xref: /linux/drivers/md/raid5.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60 
61 /*
62  * Stripe cache
63  */
64 
65 #define NR_STRIPES		256
66 #define STRIPE_SIZE		PAGE_SIZE
67 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
69 #define	IO_THRESHOLD		1
70 #define BYPASS_THRESHOLD	1
71 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK		(NR_HASH - 1)
73 
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 	return &conf->stripe_hashtbl[hash];
78 }
79 
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91 	int sectors = bio->bi_size >> 9;
92 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 		return bio->bi_next;
94 	else
95 		return NULL;
96 }
97 
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105 	return (atomic_read(segments) >> 16) & 0xffff;
106 }
107 
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111 	return atomic_sub_return(1, segments) & 0xffff;
112 }
113 
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117 	atomic_inc(segments);
118 }
119 
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121 	unsigned int cnt)
122 {
123 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124 	int old, new;
125 
126 	do {
127 		old = atomic_read(segments);
128 		new = (old & 0xffff) | (cnt << 16);
129 	} while (atomic_cmpxchg(segments, old, new) != old);
130 }
131 
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135 	atomic_set(segments, cnt);
136 }
137 
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141 	if (sh->ddf_layout)
142 		/* ddf always start from first device */
143 		return 0;
144 	/* md starts just after Q block */
145 	if (sh->qd_idx == sh->disks - 1)
146 		return 0;
147 	else
148 		return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152 	disk++;
153 	return (disk < raid_disks) ? disk : 0;
154 }
155 
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1.  This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162 			     int *count, int syndrome_disks)
163 {
164 	int slot = *count;
165 
166 	if (sh->ddf_layout)
167 		(*count)++;
168 	if (idx == sh->pd_idx)
169 		return syndrome_disks;
170 	if (idx == sh->qd_idx)
171 		return syndrome_disks + 1;
172 	if (!sh->ddf_layout)
173 		(*count)++;
174 	return slot;
175 }
176 
177 static void return_io(struct bio *return_bi)
178 {
179 	struct bio *bi = return_bi;
180 	while (bi) {
181 
182 		return_bi = bi->bi_next;
183 		bi->bi_next = NULL;
184 		bi->bi_size = 0;
185 		bio_endio(bi, 0);
186 		bi = return_bi;
187 	}
188 }
189 
190 static void print_raid5_conf (struct r5conf *conf);
191 
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194 	return sh->check_state || sh->reconstruct_state ||
195 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
197 }
198 
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201 	BUG_ON(!list_empty(&sh->lru));
202 	BUG_ON(atomic_read(&conf->active_stripes)==0);
203 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
204 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
205 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206 			list_add_tail(&sh->lru, &conf->delayed_list);
207 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208 			   sh->bm_seq - conf->seq_write > 0)
209 			list_add_tail(&sh->lru, &conf->bitmap_list);
210 		else {
211 			clear_bit(STRIPE_DELAYED, &sh->state);
212 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
213 			list_add_tail(&sh->lru, &conf->handle_list);
214 		}
215 		md_wakeup_thread(conf->mddev->thread);
216 	} else {
217 		BUG_ON(stripe_operations_active(sh));
218 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219 			if (atomic_dec_return(&conf->preread_active_stripes)
220 			    < IO_THRESHOLD)
221 				md_wakeup_thread(conf->mddev->thread);
222 		atomic_dec(&conf->active_stripes);
223 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224 			list_add_tail(&sh->lru, &conf->inactive_list);
225 			wake_up(&conf->wait_for_stripe);
226 			if (conf->retry_read_aligned)
227 				md_wakeup_thread(conf->mddev->thread);
228 		}
229 	}
230 }
231 
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234 	if (atomic_dec_and_test(&sh->count))
235 		do_release_stripe(conf, sh);
236 }
237 
238 static void release_stripe(struct stripe_head *sh)
239 {
240 	struct r5conf *conf = sh->raid_conf;
241 	unsigned long flags;
242 
243 	local_irq_save(flags);
244 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245 		do_release_stripe(conf, sh);
246 		spin_unlock(&conf->device_lock);
247 	}
248 	local_irq_restore(flags);
249 }
250 
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253 	pr_debug("remove_hash(), stripe %llu\n",
254 		(unsigned long long)sh->sector);
255 
256 	hlist_del_init(&sh->hash);
257 }
258 
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
262 
263 	pr_debug("insert_hash(), stripe %llu\n",
264 		(unsigned long long)sh->sector);
265 
266 	hlist_add_head(&sh->hash, hp);
267 }
268 
269 
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273 	struct stripe_head *sh = NULL;
274 	struct list_head *first;
275 
276 	if (list_empty(&conf->inactive_list))
277 		goto out;
278 	first = conf->inactive_list.next;
279 	sh = list_entry(first, struct stripe_head, lru);
280 	list_del_init(first);
281 	remove_hash(sh);
282 	atomic_inc(&conf->active_stripes);
283 out:
284 	return sh;
285 }
286 
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289 	struct page *p;
290 	int i;
291 	int num = sh->raid_conf->pool_size;
292 
293 	for (i = 0; i < num ; i++) {
294 		p = sh->dev[i].page;
295 		if (!p)
296 			continue;
297 		sh->dev[i].page = NULL;
298 		put_page(p);
299 	}
300 }
301 
302 static int grow_buffers(struct stripe_head *sh)
303 {
304 	int i;
305 	int num = sh->raid_conf->pool_size;
306 
307 	for (i = 0; i < num; i++) {
308 		struct page *page;
309 
310 		if (!(page = alloc_page(GFP_KERNEL))) {
311 			return 1;
312 		}
313 		sh->dev[i].page = page;
314 	}
315 	return 0;
316 }
317 
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320 			    struct stripe_head *sh);
321 
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324 	struct r5conf *conf = sh->raid_conf;
325 	int i;
326 
327 	BUG_ON(atomic_read(&sh->count) != 0);
328 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329 	BUG_ON(stripe_operations_active(sh));
330 
331 	pr_debug("init_stripe called, stripe %llu\n",
332 		(unsigned long long)sh->sector);
333 
334 	remove_hash(sh);
335 
336 	sh->generation = conf->generation - previous;
337 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338 	sh->sector = sector;
339 	stripe_set_idx(sector, conf, previous, sh);
340 	sh->state = 0;
341 
342 
343 	for (i = sh->disks; i--; ) {
344 		struct r5dev *dev = &sh->dev[i];
345 
346 		if (dev->toread || dev->read || dev->towrite || dev->written ||
347 		    test_bit(R5_LOCKED, &dev->flags)) {
348 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349 			       (unsigned long long)sh->sector, i, dev->toread,
350 			       dev->read, dev->towrite, dev->written,
351 			       test_bit(R5_LOCKED, &dev->flags));
352 			WARN_ON(1);
353 		}
354 		dev->flags = 0;
355 		raid5_build_block(sh, i, previous);
356 	}
357 	insert_hash(conf, sh);
358 }
359 
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361 					 short generation)
362 {
363 	struct stripe_head *sh;
364 	struct hlist_node *hn;
365 
366 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368 		if (sh->sector == sector && sh->generation == generation)
369 			return sh;
370 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371 	return NULL;
372 }
373 
374 /*
375  * Need to check if array has failed when deciding whether to:
376  *  - start an array
377  *  - remove non-faulty devices
378  *  - add a spare
379  *  - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389 	int degraded, degraded2;
390 	int i;
391 
392 	rcu_read_lock();
393 	degraded = 0;
394 	for (i = 0; i < conf->previous_raid_disks; i++) {
395 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396 		if (rdev && test_bit(Faulty, &rdev->flags))
397 			rdev = rcu_dereference(conf->disks[i].replacement);
398 		if (!rdev || test_bit(Faulty, &rdev->flags))
399 			degraded++;
400 		else if (test_bit(In_sync, &rdev->flags))
401 			;
402 		else
403 			/* not in-sync or faulty.
404 			 * If the reshape increases the number of devices,
405 			 * this is being recovered by the reshape, so
406 			 * this 'previous' section is not in_sync.
407 			 * If the number of devices is being reduced however,
408 			 * the device can only be part of the array if
409 			 * we are reverting a reshape, so this section will
410 			 * be in-sync.
411 			 */
412 			if (conf->raid_disks >= conf->previous_raid_disks)
413 				degraded++;
414 	}
415 	rcu_read_unlock();
416 	if (conf->raid_disks == conf->previous_raid_disks)
417 		return degraded;
418 	rcu_read_lock();
419 	degraded2 = 0;
420 	for (i = 0; i < conf->raid_disks; i++) {
421 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
422 		if (rdev && test_bit(Faulty, &rdev->flags))
423 			rdev = rcu_dereference(conf->disks[i].replacement);
424 		if (!rdev || test_bit(Faulty, &rdev->flags))
425 			degraded2++;
426 		else if (test_bit(In_sync, &rdev->flags))
427 			;
428 		else
429 			/* not in-sync or faulty.
430 			 * If reshape increases the number of devices, this
431 			 * section has already been recovered, else it
432 			 * almost certainly hasn't.
433 			 */
434 			if (conf->raid_disks <= conf->previous_raid_disks)
435 				degraded2++;
436 	}
437 	rcu_read_unlock();
438 	if (degraded2 > degraded)
439 		return degraded2;
440 	return degraded;
441 }
442 
443 static int has_failed(struct r5conf *conf)
444 {
445 	int degraded;
446 
447 	if (conf->mddev->reshape_position == MaxSector)
448 		return conf->mddev->degraded > conf->max_degraded;
449 
450 	degraded = calc_degraded(conf);
451 	if (degraded > conf->max_degraded)
452 		return 1;
453 	return 0;
454 }
455 
456 static struct stripe_head *
457 get_active_stripe(struct r5conf *conf, sector_t sector,
458 		  int previous, int noblock, int noquiesce)
459 {
460 	struct stripe_head *sh;
461 
462 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
463 
464 	spin_lock_irq(&conf->device_lock);
465 
466 	do {
467 		wait_event_lock_irq(conf->wait_for_stripe,
468 				    conf->quiesce == 0 || noquiesce,
469 				    conf->device_lock, /* nothing */);
470 		sh = __find_stripe(conf, sector, conf->generation - previous);
471 		if (!sh) {
472 			if (!conf->inactive_blocked)
473 				sh = get_free_stripe(conf);
474 			if (noblock && sh == NULL)
475 				break;
476 			if (!sh) {
477 				conf->inactive_blocked = 1;
478 				wait_event_lock_irq(conf->wait_for_stripe,
479 						    !list_empty(&conf->inactive_list) &&
480 						    (atomic_read(&conf->active_stripes)
481 						     < (conf->max_nr_stripes *3/4)
482 						     || !conf->inactive_blocked),
483 						    conf->device_lock,
484 						    );
485 				conf->inactive_blocked = 0;
486 			} else
487 				init_stripe(sh, sector, previous);
488 		} else {
489 			if (atomic_read(&sh->count)) {
490 				BUG_ON(!list_empty(&sh->lru)
491 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
492 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
493 			} else {
494 				if (!test_bit(STRIPE_HANDLE, &sh->state))
495 					atomic_inc(&conf->active_stripes);
496 				if (list_empty(&sh->lru) &&
497 				    !test_bit(STRIPE_EXPANDING, &sh->state))
498 					BUG();
499 				list_del_init(&sh->lru);
500 			}
501 		}
502 	} while (sh == NULL);
503 
504 	if (sh)
505 		atomic_inc(&sh->count);
506 
507 	spin_unlock_irq(&conf->device_lock);
508 	return sh;
509 }
510 
511 /* Determine if 'data_offset' or 'new_data_offset' should be used
512  * in this stripe_head.
513  */
514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
515 {
516 	sector_t progress = conf->reshape_progress;
517 	/* Need a memory barrier to make sure we see the value
518 	 * of conf->generation, or ->data_offset that was set before
519 	 * reshape_progress was updated.
520 	 */
521 	smp_rmb();
522 	if (progress == MaxSector)
523 		return 0;
524 	if (sh->generation == conf->generation - 1)
525 		return 0;
526 	/* We are in a reshape, and this is a new-generation stripe,
527 	 * so use new_data_offset.
528 	 */
529 	return 1;
530 }
531 
532 static void
533 raid5_end_read_request(struct bio *bi, int error);
534 static void
535 raid5_end_write_request(struct bio *bi, int error);
536 
537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
538 {
539 	struct r5conf *conf = sh->raid_conf;
540 	int i, disks = sh->disks;
541 
542 	might_sleep();
543 
544 	for (i = disks; i--; ) {
545 		int rw;
546 		int replace_only = 0;
547 		struct bio *bi, *rbi;
548 		struct md_rdev *rdev, *rrdev = NULL;
549 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551 				rw = WRITE_FUA;
552 			else
553 				rw = WRITE;
554 			if (test_bit(R5_Discard, &sh->dev[i].flags))
555 				rw |= REQ_DISCARD;
556 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
557 			rw = READ;
558 		else if (test_and_clear_bit(R5_WantReplace,
559 					    &sh->dev[i].flags)) {
560 			rw = WRITE;
561 			replace_only = 1;
562 		} else
563 			continue;
564 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
565 			rw |= REQ_SYNC;
566 
567 		bi = &sh->dev[i].req;
568 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
569 
570 		bi->bi_rw = rw;
571 		rbi->bi_rw = rw;
572 		if (rw & WRITE) {
573 			bi->bi_end_io = raid5_end_write_request;
574 			rbi->bi_end_io = raid5_end_write_request;
575 		} else
576 			bi->bi_end_io = raid5_end_read_request;
577 
578 		rcu_read_lock();
579 		rrdev = rcu_dereference(conf->disks[i].replacement);
580 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
581 		rdev = rcu_dereference(conf->disks[i].rdev);
582 		if (!rdev) {
583 			rdev = rrdev;
584 			rrdev = NULL;
585 		}
586 		if (rw & WRITE) {
587 			if (replace_only)
588 				rdev = NULL;
589 			if (rdev == rrdev)
590 				/* We raced and saw duplicates */
591 				rrdev = NULL;
592 		} else {
593 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
594 				rdev = rrdev;
595 			rrdev = NULL;
596 		}
597 
598 		if (rdev && test_bit(Faulty, &rdev->flags))
599 			rdev = NULL;
600 		if (rdev)
601 			atomic_inc(&rdev->nr_pending);
602 		if (rrdev && test_bit(Faulty, &rrdev->flags))
603 			rrdev = NULL;
604 		if (rrdev)
605 			atomic_inc(&rrdev->nr_pending);
606 		rcu_read_unlock();
607 
608 		/* We have already checked bad blocks for reads.  Now
609 		 * need to check for writes.  We never accept write errors
610 		 * on the replacement, so we don't to check rrdev.
611 		 */
612 		while ((rw & WRITE) && rdev &&
613 		       test_bit(WriteErrorSeen, &rdev->flags)) {
614 			sector_t first_bad;
615 			int bad_sectors;
616 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
617 					      &first_bad, &bad_sectors);
618 			if (!bad)
619 				break;
620 
621 			if (bad < 0) {
622 				set_bit(BlockedBadBlocks, &rdev->flags);
623 				if (!conf->mddev->external &&
624 				    conf->mddev->flags) {
625 					/* It is very unlikely, but we might
626 					 * still need to write out the
627 					 * bad block log - better give it
628 					 * a chance*/
629 					md_check_recovery(conf->mddev);
630 				}
631 				/*
632 				 * Because md_wait_for_blocked_rdev
633 				 * will dec nr_pending, we must
634 				 * increment it first.
635 				 */
636 				atomic_inc(&rdev->nr_pending);
637 				md_wait_for_blocked_rdev(rdev, conf->mddev);
638 			} else {
639 				/* Acknowledged bad block - skip the write */
640 				rdev_dec_pending(rdev, conf->mddev);
641 				rdev = NULL;
642 			}
643 		}
644 
645 		if (rdev) {
646 			if (s->syncing || s->expanding || s->expanded
647 			    || s->replacing)
648 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
649 
650 			set_bit(STRIPE_IO_STARTED, &sh->state);
651 
652 			bi->bi_bdev = rdev->bdev;
653 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
654 				__func__, (unsigned long long)sh->sector,
655 				bi->bi_rw, i);
656 			atomic_inc(&sh->count);
657 			if (use_new_offset(conf, sh))
658 				bi->bi_sector = (sh->sector
659 						 + rdev->new_data_offset);
660 			else
661 				bi->bi_sector = (sh->sector
662 						 + rdev->data_offset);
663 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
664 				bi->bi_rw |= REQ_FLUSH;
665 
666 			bi->bi_flags = 1 << BIO_UPTODATE;
667 			bi->bi_idx = 0;
668 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
669 			bi->bi_io_vec[0].bv_offset = 0;
670 			bi->bi_size = STRIPE_SIZE;
671 			bi->bi_next = NULL;
672 			if (rrdev)
673 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
674 			generic_make_request(bi);
675 		}
676 		if (rrdev) {
677 			if (s->syncing || s->expanding || s->expanded
678 			    || s->replacing)
679 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
680 
681 			set_bit(STRIPE_IO_STARTED, &sh->state);
682 
683 			rbi->bi_bdev = rrdev->bdev;
684 			pr_debug("%s: for %llu schedule op %ld on "
685 				 "replacement disc %d\n",
686 				__func__, (unsigned long long)sh->sector,
687 				rbi->bi_rw, i);
688 			atomic_inc(&sh->count);
689 			if (use_new_offset(conf, sh))
690 				rbi->bi_sector = (sh->sector
691 						  + rrdev->new_data_offset);
692 			else
693 				rbi->bi_sector = (sh->sector
694 						  + rrdev->data_offset);
695 			rbi->bi_flags = 1 << BIO_UPTODATE;
696 			rbi->bi_idx = 0;
697 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
698 			rbi->bi_io_vec[0].bv_offset = 0;
699 			rbi->bi_size = STRIPE_SIZE;
700 			rbi->bi_next = NULL;
701 			generic_make_request(rbi);
702 		}
703 		if (!rdev && !rrdev) {
704 			if (rw & WRITE)
705 				set_bit(STRIPE_DEGRADED, &sh->state);
706 			pr_debug("skip op %ld on disc %d for sector %llu\n",
707 				bi->bi_rw, i, (unsigned long long)sh->sector);
708 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
709 			set_bit(STRIPE_HANDLE, &sh->state);
710 		}
711 	}
712 }
713 
714 static struct dma_async_tx_descriptor *
715 async_copy_data(int frombio, struct bio *bio, struct page *page,
716 	sector_t sector, struct dma_async_tx_descriptor *tx)
717 {
718 	struct bio_vec *bvl;
719 	struct page *bio_page;
720 	int i;
721 	int page_offset;
722 	struct async_submit_ctl submit;
723 	enum async_tx_flags flags = 0;
724 
725 	if (bio->bi_sector >= sector)
726 		page_offset = (signed)(bio->bi_sector - sector) * 512;
727 	else
728 		page_offset = (signed)(sector - bio->bi_sector) * -512;
729 
730 	if (frombio)
731 		flags |= ASYNC_TX_FENCE;
732 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
733 
734 	bio_for_each_segment(bvl, bio, i) {
735 		int len = bvl->bv_len;
736 		int clen;
737 		int b_offset = 0;
738 
739 		if (page_offset < 0) {
740 			b_offset = -page_offset;
741 			page_offset += b_offset;
742 			len -= b_offset;
743 		}
744 
745 		if (len > 0 && page_offset + len > STRIPE_SIZE)
746 			clen = STRIPE_SIZE - page_offset;
747 		else
748 			clen = len;
749 
750 		if (clen > 0) {
751 			b_offset += bvl->bv_offset;
752 			bio_page = bvl->bv_page;
753 			if (frombio)
754 				tx = async_memcpy(page, bio_page, page_offset,
755 						  b_offset, clen, &submit);
756 			else
757 				tx = async_memcpy(bio_page, page, b_offset,
758 						  page_offset, clen, &submit);
759 		}
760 		/* chain the operations */
761 		submit.depend_tx = tx;
762 
763 		if (clen < len) /* hit end of page */
764 			break;
765 		page_offset +=  len;
766 	}
767 
768 	return tx;
769 }
770 
771 static void ops_complete_biofill(void *stripe_head_ref)
772 {
773 	struct stripe_head *sh = stripe_head_ref;
774 	struct bio *return_bi = NULL;
775 	int i;
776 
777 	pr_debug("%s: stripe %llu\n", __func__,
778 		(unsigned long long)sh->sector);
779 
780 	/* clear completed biofills */
781 	for (i = sh->disks; i--; ) {
782 		struct r5dev *dev = &sh->dev[i];
783 
784 		/* acknowledge completion of a biofill operation */
785 		/* and check if we need to reply to a read request,
786 		 * new R5_Wantfill requests are held off until
787 		 * !STRIPE_BIOFILL_RUN
788 		 */
789 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
790 			struct bio *rbi, *rbi2;
791 
792 			BUG_ON(!dev->read);
793 			rbi = dev->read;
794 			dev->read = NULL;
795 			while (rbi && rbi->bi_sector <
796 				dev->sector + STRIPE_SECTORS) {
797 				rbi2 = r5_next_bio(rbi, dev->sector);
798 				if (!raid5_dec_bi_active_stripes(rbi)) {
799 					rbi->bi_next = return_bi;
800 					return_bi = rbi;
801 				}
802 				rbi = rbi2;
803 			}
804 		}
805 	}
806 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
807 
808 	return_io(return_bi);
809 
810 	set_bit(STRIPE_HANDLE, &sh->state);
811 	release_stripe(sh);
812 }
813 
814 static void ops_run_biofill(struct stripe_head *sh)
815 {
816 	struct dma_async_tx_descriptor *tx = NULL;
817 	struct async_submit_ctl submit;
818 	int i;
819 
820 	pr_debug("%s: stripe %llu\n", __func__,
821 		(unsigned long long)sh->sector);
822 
823 	for (i = sh->disks; i--; ) {
824 		struct r5dev *dev = &sh->dev[i];
825 		if (test_bit(R5_Wantfill, &dev->flags)) {
826 			struct bio *rbi;
827 			spin_lock_irq(&sh->stripe_lock);
828 			dev->read = rbi = dev->toread;
829 			dev->toread = NULL;
830 			spin_unlock_irq(&sh->stripe_lock);
831 			while (rbi && rbi->bi_sector <
832 				dev->sector + STRIPE_SECTORS) {
833 				tx = async_copy_data(0, rbi, dev->page,
834 					dev->sector, tx);
835 				rbi = r5_next_bio(rbi, dev->sector);
836 			}
837 		}
838 	}
839 
840 	atomic_inc(&sh->count);
841 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
842 	async_trigger_callback(&submit);
843 }
844 
845 static void mark_target_uptodate(struct stripe_head *sh, int target)
846 {
847 	struct r5dev *tgt;
848 
849 	if (target < 0)
850 		return;
851 
852 	tgt = &sh->dev[target];
853 	set_bit(R5_UPTODATE, &tgt->flags);
854 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
855 	clear_bit(R5_Wantcompute, &tgt->flags);
856 }
857 
858 static void ops_complete_compute(void *stripe_head_ref)
859 {
860 	struct stripe_head *sh = stripe_head_ref;
861 
862 	pr_debug("%s: stripe %llu\n", __func__,
863 		(unsigned long long)sh->sector);
864 
865 	/* mark the computed target(s) as uptodate */
866 	mark_target_uptodate(sh, sh->ops.target);
867 	mark_target_uptodate(sh, sh->ops.target2);
868 
869 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
870 	if (sh->check_state == check_state_compute_run)
871 		sh->check_state = check_state_compute_result;
872 	set_bit(STRIPE_HANDLE, &sh->state);
873 	release_stripe(sh);
874 }
875 
876 /* return a pointer to the address conversion region of the scribble buffer */
877 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
878 				 struct raid5_percpu *percpu)
879 {
880 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
881 }
882 
883 static struct dma_async_tx_descriptor *
884 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
885 {
886 	int disks = sh->disks;
887 	struct page **xor_srcs = percpu->scribble;
888 	int target = sh->ops.target;
889 	struct r5dev *tgt = &sh->dev[target];
890 	struct page *xor_dest = tgt->page;
891 	int count = 0;
892 	struct dma_async_tx_descriptor *tx;
893 	struct async_submit_ctl submit;
894 	int i;
895 
896 	pr_debug("%s: stripe %llu block: %d\n",
897 		__func__, (unsigned long long)sh->sector, target);
898 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
899 
900 	for (i = disks; i--; )
901 		if (i != target)
902 			xor_srcs[count++] = sh->dev[i].page;
903 
904 	atomic_inc(&sh->count);
905 
906 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
907 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
908 	if (unlikely(count == 1))
909 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
910 	else
911 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
912 
913 	return tx;
914 }
915 
916 /* set_syndrome_sources - populate source buffers for gen_syndrome
917  * @srcs - (struct page *) array of size sh->disks
918  * @sh - stripe_head to parse
919  *
920  * Populates srcs in proper layout order for the stripe and returns the
921  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
922  * destination buffer is recorded in srcs[count] and the Q destination
923  * is recorded in srcs[count+1]].
