xref: /linux/drivers/md/raid5.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	local_irq_disable();
114 	spin_lock(conf->hash_locks);
115 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 	spin_lock(&conf->device_lock);
118 }
119 
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 	int i;
123 	spin_unlock(&conf->device_lock);
124 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 		spin_unlock(conf->hash_locks + i - 1);
126 	local_irq_enable();
127 }
128 
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 	int sectors = bio_sectors(bio);
141 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 		return bio->bi_next;
143 	else
144 		return NULL;
145 }
146 
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 	return (atomic_read(segments) >> 16) & 0xffff;
155 }
156 
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 	return atomic_sub_return(1, segments) & 0xffff;
161 }
162 
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 	atomic_inc(segments);
167 }
168 
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 	unsigned int cnt)
171 {
172 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 	int old, new;
174 
175 	do {
176 		old = atomic_read(segments);
177 		new = (old & 0xffff) | (cnt << 16);
178 	} while (atomic_cmpxchg(segments, old, new) != old);
179 }
180 
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 	atomic_set(segments, cnt);
185 }
186 
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 	if (sh->ddf_layout)
191 		/* ddf always start from first device */
192 		return 0;
193 	/* md starts just after Q block */
194 	if (sh->qd_idx == sh->disks - 1)
195 		return 0;
196 	else
197 		return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 	disk++;
202 	return (disk < raid_disks) ? disk : 0;
203 }
204 
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 			     int *count, int syndrome_disks)
212 {
213 	int slot = *count;
214 
215 	if (sh->ddf_layout)
216 		(*count)++;
217 	if (idx == sh->pd_idx)
218 		return syndrome_disks;
219 	if (idx == sh->qd_idx)
220 		return syndrome_disks + 1;
221 	if (!sh->ddf_layout)
222 		(*count)++;
223 	return slot;
224 }
225 
226 static void return_io(struct bio_list *return_bi)
227 {
228 	struct bio *bi;
229 	while ((bi = bio_list_pop(return_bi)) != NULL) {
230 		bi->bi_iter.bi_size = 0;
231 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 					 bi, 0);
233 		bio_endio(bi);
234 	}
235 }
236 
237 static void print_raid5_conf (struct r5conf *conf);
238 
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 	return sh->check_state || sh->reconstruct_state ||
242 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245 
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 	struct r5conf *conf = sh->raid_conf;
249 	struct r5worker_group *group;
250 	int thread_cnt;
251 	int i, cpu = sh->cpu;
252 
253 	if (!cpu_online(cpu)) {
254 		cpu = cpumask_any(cpu_online_mask);
255 		sh->cpu = cpu;
256 	}
257 
258 	if (list_empty(&sh->lru)) {
259 		struct r5worker_group *group;
260 		group = conf->worker_groups + cpu_to_group(cpu);
261 		list_add_tail(&sh->lru, &group->handle_list);
262 		group->stripes_cnt++;
263 		sh->group = group;
264 	}
265 
266 	if (conf->worker_cnt_per_group == 0) {
267 		md_wakeup_thread(conf->mddev->thread);
268 		return;
269 	}
270 
271 	group = conf->worker_groups + cpu_to_group(sh->cpu);
272 
273 	group->workers[0].working = true;
274 	/* at least one worker should run to avoid race */
275 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276 
277 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 	/* wakeup more workers */
279 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 		if (group->workers[i].working == false) {
281 			group->workers[i].working = true;
282 			queue_work_on(sh->cpu, raid5_wq,
283 				      &group->workers[i].work);
284 			thread_cnt--;
285 		}
286 	}
287 }
288 
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 			      struct list_head *temp_inactive_list)
291 {
292 	BUG_ON(!list_empty(&sh->lru));
293 	BUG_ON(atomic_read(&conf->active_stripes)==0);
294 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 			list_add_tail(&sh->lru, &conf->delayed_list);
298 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 			   sh->bm_seq - conf->seq_write > 0)
300 			list_add_tail(&sh->lru, &conf->bitmap_list);
301 		else {
302 			clear_bit(STRIPE_DELAYED, &sh->state);
303 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 			if (conf->worker_cnt_per_group == 0) {
305 				list_add_tail(&sh->lru, &conf->handle_list);
306 			} else {
307 				raid5_wakeup_stripe_thread(sh);
308 				return;
309 			}
310 		}
311 		md_wakeup_thread(conf->mddev->thread);
312 	} else {
313 		BUG_ON(stripe_operations_active(sh));
314 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 			if (atomic_dec_return(&conf->preread_active_stripes)
316 			    < IO_THRESHOLD)
317 				md_wakeup_thread(conf->mddev->thread);
318 		atomic_dec(&conf->active_stripes);
319 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 			list_add_tail(&sh->lru, temp_inactive_list);
321 	}
322 }
323 
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 			     struct list_head *temp_inactive_list)
326 {
327 	if (atomic_dec_and_test(&sh->count))
328 		do_release_stripe(conf, sh, temp_inactive_list);
329 }
330 
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 					 struct list_head *temp_inactive_list,
340 					 int hash)
341 {
342 	int size;
343 	bool do_wakeup = false;
344 	unsigned long flags;
345 
346 	if (hash == NR_STRIPE_HASH_LOCKS) {
347 		size = NR_STRIPE_HASH_LOCKS;
348 		hash = NR_STRIPE_HASH_LOCKS - 1;
349 	} else
350 		size = 1;
351 	while (size) {
352 		struct list_head *list = &temp_inactive_list[size - 1];
353 
354 		/*
355 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
356 		 * remove stripes from the list
357 		 */
358 		if (!list_empty_careful(list)) {
359 			spin_lock_irqsave(conf->hash_locks + hash, flags);
360 			if (list_empty(conf->inactive_list + hash) &&
361 			    !list_empty(list))
362 				atomic_dec(&conf->empty_inactive_list_nr);
363 			list_splice_tail_init(list, conf->inactive_list + hash);
364 			do_wakeup = true;
365 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366 		}
367 		size--;
368 		hash--;
369 	}
370 
371 	if (do_wakeup) {
372 		wake_up(&conf->wait_for_stripe);
373 		if (atomic_read(&conf->active_stripes) == 0)
374 			wake_up(&conf->wait_for_quiescent);
375 		if (conf->retry_read_aligned)
376 			md_wakeup_thread(conf->mddev->thread);
377 	}
378 }
379 
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382 			       struct list_head *temp_inactive_list)
383 {
384 	struct stripe_head *sh;
385 	int count = 0;
386 	struct llist_node *head;
387 
388 	head = llist_del_all(&conf->released_stripes);
389 	head = llist_reverse_order(head);
390 	while (head) {
391 		int hash;
392 
393 		sh = llist_entry(head, struct stripe_head, release_list);
394 		head = llist_next(head);
395 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 		smp_mb();
397 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 		/*
399 		 * Don't worry the bit is set here, because if the bit is set
400 		 * again, the count is always > 1. This is true for
401 		 * STRIPE_ON_UNPLUG_LIST bit too.
402 		 */
403 		hash = sh->hash_lock_index;
404 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
405 		count++;
406 	}
407 
408 	return count;
409 }
410 
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413 	struct r5conf *conf = sh->raid_conf;
414 	unsigned long flags;
415 	struct list_head list;
416 	int hash;
417 	bool wakeup;
418 
419 	/* Avoid release_list until the last reference.
420 	 */
421 	if (atomic_add_unless(&sh->count, -1, 1))
422 		return;
423 
424 	if (unlikely(!conf->mddev->thread) ||
425 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426 		goto slow_path;
427 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 	if (wakeup)
429 		md_wakeup_thread(conf->mddev->thread);
430 	return;
431 slow_path:
432 	local_irq_save(flags);
433 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435 		INIT_LIST_HEAD(&list);
436 		hash = sh->hash_lock_index;
437 		do_release_stripe(conf, sh, &list);
438 		spin_unlock(&conf->device_lock);
439 		release_inactive_stripe_list(conf, &list, hash);
440 	}
441 	local_irq_restore(flags);
442 }
443 
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446 	pr_debug("remove_hash(), stripe %llu\n",
447 		(unsigned long long)sh->sector);
448 
449 	hlist_del_init(&sh->hash);
450 }
451 
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
455 
456 	pr_debug("insert_hash(), stripe %llu\n",
457 		(unsigned long long)sh->sector);
458 
459 	hlist_add_head(&sh->hash, hp);
460 }
461 
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465 	struct stripe_head *sh = NULL;
466 	struct list_head *first;
467 
468 	if (list_empty(conf->inactive_list + hash))
469 		goto out;
470 	first = (conf->inactive_list + hash)->next;
471 	sh = list_entry(first, struct stripe_head, lru);
472 	list_del_init(first);
473 	remove_hash(sh);
474 	atomic_inc(&conf->active_stripes);
475 	BUG_ON(hash != sh->hash_lock_index);
476 	if (list_empty(conf->inactive_list + hash))
477 		atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479 	return sh;
480 }
481 
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484 	struct page *p;
485 	int i;
486 	int num = sh->raid_conf->pool_size;
487 
488 	for (i = 0; i < num ; i++) {
489 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490 		p = sh->dev[i].page;
491 		if (!p)
492 			continue;
493 		sh->dev[i].page = NULL;
494 		put_page(p);
495 	}
496 }
497 
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500 	int i;
501 	int num = sh->raid_conf->pool_size;
502 
503 	for (i = 0; i < num; i++) {
504 		struct page *page;
505 
506 		if (!(page = alloc_page(gfp))) {
507 			return 1;
508 		}
509 		sh->dev[i].page = page;
510 		sh->dev[i].orig_page = page;
511 	}
512 	return 0;
513 }
514 
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517 			    struct stripe_head *sh);
518 
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521 	struct r5conf *conf = sh->raid_conf;
522 	int i, seq;
523 
524 	BUG_ON(atomic_read(&sh->count) != 0);
525 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526 	BUG_ON(stripe_operations_active(sh));
527 	BUG_ON(sh->batch_head);
528 
529 	pr_debug("init_stripe called, stripe %llu\n",
530 		(unsigned long long)sector);
531 retry:
532 	seq = read_seqcount_begin(&conf->gen_lock);
533 	sh->generation = conf->generation - previous;
534 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535 	sh->sector = sector;
536 	stripe_set_idx(sector, conf, previous, sh);
537 	sh->state = 0;
538 
539 	for (i = sh->disks; i--; ) {
540 		struct r5dev *dev = &sh->dev[i];
541 
542 		if (dev->toread || dev->read || dev->towrite || dev->written ||
543 		    test_bit(R5_LOCKED, &dev->flags)) {
544 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545 			       (unsigned long long)sh->sector, i, dev->toread,
546 			       dev->read, dev->towrite, dev->written,
547 			       test_bit(R5_LOCKED, &dev->flags));
548 			WARN_ON(1);
549 		}
550 		dev->flags = 0;
551 		raid5_build_block(sh, i, previous);
552 	}
553 	if (read_seqcount_retry(&conf->gen_lock, seq))
554 		goto retry;
555 	sh->overwrite_disks = 0;
556 	insert_hash(conf, sh);
557 	sh->cpu = smp_processor_id();
558 	set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560 
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562 					 short generation)
563 {
564 	struct stripe_head *sh;
565 
566 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568 		if (sh->sector == sector && sh->generation == generation)
569 			return sh;
570 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571 	return NULL;
572 }
573 
574 /*
575  * Need to check if array has failed when deciding whether to:
576  *  - start an array
577  *  - remove non-faulty devices
578  *  - add a spare
579  *  - allow a reshape
580  * This determination is simple when no reshape is happening.
581  * However if there is a reshape, we need to carefully check
582  * both the before and after sections.
583  * This is because some failed devices may only affect one
584  * of the two sections, and some non-in_sync devices may
585  * be insync in the section most affected by failed devices.
586  */
587 static int calc_degraded(struct r5conf *conf)
588 {
589 	int degraded, degraded2;
590 	int i;
591 
592 	rcu_read_lock();
593 	degraded = 0;
594 	for (i = 0; i < conf->previous_raid_disks; i++) {
595 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596 		if (rdev && test_bit(Faulty, &rdev->flags))
597 			rdev = rcu_dereference(conf->disks[i].replacement);
598 		if (!rdev || test_bit(Faulty, &rdev->flags))
599 			degraded++;
600 		else if (test_bit(In_sync, &rdev->flags))
601 			;
602 		else
603 			/* not in-sync or faulty.
604 			 * If the reshape increases the number of devices,
605 			 * this is being recovered by the reshape, so
606 			 * this 'previous' section is not in_sync.
607 			 * If the number of devices is being reduced however,
608 			 * the device can only be part of the array if
609 			 * we are reverting a reshape, so this section will
610 			 * be in-sync.
611 			 */
612 			if (conf->raid_disks >= conf->previous_raid_disks)
613 				degraded++;
614 	}
615 	rcu_read_unlock();
616 	if (conf->raid_disks == conf->previous_raid_disks)
617 		return degraded;
618 	rcu_read_lock();
619 	degraded2 = 0;
620 	for (i = 0; i < conf->raid_disks; i++) {
621 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622 		if (rdev && test_bit(Faulty, &rdev->flags))
623 			rdev = rcu_dereference(conf->disks[i].replacement);
624 		if (!rdev || test_bit(Faulty, &rdev->flags))
625 			degraded2++;
626 		else if (test_bit(In_sync, &rdev->flags))
627 			;
628 		else
629 			/* not in-sync or faulty.
630 			 * If reshape increases the number of devices, this
631 			 * section has already been recovered, else it
632 			 * almost certainly hasn't.
633 			 */
634 			if (conf->raid_disks <= conf->previous_raid_disks)
635 				degraded2++;
636 	}
637 	rcu_read_unlock();
638 	if (degraded2 > degraded)
639 		return degraded2;
640 	return degraded;
641 }
642 
643 static int has_failed(struct r5conf *conf)
644 {
645 	int degraded;
646 
647 	if (conf->mddev->reshape_position == MaxSector)
648 		return conf->mddev->degraded > conf->max_degraded;
649 
650 	degraded = calc_degraded(conf);
651 	if (degraded > conf->max_degraded)
652 		return 1;
653 	return 0;
654 }
655 
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658 			int previous, int noblock, int noquiesce)
659 {
660 	struct stripe_head *sh;
661 	int hash = stripe_hash_locks_hash(sector);
662 
663 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
664 
665 	spin_lock_irq(conf->hash_locks + hash);
666 
667 	do {
668 		wait_event_lock_irq(conf->wait_for_quiescent,
669 				    conf->quiesce == 0 || noquiesce,
670 				    *(conf->hash_locks + hash));
671 		sh = __find_stripe(conf, sector, conf->generation - previous);
672 		if (!sh) {
673 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
674 				sh = get_free_stripe(conf, hash);
675 				if (!sh && !test_bit(R5_DID_ALLOC,
676 						     &conf->cache_state))
677 					set_bit(R5_ALLOC_MORE,
678 						&conf->cache_state);
679 			}
680 			if (noblock && sh == NULL)
681 				break;
682 			if (!sh) {
683 				set_bit(R5_INACTIVE_BLOCKED,
684 					&conf->cache_state);
685 				wait_event_lock_irq(
686 					conf->wait_for_stripe,
687 					!list_empty(conf->inactive_list + hash) &&
688 					(atomic_read(&conf->active_stripes)
689 					 < (conf->max_nr_stripes * 3 / 4)
690 					 || !test_bit(R5_INACTIVE_BLOCKED,
691 						      &conf->cache_state)),
692 					*(conf->hash_locks + hash));
693 				clear_bit(R5_INACTIVE_BLOCKED,
694 					  &conf->cache_state);
695 			} else {
696 				init_stripe(sh, sector, previous);
697 				atomic_inc(&sh->count);
698 			}
699 		} else if (!atomic_inc_not_zero(&sh->count)) {
700 			spin_lock(&conf->device_lock);
701 			if (!atomic_read(&sh->count)) {
702 				if (!test_bit(STRIPE_HANDLE, &sh->state))
703 					atomic_inc(&conf->active_stripes);
704 				BUG_ON(list_empty(&sh->lru) &&
705 				       !test_bit(STRIPE_EXPANDING, &sh->state));
706 				list_del_init(&sh->lru);
707 				if (sh->group) {
708 					sh->group->stripes_cnt--;
709 					sh->group = NULL;
710 				}
711 			}
712 			atomic_inc(&sh->count);
713 			spin_unlock(&conf->device_lock);
714 		}
715 	} while (sh == NULL);
716 
717 	spin_unlock_irq(conf->hash_locks + hash);
718 	return sh;
719 }
720 
721 static bool is_full_stripe_write(struct stripe_head *sh)
722 {
723 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
724 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
725 }
726 
727 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729 	local_irq_disable();
730 	if (sh1 > sh2) {
731 		spin_lock(&sh2->stripe_lock);
732 		spin_lock_nested(&sh1->stripe_lock, 1);
733 	} else {
734 		spin_lock(&sh1->stripe_lock);
735 		spin_lock_nested(&sh2->stripe_lock, 1);
736 	}
737 }
738 
739 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
740 {
741 	spin_unlock(&sh1->stripe_lock);
742 	spin_unlock(&sh2->stripe_lock);
743 	local_irq_enable();
744 }
745 
746 /* Only freshly new full stripe normal write stripe can be added to a batch list */
747 static bool stripe_can_batch(struct stripe_head *sh)
748 {
749 	struct r5conf *conf = sh->raid_conf;
750 
751 	if (conf->log)
752 		return false;
753 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
754 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
755 		is_full_stripe_write(sh);
756 }
757 
758 /* we only do back search */
759 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
760 {
761 	struct stripe_head *head;
762 	sector_t head_sector, tmp_sec;
763 	int hash;
764 	int dd_idx;
765 
766 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 	tmp_sec = sh->sector;
768 	if (!sector_div(tmp_sec, conf->chunk_sectors))
769 		return;
770 	head_sector = sh->sector - STRIPE_SECTORS;
771 
772 	hash = stripe_hash_locks_hash(head_sector);
773 	spin_lock_irq(conf->hash_locks + hash);
774 	head = __find_stripe(conf, head_sector, conf->generation);
775 	if (head && !atomic_inc_not_zero(&head->count)) {
776 		spin_lock(&conf->device_lock);
777 		if (!atomic_read(&head->count)) {
778 			if (!test_bit(STRIPE_HANDLE, &head->state))
779 				atomic_inc(&conf->active_stripes);
780 			BUG_ON(list_empty(&head->lru) &&
781 			       !test_bit(STRIPE_EXPANDING, &head->state));
782 			list_del_init(&head->lru);
783 			if (head->group) {
784 				head->group->stripes_cnt--;
785 				head->group = NULL;
786 			}
787 		}
788 		atomic_inc(&head->count);
789 		spin_unlock(&conf->device_lock);
790 	}
791 	spin_unlock_irq(conf->hash_locks + hash);
792 
793 	if (!head)
794 		return;
795 	if (!stripe_can_batch(head))
796 		goto out;
797 
798 	lock_two_stripes(head, sh);
799 	/* clear_batch_ready clear the flag */
800 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801 		goto unlock_out;
802 
803 	if (sh->batch_head)
804 		goto unlock_out;
805 
806 	dd_idx = 0;
807 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808 		dd_idx++;
809 	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
810 		goto unlock_out;
811 
812 	if (head->batch_head) {
813 		spin_lock(&head->batch_head->batch_lock);
814 		/* This batch list is already running */
815 		if (!stripe_can_batch(head)) {
816 			spin_unlock(&head->batch_head->batch_lock);
817 			goto unlock_out;
818 		}
819 
820 		/*
821 		 * at this point, head's BATCH_READY could be cleared, but we
822 		 * can still add the stripe to batch list
823 		 */
824 		list_add(&sh->batch_list, &head->batch_list);
825 		spin_unlock(&head->batch_head->batch_lock);
826 
827 		sh->batch_head = head->batch_head;
828 	} else {
829 		head->batch_head = head;
830 		sh->batch_head = head->batch_head;
831 		spin_lock(&head->batch_lock);
832 		list_add_tail(&sh->batch_list, &head->batch_list);
833 		spin_unlock(&head->batch_lock);
834 	}
835 
836 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 		if (atomic_dec_return(&conf->preread_active_stripes)
838 		    < IO_THRESHOLD)
839 			md_wakeup_thread(conf->mddev->thread);
840 
841 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 		int seq = sh->bm_seq;
843 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 		    sh->batch_head->bm_seq > seq)
845 			seq = sh->batch_head->bm_seq;
846 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 		sh->batch_head->bm_seq = seq;
848 	}
849 
850 	atomic_inc(&sh->count);
851 unlock_out:
852 	unlock_two_stripes(head, sh);
853 out:
854 	raid5_release_stripe(head);
855 }
856 
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858  * in this stripe_head.
859  */
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861 {
862 	sector_t progress = conf->reshape_progress;
863 	/* Need a memory barrier to make sure we see the value
864 	 * of conf->generation, or ->data_offset that was set before
865 	 * reshape_progress was updated.
866 	 */
867 	smp_rmb();
868 	if (progress == MaxSector)
869 		return 0;
870 	if (sh->generation == conf->generation - 1)
871 		return 0;
872 	/* We are in a reshape, and this is a new-generation stripe,
873 	 * so use new_data_offset.
874 	 */
875 	return 1;
876 }
877 
878 static void
879 raid5_end_read_request(struct bio *bi);
880 static void
881 raid5_end_write_request(struct bio *bi);
882 
883 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
884 {
885 	struct r5conf *conf = sh->raid_conf;
886 	int i, disks = sh->disks;
887 	struct stripe_head *head_sh = sh;
888 
889 	might_sleep();
890 
891 	if (r5l_write_stripe(conf->log, sh) == 0)
892 		return;
893 	for (i = disks; i--; ) {
894 		int rw;
895 		int replace_only = 0;
896 		struct bio *bi, *rbi;
897 		struct md_rdev *rdev, *rrdev = NULL;
898 
899 		sh = head_sh;
900 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
901 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
902 				rw = WRITE_FUA;
903 			else
904 				rw = WRITE;
905 			if (test_bit(R5_Discard, &sh->dev[i].flags))
906 				rw |= REQ_DISCARD;
907 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
908 			rw = READ;
909 		else if (test_and_clear_bit(R5_WantReplace,
910 					    &sh->dev[i].flags)) {
911 			rw = WRITE;
912 			replace_only = 1;
913 		} else
914 			continue;
915 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
916 			rw |= REQ_SYNC;
917 
918 again:
919 		bi = &sh->dev[i].req;
920 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
921 
922 		rcu_read_lock();
923 		rrdev = rcu_dereference(conf->disks[i].replacement);
924 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
925 		rdev = rcu_dereference(conf->disks[i].rdev);
926 		if (!rdev) {
927 			rdev = rrdev;
928 			rrdev = NULL;
929 		}
930 		if (rw & WRITE) {
931 			if (replace_only)
932 				rdev = NULL;
933 			if (rdev == rrdev)
934 				/* We raced and saw duplicates */
935 				rrdev = NULL;
936 		} else {
937 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
938 				rdev = rrdev;
939 			rrdev = NULL;
940 		}
941 
942 		if (rdev && test_bit(Faulty, &rdev->flags))
943 			rdev = NULL;
944 		if (rdev)
945 			atomic_inc(&rdev->nr_pending);
946 		if (rrdev && test_bit(Faulty, &rrdev->flags))
947 			rrdev = NULL;
948 		if (rrdev)
949 			atomic_inc(&rrdev->nr_pending);
950 		rcu_read_unlock();
951 
952 		/* We have already checked bad blocks for reads.  Now
953 		 * need to check for writes.  We never accept write errors
954 		 * on the replacement, so we don't to check rrdev.
955 		 */
956 		while ((rw & WRITE) && rdev &&
957 		       test_bit(WriteErrorSeen, &rdev->flags)) {
958 			sector_t first_bad;
959 			int bad_sectors;
960 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
961 					      &first_bad, &bad_sectors);
962 			if (!bad)
963 				break;
964 
965 			if (bad < 0) {
966 				set_bit(BlockedBadBlocks, &rdev->flags);
967 				if (!conf->mddev->external &&
968 				    conf->mddev->flags) {
969 					/* It is very unlikely, but we might
970 					 * still need to write out the
971 					 * bad block log - better give it
972 					 * a chance*/
973 					md_check_recovery(conf->mddev);
974 				}
975 				/*
976 				 * Because md_wait_for_blocked_rdev
977 				 * will dec nr_pending, we must
978 				 * increment it first.
979 				 */
980 				atomic_inc(&rdev->nr_pending);
981 				md_wait_for_blocked_rdev(rdev, conf->mddev);
982 			} else {
983 				/* Acknowledged bad block - skip the write */
984 				rdev_dec_pending(rdev, conf->mddev);
985 				rdev = NULL;
986 			}
987 		}
988 
989 		if (rdev) {
990 			if (s->syncing || s->expanding || s->expanded
991 			    || s->replacing)
992 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
993 
994 			set_bit(STRIPE_IO_STARTED, &sh->state);
995 
996 			bio_reset(bi);
997 			bi->bi_bdev = rdev->bdev;
998 			bi->bi_rw = rw;
999 			bi->bi_end_io = (rw & WRITE)
1000 				? raid5_end_write_request
1001 				: raid5_end_read_request;
1002 			bi->bi_private = sh;
1003 
1004 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1005 				__func__, (unsigned long long)sh->sector,
1006 				bi->bi_rw, i);
1007 			atomic_inc(&sh->count);
1008 			if (sh != head_sh)
1009 				atomic_inc(&head_sh->count);
1010 			if (use_new_offset(conf, sh))
1011 				bi->bi_iter.bi_sector = (sh->sector
1012 						 + rdev->new_data_offset);
1013 			else
1014 				bi->bi_iter.bi_sector = (sh->sector
1015 						 + rdev->data_offset);
1016 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1017 				bi->bi_rw |= REQ_NOMERGE;
1018 
1019 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1020 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1021 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1022 			bi->bi_vcnt = 1;
1023 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1024 			bi->bi_io_vec[0].bv_offset = 0;
1025 			bi->bi_iter.bi_size = STRIPE_SIZE;
1026 			/*
1027 			 * If this is discard request, set bi_vcnt 0. We don't
1028 			 * want to confuse SCSI because SCSI will replace payload
1029 			 */
1030 			if (rw & REQ_DISCARD)
1031 				bi->bi_vcnt = 0;
1032 			if (rrdev)
1033 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1034 
1035 			if (conf->mddev->gendisk)
1036 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1037 						      bi, disk_devt(conf->mddev->gendisk),
1038 						      sh->dev[i].sector);
1039 			generic_make_request(bi);
1040 		}
1041 		if (rrdev) {
1042 			if (s->syncing || s->expanding || s->expanded
1043 			    || s->replacing)
1044 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1045 
1046 			set_bit(STRIPE_IO_STARTED, &sh->state);
1047 
1048 			bio_reset(rbi);
1049 			rbi->bi_bdev = rrdev->bdev;
1050 			rbi->bi_rw = rw;
1051 			BUG_ON(!(rw & WRITE));
1052 			rbi->bi_end_io = raid5_end_write_request;
1053 			rbi->bi_private = sh;
1054 
1055 			pr_debug("%s: for %llu schedule op %ld on "
1056 				 "replacement disc %d\n",
1057 				__func__, (unsigned long long)sh->sector,
1058 				rbi->bi_rw, i);
1059 			atomic_inc(&sh->count);
1060 			if (sh != head_sh)
1061 				atomic_inc(&head_sh->count);
1062 			if (use_new_offset(conf, sh))
1063 				rbi->bi_iter.bi_sector = (sh->sector
1064 						  + rrdev->new_data_offset);
1065 			else
1066 				rbi->bi_iter.bi_sector = (sh->sector
1067 						  + rrdev->data_offset);
1068 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1069 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1070 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1071 			rbi->bi_vcnt = 1;
1072 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1073 			rbi->bi_io_vec[0].bv_offset = 0;
1074 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1075 			/*
1076 			 * If this is discard request, set bi_vcnt 0. We don't
1077 			 * want to confuse SCSI because SCSI will replace payload
1078 			 */
1079 			if (rw & REQ_DISCARD)
1080 				rbi->bi_vcnt = 0;
1081 			if (conf->mddev->gendisk)
1082 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1083 						      rbi, disk_devt(conf->mddev->gendisk),
1084 						      sh->dev[i].sector);
1085 			generic_make_request(rbi);
1086 		}
1087 		if (!rdev && !rrdev) {
1088 			if (rw & WRITE)
1089 				set_bit(STRIPE_DEGRADED, &sh->state);
1090 			pr_debug("skip op %ld on disc %d for sector %llu\n",
1091 				bi->bi_rw, i, (unsigned long long)sh->sector);
1092 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1093 			set_bit(STRIPE_HANDLE, &sh->state);
1094 		}
1095 
1096 		if (!head_sh->batch_head)
1097 			continue;
1098 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1099 				      batch_list);
1100 		if (sh != head_sh)
1101 			goto again;
1102 	}
1103 }
1104 
1105 static struct dma_async_tx_descriptor *
1106 async_copy_data(int frombio, struct bio *bio, struct page **page,
1107 	sector_t sector, struct dma_async_tx_descriptor *tx,
1108 	struct stripe_head *sh)
1109 {
1110 	struct bio_vec bvl;
1111 	struct bvec_iter iter;
1112 	struct page *bio_page;
1113 	int page_offset;
1114 	struct async_submit_ctl submit;
1115 	enum async_tx_flags flags = 0;
1116 
1117 	if (bio->bi_iter.bi_sector >= sector)
1118 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1119 	else
1120 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1121 
1122 	if (frombio)
1123 		flags |= ASYNC_TX_FENCE;
1124 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1125 
1126 	bio_for_each_segment(bvl, bio, iter) {
1127 		int len = bvl.bv_len;
1128 		int clen;
1129 		int b_offset = 0;
1130 
1131 		if (page_offset < 0) {
1132 			b_offset = -page_offset;
1133 			page_offset += b_offset;
1134 			len -= b_offset;
1135 		}
1136 
1137 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1138 			clen = STRIPE_SIZE - page_offset;
1139 		else
1140 			clen = len;
1141 
1142 		if (clen > 0) {
1143 			b_offset += bvl.bv_offset;
1144 			bio_page = bvl.bv_page;
1145 			if (frombio) {
1146 				if (sh->raid_conf->skip_copy &&
1147 				    b_offset == 0 && page_offset == 0 &&
1148 				    clen == STRIPE_SIZE)
1149 					*page = bio_page;
1150 				else
1151 					tx = async_memcpy(*page, bio_page, page_offset,
1152 						  b_offset, clen, &submit);
1153 			} else
1154 				tx = async_memcpy(bio_page, *page, b_offset,
1155 						  page_offset, clen, &submit);
1156 		}
1157 		/* chain the operations */
1158 		submit.depend_tx = tx;
1159 
1160 		if (clen < len) /* hit end of page */
1161 			break;
1162 		page_offset +=  len;
1163 	}
1164 
1165 	return tx;
1166 }
1167 
1168 static void ops_complete_biofill(void *stripe_head_ref)
1169 {
1170 	struct stripe_head *sh = stripe_head_ref;
1171 	struct bio_list return_bi = BIO_EMPTY_LIST;
1172 	int i;
1173 
1174 	pr_debug("%s: stripe %llu\n", __func__,
1175 		(unsigned long long)sh->sector);
1176 
1177 	/* clear completed biofills */
1178 	for (i = sh->disks; i--; ) {
1179 		struct r5dev *dev = &sh->dev[i];
1180 
1181 		/* acknowledge completion of a biofill operation */
1182 		/* and check if we need to reply to a read request,
1183 		 * new R5_Wantfill requests are held off until
1184 		 * !STRIPE_BIOFILL_RUN
1185 		 */
1186 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1187 			struct bio *rbi, *rbi2;
1188 
1189 			BUG_ON(!dev->read);
1190 			rbi = dev->read;
1191 			dev->read = NULL;
1192 			while (rbi && rbi->bi_iter.bi_sector <
1193 				dev->sector + STRIPE_SECTORS) {
1194 				rbi2 = r5_next_bio(rbi, dev->sector);
1195 				if (!raid5_dec_bi_active_stripes(rbi))
1196 					bio_list_add(&return_bi, rbi);
1197 				rbi = rbi2;
1198 			}
1199 		}
1200 	}
1201 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1202 
1203 	return_io(&return_bi);
1204 
1205 	set_bit(STRIPE_HANDLE, &sh->state);
1206 	raid5_release_stripe(sh);
1207 }
1208 
1209 static void ops_run_biofill(struct stripe_head *sh)
1210 {
1211 	struct dma_async_tx_descriptor *tx = NULL;
1212 	struct async_submit_ctl submit;
1213 	int i;
1214 
1215 	BUG_ON(sh->batch_head);
1216 	pr_debug("%s: stripe %llu\n", __func__,
1217 		(unsigned long long)sh->sector);
1218 
1219 	for (i = sh->disks; i--; ) {
1220 		struct r5dev *dev = &sh->dev[i];
1221 		if (test_bit(R5_Wantfill, &dev->flags)) {
1222 			struct bio *rbi;
1223 			spin_lock_irq(&sh->stripe_lock);
1224 			dev->read = rbi = dev->toread;
1225 			dev->toread = NULL;
1226 			spin_unlock_irq(&sh->stripe_lock);
1227 			while (rbi && rbi->bi_iter.bi_sector <
1228 				dev->sector + STRIPE_SECTORS) {
1229 				tx = async_copy_data(0, rbi, &dev->page,
1230 					dev->sector, tx, sh);
1231 				rbi = r5_next_bio(rbi, dev->sector);
1232 			}
1233 		}
1234 	}
1235 
1236 	atomic_inc(&sh->count);
1237 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238 	async_trigger_callback(&submit);
1239 }
1240 
1241 static void mark_target_uptodate(struct stripe_head *sh, int target)
1242 {
1243 	struct r5dev *tgt;
1244 
1245 	if (target < 0)
1246 		return;
1247 
1248 	tgt = &sh->dev[target];
1249 	set_bit(R5_UPTODATE, &tgt->flags);
1250 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251 	clear_bit(R5_Wantcompute, &tgt->flags);
1252 }
1253 
1254 static void ops_complete_compute(void *stripe_head_ref)
1255 {
1256 	struct stripe_head *sh = stripe_head_ref;
1257 
1258 	pr_debug("%s: stripe %llu\n", __func__,
1259 		(unsigned long long)sh->sector);
1260 
1261 	/* mark the computed target(s) as uptodate */
1262 	mark_target_uptodate(sh, sh->ops.target);
1263 	mark_target_uptodate(sh, sh->ops.target2);
1264 
1265 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266 	if (sh->check_state == check_state_compute_run)
1267 		sh->check_state = check_state_compute_result;
1268 	set_bit(STRIPE_HANDLE, &sh->state);
1269 	raid5_release_stripe(sh);
1270 }
1271 
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1274 				 struct raid5_percpu *percpu, int i)
1275 {
1276 	void *addr;
1277 
1278 	addr = flex_array_get(percpu->scribble, i);
1279 	return addr + sizeof(struct page *) * (sh->disks + 2);
1280 }
1281 
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284 {
1285 	void *addr;
1286 
1287 	addr = flex_array_get(percpu->scribble, i);
1288 	return addr;
1289 }
1290 
1291 static struct dma_async_tx_descriptor *
1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1293 {
1294 	int disks = sh->disks;
1295 	struct page **xor_srcs = to_addr_page(percpu, 0);
1296 	int target = sh->ops.target;
1297 	struct r5dev *tgt = &sh->dev[target];
1298 	struct page *xor_dest = tgt->page;
1299 	int count = 0;
1300 	struct dma_async_tx_descriptor *tx;
1301 	struct async_submit_ctl submit;
1302 	int i;
1303 
1304 	BUG_ON(sh->batch_head);
1305 
1306 	pr_debug("%s: stripe %llu block: %d\n",
1307 		__func__, (unsigned long long)sh->sector, target);
1308 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309 
1310 	for (i = disks; i--; )
1311 		if (i != target)
1312 			xor_srcs[count++] = sh->dev[i].page;
1313 
1314 	atomic_inc(&sh->count);
1315 
1316 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1317 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1318 	if (unlikely(count == 1))
1319 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1320 	else
1321 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1322 
1323 	return tx;
1324 }
1325 
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327  * @srcs - (struct page *) array of size sh->disks
1328  * @sh - stripe_head to parse
1329  *
1330  * Populates srcs in proper layout order for the stripe and returns the
1331  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1332  * destination buffer is recorded in srcs[count] and the Q destination
1333  * is recorded in srcs[count+1]].
