 wake_up(&head_sh->raid_conf->wait_for_overlap); 4289 } 4290 4291 static void handle_stripe(struct stripe_head *sh) 4292 { 4293 struct stripe_head_state s; 4294 struct r5conf *conf = sh->raid_conf; 4295 int i; 4296 int prexor; 4297 int disks = sh->disks; 4298 struct r5dev *pdev, *qdev; 4299 4300 clear_bit(STRIPE_HANDLE, &sh->state); 4301 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4302 /* already being handled, ensure it gets handled 4303 * again when current action finishes */ 4304 set_bit(STRIPE_HANDLE, &sh->state); 4305 return; 4306 } 4307 4308 if (clear_batch_ready(sh) ) { 4309 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4310 return; 4311 } 4312 4313 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4314 break_stripe_batch_list(sh, 0); 4315 4316 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4317 spin_lock(&sh->stripe_lock); 4318 /* Cannot process 'sync' concurrently with 'discard' */ 4319 if (!test_bit(STRIPE_DISCARD, &sh->state) && 4320 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4321 set_bit(STRIPE_SYNCING, &sh->state); 4322 clear_bit(STRIPE_INSYNC, &sh->state); 4323 clear_bit(STRIPE_REPLACED, &sh->state); 4324 } 4325 spin_unlock(&sh->stripe_lock); 4326 } 4327 clear_bit(STRIPE_DELAYED, &sh->state); 4328 4329 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4330 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4331 (unsigned long long)sh->sector, sh->state, 4332 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4333 sh->check_state, sh->reconstruct_state); 4334 4335 analyse_stripe(sh, &s); 4336 4337 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4338 goto finish; 4339 4340 if (s.handle_bad_blocks) { 4341 set_bit(STRIPE_HANDLE, &sh->state); 4342 goto finish; 4343 } 4344 4345 if (unlikely(s.blocked_rdev)) { 4346 if (s.syncing || s.expanding || s.expanded || 4347 s.replacing || s.to_write || s.written) { 4348 set_bit(STRIPE_HANDLE, &sh->state); 4349 goto finish; 4350 } 4351 /* There is nothing for the blocked_rdev to block */ 4352 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4353 s.blocked_rdev = NULL; 4354 } 4355 4356 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4357 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4358 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4359 } 4360 4361 pr_debug("locked=%d uptodate=%d to_read=%d" 4362 " to_write=%d failed=%d failed_num=%d,%d\n", 4363 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4364 s.failed_num[0], s.failed_num[1]); 4365 /* check if the array has lost more than max_degraded devices and, 4366 * if so, some requests might need to be failed. 4367 */ 4368 if (s.failed > conf->max_degraded || s.log_failed) { 4369 sh->check_state = 0; 4370 sh->reconstruct_state = 0; 4371 break_stripe_batch_list(sh, 0); 4372 if (s.to_read+s.to_write+s.written) 4373 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 4374 if (s.syncing + s.replacing) 4375 handle_failed_sync(conf, sh, &s); 4376 } 4377 4378 /* Now we check to see if any write operations have recently 4379 * completed 4380 */ 4381 prexor = 0; 4382 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4383 prexor = 1; 4384 if (sh->reconstruct_state == reconstruct_state_drain_result || 4385 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4386 sh->reconstruct_state = reconstruct_state_idle; 4387 4388 /* All the 'written' buffers and the parity block are ready to 4389 * be written back to disk 4390 */ 4391 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4392 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4393 BUG_ON(sh->qd_idx >= 0 && 4394 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4395 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4396 for (i = disks; i--; ) { 4397 struct r5dev *dev = &sh->dev[i]; 4398 if (test_bit(R5_LOCKED, &dev->flags) && 4399 (i == sh->pd_idx || i == sh->qd_idx || 4400 dev->written)) { 4401 pr_debug("Writing block %d\n", i); 4402 set_bit(R5_Wantwrite, &dev->flags); 4403 if (prexor) 4404 continue; 4405 if (s.failed > 1) 4406 continue; 4407 if (!test_bit(R5_Insync, &dev->flags) || 4408 ((i == sh->pd_idx || i == sh->qd_idx) && 4409 s.failed == 0)) 4410 set_bit(STRIPE_INSYNC, &sh->state); 4411 } 4412 } 4413 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4414 s.dec_preread_active = 1; 4415 } 4416 4417 /* 4418 * might be able to return some write requests if the parity blocks 4419 * are safe, or on a failed drive 4420 */ 4421 pdev = &sh->dev[sh->pd_idx]; 4422 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4423 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4424 qdev = &sh->dev[sh->qd_idx]; 4425 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4426 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4427 || conf->level < 6; 4428 4429 if (s.written && 4430 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4431 && !test_bit(R5_LOCKED, &pdev->flags) 4432 && (test_bit(R5_UPTODATE, &pdev->flags) || 4433 test_bit(R5_Discard, &pdev->flags))))) && 4434 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4435 && !test_bit(R5_LOCKED, &qdev->flags) 4436 && (test_bit(R5_UPTODATE, &qdev->flags) || 4437 test_bit(R5_Discard, &qdev->flags)))))) 4438 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 4439 4440 /* Now we might consider reading some blocks, either to check/generate 4441 * parity, or to satisfy requests 4442 * or to load a block that is being partially written. 4443 */ 4444 if (s.to_read || s.non_overwrite 4445 || (conf->level == 6 && s.to_write && s.failed) 4446 || (s.syncing && (s.uptodate + s.compute < disks)) 4447 || s.replacing 4448 || s.expanding) 4449 handle_stripe_fill(sh, &s, disks); 4450 4451 /* Now to consider new write requests and what else, if anything 4452 * should be read. We do not handle new writes when: 4453 * 1/ A 'write' operation (copy+xor) is already in flight. 4454 * 2/ A 'check' operation is in flight, as it may clobber the parity 4455 * block. 4456 */ 4457 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 4458 handle_stripe_dirtying(conf, sh, &s, disks); 4459 4460 /* maybe we need to check and possibly fix the parity for this stripe 4461 * Any reads will already have been scheduled, so we just see if enough 4462 * data is available. The parity check is held off while parity 4463 * dependent operations are in flight. 4464 */ 4465 if (sh->check_state || 4466 (s.syncing && s.locked == 0 && 4467 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4468 !test_bit(STRIPE_INSYNC, &sh->state))) { 4469 if (conf->level == 6) 4470 handle_parity_checks6(conf, sh, &s, disks); 4471 else 4472 handle_parity_checks5(conf, sh, &s, disks); 4473 } 4474 4475 if ((s.replacing || s.syncing) && s.locked == 0 4476 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4477 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4478 /* Write out to replacement devices where possible */ 4479 for (i = 0; i < conf->raid_disks; i++) 4480 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4481 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4482 set_bit(R5_WantReplace, &sh->dev[i].flags); 4483 set_bit(R5_LOCKED, &sh->dev[i].flags); 4484 s.locked++; 4485 } 4486 if (s.replacing) 4487 set_bit(STRIPE_INSYNC, &sh->state); 4488 set_bit(STRIPE_REPLACED, &sh->state); 4489 } 4490 if ((s.syncing || s.replacing) && s.locked == 0 && 4491 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4492 test_bit(STRIPE_INSYNC, &sh->state)) { 4493 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4494 clear_bit(STRIPE_SYNCING, &sh->state); 4495 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4496 wake_up(&conf->wait_for_overlap); 4497 } 4498 4499 /* If the failed drives are just a ReadError, then we might need 4500 * to progress the repair/check process 4501 */ 4502 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4503 for (i = 0; i < s.failed; i++) { 4504 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4505 if (test_bit(R5_ReadError, &dev->flags) 4506 && !test_bit(R5_LOCKED, &dev->flags) 4507 && test_bit(R5_UPTODATE, &dev->flags) 4508 ) { 4509 if (!test_bit(R5_ReWrite, &dev->flags)) { 4510 set_bit(R5_Wantwrite, &dev->flags); 4511 set_bit(R5_ReWrite, &dev->flags); 4512 set_bit(R5_LOCKED, &dev->flags); 4513 s.locked++; 4514 } else { 4515 /* let's read it back */ 4516 set_bit(R5_Wantread, &dev->flags); 4517 set_bit(R5_LOCKED, &dev->flags); 4518 s.locked++; 4519 } 4520 } 4521 } 4522 4523 /* Finish reconstruct operations initiated by the expansion process */ 4524 if (sh->reconstruct_state == reconstruct_state_result) { 4525 struct stripe_head *sh_src 4526 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4527 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4528 /* sh cannot be written until sh_src has been read. 4529 * so arrange for sh to be delayed a little 4530 */ 4531 set_bit(STRIPE_DELAYED, &sh->state); 4532 set_bit(STRIPE_HANDLE, &sh->state); 4533 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4534 &sh_src->state)) 4535 atomic_inc(&conf->preread_active_stripes); 4536 raid5_release_stripe(sh_src); 4537 goto finish; 4538 } 4539 if (sh_src) 4540 raid5_release_stripe(sh_src); 4541 4542 sh->reconstruct_state = reconstruct_state_idle; 4543 clear_bit(STRIPE_EXPANDING, &sh->state); 4544 for (i = conf->raid_disks; i--; ) { 4545 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4546 set_bit(R5_LOCKED, &sh->dev[i].flags); 4547 s.locked++; 4548 } 4549 } 4550 4551 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4552 !sh->reconstruct_state) { 4553 /* Need to write out all blocks after computing parity */ 4554 sh->disks = conf->raid_disks; 4555 stripe_set_idx(sh->sector, conf, 0, sh); 4556 schedule_reconstruction(sh, &s, 1, 1); 4557 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4558 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4559 atomic_dec(&conf->reshape_stripes); 4560 wake_up(&conf->wait_for_overlap); 4561 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4562 } 4563 4564 if (s.expanding && s.locked == 0 && 4565 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4566 handle_stripe_expansion(conf, sh); 4567 4568 finish: 4569 /* wait for this device to become unblocked */ 4570 if (unlikely(s.blocked_rdev)) { 4571 if (conf->mddev->external) 4572 md_wait_for_blocked_rdev(s.blocked_rdev, 4573 conf->mddev); 4574 else 4575 /* Internal metadata will immediately 4576 * be written by raid5d, so we don't 4577 * need to wait here. 4578 */ 4579 rdev_dec_pending(s.blocked_rdev, 4580 conf->mddev); 4581 } 4582 4583 if (s.handle_bad_blocks) 4584 for (i = disks; i--; ) { 4585 struct md_rdev *rdev; 4586 struct r5dev *dev = &sh->dev[i]; 4587 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4588 /* We own a safe reference to the rdev */ 4589 rdev = conf->disks[i].rdev; 4590 if (!rdev_set_badblocks(rdev, sh->sector, 4591 STRIPE_SECTORS, 0)) 4592 md_error(conf->mddev, rdev); 4593 rdev_dec_pending(rdev, conf->mddev); 4594 } 4595 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4596 rdev = conf->disks[i].rdev; 4597 rdev_clear_badblocks(rdev, sh->sector, 4598 STRIPE_SECTORS, 0); 4599 rdev_dec_pending(rdev, conf->mddev); 4600 } 4601 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4602 rdev = conf->disks[i].replacement; 4603 if (!rdev) 4604 /* rdev have been moved down */ 4605 rdev = conf->disks[i].rdev; 4606 rdev_clear_badblocks(rdev, sh->sector, 4607 STRIPE_SECTORS, 0); 4608 rdev_dec_pending(rdev, conf->mddev); 4609 } 4610 } 4611 4612 if (s.ops_request) 4613 raid_run_ops(sh, s.ops_request); 4614 4615 ops_run_io(sh, &s); 4616 4617 if (s.dec_preread_active) { 4618 /* We delay this until after ops_run_io so that if make_request 4619 * is waiting on a flush, it won't continue until the writes 4620 * have actually been submitted. 4621 */ 4622 atomic_dec(&conf->preread_active_stripes); 4623 if (atomic_read(&conf->preread_active_stripes) < 4624 IO_THRESHOLD) 4625 md_wakeup_thread(conf->mddev->thread); 4626 } 4627 4628 if (!bio_list_empty(&s.return_bi)) { 4629 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) { 4630 spin_lock_irq(&conf->device_lock); 4631 bio_list_merge(&conf->return_bi, &s.return_bi); 4632 spin_unlock_irq(&conf->device_lock); 4633 md_wakeup_thread(conf->mddev->thread); 4634 } else 4635 return_io(&s.return_bi); 4636 } 4637 4638 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4639 } 4640 4641 static void raid5_activate_delayed(struct r5conf *conf) 4642 { 4643 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4644 while (!list_empty(&conf->delayed_list)) { 4645 struct list_head *l = conf->delayed_list.next; 4646 struct stripe_head *sh; 4647 sh = list_entry(l, struct stripe_head, lru); 4648 list_del_init(l); 4649 clear_bit(STRIPE_DELAYED, &sh->state); 4650 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4651 atomic_inc(&conf->preread_active_stripes); 4652 list_add_tail(&sh->lru, &conf->hold_list); 4653 raid5_wakeup_stripe_thread(sh); 4654 } 4655 } 4656 } 4657 4658 static void activate_bit_delay(struct r5conf *conf, 4659 struct list_head *temp_inactive_list) 4660 { 4661 /* device_lock is held */ 4662 struct list_head head; 4663 list_add(&head, &conf->bitmap_list); 4664 list_del_init(&conf->bitmap_list); 4665 while (!list_empty(&head)) { 4666 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4667 int hash; 4668 list_del_init(&sh->lru); 4669 atomic_inc(&sh->count); 4670 hash = sh->hash_lock_index; 4671 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4672 } 4673 } 4674 4675 static int raid5_congested(struct mddev *mddev, int bits) 4676 { 4677 struct r5conf *conf = mddev->private; 4678 4679 /* No difference between reads and writes. Just check 4680 * how busy the stripe_cache is 4681 */ 4682 4683 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 4684 return 1; 4685 if (conf->quiesce) 4686 return 1; 4687 if (atomic_read(&conf->empty_inactive_list_nr)) 4688 return 1; 4689 4690 return 0; 4691 } 4692 4693 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4694 { 4695 struct r5conf *conf = mddev->private; 4696 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); 4697 unsigned int chunk_sectors; 4698 unsigned int bio_sectors = bio_sectors(bio); 4699 4700 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 4701 return chunk_sectors >= 4702 ((sector & (chunk_sectors - 1)) + bio_sectors); 4703 } 4704 4705 /* 4706 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4707 * later sampled by raid5d. 4708 */ 4709 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4710 { 4711 unsigned long flags; 4712 4713 spin_lock_irqsave(&conf->device_lock, flags); 4714 4715 bi->bi_next = conf->retry_read_aligned_list; 4716 conf->retry_read_aligned_list = bi; 4717 4718 spin_unlock_irqrestore(&conf->device_lock, flags); 4719 md_wakeup_thread(conf->mddev->thread); 4720 } 4721 4722 static struct bio *remove_bio_from_retry(struct r5conf *conf) 4723 { 4724 struct bio *bi; 4725 4726 bi = conf->retry_read_aligned; 4727 if (bi) { 4728 conf->retry_read_aligned = NULL; 4729 return bi; 4730 } 4731 bi = conf->retry_read_aligned_list; 4732 if(bi) { 4733 conf->retry_read_aligned_list = bi->bi_next; 4734 bi->bi_next = NULL; 4735 /* 4736 * this sets the active strip count to 1 and the processed 4737 * strip count to zero (upper 8 bits) 4738 */ 4739 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4740 } 4741 4742 return bi; 4743 } 4744 4745 /* 4746 * The "raid5_align_endio" should check if the read succeeded and if it 4747 * did, call bio_endio on the original bio (having bio_put the new bio 4748 * first). 