xref: /linux/drivers/md/raid5.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	local_irq_disable();
114 	spin_lock(conf->hash_locks);
115 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 	spin_lock(&conf->device_lock);
118 }
119 
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 	int i;
123 	spin_unlock(&conf->device_lock);
124 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 		spin_unlock(conf->hash_locks + i - 1);
126 	local_irq_enable();
127 }
128 
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 	int sectors = bio_sectors(bio);
141 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 		return bio->bi_next;
143 	else
144 		return NULL;
145 }
146 
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 	return (atomic_read(segments) >> 16) & 0xffff;
155 }
156 
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 	return atomic_sub_return(1, segments) & 0xffff;
161 }
162 
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 	atomic_inc(segments);
167 }
168 
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 	unsigned int cnt)
171 {
172 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 	int old, new;
174 
175 	do {
176 		old = atomic_read(segments);
177 		new = (old & 0xffff) | (cnt << 16);
178 	} while (atomic_cmpxchg(segments, old, new) != old);
179 }
180 
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 	atomic_set(segments, cnt);
185 }
186 
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 	if (sh->ddf_layout)
191 		/* ddf always start from first device */
192 		return 0;
193 	/* md starts just after Q block */
194 	if (sh->qd_idx == sh->disks - 1)
195 		return 0;
196 	else
197 		return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 	disk++;
202 	return (disk < raid_disks) ? disk : 0;
203 }
204 
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 			     int *count, int syndrome_disks)
212 {
213 	int slot = *count;
214 
215 	if (sh->ddf_layout)
216 		(*count)++;
217 	if (idx == sh->pd_idx)
218 		return syndrome_disks;
219 	if (idx == sh->qd_idx)
220 		return syndrome_disks + 1;
221 	if (!sh->ddf_layout)
222 		(*count)++;
223 	return slot;
224 }
225 
226 static void return_io(struct bio_list *return_bi)
227 {
228 	struct bio *bi;
229 	while ((bi = bio_list_pop(return_bi)) != NULL) {
230 		bi->bi_iter.bi_size = 0;
231 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 					 bi, 0);
233 		bio_endio(bi);
234 	}
235 }
236 
237 static void print_raid5_conf (struct r5conf *conf);
238 
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 	return sh->check_state || sh->reconstruct_state ||
242 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245 
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 	struct r5conf *conf = sh->raid_conf;
249 	struct r5worker_group *group;
250 	int thread_cnt;
251 	int i, cpu = sh->cpu;
252 
253 	if (!cpu_online(cpu)) {
254 		cpu = cpumask_any(cpu_online_mask);
255 		sh->cpu = cpu;
256 	}
257 
258 	if (list_empty(&sh->lru)) {
259 		struct r5worker_group *group;
260 		group = conf->worker_groups + cpu_to_group(cpu);
261 		list_add_tail(&sh->lru, &group->handle_list);
262 		group->stripes_cnt++;
263 		sh->group = group;
264 	}
265 
266 	if (conf->worker_cnt_per_group == 0) {
267 		md_wakeup_thread(conf->mddev->thread);
268 		return;
269 	}
270 
271 	group = conf->worker_groups + cpu_to_group(sh->cpu);
272 
273 	group->workers[0].working = true;
274 	/* at least one worker should run to avoid race */
275 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276 
277 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 	/* wakeup more workers */
279 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 		if (group->workers[i].working == false) {
281 			group->workers[i].working = true;
282 			queue_work_on(sh->cpu, raid5_wq,
283 				      &group->workers[i].work);
284 			thread_cnt--;
285 		}
286 	}
287 }
288 
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 			      struct list_head *temp_inactive_list)
291 {
292 	BUG_ON(!list_empty(&sh->lru));
293 	BUG_ON(atomic_read(&conf->active_stripes)==0);
294 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 			list_add_tail(&sh->lru, &conf->delayed_list);
298 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 			   sh->bm_seq - conf->seq_write > 0)
300 			list_add_tail(&sh->lru, &conf->bitmap_list);
301 		else {
302 			clear_bit(STRIPE_DELAYED, &sh->state);
303 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 			if (conf->worker_cnt_per_group == 0) {
305 				list_add_tail(&sh->lru, &conf->handle_list);
306 			} else {
307 				raid5_wakeup_stripe_thread(sh);
308 				return;
309 			}
310 		}
311 		md_wakeup_thread(conf->mddev->thread);
312 	} else {
313 		BUG_ON(stripe_operations_active(sh));
314 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 			if (atomic_dec_return(&conf->preread_active_stripes)
316 			    < IO_THRESHOLD)
317 				md_wakeup_thread(conf->mddev->thread);
318 		atomic_dec(&conf->active_stripes);
319 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 			list_add_tail(&sh->lru, temp_inactive_list);
321 	}
322 }
323 
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 			     struct list_head *temp_inactive_list)
326 {
327 	if (atomic_dec_and_test(&sh->count))
328 		do_release_stripe(conf, sh, temp_inactive_list);
329 }
330 
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 					 struct list_head *temp_inactive_list,
340 					 int hash)
341 {
342 	int size;
343 	bool do_wakeup = false;
344 	unsigned long flags;
345 
346 	if (hash == NR_STRIPE_HASH_LOCKS) {
347 		size = NR_STRIPE_HASH_LOCKS;
348 		hash = NR_STRIPE_HASH_LOCKS - 1;
349 	} else
350 		size = 1;
351 	while (size) {
352 		struct list_head *list = &temp_inactive_list[size - 1];
353 
354 		/*
355 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
356 		 * remove stripes from the list
357 		 */
358 		if (!list_empty_careful(list)) {
359 			spin_lock_irqsave(conf->hash_locks + hash, flags);
360 			if (list_empty(conf->inactive_list + hash) &&
361 			    !list_empty(list))
362 				atomic_dec(&conf->empty_inactive_list_nr);
363 			list_splice_tail_init(list, conf->inactive_list + hash);
364 			do_wakeup = true;
365 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366 		}
367 		size--;
368 		hash--;
369 	}
370 
371 	if (do_wakeup) {
372 		wake_up(&conf->wait_for_stripe);
373 		if (atomic_read(&conf->active_stripes) == 0)
374 			wake_up(&conf->wait_for_quiescent);
375 		if (conf->retry_read_aligned)
376 			md_wakeup_thread(conf->mddev->thread);
377 	}
378 }
379 
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382 			       struct list_head *temp_inactive_list)
383 {
384 	struct stripe_head *sh;
385 	int count = 0;
386 	struct llist_node *head;
387 
388 	head = llist_del_all(&conf->released_stripes);
389 	head = llist_reverse_order(head);
390 	while (head) {
391 		int hash;
392 
393 		sh = llist_entry(head, struct stripe_head, release_list);
394 		head = llist_next(head);
395 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 		smp_mb();
397 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 		/*
399 		 * Don't worry the bit is set here, because if the bit is set
400 		 * again, the count is always > 1. This is true for
401 		 * STRIPE_ON_UNPLUG_LIST bit too.
402 		 */
403 		hash = sh->hash_lock_index;
404 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
405 		count++;
406 	}
407 
408 	return count;
409 }
410 
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413 	struct r5conf *conf = sh->raid_conf;
414 	unsigned long flags;
415 	struct list_head list;
416 	int hash;
417 	bool wakeup;
418 
419 	/* Avoid release_list until the last reference.
420 	 */
421 	if (atomic_add_unless(&sh->count, -1, 1))
422 		return;
423 
424 	if (unlikely(!conf->mddev->thread) ||
425 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426 		goto slow_path;
427 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 	if (wakeup)
429 		md_wakeup_thread(conf->mddev->thread);
430 	return;
431 slow_path:
432 	local_irq_save(flags);
433 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435 		INIT_LIST_HEAD(&list);
436 		hash = sh->hash_lock_index;
437 		do_release_stripe(conf, sh, &list);
438 		spin_unlock(&conf->device_lock);
439 		release_inactive_stripe_list(conf, &list, hash);
440 	}
441 	local_irq_restore(flags);
442 }
443 
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446 	pr_debug("remove_hash(), stripe %llu\n",
447 		(unsigned long long)sh->sector);
448 
449 	hlist_del_init(&sh->hash);
450 }
451 
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
455 
456 	pr_debug("insert_hash(), stripe %llu\n",
457 		(unsigned long long)sh->sector);
458 
459 	hlist_add_head(&sh->hash, hp);
460 }
461 
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465 	struct stripe_head *sh = NULL;
466 	struct list_head *first;
467 
468 	if (list_empty(conf->inactive_list + hash))
469 		goto out;
470 	first = (conf->inactive_list + hash)->next;
471 	sh = list_entry(first, struct stripe_head, lru);
472 	list_del_init(first);
473 	remove_hash(sh);
474 	atomic_inc(&conf->active_stripes);
475 	BUG_ON(hash != sh->hash_lock_index);
476 	if (list_empty(conf->inactive_list + hash))
477 		atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479 	return sh;
480 }
481 
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484 	struct page *p;
485 	int i;
486 	int num = sh->raid_conf->pool_size;
487 
488 	for (i = 0; i < num ; i++) {
489 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490 		p = sh->dev[i].page;
491 		if (!p)
492 			continue;
493 		sh->dev[i].page = NULL;
494 		put_page(p);
495 	}
496 }
497 
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500 	int i;
501 	int num = sh->raid_conf->pool_size;
502 
503 	for (i = 0; i < num; i++) {
504 		struct page *page;
505 
506 		if (!(page = alloc_page(gfp))) {
507 			return 1;
508 		}
509 		sh->dev[i].page = page;
510 		sh->dev[i].orig_page = page;
511 	}
512 	return 0;
513 }
514 
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517 			    struct stripe_head *sh);
518 
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521 	struct r5conf *conf = sh->raid_conf;
522 	int i, seq;
523 
524 	BUG_ON(atomic_read(&sh->count) != 0);
525 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526 	BUG_ON(stripe_operations_active(sh));
527 	BUG_ON(sh->batch_head);
528 
529 	pr_debug("init_stripe called, stripe %llu\n",
530 		(unsigned long long)sector);
531 retry:
532 	seq = read_seqcount_begin(&conf->gen_lock);
533 	sh->generation = conf->generation - previous;
534 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535 	sh->sector = sector;
536 	stripe_set_idx(sector, conf, previous, sh);
537 	sh->state = 0;
538 
539 	for (i = sh->disks; i--; ) {
540 		struct r5dev *dev = &sh->dev[i];
541 
542 		if (dev->toread || dev->read || dev->towrite || dev->written ||
543 		    test_bit(R5_LOCKED, &dev->flags)) {
544 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545 			       (unsigned long long)sh->sector, i, dev->toread,
546 			       dev->read, dev->towrite, dev->written,
547 			       test_bit(R5_LOCKED, &dev->flags));
548 			WARN_ON(1);
549 		}
550 		dev->flags = 0;
551 		raid5_build_block(sh, i, previous);
552 	}
553 	if (read_seqcount_retry(&conf->gen_lock, seq))
554 		goto retry;
555 	sh->overwrite_disks = 0;
556 	insert_hash(conf, sh);
557 	sh->cpu = smp_processor_id();
558 	set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560 
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562 					 short generation)
563 {
564 	struct stripe_head *sh;
565 
566 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568 		if (sh->sector == sector && sh->generation == generation)
569 			return sh;
570 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571 	return NULL;
572 }
573 
574 /*
575  * Need to check if array has failed when deciding whether to:
576  *  - start an array
577  *  - remove non-faulty devices
578  *  - add a spare
579  *  - allow a reshape
580  * This determination is simple when no reshape is happening.
581  * However if there is a reshape, we need to carefully check
582  * both the before and after sections.
583  * This is because some failed devices may only affect one
584  * of the two sections, and some non-in_sync devices may
585  * be insync in the section most affected by failed devices.
586  */
587 static int calc_degraded(struct r5conf *conf)
588 {
589 	int degraded, degraded2;
590 	int i;
591 
592 	rcu_read_lock();
593 	degraded = 0;
594 	for (i = 0; i < conf->previous_raid_disks; i++) {
595 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596 		if (rdev && test_bit(Faulty, &rdev->flags))
597 			rdev = rcu_dereference(conf->disks[i].replacement);
598 		if (!rdev || test_bit(Faulty, &rdev->flags))
599 			degraded++;
600 		else if (test_bit(In_sync, &rdev->flags))
601 			;
602 		else
603 			/* not in-sync or faulty.
604 			 * If the reshape increases the number of devices,
605 			 * this is being recovered by the reshape, so
606 			 * this 'previous' section is not in_sync.
607 			 * If the number of devices is being reduced however,
608 			 * the device can only be part of the array if
609 			 * we are reverting a reshape, so this section will
610 			 * be in-sync.
611 			 */
612 			if (conf->raid_disks >= conf->previous_raid_disks)
613 				degraded++;
614 	}
615 	rcu_read_unlock();
616 	if (conf->raid_disks == conf->previous_raid_disks)
617 		return degraded;
618 	rcu_read_lock();
619 	degraded2 = 0;
620 	for (i = 0; i < conf->raid_disks; i++) {
621 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622 		if (rdev && test_bit(Faulty, &rdev->flags))
623 			rdev = rcu_dereference(conf->disks[i].replacement);
624 		if (!rdev || test_bit(Faulty, &rdev->flags))
625 			degraded2++;
626 		else if (test_bit(In_sync, &rdev->flags))
627 			;
628 		else
629 			/* not in-sync or faulty.
630 			 * If reshape increases the number of devices, this
631 			 * section has already been recovered, else it
632 			 * almost certainly hasn't.
633 			 */
634 			if (conf->raid_disks <= conf->previous_raid_disks)
635 				degraded2++;
636 	}
637 	rcu_read_unlock();
638 	if (degraded2 > degraded)
639 		return degraded2;
640 	return degraded;
641 }
642 
643 static int has_failed(struct r5conf *conf)
644 {
645 	int degraded;
646 
647 	if (conf->mddev->reshape_position == MaxSector)
648 		return conf->mddev->degraded > conf->max_degraded;
649 
650 	degraded = calc_degraded(conf);
651 	if (degraded > conf->max_degraded)
652 		return 1;
653 	return 0;
654 }
655 
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658 			int previous, int noblock, int noquiesce)
659 {
660 	struct stripe_head *sh;
661 	int hash = stripe_hash_locks_hash(sector);
662 
663 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
664 
665 	spin_lock_irq(conf->hash_locks + hash);
666 
667 	do {
668 		wait_event_lock_irq(conf->wait_for_quiescent,
669 				    conf->quiesce == 0 || noquiesce,
670 				    *(conf->hash_locks + hash));
671 		sh = __find_stripe(conf, sector, conf->generation - previous);
672 		if (!sh) {
673 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
674 				sh = get_free_stripe(conf, hash);
675 				if (!sh && !test_bit(R5_DID_ALLOC,
676 						     &conf->cache_state))
677 					set_bit(R5_ALLOC_MORE,
678 						&conf->cache_state);
679 			}
680 			if (noblock && sh == NULL)
681 				break;
682 			if (!sh) {
683 				set_bit(R5_INACTIVE_BLOCKED,
684 					&conf->cache_state);
685 				wait_event_lock_irq(
686 					conf->wait_for_stripe,
687 					!list_empty(conf->inactive_list + hash) &&
688 					(atomic_read(&conf->active_stripes)
689 					 < (conf->max_nr_stripes * 3 / 4)
690 					 || !test_bit(R5_INACTIVE_BLOCKED,
691 						      &conf->cache_state)),
692 					*(conf->hash_locks + hash));
693 				clear_bit(R5_INACTIVE_BLOCKED,
694 					  &conf->cache_state);
695 			} else {
696 				init_stripe(sh, sector, previous);
697 				atomic_inc(&sh->count);
698 			}
699 		} else if (!atomic_inc_not_zero(&sh->count)) {
700 			spin_lock(&conf->device_lock);
701 			if (!atomic_read(&sh->count)) {
702 				if (!test_bit(STRIPE_HANDLE, &sh->state))
703 					atomic_inc(&conf->active_stripes);
704 				BUG_ON(list_empty(&sh->lru) &&
705 				       !test_bit(STRIPE_EXPANDING, &sh->state));
706 				list_del_init(&sh->lru);
707 				if (sh->group) {
708 					sh->group->stripes_cnt--;
709 					sh->group = NULL;
710 				}
711 			}
712 			atomic_inc(&sh->count);
713 			spin_unlock(&conf->device_lock);
714 		}
715 	} while (sh == NULL);
716 
717 	spin_unlock_irq(conf->hash_locks + hash);
718 	return sh;
719 }
720 
721 static bool is_full_stripe_write(struct stripe_head *sh)
722 {
723 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
724 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
725 }
726 
727 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729 	local_irq_disable();
730 	if (sh1 > sh2) {
731 		spin_lock(&sh2->stripe_lock);
732 		spin_lock_nested(&sh1->stripe_lock, 1);
733 	} else {
734 		spin_lock(&sh1->stripe_lock);
735 		spin_lock_nested(&sh2->stripe_lock, 1);
736 	}
737 }
738 
739 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
740 {
741 	spin_unlock(&sh1->stripe_lock);
742 	spin_unlock(&sh2->stripe_lock);
743 	local_irq_enable();
744 }
745 
746 /* Only freshly new full stripe normal write stripe can be added to a batch list */
747 static bool stripe_can_batch(struct stripe_head *sh)
748 {
749 	struct r5conf *conf = sh->raid_conf;
750 
751 	if (conf->log)
752 		return false;
753 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
754 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
755 		is_full_stripe_write(sh);
756 }
757 
758 /* we only do back search */
759 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
760 {
761 	struct stripe_head *head;
762 	sector_t head_sector, tmp_sec;
763 	int hash;
764 	int dd_idx;
765 
766 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 	tmp_sec = sh->sector;
768 	if (!sector_div(tmp_sec, conf->chunk_sectors))
769 		return;
770 	head_sector = sh->sector - STRIPE_SECTORS;
771 
772 	hash = stripe_hash_locks_hash(head_sector);
773 	spin_lock_irq(conf->hash_locks + hash);
774 	head = __find_stripe(conf, head_sector, conf->generation);
775 	if (head && !atomic_inc_not_zero(&head->count)) {
776 		spin_lock(&conf->device_lock);
777 		if (!atomic_read(&head->count)) {
778 			if (!test_bit(STRIPE_HANDLE, &head->state))
779 				atomic_inc(&conf->active_stripes);
780 			BUG_ON(list_empty(&head->lru) &&
781 			       !test_bit(STRIPE_EXPANDING, &head->state));
782 			list_del_init(&head->lru);
783 			if (head->group) {
784 				head->group->stripes_cnt--;
785 				head->group = NULL;
786 			}
787 		}
788 		atomic_inc(&head->count);
789 		spin_unlock(&conf->device_lock);
790 	}
791 	spin_unlock_irq(conf->hash_locks + hash);
792 
793 	if (!head)
794 		return;
795 	if (!stripe_can_batch(head))
796 		goto out;
797 
798 	lock_two_stripes(head, sh);
799 	/* clear_batch_ready clear the flag */
800 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801 		goto unlock_out;
802 
803 	if (sh->batch_head)
804 		goto unlock_out;
805 
806 	dd_idx = 0;
807 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808 		dd_idx++;
809 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
810 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
811 		goto unlock_out;
812 
813 	if (head->batch_head) {
814 		spin_lock(&head->batch_head->batch_lock);
815 		/* This batch list is already running */
816 		if (!stripe_can_batch(head)) {
817 			spin_unlock(&head->batch_head->batch_lock);
818 			goto unlock_out;
819 		}
820 
821 		/*
822 		 * at this point, head's BATCH_READY could be cleared, but we
823 		 * can still add the stripe to batch list
824 		 */
825 		list_add(&sh->batch_list, &head->batch_list);
826 		spin_unlock(&head->batch_head->batch_lock);
827 
828 		sh->batch_head = head->batch_head;
829 	} else {
830 		head->batch_head = head;
831 		sh->batch_head = head->batch_head;
832 		spin_lock(&head->batch_lock);
833 		list_add_tail(&sh->batch_list, &head->batch_list);
834 		spin_unlock(&head->batch_lock);
835 	}
836 
837 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
838 		if (atomic_dec_return(&conf->preread_active_stripes)
839 		    < IO_THRESHOLD)
840 			md_wakeup_thread(conf->mddev->thread);
841 
842 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
843 		int seq = sh->bm_seq;
844 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
845 		    sh->batch_head->bm_seq > seq)
846 			seq = sh->batch_head->bm_seq;
847 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
848 		sh->batch_head->bm_seq = seq;
849 	}
850 
851 	atomic_inc(&sh->count);
852 unlock_out:
853 	unlock_two_stripes(head, sh);
854 out:
855 	raid5_release_stripe(head);
856 }
857 
858 /* Determine if 'data_offset' or 'new_data_offset' should be used
859  * in this stripe_head.
860  */
861 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
862 {
863 	sector_t progress = conf->reshape_progress;
864 	/* Need a memory barrier to make sure we see the value
865 	 * of conf->generation, or ->data_offset that was set before
866 	 * reshape_progress was updated.
867 	 */
868 	smp_rmb();
869 	if (progress == MaxSector)
870 		return 0;
871 	if (sh->generation == conf->generation - 1)
872 		return 0;
873 	/* We are in a reshape, and this is a new-generation stripe,
874 	 * so use new_data_offset.
875 	 */
876 	return 1;
877 }
878 
879 static void
880 raid5_end_read_request(struct bio *bi);
881 static void
882 raid5_end_write_request(struct bio *bi);
883 
884 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
885 {
886 	struct r5conf *conf = sh->raid_conf;
887 	int i, disks = sh->disks;
888 	struct stripe_head *head_sh = sh;
889 
890 	might_sleep();
891 
892 	if (r5l_write_stripe(conf->log, sh) == 0)
893 		return;
894 	for (i = disks; i--; ) {
895 		int op, op_flags = 0;
896 		int replace_only = 0;
897 		struct bio *bi, *rbi;
898 		struct md_rdev *rdev, *rrdev = NULL;
899 
900 		sh = head_sh;
901 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
902 			op = REQ_OP_WRITE;
903 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
904 				op_flags = WRITE_FUA;
905 			if (test_bit(R5_Discard, &sh->dev[i].flags))
906 				op = REQ_OP_DISCARD;
907 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
908 			op = REQ_OP_READ;
909 		else if (test_and_clear_bit(R5_WantReplace,
910 					    &sh->dev[i].flags)) {
911 			op = REQ_OP_WRITE;
912 			replace_only = 1;
913 		} else
914 			continue;
915 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
916 			op_flags |= REQ_SYNC;
917 
918 again:
919 		bi = &sh->dev[i].req;
920 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
921 
922 		rcu_read_lock();
923 		rrdev = rcu_dereference(conf->disks[i].replacement);
924 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
925 		rdev = rcu_dereference(conf->disks[i].rdev);
926 		if (!rdev) {
927 			rdev = rrdev;
928 			rrdev = NULL;
929 		}
930 		if (op_is_write(op)) {
931 			if (replace_only)
932 				rdev = NULL;
933 			if (rdev == rrdev)
934 				/* We raced and saw duplicates */
935 				rrdev = NULL;
936 		} else {
937 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
938 				rdev = rrdev;
939 			rrdev = NULL;
940 		}
941 
942 		if (rdev && test_bit(Faulty, &rdev->flags))
943 			rdev = NULL;
944 		if (rdev)
945 			atomic_inc(&rdev->nr_pending);
946 		if (rrdev && test_bit(Faulty, &rrdev->flags))
947 			rrdev = NULL;
948 		if (rrdev)
949 			atomic_inc(&rrdev->nr_pending);
950 		rcu_read_unlock();
951 
952 		/* We have already checked bad blocks for reads.  Now
953 		 * need to check for writes.  We never accept write errors
954 		 * on the replacement, so we don't to check rrdev.
955 		 */
956 		while (op_is_write(op) && rdev &&
957 		       test_bit(WriteErrorSeen, &rdev->flags)) {
958 			sector_t first_bad;
959 			int bad_sectors;
960 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
961 					      &first_bad, &bad_sectors);
962 			if (!bad)
963 				break;
964 
965 			if (bad < 0) {
966 				set_bit(BlockedBadBlocks, &rdev->flags);
967 				if (!conf->mddev->external &&
968 				    conf->mddev->flags) {
969 					/* It is very unlikely, but we might
970 					 * still need to write out the
971 					 * bad block log - better give it
972 					 * a chance*/
973 					md_check_recovery(conf->mddev);
974 				}
975 				/*
976 				 * Because md_wait_for_blocked_rdev
977 				 * will dec nr_pending, we must
978 				 * increment it first.
979 				 */
980 				atomic_inc(&rdev->nr_pending);
981 				md_wait_for_blocked_rdev(rdev, conf->mddev);
982 			} else {
983 				/* Acknowledged bad block - skip the write */
984 				rdev_dec_pending(rdev, conf->mddev);
985 				rdev = NULL;
986 			}
987 		}
988 
989 		if (rdev) {
990 			if (s->syncing || s->expanding || s->expanded
991 			    || s->replacing)
992 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
993 
994 			set_bit(STRIPE_IO_STARTED, &sh->state);
995 
996 			bio_reset(bi);
997 			bi->bi_bdev = rdev->bdev;
998 			bio_set_op_attrs(bi, op, op_flags);
999 			bi->bi_end_io = op_is_write(op)
1000 				? raid5_end_write_request
1001 				: raid5_end_read_request;
1002 			bi->bi_private = sh;
1003 
1004 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1005 				__func__, (unsigned long long)sh->sector,
1006 				bi->bi_opf, i);
1007 			atomic_inc(&sh->count);
1008 			if (sh != head_sh)
1009 				atomic_inc(&head_sh->count);
1010 			if (use_new_offset(conf, sh))
1011 				bi->bi_iter.bi_sector = (sh->sector
1012 						 + rdev->new_data_offset);
1013 			else
1014 				bi->bi_iter.bi_sector = (sh->sector
1015 						 + rdev->data_offset);
1016 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1017 				bi->bi_opf |= REQ_NOMERGE;
1018 
1019 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1020 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1021 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1022 			bi->bi_vcnt = 1;
1023 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1024 			bi->bi_io_vec[0].bv_offset = 0;
1025 			bi->bi_iter.bi_size = STRIPE_SIZE;
1026 			/*
1027 			 * If this is discard request, set bi_vcnt 0. We don't
1028 			 * want to confuse SCSI because SCSI will replace payload
1029 			 */
1030 			if (op == REQ_OP_DISCARD)
1031 				bi->bi_vcnt = 0;
1032 			if (rrdev)
1033 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1034 
1035 			if (conf->mddev->gendisk)
1036 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1037 						      bi, disk_devt(conf->mddev->gendisk),
1038 						      sh->dev[i].sector);
1039 			generic_make_request(bi);
1040 		}
1041 		if (rrdev) {
1042 			if (s->syncing || s->expanding || s->expanded
1043 			    || s->replacing)
1044 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1045 
1046 			set_bit(STRIPE_IO_STARTED, &sh->state);
1047 
1048 			bio_reset(rbi);
1049 			rbi->bi_bdev = rrdev->bdev;
1050 			bio_set_op_attrs(rbi, op, op_flags);
1051 			BUG_ON(!op_is_write(op));
1052 			rbi->bi_end_io = raid5_end_write_request;
1053 			rbi->bi_private = sh;
1054 
1055 			pr_debug("%s: for %llu schedule op %d on "
1056 				 "replacement disc %d\n",
1057 				__func__, (unsigned long long)sh->sector,
1058 				rbi->bi_opf, i);
1059 			atomic_inc(&sh->count);
1060 			if (sh != head_sh)
1061 				atomic_inc(&head_sh->count);
1062 			if (use_new_offset(conf, sh))
1063 				rbi->bi_iter.bi_sector = (sh->sector
1064 						  + rrdev->new_data_offset);
1065 			else
1066 				rbi->bi_iter.bi_sector = (sh->sector
1067 						  + rrdev->data_offset);
1068 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1069 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1070 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1071 			rbi->bi_vcnt = 1;
1072 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1073 			rbi->bi_io_vec[0].bv_offset = 0;
1074 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1075 			/*
1076 			 * If this is discard request, set bi_vcnt 0. We don't
1077 			 * want to confuse SCSI because SCSI will replace payload
1078 			 */
1079 			if (op == REQ_OP_DISCARD)
1080 				rbi->bi_vcnt = 0;
1081 			if (conf->mddev->gendisk)
1082 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1083 						      rbi, disk_devt(conf->mddev->gendisk),
1084 						      sh->dev[i].sector);
1085 			generic_make_request(rbi);
1086 		}
1087 		if (!rdev && !rrdev) {
1088 			if (op_is_write(op))
1089 				set_bit(STRIPE_DEGRADED, &sh->state);
1090 			pr_debug("skip op %d on disc %d for sector %llu\n",
1091 				bi->bi_opf, i, (unsigned long long)sh->sector);
1092 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1093 			set_bit(STRIPE_HANDLE, &sh->state);
1094 		}
1095 
1096 		if (!head_sh->batch_head)
1097 			continue;
1098 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1099 				      batch_list);
1100 		if (sh != head_sh)
1101 			goto again;
1102 	}
1103 }
1104 
1105 static struct dma_async_tx_descriptor *
1106 async_copy_data(int frombio, struct bio *bio, struct page **page,
1107 	sector_t sector, struct dma_async_tx_descriptor *tx,
1108 	struct stripe_head *sh)
1109 {
1110 	struct bio_vec bvl;
1111 	struct bvec_iter iter;
1112 	struct page *bio_page;
1113 	int page_offset;
1114 	struct async_submit_ctl submit;
1115 	enum async_tx_flags flags = 0;
1116 
1117 	if (bio->bi_iter.bi_sector >= sector)
1118 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1119 	else
1120 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1121 
1122 	if (frombio)
1123 		flags |= ASYNC_TX_FENCE;
1124 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1125 
1126 	bio_for_each_segment(bvl, bio, iter) {
1127 		int len = bvl.bv_len;
1128 		int clen;
1129 		int b_offset = 0;
1130 
1131 		if (page_offset < 0) {
1132 			b_offset = -page_offset;
1133 			page_offset += b_offset;
1134 			len -= b_offset;
1135 		}
1136 
1137 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1138 			clen = STRIPE_SIZE - page_offset;
1139 		else
1140 			clen = len;
1141 
1142 		if (clen > 0) {
1143 			b_offset += bvl.bv_offset;
1144 			bio_page = bvl.bv_page;
1145 			if (frombio) {
1146 				if (sh->raid_conf->skip_copy &&
1147 				    b_offset == 0 && page_offset == 0 &&
1148 				    clen == STRIPE_SIZE)
1149 					*page = bio_page;
1150 				else
1151 					tx = async_memcpy(*page, bio_page, page_offset,
1152 						  b_offset, clen, &submit);
1153 			} else
1154 				tx = async_memcpy(bio_page, *page, b_offset,
1155 						  page_offset, clen, &submit);
1156 		}
1157 		/* chain the operations */
1158 		submit.depend_tx = tx;
1159 
1160 		if (clen < len) /* hit end of page */
1161 			break;
1162 		page_offset +=  len;
1163 	}
1164 
1165 	return tx;
1166 }
1167 
1168 static void ops_complete_biofill(void *stripe_head_ref)
1169 {
1170 	struct stripe_head *sh = stripe_head_ref;
1171 	struct bio_list return_bi = BIO_EMPTY_LIST;
1172 	int i;
1173 
1174 	pr_debug("%s: stripe %llu\n", __func__,
1175 		(unsigned long long)sh->sector);
1176 
1177 	/* clear completed biofills */
1178 	for (i = sh->disks; i--; ) {
1179 		struct r5dev *dev = &sh->dev[i];
1180 
1181 		/* acknowledge completion of a biofill operation */
1182 		/* and check if we need to reply to a read request,
1183 		 * new R5_Wantfill requests are held off until
1184 		 * !STRIPE_BIOFILL_RUN
1185 		 */
1186 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1187 			struct bio *rbi, *rbi2;
1188 
1189 			BUG_ON(!dev->read);
1190 			rbi = dev->read;
1191 			dev->read = NULL;
1192 			while (rbi && rbi->bi_iter.bi_sector <
1193 				dev->sector + STRIPE_SECTORS) {
1194 				rbi2 = r5_next_bio(rbi, dev->sector);
1195 				if (!raid5_dec_bi_active_stripes(rbi))
1196 					bio_list_add(&return_bi, rbi);
1197 				rbi = rbi2;
1198 			}
1199 		}
1200 	}
1201 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1202 
1203 	return_io(&return_bi);
1204 
1205 	set_bit(STRIPE_HANDLE, &sh->state);
1206 	raid5_release_stripe(sh);
1207 }
1208 
1209 static void ops_run_biofill(struct stripe_head *sh)
1210 {
1211 	struct dma_async_tx_descriptor *tx = NULL;
1212 	struct async_submit_ctl submit;
1213 	int i;
1214 
1215 	BUG_ON(sh->batch_head);
1216 	pr_debug("%s: stripe %llu\n", __func__,
1217 		(unsigned long long)sh->sector);
1218 
1219 	for (i = sh->disks; i--; ) {
1220 		struct r5dev *dev = &sh->dev[i];
1221 		if (test_bit(R5_Wantfill, &dev->flags)) {
1222 			struct bio *rbi;
1223 			spin_lock_irq(&sh->stripe_lock);
1224 			dev->read = rbi = dev->toread;
1225 			dev->toread = NULL;
1226 			spin_unlock_irq(&sh->stripe_lock);
1227 			while (rbi && rbi->bi_iter.bi_sector <
1228 				dev->sector + STRIPE_SECTORS) {
1229 				tx = async_copy_data(0, rbi, &dev->page,
1230 					dev->sector, tx, sh);
1231 				rbi = r5_next_bio(rbi, dev->sector);
1232 			}
1233 		}
1234 	}
1235 
1236 	atomic_inc(&sh->count);
1237 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238 	async_trigger_callback(&submit);
1239 }
1240 
1241 static void mark_target_uptodate(struct stripe_head *sh, int target)
1242 {
1243 	struct r5dev *tgt;
1244 
1245 	if (target < 0)
1246 		return;
1247 
1248 	tgt = &sh->dev[target];
1249 	set_bit(R5_UPTODATE, &tgt->flags);
1250 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251 	clear_bit(R5_Wantcompute, &tgt->flags);
1252 }
1253 
1254 static void ops_complete_compute(void *stripe_head_ref)
1255 {
1256 	struct stripe_head *sh = stripe_head_ref;
1257 
1258 	pr_debug("%s: stripe %llu\n", __func__,
1259 		(unsigned long long)sh->sector);
1260 
1261 	/* mark the computed target(s) as uptodate */
1262 	mark_target_uptodate(sh, sh->ops.target);
1263 	mark_target_uptodate(sh, sh->ops.target2);
1264 
1265 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266 	if (sh->check_state == check_state_compute_run)
1267 		sh->check_state = check_state_compute_result;
1268 	set_bit(STRIPE_HANDLE, &sh->state);
1269 	raid5_release_stripe(sh);
1270 }
1271 
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1274 				 struct raid5_percpu *percpu, int i)
1275 {
1276 	void *addr;
1277 
1278 	addr = flex_array_get(percpu->scribble, i);
1279 	return addr + sizeof(struct page *) * (sh->disks + 2);
1280 }
1281 
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284 {
1285 	void *addr;
1286 
1287 	addr = flex_array_get(percpu->scribble, i);
1288 	return addr;
1289 }
1290 
1291 static struct dma_async_tx_descriptor *
1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1293 {
1294 	int disks = sh->disks;
1295 	struct page **xor_srcs = to_addr_page(percpu, 0);
1296 	int target = sh->ops.target;
1297 	struct r5dev *tgt = &sh->dev[target];
1298 	struct page *xor_dest = tgt->page;
1299 	int count = 0;
1300 	struct dma_async_tx_descriptor *tx;
1301 	struct async_submit_ctl submit;
1302 	int i;
1303 
1304 	BUG_ON(sh->batch_head);
1305 
1306 	pr_debug("%s: stripe %llu block: %d\n",
1307 		__func__, (unsigned long long)sh->sector, target);
1308 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309 
1310 	for (i = disks; i--; )
1311 		if (i != target)
1312 			xor_srcs[count++] = sh->dev[i].page;
1313 
1314 	atomic_inc(&sh->count);
1315 
1316 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1317 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1318 	if (unlikely(count == 1))
1319 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1320 	else
1321 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1322 
1323 	return tx;
1324 }
1325 
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327  * @srcs - (struct page *) array of size sh->disks
1328  * @sh - stripe_head to parse
1329  *
1330  * Populates srcs in proper layout order for the stripe and returns the
1331  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1332  * destination buffer is recorded in srcs[count] and the Q destination
1333  * is recorded in srcs[count+1]].