1334  */
1335 static int set_syndrome_sources(struct page **srcs,
1336 				struct stripe_head *sh,
1337 				int srctype)
1338 {
1339 	int disks = sh->disks;
1340 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341 	int d0_idx = raid6_d0(sh);
1342 	int count;
1343 	int i;
1344 
1345 	for (i = 0; i < disks; i++)
1346 		srcs[i] = NULL;
1347 
1348 	count = 0;
1349 	i = d0_idx;
1350 	do {
1351 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1352 		struct r5dev *dev = &sh->dev[i];
1353 
1354 		if (i == sh->qd_idx || i == sh->pd_idx ||
1355 		    (srctype == SYNDROME_SRC_ALL) ||
1356 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1358 		    (srctype == SYNDROME_SRC_WRITTEN &&
1359 		     dev->written))
1360 			srcs[slot] = sh->dev[i].page;
1361 		i = raid6_next_disk(i, disks);
1362 	} while (i != d0_idx);
1363 
1364 	return syndrome_disks;
1365 }
1366 
1367 static struct dma_async_tx_descriptor *
1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369 {
1370 	int disks = sh->disks;
1371 	struct page **blocks = to_addr_page(percpu, 0);
1372 	int target;
1373 	int qd_idx = sh->qd_idx;
1374 	struct dma_async_tx_descriptor *tx;
1375 	struct async_submit_ctl submit;
1376 	struct r5dev *tgt;
1377 	struct page *dest;
1378 	int i;
1379 	int count;
1380 
1381 	BUG_ON(sh->batch_head);
1382 	if (sh->ops.target < 0)
1383 		target = sh->ops.target2;
1384 	else if (sh->ops.target2 < 0)
1385 		target = sh->ops.target;
1386 	else
1387 		/* we should only have one valid target */
1388 		BUG();
1389 	BUG_ON(target < 0);
1390 	pr_debug("%s: stripe %llu block: %d\n",
1391 		__func__, (unsigned long long)sh->sector, target);
1392 
1393 	tgt = &sh->dev[target];
1394 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395 	dest = tgt->page;
1396 
1397 	atomic_inc(&sh->count);
1398 
1399 	if (target == qd_idx) {
1400 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1401 		blocks[count] = NULL; /* regenerating p is not necessary */
1402 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1403 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404 				  ops_complete_compute, sh,
1405 				  to_addr_conv(sh, percpu, 0));
1406 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407 	} else {
1408 		/* Compute any data- or p-drive using XOR */
1409 		count = 0;
1410 		for (i = disks; i-- ; ) {
1411 			if (i == target || i == qd_idx)
1412 				continue;
1413 			blocks[count++] = sh->dev[i].page;
1414 		}
1415 
1416 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417 				  NULL, ops_complete_compute, sh,
1418 				  to_addr_conv(sh, percpu, 0));
1419 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420 	}
1421 
1422 	return tx;
1423 }
1424 
1425 static struct dma_async_tx_descriptor *
1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427 {
1428 	int i, count, disks = sh->disks;
1429 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430 	int d0_idx = raid6_d0(sh);
1431 	int faila = -1, failb = -1;
1432 	int target = sh->ops.target;
1433 	int target2 = sh->ops.target2;
1434 	struct r5dev *tgt = &sh->dev[target];
1435 	struct r5dev *tgt2 = &sh->dev[target2];
1436 	struct dma_async_tx_descriptor *tx;
1437 	struct page **blocks = to_addr_page(percpu, 0);
1438 	struct async_submit_ctl submit;
1439 
1440 	BUG_ON(sh->batch_head);
1441 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442 		 __func__, (unsigned long long)sh->sector, target, target2);
1443 	BUG_ON(target < 0 || target2 < 0);
1444 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446 
1447 	/* we need to open-code set_syndrome_sources to handle the
1448 	 * slot number conversion for 'faila' and 'failb'
1449 	 */
1450 	for (i = 0; i < disks ; i++)
1451 		blocks[i] = NULL;
1452 	count = 0;
1453 	i = d0_idx;
1454 	do {
1455 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456 
1457 		blocks[slot] = sh->dev[i].page;
1458 
1459 		if (i == target)
1460 			faila = slot;
1461 		if (i == target2)
1462 			failb = slot;
1463 		i = raid6_next_disk(i, disks);
1464 	} while (i != d0_idx);
1465 
1466 	BUG_ON(faila == failb);
1467 	if (failb < faila)
1468 		swap(faila, failb);
1469 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470 		 __func__, (unsigned long long)sh->sector, faila, failb);
1471 
1472 	atomic_inc(&sh->count);
1473 
1474 	if (failb == syndrome_disks+1) {
1475 		/* Q disk is one of the missing disks */
1476 		if (faila == syndrome_disks) {
1477 			/* Missing P+Q, just recompute */
1478 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479 					  ops_complete_compute, sh,
1480 					  to_addr_conv(sh, percpu, 0));
1481 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1482 						  STRIPE_SIZE, &submit);
1483 		} else {
1484 			struct page *dest;
1485 			int data_target;
1486 			int qd_idx = sh->qd_idx;
1487 
1488 			/* Missing D+Q: recompute D from P, then recompute Q */
1489 			if (target == qd_idx)
1490 				data_target = target2;
1491 			else
1492 				data_target = target;
1493 
1494 			count = 0;
1495 			for (i = disks; i-- ; ) {
1496 				if (i == data_target || i == qd_idx)
1497 					continue;
1498 				blocks[count++] = sh->dev[i].page;
1499 			}
1500 			dest = sh->dev[data_target].page;
1501 			init_async_submit(&submit,
1502 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503 					  NULL, NULL, NULL,
1504 					  to_addr_conv(sh, percpu, 0));
1505 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506 				       &submit);
1507 
1508 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1509 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510 					  ops_complete_compute, sh,
1511 					  to_addr_conv(sh, percpu, 0));
1512 			return async_gen_syndrome(blocks, 0, count+2,
1513 						  STRIPE_SIZE, &submit);
1514 		}
1515 	} else {
1516 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517 				  ops_complete_compute, sh,
1518 				  to_addr_conv(sh, percpu, 0));
1519 		if (failb == syndrome_disks) {
1520 			/* We're missing D+P. */
1521 			return async_raid6_datap_recov(syndrome_disks+2,
1522 						       STRIPE_SIZE, faila,
1523 						       blocks, &submit);
1524 		} else {
1525 			/* We're missing D+D. */
1526 			return async_raid6_2data_recov(syndrome_disks+2,
1527 						       STRIPE_SIZE, faila, failb,
1528 						       blocks, &submit);
1529 		}
1530 	}
1531 }
1532 
1533 static void ops_complete_prexor(void *stripe_head_ref)
1534 {
1535 	struct stripe_head *sh = stripe_head_ref;
1536 
1537 	pr_debug("%s: stripe %llu\n", __func__,
1538 		(unsigned long long)sh->sector);
1539 }
1540 
1541 static struct dma_async_tx_descriptor *
1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543 		struct dma_async_tx_descriptor *tx)
1544 {
1545 	int disks = sh->disks;
1546 	struct page **xor_srcs = to_addr_page(percpu, 0);
1547 	int count = 0, pd_idx = sh->pd_idx, i;
1548 	struct async_submit_ctl submit;
1549 
1550 	/* existing parity data subtracted */
1551 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552 
1553 	BUG_ON(sh->batch_head);
1554 	pr_debug("%s: stripe %llu\n", __func__,
1555 		(unsigned long long)sh->sector);
1556 
1557 	for (i = disks; i--; ) {
1558 		struct r5dev *dev = &sh->dev[i];
1559 		/* Only process blocks that are known to be uptodate */
1560 		if (test_bit(R5_Wantdrain, &dev->flags))
1561 			xor_srcs[count++] = dev->page;
1562 	}
1563 
1564 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1565 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1566 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1567 
1568 	return tx;
1569 }
1570 
1571 static struct dma_async_tx_descriptor *
1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573 		struct dma_async_tx_descriptor *tx)
1574 {
1575 	struct page **blocks = to_addr_page(percpu, 0);
1576 	int count;
1577 	struct async_submit_ctl submit;
1578 
1579 	pr_debug("%s: stripe %llu\n", __func__,
1580 		(unsigned long long)sh->sector);
1581 
1582 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583 
1584 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1587 
1588 	return tx;
1589 }
1590 
1591 static struct dma_async_tx_descriptor *
1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1593 {
1594 	int disks = sh->disks;
1595 	int i;
1596 	struct stripe_head *head_sh = sh;
1597 
1598 	pr_debug("%s: stripe %llu\n", __func__,
1599 		(unsigned long long)sh->sector);
1600 
1601 	for (i = disks; i--; ) {
1602 		struct r5dev *dev;
1603 		struct bio *chosen;
1604 
1605 		sh = head_sh;
1606 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1607 			struct bio *wbi;
1608 
1609 again:
1610 			dev = &sh->dev[i];
1611 			spin_lock_irq(&sh->stripe_lock);
1612 			chosen = dev->towrite;
1613 			dev->towrite = NULL;
1614 			sh->overwrite_disks = 0;
1615 			BUG_ON(dev->written);
1616 			wbi = dev->written = chosen;
1617 			spin_unlock_irq(&sh->stripe_lock);
1618 			WARN_ON(dev->page != dev->orig_page);
1619 
1620 			while (wbi && wbi->bi_iter.bi_sector <
1621 				dev->sector + STRIPE_SECTORS) {
1622 				if (wbi->bi_rw & REQ_FUA)
1623 					set_bit(R5_WantFUA, &dev->flags);
1624 				if (wbi->bi_rw & REQ_SYNC)
1625 					set_bit(R5_SyncIO, &dev->flags);
1626 				if (wbi->bi_rw & REQ_DISCARD)
1627 					set_bit(R5_Discard, &dev->flags);
1628 				else {
1629 					tx = async_copy_data(1, wbi, &dev->page,
1630 						dev->sector, tx, sh);
1631 					if (dev->page != dev->orig_page) {
1632 						set_bit(R5_SkipCopy, &dev->flags);
1633 						clear_bit(R5_UPTODATE, &dev->flags);
1634 						clear_bit(R5_OVERWRITE, &dev->flags);
1635 					}
1636 				}
1637 				wbi = r5_next_bio(wbi, dev->sector);
1638 			}
1639 
1640 			if (head_sh->batch_head) {
1641 				sh = list_first_entry(&sh->batch_list,
1642 						      struct stripe_head,
1643 						      batch_list);
1644 				if (sh == head_sh)
1645 					continue;
1646 				goto again;
1647 			}
1648 		}
1649 	}
1650 
1651 	return tx;
1652 }
1653 
1654 static void ops_complete_reconstruct(void *stripe_head_ref)
1655 {
1656 	struct stripe_head *sh = stripe_head_ref;
1657 	int disks = sh->disks;
1658 	int pd_idx = sh->pd_idx;
1659 	int qd_idx = sh->qd_idx;
1660 	int i;
1661 	bool fua = false, sync = false, discard = false;
1662 
1663 	pr_debug("%s: stripe %llu\n", __func__,
1664 		(unsigned long long)sh->sector);
1665 
1666 	for (i = disks; i--; ) {
1667 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1668 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1669 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1670 	}
1671 
1672 	for (i = disks; i--; ) {
1673 		struct r5dev *dev = &sh->dev[i];
1674 
1675 		if (dev->written || i == pd_idx || i == qd_idx) {
1676 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1677 				set_bit(R5_UPTODATE, &dev->flags);
1678 			if (fua)
1679 				set_bit(R5_WantFUA, &dev->flags);
1680 			if (sync)
1681 				set_bit(R5_SyncIO, &dev->flags);
1682 		}
1683 	}
1684 
1685 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1686 		sh->reconstruct_state = reconstruct_state_drain_result;
1687 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689 	else {
1690 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691 		sh->reconstruct_state = reconstruct_state_result;
1692 	}
1693 
1694 	set_bit(STRIPE_HANDLE, &sh->state);
1695 	raid5_release_stripe(sh);
1696 }
1697 
1698 static void
1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700 		     struct dma_async_tx_descriptor *tx)
1701 {
1702 	int disks = sh->disks;
1703 	struct page **xor_srcs;
1704 	struct async_submit_ctl submit;
1705 	int count, pd_idx = sh->pd_idx, i;
1706 	struct page *xor_dest;
1707 	int prexor = 0;
1708 	unsigned long flags;
1709 	int j = 0;
1710 	struct stripe_head *head_sh = sh;
1711 	int last_stripe;
1712 
1713 	pr_debug("%s: stripe %llu\n", __func__,
1714 		(unsigned long long)sh->sector);
1715 
1716 	for (i = 0; i < sh->disks; i++) {
1717 		if (pd_idx == i)
1718 			continue;
1719 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720 			break;
1721 	}
1722 	if (i >= sh->disks) {
1723 		atomic_inc(&sh->count);
1724 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725 		ops_complete_reconstruct(sh);
1726 		return;
1727 	}
1728 again:
1729 	count = 0;
1730 	xor_srcs = to_addr_page(percpu, j);
1731 	/* check if prexor is active which means only process blocks
1732 	 * that are part of a read-modify-write (written)
1733 	 */
1734 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1735 		prexor = 1;
1736 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737 		for (i = disks; i--; ) {
1738 			struct r5dev *dev = &sh->dev[i];
1739 			if (head_sh->dev[i].written)
1740 				xor_srcs[count++] = dev->page;
1741 		}
1742 	} else {
1743 		xor_dest = sh->dev[pd_idx].page;
1744 		for (i = disks; i--; ) {
1745 			struct r5dev *dev = &sh->dev[i];
1746 			if (i != pd_idx)
1747 				xor_srcs[count++] = dev->page;
1748 		}
1749 	}
1750 
1751 	/* 1/ if we prexor'd then the dest is reused as a source
1752 	 * 2/ if we did not prexor then we are redoing the parity
1753 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754 	 * for the synchronous xor case
1755 	 */
1756 	last_stripe = !head_sh->batch_head ||
1757 		list_first_entry(&sh->batch_list,
1758 				 struct stripe_head, batch_list) == head_sh;
1759 	if (last_stripe) {
1760 		flags = ASYNC_TX_ACK |
1761 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762 
1763 		atomic_inc(&head_sh->count);
1764 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765 				  to_addr_conv(sh, percpu, j));
1766 	} else {
1767 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768 		init_async_submit(&submit, flags, tx, NULL, NULL,
1769 				  to_addr_conv(sh, percpu, j));
1770 	}
1771 
1772 	if (unlikely(count == 1))
1773 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774 	else
1775 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1776 	if (!last_stripe) {
1777 		j++;
1778 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779 				      batch_list);
1780 		goto again;
1781 	}
1782 }
1783 
1784 static void
1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786 		     struct dma_async_tx_descriptor *tx)
1787 {
1788 	struct async_submit_ctl submit;
1789 	struct page **blocks;
1790 	int count, i, j = 0;
1791 	struct stripe_head *head_sh = sh;
1792 	int last_stripe;
1793 	int synflags;
1794 	unsigned long txflags;
1795 
1796 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797 
1798 	for (i = 0; i < sh->disks; i++) {
1799 		if (sh->pd_idx == i || sh->qd_idx == i)
1800 			continue;
1801 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802 			break;
1803 	}
1804 	if (i >= sh->disks) {
1805 		atomic_inc(&sh->count);
1806 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808 		ops_complete_reconstruct(sh);
1809 		return;
1810 	}
1811 
1812 again:
1813 	blocks = to_addr_page(percpu, j);
1814 
1815 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816 		synflags = SYNDROME_SRC_WRITTEN;
1817 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818 	} else {
1819 		synflags = SYNDROME_SRC_ALL;
1820 		txflags = ASYNC_TX_ACK;
1821 	}
1822 
1823 	count = set_syndrome_sources(blocks, sh, synflags);
1824 	last_stripe = !head_sh->batch_head ||
1825 		list_first_entry(&sh->batch_list,
1826 				 struct stripe_head, batch_list) == head_sh;
1827 
1828 	if (last_stripe) {
1829 		atomic_inc(&head_sh->count);
1830 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1831 				  head_sh, to_addr_conv(sh, percpu, j));
1832 	} else
1833 		init_async_submit(&submit, 0, tx, NULL, NULL,
1834 				  to_addr_conv(sh, percpu, j));
1835 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1836 	if (!last_stripe) {
1837 		j++;
1838 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839 				      batch_list);
1840 		goto again;
1841 	}
1842 }
1843 
1844 static void ops_complete_check(void *stripe_head_ref)
1845 {
1846 	struct stripe_head *sh = stripe_head_ref;
1847 
1848 	pr_debug("%s: stripe %llu\n", __func__,
1849 		(unsigned long long)sh->sector);
1850 
1851 	sh->check_state = check_state_check_result;
1852 	set_bit(STRIPE_HANDLE, &sh->state);
1853 	raid5_release_stripe(sh);
1854 }
1855 
1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1857 {
1858 	int disks = sh->disks;
1859 	int pd_idx = sh->pd_idx;
1860 	int qd_idx = sh->qd_idx;
1861 	struct page *xor_dest;
1862 	struct page **xor_srcs = to_addr_page(percpu, 0);
1863 	struct dma_async_tx_descriptor *tx;
1864 	struct async_submit_ctl submit;
1865 	int count;
1866 	int i;
1867 
1868 	pr_debug("%s: stripe %llu\n", __func__,
1869 		(unsigned long long)sh->sector);
1870 
1871 	BUG_ON(sh->batch_head);
1872 	count = 0;
1873 	xor_dest = sh->dev[pd_idx].page;
1874 	xor_srcs[count++] = xor_dest;
1875 	for (i = disks; i--; ) {
1876 		if (i == pd_idx || i == qd_idx)
1877 			continue;
1878 		xor_srcs[count++] = sh->dev[i].page;
1879 	}
1880 
1881 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1882 			  to_addr_conv(sh, percpu, 0));
1883 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1884 			   &sh->ops.zero_sum_result, &submit);
1885 
1886 	atomic_inc(&sh->count);
1887 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888 	tx = async_trigger_callback(&submit);
1889 }
1890 
1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892 {
1893 	struct page **srcs = to_addr_page(percpu, 0);
1894 	struct async_submit_ctl submit;
1895 	int count;
1896 
1897 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898 		(unsigned long long)sh->sector, checkp);
1899 
1900 	BUG_ON(sh->batch_head);
1901 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1902 	if (!checkp)
1903 		srcs[count] = NULL;
1904 
1905 	atomic_inc(&sh->count);
1906 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1907 			  sh, to_addr_conv(sh, percpu, 0));
1908 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1910 }
1911 
1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1913 {
1914 	int overlap_clear = 0, i, disks = sh->disks;
1915 	struct dma_async_tx_descriptor *tx = NULL;
1916 	struct r5conf *conf = sh->raid_conf;
1917 	int level = conf->level;
1918 	struct raid5_percpu *percpu;
1919 	unsigned long cpu;
1920 
1921 	cpu = get_cpu();
1922 	percpu = per_cpu_ptr(conf->percpu, cpu);
1923 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1924 		ops_run_biofill(sh);
1925 		overlap_clear++;
1926 	}
1927 
1928 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1929 		if (level < 6)
1930 			tx = ops_run_compute5(sh, percpu);
1931 		else {
1932 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933 				tx = ops_run_compute6_1(sh, percpu);
1934 			else
1935 				tx = ops_run_compute6_2(sh, percpu);
1936 		}
1937 		/* terminate the chain if reconstruct is not set to be run */
1938 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1939 			async_tx_ack(tx);
1940 	}
1941 
1942 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943 		if (level < 6)
1944 			tx = ops_run_prexor5(sh, percpu, tx);
1945 		else
1946 			tx = ops_run_prexor6(sh, percpu, tx);
1947 	}
1948 
1949 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1950 		tx = ops_run_biodrain(sh, tx);
1951 		overlap_clear++;
1952 	}
1953 
1954 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955 		if (level < 6)
1956 			ops_run_reconstruct5(sh, percpu, tx);
1957 		else
1958 			ops_run_reconstruct6(sh, percpu, tx);
1959 	}
1960 
1961 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962 		if (sh->check_state == check_state_run)
1963 			ops_run_check_p(sh, percpu);
1964 		else if (sh->check_state == check_state_run_q)
1965 			ops_run_check_pq(sh, percpu, 0);
1966 		else if (sh->check_state == check_state_run_pq)
1967 			ops_run_check_pq(sh, percpu, 1);
1968 		else
1969 			BUG();
1970 	}
1971 
1972 	if (overlap_clear && !sh->batch_head)
1973 		for (i = disks; i--; ) {
1974 			struct r5dev *dev = &sh->dev[i];
1975 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976 				wake_up(&sh->raid_conf->wait_for_overlap);
1977 		}
1978 	put_cpu();
1979 }
1980 
1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982 {
1983 	struct stripe_head *sh;
1984 
1985 	sh = kmem_cache_zalloc(sc, gfp);
1986 	if (sh) {
1987 		spin_lock_init(&sh->stripe_lock);
1988 		spin_lock_init(&sh->batch_lock);
1989 		INIT_LIST_HEAD(&sh->batch_list);
1990 		INIT_LIST_HEAD(&sh->lru);
1991 		atomic_set(&sh->count, 1);
1992 	}
1993 	return sh;
1994 }
1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1996 {
1997 	struct stripe_head *sh;
1998 
1999 	sh = alloc_stripe(conf->slab_cache, gfp);
2000 	if (!sh)
2001 		return 0;
2002 
2003 	sh->raid_conf = conf;
2004 
2005 	if (grow_buffers(sh, gfp)) {
2006 		shrink_buffers(sh);
2007 		kmem_cache_free(conf->slab_cache, sh);
2008 		return 0;
2009 	}
2010 	sh->hash_lock_index =
2011 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2012 	/* we just created an active stripe so... */
2013 	atomic_inc(&conf->active_stripes);
2014 
2015 	raid5_release_stripe(sh);
2016 	conf->max_nr_stripes++;
2017 	return 1;
2018 }
2019 
2020 static int grow_stripes(struct r5conf *conf, int num)
2021 {
2022 	struct kmem_cache *sc;
2023 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2024 
2025 	if (conf->mddev->gendisk)
2026 		sprintf(conf->cache_name[0],
2027 			"raid%d-%s", conf->level, mdname(conf->mddev));
2028 	else
2029 		sprintf(conf->cache_name[0],
2030 			"raid%d-%p", conf->level, conf->mddev);
2031 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032 
2033 	conf->active_name = 0;
2034 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2035 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2036 			       0, 0, NULL);
2037 	if (!sc)
2038 		return 1;
2039 	conf->slab_cache = sc;
2040 	conf->pool_size = devs;
2041 	while (num--)
2042 		if (!grow_one_stripe(conf, GFP_KERNEL))
2043 			return 1;
2044 
2045 	return 0;
2046 }
2047 
2048 /**
2049  * scribble_len - return the required size of the scribble region
2050  * @num - total number of disks in the array
2051  *
2052  * The size must be enough to contain:
2053  * 1/ a struct page pointer for each device in the array +2
2054  * 2/ room to convert each entry in (1) to its corresponding dma
2055  *    (dma_map_page()) or page (page_address()) address.
2056  *
2057  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058  * calculate over all devices (not just the data blocks), using zeros in place
2059  * of the P and Q blocks.
2060  */
2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2062 {
2063 	struct flex_array *ret;
2064 	size_t len;
2065 
2066 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2067 	ret = flex_array_alloc(len, cnt, flags);
2068 	if (!ret)
2069 		return NULL;
2070 	/* always prealloc all elements, so no locking is required */
2071 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072 		flex_array_free(ret);
2073 		return NULL;
2074 	}
2075 	return ret;
2076 }
2077 
2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079 {
2080 	unsigned long cpu;
2081 	int err = 0;
2082 
2083 	/*
2084 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2085 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2086 	 * should equal to new_disks and new_sectors
2087 	 */
2088 	if (conf->scribble_disks >= new_disks &&
2089 	    conf->scribble_sectors >= new_sectors)
2090 		return 0;
2091 	mddev_suspend(conf->mddev);
2092 	get_online_cpus();
2093 	for_each_present_cpu(cpu) {
2094 		struct raid5_percpu *percpu;
2095 		struct flex_array *scribble;
2096 
2097 		percpu = per_cpu_ptr(conf->percpu, cpu);
2098 		scribble = scribble_alloc(new_disks,
2099 					  new_sectors / STRIPE_SECTORS,
2100 					  GFP_NOIO);
2101 
2102 		if (scribble) {
2103 			flex_array_free(percpu->scribble);
2104 			percpu->scribble = scribble;
2105 		} else {
2106 			err = -ENOMEM;
2107 			break;
2108 		}
2109 	}
2110 	put_online_cpus();
2111 	mddev_resume(conf->mddev);
2112 	if (!err) {
2113 		conf->scribble_disks = new_disks;
2114 		conf->scribble_sectors = new_sectors;
2115 	}
2116 	return err;
2117 }
2118 
2119 static int resize_stripes(struct r5conf *conf, int newsize)
2120 {
2121 	/* Make all the stripes able to hold 'newsize' devices.
2122 	 * New slots in each stripe get 'page' set to a new page.
2123 	 *
2124 	 * This happens in stages:
2125 	 * 1/ create a new kmem_cache and allocate the required number of
2126 	 *    stripe_heads.
2127 	 * 2/ gather all the old stripe_heads and transfer the pages across
2128 	 *    to the new stripe_heads.  This will have the side effect of
2129 	 *    freezing the array as once all stripe_heads have been collected,
2130 	 *    no IO will be possible.  Old stripe heads are freed once their
2131 	 *    pages have been transferred over, and the old kmem_cache is
2132 	 *    freed when all stripes are done.
2133 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2134 	 *    we simple return a failre status - no need to clean anything up.
2135 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2136 	 *    If this fails, we don't bother trying the shrink the
2137 	 *    stripe_heads down again, we just leave them as they are.
2138 	 *    As each stripe_head is processed the new one is released into
2139 	 *    active service.
2140 	 *
2141 	 * Once step2 is started, we cannot afford to wait for a write,
2142 	 * so we use GFP_NOIO allocations.
2143 	 */
2144 	struct stripe_head *osh, *nsh;
2145 	LIST_HEAD(newstripes);
2146 	struct disk_info *ndisks;
2147 	int err;
2148 	struct kmem_cache *sc;
2149 	int i;
2150 	int hash, cnt;
2151 
2152 	if (newsize <= conf->pool_size)
2153 		return 0; /* never bother to shrink */
2154 
2155 	err = md_allow_write(conf->mddev);
2156 	if (err)
2157 		return err;
2158 
2159 	/* Step 1 */
2160 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2161 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2162 			       0, 0, NULL);
2163 	if (!sc)
2164 		return -ENOMEM;
2165 
2166 	/* Need to ensure auto-resizing doesn't interfere */
2167 	mutex_lock(&conf->cache_size_mutex);
2168 
2169 	for (i = conf->max_nr_stripes; i; i--) {
2170 		nsh = alloc_stripe(sc, GFP_KERNEL);
2171 		if (!nsh)
2172 			break;
2173 
2174 		nsh->raid_conf = conf;
2175 		list_add(&nsh->lru, &newstripes);
2176 	}
2177 	if (i) {
2178 		/* didn't get enough, give up */
2179 		while (!list_empty(&newstripes)) {
2180 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2181 			list_del(&nsh->lru);
2182 			kmem_cache_free(sc, nsh);
2183 		}
2184 		kmem_cache_destroy(sc);
2185 		mutex_unlock(&conf->cache_size_mutex);
2186 		return -ENOMEM;
2187 	}
2188 	/* Step 2 - Must use GFP_NOIO now.
2189 	 * OK, we have enough stripes, start collecting inactive
2190 	 * stripes and copying them over
2191 	 */
2192 	hash = 0;
2193 	cnt = 0;
2194 	list_for_each_entry(nsh, &newstripes, lru) {
2195 		lock_device_hash_lock(conf, hash);
2196 		wait_event_cmd(conf->wait_for_stripe,
2197 				    !list_empty(conf->inactive_list + hash),
2198 				    unlock_device_hash_lock(conf, hash),
2199 				    lock_device_hash_lock(conf, hash));
2200 		osh = get_free_stripe(conf, hash);
2201 		unlock_device_hash_lock(conf, hash);
2202 
2203 		for(i=0; i<conf->pool_size; i++) {
2204 			nsh->dev[i].page = osh->dev[i].page;
2205 			nsh->dev[i].orig_page = osh->dev[i].page;
2206 		}
2207 		nsh->hash_lock_index = hash;
2208 		kmem_cache_free(conf->slab_cache, osh);
2209 		cnt++;
2210 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2211 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2212 			hash++;
2213 			cnt = 0;
2214 		}
2215 	}
2216 	kmem_cache_destroy(conf->slab_cache);
2217 
2218 	/* Step 3.