4749 * If the read failed.. 4750 */ 4751 static void raid5_align_endio(struct bio *bi) 4752 { 4753 struct bio* raid_bi = bi->bi_private; 4754 struct mddev *mddev; 4755 struct r5conf *conf; 4756 struct md_rdev *rdev; 4757 int error = bi->bi_error; 4758 4759 bio_put(bi); 4760 4761 rdev = (void*)raid_bi->bi_next; 4762 raid_bi->bi_next = NULL; 4763 mddev = rdev->mddev; 4764 conf = mddev->private; 4765 4766 rdev_dec_pending(rdev, conf->mddev); 4767 4768 if (!error) { 4769 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4770 raid_bi, 0); 4771 bio_endio(raid_bi); 4772 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4773 wake_up(&conf->wait_for_quiescent); 4774 return; 4775 } 4776 4777 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4778 4779 add_bio_to_retry(raid_bi, conf); 4780 } 4781 4782 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 4783 { 4784 struct r5conf *conf = mddev->private; 4785 int dd_idx; 4786 struct bio* align_bi; 4787 struct md_rdev *rdev; 4788 sector_t end_sector; 4789 4790 if (!in_chunk_boundary(mddev, raid_bio)) { 4791 pr_debug("%s: non aligned\n", __func__); 4792 return 0; 4793 } 4794 /* 4795 * use bio_clone_mddev to make a copy of the bio 4796 */ 4797 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4798 if (!align_bi) 4799 return 0; 4800 /* 4801 * set bi_end_io to a new function, and set bi_private to the 4802 * original bio. 4803 */ 4804 align_bi->bi_end_io = raid5_align_endio; 4805 align_bi->bi_private = raid_bio; 4806 /* 4807 * compute position 4808 */ 4809 align_bi->bi_iter.bi_sector = 4810 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 4811 0, &dd_idx, NULL); 4812 4813 end_sector = bio_end_sector(align_bi); 4814 rcu_read_lock(); 4815 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4816 if (!rdev || test_bit(Faulty, &rdev->flags) || 4817 rdev->recovery_offset < end_sector) { 4818 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4819 if (rdev && 4820 (test_bit(Faulty, &rdev->flags) || 4821 !(test_bit(In_sync, &rdev->flags) || 4822 rdev->recovery_offset >= end_sector))) 4823 rdev = NULL; 4824 } 4825 if (rdev) { 4826 sector_t first_bad; 4827 int bad_sectors; 4828 4829 atomic_inc(&rdev->nr_pending); 4830 rcu_read_unlock(); 4831 raid_bio->bi_next = (void*)rdev; 4832 align_bi->bi_bdev = rdev->bdev; 4833 bio_clear_flag(align_bi, BIO_SEG_VALID); 4834 4835 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 4836 bio_sectors(align_bi), 4837 &first_bad, &bad_sectors)) { 4838 bio_put(align_bi); 4839 rdev_dec_pending(rdev, mddev); 4840 return 0; 4841 } 4842 4843 /* No reshape active, so we can trust rdev->data_offset */ 4844 align_bi->bi_iter.bi_sector += rdev->data_offset; 4845 4846 spin_lock_irq(&conf->device_lock); 4847 wait_event_lock_irq(conf->wait_for_quiescent, 4848 conf->quiesce == 0, 4849 conf->device_lock); 4850 atomic_inc(&conf->active_aligned_reads); 4851 spin_unlock_irq(&conf->device_lock); 4852 4853 if (mddev->gendisk) 4854 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4855 align_bi, disk_devt(mddev->gendisk), 4856 raid_bio->bi_iter.bi_sector); 4857 generic_make_request(align_bi); 4858 return 1; 4859 } else { 4860 rcu_read_unlock(); 4861 bio_put(align_bi); 4862 return 0; 4863 } 4864 } 4865 4866 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 4867 { 4868 struct bio *split; 4869 4870 do { 4871 sector_t sector = raid_bio->bi_iter.bi_sector; 4872 unsigned chunk_sects = mddev->chunk_sectors; 4873 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 4874 4875 if (sectors < bio_sectors(raid_bio)) { 4876 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set); 4877 bio_chain(split, raid_bio); 4878 } else 4879 split = raid_bio; 4880 4881 if (!raid5_read_one_chunk(mddev, split)) { 4882 if (split != raid_bio) 4883 generic_make_request(raid_bio); 4884 return split; 4885 } 4886 } while (split != raid_bio); 4887 4888 return NULL; 4889 } 4890 4891 /* __get_priority_stripe - get the next stripe to process 4892 * 4893 * Full stripe writes are allowed to pass preread active stripes up until 4894 * the bypass_threshold is exceeded. In general the bypass_count 4895 * increments when the handle_list is handled before the hold_list; however, it 4896 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4897 * stripe with in flight i/o. The bypass_count will be reset when the 4898 * head of the hold_list has changed, i.e. the head was promoted to the 4899 * handle_list. 4900 */ 4901 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4902 { 4903 struct stripe_head *sh = NULL, *tmp; 4904 struct list_head *handle_list = NULL; 4905 struct r5worker_group *wg = NULL; 4906 4907 if (conf->worker_cnt_per_group == 0) { 4908 handle_list = &conf->handle_list; 4909 } else if (group != ANY_GROUP) { 4910 handle_list = &conf->worker_groups[group].handle_list; 4911 wg = &conf->worker_groups[group]; 4912 } else { 4913 int i; 4914 for (i = 0; i < conf->group_cnt; i++) { 4915 handle_list = &conf->worker_groups[i].handle_list; 4916 wg = &conf->worker_groups[i]; 4917 if (!list_empty(handle_list)) 4918 break; 4919 } 4920 } 4921 4922 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4923 __func__, 4924 list_empty(handle_list) ? "empty" : "busy", 4925 list_empty(&conf->hold_list) ? "empty" : "busy", 4926 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4927 4928 if (!list_empty(handle_list)) { 4929 sh = list_entry(handle_list->next, typeof(*sh), lru); 4930 4931 if (list_empty(&conf->hold_list)) 4932 conf->bypass_count = 0; 4933 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4934 if (conf->hold_list.next == conf->last_hold) 4935 conf->bypass_count++; 4936 else { 4937 conf->last_hold = conf->hold_list.next; 4938 conf->bypass_count -= conf->bypass_threshold; 4939 if (conf->bypass_count < 0) 4940 conf->bypass_count = 0; 4941 } 4942 } 4943 } else if (!list_empty(&conf->hold_list) && 4944 ((conf->bypass_threshold && 4945 conf->bypass_count > conf->bypass_threshold) || 4946 atomic_read(&conf->pending_full_writes) == 0)) { 4947 4948 list_for_each_entry(tmp, &conf->hold_list, lru) { 4949 if (conf->worker_cnt_per_group == 0 || 4950 group == ANY_GROUP || 4951 !cpu_online(tmp->cpu) || 4952 cpu_to_group(tmp->cpu) == group) { 4953 sh = tmp; 4954 break; 4955 } 4956 } 4957 4958 if (sh) { 4959 conf->bypass_count -= conf->bypass_threshold; 4960 if (conf->bypass_count < 0) 4961 conf->bypass_count = 0; 4962 } 4963 wg = NULL; 4964 } 4965 4966 if (!sh) 4967 return NULL; 4968 4969 if (wg) { 4970 wg->stripes_cnt--; 4971 sh->group = NULL; 4972 } 4973 list_del_init(&sh->lru); 4974 BUG_ON(atomic_inc_return(&sh->count) != 1); 4975 return sh; 4976 } 4977 4978 struct raid5_plug_cb { 4979 struct blk_plug_cb cb; 4980 struct list_head list; 4981 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 4982 }; 4983 4984 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4985 { 4986 struct raid5_plug_cb *cb = container_of( 4987 blk_cb, struct raid5_plug_cb, cb); 4988 struct stripe_head *sh; 4989 struct mddev *mddev = cb->cb.data; 4990 struct r5conf *conf = mddev->private; 4991 int cnt = 0; 4992 int hash; 4993 4994 if (cb->list.next && !list_empty(&cb->list)) { 4995 spin_lock_irq(&conf->device_lock); 4996 while (!list_empty(&cb->list)) { 4997 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4998 list_del_init(&sh->lru); 4999 /* 5000 * avoid race release_stripe_plug() sees 5001 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5002 * is still in our list 5003 */ 5004 smp_mb__before_atomic(); 5005 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5006 /* 5007 * STRIPE_ON_RELEASE_LIST could be set here. In that 5008 * case, the count is always > 1 here 5009 */ 5010 hash = sh->hash_lock_index; 5011 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5012 cnt++; 5013 } 5014 spin_unlock_irq(&conf->device_lock); 5015 } 5016 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5017 NR_STRIPE_HASH_LOCKS); 5018 if (mddev->queue) 5019 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5020 kfree(cb); 5021 } 5022 5023 static void release_stripe_plug(struct mddev *mddev, 5024 struct stripe_head *sh) 5025 { 5026 struct blk_plug_cb *blk_cb = blk_check_plugged( 5027 raid5_unplug, mddev, 5028 sizeof(struct raid5_plug_cb)); 5029 struct raid5_plug_cb *cb; 5030 5031 if (!blk_cb) { 5032 raid5_release_stripe(sh); 5033 return; 5034 } 5035 5036 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5037 5038 if (cb->list.next == NULL) { 5039 int i; 5040 INIT_LIST_HEAD(&cb->list); 5041 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5042 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5043 } 5044 5045 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5046 list_add_tail(&sh->lru, &cb->list); 5047 else 5048 raid5_release_stripe(sh); 5049 } 5050 5051 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5052 { 5053 struct r5conf *conf = mddev->private; 5054 sector_t logical_sector, last_sector; 5055 struct stripe_head *sh; 5056 int remaining; 5057 int stripe_sectors; 5058 5059 if (mddev->reshape_position != MaxSector) 5060 /* Skip discard while reshape is happening */ 5061 return; 5062 5063 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5064 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5065 5066 bi->bi_next = NULL; 5067 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5068 5069 stripe_sectors = conf->chunk_sectors * 5070 (conf->raid_disks - conf->max_degraded); 5071 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5072 stripe_sectors); 5073 sector_div(last_sector, stripe_sectors); 5074 5075 logical_sector *= conf->chunk_sectors; 5076 last_sector *= conf->chunk_sectors; 5077 5078 for (; logical_sector < last_sector; 5079 logical_sector += STRIPE_SECTORS) { 5080 DEFINE_WAIT(w); 5081 int d; 5082 again: 5083 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5084 prepare_to_wait(&conf->wait_for_overlap, &w, 5085 TASK_UNINTERRUPTIBLE); 5086 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5087 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5088 raid5_release_stripe(sh); 5089 schedule(); 5090 goto again; 5091 } 5092 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5093 spin_lock_irq(&sh->stripe_lock); 5094 for (d = 0; d < conf->raid_disks; d++) { 5095 if (d == sh->pd_idx || d == sh->qd_idx) 5096 continue; 5097 if (sh->dev[d].towrite || sh->dev[d].toread) { 5098 set_bit(R5_Overlap, &sh->dev[d].flags); 5099 spin_unlock_irq(&sh->stripe_lock); 5100 raid5_release_stripe(sh); 5101 schedule(); 5102 goto again; 5103 } 5104 } 5105 set_bit(STRIPE_DISCARD, &sh->state); 5106 finish_wait(&conf->wait_for_overlap, &w); 5107 sh->overwrite_disks = 0; 5108 for (d = 0; d < conf->raid_disks; d++) { 5109 if (d == sh->pd_idx || d == sh->qd_idx) 5110 continue; 5111 sh->dev[d].towrite = bi; 5112 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5113 raid5_inc_bi_active_stripes(bi); 5114 sh->overwrite_disks++; 5115 } 5116 spin_unlock_irq(&sh->stripe_lock); 5117 if (conf->mddev->bitmap) { 5118 for (d = 0; 5119 d < conf->raid_disks - conf->max_degraded; 5120 d++) 5121 bitmap_startwrite(mddev->bitmap, 5122 sh->sector, 5123 STRIPE_SECTORS, 5124 0); 5125 sh->bm_seq = conf->seq_flush + 1; 5126 set_bit(STRIPE_BIT_DELAY, &sh->state); 5127 } 5128 5129 set_bit(STRIPE_HANDLE, &sh->state); 5130 clear_bit(STRIPE_DELAYED, &sh->state); 5131 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5132 atomic_inc(&conf->preread_active_stripes); 5133 release_stripe_plug(mddev, sh); 5134 } 5135 5136 remaining = raid5_dec_bi_active_stripes(bi); 5137 if (remaining == 0) { 5138 md_write_end(mddev); 5139 bio_endio(bi); 5140 } 5141 } 5142 5143 static void raid5_make_request(struct mddev *mddev, struct bio * bi) 5144 { 5145 struct r5conf *conf = mddev->private; 5146 int dd_idx; 5147 sector_t new_sector; 5148 sector_t logical_sector, last_sector; 5149 struct stripe_head *sh; 5150 const int rw = bio_data_dir(bi); 5151 int remaining; 5152 DEFINE_WAIT(w); 5153 bool do_prepare; 5154 5155 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 5156 int ret = r5l_handle_flush_request(conf->log, bi); 5157 5158 if (ret == 0) 5159 return; 5160 if (ret == -ENODEV) { 5161 md_flush_request(mddev, bi); 5162 return; 5163 } 5164 /* ret == -EAGAIN, fallback */ 5165 } 5166 5167 md_write_start(mddev, bi); 5168 5169 /* 5170 * If array is degraded, better not do chunk aligned read because 5171 * later we might have to read it again in order to reconstruct 5172 * data on failed drives. 5173 */ 5174 if (rw == READ && mddev->degraded == 0 && 5175 mddev->reshape_position == MaxSector) { 5176 bi = chunk_aligned_read(mddev, bi); 5177 if (!bi) 5178 return; 5179 } 5180 5181 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 5182 make_discard_request(mddev, bi); 5183 return; 5184 } 5185 5186 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5187 last_sector = bio_end_sector(bi); 5188 bi->bi_next = NULL; 5189 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5190 5191 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5192 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5193 int previous; 5194 int seq; 5195 5196 do_prepare = false; 5197 retry: 5198 seq = read_seqcount_begin(&conf->gen_lock); 5199 previous = 0; 5200 if (do_prepare) 5201 prepare_to_wait(&conf->wait_for_overlap, &w, 5202 TASK_UNINTERRUPTIBLE); 5203 if (unlikely(conf->reshape_progress != MaxSector)) { 5204 /* spinlock is needed as reshape_progress may be 5205 * 64bit on a 32bit platform, and so it might be 5206 * possible to see a half-updated value 5207 * Of course reshape_progress could change after 5208 * the lock is dropped, so once we get a reference 5209 * to the stripe that we think it is, we will have 5210 * to check again. 