924  */
925 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
926 {
927 	int disks = sh->disks;
928 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
929 	int d0_idx = raid6_d0(sh);
930 	int count;
931 	int i;
932 
933 	for (i = 0; i < disks; i++)
934 		srcs[i] = NULL;
935 
936 	count = 0;
937 	i = d0_idx;
938 	do {
939 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
940 
941 		srcs[slot] = sh->dev[i].page;
942 		i = raid6_next_disk(i, disks);
943 	} while (i != d0_idx);
944 
945 	return syndrome_disks;
946 }
947 
948 static struct dma_async_tx_descriptor *
949 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
950 {
951 	int disks = sh->disks;
952 	struct page **blocks = percpu->scribble;
953 	int target;
954 	int qd_idx = sh->qd_idx;
955 	struct dma_async_tx_descriptor *tx;
956 	struct async_submit_ctl submit;
957 	struct r5dev *tgt;
958 	struct page *dest;
959 	int i;
960 	int count;
961 
962 	if (sh->ops.target < 0)
963 		target = sh->ops.target2;
964 	else if (sh->ops.target2 < 0)
965 		target = sh->ops.target;
966 	else
967 		/* we should only have one valid target */
968 		BUG();
969 	BUG_ON(target < 0);
970 	pr_debug("%s: stripe %llu block: %d\n",
971 		__func__, (unsigned long long)sh->sector, target);
972 
973 	tgt = &sh->dev[target];
974 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
975 	dest = tgt->page;
976 
977 	atomic_inc(&sh->count);
978 
979 	if (target == qd_idx) {
980 		count = set_syndrome_sources(blocks, sh);
981 		blocks[count] = NULL; /* regenerating p is not necessary */
982 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
983 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
984 				  ops_complete_compute, sh,
985 				  to_addr_conv(sh, percpu));
986 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
987 	} else {
988 		/* Compute any data- or p-drive using XOR */
989 		count = 0;
990 		for (i = disks; i-- ; ) {
991 			if (i == target || i == qd_idx)
992 				continue;
993 			blocks[count++] = sh->dev[i].page;
994 		}
995 
996 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
997 				  NULL, ops_complete_compute, sh,
998 				  to_addr_conv(sh, percpu));
999 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1000 	}
1001 
1002 	return tx;
1003 }
1004 
1005 static struct dma_async_tx_descriptor *
1006 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1007 {
1008 	int i, count, disks = sh->disks;
1009 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1010 	int d0_idx = raid6_d0(sh);
1011 	int faila = -1, failb = -1;
1012 	int target = sh->ops.target;
1013 	int target2 = sh->ops.target2;
1014 	struct r5dev *tgt = &sh->dev[target];
1015 	struct r5dev *tgt2 = &sh->dev[target2];
1016 	struct dma_async_tx_descriptor *tx;
1017 	struct page **blocks = percpu->scribble;
1018 	struct async_submit_ctl submit;
1019 
1020 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1021 		 __func__, (unsigned long long)sh->sector, target, target2);
1022 	BUG_ON(target < 0 || target2 < 0);
1023 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1024 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1025 
1026 	/* we need to open-code set_syndrome_sources to handle the
1027 	 * slot number conversion for 'faila' and 'failb'
1028 	 */
1029 	for (i = 0; i < disks ; i++)
1030 		blocks[i] = NULL;
1031 	count = 0;
1032 	i = d0_idx;
1033 	do {
1034 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1035 
1036 		blocks[slot] = sh->dev[i].page;
1037 
1038 		if (i == target)
1039 			faila = slot;
1040 		if (i == target2)
1041 			failb = slot;
1042 		i = raid6_next_disk(i, disks);
1043 	} while (i != d0_idx);
1044 
1045 	BUG_ON(faila == failb);
1046 	if (failb < faila)
1047 		swap(faila, failb);
1048 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1049 		 __func__, (unsigned long long)sh->sector, faila, failb);
1050 
1051 	atomic_inc(&sh->count);
1052 
1053 	if (failb == syndrome_disks+1) {
1054 		/* Q disk is one of the missing disks */
1055 		if (faila == syndrome_disks) {
1056 			/* Missing P+Q, just recompute */
1057 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1058 					  ops_complete_compute, sh,
1059 					  to_addr_conv(sh, percpu));
1060 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1061 						  STRIPE_SIZE, &submit);
1062 		} else {
1063 			struct page *dest;
1064 			int data_target;
1065 			int qd_idx = sh->qd_idx;
1066 
1067 			/* Missing D+Q: recompute D from P, then recompute Q */
1068 			if (target == qd_idx)
1069 				data_target = target2;
1070 			else
1071 				data_target = target;
1072 
1073 			count = 0;
1074 			for (i = disks; i-- ; ) {
1075 				if (i == data_target || i == qd_idx)
1076 					continue;
1077 				blocks[count++] = sh->dev[i].page;
1078 			}
1079 			dest = sh->dev[data_target].page;
1080 			init_async_submit(&submit,
1081 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1082 					  NULL, NULL, NULL,
1083 					  to_addr_conv(sh, percpu));
1084 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1085 				       &submit);
1086 
1087 			count = set_syndrome_sources(blocks, sh);
1088 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1089 					  ops_complete_compute, sh,
1090 					  to_addr_conv(sh, percpu));
1091 			return async_gen_syndrome(blocks, 0, count+2,
1092 						  STRIPE_SIZE, &submit);
1093 		}
1094 	} else {
1095 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1096 				  ops_complete_compute, sh,
1097 				  to_addr_conv(sh, percpu));
1098 		if (failb == syndrome_disks) {
1099 			/* We're missing D+P. */
1100 			return async_raid6_datap_recov(syndrome_disks+2,
1101 						       STRIPE_SIZE, faila,
1102 						       blocks, &submit);
1103 		} else {
1104 			/* We're missing D+D. */
1105 			return async_raid6_2data_recov(syndrome_disks+2,
1106 						       STRIPE_SIZE, faila, failb,
1107 						       blocks, &submit);
1108 		}
1109 	}
1110 }
1111 
1112 
1113 static void ops_complete_prexor(void *stripe_head_ref)
1114 {
1115 	struct stripe_head *sh = stripe_head_ref;
1116 
1117 	pr_debug("%s: stripe %llu\n", __func__,
1118 		(unsigned long long)sh->sector);
1119 }
1120 
1121 static struct dma_async_tx_descriptor *
1122 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1123 	       struct dma_async_tx_descriptor *tx)
1124 {
1125 	int disks = sh->disks;
1126 	struct page **xor_srcs = percpu->scribble;
1127 	int count = 0, pd_idx = sh->pd_idx, i;
1128 	struct async_submit_ctl submit;
1129 
1130 	/* existing parity data subtracted */
1131 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1132 
1133 	pr_debug("%s: stripe %llu\n", __func__,
1134 		(unsigned long long)sh->sector);
1135 
1136 	for (i = disks; i--; ) {
1137 		struct r5dev *dev = &sh->dev[i];
1138 		/* Only process blocks that are known to be uptodate */
1139 		if (test_bit(R5_Wantdrain, &dev->flags))
1140 			xor_srcs[count++] = dev->page;
1141 	}
1142 
1143 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1144 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1145 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1146 
1147 	return tx;
1148 }
1149 
1150 static struct dma_async_tx_descriptor *
1151 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1152 {
1153 	int disks = sh->disks;
1154 	int i;
1155 
1156 	pr_debug("%s: stripe %llu\n", __func__,
1157 		(unsigned long long)sh->sector);
1158 
1159 	for (i = disks; i--; ) {
1160 		struct r5dev *dev = &sh->dev[i];
1161 		struct bio *chosen;
1162 
1163 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1164 			struct bio *wbi;
1165 
1166 			spin_lock_irq(&sh->stripe_lock);
1167 			chosen = dev->towrite;
1168 			dev->towrite = NULL;
1169 			BUG_ON(dev->written);
1170 			wbi = dev->written = chosen;
1171 			spin_unlock_irq(&sh->stripe_lock);
1172 
1173 			while (wbi && wbi->bi_sector <
1174 				dev->sector + STRIPE_SECTORS) {
1175 				if (wbi->bi_rw & REQ_FUA)
1176 					set_bit(R5_WantFUA, &dev->flags);
1177 				if (wbi->bi_rw & REQ_SYNC)
1178 					set_bit(R5_SyncIO, &dev->flags);
1179 				if (wbi->bi_rw & REQ_DISCARD)
1180 					set_bit(R5_Discard, &dev->flags);
1181 				else
1182 					tx = async_copy_data(1, wbi, dev->page,
1183 						dev->sector, tx);
1184 				wbi = r5_next_bio(wbi, dev->sector);
1185 			}
1186 		}
1187 	}
1188 
1189 	return tx;
1190 }
1191 
1192 static void ops_complete_reconstruct(void *stripe_head_ref)
1193 {
1194 	struct stripe_head *sh = stripe_head_ref;
1195 	int disks = sh->disks;
1196 	int pd_idx = sh->pd_idx;
1197 	int qd_idx = sh->qd_idx;
1198 	int i;
1199 	bool fua = false, sync = false, discard = false;
1200 
1201 	pr_debug("%s: stripe %llu\n", __func__,
1202 		(unsigned long long)sh->sector);
1203 
1204 	for (i = disks; i--; ) {
1205 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1206 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1207 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1208 	}
1209 
1210 	for (i = disks; i--; ) {
1211 		struct r5dev *dev = &sh->dev[i];
1212 
1213 		if (dev->written || i == pd_idx || i == qd_idx) {
1214 			if (!discard)
1215 				set_bit(R5_UPTODATE, &dev->flags);
1216 			if (fua)
1217 				set_bit(R5_WantFUA, &dev->flags);
1218 			if (sync)
1219 				set_bit(R5_SyncIO, &dev->flags);
1220 		}
1221 	}
1222 
1223 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1224 		sh->reconstruct_state = reconstruct_state_drain_result;
1225 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1226 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1227 	else {
1228 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1229 		sh->reconstruct_state = reconstruct_state_result;
1230 	}
1231 
1232 	set_bit(STRIPE_HANDLE, &sh->state);
1233 	release_stripe(sh);
1234 }
1235 
1236 static void
1237 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1238 		     struct dma_async_tx_descriptor *tx)
1239 {
1240 	int disks = sh->disks;
1241 	struct page **xor_srcs = percpu->scribble;
1242 	struct async_submit_ctl submit;
1243 	int count = 0, pd_idx = sh->pd_idx, i;
1244 	struct page *xor_dest;
1245 	int prexor = 0;
1246 	unsigned long flags;
1247 
1248 	pr_debug("%s: stripe %llu\n", __func__,
1249 		(unsigned long long)sh->sector);
1250 
1251 	for (i = 0; i < sh->disks; i++) {
1252 		if (pd_idx == i)
1253 			continue;
1254 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1255 			break;
1256 	}
1257 	if (i >= sh->disks) {
1258 		atomic_inc(&sh->count);
1259 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1260 		ops_complete_reconstruct(sh);
1261 		return;
1262 	}
1263 	/* check if prexor is active which means only process blocks
1264 	 * that are part of a read-modify-write (written)
1265 	 */
1266 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1267 		prexor = 1;
1268 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1269 		for (i = disks; i--; ) {
1270 			struct r5dev *dev = &sh->dev[i];
1271 			if (dev->written)
1272 				xor_srcs[count++] = dev->page;
1273 		}
1274 	} else {
1275 		xor_dest = sh->dev[pd_idx].page;
1276 		for (i = disks; i--; ) {
1277 			struct r5dev *dev = &sh->dev[i];
1278 			if (i != pd_idx)
1279 				xor_srcs[count++] = dev->page;
1280 		}
1281 	}
1282 
1283 	/* 1/ if we prexor'd then the dest is reused as a source
1284 	 * 2/ if we did not prexor then we are redoing the parity
1285 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1286 	 * for the synchronous xor case
1287 	 */
1288 	flags = ASYNC_TX_ACK |
1289 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1290 
1291 	atomic_inc(&sh->count);
1292 
1293 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1294 			  to_addr_conv(sh, percpu));
1295 	if (unlikely(count == 1))
1296 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1297 	else
1298 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1299 }
1300 
1301 static void
1302 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1303 		     struct dma_async_tx_descriptor *tx)
1304 {
1305 	struct async_submit_ctl submit;
1306 	struct page **blocks = percpu->scribble;
1307 	int count, i;
1308 
1309 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1310 
1311 	for (i = 0; i < sh->disks; i++) {
1312 		if (sh->pd_idx == i || sh->qd_idx == i)
1313 			continue;
1314 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1315 			break;
1316 	}
1317 	if (i >= sh->disks) {
1318 		atomic_inc(&sh->count);
1319 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1320 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1321 		ops_complete_reconstruct(sh);
1322 		return;
1323 	}
1324 
1325 	count = set_syndrome_sources(blocks, sh);
1326 
1327 	atomic_inc(&sh->count);
1328 
1329 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1330 			  sh, to_addr_conv(sh, percpu));
1331 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1332 }
1333 
1334 static void ops_complete_check(void *stripe_head_ref)
1335 {
1336 	struct stripe_head *sh = stripe_head_ref;
1337 
1338 	pr_debug("%s: stripe %llu\n", __func__,
1339 		(unsigned long long)sh->sector);
1340 
1341 	sh->check_state = check_state_check_result;
1342 	set_bit(STRIPE_HANDLE, &sh->state);
1343 	release_stripe(sh);
1344 }
1345 
1346 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1347 {
1348 	int disks = sh->disks;
1349 	int pd_idx = sh->pd_idx;
1350 	int qd_idx = sh->qd_idx;
1351 	struct page *xor_dest;
1352 	struct page **xor_srcs = percpu->scribble;
1353 	struct dma_async_tx_descriptor *tx;
1354 	struct async_submit_ctl submit;
1355 	int count;
1356 	int i;
1357 
1358 	pr_debug("%s: stripe %llu\n", __func__,
1359 		(unsigned long long)sh->sector);
1360 
1361 	count = 0;
1362 	xor_dest = sh->dev[pd_idx].page;
1363 	xor_srcs[count++] = xor_dest;
1364 	for (i = disks; i--; ) {
1365 		if (i == pd_idx || i == qd_idx)
1366 			continue;
1367 		xor_srcs[count++] = sh->dev[i].page;
1368 	}
1369 
1370 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1371 			  to_addr_conv(sh, percpu));
1372 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1373 			   &sh->ops.zero_sum_result, &submit);
1374 
1375 	atomic_inc(&sh->count);
1376 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1377 	tx = async_trigger_callback(&submit);
1378 }
1379 
1380 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1381 {
1382 	struct page **srcs = percpu->scribble;
1383 	struct async_submit_ctl submit;
1384 	int count;
1385 
1386 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1387 		(unsigned long long)sh->sector, checkp);
1388 
1389 	count = set_syndrome_sources(srcs, sh);
1390 	if (!checkp)
1391 		srcs[count] = NULL;
1392 
1393 	atomic_inc(&sh->count);
1394 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1395 			  sh, to_addr_conv(sh, percpu));
1396 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1397 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1398 }
1399 
1400 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1401 {
1402 	int overlap_clear = 0, i, disks = sh->disks;
1403 	struct dma_async_tx_descriptor *tx = NULL;
1404 	struct r5conf *conf = sh->raid_conf;
1405 	int level = conf->level;
1406 	struct raid5_percpu *percpu;
1407 	unsigned long cpu;
1408 
1409 	cpu = get_cpu();
1410 	percpu = per_cpu_ptr(conf->percpu, cpu);
1411 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1412 		ops_run_biofill(sh);
1413 		overlap_clear++;
1414 	}
1415 
1416 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1417 		if (level < 6)
1418 			tx = ops_run_compute5(sh, percpu);
1419 		else {
1420 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1421 				tx = ops_run_compute6_1(sh, percpu);
1422 			else
1423 				tx = ops_run_compute6_2(sh, percpu);
1424 		}
1425 		/* terminate the chain if reconstruct is not set to be run */
1426 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1427 			async_tx_ack(tx);
1428 	}
1429 
1430 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1431 		tx = ops_run_prexor(sh, percpu, tx);
1432 
1433 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1434 		tx = ops_run_biodrain(sh, tx);
1435 		overlap_clear++;
1436 	}
1437 
1438 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1439 		if (level < 6)
1440 			ops_run_reconstruct5(sh, percpu, tx);
1441 		else
1442 			ops_run_reconstruct6(sh, percpu, tx);
1443 	}
1444 
1445 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1446 		if (sh->check_state == check_state_run)
1447 			ops_run_check_p(sh, percpu);
1448 		else if (sh->check_state == check_state_run_q)
1449 			ops_run_check_pq(sh, percpu, 0);
1450 		else if (sh->check_state == check_state_run_pq)
1451 			ops_run_check_pq(sh, percpu, 1);
1452 		else
1453 			BUG();
1454 	}
1455 
1456 	if (overlap_clear)
1457 		for (i = disks; i--; ) {
1458 			struct r5dev *dev = &sh->dev[i];
1459 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1460 				wake_up(&sh->raid_conf->wait_for_overlap);
1461 		}
1462 	put_cpu();
1463 }
1464 
1465 #ifdef CONFIG_MULTICORE_RAID456
1466 static void async_run_ops(void *param, async_cookie_t cookie)
1467 {
1468 	struct stripe_head *sh = param;
1469 	unsigned long ops_request = sh->ops.request;
1470 
1471 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1472 	wake_up(&sh->ops.wait_for_ops);
1473 
1474 	__raid_run_ops(sh, ops_request);
1475 	release_stripe(sh);
1476 }
1477 
1478 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1479 {
1480 	/* since handle_stripe can be called outside of raid5d context
1481 	 * we need to ensure sh->ops.request is de-staged before another
1482 	 * request arrives
1483 	 */
1484 	wait_event(sh->ops.wait_for_ops,
1485 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1486 	sh->ops.request = ops_request;
1487 
1488 	atomic_inc(&sh->count);
1489 	async_schedule(async_run_ops, sh);
1490 }
1491 #else
1492 #define raid_run_ops __raid_run_ops
1493 #endif
1494 
1495 static int grow_one_stripe(struct r5conf *conf)
1496 {
1497 	struct stripe_head *sh;
1498 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1499 	if (!sh)
1500 		return 0;
1501 
1502 	sh->raid_conf = conf;
1503 	#ifdef CONFIG_MULTICORE_RAID456
1504 	init_waitqueue_head(&sh->ops.wait_for_ops);
1505 	#endif
1506 
1507 	spin_lock_init(&sh->stripe_lock);
1508 
1509 	if (grow_buffers(sh)) {
1510 		shrink_buffers(sh);
1511 		kmem_cache_free(conf->slab_cache, sh);
1512 		return 0;
1513 	}
1514 	/* we just created an active stripe so... */
1515 	atomic_set(&sh->count, 1);
1516 	atomic_inc(&conf->active_stripes);
1517 	INIT_LIST_HEAD(&sh->lru);
1518 	release_stripe(sh);
1519 	return 1;
1520 }
1521 
1522 static int grow_stripes(struct r5conf *conf, int num)
1523 {
1524 	struct kmem_cache *sc;
1525 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1526 
1527 	if (conf->mddev->gendisk)
1528 		sprintf(conf->cache_name[0],
1529 			"raid%d-%s", conf->level, mdname(conf->mddev));
1530 	else
1531 		sprintf(conf->cache_name[0],
1532 			"raid%d-%p", conf->level, conf->mddev);
1533 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1534 
1535 	conf->active_name = 0;
1536 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1537 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1538 			       0, 0, NULL);
1539 	if (!sc)
1540 		return 1;
1541 	conf->slab_cache = sc;
1542 	conf->pool_size = devs;
1543 	while (num--)
1544 		if (!grow_one_stripe(conf))
1545 			return 1;
1546 	return 0;
1547 }
1548 
1549 /**
1550  * scribble_len - return the required size of the scribble region
1551  * @num - total number of disks in the array
1552  *
1553  * The size must be enough to contain:
1554  * 1/ a struct page pointer for each device in the array +2
1555  * 2/ room to convert each entry in (1) to its corresponding dma
1556  *    (dma_map_page()) or page (page_address()) address.
1557  *
1558  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1559  * calculate over all devices (not just the data blocks), using zeros in place
1560  * of the P and Q blocks.
1561  */
1562 static size_t scribble_len(int num)
1563 {
1564 	size_t len;
1565 
1566 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1567 
1568 	return len;
1569 }
1570 
1571 static int resize_stripes(struct r5conf *conf, int newsize)
1572 {
1573 	/* Make all the stripes able to hold 'newsize' devices.
1574 	 * New slots in each stripe get 'page' set to a new page.
1575 	 *
1576 	 * This happens in stages:
1577 	 * 1/ create a new kmem_cache and allocate the required number of
1578 	 *    stripe_heads.
1579 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1580 	 *    to the new stripe_heads.  This will have the side effect of
1581 	 *    freezing the array as once all stripe_heads have been collected,
1582 	 *    no IO will be possible.  Old stripe heads are freed once their
1583 	 *    pages have been transferred over, and the old kmem_cache is
1584 	 *    freed when all stripes are done.
1585 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1586 	 *    we simple return a failre status - no need to clean anything up.
1587 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1588 	 *    If this fails, we don't bother trying the shrink the
1589 	 *    stripe_heads down again, we just leave them as they are.
1590 	 *    As each stripe_head is processed the new one is released into
1591 	 *    active service.
1592 	 *
1593 	 * Once step2 is started, we cannot afford to wait for a write,
1594 	 * so we use GFP_NOIO allocations.
1595 	 */
1596 	struct stripe_head *osh, *nsh;
1597 	LIST_HEAD(newstripes);
1598 	struct disk_info *ndisks;
1599 	unsigned long cpu;
1600 	int err;
1601 	struct kmem_cache *sc;
1602 	int i;
1603 
1604 	if (newsize <= conf->pool_size)
1605 		return 0; /* never bother to shrink */
1606 
1607 	err = md_allow_write(conf->mddev);
1608 	if (err)
1609 		return err;
1610 
1611 	/* Step 1 */
1612 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1613 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1614 			       0, 0, NULL);
1615 	if (!sc)
1616 		return -ENOMEM;
1617 
1618 	for (i = conf->max_nr_stripes; i; i--) {
1619 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1620 		if (!nsh)
1621 			break;
1622 
1623 		nsh->raid_conf = conf;
1624 		#ifdef CONFIG_MULTICORE_RAID456
1625 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1626 		#endif
1627 		spin_lock_init(&nsh->stripe_lock);
1628 
1629 		list_add(&nsh->lru, &newstripes);
1630 	}
1631 	if (i) {
1632 		/* didn't get enough, give up */
1633 		while (!list_empty(&newstripes)) {
1634 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1635 			list_del(&nsh->lru);
1636 			kmem_cache_free(sc, nsh);
1637 		}
1638 		kmem_cache_destroy(sc);
1639 		return -ENOMEM;
1640 	}
1641 	/* Step 2 - Must use GFP_NOIO now.
1642 	 * OK, we have enough stripes, start collecting inactive
1643 	 * stripes and copying them over
1644 	 */
1645 	list_for_each_entry(nsh, &newstripes, lru) {
1646 		spin_lock_irq(&conf->device_lock);
1647 		wait_event_lock_irq(conf->wait_for_stripe,
1648 				    !list_empty(&conf->inactive_list),
1649 				    conf->device_lock,
1650 				    );
1651 		osh = get_free_stripe(conf);
1652 		spin_unlock_irq(&conf->device_lock);
1653 		atomic_set(&nsh->count, 1);
1654 		for(i=0; i<conf->pool_size; i++)
1655 			nsh->dev[i].page = osh->dev[i].page;
1656 		for( ; i<newsize; i++)
1657 			nsh->dev[i].page = NULL;
1658 		kmem_cache_free(conf->slab_cache, osh);
1659 	}
1660 	kmem_cache_destroy(conf->slab_cache);
1661 
1662 	/* Step 3.
1663 	 * At this point, we are holding all the stripes so the array
1664 	 * is completely stalled, so now is a good time to resize
1665 	 * conf->disks and the scribble region
1666 	 */
1667 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1668 	if (ndisks) {
1669 		for (i=0; i<conf->raid_disks; i++)
1670 			ndisks[i] = conf->disks[i];
1671 		kfree(conf->disks);
1672 		conf->disks = ndisks;
1673 	} else
1674 		err = -ENOMEM;
1675 
1676 	get_online_cpus();
1677 	conf->scribble_len = scribble_len(newsize);
1678 	for_each_present_cpu(cpu) {
1679 		struct raid5_percpu *percpu;
1680 		void *scribble;
1681 
1682 		percpu = per_cpu_ptr(conf->percpu, cpu);
1683 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1684 
1685 		if (scribble) {
1686 			kfree(percpu->scribble);
1687 			percpu->scribble = scribble;
1688 		} else {
1689 			err = -ENOMEM;
1690 			break;
1691 		}
1692 	}
1693 	put_online_cpus();
1694 
1695 	/* Step 4, return new stripes to service */
1696 	while(!list_empty(&newstripes)) {
1697 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1698 		list_del_init(&nsh->lru);
1699 
1700 		for (i=conf->raid_disks; i < newsize; i++)
1701 			if (nsh->dev[i].page == NULL) {
1702 				struct page *p = alloc_page(GFP_NOIO);
1703 				nsh->dev[i].page = p;
1704 				if (!p)
1705 					err = -ENOMEM;
1706 			}
1707 		release_stripe(nsh);
1708 	}
1709 	/* critical section pass, GFP_NOIO no longer needed */
1710 
1711 	conf->slab_cache = sc;
1712 	conf->active_name = 1-conf->active_name;
1713 	conf->pool_size = newsize;
1714 	return err;
1715 }
1716 
1717 static int drop_one_stripe(struct r5conf *conf)
1718 {
1719 	struct stripe_head *sh;
1720 
1721 	spin_lock_irq(&conf->device_lock);
1722 	sh = get_free_stripe(conf);
1723 	spin_unlock_irq(&conf->device_lock);
1724 	if (!sh)
1725 		return 0;
1726 	BUG_ON(atomic_read(&sh->count));
1727 	shrink_buffers(sh);
1728 	kmem_cache_free(conf->slab_cache, sh);
1729 	atomic_dec(&conf->active_stripes);
1730 	return 1;
1731 }
1732 
1733 static void shrink_stripes(struct r5conf *conf)
1734 {
1735 	while (drop_one_stripe(conf))
1736 		;
1737 
1738 	if (conf->slab_cache)
1739 		kmem_cache_destroy(conf->slab_cache);
1740 	conf->slab_cache = NULL;
1741 }
1742 
1743 static void raid5_end_read_request(struct bio * bi, int error)
1744 {
1745 	struct stripe_head *sh = bi->bi_private;
1746 	struct r5conf *conf = sh->raid_conf;
1747 	int disks = sh->disks, i;
1748 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1749 	char b[BDEVNAME_SIZE];
1750 	struct md_rdev *rdev = NULL;
1751 	sector_t s;
1752 
1753 	for (i=0 ; i<disks; i++)
1754 		if (bi == &sh->dev[i].req)
1755 			break;
1756 
1757 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1758 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1759 		uptodate);
1760 	if (i == disks) {
1761 		BUG();
1762 		return;
1763 	}
1764 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1765 		/* If replacement finished while this request was outstanding,
1766 		 * 'replacement' might be NULL already.
1767 		 * In that case it moved down to 'rdev'.
1768 		 * rdev is not removed until all requests are finished.