2219 	 * At this point, we are holding all the stripes so the array
2220 	 * is completely stalled, so now is a good time to resize
2221 	 * conf->disks and the scribble region
2222 	 */
2223 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2224 	if (ndisks) {
2225 		for (i=0; i<conf->raid_disks; i++)
2226 			ndisks[i] = conf->disks[i];
2227 		kfree(conf->disks);
2228 		conf->disks = ndisks;
2229 	} else
2230 		err = -ENOMEM;
2231 
2232 	mutex_unlock(&conf->cache_size_mutex);
2233 	/* Step 4, return new stripes to service */
2234 	while(!list_empty(&newstripes)) {
2235 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2236 		list_del_init(&nsh->lru);
2237 
2238 		for (i=conf->raid_disks; i < newsize; i++)
2239 			if (nsh->dev[i].page == NULL) {
2240 				struct page *p = alloc_page(GFP_NOIO);
2241 				nsh->dev[i].page = p;
2242 				nsh->dev[i].orig_page = p;
2243 				if (!p)
2244 					err = -ENOMEM;
2245 			}
2246 		raid5_release_stripe(nsh);
2247 	}
2248 	/* critical section pass, GFP_NOIO no longer needed */
2249 
2250 	conf->slab_cache = sc;
2251 	conf->active_name = 1-conf->active_name;
2252 	if (!err)
2253 		conf->pool_size = newsize;
2254 	return err;
2255 }
2256 
2257 static int drop_one_stripe(struct r5conf *conf)
2258 {
2259 	struct stripe_head *sh;
2260 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2261 
2262 	spin_lock_irq(conf->hash_locks + hash);
2263 	sh = get_free_stripe(conf, hash);
2264 	spin_unlock_irq(conf->hash_locks + hash);
2265 	if (!sh)
2266 		return 0;
2267 	BUG_ON(atomic_read(&sh->count));
2268 	shrink_buffers(sh);
2269 	kmem_cache_free(conf->slab_cache, sh);
2270 	atomic_dec(&conf->active_stripes);
2271 	conf->max_nr_stripes--;
2272 	return 1;
2273 }
2274 
2275 static void shrink_stripes(struct r5conf *conf)
2276 {
2277 	while (conf->max_nr_stripes &&
2278 	       drop_one_stripe(conf))
2279 		;
2280 
2281 	kmem_cache_destroy(conf->slab_cache);
2282 	conf->slab_cache = NULL;
2283 }
2284 
2285 static void raid5_end_read_request(struct bio * bi)
2286 {
2287 	struct stripe_head *sh = bi->bi_private;
2288 	struct r5conf *conf = sh->raid_conf;
2289 	int disks = sh->disks, i;
2290 	char b[BDEVNAME_SIZE];
2291 	struct md_rdev *rdev = NULL;
2292 	sector_t s;
2293 
2294 	for (i=0 ; i<disks; i++)
2295 		if (bi == &sh->dev[i].req)
2296 			break;
2297 
2298 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2299 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2300 		bi->bi_error);
2301 	if (i == disks) {
2302 		BUG();
2303 		return;
2304 	}
2305 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2306 		/* If replacement finished while this request was outstanding,
2307 		 * 'replacement' might be NULL already.
2308 		 * In that case it moved down to 'rdev'.
2309 		 * rdev is not removed until all requests are finished.
2310 		 */
2311 		rdev = conf->disks[i].replacement;
2312 	if (!rdev)
2313 		rdev = conf->disks[i].rdev;
2314 
2315 	if (use_new_offset(conf, sh))
2316 		s = sh->sector + rdev->new_data_offset;
2317 	else
2318 		s = sh->sector + rdev->data_offset;
2319 	if (!bi->bi_error) {
2320 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2321 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2322 			/* Note that this cannot happen on a
2323 			 * replacement device.  We just fail those on
2324 			 * any error
2325 			 */
2326 			printk_ratelimited(
2327 				KERN_INFO
2328 				"md/raid:%s: read error corrected"
2329 				" (%lu sectors at %llu on %s)\n",
2330 				mdname(conf->mddev), STRIPE_SECTORS,
2331 				(unsigned long long)s,
2332 				bdevname(rdev->bdev, b));
2333 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2334 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2335 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2336 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2337 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2338 
2339 		if (atomic_read(&rdev->read_errors))
2340 			atomic_set(&rdev->read_errors, 0);
2341 	} else {
2342 		const char *bdn = bdevname(rdev->bdev, b);
2343 		int retry = 0;
2344 		int set_bad = 0;
2345 
2346 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2347 		atomic_inc(&rdev->read_errors);
2348 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2349 			printk_ratelimited(
2350 				KERN_WARNING
2351 				"md/raid:%s: read error on replacement device "
2352 				"(sector %llu on %s).\n",
2353 				mdname(conf->mddev),
2354 				(unsigned long long)s,
2355 				bdn);
2356 		else if (conf->mddev->degraded >= conf->max_degraded) {
2357 			set_bad = 1;
2358 			printk_ratelimited(
2359 				KERN_WARNING
2360 				"md/raid:%s: read error not correctable "
2361 				"(sector %llu on %s).\n",
2362 				mdname(conf->mddev),
2363 				(unsigned long long)s,
2364 				bdn);
2365 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2366 			/* Oh, no!!! */
2367 			set_bad = 1;
2368 			printk_ratelimited(
2369 				KERN_WARNING
2370 				"md/raid:%s: read error NOT corrected!! "
2371 				"(sector %llu on %s).\n",
2372 				mdname(conf->mddev),
2373 				(unsigned long long)s,
2374 				bdn);
2375 		} else if (atomic_read(&rdev->read_errors)
2376 			 > conf->max_nr_stripes)
2377 			printk(KERN_WARNING
2378 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2379 			       mdname(conf->mddev), bdn);
2380 		else
2381 			retry = 1;
2382 		if (set_bad && test_bit(In_sync, &rdev->flags)
2383 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2384 			retry = 1;
2385 		if (retry)
2386 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2387 				set_bit(R5_ReadError, &sh->dev[i].flags);
2388 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2389 			} else
2390 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2391 		else {
2392 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2393 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2394 			if (!(set_bad
2395 			      && test_bit(In_sync, &rdev->flags)
2396 			      && rdev_set_badblocks(
2397 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2398 				md_error(conf->mddev, rdev);
2399 		}
2400 	}
2401 	rdev_dec_pending(rdev, conf->mddev);
2402 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2403 	set_bit(STRIPE_HANDLE, &sh->state);
2404 	raid5_release_stripe(sh);
2405 }
2406 
2407 static void raid5_end_write_request(struct bio *bi)
2408 {
2409 	struct stripe_head *sh = bi->bi_private;
2410 	struct r5conf *conf = sh->raid_conf;
2411 	int disks = sh->disks, i;
2412 	struct md_rdev *uninitialized_var(rdev);
2413 	sector_t first_bad;
2414 	int bad_sectors;
2415 	int replacement = 0;
2416 
2417 	for (i = 0 ; i < disks; i++) {
2418 		if (bi == &sh->dev[i].req) {
2419 			rdev = conf->disks[i].rdev;
2420 			break;
2421 		}
2422 		if (bi == &sh->dev[i].rreq) {
2423 			rdev = conf->disks[i].replacement;
2424 			if (rdev)
2425 				replacement = 1;
2426 			else
2427 				/* rdev was removed and 'replacement'
2428 				 * replaced it.  rdev is not removed
2429 				 * until all requests are finished.
2430 				 */
2431 				rdev = conf->disks[i].rdev;
2432 			break;
2433 		}
2434 	}
2435 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2436 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2437 		bi->bi_error);
2438 	if (i == disks) {
2439 		BUG();
2440 		return;
2441 	}
2442 
2443 	if (replacement) {
2444 		if (bi->bi_error)
2445 			md_error(conf->mddev, rdev);
2446 		else if (is_badblock(rdev, sh->sector,
2447 				     STRIPE_SECTORS,
2448 				     &first_bad, &bad_sectors))
2449 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2450 	} else {
2451 		if (bi->bi_error) {
2452 			set_bit(STRIPE_DEGRADED, &sh->state);
2453 			set_bit(WriteErrorSeen, &rdev->flags);
2454 			set_bit(R5_WriteError, &sh->dev[i].flags);
2455 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2456 				set_bit(MD_RECOVERY_NEEDED,
2457 					&rdev->mddev->recovery);
2458 		} else if (is_badblock(rdev, sh->sector,
2459 				       STRIPE_SECTORS,
2460 				       &first_bad, &bad_sectors)) {
2461 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2462 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2463 				/* That was a successful write so make
2464 				 * sure it looks like we already did
2465 				 * a re-write.
2466 				 */
2467 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2468 		}
2469 	}
2470 	rdev_dec_pending(rdev, conf->mddev);
2471 
2472 	if (sh->batch_head && bi->bi_error && !replacement)
2473 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2474 
2475 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2476 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2477 	set_bit(STRIPE_HANDLE, &sh->state);
2478 	raid5_release_stripe(sh);
2479 
2480 	if (sh->batch_head && sh != sh->batch_head)
2481 		raid5_release_stripe(sh->batch_head);
2482 }
2483 
2484 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2485 {
2486 	struct r5dev *dev = &sh->dev[i];
2487 
2488 	bio_init(&dev->req);
2489 	dev->req.bi_io_vec = &dev->vec;
2490 	dev->req.bi_max_vecs = 1;
2491 	dev->req.bi_private = sh;
2492 
2493 	bio_init(&dev->rreq);
2494 	dev->rreq.bi_io_vec = &dev->rvec;
2495 	dev->rreq.bi_max_vecs = 1;
2496 	dev->rreq.bi_private = sh;
2497 
2498 	dev->flags = 0;
2499 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2500 }
2501 
2502 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2503 {
2504 	char b[BDEVNAME_SIZE];
2505 	struct r5conf *conf = mddev->private;
2506 	unsigned long flags;
2507 	pr_debug("raid456: error called\n");
2508 
2509 	spin_lock_irqsave(&conf->device_lock, flags);
2510 	clear_bit(In_sync, &rdev->flags);
2511 	mddev->degraded = calc_degraded(conf);
2512 	spin_unlock_irqrestore(&conf->device_lock, flags);
2513 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2514 
2515 	set_bit(Blocked, &rdev->flags);
2516 	set_bit(Faulty, &rdev->flags);
2517 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2518 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
2519 	printk(KERN_ALERT
2520 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2521 	       "md/raid:%s: Operation continuing on %d devices.\n",
2522 	       mdname(mddev),
2523 	       bdevname(rdev->bdev, b),
2524 	       mdname(mddev),
2525 	       conf->raid_disks - mddev->degraded);
2526 }
2527 
2528 /*
2529  * Input: a 'big' sector number,
2530  * Output: index of the data and parity disk, and the sector # in them.
2531  */
2532 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2533 			      int previous, int *dd_idx,
2534 			      struct stripe_head *sh)
2535 {
2536 	sector_t stripe, stripe2;
2537 	sector_t chunk_number;
2538 	unsigned int chunk_offset;
2539 	int pd_idx, qd_idx;
2540 	int ddf_layout = 0;
2541 	sector_t new_sector;
2542 	int algorithm = previous ? conf->prev_algo
2543 				 : conf->algorithm;
2544 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2545 					 : conf->chunk_sectors;
2546 	int raid_disks = previous ? conf->previous_raid_disks
2547 				  : conf->raid_disks;
2548 	int data_disks = raid_disks - conf->max_degraded;
2549 
2550 	/* First compute the information on this sector */
2551 
2552 	/*
2553 	 * Compute the chunk number and the sector offset inside the chunk
2554 	 */
2555 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2556 	chunk_number = r_sector;
2557 
2558 	/*
2559 	 * Compute the stripe number
2560 	 */
2561 	stripe = chunk_number;
2562 	*dd_idx = sector_div(stripe, data_disks);
2563 	stripe2 = stripe;
2564 	/*
2565 	 * Select the parity disk based on the user selected algorithm.
2566 	 */
2567 	pd_idx = qd_idx = -1;
2568 	switch(conf->level) {
2569 	case 4:
2570 		pd_idx = data_disks;
2571 		break;
2572 	case 5:
2573 		switch (algorithm) {
2574 		case ALGORITHM_LEFT_ASYMMETRIC:
2575 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2576 			if (*dd_idx >= pd_idx)
2577 				(*dd_idx)++;
2578 			break;
2579 		case ALGORITHM_RIGHT_ASYMMETRIC:
2580 			pd_idx = sector_div(stripe2, raid_disks);
2581 			if (*dd_idx >= pd_idx)
2582 				(*dd_idx)++;
2583 			break;
2584 		case ALGORITHM_LEFT_SYMMETRIC:
2585 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2586 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2587 			break;
2588 		case ALGORITHM_RIGHT_SYMMETRIC:
2589 			pd_idx = sector_div(stripe2, raid_disks);
2590 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2591 			break;
2592 		case ALGORITHM_PARITY_0:
2593 			pd_idx = 0;
2594 			(*dd_idx)++;
2595 			break;
2596 		case ALGORITHM_PARITY_N:
2597 			pd_idx = data_disks;
2598 			break;
2599 		default:
2600 			BUG();
2601 		}
2602 		break;
2603 	case 6:
2604 
2605 		switch (algorithm) {
2606 		case ALGORITHM_LEFT_ASYMMETRIC:
2607 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2608 			qd_idx = pd_idx + 1;
2609 			if (pd_idx == raid_disks-1) {
2610 				(*dd_idx)++;	/* Q D D D P */
2611 				qd_idx = 0;
2612 			} else if (*dd_idx >= pd_idx)
2613 				(*dd_idx) += 2; /* D D P Q D */
2614 			break;
2615 		case ALGORITHM_RIGHT_ASYMMETRIC:
2616 			pd_idx = sector_div(stripe2, raid_disks);
2617 			qd_idx = pd_idx + 1;
2618 			if (pd_idx == raid_disks-1) {
2619 				(*dd_idx)++;	/* Q D D D P */
2620 				qd_idx = 0;
2621 			} else if (*dd_idx >= pd_idx)
2622 				(*dd_idx) += 2; /* D D P Q D */
2623 			break;
2624 		case ALGORITHM_LEFT_SYMMETRIC:
2625 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2626 			qd_idx = (pd_idx + 1) % raid_disks;
2627 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2628 			break;
2629 		case ALGORITHM_RIGHT_SYMMETRIC:
2630 			pd_idx = sector_div(stripe2, raid_disks);
2631 			qd_idx = (pd_idx + 1) % raid_disks;
2632 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2633 			break;
2634 
2635 		case ALGORITHM_PARITY_0:
2636 			pd_idx = 0;
2637 			qd_idx = 1;
2638 			(*dd_idx) += 2;
2639 			break;
2640 		case ALGORITHM_PARITY_N:
2641 			pd_idx = data_disks;
2642 			qd_idx = data_disks + 1;
2643 			break;
2644 
2645 		case ALGORITHM_ROTATING_ZERO_RESTART:
2646 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2647 			 * of blocks for computing Q is different.
2648 			 */
2649 			pd_idx = sector_div(stripe2, raid_disks);
2650 			qd_idx = pd_idx + 1;
2651 			if (pd_idx == raid_disks-1) {
2652 				(*dd_idx)++;	/* Q D D D P */
2653 				qd_idx = 0;
2654 			} else if (*dd_idx >= pd_idx)
2655 				(*dd_idx) += 2; /* D D P Q D */
2656 			ddf_layout = 1;
2657 			break;
2658 
2659 		case ALGORITHM_ROTATING_N_RESTART:
2660 			/* Same a left_asymmetric, by first stripe is
2661 			 * D D D P Q  rather than
2662 			 * Q D D D P
2663 			 */
2664 			stripe2 += 1;
2665 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2666 			qd_idx = pd_idx + 1;
2667 			if (pd_idx == raid_disks-1) {
2668 				(*dd_idx)++;	/* Q D D D P */
2669 				qd_idx = 0;
2670 			} else if (*dd_idx >= pd_idx)
2671 				(*dd_idx) += 2; /* D D P Q D */
2672 			ddf_layout = 1;
2673 			break;
2674 
2675 		case ALGORITHM_ROTATING_N_CONTINUE:
2676 			/* Same as left_symmetric but Q is before P */
2677 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2678 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2679 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2680 			ddf_layout = 1;
2681 			break;
2682 
2683 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2684 			/* RAID5 left_asymmetric, with Q on last device */
2685 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2686 			if (*dd_idx >= pd_idx)
2687 				(*dd_idx)++;
2688 			qd_idx = raid_disks - 1;
2689 			break;
2690 
2691 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2692 			pd_idx = sector_div(stripe2, raid_disks-1);
2693 			if (*dd_idx >= pd_idx)
2694 				(*dd_idx)++;
2695 			qd_idx = raid_disks - 1;
2696 			break;
2697 
2698 		case ALGORITHM_LEFT_SYMMETRIC_6:
2699 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2700 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2701 			qd_idx = raid_disks - 1;
2702 			break;
2703 
2704 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2705 			pd_idx = sector_div(stripe2, raid_disks-1);
2706 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2707 			qd_idx = raid_disks - 1;
2708 			break;
2709 
2710 		case ALGORITHM_PARITY_0_6:
2711 			pd_idx = 0;
2712 			(*dd_idx)++;
2713 			qd_idx = raid_disks - 1;
2714 			break;
2715 
2716 		default:
2717 			BUG();
2718 		}
2719 		break;
2720 	}
2721 
2722 	if (sh) {
2723 		sh->pd_idx = pd_idx;
2724 		sh->qd_idx = qd_idx;
2725 		sh->ddf_layout = ddf_layout;
2726 	}
2727 	/*
2728 	 * Finally, compute the new sector number
2729 	 */
2730 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2731 	return new_sector;
2732 }
2733 
2734 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2735 {
2736 	struct r5conf *conf = sh->raid_conf;
2737 	int raid_disks = sh->disks;
2738 	int data_disks = raid_disks - conf->max_degraded;
2739 	sector_t new_sector = sh->sector, check;
2740 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2741 					 : conf->chunk_sectors;
2742 	int algorithm = previous ? conf->prev_algo
2743 				 : conf->algorithm;
2744 	sector_t stripe;
2745 	int chunk_offset;
2746 	sector_t chunk_number;
2747 	int dummy1, dd_idx = i;
2748 	sector_t r_sector;
2749 	struct stripe_head sh2;
2750 
2751 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2752 	stripe = new_sector;
2753 
2754 	if (i == sh->pd_idx)
2755 		return 0;
2756 	switch(conf->level) {
2757 	case 4: break;
2758 	case 5:
2759 		switch (algorithm) {
2760 		case ALGORITHM_LEFT_ASYMMETRIC:
2761 		case ALGORITHM_RIGHT_ASYMMETRIC:
2762 			if (i > sh->pd_idx)
2763 				i--;
2764 			break;
2765 		case ALGORITHM_LEFT_SYMMETRIC:
2766 		case ALGORITHM_RIGHT_SYMMETRIC:
2767 			if (i < sh->pd_idx)
2768 				i += raid_disks;
2769 			i -= (sh->pd_idx + 1);
2770 			break;
2771 		case ALGORITHM_PARITY_0:
2772 			i -= 1;
2773 			break;
2774 		case ALGORITHM_PARITY_N:
2775 			break;
2776 		default:
2777 			BUG();
2778 		}
2779 		break;
2780 	case 6:
2781 		if (i == sh->qd_idx)
2782 			return 0; /* It is the Q disk */
2783 		switch (algorithm) {
2784 		case ALGORITHM_LEFT_ASYMMETRIC:
2785 		case ALGORITHM_RIGHT_ASYMMETRIC:
2786 		case ALGORITHM_ROTATING_ZERO_RESTART:
2787 		case ALGORITHM_ROTATING_N_RESTART:
2788 			if (sh->pd_idx == raid_disks-1)
2789 				i--;	/* Q D D D P */
2790 			else if (i > sh->pd_idx)
2791 				i -= 2; /* D D P Q D */
2792 			break;
2793 		case ALGORITHM_LEFT_SYMMETRIC:
2794 		case ALGORITHM_RIGHT_SYMMETRIC:
2795 			if (sh->pd_idx == raid_disks-1)
2796 				i--; /* Q D D D P */
2797 			else {
2798 				/* D D P Q D */
2799 				if (i < sh->pd_idx)
2800 					i += raid_disks;
2801 				i -= (sh->pd_idx + 2);
2802 			}
2803 			break;
2804 		case ALGORITHM_PARITY_0:
2805 			i -= 2;
2806 			break;
2807 		case ALGORITHM_PARITY_N:
2808 			break;
2809 		case ALGORITHM_ROTATING_N_CONTINUE:
2810 			/* Like left_symmetric, but P is before Q */
2811 			if (sh->pd_idx == 0)
2812 				i--;	/* P D D D Q */
2813 			else {
2814 				/* D D Q P D */
2815 				if (i < sh->pd_idx)
2816 					i += raid_disks;
2817 				i -= (sh->pd_idx + 1);
2818 			}
2819 			break;
2820 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2821 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2822 			if (i > sh->pd_idx)
2823 				i--;
2824 			break;
2825 		case ALGORITHM_LEFT_SYMMETRIC_6:
2826 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2827 			if (i < sh->pd_idx)
2828 				i += data_disks + 1;
2829 			i -= (sh->pd_idx + 1);
2830 			break;
2831 		case ALGORITHM_PARITY_0_6:
2832 			i -= 1;
2833 			break;
2834 		default:
2835 			BUG();
2836 		}
2837 		break;
2838 	}
2839 
2840 	chunk_number = stripe * data_disks + i;
2841 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2842 
2843 	check = raid5_compute_sector(conf, r_sector,
2844 				     previous, &dummy1, &sh2);
2845 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2846 		|| sh2.qd_idx != sh->qd_idx) {
2847 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2848 		       mdname(conf->mddev));
2849 		return 0;
2850 	}
2851 	return r_sector;
2852 }
2853 
2854 static void
2855 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2856 			 int rcw, int expand)
2857 {
2858 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2859 	struct r5conf *conf = sh->raid_conf;
2860 	int level = conf->level;
2861 
2862 	if (rcw) {
2863 
2864 		for (i = disks; i--; ) {
2865 			struct r5dev *dev = &sh->dev[i];
2866 
2867 			if (dev->towrite) {
2868 				set_bit(R5_LOCKED, &dev->flags);
2869 				set_bit(R5_Wantdrain, &dev->flags);
2870 				if (!expand)
2871 					clear_bit(R5_UPTODATE, &dev->flags);
2872 				s->locked++;
2873 			}
2874 		}
2875 		/* if we are not expanding this is a proper write request, and
2876 		 * there will be bios with new data to be drained into the
2877 		 * stripe cache
2878 		 */
2879 		if (!expand) {
2880 			if (!s->locked)
2881 				/* False alarm, nothing to do */
2882 				return;
2883 			sh->reconstruct_state = reconstruct_state_drain_run;
2884 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2885 		} else
2886 			sh->reconstruct_state = reconstruct_state_run;
2887 
2888 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2889 
2890 		if (s->locked + conf->max_degraded == disks)
2891 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2892 				atomic_inc(&conf->pending_full_writes);
2893 	} else {
2894 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2895 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2896 		BUG_ON(level == 6 &&
2897 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2898 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2899 
2900 		for (i = disks; i--; ) {
2901 			struct r5dev *dev = &sh->dev[i];
2902 			if (i == pd_idx || i == qd_idx)
2903 				continue;
2904 
2905 			if (dev->towrite &&
2906 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2907 			     test_bit(R5_Wantcompute, &dev->flags))) {
2908 				set_bit(R5_Wantdrain, &dev->flags);
2909 				set_bit(R5_LOCKED, &dev->flags);
2910 				clear_bit(R5_UPTODATE, &dev->flags);
2911 				s->locked++;
2912 			}
2913 		}
2914 		if (!s->locked)
2915 			/* False alarm - nothing to do */
2916 			return;
2917 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2918 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2919 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2920 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2921 	}
2922 
2923 	/* keep the parity disk(s) locked while asynchronous operations
2924 	 * are in flight
2925 	 */
2926 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2927 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2928 	s->locked++;
2929 
2930 	if (level == 6) {
2931 		int qd_idx = sh->qd_idx;
2932 		struct r5dev *dev = &sh->dev[qd_idx];
2933 
2934 		set_bit(R5_LOCKED, &dev->flags);
2935 		clear_bit(R5_UPTODATE, &dev->flags);
2936 		s->locked++;
2937 	}
2938 
2939 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2940 		__func__, (unsigned long long)sh->sector,
2941 		s->locked, s->ops_request);
2942 }
2943 
2944 /*
2945  * Each stripe/dev can have one or more bion attached.
2946  * toread/towrite point to the first in a chain.
2947  * The bi_next chain must be in order.
2948  */
2949 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2950 			  int forwrite, int previous)
2951 {
2952 	struct bio **bip;
2953 	struct r5conf *conf = sh->raid_conf;
2954 	int firstwrite=0;
2955 
2956 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2957 		(unsigned long long)bi->bi_iter.bi_sector,
2958 		(unsigned long long)sh->sector);
2959 
2960 	/*
2961 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2962 	 * reference count to avoid race. The reference count should already be
2963 	 * increased before this function is called (for example, in
2964 	 * raid5_make_request()), so other bio sharing this stripe will not free the
2965 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2966 	 * protect it.
2967 	 */
2968 	spin_lock_irq(&sh->stripe_lock);
2969 	/* Don't allow new IO added to stripes in batch list */
2970 	if (sh->batch_head)
2971 		goto overlap;
2972 	if (forwrite) {
2973 		bip = &sh->dev[dd_idx].towrite;
2974 		if (*bip == NULL)
2975 			firstwrite = 1;
2976 	} else
2977 		bip = &sh->dev[dd_idx].toread;
2978 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2979 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2980 			goto overlap;
2981 		bip = & (*bip)->bi_next;
2982 	}
2983 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2984 		goto overlap;
2985 
2986 	if (!forwrite || previous)
2987 		clear_bit(STRIPE_BATCH_READY, &sh->state);
2988 
2989 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2990 	if (*bip)
2991 		bi->bi_next = *bip;
2992 	*bip = bi;
2993 	raid5_inc_bi_active_stripes(bi);
2994 
2995 	if (forwrite) {
2996 		/* check if page is covered */
2997 		sector_t sector = sh->dev[dd_idx].sector;
2998 		for (bi=sh->dev[dd_idx].towrite;
2999 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3000 			     bi && bi->bi_iter.bi_sector <= sector;
3001 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3002 			if (bio_end_sector(bi) >= sector)
3003 				sector = bio_end_sector(bi);
3004 		}
3005 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3006 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3007 				sh->overwrite_disks++;
3008 	}
3009 
3010 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3011 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3012 		(unsigned long long)sh->sector, dd_idx);
3013 
3014 	if (conf->mddev->bitmap && firstwrite) {
3015 		/* Cannot hold spinlock over bitmap_startwrite,
3016 		 * but must ensure this isn't added to a batch until
3017 		 * we have added to the bitmap and set bm_seq.
3018 		 * So set STRIPE_BITMAP_PENDING to prevent
3019 		 * batching.
3020 		 * If multiple add_stripe_bio() calls race here they
3021 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3022 		 * to complete "bitmap_startwrite" gets to set
3023 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3024 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3025 		 * any more.
3026 		 */
3027 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3028 		spin_unlock_irq(&sh->stripe_lock);
3029 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3030 				  STRIPE_SECTORS, 0);
3031 		spin_lock_irq(&sh->stripe_lock);
3032 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3033 		if (!sh->batch_head) {
3034 			sh->bm_seq = conf->seq_flush+1;
3035 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3036 		}
3037 	}
3038 	spin_unlock_irq(&sh->stripe_lock);
3039 
3040 	if (stripe_can_batch(sh))
3041 		stripe_add_to_batch_list(conf, sh);
3042 	return 1;
3043 
3044  overlap:
3045 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3046 	spin_unlock_irq(&sh->stripe_lock);
3047 	return 0;
3048 }
3049 
3050 static void end_reshape(struct r5conf *conf);
3051 
3052 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3053 			    struct stripe_head *sh)
3054 {
3055 	int sectors_per_chunk =
3056 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3057 	int dd_idx;
3058 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3059 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3060 
3061 	raid5_compute_sector(conf,
3062 			     stripe * (disks - conf->max_degraded)
3063 			     *sectors_per_chunk + chunk_offset,
3064 			     previous,
3065 			     &dd_idx, sh);
3066 }
3067 
3068 static void
3069 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3070 				struct stripe_head_state *s, int disks,
3071 				struct bio_list *return_bi)
3072 {
3073 	int i;
3074 	BUG_ON(sh->batch_head);
3075 	for (i = disks; i--; ) {
3076 		struct bio *bi;
3077 		int bitmap_end = 0;
3078 
3079 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3080 			struct md_rdev *rdev;
3081 			rcu_read_lock();
3082 			rdev = rcu_dereference(conf->disks[i].rdev);
3083 			if (rdev && test_bit(In_sync, &rdev->flags))
3084 				atomic_inc(&rdev->nr_pending);
3085 			else
3086 				rdev = NULL;
3087 			rcu_read_unlock();
3088 			if (rdev) {
3089 				if (!rdev_set_badblocks(
3090 					    rdev,
3091 					    sh->sector,
3092 					    STRIPE_SECTORS, 0))
3093 					md_error(conf->mddev, rdev);
3094 				rdev_dec_pending(rdev, conf->mddev);
3095 			}
3096 		}
3097 		spin_lock_irq(&sh->stripe_lock);
3098 		/* fail all writes first */
3099 		bi = sh->dev[i].towrite;
3100 		sh->dev[i].towrite = NULL;
3101 		sh->overwrite_disks = 0;
3102 		spin_unlock_irq(&sh->stripe_lock);
3103 		if (bi)
3104 			bitmap_end = 1;
3105 
3106 		r5l_stripe_write_finished(sh);
3107 
3108 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3109 			wake_up(&conf->wait_for_overlap);
3110 
3111 		while (bi && bi->bi_iter.bi_sector <
3112 			sh->dev[i].sector + STRIPE_SECTORS) {
3113 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3114 
3115 			bi->bi_error = -EIO;
3116 			if (!raid5_dec_bi_active_stripes(bi)) {
3117 				md_write_end(conf->mddev);
3118 				bio_list_add(return_bi, bi);
3119 			}
3120 			bi = nextbi;
3121 		}
3122 		if (bitmap_end)
3123 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3124 				STRIPE_SECTORS, 0, 0);
3125 		bitmap_end = 0;
3126 		/* and fail all 'written' */
3127 		bi = sh->dev[i].written;
3128 		sh->dev[i].written = NULL;
3129 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3130 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3131 			sh->dev[i].page = sh->dev[i].orig_page;
3132 		}
3133 
3134 		if (bi) bitmap_end = 1;
3135 		while (bi && bi->bi_iter.bi_sector <
3136 		       sh->dev[i].sector + STRIPE_SECTORS) {
3137 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3138 
3139 			bi->bi_error = -EIO;
3140 			if (!raid5_dec_bi_active_stripes(bi)) {
3141 				md_write_end(conf->mddev);
3142 				bio_list_add(return_bi, bi);
3143 			}
3144 			bi = bi2;
3145 		}
3146 
3147 		/* fail any reads if this device is non-operational and
3148 		 * the data has not reached the cache yet.
3149 		 */
3150 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3151 		    s->failed > conf->max_degraded &&
3152 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3153 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3154 			spin_lock_irq(&sh->stripe_lock);
3155 			bi = sh->dev[i].toread;
3156 			sh->dev[i].toread = NULL;
3157 			spin_unlock_irq(&sh->stripe_lock);
3158 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3159 				wake_up(&conf->wait_for_overlap);
3160 			if (bi)
3161 				s->to_read--;
3162 			while (bi && bi->bi_iter.bi_sector <
3163 			       sh->dev[i].sector + STRIPE_SECTORS) {
3164 				struct bio *nextbi =
3165 					r5_next_bio(bi, sh->dev[i].sector);
3166 
3167 				bi->bi_error = -EIO;
3168 				if (!raid5_dec_bi_active_stripes(bi))
3169 					bio_list_add(return_bi, bi);
3170 				bi = nextbi;
3171 			}
3172 		}
3173 		if (bitmap_end)
3174 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3175 					STRIPE_SECTORS, 0, 0);
3176 		/* If we were in the middle of a write the parity block might
3177 		 * still be locked - so just clear all R5_LOCKED flags
3178 		 */
3179 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3180 	}
3181 	s->to_write = 0;
3182 	s->written = 0;
3183 
3184 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3185 		if (atomic_dec_and_test(&conf->pending_full_writes))
3186 			md_wakeup_thread(conf->mddev->thread);
3187 }
3188 
3189 static void
3190 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3191 		   struct stripe_head_state *s)
3192 {
3193 	int abort = 0;
3194 	int i;
3195 
3196 	BUG_ON(sh->batch_head);
3197 	clear_bit(STRIPE_SYNCING, &sh->state);
3198 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3199 		wake_up(&conf->wait_for_overlap);
3200 	s->syncing = 0;
3201 	s->replacing = 0;
3202 	/* There is nothing more to do for sync/check/repair.
3203 	 * Don't even need to abort as that is handled elsewhere
3204 	 * if needed, and not always wanted e.g. if there is a known
3205 	 * bad block here.