5211 */ 5212 spin_lock_irq(&conf->device_lock); 5213 if (mddev->reshape_backwards 5214 ? logical_sector < conf->reshape_progress 5215 : logical_sector >= conf->reshape_progress) { 5216 previous = 1; 5217 } else { 5218 if (mddev->reshape_backwards 5219 ? logical_sector < conf->reshape_safe 5220 : logical_sector >= conf->reshape_safe) { 5221 spin_unlock_irq(&conf->device_lock); 5222 schedule(); 5223 do_prepare = true; 5224 goto retry; 5225 } 5226 } 5227 spin_unlock_irq(&conf->device_lock); 5228 } 5229 5230 new_sector = raid5_compute_sector(conf, logical_sector, 5231 previous, 5232 &dd_idx, NULL); 5233 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5234 (unsigned long long)new_sector, 5235 (unsigned long long)logical_sector); 5236 5237 sh = raid5_get_active_stripe(conf, new_sector, previous, 5238 (bi->bi_rw&RWA_MASK), 0); 5239 if (sh) { 5240 if (unlikely(previous)) { 5241 /* expansion might have moved on while waiting for a 5242 * stripe, so we must do the range check again. 5243 * Expansion could still move past after this 5244 * test, but as we are holding a reference to 5245 * 'sh', we know that if that happens, 5246 * STRIPE_EXPANDING will get set and the expansion 5247 * won't proceed until we finish with the stripe. 5248 */ 5249 int must_retry = 0; 5250 spin_lock_irq(&conf->device_lock); 5251 if (mddev->reshape_backwards 5252 ? logical_sector >= conf->reshape_progress 5253 : logical_sector < conf->reshape_progress) 5254 /* mismatch, need to try again */ 5255 must_retry = 1; 5256 spin_unlock_irq(&conf->device_lock); 5257 if (must_retry) { 5258 raid5_release_stripe(sh); 5259 schedule(); 5260 do_prepare = true; 5261 goto retry; 5262 } 5263 } 5264 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5265 /* Might have got the wrong stripe_head 5266 * by accident 5267 */ 5268 raid5_release_stripe(sh); 5269 goto retry; 5270 } 5271 5272 if (rw == WRITE && 5273 logical_sector >= mddev->suspend_lo && 5274 logical_sector < mddev->suspend_hi) { 5275 raid5_release_stripe(sh); 5276 /* As the suspend_* range is controlled by 5277 * userspace, we want an interruptible 5278 * wait. 5279 */ 5280 flush_signals(current); 5281 prepare_to_wait(&conf->wait_for_overlap, 5282 &w, TASK_INTERRUPTIBLE); 5283 if (logical_sector >= mddev->suspend_lo && 5284 logical_sector < mddev->suspend_hi) { 5285 schedule(); 5286 do_prepare = true; 5287 } 5288 goto retry; 5289 } 5290 5291 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5292 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5293 /* Stripe is busy expanding or 5294 * add failed due to overlap. Flush everything 5295 * and wait a while 5296 */ 5297 md_wakeup_thread(mddev->thread); 5298 raid5_release_stripe(sh); 5299 schedule(); 5300 do_prepare = true; 5301 goto retry; 5302 } 5303 set_bit(STRIPE_HANDLE, &sh->state); 5304 clear_bit(STRIPE_DELAYED, &sh->state); 5305 if ((!sh->batch_head || sh == sh->batch_head) && 5306 (bi->bi_rw & REQ_SYNC) && 5307 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5308 atomic_inc(&conf->preread_active_stripes); 5309 release_stripe_plug(mddev, sh); 5310 } else { 5311 /* cannot get stripe for read-ahead, just give-up */ 5312 bi->bi_error = -EIO; 5313 break; 5314 } 5315 } 5316 finish_wait(&conf->wait_for_overlap, &w); 5317 5318 remaining = raid5_dec_bi_active_stripes(bi); 5319 if (remaining == 0) { 5320 5321 if ( rw == WRITE ) 5322 md_write_end(mddev); 5323 5324 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 5325 bi, 0); 5326 bio_endio(bi); 5327 } 5328 } 5329 5330 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5331 5332 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5333 { 5334 /* reshaping is quite different to recovery/resync so it is 5335 * handled quite separately ... here. 5336 * 5337 * On each call to sync_request, we gather one chunk worth of 5338 * destination stripes and flag them as expanding. 5339 * Then we find all the source stripes and request reads. 5340 * As the reads complete, handle_stripe will copy the data 5341 * into the destination stripe and release that stripe. 5342 */ 5343 struct r5conf *conf = mddev->private; 5344 struct stripe_head *sh; 5345 sector_t first_sector, last_sector; 5346 int raid_disks = conf->previous_raid_disks; 5347 int data_disks = raid_disks - conf->max_degraded; 5348 int new_data_disks = conf->raid_disks - conf->max_degraded; 5349 int i; 5350 int dd_idx; 5351 sector_t writepos, readpos, safepos; 5352 sector_t stripe_addr; 5353 int reshape_sectors; 5354 struct list_head stripes; 5355 sector_t retn; 5356 5357 if (sector_nr == 0) { 5358 /* If restarting in the middle, skip the initial sectors */ 5359 if (mddev->reshape_backwards && 5360 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5361 sector_nr = raid5_size(mddev, 0, 0) 5362 - conf->reshape_progress; 5363 } else if (mddev->reshape_backwards && 5364 conf->reshape_progress == MaxSector) { 5365 /* shouldn't happen, but just in case, finish up.*/ 5366 sector_nr = MaxSector; 5367 } else if (!mddev->reshape_backwards && 5368 conf->reshape_progress > 0) 5369 sector_nr = conf->reshape_progress; 5370 sector_div(sector_nr, new_data_disks); 5371 if (sector_nr) { 5372 mddev->curr_resync_completed = sector_nr; 5373 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5374 *skipped = 1; 5375 retn = sector_nr; 5376 goto finish; 5377 } 5378 } 5379 5380 /* We need to process a full chunk at a time. 5381 * If old and new chunk sizes differ, we need to process the 5382 * largest of these 5383 */ 5384 5385 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5386 5387 /* We update the metadata at least every 10 seconds, or when 5388 * the data about to be copied would over-write the source of 5389 * the data at the front of the range. i.e. one new_stripe 5390 * along from reshape_progress new_maps to after where 5391 * reshape_safe old_maps to 5392 */ 5393 writepos = conf->reshape_progress; 5394 sector_div(writepos, new_data_disks); 5395 readpos = conf->reshape_progress; 5396 sector_div(readpos, data_disks); 5397 safepos = conf->reshape_safe; 5398 sector_div(safepos, data_disks); 5399 if (mddev->reshape_backwards) { 5400 BUG_ON(writepos < reshape_sectors); 5401 writepos -= reshape_sectors; 5402 readpos += reshape_sectors; 5403 safepos += reshape_sectors; 5404 } else { 5405 writepos += reshape_sectors; 5406 /* readpos and safepos are worst-case calculations. 5407 * A negative number is overly pessimistic, and causes 5408 * obvious problems for unsigned storage. So clip to 0. 5409 */ 5410 readpos -= min_t(sector_t, reshape_sectors, readpos); 5411 safepos -= min_t(sector_t, reshape_sectors, safepos); 5412 } 5413 5414 /* Having calculated the 'writepos' possibly use it 5415 * to set 'stripe_addr' which is where we will write to. 5416 */ 5417 if (mddev->reshape_backwards) { 5418 BUG_ON(conf->reshape_progress == 0); 5419 stripe_addr = writepos; 5420 BUG_ON((mddev->dev_sectors & 5421 ~((sector_t)reshape_sectors - 1)) 5422 - reshape_sectors - stripe_addr 5423 != sector_nr); 5424 } else { 5425 BUG_ON(writepos != sector_nr + reshape_sectors); 5426 stripe_addr = sector_nr; 5427 } 5428 5429 /* 'writepos' is the most advanced device address we might write. 5430 * 'readpos' is the least advanced device address we might read. 5431 * 'safepos' is the least address recorded in the metadata as having 5432 * been reshaped. 5433 * If there is a min_offset_diff, these are adjusted either by 5434 * increasing the safepos/readpos if diff is negative, or 5435 * increasing writepos if diff is positive. 5436 * If 'readpos' is then behind 'writepos', there is no way that we can 5437 * ensure safety in the face of a crash - that must be done by userspace 5438 * making a backup of the data. So in that case there is no particular 5439 * rush to update metadata. 5440 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5441 * update the metadata to advance 'safepos' to match 'readpos' so that 5442 * we can be safe in the event of a crash. 5443 * So we insist on updating metadata if safepos is behind writepos and 5444 * readpos is beyond writepos. 5445 * In any case, update the metadata every 10 seconds. 5446 * Maybe that number should be configurable, but I'm not sure it is 5447 * worth it.... maybe it could be a multiple of safemode_delay??? 5448 */ 5449 if (conf->min_offset_diff < 0) { 5450 safepos += -conf->min_offset_diff; 5451 readpos += -conf->min_offset_diff; 5452 } else 5453 writepos += conf->min_offset_diff; 5454 5455 if ((mddev->reshape_backwards 5456 ? (safepos > writepos && readpos < writepos) 5457 : (safepos < writepos && readpos > writepos)) || 5458 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5459 /* Cannot proceed until we've updated the superblock... */ 5460 wait_event(conf->wait_for_overlap, 5461 atomic_read(&conf->reshape_stripes)==0 5462 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5463 if (atomic_read(&conf->reshape_stripes) != 0) 5464 return 0; 5465 mddev->reshape_position = conf->reshape_progress; 5466 mddev->curr_resync_completed = sector_nr; 5467 conf->reshape_checkpoint = jiffies; 5468 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5469 md_wakeup_thread(mddev->thread); 5470 wait_event(mddev->sb_wait, mddev->flags == 0 || 5471 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5472 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5473 return 0; 5474 spin_lock_irq(&conf->device_lock); 5475 conf->reshape_safe = mddev->reshape_position; 5476 spin_unlock_irq(&conf->device_lock); 5477 wake_up(&conf->wait_for_overlap); 5478 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5479 } 5480 5481 INIT_LIST_HEAD(&stripes); 5482 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5483 int j; 5484 int skipped_disk = 0; 5485 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5486 set_bit(STRIPE_EXPANDING, &sh->state); 5487 atomic_inc(&conf->reshape_stripes); 5488 /* If any of this stripe is beyond the end of the old 5489 * array, then we need to zero those blocks 5490 */ 5491 for (j=sh->disks; j--;) { 5492 sector_t s; 5493 if (j == sh->pd_idx) 5494 continue; 5495 if (conf->level == 6 && 5496 j == sh->qd_idx) 5497 continue; 5498 s = raid5_compute_blocknr(sh, j, 0); 5499 if (s < raid5_size(mddev, 0, 0)) { 5500 skipped_disk = 1; 5501 continue; 5502 } 5503 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5504 set_bit(R5_Expanded, &sh->dev[j].flags); 5505 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5506 } 5507 if (!skipped_disk) { 5508 set_bit(STRIPE_EXPAND_READY, &sh->state); 5509 set_bit(STRIPE_HANDLE, &sh->state); 5510 } 5511 list_add(&sh->lru, &stripes); 5512 } 5513 spin_lock_irq(&conf->device_lock); 5514 if (mddev->reshape_backwards) 5515 conf->reshape_progress -= reshape_sectors * new_data_disks; 5516 else 5517 conf->reshape_progress += reshape_sectors * new_data_disks; 5518 spin_unlock_irq(&conf->device_lock); 5519 /* Ok, those stripe are ready. We can start scheduling 5520 * reads on the source stripes. 5521 * The source stripes are determined by mapping the first and last 5522 * block on the destination stripes. 5523 */ 5524 first_sector = 5525 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5526 1, &dd_idx, NULL); 5527 last_sector = 5528 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5529 * new_data_disks - 1), 5530 1, &dd_idx, NULL); 5531 if (last_sector >= mddev->dev_sectors) 5532 last_sector = mddev->dev_sectors - 1; 5533 while (first_sector <= last_sector) { 5534 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5535 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5536 set_bit(STRIPE_HANDLE, &sh->state); 5537 raid5_release_stripe(sh); 5538 first_sector += STRIPE_SECTORS; 5539 } 5540 /* Now that the sources are clearly marked, we can release 5541 * the destination stripes 5542 */ 5543 while (!list_empty(&stripes)) { 5544 sh = list_entry(stripes.next, struct stripe_head, lru); 5545 list_del_init(&sh->lru); 5546 raid5_release_stripe(sh); 5547 } 5548 /* If this takes us to the resync_max point where we have to pause, 5549 * then we need to write out the superblock. 5550 */ 5551 sector_nr += reshape_sectors; 5552 retn = reshape_sectors; 5553 finish: 5554 if (mddev->curr_resync_completed > mddev->resync_max || 5555 (sector_nr - mddev->curr_resync_completed) * 2 5556 >= mddev->resync_max - mddev->curr_resync_completed) { 5557 /* Cannot proceed until we've updated the superblock... */ 5558 wait_event(conf->wait_for_overlap, 5559 atomic_read(&conf->reshape_stripes) == 0 5560 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5561 if (atomic_read(&conf->reshape_stripes) != 0) 5562 goto ret; 5563 mddev->reshape_position = conf->reshape_progress; 5564 mddev->curr_resync_completed = sector_nr; 5565 conf->reshape_checkpoint = jiffies; 5566 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5567 md_wakeup_thread(mddev->thread); 5568 wait_event(mddev->sb_wait, 5569 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 5570 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5571 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5572 goto ret; 5573 spin_lock_irq(&conf->device_lock); 5574 conf->reshape_safe = mddev->reshape_position; 5575 spin_unlock_irq(&conf->device_lock); 5576 wake_up(&conf->wait_for_overlap); 5577 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5578 } 5579 ret: 5580 return retn; 5581 } 5582 5583 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 5584 int *skipped) 5585 { 5586 struct r5conf *conf = mddev->private; 5587 struct stripe_head *sh; 5588 sector_t max_sector = mddev->dev_sectors; 5589 sector_t sync_blocks; 5590 int still_degraded = 0; 5591 int i; 5592 5593 if (sector_nr >= max_sector) { 5594 /* just being told to finish up .. nothing much to do */ 5595 5596 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 5597 end_reshape(conf); 5598 return 0; 5599 } 5600 5601 if (mddev->curr_resync < max_sector) /* aborted */ 5602 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 5603 &sync_blocks, 1); 5604 else /* completed sync */ 5605 conf->fullsync = 0; 5606 bitmap_close_sync(mddev->bitmap); 5607 5608 return 0; 5609 } 5610 5611 /* Allow raid5_quiesce to complete */ 5612 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 5613 5614 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5615 return reshape_request(mddev, sector_nr, skipped); 5616 5617 /* No need to check resync_max as we never do more than one 5618 * stripe, and as resync_max will always be on a chunk boundary, 5619 * if the check in md_do_sync didn't fire, there is no chance 5620 * of overstepping resync_max here 5621 */ 5622 5623 /* if there is too many failed drives and we are trying 5624 * to resync, then assert that we are finished, because there is 5625 * nothing we can do. 5626 */ 5627 if (mddev->degraded >= conf->max_degraded && 5628 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5629 sector_t rv = mddev->dev_sectors - sector_nr; 5630 *skipped = 1; 5631 return rv; 5632 } 5633 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5634 !conf->fullsync && 5635 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5636 sync_blocks >= STRIPE_SECTORS) { 5637 /* we can skip this block, and probably more */ 5638 sync_blocks /= STRIPE_SECTORS; 5639 *skipped = 1; 5640 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5641 } 5642 5643 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 5644 5645 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 5646 if (sh == NULL) { 5647 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 5648 /* make sure we don't swamp the stripe cache if someone else 5649 * is trying to get access 5650 */ 5651 schedule_timeout_uninterruptible(1); 5652 } 5653 /* Need to check if array will still be degraded after recovery/resync 5654 * Note in case of > 1 drive failures it's possible we're rebuilding 5655 * one drive while leaving another faulty drive in array. 