1769 		 */
1770 		rdev = conf->disks[i].replacement;
1771 	if (!rdev)
1772 		rdev = conf->disks[i].rdev;
1773 
1774 	if (use_new_offset(conf, sh))
1775 		s = sh->sector + rdev->new_data_offset;
1776 	else
1777 		s = sh->sector + rdev->data_offset;
1778 	if (uptodate) {
1779 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1780 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1781 			/* Note that this cannot happen on a
1782 			 * replacement device.  We just fail those on
1783 			 * any error
1784 			 */
1785 			printk_ratelimited(
1786 				KERN_INFO
1787 				"md/raid:%s: read error corrected"
1788 				" (%lu sectors at %llu on %s)\n",
1789 				mdname(conf->mddev), STRIPE_SECTORS,
1790 				(unsigned long long)s,
1791 				bdevname(rdev->bdev, b));
1792 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1793 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1794 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1795 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1796 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1797 
1798 		if (atomic_read(&rdev->read_errors))
1799 			atomic_set(&rdev->read_errors, 0);
1800 	} else {
1801 		const char *bdn = bdevname(rdev->bdev, b);
1802 		int retry = 0;
1803 		int set_bad = 0;
1804 
1805 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1806 		atomic_inc(&rdev->read_errors);
1807 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1808 			printk_ratelimited(
1809 				KERN_WARNING
1810 				"md/raid:%s: read error on replacement device "
1811 				"(sector %llu on %s).\n",
1812 				mdname(conf->mddev),
1813 				(unsigned long long)s,
1814 				bdn);
1815 		else if (conf->mddev->degraded >= conf->max_degraded) {
1816 			set_bad = 1;
1817 			printk_ratelimited(
1818 				KERN_WARNING
1819 				"md/raid:%s: read error not correctable "
1820 				"(sector %llu on %s).\n",
1821 				mdname(conf->mddev),
1822 				(unsigned long long)s,
1823 				bdn);
1824 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1825 			/* Oh, no!!! */
1826 			set_bad = 1;
1827 			printk_ratelimited(
1828 				KERN_WARNING
1829 				"md/raid:%s: read error NOT corrected!! "
1830 				"(sector %llu on %s).\n",
1831 				mdname(conf->mddev),
1832 				(unsigned long long)s,
1833 				bdn);
1834 		} else if (atomic_read(&rdev->read_errors)
1835 			 > conf->max_nr_stripes)
1836 			printk(KERN_WARNING
1837 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1838 			       mdname(conf->mddev), bdn);
1839 		else
1840 			retry = 1;
1841 		if (retry)
1842 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1843 				set_bit(R5_ReadError, &sh->dev[i].flags);
1844 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1845 			} else
1846 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1847 		else {
1848 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1849 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1850 			if (!(set_bad
1851 			      && test_bit(In_sync, &rdev->flags)
1852 			      && rdev_set_badblocks(
1853 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
1854 				md_error(conf->mddev, rdev);
1855 		}
1856 	}
1857 	rdev_dec_pending(rdev, conf->mddev);
1858 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1859 	set_bit(STRIPE_HANDLE, &sh->state);
1860 	release_stripe(sh);
1861 }
1862 
1863 static void raid5_end_write_request(struct bio *bi, int error)
1864 {
1865 	struct stripe_head *sh = bi->bi_private;
1866 	struct r5conf *conf = sh->raid_conf;
1867 	int disks = sh->disks, i;
1868 	struct md_rdev *uninitialized_var(rdev);
1869 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1870 	sector_t first_bad;
1871 	int bad_sectors;
1872 	int replacement = 0;
1873 
1874 	for (i = 0 ; i < disks; i++) {
1875 		if (bi == &sh->dev[i].req) {
1876 			rdev = conf->disks[i].rdev;
1877 			break;
1878 		}
1879 		if (bi == &sh->dev[i].rreq) {
1880 			rdev = conf->disks[i].replacement;
1881 			if (rdev)
1882 				replacement = 1;
1883 			else
1884 				/* rdev was removed and 'replacement'
1885 				 * replaced it.  rdev is not removed
1886 				 * until all requests are finished.
1887 				 */
1888 				rdev = conf->disks[i].rdev;
1889 			break;
1890 		}
1891 	}
1892 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1893 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1894 		uptodate);
1895 	if (i == disks) {
1896 		BUG();
1897 		return;
1898 	}
1899 
1900 	if (replacement) {
1901 		if (!uptodate)
1902 			md_error(conf->mddev, rdev);
1903 		else if (is_badblock(rdev, sh->sector,
1904 				     STRIPE_SECTORS,
1905 				     &first_bad, &bad_sectors))
1906 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1907 	} else {
1908 		if (!uptodate) {
1909 			set_bit(WriteErrorSeen, &rdev->flags);
1910 			set_bit(R5_WriteError, &sh->dev[i].flags);
1911 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1912 				set_bit(MD_RECOVERY_NEEDED,
1913 					&rdev->mddev->recovery);
1914 		} else if (is_badblock(rdev, sh->sector,
1915 				       STRIPE_SECTORS,
1916 				       &first_bad, &bad_sectors))
1917 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1918 	}
1919 	rdev_dec_pending(rdev, conf->mddev);
1920 
1921 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1922 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1923 	set_bit(STRIPE_HANDLE, &sh->state);
1924 	release_stripe(sh);
1925 }
1926 
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1928 
1929 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1930 {
1931 	struct r5dev *dev = &sh->dev[i];
1932 
1933 	bio_init(&dev->req);
1934 	dev->req.bi_io_vec = &dev->vec;
1935 	dev->req.bi_vcnt++;
1936 	dev->req.bi_max_vecs++;
1937 	dev->req.bi_private = sh;
1938 	dev->vec.bv_page = dev->page;
1939 
1940 	bio_init(&dev->rreq);
1941 	dev->rreq.bi_io_vec = &dev->rvec;
1942 	dev->rreq.bi_vcnt++;
1943 	dev->rreq.bi_max_vecs++;
1944 	dev->rreq.bi_private = sh;
1945 	dev->rvec.bv_page = dev->page;
1946 
1947 	dev->flags = 0;
1948 	dev->sector = compute_blocknr(sh, i, previous);
1949 }
1950 
1951 static void error(struct mddev *mddev, struct md_rdev *rdev)
1952 {
1953 	char b[BDEVNAME_SIZE];
1954 	struct r5conf *conf = mddev->private;
1955 	unsigned long flags;
1956 	pr_debug("raid456: error called\n");
1957 
1958 	spin_lock_irqsave(&conf->device_lock, flags);
1959 	clear_bit(In_sync, &rdev->flags);
1960 	mddev->degraded = calc_degraded(conf);
1961 	spin_unlock_irqrestore(&conf->device_lock, flags);
1962 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1963 
1964 	set_bit(Blocked, &rdev->flags);
1965 	set_bit(Faulty, &rdev->flags);
1966 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1967 	printk(KERN_ALERT
1968 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1969 	       "md/raid:%s: Operation continuing on %d devices.\n",
1970 	       mdname(mddev),
1971 	       bdevname(rdev->bdev, b),
1972 	       mdname(mddev),
1973 	       conf->raid_disks - mddev->degraded);
1974 }
1975 
1976 /*
1977  * Input: a 'big' sector number,
1978  * Output: index of the data and parity disk, and the sector # in them.
1979  */
1980 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1981 				     int previous, int *dd_idx,
1982 				     struct stripe_head *sh)
1983 {
1984 	sector_t stripe, stripe2;
1985 	sector_t chunk_number;
1986 	unsigned int chunk_offset;
1987 	int pd_idx, qd_idx;
1988 	int ddf_layout = 0;
1989 	sector_t new_sector;
1990 	int algorithm = previous ? conf->prev_algo
1991 				 : conf->algorithm;
1992 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1993 					 : conf->chunk_sectors;
1994 	int raid_disks = previous ? conf->previous_raid_disks
1995 				  : conf->raid_disks;
1996 	int data_disks = raid_disks - conf->max_degraded;
1997 
1998 	/* First compute the information on this sector */
1999 
2000 	/*
2001 	 * Compute the chunk number and the sector offset inside the chunk
2002 	 */
2003 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2004 	chunk_number = r_sector;
2005 
2006 	/*
2007 	 * Compute the stripe number
2008 	 */
2009 	stripe = chunk_number;
2010 	*dd_idx = sector_div(stripe, data_disks);
2011 	stripe2 = stripe;
2012 	/*
2013 	 * Select the parity disk based on the user selected algorithm.
2014 	 */
2015 	pd_idx = qd_idx = -1;
2016 	switch(conf->level) {
2017 	case 4:
2018 		pd_idx = data_disks;
2019 		break;
2020 	case 5:
2021 		switch (algorithm) {
2022 		case ALGORITHM_LEFT_ASYMMETRIC:
2023 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2024 			if (*dd_idx >= pd_idx)
2025 				(*dd_idx)++;
2026 			break;
2027 		case ALGORITHM_RIGHT_ASYMMETRIC:
2028 			pd_idx = sector_div(stripe2, raid_disks);
2029 			if (*dd_idx >= pd_idx)
2030 				(*dd_idx)++;
2031 			break;
2032 		case ALGORITHM_LEFT_SYMMETRIC:
2033 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2034 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2035 			break;
2036 		case ALGORITHM_RIGHT_SYMMETRIC:
2037 			pd_idx = sector_div(stripe2, raid_disks);
2038 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2039 			break;
2040 		case ALGORITHM_PARITY_0:
2041 			pd_idx = 0;
2042 			(*dd_idx)++;
2043 			break;
2044 		case ALGORITHM_PARITY_N:
2045 			pd_idx = data_disks;
2046 			break;
2047 		default:
2048 			BUG();
2049 		}
2050 		break;
2051 	case 6:
2052 
2053 		switch (algorithm) {
2054 		case ALGORITHM_LEFT_ASYMMETRIC:
2055 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2056 			qd_idx = pd_idx + 1;
2057 			if (pd_idx == raid_disks-1) {
2058 				(*dd_idx)++;	/* Q D D D P */
2059 				qd_idx = 0;
2060 			} else if (*dd_idx >= pd_idx)
2061 				(*dd_idx) += 2; /* D D P Q D */
2062 			break;
2063 		case ALGORITHM_RIGHT_ASYMMETRIC:
2064 			pd_idx = sector_div(stripe2, raid_disks);
2065 			qd_idx = pd_idx + 1;
2066 			if (pd_idx == raid_disks-1) {
2067 				(*dd_idx)++;	/* Q D D D P */
2068 				qd_idx = 0;
2069 			} else if (*dd_idx >= pd_idx)
2070 				(*dd_idx) += 2; /* D D P Q D */
2071 			break;
2072 		case ALGORITHM_LEFT_SYMMETRIC:
2073 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2074 			qd_idx = (pd_idx + 1) % raid_disks;
2075 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2076 			break;
2077 		case ALGORITHM_RIGHT_SYMMETRIC:
2078 			pd_idx = sector_div(stripe2, raid_disks);
2079 			qd_idx = (pd_idx + 1) % raid_disks;
2080 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2081 			break;
2082 
2083 		case ALGORITHM_PARITY_0:
2084 			pd_idx = 0;
2085 			qd_idx = 1;
2086 			(*dd_idx) += 2;
2087 			break;
2088 		case ALGORITHM_PARITY_N:
2089 			pd_idx = data_disks;
2090 			qd_idx = data_disks + 1;
2091 			break;
2092 
2093 		case ALGORITHM_ROTATING_ZERO_RESTART:
2094 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2095 			 * of blocks for computing Q is different.
2096 			 */
2097 			pd_idx = sector_div(stripe2, raid_disks);
2098 			qd_idx = pd_idx + 1;
2099 			if (pd_idx == raid_disks-1) {
2100 				(*dd_idx)++;	/* Q D D D P */
2101 				qd_idx = 0;
2102 			} else if (*dd_idx >= pd_idx)
2103 				(*dd_idx) += 2; /* D D P Q D */
2104 			ddf_layout = 1;
2105 			break;
2106 
2107 		case ALGORITHM_ROTATING_N_RESTART:
2108 			/* Same a left_asymmetric, by first stripe is
2109 			 * D D D P Q  rather than
2110 			 * Q D D D P
2111 			 */
2112 			stripe2 += 1;
2113 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2114 			qd_idx = pd_idx + 1;
2115 			if (pd_idx == raid_disks-1) {
2116 				(*dd_idx)++;	/* Q D D D P */
2117 				qd_idx = 0;
2118 			} else if (*dd_idx >= pd_idx)
2119 				(*dd_idx) += 2; /* D D P Q D */
2120 			ddf_layout = 1;
2121 			break;
2122 
2123 		case ALGORITHM_ROTATING_N_CONTINUE:
2124 			/* Same as left_symmetric but Q is before P */
2125 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2126 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2127 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2128 			ddf_layout = 1;
2129 			break;
2130 
2131 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2132 			/* RAID5 left_asymmetric, with Q on last device */
2133 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2134 			if (*dd_idx >= pd_idx)
2135 				(*dd_idx)++;
2136 			qd_idx = raid_disks - 1;
2137 			break;
2138 
2139 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2140 			pd_idx = sector_div(stripe2, raid_disks-1);
2141 			if (*dd_idx >= pd_idx)
2142 				(*dd_idx)++;
2143 			qd_idx = raid_disks - 1;
2144 			break;
2145 
2146 		case ALGORITHM_LEFT_SYMMETRIC_6:
2147 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2148 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2149 			qd_idx = raid_disks - 1;
2150 			break;
2151 
2152 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2153 			pd_idx = sector_div(stripe2, raid_disks-1);
2154 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2155 			qd_idx = raid_disks - 1;
2156 			break;
2157 
2158 		case ALGORITHM_PARITY_0_6:
2159 			pd_idx = 0;
2160 			(*dd_idx)++;
2161 			qd_idx = raid_disks - 1;
2162 			break;
2163 
2164 		default:
2165 			BUG();
2166 		}
2167 		break;
2168 	}
2169 
2170 	if (sh) {
2171 		sh->pd_idx = pd_idx;
2172 		sh->qd_idx = qd_idx;
2173 		sh->ddf_layout = ddf_layout;
2174 	}
2175 	/*
2176 	 * Finally, compute the new sector number
2177 	 */
2178 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2179 	return new_sector;
2180 }
2181 
2182 
2183 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2184 {
2185 	struct r5conf *conf = sh->raid_conf;
2186 	int raid_disks = sh->disks;
2187 	int data_disks = raid_disks - conf->max_degraded;
2188 	sector_t new_sector = sh->sector, check;
2189 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2190 					 : conf->chunk_sectors;
2191 	int algorithm = previous ? conf->prev_algo
2192 				 : conf->algorithm;
2193 	sector_t stripe;
2194 	int chunk_offset;
2195 	sector_t chunk_number;
2196 	int dummy1, dd_idx = i;
2197 	sector_t r_sector;
2198 	struct stripe_head sh2;
2199 
2200 
2201 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2202 	stripe = new_sector;
2203 
2204 	if (i == sh->pd_idx)
2205 		return 0;
2206 	switch(conf->level) {
2207 	case 4: break;
2208 	case 5:
2209 		switch (algorithm) {
2210 		case ALGORITHM_LEFT_ASYMMETRIC:
2211 		case ALGORITHM_RIGHT_ASYMMETRIC:
2212 			if (i > sh->pd_idx)
2213 				i--;
2214 			break;
2215 		case ALGORITHM_LEFT_SYMMETRIC:
2216 		case ALGORITHM_RIGHT_SYMMETRIC:
2217 			if (i < sh->pd_idx)
2218 				i += raid_disks;
2219 			i -= (sh->pd_idx + 1);
2220 			break;
2221 		case ALGORITHM_PARITY_0:
2222 			i -= 1;
2223 			break;
2224 		case ALGORITHM_PARITY_N:
2225 			break;
2226 		default:
2227 			BUG();
2228 		}
2229 		break;
2230 	case 6:
2231 		if (i == sh->qd_idx)
2232 			return 0; /* It is the Q disk */
2233 		switch (algorithm) {
2234 		case ALGORITHM_LEFT_ASYMMETRIC:
2235 		case ALGORITHM_RIGHT_ASYMMETRIC:
2236 		case ALGORITHM_ROTATING_ZERO_RESTART:
2237 		case ALGORITHM_ROTATING_N_RESTART:
2238 			if (sh->pd_idx == raid_disks-1)
2239 				i--;	/* Q D D D P */
2240 			else if (i > sh->pd_idx)
2241 				i -= 2; /* D D P Q D */
2242 			break;
2243 		case ALGORITHM_LEFT_SYMMETRIC:
2244 		case ALGORITHM_RIGHT_SYMMETRIC:
2245 			if (sh->pd_idx == raid_disks-1)
2246 				i--; /* Q D D D P */
2247 			else {
2248 				/* D D P Q D */
2249 				if (i < sh->pd_idx)
2250 					i += raid_disks;
2251 				i -= (sh->pd_idx + 2);
2252 			}
2253 			break;
2254 		case ALGORITHM_PARITY_0:
2255 			i -= 2;
2256 			break;
2257 		case ALGORITHM_PARITY_N:
2258 			break;
2259 		case ALGORITHM_ROTATING_N_CONTINUE:
2260 			/* Like left_symmetric, but P is before Q */
2261 			if (sh->pd_idx == 0)
2262 				i--;	/* P D D D Q */
2263 			else {
2264 				/* D D Q P D */
2265 				if (i < sh->pd_idx)
2266 					i += raid_disks;
2267 				i -= (sh->pd_idx + 1);
2268 			}
2269 			break;
2270 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2271 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2272 			if (i > sh->pd_idx)
2273 				i--;
2274 			break;
2275 		case ALGORITHM_LEFT_SYMMETRIC_6:
2276 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2277 			if (i < sh->pd_idx)
2278 				i += data_disks + 1;
2279 			i -= (sh->pd_idx + 1);
2280 			break;
2281 		case ALGORITHM_PARITY_0_6:
2282 			i -= 1;
2283 			break;
2284 		default:
2285 			BUG();
2286 		}
2287 		break;
2288 	}
2289 
2290 	chunk_number = stripe * data_disks + i;
2291 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2292 
2293 	check = raid5_compute_sector(conf, r_sector,
2294 				     previous, &dummy1, &sh2);
2295 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2296 		|| sh2.qd_idx != sh->qd_idx) {
2297 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2298 		       mdname(conf->mddev));
2299 		return 0;
2300 	}
2301 	return r_sector;
2302 }
2303 
2304 
2305 static void
2306 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2307 			 int rcw, int expand)
2308 {
2309 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2310 	struct r5conf *conf = sh->raid_conf;
2311 	int level = conf->level;
2312 
2313 	if (rcw) {
2314 		/* if we are not expanding this is a proper write request, and
2315 		 * there will be bios with new data to be drained into the
2316 		 * stripe cache
2317 		 */
2318 		if (!expand) {
2319 			sh->reconstruct_state = reconstruct_state_drain_run;
2320 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2321 		} else
2322 			sh->reconstruct_state = reconstruct_state_run;
2323 
2324 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2325 
2326 		for (i = disks; i--; ) {
2327 			struct r5dev *dev = &sh->dev[i];
2328 
2329 			if (dev->towrite) {
2330 				set_bit(R5_LOCKED, &dev->flags);
2331 				set_bit(R5_Wantdrain, &dev->flags);
2332 				if (!expand)
2333 					clear_bit(R5_UPTODATE, &dev->flags);
2334 				s->locked++;
2335 			}
2336 		}
2337 		if (s->locked + conf->max_degraded == disks)
2338 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2339 				atomic_inc(&conf->pending_full_writes);
2340 	} else {
2341 		BUG_ON(level == 6);
2342 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2343 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2344 
2345 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2346 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2347 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2348 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2349 
2350 		for (i = disks; i--; ) {
2351 			struct r5dev *dev = &sh->dev[i];
2352 			if (i == pd_idx)
2353 				continue;
2354 
2355 			if (dev->towrite &&
2356 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2357 			     test_bit(R5_Wantcompute, &dev->flags))) {
2358 				set_bit(R5_Wantdrain, &dev->flags);
2359 				set_bit(R5_LOCKED, &dev->flags);
2360 				clear_bit(R5_UPTODATE, &dev->flags);
2361 				s->locked++;
2362 			}
2363 		}
2364 	}
2365 
2366 	/* keep the parity disk(s) locked while asynchronous operations
2367 	 * are in flight
2368 	 */
2369 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2370 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2371 	s->locked++;
2372 
2373 	if (level == 6) {
2374 		int qd_idx = sh->qd_idx;
2375 		struct r5dev *dev = &sh->dev[qd_idx];
2376 
2377 		set_bit(R5_LOCKED, &dev->flags);
2378 		clear_bit(R5_UPTODATE, &dev->flags);
2379 		s->locked++;
2380 	}
2381 
2382 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2383 		__func__, (unsigned long long)sh->sector,
2384 		s->locked, s->ops_request);
2385 }
2386 
2387 /*
2388  * Each stripe/dev can have one or more bion attached.
2389  * toread/towrite point to the first in a chain.
2390  * The bi_next chain must be in order.
2391  */
2392 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2393 {
2394 	struct bio **bip;
2395 	struct r5conf *conf = sh->raid_conf;
2396 	int firstwrite=0;
2397 
2398 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2399 		(unsigned long long)bi->bi_sector,
2400 		(unsigned long long)sh->sector);
2401 
2402 	/*
2403 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2404 	 * reference count to avoid race. The reference count should already be
2405 	 * increased before this function is called (for example, in
2406 	 * make_request()), so other bio sharing this stripe will not free the
2407 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2408 	 * protect it.
2409 	 */
2410 	spin_lock_irq(&sh->stripe_lock);
2411 	if (forwrite) {
2412 		bip = &sh->dev[dd_idx].towrite;
2413 		if (*bip == NULL)
2414 			firstwrite = 1;
2415 	} else
2416 		bip = &sh->dev[dd_idx].toread;
2417 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2418 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2419 			goto overlap;
2420 		bip = & (*bip)->bi_next;
2421 	}
2422 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2423 		goto overlap;
2424 
2425 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2426 	if (*bip)
2427 		bi->bi_next = *bip;
2428 	*bip = bi;
2429 	raid5_inc_bi_active_stripes(bi);
2430 
2431 	if (forwrite) {
2432 		/* check if page is covered */
2433 		sector_t sector = sh->dev[dd_idx].sector;
2434 		for (bi=sh->dev[dd_idx].towrite;
2435 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2436 			     bi && bi->bi_sector <= sector;
2437 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2438 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2439 				sector = bi->bi_sector + (bi->bi_size>>9);
2440 		}
2441 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2442 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2443 	}
2444 
2445 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2446 		(unsigned long long)(*bip)->bi_sector,
2447 		(unsigned long long)sh->sector, dd_idx);
2448 	spin_unlock_irq(&sh->stripe_lock);
2449 
2450 	if (conf->mddev->bitmap && firstwrite) {
2451 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2452 				  STRIPE_SECTORS, 0);
2453 		sh->bm_seq = conf->seq_flush+1;
2454 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2455 	}
2456 	return 1;
2457 
2458  overlap:
2459 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2460 	spin_unlock_irq(&sh->stripe_lock);
2461 	return 0;
2462 }
2463 
2464 static void end_reshape(struct r5conf *conf);
2465 
2466 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2467 			    struct stripe_head *sh)
2468 {
2469 	int sectors_per_chunk =
2470 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2471 	int dd_idx;
2472 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2473 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2474 
2475 	raid5_compute_sector(conf,
2476 			     stripe * (disks - conf->max_degraded)
2477 			     *sectors_per_chunk + chunk_offset,
2478 			     previous,
2479 			     &dd_idx, sh);
2480 }
2481 
2482 static void
2483 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2484 				struct stripe_head_state *s, int disks,
2485 				struct bio **return_bi)
2486 {
2487 	int i;
2488 	for (i = disks; i--; ) {
2489 		struct bio *bi;
2490 		int bitmap_end = 0;
2491 
2492 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2493 			struct md_rdev *rdev;
2494 			rcu_read_lock();
2495 			rdev = rcu_dereference(conf->disks[i].rdev);
2496 			if (rdev && test_bit(In_sync, &rdev->flags))
2497 				atomic_inc(&rdev->nr_pending);
2498 			else
2499 				rdev = NULL;
2500 			rcu_read_unlock();
2501 			if (rdev) {
2502 				if (!rdev_set_badblocks(
2503 					    rdev,
2504 					    sh->sector,
2505 					    STRIPE_SECTORS, 0))
2506 					md_error(conf->mddev, rdev);
2507 				rdev_dec_pending(rdev, conf->mddev);
2508 			}
2509 		}
2510 		spin_lock_irq(&sh->stripe_lock);
2511 		/* fail all writes first */
2512 		bi = sh->dev[i].towrite;
2513 		sh->dev[i].towrite = NULL;
2514 		spin_unlock_irq(&sh->stripe_lock);
2515 		if (bi)
2516 			bitmap_end = 1;
2517 
2518 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2519 			wake_up(&conf->wait_for_overlap);
2520 
2521 		while (bi && bi->bi_sector <
2522 			sh->dev[i].sector + STRIPE_SECTORS) {
2523 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2524 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2525 			if (!raid5_dec_bi_active_stripes(bi)) {
2526 				md_write_end(conf->mddev);
2527 				bi->bi_next = *return_bi;
2528 				*return_bi = bi;
2529 			}
2530 			bi = nextbi;
2531 		}
2532 		if (bitmap_end)
2533 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2534 				STRIPE_SECTORS, 0, 0);
2535 		bitmap_end = 0;
2536 		/* and fail all 'written' */
2537 		bi = sh->dev[i].written;
2538 		sh->dev[i].written = NULL;
2539 		if (bi) bitmap_end = 1;
2540 		while (bi && bi->bi_sector <
2541 		       sh->dev[i].sector + STRIPE_SECTORS) {
2542 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2543 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2544 			if (!raid5_dec_bi_active_stripes(bi)) {
2545 				md_write_end(conf->mddev);
2546 				bi->bi_next = *return_bi;
2547 				*return_bi = bi;
2548 			}
2549 			bi = bi2;
2550 		}
2551 
2552 		/* fail any reads if this device is non-operational and
2553 		 * the data has not reached the cache yet.
2554 		 */
2555 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2556 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2557 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2558 			spin_lock_irq(&sh->stripe_lock);
2559 			bi = sh->dev[i].toread;
2560 			sh->dev[i].toread = NULL;
2561 			spin_unlock_irq(&sh->stripe_lock);
2562 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2563 				wake_up(&conf->wait_for_overlap);
2564 			while (bi && bi->bi_sector <
2565 			       sh->dev[i].sector + STRIPE_SECTORS) {
2566 				struct bio *nextbi =
2567 					r5_next_bio(bi, sh->dev[i].sector);
2568 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2569 				if (!raid5_dec_bi_active_stripes(bi)) {
2570 					bi->bi_next = *return_bi;
2571 					*return_bi = bi;
2572 				}
2573 				bi = nextbi;
2574 			}
2575 		}
2576 		if (bitmap_end)
2577 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2578 					STRIPE_SECTORS, 0, 0);
2579 		/* If we were in the middle of a write the parity block might
2580 		 * still be locked - so just clear all R5_LOCKED flags
2581 		 */
2582 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2583 	}
2584 
2585 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2586 		if (atomic_dec_and_test(&conf->pending_full_writes))
2587 			md_wakeup_thread(conf->mddev->thread);
2588 }
2589 
2590 static void
2591 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2592 		   struct stripe_head_state *s)
2593 {
2594 	int abort = 0;
2595 	int i;
2596 
2597 	clear_bit(STRIPE_SYNCING, &sh->state);
2598 	s->syncing = 0;
2599 	s->replacing = 0;
2600 	/* There is nothing more to do for sync/check/repair.