3206 	 * For recover/replace we need to record a bad block on all
3207 	 * non-sync devices, or abort the recovery
3208 	 */
3209 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3210 		/* During recovery devices cannot be removed, so
3211 		 * locking and refcounting of rdevs is not needed
3212 		 */
3213 		for (i = 0; i < conf->raid_disks; i++) {
3214 			struct md_rdev *rdev = conf->disks[i].rdev;
3215 			if (rdev
3216 			    && !test_bit(Faulty, &rdev->flags)
3217 			    && !test_bit(In_sync, &rdev->flags)
3218 			    && !rdev_set_badblocks(rdev, sh->sector,
3219 						   STRIPE_SECTORS, 0))
3220 				abort = 1;
3221 			rdev = conf->disks[i].replacement;
3222 			if (rdev
3223 			    && !test_bit(Faulty, &rdev->flags)
3224 			    && !test_bit(In_sync, &rdev->flags)
3225 			    && !rdev_set_badblocks(rdev, sh->sector,
3226 						   STRIPE_SECTORS, 0))
3227 				abort = 1;
3228 		}
3229 		if (abort)
3230 			conf->recovery_disabled =
3231 				conf->mddev->recovery_disabled;
3232 	}
3233 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3234 }
3235 
3236 static int want_replace(struct stripe_head *sh, int disk_idx)
3237 {
3238 	struct md_rdev *rdev;
3239 	int rv = 0;
3240 	/* Doing recovery so rcu locking not required */
3241 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3242 	if (rdev
3243 	    && !test_bit(Faulty, &rdev->flags)
3244 	    && !test_bit(In_sync, &rdev->flags)
3245 	    && (rdev->recovery_offset <= sh->sector
3246 		|| rdev->mddev->recovery_cp <= sh->sector))
3247 		rv = 1;
3248 
3249 	return rv;
3250 }
3251 
3252 /* fetch_block - checks the given member device to see if its data needs
3253  * to be read or computed to satisfy a request.
3254  *
3255  * Returns 1 when no more member devices need to be checked, otherwise returns
3256  * 0 to tell the loop in handle_stripe_fill to continue
3257  */
3258 
3259 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3260 			   int disk_idx, int disks)
3261 {
3262 	struct r5dev *dev = &sh->dev[disk_idx];
3263 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3264 				  &sh->dev[s->failed_num[1]] };
3265 	int i;
3266 
3267 
3268 	if (test_bit(R5_LOCKED, &dev->flags) ||
3269 	    test_bit(R5_UPTODATE, &dev->flags))
3270 		/* No point reading this as we already have it or have
3271 		 * decided to get it.
3272 		 */
3273 		return 0;
3274 
3275 	if (dev->toread ||
3276 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3277 		/* We need this block to directly satisfy a request */
3278 		return 1;
3279 
3280 	if (s->syncing || s->expanding ||
3281 	    (s->replacing && want_replace(sh, disk_idx)))
3282 		/* When syncing, or expanding we read everything.
3283 		 * When replacing, we need the replaced block.
3284 		 */
3285 		return 1;
3286 
3287 	if ((s->failed >= 1 && fdev[0]->toread) ||
3288 	    (s->failed >= 2 && fdev[1]->toread))
3289 		/* If we want to read from a failed device, then
3290 		 * we need to actually read every other device.
3291 		 */
3292 		return 1;
3293 
3294 	/* Sometimes neither read-modify-write nor reconstruct-write
3295 	 * cycles can work.  In those cases we read every block we
3296 	 * can.  Then the parity-update is certain to have enough to
3297 	 * work with.
3298 	 * This can only be a problem when we need to write something,
3299 	 * and some device has failed.  If either of those tests
3300 	 * fail we need look no further.
3301 	 */
3302 	if (!s->failed || !s->to_write)
3303 		return 0;
3304 
3305 	if (test_bit(R5_Insync, &dev->flags) &&
3306 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3307 		/* Pre-reads at not permitted until after short delay
3308 		 * to gather multiple requests.  However if this
3309 		 * device is no Insync, the block could only be be computed
3310 		 * and there is no need to delay that.
3311 		 */
3312 		return 0;
3313 
3314 	for (i = 0; i < s->failed && i < 2; i++) {
3315 		if (fdev[i]->towrite &&
3316 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3317 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3318 			/* If we have a partial write to a failed
3319 			 * device, then we will need to reconstruct
3320 			 * the content of that device, so all other
3321 			 * devices must be read.
3322 			 */
3323 			return 1;
3324 	}
3325 
3326 	/* If we are forced to do a reconstruct-write, either because
3327 	 * the current RAID6 implementation only supports that, or
3328 	 * or because parity cannot be trusted and we are currently
3329 	 * recovering it, there is extra need to be careful.
3330 	 * If one of the devices that we would need to read, because
3331 	 * it is not being overwritten (and maybe not written at all)
3332 	 * is missing/faulty, then we need to read everything we can.
3333 	 */
3334 	if (sh->raid_conf->level != 6 &&
3335 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3336 		/* reconstruct-write isn't being forced */
3337 		return 0;
3338 	for (i = 0; i < s->failed && i < 2; i++) {
3339 		if (s->failed_num[i] != sh->pd_idx &&
3340 		    s->failed_num[i] != sh->qd_idx &&
3341 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3342 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3343 			return 1;
3344 	}
3345 
3346 	return 0;
3347 }
3348 
3349 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3350 		       int disk_idx, int disks)
3351 {
3352 	struct r5dev *dev = &sh->dev[disk_idx];
3353 
3354 	/* is the data in this block needed, and can we get it? */
3355 	if (need_this_block(sh, s, disk_idx, disks)) {
3356 		/* we would like to get this block, possibly by computing it,
3357 		 * otherwise read it if the backing disk is insync
3358 		 */
3359 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3360 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3361 		BUG_ON(sh->batch_head);
3362 		if ((s->uptodate == disks - 1) &&
3363 		    (s->failed && (disk_idx == s->failed_num[0] ||
3364 				   disk_idx == s->failed_num[1]))) {
3365 			/* have disk failed, and we're requested to fetch it;
3366 			 * do compute it
3367 			 */
3368 			pr_debug("Computing stripe %llu block %d\n",
3369 			       (unsigned long long)sh->sector, disk_idx);
3370 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3371 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3372 			set_bit(R5_Wantcompute, &dev->flags);
3373 			sh->ops.target = disk_idx;
3374 			sh->ops.target2 = -1; /* no 2nd target */
3375 			s->req_compute = 1;
3376 			/* Careful: from this point on 'uptodate' is in the eye
3377 			 * of raid_run_ops which services 'compute' operations
3378 			 * before writes. R5_Wantcompute flags a block that will
3379 			 * be R5_UPTODATE by the time it is needed for a
3380 			 * subsequent operation.
3381 			 */
3382 			s->uptodate++;
3383 			return 1;
3384 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3385 			/* Computing 2-failure is *very* expensive; only
3386 			 * do it if failed >= 2
3387 			 */
3388 			int other;
3389 			for (other = disks; other--; ) {
3390 				if (other == disk_idx)
3391 					continue;
3392 				if (!test_bit(R5_UPTODATE,
3393 				      &sh->dev[other].flags))
3394 					break;
3395 			}
3396 			BUG_ON(other < 0);
3397 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3398 			       (unsigned long long)sh->sector,
3399 			       disk_idx, other);
3400 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3401 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3402 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3403 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3404 			sh->ops.target = disk_idx;
3405 			sh->ops.target2 = other;
3406 			s->uptodate += 2;
3407 			s->req_compute = 1;
3408 			return 1;
3409 		} else if (test_bit(R5_Insync, &dev->flags)) {
3410 			set_bit(R5_LOCKED, &dev->flags);
3411 			set_bit(R5_Wantread, &dev->flags);
3412 			s->locked++;
3413 			pr_debug("Reading block %d (sync=%d)\n",
3414 				disk_idx, s->syncing);
3415 		}
3416 	}
3417 
3418 	return 0;
3419 }
3420 
3421 /**
3422  * handle_stripe_fill - read or compute data to satisfy pending requests.
3423  */
3424 static void handle_stripe_fill(struct stripe_head *sh,
3425 			       struct stripe_head_state *s,
3426 			       int disks)
3427 {
3428 	int i;
3429 
3430 	/* look for blocks to read/compute, skip this if a compute
3431 	 * is already in flight, or if the stripe contents are in the
3432 	 * midst of changing due to a write
3433 	 */
3434 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3435 	    !sh->reconstruct_state)
3436 		for (i = disks; i--; )
3437 			if (fetch_block(sh, s, i, disks))
3438 				break;
3439 	set_bit(STRIPE_HANDLE, &sh->state);
3440 }
3441 
3442 static void break_stripe_batch_list(struct stripe_head *head_sh,
3443 				    unsigned long handle_flags);
3444 /* handle_stripe_clean_event
3445  * any written block on an uptodate or failed drive can be returned.
3446  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3447  * never LOCKED, so we don't need to test 'failed' directly.
3448  */
3449 static void handle_stripe_clean_event(struct r5conf *conf,
3450 	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3451 {
3452 	int i;
3453 	struct r5dev *dev;
3454 	int discard_pending = 0;
3455 	struct stripe_head *head_sh = sh;
3456 	bool do_endio = false;
3457 
3458 	for (i = disks; i--; )
3459 		if (sh->dev[i].written) {
3460 			dev = &sh->dev[i];
3461 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3462 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3463 			     test_bit(R5_Discard, &dev->flags) ||
3464 			     test_bit(R5_SkipCopy, &dev->flags))) {
3465 				/* We can return any write requests */
3466 				struct bio *wbi, *wbi2;
3467 				pr_debug("Return write for disc %d\n", i);
3468 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3469 					clear_bit(R5_UPTODATE, &dev->flags);
3470 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3471 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3472 				}
3473 				do_endio = true;
3474 
3475 returnbi:
3476 				dev->page = dev->orig_page;
3477 				wbi = dev->written;
3478 				dev->written = NULL;
3479 				while (wbi && wbi->bi_iter.bi_sector <
3480 					dev->sector + STRIPE_SECTORS) {
3481 					wbi2 = r5_next_bio(wbi, dev->sector);
3482 					if (!raid5_dec_bi_active_stripes(wbi)) {
3483 						md_write_end(conf->mddev);
3484 						bio_list_add(return_bi, wbi);
3485 					}
3486 					wbi = wbi2;
3487 				}
3488 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3489 						STRIPE_SECTORS,
3490 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3491 						0);
3492 				if (head_sh->batch_head) {
3493 					sh = list_first_entry(&sh->batch_list,
3494 							      struct stripe_head,
3495 							      batch_list);
3496 					if (sh != head_sh) {
3497 						dev = &sh->dev[i];
3498 						goto returnbi;
3499 					}
3500 				}
3501 				sh = head_sh;
3502 				dev = &sh->dev[i];
3503 			} else if (test_bit(R5_Discard, &dev->flags))
3504 				discard_pending = 1;
3505 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3506 			WARN_ON(dev->page != dev->orig_page);
3507 		}
3508 
3509 	r5l_stripe_write_finished(sh);
3510 
3511 	if (!discard_pending &&
3512 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3513 		int hash;
3514 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3515 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3516 		if (sh->qd_idx >= 0) {
3517 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3518 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3519 		}
3520 		/* now that discard is done we can proceed with any sync */
3521 		clear_bit(STRIPE_DISCARD, &sh->state);
3522 		/*
3523 		 * SCSI discard will change some bio fields and the stripe has
3524 		 * no updated data, so remove it from hash list and the stripe
3525 		 * will be reinitialized
3526 		 */
3527 unhash:
3528 		hash = sh->hash_lock_index;
3529 		spin_lock_irq(conf->hash_locks + hash);
3530 		remove_hash(sh);
3531 		spin_unlock_irq(conf->hash_locks + hash);
3532 		if (head_sh->batch_head) {
3533 			sh = list_first_entry(&sh->batch_list,
3534 					      struct stripe_head, batch_list);
3535 			if (sh != head_sh)
3536 					goto unhash;
3537 		}
3538 		sh = head_sh;
3539 
3540 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3541 			set_bit(STRIPE_HANDLE, &sh->state);
3542 
3543 	}
3544 
3545 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3546 		if (atomic_dec_and_test(&conf->pending_full_writes))
3547 			md_wakeup_thread(conf->mddev->thread);
3548 
3549 	if (head_sh->batch_head && do_endio)
3550 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3551 }
3552 
3553 static void handle_stripe_dirtying(struct r5conf *conf,
3554 				   struct stripe_head *sh,
3555 				   struct stripe_head_state *s,
3556 				   int disks)
3557 {
3558 	int rmw = 0, rcw = 0, i;
3559 	sector_t recovery_cp = conf->mddev->recovery_cp;
3560 
3561 	/* Check whether resync is now happening or should start.
3562 	 * If yes, then the array is dirty (after unclean shutdown or
3563 	 * initial creation), so parity in some stripes might be inconsistent.
3564 	 * In this case, we need to always do reconstruct-write, to ensure
3565 	 * that in case of drive failure or read-error correction, we
3566 	 * generate correct data from the parity.
3567 	 */
3568 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3569 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3570 	     s->failed == 0)) {
3571 		/* Calculate the real rcw later - for now make it
3572 		 * look like rcw is cheaper
3573 		 */
3574 		rcw = 1; rmw = 2;
3575 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3576 			 conf->rmw_level, (unsigned long long)recovery_cp,
3577 			 (unsigned long long)sh->sector);
3578 	} else for (i = disks; i--; ) {
3579 		/* would I have to read this buffer for read_modify_write */
3580 		struct r5dev *dev = &sh->dev[i];
3581 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3582 		    !test_bit(R5_LOCKED, &dev->flags) &&
3583 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3584 		      test_bit(R5_Wantcompute, &dev->flags))) {
3585 			if (test_bit(R5_Insync, &dev->flags))
3586 				rmw++;
3587 			else
3588 				rmw += 2*disks;  /* cannot read it */
3589 		}
3590 		/* Would I have to read this buffer for reconstruct_write */
3591 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3592 		    i != sh->pd_idx && i != sh->qd_idx &&
3593 		    !test_bit(R5_LOCKED, &dev->flags) &&
3594 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3595 		    test_bit(R5_Wantcompute, &dev->flags))) {
3596 			if (test_bit(R5_Insync, &dev->flags))
3597 				rcw++;
3598 			else
3599 				rcw += 2*disks;
3600 		}
3601 	}
3602 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3603 		(unsigned long long)sh->sector, rmw, rcw);
3604 	set_bit(STRIPE_HANDLE, &sh->state);
3605 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3606 		/* prefer read-modify-write, but need to get some data */
3607 		if (conf->mddev->queue)
3608 			blk_add_trace_msg(conf->mddev->queue,
3609 					  "raid5 rmw %llu %d",
3610 					  (unsigned long long)sh->sector, rmw);
3611 		for (i = disks; i--; ) {
3612 			struct r5dev *dev = &sh->dev[i];
3613 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3614 			    !test_bit(R5_LOCKED, &dev->flags) &&
3615 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3616 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3617 			    test_bit(R5_Insync, &dev->flags)) {
3618 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3619 					     &sh->state)) {
3620 					pr_debug("Read_old block %d for r-m-w\n",
3621 						 i);
3622 					set_bit(R5_LOCKED, &dev->flags);
3623 					set_bit(R5_Wantread, &dev->flags);
3624 					s->locked++;
3625 				} else {
3626 					set_bit(STRIPE_DELAYED, &sh->state);
3627 					set_bit(STRIPE_HANDLE, &sh->state);
3628 				}
3629 			}
3630 		}
3631 	}
3632 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3633 		/* want reconstruct write, but need to get some data */
3634 		int qread =0;
3635 		rcw = 0;
3636 		for (i = disks; i--; ) {
3637 			struct r5dev *dev = &sh->dev[i];
3638 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3639 			    i != sh->pd_idx && i != sh->qd_idx &&
3640 			    !test_bit(R5_LOCKED, &dev->flags) &&
3641 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3642 			      test_bit(R5_Wantcompute, &dev->flags))) {
3643 				rcw++;
3644 				if (test_bit(R5_Insync, &dev->flags) &&
3645 				    test_bit(STRIPE_PREREAD_ACTIVE,
3646 					     &sh->state)) {
3647 					pr_debug("Read_old block "
3648 						"%d for Reconstruct\n", i);
3649 					set_bit(R5_LOCKED, &dev->flags);
3650 					set_bit(R5_Wantread, &dev->flags);
3651 					s->locked++;
3652 					qread++;
3653 				} else {
3654 					set_bit(STRIPE_DELAYED, &sh->state);
3655 					set_bit(STRIPE_HANDLE, &sh->state);
3656 				}
3657 			}
3658 		}
3659 		if (rcw && conf->mddev->queue)
3660 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3661 					  (unsigned long long)sh->sector,
3662 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3663 	}
3664 
3665 	if (rcw > disks && rmw > disks &&
3666 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3667 		set_bit(STRIPE_DELAYED, &sh->state);
3668 
3669 	/* now if nothing is locked, and if we have enough data,
3670 	 * we can start a write request
3671 	 */
3672 	/* since handle_stripe can be called at any time we need to handle the
3673 	 * case where a compute block operation has been submitted and then a
3674 	 * subsequent call wants to start a write request.  raid_run_ops only
3675 	 * handles the case where compute block and reconstruct are requested
3676 	 * simultaneously.  If this is not the case then new writes need to be
3677 	 * held off until the compute completes.
3678 	 */
3679 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3680 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3681 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3682 		schedule_reconstruction(sh, s, rcw == 0, 0);
3683 }
3684 
3685 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3686 				struct stripe_head_state *s, int disks)
3687 {
3688 	struct r5dev *dev = NULL;
3689 
3690 	BUG_ON(sh->batch_head);
3691 	set_bit(STRIPE_HANDLE, &sh->state);
3692 
3693 	switch (sh->check_state) {
3694 	case check_state_idle:
3695 		/* start a new check operation if there are no failures */
3696 		if (s->failed == 0) {
3697 			BUG_ON(s->uptodate != disks);
3698 			sh->check_state = check_state_run;
3699 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3700 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3701 			s->uptodate--;
3702 			break;
3703 		}
3704 		dev = &sh->dev[s->failed_num[0]];
3705 		/* fall through */
3706 	case check_state_compute_result:
3707 		sh->check_state = check_state_idle;
3708 		if (!dev)
3709 			dev = &sh->dev[sh->pd_idx];
3710 
3711 		/* check that a write has not made the stripe insync */
3712 		if (test_bit(STRIPE_INSYNC, &sh->state))
3713 			break;
3714 
3715 		/* either failed parity check, or recovery is happening */
3716 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3717 		BUG_ON(s->uptodate != disks);
3718 
3719 		set_bit(R5_LOCKED, &dev->flags);
3720 		s->locked++;
3721 		set_bit(R5_Wantwrite, &dev->flags);
3722 
3723 		clear_bit(STRIPE_DEGRADED, &sh->state);
3724 		set_bit(STRIPE_INSYNC, &sh->state);
3725 		break;
3726 	case check_state_run:
3727 		break; /* we will be called again upon completion */
3728 	case check_state_check_result:
3729 		sh->check_state = check_state_idle;
3730 
3731 		/* if a failure occurred during the check operation, leave
3732 		 * STRIPE_INSYNC not set and let the stripe be handled again
3733 		 */
3734 		if (s->failed)
3735 			break;
3736 
3737 		/* handle a successful check operation, if parity is correct
3738 		 * we are done.  Otherwise update the mismatch count and repair
3739 		 * parity if !MD_RECOVERY_CHECK
3740 		 */
3741 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3742 			/* parity is correct (on disc,
3743 			 * not in buffer any more)
3744 			 */
3745 			set_bit(STRIPE_INSYNC, &sh->state);
3746 		else {
3747 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3748 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3749 				/* don't try to repair!! */
3750 				set_bit(STRIPE_INSYNC, &sh->state);
3751 			else {
3752 				sh->check_state = check_state_compute_run;
3753 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3754 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3755 				set_bit(R5_Wantcompute,
3756 					&sh->dev[sh->pd_idx].flags);
3757 				sh->ops.target = sh->pd_idx;
3758 				sh->ops.target2 = -1;
3759 				s->uptodate++;
3760 			}
3761 		}
3762 		break;
3763 	case check_state_compute_run:
3764 		break;
3765 	default:
3766 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3767 		       __func__, sh->check_state,
3768 		       (unsigned long long) sh->sector);
3769 		BUG();
3770 	}
3771 }
3772 
3773 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3774 				  struct stripe_head_state *s,
3775 				  int disks)
3776 {
3777 	int pd_idx = sh->pd_idx;
3778 	int qd_idx = sh->qd_idx;
3779 	struct r5dev *dev;
3780 
3781 	BUG_ON(sh->batch_head);
3782 	set_bit(STRIPE_HANDLE, &sh->state);
3783 
3784 	BUG_ON(s->failed > 2);
3785 
3786 	/* Want to check and possibly repair P and Q.
3787 	 * However there could be one 'failed' device, in which
3788 	 * case we can only check one of them, possibly using the
3789 	 * other to generate missing data
3790 	 */
3791 
3792 	switch (sh->check_state) {
3793 	case check_state_idle:
3794 		/* start a new check operation if there are < 2 failures */
3795 		if (s->failed == s->q_failed) {
3796 			/* The only possible failed device holds Q, so it
3797 			 * makes sense to check P (If anything else were failed,
3798 			 * we would have used P to recreate it).
3799 			 */
3800 			sh->check_state = check_state_run;
3801 		}
3802 		if (!s->q_failed && s->failed < 2) {
3803 			/* Q is not failed, and we didn't use it to generate
3804 			 * anything, so it makes sense to check it
3805 			 */
3806 			if (sh->check_state == check_state_run)
3807 				sh->check_state = check_state_run_pq;
3808 			else
3809 				sh->check_state = check_state_run_q;
3810 		}
3811 
3812 		/* discard potentially stale zero_sum_result */
3813 		sh->ops.zero_sum_result = 0;
3814 
3815 		if (sh->check_state == check_state_run) {
3816 			/* async_xor_zero_sum destroys the contents of P */
3817 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3818 			s->uptodate--;
3819 		}
3820 		if (sh->check_state >= check_state_run &&
3821 		    sh->check_state <= check_state_run_pq) {
3822 			/* async_syndrome_zero_sum preserves P and Q, so
3823 			 * no need to mark them !uptodate here
3824 			 */
3825 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3826 			break;
3827 		}
3828 
3829 		/* we have 2-disk failure */
3830 		BUG_ON(s->failed != 2);
3831 		/* fall through */
3832 	case check_state_compute_result:
3833 		sh->check_state = check_state_idle;
3834 
3835 		/* check that a write has not made the stripe insync */
3836 		if (test_bit(STRIPE_INSYNC, &sh->state))
3837 			break;
3838 
3839 		/* now write out any block on a failed drive,
3840 		 * or P or Q if they were recomputed
3841 		 */
3842 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3843 		if (s->failed == 2) {
3844 			dev = &sh->dev[s->failed_num[1]];
3845 			s->locked++;
3846 			set_bit(R5_LOCKED, &dev->flags);
3847 			set_bit(R5_Wantwrite, &dev->flags);
3848 		}
3849 		if (s->failed >= 1) {
3850 			dev = &sh->dev[s->failed_num[0]];
3851 			s->locked++;
3852 			set_bit(R5_LOCKED, &dev->flags);
3853 			set_bit(R5_Wantwrite, &dev->flags);
3854 		}
3855 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3856 			dev = &sh->dev[pd_idx];
3857 			s->locked++;
3858 			set_bit(R5_LOCKED, &dev->flags);
3859 			set_bit(R5_Wantwrite, &dev->flags);
3860 		}
3861 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3862 			dev = &sh->dev[qd_idx];
3863 			s->locked++;
3864 			set_bit(R5_LOCKED, &dev->flags);
3865 			set_bit(R5_Wantwrite, &dev->flags);
3866 		}
3867 		clear_bit(STRIPE_DEGRADED, &sh->state);
3868 
3869 		set_bit(STRIPE_INSYNC, &sh->state);
3870 		break;
3871 	case check_state_run:
3872 	case check_state_run_q:
3873 	case check_state_run_pq:
3874 		break; /* we will be called again upon completion */
3875 	case check_state_check_result:
3876 		sh->check_state = check_state_idle;
3877 
3878 		/* handle a successful check operation, if parity is correct
3879 		 * we are done.  Otherwise update the mismatch count and repair
3880 		 * parity if !MD_RECOVERY_CHECK
3881 		 */
3882 		if (sh->ops.zero_sum_result == 0) {
3883 			/* both parities are correct */
3884 			if (!s->failed)
3885 				set_bit(STRIPE_INSYNC, &sh->state);
3886 			else {
3887 				/* in contrast to the raid5 case we can validate
3888 				 * parity, but still have a failure to write
3889 				 * back
3890 				 */
3891 				sh->check_state = check_state_compute_result;
3892 				/* Returning at this point means that we may go
3893 				 * off and bring p and/or q uptodate again so
3894 				 * we make sure to check zero_sum_result again
3895 				 * to verify if p or q need writeback
3896 				 */
3897 			}
3898 		} else {
3899 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3900 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3901 				/* don't try to repair!! */
3902 				set_bit(STRIPE_INSYNC, &sh->state);
3903 			else {
3904 				int *target = &sh->ops.target;
3905 
3906 				sh->ops.target = -1;
3907 				sh->ops.target2 = -1;
3908 				sh->check_state = check_state_compute_run;
3909 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3910 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3911 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3912 					set_bit(R5_Wantcompute,
3913 						&sh->dev[pd_idx].flags);
3914 					*target = pd_idx;
3915 					target = &sh->ops.target2;
3916 					s->uptodate++;
3917 				}
3918 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3919 					set_bit(R5_Wantcompute,
3920 						&sh->dev[qd_idx].flags);
3921 					*target = qd_idx;
3922 					s->uptodate++;
3923 				}
3924 			}
3925 		}
3926 		break;
3927 	case check_state_compute_run:
3928 		break;
3929 	default:
3930 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3931 		       __func__, sh->check_state,
3932 		       (unsigned long long) sh->sector);
3933 		BUG();
3934 	}
3935 }
3936 
3937 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3938 {
3939 	int i;
3940 
3941 	/* We have read all the blocks in this stripe and now we need to
3942 	 * copy some of them into a target stripe for expand.
3943 	 */
3944 	struct dma_async_tx_descriptor *tx = NULL;
3945 	BUG_ON(sh->batch_head);
3946 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3947 	for (i = 0; i < sh->disks; i++)
3948 		if (i != sh->pd_idx && i != sh->qd_idx) {
3949 			int dd_idx, j;
3950 			struct stripe_head *sh2;
3951 			struct async_submit_ctl submit;
3952 
3953 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
3954 			sector_t s = raid5_compute_sector(conf, bn, 0,
3955 							  &dd_idx, NULL);
3956 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3957 			if (sh2 == NULL)
3958 				/* so far only the early blocks of this stripe
3959 				 * have been requested.  When later blocks
3960 				 * get requested, we will try again
3961 				 */
3962 				continue;
3963 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3964 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3965 				/* must have already done this block */
3966 				raid5_release_stripe(sh2);
3967 				continue;
3968 			}
3969 
3970 			/* place all the copies on one channel */
3971 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3972 			tx = async_memcpy(sh2->dev[dd_idx].page,
3973 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3974 					  &submit);
3975 
3976 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3977 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3978 			for (j = 0; j < conf->raid_disks; j++)
3979 				if (j != sh2->pd_idx &&
3980 				    j != sh2->qd_idx &&
3981 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3982 					break;
3983 			if (j == conf->raid_disks) {
3984 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3985 				set_bit(STRIPE_HANDLE, &sh2->state);
3986 			}
3987 			raid5_release_stripe(sh2);
3988 
3989 		}
3990 	/* done submitting copies, wait for them to complete */
3991 	async_tx_quiesce(&tx);
3992 }
3993 
3994 /*
3995  * handle_stripe - do things to a stripe.
3996  *
3997  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3998  * state of various bits to see what needs to be done.
3999  * Possible results:
4000  *    return some read requests which now have data
4001  *    return some write requests which are safely on storage
4002  *    schedule a read on some buffers
4003  *    schedule a write of some buffers
4004  *    return confirmation of parity correctness
4005  *
4006  */
4007 
4008 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4009 {
4010 	struct r5conf *conf = sh->raid_conf;
4011 	int disks = sh->disks;
4012 	struct r5dev *dev;
4013 	int i;
4014 	int do_recovery = 0;
4015 
4016 	memset(s, 0, sizeof(*s));
4017 
4018 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4019 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4020 	s->failed_num[0] = -1;
4021 	s->failed_num[1] = -1;
4022 	s->log_failed = r5l_log_disk_error(conf);
4023 
4024 	/* Now to look around and see what can be done */
4025 	rcu_read_lock();
4026 	for (i=disks; i--; ) {
4027 		struct md_rdev *rdev;
4028 		sector_t first_bad;
4029 		int bad_sectors;
4030 		int is_bad = 0;
4031 
4032 		dev = &sh->dev[i];
4033 
4034 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4035 			 i, dev->flags,
4036 			 dev->toread, dev->towrite, dev->written);
4037 		/* maybe we can reply to a read
4038 		 *
4039 		 * new wantfill requests are only permitted while
4040 		 * ops_complete_biofill is guaranteed to be inactive
4041 		 */
4042 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4043 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4044 			set_bit(R5_Wantfill, &dev->flags);
4045 
4046 		/* now count some things */
4047 		if (test_bit(R5_LOCKED, &dev->flags))
4048 			s->locked++;
4049 		if (test_bit(R5_UPTODATE, &dev->flags))
4050 			s->uptodate++;
4051 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4052 			s->compute++;
4053 			BUG_ON(s->compute > 2);
4054 		}
4055 
4056 		if (test_bit(R5_Wantfill, &dev->flags))
4057 			s->to_fill++;
4058 		else if (dev->toread)
4059 			s->to_read++;
4060 		if (dev->towrite) {
4061 			s->to_write++;
4062 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4063 				s->non_overwrite++;
4064 		}
4065 		if (dev->written)
4066 			s->written++;
4067 		/* Prefer to use the replacement for reads, but only
4068 		 * if it is recovered enough and has no bad blocks.
4069 		 */
4070 		rdev = rcu_dereference(conf->disks[i].replacement);
4071 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4072 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4073 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4074 				 &first_bad, &bad_sectors))
4075 			set_bit(R5_ReadRepl, &dev->flags);
4076 		else {
4077 			if (rdev && !test_bit(Faulty, &rdev->flags))
4078 				set_bit(R5_NeedReplace, &dev->flags);
4079 			else
4080 				clear_bit(R5_NeedReplace, &dev->flags);
4081 			rdev = rcu_dereference(conf->disks[i].rdev);
4082 			clear_bit(R5_ReadRepl, &dev->flags);
4083 		}
4084 		if (rdev && test_bit(Faulty, &rdev->flags))
4085 			rdev = NULL;
4086 		if (rdev) {
4087 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4088 					     &first_bad, &bad_sectors);
4089 			if (s->blocked_rdev == NULL
4090 			    && (test_bit(Blocked, &rdev->flags)
4091 				|| is_bad < 0)) {
4092 				if (is_bad < 0)
4093 					set_bit(BlockedBadBlocks,
4094 						&rdev->flags);
4095 				s->blocked_rdev = rdev;
4096 				atomic_inc(&rdev->nr_pending);
4097 			}
4098 		}
4099 		clear_bit(R5_Insync, &dev->flags);
4100 		if (!rdev)
4101 			/* Not in-sync */;
4102 		else if (is_bad) {
4103 			/* also not in-sync */
4104 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4105 			    test_bit(R5_UPTODATE, &dev->flags)) {
4106 				/* treat as in-sync, but with a read error
4107 				 * which we can now try to correct
4108 				 */
4109 				set_bit(R5_Insync, &dev->flags);
4110 				set_bit(R5_ReadError, &dev->flags);
4111 			}
4112 		} else if (test_bit(In_sync, &rdev->flags))
4113 			set_bit(R5_Insync, &dev->flags);
4114 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4115 			/* in sync if before recovery_offset */
4116 			set_bit(R5_Insync, &dev->flags);
4117 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4118 			 test_bit(R5_Expanded, &dev->flags))
4119 			/* If we've reshaped into here, we assume it is Insync.
4120 			 * We will shortly update recovery_offset to make
4121 			 * it official.