5656 */ 5657 rcu_read_lock(); 5658 for (i = 0; i < conf->raid_disks; i++) { 5659 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev); 5660 5661 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 5662 still_degraded = 1; 5663 } 5664 rcu_read_unlock(); 5665 5666 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5667 5668 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5669 set_bit(STRIPE_HANDLE, &sh->state); 5670 5671 raid5_release_stripe(sh); 5672 5673 return STRIPE_SECTORS; 5674 } 5675 5676 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5677 { 5678 /* We may not be able to submit a whole bio at once as there 5679 * may not be enough stripe_heads available. 5680 * We cannot pre-allocate enough stripe_heads as we may need 5681 * more than exist in the cache (if we allow ever large chunks). 5682 * So we do one stripe head at a time and record in 5683 * ->bi_hw_segments how many have been done. 5684 * 5685 * We *know* that this entire raid_bio is in one chunk, so 5686 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5687 */ 5688 struct stripe_head *sh; 5689 int dd_idx; 5690 sector_t sector, logical_sector, last_sector; 5691 int scnt = 0; 5692 int remaining; 5693 int handled = 0; 5694 5695 logical_sector = raid_bio->bi_iter.bi_sector & 5696 ~((sector_t)STRIPE_SECTORS-1); 5697 sector = raid5_compute_sector(conf, logical_sector, 5698 0, &dd_idx, NULL); 5699 last_sector = bio_end_sector(raid_bio); 5700 5701 for (; logical_sector < last_sector; 5702 logical_sector += STRIPE_SECTORS, 5703 sector += STRIPE_SECTORS, 5704 scnt++) { 5705 5706 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5707 /* already done this stripe */ 5708 continue; 5709 5710 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 5711 5712 if (!sh) { 5713 /* failed to get a stripe - must wait */ 5714 raid5_set_bi_processed_stripes(raid_bio, scnt); 5715 conf->retry_read_aligned = raid_bio; 5716 return handled; 5717 } 5718 5719 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 5720 raid5_release_stripe(sh); 5721 raid5_set_bi_processed_stripes(raid_bio, scnt); 5722 conf->retry_read_aligned = raid_bio; 5723 return handled; 5724 } 5725 5726 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5727 handle_stripe(sh); 5728 raid5_release_stripe(sh); 5729 handled++; 5730 } 5731 remaining = raid5_dec_bi_active_stripes(raid_bio); 5732 if (remaining == 0) { 5733 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5734 raid_bio, 0); 5735 bio_endio(raid_bio); 5736 } 5737 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5738 wake_up(&conf->wait_for_quiescent); 5739 return handled; 5740 } 5741 5742 static int handle_active_stripes(struct r5conf *conf, int group, 5743 struct r5worker *worker, 5744 struct list_head *temp_inactive_list) 5745 { 5746 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5747 int i, batch_size = 0, hash; 5748 bool release_inactive = false; 5749 5750 while (batch_size < MAX_STRIPE_BATCH && 5751 (sh = __get_priority_stripe(conf, group)) != NULL) 5752 batch[batch_size++] = sh; 5753 5754 if (batch_size == 0) { 5755 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5756 if (!list_empty(temp_inactive_list + i)) 5757 break; 5758 if (i == NR_STRIPE_HASH_LOCKS) { 5759 spin_unlock_irq(&conf->device_lock); 5760 r5l_flush_stripe_to_raid(conf->log); 5761 spin_lock_irq(&conf->device_lock); 5762 return batch_size; 5763 } 5764 release_inactive = true; 5765 } 5766 spin_unlock_irq(&conf->device_lock); 5767 5768 release_inactive_stripe_list(conf, temp_inactive_list, 5769 NR_STRIPE_HASH_LOCKS); 5770 5771 r5l_flush_stripe_to_raid(conf->log); 5772 if (release_inactive) { 5773 spin_lock_irq(&conf->device_lock); 5774 return 0; 5775 } 5776 5777 for (i = 0; i < batch_size; i++) 5778 handle_stripe(batch[i]); 5779 r5l_write_stripe_run(conf->log); 5780 5781 cond_resched(); 5782 5783 spin_lock_irq(&conf->device_lock); 5784 for (i = 0; i < batch_size; i++) { 5785 hash = batch[i]->hash_lock_index; 5786 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5787 } 5788 return batch_size; 5789 } 5790 5791 static void raid5_do_work(struct work_struct *work) 5792 { 5793 struct r5worker *worker = container_of(work, struct r5worker, work); 5794 struct r5worker_group *group = worker->group; 5795 struct r5conf *conf = group->conf; 5796 int group_id = group - conf->worker_groups; 5797 int handled; 5798 struct blk_plug plug; 5799 5800 pr_debug("+++ raid5worker active\n"); 5801 5802 blk_start_plug(&plug); 5803 handled = 0; 5804 spin_lock_irq(&conf->device_lock); 5805 while (1) { 5806 int batch_size, released; 5807 5808 released = release_stripe_list(conf, worker->temp_inactive_list); 5809 5810 batch_size = handle_active_stripes(conf, group_id, worker, 5811 worker->temp_inactive_list); 5812 worker->working = false; 5813 if (!batch_size && !released) 5814 break; 5815 handled += batch_size; 5816 } 5817 pr_debug("%d stripes handled\n", handled); 5818 5819 spin_unlock_irq(&conf->device_lock); 5820 blk_finish_plug(&plug); 5821 5822 pr_debug("--- raid5worker inactive\n"); 5823 } 5824 5825 /* 5826 * This is our raid5 kernel thread. 5827 * 5828 * We scan the hash table for stripes which can be handled now. 5829 * During the scan, completed stripes are saved for us by the interrupt 5830 * handler, so that they will not have to wait for our next wakeup. 5831 */ 5832 static void raid5d(struct md_thread *thread) 5833 { 5834 struct mddev *mddev = thread->mddev; 5835 struct r5conf *conf = mddev->private; 5836 int handled; 5837 struct blk_plug plug; 5838 5839 pr_debug("+++ raid5d active\n"); 5840 5841 md_check_recovery(mddev); 5842 5843 if (!bio_list_empty(&conf->return_bi) && 5844 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5845 struct bio_list tmp = BIO_EMPTY_LIST; 5846 spin_lock_irq(&conf->device_lock); 5847 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5848 bio_list_merge(&tmp, &conf->return_bi); 5849 bio_list_init(&conf->return_bi); 5850 } 5851 spin_unlock_irq(&conf->device_lock); 5852 return_io(&tmp); 5853 } 5854 5855 blk_start_plug(&plug); 5856 handled = 0; 5857 spin_lock_irq(&conf->device_lock); 5858 while (1) { 5859 struct bio *bio; 5860 int batch_size, released; 5861 5862 released = release_stripe_list(conf, conf->temp_inactive_list); 5863 if (released) 5864 clear_bit(R5_DID_ALLOC, &conf->cache_state); 5865 5866 if ( 5867 !list_empty(&conf->bitmap_list)) { 5868 /* Now is a good time to flush some bitmap updates */ 5869 conf->seq_flush++; 5870 spin_unlock_irq(&conf->device_lock); 5871 bitmap_unplug(mddev->bitmap); 5872 spin_lock_irq(&conf->device_lock); 5873 conf->seq_write = conf->seq_flush; 5874 activate_bit_delay(conf, conf->temp_inactive_list); 5875 } 5876 raid5_activate_delayed(conf); 5877 5878 while ((bio = remove_bio_from_retry(conf))) { 5879 int ok; 5880 spin_unlock_irq(&conf->device_lock); 5881 ok = retry_aligned_read(conf, bio); 5882 spin_lock_irq(&conf->device_lock); 5883 if (!ok) 5884 break; 5885 handled++; 5886 } 5887 5888 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5889 conf->temp_inactive_list); 5890 if (!batch_size && !released) 5891 break; 5892 handled += batch_size; 5893 5894 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5895 spin_unlock_irq(&conf->device_lock); 5896 md_check_recovery(mddev); 5897 spin_lock_irq(&conf->device_lock); 5898 } 5899 } 5900 pr_debug("%d stripes handled\n", handled); 5901 5902 spin_unlock_irq(&conf->device_lock); 5903 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 5904 mutex_trylock(&conf->cache_size_mutex)) { 5905 grow_one_stripe(conf, __GFP_NOWARN); 5906 /* Set flag even if allocation failed. This helps 5907 * slow down allocation requests when mem is short 5908 */ 5909 set_bit(R5_DID_ALLOC, &conf->cache_state); 5910 mutex_unlock(&conf->cache_size_mutex); 5911 } 5912 5913 r5l_flush_stripe_to_raid(conf->log); 5914 5915 async_tx_issue_pending_all(); 5916 blk_finish_plug(&plug); 5917 5918 pr_debug("--- raid5d inactive\n"); 5919 } 5920 5921 static ssize_t 5922 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5923 { 5924 struct r5conf *conf; 5925 int ret = 0; 5926 spin_lock(&mddev->lock); 5927 conf = mddev->private; 5928 if (conf) 5929 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 5930 spin_unlock(&mddev->lock); 5931 return ret; 5932 } 5933 5934 int 5935 raid5_set_cache_size(struct mddev *mddev, int size) 5936 { 5937 struct r5conf *conf = mddev->private; 5938 int err; 5939 5940 if (size <= 16 || size > 32768) 5941 return -EINVAL; 5942 5943 conf->min_nr_stripes = size; 5944 mutex_lock(&conf->cache_size_mutex); 5945 while (size < conf->max_nr_stripes && 5946 drop_one_stripe(conf)) 5947 ; 5948 mutex_unlock(&conf->cache_size_mutex); 5949 5950 5951 err = md_allow_write(mddev); 5952 if (err) 5953 return err; 5954 5955 mutex_lock(&conf->cache_size_mutex); 5956 while (size > conf->max_nr_stripes) 5957 if (!grow_one_stripe(conf, GFP_KERNEL)) 5958 break; 5959 mutex_unlock(&conf->cache_size_mutex); 5960 5961 return 0; 5962 } 5963 EXPORT_SYMBOL(raid5_set_cache_size); 5964 5965 static ssize_t 5966 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5967 { 5968 struct r5conf *conf; 5969 unsigned long new; 5970 int err; 5971 5972 if (len >= PAGE_SIZE) 5973 return -EINVAL; 5974 if (kstrtoul(page, 10, &new)) 5975 return -EINVAL; 5976 err = mddev_lock(mddev); 5977 if (err) 5978 return err; 5979 conf = mddev->private; 5980 if (!conf) 5981 err = -ENODEV; 5982 else 5983 err = raid5_set_cache_size(mddev, new); 5984 mddev_unlock(mddev); 5985 5986 return err ?: len; 5987 } 5988 5989 static struct md_sysfs_entry 5990 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 5991 raid5_show_stripe_cache_size, 5992 raid5_store_stripe_cache_size); 5993 5994 static ssize_t 5995 raid5_show_rmw_level(struct mddev *mddev, char *page) 5996 { 5997 struct r5conf *conf = mddev->private; 5998 if (conf) 5999 return sprintf(page, "%d\n", conf->rmw_level); 6000 else 6001 return 0; 6002 } 6003 6004 static ssize_t 6005 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6006 { 6007 struct r5conf *conf = mddev->private; 6008 unsigned long new; 6009 6010 if (!conf) 6011 return -ENODEV; 6012 6013 if (len >= PAGE_SIZE) 6014 return -EINVAL; 6015 6016 if (kstrtoul(page, 10, &new)) 6017 return -EINVAL; 6018 6019 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6020 return -EINVAL; 6021 6022 if (new != PARITY_DISABLE_RMW && 6023 new != PARITY_ENABLE_RMW && 6024 new != PARITY_PREFER_RMW) 6025 return -EINVAL; 6026 6027 conf->rmw_level = new; 6028 return len; 6029 } 6030 6031 static struct md_sysfs_entry 6032 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6033 raid5_show_rmw_level, 6034 raid5_store_rmw_level); 6035 6036 6037 static ssize_t 6038 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6039 { 6040 struct r5conf *conf; 6041 int ret = 0; 6042 spin_lock(&mddev->lock); 6043 conf = mddev->private; 6044 if (conf) 6045 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6046 spin_unlock(&mddev->lock); 6047 return ret; 6048 } 6049 6050 static ssize_t 6051 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6052 { 6053 struct r5conf *conf; 6054 unsigned long new; 6055 int err; 6056 6057 if (len >= PAGE_SIZE) 6058 return -EINVAL; 6059 if (kstrtoul(page, 10, &new)) 6060 return -EINVAL; 6061 6062 err = mddev_lock(mddev); 6063 if (err) 6064 return err; 6065 conf = mddev->private; 6066 if (!conf) 6067 err = -ENODEV; 6068 else if (new > conf->min_nr_stripes) 6069 err = -EINVAL; 6070 else 6071 conf->bypass_threshold = new; 6072 mddev_unlock(mddev); 6073 return err ?: len; 6074 } 6075 6076 static struct md_sysfs_entry 6077 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6078 S_IRUGO | S_IWUSR, 6079 raid5_show_preread_threshold, 6080 raid5_store_preread_threshold); 6081 6082 static ssize_t 6083 raid5_show_skip_copy(struct mddev *mddev, char *page) 6084 { 6085 struct r5conf *conf; 6086 int ret = 0; 6087 spin_lock(&mddev->lock); 6088 conf = mddev->private; 6089 if (conf) 6090 ret = sprintf(page, "%d\n", conf->skip_copy); 6091 spin_unlock(&mddev->lock); 6092 return ret; 6093 } 6094 6095 static ssize_t 6096 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6097 { 6098 struct r5conf *conf; 6099 unsigned long new; 6100 int err; 6101 6102 if (len >= PAGE_SIZE) 6103 return -EINVAL; 6104 if (kstrtoul(page, 10, &new)) 6105 return -EINVAL; 6106 new = !!new; 6107 6108 err = mddev_lock(mddev); 6109 if (err) 6110 return err; 6111 conf = mddev->private; 6112 if (!conf) 6113 err = -ENODEV; 6114 else if (new != conf->skip_copy) { 6115 mddev_suspend(mddev); 6116 conf->skip_copy = new; 6117 if (new) 6118 mddev->queue->backing_dev_info.capabilities |= 6119 BDI_CAP_STABLE_WRITES; 6120 else 6121 mddev->queue->backing_dev_info.capabilities &= 6122 ~BDI_CAP_STABLE_WRITES; 6123 