2601 	 * Don't even need to abort as that is handled elsewhere
2602 	 * if needed, and not always wanted e.g. if there is a known
2603 	 * bad block here.
2604 	 * For recover/replace we need to record a bad block on all
2605 	 * non-sync devices, or abort the recovery
2606 	 */
2607 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2608 		/* During recovery devices cannot be removed, so
2609 		 * locking and refcounting of rdevs is not needed
2610 		 */
2611 		for (i = 0; i < conf->raid_disks; i++) {
2612 			struct md_rdev *rdev = conf->disks[i].rdev;
2613 			if (rdev
2614 			    && !test_bit(Faulty, &rdev->flags)
2615 			    && !test_bit(In_sync, &rdev->flags)
2616 			    && !rdev_set_badblocks(rdev, sh->sector,
2617 						   STRIPE_SECTORS, 0))
2618 				abort = 1;
2619 			rdev = conf->disks[i].replacement;
2620 			if (rdev
2621 			    && !test_bit(Faulty, &rdev->flags)
2622 			    && !test_bit(In_sync, &rdev->flags)
2623 			    && !rdev_set_badblocks(rdev, sh->sector,
2624 						   STRIPE_SECTORS, 0))
2625 				abort = 1;
2626 		}
2627 		if (abort)
2628 			conf->recovery_disabled =
2629 				conf->mddev->recovery_disabled;
2630 	}
2631 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2632 }
2633 
2634 static int want_replace(struct stripe_head *sh, int disk_idx)
2635 {
2636 	struct md_rdev *rdev;
2637 	int rv = 0;
2638 	/* Doing recovery so rcu locking not required */
2639 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2640 	if (rdev
2641 	    && !test_bit(Faulty, &rdev->flags)
2642 	    && !test_bit(In_sync, &rdev->flags)
2643 	    && (rdev->recovery_offset <= sh->sector
2644 		|| rdev->mddev->recovery_cp <= sh->sector))
2645 		rv = 1;
2646 
2647 	return rv;
2648 }
2649 
2650 /* fetch_block - checks the given member device to see if its data needs
2651  * to be read or computed to satisfy a request.
2652  *
2653  * Returns 1 when no more member devices need to be checked, otherwise returns
2654  * 0 to tell the loop in handle_stripe_fill to continue
2655  */
2656 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2657 		       int disk_idx, int disks)
2658 {
2659 	struct r5dev *dev = &sh->dev[disk_idx];
2660 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2661 				  &sh->dev[s->failed_num[1]] };
2662 
2663 	/* is the data in this block needed, and can we get it? */
2664 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2665 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2666 	    (dev->toread ||
2667 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2668 	     s->syncing || s->expanding ||
2669 	     (s->replacing && want_replace(sh, disk_idx)) ||
2670 	     (s->failed >= 1 && fdev[0]->toread) ||
2671 	     (s->failed >= 2 && fdev[1]->toread) ||
2672 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2673 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2674 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2675 		/* we would like to get this block, possibly by computing it,
2676 		 * otherwise read it if the backing disk is insync
2677 		 */
2678 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2679 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2680 		if ((s->uptodate == disks - 1) &&
2681 		    (s->failed && (disk_idx == s->failed_num[0] ||
2682 				   disk_idx == s->failed_num[1]))) {
2683 			/* have disk failed, and we're requested to fetch it;
2684 			 * do compute it
2685 			 */
2686 			pr_debug("Computing stripe %llu block %d\n",
2687 			       (unsigned long long)sh->sector, disk_idx);
2688 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2689 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2690 			set_bit(R5_Wantcompute, &dev->flags);
2691 			sh->ops.target = disk_idx;
2692 			sh->ops.target2 = -1; /* no 2nd target */
2693 			s->req_compute = 1;
2694 			/* Careful: from this point on 'uptodate' is in the eye
2695 			 * of raid_run_ops which services 'compute' operations
2696 			 * before writes. R5_Wantcompute flags a block that will
2697 			 * be R5_UPTODATE by the time it is needed for a
2698 			 * subsequent operation.
2699 			 */
2700 			s->uptodate++;
2701 			return 1;
2702 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2703 			/* Computing 2-failure is *very* expensive; only
2704 			 * do it if failed >= 2
2705 			 */
2706 			int other;
2707 			for (other = disks; other--; ) {
2708 				if (other == disk_idx)
2709 					continue;
2710 				if (!test_bit(R5_UPTODATE,
2711 				      &sh->dev[other].flags))
2712 					break;
2713 			}
2714 			BUG_ON(other < 0);
2715 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2716 			       (unsigned long long)sh->sector,
2717 			       disk_idx, other);
2718 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2719 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2720 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2721 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2722 			sh->ops.target = disk_idx;
2723 			sh->ops.target2 = other;
2724 			s->uptodate += 2;
2725 			s->req_compute = 1;
2726 			return 1;
2727 		} else if (test_bit(R5_Insync, &dev->flags)) {
2728 			set_bit(R5_LOCKED, &dev->flags);
2729 			set_bit(R5_Wantread, &dev->flags);
2730 			s->locked++;
2731 			pr_debug("Reading block %d (sync=%d)\n",
2732 				disk_idx, s->syncing);
2733 		}
2734 	}
2735 
2736 	return 0;
2737 }
2738 
2739 /**
2740  * handle_stripe_fill - read or compute data to satisfy pending requests.
2741  */
2742 static void handle_stripe_fill(struct stripe_head *sh,
2743 			       struct stripe_head_state *s,
2744 			       int disks)
2745 {
2746 	int i;
2747 
2748 	/* look for blocks to read/compute, skip this if a compute
2749 	 * is already in flight, or if the stripe contents are in the
2750 	 * midst of changing due to a write
2751 	 */
2752 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2753 	    !sh->reconstruct_state)
2754 		for (i = disks; i--; )
2755 			if (fetch_block(sh, s, i, disks))
2756 				break;
2757 	set_bit(STRIPE_HANDLE, &sh->state);
2758 }
2759 
2760 
2761 /* handle_stripe_clean_event
2762  * any written block on an uptodate or failed drive can be returned.
2763  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2764  * never LOCKED, so we don't need to test 'failed' directly.
2765  */
2766 static void handle_stripe_clean_event(struct r5conf *conf,
2767 	struct stripe_head *sh, int disks, struct bio **return_bi)
2768 {
2769 	int i;
2770 	struct r5dev *dev;
2771 
2772 	for (i = disks; i--; )
2773 		if (sh->dev[i].written) {
2774 			dev = &sh->dev[i];
2775 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2776 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2777 			     test_and_clear_bit(R5_Discard, &dev->flags))) {
2778 				/* We can return any write requests */
2779 				struct bio *wbi, *wbi2;
2780 				pr_debug("Return write for disc %d\n", i);
2781 				wbi = dev->written;
2782 				dev->written = NULL;
2783 				while (wbi && wbi->bi_sector <
2784 					dev->sector + STRIPE_SECTORS) {
2785 					wbi2 = r5_next_bio(wbi, dev->sector);
2786 					if (!raid5_dec_bi_active_stripes(wbi)) {
2787 						md_write_end(conf->mddev);
2788 						wbi->bi_next = *return_bi;
2789 						*return_bi = wbi;
2790 					}
2791 					wbi = wbi2;
2792 				}
2793 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2794 						STRIPE_SECTORS,
2795 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2796 						0);
2797 			}
2798 		}
2799 
2800 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2801 		if (atomic_dec_and_test(&conf->pending_full_writes))
2802 			md_wakeup_thread(conf->mddev->thread);
2803 }
2804 
2805 static void handle_stripe_dirtying(struct r5conf *conf,
2806 				   struct stripe_head *sh,
2807 				   struct stripe_head_state *s,
2808 				   int disks)
2809 {
2810 	int rmw = 0, rcw = 0, i;
2811 	sector_t recovery_cp = conf->mddev->recovery_cp;
2812 
2813 	/* RAID6 requires 'rcw' in current implementation.
2814 	 * Otherwise, check whether resync is now happening or should start.
2815 	 * If yes, then the array is dirty (after unclean shutdown or
2816 	 * initial creation), so parity in some stripes might be inconsistent.
2817 	 * In this case, we need to always do reconstruct-write, to ensure
2818 	 * that in case of drive failure or read-error correction, we
2819 	 * generate correct data from the parity.
2820 	 */
2821 	if (conf->max_degraded == 2 ||
2822 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2823 		/* Calculate the real rcw later - for now make it
2824 		 * look like rcw is cheaper
2825 		 */
2826 		rcw = 1; rmw = 2;
2827 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2828 			 conf->max_degraded, (unsigned long long)recovery_cp,
2829 			 (unsigned long long)sh->sector);
2830 	} else for (i = disks; i--; ) {
2831 		/* would I have to read this buffer for read_modify_write */
2832 		struct r5dev *dev = &sh->dev[i];
2833 		if ((dev->towrite || i == sh->pd_idx) &&
2834 		    !test_bit(R5_LOCKED, &dev->flags) &&
2835 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2836 		      test_bit(R5_Wantcompute, &dev->flags))) {
2837 			if (test_bit(R5_Insync, &dev->flags))
2838 				rmw++;
2839 			else
2840 				rmw += 2*disks;  /* cannot read it */
2841 		}
2842 		/* Would I have to read this buffer for reconstruct_write */
2843 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2844 		    !test_bit(R5_LOCKED, &dev->flags) &&
2845 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2846 		    test_bit(R5_Wantcompute, &dev->flags))) {
2847 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2848 			else
2849 				rcw += 2*disks;
2850 		}
2851 	}
2852 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2853 		(unsigned long long)sh->sector, rmw, rcw);
2854 	set_bit(STRIPE_HANDLE, &sh->state);
2855 	if (rmw < rcw && rmw > 0)
2856 		/* prefer read-modify-write, but need to get some data */
2857 		for (i = disks; i--; ) {
2858 			struct r5dev *dev = &sh->dev[i];
2859 			if ((dev->towrite || i == sh->pd_idx) &&
2860 			    !test_bit(R5_LOCKED, &dev->flags) &&
2861 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2862 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2863 			    test_bit(R5_Insync, &dev->flags)) {
2864 				if (
2865 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2866 					pr_debug("Read_old block "
2867 						"%d for r-m-w\n", i);
2868 					set_bit(R5_LOCKED, &dev->flags);
2869 					set_bit(R5_Wantread, &dev->flags);
2870 					s->locked++;
2871 				} else {
2872 					set_bit(STRIPE_DELAYED, &sh->state);
2873 					set_bit(STRIPE_HANDLE, &sh->state);
2874 				}
2875 			}
2876 		}
2877 	if (rcw <= rmw && rcw > 0) {
2878 		/* want reconstruct write, but need to get some data */
2879 		rcw = 0;
2880 		for (i = disks; i--; ) {
2881 			struct r5dev *dev = &sh->dev[i];
2882 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2883 			    i != sh->pd_idx && i != sh->qd_idx &&
2884 			    !test_bit(R5_LOCKED, &dev->flags) &&
2885 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2886 			      test_bit(R5_Wantcompute, &dev->flags))) {
2887 				rcw++;
2888 				if (!test_bit(R5_Insync, &dev->flags))
2889 					continue; /* it's a failed drive */
2890 				if (
2891 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2892 					pr_debug("Read_old block "
2893 						"%d for Reconstruct\n", i);
2894 					set_bit(R5_LOCKED, &dev->flags);
2895 					set_bit(R5_Wantread, &dev->flags);
2896 					s->locked++;
2897 				} else {
2898 					set_bit(STRIPE_DELAYED, &sh->state);
2899 					set_bit(STRIPE_HANDLE, &sh->state);
2900 				}
2901 			}
2902 		}
2903 	}
2904 	/* now if nothing is locked, and if we have enough data,
2905 	 * we can start a write request
2906 	 */
2907 	/* since handle_stripe can be called at any time we need to handle the
2908 	 * case where a compute block operation has been submitted and then a
2909 	 * subsequent call wants to start a write request.  raid_run_ops only
2910 	 * handles the case where compute block and reconstruct are requested
2911 	 * simultaneously.  If this is not the case then new writes need to be
2912 	 * held off until the compute completes.
2913 	 */
2914 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2915 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2916 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2917 		schedule_reconstruction(sh, s, rcw == 0, 0);
2918 }
2919 
2920 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2921 				struct stripe_head_state *s, int disks)
2922 {
2923 	struct r5dev *dev = NULL;
2924 
2925 	set_bit(STRIPE_HANDLE, &sh->state);
2926 
2927 	switch (sh->check_state) {
2928 	case check_state_idle:
2929 		/* start a new check operation if there are no failures */
2930 		if (s->failed == 0) {
2931 			BUG_ON(s->uptodate != disks);
2932 			sh->check_state = check_state_run;
2933 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2934 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2935 			s->uptodate--;
2936 			break;
2937 		}
2938 		dev = &sh->dev[s->failed_num[0]];
2939 		/* fall through */
2940 	case check_state_compute_result:
2941 		sh->check_state = check_state_idle;
2942 		if (!dev)
2943 			dev = &sh->dev[sh->pd_idx];
2944 
2945 		/* check that a write has not made the stripe insync */
2946 		if (test_bit(STRIPE_INSYNC, &sh->state))
2947 			break;
2948 
2949 		/* either failed parity check, or recovery is happening */
2950 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2951 		BUG_ON(s->uptodate != disks);
2952 
2953 		set_bit(R5_LOCKED, &dev->flags);
2954 		s->locked++;
2955 		set_bit(R5_Wantwrite, &dev->flags);
2956 
2957 		clear_bit(STRIPE_DEGRADED, &sh->state);
2958 		set_bit(STRIPE_INSYNC, &sh->state);
2959 		break;
2960 	case check_state_run:
2961 		break; /* we will be called again upon completion */
2962 	case check_state_check_result:
2963 		sh->check_state = check_state_idle;
2964 
2965 		/* if a failure occurred during the check operation, leave
2966 		 * STRIPE_INSYNC not set and let the stripe be handled again
2967 		 */
2968 		if (s->failed)
2969 			break;
2970 
2971 		/* handle a successful check operation, if parity is correct
2972 		 * we are done.  Otherwise update the mismatch count and repair
2973 		 * parity if !MD_RECOVERY_CHECK
2974 		 */
2975 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2976 			/* parity is correct (on disc,
2977 			 * not in buffer any more)
2978 			 */
2979 			set_bit(STRIPE_INSYNC, &sh->state);
2980 		else {
2981 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2982 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2983 				/* don't try to repair!! */
2984 				set_bit(STRIPE_INSYNC, &sh->state);
2985 			else {
2986 				sh->check_state = check_state_compute_run;
2987 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2988 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2989 				set_bit(R5_Wantcompute,
2990 					&sh->dev[sh->pd_idx].flags);
2991 				sh->ops.target = sh->pd_idx;
2992 				sh->ops.target2 = -1;
2993 				s->uptodate++;
2994 			}
2995 		}
2996 		break;
2997 	case check_state_compute_run:
2998 		break;
2999 	default:
3000 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3001 		       __func__, sh->check_state,
3002 		       (unsigned long long) sh->sector);
3003 		BUG();
3004 	}
3005 }
3006 
3007 
3008 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3009 				  struct stripe_head_state *s,
3010 				  int disks)
3011 {
3012 	int pd_idx = sh->pd_idx;
3013 	int qd_idx = sh->qd_idx;
3014 	struct r5dev *dev;
3015 
3016 	set_bit(STRIPE_HANDLE, &sh->state);
3017 
3018 	BUG_ON(s->failed > 2);
3019 
3020 	/* Want to check and possibly repair P and Q.
3021 	 * However there could be one 'failed' device, in which
3022 	 * case we can only check one of them, possibly using the
3023 	 * other to generate missing data
3024 	 */
3025 
3026 	switch (sh->check_state) {
3027 	case check_state_idle:
3028 		/* start a new check operation if there are < 2 failures */
3029 		if (s->failed == s->q_failed) {
3030 			/* The only possible failed device holds Q, so it
3031 			 * makes sense to check P (If anything else were failed,
3032 			 * we would have used P to recreate it).
3033 			 */
3034 			sh->check_state = check_state_run;
3035 		}
3036 		if (!s->q_failed && s->failed < 2) {
3037 			/* Q is not failed, and we didn't use it to generate
3038 			 * anything, so it makes sense to check it
3039 			 */
3040 			if (sh->check_state == check_state_run)
3041 				sh->check_state = check_state_run_pq;
3042 			else
3043 				sh->check_state = check_state_run_q;
3044 		}
3045 
3046 		/* discard potentially stale zero_sum_result */
3047 		sh->ops.zero_sum_result = 0;
3048 
3049 		if (sh->check_state == check_state_run) {
3050 			/* async_xor_zero_sum destroys the contents of P */
3051 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3052 			s->uptodate--;
3053 		}
3054 		if (sh->check_state >= check_state_run &&
3055 		    sh->check_state <= check_state_run_pq) {
3056 			/* async_syndrome_zero_sum preserves P and Q, so
3057 			 * no need to mark them !uptodate here
3058 			 */
3059 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3060 			break;
3061 		}
3062 
3063 		/* we have 2-disk failure */
3064 		BUG_ON(s->failed != 2);
3065 		/* fall through */
3066 	case check_state_compute_result:
3067 		sh->check_state = check_state_idle;
3068 
3069 		/* check that a write has not made the stripe insync */
3070 		if (test_bit(STRIPE_INSYNC, &sh->state))
3071 			break;
3072 
3073 		/* now write out any block on a failed drive,
3074 		 * or P or Q if they were recomputed
3075 		 */
3076 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3077 		if (s->failed == 2) {
3078 			dev = &sh->dev[s->failed_num[1]];
3079 			s->locked++;
3080 			set_bit(R5_LOCKED, &dev->flags);
3081 			set_bit(R5_Wantwrite, &dev->flags);
3082 		}
3083 		if (s->failed >= 1) {
3084 			dev = &sh->dev[s->failed_num[0]];
3085 			s->locked++;
3086 			set_bit(R5_LOCKED, &dev->flags);
3087 			set_bit(R5_Wantwrite, &dev->flags);
3088 		}
3089 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3090 			dev = &sh->dev[pd_idx];
3091 			s->locked++;
3092 			set_bit(R5_LOCKED, &dev->flags);
3093 			set_bit(R5_Wantwrite, &dev->flags);
3094 		}
3095 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3096 			dev = &sh->dev[qd_idx];
3097 			s->locked++;
3098 			set_bit(R5_LOCKED, &dev->flags);
3099 			set_bit(R5_Wantwrite, &dev->flags);
3100 		}
3101 		clear_bit(STRIPE_DEGRADED, &sh->state);
3102 
3103 		set_bit(STRIPE_INSYNC, &sh->state);
3104 		break;
3105 	case check_state_run:
3106 	case check_state_run_q:
3107 	case check_state_run_pq:
3108 		break; /* we will be called again upon completion */
3109 	case check_state_check_result:
3110 		sh->check_state = check_state_idle;
3111 
3112 		/* handle a successful check operation, if parity is correct
3113 		 * we are done.  Otherwise update the mismatch count and repair
3114 		 * parity if !MD_RECOVERY_CHECK
3115 		 */
3116 		if (sh->ops.zero_sum_result == 0) {
3117 			/* both parities are correct */
3118 			if (!s->failed)
3119 				set_bit(STRIPE_INSYNC, &sh->state);
3120 			else {
3121 				/* in contrast to the raid5 case we can validate
3122 				 * parity, but still have a failure to write
3123 				 * back
3124 				 */
3125 				sh->check_state = check_state_compute_result;
3126 				/* Returning at this point means that we may go
3127 				 * off and bring p and/or q uptodate again so
3128 				 * we make sure to check zero_sum_result again
3129 				 * to verify if p or q need writeback
3130 				 */
3131 			}
3132 		} else {
3133 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3134 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3135 				/* don't try to repair!! */
3136 				set_bit(STRIPE_INSYNC, &sh->state);
3137 			else {
3138 				int *target = &sh->ops.target;
3139 
3140 				sh->ops.target = -1;
3141 				sh->ops.target2 = -1;
3142 				sh->check_state = check_state_compute_run;
3143 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3144 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3145 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3146 					set_bit(R5_Wantcompute,
3147 						&sh->dev[pd_idx].flags);
3148 					*target = pd_idx;
3149 					target = &sh->ops.target2;
3150 					s->uptodate++;
3151 				}
3152 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3153 					set_bit(R5_Wantcompute,
3154 						&sh->dev[qd_idx].flags);
3155 					*target = qd_idx;
3156 					s->uptodate++;
3157 				}
3158 			}
3159 		}
3160 		break;
3161 	case check_state_compute_run:
3162 		break;
3163 	default:
3164 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3165 		       __func__, sh->check_state,
3166 		       (unsigned long long) sh->sector);
3167 		BUG();
3168 	}
3169 }
3170 
3171 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3172 {
3173 	int i;
3174 
3175 	/* We have read all the blocks in this stripe and now we need to
3176 	 * copy some of them into a target stripe for expand.
3177 	 */
3178 	struct dma_async_tx_descriptor *tx = NULL;
3179 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3180 	for (i = 0; i < sh->disks; i++)
3181 		if (i != sh->pd_idx && i != sh->qd_idx) {
3182 			int dd_idx, j;
3183 			struct stripe_head *sh2;
3184 			struct async_submit_ctl submit;
3185 
3186 			sector_t bn = compute_blocknr(sh, i, 1);
3187 			sector_t s = raid5_compute_sector(conf, bn, 0,
3188 							  &dd_idx, NULL);
3189 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3190 			if (sh2 == NULL)
3191 				/* so far only the early blocks of this stripe
3192 				 * have been requested.  When later blocks
3193 				 * get requested, we will try again
3194 				 */
3195 				continue;
3196 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3197 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3198 				/* must have already done this block */
3199 				release_stripe(sh2);
3200 				continue;
3201 			}
3202 
3203 			/* place all the copies on one channel */
3204 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3205 			tx = async_memcpy(sh2->dev[dd_idx].page,
3206 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3207 					  &submit);
3208 
3209 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3210 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3211 			for (j = 0; j < conf->raid_disks; j++)
3212 				if (j != sh2->pd_idx &&
3213 				    j != sh2->qd_idx &&
3214 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3215 					break;
3216 			if (j == conf->raid_disks) {
3217 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3218 				set_bit(STRIPE_HANDLE, &sh2->state);
3219 			}
3220 			release_stripe(sh2);
3221 
3222 		}
3223 	/* done submitting copies, wait for them to complete */
3224 	if (tx) {
3225 		async_tx_ack(tx);
3226 		dma_wait_for_async_tx(tx);
3227 	}
3228 }
3229 
3230 /*
3231  * handle_stripe - do things to a stripe.
3232  *
3233  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3234  * state of various bits to see what needs to be done.
3235  * Possible results:
3236  *    return some read requests which now have data
3237  *    return some write requests which are safely on storage
3238  *    schedule a read on some buffers
3239  *    schedule a write of some buffers
3240  *    return confirmation of parity correctness
3241  *
3242  */
3243 
3244 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3245 {
3246 	struct r5conf *conf = sh->raid_conf;
3247 	int disks = sh->disks;
3248 	struct r5dev *dev;
3249 	int i;
3250 	int do_recovery = 0;
3251 
3252 	memset(s, 0, sizeof(*s));
3253 
3254 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3255 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3256 	s->failed_num[0] = -1;
3257 	s->failed_num[1] = -1;
3258 
3259 	/* Now to look around and see what can be done */
3260 	rcu_read_lock();
3261 	for (i=disks; i--; ) {
3262 		struct md_rdev *rdev;
3263 		sector_t first_bad;
3264 		int bad_sectors;
3265 		int is_bad = 0;
3266 
3267 		dev = &sh->dev[i];
3268 
3269 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3270 			 i, dev->flags,
3271 			 dev->toread, dev->towrite, dev->written);
3272 		/* maybe we can reply to a read
3273 		 *
3274 		 * new wantfill requests are only permitted while
3275 		 * ops_complete_biofill is guaranteed to be inactive
3276 		 */
3277 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3278 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3279 			set_bit(R5_Wantfill, &dev->flags);
3280 
3281 		/* now count some things */
3282 		if (test_bit(R5_LOCKED, &dev->flags))
3283 			s->locked++;
3284 		if (test_bit(R5_UPTODATE, &dev->flags))
3285 			s->uptodate++;
3286 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3287 			s->compute++;
3288 			BUG_ON(s->compute > 2);
3289 		}
3290 
3291 		if (test_bit(R5_Wantfill, &dev->flags))
3292 			s->to_fill++;
3293 		else if (dev->toread)
3294 			s->to_read++;
3295 		if (dev->towrite) {
3296 			s->to_write++;
3297 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3298 				s->non_overwrite++;
3299 		}
3300 		if (dev->written)
3301 			s->written++;
3302 		/* Prefer to use the replacement for reads, but only
3303 		 * if it is recovered enough and has no bad blocks.
3304 		 */
3305 		rdev = rcu_dereference(conf->disks[i].replacement);
3306 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3307 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3308 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3309 				 &first_bad, &bad_sectors))
3310 			set_bit(R5_ReadRepl, &dev->flags);
3311 		else {
3312 			if (rdev)
3313 				set_bit(R5_NeedReplace, &dev->flags);
3314 			rdev = rcu_dereference(conf->disks[i].rdev);
3315 			clear_bit(R5_ReadRepl, &dev->flags);
3316 		}
3317 		if (rdev && test_bit(Faulty, &rdev->flags))
3318 			rdev = NULL;
3319 		if (rdev) {
3320 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3321 					     &first_bad, &bad_sectors);
3322 			if (s->blocked_rdev == NULL
3323 			    && (test_bit(Blocked, &rdev->flags)
3324 				|| is_bad < 0)) {
3325 				if (is_bad < 0)
3326 					set_bit(BlockedBadBlocks,
3327 						&rdev->flags);
3328 				s->blocked_rdev = rdev;
3329 				atomic_inc(&rdev->nr_pending);
3330 			}
3331 		}
3332 		clear_bit(R5_Insync, &dev->flags);
3333 		if (!rdev)
3334 			/* Not in-sync */;
3335 		else if (is_bad) {
3336 			/* also not in-sync */
3337 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3338 			    test_bit(R5_UPTODATE, &dev->flags)) {
3339 				/* treat as in-sync, but with a read error
3340 				 * which we can now try to correct
3341 				 */
3342 				set_bit(R5_Insync, &dev->flags);
3343 				set_bit(R5_ReadError, &dev->flags);
3344 			}
3345 		} else if (test_bit(In_sync, &rdev->flags))
3346 			set_bit(R5_Insync, &dev->flags);
3347 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3348 			/* in sync if before recovery_offset */
3349 			set_bit(R5_Insync, &dev->flags);
3350 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3351 			 test_bit(R5_Expanded, &dev->flags))
3352 			/* If we've reshaped into here, we assume it is Insync.