4122 			 */
4123 			set_bit(R5_Insync, &dev->flags);
4124 
4125 		if (test_bit(R5_WriteError, &dev->flags)) {
4126 			/* This flag does not apply to '.replacement'
4127 			 * only to .rdev, so make sure to check that*/
4128 			struct md_rdev *rdev2 = rcu_dereference(
4129 				conf->disks[i].rdev);
4130 			if (rdev2 == rdev)
4131 				clear_bit(R5_Insync, &dev->flags);
4132 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4133 				s->handle_bad_blocks = 1;
4134 				atomic_inc(&rdev2->nr_pending);
4135 			} else
4136 				clear_bit(R5_WriteError, &dev->flags);
4137 		}
4138 		if (test_bit(R5_MadeGood, &dev->flags)) {
4139 			/* This flag does not apply to '.replacement'
4140 			 * only to .rdev, so make sure to check that*/
4141 			struct md_rdev *rdev2 = rcu_dereference(
4142 				conf->disks[i].rdev);
4143 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4144 				s->handle_bad_blocks = 1;
4145 				atomic_inc(&rdev2->nr_pending);
4146 			} else
4147 				clear_bit(R5_MadeGood, &dev->flags);
4148 		}
4149 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4150 			struct md_rdev *rdev2 = rcu_dereference(
4151 				conf->disks[i].replacement);
4152 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4153 				s->handle_bad_blocks = 1;
4154 				atomic_inc(&rdev2->nr_pending);
4155 			} else
4156 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4157 		}
4158 		if (!test_bit(R5_Insync, &dev->flags)) {
4159 			/* The ReadError flag will just be confusing now */
4160 			clear_bit(R5_ReadError, &dev->flags);
4161 			clear_bit(R5_ReWrite, &dev->flags);
4162 		}
4163 		if (test_bit(R5_ReadError, &dev->flags))
4164 			clear_bit(R5_Insync, &dev->flags);
4165 		if (!test_bit(R5_Insync, &dev->flags)) {
4166 			if (s->failed < 2)
4167 				s->failed_num[s->failed] = i;
4168 			s->failed++;
4169 			if (rdev && !test_bit(Faulty, &rdev->flags))
4170 				do_recovery = 1;
4171 		}
4172 	}
4173 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4174 		/* If there is a failed device being replaced,
4175 		 *     we must be recovering.
4176 		 * else if we are after recovery_cp, we must be syncing
4177 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4178 		 * else we can only be replacing
4179 		 * sync and recovery both need to read all devices, and so
4180 		 * use the same flag.
4181 		 */
4182 		if (do_recovery ||
4183 		    sh->sector >= conf->mddev->recovery_cp ||
4184 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4185 			s->syncing = 1;
4186 		else
4187 			s->replacing = 1;
4188 	}
4189 	rcu_read_unlock();
4190 }
4191 
4192 static int clear_batch_ready(struct stripe_head *sh)
4193 {
4194 	/* Return '1' if this is a member of batch, or
4195 	 * '0' if it is a lone stripe or a head which can now be
4196 	 * handled.
4197 	 */
4198 	struct stripe_head *tmp;
4199 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4200 		return (sh->batch_head && sh->batch_head != sh);
4201 	spin_lock(&sh->stripe_lock);
4202 	if (!sh->batch_head) {
4203 		spin_unlock(&sh->stripe_lock);
4204 		return 0;
4205 	}
4206 
4207 	/*
4208 	 * this stripe could be added to a batch list before we check
4209 	 * BATCH_READY, skips it
4210 	 */
4211 	if (sh->batch_head != sh) {
4212 		spin_unlock(&sh->stripe_lock);
4213 		return 1;
4214 	}
4215 	spin_lock(&sh->batch_lock);
4216 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4217 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4218 	spin_unlock(&sh->batch_lock);
4219 	spin_unlock(&sh->stripe_lock);
4220 
4221 	/*
4222 	 * BATCH_READY is cleared, no new stripes can be added.
4223 	 * batch_list can be accessed without lock
4224 	 */
4225 	return 0;
4226 }
4227 
4228 static void break_stripe_batch_list(struct stripe_head *head_sh,
4229 				    unsigned long handle_flags)
4230 {
4231 	struct stripe_head *sh, *next;
4232 	int i;
4233 	int do_wakeup = 0;
4234 
4235 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4236 
4237 		list_del_init(&sh->batch_list);
4238 
4239 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4240 					  (1 << STRIPE_SYNCING) |
4241 					  (1 << STRIPE_REPLACED) |
4242 					  (1 << STRIPE_DELAYED) |
4243 					  (1 << STRIPE_BIT_DELAY) |
4244 					  (1 << STRIPE_FULL_WRITE) |
4245 					  (1 << STRIPE_BIOFILL_RUN) |
4246 					  (1 << STRIPE_COMPUTE_RUN)  |
4247 					  (1 << STRIPE_OPS_REQ_PENDING) |
4248 					  (1 << STRIPE_DISCARD) |
4249 					  (1 << STRIPE_BATCH_READY) |
4250 					  (1 << STRIPE_BATCH_ERR) |
4251 					  (1 << STRIPE_BITMAP_PENDING)),
4252 			"stripe state: %lx\n", sh->state);
4253 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4254 					      (1 << STRIPE_REPLACED)),
4255 			"head stripe state: %lx\n", head_sh->state);
4256 
4257 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4258 					    (1 << STRIPE_PREREAD_ACTIVE) |
4259 					    (1 << STRIPE_DEGRADED)),
4260 			      head_sh->state & (1 << STRIPE_INSYNC));
4261 
4262 		sh->check_state = head_sh->check_state;
4263 		sh->reconstruct_state = head_sh->reconstruct_state;
4264 		for (i = 0; i < sh->disks; i++) {
4265 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4266 				do_wakeup = 1;
4267 			sh->dev[i].flags = head_sh->dev[i].flags &
4268 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4269 		}
4270 		spin_lock_irq(&sh->stripe_lock);
4271 		sh->batch_head = NULL;
4272 		spin_unlock_irq(&sh->stripe_lock);
4273 		if (handle_flags == 0 ||
4274 		    sh->state & handle_flags)
4275 			set_bit(STRIPE_HANDLE, &sh->state);
4276 		raid5_release_stripe(sh);
4277 	}
4278 	spin_lock_irq(&head_sh->stripe_lock);
4279 	head_sh->batch_head = NULL;
4280 	spin_unlock_irq(&head_sh->stripe_lock);
4281 	for (i = 0; i < head_sh->disks; i++)
4282 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4283 			do_wakeup = 1;
4284 	if (head_sh->state & handle_flags)
4285 		set_bit(STRIPE_HANDLE, &head_sh->state);
4286 
4287 	if (do_wakeup)
4288 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4289 }
4290 
4291 static void handle_stripe(struct stripe_head *sh)
4292 {
4293 	struct stripe_head_state s;
4294 	struct r5conf *conf = sh->raid_conf;
4295 	int i;
4296 	int prexor;
4297 	int disks = sh->disks;
4298 	struct r5dev *pdev, *qdev;
4299 
4300 	clear_bit(STRIPE_HANDLE, &sh->state);
4301 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4302 		/* already being handled, ensure it gets handled
4303 		 * again when current action finishes */
4304 		set_bit(STRIPE_HANDLE, &sh->state);
4305 		return;
4306 	}
4307 
4308 	if (clear_batch_ready(sh) ) {
4309 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4310 		return;
4311 	}
4312 
4313 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4314 		break_stripe_batch_list(sh, 0);
4315 
4316 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4317 		spin_lock(&sh->stripe_lock);
4318 		/* Cannot process 'sync' concurrently with 'discard' */
4319 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4320 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4321 			set_bit(STRIPE_SYNCING, &sh->state);
4322 			clear_bit(STRIPE_INSYNC, &sh->state);
4323 			clear_bit(STRIPE_REPLACED, &sh->state);
4324 		}
4325 		spin_unlock(&sh->stripe_lock);
4326 	}
4327 	clear_bit(STRIPE_DELAYED, &sh->state);
4328 
4329 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4330 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4331 	       (unsigned long long)sh->sector, sh->state,
4332 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4333 	       sh->check_state, sh->reconstruct_state);
4334 
4335 	analyse_stripe(sh, &s);
4336 
4337 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4338 		goto finish;
4339 
4340 	if (s.handle_bad_blocks) {
4341 		set_bit(STRIPE_HANDLE, &sh->state);
4342 		goto finish;
4343 	}
4344 
4345 	if (unlikely(s.blocked_rdev)) {
4346 		if (s.syncing || s.expanding || s.expanded ||
4347 		    s.replacing || s.to_write || s.written) {
4348 			set_bit(STRIPE_HANDLE, &sh->state);
4349 			goto finish;
4350 		}
4351 		/* There is nothing for the blocked_rdev to block */
4352 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4353 		s.blocked_rdev = NULL;
4354 	}
4355 
4356 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4357 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4358 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4359 	}
4360 
4361 	pr_debug("locked=%d uptodate=%d to_read=%d"
4362 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4363 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4364 	       s.failed_num[0], s.failed_num[1]);
4365 	/* check if the array has lost more than max_degraded devices and,
4366 	 * if so, some requests might need to be failed.
4367 	 */
4368 	if (s.failed > conf->max_degraded || s.log_failed) {
4369 		sh->check_state = 0;
4370 		sh->reconstruct_state = 0;
4371 		break_stripe_batch_list(sh, 0);
4372 		if (s.to_read+s.to_write+s.written)
4373 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4374 		if (s.syncing + s.replacing)
4375 			handle_failed_sync(conf, sh, &s);
4376 	}
4377 
4378 	/* Now we check to see if any write operations have recently
4379 	 * completed
4380 	 */
4381 	prexor = 0;
4382 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4383 		prexor = 1;
4384 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4385 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4386 		sh->reconstruct_state = reconstruct_state_idle;
4387 
4388 		/* All the 'written' buffers and the parity block are ready to
4389 		 * be written back to disk
4390 		 */
4391 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4392 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4393 		BUG_ON(sh->qd_idx >= 0 &&
4394 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4395 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4396 		for (i = disks; i--; ) {
4397 			struct r5dev *dev = &sh->dev[i];
4398 			if (test_bit(R5_LOCKED, &dev->flags) &&
4399 				(i == sh->pd_idx || i == sh->qd_idx ||
4400 				 dev->written)) {
4401 				pr_debug("Writing block %d\n", i);
4402 				set_bit(R5_Wantwrite, &dev->flags);
4403 				if (prexor)
4404 					continue;
4405 				if (s.failed > 1)
4406 					continue;
4407 				if (!test_bit(R5_Insync, &dev->flags) ||
4408 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4409 				     s.failed == 0))
4410 					set_bit(STRIPE_INSYNC, &sh->state);
4411 			}
4412 		}
4413 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4414 			s.dec_preread_active = 1;
4415 	}
4416 
4417 	/*
4418 	 * might be able to return some write requests if the parity blocks
4419 	 * are safe, or on a failed drive
4420 	 */
4421 	pdev = &sh->dev[sh->pd_idx];
4422 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4423 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4424 	qdev = &sh->dev[sh->qd_idx];
4425 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4426 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4427 		|| conf->level < 6;
4428 
4429 	if (s.written &&
4430 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4431 			     && !test_bit(R5_LOCKED, &pdev->flags)
4432 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4433 				 test_bit(R5_Discard, &pdev->flags))))) &&
4434 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4435 			     && !test_bit(R5_LOCKED, &qdev->flags)
4436 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4437 				 test_bit(R5_Discard, &qdev->flags))))))
4438 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4439 
4440 	/* Now we might consider reading some blocks, either to check/generate
4441 	 * parity, or to satisfy requests
4442 	 * or to load a block that is being partially written.
4443 	 */
4444 	if (s.to_read || s.non_overwrite
4445 	    || (conf->level == 6 && s.to_write && s.failed)
4446 	    || (s.syncing && (s.uptodate + s.compute < disks))
4447 	    || s.replacing
4448 	    || s.expanding)
4449 		handle_stripe_fill(sh, &s, disks);
4450 
4451 	/* Now to consider new write requests and what else, if anything
4452 	 * should be read.  We do not handle new writes when:
4453 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4454 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4455 	 *    block.
4456 	 */
4457 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4458 		handle_stripe_dirtying(conf, sh, &s, disks);
4459 
4460 	/* maybe we need to check and possibly fix the parity for this stripe
4461 	 * Any reads will already have been scheduled, so we just see if enough
4462 	 * data is available.  The parity check is held off while parity
4463 	 * dependent operations are in flight.
4464 	 */
4465 	if (sh->check_state ||
4466 	    (s.syncing && s.locked == 0 &&
4467 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4468 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4469 		if (conf->level == 6)
4470 			handle_parity_checks6(conf, sh, &s, disks);
4471 		else
4472 			handle_parity_checks5(conf, sh, &s, disks);
4473 	}
4474 
4475 	if ((s.replacing || s.syncing) && s.locked == 0
4476 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4477 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4478 		/* Write out to replacement devices where possible */
4479 		for (i = 0; i < conf->raid_disks; i++)
4480 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4481 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4482 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4483 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4484 				s.locked++;
4485 			}
4486 		if (s.replacing)
4487 			set_bit(STRIPE_INSYNC, &sh->state);
4488 		set_bit(STRIPE_REPLACED, &sh->state);
4489 	}
4490 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4491 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4492 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4493 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4494 		clear_bit(STRIPE_SYNCING, &sh->state);
4495 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4496 			wake_up(&conf->wait_for_overlap);
4497 	}
4498 
4499 	/* If the failed drives are just a ReadError, then we might need
4500 	 * to progress the repair/check process
4501 	 */
4502 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4503 		for (i = 0; i < s.failed; i++) {
4504 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4505 			if (test_bit(R5_ReadError, &dev->flags)
4506 			    && !test_bit(R5_LOCKED, &dev->flags)
4507 			    && test_bit(R5_UPTODATE, &dev->flags)
4508 				) {
4509 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4510 					set_bit(R5_Wantwrite, &dev->flags);
4511 					set_bit(R5_ReWrite, &dev->flags);
4512 					set_bit(R5_LOCKED, &dev->flags);
4513 					s.locked++;
4514 				} else {
4515 					/* let's read it back */
4516 					set_bit(R5_Wantread, &dev->flags);
4517 					set_bit(R5_LOCKED, &dev->flags);
4518 					s.locked++;
4519 				}
4520 			}
4521 		}
4522 
4523 	/* Finish reconstruct operations initiated by the expansion process */
4524 	if (sh->reconstruct_state == reconstruct_state_result) {
4525 		struct stripe_head *sh_src
4526 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4527 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4528 			/* sh cannot be written until sh_src has been read.
4529 			 * so arrange for sh to be delayed a little
4530 			 */
4531 			set_bit(STRIPE_DELAYED, &sh->state);
4532 			set_bit(STRIPE_HANDLE, &sh->state);
4533 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4534 					      &sh_src->state))
4535 				atomic_inc(&conf->preread_active_stripes);
4536 			raid5_release_stripe(sh_src);
4537 			goto finish;
4538 		}
4539 		if (sh_src)
4540 			raid5_release_stripe(sh_src);
4541 
4542 		sh->reconstruct_state = reconstruct_state_idle;
4543 		clear_bit(STRIPE_EXPANDING, &sh->state);
4544 		for (i = conf->raid_disks; i--; ) {
4545 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4546 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4547 			s.locked++;
4548 		}
4549 	}
4550 
4551 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4552 	    !sh->reconstruct_state) {
4553 		/* Need to write out all blocks after computing parity */
4554 		sh->disks = conf->raid_disks;
4555 		stripe_set_idx(sh->sector, conf, 0, sh);
4556 		schedule_reconstruction(sh, &s, 1, 1);
4557 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4558 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4559 		atomic_dec(&conf->reshape_stripes);
4560 		wake_up(&conf->wait_for_overlap);
4561 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4562 	}
4563 
4564 	if (s.expanding && s.locked == 0 &&
4565 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4566 		handle_stripe_expansion(conf, sh);
4567 
4568 finish:
4569 	/* wait for this device to become unblocked */
4570 	if (unlikely(s.blocked_rdev)) {
4571 		if (conf->mddev->external)
4572 			md_wait_for_blocked_rdev(s.blocked_rdev,
4573 						 conf->mddev);
4574 		else
4575 			/* Internal metadata will immediately
4576 			 * be written by raid5d, so we don't
4577 			 * need to wait here.
4578 			 */
4579 			rdev_dec_pending(s.blocked_rdev,
4580 					 conf->mddev);
4581 	}
4582 
4583 	if (s.handle_bad_blocks)
4584 		for (i = disks; i--; ) {
4585 			struct md_rdev *rdev;
4586 			struct r5dev *dev = &sh->dev[i];
4587 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4588 				/* We own a safe reference to the rdev */
4589 				rdev = conf->disks[i].rdev;
4590 				if (!rdev_set_badblocks(rdev, sh->sector,
4591 							STRIPE_SECTORS, 0))
4592 					md_error(conf->mddev, rdev);
4593 				rdev_dec_pending(rdev, conf->mddev);
4594 			}
4595 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4596 				rdev = conf->disks[i].rdev;
4597 				rdev_clear_badblocks(rdev, sh->sector,
4598 						     STRIPE_SECTORS, 0);
4599 				rdev_dec_pending(rdev, conf->mddev);
4600 			}
4601 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4602 				rdev = conf->disks[i].replacement;
4603 				if (!rdev)
4604 					/* rdev have been moved down */
4605 					rdev = conf->disks[i].rdev;
4606 				rdev_clear_badblocks(rdev, sh->sector,
4607 						     STRIPE_SECTORS, 0);
4608 				rdev_dec_pending(rdev, conf->mddev);
4609 			}
4610 		}
4611 
4612 	if (s.ops_request)
4613 		raid_run_ops(sh, s.ops_request);
4614 
4615 	ops_run_io(sh, &s);
4616 
4617 	if (s.dec_preread_active) {
4618 		/* We delay this until after ops_run_io so that if make_request
4619 		 * is waiting on a flush, it won't continue until the writes
4620 		 * have actually been submitted.
4621 		 */
4622 		atomic_dec(&conf->preread_active_stripes);
4623 		if (atomic_read(&conf->preread_active_stripes) <
4624 		    IO_THRESHOLD)
4625 			md_wakeup_thread(conf->mddev->thread);
4626 	}
4627 
4628 	if (!bio_list_empty(&s.return_bi)) {
4629 		if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4630 			spin_lock_irq(&conf->device_lock);
4631 			bio_list_merge(&conf->return_bi, &s.return_bi);
4632 			spin_unlock_irq(&conf->device_lock);
4633 			md_wakeup_thread(conf->mddev->thread);
4634 		} else
4635 			return_io(&s.return_bi);
4636 	}
4637 
4638 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4639 }
4640 
4641 static void raid5_activate_delayed(struct r5conf *conf)
4642 {
4643 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4644 		while (!list_empty(&conf->delayed_list)) {
4645 			struct list_head *l = conf->delayed_list.next;
4646 			struct stripe_head *sh;
4647 			sh = list_entry(l, struct stripe_head, lru);
4648 			list_del_init(l);
4649 			clear_bit(STRIPE_DELAYED, &sh->state);
4650 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4651 				atomic_inc(&conf->preread_active_stripes);
4652 			list_add_tail(&sh->lru, &conf->hold_list);
4653 			raid5_wakeup_stripe_thread(sh);
4654 		}
4655 	}
4656 }
4657 
4658 static void activate_bit_delay(struct r5conf *conf,
4659 	struct list_head *temp_inactive_list)
4660 {
4661 	/* device_lock is held */
4662 	struct list_head head;
4663 	list_add(&head, &conf->bitmap_list);
4664 	list_del_init(&conf->bitmap_list);
4665 	while (!list_empty(&head)) {
4666 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4667 		int hash;
4668 		list_del_init(&sh->lru);
4669 		atomic_inc(&sh->count);
4670 		hash = sh->hash_lock_index;
4671 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4672 	}
4673 }
4674 
4675 static int raid5_congested(struct mddev *mddev, int bits)
4676 {
4677 	struct r5conf *conf = mddev->private;
4678 
4679 	/* No difference between reads and writes.  Just check
4680 	 * how busy the stripe_cache is
4681 	 */
4682 
4683 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4684 		return 1;
4685 	if (conf->quiesce)
4686 		return 1;
4687 	if (atomic_read(&conf->empty_inactive_list_nr))
4688 		return 1;
4689 
4690 	return 0;
4691 }
4692 
4693 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4694 {
4695 	struct r5conf *conf = mddev->private;
4696 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4697 	unsigned int chunk_sectors;
4698 	unsigned int bio_sectors = bio_sectors(bio);
4699 
4700 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4701 	return  chunk_sectors >=
4702 		((sector & (chunk_sectors - 1)) + bio_sectors);
4703 }
4704 
4705 /*
4706  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4707  *  later sampled by raid5d.
4708  */
4709 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4710 {
4711 	unsigned long flags;
4712 
4713 	spin_lock_irqsave(&conf->device_lock, flags);
4714 
4715 	bi->bi_next = conf->retry_read_aligned_list;
4716 	conf->retry_read_aligned_list = bi;
4717 
4718 	spin_unlock_irqrestore(&conf->device_lock, flags);
4719 	md_wakeup_thread(conf->mddev->thread);
4720 }
4721 
4722 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4723 {
4724 	struct bio *bi;
4725 
4726 	bi = conf->retry_read_aligned;
4727 	if (bi) {
4728 		conf->retry_read_aligned = NULL;
4729 		return bi;
4730 	}
4731 	bi = conf->retry_read_aligned_list;
4732 	if(bi) {
4733 		conf->retry_read_aligned_list = bi->bi_next;
4734 		bi->bi_next = NULL;
4735 		/*
4736 		 * this sets the active strip count to 1 and the processed
4737 		 * strip count to zero (upper 8 bits)
4738 		 */
4739 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4740 	}
4741 
4742 	return bi;
4743 }
4744 
4745 /*
4746  *  The "raid5_align_endio" should check if the read succeeded and if it
4747  *  did, call bio_endio on the original bio (having bio_put the new bio
4748  *  first).
4749  *  If the read failed..
4750  */
4751 static void raid5_align_endio(struct bio *bi)
4752 {
4753 	struct bio* raid_bi  = bi->bi_private;
4754 	struct mddev *mddev;
4755 	struct r5conf *conf;
4756 	struct md_rdev *rdev;
4757 	int error = bi->bi_error;
4758 
4759 	bio_put(bi);
4760 
4761 	rdev = (void*)raid_bi->bi_next;
4762 	raid_bi->bi_next = NULL;
4763 	mddev = rdev->mddev;
4764 	conf = mddev->private;
4765 
4766 	rdev_dec_pending(rdev, conf->mddev);
4767 
4768 	if (!error) {
4769 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4770 					 raid_bi, 0);
4771 		bio_endio(raid_bi);
4772 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4773 			wake_up(&conf->wait_for_quiescent);
4774 		return;
4775 	}
4776 
4777 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4778 
4779 	add_bio_to_retry(raid_bi, conf);
4780 }
4781 
4782 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4783 {
4784 	struct r5conf *conf = mddev->private;
4785 	int dd_idx;
4786 	struct bio* align_bi;
4787 	struct md_rdev *rdev;
4788 	sector_t end_sector;
4789 
4790 	if (!in_chunk_boundary(mddev, raid_bio)) {
4791 		pr_debug("%s: non aligned\n", __func__);
4792 		return 0;
4793 	}
4794 	/*
4795 	 * use bio_clone_mddev to make a copy of the bio
4796 	 */
4797 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4798 	if (!align_bi)
4799 		return 0;
4800 	/*
4801 	 *   set bi_end_io to a new function, and set bi_private to the
4802 	 *     original bio.
4803 	 */
4804 	align_bi->bi_end_io  = raid5_align_endio;
4805 	align_bi->bi_private = raid_bio;
4806 	/*
4807 	 *	compute position
4808 	 */
4809 	align_bi->bi_iter.bi_sector =
4810 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4811 				     0, &dd_idx, NULL);
4812 
4813 	end_sector = bio_end_sector(align_bi);
4814 	rcu_read_lock();
4815 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4816 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4817 	    rdev->recovery_offset < end_sector) {
4818 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4819 		if (rdev &&
4820 		    (test_bit(Faulty, &rdev->flags) ||
4821 		    !(test_bit(In_sync, &rdev->flags) ||
4822 		      rdev->recovery_offset >= end_sector)))
4823 			rdev = NULL;
4824 	}
4825 	if (rdev) {
4826 		sector_t first_bad;
4827 		int bad_sectors;
4828 
4829 		atomic_inc(&rdev->nr_pending);
4830 		rcu_read_unlock();
4831 		raid_bio->bi_next = (void*)rdev;
4832 		align_bi->bi_bdev =  rdev->bdev;
4833 		bio_clear_flag(align_bi, BIO_SEG_VALID);
4834 
4835 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4836 				bio_sectors(align_bi),
4837 				&first_bad, &bad_sectors)) {
4838 			bio_put(align_bi);
4839 			rdev_dec_pending(rdev, mddev);
4840 			return 0;
4841 		}
4842 
4843 		/* No reshape active, so we can trust rdev->data_offset */
4844 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4845 
4846 		spin_lock_irq(&conf->device_lock);
4847 		wait_event_lock_irq(conf->wait_for_quiescent,
4848 				    conf->quiesce == 0,
4849 				    conf->device_lock);
4850 		atomic_inc(&conf->active_aligned_reads);
4851 		spin_unlock_irq(&conf->device_lock);
4852 
4853 		if (mddev->gendisk)
4854 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4855 					      align_bi, disk_devt(mddev->gendisk),
4856 					      raid_bio->bi_iter.bi_sector);
4857 		generic_make_request(align_bi);
4858 		return 1;
4859 	} else {
4860 		rcu_read_unlock();
4861 		bio_put(align_bi);
4862 		return 0;
4863 	}
4864 }
4865 
4866 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4867 {
4868 	struct bio *split;
4869 
4870 	do {
4871 		sector_t sector = raid_bio->bi_iter.bi_sector;
4872 		unsigned chunk_sects = mddev->chunk_sectors;
4873 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4874 
4875 		if (sectors < bio_sectors(raid_bio)) {
4876 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4877 			bio_chain(split, raid_bio);
4878 		} else
4879 			split = raid_bio;
4880 
4881 		if (!raid5_read_one_chunk(mddev, split)) {
4882 			if (split != raid_bio)
4883 				generic_make_request(raid_bio);
4884 			return split;
4885 		}
4886 	} while (split != raid_bio);
4887 
4888 	return NULL;
4889 }
4890 
4891 /* __get_priority_stripe - get the next stripe to process
4892  *
4893  * Full stripe writes are allowed to pass preread active stripes up until
4894  * the bypass_threshold is exceeded.  In general the bypass_count
4895  * increments when the handle_list is handled before the hold_list; however, it
4896  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4897  * stripe with in flight i/o.  The bypass_count will be reset when the
4898  * head of the hold_list has changed, i.e. the head was promoted to the
4899  * handle_list.
4900  */
4901 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4902 {
4903 	struct stripe_head *sh = NULL, *tmp;
4904 	struct list_head *handle_list = NULL;
4905 	struct r5worker_group *wg = NULL;
4906 
4907 	if (conf->worker_cnt_per_group == 0) {
4908 		handle_list = &conf->handle_list;
4909 	} else if (group != ANY_GROUP) {
4910 		handle_list = &conf->worker_groups[group].handle_list;
4911 		wg = &conf->worker_groups[group];
4912 	} else {
4913 		int i;
4914 		for (i = 0; i < conf->group_cnt; i++) {
4915 			handle_list = &conf->worker_groups[i].handle_list;
4916 			wg = &conf->worker_groups[i];
4917 			if (!list_empty(handle_list))
4918 				break;
4919 		}
4920 	}
4921 
4922 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4923 		  __func__,
4924 		  list_empty(handle_list) ? "empty" : "busy",
4925 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4926 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4927 
4928 	if (!list_empty(handle_list)) {
4929 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4930 
4931 		if (list_empty(&conf->hold_list))
4932 			conf->bypass_count = 0;
4933 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4934 			if (conf->hold_list.next == conf->last_hold)
4935 				conf->bypass_count++;
4936 			else {
4937 				conf->last_hold = conf->hold_list.next;
4938 				conf->bypass_count -= conf->bypass_threshold;
4939 				if (conf->bypass_count < 0)
4940 					conf->bypass_count = 0;
4941 			}
4942 		}
4943 	} else if (!list_empty(&conf->hold_list) &&
4944 		   ((conf->bypass_threshold &&
4945 		     conf->bypass_count > conf->bypass_threshold) ||
4946 		    atomic_read(&conf->pending_full_writes) == 0)) {
4947 
4948 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4949 			if (conf->worker_cnt_per_group == 0 ||
4950 			    group == ANY_GROUP ||
4951 			    !cpu_online(tmp->cpu) ||
4952 			    cpu_to_group(tmp->cpu) == group) {
4953 				sh = tmp;
4954 				break;
4955 			}
4956 		}
4957 
4958 		if (sh) {
4959 			conf->bypass_count -= conf->bypass_threshold;
4960 			if (conf->bypass_count < 0)
4961 				conf->bypass_count = 0;
4962 		}
4963 		wg = NULL;
4964 	}
4965 
4966 	if (!sh)
4967 		return NULL;
4968 
4969 	if (wg) {
4970 		wg->stripes_cnt--;
4971 		sh->group = NULL;
4972 	}
4973 	list_del_init(&sh->lru);
4974 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4975 	return sh;
4976 }
4977 
4978 struct raid5_plug_cb {
4979 	struct blk_plug_cb	cb;
4980 	struct list_head	list;
4981 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4982 };
4983 
4984 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4985 {
4986 	struct raid5_plug_cb *cb = container_of(
4987 		blk_cb, struct raid5_plug_cb, cb);
4988 	struct stripe_head *sh;
4989 	struct mddev *mddev = cb->cb.data;
4990 	struct r5conf *conf = mddev->private;
4991 	int cnt = 0;
4992 	int hash;
4993 
4994 	if (cb->list.next && !list_empty(&cb->list)) {
4995 		spin_lock_irq(&conf->device_lock);
4996 		while (!list_empty(&cb->list)) {
4997 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4998 			list_del_init(&sh->lru);
4999 			/*
5000 			 * avoid race release_stripe_plug() sees
5001 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5002 			 * is still in our list
5003 			 */
5004 			smp_mb__before_atomic();
5005 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5006 			/*
5007 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5008 			 * case, the count is always > 1 here
5009 			 */
5010 			hash = sh->hash_lock_index;
5011 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5012 			cnt++;
5013 		}
5014 		spin_unlock_irq(&conf->device_lock);
5015 	}
5016 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5017 				     NR_STRIPE_HASH_LOCKS);
5018 	if (mddev->queue)
5019 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5020 	kfree(cb);
5021 }
5022 
5023 static void release_stripe_plug(struct mddev *mddev,
5024 				struct stripe_head *sh)
5025 {
5026 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5027 		raid5_unplug, mddev,
5028 		sizeof(struct raid5_plug_cb));
5029 	struct raid5_plug_cb *cb;
5030 
5031 	if (!blk_cb) {
5032 		raid5_release_stripe(sh);
5033 		return;
5034 	}
5035 
5036 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5037 
5038 	if (cb->list.next == NULL) {
5039 		int i;
5040 		INIT_LIST_HEAD(&cb->list);
5041 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5042 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5043 	}
5044 
5045 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5046 		list_add_tail(&sh->lru, &cb->list);
5047 	else
5048 		raid5_release_stripe(sh);
5049 }
5050 
5051 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5052 {
5053 	struct r5conf *conf = mddev->private;
5054 	sector_t logical_sector, last_sector;
5055 	struct stripe_head *sh;
5056 	int remaining;
5057 	int stripe_sectors;
5058 
5059 	if (mddev->reshape_position != MaxSector)
5060 		/* Skip discard while reshape is happening */
5061 		return;
5062 
5063 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5064 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5065 
5066 	bi->bi_next = NULL;
5067 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5068 
5069 	stripe_sectors = conf->chunk_sectors *
5070 		(conf->raid_disks - conf->max_degraded);
5071 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5072 					       stripe_sectors);
5073 	sector_div(last_sector, stripe_sectors);
5074 
5075 	logical_sector *= conf->chunk_sectors;
5076 	last_sector *= conf->chunk_sectors;
5077 
5078 	for (; logical_sector < last_sector;
5079 	     logical_sector += STRIPE_SECTORS) {
5080 		DEFINE_WAIT(w);
5081 		int d;
5082 	again:
5083 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5084 		prepare_to_wait(&conf->wait_for_overlap, &w,
5085 				TASK_UNINTERRUPTIBLE);
5086 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5087 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5088 			raid5_release_stripe(sh);
5089 			schedule();
5090 			goto again;
5091 		}
5092 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5093 		spin_lock_irq(&sh->stripe_lock);
5094 		for (d = 0; d < conf->raid_disks; d++) {
5095 			if (d == sh->pd_idx || d == sh->qd_idx)
5096 				continue;
5097 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5098 				set_bit(R5_Overlap, &sh->dev[d].flags);
5099 				spin_unlock_irq(&sh->stripe_lock);
5100 				raid5_release_stripe(sh);
5101 				schedule();
5102 				goto again;
5103 			}
5104 		}
5105 		set_bit(STRIPE_DISCARD, &sh->state);
5106 		finish_wait(&conf->wait_for_overlap, &w);
5107 		sh->overwrite_disks = 0;
5108 		for (d = 0; d < conf->raid_disks; d++) {
5109 			if (d == sh->pd_idx || d == sh->qd_idx)
5110 				continue;
5111 			sh->dev[d].towrite = bi;
5112 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5113 			raid5_inc_bi_active_stripes(bi);
5114 			sh->overwrite_disks++;
5115 		}
5116 		spin_unlock_irq(&sh->stripe_lock);
5117 		if (conf->mddev->bitmap) {
5118 			for (d = 0;
5119 			     d < conf->raid_disks - conf->max_degraded;
5120 			     d++)
5121 				bitmap_startwrite(mddev->bitmap,
5122 						  sh->sector,
5123 						  STRIPE_SECTORS,
5124 						  0);
5125 			sh->bm_seq = conf->seq_flush + 1;
5126 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5127 		}
5128 
5129 		set_bit(STRIPE_HANDLE, &sh->state);
5130 		clear_bit(STRIPE_DELAYED, &sh->state);
5131 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5132 			atomic_inc(&conf->preread_active_stripes);
5133 		release_stripe_plug(mddev, sh);
5134 	}
5135 
5136 	remaining = raid5_dec_bi_active_stripes(bi);
5137 	if (remaining == 0) {
5138 		md_write_end(mddev);
5139 		bio_endio(bi);
5140 	}
5141 }
5142 
5143 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5144 {
5145 	struct r5conf *conf = mddev->private;
5146 	int dd_idx;
5147 	sector_t new_sector;
5148 	sector_t logical_sector, last_sector;
5149 	struct stripe_head *sh;
5150 	const int rw = bio_data_dir(bi);
5151 	int remaining;
5152 	DEFINE_WAIT(w);
5153 	bool do_prepare;
5154 
5155 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5156 		int ret = r5l_handle_flush_request(conf->log, bi);
5157 
5158 		if (ret == 0)
5159 			return;
5160 		if (ret == -ENODEV) {
5161 			md_flush_request(mddev, bi);
5162 			return;
5163 		}
5164 		/* ret == -EAGAIN, fallback */
5165 	}
5166 
5167 	md_write_start(mddev, bi);
5168 
5169 	/*
5170 	 * If array is degraded, better not do chunk aligned read because
5171 	 * later we might have to read it again in order to reconstruct
5172 	 * data on failed drives.