mddev_resume(mddev); 6124 } 6125 mddev_unlock(mddev); 6126 return err ?: len; 6127 } 6128 6129 static struct md_sysfs_entry 6130 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6131 raid5_show_skip_copy, 6132 raid5_store_skip_copy); 6133 6134 static ssize_t 6135 stripe_cache_active_show(struct mddev *mddev, char *page) 6136 { 6137 struct r5conf *conf = mddev->private; 6138 if (conf) 6139 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6140 else 6141 return 0; 6142 } 6143 6144 static struct md_sysfs_entry 6145 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6146 6147 static ssize_t 6148 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6149 { 6150 struct r5conf *conf; 6151 int ret = 0; 6152 spin_lock(&mddev->lock); 6153 conf = mddev->private; 6154 if (conf) 6155 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6156 spin_unlock(&mddev->lock); 6157 return ret; 6158 } 6159 6160 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6161 int *group_cnt, 6162 int *worker_cnt_per_group, 6163 struct r5worker_group **worker_groups); 6164 static ssize_t 6165 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6166 { 6167 struct r5conf *conf; 6168 unsigned long new; 6169 int err; 6170 struct r5worker_group *new_groups, *old_groups; 6171 int group_cnt, worker_cnt_per_group; 6172 6173 if (len >= PAGE_SIZE) 6174 return -EINVAL; 6175 if (kstrtoul(page, 10, &new)) 6176 return -EINVAL; 6177 6178 err = mddev_lock(mddev); 6179 if (err) 6180 return err; 6181 conf = mddev->private; 6182 if (!conf) 6183 err = -ENODEV; 6184 else if (new != conf->worker_cnt_per_group) { 6185 mddev_suspend(mddev); 6186 6187 old_groups = conf->worker_groups; 6188 if (old_groups) 6189 flush_workqueue(raid5_wq); 6190 6191 err = alloc_thread_groups(conf, new, 6192 &group_cnt, &worker_cnt_per_group, 6193 &new_groups); 6194 if (!err) { 6195 spin_lock_irq(&conf->device_lock); 6196 conf->group_cnt = group_cnt; 6197 conf->worker_cnt_per_group = worker_cnt_per_group; 6198 conf->worker_groups = new_groups; 6199 spin_unlock_irq(&conf->device_lock); 6200 6201 if (old_groups) 6202 kfree(old_groups[0].workers); 6203 kfree(old_groups); 6204 } 6205 mddev_resume(mddev); 6206 } 6207 mddev_unlock(mddev); 6208 6209 return err ?: len; 6210 } 6211 6212 static struct md_sysfs_entry 6213 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6214 raid5_show_group_thread_cnt, 6215 raid5_store_group_thread_cnt); 6216 6217 static struct attribute *raid5_attrs[] = { 6218 &raid5_stripecache_size.attr, 6219 &raid5_stripecache_active.attr, 6220 &raid5_preread_bypass_threshold.attr, 6221 &raid5_group_thread_cnt.attr, 6222 &raid5_skip_copy.attr, 6223 &raid5_rmw_level.attr, 6224 NULL, 6225 }; 6226 static struct attribute_group raid5_attrs_group = { 6227 .name = NULL, 6228 .attrs = raid5_attrs, 6229 }; 6230 6231 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6232 int *group_cnt, 6233 int *worker_cnt_per_group, 6234 struct r5worker_group **worker_groups) 6235 { 6236 int i, j, k; 6237 ssize_t size; 6238 struct r5worker *workers; 6239 6240 *worker_cnt_per_group = cnt; 6241 if (cnt == 0) { 6242 *group_cnt = 0; 6243 *worker_groups = NULL; 6244 return 0; 6245 } 6246 *group_cnt = num_possible_nodes(); 6247 size = sizeof(struct r5worker) * cnt; 6248 workers = kzalloc(size * *group_cnt, GFP_NOIO); 6249 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 6250 *group_cnt, GFP_NOIO); 6251 if (!*worker_groups || !workers) { 6252 kfree(workers); 6253 kfree(*worker_groups); 6254 return -ENOMEM; 6255 } 6256 6257 for (i = 0; i < *group_cnt; i++) { 6258 struct r5worker_group *group; 6259 6260 group = &(*worker_groups)[i]; 6261 INIT_LIST_HEAD(&group->handle_list); 6262 group->conf = conf; 6263 group->workers = workers + i * cnt; 6264 6265 for (j = 0; j < cnt; j++) { 6266 struct r5worker *worker = group->workers + j; 6267 worker->group = group; 6268 INIT_WORK(&worker->work, raid5_do_work); 6269 6270 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6271 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6272 } 6273 } 6274 6275 return 0; 6276 } 6277 6278 static void free_thread_groups(struct r5conf *conf) 6279 { 6280 if (conf->worker_groups) 6281 kfree(conf->worker_groups[0].workers); 6282 kfree(conf->worker_groups); 6283 conf->worker_groups = NULL; 6284 } 6285 6286 static sector_t 6287 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6288 { 6289 struct r5conf *conf = mddev->private; 6290 6291 if (!sectors) 6292 sectors = mddev->dev_sectors; 6293 if (!raid_disks) 6294 /* size is defined by the smallest of previous and new size */ 6295 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6296 6297 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6298 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6299 return sectors * (raid_disks - conf->max_degraded); 6300 } 6301 6302 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6303 { 6304 safe_put_page(percpu->spare_page); 6305 if (percpu->scribble) 6306 flex_array_free(percpu->scribble); 6307 percpu->spare_page = NULL; 6308 percpu->scribble = NULL; 6309 } 6310 6311 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6312 { 6313 if (conf->level == 6 && !percpu->spare_page) 6314 percpu->spare_page = alloc_page(GFP_KERNEL); 6315 if (!percpu->scribble) 6316 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6317 conf->previous_raid_disks), 6318 max(conf->chunk_sectors, 6319 conf->prev_chunk_sectors) 6320 / STRIPE_SECTORS, 6321 GFP_KERNEL); 6322 6323 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6324 free_scratch_buffer(conf, percpu); 6325 return -ENOMEM; 6326 } 6327 6328 return 0; 6329 } 6330 6331 static void raid5_free_percpu(struct r5conf *conf) 6332 { 6333 unsigned long cpu; 6334 6335 if (!conf->percpu) 6336 return; 6337 6338 #ifdef CONFIG_HOTPLUG_CPU 6339 unregister_cpu_notifier(&conf->cpu_notify); 6340 #endif 6341 6342 get_online_cpus(); 6343 for_each_possible_cpu(cpu) 6344 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6345 put_online_cpus(); 6346 6347 free_percpu(conf->percpu); 6348 } 6349 6350 static void free_conf(struct r5conf *conf) 6351 { 6352 if (conf->log) 6353 r5l_exit_log(conf->log); 6354 if (conf->shrinker.seeks) 6355 unregister_shrinker(&conf->shrinker); 6356 6357 free_thread_groups(conf); 6358 shrink_stripes(conf); 6359 raid5_free_percpu(conf); 6360 kfree(conf->disks); 6361 kfree(conf->stripe_hashtbl); 6362 kfree(conf); 6363 } 6364 6365 #ifdef CONFIG_HOTPLUG_CPU 6366 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 6367 void *hcpu) 6368 { 6369 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 6370 long cpu = (long)hcpu; 6371 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6372 6373 switch (action) { 6374 case CPU_UP_PREPARE: 6375 case CPU_UP_PREPARE_FROZEN: 6376 if (alloc_scratch_buffer(conf, percpu)) { 6377 pr_err("%s: failed memory allocation for cpu%ld\n", 6378 __func__, cpu); 6379 return notifier_from_errno(-ENOMEM); 6380 } 6381 break; 6382 case CPU_DEAD: 6383 case CPU_DEAD_FROZEN: 6384 case CPU_UP_CANCELED: 6385 case CPU_UP_CANCELED_FROZEN: 6386 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6387 break; 6388 default: 6389 break; 6390 } 6391 return NOTIFY_OK; 6392 } 6393 #endif 6394 6395 static int raid5_alloc_percpu(struct r5conf *conf) 6396 { 6397 unsigned long cpu; 6398 int err = 0; 6399 6400 conf->percpu = alloc_percpu(struct raid5_percpu); 6401 if (!conf->percpu) 6402 return -ENOMEM; 6403 6404 #ifdef CONFIG_HOTPLUG_CPU 6405 conf->cpu_notify.notifier_call = raid456_cpu_notify; 6406 conf->cpu_notify.priority = 0; 6407 err = register_cpu_notifier(&conf->cpu_notify); 6408 if (err) 6409 return err; 6410 #endif 6411 6412 get_online_cpus(); 6413 for_each_present_cpu(cpu) { 6414 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6415 if (err) { 6416 pr_err("%s: failed memory allocation for cpu%ld\n", 6417 __func__, cpu); 6418 break; 6419 } 6420 } 6421 put_online_cpus(); 6422 6423 if (!err) { 6424 conf->scribble_disks = max(conf->raid_disks, 6425 conf->previous_raid_disks); 6426 conf->scribble_sectors = max(conf->chunk_sectors, 6427 conf->prev_chunk_sectors); 6428 } 6429 return err; 6430 } 6431 6432 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6433 struct shrink_control *sc) 6434 { 6435 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6436 unsigned long ret = SHRINK_STOP; 6437 6438 if (mutex_trylock(&conf->cache_size_mutex)) { 6439 ret= 0; 6440 while (ret < sc->nr_to_scan && 6441 conf->max_nr_stripes > conf->min_nr_stripes) { 6442 if (drop_one_stripe(conf) == 0) { 6443 ret = SHRINK_STOP; 6444 break; 6445 } 6446 ret++; 6447 } 6448 mutex_unlock(&conf->cache_size_mutex); 6449 } 6450 return ret; 6451 } 6452 6453 static unsigned long raid5_cache_count(struct shrinker *shrink, 6454 struct shrink_control *sc) 6455 { 6456 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6457 6458 if (conf->max_nr_stripes < conf->min_nr_stripes) 6459 /* unlikely, but not impossible */ 6460 return 0; 6461 return conf->max_nr_stripes - conf->min_nr_stripes; 6462 } 6463 6464 static struct r5conf *setup_conf(struct mddev *mddev) 6465 { 6466 struct r5conf *conf; 6467 int raid_disk, memory, max_disks; 6468 struct md_rdev *rdev; 6469 struct disk_info *disk; 6470 char pers_name[6]; 6471 int i; 6472 int group_cnt, worker_cnt_per_group; 6473 struct r5worker_group *new_group; 6474 6475 if (mddev->new_level != 5 6476 && mddev->new_level != 4 6477 && mddev->new_level != 6) { 6478 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6479 mdname(mddev), mddev->new_level); 6480 return ERR_PTR(-EIO); 6481 } 6482 if ((mddev->new_level == 5 6483 && !algorithm_valid_raid5(mddev->new_layout)) || 6484 (mddev->new_level == 6 6485 && !algorithm_valid_raid6(mddev->new_layout))) { 6486 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 6487 mdname(mddev), mddev->new_layout); 6488 return ERR_PTR(-EIO); 6489 } 6490 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6491 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6492 mdname(mddev), mddev->raid_disks); 6493 return ERR_PTR(-EINVAL); 6494 } 6495 6496 if (!mddev->new_chunk_sectors || 6497 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6498 !is_power_of_2(mddev->new_chunk_sectors)) { 6499 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 6500 mdname(mddev), mddev->new_chunk_sectors << 9); 6501 return ERR_PTR(-EINVAL); 6502 } 6503 6504 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6505 if (conf == NULL) 6506 goto abort; 6507 /* Don't enable multi-threading by default*/ 6508 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6509 &new_group)) { 6510 conf->group_cnt = group_cnt; 6511 conf->worker_cnt_per_group = worker_cnt_per_group; 6512 conf->worker_groups = new_group; 6513 } else 6514 goto abort; 6515 spin_lock_init(&conf->device_lock); 6516 seqcount_init(&conf->gen_lock); 6517 mutex_init(&conf->cache_size_mutex); 6518 init_waitqueue_head(&conf->wait_for_quiescent); 6519 init_waitqueue_head(&conf->wait_for_stripe); 6520 init_waitqueue_head(&conf->wait_for_overlap); 6521 INIT_LIST_HEAD(&conf->handle_list); 6522 INIT_LIST_HEAD(&conf->hold_list); 6523 INIT_LIST_HEAD(&conf->delayed_list); 6524 INIT_LIST_HEAD(&conf->bitmap_list); 6525 bio_list_init(&conf->return_bi); 6526 init_llist_head(&conf->released_stripes); 6527 atomic_set(&conf->active_stripes, 0); 6528 atomic_set(&conf->preread_active_stripes, 0); 6529 atomic_set(&conf->active_aligned_reads, 0); 6530 conf->bypass_threshold = BYPASS_THRESHOLD; 6531 conf->recovery_disabled = mddev->recovery_disabled - 1; 6532 6533 conf->raid_disks = mddev->raid_disks; 6534 if (mddev->reshape_position == MaxSector) 6535 conf->previous_raid_disks = mddev->raid_disks; 6536 else 6537 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6538 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6539 6540 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 6541 GFP_KERNEL); 6542 if (!conf->disks) 6543 goto abort; 6544 6545 conf->mddev = mddev; 6546 6547 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6548 goto abort; 6549 6550 /* We init hash_locks[0] separately to that it can be used 6551 * as the reference lock in the spin_lock_nest_lock() call 6552 * in lock_all_device_hash_locks_irq in order to convince 6553 * lockdep that we know what we are doing. 6554 */ 6555 spin_lock_init(conf->hash_locks); 6556 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6557 spin_lock_init(conf->hash_locks + i); 6558 6559 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6560 INIT_LIST_HEAD(conf->inactive_list + i); 6561 6562 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6563 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6564 6565 conf->level = mddev->new_level; 6566 conf->chunk_sectors = mddev->new_chunk_sectors; 6567 if (raid5_alloc_percpu(conf) != 0) 6568 goto abort; 6569 6570 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6571 6572 rdev_for_each(rdev, mddev) { 6573 raid_disk = rdev->raid_disk; 6574 if (raid_disk >= max_disks 6575 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 6576 continue; 6577 disk = conf->disks + raid_disk; 6578 6579 if (test_bit(Replacement, &rdev->flags)) { 6580 if (disk->replacement) 6581 goto abort; 6582 disk->replacement = rdev; 6583 } else { 6584 if (disk->rdev) 6585 goto abort; 6586 disk->rdev = rdev; 6587 } 6588 6589 if (test_bit(In_sync, &rdev->flags)) { 6590 char b[BDEVNAME_SIZE]; 6591 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 6592 " disk %d\n", 6593 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 6594 } else if (rdev->saved_raid_disk != raid_disk) 6595 /* Cannot rely on bitmap to complete recovery */ 6596 conf->fullsync = 1; 6597 } 6598 6599 conf->level = mddev->new_level; 6600 if (conf->level == 6) { 6601 conf->max_degraded = 2; 6602 if (raid6_call.xor_syndrome) 6603 conf->rmw_level = PARITY_ENABLE_RMW; 6604 else 6605 conf->rmw_level = PARITY_DISABLE_RMW; 6606 } else { 6607 conf->max_degraded = 1; 6608 conf->rmw_level = PARITY_ENABLE_RMW; 6609 } 6610 conf->algorithm = mddev->new_layout; 6611 conf->reshape_progress = mddev->reshape_position; 6612 if (conf->reshape_progress != MaxSector) { 6613 conf->prev_chunk_sectors = mddev->chunk_sectors; 6614 conf->prev_algo = mddev->layout; 6615 } else { 6616 conf->prev_chunk_sectors = conf->chunk_sectors; 6617 conf->prev_algo = conf->algorithm; 6618 } 6619 6620 conf->min_nr_stripes = NR_STRIPES; 6621 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 6622 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 6623 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 6624 if (grow_stripes(conf, conf->min_nr_stripes)) { 6625 printk(KERN_ERR 6626 "md/raid:%s: couldn't allocate %dkB for buffers\n", 6627 mdname(mddev), memory); 6628 goto abort; 6629 } else 6630 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 6631 mdname(mddev), memory); 6632 /* 6633 * Losing a stripe head costs more than the time to refill it, 6634 * it reduces the queue depth and so can hurt throughput. 