3353 			 * We will shortly update recovery_offset to make
3354 			 * it official.
3355 			 */
3356 			set_bit(R5_Insync, &dev->flags);
3357 
3358 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3359 			/* This flag does not apply to '.replacement'
3360 			 * only to .rdev, so make sure to check that*/
3361 			struct md_rdev *rdev2 = rcu_dereference(
3362 				conf->disks[i].rdev);
3363 			if (rdev2 == rdev)
3364 				clear_bit(R5_Insync, &dev->flags);
3365 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3366 				s->handle_bad_blocks = 1;
3367 				atomic_inc(&rdev2->nr_pending);
3368 			} else
3369 				clear_bit(R5_WriteError, &dev->flags);
3370 		}
3371 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3372 			/* This flag does not apply to '.replacement'
3373 			 * only to .rdev, so make sure to check that*/
3374 			struct md_rdev *rdev2 = rcu_dereference(
3375 				conf->disks[i].rdev);
3376 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3377 				s->handle_bad_blocks = 1;
3378 				atomic_inc(&rdev2->nr_pending);
3379 			} else
3380 				clear_bit(R5_MadeGood, &dev->flags);
3381 		}
3382 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3383 			struct md_rdev *rdev2 = rcu_dereference(
3384 				conf->disks[i].replacement);
3385 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3386 				s->handle_bad_blocks = 1;
3387 				atomic_inc(&rdev2->nr_pending);
3388 			} else
3389 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3390 		}
3391 		if (!test_bit(R5_Insync, &dev->flags)) {
3392 			/* The ReadError flag will just be confusing now */
3393 			clear_bit(R5_ReadError, &dev->flags);
3394 			clear_bit(R5_ReWrite, &dev->flags);
3395 		}
3396 		if (test_bit(R5_ReadError, &dev->flags))
3397 			clear_bit(R5_Insync, &dev->flags);
3398 		if (!test_bit(R5_Insync, &dev->flags)) {
3399 			if (s->failed < 2)
3400 				s->failed_num[s->failed] = i;
3401 			s->failed++;
3402 			if (rdev && !test_bit(Faulty, &rdev->flags))
3403 				do_recovery = 1;
3404 		}
3405 	}
3406 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3407 		/* If there is a failed device being replaced,
3408 		 *     we must be recovering.
3409 		 * else if we are after recovery_cp, we must be syncing
3410 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3411 		 * else we can only be replacing
3412 		 * sync and recovery both need to read all devices, and so
3413 		 * use the same flag.
3414 		 */
3415 		if (do_recovery ||
3416 		    sh->sector >= conf->mddev->recovery_cp ||
3417 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3418 			s->syncing = 1;
3419 		else
3420 			s->replacing = 1;
3421 	}
3422 	rcu_read_unlock();
3423 }
3424 
3425 static void handle_stripe(struct stripe_head *sh)
3426 {
3427 	struct stripe_head_state s;
3428 	struct r5conf *conf = sh->raid_conf;
3429 	int i;
3430 	int prexor;
3431 	int disks = sh->disks;
3432 	struct r5dev *pdev, *qdev;
3433 
3434 	clear_bit(STRIPE_HANDLE, &sh->state);
3435 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3436 		/* already being handled, ensure it gets handled
3437 		 * again when current action finishes */
3438 		set_bit(STRIPE_HANDLE, &sh->state);
3439 		return;
3440 	}
3441 
3442 	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3443 		set_bit(STRIPE_SYNCING, &sh->state);
3444 		clear_bit(STRIPE_INSYNC, &sh->state);
3445 	}
3446 	clear_bit(STRIPE_DELAYED, &sh->state);
3447 
3448 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3449 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3450 	       (unsigned long long)sh->sector, sh->state,
3451 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3452 	       sh->check_state, sh->reconstruct_state);
3453 
3454 	analyse_stripe(sh, &s);
3455 
3456 	if (s.handle_bad_blocks) {
3457 		set_bit(STRIPE_HANDLE, &sh->state);
3458 		goto finish;
3459 	}
3460 
3461 	if (unlikely(s.blocked_rdev)) {
3462 		if (s.syncing || s.expanding || s.expanded ||
3463 		    s.replacing || s.to_write || s.written) {
3464 			set_bit(STRIPE_HANDLE, &sh->state);
3465 			goto finish;
3466 		}
3467 		/* There is nothing for the blocked_rdev to block */
3468 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3469 		s.blocked_rdev = NULL;
3470 	}
3471 
3472 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3473 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3474 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3475 	}
3476 
3477 	pr_debug("locked=%d uptodate=%d to_read=%d"
3478 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3479 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3480 	       s.failed_num[0], s.failed_num[1]);
3481 	/* check if the array has lost more than max_degraded devices and,
3482 	 * if so, some requests might need to be failed.
3483 	 */
3484 	if (s.failed > conf->max_degraded) {
3485 		sh->check_state = 0;
3486 		sh->reconstruct_state = 0;
3487 		if (s.to_read+s.to_write+s.written)
3488 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3489 		if (s.syncing + s.replacing)
3490 			handle_failed_sync(conf, sh, &s);
3491 	}
3492 
3493 	/*
3494 	 * might be able to return some write requests if the parity blocks
3495 	 * are safe, or on a failed drive
3496 	 */
3497 	pdev = &sh->dev[sh->pd_idx];
3498 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3499 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3500 	qdev = &sh->dev[sh->qd_idx];
3501 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3502 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3503 		|| conf->level < 6;
3504 
3505 	if (s.written &&
3506 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3507 			     && !test_bit(R5_LOCKED, &pdev->flags)
3508 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3509 				 test_bit(R5_Discard, &pdev->flags))))) &&
3510 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3511 			     && !test_bit(R5_LOCKED, &qdev->flags)
3512 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3513 				 test_bit(R5_Discard, &qdev->flags))))))
3514 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3515 
3516 	/* Now we might consider reading some blocks, either to check/generate
3517 	 * parity, or to satisfy requests
3518 	 * or to load a block that is being partially written.
3519 	 */
3520 	if (s.to_read || s.non_overwrite
3521 	    || (conf->level == 6 && s.to_write && s.failed)
3522 	    || (s.syncing && (s.uptodate + s.compute < disks))
3523 	    || s.replacing
3524 	    || s.expanding)
3525 		handle_stripe_fill(sh, &s, disks);
3526 
3527 	/* Now we check to see if any write operations have recently
3528 	 * completed
3529 	 */
3530 	prexor = 0;
3531 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3532 		prexor = 1;
3533 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3534 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3535 		sh->reconstruct_state = reconstruct_state_idle;
3536 
3537 		/* All the 'written' buffers and the parity block are ready to
3538 		 * be written back to disk
3539 		 */
3540 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3541 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3542 		BUG_ON(sh->qd_idx >= 0 &&
3543 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3544 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3545 		for (i = disks; i--; ) {
3546 			struct r5dev *dev = &sh->dev[i];
3547 			if (test_bit(R5_LOCKED, &dev->flags) &&
3548 				(i == sh->pd_idx || i == sh->qd_idx ||
3549 				 dev->written)) {
3550 				pr_debug("Writing block %d\n", i);
3551 				set_bit(R5_Wantwrite, &dev->flags);
3552 				if (prexor)
3553 					continue;
3554 				if (!test_bit(R5_Insync, &dev->flags) ||
3555 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3556 				     s.failed == 0))
3557 					set_bit(STRIPE_INSYNC, &sh->state);
3558 			}
3559 		}
3560 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3561 			s.dec_preread_active = 1;
3562 	}
3563 
3564 	/* Now to consider new write requests and what else, if anything
3565 	 * should be read.  We do not handle new writes when:
3566 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3567 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3568 	 *    block.
3569 	 */
3570 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3571 		handle_stripe_dirtying(conf, sh, &s, disks);
3572 
3573 	/* maybe we need to check and possibly fix the parity for this stripe
3574 	 * Any reads will already have been scheduled, so we just see if enough
3575 	 * data is available.  The parity check is held off while parity
3576 	 * dependent operations are in flight.
3577 	 */
3578 	if (sh->check_state ||
3579 	    (s.syncing && s.locked == 0 &&
3580 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3581 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3582 		if (conf->level == 6)
3583 			handle_parity_checks6(conf, sh, &s, disks);
3584 		else
3585 			handle_parity_checks5(conf, sh, &s, disks);
3586 	}
3587 
3588 	if (s.replacing && s.locked == 0
3589 	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
3590 		/* Write out to replacement devices where possible */
3591 		for (i = 0; i < conf->raid_disks; i++)
3592 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3593 			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3594 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3595 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3596 				s.locked++;
3597 			}
3598 		set_bit(STRIPE_INSYNC, &sh->state);
3599 	}
3600 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3601 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3602 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3603 		clear_bit(STRIPE_SYNCING, &sh->state);
3604 	}
3605 
3606 	/* If the failed drives are just a ReadError, then we might need
3607 	 * to progress the repair/check process
3608 	 */
3609 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3610 		for (i = 0; i < s.failed; i++) {
3611 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3612 			if (test_bit(R5_ReadError, &dev->flags)
3613 			    && !test_bit(R5_LOCKED, &dev->flags)
3614 			    && test_bit(R5_UPTODATE, &dev->flags)
3615 				) {
3616 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3617 					set_bit(R5_Wantwrite, &dev->flags);
3618 					set_bit(R5_ReWrite, &dev->flags);
3619 					set_bit(R5_LOCKED, &dev->flags);
3620 					s.locked++;
3621 				} else {
3622 					/* let's read it back */
3623 					set_bit(R5_Wantread, &dev->flags);
3624 					set_bit(R5_LOCKED, &dev->flags);
3625 					s.locked++;
3626 				}
3627 			}
3628 		}
3629 
3630 
3631 	/* Finish reconstruct operations initiated by the expansion process */
3632 	if (sh->reconstruct_state == reconstruct_state_result) {
3633 		struct stripe_head *sh_src
3634 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3635 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3636 			/* sh cannot be written until sh_src has been read.
3637 			 * so arrange for sh to be delayed a little
3638 			 */
3639 			set_bit(STRIPE_DELAYED, &sh->state);
3640 			set_bit(STRIPE_HANDLE, &sh->state);
3641 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3642 					      &sh_src->state))
3643 				atomic_inc(&conf->preread_active_stripes);
3644 			release_stripe(sh_src);
3645 			goto finish;
3646 		}
3647 		if (sh_src)
3648 			release_stripe(sh_src);
3649 
3650 		sh->reconstruct_state = reconstruct_state_idle;
3651 		clear_bit(STRIPE_EXPANDING, &sh->state);
3652 		for (i = conf->raid_disks; i--; ) {
3653 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3654 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3655 			s.locked++;
3656 		}
3657 	}
3658 
3659 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3660 	    !sh->reconstruct_state) {
3661 		/* Need to write out all blocks after computing parity */
3662 		sh->disks = conf->raid_disks;
3663 		stripe_set_idx(sh->sector, conf, 0, sh);
3664 		schedule_reconstruction(sh, &s, 1, 1);
3665 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3666 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3667 		atomic_dec(&conf->reshape_stripes);
3668 		wake_up(&conf->wait_for_overlap);
3669 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3670 	}
3671 
3672 	if (s.expanding && s.locked == 0 &&
3673 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3674 		handle_stripe_expansion(conf, sh);
3675 
3676 finish:
3677 	/* wait for this device to become unblocked */
3678 	if (unlikely(s.blocked_rdev)) {
3679 		if (conf->mddev->external)
3680 			md_wait_for_blocked_rdev(s.blocked_rdev,
3681 						 conf->mddev);
3682 		else
3683 			/* Internal metadata will immediately
3684 			 * be written by raid5d, so we don't
3685 			 * need to wait here.
3686 			 */
3687 			rdev_dec_pending(s.blocked_rdev,
3688 					 conf->mddev);
3689 	}
3690 
3691 	if (s.handle_bad_blocks)
3692 		for (i = disks; i--; ) {
3693 			struct md_rdev *rdev;
3694 			struct r5dev *dev = &sh->dev[i];
3695 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3696 				/* We own a safe reference to the rdev */
3697 				rdev = conf->disks[i].rdev;
3698 				if (!rdev_set_badblocks(rdev, sh->sector,
3699 							STRIPE_SECTORS, 0))
3700 					md_error(conf->mddev, rdev);
3701 				rdev_dec_pending(rdev, conf->mddev);
3702 			}
3703 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3704 				rdev = conf->disks[i].rdev;
3705 				rdev_clear_badblocks(rdev, sh->sector,
3706 						     STRIPE_SECTORS, 0);
3707 				rdev_dec_pending(rdev, conf->mddev);
3708 			}
3709 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3710 				rdev = conf->disks[i].replacement;
3711 				if (!rdev)
3712 					/* rdev have been moved down */
3713 					rdev = conf->disks[i].rdev;
3714 				rdev_clear_badblocks(rdev, sh->sector,
3715 						     STRIPE_SECTORS, 0);
3716 				rdev_dec_pending(rdev, conf->mddev);
3717 			}
3718 		}
3719 
3720 	if (s.ops_request)
3721 		raid_run_ops(sh, s.ops_request);
3722 
3723 	ops_run_io(sh, &s);
3724 
3725 	if (s.dec_preread_active) {
3726 		/* We delay this until after ops_run_io so that if make_request
3727 		 * is waiting on a flush, it won't continue until the writes
3728 		 * have actually been submitted.
3729 		 */
3730 		atomic_dec(&conf->preread_active_stripes);
3731 		if (atomic_read(&conf->preread_active_stripes) <
3732 		    IO_THRESHOLD)
3733 			md_wakeup_thread(conf->mddev->thread);
3734 	}
3735 
3736 	return_io(s.return_bi);
3737 
3738 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3739 }
3740 
3741 static void raid5_activate_delayed(struct r5conf *conf)
3742 {
3743 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3744 		while (!list_empty(&conf->delayed_list)) {
3745 			struct list_head *l = conf->delayed_list.next;
3746 			struct stripe_head *sh;
3747 			sh = list_entry(l, struct stripe_head, lru);
3748 			list_del_init(l);
3749 			clear_bit(STRIPE_DELAYED, &sh->state);
3750 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3751 				atomic_inc(&conf->preread_active_stripes);
3752 			list_add_tail(&sh->lru, &conf->hold_list);
3753 		}
3754 	}
3755 }
3756 
3757 static void activate_bit_delay(struct r5conf *conf)
3758 {
3759 	/* device_lock is held */
3760 	struct list_head head;
3761 	list_add(&head, &conf->bitmap_list);
3762 	list_del_init(&conf->bitmap_list);
3763 	while (!list_empty(&head)) {
3764 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3765 		list_del_init(&sh->lru);
3766 		atomic_inc(&sh->count);
3767 		__release_stripe(conf, sh);
3768 	}
3769 }
3770 
3771 int md_raid5_congested(struct mddev *mddev, int bits)
3772 {
3773 	struct r5conf *conf = mddev->private;
3774 
3775 	/* No difference between reads and writes.  Just check
3776 	 * how busy the stripe_cache is
3777 	 */
3778 
3779 	if (conf->inactive_blocked)
3780 		return 1;
3781 	if (conf->quiesce)
3782 		return 1;
3783 	if (list_empty_careful(&conf->inactive_list))
3784 		return 1;
3785 
3786 	return 0;
3787 }
3788 EXPORT_SYMBOL_GPL(md_raid5_congested);
3789 
3790 static int raid5_congested(void *data, int bits)
3791 {
3792 	struct mddev *mddev = data;
3793 
3794 	return mddev_congested(mddev, bits) ||
3795 		md_raid5_congested(mddev, bits);
3796 }
3797 
3798 /* We want read requests to align with chunks where possible,
3799  * but write requests don't need to.
3800  */
3801 static int raid5_mergeable_bvec(struct request_queue *q,
3802 				struct bvec_merge_data *bvm,
3803 				struct bio_vec *biovec)
3804 {
3805 	struct mddev *mddev = q->queuedata;
3806 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3807 	int max;
3808 	unsigned int chunk_sectors = mddev->chunk_sectors;
3809 	unsigned int bio_sectors = bvm->bi_size >> 9;
3810 
3811 	if ((bvm->bi_rw & 1) == WRITE)
3812 		return biovec->bv_len; /* always allow writes to be mergeable */
3813 
3814 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3815 		chunk_sectors = mddev->new_chunk_sectors;
3816 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3817 	if (max < 0) max = 0;
3818 	if (max <= biovec->bv_len && bio_sectors == 0)
3819 		return biovec->bv_len;
3820 	else
3821 		return max;
3822 }
3823 
3824 
3825 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3826 {
3827 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3828 	unsigned int chunk_sectors = mddev->chunk_sectors;
3829 	unsigned int bio_sectors = bio->bi_size >> 9;
3830 
3831 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3832 		chunk_sectors = mddev->new_chunk_sectors;
3833 	return  chunk_sectors >=
3834 		((sector & (chunk_sectors - 1)) + bio_sectors);
3835 }
3836 
3837 /*
3838  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3839  *  later sampled by raid5d.
3840  */
3841 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3842 {
3843 	unsigned long flags;
3844 
3845 	spin_lock_irqsave(&conf->device_lock, flags);
3846 
3847 	bi->bi_next = conf->retry_read_aligned_list;
3848 	conf->retry_read_aligned_list = bi;
3849 
3850 	spin_unlock_irqrestore(&conf->device_lock, flags);
3851 	md_wakeup_thread(conf->mddev->thread);
3852 }
3853 
3854 
3855 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3856 {
3857 	struct bio *bi;
3858 
3859 	bi = conf->retry_read_aligned;
3860 	if (bi) {
3861 		conf->retry_read_aligned = NULL;
3862 		return bi;
3863 	}
3864 	bi = conf->retry_read_aligned_list;
3865 	if(bi) {
3866 		conf->retry_read_aligned_list = bi->bi_next;
3867 		bi->bi_next = NULL;
3868 		/*
3869 		 * this sets the active strip count to 1 and the processed
3870 		 * strip count to zero (upper 8 bits)
3871 		 */
3872 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3873 	}
3874 
3875 	return bi;
3876 }
3877 
3878 
3879 /*
3880  *  The "raid5_align_endio" should check if the read succeeded and if it
3881  *  did, call bio_endio on the original bio (having bio_put the new bio
3882  *  first).
3883  *  If the read failed..
3884  */
3885 static void raid5_align_endio(struct bio *bi, int error)
3886 {
3887 	struct bio* raid_bi  = bi->bi_private;
3888 	struct mddev *mddev;
3889 	struct r5conf *conf;
3890 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3891 	struct md_rdev *rdev;
3892 
3893 	bio_put(bi);
3894 
3895 	rdev = (void*)raid_bi->bi_next;
3896 	raid_bi->bi_next = NULL;
3897 	mddev = rdev->mddev;
3898 	conf = mddev->private;
3899 
3900 	rdev_dec_pending(rdev, conf->mddev);
3901 
3902 	if (!error && uptodate) {
3903 		bio_endio(raid_bi, 0);
3904 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3905 			wake_up(&conf->wait_for_stripe);
3906 		return;
3907 	}
3908 
3909 
3910 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3911 
3912 	add_bio_to_retry(raid_bi, conf);
3913 }
3914 
3915 static int bio_fits_rdev(struct bio *bi)
3916 {
3917 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3918 
3919 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3920 		return 0;
3921 	blk_recount_segments(q, bi);
3922 	if (bi->bi_phys_segments > queue_max_segments(q))
3923 		return 0;
3924 
3925 	if (q->merge_bvec_fn)
3926 		/* it's too hard to apply the merge_bvec_fn at this stage,
3927 		 * just just give up
3928 		 */
3929 		return 0;
3930 
3931 	return 1;
3932 }
3933 
3934 
3935 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3936 {
3937 	struct r5conf *conf = mddev->private;
3938 	int dd_idx;
3939 	struct bio* align_bi;
3940 	struct md_rdev *rdev;
3941 	sector_t end_sector;
3942 
3943 	if (!in_chunk_boundary(mddev, raid_bio)) {
3944 		pr_debug("chunk_aligned_read : non aligned\n");
3945 		return 0;
3946 	}
3947 	/*
3948 	 * use bio_clone_mddev to make a copy of the bio
3949 	 */
3950 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3951 	if (!align_bi)
3952 		return 0;
3953 	/*
3954 	 *   set bi_end_io to a new function, and set bi_private to the
3955 	 *     original bio.
3956 	 */
3957 	align_bi->bi_end_io  = raid5_align_endio;
3958 	align_bi->bi_private = raid_bio;
3959 	/*
3960 	 *	compute position
3961 	 */
3962 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3963 						    0,
3964 						    &dd_idx, NULL);
3965 
3966 	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3967 	rcu_read_lock();
3968 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3969 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
3970 	    rdev->recovery_offset < end_sector) {
3971 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3972 		if (rdev &&
3973 		    (test_bit(Faulty, &rdev->flags) ||
3974 		    !(test_bit(In_sync, &rdev->flags) ||
3975 		      rdev->recovery_offset >= end_sector)))
3976 			rdev = NULL;
3977 	}
3978 	if (rdev) {
3979 		sector_t first_bad;
3980 		int bad_sectors;
3981 
3982 		atomic_inc(&rdev->nr_pending);
3983 		rcu_read_unlock();
3984 		raid_bio->bi_next = (void*)rdev;
3985 		align_bi->bi_bdev =  rdev->bdev;
3986 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3987 
3988 		if (!bio_fits_rdev(align_bi) ||
3989 		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3990 				&first_bad, &bad_sectors)) {
3991 			/* too big in some way, or has a known bad block */
3992 			bio_put(align_bi);
3993 			rdev_dec_pending(rdev, mddev);
3994 			return 0;
3995 		}
3996 
3997 		/* No reshape active, so we can trust rdev->data_offset */
3998 		align_bi->bi_sector += rdev->data_offset;
3999 
4000 		spin_lock_irq(&conf->device_lock);
4001 		wait_event_lock_irq(conf->wait_for_stripe,
4002 				    conf->quiesce == 0,
4003 				    conf->device_lock, /* nothing */);
4004 		atomic_inc(&conf->active_aligned_reads);
4005 		spin_unlock_irq(&conf->device_lock);
4006 
4007 		generic_make_request(align_bi);
4008 		return 1;
4009 	} else {
4010 		rcu_read_unlock();
4011 		bio_put(align_bi);
4012 		return 0;
4013 	}
4014 }
4015 
4016 /* __get_priority_stripe - get the next stripe to process
4017  *
4018  * Full stripe writes are allowed to pass preread active stripes up until
4019  * the bypass_threshold is exceeded.  In general the bypass_count
4020  * increments when the handle_list is handled before the hold_list; however, it
4021  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4022  * stripe with in flight i/o.  The bypass_count will be reset when the
4023  * head of the hold_list has changed, i.e. the head was promoted to the
4024  * handle_list.