5173 	 */
5174 	if (rw == READ && mddev->degraded == 0 &&
5175 	    mddev->reshape_position == MaxSector) {
5176 		bi = chunk_aligned_read(mddev, bi);
5177 		if (!bi)
5178 			return;
5179 	}
5180 
5181 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5182 		make_discard_request(mddev, bi);
5183 		return;
5184 	}
5185 
5186 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5187 	last_sector = bio_end_sector(bi);
5188 	bi->bi_next = NULL;
5189 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5190 
5191 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5192 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5193 		int previous;
5194 		int seq;
5195 
5196 		do_prepare = false;
5197 	retry:
5198 		seq = read_seqcount_begin(&conf->gen_lock);
5199 		previous = 0;
5200 		if (do_prepare)
5201 			prepare_to_wait(&conf->wait_for_overlap, &w,
5202 				TASK_UNINTERRUPTIBLE);
5203 		if (unlikely(conf->reshape_progress != MaxSector)) {
5204 			/* spinlock is needed as reshape_progress may be
5205 			 * 64bit on a 32bit platform, and so it might be
5206 			 * possible to see a half-updated value
5207 			 * Of course reshape_progress could change after
5208 			 * the lock is dropped, so once we get a reference
5209 			 * to the stripe that we think it is, we will have
5210 			 * to check again.
5211 			 */
5212 			spin_lock_irq(&conf->device_lock);
5213 			if (mddev->reshape_backwards
5214 			    ? logical_sector < conf->reshape_progress
5215 			    : logical_sector >= conf->reshape_progress) {
5216 				previous = 1;
5217 			} else {
5218 				if (mddev->reshape_backwards
5219 				    ? logical_sector < conf->reshape_safe
5220 				    : logical_sector >= conf->reshape_safe) {
5221 					spin_unlock_irq(&conf->device_lock);
5222 					schedule();
5223 					do_prepare = true;
5224 					goto retry;
5225 				}
5226 			}
5227 			spin_unlock_irq(&conf->device_lock);
5228 		}
5229 
5230 		new_sector = raid5_compute_sector(conf, logical_sector,
5231 						  previous,
5232 						  &dd_idx, NULL);
5233 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5234 			(unsigned long long)new_sector,
5235 			(unsigned long long)logical_sector);
5236 
5237 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5238 				       (bi->bi_rw&RWA_MASK), 0);
5239 		if (sh) {
5240 			if (unlikely(previous)) {
5241 				/* expansion might have moved on while waiting for a
5242 				 * stripe, so we must do the range check again.
5243 				 * Expansion could still move past after this
5244 				 * test, but as we are holding a reference to
5245 				 * 'sh', we know that if that happens,
5246 				 *  STRIPE_EXPANDING will get set and the expansion
5247 				 * won't proceed until we finish with the stripe.
5248 				 */
5249 				int must_retry = 0;
5250 				spin_lock_irq(&conf->device_lock);
5251 				if (mddev->reshape_backwards
5252 				    ? logical_sector >= conf->reshape_progress
5253 				    : logical_sector < conf->reshape_progress)
5254 					/* mismatch, need to try again */
5255 					must_retry = 1;
5256 				spin_unlock_irq(&conf->device_lock);
5257 				if (must_retry) {
5258 					raid5_release_stripe(sh);
5259 					schedule();
5260 					do_prepare = true;
5261 					goto retry;
5262 				}
5263 			}
5264 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5265 				/* Might have got the wrong stripe_head
5266 				 * by accident
5267 				 */
5268 				raid5_release_stripe(sh);
5269 				goto retry;
5270 			}
5271 
5272 			if (rw == WRITE &&
5273 			    logical_sector >= mddev->suspend_lo &&
5274 			    logical_sector < mddev->suspend_hi) {
5275 				raid5_release_stripe(sh);
5276 				/* As the suspend_* range is controlled by
5277 				 * userspace, we want an interruptible
5278 				 * wait.
5279 				 */
5280 				flush_signals(current);
5281 				prepare_to_wait(&conf->wait_for_overlap,
5282 						&w, TASK_INTERRUPTIBLE);
5283 				if (logical_sector >= mddev->suspend_lo &&
5284 				    logical_sector < mddev->suspend_hi) {
5285 					schedule();
5286 					do_prepare = true;
5287 				}
5288 				goto retry;
5289 			}
5290 
5291 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5292 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5293 				/* Stripe is busy expanding or
5294 				 * add failed due to overlap.  Flush everything
5295 				 * and wait a while
5296 				 */
5297 				md_wakeup_thread(mddev->thread);
5298 				raid5_release_stripe(sh);
5299 				schedule();
5300 				do_prepare = true;
5301 				goto retry;
5302 			}
5303 			set_bit(STRIPE_HANDLE, &sh->state);
5304 			clear_bit(STRIPE_DELAYED, &sh->state);
5305 			if ((!sh->batch_head || sh == sh->batch_head) &&
5306 			    (bi->bi_rw & REQ_SYNC) &&
5307 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5308 				atomic_inc(&conf->preread_active_stripes);
5309 			release_stripe_plug(mddev, sh);
5310 		} else {
5311 			/* cannot get stripe for read-ahead, just give-up */
5312 			bi->bi_error = -EIO;
5313 			break;
5314 		}
5315 	}
5316 	finish_wait(&conf->wait_for_overlap, &w);
5317 
5318 	remaining = raid5_dec_bi_active_stripes(bi);
5319 	if (remaining == 0) {
5320 
5321 		if ( rw == WRITE )
5322 			md_write_end(mddev);
5323 
5324 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5325 					 bi, 0);
5326 		bio_endio(bi);
5327 	}
5328 }
5329 
5330 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5331 
5332 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5333 {
5334 	/* reshaping is quite different to recovery/resync so it is
5335 	 * handled quite separately ... here.
5336 	 *
5337 	 * On each call to sync_request, we gather one chunk worth of
5338 	 * destination stripes and flag them as expanding.
5339 	 * Then we find all the source stripes and request reads.
5340 	 * As the reads complete, handle_stripe will copy the data
5341 	 * into the destination stripe and release that stripe.
5342 	 */
5343 	struct r5conf *conf = mddev->private;
5344 	struct stripe_head *sh;
5345 	sector_t first_sector, last_sector;
5346 	int raid_disks = conf->previous_raid_disks;
5347 	int data_disks = raid_disks - conf->max_degraded;
5348 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5349 	int i;
5350 	int dd_idx;
5351 	sector_t writepos, readpos, safepos;
5352 	sector_t stripe_addr;
5353 	int reshape_sectors;
5354 	struct list_head stripes;
5355 	sector_t retn;
5356 
5357 	if (sector_nr == 0) {
5358 		/* If restarting in the middle, skip the initial sectors */
5359 		if (mddev->reshape_backwards &&
5360 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5361 			sector_nr = raid5_size(mddev, 0, 0)
5362 				- conf->reshape_progress;
5363 		} else if (mddev->reshape_backwards &&
5364 			   conf->reshape_progress == MaxSector) {
5365 			/* shouldn't happen, but just in case, finish up.*/
5366 			sector_nr = MaxSector;
5367 		} else if (!mddev->reshape_backwards &&
5368 			   conf->reshape_progress > 0)
5369 			sector_nr = conf->reshape_progress;
5370 		sector_div(sector_nr, new_data_disks);
5371 		if (sector_nr) {
5372 			mddev->curr_resync_completed = sector_nr;
5373 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5374 			*skipped = 1;
5375 			retn = sector_nr;
5376 			goto finish;
5377 		}
5378 	}
5379 
5380 	/* We need to process a full chunk at a time.
5381 	 * If old and new chunk sizes differ, we need to process the
5382 	 * largest of these
5383 	 */
5384 
5385 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5386 
5387 	/* We update the metadata at least every 10 seconds, or when
5388 	 * the data about to be copied would over-write the source of
5389 	 * the data at the front of the range.  i.e. one new_stripe
5390 	 * along from reshape_progress new_maps to after where
5391 	 * reshape_safe old_maps to
5392 	 */
5393 	writepos = conf->reshape_progress;
5394 	sector_div(writepos, new_data_disks);
5395 	readpos = conf->reshape_progress;
5396 	sector_div(readpos, data_disks);
5397 	safepos = conf->reshape_safe;
5398 	sector_div(safepos, data_disks);
5399 	if (mddev->reshape_backwards) {
5400 		BUG_ON(writepos < reshape_sectors);
5401 		writepos -= reshape_sectors;
5402 		readpos += reshape_sectors;
5403 		safepos += reshape_sectors;
5404 	} else {
5405 		writepos += reshape_sectors;
5406 		/* readpos and safepos are worst-case calculations.
5407 		 * A negative number is overly pessimistic, and causes
5408 		 * obvious problems for unsigned storage.  So clip to 0.
5409 		 */
5410 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5411 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5412 	}
5413 
5414 	/* Having calculated the 'writepos' possibly use it
5415 	 * to set 'stripe_addr' which is where we will write to.
5416 	 */
5417 	if (mddev->reshape_backwards) {
5418 		BUG_ON(conf->reshape_progress == 0);
5419 		stripe_addr = writepos;
5420 		BUG_ON((mddev->dev_sectors &
5421 			~((sector_t)reshape_sectors - 1))
5422 		       - reshape_sectors - stripe_addr
5423 		       != sector_nr);
5424 	} else {
5425 		BUG_ON(writepos != sector_nr + reshape_sectors);
5426 		stripe_addr = sector_nr;
5427 	}
5428 
5429 	/* 'writepos' is the most advanced device address we might write.
5430 	 * 'readpos' is the least advanced device address we might read.
5431 	 * 'safepos' is the least address recorded in the metadata as having
5432 	 *     been reshaped.
5433 	 * If there is a min_offset_diff, these are adjusted either by
5434 	 * increasing the safepos/readpos if diff is negative, or
5435 	 * increasing writepos if diff is positive.
5436 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5437 	 * ensure safety in the face of a crash - that must be done by userspace
5438 	 * making a backup of the data.  So in that case there is no particular
5439 	 * rush to update metadata.
5440 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5441 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5442 	 * we can be safe in the event of a crash.
5443 	 * So we insist on updating metadata if safepos is behind writepos and
5444 	 * readpos is beyond writepos.
5445 	 * In any case, update the metadata every 10 seconds.
5446 	 * Maybe that number should be configurable, but I'm not sure it is
5447 	 * worth it.... maybe it could be a multiple of safemode_delay???
5448 	 */
5449 	if (conf->min_offset_diff < 0) {
5450 		safepos += -conf->min_offset_diff;
5451 		readpos += -conf->min_offset_diff;
5452 	} else
5453 		writepos += conf->min_offset_diff;
5454 
5455 	if ((mddev->reshape_backwards
5456 	     ? (safepos > writepos && readpos < writepos)
5457 	     : (safepos < writepos && readpos > writepos)) ||
5458 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5459 		/* Cannot proceed until we've updated the superblock... */
5460 		wait_event(conf->wait_for_overlap,
5461 			   atomic_read(&conf->reshape_stripes)==0
5462 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5463 		if (atomic_read(&conf->reshape_stripes) != 0)
5464 			return 0;
5465 		mddev->reshape_position = conf->reshape_progress;
5466 		mddev->curr_resync_completed = sector_nr;
5467 		conf->reshape_checkpoint = jiffies;
5468 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5469 		md_wakeup_thread(mddev->thread);
5470 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5471 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5472 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5473 			return 0;
5474 		spin_lock_irq(&conf->device_lock);
5475 		conf->reshape_safe = mddev->reshape_position;
5476 		spin_unlock_irq(&conf->device_lock);
5477 		wake_up(&conf->wait_for_overlap);
5478 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5479 	}
5480 
5481 	INIT_LIST_HEAD(&stripes);
5482 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5483 		int j;
5484 		int skipped_disk = 0;
5485 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5486 		set_bit(STRIPE_EXPANDING, &sh->state);
5487 		atomic_inc(&conf->reshape_stripes);
5488 		/* If any of this stripe is beyond the end of the old
5489 		 * array, then we need to zero those blocks
5490 		 */
5491 		for (j=sh->disks; j--;) {
5492 			sector_t s;
5493 			if (j == sh->pd_idx)
5494 				continue;
5495 			if (conf->level == 6 &&
5496 			    j == sh->qd_idx)
5497 				continue;
5498 			s = raid5_compute_blocknr(sh, j, 0);
5499 			if (s < raid5_size(mddev, 0, 0)) {
5500 				skipped_disk = 1;
5501 				continue;
5502 			}
5503 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5504 			set_bit(R5_Expanded, &sh->dev[j].flags);
5505 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5506 		}
5507 		if (!skipped_disk) {
5508 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5509 			set_bit(STRIPE_HANDLE, &sh->state);
5510 		}
5511 		list_add(&sh->lru, &stripes);
5512 	}
5513 	spin_lock_irq(&conf->device_lock);
5514 	if (mddev->reshape_backwards)
5515 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5516 	else
5517 		conf->reshape_progress += reshape_sectors * new_data_disks;
5518 	spin_unlock_irq(&conf->device_lock);
5519 	/* Ok, those stripe are ready. We can start scheduling
5520 	 * reads on the source stripes.
5521 	 * The source stripes are determined by mapping the first and last
5522 	 * block on the destination stripes.
5523 	 */
5524 	first_sector =
5525 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5526 				     1, &dd_idx, NULL);
5527 	last_sector =
5528 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5529 					    * new_data_disks - 1),
5530 				     1, &dd_idx, NULL);
5531 	if (last_sector >= mddev->dev_sectors)
5532 		last_sector = mddev->dev_sectors - 1;
5533 	while (first_sector <= last_sector) {
5534 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5535 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5536 		set_bit(STRIPE_HANDLE, &sh->state);
5537 		raid5_release_stripe(sh);
5538 		first_sector += STRIPE_SECTORS;
5539 	}
5540 	/* Now that the sources are clearly marked, we can release
5541 	 * the destination stripes
5542 	 */
5543 	while (!list_empty(&stripes)) {
5544 		sh = list_entry(stripes.next, struct stripe_head, lru);
5545 		list_del_init(&sh->lru);
5546 		raid5_release_stripe(sh);
5547 	}
5548 	/* If this takes us to the resync_max point where we have to pause,
5549 	 * then we need to write out the superblock.
5550 	 */
5551 	sector_nr += reshape_sectors;
5552 	retn = reshape_sectors;
5553 finish:
5554 	if (mddev->curr_resync_completed > mddev->resync_max ||
5555 	    (sector_nr - mddev->curr_resync_completed) * 2
5556 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5557 		/* Cannot proceed until we've updated the superblock... */
5558 		wait_event(conf->wait_for_overlap,
5559 			   atomic_read(&conf->reshape_stripes) == 0
5560 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5561 		if (atomic_read(&conf->reshape_stripes) != 0)
5562 			goto ret;
5563 		mddev->reshape_position = conf->reshape_progress;
5564 		mddev->curr_resync_completed = sector_nr;
5565 		conf->reshape_checkpoint = jiffies;
5566 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5567 		md_wakeup_thread(mddev->thread);
5568 		wait_event(mddev->sb_wait,
5569 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5570 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5571 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5572 			goto ret;
5573 		spin_lock_irq(&conf->device_lock);
5574 		conf->reshape_safe = mddev->reshape_position;
5575 		spin_unlock_irq(&conf->device_lock);
5576 		wake_up(&conf->wait_for_overlap);
5577 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5578 	}
5579 ret:
5580 	return retn;
5581 }
5582 
5583 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5584 					  int *skipped)
5585 {
5586 	struct r5conf *conf = mddev->private;
5587 	struct stripe_head *sh;
5588 	sector_t max_sector = mddev->dev_sectors;
5589 	sector_t sync_blocks;
5590 	int still_degraded = 0;
5591 	int i;
5592 
5593 	if (sector_nr >= max_sector) {
5594 		/* just being told to finish up .. nothing much to do */
5595 
5596 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5597 			end_reshape(conf);
5598 			return 0;
5599 		}
5600 
5601 		if (mddev->curr_resync < max_sector) /* aborted */
5602 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5603 					&sync_blocks, 1);
5604 		else /* completed sync */
5605 			conf->fullsync = 0;
5606 		bitmap_close_sync(mddev->bitmap);
5607 
5608 		return 0;
5609 	}
5610 
5611 	/* Allow raid5_quiesce to complete */
5612 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5613 
5614 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5615 		return reshape_request(mddev, sector_nr, skipped);
5616 
5617 	/* No need to check resync_max as we never do more than one
5618 	 * stripe, and as resync_max will always be on a chunk boundary,
5619 	 * if the check in md_do_sync didn't fire, there is no chance
5620 	 * of overstepping resync_max here
5621 	 */
5622 
5623 	/* if there is too many failed drives and we are trying
5624 	 * to resync, then assert that we are finished, because there is
5625 	 * nothing we can do.
5626 	 */
5627 	if (mddev->degraded >= conf->max_degraded &&
5628 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5629 		sector_t rv = mddev->dev_sectors - sector_nr;
5630 		*skipped = 1;
5631 		return rv;
5632 	}
5633 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5634 	    !conf->fullsync &&
5635 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5636 	    sync_blocks >= STRIPE_SECTORS) {
5637 		/* we can skip this block, and probably more */
5638 		sync_blocks /= STRIPE_SECTORS;
5639 		*skipped = 1;
5640 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5641 	}
5642 
5643 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5644 
5645 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5646 	if (sh == NULL) {
5647 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5648 		/* make sure we don't swamp the stripe cache if someone else
5649 		 * is trying to get access
5650 		 */
5651 		schedule_timeout_uninterruptible(1);
5652 	}
5653 	/* Need to check if array will still be degraded after recovery/resync
5654 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5655 	 * one drive while leaving another faulty drive in array.
5656 	 */
5657 	rcu_read_lock();
5658 	for (i = 0; i < conf->raid_disks; i++) {
5659 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5660 
5661 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5662 			still_degraded = 1;
5663 	}
5664 	rcu_read_unlock();
5665 
5666 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5667 
5668 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5669 	set_bit(STRIPE_HANDLE, &sh->state);
5670 
5671 	raid5_release_stripe(sh);
5672 
5673 	return STRIPE_SECTORS;
5674 }
5675 
5676 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5677 {
5678 	/* We may not be able to submit a whole bio at once as there
5679 	 * may not be enough stripe_heads available.
5680 	 * We cannot pre-allocate enough stripe_heads as we may need
5681 	 * more than exist in the cache (if we allow ever large chunks).
5682 	 * So we do one stripe head at a time and record in
5683 	 * ->bi_hw_segments how many have been done.
5684 	 *
5685 	 * We *know* that this entire raid_bio is in one chunk, so
5686 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5687 	 */
5688 	struct stripe_head *sh;
5689 	int dd_idx;
5690 	sector_t sector, logical_sector, last_sector;
5691 	int scnt = 0;
5692 	int remaining;
5693 	int handled = 0;
5694 
5695 	logical_sector = raid_bio->bi_iter.bi_sector &
5696 		~((sector_t)STRIPE_SECTORS-1);
5697 	sector = raid5_compute_sector(conf, logical_sector,
5698 				      0, &dd_idx, NULL);
5699 	last_sector = bio_end_sector(raid_bio);
5700 
5701 	for (; logical_sector < last_sector;
5702 	     logical_sector += STRIPE_SECTORS,
5703 		     sector += STRIPE_SECTORS,
5704 		     scnt++) {
5705 
5706 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5707 			/* already done this stripe */
5708 			continue;
5709 
5710 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5711 
5712 		if (!sh) {
5713 			/* failed to get a stripe - must wait */
5714 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5715 			conf->retry_read_aligned = raid_bio;
5716 			return handled;
5717 		}
5718 
5719 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5720 			raid5_release_stripe(sh);
5721 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5722 			conf->retry_read_aligned = raid_bio;
5723 			return handled;
5724 		}
5725 
5726 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5727 		handle_stripe(sh);
5728 		raid5_release_stripe(sh);
5729 		handled++;
5730 	}
5731 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5732 	if (remaining == 0) {
5733 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5734 					 raid_bio, 0);
5735 		bio_endio(raid_bio);
5736 	}
5737 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5738 		wake_up(&conf->wait_for_quiescent);
5739 	return handled;
5740 }
5741 
5742 static int handle_active_stripes(struct r5conf *conf, int group,
5743 				 struct r5worker *worker,
5744 				 struct list_head *temp_inactive_list)
5745 {
5746 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5747 	int i, batch_size = 0, hash;
5748 	bool release_inactive = false;
5749 
5750 	while (batch_size < MAX_STRIPE_BATCH &&
5751 			(sh = __get_priority_stripe(conf, group)) != NULL)
5752 		batch[batch_size++] = sh;
5753 
5754 	if (batch_size == 0) {
5755 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5756 			if (!list_empty(temp_inactive_list + i))
5757 				break;
5758 		if (i == NR_STRIPE_HASH_LOCKS) {
5759 			spin_unlock_irq(&conf->device_lock);
5760 			r5l_flush_stripe_to_raid(conf->log);
5761 			spin_lock_irq(&conf->device_lock);
5762 			return batch_size;
5763 		}
5764 		release_inactive = true;
5765 	}
5766 	spin_unlock_irq(&conf->device_lock);
5767 
5768 	release_inactive_stripe_list(conf, temp_inactive_list,
5769 				     NR_STRIPE_HASH_LOCKS);
5770 
5771 	r5l_flush_stripe_to_raid(conf->log);
5772 	if (release_inactive) {
5773 		spin_lock_irq(&conf->device_lock);
5774 		return 0;
5775 	}
5776 
5777 	for (i = 0; i < batch_size; i++)
5778 		handle_stripe(batch[i]);
5779 	r5l_write_stripe_run(conf->log);
5780 
5781 	cond_resched();
5782 
5783 	spin_lock_irq(&conf->device_lock);
5784 	for (i = 0; i < batch_size; i++) {
5785 		hash = batch[i]->hash_lock_index;
5786 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5787 	}
5788 	return batch_size;
5789 }
5790 
5791 static void raid5_do_work(struct work_struct *work)
5792 {
5793 	struct r5worker *worker = container_of(work, struct r5worker, work);
5794 	struct r5worker_group *group = worker->group;
5795 	struct r5conf *conf = group->conf;
5796 	int group_id = group - conf->worker_groups;
5797 	int handled;
5798 	struct blk_plug plug;
5799 
5800 	pr_debug("+++ raid5worker active\n");
5801 
5802 	blk_start_plug(&plug);
5803 	handled = 0;
5804 	spin_lock_irq(&conf->device_lock);
5805 	while (1) {
5806 		int batch_size, released;
5807 
5808 		released = release_stripe_list(conf, worker->temp_inactive_list);
5809 
5810 		batch_size = handle_active_stripes(conf, group_id, worker,
5811 						   worker->temp_inactive_list);
5812 		worker->working = false;
5813 		if (!batch_size && !released)
5814 			break;
5815 		handled += batch_size;
5816 	}
5817 	pr_debug("%d stripes handled\n", handled);
5818 
5819 	spin_unlock_irq(&conf->device_lock);
5820 	blk_finish_plug(&plug);
5821 
5822 	pr_debug("--- raid5worker inactive\n");
5823 }
5824 
5825 /*
5826  * This is our raid5 kernel thread.
5827  *
5828  * We scan the hash table for stripes which can be handled now.
5829  * During the scan, completed stripes are saved for us by the interrupt
5830  * handler, so that they will not have to wait for our next wakeup.