1334  */
1335 static int set_syndrome_sources(struct page **srcs,
1336 				struct stripe_head *sh,
1337 				int srctype)
1338 {
1339 	int disks = sh->disks;
1340 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341 	int d0_idx = raid6_d0(sh);
1342 	int count;
1343 	int i;
1344 
1345 	for (i = 0; i < disks; i++)
1346 		srcs[i] = NULL;
1347 
1348 	count = 0;
1349 	i = d0_idx;
1350 	do {
1351 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1352 		struct r5dev *dev = &sh->dev[i];
1353 
1354 		if (i == sh->qd_idx || i == sh->pd_idx ||
1355 		    (srctype == SYNDROME_SRC_ALL) ||
1356 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1358 		    (srctype == SYNDROME_SRC_WRITTEN &&
1359 		     dev->written))
1360 			srcs[slot] = sh->dev[i].page;
1361 		i = raid6_next_disk(i, disks);
1362 	} while (i != d0_idx);
1363 
1364 	return syndrome_disks;
1365 }
1366 
1367 static struct dma_async_tx_descriptor *
1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369 {
1370 	int disks = sh->disks;
1371 	struct page **blocks = to_addr_page(percpu, 0);
1372 	int target;
1373 	int qd_idx = sh->qd_idx;
1374 	struct dma_async_tx_descriptor *tx;
1375 	struct async_submit_ctl submit;
1376 	struct r5dev *tgt;
1377 	struct page *dest;
1378 	int i;
1379 	int count;
1380 
1381 	BUG_ON(sh->batch_head);
1382 	if (sh->ops.target < 0)
1383 		target = sh->ops.target2;
1384 	else if (sh->ops.target2 < 0)
1385 		target = sh->ops.target;
1386 	else
1387 		/* we should only have one valid target */
1388 		BUG();
1389 	BUG_ON(target < 0);
1390 	pr_debug("%s: stripe %llu block: %d\n",
1391 		__func__, (unsigned long long)sh->sector, target);
1392 
1393 	tgt = &sh->dev[target];
1394 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395 	dest = tgt->page;
1396 
1397 	atomic_inc(&sh->count);
1398 
1399 	if (target == qd_idx) {
1400 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1401 		blocks[count] = NULL; /* regenerating p is not necessary */
1402 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1403 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404 				  ops_complete_compute, sh,
1405 				  to_addr_conv(sh, percpu, 0));
1406 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407 	} else {
1408 		/* Compute any data- or p-drive using XOR */
1409 		count = 0;
1410 		for (i = disks; i-- ; ) {
1411 			if (i == target || i == qd_idx)
1412 				continue;
1413 			blocks[count++] = sh->dev[i].page;
1414 		}
1415 
1416 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417 				  NULL, ops_complete_compute, sh,
1418 				  to_addr_conv(sh, percpu, 0));
1419 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420 	}
1421 
1422 	return tx;
1423 }
1424 
1425 static struct dma_async_tx_descriptor *
1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427 {
1428 	int i, count, disks = sh->disks;
1429 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430 	int d0_idx = raid6_d0(sh);
1431 	int faila = -1, failb = -1;
1432 	int target = sh->ops.target;
1433 	int target2 = sh->ops.target2;
1434 	struct r5dev *tgt = &sh->dev[target];
1435 	struct r5dev *tgt2 = &sh->dev[target2];
1436 	struct dma_async_tx_descriptor *tx;
1437 	struct page **blocks = to_addr_page(percpu, 0);
1438 	struct async_submit_ctl submit;
1439 
1440 	BUG_ON(sh->batch_head);
1441 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442 		 __func__, (unsigned long long)sh->sector, target, target2);
1443 	BUG_ON(target < 0 || target2 < 0);
1444 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446 
1447 	/* we need to open-code set_syndrome_sources to handle the
1448 	 * slot number conversion for 'faila' and 'failb'
1449 	 */
1450 	for (i = 0; i < disks ; i++)
1451 		blocks[i] = NULL;
1452 	count = 0;
1453 	i = d0_idx;
1454 	do {
1455 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456 
1457 		blocks[slot] = sh->dev[i].page;
1458 
1459 		if (i == target)
1460 			faila = slot;
1461 		if (i == target2)
1462 			failb = slot;
1463 		i = raid6_next_disk(i, disks);
1464 	} while (i != d0_idx);
1465 
1466 	BUG_ON(faila == failb);
1467 	if (failb < faila)
1468 		swap(faila, failb);
1469 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470 		 __func__, (unsigned long long)sh->sector, faila, failb);
1471 
1472 	atomic_inc(&sh->count);
1473 
1474 	if (failb == syndrome_disks+1) {
1475 		/* Q disk is one of the missing disks */
1476 		if (faila == syndrome_disks) {
1477 			/* Missing P+Q, just recompute */
1478 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479 					  ops_complete_compute, sh,
1480 					  to_addr_conv(sh, percpu, 0));
1481 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1482 						  STRIPE_SIZE, &submit);
1483 		} else {
1484 			struct page *dest;
1485 			int data_target;
1486 			int qd_idx = sh->qd_idx;
1487 
1488 			/* Missing D+Q: recompute D from P, then recompute Q */
1489 			if (target == qd_idx)
1490 				data_target = target2;
1491 			else
1492 				data_target = target;
1493 
1494 			count = 0;
1495 			for (i = disks; i-- ; ) {
1496 				if (i == data_target || i == qd_idx)
1497 					continue;
1498 				blocks[count++] = sh->dev[i].page;
1499 			}
1500 			dest = sh->dev[data_target].page;
1501 			init_async_submit(&submit,
1502 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503 					  NULL, NULL, NULL,
1504 					  to_addr_conv(sh, percpu, 0));
1505 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506 				       &submit);
1507 
1508 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1509 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510 					  ops_complete_compute, sh,
1511 					  to_addr_conv(sh, percpu, 0));
1512 			return async_gen_syndrome(blocks, 0, count+2,
1513 						  STRIPE_SIZE, &submit);
1514 		}
1515 	} else {
1516 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517 				  ops_complete_compute, sh,
1518 				  to_addr_conv(sh, percpu, 0));
1519 		if (failb == syndrome_disks) {
1520 			/* We're missing D+P. */
1521 			return async_raid6_datap_recov(syndrome_disks+2,
1522 						       STRIPE_SIZE, faila,
1523 						       blocks, &submit);
1524 		} else {
1525 			/* We're missing D+D. */
1526 			return async_raid6_2data_recov(syndrome_disks+2,
1527 						       STRIPE_SIZE, faila, failb,
1528 						       blocks, &submit);
1529 		}
1530 	}
1531 }
1532 
1533 static void ops_complete_prexor(void *stripe_head_ref)
1534 {
1535 	struct stripe_head *sh = stripe_head_ref;
1536 
1537 	pr_debug("%s: stripe %llu\n", __func__,
1538 		(unsigned long long)sh->sector);
1539 }
1540 
1541 static struct dma_async_tx_descriptor *
1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543 		struct dma_async_tx_descriptor *tx)
1544 {
1545 	int disks = sh->disks;
1546 	struct page **xor_srcs = to_addr_page(percpu, 0);
1547 	int count = 0, pd_idx = sh->pd_idx, i;
1548 	struct async_submit_ctl submit;
1549 
1550 	/* existing parity data subtracted */
1551 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552 
1553 	BUG_ON(sh->batch_head);
1554 	pr_debug("%s: stripe %llu\n", __func__,
1555 		(unsigned long long)sh->sector);
1556 
1557 	for (i = disks; i--; ) {
1558 		struct r5dev *dev = &sh->dev[i];
1559 		/* Only process blocks that are known to be uptodate */
1560 		if (test_bit(R5_Wantdrain, &dev->flags))
1561 			xor_srcs[count++] = dev->page;
1562 	}
1563 
1564 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1565 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1566 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1567 
1568 	return tx;
1569 }
1570 
1571 static struct dma_async_tx_descriptor *
1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573 		struct dma_async_tx_descriptor *tx)
1574 {
1575 	struct page **blocks = to_addr_page(percpu, 0);
1576 	int count;
1577 	struct async_submit_ctl submit;
1578 
1579 	pr_debug("%s: stripe %llu\n", __func__,
1580 		(unsigned long long)sh->sector);
1581 
1582 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583 
1584 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1587 
1588 	return tx;
1589 }
1590 
1591 static struct dma_async_tx_descriptor *
1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1593 {
1594 	int disks = sh->disks;
1595 	int i;
1596 	struct stripe_head *head_sh = sh;
1597 
1598 	pr_debug("%s: stripe %llu\n", __func__,
1599 		(unsigned long long)sh->sector);
1600 
1601 	for (i = disks; i--; ) {
1602 		struct r5dev *dev;
1603 		struct bio *chosen;
1604 
1605 		sh = head_sh;
1606 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1607 			struct bio *wbi;
1608 
1609 again:
1610 			dev = &sh->dev[i];
1611 			spin_lock_irq(&sh->stripe_lock);
1612 			chosen = dev->towrite;
1613 			dev->towrite = NULL;
1614 			sh->overwrite_disks = 0;
1615 			BUG_ON(dev->written);
1616 			wbi = dev->written = chosen;
1617 			spin_unlock_irq(&sh->stripe_lock);
1618 			WARN_ON(dev->page != dev->orig_page);
1619 
1620 			while (wbi && wbi->bi_iter.bi_sector <
1621 				dev->sector + STRIPE_SECTORS) {
1622 				if (wbi->bi_opf & REQ_FUA)
1623 					set_bit(R5_WantFUA, &dev->flags);
1624 				if (wbi->bi_opf & REQ_SYNC)
1625 					set_bit(R5_SyncIO, &dev->flags);
1626 				if (bio_op(wbi) == REQ_OP_DISCARD)
1627 					set_bit(R5_Discard, &dev->flags);
1628 				else {
1629 					tx = async_copy_data(1, wbi, &dev->page,
1630 						dev->sector, tx, sh);
1631 					if (dev->page != dev->orig_page) {
1632 						set_bit(R5_SkipCopy, &dev->flags);
1633 						clear_bit(R5_UPTODATE, &dev->flags);
1634 						clear_bit(R5_OVERWRITE, &dev->flags);
1635 					}
1636 				}
1637 				wbi = r5_next_bio(wbi, dev->sector);
1638 			}
1639 
1640 			if (head_sh->batch_head) {
1641 				sh = list_first_entry(&sh->batch_list,
1642 						      struct stripe_head,
1643 						      batch_list);
1644 				if (sh == head_sh)
1645 					continue;
1646 				goto again;
1647 			}
1648 		}
1649 	}
1650 
1651 	return tx;
1652 }
1653 
1654 static void ops_complete_reconstruct(void *stripe_head_ref)
1655 {
1656 	struct stripe_head *sh = stripe_head_ref;
1657 	int disks = sh->disks;
1658 	int pd_idx = sh->pd_idx;
1659 	int qd_idx = sh->qd_idx;
1660 	int i;
1661 	bool fua = false, sync = false, discard = false;
1662 
1663 	pr_debug("%s: stripe %llu\n", __func__,
1664 		(unsigned long long)sh->sector);
1665 
1666 	for (i = disks; i--; ) {
1667 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1668 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1669 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1670 	}
1671 
1672 	for (i = disks; i--; ) {
1673 		struct r5dev *dev = &sh->dev[i];
1674 
1675 		if (dev->written || i == pd_idx || i == qd_idx) {
1676 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1677 				set_bit(R5_UPTODATE, &dev->flags);
1678 			if (fua)
1679 				set_bit(R5_WantFUA, &dev->flags);
1680 			if (sync)
1681 				set_bit(R5_SyncIO, &dev->flags);
1682 		}
1683 	}
1684 
1685 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1686 		sh->reconstruct_state = reconstruct_state_drain_result;
1687 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689 	else {
1690 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691 		sh->reconstruct_state = reconstruct_state_result;
1692 	}
1693 
1694 	set_bit(STRIPE_HANDLE, &sh->state);
1695 	raid5_release_stripe(sh);
1696 }
1697 
1698 static void
1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700 		     struct dma_async_tx_descriptor *tx)
1701 {
1702 	int disks = sh->disks;
1703 	struct page **xor_srcs;
1704 	struct async_submit_ctl submit;
1705 	int count, pd_idx = sh->pd_idx, i;
1706 	struct page *xor_dest;
1707 	int prexor = 0;
1708 	unsigned long flags;
1709 	int j = 0;
1710 	struct stripe_head *head_sh = sh;
1711 	int last_stripe;
1712 
1713 	pr_debug("%s: stripe %llu\n", __func__,
1714 		(unsigned long long)sh->sector);
1715 
1716 	for (i = 0; i < sh->disks; i++) {
1717 		if (pd_idx == i)
1718 			continue;
1719 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720 			break;
1721 	}
1722 	if (i >= sh->disks) {
1723 		atomic_inc(&sh->count);
1724 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725 		ops_complete_reconstruct(sh);
1726 		return;
1727 	}
1728 again:
1729 	count = 0;
1730 	xor_srcs = to_addr_page(percpu, j);
1731 	/* check if prexor is active which means only process blocks
1732 	 * that are part of a read-modify-write (written)
1733 	 */
1734 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1735 		prexor = 1;
1736 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737 		for (i = disks; i--; ) {
1738 			struct r5dev *dev = &sh->dev[i];
1739 			if (head_sh->dev[i].written)
1740 				xor_srcs[count++] = dev->page;
1741 		}
1742 	} else {
1743 		xor_dest = sh->dev[pd_idx].page;
1744 		for (i = disks; i--; ) {
1745 			struct r5dev *dev = &sh->dev[i];
1746 			if (i != pd_idx)
1747 				xor_srcs[count++] = dev->page;
1748 		}
1749 	}
1750 
1751 	/* 1/ if we prexor'd then the dest is reused as a source
1752 	 * 2/ if we did not prexor then we are redoing the parity
1753 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754 	 * for the synchronous xor case
1755 	 */
1756 	last_stripe = !head_sh->batch_head ||
1757 		list_first_entry(&sh->batch_list,
1758 				 struct stripe_head, batch_list) == head_sh;
1759 	if (last_stripe) {
1760 		flags = ASYNC_TX_ACK |
1761 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762 
1763 		atomic_inc(&head_sh->count);
1764 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765 				  to_addr_conv(sh, percpu, j));
1766 	} else {
1767 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768 		init_async_submit(&submit, flags, tx, NULL, NULL,
1769 				  to_addr_conv(sh, percpu, j));
1770 	}
1771 
1772 	if (unlikely(count == 1))
1773 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774 	else
1775 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1776 	if (!last_stripe) {
1777 		j++;
1778 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779 				      batch_list);
1780 		goto again;
1781 	}
1782 }
1783 
1784 static void
1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786 		     struct dma_async_tx_descriptor *tx)
1787 {
1788 	struct async_submit_ctl submit;
1789 	struct page **blocks;
1790 	int count, i, j = 0;
1791 	struct stripe_head *head_sh = sh;
1792 	int last_stripe;
1793 	int synflags;
1794 	unsigned long txflags;
1795 
1796 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797 
1798 	for (i = 0; i < sh->disks; i++) {
1799 		if (sh->pd_idx == i || sh->qd_idx == i)
1800 			continue;
1801 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802 			break;
1803 	}
1804 	if (i >= sh->disks) {
1805 		atomic_inc(&sh->count);
1806 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808 		ops_complete_reconstruct(sh);
1809 		return;
1810 	}
1811 
1812 again:
1813 	blocks = to_addr_page(percpu, j);
1814 
1815 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816 		synflags = SYNDROME_SRC_WRITTEN;
1817 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818 	} else {
1819 		synflags = SYNDROME_SRC_ALL;
1820 		txflags = ASYNC_TX_ACK;
1821 	}
1822 
1823 	count = set_syndrome_sources(blocks, sh, synflags);
1824 	last_stripe = !head_sh->batch_head ||
1825 		list_first_entry(&sh->batch_list,
1826 				 struct stripe_head, batch_list) == head_sh;
1827 
1828 	if (last_stripe) {
1829 		atomic_inc(&head_sh->count);
1830 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1831 				  head_sh, to_addr_conv(sh, percpu, j));
1832 	} else
1833 		init_async_submit(&submit, 0, tx, NULL, NULL,
1834 				  to_addr_conv(sh, percpu, j));
1835 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1836 	if (!last_stripe) {
1837 		j++;
1838 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839 				      batch_list);
1840 		goto again;
1841 	}
1842 }
1843 
1844 static void ops_complete_check(void *stripe_head_ref)
1845 {
1846 	struct stripe_head *sh = stripe_head_ref;
1847 
1848 	pr_debug("%s: stripe %llu\n", __func__,
1849 		(unsigned long long)sh->sector);
1850 
1851 	sh->check_state = check_state_check_result;
1852 	set_bit(STRIPE_HANDLE, &sh->state);
1853 	raid5_release_stripe(sh);
1854 }
1855 
1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1857 {
1858 	int disks = sh->disks;
1859 	int pd_idx = sh->pd_idx;
1860 	int qd_idx = sh->qd_idx;
1861 	struct page *xor_dest;
1862 	struct page **xor_srcs = to_addr_page(percpu, 0);
1863 	struct dma_async_tx_descriptor *tx;
1864 	struct async_submit_ctl submit;
1865 	int count;
1866 	int i;
1867 
1868 	pr_debug("%s: stripe %llu\n", __func__,
1869 		(unsigned long long)sh->sector);
1870 
1871 	BUG_ON(sh->batch_head);
1872 	count = 0;
1873 	xor_dest = sh->dev[pd_idx].page;
1874 	xor_srcs[count++] = xor_dest;
1875 	for (i = disks; i--; ) {
1876 		if (i == pd_idx || i == qd_idx)
1877 			continue;
1878 		xor_srcs[count++] = sh->dev[i].page;
1879 	}
1880 
1881 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1882 			  to_addr_conv(sh, percpu, 0));
1883 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1884 			   &sh->ops.zero_sum_result, &submit);
1885 
1886 	atomic_inc(&sh->count);
1887 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888 	tx = async_trigger_callback(&submit);
1889 }
1890 
1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892 {
1893 	struct page **srcs = to_addr_page(percpu, 0);
1894 	struct async_submit_ctl submit;
1895 	int count;
1896 
1897 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898 		(unsigned long long)sh->sector, checkp);
1899 
1900 	BUG_ON(sh->batch_head);
1901 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1902 	if (!checkp)
1903 		srcs[count] = NULL;
1904 
1905 	atomic_inc(&sh->count);
1906 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1907 			  sh, to_addr_conv(sh, percpu, 0));
1908 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1910 }
1911 
1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1913 {
1914 	int overlap_clear = 0, i, disks = sh->disks;
1915 	struct dma_async_tx_descriptor *tx = NULL;
1916 	struct r5conf *conf = sh->raid_conf;
1917 	int level = conf->level;
1918 	struct raid5_percpu *percpu;
1919 	unsigned long cpu;
1920 
1921 	cpu = get_cpu();
1922 	percpu = per_cpu_ptr(conf->percpu, cpu);
1923 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1924 		ops_run_biofill(sh);
1925 		overlap_clear++;
1926 	}
1927 
1928 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1929 		if (level < 6)
1930 			tx = ops_run_compute5(sh, percpu);
1931 		else {
1932 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933 				tx = ops_run_compute6_1(sh, percpu);
1934 			else
1935 				tx = ops_run_compute6_2(sh, percpu);
1936 		}
1937 		/* terminate the chain if reconstruct is not set to be run */
1938 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1939 			async_tx_ack(tx);
1940 	}
1941 
1942 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943 		if (level < 6)
1944 			tx = ops_run_prexor5(sh, percpu, tx);
1945 		else
1946 			tx = ops_run_prexor6(sh, percpu, tx);
1947 	}
1948 
1949 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1950 		tx = ops_run_biodrain(sh, tx);
1951 		overlap_clear++;
1952 	}
1953 
1954 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955 		if (level < 6)
1956 			ops_run_reconstruct5(sh, percpu, tx);
1957 		else
1958 			ops_run_reconstruct6(sh, percpu, tx);
1959 	}
1960 
1961 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962 		if (sh->check_state == check_state_run)
1963 			ops_run_check_p(sh, percpu);
1964 		else if (sh->check_state == check_state_run_q)
1965 			ops_run_check_pq(sh, percpu, 0);
1966 		else if (sh->check_state == check_state_run_pq)
1967 			ops_run_check_pq(sh, percpu, 1);
1968 		else
1969 			BUG();
1970 	}
1971 
1972 	if (overlap_clear && !sh->batch_head)
1973 		for (i = disks; i--; ) {
1974 			struct r5dev *dev = &sh->dev[i];
1975 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976 				wake_up(&sh->raid_conf->wait_for_overlap);
1977 		}
1978 	put_cpu();
1979 }
1980 
1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982 {
1983 	struct stripe_head *sh;
1984 
1985 	sh = kmem_cache_zalloc(sc, gfp);
1986 	if (sh) {
1987 		spin_lock_init(&sh->stripe_lock);
1988 		spin_lock_init(&sh->batch_lock);
1989 		INIT_LIST_HEAD(&sh->batch_list);
1990 		INIT_LIST_HEAD(&sh->lru);
1991 		atomic_set(&sh->count, 1);
1992 	}
1993 	return sh;
1994 }
1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1996 {
1997 	struct stripe_head *sh;
1998 
1999 	sh = alloc_stripe(conf->slab_cache, gfp);
2000 	if (!sh)
2001 		return 0;
2002 
2003 	sh->raid_conf = conf;
2004 
2005 	if (grow_buffers(sh, gfp)) {
2006 		shrink_buffers(sh);
2007 		kmem_cache_free(conf->slab_cache, sh);
2008 		return 0;
2009 	}
2010 	sh->hash_lock_index =
2011 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2012 	/* we just created an active stripe so... */
2013 	atomic_inc(&conf->active_stripes);
2014 
2015 	raid5_release_stripe(sh);
2016 	conf->max_nr_stripes++;
2017 	return 1;
2018 }
2019 
2020 static int grow_stripes(struct r5conf *conf, int num)
2021 {
2022 	struct kmem_cache *sc;
2023 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2024 
2025 	if (conf->mddev->gendisk)
2026 		sprintf(conf->cache_name[0],
2027 			"raid%d-%s", conf->level, mdname(conf->mddev));
2028 	else
2029 		sprintf(conf->cache_name[0],
2030 			"raid%d-%p", conf->level, conf->mddev);
2031 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032 
2033 	conf->active_name = 0;
2034 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2035 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2036 			       0, 0, NULL);
2037 	if (!sc)
2038 		return 1;
2039 	conf->slab_cache = sc;
2040 	conf->pool_size = devs;
2041 	while (num--)
2042 		if (!grow_one_stripe(conf, GFP_KERNEL))
2043 			return 1;
2044 
2045 	return 0;
2046 }
2047 
2048 /**
2049  * scribble_len - return the required size of the scribble region
2050  * @num - total number of disks in the array
2051  *
2052  * The size must be enough to contain:
2053  * 1/ a struct page pointer for each device in the array +2
2054  * 2/ room to convert each entry in (1) to its corresponding dma
2055  *    (dma_map_page()) or page (page_address()) address.
2056  *
2057  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058  * calculate over all devices (not just the data blocks), using zeros in place
2059  * of the P and Q blocks.
2060  */
2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2062 {
2063 	struct flex_array *ret;
2064 	size_t len;
2065 
2066 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2067 	ret = flex_array_alloc(len, cnt, flags);
2068 	if (!ret)
2069 		return NULL;
2070 	/* always prealloc all elements, so no locking is required */
2071 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072 		flex_array_free(ret);
2073 		return NULL;
2074 	}
2075 	return ret;
2076 }
2077 
2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079 {
2080 	unsigned long cpu;
2081 	int err = 0;
2082 
2083 	/*
2084 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2085 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2086 	 * should equal to new_disks and new_sectors
2087 	 */
2088 	if (conf->scribble_disks >= new_disks &&
2089 	    conf->scribble_sectors >= new_sectors)
2090 		return 0;
2091 	mddev_suspend(conf->mddev);
2092 	get_online_cpus();
2093 	for_each_present_cpu(cpu) {
2094 		struct raid5_percpu *percpu;
2095 		struct flex_array *scribble;
2096 
2097 		percpu = per_cpu_ptr(conf->percpu, cpu);
2098 		scribble = scribble_alloc(new_disks,
2099 					  new_sectors / STRIPE_SECTORS,
2100 					  GFP_NOIO);
2101 
2102 		if (scribble) {
2103 			flex_array_free(percpu->scribble);
2104 			percpu->scribble = scribble;
2105 		} else {
2106 			err = -ENOMEM;
2107 			break;
2108 		}
2109 	}
2110 	put_online_cpus();
2111 	mddev_resume(conf->mddev);
2112 	if (!err) {
2113 		conf->scribble_disks = new_disks;
2114 		conf->scribble_sectors = new_sectors;
2115 	}
2116 	return err;
2117 }
2118 
2119 static int resize_stripes(struct r5conf *conf, int newsize)
2120 {
2121 	/* Make all the stripes able to hold 'newsize' devices.
2122 	 * New slots in each stripe get 'page' set to a new page.
2123 	 *
2124 	 * This happens in stages:
2125 	 * 1/ create a new kmem_cache and allocate the required number of
2126 	 *    stripe_heads.
2127 	 * 2/ gather all the old stripe_heads and transfer the pages across
2128 	 *    to the new stripe_heads.  This will have the side effect of
2129 	 *    freezing the array as once all stripe_heads have been collected,
2130 	 *    no IO will be possible.  Old stripe heads are freed once their
2131 	 *    pages have been transferred over, and the old kmem_cache is
2132 	 *    freed when all stripes are done.