6635 * So set it rather large, scaled by number of devices. 6636 */ 6637 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 6638 conf->shrinker.scan_objects = raid5_cache_scan; 6639 conf->shrinker.count_objects = raid5_cache_count; 6640 conf->shrinker.batch = 128; 6641 conf->shrinker.flags = 0; 6642 register_shrinker(&conf->shrinker); 6643 6644 sprintf(pers_name, "raid%d", mddev->new_level); 6645 conf->thread = md_register_thread(raid5d, mddev, pers_name); 6646 if (!conf->thread) { 6647 printk(KERN_ERR 6648 "md/raid:%s: couldn't allocate thread.\n", 6649 mdname(mddev)); 6650 goto abort; 6651 } 6652 6653 return conf; 6654 6655 abort: 6656 if (conf) { 6657 free_conf(conf); 6658 return ERR_PTR(-EIO); 6659 } else 6660 return ERR_PTR(-ENOMEM); 6661 } 6662 6663 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 6664 { 6665 switch (algo) { 6666 case ALGORITHM_PARITY_0: 6667 if (raid_disk < max_degraded) 6668 return 1; 6669 break; 6670 case ALGORITHM_PARITY_N: 6671 if (raid_disk >= raid_disks - max_degraded) 6672 return 1; 6673 break; 6674 case ALGORITHM_PARITY_0_6: 6675 if (raid_disk == 0 || 6676 raid_disk == raid_disks - 1) 6677 return 1; 6678 break; 6679 case ALGORITHM_LEFT_ASYMMETRIC_6: 6680 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6681 case ALGORITHM_LEFT_SYMMETRIC_6: 6682 case ALGORITHM_RIGHT_SYMMETRIC_6: 6683 if (raid_disk == raid_disks - 1) 6684 return 1; 6685 } 6686 return 0; 6687 } 6688 6689 static int raid5_run(struct mddev *mddev) 6690 { 6691 struct r5conf *conf; 6692 int working_disks = 0; 6693 int dirty_parity_disks = 0; 6694 struct md_rdev *rdev; 6695 struct md_rdev *journal_dev = NULL; 6696 sector_t reshape_offset = 0; 6697 int i; 6698 long long min_offset_diff = 0; 6699 int first = 1; 6700 6701 if (mddev->recovery_cp != MaxSector) 6702 printk(KERN_NOTICE "md/raid:%s: not clean" 6703 " -- starting background reconstruction\n", 6704 mdname(mddev)); 6705 6706 rdev_for_each(rdev, mddev) { 6707 long long diff; 6708 6709 if (test_bit(Journal, &rdev->flags)) { 6710 journal_dev = rdev; 6711 continue; 6712 } 6713 if (rdev->raid_disk < 0) 6714 continue; 6715 diff = (rdev->new_data_offset - rdev->data_offset); 6716 if (first) { 6717 min_offset_diff = diff; 6718 first = 0; 6719 } else if (mddev->reshape_backwards && 6720 diff < min_offset_diff) 6721 min_offset_diff = diff; 6722 else if (!mddev->reshape_backwards && 6723 diff > min_offset_diff) 6724 min_offset_diff = diff; 6725 } 6726 6727 if (mddev->reshape_position != MaxSector) { 6728 /* Check that we can continue the reshape. 6729 * Difficulties arise if the stripe we would write to 6730 * next is at or after the stripe we would read from next. 6731 * For a reshape that changes the number of devices, this 6732 * is only possible for a very short time, and mdadm makes 6733 * sure that time appears to have past before assembling 6734 * the array. So we fail if that time hasn't passed. 6735 * For a reshape that keeps the number of devices the same 6736 * mdadm must be monitoring the reshape can keeping the 6737 * critical areas read-only and backed up. It will start 6738 * the array in read-only mode, so we check for that. 6739 */ 6740 sector_t here_new, here_old; 6741 int old_disks; 6742 int max_degraded = (mddev->level == 6 ? 2 : 1); 6743 int chunk_sectors; 6744 int new_data_disks; 6745 6746 if (journal_dev) { 6747 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n", 6748 mdname(mddev)); 6749 return -EINVAL; 6750 } 6751 6752 if (mddev->new_level != mddev->level) { 6753 printk(KERN_ERR "md/raid:%s: unsupported reshape " 6754 "required - aborting.\n", 6755 mdname(mddev)); 6756 return -EINVAL; 6757 } 6758 old_disks = mddev->raid_disks - mddev->delta_disks; 6759 /* reshape_position must be on a new-stripe boundary, and one 6760 * further up in new geometry must map after here in old 6761 * geometry. 6762 * If the chunk sizes are different, then as we perform reshape 6763 * in units of the largest of the two, reshape_position needs 6764 * be a multiple of the largest chunk size times new data disks. 6765 */ 6766 here_new = mddev->reshape_position; 6767 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 6768 new_data_disks = mddev->raid_disks - max_degraded; 6769 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 6770 printk(KERN_ERR "md/raid:%s: reshape_position not " 6771 "on a stripe boundary\n", mdname(mddev)); 6772 return -EINVAL; 6773 } 6774 reshape_offset = here_new * chunk_sectors; 6775 /* here_new is the stripe we will write to */ 6776 here_old = mddev->reshape_position; 6777 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 6778 /* here_old is the first stripe that we might need to read 6779 * from */ 6780 if (mddev->delta_disks == 0) { 6781 /* We cannot be sure it is safe to start an in-place 6782 * reshape. It is only safe if user-space is monitoring 6783 * and taking constant backups. 6784 * mdadm always starts a situation like this in 6785 * readonly mode so it can take control before 6786 * allowing any writes. So just check for that. 6787 */ 6788 if (abs(min_offset_diff) >= mddev->chunk_sectors && 6789 abs(min_offset_diff) >= mddev->new_chunk_sectors) 6790 /* not really in-place - so OK */; 6791 else if (mddev->ro == 0) { 6792 printk(KERN_ERR "md/raid:%s: in-place reshape " 6793 "must be started in read-only mode " 6794 "- aborting\n", 6795 mdname(mddev)); 6796 return -EINVAL; 6797 } 6798 } else if (mddev->reshape_backwards 6799 ? (here_new * chunk_sectors + min_offset_diff <= 6800 here_old * chunk_sectors) 6801 : (here_new * chunk_sectors >= 6802 here_old * chunk_sectors + (-min_offset_diff))) { 6803 /* Reading from the same stripe as writing to - bad */ 6804 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 6805 "auto-recovery - aborting.\n", 6806 mdname(mddev)); 6807 return -EINVAL; 6808 } 6809 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 6810 mdname(mddev)); 6811 /* OK, we should be able to continue; */ 6812 } else { 6813 BUG_ON(mddev->level != mddev->new_level); 6814 BUG_ON(mddev->layout != mddev->new_layout); 6815 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 6816 BUG_ON(mddev->delta_disks != 0); 6817 } 6818 6819 if (mddev->private == NULL) 6820 conf = setup_conf(mddev); 6821 else 6822 conf = mddev->private; 6823 6824 if (IS_ERR(conf)) 6825 return PTR_ERR(conf); 6826 6827 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) { 6828 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n", 6829 mdname(mddev)); 6830 mddev->ro = 1; 6831 set_disk_ro(mddev->gendisk, 1); 6832 } 6833 6834 conf->min_offset_diff = min_offset_diff; 6835 mddev->thread = conf->thread; 6836 conf->thread = NULL; 6837 mddev->private = conf; 6838 6839 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 6840 i++) { 6841 rdev = conf->disks[i].rdev; 6842 if (!rdev && conf->disks[i].replacement) { 6843 /* The replacement is all we have yet */ 6844 rdev = conf->disks[i].replacement; 6845 conf->disks[i].replacement = NULL; 6846 clear_bit(Replacement, &rdev->flags); 6847 conf->disks[i].rdev = rdev; 6848 } 6849 if (!rdev) 6850 continue; 6851 if (conf->disks[i].replacement && 6852 conf->reshape_progress != MaxSector) { 6853 /* replacements and reshape simply do not mix. */ 6854 printk(KERN_ERR "md: cannot handle concurrent " 6855 "replacement and reshape.\n"); 6856 goto abort; 6857 } 6858 if (test_bit(In_sync, &rdev->flags)) { 6859 working_disks++; 6860 continue; 6861 } 6862 /* This disc is not fully in-sync. However if it 6863 * just stored parity (beyond the recovery_offset), 6864 * when we don't need to be concerned about the 6865 * array being dirty. 6866 * When reshape goes 'backwards', we never have 6867 * partially completed devices, so we only need 6868 * to worry about reshape going forwards. 6869 */ 6870 /* Hack because v0.91 doesn't store recovery_offset properly. */ 6871 if (mddev->major_version == 0 && 6872 mddev->minor_version > 90) 6873 rdev->recovery_offset = reshape_offset; 6874 6875 if (rdev->recovery_offset < reshape_offset) { 6876 /* We need to check old and new layout */ 6877 if (!only_parity(rdev->raid_disk, 6878 conf->algorithm, 6879 conf->raid_disks, 6880 conf->max_degraded)) 6881 continue; 6882 } 6883 if (!only_parity(rdev->raid_disk, 6884 conf->prev_algo, 6885 conf->previous_raid_disks, 6886 conf->max_degraded)) 6887 continue; 6888 dirty_parity_disks++; 6889 } 6890 6891 /* 6892 * 0 for a fully functional array, 1 or 2 for a degraded array. 6893 */ 6894 mddev->degraded = calc_degraded(conf); 6895 6896 if (has_failed(conf)) { 6897 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6898 " (%d/%d failed)\n", 6899 mdname(mddev), mddev->degraded, conf->raid_disks); 6900 goto abort; 6901 } 6902 6903 /* device size must be a multiple of chunk size */ 6904 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6905 mddev->resync_max_sectors = mddev->dev_sectors; 6906 6907 if (mddev->degraded > dirty_parity_disks && 6908 mddev->recovery_cp != MaxSector) { 6909 if (mddev->ok_start_degraded) 6910 printk(KERN_WARNING 6911 "md/raid:%s: starting dirty degraded array" 6912 " - data corruption possible.\n", 6913 mdname(mddev)); 6914 else { 6915 printk(KERN_ERR 6916 "md/raid:%s: cannot start dirty degraded array.\n", 6917 mdname(mddev)); 6918 goto abort; 6919 } 6920 } 6921 6922 if (mddev->degraded == 0) 6923 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6924 " devices, algorithm %d\n", mdname(mddev), conf->level, 6925 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6926 mddev->new_layout); 6927 else 6928 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6929 " out of %d devices, algorithm %d\n", 6930 mdname(mddev), conf->level, 6931 mddev->raid_disks - mddev->degraded, 6932 mddev->raid_disks, mddev->new_layout); 6933 6934 print_raid5_conf(conf); 6935 6936 if (conf->reshape_progress != MaxSector) { 6937 conf->reshape_safe = conf->reshape_progress; 6938 atomic_set(&conf->reshape_stripes, 0); 6939 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6940 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6941 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6942 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6943 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6944 "reshape"); 6945 } 6946 6947 /* Ok, everything is just fine now */ 6948 if (mddev->to_remove == &raid5_attrs_group) 6949 mddev->to_remove = NULL; 6950 else if (mddev->kobj.sd && 6951 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6952 printk(KERN_WARNING 6953 "raid5: failed to create sysfs attributes for %s\n", 6954 mdname(mddev)); 6955 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6956 6957 if (mddev->queue) { 6958 int chunk_size; 6959 bool discard_supported = true; 6960 /* read-ahead size must cover two whole stripes, which 6961 * is 2 * (datadisks) * chunksize where 'n' is the 6962 * number of raid devices 6963 */ 6964 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6965 int stripe = data_disks * 6966 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6967 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6968 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6969 6970 chunk_size = mddev->chunk_sectors << 9; 6971 blk_queue_io_min(mddev->queue, chunk_size); 6972 blk_queue_io_opt(mddev->queue, chunk_size * 6973 (conf->raid_disks - conf->max_degraded)); 6974 mddev->queue->limits.raid_partial_stripes_expensive = 1; 6975 /* 6976 * We can only discard a whole stripe. It doesn't make sense to 6977 * discard data disk but write parity disk 6978 */ 6979 stripe = stripe * PAGE_SIZE; 6980 /* Round up to power of 2, as discard handling 6981 * currently assumes that */ 6982 while ((stripe-1) & stripe) 6983 stripe = (stripe | (stripe-1)) + 1; 6984 mddev->queue->limits.discard_alignment = stripe; 6985 mddev->queue->limits.discard_granularity = stripe; 6986 /* 6987 * unaligned part of discard request will be ignored, so can't 6988 * guarantee discard_zeroes_data 6989 */ 6990 mddev->queue->limits.discard_zeroes_data = 0; 6991 6992 blk_queue_max_write_same_sectors(mddev->queue, 0); 6993 6994 rdev_for_each(rdev, mddev) { 6995 disk_stack_limits(mddev->gendisk, rdev->bdev, 6996 rdev->data_offset << 9); 6997 disk_stack_limits(mddev->gendisk, rdev->bdev, 6998 rdev->new_data_offset << 9); 6999 /* 7000 * discard_zeroes_data is required, otherwise data 7001 * could be lost. Consider a scenario: discard a stripe 7002 * (the stripe could be inconsistent if 7003 * discard_zeroes_data is 0); write one disk of the 7004 * stripe (the stripe could be inconsistent again 7005 * depending on which disks are used to calculate 7006 * parity); the disk is broken; The stripe data of this 7007 * disk is lost. 7008 */ 7009 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 7010 !bdev_get_queue(rdev->bdev)-> 7011 limits.discard_zeroes_data) 7012 discard_supported = false; 7013 /* Unfortunately, discard_zeroes_data is not currently 7014 * a guarantee - just a hint. So we only allow DISCARD 7015 * if the sysadmin has confirmed that only safe devices 7016 * are in use by setting a module parameter. 7017 */ 7018 if (!devices_handle_discard_safely) { 7019 if (discard_supported) { 7020 pr_info("md/raid456: discard support disabled due to uncertainty.