5831  */
5832 static void raid5d(struct md_thread *thread)
5833 {
5834 	struct mddev *mddev = thread->mddev;
5835 	struct r5conf *conf = mddev->private;
5836 	int handled;
5837 	struct blk_plug plug;
5838 
5839 	pr_debug("+++ raid5d active\n");
5840 
5841 	md_check_recovery(mddev);
5842 
5843 	if (!bio_list_empty(&conf->return_bi) &&
5844 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5845 		struct bio_list tmp = BIO_EMPTY_LIST;
5846 		spin_lock_irq(&conf->device_lock);
5847 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5848 			bio_list_merge(&tmp, &conf->return_bi);
5849 			bio_list_init(&conf->return_bi);
5850 		}
5851 		spin_unlock_irq(&conf->device_lock);
5852 		return_io(&tmp);
5853 	}
5854 
5855 	blk_start_plug(&plug);
5856 	handled = 0;
5857 	spin_lock_irq(&conf->device_lock);
5858 	while (1) {
5859 		struct bio *bio;
5860 		int batch_size, released;
5861 
5862 		released = release_stripe_list(conf, conf->temp_inactive_list);
5863 		if (released)
5864 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5865 
5866 		if (
5867 		    !list_empty(&conf->bitmap_list)) {
5868 			/* Now is a good time to flush some bitmap updates */
5869 			conf->seq_flush++;
5870 			spin_unlock_irq(&conf->device_lock);
5871 			bitmap_unplug(mddev->bitmap);
5872 			spin_lock_irq(&conf->device_lock);
5873 			conf->seq_write = conf->seq_flush;
5874 			activate_bit_delay(conf, conf->temp_inactive_list);
5875 		}
5876 		raid5_activate_delayed(conf);
5877 
5878 		while ((bio = remove_bio_from_retry(conf))) {
5879 			int ok;
5880 			spin_unlock_irq(&conf->device_lock);
5881 			ok = retry_aligned_read(conf, bio);
5882 			spin_lock_irq(&conf->device_lock);
5883 			if (!ok)
5884 				break;
5885 			handled++;
5886 		}
5887 
5888 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5889 						   conf->temp_inactive_list);
5890 		if (!batch_size && !released)
5891 			break;
5892 		handled += batch_size;
5893 
5894 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5895 			spin_unlock_irq(&conf->device_lock);
5896 			md_check_recovery(mddev);
5897 			spin_lock_irq(&conf->device_lock);
5898 		}
5899 	}
5900 	pr_debug("%d stripes handled\n", handled);
5901 
5902 	spin_unlock_irq(&conf->device_lock);
5903 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5904 	    mutex_trylock(&conf->cache_size_mutex)) {
5905 		grow_one_stripe(conf, __GFP_NOWARN);
5906 		/* Set flag even if allocation failed.  This helps
5907 		 * slow down allocation requests when mem is short
5908 		 */
5909 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5910 		mutex_unlock(&conf->cache_size_mutex);
5911 	}
5912 
5913 	r5l_flush_stripe_to_raid(conf->log);
5914 
5915 	async_tx_issue_pending_all();
5916 	blk_finish_plug(&plug);
5917 
5918 	pr_debug("--- raid5d inactive\n");
5919 }
5920 
5921 static ssize_t
5922 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5923 {
5924 	struct r5conf *conf;
5925 	int ret = 0;
5926 	spin_lock(&mddev->lock);
5927 	conf = mddev->private;
5928 	if (conf)
5929 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5930 	spin_unlock(&mddev->lock);
5931 	return ret;
5932 }
5933 
5934 int
5935 raid5_set_cache_size(struct mddev *mddev, int size)
5936 {
5937 	struct r5conf *conf = mddev->private;
5938 	int err;
5939 
5940 	if (size <= 16 || size > 32768)
5941 		return -EINVAL;
5942 
5943 	conf->min_nr_stripes = size;
5944 	mutex_lock(&conf->cache_size_mutex);
5945 	while (size < conf->max_nr_stripes &&
5946 	       drop_one_stripe(conf))
5947 		;
5948 	mutex_unlock(&conf->cache_size_mutex);
5949 
5950 
5951 	err = md_allow_write(mddev);
5952 	if (err)
5953 		return err;
5954 
5955 	mutex_lock(&conf->cache_size_mutex);
5956 	while (size > conf->max_nr_stripes)
5957 		if (!grow_one_stripe(conf, GFP_KERNEL))
5958 			break;
5959 	mutex_unlock(&conf->cache_size_mutex);
5960 
5961 	return 0;
5962 }
5963 EXPORT_SYMBOL(raid5_set_cache_size);
5964 
5965 static ssize_t
5966 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5967 {
5968 	struct r5conf *conf;
5969 	unsigned long new;
5970 	int err;
5971 
5972 	if (len >= PAGE_SIZE)
5973 		return -EINVAL;
5974 	if (kstrtoul(page, 10, &new))
5975 		return -EINVAL;
5976 	err = mddev_lock(mddev);
5977 	if (err)
5978 		return err;
5979 	conf = mddev->private;
5980 	if (!conf)
5981 		err = -ENODEV;
5982 	else
5983 		err = raid5_set_cache_size(mddev, new);
5984 	mddev_unlock(mddev);
5985 
5986 	return err ?: len;
5987 }
5988 
5989 static struct md_sysfs_entry
5990 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5991 				raid5_show_stripe_cache_size,
5992 				raid5_store_stripe_cache_size);
5993 
5994 static ssize_t
5995 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5996 {
5997 	struct r5conf *conf = mddev->private;
5998 	if (conf)
5999 		return sprintf(page, "%d\n", conf->rmw_level);
6000 	else
6001 		return 0;
6002 }
6003 
6004 static ssize_t
6005 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6006 {
6007 	struct r5conf *conf = mddev->private;
6008 	unsigned long new;
6009 
6010 	if (!conf)
6011 		return -ENODEV;
6012 
6013 	if (len >= PAGE_SIZE)
6014 		return -EINVAL;
6015 
6016 	if (kstrtoul(page, 10, &new))
6017 		return -EINVAL;
6018 
6019 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6020 		return -EINVAL;
6021 
6022 	if (new != PARITY_DISABLE_RMW &&
6023 	    new != PARITY_ENABLE_RMW &&
6024 	    new != PARITY_PREFER_RMW)
6025 		return -EINVAL;
6026 
6027 	conf->rmw_level = new;
6028 	return len;
6029 }
6030 
6031 static struct md_sysfs_entry
6032 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6033 			 raid5_show_rmw_level,
6034 			 raid5_store_rmw_level);
6035 
6036 
6037 static ssize_t
6038 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6039 {
6040 	struct r5conf *conf;
6041 	int ret = 0;
6042 	spin_lock(&mddev->lock);
6043 	conf = mddev->private;
6044 	if (conf)
6045 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6046 	spin_unlock(&mddev->lock);
6047 	return ret;
6048 }
6049 
6050 static ssize_t
6051 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6052 {
6053 	struct r5conf *conf;
6054 	unsigned long new;
6055 	int err;
6056 
6057 	if (len >= PAGE_SIZE)
6058 		return -EINVAL;
6059 	if (kstrtoul(page, 10, &new))
6060 		return -EINVAL;
6061 
6062 	err = mddev_lock(mddev);
6063 	if (err)
6064 		return err;
6065 	conf = mddev->private;
6066 	if (!conf)
6067 		err = -ENODEV;
6068 	else if (new > conf->min_nr_stripes)
6069 		err = -EINVAL;
6070 	else
6071 		conf->bypass_threshold = new;
6072 	mddev_unlock(mddev);
6073 	return err ?: len;
6074 }
6075 
6076 static struct md_sysfs_entry
6077 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6078 					S_IRUGO | S_IWUSR,
6079 					raid5_show_preread_threshold,
6080 					raid5_store_preread_threshold);
6081 
6082 static ssize_t
6083 raid5_show_skip_copy(struct mddev *mddev, char *page)
6084 {
6085 	struct r5conf *conf;
6086 	int ret = 0;
6087 	spin_lock(&mddev->lock);
6088 	conf = mddev->private;
6089 	if (conf)
6090 		ret = sprintf(page, "%d\n", conf->skip_copy);
6091 	spin_unlock(&mddev->lock);
6092 	return ret;
6093 }
6094 
6095 static ssize_t
6096 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6097 {
6098 	struct r5conf *conf;
6099 	unsigned long new;
6100 	int err;
6101 
6102 	if (len >= PAGE_SIZE)
6103 		return -EINVAL;
6104 	if (kstrtoul(page, 10, &new))
6105 		return -EINVAL;
6106 	new = !!new;
6107 
6108 	err = mddev_lock(mddev);
6109 	if (err)
6110 		return err;
6111 	conf = mddev->private;
6112 	if (!conf)
6113 		err = -ENODEV;
6114 	else if (new != conf->skip_copy) {
6115 		mddev_suspend(mddev);
6116 		conf->skip_copy = new;
6117 		if (new)
6118 			mddev->queue->backing_dev_info.capabilities |=
6119 				BDI_CAP_STABLE_WRITES;
6120 		else
6121 			mddev->queue->backing_dev_info.capabilities &=
6122 				~BDI_CAP_STABLE_WRITES;
6123 		mddev_resume(mddev);
6124 	}
6125 	mddev_unlock(mddev);
6126 	return err ?: len;
6127 }
6128 
6129 static struct md_sysfs_entry
6130 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6131 					raid5_show_skip_copy,
6132 					raid5_store_skip_copy);
6133 
6134 static ssize_t
6135 stripe_cache_active_show(struct mddev *mddev, char *page)
6136 {
6137 	struct r5conf *conf = mddev->private;
6138 	if (conf)
6139 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6140 	else
6141 		return 0;
6142 }
6143 
6144 static struct md_sysfs_entry
6145 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6146 
6147 static ssize_t
6148 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6149 {
6150 	struct r5conf *conf;
6151 	int ret = 0;
6152 	spin_lock(&mddev->lock);
6153 	conf = mddev->private;
6154 	if (conf)
6155 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6156 	spin_unlock(&mddev->lock);
6157 	return ret;
6158 }
6159 
6160 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6161 			       int *group_cnt,
6162 			       int *worker_cnt_per_group,
6163 			       struct r5worker_group **worker_groups);
6164 static ssize_t
6165 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6166 {
6167 	struct r5conf *conf;
6168 	unsigned long new;
6169 	int err;
6170 	struct r5worker_group *new_groups, *old_groups;
6171 	int group_cnt, worker_cnt_per_group;
6172 
6173 	if (len >= PAGE_SIZE)
6174 		return -EINVAL;
6175 	if (kstrtoul(page, 10, &new))
6176 		return -EINVAL;
6177 
6178 	err = mddev_lock(mddev);
6179 	if (err)
6180 		return err;
6181 	conf = mddev->private;
6182 	if (!conf)
6183 		err = -ENODEV;
6184 	else if (new != conf->worker_cnt_per_group) {
6185 		mddev_suspend(mddev);
6186 
6187 		old_groups = conf->worker_groups;
6188 		if (old_groups)
6189 			flush_workqueue(raid5_wq);
6190 
6191 		err = alloc_thread_groups(conf, new,
6192 					  &group_cnt, &worker_cnt_per_group,
6193 					  &new_groups);
6194 		if (!err) {
6195 			spin_lock_irq(&conf->device_lock);
6196 			conf->group_cnt = group_cnt;
6197 			conf->worker_cnt_per_group = worker_cnt_per_group;
6198 			conf->worker_groups = new_groups;
6199 			spin_unlock_irq(&conf->device_lock);
6200 
6201 			if (old_groups)
6202 				kfree(old_groups[0].workers);
6203 			kfree(old_groups);
6204 		}
6205 		mddev_resume(mddev);
6206 	}
6207 	mddev_unlock(mddev);
6208 
6209 	return err ?: len;
6210 }
6211 
6212 static struct md_sysfs_entry
6213 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6214 				raid5_show_group_thread_cnt,
6215 				raid5_store_group_thread_cnt);
6216 
6217 static struct attribute *raid5_attrs[] =  {
6218 	&raid5_stripecache_size.attr,
6219 	&raid5_stripecache_active.attr,
6220 	&raid5_preread_bypass_threshold.attr,
6221 	&raid5_group_thread_cnt.attr,
6222 	&raid5_skip_copy.attr,
6223 	&raid5_rmw_level.attr,
6224 	NULL,
6225 };
6226 static struct attribute_group raid5_attrs_group = {
6227 	.name = NULL,
6228 	.attrs = raid5_attrs,
6229 };
6230 
6231 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6232 			       int *group_cnt,
6233 			       int *worker_cnt_per_group,
6234 			       struct r5worker_group **worker_groups)
6235 {
6236 	int i, j, k;
6237 	ssize_t size;
6238 	struct r5worker *workers;
6239 
6240 	*worker_cnt_per_group = cnt;
6241 	if (cnt == 0) {
6242 		*group_cnt = 0;
6243 		*worker_groups = NULL;
6244 		return 0;
6245 	}
6246 	*group_cnt = num_possible_nodes();
6247 	size = sizeof(struct r5worker) * cnt;
6248 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6249 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6250 				*group_cnt, GFP_NOIO);
6251 	if (!*worker_groups || !workers) {
6252 		kfree(workers);
6253 		kfree(*worker_groups);
6254 		return -ENOMEM;
6255 	}
6256 
6257 	for (i = 0; i < *group_cnt; i++) {
6258 		struct r5worker_group *group;
6259 
6260 		group = &(*worker_groups)[i];
6261 		INIT_LIST_HEAD(&group->handle_list);
6262 		group->conf = conf;
6263 		group->workers = workers + i * cnt;
6264 
6265 		for (j = 0; j < cnt; j++) {
6266 			struct r5worker *worker = group->workers + j;
6267 			worker->group = group;
6268 			INIT_WORK(&worker->work, raid5_do_work);
6269 
6270 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6271 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6272 		}
6273 	}
6274 
6275 	return 0;
6276 }
6277 
6278 static void free_thread_groups(struct r5conf *conf)
6279 {
6280 	if (conf->worker_groups)
6281 		kfree(conf->worker_groups[0].workers);
6282 	kfree(conf->worker_groups);
6283 	conf->worker_groups = NULL;
6284 }
6285 
6286 static sector_t
6287 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6288 {
6289 	struct r5conf *conf = mddev->private;
6290 
6291 	if (!sectors)
6292 		sectors = mddev->dev_sectors;
6293 	if (!raid_disks)
6294 		/* size is defined by the smallest of previous and new size */
6295 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6296 
6297 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6298 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6299 	return sectors * (raid_disks - conf->max_degraded);
6300 }
6301 
6302 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6303 {
6304 	safe_put_page(percpu->spare_page);
6305 	if (percpu->scribble)
6306 		flex_array_free(percpu->scribble);
6307 	percpu->spare_page = NULL;
6308 	percpu->scribble = NULL;
6309 }
6310 
6311 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6312 {
6313 	if (conf->level == 6 && !percpu->spare_page)
6314 		percpu->spare_page = alloc_page(GFP_KERNEL);
6315 	if (!percpu->scribble)
6316 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6317 						      conf->previous_raid_disks),
6318 						  max(conf->chunk_sectors,
6319 						      conf->prev_chunk_sectors)
6320 						   / STRIPE_SECTORS,
6321 						  GFP_KERNEL);
6322 
6323 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6324 		free_scratch_buffer(conf, percpu);
6325 		return -ENOMEM;
6326 	}
6327 
6328 	return 0;
6329 }
6330 
6331 static void raid5_free_percpu(struct r5conf *conf)
6332 {
6333 	unsigned long cpu;
6334 
6335 	if (!conf->percpu)
6336 		return;
6337 
6338 #ifdef CONFIG_HOTPLUG_CPU
6339 	unregister_cpu_notifier(&conf->cpu_notify);
6340 #endif
6341 
6342 	get_online_cpus();
6343 	for_each_possible_cpu(cpu)
6344 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6345 	put_online_cpus();
6346 
6347 	free_percpu(conf->percpu);
6348 }
6349 
6350 static void free_conf(struct r5conf *conf)
6351 {
6352 	if (conf->log)
6353 		r5l_exit_log(conf->log);
6354 	if (conf->shrinker.seeks)
6355 		unregister_shrinker(&conf->shrinker);
6356 
6357 	free_thread_groups(conf);
6358 	shrink_stripes(conf);
6359 	raid5_free_percpu(conf);
6360 	kfree(conf->disks);
6361 	kfree(conf->stripe_hashtbl);
6362 	kfree(conf);
6363 }
6364 
6365 #ifdef CONFIG_HOTPLUG_CPU
6366 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6367 			      void *hcpu)
6368 {
6369 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6370 	long cpu = (long)hcpu;
6371 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6372 
6373 	switch (action) {
6374 	case CPU_UP_PREPARE:
6375 	case CPU_UP_PREPARE_FROZEN:
6376 		if (alloc_scratch_buffer(conf, percpu)) {
6377 			pr_err("%s: failed memory allocation for cpu%ld\n",
6378 			       __func__, cpu);
6379 			return notifier_from_errno(-ENOMEM);
6380 		}
6381 		break;
6382 	case CPU_DEAD:
6383 	case CPU_DEAD_FROZEN:
6384 	case CPU_UP_CANCELED:
6385 	case CPU_UP_CANCELED_FROZEN:
6386 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6387 		break;
6388 	default:
6389 		break;
6390 	}
6391 	return NOTIFY_OK;
6392 }
6393 #endif
6394 
6395 static int raid5_alloc_percpu(struct r5conf *conf)
6396 {
6397 	unsigned long cpu;
6398 	int err = 0;
6399 
6400 	conf->percpu = alloc_percpu(struct raid5_percpu);
6401 	if (!conf->percpu)
6402 		return -ENOMEM;
6403 
6404 #ifdef CONFIG_HOTPLUG_CPU
6405 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6406 	conf->cpu_notify.priority = 0;
6407 	err = register_cpu_notifier(&conf->cpu_notify);
6408 	if (err)
6409 		return err;
6410 #endif
6411 
6412 	get_online_cpus();
6413 	for_each_present_cpu(cpu) {
6414 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6415 		if (err) {
6416 			pr_err("%s: failed memory allocation for cpu%ld\n",
6417 			       __func__, cpu);
6418 			break;
6419 		}
6420 	}
6421 	put_online_cpus();
6422 
6423 	if (!err) {
6424 		conf->scribble_disks = max(conf->raid_disks,
6425 			conf->previous_raid_disks);
6426 		conf->scribble_sectors = max(conf->chunk_sectors,
6427 			conf->prev_chunk_sectors);
6428 	}
6429 	return err;
6430 }
6431 
6432 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6433 				      struct shrink_control *sc)
6434 {
6435 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6436 	unsigned long ret = SHRINK_STOP;
6437 
6438 	if (mutex_trylock(&conf->cache_size_mutex)) {
6439 		ret= 0;
6440 		while (ret < sc->nr_to_scan &&
6441 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6442 			if (drop_one_stripe(conf) == 0) {
6443 				ret = SHRINK_STOP;
6444 				break;
6445 			}
6446 			ret++;
6447 		}
6448 		mutex_unlock(&conf->cache_size_mutex);
6449 	}
6450 	return ret;
6451 }
6452 
6453 static unsigned long raid5_cache_count(struct shrinker *shrink,
6454 				       struct shrink_control *sc)
6455 {
6456 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6457 
6458 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6459 		/* unlikely, but not impossible */
6460 		return 0;
6461 	return conf->max_nr_stripes - conf->min_nr_stripes;
6462 }
6463 
6464 static struct r5conf *setup_conf(struct mddev *mddev)
6465 {
6466 	struct r5conf *conf;
6467 	int raid_disk, memory, max_disks;
6468 	struct md_rdev *rdev;
6469 	struct disk_info *disk;
6470 	char pers_name[6];
6471 	int i;
6472 	int group_cnt, worker_cnt_per_group;
6473 	struct r5worker_group *new_group;
6474 
6475 	if (mddev->new_level != 5
6476 	    && mddev->new_level != 4
6477 	    && mddev->new_level != 6) {
6478 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6479 		       mdname(mddev), mddev->new_level);
6480 		return ERR_PTR(-EIO);
6481 	}
6482 	if ((mddev->new_level == 5
6483 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6484 	    (mddev->new_level == 6
6485 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6486 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6487 		       mdname(mddev), mddev->new_layout);
6488 		return ERR_PTR(-EIO);
6489 	}
6490 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6491 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6492 		       mdname(mddev), mddev->raid_disks);
6493 		return ERR_PTR(-EINVAL);
6494 	}
6495 
6496 	if (!mddev->new_chunk_sectors ||
6497 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6498 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6499 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6500 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6501 		return ERR_PTR(-EINVAL);
6502 	}
6503 
6504 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6505 	if (conf == NULL)
6506 		goto abort;
6507 	/* Don't enable multi-threading by default*/
6508 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6509 				 &new_group)) {
6510 		conf->group_cnt = group_cnt;
6511 		conf->worker_cnt_per_group = worker_cnt_per_group;
6512 		conf->worker_groups = new_group;
6513 	} else
6514 		goto abort;
6515 	spin_lock_init(&conf->device_lock);
6516 	seqcount_init(&conf->gen_lock);
6517 	mutex_init(&conf->cache_size_mutex);
6518 	init_waitqueue_head(&conf->wait_for_quiescent);
6519 	init_waitqueue_head(&conf->wait_for_stripe);
6520 	init_waitqueue_head(&conf->wait_for_overlap);
6521 	INIT_LIST_HEAD(&conf->handle_list);
6522 	INIT_LIST_HEAD(&conf->hold_list);
6523 	INIT_LIST_HEAD(&conf->delayed_list);
6524 	INIT_LIST_HEAD(&conf->bitmap_list);
6525 	bio_list_init(&conf->return_bi);
6526 	init_llist_head(&conf->released_stripes);
6527 	atomic_set(&conf->active_stripes, 0);
6528 	atomic_set(&conf->preread_active_stripes, 0);
6529 	atomic_set(&conf->active_aligned_reads, 0);
6530 	conf->bypass_threshold = BYPASS_THRESHOLD;
6531 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6532 
6533 	conf->raid_disks = mddev->raid_disks;
6534 	if (mddev->reshape_position == MaxSector)
6535 		conf->previous_raid_disks = mddev->raid_disks;
6536 	else
6537 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6538 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6539 
6540 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6541 			      GFP_KERNEL);
6542 	if (!conf->disks)
6543 		goto abort;
6544 
6545 	conf->mddev = mddev;
6546 
6547 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6548 		goto abort;
6549 
6550 	/* We init hash_locks[0] separately to that it can be used
6551 	 * as the reference lock in the spin_lock_nest_lock() call
6552 	 * in lock_all_device_hash_locks_irq in order to convince
6553 	 * lockdep that we know what we are doing.
6554 	 */
6555 	spin_lock_init(conf->hash_locks);
6556 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6557 		spin_lock_init(conf->hash_locks + i);
6558 
6559 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6560 		INIT_LIST_HEAD(conf->inactive_list + i);
6561 
6562 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6563 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6564 
6565 	conf->level = mddev->new_level;
6566 	conf->chunk_sectors = mddev->new_chunk_sectors;
6567 	if (raid5_alloc_percpu(conf) != 0)
6568 		goto abort;
6569 
6570 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6571 
6572 	rdev_for_each(rdev, mddev) {
6573 		raid_disk = rdev->raid_disk;
6574 		if (raid_disk >= max_disks
6575 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6576 			continue;
6577 		disk = conf->disks + raid_disk;
6578 
6579 		if (test_bit(Replacement, &rdev->flags)) {
6580 			if (disk->replacement)
6581 				goto abort;
6582 			disk->replacement = rdev;
6583 		} else {
6584 			if (disk->rdev)
6585 				goto abort;
6586 			disk->rdev = rdev;
6587 		}
6588 
6589 		if (test_bit(In_sync, &rdev->flags)) {
6590 			char b[BDEVNAME_SIZE];
6591 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6592 			       " disk %d\n",
6593 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6594 		} else if (rdev->saved_raid_disk != raid_disk)
6595 			/* Cannot rely on bitmap to complete recovery */
6596 			conf->fullsync = 1;
6597 	}
6598 
6599 	conf->level = mddev->new_level;
6600 	if (conf->level == 6) {
6601 		conf->max_degraded = 2;
6602 		if (raid6_call.xor_syndrome)
6603 			conf->rmw_level = PARITY_ENABLE_RMW;
6604 		else
6605 			conf->rmw_level = PARITY_DISABLE_RMW;
6606 	} else {
6607 		conf->max_degraded = 1;
6608 		conf->rmw_level = PARITY_ENABLE_RMW;
6609 	}
6610 	conf->algorithm = mddev->new_layout;
6611 	conf->reshape_progress = mddev->reshape_position;
6612 	if (conf->reshape_progress != MaxSector) {
6613 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6614 		conf->prev_algo = mddev->layout;
6615 	} else {
6616 		conf->prev_chunk_sectors = conf->chunk_sectors;
6617 		conf->prev_algo = conf->algorithm;
6618 	}
6619 
6620 	conf->min_nr_stripes = NR_STRIPES;
6621 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6622 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6623 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6624 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6625 		printk(KERN_ERR
6626 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6627 		       mdname(mddev), memory);
6628 		goto abort;
6629 	} else
6630 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6631 		       mdname(mddev), memory);
6632 	/*
6633 	 * Losing a stripe head costs more than the time to refill it,
6634 	 * it reduces the queue depth and so can hurt throughput.
6635 	 * So set it rather large, scaled by number of devices.
6636 	 */
6637 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6638 	conf->shrinker.scan_objects = raid5_cache_scan;
6639 	conf->shrinker.count_objects = raid5_cache_count;
6640 	conf->shrinker.batch = 128;
6641 	conf->shrinker.flags = 0;
6642 	register_shrinker(&conf->shrinker);
6643 
6644 	sprintf(pers_name, "raid%d", mddev->new_level);
6645 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6646 	if (!conf->thread) {
6647 		printk(KERN_ERR
6648 		       "md/raid:%s: couldn't allocate thread.\n",
6649 		       mdname(mddev));
6650 		goto abort;
6651 	}
6652 
6653 	return conf;
6654 
6655  abort:
6656 	if (conf) {
6657 		free_conf(conf);
6658 		return ERR_PTR(-EIO);
6659 	} else
6660 		return ERR_PTR(-ENOMEM);
6661 }
6662 
6663 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6664 {
6665 	switch (algo) {
6666 	case ALGORITHM_PARITY_0:
6667 		if (raid_disk < max_degraded)
6668 			return 1;
6669 		break;
6670 	case ALGORITHM_PARITY_N:
6671 		if (raid_disk >= raid_disks - max_degraded)
6672 			return 1;
6673 		break;
6674 	case ALGORITHM_PARITY_0_6:
6675 		if (raid_disk == 0 ||
6676 		    raid_disk == raid_disks - 1)
6677 			return 1;
6678 		break;
6679 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6680 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6681 	case ALGORITHM_LEFT_SYMMETRIC_6:
6682 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6683 		if (raid_disk == raid_disks - 1)
6684 			return 1;
6685 	}
6686 	return 0;
6687 }
6688 
6689 static int raid5_run(struct mddev *mddev)
6690 {
6691 	struct r5conf *conf;
6692 	int working_disks = 0;
6693 	int dirty_parity_disks = 0;
6694 	struct md_rdev *rdev;
6695 	struct md_rdev *journal_dev = NULL;
6696 	sector_t reshape_offset = 0;
6697 	int i;
6698 	long long min_offset_diff = 0;
6699 	int first = 1;
6700 
6701 	if (mddev->recovery_cp != MaxSector)
6702 		printk(KERN_NOTICE "md/raid:%s: not clean"
6703 		       " -- starting background reconstruction\n",
6704 		       mdname(mddev));
6705 
6706 	rdev_for_each(rdev, mddev) {
6707 		long long diff;
6708 
6709 		if (test_bit(Journal, &rdev->flags)) {
6710 			journal_dev = rdev;
6711 			continue;
6712 		}
6713 		if (rdev->raid_disk < 0)
6714 			continue;
6715 		diff = (rdev->new_data_offset - rdev->data_offset);
6716 		if (first) {
6717 			min_offset_diff = diff;
6718 			first = 0;
6719 		} else if (mddev->reshape_backwards &&
6720 			 diff < min_offset_diff)
6721 			min_offset_diff = diff;
6722 		else if (!mddev->reshape_backwards &&
6723 			 diff > min_offset_diff)
6724 			min_offset_diff = diff;
6725 	}
6726 
6727 	if (mddev->reshape_position != MaxSector) {
6728 		/* Check that we can continue the reshape.
6729 		 * Difficulties arise if the stripe we would write to
6730 		 * next is at or after the stripe we would read from next.
6731 		 * For a reshape that changes the number of devices, this
6732 		 * is only possible for a very short time, and mdadm makes
6733 		 * sure that time appears to have past before assembling
6734 		 * the array.  So we fail if that time hasn't passed.
6735 		 * For a reshape that keeps the number of devices the same
6736 		 * mdadm must be monitoring the reshape can keeping the
6737 		 * critical areas read-only and backed up.  It will start
6738 		 * the array in read-only mode, so we check for that.
6739 		 */
6740 		sector_t here_new, here_old;
6741 		int old_disks;
6742 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6743 		int chunk_sectors;
6744 		int new_data_disks;
6745 
6746 		if (journal_dev) {
6747 			printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6748 			       mdname(mddev));
6749 			return -EINVAL;
6750 		}
6751 
6752 		if (mddev->new_level != mddev->level) {
6753 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6754 			       "required - aborting.\n",
6755 			       mdname(mddev));
6756 			return -EINVAL;
6757 		}
6758 		old_disks = mddev->raid_disks - mddev->delta_disks;
6759 		/* reshape_position must be on a new-stripe boundary, and one
6760 		 * further up in new geometry must map after here in old
6761 		 * geometry.
6762 		 * If the chunk sizes are different, then as we perform reshape
6763 		 * in units of the largest of the two, reshape_position needs
6764 		 * be a multiple of the largest chunk size times new data disks.
6765 		 */
6766 		here_new = mddev->reshape_position;
6767 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6768 		new_data_disks = mddev->raid_disks - max_degraded;
6769 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6770 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6771 			       "on a stripe boundary\n", mdname(mddev));
6772 			return -EINVAL;
6773 		}
6774 		reshape_offset = here_new * chunk_sectors;
6775 		/* here_new is the stripe we will write to */
6776 		here_old = mddev->reshape_position;
6777 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6778 		/* here_old is the first stripe that we might need to read
6779 		 * from */
6780 		if (mddev->delta_disks == 0) {
6781 			/* We cannot be sure it is safe to start an in-place
6782 			 * reshape.  It is only safe if user-space is monitoring
6783 			 * and taking constant backups.
6784 			 * mdadm always starts a situation like this in
6785 			 * readonly mode so it can take control before
6786 			 * allowing any writes.  So just check for that.
6787 			 */
6788 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6789 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6790 				/* not really in-place - so OK */;
6791 			else if (mddev->ro == 0) {
6792 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6793 				       "must be started in read-only mode "
6794 				       "- aborting\n",
6795 				       mdname(mddev));
6796 				return -EINVAL;
6797 			}
6798 		} else if (mddev->reshape_backwards
6799 		    ? (here_new * chunk_sectors + min_offset_diff <=
6800 		       here_old * chunk_sectors)
6801 		    : (here_new * chunk_sectors >=
6802 		       here_old * chunk_sectors + (-min_offset_diff))) {
6803 			/* Reading from the same stripe as writing to - bad */
6804 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6805 			       "auto-recovery - aborting.\n",
6806 			       mdname(mddev));
6807 			return -EINVAL;
6808 		}
6809 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6810 		       mdname(mddev));
6811 		/* OK, we should be able to continue; */
6812 	} else {
6813 		BUG_ON(mddev->level != mddev->new_level);
6814 		BUG_ON(mddev->layout != mddev->new_layout);
6815 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6816 		BUG_ON(mddev->delta_disks != 0);
6817 	}
6818 
6819 	if (mddev->private == NULL)
6820 		conf = setup_conf(mddev);
6821 	else
6822 		conf = mddev->private;
6823 
6824 	if (IS_ERR(conf))
6825 		return PTR_ERR(conf);
6826 
6827 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6828 		printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6829 		       mdname(mddev));
6830 		mddev->ro = 1;
6831 		set_disk_ro(mddev->gendisk, 1);
6832 	}
6833 
6834 	conf->min_offset_diff = min_offset_diff;
6835 	mddev->thread = conf->thread;
6836 	conf->thread = NULL;
6837 	mddev->private = conf;
6838 
6839 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6840 	     i++) {
6841 		rdev = conf->disks[i].rdev;
6842 		if (!rdev && conf->disks[i].replacement) {
6843 			/* The replacement is all we have yet */
6844 			rdev = conf->disks[i].replacement;
6845 			conf->disks[i].replacement = NULL;
6846 			clear_bit(Replacement, &rdev->flags);
6847 			conf->disks[i].rdev = rdev;
6848 		}
6849 		if (!rdev)
6850 			continue;
6851 		if (conf->disks[i].replacement &&
6852 		    conf->reshape_progress != MaxSector) {
6853 			/* replacements and reshape simply do not mix. */
6854 			printk(KERN_ERR "md: cannot handle concurrent "
6855 			       "replacement and reshape.\n");
6856 			goto abort;
6857 		}
6858 		if (test_bit(In_sync, &rdev->flags)) {
6859 			working_disks++;
6860 			continue;
6861 		}
6862 		/* This disc is not fully in-sync.  However if it
6863 		 * just stored parity (beyond the recovery_offset),
6864 		 * when we don't need to be concerned about the
6865 		 * array being dirty.
6866 		 * When reshape goes 'backwards', we never have
6867 		 * partially completed devices, so we only need
6868 		 * to worry about reshape going forwards.
6869 		 */
6870 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6871 		if (mddev->major_version == 0 &&
6872 		    mddev->minor_version > 90)
6873 			rdev->recovery_offset = reshape_offset;
6874 
6875 		if (rdev->recovery_offset < reshape_offset) {
6876 			/* We need to check old and new layout */
6877 			if (!only_parity(rdev->raid_disk,
6878 					 conf->algorithm,
6879 					 conf->raid_disks,
6880 					 conf->max_degraded))
6881 				continue;
6882 		}
6883 		if (!only_parity(rdev->raid_disk,
6884 				 conf->prev_algo,
6885 				 conf->previous_raid_disks,
6886 				 conf->max_degraded))
6887 			continue;
6888 		dirty_parity_disks++;
6889 	}
6890 
6891 	/*
6892 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6893 	 */
6894 	mddev->degraded = calc_degraded(conf);
6895 
6896 	if (has_failed(conf)) {
6897 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6898 			" (%d/%d failed)\n",
6899 			mdname(mddev), mddev->degraded, conf->raid_disks);
6900 		goto abort;
6901 	}
6902 
6903 	/* device size must be a multiple of chunk size */
6904 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6905 	mddev->resync_max_sectors = mddev->dev_sectors;
6906 
6907 	if (mddev->degraded > dirty_parity_disks &&
6908 	    mddev->recovery_cp != MaxSector) {
6909 		if (mddev->ok_start_degraded)
6910 			printk(KERN_WARNING
6911 			       "md/raid:%s: starting dirty degraded array"
6912 			       " - data corruption possible.\n",
6913 			       mdname(mddev));
6914 		else {
6915 			printk(KERN_ERR
6916 			       "md/raid:%s: cannot start dirty degraded array.\n",
6917 			       mdname(mddev));
6918 			goto abort;
6919 		}
6920 	}
6921 
6922 	if (mddev->degraded == 0)
6923 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6924 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6925 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6926 		       mddev->new_layout);
6927 	else
6928 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6929 		       " out of %d devices, algorithm %d\n",
6930 		       mdname(mddev), conf->level,
6931 		       mddev->raid_disks - mddev->degraded,
6932 		       mddev->raid_disks, mddev->new_layout);
6933 
6934 	print_raid5_conf(conf);
6935 
6936 	if (conf->reshape_progress != MaxSector) {
6937 		conf->reshape_safe = conf->reshape_progress;
6938 		atomic_set(&conf->reshape_stripes, 0);
6939 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6940 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6941 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6942 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6943 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6944 							"reshape");
6945 	}
6946 
6947 	/* Ok, everything is just fine now */
6948 	if (mddev->to_remove == &raid5_attrs_group)
6949 		mddev->to_remove = NULL;
6950 	else if (mddev->kobj.sd &&
6951 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6952 		printk(KERN_WARNING
6953 		       "raid5: failed to create sysfs attributes for %s\n",
6954 		       mdname(mddev));
6955 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6956 
6957 	if (mddev->queue) {
6958 		int chunk_size;
6959 		bool discard_supported = true;
6960 		/* read-ahead size must cover two whole stripes, which
6961 		 * is 2 * (datadisks) * chunksize where 'n' is the
6962 		 * number of raid devices
6963 		 */
6964 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6965 		int stripe = data_disks *
6966 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6967 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6968 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6969 
6970 		chunk_size = mddev->chunk_sectors << 9;
6971 		blk_queue_io_min(mddev->queue, chunk_size);
6972 		blk_queue_io_opt(mddev->queue, chunk_size *
6973 				 (conf->raid_disks - conf->max_degraded));
6974 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6975 		/*
6976 		 * We can only discard a whole stripe. It doesn't make sense to
6977 		 * discard data disk but write parity disk
6978 		 */
6979 		stripe = stripe * PAGE_SIZE;
6980 		/* Round up to power of 2, as discard handling
6981 		 * currently assumes that */
6982 		while ((stripe-1) & stripe)
6983 			stripe = (stripe | (stripe-1)) + 1;
6984 		mddev->queue->limits.discard_alignment = stripe;
6985 		mddev->queue->limits.discard_granularity = stripe;
6986 		/*
6987 		 * unaligned part of discard request will be ignored, so can't
6988 		 * guarantee discard_zeroes_data
6989 		 */
6990 		mddev->queue->limits.discard_zeroes_data = 0;
6991 
6992 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6993 
6994 		rdev_for_each(rdev, mddev) {
6995 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6996 					  rdev->data_offset << 9);
6997 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6998 					  rdev->new_data_offset << 9);
6999 			/*
7000 			 * discard_zeroes_data is required, otherwise data
7001 			 * could be lost. Consider a scenario: discard a stripe
7002 			 * (the stripe could be inconsistent if
7003 			 * discard_zeroes_data is 0); write one disk of the
7004 			 * stripe (the stripe could be inconsistent again
7005 			 * depending on which disks are used to calculate
7006 			 * parity); the disk is broken; The stripe data of this
7007 			 * disk is lost.
7008 			 */
7009 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7010 			    !bdev_get_queue(rdev->bdev)->
7011 						limits.discard_zeroes_data)
7012 				discard_supported = false;
7013 			/* Unfortunately, discard_zeroes_data is not currently
7014 			 * a guarantee - just a hint.  So we only allow DISCARD
7015 			 * if the sysadmin has confirmed that only safe devices
7016 			 * are in use by setting a module parameter.