2133 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2134 	 *    we simple return a failre status - no need to clean anything up.
2135 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2136 	 *    If this fails, we don't bother trying the shrink the
2137 	 *    stripe_heads down again, we just leave them as they are.
2138 	 *    As each stripe_head is processed the new one is released into
2139 	 *    active service.
2140 	 *
2141 	 * Once step2 is started, we cannot afford to wait for a write,
2142 	 * so we use GFP_NOIO allocations.
2143 	 */
2144 	struct stripe_head *osh, *nsh;
2145 	LIST_HEAD(newstripes);
2146 	struct disk_info *ndisks;
2147 	int err;
2148 	struct kmem_cache *sc;
2149 	int i;
2150 	int hash, cnt;
2151 
2152 	if (newsize <= conf->pool_size)
2153 		return 0; /* never bother to shrink */
2154 
2155 	err = md_allow_write(conf->mddev);
2156 	if (err)
2157 		return err;
2158 
2159 	/* Step 1 */
2160 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2161 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2162 			       0, 0, NULL);
2163 	if (!sc)
2164 		return -ENOMEM;
2165 
2166 	/* Need to ensure auto-resizing doesn't interfere */
2167 	mutex_lock(&conf->cache_size_mutex);
2168 
2169 	for (i = conf->max_nr_stripes; i; i--) {
2170 		nsh = alloc_stripe(sc, GFP_KERNEL);
2171 		if (!nsh)
2172 			break;
2173 
2174 		nsh->raid_conf = conf;
2175 		list_add(&nsh->lru, &newstripes);
2176 	}
2177 	if (i) {
2178 		/* didn't get enough, give up */
2179 		while (!list_empty(&newstripes)) {
2180 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2181 			list_del(&nsh->lru);
2182 			kmem_cache_free(sc, nsh);
2183 		}
2184 		kmem_cache_destroy(sc);
2185 		mutex_unlock(&conf->cache_size_mutex);
2186 		return -ENOMEM;
2187 	}
2188 	/* Step 2 - Must use GFP_NOIO now.
2189 	 * OK, we have enough stripes, start collecting inactive
2190 	 * stripes and copying them over
2191 	 */
2192 	hash = 0;
2193 	cnt = 0;
2194 	list_for_each_entry(nsh, &newstripes, lru) {
2195 		lock_device_hash_lock(conf, hash);
2196 		wait_event_cmd(conf->wait_for_stripe,
2197 				    !list_empty(conf->inactive_list + hash),
2198 				    unlock_device_hash_lock(conf, hash),
2199 				    lock_device_hash_lock(conf, hash));
2200 		osh = get_free_stripe(conf, hash);
2201 		unlock_device_hash_lock(conf, hash);
2202 
2203 		for(i=0; i<conf->pool_size; i++) {
2204 			nsh->dev[i].page = osh->dev[i].page;
2205 			nsh->dev[i].orig_page = osh->dev[i].page;
2206 		}
2207 		nsh->hash_lock_index = hash;
2208 		kmem_cache_free(conf->slab_cache, osh);
2209 		cnt++;
2210 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2211 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2212 			hash++;
2213 			cnt = 0;
2214 		}
2215 	}
2216 	kmem_cache_destroy(conf->slab_cache);
2217 
2218 	/* Step 3.
2219 	 * At this point, we are holding all the stripes so the array
2220 	 * is completely stalled, so now is a good time to resize
2221 	 * conf->disks and the scribble region
2222 	 */
2223 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2224 	if (ndisks) {
2225 		for (i=0; i<conf->raid_disks; i++)
2226 			ndisks[i] = conf->disks[i];
2227 		kfree(conf->disks);
2228 		conf->disks = ndisks;
2229 	} else
2230 		err = -ENOMEM;
2231 
2232 	mutex_unlock(&conf->cache_size_mutex);
2233 	/* Step 4, return new stripes to service */
2234 	while(!list_empty(&newstripes)) {
2235 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2236 		list_del_init(&nsh->lru);
2237 
2238 		for (i=conf->raid_disks; i < newsize; i++)
2239 			if (nsh->dev[i].page == NULL) {
2240 				struct page *p = alloc_page(GFP_NOIO);
2241 				nsh->dev[i].page = p;
2242 				nsh->dev[i].orig_page = p;
2243 				if (!p)
2244 					err = -ENOMEM;
2245 			}
2246 		raid5_release_stripe(nsh);
2247 	}
2248 	/* critical section pass, GFP_NOIO no longer needed */
2249 
2250 	conf->slab_cache = sc;
2251 	conf->active_name = 1-conf->active_name;
2252 	if (!err)
2253 		conf->pool_size = newsize;
2254 	return err;
2255 }
2256 
2257 static int drop_one_stripe(struct r5conf *conf)
2258 {
2259 	struct stripe_head *sh;
2260 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2261 
2262 	spin_lock_irq(conf->hash_locks + hash);
2263 	sh = get_free_stripe(conf, hash);
2264 	spin_unlock_irq(conf->hash_locks + hash);
2265 	if (!sh)
2266 		return 0;
2267 	BUG_ON(atomic_read(&sh->count));
2268 	shrink_buffers(sh);
2269 	kmem_cache_free(conf->slab_cache, sh);
2270 	atomic_dec(&conf->active_stripes);
2271 	conf->max_nr_stripes--;
2272 	return 1;
2273 }
2274 
2275 static void shrink_stripes(struct r5conf *conf)
2276 {
2277 	while (conf->max_nr_stripes &&
2278 	       drop_one_stripe(conf))
2279 		;
2280 
2281 	kmem_cache_destroy(conf->slab_cache);
2282 	conf->slab_cache = NULL;
2283 }
2284 
2285 static void raid5_end_read_request(struct bio * bi)
2286 {
2287 	struct stripe_head *sh = bi->bi_private;
2288 	struct r5conf *conf = sh->raid_conf;
2289 	int disks = sh->disks, i;
2290 	char b[BDEVNAME_SIZE];
2291 	struct md_rdev *rdev = NULL;
2292 	sector_t s;
2293 
2294 	for (i=0 ; i<disks; i++)
2295 		if (bi == &sh->dev[i].req)
2296 			break;
2297 
2298 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2299 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2300 		bi->bi_error);
2301 	if (i == disks) {
2302 		BUG();
2303 		return;
2304 	}
2305 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2306 		/* If replacement finished while this request was outstanding,
2307 		 * 'replacement' might be NULL already.
2308 		 * In that case it moved down to 'rdev'.
2309 		 * rdev is not removed until all requests are finished.
2310 		 */
2311 		rdev = conf->disks[i].replacement;
2312 	if (!rdev)
2313 		rdev = conf->disks[i].rdev;
2314 
2315 	if (use_new_offset(conf, sh))
2316 		s = sh->sector + rdev->new_data_offset;
2317 	else
2318 		s = sh->sector + rdev->data_offset;
2319 	if (!bi->bi_error) {
2320 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2321 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2322 			/* Note that this cannot happen on a
2323 			 * replacement device.  We just fail those on
2324 			 * any error
2325 			 */
2326 			printk_ratelimited(
2327 				KERN_INFO
2328 				"md/raid:%s: read error corrected"
2329 				" (%lu sectors at %llu on %s)\n",
2330 				mdname(conf->mddev), STRIPE_SECTORS,
2331 				(unsigned long long)s,
2332 				bdevname(rdev->bdev, b));
2333 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2334 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2335 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2336 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2337 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2338 
2339 		if (atomic_read(&rdev->read_errors))
2340 			atomic_set(&rdev->read_errors, 0);
2341 	} else {
2342 		const char *bdn = bdevname(rdev->bdev, b);
2343 		int retry = 0;
2344 		int set_bad = 0;
2345 
2346 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2347 		atomic_inc(&rdev->read_errors);
2348 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2349 			printk_ratelimited(
2350 				KERN_WARNING
2351 				"md/raid:%s: read error on replacement device "
2352 				"(sector %llu on %s).\n",
2353 				mdname(conf->mddev),
2354 				(unsigned long long)s,
2355 				bdn);
2356 		else if (conf->mddev->degraded >= conf->max_degraded) {
2357 			set_bad = 1;
2358 			printk_ratelimited(
2359 				KERN_WARNING
2360 				"md/raid:%s: read error not correctable "
2361 				"(sector %llu on %s).\n",
2362 				mdname(conf->mddev),
2363 				(unsigned long long)s,
2364 				bdn);
2365 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2366 			/* Oh, no!!! */
2367 			set_bad = 1;
2368 			printk_ratelimited(
2369 				KERN_WARNING
2370 				"md/raid:%s: read error NOT corrected!! "
2371 				"(sector %llu on %s).\n",
2372 				mdname(conf->mddev),
2373 				(unsigned long long)s,
2374 				bdn);
2375 		} else if (atomic_read(&rdev->read_errors)
2376 			 > conf->max_nr_stripes)
2377 			printk(KERN_WARNING
2378 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2379 			       mdname(conf->mddev), bdn);
2380 		else
2381 			retry = 1;
2382 		if (set_bad && test_bit(In_sync, &rdev->flags)
2383 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2384 			retry = 1;
2385 		if (retry)
2386 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2387 				set_bit(R5_ReadError, &sh->dev[i].flags);
2388 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2389 			} else
2390 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2391 		else {
2392 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2393 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2394 			if (!(set_bad
2395 			      && test_bit(In_sync, &rdev->flags)
2396 			      && rdev_set_badblocks(
2397 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2398 				md_error(conf->mddev, rdev);
2399 		}
2400 	}
2401 	rdev_dec_pending(rdev, conf->mddev);
2402 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2403 	set_bit(STRIPE_HANDLE, &sh->state);
2404 	raid5_release_stripe(sh);
2405 }
2406 
2407 static void raid5_end_write_request(struct bio *bi)
2408 {
2409 	struct stripe_head *sh = bi->bi_private;
2410 	struct r5conf *conf = sh->raid_conf;
2411 	int disks = sh->disks, i;
2412 	struct md_rdev *uninitialized_var(rdev);
2413 	sector_t first_bad;
2414 	int bad_sectors;
2415 	int replacement = 0;
2416 
2417 	for (i = 0 ; i < disks; i++) {
2418 		if (bi == &sh->dev[i].req) {
2419 			rdev = conf->disks[i].rdev;
2420 			break;
2421 		}
2422 		if (bi == &sh->dev[i].rreq) {
2423 			rdev = conf->disks[i].replacement;
2424 			if (rdev)
2425 				replacement = 1;
2426 			else
2427 				/* rdev was removed and 'replacement'
2428 				 * replaced it.  rdev is not removed
2429 				 * until all requests are finished.
2430 				 */
2431 				rdev = conf->disks[i].rdev;
2432 			break;
2433 		}
2434 	}
2435 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2436 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2437 		bi->bi_error);
2438 	if (i == disks) {
2439 		BUG();
2440 		return;
2441 	}
2442 
2443 	if (replacement) {
2444 		if (bi->bi_error)
2445 			md_error(conf->mddev, rdev);
2446 		else if (is_badblock(rdev, sh->sector,
2447 				     STRIPE_SECTORS,
2448 				     &first_bad, &bad_sectors))
2449 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2450 	} else {
2451 		if (bi->bi_error) {
2452 			set_bit(STRIPE_DEGRADED, &sh->state);
2453 			set_bit(WriteErrorSeen, &rdev->flags);
2454 			set_bit(R5_WriteError, &sh->dev[i].flags);
2455 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2456 				set_bit(MD_RECOVERY_NEEDED,
2457 					&rdev->mddev->recovery);
2458 		} else if (is_badblock(rdev, sh->sector,
2459 				       STRIPE_SECTORS,
2460 				       &first_bad, &bad_sectors)) {
2461 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2462 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2463 				/* That was a successful write so make
2464 				 * sure it looks like we already did
2465 				 * a re-write.
2466 				 */
2467 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2468 		}
2469 	}
2470 	rdev_dec_pending(rdev, conf->mddev);
2471 
2472 	if (sh->batch_head && bi->bi_error && !replacement)
2473 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2474 
2475 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2476 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2477 	set_bit(STRIPE_HANDLE, &sh->state);
2478 	raid5_release_stripe(sh);
2479 
2480 	if (sh->batch_head && sh != sh->batch_head)
2481 		raid5_release_stripe(sh->batch_head);
2482 }
2483 
2484 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2485 {
2486 	struct r5dev *dev = &sh->dev[i];
2487 
2488 	bio_init(&dev->req);
2489 	dev->req.bi_io_vec = &dev->vec;
2490 	dev->req.bi_max_vecs = 1;
2491 	dev->req.bi_private = sh;
2492 
2493 	bio_init(&dev->rreq);
2494 	dev->rreq.bi_io_vec = &dev->rvec;
2495 	dev->rreq.bi_max_vecs = 1;
2496 	dev->rreq.bi_private = sh;
2497 
2498 	dev->flags = 0;
2499 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2500 }
2501 
2502 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2503 {
2504 	char b[BDEVNAME_SIZE];
2505 	struct r5conf *conf = mddev->private;
2506 	unsigned long flags;
2507 	pr_debug("raid456: error called\n");
2508 
2509 	spin_lock_irqsave(&conf->device_lock, flags);
2510 	clear_bit(In_sync, &rdev->flags);
2511 	mddev->degraded = calc_degraded(conf);
2512 	spin_unlock_irqrestore(&conf->device_lock, flags);
2513 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2514 
2515 	set_bit(Blocked, &rdev->flags);
2516 	set_bit(Faulty, &rdev->flags);
2517 	set_mask_bits(&mddev->flags, 0,
2518 		      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
2519 	printk(KERN_ALERT
2520 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2521 	       "md/raid:%s: Operation continuing on %d devices.\n",
2522 	       mdname(mddev),
2523 	       bdevname(rdev->bdev, b),
2524 	       mdname(mddev),
2525 	       conf->raid_disks - mddev->degraded);
2526 }
2527 
2528 /*
2529  * Input: a 'big' sector number,
2530  * Output: index of the data and parity disk, and the sector # in them.
2531  */
2532 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2533 			      int previous, int *dd_idx,
2534 			      struct stripe_head *sh)
2535 {
2536 	sector_t stripe, stripe2;
2537 	sector_t chunk_number;
2538 	unsigned int chunk_offset;
2539 	int pd_idx, qd_idx;
2540 	int ddf_layout = 0;
2541 	sector_t new_sector;
2542 	int algorithm = previous ? conf->prev_algo
2543 				 : conf->algorithm;
2544 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2545 					 : conf->chunk_sectors;
2546 	int raid_disks = previous ? conf->previous_raid_disks
2547 				  : conf->raid_disks;
2548 	int data_disks = raid_disks - conf->max_degraded;
2549 
2550 	/* First compute the information on this sector */
2551 
2552 	/*
2553 	 * Compute the chunk number and the sector offset inside the chunk
2554 	 */
2555 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2556 	chunk_number = r_sector;
2557 
2558 	/*
2559 	 * Compute the stripe number
2560 	 */
2561 	stripe = chunk_number;
2562 	*dd_idx = sector_div(stripe, data_disks);
2563 	stripe2 = stripe;
2564 	/*
2565 	 * Select the parity disk based on the user selected algorithm.
2566 	 */
2567 	pd_idx = qd_idx = -1;
2568 	switch(conf->level) {
2569 	case 4:
2570 		pd_idx = data_disks;
2571 		break;
2572 	case 5:
2573 		switch (algorithm) {
2574 		case ALGORITHM_LEFT_ASYMMETRIC:
2575 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2576 			if (*dd_idx >= pd_idx)
2577 				(*dd_idx)++;
2578 			break;
2579 		case ALGORITHM_RIGHT_ASYMMETRIC:
2580 			pd_idx = sector_div(stripe2, raid_disks);
2581 			if (*dd_idx >= pd_idx)
2582 				(*dd_idx)++;
2583 			break;
2584 		case ALGORITHM_LEFT_SYMMETRIC:
2585 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2586 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2587 			break;
2588 		case ALGORITHM_RIGHT_SYMMETRIC:
2589 			pd_idx = sector_div(stripe2, raid_disks);
2590 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2591 			break;
2592 		case ALGORITHM_PARITY_0:
2593 			pd_idx = 0;
2594 			(*dd_idx)++;
2595 			break;
2596 		case ALGORITHM_PARITY_N:
2597 			pd_idx = data_disks;
2598 			break;
2599 		default:
2600 			BUG();
2601 		}
2602 		break;
2603 	case 6:
2604 
2605 		switch (algorithm) {
2606 		case ALGORITHM_LEFT_ASYMMETRIC:
2607 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2608 			qd_idx = pd_idx + 1;
2609 			if (pd_idx == raid_disks-1) {
2610 				(*dd_idx)++;	/* Q D D D P */
2611 				qd_idx = 0;
2612 			} else if (*dd_idx >= pd_idx)
2613 				(*dd_idx) += 2; /* D D P Q D */
2614 			break;
2615 		case ALGORITHM_RIGHT_ASYMMETRIC:
2616 			pd_idx = sector_div(stripe2, raid_disks);
2617 			qd_idx = pd_idx + 1;
2618 			if (pd_idx == raid_disks-1) {
2619 				(*dd_idx)++;	/* Q D D D P */
2620 				qd_idx = 0;
2621 			} else if (*dd_idx >= pd_idx)
2622 				(*dd_idx) += 2; /* D D P Q D */
2623 			break;
2624 		case ALGORITHM_LEFT_SYMMETRIC:
2625 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2626 			qd_idx = (pd_idx + 1) % raid_disks;
2627 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2628 			break;
2629 		case ALGORITHM_RIGHT_SYMMETRIC:
2630 			pd_idx = sector_div(stripe2, raid_disks);
2631 			qd_idx = (pd_idx + 1) % raid_disks;
2632 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2633 			break;
2634 
2635 		case ALGORITHM_PARITY_0:
2636 			pd_idx = 0;
2637 			qd_idx = 1;
2638 			(*dd_idx) += 2;
2639 			break;
2640 		case ALGORITHM_PARITY_N:
2641 			pd_idx = data_disks;
2642 			qd_idx = data_disks + 1;
2643 			break;
2644 
2645 		case ALGORITHM_ROTATING_ZERO_RESTART:
2646 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2647 			 * of blocks for computing Q is different.
2648 			 */
2649 			pd_idx = sector_div(stripe2, raid_disks);
2650 			qd_idx = pd_idx + 1;
2651 			if (pd_idx == raid_disks-1) {
2652 				(*dd_idx)++;	/* Q D D D P */
2653 				qd_idx = 0;
2654 			} else if (*dd_idx >= pd_idx)
2655 				(*dd_idx) += 2; /* D D P Q D */
2656 			ddf_layout = 1;
2657 			break;
2658 
2659 		case ALGORITHM_ROTATING_N_RESTART:
2660 			/* Same a left_asymmetric, by first stripe is
2661 			 * D D D P Q  rather than
2662 			 * Q D D D P
2663 			 */
2664 			stripe2 += 1;
2665 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2666 			qd_idx = pd_idx + 1;
2667 			if (pd_idx == raid_disks-1) {
2668 				(*dd_idx)++;	/* Q D D D P */
2669 				qd_idx = 0;
2670 			} else if (*dd_idx >= pd_idx)
2671 				(*dd_idx) += 2; /* D D P Q D */
2672 			ddf_layout = 1;
2673 			break;
2674 
2675 		case ALGORITHM_ROTATING_N_CONTINUE:
2676 			/* Same as left_symmetric but Q is before P */
2677 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2678 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2679 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2680 			ddf_layout = 1;
2681 			break;
2682 
2683 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2684 			/* RAID5 left_asymmetric, with Q on last device */
2685 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2686 			if (*dd_idx >= pd_idx)
2687 				(*dd_idx)++;
2688 			qd_idx = raid_disks - 1;
2689 			break;
2690 
2691 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2692 			pd_idx = sector_div(stripe2, raid_disks-1);
2693 			if (*dd_idx >= pd_idx)
2694 				(*dd_idx)++;
2695 			qd_idx = raid_disks - 1;
2696 			break;
2697 
2698 		case ALGORITHM_LEFT_SYMMETRIC_6:
2699 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2700 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2701 			qd_idx = raid_disks - 1;
2702 			break;
2703 
2704 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2705 			pd_idx = sector_div(stripe2, raid_disks-1);
2706 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2707 			qd_idx = raid_disks - 1;
2708 			break;
2709 
2710 		case ALGORITHM_PARITY_0_6:
2711 			pd_idx = 0;
2712 			(*dd_idx)++;
2713 			qd_idx = raid_disks - 1;
2714 			break;
2715 
2716 		default:
2717 			BUG();
2718 		}
2719 		break;
2720 	}
2721 
2722 	if (sh) {
2723 		sh->pd_idx = pd_idx;
2724 		sh->qd_idx = qd_idx;
2725 		sh->ddf_layout = ddf_layout;
2726 	}
2727 	/*
2728 	 * Finally, compute the new sector number
2729 	 */
2730 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2731 	return new_sector;
2732 }
2733 
2734 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2735 {
2736 	struct r5conf *conf = sh->raid_conf;
2737 	int raid_disks = sh->disks;
2738 	int data_disks = raid_disks - conf->max_degraded;
2739 	sector_t new_sector = sh->sector, check;
2740 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2741 					 : conf->chunk_sectors;
2742 	int algorithm = previous ? conf->prev_algo
2743 				 : conf->algorithm;
2744 	sector_t stripe;
2745 	int chunk_offset;
2746 	sector_t chunk_number;
2747 	int dummy1, dd_idx = i;
2748 	sector_t r_sector;
2749 	struct stripe_head sh2;
2750 
2751 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2752 	stripe = new_sector;
2753 
2754 	if (i == sh->pd_idx)
2755 		return 0;
2756 	switch(conf->level) {
2757 	case 4: break;
2758 	case 5:
2759 		switch (algorithm) {
2760 		case ALGORITHM_LEFT_ASYMMETRIC:
2761 		case ALGORITHM_RIGHT_ASYMMETRIC:
2762 			if (i > sh->pd_idx)
2763 				i--;
2764 			break;
2765 		case ALGORITHM_LEFT_SYMMETRIC:
2766 		case ALGORITHM_RIGHT_SYMMETRIC:
2767 			if (i < sh->pd_idx)
2768 				i += raid_disks;
2769 			i -= (sh->pd_idx + 1);
2770 			break;
2771 		case ALGORITHM_PARITY_0:
2772 			i -= 1;
2773 			break;
2774 		case ALGORITHM_PARITY_N:
2775 			break;
2776 		default:
2777 			BUG();
2778 		}
2779 		break;
2780 	case 6:
2781 		if (i == sh->qd_idx)
2782 			return 0; /* It is the Q disk */
2783 		switch (algorithm) {
2784 		case ALGORITHM_LEFT_ASYMMETRIC:
2785 		case ALGORITHM_RIGHT_ASYMMETRIC:
2786 		case ALGORITHM_ROTATING_ZERO_RESTART:
2787 		case ALGORITHM_ROTATING_N_RESTART:
2788 			if (sh->pd_idx == raid_disks-1)
2789 				i--;	/* Q D D D P */
2790 			else if (i > sh->pd_idx)
2791 				i -= 2; /* D D P Q D */
2792 			break;
2793 		case ALGORITHM_LEFT_SYMMETRIC:
2794 		case ALGORITHM_RIGHT_SYMMETRIC:
2795 			if (sh->pd_idx == raid_disks-1)
2796 				i--; /* Q D D D P */
2797 			else {
2798 				/* D D P Q D */
2799 				if (i < sh->pd_idx)
2800 					i += raid_disks;
2801 				i -= (sh->pd_idx + 2);
2802 			}
2803 			break;
2804 		case ALGORITHM_PARITY_0:
2805 			i -= 2;
2806 			break;
2807 		case ALGORITHM_PARITY_N:
2808 			break;
2809 		case ALGORITHM_ROTATING_N_CONTINUE:
2810 			/* Like left_symmetric, but P is before Q */
2811 			if (sh->pd_idx == 0)
2812 				i--;	/* P D D D Q */
2813 			else {
2814 				/* D D Q P D */
2815 				if (i < sh->pd_idx)
2816 					i += raid_disks;
2817 				i -= (sh->pd_idx + 1);
2818 			}
2819 			break;
2820 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2821 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2822 			if (i > sh->pd_idx)
2823 				i--;
2824 			break;
2825 		case ALGORITHM_LEFT_SYMMETRIC_6:
2826 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2827 			if (i < sh->pd_idx)
2828 				i += data_disks + 1;
2829 			i -= (sh->pd_idx + 1);
2830 			break;
2831 		case ALGORITHM_PARITY_0_6:
2832 			i -= 1;
2833 			break;
2834 		default:
2835 			BUG();
2836 		}
2837 		break;
2838 	}
2839 
2840 	chunk_number = stripe * data_disks + i;
2841 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2842 
2843 	check = raid5_compute_sector(conf, r_sector,
2844 				     previous, &dummy1, &sh2);
2845 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2846 		|| sh2.qd_idx != sh->qd_idx) {
2847 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2848 		       mdname(conf->mddev));
2849 		return 0;
2850 	}
2851 	return r_sector;
2852 }
2853 
2854 static void
2855 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2856 			 int rcw, int expand)
2857 {
2858 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2859 	struct r5conf *conf = sh->raid_conf;
2860 	int level = conf->level;
2861 
2862 	if (rcw) {
2863 
2864 		for (i = disks; i--; ) {
2865 			struct r5dev *dev = &sh->dev[i];
2866 
2867 			if (dev->towrite) {
2868 				set_bit(R5_LOCKED, &dev->flags);
2869 				set_bit(R5_Wantdrain, &dev->flags);
2870 				if (!expand)
2871 					clear_bit(R5_UPTODATE, &dev->flags);
2872 				s->locked++;
2873 			}
2874 		}
2875 		/* if we are not expanding this is a proper write request, and
2876 		 * there will be bios with new data to be drained into the
2877 		 * stripe cache
2878 		 */
2879 		if (!expand) {
2880 			if (!s->locked)
2881 				/* False alarm, nothing to do */
2882 				return;
2883 			sh->reconstruct_state = reconstruct_state_drain_run;
2884 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2885 		} else
2886 			sh->reconstruct_state = reconstruct_state_run;
2887 
2888 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2889 
2890 		if (s->locked + conf->max_degraded == disks)
2891 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2892 				atomic_inc(&conf->pending_full_writes);
2893 	} else {
2894 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2895 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2896 		BUG_ON(level == 6 &&
2897 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2898 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2899 
2900 		for (i = disks; i--; ) {
2901 			struct r5dev *dev = &sh->dev[i];
2902 			if (i == pd_idx || i == qd_idx)
2903 				continue;
2904 
2905 			if (dev->towrite &&
2906 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2907 			     test_bit(R5_Wantcompute, &dev->flags))) {
2908 				set_bit(R5_Wantdrain, &dev->flags);
2909 				set_bit(R5_LOCKED, &dev->flags);
2910 				clear_bit(R5_UPTODATE, &dev->flags);
2911 				s->locked++;
2912 			}
2913 		}
2914 		if (!s->locked)
2915 			/* False alarm - nothing to do */
2916 			return;
2917 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2918 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2919 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2920 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2921 	}
2922 
2923 	/* keep the parity disk(s) locked while asynchronous operations
2924 	 * are in flight
2925 	 */
2926 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2927 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2928 	s->locked++;
2929 
2930 	if (level == 6) {
2931 		int qd_idx = sh->qd_idx;
2932 		struct r5dev *dev = &sh->dev[qd_idx];
2933 
2934 		set_bit(R5_LOCKED, &dev->flags);
2935 		clear_bit(R5_UPTODATE, &dev->flags);
2936 		s->locked++;
2937 	}
2938 
2939 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2940 		__func__, (unsigned long long)sh->sector,
2941 		s->locked, s->ops_request);
2942 }
2943 
2944 /*
2945  * Each stripe/dev can have one or more bion attached.
2946  * toread/towrite point to the first in a chain.
2947  * The bi_next chain must be in order.
2948  */
2949 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2950 			  int forwrite, int previous)
2951 {
2952 	struct bio **bip;
2953 	struct r5conf *conf = sh->raid_conf;
2954 	int firstwrite=0;
2955 
2956 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2957 		(unsigned long long)bi->bi_iter.bi_sector,
2958 		(unsigned long long)sh->sector);
2959 
2960 	/*
2961 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2962 	 * reference count to avoid race. The reference count should already be
2963 	 * increased before this function is called (for example, in
2964 	 * raid5_make_request()), so other bio sharing this stripe will not free the
2965 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2966 	 * protect it.
2967 	 */
2968 	spin_lock_irq(&sh->stripe_lock);
2969 	/* Don't allow new IO added to stripes in batch list */
2970 	if (sh->batch_head)
2971 		goto overlap;
2972 	if (forwrite) {
2973 		bip = &sh->dev[dd_idx].towrite;
2974 		if (*bip == NULL)
2975 			firstwrite = 1;
2976 	} else
2977 		bip = &sh->dev[dd_idx].toread;
2978 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2979 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2980 			goto overlap;
2981 		bip = & (*bip)->bi_next;
2982 	}
2983 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2984 		goto overlap;
2985 
2986 	if (!forwrite || previous)
2987 		clear_bit(STRIPE_BATCH_READY, &sh->state);
2988 
2989 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2990 	if (*bip)
2991 		bi->bi_next = *bip;
2992 	*bip = bi;
2993 	raid5_inc_bi_active_stripes(bi);
2994 
2995 	if (forwrite) {
2996 		/* check if page is covered */
2997 		sector_t sector = sh->dev[dd_idx].sector;
2998 		for (bi=sh->dev[dd_idx].towrite;
2999 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3000 			     bi && bi->bi_iter.bi_sector <= sector;
3001 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3002 			if (bio_end_sector(bi) >= sector)
3003 				sector = bio_end_sector(bi);
3004 		}
3005 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3006 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3007 				sh->overwrite_disks++;
3008 	}
3009 
3010 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3011 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3012 		(unsigned long long)sh->sector, dd_idx);
3013 
3014 	if (conf->mddev->bitmap && firstwrite) {
3015 		/* Cannot hold spinlock over bitmap_startwrite,
3016 		 * but must ensure this isn't added to a batch until
3017 		 * we have added to the bitmap and set bm_seq.
3018 		 * So set STRIPE_BITMAP_PENDING to prevent
3019 		 * batching.
3020 		 * If multiple add_stripe_bio() calls race here they
3021 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3022 		 * to complete "bitmap_startwrite" gets to set
3023 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3024 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3025 		 * any more.