4025  */
4026 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4027 {
4028 	struct stripe_head *sh;
4029 
4030 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4031 		  __func__,
4032 		  list_empty(&conf->handle_list) ? "empty" : "busy",
4033 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4034 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4035 
4036 	if (!list_empty(&conf->handle_list)) {
4037 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4038 
4039 		if (list_empty(&conf->hold_list))
4040 			conf->bypass_count = 0;
4041 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4042 			if (conf->hold_list.next == conf->last_hold)
4043 				conf->bypass_count++;
4044 			else {
4045 				conf->last_hold = conf->hold_list.next;
4046 				conf->bypass_count -= conf->bypass_threshold;
4047 				if (conf->bypass_count < 0)
4048 					conf->bypass_count = 0;
4049 			}
4050 		}
4051 	} else if (!list_empty(&conf->hold_list) &&
4052 		   ((conf->bypass_threshold &&
4053 		     conf->bypass_count > conf->bypass_threshold) ||
4054 		    atomic_read(&conf->pending_full_writes) == 0)) {
4055 		sh = list_entry(conf->hold_list.next,
4056 				typeof(*sh), lru);
4057 		conf->bypass_count -= conf->bypass_threshold;
4058 		if (conf->bypass_count < 0)
4059 			conf->bypass_count = 0;
4060 	} else
4061 		return NULL;
4062 
4063 	list_del_init(&sh->lru);
4064 	atomic_inc(&sh->count);
4065 	BUG_ON(atomic_read(&sh->count) != 1);
4066 	return sh;
4067 }
4068 
4069 struct raid5_plug_cb {
4070 	struct blk_plug_cb	cb;
4071 	struct list_head	list;
4072 };
4073 
4074 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4075 {
4076 	struct raid5_plug_cb *cb = container_of(
4077 		blk_cb, struct raid5_plug_cb, cb);
4078 	struct stripe_head *sh;
4079 	struct mddev *mddev = cb->cb.data;
4080 	struct r5conf *conf = mddev->private;
4081 
4082 	if (cb->list.next && !list_empty(&cb->list)) {
4083 		spin_lock_irq(&conf->device_lock);
4084 		while (!list_empty(&cb->list)) {
4085 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4086 			list_del_init(&sh->lru);
4087 			/*
4088 			 * avoid race release_stripe_plug() sees
4089 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4090 			 * is still in our list
4091 			 */
4092 			smp_mb__before_clear_bit();
4093 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4094 			__release_stripe(conf, sh);
4095 		}
4096 		spin_unlock_irq(&conf->device_lock);
4097 	}
4098 	kfree(cb);
4099 }
4100 
4101 static void release_stripe_plug(struct mddev *mddev,
4102 				struct stripe_head *sh)
4103 {
4104 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4105 		raid5_unplug, mddev,
4106 		sizeof(struct raid5_plug_cb));
4107 	struct raid5_plug_cb *cb;
4108 
4109 	if (!blk_cb) {
4110 		release_stripe(sh);
4111 		return;
4112 	}
4113 
4114 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4115 
4116 	if (cb->list.next == NULL)
4117 		INIT_LIST_HEAD(&cb->list);
4118 
4119 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4120 		list_add_tail(&sh->lru, &cb->list);
4121 	else
4122 		release_stripe(sh);
4123 }
4124 
4125 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4126 {
4127 	struct r5conf *conf = mddev->private;
4128 	sector_t logical_sector, last_sector;
4129 	struct stripe_head *sh;
4130 	int remaining;
4131 	int stripe_sectors;
4132 
4133 	if (mddev->reshape_position != MaxSector)
4134 		/* Skip discard while reshape is happening */
4135 		return;
4136 
4137 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4138 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4139 
4140 	bi->bi_next = NULL;
4141 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4142 
4143 	stripe_sectors = conf->chunk_sectors *
4144 		(conf->raid_disks - conf->max_degraded);
4145 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4146 					       stripe_sectors);
4147 	sector_div(last_sector, stripe_sectors);
4148 
4149 	logical_sector *= conf->chunk_sectors;
4150 	last_sector *= conf->chunk_sectors;
4151 
4152 	for (; logical_sector < last_sector;
4153 	     logical_sector += STRIPE_SECTORS) {
4154 		DEFINE_WAIT(w);
4155 		int d;
4156 	again:
4157 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4158 		prepare_to_wait(&conf->wait_for_overlap, &w,
4159 				TASK_UNINTERRUPTIBLE);
4160 		spin_lock_irq(&sh->stripe_lock);
4161 		for (d = 0; d < conf->raid_disks; d++) {
4162 			if (d == sh->pd_idx || d == sh->qd_idx)
4163 				continue;
4164 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4165 				set_bit(R5_Overlap, &sh->dev[d].flags);
4166 				spin_unlock_irq(&sh->stripe_lock);
4167 				release_stripe(sh);
4168 				schedule();
4169 				goto again;
4170 			}
4171 		}
4172 		finish_wait(&conf->wait_for_overlap, &w);
4173 		for (d = 0; d < conf->raid_disks; d++) {
4174 			if (d == sh->pd_idx || d == sh->qd_idx)
4175 				continue;
4176 			sh->dev[d].towrite = bi;
4177 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4178 			raid5_inc_bi_active_stripes(bi);
4179 		}
4180 		spin_unlock_irq(&sh->stripe_lock);
4181 		if (conf->mddev->bitmap) {
4182 			for (d = 0;
4183 			     d < conf->raid_disks - conf->max_degraded;
4184 			     d++)
4185 				bitmap_startwrite(mddev->bitmap,
4186 						  sh->sector,
4187 						  STRIPE_SECTORS,
4188 						  0);
4189 			sh->bm_seq = conf->seq_flush + 1;
4190 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4191 		}
4192 
4193 		set_bit(STRIPE_HANDLE, &sh->state);
4194 		clear_bit(STRIPE_DELAYED, &sh->state);
4195 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4196 			atomic_inc(&conf->preread_active_stripes);
4197 		release_stripe_plug(mddev, sh);
4198 	}
4199 
4200 	remaining = raid5_dec_bi_active_stripes(bi);
4201 	if (remaining == 0) {
4202 		md_write_end(mddev);
4203 		bio_endio(bi, 0);
4204 	}
4205 }
4206 
4207 static void make_request(struct mddev *mddev, struct bio * bi)
4208 {
4209 	struct r5conf *conf = mddev->private;
4210 	int dd_idx;
4211 	sector_t new_sector;
4212 	sector_t logical_sector, last_sector;
4213 	struct stripe_head *sh;
4214 	const int rw = bio_data_dir(bi);
4215 	int remaining;
4216 
4217 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4218 		md_flush_request(mddev, bi);
4219 		return;
4220 	}
4221 
4222 	md_write_start(mddev, bi);
4223 
4224 	if (rw == READ &&
4225 	     mddev->reshape_position == MaxSector &&
4226 	     chunk_aligned_read(mddev,bi))
4227 		return;
4228 
4229 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4230 		make_discard_request(mddev, bi);
4231 		return;
4232 	}
4233 
4234 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4235 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4236 	bi->bi_next = NULL;
4237 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4238 
4239 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4240 		DEFINE_WAIT(w);
4241 		int previous;
4242 
4243 	retry:
4244 		previous = 0;
4245 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4246 		if (unlikely(conf->reshape_progress != MaxSector)) {
4247 			/* spinlock is needed as reshape_progress may be
4248 			 * 64bit on a 32bit platform, and so it might be
4249 			 * possible to see a half-updated value
4250 			 * Of course reshape_progress could change after
4251 			 * the lock is dropped, so once we get a reference
4252 			 * to the stripe that we think it is, we will have
4253 			 * to check again.
4254 			 */
4255 			spin_lock_irq(&conf->device_lock);
4256 			if (mddev->reshape_backwards
4257 			    ? logical_sector < conf->reshape_progress
4258 			    : logical_sector >= conf->reshape_progress) {
4259 				previous = 1;
4260 			} else {
4261 				if (mddev->reshape_backwards
4262 				    ? logical_sector < conf->reshape_safe
4263 				    : logical_sector >= conf->reshape_safe) {
4264 					spin_unlock_irq(&conf->device_lock);
4265 					schedule();
4266 					goto retry;
4267 				}
4268 			}
4269 			spin_unlock_irq(&conf->device_lock);
4270 		}
4271 
4272 		new_sector = raid5_compute_sector(conf, logical_sector,
4273 						  previous,
4274 						  &dd_idx, NULL);
4275 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4276 			(unsigned long long)new_sector,
4277 			(unsigned long long)logical_sector);
4278 
4279 		sh = get_active_stripe(conf, new_sector, previous,
4280 				       (bi->bi_rw&RWA_MASK), 0);
4281 		if (sh) {
4282 			if (unlikely(previous)) {
4283 				/* expansion might have moved on while waiting for a
4284 				 * stripe, so we must do the range check again.
4285 				 * Expansion could still move past after this
4286 				 * test, but as we are holding a reference to
4287 				 * 'sh', we know that if that happens,
4288 				 *  STRIPE_EXPANDING will get set and the expansion
4289 				 * won't proceed until we finish with the stripe.
4290 				 */
4291 				int must_retry = 0;
4292 				spin_lock_irq(&conf->device_lock);
4293 				if (mddev->reshape_backwards
4294 				    ? logical_sector >= conf->reshape_progress
4295 				    : logical_sector < conf->reshape_progress)
4296 					/* mismatch, need to try again */
4297 					must_retry = 1;
4298 				spin_unlock_irq(&conf->device_lock);
4299 				if (must_retry) {
4300 					release_stripe(sh);
4301 					schedule();
4302 					goto retry;
4303 				}
4304 			}
4305 
4306 			if (rw == WRITE &&
4307 			    logical_sector >= mddev->suspend_lo &&
4308 			    logical_sector < mddev->suspend_hi) {
4309 				release_stripe(sh);
4310 				/* As the suspend_* range is controlled by
4311 				 * userspace, we want an interruptible
4312 				 * wait.
4313 				 */
4314 				flush_signals(current);
4315 				prepare_to_wait(&conf->wait_for_overlap,
4316 						&w, TASK_INTERRUPTIBLE);
4317 				if (logical_sector >= mddev->suspend_lo &&
4318 				    logical_sector < mddev->suspend_hi)
4319 					schedule();
4320 				goto retry;
4321 			}
4322 
4323 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4324 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4325 				/* Stripe is busy expanding or
4326 				 * add failed due to overlap.  Flush everything
4327 				 * and wait a while
4328 				 */
4329 				md_wakeup_thread(mddev->thread);
4330 				release_stripe(sh);
4331 				schedule();
4332 				goto retry;
4333 			}
4334 			finish_wait(&conf->wait_for_overlap, &w);
4335 			set_bit(STRIPE_HANDLE, &sh->state);
4336 			clear_bit(STRIPE_DELAYED, &sh->state);
4337 			if ((bi->bi_rw & REQ_SYNC) &&
4338 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4339 				atomic_inc(&conf->preread_active_stripes);
4340 			release_stripe_plug(mddev, sh);
4341 		} else {
4342 			/* cannot get stripe for read-ahead, just give-up */
4343 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4344 			finish_wait(&conf->wait_for_overlap, &w);
4345 			break;
4346 		}
4347 	}
4348 
4349 	remaining = raid5_dec_bi_active_stripes(bi);
4350 	if (remaining == 0) {
4351 
4352 		if ( rw == WRITE )
4353 			md_write_end(mddev);
4354 
4355 		bio_endio(bi, 0);
4356 	}
4357 }
4358 
4359 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4360 
4361 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4362 {
4363 	/* reshaping is quite different to recovery/resync so it is
4364 	 * handled quite separately ... here.
4365 	 *
4366 	 * On each call to sync_request, we gather one chunk worth of
4367 	 * destination stripes and flag them as expanding.
4368 	 * Then we find all the source stripes and request reads.
4369 	 * As the reads complete, handle_stripe will copy the data
4370 	 * into the destination stripe and release that stripe.
4371 	 */
4372 	struct r5conf *conf = mddev->private;
4373 	struct stripe_head *sh;
4374 	sector_t first_sector, last_sector;
4375 	int raid_disks = conf->previous_raid_disks;
4376 	int data_disks = raid_disks - conf->max_degraded;
4377 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4378 	int i;
4379 	int dd_idx;
4380 	sector_t writepos, readpos, safepos;
4381 	sector_t stripe_addr;
4382 	int reshape_sectors;
4383 	struct list_head stripes;
4384 
4385 	if (sector_nr == 0) {
4386 		/* If restarting in the middle, skip the initial sectors */
4387 		if (mddev->reshape_backwards &&
4388 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4389 			sector_nr = raid5_size(mddev, 0, 0)
4390 				- conf->reshape_progress;
4391 		} else if (!mddev->reshape_backwards &&
4392 			   conf->reshape_progress > 0)
4393 			sector_nr = conf->reshape_progress;
4394 		sector_div(sector_nr, new_data_disks);
4395 		if (sector_nr) {
4396 			mddev->curr_resync_completed = sector_nr;
4397 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4398 			*skipped = 1;
4399 			return sector_nr;
4400 		}
4401 	}
4402 
4403 	/* We need to process a full chunk at a time.
4404 	 * If old and new chunk sizes differ, we need to process the
4405 	 * largest of these
4406 	 */
4407 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4408 		reshape_sectors = mddev->new_chunk_sectors;
4409 	else
4410 		reshape_sectors = mddev->chunk_sectors;
4411 
4412 	/* We update the metadata at least every 10 seconds, or when
4413 	 * the data about to be copied would over-write the source of
4414 	 * the data at the front of the range.  i.e. one new_stripe
4415 	 * along from reshape_progress new_maps to after where
4416 	 * reshape_safe old_maps to
4417 	 */
4418 	writepos = conf->reshape_progress;
4419 	sector_div(writepos, new_data_disks);
4420 	readpos = conf->reshape_progress;
4421 	sector_div(readpos, data_disks);
4422 	safepos = conf->reshape_safe;
4423 	sector_div(safepos, data_disks);
4424 	if (mddev->reshape_backwards) {
4425 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4426 		readpos += reshape_sectors;
4427 		safepos += reshape_sectors;
4428 	} else {
4429 		writepos += reshape_sectors;
4430 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4431 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4432 	}
4433 
4434 	/* Having calculated the 'writepos' possibly use it
4435 	 * to set 'stripe_addr' which is where we will write to.
4436 	 */
4437 	if (mddev->reshape_backwards) {
4438 		BUG_ON(conf->reshape_progress == 0);
4439 		stripe_addr = writepos;
4440 		BUG_ON((mddev->dev_sectors &
4441 			~((sector_t)reshape_sectors - 1))
4442 		       - reshape_sectors - stripe_addr
4443 		       != sector_nr);
4444 	} else {
4445 		BUG_ON(writepos != sector_nr + reshape_sectors);
4446 		stripe_addr = sector_nr;
4447 	}
4448 
4449 	/* 'writepos' is the most advanced device address we might write.
4450 	 * 'readpos' is the least advanced device address we might read.
4451 	 * 'safepos' is the least address recorded in the metadata as having
4452 	 *     been reshaped.
4453 	 * If there is a min_offset_diff, these are adjusted either by
4454 	 * increasing the safepos/readpos if diff is negative, or
4455 	 * increasing writepos if diff is positive.
4456 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4457 	 * ensure safety in the face of a crash - that must be done by userspace
4458 	 * making a backup of the data.  So in that case there is no particular
4459 	 * rush to update metadata.
4460 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4461 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4462 	 * we can be safe in the event of a crash.
4463 	 * So we insist on updating metadata if safepos is behind writepos and
4464 	 * readpos is beyond writepos.
4465 	 * In any case, update the metadata every 10 seconds.
4466 	 * Maybe that number should be configurable, but I'm not sure it is
4467 	 * worth it.... maybe it could be a multiple of safemode_delay???
4468 	 */
4469 	if (conf->min_offset_diff < 0) {
4470 		safepos += -conf->min_offset_diff;
4471 		readpos += -conf->min_offset_diff;
4472 	} else
4473 		writepos += conf->min_offset_diff;
4474 
4475 	if ((mddev->reshape_backwards
4476 	     ? (safepos > writepos && readpos < writepos)
4477 	     : (safepos < writepos && readpos > writepos)) ||
4478 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4479 		/* Cannot proceed until we've updated the superblock... */
4480 		wait_event(conf->wait_for_overlap,
4481 			   atomic_read(&conf->reshape_stripes)==0);
4482 		mddev->reshape_position = conf->reshape_progress;
4483 		mddev->curr_resync_completed = sector_nr;
4484 		conf->reshape_checkpoint = jiffies;
4485 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4486 		md_wakeup_thread(mddev->thread);
4487 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4488 			   kthread_should_stop());
4489 		spin_lock_irq(&conf->device_lock);
4490 		conf->reshape_safe = mddev->reshape_position;
4491 		spin_unlock_irq(&conf->device_lock);
4492 		wake_up(&conf->wait_for_overlap);
4493 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4494 	}
4495 
4496 	INIT_LIST_HEAD(&stripes);
4497 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4498 		int j;
4499 		int skipped_disk = 0;
4500 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4501 		set_bit(STRIPE_EXPANDING, &sh->state);
4502 		atomic_inc(&conf->reshape_stripes);
4503 		/* If any of this stripe is beyond the end of the old
4504 		 * array, then we need to zero those blocks
4505 		 */
4506 		for (j=sh->disks; j--;) {
4507 			sector_t s;
4508 			if (j == sh->pd_idx)
4509 				continue;
4510 			if (conf->level == 6 &&
4511 			    j == sh->qd_idx)
4512 				continue;
4513 			s = compute_blocknr(sh, j, 0);
4514 			if (s < raid5_size(mddev, 0, 0)) {
4515 				skipped_disk = 1;
4516 				continue;
4517 			}
4518 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4519 			set_bit(R5_Expanded, &sh->dev[j].flags);
4520 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4521 		}
4522 		if (!skipped_disk) {
4523 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4524 			set_bit(STRIPE_HANDLE, &sh->state);
4525 		}
4526 		list_add(&sh->lru, &stripes);
4527 	}
4528 	spin_lock_irq(&conf->device_lock);
4529 	if (mddev->reshape_backwards)
4530 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4531 	else
4532 		conf->reshape_progress += reshape_sectors * new_data_disks;
4533 	spin_unlock_irq(&conf->device_lock);
4534 	/* Ok, those stripe are ready. We can start scheduling
4535 	 * reads on the source stripes.
4536 	 * The source stripes are determined by mapping the first and last
4537 	 * block on the destination stripes.
4538 	 */
4539 	first_sector =
4540 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4541 				     1, &dd_idx, NULL);
4542 	last_sector =
4543 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4544 					    * new_data_disks - 1),
4545 				     1, &dd_idx, NULL);
4546 	if (last_sector >= mddev->dev_sectors)
4547 		last_sector = mddev->dev_sectors - 1;
4548 	while (first_sector <= last_sector) {
4549 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4550 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4551 		set_bit(STRIPE_HANDLE, &sh->state);
4552 		release_stripe(sh);
4553 		first_sector += STRIPE_SECTORS;
4554 	}
4555 	/* Now that the sources are clearly marked, we can release
4556 	 * the destination stripes
4557 	 */
4558 	while (!list_empty(&stripes)) {
4559 		sh = list_entry(stripes.next, struct stripe_head, lru);
4560 		list_del_init(&sh->lru);
4561 		release_stripe(sh);
4562 	}
4563 	/* If this takes us to the resync_max point where we have to pause,
4564 	 * then we need to write out the superblock.
4565 	 */
4566 	sector_nr += reshape_sectors;
4567 	if ((sector_nr - mddev->curr_resync_completed) * 2
4568 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4569 		/* Cannot proceed until we've updated the superblock... */
4570 		wait_event(conf->wait_for_overlap,
4571 			   atomic_read(&conf->reshape_stripes) == 0);
4572 		mddev->reshape_position = conf->reshape_progress;
4573 		mddev->curr_resync_completed = sector_nr;
4574 		conf->reshape_checkpoint = jiffies;
4575 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4576 		md_wakeup_thread(mddev->thread);
4577 		wait_event(mddev->sb_wait,
4578 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4579 			   || kthread_should_stop());
4580 		spin_lock_irq(&conf->device_lock);
4581 		conf->reshape_safe = mddev->reshape_position;
4582 		spin_unlock_irq(&conf->device_lock);
4583 		wake_up(&conf->wait_for_overlap);
4584 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4585 	}
4586 	return reshape_sectors;
4587 }
4588 
4589 /* FIXME go_faster isn't used */
4590 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4591 {
4592 	struct r5conf *conf = mddev->private;
4593 	struct stripe_head *sh;
4594 	sector_t max_sector = mddev->dev_sectors;
4595 	sector_t sync_blocks;
4596 	int still_degraded = 0;
4597 	int i;
4598 
4599 	if (sector_nr >= max_sector) {
4600 		/* just being told to finish up .. nothing much to do */
4601 
4602 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4603 			end_reshape(conf);
4604 			return 0;
4605 		}
4606 
4607 		if (mddev->curr_resync < max_sector) /* aborted */
4608 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4609 					&sync_blocks, 1);
4610 		else /* completed sync */
4611 			conf->fullsync = 0;
4612 		bitmap_close_sync(mddev->bitmap);
4613 
4614 		return 0;
4615 	}
4616 
4617 	/* Allow raid5_quiesce to complete */
4618 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4619 
4620 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4621 		return reshape_request(mddev, sector_nr, skipped);
4622 
4623 	/* No need to check resync_max as we never do more than one
4624 	 * stripe, and as resync_max will always be on a chunk boundary,
4625 	 * if the check in md_do_sync didn't fire, there is no chance
4626 	 * of overstepping resync_max here
4627 	 */
4628 
4629 	/* if there is too many failed drives and we are trying
4630 	 * to resync, then assert that we are finished, because there is
4631 	 * nothing we can do.
4632 	 */
4633 	if (mddev->degraded >= conf->max_degraded &&
4634 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4635 		sector_t rv = mddev->dev_sectors - sector_nr;
4636 		*skipped = 1;
4637 		return rv;
4638 	}
4639 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4640 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4641 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4642 		/* we can skip this block, and probably more */
4643 		sync_blocks /= STRIPE_SECTORS;
4644 		*skipped = 1;
4645 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4646 	}
4647 
4648 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4649 
4650 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4651 	if (sh == NULL) {
4652 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4653 		/* make sure we don't swamp the stripe cache if someone else
4654 		 * is trying to get access
4655 		 */
4656 		schedule_timeout_uninterruptible(1);
4657 	}
4658 	/* Need to check if array will still be degraded after recovery/resync
4659 	 * We don't need to check the 'failed' flag as when that gets set,
4660 	 * recovery aborts.
4661 	 */
4662 	for (i = 0; i < conf->raid_disks; i++)
4663 		if (conf->disks[i].rdev == NULL)
4664 			still_degraded = 1;
4665 
4666 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4667 
4668 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4669 
4670 	handle_stripe(sh);
4671 	release_stripe(sh);
4672 
4673 	return STRIPE_SECTORS;
4674 }
4675 
4676 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4677 {
4678 	/* We may not be able to submit a whole bio at once as there
4679 	 * may not be enough stripe_heads available.
4680 	 * We cannot pre-allocate enough stripe_heads as we may need
4681 	 * more than exist in the cache (if we allow ever large chunks).
4682 	 * So we do one stripe head at a time and record in
4683 	 * ->bi_hw_segments how many have been done.
4684 	 *
4685 	 * We *know* that this entire raid_bio is in one chunk, so
4686 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4687 	 */
4688 	struct stripe_head *sh;
4689 	int dd_idx;
4690 	sector_t sector, logical_sector, last_sector;
4691 	int scnt = 0;
4692 	int remaining;
4693 	int handled = 0;
4694 
4695 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4696 	sector = raid5_compute_sector(conf, logical_sector,
4697 				      0, &dd_idx, NULL);
4698 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4699 
4700 	for (; logical_sector < last_sector;
4701 	     logical_sector += STRIPE_SECTORS,
4702 		     sector += STRIPE_SECTORS,
4703 		     scnt++) {
4704 
4705 		if (scnt < raid5_bi_processed_stripes(raid_bio))
4706 			/* already done this stripe */
4707 			continue;
4708 
4709 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4710 
4711 		if (!sh) {
4712 			/* failed to get a stripe - must wait */
4713 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4714 			conf->retry_read_aligned = raid_bio;
4715 			return handled;
4716 		}
4717 
4718 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4719 			release_stripe(sh);
4720 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4721 			conf->retry_read_aligned = raid_bio;
4722 			return handled;
4723 		}
4724 
4725 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4726 		handle_stripe(sh);
4727 		release_stripe(sh);
4728 		handled++;
4729 	}
4730 	remaining = raid5_dec_bi_active_stripes(raid_bio);
4731 	if (remaining == 0)
4732 		bio_endio(raid_bio, 0);
4733 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4734 		wake_up(&conf->wait_for_stripe);
4735 	return handled;
4736 }
4737 
4738 #define MAX_STRIPE_BATCH 8
4739 static int handle_active_stripes(struct r5conf *conf)
4740 {
4741 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4742 	int i, batch_size = 0;
4743 
4744 	while (batch_size < MAX_STRIPE_BATCH &&
4745 			(sh = __get_priority_stripe(conf)) != NULL)
4746 		batch[batch_size++] = sh;
4747 
4748 	if (batch_size == 0)
4749 		return batch_size;
4750 	spin_unlock_irq(&conf->device_lock);
4751 
4752 	for (i = 0; i < batch_size; i++)
4753 		handle_stripe(batch[i]);
4754 
4755 	cond_resched();
4756 
4757 	spin_lock_irq(&conf->device_lock);
4758 	for (i = 0; i < batch_size; i++)
4759 		__release_stripe(conf, batch[i]);
4760 	return batch_size;
4761 }
4762 
4763 /*
4764  * This is our raid5 kernel thread.
4765  *
4766  * We scan the hash table for stripes which can be handled now.
4767  * During the scan, completed stripes are saved for us by the interrupt
4768  * handler, so that they will not have to wait for our next wakeup.