7017 			 */
7018 			if (!devices_handle_discard_safely) {
7019 				if (discard_supported) {
7020 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7021 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7022 				}
7023 				discard_supported = false;
7024 			}
7025 		}
7026 
7027 		if (discard_supported &&
7028 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7029 		    mddev->queue->limits.discard_granularity >= stripe)
7030 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7031 						mddev->queue);
7032 		else
7033 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7034 						mddev->queue);
7035 	}
7036 
7037 	if (journal_dev) {
7038 		char b[BDEVNAME_SIZE];
7039 
7040 		printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7041 		       mdname(mddev), bdevname(journal_dev->bdev, b));
7042 		r5l_init_log(conf, journal_dev);
7043 	}
7044 
7045 	return 0;
7046 abort:
7047 	md_unregister_thread(&mddev->thread);
7048 	print_raid5_conf(conf);
7049 	free_conf(conf);
7050 	mddev->private = NULL;
7051 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7052 	return -EIO;
7053 }
7054 
7055 static void raid5_free(struct mddev *mddev, void *priv)
7056 {
7057 	struct r5conf *conf = priv;
7058 
7059 	free_conf(conf);
7060 	mddev->to_remove = &raid5_attrs_group;
7061 }
7062 
7063 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7064 {
7065 	struct r5conf *conf = mddev->private;
7066 	int i;
7067 
7068 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7069 		conf->chunk_sectors / 2, mddev->layout);
7070 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7071 	for (i = 0; i < conf->raid_disks; i++)
7072 		seq_printf (seq, "%s",
7073 			       conf->disks[i].rdev &&
7074 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7075 	seq_printf (seq, "]");
7076 }
7077 
7078 static void print_raid5_conf (struct r5conf *conf)
7079 {
7080 	int i;
7081 	struct disk_info *tmp;
7082 
7083 	printk(KERN_DEBUG "RAID conf printout:\n");
7084 	if (!conf) {
7085 		printk("(conf==NULL)\n");
7086 		return;
7087 	}
7088 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7089 	       conf->raid_disks,
7090 	       conf->raid_disks - conf->mddev->degraded);
7091 
7092 	for (i = 0; i < conf->raid_disks; i++) {
7093 		char b[BDEVNAME_SIZE];
7094 		tmp = conf->disks + i;
7095 		if (tmp->rdev)
7096 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7097 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7098 			       bdevname(tmp->rdev->bdev, b));
7099 	}
7100 }
7101 
7102 static int raid5_spare_active(struct mddev *mddev)
7103 {
7104 	int i;
7105 	struct r5conf *conf = mddev->private;
7106 	struct disk_info *tmp;
7107 	int count = 0;
7108 	unsigned long flags;
7109 
7110 	for (i = 0; i < conf->raid_disks; i++) {
7111 		tmp = conf->disks + i;
7112 		if (tmp->replacement
7113 		    && tmp->replacement->recovery_offset == MaxSector
7114 		    && !test_bit(Faulty, &tmp->replacement->flags)
7115 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7116 			/* Replacement has just become active. */
7117 			if (!tmp->rdev
7118 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7119 				count++;
7120 			if (tmp->rdev) {
7121 				/* Replaced device not technically faulty,
7122 				 * but we need to be sure it gets removed
7123 				 * and never re-added.
7124 				 */
7125 				set_bit(Faulty, &tmp->rdev->flags);
7126 				sysfs_notify_dirent_safe(
7127 					tmp->rdev->sysfs_state);
7128 			}
7129 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7130 		} else if (tmp->rdev
7131 		    && tmp->rdev->recovery_offset == MaxSector
7132 		    && !test_bit(Faulty, &tmp->rdev->flags)
7133 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7134 			count++;
7135 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7136 		}
7137 	}
7138 	spin_lock_irqsave(&conf->device_lock, flags);
7139 	mddev->degraded = calc_degraded(conf);
7140 	spin_unlock_irqrestore(&conf->device_lock, flags);
7141 	print_raid5_conf(conf);
7142 	return count;
7143 }
7144 
7145 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7146 {
7147 	struct r5conf *conf = mddev->private;
7148 	int err = 0;
7149 	int number = rdev->raid_disk;
7150 	struct md_rdev **rdevp;
7151 	struct disk_info *p = conf->disks + number;
7152 
7153 	print_raid5_conf(conf);
7154 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7155 		struct r5l_log *log;
7156 		/*
7157 		 * we can't wait pending write here, as this is called in
7158 		 * raid5d, wait will deadlock.
7159 		 */
7160 		if (atomic_read(&mddev->writes_pending))
7161 			return -EBUSY;
7162 		log = conf->log;
7163 		conf->log = NULL;
7164 		synchronize_rcu();
7165 		r5l_exit_log(log);
7166 		return 0;
7167 	}
7168 	if (rdev == p->rdev)
7169 		rdevp = &p->rdev;
7170 	else if (rdev == p->replacement)
7171 		rdevp = &p->replacement;
7172 	else
7173 		return 0;
7174 
7175 	if (number >= conf->raid_disks &&
7176 	    conf->reshape_progress == MaxSector)
7177 		clear_bit(In_sync, &rdev->flags);
7178 
7179 	if (test_bit(In_sync, &rdev->flags) ||
7180 	    atomic_read(&rdev->nr_pending)) {
7181 		err = -EBUSY;
7182 		goto abort;
7183 	}
7184 	/* Only remove non-faulty devices if recovery
7185 	 * isn't possible.
7186 	 */
7187 	if (!test_bit(Faulty, &rdev->flags) &&
7188 	    mddev->recovery_disabled != conf->recovery_disabled &&
7189 	    !has_failed(conf) &&
7190 	    (!p->replacement || p->replacement == rdev) &&
7191 	    number < conf->raid_disks) {
7192 		err = -EBUSY;
7193 		goto abort;
7194 	}
7195 	*rdevp = NULL;
7196 	synchronize_rcu();
7197 	if (atomic_read(&rdev->nr_pending)) {
7198 		/* lost the race, try later */
7199 		err = -EBUSY;
7200 		*rdevp = rdev;
7201 	} else if (p->replacement) {
7202 		/* We must have just cleared 'rdev' */
7203 		p->rdev = p->replacement;
7204 		clear_bit(Replacement, &p->replacement->flags);
7205 		smp_mb(); /* Make sure other CPUs may see both as identical
7206 			   * but will never see neither - if they are careful
7207 			   */
7208 		p->replacement = NULL;
7209 		clear_bit(WantReplacement, &rdev->flags);
7210 	} else
7211 		/* We might have just removed the Replacement as faulty-
7212 		 * clear the bit just in case
7213 		 */
7214 		clear_bit(WantReplacement, &rdev->flags);
7215 abort:
7216 
7217 	print_raid5_conf(conf);
7218 	return err;
7219 }
7220 
7221 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7222 {
7223 	struct r5conf *conf = mddev->private;
7224 	int err = -EEXIST;
7225 	int disk;
7226 	struct disk_info *p;
7227 	int first = 0;
7228 	int last = conf->raid_disks - 1;
7229 
7230 	if (test_bit(Journal, &rdev->flags)) {
7231 		char b[BDEVNAME_SIZE];
7232 		if (conf->log)
7233 			return -EBUSY;
7234 
7235 		rdev->raid_disk = 0;
7236 		/*
7237 		 * The array is in readonly mode if journal is missing, so no
7238 		 * write requests running. We should be safe
7239 		 */
7240 		r5l_init_log(conf, rdev);
7241 		printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7242 		       mdname(mddev), bdevname(rdev->bdev, b));
7243 		return 0;
7244 	}
7245 	if (mddev->recovery_disabled == conf->recovery_disabled)
7246 		return -EBUSY;
7247 
7248 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7249 		/* no point adding a device */
7250 		return -EINVAL;
7251 
7252 	if (rdev->raid_disk >= 0)
7253 		first = last = rdev->raid_disk;
7254 
7255 	/*
7256 	 * find the disk ... but prefer rdev->saved_raid_disk
7257 	 * if possible.
7258 	 */
7259 	if (rdev->saved_raid_disk >= 0 &&
7260 	    rdev->saved_raid_disk >= first &&
7261 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7262 		first = rdev->saved_raid_disk;
7263 
7264 	for (disk = first; disk <= last; disk++) {
7265 		p = conf->disks + disk;
7266 		if (p->rdev == NULL) {
7267 			clear_bit(In_sync, &rdev->flags);
7268 			rdev->raid_disk = disk;
7269 			err = 0;
7270 			if (rdev->saved_raid_disk != disk)
7271 				conf->fullsync = 1;
7272 			rcu_assign_pointer(p->rdev, rdev);
7273 			goto out;
7274 		}
7275 	}
7276 	for (disk = first; disk <= last; disk++) {
7277 		p = conf->disks + disk;
7278 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7279 		    p->replacement == NULL) {
7280 			clear_bit(In_sync, &rdev->flags);
7281 			set_bit(Replacement, &rdev->flags);
7282 			rdev->raid_disk = disk;
7283 			err = 0;
7284 			conf->fullsync = 1;
7285 			rcu_assign_pointer(p->replacement, rdev);
7286 			break;
7287 		}
7288 	}
7289 out:
7290 	print_raid5_conf(conf);
7291 	return err;
7292 }
7293 
7294 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7295 {
7296 	/* no resync is happening, and there is enough space
7297 	 * on all devices, so we can resize.
7298 	 * We need to make sure resync covers any new space.
7299 	 * If the array is shrinking we should possibly wait until
7300 	 * any io in the removed space completes, but it hardly seems
7301 	 * worth it.
7302 	 */
7303 	sector_t newsize;
7304 	struct r5conf *conf = mddev->private;
7305 
7306 	if (conf->log)
7307 		return -EINVAL;
7308 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7309 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7310 	if (mddev->external_size &&
7311 	    mddev->array_sectors > newsize)
7312 		return -EINVAL;
7313 	if (mddev->bitmap) {
7314 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7315 		if (ret)
7316 			return ret;
7317 	}
7318 	md_set_array_sectors(mddev, newsize);
7319 	set_capacity(mddev->gendisk, mddev->array_sectors);
7320 	revalidate_disk(mddev->gendisk);
7321 	if (sectors > mddev->dev_sectors &&
7322 	    mddev->recovery_cp > mddev->dev_sectors) {
7323 		mddev->recovery_cp = mddev->dev_sectors;
7324 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7325 	}
7326 	mddev->dev_sectors = sectors;
7327 	mddev->resync_max_sectors = sectors;
7328 	return 0;
7329 }
7330 
7331 static int check_stripe_cache(struct mddev *mddev)
7332 {
7333 	/* Can only proceed if there are plenty of stripe_heads.
7334 	 * We need a minimum of one full stripe,, and for sensible progress
7335 	 * it is best to have about 4 times that.
7336 	 * If we require 4 times, then the default 256 4K stripe_heads will
7337 	 * allow for chunk sizes up to 256K, which is probably OK.
7338 	 * If the chunk size is greater, user-space should request more
7339 	 * stripe_heads first.
7340 	 */
7341 	struct r5conf *conf = mddev->private;
7342 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7343 	    > conf->min_nr_stripes ||
7344 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7345 	    > conf->min_nr_stripes) {
7346 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7347 		       mdname(mddev),
7348 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7349 			/ STRIPE_SIZE)*4);
7350 		return 0;
7351 	}
7352 	return 1;
7353 }
7354 
7355 static int check_reshape(struct mddev *mddev)
7356 {
7357 	struct r5conf *conf = mddev->private;
7358 
7359 	if (conf->log)
7360 		return -EINVAL;
7361 	if (mddev->delta_disks == 0 &&
7362 	    mddev->new_layout == mddev->layout &&
7363 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7364 		return 0; /* nothing to do */
7365 	if (has_failed(conf))
7366 		return -EINVAL;
7367 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7368 		/* We might be able to shrink, but the devices must
7369 		 * be made bigger first.
7370 		 * For raid6, 4 is the minimum size.
7371 		 * Otherwise 2 is the minimum
7372 		 */
7373 		int min = 2;
7374 		if (mddev->level == 6)
7375 			min = 4;
7376 		if (mddev->raid_disks + mddev->delta_disks < min)
7377 			return -EINVAL;
7378 	}
7379 
7380 	if (!check_stripe_cache(mddev))
7381 		return -ENOSPC;
7382 
7383 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7384 	    mddev->delta_disks > 0)
7385 		if (resize_chunks(conf,
7386 				  conf->previous_raid_disks
7387 				  + max(0, mddev->delta_disks),
7388 				  max(mddev->new_chunk_sectors,
7389 				      mddev->chunk_sectors)
7390 			    ) < 0)
7391 			return -ENOMEM;
7392 	return resize_stripes(conf, (conf->previous_raid_disks
7393 				     + mddev->delta_disks));
7394 }
7395 
7396 static int raid5_start_reshape(struct mddev *mddev)
7397 {
7398 	struct r5conf *conf = mddev->private;
7399 	struct md_rdev *rdev;
7400 	int spares = 0;
7401 	unsigned long flags;
7402 
7403 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7404 		return -EBUSY;
7405 
7406 	if (!check_stripe_cache(mddev))
7407 		return -ENOSPC;
7408 
7409 	if (has_failed(conf))
7410 		return -EINVAL;
7411 
7412 	rdev_for_each(rdev, mddev) {
7413 		if (!test_bit(In_sync, &rdev->flags)
7414 		    && !test_bit(Faulty, &rdev->flags))
7415 			spares++;
7416 	}
7417 
7418 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7419 		/* Not enough devices even to make a degraded array
7420 		 * of that size
7421 		 */
7422 		return -EINVAL;
7423 
7424 	/* Refuse to reduce size of the array.  Any reductions in
7425 	 * array size must be through explicit setting of array_size
7426 	 * attribute.
7427 	 */
7428 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7429 	    < mddev->array_sectors) {
7430 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7431 		       "before number of disks\n", mdname(mddev));
7432 		return -EINVAL;
7433 	}
7434 
7435 	atomic_set(&conf->reshape_stripes, 0);
7436 	spin_lock_irq(&conf->device_lock);
7437 	write_seqcount_begin(&conf->gen_lock);
7438 	conf->previous_raid_disks = conf->raid_disks;
7439 	conf->raid_disks += mddev->delta_disks;
7440 	conf->prev_chunk_sectors = conf->chunk_sectors;
7441 	conf->chunk_sectors = mddev->new_chunk_sectors;
7442 	conf->prev_algo = conf->algorithm;
7443 	conf->algorithm = mddev->new_layout;
7444 	conf->generation++;
7445 	/* Code that selects data_offset needs to see the generation update
7446 	 * if reshape_progress has been set - so a memory barrier needed.
7447 	 */
7448 	smp_mb();
7449 	if (mddev->reshape_backwards)
7450 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7451 	else
7452 		conf->reshape_progress = 0;
7453 	conf->reshape_safe = conf->reshape_progress;
7454 	write_seqcount_end(&conf->gen_lock);
7455 	spin_unlock_irq(&conf->device_lock);
7456 
7457 	/* Now make sure any requests that proceeded on the assumption
7458 	 * the reshape wasn't running - like Discard or Read - have
7459 	 * completed.
7460 	 */
7461 	mddev_suspend(mddev);
7462 	mddev_resume(mddev);
7463 
7464 	/* Add some new drives, as many as will fit.
7465 	 * We know there are enough to make the newly sized array work.
7466 	 * Don't add devices if we are reducing the number of
7467 	 * devices in the array.  This is because it is not possible
7468 	 * to correctly record the "partially reconstructed" state of
7469 	 * such devices during the reshape and confusion could result.
7470 	 */
7471 	if (mddev->delta_disks >= 0) {
7472 		rdev_for_each(rdev, mddev)
7473 			if (rdev->raid_disk < 0 &&
7474 			    !test_bit(Faulty, &rdev->flags)) {
7475 				if (raid5_add_disk(mddev, rdev) == 0) {
7476 					if (rdev->raid_disk
7477 					    >= conf->previous_raid_disks)
7478 						set_bit(In_sync, &rdev->flags);
7479 					else
7480 						rdev->recovery_offset = 0;
7481 
7482 					if (sysfs_link_rdev(mddev, rdev))
7483 						/* Failure here is OK */;
7484 				}
7485 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7486 				   && !test_bit(Faulty, &rdev->flags)) {
7487 				/* This is a spare that was manually added */
7488 				set_bit(In_sync, &rdev->flags);
7489 			}
7490 
7491 		/* When a reshape changes the number of devices,
7492 		 * ->degraded is measured against the larger of the
7493 		 * pre and post number of devices.
7494 		 */
7495 		spin_lock_irqsave(&conf->device_lock, flags);
7496 		mddev->degraded = calc_degraded(conf);
7497 		spin_unlock_irqrestore(&conf->device_lock, flags);
7498 	}
7499 	mddev->raid_disks = conf->raid_disks;
7500 	mddev->reshape_position = conf->reshape_progress;
7501 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7502 
7503 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7504 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7505 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7506 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7507 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7508 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7509 						"reshape");
7510 	if (!mddev->sync_thread) {
7511 		mddev->recovery = 0;
7512 		spin_lock_irq(&conf->device_lock);
7513 		write_seqcount_begin(&conf->gen_lock);
7514 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7515 		mddev->new_chunk_sectors =
7516 			conf->chunk_sectors = conf->prev_chunk_sectors;
7517 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7518 		rdev_for_each(rdev, mddev)
7519 			rdev->new_data_offset = rdev->data_offset;
7520 		smp_wmb();
7521 		conf->generation --;
7522 		conf->reshape_progress = MaxSector;
7523 		mddev->reshape_position = MaxSector;
7524 		write_seqcount_end(&conf->gen_lock);
7525 		spin_unlock_irq(&conf->device_lock);
7526 		return -EAGAIN;
7527 	}
7528 	conf->reshape_checkpoint = jiffies;
7529 	md_wakeup_thread(mddev->sync_thread);
7530 	md_new_event(mddev);
7531 	return 0;
7532 }
7533 
7534 /* This is called from the reshape thread and should make any
7535  * changes needed in 'conf'
7536  */
7537 static void end_reshape(struct r5conf *conf)
7538 {
7539 
7540 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7541 		struct md_rdev *rdev;
7542 
7543 		spin_lock_irq(&conf->device_lock);
7544 		conf->previous_raid_disks = conf->raid_disks;
7545 		rdev_for_each(rdev, conf->mddev)
7546 			rdev->data_offset = rdev->new_data_offset;
7547 		smp_wmb();
7548 		conf->reshape_progress = MaxSector;
7549 		conf->mddev->reshape_position = MaxSector;
7550 		spin_unlock_irq(&conf->device_lock);
7551 		wake_up(&conf->wait_for_overlap);
7552 
7553 		/* read-ahead size must cover two whole stripes, which is
7554 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7555 		 */
7556 		if (conf->mddev->queue) {
7557 			int data_disks = conf->raid_disks - conf->max_degraded;
7558 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7559 						   / PAGE_SIZE);
7560 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7561 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7562 		}
7563 	}
7564 }
7565 
7566 /* This is called from the raid5d thread with mddev_lock held.
7567  * It makes config changes to the device.
7568  */
7569 static void raid5_finish_reshape(struct mddev *mddev)
7570 {
7571 	struct r5conf *conf = mddev->private;
7572 
7573 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7574 
7575 		if (mddev->delta_disks > 0) {
7576 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7577 			set_capacity(mddev->gendisk, mddev->array_sectors);
7578 			revalidate_disk(mddev->gendisk);
7579 		} else {
7580 			int d;
7581 			spin_lock_irq(&conf->device_lock);
7582 			mddev->degraded = calc_degraded(conf);
7583 			spin_unlock_irq(&conf->device_lock);
7584 			for (d = conf->raid_disks ;
7585 			     d < conf->raid_disks - mddev->delta_disks;
7586 			     d++) {
7587 				struct md_rdev *rdev = conf->disks[d].rdev;
7588 				if (rdev)
7589 					clear_bit(In_sync, &rdev->flags);
7590 				rdev = conf->disks[d].replacement;
7591 				if (rdev)
7592 					clear_bit(In_sync, &rdev->flags);
7593 			}
7594 		}
7595 		mddev->layout = conf->algorithm;
7596 		mddev->chunk_sectors = conf->chunk_sectors;
7597 		mddev->reshape_position = MaxSector;
7598 		mddev->delta_disks = 0;
7599 		mddev->reshape_backwards = 0;
7600 	}
7601 }
7602 
7603 static void raid5_quiesce(struct mddev *mddev, int state)
7604 {
7605 	struct r5conf *conf = mddev->private;
7606 
7607 	switch(state) {
7608 	case 2: /* resume for a suspend */
7609 		wake_up(&conf->wait_for_overlap);
7610 		break;
7611 
7612 	case 1: /* stop all writes */
7613 		lock_all_device_hash_locks_irq(conf);
7614 		/* '2' tells resync/reshape to pause so that all
7615 		 * active stripes can drain
7616 		 */
7617 		conf->quiesce = 2;
7618 		wait_event_cmd(conf->wait_for_quiescent,
7619 				    atomic_read(&conf->active_stripes) == 0 &&
7620 				    atomic_read(&conf->active_aligned_reads) == 0,
7621 				    unlock_all_device_hash_locks_irq(conf),
7622 				    lock_all_device_hash_locks_irq(conf));
7623 		conf->quiesce = 1;
7624 		unlock_all_device_hash_locks_irq(conf);
7625 		/* allow reshape to continue */
7626 		wake_up(&conf->wait_for_overlap);
7627 		break;
7628 
7629 	case 0: /* re-enable writes */
7630 		lock_all_device_hash_locks_irq(conf);
7631 		conf->quiesce = 0;
7632 		wake_up(&conf->wait_for_quiescent);
7633 		wake_up(&conf->wait_for_overlap);
7634 		unlock_all_device_hash_locks_irq(conf);
7635 		break;
7636 	}
7637 	r5l_quiesce(conf->log, state);
7638 }
7639 
7640 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7641 {
7642 	struct r0conf *raid0_conf = mddev->private;
7643 	sector_t sectors;
7644 
7645 	/* for raid0 takeover only one zone is supported */
7646 	if (raid0_conf->nr_strip_zones > 1) {
7647 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7648 		       mdname(mddev));
7649 		return ERR_PTR(-EINVAL);
7650 	}
7651 
7652 	sectors = raid0_conf->strip_zone[0].zone_end;
7653 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7654 	mddev->dev_sectors = sectors;
7655 	mddev->new_level = level;
7656 	mddev->new_layout = ALGORITHM_PARITY_N;
7657 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7658 	mddev->raid_disks += 1;
7659 	mddev->delta_disks = 1;
7660 	/* make sure it will be not marked as dirty */
7661 	mddev->recovery_cp = MaxSector;
7662 
7663 	return setup_conf(mddev);
7664 }
7665 
7666 static void *raid5_takeover_raid1(struct mddev *mddev)
7667 {
7668 	int chunksect;
7669 
7670 	if (mddev->raid_disks != 2 ||
7671 	    mddev->degraded > 1)
7672 		return ERR_PTR(-EINVAL);
7673 
7674 	/* Should check if there are write-behind devices? */
7675 
7676 	chunksect = 64*2; /* 64K by default */
7677 
7678 	/* The array must be an exact multiple of chunksize */
7679 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7680 		chunksect >>= 1;
7681 
7682 	if ((chunksect<<9) < STRIPE_SIZE)
7683 		/* array size does not allow a suitable chunk size */
7684 		return ERR_PTR(-EINVAL);
7685 
7686 	mddev->new_level = 5;
7687 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7688 	mddev->new_chunk_sectors = chunksect;
7689 
7690 	return setup_conf(mddev);
7691 }
7692 
7693 static void *raid5_takeover_raid6(struct mddev *mddev)
7694 {
7695 	int new_layout;
7696 
7697 	switch (mddev->layout) {
7698 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7699 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7700 		break;
7701 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7702 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7703 		break;
7704 	case ALGORITHM_LEFT_SYMMETRIC_6:
7705 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7706 		break;
7707 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7708 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7709 		break;
7710 	case ALGORITHM_PARITY_0_6:
7711 		new_layout = ALGORITHM_PARITY_0;
7712 		break;
7713 	case ALGORITHM_PARITY_N:
7714 		new_layout = ALGORITHM_PARITY_N;
7715 		break;
7716 	default:
7717 		return ERR_PTR(-EINVAL);
7718 	}
7719 	mddev->new_level = 5;
7720 	mddev->new_layout = new_layout;
7721 	mddev->delta_disks = -1;
7722 	mddev->raid_disks -= 1;
7723 	return setup_conf(mddev);
7724 }
7725 
7726 static int raid5_check_reshape(struct mddev *mddev)
7727 {
7728 	/* For a 2-drive array, the layout and chunk size can be changed
7729 	 * immediately as not restriping is needed.
7730 	 * For larger arrays we record the new value - after validation
7731 	 * to be used by a reshape pass.
7732 	 */
7733 	struct r5conf *conf = mddev->private;
7734 	int new_chunk = mddev->new_chunk_sectors;
7735 
7736 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7737 		return -EINVAL;
7738 	if (new_chunk > 0) {
7739 		if (!is_power_of_2(new_chunk))
7740 			return -EINVAL;
7741 		if (new_chunk < (PAGE_SIZE>>9))
7742 			return -EINVAL;
7743 		if (mddev->array_sectors & (new_chunk-1))
7744 			/* not factor of array size */
7745 			return -EINVAL;
7746 	}
7747 
7748 	/* They look valid */
7749 
7750 	if (mddev->raid_disks == 2) {
7751 		/* can make the change immediately */
7752 		if (mddev->new_layout >= 0) {
7753 			conf->algorithm = mddev->new_layout;
7754 			mddev->layout = mddev->new_layout;
7755 		}
7756 		if (new_chunk > 0) {
7757 			conf->chunk_sectors = new_chunk ;
7758 			mddev->chunk_sectors = new_chunk;
7759 		}
7760 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7761 		md_wakeup_thread(mddev->thread);
7762 	}
7763 	return check_reshape(mddev);
7764 }
7765 
7766 static int raid6_check_reshape(struct mddev *mddev)
7767 {
7768 	int new_chunk = mddev->new_chunk_sectors;
7769 
7770 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7771 		return -EINVAL;
7772 	if (new_chunk > 0) {
7773 		if (!is_power_of_2(new_chunk))
7774 			return -EINVAL;
7775 		if (new_chunk < (PAGE_SIZE >> 9))
7776 			return -EINVAL;
7777 		if (mddev->array_sectors & (new_chunk-1))
7778 			/* not factor of array size */
7779 			return -EINVAL;
7780 	}
7781 
7782 	/* They look valid */
7783 	return check_reshape(mddev);
7784 }
7785 
7786 static void *raid5_takeover(struct mddev *mddev)
7787 {
7788 	/* raid5 can take over:
7789 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7790 	 *  raid1 - if there are two drives.  We need to know the chunk size
7791 	 *  raid4 - trivial - just use a raid4 layout.
7792 	 *  raid6 - Providing it is a *_6 layout
7793 	 */
7794 	if (mddev->level == 0)
7795 		return raid45_takeover_raid0(mddev, 5);
7796 	if (mddev->level == 1)
7797 		return raid5_takeover_raid1(mddev);
7798 	if (mddev->level == 4) {
7799 		mddev->new_layout = ALGORITHM_PARITY_N;
7800 		mddev->new_level = 5;
7801 		return setup_conf(mddev);
7802 	}
7803 	if (mddev->level == 6)
7804 		return raid5_takeover_raid6(mddev);
7805 
7806 	return ERR_PTR(-EINVAL);
7807 }
7808 
7809 static void *raid4_takeover(struct mddev *mddev)
7810 {
7811 	/* raid4 can take over:
7812 	 *  raid0 - if there is only one strip zone
7813 	 *  raid5 - if layout is right
7814 	 */
7815 	if (mddev->level == 0)
7816 		return raid45_takeover_raid0(mddev, 4);
7817 	if (mddev->level == 5 &&
7818 	    mddev->layout == ALGORITHM_PARITY_N) {
7819 		mddev->new_layout = 0;
7820 		mddev->new_level = 4;
7821 		return setup_conf(mddev);
7822 	}
7823 	return ERR_PTR(-EINVAL);
7824 }
7825 
7826 static struct md_personality raid5_personality;
7827 
7828 static void *raid6_takeover(struct mddev *mddev)
7829 {
7830 	/* Currently can only take over a raid5.  We map the
7831 	 * personality to an equivalent raid6 personality
7832 	 * with the Q block at the end.
7833 	 */
7834 	int new_layout;
7835 
7836 	if (mddev->pers != &raid5_personality)
7837 		return ERR_PTR(-EINVAL);
7838 	if (mddev->degraded > 1)
7839 		return ERR_PTR(-EINVAL);
7840 	if (mddev->raid_disks > 253)
7841 		return ERR_PTR(-EINVAL);
7842 	if (mddev->raid_disks < 3)
7843 		return ERR_PTR(-EINVAL);
7844 
7845 	switch (mddev->layout) {
7846 	case ALGORITHM_LEFT_ASYMMETRIC:
7847 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7848 		break;
7849 	case ALGORITHM_RIGHT_ASYMMETRIC:
7850 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7851 		break;
7852 	case ALGORITHM_LEFT_SYMMETRIC:
7853 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7854 		break;
7855 	case ALGORITHM_RIGHT_SYMMETRIC:
7856 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7857 		break;
7858 	case ALGORITHM_PARITY_0:
7859 		new_layout = ALGORITHM_PARITY_0_6;
7860 		break;
7861 	case ALGORITHM_PARITY_N:
7862 		new_layout = ALGORITHM_PARITY_N;
7863 		break;
7864 	default:
7865 		return ERR_PTR(-EINVAL);
7866 	}
7867 	mddev->new_level = 6;
7868 	mddev->new_layout = new_layout;
7869 	mddev->delta_disks = 1;
7870 	mddev->raid_disks += 1;
7871 	return setup_conf(mddev);
7872 }
7873 
7874 static struct md_personality raid6_personality =
7875 {
7876 	.name		= "raid6",
7877 	.level		= 6,
7878 	.owner		= THIS_MODULE,
7879 	.make_request	= raid5_make_request,
7880 	.run		= raid5_run,
7881 	.free		= raid5_free,
7882 	.status		= raid5_status,
7883 	.error_handler	= raid5_error,
7884 	.hot_add_disk	= raid5_add_disk,
7885 	.hot_remove_disk= raid5_remove_disk,
7886 	.spare_active	= raid5_spare_active,
7887 	.sync_request	= raid5_sync_request,
7888 	.resize		= raid5_resize,
7889 	.size		= raid5_size,
7890 	.check_reshape	= raid6_check_reshape,
7891 	.start_reshape  = raid5_start_reshape,
7892 	.finish_reshape = raid5_finish_reshape,
7893 	.quiesce	= raid5_quiesce,
7894 	.takeover	= raid6_takeover,
7895 	.congested	= raid5_congested,
7896 };
7897 static struct md_personality raid5_personality =
7898 {
7899 	.name		= "raid5",
7900 	.level		= 5,
7901 	.owner		= THIS_MODULE,
7902 	.make_request	= raid5_make_request,
7903 	.run		= raid5_run,
7904 	.free		= raid5_free,
7905 	.status		= raid5_status,
7906 	.error_handler	= raid5_error,
7907 	.hot_add_disk	= raid5_add_disk,
7908 	.hot_remove_disk= raid5_remove_disk,
7909 	.spare_active	= raid5_spare_active,
7910 	.sync_request	= raid5_sync_request,
7911 	.resize		= raid5_resize,
7912 	.size		= raid5_size,
7913 	.check_reshape	= raid5_check_reshape,
7914 	.start_reshape  = raid5_start_reshape,
7915 	.finish_reshape = raid5_finish_reshape,
7916 	.quiesce	= raid5_quiesce,
7917 	.takeover	= raid5_takeover,
7918 	.congested	= raid5_congested,
7919 };
7920 
7921 static struct md_personality raid4_personality =
7922 {
7923 	.name		= "raid4",
7924 	.level		= 4,
7925 	.owner		= THIS_MODULE,
7926 	.make_request	= raid5_make_request,
7927 	.run		= raid5_run,
7928 	.free		= raid5_free,
7929 	.status		= raid5_status,
7930 	.error_handler	= raid5_error,
7931 	.hot_add_disk	= raid5_add_disk,
7932 	.hot_remove_disk= raid5_remove_disk,
7933 	.spare_active	= raid5_spare_active,
7934 	.sync_request	= raid5_sync_request,
7935 	.resize		= raid5_resize,
7936 	.size		= raid5_size,
7937 	.check_reshape	= raid5_check_reshape,
7938 	.start_reshape  = raid5_start_reshape,
7939 	.finish_reshape = raid5_finish_reshape,
7940 	.quiesce	= raid5_quiesce,
7941 	.takeover	= raid4_takeover,
7942 	.congested	= raid5_congested,
7943 };
7944 
7945 static int __init raid5_init(void)
7946 {
7947 	raid5_wq = alloc_workqueue("raid5wq",
7948 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7949 	if (!raid5_wq)
7950 		return -ENOMEM;
7951 	register_md_personality(&raid6_personality);
7952 	register_md_personality(&raid5_personality);
7953 	register_md_personality(&raid4_personality);
7954 	return 0;
7955 }
7956 
7957 static void raid5_exit(void)
7958 {
7959 	unregister_md_personality(&raid6_personality);
7960 	unregister_md_personality(&raid5_personality);
7961 	unregister_md_personality(&raid4_personality);
7962 	destroy_workqueue(raid5_wq);
7963 }
7964 
7965 module_init(raid5_init);
7966 module_exit(raid5_exit);
7967 MODULE_LICENSE("GPL");
7968 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7969 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7970 MODULE_ALIAS("md-raid5");
7971 MODULE_ALIAS("md-raid4");
7972 MODULE_ALIAS("md-level-5");
7973 MODULE_ALIAS("md-level-4");
7974 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7975 MODULE_ALIAS("md-raid6");
7976 MODULE_ALIAS("md-level-6");
7977 
7978 /* This used to be two separate modules, they were: */
7979 MODULE_ALIAS("raid5");
7980 MODULE_ALIAS("raid6");
7981