3026 		 */
3027 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3028 		spin_unlock_irq(&sh->stripe_lock);
3029 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3030 				  STRIPE_SECTORS, 0);
3031 		spin_lock_irq(&sh->stripe_lock);
3032 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3033 		if (!sh->batch_head) {
3034 			sh->bm_seq = conf->seq_flush+1;
3035 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3036 		}
3037 	}
3038 	spin_unlock_irq(&sh->stripe_lock);
3039 
3040 	if (stripe_can_batch(sh))
3041 		stripe_add_to_batch_list(conf, sh);
3042 	return 1;
3043 
3044  overlap:
3045 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3046 	spin_unlock_irq(&sh->stripe_lock);
3047 	return 0;
3048 }
3049 
3050 static void end_reshape(struct r5conf *conf);
3051 
3052 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3053 			    struct stripe_head *sh)
3054 {
3055 	int sectors_per_chunk =
3056 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3057 	int dd_idx;
3058 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3059 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3060 
3061 	raid5_compute_sector(conf,
3062 			     stripe * (disks - conf->max_degraded)
3063 			     *sectors_per_chunk + chunk_offset,
3064 			     previous,
3065 			     &dd_idx, sh);
3066 }
3067 
3068 static void
3069 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3070 				struct stripe_head_state *s, int disks,
3071 				struct bio_list *return_bi)
3072 {
3073 	int i;
3074 	BUG_ON(sh->batch_head);
3075 	for (i = disks; i--; ) {
3076 		struct bio *bi;
3077 		int bitmap_end = 0;
3078 
3079 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3080 			struct md_rdev *rdev;
3081 			rcu_read_lock();
3082 			rdev = rcu_dereference(conf->disks[i].rdev);
3083 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3084 			    !test_bit(Faulty, &rdev->flags))
3085 				atomic_inc(&rdev->nr_pending);
3086 			else
3087 				rdev = NULL;
3088 			rcu_read_unlock();
3089 			if (rdev) {
3090 				if (!rdev_set_badblocks(
3091 					    rdev,
3092 					    sh->sector,
3093 					    STRIPE_SECTORS, 0))
3094 					md_error(conf->mddev, rdev);
3095 				rdev_dec_pending(rdev, conf->mddev);
3096 			}
3097 		}
3098 		spin_lock_irq(&sh->stripe_lock);
3099 		/* fail all writes first */
3100 		bi = sh->dev[i].towrite;
3101 		sh->dev[i].towrite = NULL;
3102 		sh->overwrite_disks = 0;
3103 		spin_unlock_irq(&sh->stripe_lock);
3104 		if (bi)
3105 			bitmap_end = 1;
3106 
3107 		r5l_stripe_write_finished(sh);
3108 
3109 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3110 			wake_up(&conf->wait_for_overlap);
3111 
3112 		while (bi && bi->bi_iter.bi_sector <
3113 			sh->dev[i].sector + STRIPE_SECTORS) {
3114 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3115 
3116 			bi->bi_error = -EIO;
3117 			if (!raid5_dec_bi_active_stripes(bi)) {
3118 				md_write_end(conf->mddev);
3119 				bio_list_add(return_bi, bi);
3120 			}
3121 			bi = nextbi;
3122 		}
3123 		if (bitmap_end)
3124 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3125 				STRIPE_SECTORS, 0, 0);
3126 		bitmap_end = 0;
3127 		/* and fail all 'written' */
3128 		bi = sh->dev[i].written;
3129 		sh->dev[i].written = NULL;
3130 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3131 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3132 			sh->dev[i].page = sh->dev[i].orig_page;
3133 		}
3134 
3135 		if (bi) bitmap_end = 1;
3136 		while (bi && bi->bi_iter.bi_sector <
3137 		       sh->dev[i].sector + STRIPE_SECTORS) {
3138 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3139 
3140 			bi->bi_error = -EIO;
3141 			if (!raid5_dec_bi_active_stripes(bi)) {
3142 				md_write_end(conf->mddev);
3143 				bio_list_add(return_bi, bi);
3144 			}
3145 			bi = bi2;
3146 		}
3147 
3148 		/* fail any reads if this device is non-operational and
3149 		 * the data has not reached the cache yet.
3150 		 */
3151 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3152 		    s->failed > conf->max_degraded &&
3153 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3154 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3155 			spin_lock_irq(&sh->stripe_lock);
3156 			bi = sh->dev[i].toread;
3157 			sh->dev[i].toread = NULL;
3158 			spin_unlock_irq(&sh->stripe_lock);
3159 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3160 				wake_up(&conf->wait_for_overlap);
3161 			if (bi)
3162 				s->to_read--;
3163 			while (bi && bi->bi_iter.bi_sector <
3164 			       sh->dev[i].sector + STRIPE_SECTORS) {
3165 				struct bio *nextbi =
3166 					r5_next_bio(bi, sh->dev[i].sector);
3167 
3168 				bi->bi_error = -EIO;
3169 				if (!raid5_dec_bi_active_stripes(bi))
3170 					bio_list_add(return_bi, bi);
3171 				bi = nextbi;
3172 			}
3173 		}
3174 		if (bitmap_end)
3175 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3176 					STRIPE_SECTORS, 0, 0);
3177 		/* If we were in the middle of a write the parity block might
3178 		 * still be locked - so just clear all R5_LOCKED flags
3179 		 */
3180 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3181 	}
3182 	s->to_write = 0;
3183 	s->written = 0;
3184 
3185 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3186 		if (atomic_dec_and_test(&conf->pending_full_writes))
3187 			md_wakeup_thread(conf->mddev->thread);
3188 }
3189 
3190 static void
3191 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3192 		   struct stripe_head_state *s)
3193 {
3194 	int abort = 0;
3195 	int i;
3196 
3197 	BUG_ON(sh->batch_head);
3198 	clear_bit(STRIPE_SYNCING, &sh->state);
3199 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3200 		wake_up(&conf->wait_for_overlap);
3201 	s->syncing = 0;
3202 	s->replacing = 0;
3203 	/* There is nothing more to do for sync/check/repair.
3204 	 * Don't even need to abort as that is handled elsewhere
3205 	 * if needed, and not always wanted e.g. if there is a known
3206 	 * bad block here.
3207 	 * For recover/replace we need to record a bad block on all
3208 	 * non-sync devices, or abort the recovery
3209 	 */
3210 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3211 		/* During recovery devices cannot be removed, so
3212 		 * locking and refcounting of rdevs is not needed
3213 		 */
3214 		rcu_read_lock();
3215 		for (i = 0; i < conf->raid_disks; i++) {
3216 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3217 			if (rdev
3218 			    && !test_bit(Faulty, &rdev->flags)
3219 			    && !test_bit(In_sync, &rdev->flags)
3220 			    && !rdev_set_badblocks(rdev, sh->sector,
3221 						   STRIPE_SECTORS, 0))
3222 				abort = 1;
3223 			rdev = rcu_dereference(conf->disks[i].replacement);
3224 			if (rdev
3225 			    && !test_bit(Faulty, &rdev->flags)
3226 			    && !test_bit(In_sync, &rdev->flags)
3227 			    && !rdev_set_badblocks(rdev, sh->sector,
3228 						   STRIPE_SECTORS, 0))
3229 				abort = 1;
3230 		}
3231 		rcu_read_unlock();
3232 		if (abort)
3233 			conf->recovery_disabled =
3234 				conf->mddev->recovery_disabled;
3235 	}
3236 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3237 }
3238 
3239 static int want_replace(struct stripe_head *sh, int disk_idx)
3240 {
3241 	struct md_rdev *rdev;
3242 	int rv = 0;
3243 
3244 	rcu_read_lock();
3245 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3246 	if (rdev
3247 	    && !test_bit(Faulty, &rdev->flags)
3248 	    && !test_bit(In_sync, &rdev->flags)
3249 	    && (rdev->recovery_offset <= sh->sector
3250 		|| rdev->mddev->recovery_cp <= sh->sector))
3251 		rv = 1;
3252 	rcu_read_unlock();
3253 	return rv;
3254 }
3255 
3256 /* fetch_block - checks the given member device to see if its data needs
3257  * to be read or computed to satisfy a request.
3258  *
3259  * Returns 1 when no more member devices need to be checked, otherwise returns
3260  * 0 to tell the loop in handle_stripe_fill to continue
3261  */
3262 
3263 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3264 			   int disk_idx, int disks)
3265 {
3266 	struct r5dev *dev = &sh->dev[disk_idx];
3267 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3268 				  &sh->dev[s->failed_num[1]] };
3269 	int i;
3270 
3271 
3272 	if (test_bit(R5_LOCKED, &dev->flags) ||
3273 	    test_bit(R5_UPTODATE, &dev->flags))
3274 		/* No point reading this as we already have it or have
3275 		 * decided to get it.
3276 		 */
3277 		return 0;
3278 
3279 	if (dev->toread ||
3280 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3281 		/* We need this block to directly satisfy a request */
3282 		return 1;
3283 
3284 	if (s->syncing || s->expanding ||
3285 	    (s->replacing && want_replace(sh, disk_idx)))
3286 		/* When syncing, or expanding we read everything.
3287 		 * When replacing, we need the replaced block.
3288 		 */
3289 		return 1;
3290 
3291 	if ((s->failed >= 1 && fdev[0]->toread) ||
3292 	    (s->failed >= 2 && fdev[1]->toread))
3293 		/* If we want to read from a failed device, then
3294 		 * we need to actually read every other device.
3295 		 */
3296 		return 1;
3297 
3298 	/* Sometimes neither read-modify-write nor reconstruct-write
3299 	 * cycles can work.  In those cases we read every block we
3300 	 * can.  Then the parity-update is certain to have enough to
3301 	 * work with.
3302 	 * This can only be a problem when we need to write something,
3303 	 * and some device has failed.  If either of those tests
3304 	 * fail we need look no further.
3305 	 */
3306 	if (!s->failed || !s->to_write)
3307 		return 0;
3308 
3309 	if (test_bit(R5_Insync, &dev->flags) &&
3310 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3311 		/* Pre-reads at not permitted until after short delay
3312 		 * to gather multiple requests.  However if this
3313 		 * device is no Insync, the block could only be be computed
3314 		 * and there is no need to delay that.
3315 		 */
3316 		return 0;
3317 
3318 	for (i = 0; i < s->failed && i < 2; i++) {
3319 		if (fdev[i]->towrite &&
3320 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3321 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3322 			/* If we have a partial write to a failed
3323 			 * device, then we will need to reconstruct
3324 			 * the content of that device, so all other
3325 			 * devices must be read.
3326 			 */
3327 			return 1;
3328 	}
3329 
3330 	/* If we are forced to do a reconstruct-write, either because
3331 	 * the current RAID6 implementation only supports that, or
3332 	 * or because parity cannot be trusted and we are currently
3333 	 * recovering it, there is extra need to be careful.
3334 	 * If one of the devices that we would need to read, because
3335 	 * it is not being overwritten (and maybe not written at all)
3336 	 * is missing/faulty, then we need to read everything we can.
3337 	 */
3338 	if (sh->raid_conf->level != 6 &&
3339 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3340 		/* reconstruct-write isn't being forced */
3341 		return 0;
3342 	for (i = 0; i < s->failed && i < 2; i++) {
3343 		if (s->failed_num[i] != sh->pd_idx &&
3344 		    s->failed_num[i] != sh->qd_idx &&
3345 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3346 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3347 			return 1;
3348 	}
3349 
3350 	return 0;
3351 }
3352 
3353 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3354 		       int disk_idx, int disks)
3355 {
3356 	struct r5dev *dev = &sh->dev[disk_idx];
3357 
3358 	/* is the data in this block needed, and can we get it? */
3359 	if (need_this_block(sh, s, disk_idx, disks)) {
3360 		/* we would like to get this block, possibly by computing it,
3361 		 * otherwise read it if the backing disk is insync
3362 		 */
3363 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3364 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3365 		BUG_ON(sh->batch_head);
3366 		if ((s->uptodate == disks - 1) &&
3367 		    (s->failed && (disk_idx == s->failed_num[0] ||
3368 				   disk_idx == s->failed_num[1]))) {
3369 			/* have disk failed, and we're requested to fetch it;
3370 			 * do compute it
3371 			 */
3372 			pr_debug("Computing stripe %llu block %d\n",
3373 			       (unsigned long long)sh->sector, disk_idx);
3374 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3375 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3376 			set_bit(R5_Wantcompute, &dev->flags);
3377 			sh->ops.target = disk_idx;
3378 			sh->ops.target2 = -1; /* no 2nd target */
3379 			s->req_compute = 1;
3380 			/* Careful: from this point on 'uptodate' is in the eye
3381 			 * of raid_run_ops which services 'compute' operations
3382 			 * before writes. R5_Wantcompute flags a block that will
3383 			 * be R5_UPTODATE by the time it is needed for a
3384 			 * subsequent operation.
3385 			 */
3386 			s->uptodate++;
3387 			return 1;
3388 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3389 			/* Computing 2-failure is *very* expensive; only
3390 			 * do it if failed >= 2
3391 			 */
3392 			int other;
3393 			for (other = disks; other--; ) {
3394 				if (other == disk_idx)
3395 					continue;
3396 				if (!test_bit(R5_UPTODATE,
3397 				      &sh->dev[other].flags))
3398 					break;
3399 			}
3400 			BUG_ON(other < 0);
3401 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3402 			       (unsigned long long)sh->sector,
3403 			       disk_idx, other);
3404 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3405 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3406 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3407 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3408 			sh->ops.target = disk_idx;
3409 			sh->ops.target2 = other;
3410 			s->uptodate += 2;
3411 			s->req_compute = 1;
3412 			return 1;
3413 		} else if (test_bit(R5_Insync, &dev->flags)) {
3414 			set_bit(R5_LOCKED, &dev->flags);
3415 			set_bit(R5_Wantread, &dev->flags);
3416 			s->locked++;
3417 			pr_debug("Reading block %d (sync=%d)\n",
3418 				disk_idx, s->syncing);
3419 		}
3420 	}
3421 
3422 	return 0;
3423 }
3424 
3425 /**
3426  * handle_stripe_fill - read or compute data to satisfy pending requests.
3427  */
3428 static void handle_stripe_fill(struct stripe_head *sh,
3429 			       struct stripe_head_state *s,
3430 			       int disks)
3431 {
3432 	int i;
3433 
3434 	/* look for blocks to read/compute, skip this if a compute
3435 	 * is already in flight, or if the stripe contents are in the
3436 	 * midst of changing due to a write
3437 	 */
3438 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3439 	    !sh->reconstruct_state)
3440 		for (i = disks; i--; )
3441 			if (fetch_block(sh, s, i, disks))
3442 				break;
3443 	set_bit(STRIPE_HANDLE, &sh->state);
3444 }
3445 
3446 static void break_stripe_batch_list(struct stripe_head *head_sh,
3447 				    unsigned long handle_flags);
3448 /* handle_stripe_clean_event
3449  * any written block on an uptodate or failed drive can be returned.
3450  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3451  * never LOCKED, so we don't need to test 'failed' directly.
3452  */
3453 static void handle_stripe_clean_event(struct r5conf *conf,
3454 	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3455 {
3456 	int i;
3457 	struct r5dev *dev;
3458 	int discard_pending = 0;
3459 	struct stripe_head *head_sh = sh;
3460 	bool do_endio = false;
3461 
3462 	for (i = disks; i--; )
3463 		if (sh->dev[i].written) {
3464 			dev = &sh->dev[i];
3465 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3466 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3467 			     test_bit(R5_Discard, &dev->flags) ||
3468 			     test_bit(R5_SkipCopy, &dev->flags))) {
3469 				/* We can return any write requests */
3470 				struct bio *wbi, *wbi2;
3471 				pr_debug("Return write for disc %d\n", i);
3472 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3473 					clear_bit(R5_UPTODATE, &dev->flags);
3474 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3475 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3476 				}
3477 				do_endio = true;
3478 
3479 returnbi:
3480 				dev->page = dev->orig_page;
3481 				wbi = dev->written;
3482 				dev->written = NULL;
3483 				while (wbi && wbi->bi_iter.bi_sector <
3484 					dev->sector + STRIPE_SECTORS) {
3485 					wbi2 = r5_next_bio(wbi, dev->sector);
3486 					if (!raid5_dec_bi_active_stripes(wbi)) {
3487 						md_write_end(conf->mddev);
3488 						bio_list_add(return_bi, wbi);
3489 					}
3490 					wbi = wbi2;
3491 				}
3492 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3493 						STRIPE_SECTORS,
3494 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3495 						0);
3496 				if (head_sh->batch_head) {
3497 					sh = list_first_entry(&sh->batch_list,
3498 							      struct stripe_head,
3499 							      batch_list);
3500 					if (sh != head_sh) {
3501 						dev = &sh->dev[i];
3502 						goto returnbi;
3503 					}
3504 				}
3505 				sh = head_sh;
3506 				dev = &sh->dev[i];
3507 			} else if (test_bit(R5_Discard, &dev->flags))
3508 				discard_pending = 1;
3509 		}
3510 
3511 	r5l_stripe_write_finished(sh);
3512 
3513 	if (!discard_pending &&
3514 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3515 		int hash;
3516 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3517 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3518 		if (sh->qd_idx >= 0) {
3519 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3520 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3521 		}
3522 		/* now that discard is done we can proceed with any sync */
3523 		clear_bit(STRIPE_DISCARD, &sh->state);
3524 		/*
3525 		 * SCSI discard will change some bio fields and the stripe has
3526 		 * no updated data, so remove it from hash list and the stripe
3527 		 * will be reinitialized
3528 		 */
3529 unhash:
3530 		hash = sh->hash_lock_index;
3531 		spin_lock_irq(conf->hash_locks + hash);
3532 		remove_hash(sh);
3533 		spin_unlock_irq(conf->hash_locks + hash);
3534 		if (head_sh->batch_head) {
3535 			sh = list_first_entry(&sh->batch_list,
3536 					      struct stripe_head, batch_list);
3537 			if (sh != head_sh)
3538 					goto unhash;
3539 		}
3540 		sh = head_sh;
3541 
3542 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3543 			set_bit(STRIPE_HANDLE, &sh->state);
3544 
3545 	}
3546 
3547 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3548 		if (atomic_dec_and_test(&conf->pending_full_writes))
3549 			md_wakeup_thread(conf->mddev->thread);
3550 
3551 	if (head_sh->batch_head && do_endio)
3552 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3553 }
3554 
3555 static void handle_stripe_dirtying(struct r5conf *conf,
3556 				   struct stripe_head *sh,
3557 				   struct stripe_head_state *s,
3558 				   int disks)
3559 {
3560 	int rmw = 0, rcw = 0, i;
3561 	sector_t recovery_cp = conf->mddev->recovery_cp;
3562 
3563 	/* Check whether resync is now happening or should start.
3564 	 * If yes, then the array is dirty (after unclean shutdown or
3565 	 * initial creation), so parity in some stripes might be inconsistent.
3566 	 * In this case, we need to always do reconstruct-write, to ensure
3567 	 * that in case of drive failure or read-error correction, we
3568 	 * generate correct data from the parity.
3569 	 */
3570 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3571 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3572 	     s->failed == 0)) {
3573 		/* Calculate the real rcw later - for now make it
3574 		 * look like rcw is cheaper
3575 		 */
3576 		rcw = 1; rmw = 2;
3577 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3578 			 conf->rmw_level, (unsigned long long)recovery_cp,
3579 			 (unsigned long long)sh->sector);
3580 	} else for (i = disks; i--; ) {
3581 		/* would I have to read this buffer for read_modify_write */
3582 		struct r5dev *dev = &sh->dev[i];
3583 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3584 		    !test_bit(R5_LOCKED, &dev->flags) &&
3585 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3586 		      test_bit(R5_Wantcompute, &dev->flags))) {
3587 			if (test_bit(R5_Insync, &dev->flags))
3588 				rmw++;
3589 			else
3590 				rmw += 2*disks;  /* cannot read it */
3591 		}
3592 		/* Would I have to read this buffer for reconstruct_write */
3593 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3594 		    i != sh->pd_idx && i != sh->qd_idx &&
3595 		    !test_bit(R5_LOCKED, &dev->flags) &&
3596 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3597 		    test_bit(R5_Wantcompute, &dev->flags))) {
3598 			if (test_bit(R5_Insync, &dev->flags))
3599 				rcw++;
3600 			else
3601 				rcw += 2*disks;
3602 		}
3603 	}
3604 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3605 		(unsigned long long)sh->sector, rmw, rcw);
3606 	set_bit(STRIPE_HANDLE, &sh->state);
3607 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3608 		/* prefer read-modify-write, but need to get some data */
3609 		if (conf->mddev->queue)
3610 			blk_add_trace_msg(conf->mddev->queue,
3611 					  "raid5 rmw %llu %d",
3612 					  (unsigned long long)sh->sector, rmw);
3613 		for (i = disks; i--; ) {
3614 			struct r5dev *dev = &sh->dev[i];
3615 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3616 			    !test_bit(R5_LOCKED, &dev->flags) &&
3617 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3618 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3619 			    test_bit(R5_Insync, &dev->flags)) {
3620 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3621 					     &sh->state)) {
3622 					pr_debug("Read_old block %d for r-m-w\n",
3623 						 i);
3624 					set_bit(R5_LOCKED, &dev->flags);
3625 					set_bit(R5_Wantread, &dev->flags);
3626 					s->locked++;
3627 				} else {
3628 					set_bit(STRIPE_DELAYED, &sh->state);
3629 					set_bit(STRIPE_HANDLE, &sh->state);
3630 				}
3631 			}
3632 		}
3633 	}
3634 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3635 		/* want reconstruct write, but need to get some data */
3636 		int qread =0;
3637 		rcw = 0;
3638 		for (i = disks; i--; ) {
3639 			struct r5dev *dev = &sh->dev[i];
3640 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3641 			    i != sh->pd_idx && i != sh->qd_idx &&
3642 			    !test_bit(R5_LOCKED, &dev->flags) &&
3643 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3644 			      test_bit(R5_Wantcompute, &dev->flags))) {
3645 				rcw++;
3646 				if (test_bit(R5_Insync, &dev->flags) &&
3647 				    test_bit(STRIPE_PREREAD_ACTIVE,
3648 					     &sh->state)) {
3649 					pr_debug("Read_old block "
3650 						"%d for Reconstruct\n", i);
3651 					set_bit(R5_LOCKED, &dev->flags);
3652 					set_bit(R5_Wantread, &dev->flags);
3653 					s->locked++;
3654 					qread++;
3655 				} else {
3656 					set_bit(STRIPE_DELAYED, &sh->state);
3657 					set_bit(STRIPE_HANDLE, &sh->state);
3658 				}
3659 			}
3660 		}
3661 		if (rcw && conf->mddev->queue)
3662 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3663 					  (unsigned long long)sh->sector,
3664 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3665 	}
3666 
3667 	if (rcw > disks && rmw > disks &&
3668 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3669 		set_bit(STRIPE_DELAYED, &sh->state);
3670 
3671 	/* now if nothing is locked, and if we have enough data,
3672 	 * we can start a write request
3673 	 */
3674 	/* since handle_stripe can be called at any time we need to handle the
3675 	 * case where a compute block operation has been submitted and then a
3676 	 * subsequent call wants to start a write request.  raid_run_ops only
3677 	 * handles the case where compute block and reconstruct are requested
3678 	 * simultaneously.  If this is not the case then new writes need to be
3679 	 * held off until the compute completes.
3680 	 */
3681 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3682 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3683 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3684 		schedule_reconstruction(sh, s, rcw == 0, 0);
3685 }
3686 
3687 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3688 				struct stripe_head_state *s, int disks)
3689 {
3690 	struct r5dev *dev = NULL;
3691 
3692 	BUG_ON(sh->batch_head);
3693 	set_bit(STRIPE_HANDLE, &sh->state);
3694 
3695 	switch (sh->check_state) {
3696 	case check_state_idle:
3697 		/* start a new check operation if there are no failures */
3698 		if (s->failed == 0) {
3699 			BUG_ON(s->uptodate != disks);
3700 			sh->check_state = check_state_run;
3701 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3702 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3703 			s->uptodate--;
3704 			break;
3705 		}
3706 		dev = &sh->dev[s->failed_num[0]];
3707 		/* fall through */
3708 	case check_state_compute_result:
3709 		sh->check_state = check_state_idle;
3710 		if (!dev)
3711 			dev = &sh->dev[sh->pd_idx];
3712 
3713 		/* check that a write has not made the stripe insync */
3714 		if (test_bit(STRIPE_INSYNC, &sh->state))
3715 			break;
3716 
3717 		/* either failed parity check, or recovery is happening */
3718 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3719 		BUG_ON(s->uptodate != disks);
3720 
3721 		set_bit(R5_LOCKED, &dev->flags);
3722 		s->locked++;
3723 		set_bit(R5_Wantwrite, &dev->flags);
3724 
3725 		clear_bit(STRIPE_DEGRADED, &sh->state);
3726 		set_bit(STRIPE_INSYNC, &sh->state);
3727 		break;
3728 	case check_state_run:
3729 		break; /* we will be called again upon completion */
3730 	case check_state_check_result:
3731 		sh->check_state = check_state_idle;
3732 
3733 		/* if a failure occurred during the check operation, leave
3734 		 * STRIPE_INSYNC not set and let the stripe be handled again
3735 		 */
3736 		if (s->failed)
3737 			break;
3738 
3739 		/* handle a successful check operation, if parity is correct
3740 		 * we are done.  Otherwise update the mismatch count and repair
3741 		 * parity if !MD_RECOVERY_CHECK
3742 		 */
3743 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3744 			/* parity is correct (on disc,
3745 			 * not in buffer any more)
3746 			 */
3747 			set_bit(STRIPE_INSYNC, &sh->state);
3748 		else {
3749 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3750 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3751 				/* don't try to repair!! */
3752 				set_bit(STRIPE_INSYNC, &sh->state);
3753 			else {
3754 				sh->check_state = check_state_compute_run;
3755 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3756 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3757 				set_bit(R5_Wantcompute,
3758 					&sh->dev[sh->pd_idx].flags);
3759 				sh->ops.target = sh->pd_idx;
3760 				sh->ops.target2 = -1;
3761 				s->uptodate++;
3762 			}
3763 		}
3764 		break;
3765 	case check_state_compute_run:
3766 		break;
3767 	default:
3768 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3769 		       __func__, sh->check_state,
3770 		       (unsigned long long) sh->sector);
3771 		BUG();
3772 	}
3773 }
3774 
3775 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3776 				  struct stripe_head_state *s,
3777 				  int disks)
3778 {
3779 	int pd_idx = sh->pd_idx;
3780 	int qd_idx = sh->qd_idx;
3781 	struct r5dev *dev;
3782 
3783 	BUG_ON(sh->batch_head);
3784 	set_bit(STRIPE_HANDLE, &sh->state);
3785 
3786 	BUG_ON(s->failed > 2);
3787 
3788 	/* Want to check and possibly repair P and Q.
3789 	 * However there could be one 'failed' device, in which
3790 	 * case we can only check one of them, possibly using the
3791 	 * other to generate missing data
3792 	 */
3793 
3794 	switch (sh->check_state) {
3795 	case check_state_idle:
3796 		/* start a new check operation if there are < 2 failures */
3797 		if (s->failed == s->q_failed) {
3798 			/* The only possible failed device holds Q, so it
3799 			 * makes sense to check P (If anything else were failed,
3800 			 * we would have used P to recreate it).
3801 			 */
3802 			sh->check_state = check_state_run;
3803 		}
3804 		if (!s->q_failed && s->failed < 2) {
3805 			/* Q is not failed, and we didn't use it to generate
3806 			 * anything, so it makes sense to check it
3807 			 */
3808 			if (sh->check_state == check_state_run)
3809 				sh->check_state = check_state_run_pq;
3810 			else
3811 				sh->check_state = check_state_run_q;
3812 		}
3813 
3814 		/* discard potentially stale zero_sum_result */
3815 		sh->ops.zero_sum_result = 0;
3816 
3817 		if (sh->check_state == check_state_run) {
3818 			/* async_xor_zero_sum destroys the contents of P */
3819 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3820 			s->uptodate--;
3821 		}
3822 		if (sh->check_state >= check_state_run &&
3823 		    sh->check_state <= check_state_run_pq) {
3824 			/* async_syndrome_zero_sum preserves P and Q, so
3825 			 * no need to mark them !uptodate here
3826 			 */
3827 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3828 			break;
3829 		}
3830 
3831 		/* we have 2-disk failure */
3832 		BUG_ON(s->failed != 2);
3833 		/* fall through */
3834 	case check_state_compute_result:
3835 		sh->check_state = check_state_idle;
3836 
3837 		/* check that a write has not made the stripe insync */
3838 		if (test_bit(STRIPE_INSYNC, &sh->state))
3839 			break;
3840 
3841 		/* now write out any block on a failed drive,
3842 		 * or P or Q if they were recomputed
3843 		 */
3844 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3845 		if (s->failed == 2) {
3846 			dev = &sh->dev[s->failed_num[1]];
3847 			s->locked++;
3848 			set_bit(R5_LOCKED, &dev->flags);
3849 			set_bit(R5_Wantwrite, &dev->flags);
3850 		}
3851 		if (s->failed >= 1) {
3852 			dev = &sh->dev[s->failed_num[0]];
3853 			s->locked++;
3854 			set_bit(R5_LOCKED, &dev->flags);
3855 			set_bit(R5_Wantwrite, &dev->flags);
3856 		}
3857 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3858 			dev = &sh->dev[pd_idx];
3859 			s->locked++;
3860 			set_bit(R5_LOCKED, &dev->flags);
3861 			set_bit(R5_Wantwrite, &dev->flags);
3862 		}
3863 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3864 			dev = &sh->dev[qd_idx];
3865 			s->locked++;
3866 			set_bit(R5_LOCKED, &dev->flags);
3867 			set_bit(R5_Wantwrite, &dev->flags);
3868 		}
3869 		clear_bit(STRIPE_DEGRADED, &sh->state);
3870 
3871 		set_bit(STRIPE_INSYNC, &sh->state);
3872 		break;
3873 	case check_state_run:
3874 	case check_state_run_q:
3875 	case check_state_run_pq:
3876 		break; /* we will be called again upon completion */
3877 	case check_state_check_result:
3878 		sh->check_state = check_state_idle;
3879 
3880 		/* handle a successful check operation, if parity is correct
3881 		 * we are done.  Otherwise update the mismatch count and repair
3882 		 * parity if !MD_RECOVERY_CHECK
3883 		 */
3884 		if (sh->ops.zero_sum_result == 0) {
3885 			/* both parities are correct */
3886 			if (!s->failed)
3887 				set_bit(STRIPE_INSYNC, &sh->state);
3888 			else {
3889 				/* in contrast to the raid5 case we can validate
3890 				 * parity, but still have a failure to write
3891 				 * back
3892 				 */
3893 				sh->check_state = check_state_compute_result;
3894 				/* Returning at this point means that we may go
3895 				 * off and bring p and/or q uptodate again so
3896 				 * we make sure to check zero_sum_result again
3897 				 * to verify if p or q need writeback
3898 				 */
3899 			}
3900 		} else {
3901 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3902 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3903 				/* don't try to repair!! */
3904 				set_bit(STRIPE_INSYNC, &sh->state);
3905 			else {
3906 				int *target = &sh->ops.target;
3907 
3908 				sh->ops.target = -1;
3909 				sh->ops.target2 = -1;
3910 				sh->check_state = check_state_compute_run;
3911 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3912 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3913 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3914 					set_bit(R5_Wantcompute,
3915 						&sh->dev[pd_idx].flags);
3916 					*target = pd_idx;
3917 					target = &sh->ops.target2;
3918 					s->uptodate++;
3919 				}
3920 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3921 					set_bit(R5_Wantcompute,
3922 						&sh->dev[qd_idx].flags);
3923 					*target = qd_idx;
3924 					s->uptodate++;
3925 				}
3926 			}
3927 		}
3928 		break;
3929 	case check_state_compute_run:
3930 		break;
3931 	default:
3932 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3933 		       __func__, sh->check_state,
3934 		       (unsigned long long) sh->sector);
3935 		BUG();
3936 	}
3937 }
3938 
3939 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3940 {
3941 	int i;
3942 
3943 	/* We have read all the blocks in this stripe and now we need to
3944 	 * copy some of them into a target stripe for expand.