\n"); 7021 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n"); 7022 } 7023 discard_supported = false; 7024 } 7025 } 7026 7027 if (discard_supported && 7028 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7029 mddev->queue->limits.discard_granularity >= stripe) 7030 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 7031 mddev->queue); 7032 else 7033 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 7034 mddev->queue); 7035 } 7036 7037 if (journal_dev) { 7038 char b[BDEVNAME_SIZE]; 7039 7040 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7041 mdname(mddev), bdevname(journal_dev->bdev, b)); 7042 r5l_init_log(conf, journal_dev); 7043 } 7044 7045 return 0; 7046 abort: 7047 md_unregister_thread(&mddev->thread); 7048 print_raid5_conf(conf); 7049 free_conf(conf); 7050 mddev->private = NULL; 7051 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7052 return -EIO; 7053 } 7054 7055 static void raid5_free(struct mddev *mddev, void *priv) 7056 { 7057 struct r5conf *conf = priv; 7058 7059 free_conf(conf); 7060 mddev->to_remove = &raid5_attrs_group; 7061 } 7062 7063 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7064 { 7065 struct r5conf *conf = mddev->private; 7066 int i; 7067 7068 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7069 conf->chunk_sectors / 2, mddev->layout); 7070 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7071 for (i = 0; i < conf->raid_disks; i++) 7072 seq_printf (seq, "%s", 7073 conf->disks[i].rdev && 7074 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 7075 seq_printf (seq, "]"); 7076 } 7077 7078 static void print_raid5_conf (struct r5conf *conf) 7079 { 7080 int i; 7081 struct disk_info *tmp; 7082 7083 printk(KERN_DEBUG "RAID conf printout:\n"); 7084 if (!conf) { 7085 printk("(conf==NULL)\n"); 7086 return; 7087 } 7088 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 7089 conf->raid_disks, 7090 conf->raid_disks - conf->mddev->degraded); 7091 7092 for (i = 0; i < conf->raid_disks; i++) { 7093 char b[BDEVNAME_SIZE]; 7094 tmp = conf->disks + i; 7095 if (tmp->rdev) 7096 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 7097 i, !test_bit(Faulty, &tmp->rdev->flags), 7098 bdevname(tmp->rdev->bdev, b)); 7099 } 7100 } 7101 7102 static int raid5_spare_active(struct mddev *mddev) 7103 { 7104 int i; 7105 struct r5conf *conf = mddev->private; 7106 struct disk_info *tmp; 7107 int count = 0; 7108 unsigned long flags; 7109 7110 for (i = 0; i < conf->raid_disks; i++) { 7111 tmp = conf->disks + i; 7112 if (tmp->replacement 7113 && tmp->replacement->recovery_offset == MaxSector 7114 && !test_bit(Faulty, &tmp->replacement->flags) 7115 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7116 /* Replacement has just become active. */ 7117 if (!tmp->rdev 7118 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7119 count++; 7120 if (tmp->rdev) { 7121 /* Replaced device not technically faulty, 7122 * but we need to be sure it gets removed 7123 * and never re-added. 7124 */ 7125 set_bit(Faulty, &tmp->rdev->flags); 7126 sysfs_notify_dirent_safe( 7127 tmp->rdev->sysfs_state); 7128 } 7129 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7130 } else if (tmp->rdev 7131 && tmp->rdev->recovery_offset == MaxSector 7132 && !test_bit(Faulty, &tmp->rdev->flags) 7133 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7134 count++; 7135 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7136 } 7137 } 7138 spin_lock_irqsave(&conf->device_lock, flags); 7139 mddev->degraded = calc_degraded(conf); 7140 spin_unlock_irqrestore(&conf->device_lock, flags); 7141 print_raid5_conf(conf); 7142 return count; 7143 } 7144 7145 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7146 { 7147 struct r5conf *conf = mddev->private; 7148 int err = 0; 7149 int number = rdev->raid_disk; 7150 struct md_rdev **rdevp; 7151 struct disk_info *p = conf->disks + number; 7152 7153 print_raid5_conf(conf); 7154 if (test_bit(Journal, &rdev->flags) && conf->log) { 7155 struct r5l_log *log; 7156 /* 7157 * we can't wait pending write here, as this is called in 7158 * raid5d, wait will deadlock. 7159 */ 7160 if (atomic_read(&mddev->writes_pending)) 7161 return -EBUSY; 7162 log = conf->log; 7163 conf->log = NULL; 7164 synchronize_rcu(); 7165 r5l_exit_log(log); 7166 return 0; 7167 } 7168 if (rdev == p->rdev) 7169 rdevp = &p->rdev; 7170 else if (rdev == p->replacement) 7171 rdevp = &p->replacement; 7172 else 7173 return 0; 7174 7175 if (number >= conf->raid_disks && 7176 conf->reshape_progress == MaxSector) 7177 clear_bit(In_sync, &rdev->flags); 7178 7179 if (test_bit(In_sync, &rdev->flags) || 7180 atomic_read(&rdev->nr_pending)) { 7181 err = -EBUSY; 7182 goto abort; 7183 } 7184 /* Only remove non-faulty devices if recovery 7185 * isn't possible. 7186 */ 7187 if (!test_bit(Faulty, &rdev->flags) && 7188 mddev->recovery_disabled != conf->recovery_disabled && 7189 !has_failed(conf) && 7190 (!p->replacement || p->replacement == rdev) && 7191 number < conf->raid_disks) { 7192 err = -EBUSY; 7193 goto abort; 7194 } 7195 *rdevp = NULL; 7196 synchronize_rcu(); 7197 if (atomic_read(&rdev->nr_pending)) { 7198 /* lost the race, try later */ 7199 err = -EBUSY; 7200 *rdevp = rdev; 7201 } else if (p->replacement) { 7202 /* We must have just cleared 'rdev' */ 7203 p->rdev = p->replacement; 7204 clear_bit(Replacement, &p->replacement->flags); 7205 smp_mb(); /* Make sure other CPUs may see both as identical 7206 * but will never see neither - if they are careful 7207 */ 7208 p->replacement = NULL; 7209 clear_bit(WantReplacement, &rdev->flags); 7210 } else 7211 /* We might have just removed the Replacement as faulty- 7212 * clear the bit just in case 7213 */ 7214 clear_bit(WantReplacement, &rdev->flags); 7215 abort: 7216 7217 print_raid5_conf(conf); 7218 return err; 7219 } 7220 7221 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7222 { 7223 struct r5conf *conf = mddev->private; 7224 int err = -EEXIST; 7225 int disk; 7226 struct disk_info *p; 7227 int first = 0; 7228 int last = conf->raid_disks - 1; 7229 7230 if (test_bit(Journal, &rdev->flags)) { 7231 char b[BDEVNAME_SIZE]; 7232 if (conf->log) 7233 return -EBUSY; 7234 7235 rdev->raid_disk = 0; 7236 /* 7237 * The array is in readonly mode if journal is missing, so no 7238 * write requests running. We should be safe 7239 */ 7240 r5l_init_log(conf, rdev); 7241 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7242 mdname(mddev), bdevname(rdev->bdev, b)); 7243 return 0; 7244 } 7245 if (mddev->recovery_disabled == conf->recovery_disabled) 7246 return -EBUSY; 7247 7248 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7249 /* no point adding a device */ 7250 return -EINVAL; 7251 7252 if (rdev->raid_disk >= 0) 7253 first = last = rdev->raid_disk; 7254 7255 /* 7256 * find the disk ... but prefer rdev->saved_raid_disk 7257 * if possible. 7258 */ 7259 if (rdev->saved_raid_disk >= 0 && 7260 rdev->saved_raid_disk >= first && 7261 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7262 first = rdev->saved_raid_disk; 7263 7264 for (disk = first; disk <= last; disk++) { 7265 p = conf->disks + disk; 7266 if (p->rdev == NULL) { 7267 clear_bit(In_sync, &rdev->flags); 7268 rdev->raid_disk = disk; 7269 err = 0; 7270 if (rdev->saved_raid_disk != disk) 7271 conf->fullsync = 1; 7272 rcu_assign_pointer(p->rdev, rdev); 7273 goto out; 7274 } 7275 } 7276 for (disk = first; disk <= last; disk++) { 7277 p = conf->disks + disk; 7278 if (test_bit(WantReplacement, &p->rdev->flags) && 7279 p->replacement == NULL) { 7280 clear_bit(In_sync, &rdev->flags); 7281 set_bit(Replacement, &rdev->flags); 7282 rdev->raid_disk = disk; 7283 err = 0; 7284 conf->fullsync = 1; 7285 rcu_assign_pointer(p->replacement, rdev); 7286 break; 7287 } 7288 } 7289 out: 7290 print_raid5_conf(conf); 7291 return err; 7292 } 7293 7294 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7295 { 7296 /* no resync is happening, and there is enough space 7297 * on all devices, so we can resize. 7298 * We need to make sure resync covers any new space. 7299 * If the array is shrinking we should possibly wait until 7300 * any io in the removed space completes, but it hardly seems 7301 * worth it. 7302 */ 7303 sector_t newsize; 7304 struct r5conf *conf = mddev->private; 7305 7306 if (conf->log) 7307 return -EINVAL; 7308 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7309 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7310 if (mddev->external_size && 7311 mddev->array_sectors > newsize) 7312 return -EINVAL; 7313 if (mddev->bitmap) { 7314 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7315 if (ret) 7316 return ret; 7317 } 7318 md_set_array_sectors(mddev, newsize); 7319 set_capacity(mddev->gendisk, mddev->array_sectors); 7320 revalidate_disk(mddev->gendisk); 7321 if (sectors > mddev->dev_sectors && 7322 mddev->recovery_cp > mddev->dev_sectors) { 7323 mddev->recovery_cp = mddev->dev_sectors; 7324 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7325 } 7326 mddev->dev_sectors = sectors; 7327 mddev->resync_max_sectors = sectors; 7328 return 0; 7329 } 7330 7331 static int check_stripe_cache(struct mddev *mddev) 7332 { 7333 /* Can only proceed if there are plenty of stripe_heads. 7334 * We need a minimum of one full stripe,, and for sensible progress 7335 * it is best to have about 4 times that. 7336 * If we require 4 times, then the default 256 4K stripe_heads will 7337 * allow for chunk sizes up to 256K, which is probably OK. 7338 * If the chunk size is greater, user-space should request more 7339 * stripe_heads first. 7340 */ 7341 struct r5conf *conf = mddev->private; 7342 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7343 > conf->min_nr_stripes || 7344 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7345 > conf->min_nr_stripes) { 7346 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7347 mdname(mddev), 7348 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7349 / STRIPE_SIZE)*4); 7350 return 0; 7351 } 7352 return 1; 7353 } 7354 7355 static int check_reshape(struct mddev *mddev) 7356 { 7357 struct r5conf *conf = mddev->private; 7358 7359 if (conf->log) 7360 return -EINVAL; 7361 if (mddev->delta_disks == 0 && 7362 mddev->new_layout == mddev->layout && 7363 mddev->new_chunk_sectors == mddev->chunk_sectors) 7364 return 0; /* nothing to do */ 7365 if (has_failed(conf)) 7366 return -EINVAL; 7367 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7368 /* We might be able to shrink, but the devices must 7369 * be made bigger first. 7370 * For raid6, 4 is the minimum size. 7371 * Otherwise 2 is the minimum 7372 */ 7373 int min = 2; 7374 if (mddev->level == 6) 7375 min = 4; 7376 if (mddev->raid_disks + mddev->delta_disks < min) 7377 return -EINVAL; 7378 } 7379 7380 if (!check_stripe_cache(mddev)) 7381 return -ENOSPC; 7382 7383 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7384 mddev->delta_disks > 0) 7385 if (resize_chunks(conf, 7386 conf->previous_raid_disks 7387 + max(0, mddev->delta_disks), 7388 max(mddev->new_chunk_sectors, 7389 mddev->chunk_sectors) 7390 ) < 0) 7391 return -ENOMEM; 7392 return resize_stripes(conf, (conf->previous_raid_disks 7393 + mddev->delta_disks)); 7394 } 7395 7396 static int raid5_start_reshape(struct mddev *mddev) 7397 { 7398 struct r5conf *conf = mddev->private; 7399 struct md_rdev *rdev; 7400 int spares = 0; 7401 unsigned long flags; 7402 7403 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7404 return -EBUSY; 7405 7406 if (!check_stripe_cache(mddev)) 7407 return -ENOSPC; 7408 7409 if (has_failed(conf)) 7410 return -EINVAL; 7411 7412 rdev_for_each(rdev, mddev) { 7413 if (!test_bit(In_sync, &rdev->flags) 7414 && !test_bit(Faulty, &rdev->flags)) 7415 spares++; 7416 } 7417 7418 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7419 /* Not enough devices even to make a degraded array 7420 * of that size 7421 */ 7422 return -EINVAL; 7423 7424 /* Refuse to reduce size of the array. Any reductions in 7425 * array size must be through explicit setting of array_size 7426 * attribute. 7427 */ 7428 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7429 < mddev->array_sectors) { 7430 printk(KERN_ERR "md/raid:%s: array size must be reduced " 7431 "before number of disks\n", mdname(mddev)); 7432 return -EINVAL; 7433 } 7434 7435 atomic_set(&conf->reshape_stripes, 0); 7436 spin_lock_irq(&conf->device_lock); 7437 write_seqcount_begin(&conf->gen_lock); 7438 conf->previous_raid_disks = conf->raid_disks; 7439 conf->raid_disks += mddev->delta_disks; 7440 conf->prev_chunk_sectors = conf->chunk_sectors; 7441 conf->chunk_sectors = mddev->new_chunk_sectors; 7442 conf->prev_algo = conf->algorithm; 7443 conf->algorithm = mddev->new_layout; 7444 conf->generation++; 7445 /* Code that selects data_offset needs to see the generation update 7446 * if reshape_progress has been set - so a memory barrier needed. 7447 */ 7448 smp_mb(); 7449 if (mddev->reshape_backwards) 7450 conf->reshape_progress = raid5_size(mddev, 0, 0); 7451 else 7452 conf->reshape_progress = 0; 7453 conf->reshape_safe = conf->reshape_progress; 7454 write_seqcount_end(&conf->gen_lock); 7455 spin_unlock_irq(&conf->device_lock); 7456 7457 /* Now make sure any requests that proceeded on the assumption 7458 * the reshape wasn't running - like Discard or Read - have 7459 * completed. 7460 */ 7461 mddev_suspend(mddev); 7462 mddev_resume(mddev); 7463 7464 /* Add some new drives, as many as will fit. 7465 * We know there are enough to make the newly sized array work. 7466 * Don't add devices if we are reducing the number of 7467 * devices in the array. This is because it is not possible 7468 * to correctly record the "partially reconstructed" state of 7469 * such devices during the reshape and confusion could result. 7470 */ 7471 if (mddev->delta_disks >= 0) { 7472 rdev_for_each(rdev, mddev) 7473 if (rdev->raid_disk < 0 && 7474 !test_bit(Faulty, &rdev->flags)) { 7475 if (raid5_add_disk(mddev, rdev) == 0) { 7476 if (rdev->raid_disk 7477 >= conf->previous_raid_disks) 7478 set_bit(In_sync, &rdev->flags); 7479 else 7480 rdev->recovery_offset = 0; 7481 7482 if (sysfs_link_rdev(mddev, rdev)) 7483 /* Failure here is OK */; 7484 } 7485 } else if (rdev->raid_disk >= conf->previous_raid_disks 7486 && !test_bit(Faulty, &rdev->flags)) { 7487 /* This is a spare that was manually added */ 7488 set_bit(In_sync, &rdev->flags); 7489 } 7490 7491 /* When a reshape changes the number of devices, 7492 * ->degraded is measured against the larger of the 7493 * pre and post number of devices. 