4769  */
4770 static void raid5d(struct md_thread *thread)
4771 {
4772 	struct mddev *mddev = thread->mddev;
4773 	struct r5conf *conf = mddev->private;
4774 	int handled;
4775 	struct blk_plug plug;
4776 
4777 	pr_debug("+++ raid5d active\n");
4778 
4779 	md_check_recovery(mddev);
4780 
4781 	blk_start_plug(&plug);
4782 	handled = 0;
4783 	spin_lock_irq(&conf->device_lock);
4784 	while (1) {
4785 		struct bio *bio;
4786 		int batch_size;
4787 
4788 		if (
4789 		    !list_empty(&conf->bitmap_list)) {
4790 			/* Now is a good time to flush some bitmap updates */
4791 			conf->seq_flush++;
4792 			spin_unlock_irq(&conf->device_lock);
4793 			bitmap_unplug(mddev->bitmap);
4794 			spin_lock_irq(&conf->device_lock);
4795 			conf->seq_write = conf->seq_flush;
4796 			activate_bit_delay(conf);
4797 		}
4798 		raid5_activate_delayed(conf);
4799 
4800 		while ((bio = remove_bio_from_retry(conf))) {
4801 			int ok;
4802 			spin_unlock_irq(&conf->device_lock);
4803 			ok = retry_aligned_read(conf, bio);
4804 			spin_lock_irq(&conf->device_lock);
4805 			if (!ok)
4806 				break;
4807 			handled++;
4808 		}
4809 
4810 		batch_size = handle_active_stripes(conf);
4811 		if (!batch_size)
4812 			break;
4813 		handled += batch_size;
4814 
4815 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4816 			spin_unlock_irq(&conf->device_lock);
4817 			md_check_recovery(mddev);
4818 			spin_lock_irq(&conf->device_lock);
4819 		}
4820 	}
4821 	pr_debug("%d stripes handled\n", handled);
4822 
4823 	spin_unlock_irq(&conf->device_lock);
4824 
4825 	async_tx_issue_pending_all();
4826 	blk_finish_plug(&plug);
4827 
4828 	pr_debug("--- raid5d inactive\n");
4829 }
4830 
4831 static ssize_t
4832 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4833 {
4834 	struct r5conf *conf = mddev->private;
4835 	if (conf)
4836 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4837 	else
4838 		return 0;
4839 }
4840 
4841 int
4842 raid5_set_cache_size(struct mddev *mddev, int size)
4843 {
4844 	struct r5conf *conf = mddev->private;
4845 	int err;
4846 
4847 	if (size <= 16 || size > 32768)
4848 		return -EINVAL;
4849 	while (size < conf->max_nr_stripes) {
4850 		if (drop_one_stripe(conf))
4851 			conf->max_nr_stripes--;
4852 		else
4853 			break;
4854 	}
4855 	err = md_allow_write(mddev);
4856 	if (err)
4857 		return err;
4858 	while (size > conf->max_nr_stripes) {
4859 		if (grow_one_stripe(conf))
4860 			conf->max_nr_stripes++;
4861 		else break;
4862 	}
4863 	return 0;
4864 }
4865 EXPORT_SYMBOL(raid5_set_cache_size);
4866 
4867 static ssize_t
4868 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4869 {
4870 	struct r5conf *conf = mddev->private;
4871 	unsigned long new;
4872 	int err;
4873 
4874 	if (len >= PAGE_SIZE)
4875 		return -EINVAL;
4876 	if (!conf)
4877 		return -ENODEV;
4878 
4879 	if (strict_strtoul(page, 10, &new))
4880 		return -EINVAL;
4881 	err = raid5_set_cache_size(mddev, new);
4882 	if (err)
4883 		return err;
4884 	return len;
4885 }
4886 
4887 static struct md_sysfs_entry
4888 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4889 				raid5_show_stripe_cache_size,
4890 				raid5_store_stripe_cache_size);
4891 
4892 static ssize_t
4893 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4894 {
4895 	struct r5conf *conf = mddev->private;
4896 	if (conf)
4897 		return sprintf(page, "%d\n", conf->bypass_threshold);
4898 	else
4899 		return 0;
4900 }
4901 
4902 static ssize_t
4903 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4904 {
4905 	struct r5conf *conf = mddev->private;
4906 	unsigned long new;
4907 	if (len >= PAGE_SIZE)
4908 		return -EINVAL;
4909 	if (!conf)
4910 		return -ENODEV;
4911 
4912 	if (strict_strtoul(page, 10, &new))
4913 		return -EINVAL;
4914 	if (new > conf->max_nr_stripes)
4915 		return -EINVAL;
4916 	conf->bypass_threshold = new;
4917 	return len;
4918 }
4919 
4920 static struct md_sysfs_entry
4921 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4922 					S_IRUGO | S_IWUSR,
4923 					raid5_show_preread_threshold,
4924 					raid5_store_preread_threshold);
4925 
4926 static ssize_t
4927 stripe_cache_active_show(struct mddev *mddev, char *page)
4928 {
4929 	struct r5conf *conf = mddev->private;
4930 	if (conf)
4931 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4932 	else
4933 		return 0;
4934 }
4935 
4936 static struct md_sysfs_entry
4937 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4938 
4939 static struct attribute *raid5_attrs[] =  {
4940 	&raid5_stripecache_size.attr,
4941 	&raid5_stripecache_active.attr,
4942 	&raid5_preread_bypass_threshold.attr,
4943 	NULL,
4944 };
4945 static struct attribute_group raid5_attrs_group = {
4946 	.name = NULL,
4947 	.attrs = raid5_attrs,
4948 };
4949 
4950 static sector_t
4951 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4952 {
4953 	struct r5conf *conf = mddev->private;
4954 
4955 	if (!sectors)
4956 		sectors = mddev->dev_sectors;
4957 	if (!raid_disks)
4958 		/* size is defined by the smallest of previous and new size */
4959 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4960 
4961 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4962 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4963 	return sectors * (raid_disks - conf->max_degraded);
4964 }
4965 
4966 static void raid5_free_percpu(struct r5conf *conf)
4967 {
4968 	struct raid5_percpu *percpu;
4969 	unsigned long cpu;
4970 
4971 	if (!conf->percpu)
4972 		return;
4973 
4974 	get_online_cpus();
4975 	for_each_possible_cpu(cpu) {
4976 		percpu = per_cpu_ptr(conf->percpu, cpu);
4977 		safe_put_page(percpu->spare_page);
4978 		kfree(percpu->scribble);
4979 	}
4980 #ifdef CONFIG_HOTPLUG_CPU
4981 	unregister_cpu_notifier(&conf->cpu_notify);
4982 #endif
4983 	put_online_cpus();
4984 
4985 	free_percpu(conf->percpu);
4986 }
4987 
4988 static void free_conf(struct r5conf *conf)
4989 {
4990 	shrink_stripes(conf);
4991 	raid5_free_percpu(conf);
4992 	kfree(conf->disks);
4993 	kfree(conf->stripe_hashtbl);
4994 	kfree(conf);
4995 }
4996 
4997 #ifdef CONFIG_HOTPLUG_CPU
4998 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4999 			      void *hcpu)
5000 {
5001 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5002 	long cpu = (long)hcpu;
5003 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5004 
5005 	switch (action) {
5006 	case CPU_UP_PREPARE:
5007 	case CPU_UP_PREPARE_FROZEN:
5008 		if (conf->level == 6 && !percpu->spare_page)
5009 			percpu->spare_page = alloc_page(GFP_KERNEL);
5010 		if (!percpu->scribble)
5011 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5012 
5013 		if (!percpu->scribble ||
5014 		    (conf->level == 6 && !percpu->spare_page)) {
5015 			safe_put_page(percpu->spare_page);
5016 			kfree(percpu->scribble);
5017 			pr_err("%s: failed memory allocation for cpu%ld\n",
5018 			       __func__, cpu);
5019 			return notifier_from_errno(-ENOMEM);
5020 		}
5021 		break;
5022 	case CPU_DEAD:
5023 	case CPU_DEAD_FROZEN:
5024 		safe_put_page(percpu->spare_page);
5025 		kfree(percpu->scribble);
5026 		percpu->spare_page = NULL;
5027 		percpu->scribble = NULL;
5028 		break;
5029 	default:
5030 		break;
5031 	}
5032 	return NOTIFY_OK;
5033 }
5034 #endif
5035 
5036 static int raid5_alloc_percpu(struct r5conf *conf)
5037 {
5038 	unsigned long cpu;
5039 	struct page *spare_page;
5040 	struct raid5_percpu __percpu *allcpus;
5041 	void *scribble;
5042 	int err;
5043 
5044 	allcpus = alloc_percpu(struct raid5_percpu);
5045 	if (!allcpus)
5046 		return -ENOMEM;
5047 	conf->percpu = allcpus;
5048 
5049 	get_online_cpus();
5050 	err = 0;
5051 	for_each_present_cpu(cpu) {
5052 		if (conf->level == 6) {
5053 			spare_page = alloc_page(GFP_KERNEL);
5054 			if (!spare_page) {
5055 				err = -ENOMEM;
5056 				break;
5057 			}
5058 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5059 		}
5060 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5061 		if (!scribble) {
5062 			err = -ENOMEM;
5063 			break;
5064 		}
5065 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5066 	}
5067 #ifdef CONFIG_HOTPLUG_CPU
5068 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5069 	conf->cpu_notify.priority = 0;
5070 	if (err == 0)
5071 		err = register_cpu_notifier(&conf->cpu_notify);
5072 #endif
5073 	put_online_cpus();
5074 
5075 	return err;
5076 }
5077 
5078 static struct r5conf *setup_conf(struct mddev *mddev)
5079 {
5080 	struct r5conf *conf;
5081 	int raid_disk, memory, max_disks;
5082 	struct md_rdev *rdev;
5083 	struct disk_info *disk;
5084 	char pers_name[6];
5085 
5086 	if (mddev->new_level != 5
5087 	    && mddev->new_level != 4
5088 	    && mddev->new_level != 6) {
5089 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5090 		       mdname(mddev), mddev->new_level);
5091 		return ERR_PTR(-EIO);
5092 	}
5093 	if ((mddev->new_level == 5
5094 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5095 	    (mddev->new_level == 6
5096 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5097 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5098 		       mdname(mddev), mddev->new_layout);
5099 		return ERR_PTR(-EIO);
5100 	}
5101 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5102 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5103 		       mdname(mddev), mddev->raid_disks);
5104 		return ERR_PTR(-EINVAL);
5105 	}
5106 
5107 	if (!mddev->new_chunk_sectors ||
5108 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5109 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5110 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5111 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5112 		return ERR_PTR(-EINVAL);
5113 	}
5114 
5115 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5116 	if (conf == NULL)
5117 		goto abort;
5118 	spin_lock_init(&conf->device_lock);
5119 	init_waitqueue_head(&conf->wait_for_stripe);
5120 	init_waitqueue_head(&conf->wait_for_overlap);
5121 	INIT_LIST_HEAD(&conf->handle_list);
5122 	INIT_LIST_HEAD(&conf->hold_list);
5123 	INIT_LIST_HEAD(&conf->delayed_list);
5124 	INIT_LIST_HEAD(&conf->bitmap_list);
5125 	INIT_LIST_HEAD(&conf->inactive_list);
5126 	atomic_set(&conf->active_stripes, 0);
5127 	atomic_set(&conf->preread_active_stripes, 0);
5128 	atomic_set(&conf->active_aligned_reads, 0);
5129 	conf->bypass_threshold = BYPASS_THRESHOLD;
5130 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5131 
5132 	conf->raid_disks = mddev->raid_disks;
5133 	if (mddev->reshape_position == MaxSector)
5134 		conf->previous_raid_disks = mddev->raid_disks;
5135 	else
5136 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5137 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5138 	conf->scribble_len = scribble_len(max_disks);
5139 
5140 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5141 			      GFP_KERNEL);
5142 	if (!conf->disks)
5143 		goto abort;
5144 
5145 	conf->mddev = mddev;
5146 
5147 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5148 		goto abort;
5149 
5150 	conf->level = mddev->new_level;
5151 	if (raid5_alloc_percpu(conf) != 0)
5152 		goto abort;
5153 
5154 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5155 
5156 	rdev_for_each(rdev, mddev) {
5157 		raid_disk = rdev->raid_disk;
5158 		if (raid_disk >= max_disks
5159 		    || raid_disk < 0)
5160 			continue;
5161 		disk = conf->disks + raid_disk;
5162 
5163 		if (test_bit(Replacement, &rdev->flags)) {
5164 			if (disk->replacement)
5165 				goto abort;
5166 			disk->replacement = rdev;
5167 		} else {
5168 			if (disk->rdev)
5169 				goto abort;
5170 			disk->rdev = rdev;
5171 		}
5172 
5173 		if (test_bit(In_sync, &rdev->flags)) {
5174 			char b[BDEVNAME_SIZE];
5175 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5176 			       " disk %d\n",
5177 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5178 		} else if (rdev->saved_raid_disk != raid_disk)
5179 			/* Cannot rely on bitmap to complete recovery */
5180 			conf->fullsync = 1;
5181 	}
5182 
5183 	conf->chunk_sectors = mddev->new_chunk_sectors;
5184 	conf->level = mddev->new_level;
5185 	if (conf->level == 6)
5186 		conf->max_degraded = 2;
5187 	else
5188 		conf->max_degraded = 1;
5189 	conf->algorithm = mddev->new_layout;
5190 	conf->max_nr_stripes = NR_STRIPES;
5191 	conf->reshape_progress = mddev->reshape_position;
5192 	if (conf->reshape_progress != MaxSector) {
5193 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5194 		conf->prev_algo = mddev->layout;
5195 	}
5196 
5197 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5198 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5199 	if (grow_stripes(conf, conf->max_nr_stripes)) {
5200 		printk(KERN_ERR
5201 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5202 		       mdname(mddev), memory);
5203 		goto abort;
5204 	} else
5205 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5206 		       mdname(mddev), memory);
5207 
5208 	sprintf(pers_name, "raid%d", mddev->new_level);
5209 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5210 	if (!conf->thread) {
5211 		printk(KERN_ERR
5212 		       "md/raid:%s: couldn't allocate thread.\n",
5213 		       mdname(mddev));
5214 		goto abort;
5215 	}
5216 
5217 	return conf;
5218 
5219  abort:
5220 	if (conf) {
5221 		free_conf(conf);
5222 		return ERR_PTR(-EIO);
5223 	} else
5224 		return ERR_PTR(-ENOMEM);
5225 }
5226 
5227 
5228 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5229 {
5230 	switch (algo) {
5231 	case ALGORITHM_PARITY_0:
5232 		if (raid_disk < max_degraded)
5233 			return 1;
5234 		break;
5235 	case ALGORITHM_PARITY_N:
5236 		if (raid_disk >= raid_disks - max_degraded)
5237 			return 1;
5238 		break;
5239 	case ALGORITHM_PARITY_0_6:
5240 		if (raid_disk == 0 ||
5241 		    raid_disk == raid_disks - 1)
5242 			return 1;
5243 		break;
5244 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5245 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5246 	case ALGORITHM_LEFT_SYMMETRIC_6:
5247 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5248 		if (raid_disk == raid_disks - 1)
5249 			return 1;
5250 	}
5251 	return 0;
5252 }
5253 
5254 static int run(struct mddev *mddev)
5255 {
5256 	struct r5conf *conf;
5257 	int working_disks = 0;
5258 	int dirty_parity_disks = 0;
5259 	struct md_rdev *rdev;
5260 	sector_t reshape_offset = 0;
5261 	int i;
5262 	long long min_offset_diff = 0;
5263 	int first = 1;
5264 
5265 	if (mddev->recovery_cp != MaxSector)
5266 		printk(KERN_NOTICE "md/raid:%s: not clean"
5267 		       " -- starting background reconstruction\n",
5268 		       mdname(mddev));
5269 
5270 	rdev_for_each(rdev, mddev) {
5271 		long long diff;
5272 		if (rdev->raid_disk < 0)
5273 			continue;
5274 		diff = (rdev->new_data_offset - rdev->data_offset);
5275 		if (first) {
5276 			min_offset_diff = diff;
5277 			first = 0;
5278 		} else if (mddev->reshape_backwards &&
5279 			 diff < min_offset_diff)
5280 			min_offset_diff = diff;
5281 		else if (!mddev->reshape_backwards &&
5282 			 diff > min_offset_diff)
5283 			min_offset_diff = diff;
5284 	}
5285 
5286 	if (mddev->reshape_position != MaxSector) {
5287 		/* Check that we can continue the reshape.
5288 		 * Difficulties arise if the stripe we would write to
5289 		 * next is at or after the stripe we would read from next.
5290 		 * For a reshape that changes the number of devices, this
5291 		 * is only possible for a very short time, and mdadm makes
5292 		 * sure that time appears to have past before assembling
5293 		 * the array.  So we fail if that time hasn't passed.
5294 		 * For a reshape that keeps the number of devices the same
5295 		 * mdadm must be monitoring the reshape can keeping the
5296 		 * critical areas read-only and backed up.  It will start
5297 		 * the array in read-only mode, so we check for that.
5298 		 */
5299 		sector_t here_new, here_old;
5300 		int old_disks;
5301 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5302 
5303 		if (mddev->new_level != mddev->level) {
5304 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5305 			       "required - aborting.\n",
5306 			       mdname(mddev));
5307 			return -EINVAL;
5308 		}
5309 		old_disks = mddev->raid_disks - mddev->delta_disks;
5310 		/* reshape_position must be on a new-stripe boundary, and one
5311 		 * further up in new geometry must map after here in old
5312 		 * geometry.
5313 		 */
5314 		here_new = mddev->reshape_position;
5315 		if (sector_div(here_new, mddev->new_chunk_sectors *
5316 			       (mddev->raid_disks - max_degraded))) {
5317 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5318 			       "on a stripe boundary\n", mdname(mddev));
5319 			return -EINVAL;
5320 		}
5321 		reshape_offset = here_new * mddev->new_chunk_sectors;
5322 		/* here_new is the stripe we will write to */
5323 		here_old = mddev->reshape_position;
5324 		sector_div(here_old, mddev->chunk_sectors *
5325 			   (old_disks-max_degraded));
5326 		/* here_old is the first stripe that we might need to read
5327 		 * from */
5328 		if (mddev->delta_disks == 0) {
5329 			if ((here_new * mddev->new_chunk_sectors !=
5330 			     here_old * mddev->chunk_sectors)) {
5331 				printk(KERN_ERR "md/raid:%s: reshape position is"
5332 				       " confused - aborting\n", mdname(mddev));
5333 				return -EINVAL;
5334 			}
5335 			/* We cannot be sure it is safe to start an in-place
5336 			 * reshape.  It is only safe if user-space is monitoring
5337 			 * and taking constant backups.
5338 			 * mdadm always starts a situation like this in
5339 			 * readonly mode so it can take control before
5340 			 * allowing any writes.  So just check for that.
5341 			 */
5342 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5343 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5344 				/* not really in-place - so OK */;
5345 			else if (mddev->ro == 0) {
5346 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5347 				       "must be started in read-only mode "
5348 				       "- aborting\n",
5349 				       mdname(mddev));
5350 				return -EINVAL;
5351 			}
5352 		} else if (mddev->reshape_backwards
5353 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5354 		       here_old * mddev->chunk_sectors)
5355 		    : (here_new * mddev->new_chunk_sectors >=
5356 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5357 			/* Reading from the same stripe as writing to - bad */
5358 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5359 			       "auto-recovery - aborting.\n",
5360 			       mdname(mddev));
5361 			return -EINVAL;
5362 		}
5363 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5364 		       mdname(mddev));
5365 		/* OK, we should be able to continue; */
5366 	} else {
5367 		BUG_ON(mddev->level != mddev->new_level);
5368 		BUG_ON(mddev->layout != mddev->new_layout);
5369 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5370 		BUG_ON(mddev->delta_disks != 0);
5371 	}
5372 
5373 	if (mddev->private == NULL)
5374 		conf = setup_conf(mddev);
5375 	else
5376 		conf = mddev->private;
5377 
5378 	if (IS_ERR(conf))
5379 		return PTR_ERR(conf);
5380 
5381 	conf->min_offset_diff = min_offset_diff;
5382 	mddev->thread = conf->thread;
5383 	conf->thread = NULL;
5384 	mddev->private = conf;
5385 
5386 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5387 	     i++) {
5388 		rdev = conf->disks[i].rdev;
5389 		if (!rdev && conf->disks[i].replacement) {
5390 			/* The replacement is all we have yet */
5391 			rdev = conf->disks[i].replacement;
5392 			conf->disks[i].replacement = NULL;
5393 			clear_bit(Replacement, &rdev->flags);
5394 			conf->disks[i].rdev = rdev;
5395 		}
5396 		if (!rdev)
5397 			continue;
5398 		if (conf->disks[i].replacement &&
5399 		    conf->reshape_progress != MaxSector) {
5400 			/* replacements and reshape simply do not mix. */
5401 			printk(KERN_ERR "md: cannot handle concurrent "
5402 			       "replacement and reshape.\n");
5403 			goto abort;
5404 		}
5405 		if (test_bit(In_sync, &rdev->flags)) {
5406 			working_disks++;
5407 			continue;
5408 		}
5409 		/* This disc is not fully in-sync.  However if it
5410 		 * just stored parity (beyond the recovery_offset),
5411 		 * when we don't need to be concerned about the
5412 		 * array being dirty.
5413 		 * When reshape goes 'backwards', we never have
5414 		 * partially completed devices, so we only need
5415 		 * to worry about reshape going forwards.
5416 		 */
5417 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5418 		if (mddev->major_version == 0 &&
5419 		    mddev->minor_version > 90)
5420 			rdev->recovery_offset = reshape_offset;
5421 
5422 		if (rdev->recovery_offset < reshape_offset) {
5423 			/* We need to check old and new layout */
5424 			if (!only_parity(rdev->raid_disk,
5425 					 conf->algorithm,
5426 					 conf->raid_disks,
5427 					 conf->max_degraded))
5428 				continue;
5429 		}
5430 		if (!only_parity(rdev->raid_disk,
5431 				 conf->prev_algo,
5432 				 conf->previous_raid_disks,
5433 				 conf->max_degraded))
5434 			continue;
5435 		dirty_parity_disks++;
5436 	}
5437 
5438 	/*
5439 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5440 	 */
5441 	mddev->degraded = calc_degraded(conf);
5442 
5443 	if (has_failed(conf)) {
5444 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5445 			" (%d/%d failed)\n",
5446 			mdname(mddev), mddev->degraded, conf->raid_disks);
5447 		goto abort;
5448 	}
5449 
5450 	/* device size must be a multiple of chunk size */
5451 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5452 	mddev->resync_max_sectors = mddev->dev_sectors;
5453 
5454 	if (mddev->degraded > dirty_parity_disks &&
5455 	    mddev->recovery_cp != MaxSector) {
5456 		if (mddev->ok_start_degraded)
5457 			printk(KERN_WARNING
5458 			       "md/raid:%s: starting dirty degraded array"
5459 			       " - data corruption possible.\n",
5460 			       mdname(mddev));
5461 		else {
5462 			printk(KERN_ERR
5463 			       "md/raid:%s: cannot start dirty degraded array.\n",
5464 			       mdname(mddev));
5465 			goto abort;
5466 		}
5467 	}
5468 
5469 	if (mddev->degraded == 0)
5470 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5471 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5472 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5473 		       mddev->new_layout);
5474 	else
5475 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5476 		       " out of %d devices, algorithm %d\n",
5477 		       mdname(mddev), conf->level,
5478 		       mddev->raid_disks - mddev->degraded,
5479 		       mddev->raid_disks, mddev->new_layout);
5480 
5481 	print_raid5_conf(conf);
5482 
5483 	if (conf->reshape_progress != MaxSector) {
5484 		conf->reshape_safe = conf->reshape_progress;
5485 		atomic_set(&conf->reshape_stripes, 0);
5486 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5487 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5488 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5489 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5490 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5491 							"reshape");
5492 	}
5493 
5494 
5495 	/* Ok, everything is just fine now */
5496 	if (mddev->to_remove == &raid5_attrs_group)
5497 		mddev->to_remove = NULL;
5498 	else if (mddev->kobj.sd &&
5499 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5500 		printk(KERN_WARNING
5501 		       "raid5: failed to create sysfs attributes for %s\n",
5502 		       mdname(mddev));
5503 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5504 
5505 	if (mddev->queue) {
5506 		int chunk_size;
5507 		bool discard_supported = true;
5508 		/* read-ahead size must cover two whole stripes, which
5509 		 * is 2 * (datadisks) * chunksize where 'n' is the
5510 		 * number of raid devices
5511 		 */
5512 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5513 		int stripe = data_disks *
5514 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5515 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5516 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5517 
5518 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5519 
5520 		mddev->queue->backing_dev_info.congested_data = mddev;
5521 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5522 
5523 		chunk_size = mddev->chunk_sectors << 9;
5524 		blk_queue_io_min(mddev->queue, chunk_size);
5525 		blk_queue_io_opt(mddev->queue, chunk_size *
5526 				 (conf->raid_disks - conf->max_degraded));
5527 		/*
5528 		 * We can only discard a whole stripe. It doesn't make sense to
5529 		 * discard data disk but write parity disk
5530 		 */
5531 		stripe = stripe * PAGE_SIZE;
5532 		mddev->queue->limits.discard_alignment = stripe;
5533 		mddev->queue->limits.discard_granularity = stripe;
5534 		/*
5535 		 * unaligned part of discard request will be ignored, so can't
5536 		 * guarantee discard_zerors_data
5537 		 */
5538 		mddev->queue->limits.discard_zeroes_data = 0;
5539 
5540 		rdev_for_each(rdev, mddev) {
5541 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5542 					  rdev->data_offset << 9);
5543 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5544 					  rdev->new_data_offset << 9);
5545 			/*
5546 			 * discard_zeroes_data is required, otherwise data
5547 			 * could be lost. Consider a scenario: discard a stripe
5548 			 * (the stripe could be inconsistent if
5549 			 * discard_zeroes_data is 0); write one disk of the
5550 			 * stripe (the stripe could be inconsistent again
5551 			 * depending on which disks are used to calculate
5552 			 * parity); the disk is broken; The stripe data of this
5553 			 * disk is lost.
5554 			 */
5555 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5556 			    !bdev_get_queue(rdev->bdev)->
5557 						limits.discard_zeroes_data)
5558 				discard_supported = false;
5559 		}
5560 
5561 		if (discard_supported &&
5562 		   mddev->queue->limits.max_discard_sectors >= stripe &&
5563 		   mddev->queue->limits.discard_granularity >= stripe)
5564 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5565 						mddev->queue);
5566 		else
5567 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5568 						mddev->queue);
5569 	}
5570 
5571 	return 0;
5572 abort:
5573 	md_unregister_thread(&mddev->thread);
5574 	print_raid5_conf(conf);
5575 	free_conf(conf);
5576 	mddev->private = NULL;
5577 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5578 	return -EIO;
5579 }
5580 
5581 static int stop(struct mddev *mddev)
5582 {
5583 	struct r5conf *conf = mddev->private;
5584 
5585 	md_unregister_thread(&mddev->thread);
5586 	if (mddev->queue)
5587 		mddev->queue->backing_dev_info.congested_fn = NULL;
5588 	free_conf(conf);
5589 	mddev->private = NULL;
5590 	mddev->to_remove = &raid5_attrs_group;
5591 	return 0;
5592 }
5593 
5594 static void status(struct seq_file *seq, struct mddev *mddev)
5595 {
5596 	struct r5conf *conf = mddev->private;
5597 	int i;
5598 
5599 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5600 		mddev->chunk_sectors / 2, mddev->layout);
5601 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5602 	for (i = 0; i < conf->raid_disks; i++)
5603 		seq_printf (seq, "%s",
5604 			       conf->disks[i].rdev &&
5605 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5606 	seq_printf (seq, "]");
5607 }
5608 
5609 static void print_raid5_conf (struct r5conf *conf)
5610 {
5611 	int i;
5612 	struct disk_info *tmp;
5613 
5614 	printk(KERN_DEBUG "RAID conf printout:\n");
5615 	if (!conf) {
5616 		printk("(conf==NULL)\n");
5617 		return;
5618 	}
5619 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5620 	       conf->raid_disks,
5621 	       conf->raid_disks - conf->mddev->degraded);
5622 
5623 	for (i = 0; i < conf->raid_disks; i++) {
5624 		char b[BDEVNAME_SIZE];
5625 		tmp = conf->disks + i;
5626 		if (tmp->rdev)
5627 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5628 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5629 			       bdevname(tmp->rdev->bdev, b));
5630 	}
5631 }
5632 
5633 static int raid5_spare_active(struct mddev *mddev)
5634 {
5635 	int i;
5636 	struct r5conf *conf = mddev->private;
5637 	struct disk_info *tmp;
5638 	int count = 0;
5639 	unsigned long flags;
5640 
5641 	for (i = 0; i < conf->raid_disks; i++) {
5642 		tmp = conf->disks + i;
5643 		if (tmp->replacement
5644 		    && tmp->replacement->recovery_offset == MaxSector
5645 		    && !test_bit(Faulty, &tmp->replacement->flags)
5646 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5647 			/* Replacement has just become active. */
5648 			if (!tmp->rdev
5649 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5650 				count++;
5651 			if (tmp->rdev) {
5652 				/* Replaced device not technically faulty,
5653 				 * but we need to be sure it gets removed
5654 				 * and never re-added.
5655 				 */
5656 				set_bit(Faulty, &tmp->rdev->flags);
5657 				sysfs_notify_dirent_safe(
5658 					tmp->rdev->sysfs_state);
5659 			}
5660 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5661 		} else if (tmp->rdev
5662 		    && tmp->rdev->recovery_offset == MaxSector
5663 		    && !test_bit(Faulty, &tmp->rdev->flags)
5664 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5665 			count++;
5666 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5667 		}
5668 	}
5669 	spin_lock_irqsave(&conf->device_lock, flags);
5670 	mddev->degraded = calc_degraded(conf);
5671 	spin_unlock_irqrestore(&conf->device_lock, flags);
5672 	print_raid5_conf(conf);
5673 	return count;
5674 }
5675 
5676 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5677 {
5678 	struct r5conf *conf = mddev->private;
5679 	int err = 0;
5680 	int number = rdev->raid_disk;
5681 	struct md_rdev **rdevp;
5682 	struct disk_info *p = conf->disks + number;
5683 
5684 	print_raid5_conf(conf);
5685 	if (rdev == p->rdev)
5686 		rdevp = &p->rdev;
5687 	else if (rdev == p->replacement)
5688 		rdevp = &p->replacement;
5689 	else
5690 		return 0;
5691 
5692 	if (number >= conf->raid_disks &&
5693 	    conf->reshape_progress == MaxSector)
5694 		clear_bit(In_sync, &rdev->flags);
5695 
5696 	if (test_bit(In_sync, &rdev->flags) ||
5697 	    atomic_read(&rdev->nr_pending)) {
5698 		err = -EBUSY;
5699 		goto abort;
5700 	}
5701 	/* Only remove non-faulty devices if recovery
5702 	 * isn't possible.