3945 	 */
3946 	struct dma_async_tx_descriptor *tx = NULL;
3947 	BUG_ON(sh->batch_head);
3948 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3949 	for (i = 0; i < sh->disks; i++)
3950 		if (i != sh->pd_idx && i != sh->qd_idx) {
3951 			int dd_idx, j;
3952 			struct stripe_head *sh2;
3953 			struct async_submit_ctl submit;
3954 
3955 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
3956 			sector_t s = raid5_compute_sector(conf, bn, 0,
3957 							  &dd_idx, NULL);
3958 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3959 			if (sh2 == NULL)
3960 				/* so far only the early blocks of this stripe
3961 				 * have been requested.  When later blocks
3962 				 * get requested, we will try again
3963 				 */
3964 				continue;
3965 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3966 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3967 				/* must have already done this block */
3968 				raid5_release_stripe(sh2);
3969 				continue;
3970 			}
3971 
3972 			/* place all the copies on one channel */
3973 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3974 			tx = async_memcpy(sh2->dev[dd_idx].page,
3975 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3976 					  &submit);
3977 
3978 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3979 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3980 			for (j = 0; j < conf->raid_disks; j++)
3981 				if (j != sh2->pd_idx &&
3982 				    j != sh2->qd_idx &&
3983 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3984 					break;
3985 			if (j == conf->raid_disks) {
3986 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3987 				set_bit(STRIPE_HANDLE, &sh2->state);
3988 			}
3989 			raid5_release_stripe(sh2);
3990 
3991 		}
3992 	/* done submitting copies, wait for them to complete */
3993 	async_tx_quiesce(&tx);
3994 }
3995 
3996 /*
3997  * handle_stripe - do things to a stripe.
3998  *
3999  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4000  * state of various bits to see what needs to be done.
4001  * Possible results:
4002  *    return some read requests which now have data
4003  *    return some write requests which are safely on storage
4004  *    schedule a read on some buffers
4005  *    schedule a write of some buffers
4006  *    return confirmation of parity correctness
4007  *
4008  */
4009 
4010 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4011 {
4012 	struct r5conf *conf = sh->raid_conf;
4013 	int disks = sh->disks;
4014 	struct r5dev *dev;
4015 	int i;
4016 	int do_recovery = 0;
4017 
4018 	memset(s, 0, sizeof(*s));
4019 
4020 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4021 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4022 	s->failed_num[0] = -1;
4023 	s->failed_num[1] = -1;
4024 	s->log_failed = r5l_log_disk_error(conf);
4025 
4026 	/* Now to look around and see what can be done */
4027 	rcu_read_lock();
4028 	for (i=disks; i--; ) {
4029 		struct md_rdev *rdev;
4030 		sector_t first_bad;
4031 		int bad_sectors;
4032 		int is_bad = 0;
4033 
4034 		dev = &sh->dev[i];
4035 
4036 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4037 			 i, dev->flags,
4038 			 dev->toread, dev->towrite, dev->written);
4039 		/* maybe we can reply to a read
4040 		 *
4041 		 * new wantfill requests are only permitted while
4042 		 * ops_complete_biofill is guaranteed to be inactive
4043 		 */
4044 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4045 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4046 			set_bit(R5_Wantfill, &dev->flags);
4047 
4048 		/* now count some things */
4049 		if (test_bit(R5_LOCKED, &dev->flags))
4050 			s->locked++;
4051 		if (test_bit(R5_UPTODATE, &dev->flags))
4052 			s->uptodate++;
4053 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4054 			s->compute++;
4055 			BUG_ON(s->compute > 2);
4056 		}
4057 
4058 		if (test_bit(R5_Wantfill, &dev->flags))
4059 			s->to_fill++;
4060 		else if (dev->toread)
4061 			s->to_read++;
4062 		if (dev->towrite) {
4063 			s->to_write++;
4064 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4065 				s->non_overwrite++;
4066 		}
4067 		if (dev->written)
4068 			s->written++;
4069 		/* Prefer to use the replacement for reads, but only
4070 		 * if it is recovered enough and has no bad blocks.
4071 		 */
4072 		rdev = rcu_dereference(conf->disks[i].replacement);
4073 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4074 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4075 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4076 				 &first_bad, &bad_sectors))
4077 			set_bit(R5_ReadRepl, &dev->flags);
4078 		else {
4079 			if (rdev && !test_bit(Faulty, &rdev->flags))
4080 				set_bit(R5_NeedReplace, &dev->flags);
4081 			else
4082 				clear_bit(R5_NeedReplace, &dev->flags);
4083 			rdev = rcu_dereference(conf->disks[i].rdev);
4084 			clear_bit(R5_ReadRepl, &dev->flags);
4085 		}
4086 		if (rdev && test_bit(Faulty, &rdev->flags))
4087 			rdev = NULL;
4088 		if (rdev) {
4089 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4090 					     &first_bad, &bad_sectors);
4091 			if (s->blocked_rdev == NULL
4092 			    && (test_bit(Blocked, &rdev->flags)
4093 				|| is_bad < 0)) {
4094 				if (is_bad < 0)
4095 					set_bit(BlockedBadBlocks,
4096 						&rdev->flags);
4097 				s->blocked_rdev = rdev;
4098 				atomic_inc(&rdev->nr_pending);
4099 			}
4100 		}
4101 		clear_bit(R5_Insync, &dev->flags);
4102 		if (!rdev)
4103 			/* Not in-sync */;
4104 		else if (is_bad) {
4105 			/* also not in-sync */
4106 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4107 			    test_bit(R5_UPTODATE, &dev->flags)) {
4108 				/* treat as in-sync, but with a read error
4109 				 * which we can now try to correct
4110 				 */
4111 				set_bit(R5_Insync, &dev->flags);
4112 				set_bit(R5_ReadError, &dev->flags);
4113 			}
4114 		} else if (test_bit(In_sync, &rdev->flags))
4115 			set_bit(R5_Insync, &dev->flags);
4116 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4117 			/* in sync if before recovery_offset */
4118 			set_bit(R5_Insync, &dev->flags);
4119 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4120 			 test_bit(R5_Expanded, &dev->flags))
4121 			/* If we've reshaped into here, we assume it is Insync.
4122 			 * We will shortly update recovery_offset to make
4123 			 * it official.
4124 			 */
4125 			set_bit(R5_Insync, &dev->flags);
4126 
4127 		if (test_bit(R5_WriteError, &dev->flags)) {
4128 			/* This flag does not apply to '.replacement'
4129 			 * only to .rdev, so make sure to check that*/
4130 			struct md_rdev *rdev2 = rcu_dereference(
4131 				conf->disks[i].rdev);
4132 			if (rdev2 == rdev)
4133 				clear_bit(R5_Insync, &dev->flags);
4134 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4135 				s->handle_bad_blocks = 1;
4136 				atomic_inc(&rdev2->nr_pending);
4137 			} else
4138 				clear_bit(R5_WriteError, &dev->flags);
4139 		}
4140 		if (test_bit(R5_MadeGood, &dev->flags)) {
4141 			/* This flag does not apply to '.replacement'
4142 			 * only to .rdev, so make sure to check that*/
4143 			struct md_rdev *rdev2 = rcu_dereference(
4144 				conf->disks[i].rdev);
4145 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4146 				s->handle_bad_blocks = 1;
4147 				atomic_inc(&rdev2->nr_pending);
4148 			} else
4149 				clear_bit(R5_MadeGood, &dev->flags);
4150 		}
4151 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4152 			struct md_rdev *rdev2 = rcu_dereference(
4153 				conf->disks[i].replacement);
4154 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4155 				s->handle_bad_blocks = 1;
4156 				atomic_inc(&rdev2->nr_pending);
4157 			} else
4158 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4159 		}
4160 		if (!test_bit(R5_Insync, &dev->flags)) {
4161 			/* The ReadError flag will just be confusing now */
4162 			clear_bit(R5_ReadError, &dev->flags);
4163 			clear_bit(R5_ReWrite, &dev->flags);
4164 		}
4165 		if (test_bit(R5_ReadError, &dev->flags))
4166 			clear_bit(R5_Insync, &dev->flags);
4167 		if (!test_bit(R5_Insync, &dev->flags)) {
4168 			if (s->failed < 2)
4169 				s->failed_num[s->failed] = i;
4170 			s->failed++;
4171 			if (rdev && !test_bit(Faulty, &rdev->flags))
4172 				do_recovery = 1;
4173 		}
4174 	}
4175 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4176 		/* If there is a failed device being replaced,
4177 		 *     we must be recovering.
4178 		 * else if we are after recovery_cp, we must be syncing
4179 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4180 		 * else we can only be replacing
4181 		 * sync and recovery both need to read all devices, and so
4182 		 * use the same flag.
4183 		 */
4184 		if (do_recovery ||
4185 		    sh->sector >= conf->mddev->recovery_cp ||
4186 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4187 			s->syncing = 1;
4188 		else
4189 			s->replacing = 1;
4190 	}
4191 	rcu_read_unlock();
4192 }
4193 
4194 static int clear_batch_ready(struct stripe_head *sh)
4195 {
4196 	/* Return '1' if this is a member of batch, or
4197 	 * '0' if it is a lone stripe or a head which can now be
4198 	 * handled.
4199 	 */
4200 	struct stripe_head *tmp;
4201 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4202 		return (sh->batch_head && sh->batch_head != sh);
4203 	spin_lock(&sh->stripe_lock);
4204 	if (!sh->batch_head) {
4205 		spin_unlock(&sh->stripe_lock);
4206 		return 0;
4207 	}
4208 
4209 	/*
4210 	 * this stripe could be added to a batch list before we check
4211 	 * BATCH_READY, skips it
4212 	 */
4213 	if (sh->batch_head != sh) {
4214 		spin_unlock(&sh->stripe_lock);
4215 		return 1;
4216 	}
4217 	spin_lock(&sh->batch_lock);
4218 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4219 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4220 	spin_unlock(&sh->batch_lock);
4221 	spin_unlock(&sh->stripe_lock);
4222 
4223 	/*
4224 	 * BATCH_READY is cleared, no new stripes can be added.
4225 	 * batch_list can be accessed without lock
4226 	 */
4227 	return 0;
4228 }
4229 
4230 static void break_stripe_batch_list(struct stripe_head *head_sh,
4231 				    unsigned long handle_flags)
4232 {
4233 	struct stripe_head *sh, *next;
4234 	int i;
4235 	int do_wakeup = 0;
4236 
4237 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4238 
4239 		list_del_init(&sh->batch_list);
4240 
4241 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4242 					  (1 << STRIPE_SYNCING) |
4243 					  (1 << STRIPE_REPLACED) |
4244 					  (1 << STRIPE_DELAYED) |
4245 					  (1 << STRIPE_BIT_DELAY) |
4246 					  (1 << STRIPE_FULL_WRITE) |
4247 					  (1 << STRIPE_BIOFILL_RUN) |
4248 					  (1 << STRIPE_COMPUTE_RUN)  |
4249 					  (1 << STRIPE_OPS_REQ_PENDING) |
4250 					  (1 << STRIPE_DISCARD) |
4251 					  (1 << STRIPE_BATCH_READY) |
4252 					  (1 << STRIPE_BATCH_ERR) |
4253 					  (1 << STRIPE_BITMAP_PENDING)),
4254 			"stripe state: %lx\n", sh->state);
4255 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4256 					      (1 << STRIPE_REPLACED)),
4257 			"head stripe state: %lx\n", head_sh->state);
4258 
4259 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4260 					    (1 << STRIPE_PREREAD_ACTIVE) |
4261 					    (1 << STRIPE_DEGRADED)),
4262 			      head_sh->state & (1 << STRIPE_INSYNC));
4263 
4264 		sh->check_state = head_sh->check_state;
4265 		sh->reconstruct_state = head_sh->reconstruct_state;
4266 		for (i = 0; i < sh->disks; i++) {
4267 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4268 				do_wakeup = 1;
4269 			sh->dev[i].flags = head_sh->dev[i].flags &
4270 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4271 		}
4272 		spin_lock_irq(&sh->stripe_lock);
4273 		sh->batch_head = NULL;
4274 		spin_unlock_irq(&sh->stripe_lock);
4275 		if (handle_flags == 0 ||
4276 		    sh->state & handle_flags)
4277 			set_bit(STRIPE_HANDLE, &sh->state);
4278 		raid5_release_stripe(sh);
4279 	}
4280 	spin_lock_irq(&head_sh->stripe_lock);
4281 	head_sh->batch_head = NULL;
4282 	spin_unlock_irq(&head_sh->stripe_lock);
4283 	for (i = 0; i < head_sh->disks; i++)
4284 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4285 			do_wakeup = 1;
4286 	if (head_sh->state & handle_flags)
4287 		set_bit(STRIPE_HANDLE, &head_sh->state);
4288 
4289 	if (do_wakeup)
4290 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4291 }
4292 
4293 static void handle_stripe(struct stripe_head *sh)
4294 {
4295 	struct stripe_head_state s;
4296 	struct r5conf *conf = sh->raid_conf;
4297 	int i;
4298 	int prexor;
4299 	int disks = sh->disks;
4300 	struct r5dev *pdev, *qdev;
4301 
4302 	clear_bit(STRIPE_HANDLE, &sh->state);
4303 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4304 		/* already being handled, ensure it gets handled
4305 		 * again when current action finishes */
4306 		set_bit(STRIPE_HANDLE, &sh->state);
4307 		return;
4308 	}
4309 
4310 	if (clear_batch_ready(sh) ) {
4311 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4312 		return;
4313 	}
4314 
4315 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4316 		break_stripe_batch_list(sh, 0);
4317 
4318 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4319 		spin_lock(&sh->stripe_lock);
4320 		/* Cannot process 'sync' concurrently with 'discard' */
4321 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4322 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4323 			set_bit(STRIPE_SYNCING, &sh->state);
4324 			clear_bit(STRIPE_INSYNC, &sh->state);
4325 			clear_bit(STRIPE_REPLACED, &sh->state);
4326 		}
4327 		spin_unlock(&sh->stripe_lock);
4328 	}
4329 	clear_bit(STRIPE_DELAYED, &sh->state);
4330 
4331 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4332 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4333 	       (unsigned long long)sh->sector, sh->state,
4334 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4335 	       sh->check_state, sh->reconstruct_state);
4336 
4337 	analyse_stripe(sh, &s);
4338 
4339 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4340 		goto finish;
4341 
4342 	if (s.handle_bad_blocks) {
4343 		set_bit(STRIPE_HANDLE, &sh->state);
4344 		goto finish;
4345 	}
4346 
4347 	if (unlikely(s.blocked_rdev)) {
4348 		if (s.syncing || s.expanding || s.expanded ||
4349 		    s.replacing || s.to_write || s.written) {
4350 			set_bit(STRIPE_HANDLE, &sh->state);
4351 			goto finish;
4352 		}
4353 		/* There is nothing for the blocked_rdev to block */
4354 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4355 		s.blocked_rdev = NULL;
4356 	}
4357 
4358 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4359 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4360 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4361 	}
4362 
4363 	pr_debug("locked=%d uptodate=%d to_read=%d"
4364 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4365 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4366 	       s.failed_num[0], s.failed_num[1]);
4367 	/* check if the array has lost more than max_degraded devices and,
4368 	 * if so, some requests might need to be failed.
4369 	 */
4370 	if (s.failed > conf->max_degraded || s.log_failed) {
4371 		sh->check_state = 0;
4372 		sh->reconstruct_state = 0;
4373 		break_stripe_batch_list(sh, 0);
4374 		if (s.to_read+s.to_write+s.written)
4375 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4376 		if (s.syncing + s.replacing)
4377 			handle_failed_sync(conf, sh, &s);
4378 	}
4379 
4380 	/* Now we check to see if any write operations have recently
4381 	 * completed
4382 	 */
4383 	prexor = 0;
4384 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4385 		prexor = 1;
4386 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4387 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4388 		sh->reconstruct_state = reconstruct_state_idle;
4389 
4390 		/* All the 'written' buffers and the parity block are ready to
4391 		 * be written back to disk
4392 		 */
4393 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4394 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4395 		BUG_ON(sh->qd_idx >= 0 &&
4396 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4397 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4398 		for (i = disks; i--; ) {
4399 			struct r5dev *dev = &sh->dev[i];
4400 			if (test_bit(R5_LOCKED, &dev->flags) &&
4401 				(i == sh->pd_idx || i == sh->qd_idx ||
4402 				 dev->written)) {
4403 				pr_debug("Writing block %d\n", i);
4404 				set_bit(R5_Wantwrite, &dev->flags);
4405 				if (prexor)
4406 					continue;
4407 				if (s.failed > 1)
4408 					continue;
4409 				if (!test_bit(R5_Insync, &dev->flags) ||
4410 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4411 				     s.failed == 0))
4412 					set_bit(STRIPE_INSYNC, &sh->state);
4413 			}
4414 		}
4415 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4416 			s.dec_preread_active = 1;
4417 	}
4418 
4419 	/*
4420 	 * might be able to return some write requests if the parity blocks
4421 	 * are safe, or on a failed drive
4422 	 */
4423 	pdev = &sh->dev[sh->pd_idx];
4424 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4425 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4426 	qdev = &sh->dev[sh->qd_idx];
4427 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4428 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4429 		|| conf->level < 6;
4430 
4431 	if (s.written &&
4432 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4433 			     && !test_bit(R5_LOCKED, &pdev->flags)
4434 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4435 				 test_bit(R5_Discard, &pdev->flags))))) &&
4436 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4437 			     && !test_bit(R5_LOCKED, &qdev->flags)
4438 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4439 				 test_bit(R5_Discard, &qdev->flags))))))
4440 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4441 
4442 	/* Now we might consider reading some blocks, either to check/generate
4443 	 * parity, or to satisfy requests
4444 	 * or to load a block that is being partially written.
4445 	 */
4446 	if (s.to_read || s.non_overwrite
4447 	    || (conf->level == 6 && s.to_write && s.failed)
4448 	    || (s.syncing && (s.uptodate + s.compute < disks))
4449 	    || s.replacing
4450 	    || s.expanding)
4451 		handle_stripe_fill(sh, &s, disks);
4452 
4453 	/* Now to consider new write requests and what else, if anything
4454 	 * should be read.  We do not handle new writes when:
4455 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4456 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4457 	 *    block.
4458 	 */
4459 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4460 		handle_stripe_dirtying(conf, sh, &s, disks);
4461 
4462 	/* maybe we need to check and possibly fix the parity for this stripe
4463 	 * Any reads will already have been scheduled, so we just see if enough
4464 	 * data is available.  The parity check is held off while parity
4465 	 * dependent operations are in flight.
4466 	 */
4467 	if (sh->check_state ||
4468 	    (s.syncing && s.locked == 0 &&
4469 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4470 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4471 		if (conf->level == 6)
4472 			handle_parity_checks6(conf, sh, &s, disks);
4473 		else
4474 			handle_parity_checks5(conf, sh, &s, disks);
4475 	}
4476 
4477 	if ((s.replacing || s.syncing) && s.locked == 0
4478 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4479 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4480 		/* Write out to replacement devices where possible */
4481 		for (i = 0; i < conf->raid_disks; i++)
4482 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4483 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4484 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4485 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4486 				s.locked++;
4487 			}
4488 		if (s.replacing)
4489 			set_bit(STRIPE_INSYNC, &sh->state);
4490 		set_bit(STRIPE_REPLACED, &sh->state);
4491 	}
4492 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4493 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4494 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4495 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4496 		clear_bit(STRIPE_SYNCING, &sh->state);
4497 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4498 			wake_up(&conf->wait_for_overlap);
4499 	}
4500 
4501 	/* If the failed drives are just a ReadError, then we might need
4502 	 * to progress the repair/check process
4503 	 */
4504 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4505 		for (i = 0; i < s.failed; i++) {
4506 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4507 			if (test_bit(R5_ReadError, &dev->flags)
4508 			    && !test_bit(R5_LOCKED, &dev->flags)
4509 			    && test_bit(R5_UPTODATE, &dev->flags)
4510 				) {
4511 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4512 					set_bit(R5_Wantwrite, &dev->flags);
4513 					set_bit(R5_ReWrite, &dev->flags);
4514 					set_bit(R5_LOCKED, &dev->flags);
4515 					s.locked++;
4516 				} else {
4517 					/* let's read it back */
4518 					set_bit(R5_Wantread, &dev->flags);
4519 					set_bit(R5_LOCKED, &dev->flags);
4520 					s.locked++;
4521 				}
4522 			}
4523 		}
4524 
4525 	/* Finish reconstruct operations initiated by the expansion process */
4526 	if (sh->reconstruct_state == reconstruct_state_result) {
4527 		struct stripe_head *sh_src
4528 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4529 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4530 			/* sh cannot be written until sh_src has been read.
4531 			 * so arrange for sh to be delayed a little
4532 			 */
4533 			set_bit(STRIPE_DELAYED, &sh->state);
4534 			set_bit(STRIPE_HANDLE, &sh->state);
4535 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4536 					      &sh_src->state))
4537 				atomic_inc(&conf->preread_active_stripes);
4538 			raid5_release_stripe(sh_src);
4539 			goto finish;
4540 		}
4541 		if (sh_src)
4542 			raid5_release_stripe(sh_src);
4543 
4544 		sh->reconstruct_state = reconstruct_state_idle;
4545 		clear_bit(STRIPE_EXPANDING, &sh->state);
4546 		for (i = conf->raid_disks; i--; ) {
4547 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4548 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4549 			s.locked++;
4550 		}
4551 	}
4552 
4553 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4554 	    !sh->reconstruct_state) {
4555 		/* Need to write out all blocks after computing parity */
4556 		sh->disks = conf->raid_disks;
4557 		stripe_set_idx(sh->sector, conf, 0, sh);
4558 		schedule_reconstruction(sh, &s, 1, 1);
4559 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4560 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4561 		atomic_dec(&conf->reshape_stripes);
4562 		wake_up(&conf->wait_for_overlap);
4563 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4564 	}
4565 
4566 	if (s.expanding && s.locked == 0 &&
4567 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4568 		handle_stripe_expansion(conf, sh);
4569 
4570 finish:
4571 	/* wait for this device to become unblocked */
4572 	if (unlikely(s.blocked_rdev)) {
4573 		if (conf->mddev->external)
4574 			md_wait_for_blocked_rdev(s.blocked_rdev,
4575 						 conf->mddev);
4576 		else
4577 			/* Internal metadata will immediately
4578 			 * be written by raid5d, so we don't
4579 			 * need to wait here.
4580 			 */
4581 			rdev_dec_pending(s.blocked_rdev,
4582 					 conf->mddev);
4583 	}
4584 
4585 	if (s.handle_bad_blocks)
4586 		for (i = disks; i--; ) {
4587 			struct md_rdev *rdev;
4588 			struct r5dev *dev = &sh->dev[i];
4589 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4590 				/* We own a safe reference to the rdev */
4591 				rdev = conf->disks[i].rdev;
4592 				if (!rdev_set_badblocks(rdev, sh->sector,
4593 							STRIPE_SECTORS, 0))
4594 					md_error(conf->mddev, rdev);
4595 				rdev_dec_pending(rdev, conf->mddev);
4596 			}
4597 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4598 				rdev = conf->disks[i].rdev;
4599 				rdev_clear_badblocks(rdev, sh->sector,
4600 						     STRIPE_SECTORS, 0);
4601 				rdev_dec_pending(rdev, conf->mddev);
4602 			}
4603 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4604 				rdev = conf->disks[i].replacement;
4605 				if (!rdev)
4606 					/* rdev have been moved down */
4607 					rdev = conf->disks[i].rdev;
4608 				rdev_clear_badblocks(rdev, sh->sector,
4609 						     STRIPE_SECTORS, 0);
4610 				rdev_dec_pending(rdev, conf->mddev);
4611 			}
4612 		}
4613 
4614 	if (s.ops_request)
4615 		raid_run_ops(sh, s.ops_request);
4616 
4617 	ops_run_io(sh, &s);
4618 
4619 	if (s.dec_preread_active) {
4620 		/* We delay this until after ops_run_io so that if make_request
4621 		 * is waiting on a flush, it won't continue until the writes
4622 		 * have actually been submitted.
4623 		 */
4624 		atomic_dec(&conf->preread_active_stripes);
4625 		if (atomic_read(&conf->preread_active_stripes) <
4626 		    IO_THRESHOLD)
4627 			md_wakeup_thread(conf->mddev->thread);
4628 	}
4629 
4630 	if (!bio_list_empty(&s.return_bi)) {
4631 		if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4632 			spin_lock_irq(&conf->device_lock);
4633 			bio_list_merge(&conf->return_bi, &s.return_bi);
4634 			spin_unlock_irq(&conf->device_lock);
4635 			md_wakeup_thread(conf->mddev->thread);
4636 		} else
4637 			return_io(&s.return_bi);
4638 	}
4639 
4640 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4641 }
4642 
4643 static void raid5_activate_delayed(struct r5conf *conf)
4644 {
4645 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4646 		while (!list_empty(&conf->delayed_list)) {
4647 			struct list_head *l = conf->delayed_list.next;
4648 			struct stripe_head *sh;
4649 			sh = list_entry(l, struct stripe_head, lru);
4650 			list_del_init(l);
4651 			clear_bit(STRIPE_DELAYED, &sh->state);
4652 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4653 				atomic_inc(&conf->preread_active_stripes);
4654 			list_add_tail(&sh->lru, &conf->hold_list);
4655 			raid5_wakeup_stripe_thread(sh);
4656 		}
4657 	}
4658 }
4659 
4660 static void activate_bit_delay(struct r5conf *conf,
4661 	struct list_head *temp_inactive_list)
4662 {
4663 	/* device_lock is held */
4664 	struct list_head head;
4665 	list_add(&head, &conf->bitmap_list);
4666 	list_del_init(&conf->bitmap_list);
4667 	while (!list_empty(&head)) {
4668 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4669 		int hash;
4670 		list_del_init(&sh->lru);
4671 		atomic_inc(&sh->count);
4672 		hash = sh->hash_lock_index;
4673 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4674 	}
4675 }
4676 
4677 static int raid5_congested(struct mddev *mddev, int bits)
4678 {
4679 	struct r5conf *conf = mddev->private;
4680 
4681 	/* No difference between reads and writes.  Just check
4682 	 * how busy the stripe_cache is
4683 	 */
4684 
4685 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4686 		return 1;
4687 	if (conf->quiesce)
4688 		return 1;
4689 	if (atomic_read(&conf->empty_inactive_list_nr))
4690 		return 1;
4691 
4692 	return 0;
4693 }
4694 
4695 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4696 {
4697 	struct r5conf *conf = mddev->private;
4698 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4699 	unsigned int chunk_sectors;
4700 	unsigned int bio_sectors = bio_sectors(bio);
4701 
4702 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4703 	return  chunk_sectors >=
4704 		((sector & (chunk_sectors - 1)) + bio_sectors);
4705 }
4706 
4707 /*
4708  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4709  *  later sampled by raid5d.
4710  */
4711 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4712 {
4713 	unsigned long flags;
4714 
4715 	spin_lock_irqsave(&conf->device_lock, flags);
4716 
4717 	bi->bi_next = conf->retry_read_aligned_list;
4718 	conf->retry_read_aligned_list = bi;
4719 
4720 	spin_unlock_irqrestore(&conf->device_lock, flags);
4721 	md_wakeup_thread(conf->mddev->thread);
4722 }
4723 
4724 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4725 {
4726 	struct bio *bi;
4727 
4728 	bi = conf->retry_read_aligned;
4729 	if (bi) {
4730 		conf->retry_read_aligned = NULL;
4731 		return bi;
4732 	}
4733 	bi = conf->retry_read_aligned_list;
4734 	if(bi) {
4735 		conf->retry_read_aligned_list = bi->bi_next;
4736 		bi->bi_next = NULL;
4737 		/*
4738 		 * this sets the active strip count to 1 and the processed
4739 		 * strip count to zero (upper 8 bits)
4740 		 */
4741 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4742 	}
4743 
4744 	return bi;
4745 }
4746 
4747 /*
4748  *  The "raid5_align_endio" should check if the read succeeded and if it
4749  *  did, call bio_endio on the original bio (having bio_put the new bio
4750  *  first).
4751  *  If the read failed..
4752  */
4753 static void raid5_align_endio(struct bio *bi)
4754 {
4755 	struct bio* raid_bi  = bi->bi_private;
4756 	struct mddev *mddev;
4757 	struct r5conf *conf;
4758 	struct md_rdev *rdev;
4759 	int error = bi->bi_error;
4760 
4761 	bio_put(bi);
4762 
4763 	rdev = (void*)raid_bi->bi_next;
4764 	raid_bi->bi_next = NULL;
4765 	mddev = rdev->mddev;
4766 	conf = mddev->private;
4767 
4768 	rdev_dec_pending(rdev, conf->mddev);
4769 
4770 	if (!error) {
4771 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4772 					 raid_bi, 0);
4773 		bio_endio(raid_bi);
4774 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4775 			wake_up(&conf->wait_for_quiescent);
4776 		return;
4777 	}
4778 
4779 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4780 
4781 	add_bio_to_retry(raid_bi, conf);
4782 }
4783 
4784 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4785 {
4786 	struct r5conf *conf = mddev->private;
4787 	int dd_idx;
4788 	struct bio* align_bi;
4789 	struct md_rdev *rdev;
4790 	sector_t end_sector;
4791 
4792 	if (!in_chunk_boundary(mddev, raid_bio)) {
4793 		pr_debug("%s: non aligned\n", __func__);
4794 		return 0;
4795 	}
4796 	/*
4797 	 * use bio_clone_mddev to make a copy of the bio
4798 	 */
4799 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4800 	if (!align_bi)
4801 		return 0;
4802 	/*
4803 	 *   set bi_end_io to a new function, and set bi_private to the
4804 	 *     original bio.