7494 */ 7495 spin_lock_irqsave(&conf->device_lock, flags); 7496 mddev->degraded = calc_degraded(conf); 7497 spin_unlock_irqrestore(&conf->device_lock, flags); 7498 } 7499 mddev->raid_disks = conf->raid_disks; 7500 mddev->reshape_position = conf->reshape_progress; 7501 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7502 7503 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7504 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7505 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7506 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7507 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7508 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7509 "reshape"); 7510 if (!mddev->sync_thread) { 7511 mddev->recovery = 0; 7512 spin_lock_irq(&conf->device_lock); 7513 write_seqcount_begin(&conf->gen_lock); 7514 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7515 mddev->new_chunk_sectors = 7516 conf->chunk_sectors = conf->prev_chunk_sectors; 7517 mddev->new_layout = conf->algorithm = conf->prev_algo; 7518 rdev_for_each(rdev, mddev) 7519 rdev->new_data_offset = rdev->data_offset; 7520 smp_wmb(); 7521 conf->generation --; 7522 conf->reshape_progress = MaxSector; 7523 mddev->reshape_position = MaxSector; 7524 write_seqcount_end(&conf->gen_lock); 7525 spin_unlock_irq(&conf->device_lock); 7526 return -EAGAIN; 7527 } 7528 conf->reshape_checkpoint = jiffies; 7529 md_wakeup_thread(mddev->sync_thread); 7530 md_new_event(mddev); 7531 return 0; 7532 } 7533 7534 /* This is called from the reshape thread and should make any 7535 * changes needed in 'conf' 7536 */ 7537 static void end_reshape(struct r5conf *conf) 7538 { 7539 7540 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7541 struct md_rdev *rdev; 7542 7543 spin_lock_irq(&conf->device_lock); 7544 conf->previous_raid_disks = conf->raid_disks; 7545 rdev_for_each(rdev, conf->mddev) 7546 rdev->data_offset = rdev->new_data_offset; 7547 smp_wmb(); 7548 conf->reshape_progress = MaxSector; 7549 conf->mddev->reshape_position = MaxSector; 7550 spin_unlock_irq(&conf->device_lock); 7551 wake_up(&conf->wait_for_overlap); 7552 7553 /* read-ahead size must cover two whole stripes, which is 7554 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7555 */ 7556 if (conf->mddev->queue) { 7557 int data_disks = conf->raid_disks - conf->max_degraded; 7558 int stripe = data_disks * ((conf->chunk_sectors << 9) 7559 / PAGE_SIZE); 7560 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 7561 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 7562 } 7563 } 7564 } 7565 7566 /* This is called from the raid5d thread with mddev_lock held. 7567 * It makes config changes to the device. 7568 */ 7569 static void raid5_finish_reshape(struct mddev *mddev) 7570 { 7571 struct r5conf *conf = mddev->private; 7572 7573 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7574 7575 if (mddev->delta_disks > 0) { 7576 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7577 set_capacity(mddev->gendisk, mddev->array_sectors); 7578 revalidate_disk(mddev->gendisk); 7579 } else { 7580 int d; 7581 spin_lock_irq(&conf->device_lock); 7582 mddev->degraded = calc_degraded(conf); 7583 spin_unlock_irq(&conf->device_lock); 7584 for (d = conf->raid_disks ; 7585 d < conf->raid_disks - mddev->delta_disks; 7586 d++) { 7587 struct md_rdev *rdev = conf->disks[d].rdev; 7588 if (rdev) 7589 clear_bit(In_sync, &rdev->flags); 7590 rdev = conf->disks[d].replacement; 7591 if (rdev) 7592 clear_bit(In_sync, &rdev->flags); 7593 } 7594 } 7595 mddev->layout = conf->algorithm; 7596 mddev->chunk_sectors = conf->chunk_sectors; 7597 mddev->reshape_position = MaxSector; 7598 mddev->delta_disks = 0; 7599 mddev->reshape_backwards = 0; 7600 } 7601 } 7602 7603 static void raid5_quiesce(struct mddev *mddev, int state) 7604 { 7605 struct r5conf *conf = mddev->private; 7606 7607 switch(state) { 7608 case 2: /* resume for a suspend */ 7609 wake_up(&conf->wait_for_overlap); 7610 break; 7611 7612 case 1: /* stop all writes */ 7613 lock_all_device_hash_locks_irq(conf); 7614 /* '2' tells resync/reshape to pause so that all 7615 * active stripes can drain 7616 */ 7617 conf->quiesce = 2; 7618 wait_event_cmd(conf->wait_for_quiescent, 7619 atomic_read(&conf->active_stripes) == 0 && 7620 atomic_read(&conf->active_aligned_reads) == 0, 7621 unlock_all_device_hash_locks_irq(conf), 7622 lock_all_device_hash_locks_irq(conf)); 7623 conf->quiesce = 1; 7624 unlock_all_device_hash_locks_irq(conf); 7625 /* allow reshape to continue */ 7626 wake_up(&conf->wait_for_overlap); 7627 break; 7628 7629 case 0: /* re-enable writes */ 7630 lock_all_device_hash_locks_irq(conf); 7631 conf->quiesce = 0; 7632 wake_up(&conf->wait_for_quiescent); 7633 wake_up(&conf->wait_for_overlap); 7634 unlock_all_device_hash_locks_irq(conf); 7635 break; 7636 } 7637 r5l_quiesce(conf->log, state); 7638 } 7639 7640 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 7641 { 7642 struct r0conf *raid0_conf = mddev->private; 7643 sector_t sectors; 7644 7645 /* for raid0 takeover only one zone is supported */ 7646 if (raid0_conf->nr_strip_zones > 1) { 7647 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 7648 mdname(mddev)); 7649 return ERR_PTR(-EINVAL); 7650 } 7651 7652 sectors = raid0_conf->strip_zone[0].zone_end; 7653 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 7654 mddev->dev_sectors = sectors; 7655 mddev->new_level = level; 7656 mddev->new_layout = ALGORITHM_PARITY_N; 7657 mddev->new_chunk_sectors = mddev->chunk_sectors; 7658 mddev->raid_disks += 1; 7659 mddev->delta_disks = 1; 7660 /* make sure it will be not marked as dirty */ 7661 mddev->recovery_cp = MaxSector; 7662 7663 return setup_conf(mddev); 7664 } 7665 7666 static void *raid5_takeover_raid1(struct mddev *mddev) 7667 { 7668 int chunksect; 7669 7670 if (mddev->raid_disks != 2 || 7671 mddev->degraded > 1) 7672 return ERR_PTR(-EINVAL); 7673 7674 /* Should check if there are write-behind devices? */ 7675 7676 chunksect = 64*2; /* 64K by default */ 7677 7678 /* The array must be an exact multiple of chunksize */ 7679 while (chunksect && (mddev->array_sectors & (chunksect-1))) 7680 chunksect >>= 1; 7681 7682 if ((chunksect<<9) < STRIPE_SIZE) 7683 /* array size does not allow a suitable chunk size */ 7684 return ERR_PTR(-EINVAL); 7685 7686 mddev->new_level = 5; 7687 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 7688 mddev->new_chunk_sectors = chunksect; 7689 7690 return setup_conf(mddev); 7691 } 7692 7693 static void *raid5_takeover_raid6(struct mddev *mddev) 7694 { 7695 int new_layout; 7696 7697 switch (mddev->layout) { 7698 case ALGORITHM_LEFT_ASYMMETRIC_6: 7699 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 7700 break; 7701 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7702 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 7703 break; 7704 case ALGORITHM_LEFT_SYMMETRIC_6: 7705 new_layout = ALGORITHM_LEFT_SYMMETRIC; 7706 break; 7707 case ALGORITHM_RIGHT_SYMMETRIC_6: 7708 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 7709 break; 7710 case ALGORITHM_PARITY_0_6: 7711 new_layout = ALGORITHM_PARITY_0; 7712 break; 7713 case ALGORITHM_PARITY_N: 7714 new_layout = ALGORITHM_PARITY_N; 7715 break; 7716 default: 7717 return ERR_PTR(-EINVAL); 7718 } 7719 mddev->new_level = 5; 7720 mddev->new_layout = new_layout; 7721 mddev->delta_disks = -1; 7722 mddev->raid_disks -= 1; 7723 return setup_conf(mddev); 7724 } 7725 7726 static int raid5_check_reshape(struct mddev *mddev) 7727 { 7728 /* For a 2-drive array, the layout and chunk size can be changed 7729 * immediately as not restriping is needed. 7730 * For larger arrays we record the new value - after validation 7731 * to be used by a reshape pass. 7732 */ 7733 struct r5conf *conf = mddev->private; 7734 int new_chunk = mddev->new_chunk_sectors; 7735 7736 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 7737 return -EINVAL; 7738 if (new_chunk > 0) { 7739 if (!is_power_of_2(new_chunk)) 7740 return -EINVAL; 7741 if (new_chunk < (PAGE_SIZE>>9)) 7742 return -EINVAL; 7743 if (mddev->array_sectors & (new_chunk-1)) 7744 /* not factor of array size */ 7745 return -EINVAL; 7746 } 7747 7748 /* They look valid */ 7749 7750 if (mddev->raid_disks == 2) { 7751 /* can make the change immediately */ 7752 if (mddev->new_layout >= 0) { 7753 conf->algorithm = mddev->new_layout; 7754 mddev->layout = mddev->new_layout; 7755 } 7756 if (new_chunk > 0) { 7757 conf->chunk_sectors = new_chunk ; 7758 mddev->chunk_sectors = new_chunk; 7759 } 7760 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7761 md_wakeup_thread(mddev->thread); 7762 } 7763 return check_reshape(mddev); 7764 } 7765 7766 static int raid6_check_reshape(struct mddev *mddev) 7767 { 7768 int new_chunk = mddev->new_chunk_sectors; 7769 7770 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 7771 return -EINVAL; 7772 if (new_chunk > 0) { 7773 if (!is_power_of_2(new_chunk)) 7774 return -EINVAL; 7775 if (new_chunk < (PAGE_SIZE >> 9)) 7776 return -EINVAL; 7777 if (mddev->array_sectors & (new_chunk-1)) 7778 /* not factor of array size */ 7779 return -EINVAL; 7780 } 7781 7782 /* They look valid */ 7783 return check_reshape(mddev); 7784 } 7785 7786 static void *raid5_takeover(struct mddev *mddev) 7787 { 7788 /* raid5 can take over: 7789 * raid0 - if there is only one strip zone - make it a raid4 layout 7790 * raid1 - if there are two drives. We need to know the chunk size 7791 * raid4 - trivial - just use a raid4 layout. 7792 * raid6 - Providing it is a *_6 layout 7793 */ 7794 if (mddev->level == 0) 7795 return raid45_takeover_raid0(mddev, 5); 7796 if (mddev->level == 1) 7797 return raid5_takeover_raid1(mddev); 7798 if (mddev->level == 4) { 7799 mddev->new_layout = ALGORITHM_PARITY_N; 7800 mddev->new_level = 5; 7801 return setup_conf(mddev); 7802 } 7803 if (mddev->level == 6) 7804 return raid5_takeover_raid6(mddev); 7805 7806 return ERR_PTR(-EINVAL); 7807 } 7808 7809 static void *raid4_takeover(struct mddev *mddev) 7810 { 7811 /* raid4 can take over: 7812 * raid0 - if there is only one strip zone 7813 * raid5 - if layout is right 7814 */ 7815 if (mddev->level == 0) 7816 return raid45_takeover_raid0(mddev, 4); 7817 if (mddev->level == 5 && 7818 mddev->layout == ALGORITHM_PARITY_N) { 7819 mddev->new_layout = 0; 7820 mddev->new_level = 4; 7821 return setup_conf(mddev); 7822 } 7823 return ERR_PTR(-EINVAL); 7824 } 7825 7826 static struct md_personality raid5_personality; 7827 7828 static void *raid6_takeover(struct mddev *mddev) 7829 { 7830 /* Currently can only take over a raid5. We map the 7831 * personality to an equivalent raid6 personality 7832 * with the Q block at the end. 7833 */ 7834 int new_layout; 7835 7836 if (mddev->pers != &raid5_personality) 7837 return ERR_PTR(-EINVAL); 7838 if (mddev->degraded > 1) 7839 return ERR_PTR(-EINVAL); 7840 if (mddev->raid_disks > 253) 7841 return ERR_PTR(-EINVAL); 7842 if (mddev->raid_disks < 3) 7843 return ERR_PTR(-EINVAL); 7844 7845 switch (mddev->layout) { 7846 case ALGORITHM_LEFT_ASYMMETRIC: 7847 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 7848 break; 7849 case ALGORITHM_RIGHT_ASYMMETRIC: 7850 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 7851 break; 7852 case ALGORITHM_LEFT_SYMMETRIC: 7853 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 7854 break; 7855 case ALGORITHM_RIGHT_SYMMETRIC: 7856 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 7857 break; 7858 case ALGORITHM_PARITY_0: 7859 new_layout = ALGORITHM_PARITY_0_6; 7860 break; 7861 case ALGORITHM_PARITY_N: 7862 new_layout = ALGORITHM_PARITY_N; 7863 break; 7864 default: 7865 return ERR_PTR(-EINVAL); 7866 } 7867 mddev->new_level = 6; 7868 mddev->new_layout = new_layout; 7869 mddev->delta_disks = 1; 7870 mddev->raid_disks += 1; 7871 return setup_conf(mddev); 7872 } 7873 7874 static struct md_personality raid6_personality = 7875 { 7876 .name = "raid6", 7877 .level = 6, 7878 .owner = THIS_MODULE, 7879 .make_request = raid5_make_request, 7880 .run = raid5_run, 7881 .free = raid5_free, 7882 .status = raid5_status, 7883 .error_handler = raid5_error, 7884 .hot_add_disk = raid5_add_disk, 7885 .hot_remove_disk= raid5_remove_disk, 7886 .spare_active = raid5_spare_active, 7887 .sync_request = raid5_sync_request, 7888 .resize = raid5_resize, 7889 .size = raid5_size, 7890 .check_reshape = raid6_check_reshape, 7891 .start_reshape = raid5_start_reshape, 7892 .finish_reshape = raid5_finish_reshape, 7893 .quiesce = raid5_quiesce, 7894 .takeover = raid6_takeover, 7895 .congested = raid5_congested, 7896 }; 7897 static struct md_personality raid5_personality = 7898 { 7899 .name = "raid5", 7900 .level = 5, 7901 .owner = THIS_MODULE, 7902 .make_request = raid5_make_request, 7903 .run = raid5_run, 7904 .free = raid5_free, 7905 .status = raid5_status, 7906 .error_handler = raid5_error, 7907 .hot_add_disk = raid5_add_disk, 7908 .hot_remove_disk= raid5_remove_disk, 7909 .spare_active = raid5_spare_active, 7910 .sync_request = raid5_sync_request, 7911 .resize = raid5_resize, 7912 .size = raid5_size, 7913 .check_reshape = raid5_check_reshape, 7914 .start_reshape = raid5_start_reshape, 7915 .finish_reshape = raid5_finish_reshape, 7916 .quiesce = raid5_quiesce, 7917 .takeover = raid5_takeover, 7918 .congested = raid5_congested, 7919 }; 7920 7921 static struct md_personality raid4_personality = 7922 { 7923 .name = "raid4", 7924 .level = 4, 7925 .owner = THIS_MODULE, 7926 .make_request = raid5_make_request, 7927 .run = raid5_run, 7928 .free = raid5_free, 7929 .status = raid5_status, 7930 .error_handler = raid5_error, 7931 .hot_add_disk = raid5_add_disk, 7932 .hot_remove_disk= raid5_remove_disk, 7933 .spare_active = raid5_spare_active, 7934 .sync_request = raid5_sync_request, 7935 .resize = raid5_resize, 7936 .size = raid5_size, 7937 .check_reshape = raid5_check_reshape, 7938 .start_reshape = raid5_start_reshape, 7939 .finish_reshape = raid5_finish_reshape, 7940 .quiesce = raid5_quiesce, 7941 .takeover = raid4_takeover, 7942 .congested = raid5_congested, 7943 }; 7944 7945 static int __init raid5_init(void) 7946 { 7947 raid5_wq = alloc_workqueue("raid5wq", 7948 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7949 if (!raid5_wq) 7950 return -ENOMEM; 7951 register_md_personality(&raid6_personality); 7952 register_md_personality(&raid5_personality); 7953 register_md_personality(&raid4_personality); 7954 return 0; 7955 } 7956 7957 static void raid5_exit(void) 7958 { 7959 unregister_md_personality(&raid6_personality); 7960 unregister_md_personality(&raid5_personality); 7961 unregister_md_personality(&raid4_personality); 7962 destroy_workqueue(raid5_wq); 7963 } 7964 7965 module_init(raid5_init); 7966 module_exit(raid5_exit); 7967 MODULE_LICENSE("GPL"); 7968 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 7969 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 7970 MODULE_ALIAS("md-raid5"); 7971 MODULE_ALIAS("md-raid4"); 7972 MODULE_ALIAS("md-level-5"); 7973 MODULE_ALIAS("md-level-4"); 7974 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 7975 MODULE_ALIAS("md-raid6"); 7976 MODULE_ALIAS("md-level-6"); 7977 7978 /* This used to be two separate modules, they were: */ 7979 MODULE_ALIAS("raid5"); 7980 MODULE_ALIAS("raid6"); 7981