5703 	 */
5704 	if (!test_bit(Faulty, &rdev->flags) &&
5705 	    mddev->recovery_disabled != conf->recovery_disabled &&
5706 	    !has_failed(conf) &&
5707 	    (!p->replacement || p->replacement == rdev) &&
5708 	    number < conf->raid_disks) {
5709 		err = -EBUSY;
5710 		goto abort;
5711 	}
5712 	*rdevp = NULL;
5713 	synchronize_rcu();
5714 	if (atomic_read(&rdev->nr_pending)) {
5715 		/* lost the race, try later */
5716 		err = -EBUSY;
5717 		*rdevp = rdev;
5718 	} else if (p->replacement) {
5719 		/* We must have just cleared 'rdev' */
5720 		p->rdev = p->replacement;
5721 		clear_bit(Replacement, &p->replacement->flags);
5722 		smp_mb(); /* Make sure other CPUs may see both as identical
5723 			   * but will never see neither - if they are careful
5724 			   */
5725 		p->replacement = NULL;
5726 		clear_bit(WantReplacement, &rdev->flags);
5727 	} else
5728 		/* We might have just removed the Replacement as faulty-
5729 		 * clear the bit just in case
5730 		 */
5731 		clear_bit(WantReplacement, &rdev->flags);
5732 abort:
5733 
5734 	print_raid5_conf(conf);
5735 	return err;
5736 }
5737 
5738 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5739 {
5740 	struct r5conf *conf = mddev->private;
5741 	int err = -EEXIST;
5742 	int disk;
5743 	struct disk_info *p;
5744 	int first = 0;
5745 	int last = conf->raid_disks - 1;
5746 
5747 	if (mddev->recovery_disabled == conf->recovery_disabled)
5748 		return -EBUSY;
5749 
5750 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
5751 		/* no point adding a device */
5752 		return -EINVAL;
5753 
5754 	if (rdev->raid_disk >= 0)
5755 		first = last = rdev->raid_disk;
5756 
5757 	/*
5758 	 * find the disk ... but prefer rdev->saved_raid_disk
5759 	 * if possible.
5760 	 */
5761 	if (rdev->saved_raid_disk >= 0 &&
5762 	    rdev->saved_raid_disk >= first &&
5763 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5764 		first = rdev->saved_raid_disk;
5765 
5766 	for (disk = first; disk <= last; disk++) {
5767 		p = conf->disks + disk;
5768 		if (p->rdev == NULL) {
5769 			clear_bit(In_sync, &rdev->flags);
5770 			rdev->raid_disk = disk;
5771 			err = 0;
5772 			if (rdev->saved_raid_disk != disk)
5773 				conf->fullsync = 1;
5774 			rcu_assign_pointer(p->rdev, rdev);
5775 			goto out;
5776 		}
5777 	}
5778 	for (disk = first; disk <= last; disk++) {
5779 		p = conf->disks + disk;
5780 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5781 		    p->replacement == NULL) {
5782 			clear_bit(In_sync, &rdev->flags);
5783 			set_bit(Replacement, &rdev->flags);
5784 			rdev->raid_disk = disk;
5785 			err = 0;
5786 			conf->fullsync = 1;
5787 			rcu_assign_pointer(p->replacement, rdev);
5788 			break;
5789 		}
5790 	}
5791 out:
5792 	print_raid5_conf(conf);
5793 	return err;
5794 }
5795 
5796 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5797 {
5798 	/* no resync is happening, and there is enough space
5799 	 * on all devices, so we can resize.
5800 	 * We need to make sure resync covers any new space.
5801 	 * If the array is shrinking we should possibly wait until
5802 	 * any io in the removed space completes, but it hardly seems
5803 	 * worth it.
5804 	 */
5805 	sector_t newsize;
5806 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5807 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5808 	if (mddev->external_size &&
5809 	    mddev->array_sectors > newsize)
5810 		return -EINVAL;
5811 	if (mddev->bitmap) {
5812 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5813 		if (ret)
5814 			return ret;
5815 	}
5816 	md_set_array_sectors(mddev, newsize);
5817 	set_capacity(mddev->gendisk, mddev->array_sectors);
5818 	revalidate_disk(mddev->gendisk);
5819 	if (sectors > mddev->dev_sectors &&
5820 	    mddev->recovery_cp > mddev->dev_sectors) {
5821 		mddev->recovery_cp = mddev->dev_sectors;
5822 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5823 	}
5824 	mddev->dev_sectors = sectors;
5825 	mddev->resync_max_sectors = sectors;
5826 	return 0;
5827 }
5828 
5829 static int check_stripe_cache(struct mddev *mddev)
5830 {
5831 	/* Can only proceed if there are plenty of stripe_heads.
5832 	 * We need a minimum of one full stripe,, and for sensible progress
5833 	 * it is best to have about 4 times that.
5834 	 * If we require 4 times, then the default 256 4K stripe_heads will
5835 	 * allow for chunk sizes up to 256K, which is probably OK.
5836 	 * If the chunk size is greater, user-space should request more
5837 	 * stripe_heads first.
5838 	 */
5839 	struct r5conf *conf = mddev->private;
5840 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5841 	    > conf->max_nr_stripes ||
5842 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5843 	    > conf->max_nr_stripes) {
5844 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5845 		       mdname(mddev),
5846 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5847 			/ STRIPE_SIZE)*4);
5848 		return 0;
5849 	}
5850 	return 1;
5851 }
5852 
5853 static int check_reshape(struct mddev *mddev)
5854 {
5855 	struct r5conf *conf = mddev->private;
5856 
5857 	if (mddev->delta_disks == 0 &&
5858 	    mddev->new_layout == mddev->layout &&
5859 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5860 		return 0; /* nothing to do */
5861 	if (has_failed(conf))
5862 		return -EINVAL;
5863 	if (mddev->delta_disks < 0) {
5864 		/* We might be able to shrink, but the devices must
5865 		 * be made bigger first.
5866 		 * For raid6, 4 is the minimum size.
5867 		 * Otherwise 2 is the minimum
5868 		 */
5869 		int min = 2;
5870 		if (mddev->level == 6)
5871 			min = 4;
5872 		if (mddev->raid_disks + mddev->delta_disks < min)
5873 			return -EINVAL;
5874 	}
5875 
5876 	if (!check_stripe_cache(mddev))
5877 		return -ENOSPC;
5878 
5879 	return resize_stripes(conf, (conf->previous_raid_disks
5880 				     + mddev->delta_disks));
5881 }
5882 
5883 static int raid5_start_reshape(struct mddev *mddev)
5884 {
5885 	struct r5conf *conf = mddev->private;
5886 	struct md_rdev *rdev;
5887 	int spares = 0;
5888 	unsigned long flags;
5889 
5890 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5891 		return -EBUSY;
5892 
5893 	if (!check_stripe_cache(mddev))
5894 		return -ENOSPC;
5895 
5896 	if (has_failed(conf))
5897 		return -EINVAL;
5898 
5899 	rdev_for_each(rdev, mddev) {
5900 		if (!test_bit(In_sync, &rdev->flags)
5901 		    && !test_bit(Faulty, &rdev->flags))
5902 			spares++;
5903 	}
5904 
5905 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5906 		/* Not enough devices even to make a degraded array
5907 		 * of that size
5908 		 */
5909 		return -EINVAL;
5910 
5911 	/* Refuse to reduce size of the array.  Any reductions in
5912 	 * array size must be through explicit setting of array_size
5913 	 * attribute.
5914 	 */
5915 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5916 	    < mddev->array_sectors) {
5917 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5918 		       "before number of disks\n", mdname(mddev));
5919 		return -EINVAL;
5920 	}
5921 
5922 	atomic_set(&conf->reshape_stripes, 0);
5923 	spin_lock_irq(&conf->device_lock);
5924 	conf->previous_raid_disks = conf->raid_disks;
5925 	conf->raid_disks += mddev->delta_disks;
5926 	conf->prev_chunk_sectors = conf->chunk_sectors;
5927 	conf->chunk_sectors = mddev->new_chunk_sectors;
5928 	conf->prev_algo = conf->algorithm;
5929 	conf->algorithm = mddev->new_layout;
5930 	conf->generation++;
5931 	/* Code that selects data_offset needs to see the generation update
5932 	 * if reshape_progress has been set - so a memory barrier needed.
5933 	 */
5934 	smp_mb();
5935 	if (mddev->reshape_backwards)
5936 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5937 	else
5938 		conf->reshape_progress = 0;
5939 	conf->reshape_safe = conf->reshape_progress;
5940 	spin_unlock_irq(&conf->device_lock);
5941 
5942 	/* Add some new drives, as many as will fit.
5943 	 * We know there are enough to make the newly sized array work.
5944 	 * Don't add devices if we are reducing the number of
5945 	 * devices in the array.  This is because it is not possible
5946 	 * to correctly record the "partially reconstructed" state of
5947 	 * such devices during the reshape and confusion could result.
5948 	 */
5949 	if (mddev->delta_disks >= 0) {
5950 		rdev_for_each(rdev, mddev)
5951 			if (rdev->raid_disk < 0 &&
5952 			    !test_bit(Faulty, &rdev->flags)) {
5953 				if (raid5_add_disk(mddev, rdev) == 0) {
5954 					if (rdev->raid_disk
5955 					    >= conf->previous_raid_disks)
5956 						set_bit(In_sync, &rdev->flags);
5957 					else
5958 						rdev->recovery_offset = 0;
5959 
5960 					if (sysfs_link_rdev(mddev, rdev))
5961 						/* Failure here is OK */;
5962 				}
5963 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5964 				   && !test_bit(Faulty, &rdev->flags)) {
5965 				/* This is a spare that was manually added */
5966 				set_bit(In_sync, &rdev->flags);
5967 			}
5968 
5969 		/* When a reshape changes the number of devices,
5970 		 * ->degraded is measured against the larger of the
5971 		 * pre and post number of devices.
5972 		 */
5973 		spin_lock_irqsave(&conf->device_lock, flags);
5974 		mddev->degraded = calc_degraded(conf);
5975 		spin_unlock_irqrestore(&conf->device_lock, flags);
5976 	}
5977 	mddev->raid_disks = conf->raid_disks;
5978 	mddev->reshape_position = conf->reshape_progress;
5979 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5980 
5981 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5982 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5983 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5984 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5985 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5986 						"reshape");
5987 	if (!mddev->sync_thread) {
5988 		mddev->recovery = 0;
5989 		spin_lock_irq(&conf->device_lock);
5990 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5991 		rdev_for_each(rdev, mddev)
5992 			rdev->new_data_offset = rdev->data_offset;
5993 		smp_wmb();
5994 		conf->reshape_progress = MaxSector;
5995 		mddev->reshape_position = MaxSector;
5996 		spin_unlock_irq(&conf->device_lock);
5997 		return -EAGAIN;
5998 	}
5999 	conf->reshape_checkpoint = jiffies;
6000 	md_wakeup_thread(mddev->sync_thread);
6001 	md_new_event(mddev);
6002 	return 0;
6003 }
6004 
6005 /* This is called from the reshape thread and should make any
6006  * changes needed in 'conf'
6007  */
6008 static void end_reshape(struct r5conf *conf)
6009 {
6010 
6011 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6012 		struct md_rdev *rdev;
6013 
6014 		spin_lock_irq(&conf->device_lock);
6015 		conf->previous_raid_disks = conf->raid_disks;
6016 		rdev_for_each(rdev, conf->mddev)
6017 			rdev->data_offset = rdev->new_data_offset;
6018 		smp_wmb();
6019 		conf->reshape_progress = MaxSector;
6020 		spin_unlock_irq(&conf->device_lock);
6021 		wake_up(&conf->wait_for_overlap);
6022 
6023 		/* read-ahead size must cover two whole stripes, which is
6024 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6025 		 */
6026 		if (conf->mddev->queue) {
6027 			int data_disks = conf->raid_disks - conf->max_degraded;
6028 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6029 						   / PAGE_SIZE);
6030 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6031 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6032 		}
6033 	}
6034 }
6035 
6036 /* This is called from the raid5d thread with mddev_lock held.
6037  * It makes config changes to the device.
6038  */
6039 static void raid5_finish_reshape(struct mddev *mddev)
6040 {
6041 	struct r5conf *conf = mddev->private;
6042 
6043 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6044 
6045 		if (mddev->delta_disks > 0) {
6046 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6047 			set_capacity(mddev->gendisk, mddev->array_sectors);
6048 			revalidate_disk(mddev->gendisk);
6049 		} else {
6050 			int d;
6051 			spin_lock_irq(&conf->device_lock);
6052 			mddev->degraded = calc_degraded(conf);
6053 			spin_unlock_irq(&conf->device_lock);
6054 			for (d = conf->raid_disks ;
6055 			     d < conf->raid_disks - mddev->delta_disks;
6056 			     d++) {
6057 				struct md_rdev *rdev = conf->disks[d].rdev;
6058 				if (rdev)
6059 					clear_bit(In_sync, &rdev->flags);
6060 				rdev = conf->disks[d].replacement;
6061 				if (rdev)
6062 					clear_bit(In_sync, &rdev->flags);
6063 			}
6064 		}
6065 		mddev->layout = conf->algorithm;
6066 		mddev->chunk_sectors = conf->chunk_sectors;
6067 		mddev->reshape_position = MaxSector;
6068 		mddev->delta_disks = 0;
6069 		mddev->reshape_backwards = 0;
6070 	}
6071 }
6072 
6073 static void raid5_quiesce(struct mddev *mddev, int state)
6074 {
6075 	struct r5conf *conf = mddev->private;
6076 
6077 	switch(state) {
6078 	case 2: /* resume for a suspend */
6079 		wake_up(&conf->wait_for_overlap);
6080 		break;
6081 
6082 	case 1: /* stop all writes */
6083 		spin_lock_irq(&conf->device_lock);
6084 		/* '2' tells resync/reshape to pause so that all
6085 		 * active stripes can drain
6086 		 */
6087 		conf->quiesce = 2;
6088 		wait_event_lock_irq(conf->wait_for_stripe,
6089 				    atomic_read(&conf->active_stripes) == 0 &&
6090 				    atomic_read(&conf->active_aligned_reads) == 0,
6091 				    conf->device_lock, /* nothing */);
6092 		conf->quiesce = 1;
6093 		spin_unlock_irq(&conf->device_lock);
6094 		/* allow reshape to continue */
6095 		wake_up(&conf->wait_for_overlap);
6096 		break;
6097 
6098 	case 0: /* re-enable writes */
6099 		spin_lock_irq(&conf->device_lock);
6100 		conf->quiesce = 0;
6101 		wake_up(&conf->wait_for_stripe);
6102 		wake_up(&conf->wait_for_overlap);
6103 		spin_unlock_irq(&conf->device_lock);
6104 		break;
6105 	}
6106 }
6107 
6108 
6109 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6110 {
6111 	struct r0conf *raid0_conf = mddev->private;
6112 	sector_t sectors;
6113 
6114 	/* for raid0 takeover only one zone is supported */
6115 	if (raid0_conf->nr_strip_zones > 1) {
6116 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6117 		       mdname(mddev));
6118 		return ERR_PTR(-EINVAL);
6119 	}
6120 
6121 	sectors = raid0_conf->strip_zone[0].zone_end;
6122 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6123 	mddev->dev_sectors = sectors;
6124 	mddev->new_level = level;
6125 	mddev->new_layout = ALGORITHM_PARITY_N;
6126 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6127 	mddev->raid_disks += 1;
6128 	mddev->delta_disks = 1;
6129 	/* make sure it will be not marked as dirty */
6130 	mddev->recovery_cp = MaxSector;
6131 
6132 	return setup_conf(mddev);
6133 }
6134 
6135 
6136 static void *raid5_takeover_raid1(struct mddev *mddev)
6137 {
6138 	int chunksect;
6139 
6140 	if (mddev->raid_disks != 2 ||
6141 	    mddev->degraded > 1)
6142 		return ERR_PTR(-EINVAL);
6143 
6144 	/* Should check if there are write-behind devices? */
6145 
6146 	chunksect = 64*2; /* 64K by default */
6147 
6148 	/* The array must be an exact multiple of chunksize */
6149 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6150 		chunksect >>= 1;
6151 
6152 	if ((chunksect<<9) < STRIPE_SIZE)
6153 		/* array size does not allow a suitable chunk size */
6154 		return ERR_PTR(-EINVAL);
6155 
6156 	mddev->new_level = 5;
6157 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6158 	mddev->new_chunk_sectors = chunksect;
6159 
6160 	return setup_conf(mddev);
6161 }
6162 
6163 static void *raid5_takeover_raid6(struct mddev *mddev)
6164 {
6165 	int new_layout;
6166 
6167 	switch (mddev->layout) {
6168 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6169 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6170 		break;
6171 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6172 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6173 		break;
6174 	case ALGORITHM_LEFT_SYMMETRIC_6:
6175 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6176 		break;
6177 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6178 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6179 		break;
6180 	case ALGORITHM_PARITY_0_6:
6181 		new_layout = ALGORITHM_PARITY_0;
6182 		break;
6183 	case ALGORITHM_PARITY_N:
6184 		new_layout = ALGORITHM_PARITY_N;
6185 		break;
6186 	default:
6187 		return ERR_PTR(-EINVAL);
6188 	}
6189 	mddev->new_level = 5;
6190 	mddev->new_layout = new_layout;
6191 	mddev->delta_disks = -1;
6192 	mddev->raid_disks -= 1;
6193 	return setup_conf(mddev);
6194 }
6195 
6196 
6197 static int raid5_check_reshape(struct mddev *mddev)
6198 {
6199 	/* For a 2-drive array, the layout and chunk size can be changed
6200 	 * immediately as not restriping is needed.
6201 	 * For larger arrays we record the new value - after validation
6202 	 * to be used by a reshape pass.
6203 	 */
6204 	struct r5conf *conf = mddev->private;
6205 	int new_chunk = mddev->new_chunk_sectors;
6206 
6207 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6208 		return -EINVAL;
6209 	if (new_chunk > 0) {
6210 		if (!is_power_of_2(new_chunk))
6211 			return -EINVAL;
6212 		if (new_chunk < (PAGE_SIZE>>9))
6213 			return -EINVAL;
6214 		if (mddev->array_sectors & (new_chunk-1))
6215 			/* not factor of array size */
6216 			return -EINVAL;
6217 	}
6218 
6219 	/* They look valid */
6220 
6221 	if (mddev->raid_disks == 2) {
6222 		/* can make the change immediately */
6223 		if (mddev->new_layout >= 0) {
6224 			conf->algorithm = mddev->new_layout;
6225 			mddev->layout = mddev->new_layout;
6226 		}
6227 		if (new_chunk > 0) {
6228 			conf->chunk_sectors = new_chunk ;
6229 			mddev->chunk_sectors = new_chunk;
6230 		}
6231 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6232 		md_wakeup_thread(mddev->thread);
6233 	}
6234 	return check_reshape(mddev);
6235 }
6236 
6237 static int raid6_check_reshape(struct mddev *mddev)
6238 {
6239 	int new_chunk = mddev->new_chunk_sectors;
6240 
6241 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6242 		return -EINVAL;
6243 	if (new_chunk > 0) {
6244 		if (!is_power_of_2(new_chunk))
6245 			return -EINVAL;
6246 		if (new_chunk < (PAGE_SIZE >> 9))
6247 			return -EINVAL;
6248 		if (mddev->array_sectors & (new_chunk-1))
6249 			/* not factor of array size */
6250 			return -EINVAL;
6251 	}
6252 
6253 	/* They look valid */
6254 	return check_reshape(mddev);
6255 }
6256 
6257 static void *raid5_takeover(struct mddev *mddev)
6258 {
6259 	/* raid5 can take over:
6260 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6261 	 *  raid1 - if there are two drives.  We need to know the chunk size
6262 	 *  raid4 - trivial - just use a raid4 layout.
6263 	 *  raid6 - Providing it is a *_6 layout
6264 	 */
6265 	if (mddev->level == 0)
6266 		return raid45_takeover_raid0(mddev, 5);
6267 	if (mddev->level == 1)
6268 		return raid5_takeover_raid1(mddev);
6269 	if (mddev->level == 4) {
6270 		mddev->new_layout = ALGORITHM_PARITY_N;
6271 		mddev->new_level = 5;
6272 		return setup_conf(mddev);
6273 	}
6274 	if (mddev->level == 6)
6275 		return raid5_takeover_raid6(mddev);
6276 
6277 	return ERR_PTR(-EINVAL);
6278 }
6279 
6280 static void *raid4_takeover(struct mddev *mddev)
6281 {
6282 	/* raid4 can take over:
6283 	 *  raid0 - if there is only one strip zone
6284 	 *  raid5 - if layout is right
6285 	 */
6286 	if (mddev->level == 0)
6287 		return raid45_takeover_raid0(mddev, 4);
6288 	if (mddev->level == 5 &&
6289 	    mddev->layout == ALGORITHM_PARITY_N) {
6290 		mddev->new_layout = 0;
6291 		mddev->new_level = 4;
6292 		return setup_conf(mddev);
6293 	}
6294 	return ERR_PTR(-EINVAL);
6295 }
6296 
6297 static struct md_personality raid5_personality;
6298 
6299 static void *raid6_takeover(struct mddev *mddev)
6300 {
6301 	/* Currently can only take over a raid5.  We map the
6302 	 * personality to an equivalent raid6 personality
6303 	 * with the Q block at the end.
6304 	 */
6305 	int new_layout;
6306 
6307 	if (mddev->pers != &raid5_personality)
6308 		return ERR_PTR(-EINVAL);
6309 	if (mddev->degraded > 1)
6310 		return ERR_PTR(-EINVAL);
6311 	if (mddev->raid_disks > 253)
6312 		return ERR_PTR(-EINVAL);
6313 	if (mddev->raid_disks < 3)
6314 		return ERR_PTR(-EINVAL);
6315 
6316 	switch (mddev->layout) {
6317 	case ALGORITHM_LEFT_ASYMMETRIC:
6318 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6319 		break;
6320 	case ALGORITHM_RIGHT_ASYMMETRIC:
6321 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6322 		break;
6323 	case ALGORITHM_LEFT_SYMMETRIC:
6324 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6325 		break;
6326 	case ALGORITHM_RIGHT_SYMMETRIC:
6327 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6328 		break;
6329 	case ALGORITHM_PARITY_0:
6330 		new_layout = ALGORITHM_PARITY_0_6;
6331 		break;
6332 	case ALGORITHM_PARITY_N:
6333 		new_layout = ALGORITHM_PARITY_N;
6334 		break;
6335 	default:
6336 		return ERR_PTR(-EINVAL);
6337 	}
6338 	mddev->new_level = 6;
6339 	mddev->new_layout = new_layout;
6340 	mddev->delta_disks = 1;
6341 	mddev->raid_disks += 1;
6342 	return setup_conf(mddev);
6343 }
6344 
6345 
6346 static struct md_personality raid6_personality =
6347 {
6348 	.name		= "raid6",
6349 	.level		= 6,
6350 	.owner		= THIS_MODULE,
6351 	.make_request	= make_request,
6352 	.run		= run,
6353 	.stop		= stop,
6354 	.status		= status,
6355 	.error_handler	= error,
6356 	.hot_add_disk	= raid5_add_disk,
6357 	.hot_remove_disk= raid5_remove_disk,
6358 	.spare_active	= raid5_spare_active,
6359 	.sync_request	= sync_request,
6360 	.resize		= raid5_resize,
6361 	.size		= raid5_size,
6362 	.check_reshape	= raid6_check_reshape,
6363 	.start_reshape  = raid5_start_reshape,
6364 	.finish_reshape = raid5_finish_reshape,
6365 	.quiesce	= raid5_quiesce,
6366 	.takeover	= raid6_takeover,
6367 };
6368 static struct md_personality raid5_personality =
6369 {
6370 	.name		= "raid5",
6371 	.level		= 5,
6372 	.owner		= THIS_MODULE,
6373 	.make_request	= make_request,
6374 	.run		= run,
6375 	.stop		= stop,
6376 	.status		= status,
6377 	.error_handler	= error,
6378 	.hot_add_disk	= raid5_add_disk,
6379 	.hot_remove_disk= raid5_remove_disk,
6380 	.spare_active	= raid5_spare_active,
6381 	.sync_request	= sync_request,
6382 	.resize		= raid5_resize,
6383 	.size		= raid5_size,
6384 	.check_reshape	= raid5_check_reshape,
6385 	.start_reshape  = raid5_start_reshape,
6386 	.finish_reshape = raid5_finish_reshape,
6387 	.quiesce	= raid5_quiesce,
6388 	.takeover	= raid5_takeover,
6389 };
6390 
6391 static struct md_personality raid4_personality =
6392 {
6393 	.name		= "raid4",
6394 	.level		= 4,
6395 	.owner		= THIS_MODULE,
6396 	.make_request	= make_request,
6397 	.run		= run,
6398 	.stop		= stop,
6399 	.status		= status,
6400 	.error_handler	= error,
6401 	.hot_add_disk	= raid5_add_disk,
6402 	.hot_remove_disk= raid5_remove_disk,
6403 	.spare_active	= raid5_spare_active,
6404 	.sync_request	= sync_request,
6405 	.resize		= raid5_resize,
6406 	.size		= raid5_size,
6407 	.check_reshape	= raid5_check_reshape,
6408 	.start_reshape  = raid5_start_reshape,
6409 	.finish_reshape = raid5_finish_reshape,
6410 	.quiesce	= raid5_quiesce,
6411 	.takeover	= raid4_takeover,
6412 };
6413 
6414 static int __init raid5_init(void)
6415 {
6416 	register_md_personality(&raid6_personality);
6417 	register_md_personality(&raid5_personality);
6418 	register_md_personality(&raid4_personality);
6419 	return 0;
6420 }
6421 
6422 static void raid5_exit(void)
6423 {
6424 	unregister_md_personality(&raid6_personality);
6425 	unregister_md_personality(&raid5_personality);
6426 	unregister_md_personality(&raid4_personality);
6427 }
6428 
6429 module_init(raid5_init);
6430 module_exit(raid5_exit);
6431 MODULE_LICENSE("GPL");
6432 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6433 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6434 MODULE_ALIAS("md-raid5");
6435 MODULE_ALIAS("md-raid4");
6436 MODULE_ALIAS("md-level-5");
6437 MODULE_ALIAS("md-level-4");
6438 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6439 MODULE_ALIAS("md-raid6");
6440 MODULE_ALIAS("md-level-6");
6441 
6442 /* This used to be two separate modules, they were: */
6443 MODULE_ALIAS("raid5");
6444 MODULE_ALIAS("raid6");
6445