4805 	 */
4806 	align_bi->bi_end_io  = raid5_align_endio;
4807 	align_bi->bi_private = raid_bio;
4808 	/*
4809 	 *	compute position
4810 	 */
4811 	align_bi->bi_iter.bi_sector =
4812 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4813 				     0, &dd_idx, NULL);
4814 
4815 	end_sector = bio_end_sector(align_bi);
4816 	rcu_read_lock();
4817 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4818 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4819 	    rdev->recovery_offset < end_sector) {
4820 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4821 		if (rdev &&
4822 		    (test_bit(Faulty, &rdev->flags) ||
4823 		    !(test_bit(In_sync, &rdev->flags) ||
4824 		      rdev->recovery_offset >= end_sector)))
4825 			rdev = NULL;
4826 	}
4827 	if (rdev) {
4828 		sector_t first_bad;
4829 		int bad_sectors;
4830 
4831 		atomic_inc(&rdev->nr_pending);
4832 		rcu_read_unlock();
4833 		raid_bio->bi_next = (void*)rdev;
4834 		align_bi->bi_bdev =  rdev->bdev;
4835 		bio_clear_flag(align_bi, BIO_SEG_VALID);
4836 
4837 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4838 				bio_sectors(align_bi),
4839 				&first_bad, &bad_sectors)) {
4840 			bio_put(align_bi);
4841 			rdev_dec_pending(rdev, mddev);
4842 			return 0;
4843 		}
4844 
4845 		/* No reshape active, so we can trust rdev->data_offset */
4846 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4847 
4848 		spin_lock_irq(&conf->device_lock);
4849 		wait_event_lock_irq(conf->wait_for_quiescent,
4850 				    conf->quiesce == 0,
4851 				    conf->device_lock);
4852 		atomic_inc(&conf->active_aligned_reads);
4853 		spin_unlock_irq(&conf->device_lock);
4854 
4855 		if (mddev->gendisk)
4856 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4857 					      align_bi, disk_devt(mddev->gendisk),
4858 					      raid_bio->bi_iter.bi_sector);
4859 		generic_make_request(align_bi);
4860 		return 1;
4861 	} else {
4862 		rcu_read_unlock();
4863 		bio_put(align_bi);
4864 		return 0;
4865 	}
4866 }
4867 
4868 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4869 {
4870 	struct bio *split;
4871 
4872 	do {
4873 		sector_t sector = raid_bio->bi_iter.bi_sector;
4874 		unsigned chunk_sects = mddev->chunk_sectors;
4875 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4876 
4877 		if (sectors < bio_sectors(raid_bio)) {
4878 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4879 			bio_chain(split, raid_bio);
4880 		} else
4881 			split = raid_bio;
4882 
4883 		if (!raid5_read_one_chunk(mddev, split)) {
4884 			if (split != raid_bio)
4885 				generic_make_request(raid_bio);
4886 			return split;
4887 		}
4888 	} while (split != raid_bio);
4889 
4890 	return NULL;
4891 }
4892 
4893 /* __get_priority_stripe - get the next stripe to process
4894  *
4895  * Full stripe writes are allowed to pass preread active stripes up until
4896  * the bypass_threshold is exceeded.  In general the bypass_count
4897  * increments when the handle_list is handled before the hold_list; however, it
4898  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4899  * stripe with in flight i/o.  The bypass_count will be reset when the
4900  * head of the hold_list has changed, i.e. the head was promoted to the
4901  * handle_list.
4902  */
4903 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4904 {
4905 	struct stripe_head *sh = NULL, *tmp;
4906 	struct list_head *handle_list = NULL;
4907 	struct r5worker_group *wg = NULL;
4908 
4909 	if (conf->worker_cnt_per_group == 0) {
4910 		handle_list = &conf->handle_list;
4911 	} else if (group != ANY_GROUP) {
4912 		handle_list = &conf->worker_groups[group].handle_list;
4913 		wg = &conf->worker_groups[group];
4914 	} else {
4915 		int i;
4916 		for (i = 0; i < conf->group_cnt; i++) {
4917 			handle_list = &conf->worker_groups[i].handle_list;
4918 			wg = &conf->worker_groups[i];
4919 			if (!list_empty(handle_list))
4920 				break;
4921 		}
4922 	}
4923 
4924 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4925 		  __func__,
4926 		  list_empty(handle_list) ? "empty" : "busy",
4927 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4928 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4929 
4930 	if (!list_empty(handle_list)) {
4931 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4932 
4933 		if (list_empty(&conf->hold_list))
4934 			conf->bypass_count = 0;
4935 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4936 			if (conf->hold_list.next == conf->last_hold)
4937 				conf->bypass_count++;
4938 			else {
4939 				conf->last_hold = conf->hold_list.next;
4940 				conf->bypass_count -= conf->bypass_threshold;
4941 				if (conf->bypass_count < 0)
4942 					conf->bypass_count = 0;
4943 			}
4944 		}
4945 	} else if (!list_empty(&conf->hold_list) &&
4946 		   ((conf->bypass_threshold &&
4947 		     conf->bypass_count > conf->bypass_threshold) ||
4948 		    atomic_read(&conf->pending_full_writes) == 0)) {
4949 
4950 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4951 			if (conf->worker_cnt_per_group == 0 ||
4952 			    group == ANY_GROUP ||
4953 			    !cpu_online(tmp->cpu) ||
4954 			    cpu_to_group(tmp->cpu) == group) {
4955 				sh = tmp;
4956 				break;
4957 			}
4958 		}
4959 
4960 		if (sh) {
4961 			conf->bypass_count -= conf->bypass_threshold;
4962 			if (conf->bypass_count < 0)
4963 				conf->bypass_count = 0;
4964 		}
4965 		wg = NULL;
4966 	}
4967 
4968 	if (!sh)
4969 		return NULL;
4970 
4971 	if (wg) {
4972 		wg->stripes_cnt--;
4973 		sh->group = NULL;
4974 	}
4975 	list_del_init(&sh->lru);
4976 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4977 	return sh;
4978 }
4979 
4980 struct raid5_plug_cb {
4981 	struct blk_plug_cb	cb;
4982 	struct list_head	list;
4983 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4984 };
4985 
4986 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4987 {
4988 	struct raid5_plug_cb *cb = container_of(
4989 		blk_cb, struct raid5_plug_cb, cb);
4990 	struct stripe_head *sh;
4991 	struct mddev *mddev = cb->cb.data;
4992 	struct r5conf *conf = mddev->private;
4993 	int cnt = 0;
4994 	int hash;
4995 
4996 	if (cb->list.next && !list_empty(&cb->list)) {
4997 		spin_lock_irq(&conf->device_lock);
4998 		while (!list_empty(&cb->list)) {
4999 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5000 			list_del_init(&sh->lru);
5001 			/*
5002 			 * avoid race release_stripe_plug() sees
5003 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5004 			 * is still in our list
5005 			 */
5006 			smp_mb__before_atomic();
5007 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5008 			/*
5009 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5010 			 * case, the count is always > 1 here
5011 			 */
5012 			hash = sh->hash_lock_index;
5013 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5014 			cnt++;
5015 		}
5016 		spin_unlock_irq(&conf->device_lock);
5017 	}
5018 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5019 				     NR_STRIPE_HASH_LOCKS);
5020 	if (mddev->queue)
5021 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5022 	kfree(cb);
5023 }
5024 
5025 static void release_stripe_plug(struct mddev *mddev,
5026 				struct stripe_head *sh)
5027 {
5028 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5029 		raid5_unplug, mddev,
5030 		sizeof(struct raid5_plug_cb));
5031 	struct raid5_plug_cb *cb;
5032 
5033 	if (!blk_cb) {
5034 		raid5_release_stripe(sh);
5035 		return;
5036 	}
5037 
5038 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5039 
5040 	if (cb->list.next == NULL) {
5041 		int i;
5042 		INIT_LIST_HEAD(&cb->list);
5043 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5044 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5045 	}
5046 
5047 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5048 		list_add_tail(&sh->lru, &cb->list);
5049 	else
5050 		raid5_release_stripe(sh);
5051 }
5052 
5053 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5054 {
5055 	struct r5conf *conf = mddev->private;
5056 	sector_t logical_sector, last_sector;
5057 	struct stripe_head *sh;
5058 	int remaining;
5059 	int stripe_sectors;
5060 
5061 	if (mddev->reshape_position != MaxSector)
5062 		/* Skip discard while reshape is happening */
5063 		return;
5064 
5065 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5066 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5067 
5068 	bi->bi_next = NULL;
5069 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5070 
5071 	stripe_sectors = conf->chunk_sectors *
5072 		(conf->raid_disks - conf->max_degraded);
5073 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5074 					       stripe_sectors);
5075 	sector_div(last_sector, stripe_sectors);
5076 
5077 	logical_sector *= conf->chunk_sectors;
5078 	last_sector *= conf->chunk_sectors;
5079 
5080 	for (; logical_sector < last_sector;
5081 	     logical_sector += STRIPE_SECTORS) {
5082 		DEFINE_WAIT(w);
5083 		int d;
5084 	again:
5085 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5086 		prepare_to_wait(&conf->wait_for_overlap, &w,
5087 				TASK_UNINTERRUPTIBLE);
5088 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5089 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5090 			raid5_release_stripe(sh);
5091 			schedule();
5092 			goto again;
5093 		}
5094 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5095 		spin_lock_irq(&sh->stripe_lock);
5096 		for (d = 0; d < conf->raid_disks; d++) {
5097 			if (d == sh->pd_idx || d == sh->qd_idx)
5098 				continue;
5099 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5100 				set_bit(R5_Overlap, &sh->dev[d].flags);
5101 				spin_unlock_irq(&sh->stripe_lock);
5102 				raid5_release_stripe(sh);
5103 				schedule();
5104 				goto again;
5105 			}
5106 		}
5107 		set_bit(STRIPE_DISCARD, &sh->state);
5108 		finish_wait(&conf->wait_for_overlap, &w);
5109 		sh->overwrite_disks = 0;
5110 		for (d = 0; d < conf->raid_disks; d++) {
5111 			if (d == sh->pd_idx || d == sh->qd_idx)
5112 				continue;
5113 			sh->dev[d].towrite = bi;
5114 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5115 			raid5_inc_bi_active_stripes(bi);
5116 			sh->overwrite_disks++;
5117 		}
5118 		spin_unlock_irq(&sh->stripe_lock);
5119 		if (conf->mddev->bitmap) {
5120 			for (d = 0;
5121 			     d < conf->raid_disks - conf->max_degraded;
5122 			     d++)
5123 				bitmap_startwrite(mddev->bitmap,
5124 						  sh->sector,
5125 						  STRIPE_SECTORS,
5126 						  0);
5127 			sh->bm_seq = conf->seq_flush + 1;
5128 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5129 		}
5130 
5131 		set_bit(STRIPE_HANDLE, &sh->state);
5132 		clear_bit(STRIPE_DELAYED, &sh->state);
5133 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5134 			atomic_inc(&conf->preread_active_stripes);
5135 		release_stripe_plug(mddev, sh);
5136 	}
5137 
5138 	remaining = raid5_dec_bi_active_stripes(bi);
5139 	if (remaining == 0) {
5140 		md_write_end(mddev);
5141 		bio_endio(bi);
5142 	}
5143 }
5144 
5145 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5146 {
5147 	struct r5conf *conf = mddev->private;
5148 	int dd_idx;
5149 	sector_t new_sector;
5150 	sector_t logical_sector, last_sector;
5151 	struct stripe_head *sh;
5152 	const int rw = bio_data_dir(bi);
5153 	int remaining;
5154 	DEFINE_WAIT(w);
5155 	bool do_prepare;
5156 
5157 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5158 		int ret = r5l_handle_flush_request(conf->log, bi);
5159 
5160 		if (ret == 0)
5161 			return;
5162 		if (ret == -ENODEV) {
5163 			md_flush_request(mddev, bi);
5164 			return;
5165 		}
5166 		/* ret == -EAGAIN, fallback */
5167 	}
5168 
5169 	md_write_start(mddev, bi);
5170 
5171 	/*
5172 	 * If array is degraded, better not do chunk aligned read because
5173 	 * later we might have to read it again in order to reconstruct
5174 	 * data on failed drives.
5175 	 */
5176 	if (rw == READ && mddev->degraded == 0 &&
5177 	    mddev->reshape_position == MaxSector) {
5178 		bi = chunk_aligned_read(mddev, bi);
5179 		if (!bi)
5180 			return;
5181 	}
5182 
5183 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5184 		make_discard_request(mddev, bi);
5185 		return;
5186 	}
5187 
5188 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5189 	last_sector = bio_end_sector(bi);
5190 	bi->bi_next = NULL;
5191 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5192 
5193 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5194 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5195 		int previous;
5196 		int seq;
5197 
5198 		do_prepare = false;
5199 	retry:
5200 		seq = read_seqcount_begin(&conf->gen_lock);
5201 		previous = 0;
5202 		if (do_prepare)
5203 			prepare_to_wait(&conf->wait_for_overlap, &w,
5204 				TASK_UNINTERRUPTIBLE);
5205 		if (unlikely(conf->reshape_progress != MaxSector)) {
5206 			/* spinlock is needed as reshape_progress may be
5207 			 * 64bit on a 32bit platform, and so it might be
5208 			 * possible to see a half-updated value
5209 			 * Of course reshape_progress could change after
5210 			 * the lock is dropped, so once we get a reference
5211 			 * to the stripe that we think it is, we will have
5212 			 * to check again.
5213 			 */
5214 			spin_lock_irq(&conf->device_lock);
5215 			if (mddev->reshape_backwards
5216 			    ? logical_sector < conf->reshape_progress
5217 			    : logical_sector >= conf->reshape_progress) {
5218 				previous = 1;
5219 			} else {
5220 				if (mddev->reshape_backwards
5221 				    ? logical_sector < conf->reshape_safe
5222 				    : logical_sector >= conf->reshape_safe) {
5223 					spin_unlock_irq(&conf->device_lock);
5224 					schedule();
5225 					do_prepare = true;
5226 					goto retry;
5227 				}
5228 			}
5229 			spin_unlock_irq(&conf->device_lock);
5230 		}
5231 
5232 		new_sector = raid5_compute_sector(conf, logical_sector,
5233 						  previous,
5234 						  &dd_idx, NULL);
5235 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5236 			(unsigned long long)new_sector,
5237 			(unsigned long long)logical_sector);
5238 
5239 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5240 				       (bi->bi_opf & REQ_RAHEAD), 0);
5241 		if (sh) {
5242 			if (unlikely(previous)) {
5243 				/* expansion might have moved on while waiting for a
5244 				 * stripe, so we must do the range check again.
5245 				 * Expansion could still move past after this
5246 				 * test, but as we are holding a reference to
5247 				 * 'sh', we know that if that happens,
5248 				 *  STRIPE_EXPANDING will get set and the expansion
5249 				 * won't proceed until we finish with the stripe.
5250 				 */
5251 				int must_retry = 0;
5252 				spin_lock_irq(&conf->device_lock);
5253 				if (mddev->reshape_backwards
5254 				    ? logical_sector >= conf->reshape_progress
5255 				    : logical_sector < conf->reshape_progress)
5256 					/* mismatch, need to try again */
5257 					must_retry = 1;
5258 				spin_unlock_irq(&conf->device_lock);
5259 				if (must_retry) {
5260 					raid5_release_stripe(sh);
5261 					schedule();
5262 					do_prepare = true;
5263 					goto retry;
5264 				}
5265 			}
5266 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5267 				/* Might have got the wrong stripe_head
5268 				 * by accident
5269 				 */
5270 				raid5_release_stripe(sh);
5271 				goto retry;
5272 			}
5273 
5274 			if (rw == WRITE &&
5275 			    logical_sector >= mddev->suspend_lo &&
5276 			    logical_sector < mddev->suspend_hi) {
5277 				raid5_release_stripe(sh);
5278 				/* As the suspend_* range is controlled by
5279 				 * userspace, we want an interruptible
5280 				 * wait.
5281 				 */
5282 				flush_signals(current);
5283 				prepare_to_wait(&conf->wait_for_overlap,
5284 						&w, TASK_INTERRUPTIBLE);
5285 				if (logical_sector >= mddev->suspend_lo &&
5286 				    logical_sector < mddev->suspend_hi) {
5287 					schedule();
5288 					do_prepare = true;
5289 				}
5290 				goto retry;
5291 			}
5292 
5293 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5294 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5295 				/* Stripe is busy expanding or
5296 				 * add failed due to overlap.  Flush everything
5297 				 * and wait a while
5298 				 */
5299 				md_wakeup_thread(mddev->thread);
5300 				raid5_release_stripe(sh);
5301 				schedule();
5302 				do_prepare = true;
5303 				goto retry;
5304 			}
5305 			set_bit(STRIPE_HANDLE, &sh->state);
5306 			clear_bit(STRIPE_DELAYED, &sh->state);
5307 			if ((!sh->batch_head || sh == sh->batch_head) &&
5308 			    (bi->bi_opf & REQ_SYNC) &&
5309 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5310 				atomic_inc(&conf->preread_active_stripes);
5311 			release_stripe_plug(mddev, sh);
5312 		} else {
5313 			/* cannot get stripe for read-ahead, just give-up */
5314 			bi->bi_error = -EIO;
5315 			break;
5316 		}
5317 	}
5318 	finish_wait(&conf->wait_for_overlap, &w);
5319 
5320 	remaining = raid5_dec_bi_active_stripes(bi);
5321 	if (remaining == 0) {
5322 
5323 		if ( rw == WRITE )
5324 			md_write_end(mddev);
5325 
5326 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5327 					 bi, 0);
5328 		bio_endio(bi);
5329 	}
5330 }
5331 
5332 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5333 
5334 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5335 {
5336 	/* reshaping is quite different to recovery/resync so it is
5337 	 * handled quite separately ... here.
5338 	 *
5339 	 * On each call to sync_request, we gather one chunk worth of
5340 	 * destination stripes and flag them as expanding.
5341 	 * Then we find all the source stripes and request reads.
5342 	 * As the reads complete, handle_stripe will copy the data
5343 	 * into the destination stripe and release that stripe.
5344 	 */
5345 	struct r5conf *conf = mddev->private;
5346 	struct stripe_head *sh;
5347 	sector_t first_sector, last_sector;
5348 	int raid_disks = conf->previous_raid_disks;
5349 	int data_disks = raid_disks - conf->max_degraded;
5350 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5351 	int i;
5352 	int dd_idx;
5353 	sector_t writepos, readpos, safepos;
5354 	sector_t stripe_addr;
5355 	int reshape_sectors;
5356 	struct list_head stripes;
5357 	sector_t retn;
5358 
5359 	if (sector_nr == 0) {
5360 		/* If restarting in the middle, skip the initial sectors */
5361 		if (mddev->reshape_backwards &&
5362 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5363 			sector_nr = raid5_size(mddev, 0, 0)
5364 				- conf->reshape_progress;
5365 		} else if (mddev->reshape_backwards &&
5366 			   conf->reshape_progress == MaxSector) {
5367 			/* shouldn't happen, but just in case, finish up.*/
5368 			sector_nr = MaxSector;
5369 		} else if (!mddev->reshape_backwards &&
5370 			   conf->reshape_progress > 0)
5371 			sector_nr = conf->reshape_progress;
5372 		sector_div(sector_nr, new_data_disks);
5373 		if (sector_nr) {
5374 			mddev->curr_resync_completed = sector_nr;
5375 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5376 			*skipped = 1;
5377 			retn = sector_nr;
5378 			goto finish;
5379 		}
5380 	}
5381 
5382 	/* We need to process a full chunk at a time.
5383 	 * If old and new chunk sizes differ, we need to process the
5384 	 * largest of these
5385 	 */
5386 
5387 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5388 
5389 	/* We update the metadata at least every 10 seconds, or when
5390 	 * the data about to be copied would over-write the source of
5391 	 * the data at the front of the range.  i.e. one new_stripe
5392 	 * along from reshape_progress new_maps to after where
5393 	 * reshape_safe old_maps to
5394 	 */
5395 	writepos = conf->reshape_progress;
5396 	sector_div(writepos, new_data_disks);
5397 	readpos = conf->reshape_progress;
5398 	sector_div(readpos, data_disks);
5399 	safepos = conf->reshape_safe;
5400 	sector_div(safepos, data_disks);
5401 	if (mddev->reshape_backwards) {
5402 		BUG_ON(writepos < reshape_sectors);
5403 		writepos -= reshape_sectors;
5404 		readpos += reshape_sectors;
5405 		safepos += reshape_sectors;
5406 	} else {
5407 		writepos += reshape_sectors;
5408 		/* readpos and safepos are worst-case calculations.
5409 		 * A negative number is overly pessimistic, and causes
5410 		 * obvious problems for unsigned storage.  So clip to 0.
5411 		 */
5412 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5413 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5414 	}
5415 
5416 	/* Having calculated the 'writepos' possibly use it
5417 	 * to set 'stripe_addr' which is where we will write to.
5418 	 */
5419 	if (mddev->reshape_backwards) {
5420 		BUG_ON(conf->reshape_progress == 0);
5421 		stripe_addr = writepos;
5422 		BUG_ON((mddev->dev_sectors &
5423 			~((sector_t)reshape_sectors - 1))
5424 		       - reshape_sectors - stripe_addr
5425 		       != sector_nr);
5426 	} else {
5427 		BUG_ON(writepos != sector_nr + reshape_sectors);
5428 		stripe_addr = sector_nr;
5429 	}
5430 
5431 	/* 'writepos' is the most advanced device address we might write.
5432 	 * 'readpos' is the least advanced device address we might read.
5433 	 * 'safepos' is the least address recorded in the metadata as having
5434 	 *     been reshaped.
5435 	 * If there is a min_offset_diff, these are adjusted either by
5436 	 * increasing the safepos/readpos if diff is negative, or
5437 	 * increasing writepos if diff is positive.
5438 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5439 	 * ensure safety in the face of a crash - that must be done by userspace
5440 	 * making a backup of the data.  So in that case there is no particular
5441 	 * rush to update metadata.
5442 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5443 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5444 	 * we can be safe in the event of a crash.
5445 	 * So we insist on updating metadata if safepos is behind writepos and
5446 	 * readpos is beyond writepos.
5447 	 * In any case, update the metadata every 10 seconds.
5448 	 * Maybe that number should be configurable, but I'm not sure it is
5449 	 * worth it.... maybe it could be a multiple of safemode_delay???
5450 	 */
5451 	if (conf->min_offset_diff < 0) {
5452 		safepos += -conf->min_offset_diff;
5453 		readpos += -conf->min_offset_diff;
5454 	} else
5455 		writepos += conf->min_offset_diff;
5456 
5457 	if ((mddev->reshape_backwards
5458 	     ? (safepos > writepos && readpos < writepos)
5459 	     : (safepos < writepos && readpos > writepos)) ||
5460 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5461 		/* Cannot proceed until we've updated the superblock... */
5462 		wait_event(conf->wait_for_overlap,
5463 			   atomic_read(&conf->reshape_stripes)==0
5464 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5465 		if (atomic_read(&conf->reshape_stripes) != 0)
5466 			return 0;
5467 		mddev->reshape_position = conf->reshape_progress;
5468 		mddev->curr_resync_completed = sector_nr;
5469 		conf->reshape_checkpoint = jiffies;
5470 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5471 		md_wakeup_thread(mddev->thread);
5472 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5473 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5474 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5475 			return 0;
5476 		spin_lock_irq(&conf->device_lock);
5477 		conf->reshape_safe = mddev->reshape_position;
5478 		spin_unlock_irq(&conf->device_lock);
5479 		wake_up(&conf->wait_for_overlap);
5480 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5481 	}
5482 
5483 	INIT_LIST_HEAD(&stripes);
5484 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5485 		int j;
5486 		int skipped_disk = 0;
5487 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5488 		set_bit(STRIPE_EXPANDING, &sh->state);
5489 		atomic_inc(&conf->reshape_stripes);
5490 		/* If any of this stripe is beyond the end of the old
5491 		 * array, then we need to zero those blocks
5492 		 */
5493 		for (j=sh->disks; j--;) {
5494 			sector_t s;
5495 			if (j == sh->pd_idx)
5496 				continue;
5497 			if (conf->level == 6 &&
5498 			    j == sh->qd_idx)
5499 				continue;
5500 			s = raid5_compute_blocknr(sh, j, 0);
5501 			if (s < raid5_size(mddev, 0, 0)) {
5502 				skipped_disk = 1;
5503 				continue;
5504 			}
5505 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5506 			set_bit(R5_Expanded, &sh->dev[j].flags);
5507 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5508 		}
5509 		if (!skipped_disk) {
5510 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5511 			set_bit(STRIPE_HANDLE, &sh->state);
5512 		}
5513 		list_add(&sh->lru, &stripes);
5514 	}
5515 	spin_lock_irq(&conf->device_lock);
5516 	if (mddev->reshape_backwards)
5517 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5518 	else
5519 		conf->reshape_progress += reshape_sectors * new_data_disks;
5520 	spin_unlock_irq(&conf->device_lock);
5521 	/* Ok, those stripe are ready. We can start scheduling
5522 	 * reads on the source stripes.
5523 	 * The source stripes are determined by mapping the first and last
5524 	 * block on the destination stripes.
5525 	 */
5526 	first_sector =
5527 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5528 				     1, &dd_idx, NULL);
5529 	last_sector =
5530 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5531 					    * new_data_disks - 1),
5532 				     1, &dd_idx, NULL);
5533 	if (last_sector >= mddev->dev_sectors)
5534 		last_sector = mddev->dev_sectors - 1;
5535 	while (first_sector <= last_sector) {
5536 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5537 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5538 		set_bit(STRIPE_HANDLE, &sh->state);
5539 		raid5_release_stripe(sh);
5540 		first_sector += STRIPE_SECTORS;
5541 	}
5542 	/* Now that the sources are clearly marked, we can release
5543 	 * the destination stripes
5544 	 */
5545 	while (!list_empty(&stripes)) {
5546 		sh = list_entry(stripes.next, struct stripe_head, lru);
5547 		list_del_init(&sh->lru);
5548 		raid5_release_stripe(sh);
5549 	}
5550 	/* If this takes us to the resync_max point where we have to pause,
5551 	 * then we need to write out the superblock.
5552 	 */
5553 	sector_nr += reshape_sectors;
5554 	retn = reshape_sectors;
5555 finish:
5556 	if (mddev->curr_resync_completed > mddev->resync_max ||
5557 	    (sector_nr - mddev->curr_resync_completed) * 2
5558 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5559 		/* Cannot proceed until we've updated the superblock... */
5560 		wait_event(conf->wait_for_overlap,
5561 			   atomic_read(&conf->reshape_stripes) == 0
5562 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5563 		if (atomic_read(&conf->reshape_stripes) != 0)
5564 			goto ret;
5565 		mddev->reshape_position = conf->reshape_progress;
5566 		mddev->curr_resync_completed = sector_nr;
5567 		conf->reshape_checkpoint = jiffies;
5568 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5569 		md_wakeup_thread(mddev->thread);
5570 		wait_event(mddev->sb_wait,
5571 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5572 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5573 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5574 			goto ret;
5575 		spin_lock_irq(&conf->device_lock);
5576 		conf->reshape_safe = mddev->reshape_position;
5577 		spin_unlock_irq(&conf->device_lock);
5578 		wake_up(&conf->wait_for_overlap);
5579 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5580 	}
5581 ret:
5582 	return retn;
5583 }
5584 
5585 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5586 					  int *skipped)
5587 {
5588 	struct r5conf *conf = mddev->private;
5589 	struct stripe_head *sh;
5590 	sector_t max_sector = mddev->dev_sectors;
5591 	sector_t sync_blocks;
5592 	int still_degraded = 0;
5593 	int i;
5594 
5595 	if (sector_nr >= max_sector) {
5596 		/* just being told to finish up .. nothing much to do */
5597 
5598 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5599 			end_reshape(conf);
5600 			return 0;
5601 		}
5602 
5603 		if (mddev->curr_resync < max_sector) /* aborted */
5604 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5605 					&sync_blocks, 1);
5606 		else /* completed sync */
5607 			conf->fullsync = 0;
5608 		bitmap_close_sync(mddev->bitmap);
5609 
5610 		return 0;
5611 	}
5612 
5613 	/* Allow raid5_quiesce to complete */
5614 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5615 
5616 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5617 		return reshape_request(mddev, sector_nr, skipped);
5618 
5619 	/* No need to check resync_max as we never do more than one
5620 	 * stripe, and as resync_max will always be on a chunk boundary,
5621 	 * if the check in md_do_sync didn't fire, there is no chance
5622 	 * of overstepping resync_max here
5623 	 */
5624 
5625 	/* if there is too many failed drives and we are trying
5626 	 * to resync, then assert that we are finished, because there is
5627 	 * nothing we can do.
5628 	 */
5629 	if (mddev->degraded >= conf->max_degraded &&
5630 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5631 		sector_t rv = mddev->dev_sectors - sector_nr;
5632 		*skipped = 1;
5633 		return rv;
5634 	}
5635 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5636 	    !conf->fullsync &&
5637 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5638 	    sync_blocks >= STRIPE_SECTORS) {
5639 		/* we can skip this block, and probably more */
5640 		sync_blocks /= STRIPE_SECTORS;
5641 		*skipped = 1;
5642 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5643 	}
5644 
5645 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5646 
5647 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5648 	if (sh == NULL) {
5649 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5650 		/* make sure we don't swamp the stripe cache if someone else
5651 		 * is trying to get access
5652 		 */
5653 		schedule_timeout_uninterruptible(1);
5654 	}
5655 	/* Need to check if array will still be degraded after recovery/resync
5656 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5657 	 * one drive while leaving another faulty drive in array.
5658 	 */
5659 	rcu_read_lock();
5660 	for (i = 0; i < conf->raid_disks; i++) {
5661 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5662 
5663 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5664 			still_degraded = 1;
5665 	}
5666 	rcu_read_unlock();
5667 
5668 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5669 
5670 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5671 	set_bit(STRIPE_HANDLE, &sh->state);
5672 
5673 	raid5_release_stripe(sh);
5674 
5675 	return STRIPE_SECTORS;
5676 }
5677 
5678 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5679 {
5680 	/* We may not be able to submit a whole bio at once as there
5681 	 * may not be enough stripe_heads available.
5682 	 * We cannot pre-allocate enough stripe_heads as we may need
5683 	 * more than exist in the cache (if we allow ever large chunks).
5684 	 * So we do one stripe head at a time and record in
5685 	 * ->bi_hw_segments how many have been done.
5686 	 *
5687 	 * We *know* that this entire raid_bio is in one chunk, so
5688 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5689 	 */
5690 	struct stripe_head *sh;
5691 	int dd_idx;
5692 	sector_t sector, logical_sector, last_sector;
5693 	int scnt = 0;
5694 	int remaining;
5695 	int handled = 0;
5696 
5697 	logical_sector = raid_bio->bi_iter.bi_sector &
5698 		~((sector_t)STRIPE_SECTORS-1);
5699 	sector = raid5_compute_sector(conf, logical_sector,
5700 				      0, &dd_idx, NULL);
5701 	last_sector = bio_end_sector(raid_bio);
5702 
5703 	for (; logical_sector < last_sector;
5704 	     logical_sector += STRIPE_SECTORS,
5705 		     sector += STRIPE_SECTORS,
5706 		     scnt++) {
5707 
5708 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5709 			/* already done this stripe */
5710 			continue;
5711 
5712 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5713 
5714 		if (!sh) {
5715 			/* failed to get a stripe - must wait */
5716 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5717 			conf->retry_read_aligned = raid_bio;
5718 			return handled;
5719 		}
5720 
5721 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5722 			raid5_release_stripe(sh);
5723 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5724 			conf->retry_read_aligned = raid_bio;
5725 			return handled;
5726 		}
5727 
5728 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5729 		handle_stripe(sh);
5730 		raid5_release_stripe(sh);
5731 		handled++;
5732 	}
5733 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5734 	if (remaining == 0) {
5735 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5736 					 raid_bio, 0);
5737 		bio_endio(raid_bio);
5738 	}
5739 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5740 		wake_up(&conf->wait_for_quiescent);
5741 	return handled;
5742 }
5743 
5744 static int handle_active_stripes(struct r5conf *conf, int group,
5745 				 struct r5worker *worker,
5746 				 struct list_head *temp_inactive_list)
5747 {
5748 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5749 	int i, batch_size = 0, hash;
5750 	bool release_inactive = false;
5751 
5752 	while (batch_size < MAX_STRIPE_BATCH &&
5753 			(sh = __get_priority_stripe(conf, group)) != NULL)
5754 		batch[batch_size++] = sh;
5755 
5756 	if (batch_size == 0) {
5757 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5758 			if (!list_empty(temp_inactive_list + i))
5759 				break;
5760 		if (i == NR_STRIPE_HASH_LOCKS) {
5761 			spin_unlock_irq(&conf->device_lock);
5762 			r5l_flush_stripe_to_raid(conf->log);
5763 			spin_lock_irq(&conf->device_lock);
5764 			return batch_size;
5765 		}
5766 		release_inactive = true;
5767 	}
5768 	spin_unlock_irq(&conf->device_lock);
5769 
5770 	release_inactive_stripe_list(conf, temp_inactive_list,
5771 				     NR_STRIPE_HASH_LOCKS);
5772 
5773 	r5l_flush_stripe_to_raid(conf->log);
5774 	if (release_inactive) {
5775 		spin_lock_irq(&conf->device_lock);
5776 		return 0;
5777 	}
5778 
5779 	for (i = 0; i < batch_size; i++)
5780 		handle_stripe(batch[i]);
5781 	r5l_write_stripe_run(conf->log);
5782 
5783 	cond_resched();
5784 
5785 	spin_lock_irq(&conf->device_lock);
5786 	for (i = 0; i < batch_size; i++) {
5787 		hash = batch[i]->hash_lock_index;
5788 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5789 	}
5790 	return batch_size;
5791 }
5792 
5793 static void raid5_do_work(struct work_struct *work)
5794 {
5795 	struct r5worker *worker = container_of(work, struct r5worker, work);
5796 	struct r5worker_group *group = worker->group;
5797 	struct r5conf *conf = group->conf;
5798 	int group_id = group - conf->worker_groups;
5799 	int handled;
5800 	struct blk_plug plug;
5801 
5802 	pr_debug("+++ raid5worker active\n");
5803 
5804 	blk_start_plug(&plug);
5805 	handled = 0;
5806 	spin_lock_irq(&conf->device_lock);
5807 	while (1) {
5808 		int batch_size, released;
5809 
5810 		released = release_stripe_list(conf, worker->temp_inactive_list);
5811 
5812 		batch_size = handle_active_stripes(conf, group_id, worker,
5813 						   worker->temp_inactive_list);
5814 		worker->working = false;
5815 		if (!batch_size && !released)
5816 			break;
5817 		handled += batch_size;
5818 	}
5819 	pr_debug("%d stripes handled\n", handled);
5820 
5821 	spin_unlock_irq(&conf->device_lock);
5822 	blk_finish_plug(&plug);
5823 
5824 	pr_debug("--- raid5worker inactive\n");
5825 }
5826 
5827 /*
5828  * This is our raid5 kernel thread.
5829  *
5830  * We scan the hash table for stripes which can be handled now.
5831  * During the scan, completed stripes are saved for us by the interrupt
5832  * handler, so that they will not have to wait for our next wakeup.
5833  */
5834 static void raid5d(struct md_thread *thread)
5835 {
5836 	struct mddev *mddev = thread->mddev;
5837 	struct r5conf *conf = mddev->private;
5838 	int handled;
5839 	struct blk_plug plug;
5840 
5841 	pr_debug("+++ raid5d active\n");
5842 
5843 	md_check_recovery(mddev);
5844 
5845 	if (!bio_list_empty(&conf->return_bi) &&
5846 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5847 		struct bio_list tmp = BIO_EMPTY_LIST;
5848 		spin_lock_irq(&conf->device_lock);
5849 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5850 			bio_list_merge(&tmp, &conf->return_bi);
5851 			bio_list_init(&conf->return_bi);
5852 		}
5853 		spin_unlock_irq(&conf->device_lock);
5854 		return_io(&tmp);
5855 	}
5856 
5857 	blk_start_plug(&plug);
5858 	handled = 0;
5859 	spin_lock_irq(&conf->device_lock);
5860 	while (1) {
5861 		struct bio *bio;
5862 		int batch_size, released;
5863 
5864 		released = release_stripe_list(conf, conf->temp_inactive_list);
5865 		if (released)
5866 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5867 
5868 		if (
5869 		    !list_empty(&conf->bitmap_list)) {
5870 			/* Now is a good time to flush some bitmap updates */
5871 			conf->seq_flush++;
5872 			spin_unlock_irq(&conf->device_lock);
5873 			bitmap_unplug(mddev->bitmap);
5874 			spin_lock_irq(&conf->device_lock);
5875 			conf->seq_write = conf->seq_flush;
5876 			activate_bit_delay(conf, conf->temp_inactive_list);
5877 		}
5878 		raid5_activate_delayed(conf);
5879 
5880 		while ((bio = remove_bio_from_retry(conf))) {
5881 			int ok;
5882 			spin_unlock_irq(&conf->device_lock);
5883 			ok = retry_aligned_read(conf, bio);
5884 			spin_lock_irq(&conf->device_lock);
5885 			if (!ok)
5886 				break;
5887 			handled++;
5888 		}
5889 
5890 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5891 						   conf->temp_inactive_list);
5892 		if (!batch_size && !released)
5893 			break;
5894 		handled += batch_size;
5895 
5896 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5897 			spin_unlock_irq(&conf->device_lock);
5898 			md_check_recovery(mddev);
5899 			spin_lock_irq(&conf->device_lock);
5900 		}
5901 	}
5902 	pr_debug("%d stripes handled\n", handled);
5903 
5904 	spin_unlock_irq(&conf->device_lock);
5905 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5906 	    mutex_trylock(&conf->cache_size_mutex)) {
5907 		grow_one_stripe(conf, __GFP_NOWARN);
5908 		/* Set flag even if allocation failed.  This helps
5909 		 * slow down allocation requests when mem is short
5910 		 */
5911 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5912 		mutex_unlock(&conf->cache_size_mutex);
5913 	}
5914 
5915 	r5l_flush_stripe_to_raid(conf->log);
5916 
5917 	async_tx_issue_pending_all();
5918 	blk_finish_plug(&plug);
5919 
5920 	pr_debug("--- raid5d inactive\n");
5921 }
5922 
5923 static ssize_t
5924 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5925 {
5926 	struct r5conf *conf;
5927 	int ret = 0;
5928 	spin_lock(&mddev->lock);
5929 	conf = mddev->private;
5930 	if (conf)
5931 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5932 	spin_unlock(&mddev->lock);
5933 	return ret;
5934 }
5935 
5936 int
5937 raid5_set_cache_size(struct mddev *mddev, int size)
5938 {
5939 	struct r5conf *conf = mddev->private;
5940 	int err;
5941 
5942 	if (size <= 16 || size > 32768)
5943 		return -EINVAL;
5944 
5945 	conf->min_nr_stripes = size;
5946 	mutex_lock(&conf->cache_size_mutex);
5947 	while (size < conf->max_nr_stripes &&
5948 	       drop_one_stripe(conf))
5949 		;
5950 	mutex_unlock(&conf->cache_size_mutex);
5951 
5952 
5953 	err = md_allow_write(mddev);
5954 	if (err)
5955 		return err;
5956 
5957 	mutex_lock(&conf->cache_size_mutex);
5958 	while (size > conf->max_nr_stripes)
5959 		if (!grow_one_stripe(conf, GFP_KERNEL))
5960 			break;
5961 	mutex_unlock(&conf->cache_size_mutex);
5962 
5963 	return 0;
5964 }
5965 EXPORT_SYMBOL(raid5_set_cache_size);
5966 
5967 static ssize_t
5968 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5969 {
5970 	struct r5conf *conf;
5971 	unsigned long new;
5972 	int err;
5973 
5974 	if (len >= PAGE_SIZE)
5975 		return -EINVAL;
5976 	if (kstrtoul(page, 10, &new))
5977 		return -EINVAL;
5978 	err = mddev_lock(mddev);
5979 	if (err)
5980 		return err;
5981 	conf = mddev->private;
5982 	if (!conf)
5983 		err = -ENODEV;
5984 	else
5985 		err = raid5_set_cache_size(mddev, new);
5986 	mddev_unlock(mddev);
5987 
5988 	return err ?: len;
5989 }
5990 
5991 static struct md_sysfs_entry
5992 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5993 				raid5_show_stripe_cache_size,
5994 				raid5_store_stripe_cache_size);
5995 
5996 static ssize_t
5997 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5998 {
5999 	struct r5conf *conf = mddev->private;
6000 	if (conf)
6001 		return sprintf(page, "%d\n", conf->rmw_level);
6002 	else
6003 		return 0;
6004 }
6005 
6006 static ssize_t
6007 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6008 {
6009 	struct r5conf *conf = mddev->private;
6010 	unsigned long new;
6011 
6012 	if (!conf)
6013 		return -ENODEV;
6014 
6015 	if (len >= PAGE_SIZE)
6016 		return -EINVAL;
6017 
6018 	if (kstrtoul(page, 10, &new))
6019 		return -EINVAL;
6020 
6021 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6022 		return -EINVAL;
6023 
6024 	if (new != PARITY_DISABLE_RMW &&
6025 	    new != PARITY_ENABLE_RMW &&
6026 	    new != PARITY_PREFER_RMW)
6027 		return -EINVAL;
6028 
6029 	conf->rmw_level = new;
6030 	return len;
6031 }
6032 
6033 static struct md_sysfs_entry
6034 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6035 			 raid5_show_rmw_level,
6036 			 raid5_store_rmw_level);
6037 
6038 
6039 static ssize_t
6040 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6041 {
6042 	struct r5conf *conf;
6043 	int ret = 0;
6044 	spin_lock(&mddev->lock);
6045 	conf = mddev->private;
6046 	if (conf)
6047 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6048 	spin_unlock(&mddev->lock);
6049 	return ret;
6050 }
6051 
6052 static ssize_t
6053 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6054 {
6055 	struct r5conf *conf;
6056 	unsigned long new;
6057 	int err;
6058 
6059 	if (len >= PAGE_SIZE)
6060 		return -EINVAL;
6061 	if (kstrtoul(page, 10, &new))
6062 		return -EINVAL;
6063 
6064 	err = mddev_lock(mddev);
6065 	if (err)
6066 		return err;
6067 	conf = mddev->private;
6068 	if (!conf)
6069 		err = -ENODEV;
6070 	else if (new > conf->min_nr_stripes)
6071 		err = -EINVAL;
6072 	else
6073 		conf->bypass_threshold = new;
6074 	mddev_unlock(mddev);
6075 	return err ?: len;
6076 }
6077 
6078 static struct md_sysfs_entry
6079 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6080 					S_IRUGO | S_IWUSR,
6081 					raid5_show_preread_threshold,
6082 					raid5_store_preread_threshold);
6083 
6084 static ssize_t
6085 raid5_show_skip_copy(struct mddev *mddev, char *page)
6086 {
6087 	struct r5conf *conf;
6088 	int ret = 0;
6089 	spin_lock(&mddev->lock);
6090 	conf = mddev->private;
6091 	if (conf)
6092 		ret = sprintf(page, "%d\n", conf->skip_copy);
6093 	spin_unlock(&mddev->lock);
6094 	return ret;
6095 }
6096 
6097 static ssize_t
6098 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6099 {
6100 	struct r5conf *conf;
6101 	unsigned long new;
6102 	int err;
6103 
6104 	if (len >= PAGE_SIZE)
6105 		return -EINVAL;
6106 	if (kstrtoul(page, 10, &new))
6107 		return -EINVAL;
6108 	new = !!new;
6109 
6110 	err = mddev_lock(mddev);
6111 	if (err)
6112 		return err;
6113 	conf = mddev->private;
6114 	if (!conf)
6115 		err = -ENODEV;
6116 	else if (new != conf->skip_copy) {
6117 		mddev_suspend(mddev);
6118 		conf->skip_copy = new;
6119 		if (new)
6120 			mddev->queue->backing_dev_info.capabilities |=
6121 				BDI_CAP_STABLE_WRITES;
6122 		else
6123 			mddev->queue->backing_dev_info.capabilities &=
6124 				~BDI_CAP_STABLE_WRITES;
6125 		mddev_resume(mddev);
6126 	}
6127 	mddev_unlock(mddev);
6128 	return err ?: len;
6129 }
6130 
6131 static struct md_sysfs_entry
6132 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6133 					raid5_show_skip_copy,
6134 					raid5_store_skip_copy);
6135 
6136 static ssize_t
6137 stripe_cache_active_show(struct mddev *mddev, char *page)
6138 {
6139 	struct r5conf *conf = mddev->private;
6140 	if (conf)
6141 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6142 	else
6143 		return 0;
6144 }
6145 
6146 static struct md_sysfs_entry
6147 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6148 
6149 static ssize_t
6150 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6151 {
6152 	struct r5conf *conf;
6153 	int ret = 0;
6154 	spin_lock(&mddev->lock);
6155 	conf = mddev->private;
6156 	if (conf)
6157 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6158 	spin_unlock(&mddev->lock);
6159 	return ret;
6160 }
6161 
6162 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6163 			       int *group_cnt,
6164 			       int *worker_cnt_per_group,
6165 			       struct r5worker_group **worker_groups);
6166 static ssize_t
6167 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6168 {
6169 	struct r5conf *conf;
6170 	unsigned long new;
6171 	int err;
6172 	struct r5worker_group *new_groups, *old_groups;
6173 	int group_cnt, worker_cnt_per_group;
6174 
6175 	if (len >= PAGE_SIZE)
6176 		return -EINVAL;
6177 	if (kstrtoul(page, 10, &new))
6178 		return -EINVAL;
6179 
6180 	err = mddev_lock(mddev);
6181 	if (err)
6182 		return err;
6183 	conf = mddev->private;
6184 	if (!conf)
6185 		err = -ENODEV;
6186 	else if (new != conf->worker_cnt_per_group) {
6187 		mddev_suspend(mddev);
6188 
6189 		old_groups = conf->worker_groups;
6190 		if (old_groups)
6191 			flush_workqueue(raid5_wq);
6192 
6193 		err = alloc_thread_groups(conf, new,
6194 					  &group_cnt, &worker_cnt_per_group,
6195 					  &new_groups);
6196 		if (!err) {
6197 			spin_lock_irq(&conf->device_lock);
6198 			conf->group_cnt = group_cnt;
6199 			conf->worker_cnt_per_group = worker_cnt_per_group;
6200 			conf->worker_groups = new_groups;
6201 			spin_unlock_irq(&conf->device_lock);
6202 
6203 			if (old_groups)
6204 				kfree(old_groups[0].workers);
6205 			kfree(old_groups);
6206 		}
6207 		mddev_resume(mddev);
6208 	}
6209 	mddev_unlock(mddev);
6210 
6211 	return err ?: len;
6212 }
6213 
6214 static struct md_sysfs_entry
6215 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6216 				raid5_show_group_thread_cnt,
6217 				raid5_store_group_thread_cnt);
6218 
6219 static struct attribute *raid5_attrs[] =  {
6220 	&raid5_stripecache_size.attr,
6221 	&raid5_stripecache_active.attr,
6222 	&raid5_preread_bypass_threshold.attr,
6223 	&raid5_group_thread_cnt.attr,
6224 	&raid5_skip_copy.attr,
6225 	&raid5_rmw_level.attr,
6226 	NULL,
6227 };
6228 static struct attribute_group raid5_attrs_group = {
6229 	.name = NULL,
6230 	.attrs = raid5_attrs,
6231 };
6232 
6233 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6234 			       int *group_cnt,
6235 			       int *worker_cnt_per_group,
6236 			       struct r5worker_group **worker_groups)
6237 {
6238 	int i, j, k;
6239 	ssize_t size;
6240 	struct r5worker *workers;
6241 
6242 	*worker_cnt_per_group = cnt;
6243 	if (cnt == 0) {
6244 		*group_cnt = 0;
6245 		*worker_groups = NULL;
6246 		return 0;
6247 	}
6248 	*group_cnt = num_possible_nodes();
6249 	size = sizeof(struct r5worker) * cnt;
6250 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6251 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6252 				*group_cnt, GFP_NOIO);
6253 	if (!*worker_groups || !workers) {
6254 		kfree(workers);
6255 		kfree(*worker_groups);
6256 		return -ENOMEM;
6257 	}
6258 
6259 	for (i = 0; i < *group_cnt; i++) {
6260 		struct r5worker_group *group;
6261 
6262 		group = &(*worker_groups)[i];
6263 		INIT_LIST_HEAD(&group->handle_list);
6264 		group->conf = conf;
6265 		group->workers = workers + i * cnt;
6266 
6267 		for (j = 0; j < cnt; j++) {
6268 			struct r5worker *worker = group->workers + j;
6269 			worker->group = group;
6270 			INIT_WORK(&worker->work, raid5_do_work);
6271 
6272 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6273 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6274 		}
6275 	}
6276 
6277 	return 0;
6278 }
6279 
6280 static void free_thread_groups(struct r5conf *conf)
6281 {
6282 	if (conf->worker_groups)
6283 		kfree(conf->worker_groups[0].workers);
6284 	kfree(conf->worker_groups);
6285 	conf->worker_groups = NULL;
6286 }
6287 
6288 static sector_t
6289 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6290 {
6291 	struct r5conf *conf = mddev->private;
6292 
6293 	if (!sectors)
6294 		sectors = mddev->dev_sectors;
6295 	if (!raid_disks)
6296 		/* size is defined by the smallest of previous and new size */
6297 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6298 
6299 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6300 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6301 	return sectors * (raid_disks - conf->max_degraded);
6302 }
6303 
6304 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6305 {
6306 	safe_put_page(percpu->spare_page);
6307 	if (percpu->scribble)
6308 		flex_array_free(percpu->scribble);
6309 	percpu->spare_page = NULL;
6310 	percpu->scribble = NULL;
6311 }
6312 
6313 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6314 {
6315 	if (conf->level == 6 && !percpu->spare_page)
6316 		percpu->spare_page = alloc_page(GFP_KERNEL);
6317 	if (!percpu->scribble)
6318 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6319 						      conf->previous_raid_disks),
6320 						  max(conf->chunk_sectors,
6321 						      conf->prev_chunk_sectors)
6322 						   / STRIPE_SECTORS,
6323 						  GFP_KERNEL);
6324 
6325 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6326 		free_scratch_buffer(conf, percpu);
6327 		return -ENOMEM;
6328 	}
6329 
6330 	return 0;
6331 }
6332 
6333 static void raid5_free_percpu(struct r5conf *conf)
6334 {
6335 	unsigned long cpu;
6336 
6337 	if (!conf->percpu)
6338 		return;
6339 
6340 #ifdef CONFIG_HOTPLUG_CPU
6341 	unregister_cpu_notifier(&conf->cpu_notify);
6342 #endif
6343 
6344 	get_online_cpus();
6345 	for_each_possible_cpu(cpu)
6346 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6347 	put_online_cpus();
6348 
6349 	free_percpu(conf->percpu);
6350 }
6351 
6352 static void free_conf(struct r5conf *conf)
6353 {
6354 	if (conf->log)
6355 		r5l_exit_log(conf->log);
6356 	if (conf->shrinker.seeks)
6357 		unregister_shrinker(&conf->shrinker);
6358 
6359 	free_thread_groups(conf);
6360 	shrink_stripes(conf);
6361 	raid5_free_percpu(conf);
6362 	kfree(conf->disks);
6363 	kfree(conf->stripe_hashtbl);
6364 	kfree(conf);
6365 }
6366 
6367 #ifdef CONFIG_HOTPLUG_CPU
6368 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6369 			      void *hcpu)
6370 {
6371 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6372 	long cpu = (long)hcpu;
6373 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6374 
6375 	switch (action) {
6376 	case CPU_UP_PREPARE:
6377 	case CPU_UP_PREPARE_FROZEN:
6378 		if (alloc_scratch_buffer(conf, percpu)) {
6379 			pr_err("%s: failed memory allocation for cpu%ld\n",
6380 			       __func__, cpu);
6381 			return notifier_from_errno(-ENOMEM);
6382 		}
6383 		break;
6384 	case CPU_DEAD:
6385 	case CPU_DEAD_FROZEN:
6386 	case CPU_UP_CANCELED:
6387 	case CPU_UP_CANCELED_FROZEN:
6388 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6389 		break;
6390 	default:
6391 		break;
6392 	}
6393 	return NOTIFY_OK;
6394 }
6395 #endif
6396 
6397 static int raid5_alloc_percpu(struct r5conf *conf)
6398 {
6399 	unsigned long cpu;
6400 	int err = 0;
6401 
6402 	conf->percpu = alloc_percpu(struct raid5_percpu);
6403 	if (!conf->percpu)
6404 		return -ENOMEM;
6405 
6406 #ifdef CONFIG_HOTPLUG_CPU
6407 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6408 	conf->cpu_notify.priority = 0;
6409 	err = register_cpu_notifier(&conf->cpu_notify);
6410 	if (err)
6411 		return err;
6412 #endif
6413 
6414 	get_online_cpus();
6415 	for_each_present_cpu(cpu) {
6416 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6417 		if (err) {
6418 			pr_err("%s: failed memory allocation for cpu%ld\n",
6419 			       __func__, cpu);
6420 			break;
6421 		}
6422 	}
6423 	put_online_cpus();
6424 
6425 	if (!err) {
6426 		conf->scribble_disks = max(conf->raid_disks,
6427 			conf->previous_raid_disks);
6428 		conf->scribble_sectors = max(conf->chunk_sectors,
6429 			conf->prev_chunk_sectors);
6430 	}
6431 	return err;
6432 }
6433 
6434 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6435 				      struct shrink_control *sc)
6436 {
6437 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6438 	unsigned long ret = SHRINK_STOP;
6439 
6440 	if (mutex_trylock(&conf->cache_size_mutex)) {
6441 		ret= 0;
6442 		while (ret < sc->nr_to_scan &&
6443 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6444 			if (drop_one_stripe(conf) == 0) {
6445 				ret = SHRINK_STOP;
6446 				break;
6447 			}
6448 			ret++;
6449 		}
6450 		mutex_unlock(&conf->cache_size_mutex);
6451 	}
6452 	return ret;
6453 }
6454 
6455 static unsigned long raid5_cache_count(struct shrinker *shrink,
6456 				       struct shrink_control *sc)
6457 {
6458 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6459 
6460 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6461 		/* unlikely, but not impossible */
6462 		return 0;
6463 	return conf->max_nr_stripes - conf->min_nr_stripes;
6464 }
6465 
6466 static struct r5conf *setup_conf(struct mddev *mddev)
6467 {
6468 	struct r5conf *conf;
6469 	int raid_disk, memory, max_disks;
6470 	struct md_rdev *rdev;
6471 	struct disk_info *disk;
6472 	char pers_name[6];
6473 	int i;
6474 	int group_cnt, worker_cnt_per_group;
6475 	struct r5worker_group *new_group;
6476 
6477 	if (mddev->new_level != 5
6478 	    && mddev->new_level != 4
6479 	    && mddev->new_level != 6) {
6480 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6481 		       mdname(mddev), mddev->new_level);
6482 		return ERR_PTR(-EIO);
6483 	}
6484 	if ((mddev->new_level == 5
6485 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6486 	    (mddev->new_level == 6
6487 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6488 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6489 		       mdname(mddev), mddev->new_layout);
6490 		return ERR_PTR(-EIO);
6491 	}
6492 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6493 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6494 		       mdname(mddev), mddev->raid_disks);
6495 		return ERR_PTR(-EINVAL);
6496 	}
6497 
6498 	if (!mddev->new_chunk_sectors ||
6499 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6500 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6501 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6502 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6503 		return ERR_PTR(-EINVAL);
6504 	}
6505 
6506 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6507 	if (conf == NULL)
6508 		goto abort;
6509 	/* Don't enable multi-threading by default*/
6510 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6511 				 &new_group)) {
6512 		conf->group_cnt = group_cnt;
6513 		conf->worker_cnt_per_group = worker_cnt_per_group;
6514 		conf->worker_groups = new_group;
6515 	} else
6516 		goto abort;
6517 	spin_lock_init(&conf->device_lock);
6518 	seqcount_init(&conf->gen_lock);
6519 	mutex_init(&conf->cache_size_mutex);
6520 	init_waitqueue_head(&conf->wait_for_quiescent);
6521 	init_waitqueue_head(&conf->wait_for_stripe);
6522 	init_waitqueue_head(&conf->wait_for_overlap);
6523 	INIT_LIST_HEAD(&conf->handle_list);
6524 	INIT_LIST_HEAD(&conf->hold_list);
6525 	INIT_LIST_HEAD(&conf->delayed_list);
6526 	INIT_LIST_HEAD(&conf->bitmap_list);
6527 	bio_list_init(&conf->return_bi);
6528 	init_llist_head(&conf->released_stripes);
6529 	atomic_set(&conf->active_stripes, 0);
6530 	atomic_set(&conf->preread_active_stripes, 0);
6531 	atomic_set(&conf->active_aligned_reads, 0);
6532 	conf->bypass_threshold = BYPASS_THRESHOLD;
6533 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6534 
6535 	conf->raid_disks = mddev->raid_disks;
6536 	if (mddev->reshape_position == MaxSector)
6537 		conf->previous_raid_disks = mddev->raid_disks;
6538 	else
6539 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6540 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6541 
6542 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6543 			      GFP_KERNEL);
6544 	if (!conf->disks)
6545 		goto abort;
6546 
6547 	conf->mddev = mddev;
6548 
6549 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6550 		goto abort;
6551 
6552 	/* We init hash_locks[0] separately to that it can be used
6553 	 * as the reference lock in the spin_lock_nest_lock() call
6554 	 * in lock_all_device_hash_locks_irq in order to convince
6555 	 * lockdep that we know what we are doing.
6556 	 */
6557 	spin_lock_init(conf->hash_locks);
6558 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6559 		spin_lock_init(conf->hash_locks + i);
6560 
6561 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6562 		INIT_LIST_HEAD(conf->inactive_list + i);
6563 
6564 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6565 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6566 
6567 	conf->level = mddev->new_level;
6568 	conf->chunk_sectors = mddev->new_chunk_sectors;
6569 	if (raid5_alloc_percpu(conf) != 0)
6570 		goto abort;
6571 
6572 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6573 
6574 	rdev_for_each(rdev, mddev) {
6575 		raid_disk = rdev->raid_disk;
6576 		if (raid_disk >= max_disks
6577 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6578 			continue;
6579 		disk = conf->disks + raid_disk;
6580 
6581 		if (test_bit(Replacement, &rdev->flags)) {
6582 			if (disk->replacement)
6583 				goto abort;
6584 			disk->replacement = rdev;
6585 		} else {
6586 			if (disk->rdev)
6587 				goto abort;
6588 			disk->rdev = rdev;
6589 		}
6590 
6591 		if (test_bit(In_sync, &rdev->flags)) {
6592 			char b[BDEVNAME_SIZE];
6593 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6594 			       " disk %d\n",
6595 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6596 		} else if (rdev->saved_raid_disk != raid_disk)
6597 			/* Cannot rely on bitmap to complete recovery */
6598 			conf->fullsync = 1;
6599 	}
6600 
6601 	conf->level = mddev->new_level;
6602 	if (conf->level == 6) {
6603 		conf->max_degraded = 2;
6604 		if (raid6_call.xor_syndrome)
6605 			conf->rmw_level = PARITY_ENABLE_RMW;
6606 		else
6607 			conf->rmw_level = PARITY_DISABLE_RMW;
6608 	} else {
6609 		conf->max_degraded = 1;
6610 		conf->rmw_level = PARITY_ENABLE_RMW;
6611 	}
6612 	conf->algorithm = mddev->new_layout;
6613 	conf->reshape_progress = mddev->reshape_position;
6614 	if (conf->reshape_progress != MaxSector) {
6615 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6616 		conf->prev_algo = mddev->layout;
6617 	} else {
6618 		conf->prev_chunk_sectors = conf->chunk_sectors;
6619 		conf->prev_algo = conf->algorithm;
6620 	}
6621 
6622 	conf->min_nr_stripes = NR_STRIPES;
6623 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6624 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6625 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6626 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6627 		printk(KERN_ERR
6628 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6629 		       mdname(mddev), memory);
6630 		goto abort;
6631 	} else
6632 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6633 		       mdname(mddev), memory);
6634 	/*
6635 	 * Losing a stripe head costs more than the time to refill it,
6636 	 * it reduces the queue depth and so can hurt throughput.
6637 	 * So set it rather large, scaled by number of devices.
6638 	 */
6639 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6640 	conf->shrinker.scan_objects = raid5_cache_scan;
6641 	conf->shrinker.count_objects = raid5_cache_count;
6642 	conf->shrinker.batch = 128;
6643 	conf->shrinker.flags = 0;
6644 	register_shrinker(&conf->shrinker);
6645 
6646 	sprintf(pers_name, "raid%d", mddev->new_level);
6647 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6648 	if (!conf->thread) {
6649 		printk(KERN_ERR
6650 		       "md/raid:%s: couldn't allocate thread.\n",
6651 		       mdname(mddev));
6652 		goto abort;
6653 	}
6654 
6655 	return conf;
6656 
6657  abort:
6658 	if (conf) {
6659 		free_conf(conf);
6660 		return ERR_PTR(-EIO);
6661 	} else
6662 		return ERR_PTR(-ENOMEM);
6663 }
6664 
6665 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6666 {
6667 	switch (algo) {
6668 	case ALGORITHM_PARITY_0:
6669 		if (raid_disk < max_degraded)
6670 			return 1;
6671 		break;
6672 	case ALGORITHM_PARITY_N:
6673 		if (raid_disk >= raid_disks - max_degraded)
6674 			return 1;
6675 		break;
6676 	case ALGORITHM_PARITY_0_6:
6677 		if (raid_disk == 0 ||
6678 		    raid_disk == raid_disks - 1)
6679 			return 1;
6680 		break;
6681 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6682 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6683 	case ALGORITHM_LEFT_SYMMETRIC_6:
6684 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6685 		if (raid_disk == raid_disks - 1)
6686 			return 1;
6687 	}
6688 	return 0;
6689 }
6690 
6691 static int raid5_run(struct mddev *mddev)
6692 {
6693 	struct r5conf *conf;
6694 	int working_disks = 0;
6695 	int dirty_parity_disks = 0;
6696 	struct md_rdev *rdev;
6697 	struct md_rdev *journal_dev = NULL;
6698 	sector_t reshape_offset = 0;
6699 	int i;
6700 	long long min_offset_diff = 0;
6701 	int first = 1;
6702 
6703 	if (mddev->recovery_cp != MaxSector)
6704 		printk(KERN_NOTICE "md/raid:%s: not clean"
6705 		       " -- starting background reconstruction\n",
6706 		       mdname(mddev));
6707 
6708 	rdev_for_each(rdev, mddev) {
6709 		long long diff;
6710 
6711 		if (test_bit(Journal, &rdev->flags)) {
6712 			journal_dev = rdev;
6713 			continue;
6714 		}
6715 		if (rdev->raid_disk < 0)
6716 			continue;
6717 		diff = (rdev->new_data_offset - rdev->data_offset);
6718 		if (first) {
6719 			min_offset_diff = diff;
6720 			first = 0;
6721 		} else if (mddev->reshape_backwards &&
6722 			 diff < min_offset_diff)
6723 			min_offset_diff = diff;
6724 		else if (!mddev->reshape_backwards &&
6725 			 diff > min_offset_diff)
6726 			min_offset_diff = diff;
6727 	}
6728 
6729 	if (mddev->reshape_position != MaxSector) {
6730 		/* Check that we can continue the reshape.
6731 		 * Difficulties arise if the stripe we would write to
6732 		 * next is at or after the stripe we would read from next.
6733 		 * For a reshape that changes the number of devices, this
6734 		 * is only possible for a very short time, and mdadm makes
6735 		 * sure that time appears to have past before assembling
6736 		 * the array.  So we fail if that time hasn't passed.
6737 		 * For a reshape that keeps the number of devices the same
6738 		 * mdadm must be monitoring the reshape can keeping the
6739 		 * critical areas read-only and backed up.  It will start
6740 		 * the array in read-only mode, so we check for that.
6741 		 */
6742 		sector_t here_new, here_old;
6743 		int old_disks;
6744 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6745 		int chunk_sectors;
6746 		int new_data_disks;
6747 
6748 		if (journal_dev) {
6749 			printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6750 			       mdname(mddev));
6751 			return -EINVAL;
6752 		}
6753 
6754 		if (mddev->new_level != mddev->level) {
6755 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6756 			       "required - aborting.\n",
6757 			       mdname(mddev));
6758 			return -EINVAL;
6759 		}
6760 		old_disks = mddev->raid_disks - mddev->delta_disks;
6761 		/* reshape_position must be on a new-stripe boundary, and one
6762 		 * further up in new geometry must map after here in old
6763 		 * geometry.
6764 		 * If the chunk sizes are different, then as we perform reshape
6765 		 * in units of the largest of the two, reshape_position needs
6766 		 * be a multiple of the largest chunk size times new data disks.
6767 		 */
6768 		here_new = mddev->reshape_position;
6769 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6770 		new_data_disks = mddev->raid_disks - max_degraded;
6771 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6772 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6773 			       "on a stripe boundary\n", mdname(mddev));
6774 			return -EINVAL;
6775 		}
6776 		reshape_offset = here_new * chunk_sectors;
6777 		/* here_new is the stripe we will write to */
6778 		here_old = mddev->reshape_position;
6779 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6780 		/* here_old is the first stripe that we might need to read
6781 		 * from */
6782 		if (mddev->delta_disks == 0) {
6783 			/* We cannot be sure it is safe to start an in-place
6784 			 * reshape.  It is only safe if user-space is monitoring
6785 			 * and taking constant backups.
6786 			 * mdadm always starts a situation like this in
6787 			 * readonly mode so it can take control before
6788 			 * allowing any writes.  So just check for that.
6789 			 */
6790 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6791 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6792 				/* not really in-place - so OK */;
6793 			else if (mddev->ro == 0) {
6794 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6795 				       "must be started in read-only mode "
6796 				       "- aborting\n",
6797 				       mdname(mddev));
6798 				return -EINVAL;
6799 			}
6800 		} else if (mddev->reshape_backwards
6801 		    ? (here_new * chunk_sectors + min_offset_diff <=
6802 		       here_old * chunk_sectors)
6803 		    : (here_new * chunk_sectors >=
6804 		       here_old * chunk_sectors + (-min_offset_diff))) {
6805 			/* Reading from the same stripe as writing to - bad */
6806 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6807 			       "auto-recovery - aborting.\n",
6808 			       mdname(mddev));
6809 			return -EINVAL;
6810 		}
6811 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6812 		       mdname(mddev));
6813 		/* OK, we should be able to continue; */
6814 	} else {
6815 		BUG_ON(mddev->level != mddev->new_level);
6816 		BUG_ON(mddev->layout != mddev->new_layout);
6817 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6818 		BUG_ON(mddev->delta_disks != 0);
6819 	}
6820 
6821 	if (mddev->private == NULL)
6822 		conf = setup_conf(mddev);
6823 	else
6824 		conf = mddev->private;
6825 
6826 	if (IS_ERR(conf))
6827 		return PTR_ERR(conf);
6828 
6829 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6830 		printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6831 		       mdname(mddev));
6832 		mddev->ro = 1;
6833 		set_disk_ro(mddev->gendisk, 1);
6834 	}
6835 
6836 	conf->min_offset_diff = min_offset_diff;
6837 	mddev->thread = conf->thread;
6838 	conf->thread = NULL;
6839 	mddev->private = conf;
6840 
6841 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6842 	     i++) {
6843 		rdev = conf->disks[i].rdev;
6844 		if (!rdev && conf->disks[i].replacement) {
6845 			/* The replacement is all we have yet */
6846 			rdev = conf->disks[i].replacement;
6847 			conf->disks[i].replacement = NULL;
6848 			clear_bit(Replacement, &rdev->flags);
6849 			conf->disks[i].rdev = rdev;
6850 		}
6851 		if (!rdev)
6852 			continue;
6853 		if (conf->disks[i].replacement &&
6854 		    conf->reshape_progress != MaxSector) {
6855 			/* replacements and reshape simply do not mix. */
6856 			printk(KERN_ERR "md: cannot handle concurrent "
6857 			       "replacement and reshape.\n");
6858 			goto abort;
6859 		}
6860 		if (test_bit(In_sync, &rdev->flags)) {
6861 			working_disks++;
6862 			continue;
6863 		}
6864 		/* This disc is not fully in-sync.  However if it
6865 		 * just stored parity (beyond the recovery_offset),
6866 		 * when we don't need to be concerned about the
6867 		 * array being dirty.
6868 		 * When reshape goes 'backwards', we never have
6869 		 * partially completed devices, so we only need
6870 		 * to worry about reshape going forwards.
6871 		 */
6872 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6873 		if (mddev->major_version == 0 &&
6874 		    mddev->minor_version > 90)
6875 			rdev->recovery_offset = reshape_offset;
6876 
6877 		if (rdev->recovery_offset < reshape_offset) {
6878 			/* We need to check old and new layout */
6879 			if (!only_parity(rdev->raid_disk,
6880 					 conf->algorithm,
6881 					 conf->raid_disks,
6882 					 conf->max_degraded))
6883 				continue;
6884 		}
6885 		if (!only_parity(rdev->raid_disk,
6886 				 conf->prev_algo,
6887 				 conf->previous_raid_disks,
6888 				 conf->max_degraded))
6889 			continue;
6890 		dirty_parity_disks++;
6891 	}
6892 
6893 	/*
6894 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6895 	 */
6896 	mddev->degraded = calc_degraded(conf);
6897 
6898 	if (has_failed(conf)) {
6899 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6900 			" (%d/%d failed)\n",
6901 			mdname(mddev), mddev->degraded, conf->raid_disks);
6902 		goto abort;
6903 	}
6904 
6905 	/* device size must be a multiple of chunk size */
6906 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6907 	mddev->resync_max_sectors = mddev->dev_sectors;
6908 
6909 	if (mddev->degraded > dirty_parity_disks &&
6910 	    mddev->recovery_cp != MaxSector) {
6911 		if (mddev->ok_start_degraded)
6912 			printk(KERN_WARNING
6913 			       "md/raid:%s: starting dirty degraded array"
6914 			       " - data corruption possible.\n",
6915 			       mdname(mddev));
6916 		else {
6917 			printk(KERN_ERR
6918 			       "md/raid:%s: cannot start dirty degraded array.\n",
6919 			       mdname(mddev));
6920 			goto abort;
6921 		}
6922 	}
6923 
6924 	if (mddev->degraded == 0)
6925 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6926 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6927 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6928 		       mddev->new_layout);
6929 	else
6930 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6931 		       " out of %d devices, algorithm %d\n",
6932 		       mdname(mddev), conf->level,
6933 		       mddev->raid_disks - mddev->degraded,
6934 		       mddev->raid_disks, mddev->new_layout);
6935 
6936 	print_raid5_conf(conf);
6937 
6938 	if (conf->reshape_progress != MaxSector) {
6939 		conf->reshape_safe = conf->reshape_progress;
6940 		atomic_set(&conf->reshape_stripes, 0);
6941 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6942 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6943 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6944 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6945 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6946 							"reshape");
6947 	}
6948 
6949 	/* Ok, everything is just fine now */
6950 	if (mddev->to_remove == &raid5_attrs_group)
6951 		mddev->to_remove = NULL;
6952 	else if (mddev->kobj.sd &&
6953 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6954 		printk(KERN_WARNING
6955 		       "raid5: failed to create sysfs attributes for %s\n",
6956 		       mdname(mddev));
6957 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6958 
6959 	if (mddev->queue) {
6960 		int chunk_size;
6961 		bool discard_supported = true;
6962 		/* read-ahead size must cover two whole stripes, which
6963 		 * is 2 * (datadisks) * chunksize where 'n' is the
6964 		 * number of raid devices
6965 		 */
6966 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6967 		int stripe = data_disks *
6968 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6969 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6970 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6971 
6972 		chunk_size = mddev->chunk_sectors << 9;
6973 		blk_queue_io_min(mddev->queue, chunk_size);
6974 		blk_queue_io_opt(mddev->queue, chunk_size *
6975 				 (conf->raid_disks - conf->max_degraded));
6976 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6977 		/*
6978 		 * We can only discard a whole stripe. It doesn't make sense to
6979 		 * discard data disk but write parity disk
6980 		 */
6981 		stripe = stripe * PAGE_SIZE;
6982 		/* Round up to power of 2, as discard handling
6983 		 * currently assumes that */
6984 		while ((stripe-1) & stripe)
6985 			stripe = (stripe | (stripe-1)) + 1;
6986 		mddev->queue->limits.discard_alignment = stripe;
6987 		mddev->queue->limits.discard_granularity = stripe;
6988 		/*
6989 		 * unaligned part of discard request will be ignored, so can't
6990 		 * guarantee discard_zeroes_data
6991 		 */
6992 		mddev->queue->limits.discard_zeroes_data = 0;
6993 
6994 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6995 
6996 		rdev_for_each(rdev, mddev) {
6997 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6998 					  rdev->data_offset << 9);
6999 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7000 					  rdev->new_data_offset << 9);
7001 			/*
7002 			 * discard_zeroes_data is required, otherwise data
7003 			 * could be lost. Consider a scenario: discard a stripe
7004 			 * (the stripe could be inconsistent if
7005 			 * discard_zeroes_data is 0); write one disk of the
7006 			 * stripe (the stripe could be inconsistent again
7007 			 * depending on which disks are used to calculate
7008 			 * parity); the disk is broken; The stripe data of this
7009 			 * disk is lost.
7010 			 */
7011 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7012 			    !bdev_get_queue(rdev->bdev)->
7013 						limits.discard_zeroes_data)
7014 				discard_supported = false;
7015 			/* Unfortunately, discard_zeroes_data is not currently
7016 			 * a guarantee - just a hint.  So we only allow DISCARD
7017 			 * if the sysadmin has confirmed that only safe devices
7018 			 * are in use by setting a module parameter.
7019 			 */
7020 			if (!devices_handle_discard_safely) {
7021 				if (discard_supported) {
7022 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7023 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7024 				}
7025 				discard_supported = false;
7026 			}
7027 		}
7028 
7029 		if (discard_supported &&
7030 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7031 		    mddev->queue->limits.discard_granularity >= stripe)
7032 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7033 						mddev->queue);
7034 		else
7035 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7036 						mddev->queue);
7037 	}
7038 
7039 	if (journal_dev) {
7040 		char b[BDEVNAME_SIZE];
7041 
7042 		printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7043 		       mdname(mddev), bdevname(journal_dev->bdev, b));
7044 		r5l_init_log(conf, journal_dev);
7045 	}
7046 
7047 	return 0;
7048 abort:
7049 	md_unregister_thread(&mddev->thread);
7050 	print_raid5_conf(conf);
7051 	free_conf(conf);
7052 	mddev->private = NULL;
7053 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7054 	return -EIO;
7055 }
7056 
7057 static void raid5_free(struct mddev *mddev, void *priv)
7058 {
7059 	struct r5conf *conf = priv;
7060 
7061 	free_conf(conf);
7062 	mddev->to_remove = &raid5_attrs_group;
7063 }
7064 
7065 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7066 {
7067 	struct r5conf *conf = mddev->private;
7068 	int i;
7069 
7070 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7071 		conf->chunk_sectors / 2, mddev->layout);
7072 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7073 	rcu_read_lock();
7074 	for (i = 0; i < conf->raid_disks; i++) {
7075 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7076 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7077 	}
7078 	rcu_read_unlock();
7079 	seq_printf (seq, "]");
7080 }
7081 
7082 static void print_raid5_conf (struct r5conf *conf)
7083 {
7084 	int i;
7085 	struct disk_info *tmp;
7086 
7087 	printk(KERN_DEBUG "RAID conf printout:\n");
7088 	if (!conf) {
7089 		printk("(conf==NULL)\n");
7090 		return;
7091 	}
7092 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7093 	       conf->raid_disks,
7094 	       conf->raid_disks - conf->mddev->degraded);
7095 
7096 	for (i = 0; i < conf->raid_disks; i++) {
7097 		char b[BDEVNAME_SIZE];
7098 		tmp = conf->disks + i;
7099 		if (tmp->rdev)
7100 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7101 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7102 			       bdevname(tmp->rdev->bdev, b));
7103 	}
7104 }
7105 
7106 static int raid5_spare_active(struct mddev *mddev)
7107 {
7108 	int i;
7109 	struct r5conf *conf = mddev->private;
7110 	struct disk_info *tmp;
7111 	int count = 0;
7112 	unsigned long flags;
7113 
7114 	for (i = 0; i < conf->raid_disks; i++) {
7115 		tmp = conf->disks + i;
7116 		if (tmp->replacement
7117 		    && tmp->replacement->recovery_offset == MaxSector
7118 		    && !test_bit(Faulty, &tmp->replacement->flags)
7119 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7120 			/* Replacement has just become active. */
7121 			if (!tmp->rdev
7122 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7123 				count++;
7124 			if (tmp->rdev) {
7125 				/* Replaced device not technically faulty,
7126 				 * but we need to be sure it gets removed
7127 				 * and never re-added.
7128 				 */
7129 				set_bit(Faulty, &tmp->rdev->flags);
7130 				sysfs_notify_dirent_safe(
7131 					tmp->rdev->sysfs_state);
7132 			}
7133 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7134 		} else if (tmp->rdev
7135 		    && tmp->rdev->recovery_offset == MaxSector
7136 		    && !test_bit(Faulty, &tmp->rdev->flags)
7137 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7138 			count++;
7139 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7140 		}
7141 	}
7142 	spin_lock_irqsave(&conf->device_lock, flags);
7143 	mddev->degraded = calc_degraded(conf);
7144 	spin_unlock_irqrestore(&conf->device_lock, flags);
7145 	print_raid5_conf(conf);
7146 	return count;
7147 }
7148 
7149 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7150 {
7151 	struct r5conf *conf = mddev->private;
7152 	int err = 0;
7153 	int number = rdev->raid_disk;
7154 	struct md_rdev **rdevp;
7155 	struct disk_info *p = conf->disks + number;
7156 
7157 	print_raid5_conf(conf);
7158 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7159 		struct r5l_log *log;
7160 		/*
7161 		 * we can't wait pending write here, as this is called in
7162 		 * raid5d, wait will deadlock.
7163 		 */
7164 		if (atomic_read(&mddev->writes_pending))
7165 			return -EBUSY;
7166 		log = conf->log;
7167 		conf->log = NULL;
7168 		synchronize_rcu();
7169 		r5l_exit_log(log);
7170 		return 0;
7171 	}
7172 	if (rdev == p->rdev)
7173 		rdevp = &p->rdev;
7174 	else if (rdev == p->replacement)
7175 		rdevp = &p->replacement;
7176 	else
7177 		return 0;
7178 
7179 	if (number >= conf->raid_disks &&
7180 	    conf->reshape_progress == MaxSector)
7181 		clear_bit(In_sync, &rdev->flags);
7182 
7183 	if (test_bit(In_sync, &rdev->flags) ||
7184 	    atomic_read(&rdev->nr_pending)) {
7185 		err = -EBUSY;
7186 		goto abort;
7187 	}
7188 	/* Only remove non-faulty devices if recovery
7189 	 * isn't possible.
7190 	 */
7191 	if (!test_bit(Faulty, &rdev->flags) &&
7192 	    mddev->recovery_disabled != conf->recovery_disabled &&
7193 	    !has_failed(conf) &&
7194 	    (!p->replacement || p->replacement == rdev) &&
7195 	    number < conf->raid_disks) {
7196 		err = -EBUSY;
7197 		goto abort;
7198 	}
7199 	*rdevp = NULL;
7200 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7201 		synchronize_rcu();
7202 		if (atomic_read(&rdev->nr_pending)) {
7203 			/* lost the race, try later */
7204 			err = -EBUSY;
7205 			*rdevp = rdev;
7206 		}
7207 	}
7208 	if (p->replacement) {
7209 		/* We must have just cleared 'rdev' */
7210 		p->rdev = p->replacement;
7211 		clear_bit(Replacement, &p->replacement->flags);
7212 		smp_mb(); /* Make sure other CPUs may see both as identical
7213 			   * but will never see neither - if they are careful
7214 			   */
7215 		p->replacement = NULL;
7216 		clear_bit(WantReplacement, &rdev->flags);
7217 	} else
7218 		/* We might have just removed the Replacement as faulty-
7219 		 * clear the bit just in case
7220 		 */
7221 		clear_bit(WantReplacement, &rdev->flags);
7222 abort:
7223 
7224 	print_raid5_conf(conf);
7225 	return err;
7226 }
7227 
7228 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7229 {
7230 	struct r5conf *conf = mddev->private;
7231 	int err = -EEXIST;
7232 	int disk;
7233 	struct disk_info *p;
7234 	int first = 0;
7235 	int last = conf->raid_disks - 1;
7236 
7237 	if (test_bit(Journal, &rdev->flags)) {
7238 		char b[BDEVNAME_SIZE];
7239 		if (conf->log)
7240 			return -EBUSY;
7241 
7242 		rdev->raid_disk = 0;
7243 		/*
7244 		 * The array is in readonly mode if journal is missing, so no
7245 		 * write requests running. We should be safe
7246 		 */
7247 		r5l_init_log(conf, rdev);
7248 		printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7249 		       mdname(mddev), bdevname(rdev->bdev, b));
7250 		return 0;
7251 	}
7252 	if (mddev->recovery_disabled == conf->recovery_disabled)
7253 		return -EBUSY;
7254 
7255 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7256 		/* no point adding a device */
7257 		return -EINVAL;
7258 
7259 	if (rdev->raid_disk >= 0)
7260 		first = last = rdev->raid_disk;
7261 
7262 	/*
7263 	 * find the disk ... but prefer rdev->saved_raid_disk
7264 	 * if possible.
7265 	 */
7266 	if (rdev->saved_raid_disk >= 0 &&
7267 	    rdev->saved_raid_disk >= first &&
7268 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7269 		first = rdev->saved_raid_disk;
7270 
7271 	for (disk = first; disk <= last; disk++) {
7272 		p = conf->disks + disk;
7273 		if (p->rdev == NULL) {
7274 			clear_bit(In_sync, &rdev->flags);
7275 			rdev->raid_disk = disk;
7276 			err = 0;
7277 			if (rdev->saved_raid_disk != disk)
7278 				conf->fullsync = 1;
7279 			rcu_assign_pointer(p->rdev, rdev);
7280 			goto out;
7281 		}
7282 	}
7283 	for (disk = first; disk <= last; disk++) {
7284 		p = conf->disks + disk;
7285 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7286 		    p->replacement == NULL) {
7287 			clear_bit(In_sync, &rdev->flags);
7288 			set_bit(Replacement, &rdev->flags);
7289 			rdev->raid_disk = disk;
7290 			err = 0;
7291 			conf->fullsync = 1;
7292 			rcu_assign_pointer(p->replacement, rdev);
7293 			break;
7294 		}
7295 	}
7296 out:
7297 	print_raid5_conf(conf);
7298 	return err;
7299 }
7300 
7301 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7302 {
7303 	/* no resync is happening, and there is enough space
7304 	 * on all devices, so we can resize.
7305 	 * We need to make sure resync covers any new space.
7306 	 * If the array is shrinking we should possibly wait until
7307 	 * any io in the removed space completes, but it hardly seems
7308 	 * worth it.
7309 	 */
7310 	sector_t newsize;
7311 	struct r5conf *conf = mddev->private;
7312 
7313 	if (conf->log)
7314 		return -EINVAL;
7315 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7316 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7317 	if (mddev->external_size &&
7318 	    mddev->array_sectors > newsize)
7319 		return -EINVAL;
7320 	if (mddev->bitmap) {
7321 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7322 		if (ret)
7323 			return ret;
7324 	}
7325 	md_set_array_sectors(mddev, newsize);
7326 	set_capacity(mddev->gendisk, mddev->array_sectors);
7327 	revalidate_disk(mddev->gendisk);
7328 	if (sectors > mddev->dev_sectors &&
7329 	    mddev->recovery_cp > mddev->dev_sectors) {
7330 		mddev->recovery_cp = mddev->dev_sectors;
7331 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7332 	}
7333 	mddev->dev_sectors = sectors;
7334 	mddev->resync_max_sectors = sectors;
7335 	return 0;
7336 }
7337 
7338 static int check_stripe_cache(struct mddev *mddev)
7339 {
7340 	/* Can only proceed if there are plenty of stripe_heads.
7341 	 * We need a minimum of one full stripe,, and for sensible progress
7342 	 * it is best to have about 4 times that.
7343 	 * If we require 4 times, then the default 256 4K stripe_heads will
7344 	 * allow for chunk sizes up to 256K, which is probably OK.
7345 	 * If the chunk size is greater, user-space should request more
7346 	 * stripe_heads first.
7347 	 */
7348 	struct r5conf *conf = mddev->private;
7349 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7350 	    > conf->min_nr_stripes ||
7351 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7352 	    > conf->min_nr_stripes) {
7353 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7354 		       mdname(mddev),
7355 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7356 			/ STRIPE_SIZE)*4);
7357 		return 0;
7358 	}
7359 	return 1;
7360 }
7361 
7362 static int check_reshape(struct mddev *mddev)
7363 {
7364 	struct r5conf *conf = mddev->private;
7365 
7366 	if (conf->log)
7367 		return -EINVAL;
7368 	if (mddev->delta_disks == 0 &&
7369 	    mddev->new_layout == mddev->layout &&
7370 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7371 		return 0; /* nothing to do */
7372 	if (has_failed(conf))
7373 		return -EINVAL;
7374 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7375 		/* We might be able to shrink, but the devices must
7376 		 * be made bigger first.
7377 		 * For raid6, 4 is the minimum size.
7378 		 * Otherwise 2 is the minimum
7379 		 */
7380 		int min = 2;
7381 		if (mddev->level == 6)
7382 			min = 4;
7383 		if (mddev->raid_disks + mddev->delta_disks < min)
7384 			return -EINVAL;
7385 	}
7386 
7387 	if (!check_stripe_cache(mddev))
7388 		return -ENOSPC;
7389 
7390 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7391 	    mddev->delta_disks > 0)
7392 		if (resize_chunks(conf,
7393 				  conf->previous_raid_disks
7394 				  + max(0, mddev->delta_disks),
7395 				  max(mddev->new_chunk_sectors,
7396 				      mddev->chunk_sectors)
7397 			    ) < 0)
7398 			return -ENOMEM;
7399 	return resize_stripes(conf, (conf->previous_raid_disks
7400 				     + mddev->delta_disks));
7401 }
7402 
7403 static int raid5_start_reshape(struct mddev *mddev)
7404 {
7405 	struct r5conf *conf = mddev->private;
7406 	struct md_rdev *rdev;
7407 	int spares = 0;
7408 	unsigned long flags;
7409 
7410 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7411 		return -EBUSY;
7412 
7413 	if (!check_stripe_cache(mddev))
7414 		return -ENOSPC;
7415 
7416 	if (has_failed(conf))
7417 		return -EINVAL;
7418 
7419 	rdev_for_each(rdev, mddev) {
7420 		if (!test_bit(In_sync, &rdev->flags)
7421 		    && !test_bit(Faulty, &rdev->flags))
7422 			spares++;
7423 	}
7424 
7425 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7426 		/* Not enough devices even to make a degraded array
7427 		 * of that size
7428 		 */
7429 		return -EINVAL;
7430 
7431 	/* Refuse to reduce size of the array.  Any reductions in
7432 	 * array size must be through explicit setting of array_size
7433 	 * attribute.
7434 	 */
7435 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7436 	    < mddev->array_sectors) {
7437 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7438 		       "before number of disks\n", mdname(mddev));
7439 		return -EINVAL;
7440 	}
7441 
7442 	atomic_set(&conf->reshape_stripes, 0);
7443 	spin_lock_irq(&conf->device_lock);
7444 	write_seqcount_begin(&conf->gen_lock);
7445 	conf->previous_raid_disks = conf->raid_disks;
7446 	conf->raid_disks += mddev->delta_disks;
7447 	conf->prev_chunk_sectors = conf->chunk_sectors;
7448 	conf->chunk_sectors = mddev->new_chunk_sectors;
7449 	conf->prev_algo = conf->algorithm;
7450 	conf->algorithm = mddev->new_layout;
7451 	conf->generation++;
7452 	/* Code that selects data_offset needs to see the generation update
7453 	 * if reshape_progress has been set - so a memory barrier needed.
7454 	 */
7455 	smp_mb();
7456 	if (mddev->reshape_backwards)
7457 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7458 	else
7459 		conf->reshape_progress = 0;
7460 	conf->reshape_safe = conf->reshape_progress;
7461 	write_seqcount_end(&conf->gen_lock);
7462 	spin_unlock_irq(&conf->device_lock);
7463 
7464 	/* Now make sure any requests that proceeded on the assumption
7465 	 * the reshape wasn't running - like Discard or Read - have
7466 	 * completed.
7467 	 */
7468 	mddev_suspend(mddev);
7469 	mddev_resume(mddev);
7470 
7471 	/* Add some new drives, as many as will fit.
7472 	 * We know there are enough to make the newly sized array work.
7473 	 * Don't add devices if we are reducing the number of
7474 	 * devices in the array.  This is because it is not possible
7475 	 * to correctly record the "partially reconstructed" state of
7476 	 * such devices during the reshape and confusion could result.
7477 	 */
7478 	if (mddev->delta_disks >= 0) {
7479 		rdev_for_each(rdev, mddev)
7480 			if (rdev->raid_disk < 0 &&
7481 			    !test_bit(Faulty, &rdev->flags)) {
7482 				if (raid5_add_disk(mddev, rdev) == 0) {
7483 					if (rdev->raid_disk
7484 					    >= conf->previous_raid_disks)
7485 						set_bit(In_sync, &rdev->flags);
7486 					else
7487 						rdev->recovery_offset = 0;
7488 
7489 					if (sysfs_link_rdev(mddev, rdev))
7490 						/* Failure here is OK */;
7491 				}
7492 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7493 				   && !test_bit(Faulty, &rdev->flags)) {
7494 				/* This is a spare that was manually added */
7495 				set_bit(In_sync, &rdev->flags);
7496 			}
7497 
7498 		/* When a reshape changes the number of devices,
7499 		 * ->degraded is measured against the larger of the
7500 		 * pre and post number of devices.
7501 		 */
7502 		spin_lock_irqsave(&conf->device_lock, flags);
7503 		mddev->degraded = calc_degraded(conf);
7504 		spin_unlock_irqrestore(&conf->device_lock, flags);
7505 	}
7506 	mddev->raid_disks = conf->raid_disks;
7507 	mddev->reshape_position = conf->reshape_progress;
7508 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7509 
7510 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7511 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7512 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7513 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7514 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7515 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7516 						"reshape");
7517 	if (!mddev->sync_thread) {
7518 		mddev->recovery = 0;
7519 		spin_lock_irq(&conf->device_lock);
7520 		write_seqcount_begin(&conf->gen_lock);
7521 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7522 		mddev->new_chunk_sectors =
7523 			conf->chunk_sectors = conf->prev_chunk_sectors;
7524 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7525 		rdev_for_each(rdev, mddev)
7526 			rdev->new_data_offset = rdev->data_offset;
7527 		smp_wmb();
7528 		conf->generation --;
7529 		conf->reshape_progress = MaxSector;
7530 		mddev->reshape_position = MaxSector;
7531 		write_seqcount_end(&conf->gen_lock);
7532 		spin_unlock_irq(&conf->device_lock);
7533 		return -EAGAIN;
7534 	}
7535 	conf->reshape_checkpoint = jiffies;
7536 	md_wakeup_thread(mddev->sync_thread);
7537 	md_new_event(mddev);
7538 	return 0;
7539 }
7540 
7541 /* This is called from the reshape thread and should make any
7542  * changes needed in 'conf'
7543  */
7544 static void end_reshape(struct r5conf *conf)
7545 {
7546 
7547 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7548 		struct md_rdev *rdev;
7549 
7550 		spin_lock_irq(&conf->device_lock);
7551 		conf->previous_raid_disks = conf->raid_disks;
7552 		rdev_for_each(rdev, conf->mddev)
7553 			rdev->data_offset = rdev->new_data_offset;
7554 		smp_wmb();
7555 		conf->reshape_progress = MaxSector;
7556 		conf->mddev->reshape_position = MaxSector;
7557 		spin_unlock_irq(&conf->device_lock);
7558 		wake_up(&conf->wait_for_overlap);
7559 
7560 		/* read-ahead size must cover two whole stripes, which is
7561 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7562 		 */
7563 		if (conf->mddev->queue) {
7564 			int data_disks = conf->raid_disks - conf->max_degraded;
7565 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7566 						   / PAGE_SIZE);
7567 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7568 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7569 		}
7570 	}
7571 }
7572 
7573 /* This is called from the raid5d thread with mddev_lock held.
7574  * It makes config changes to the device.
7575  */
7576 static void raid5_finish_reshape(struct mddev *mddev)
7577 {
7578 	struct r5conf *conf = mddev->private;
7579 
7580 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7581 
7582 		if (mddev->delta_disks > 0) {
7583 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7584 			if (mddev->queue) {
7585 				set_capacity(mddev->gendisk, mddev->array_sectors);
7586 				revalidate_disk(mddev->gendisk);
7587 			}
7588 		} else {
7589 			int d;
7590 			spin_lock_irq(&conf->device_lock);
7591 			mddev->degraded = calc_degraded(conf);
7592 			spin_unlock_irq(&conf->device_lock);
7593 			for (d = conf->raid_disks ;
7594 			     d < conf->raid_disks - mddev->delta_disks;
7595 			     d++) {
7596 				struct md_rdev *rdev = conf->disks[d].rdev;
7597 				if (rdev)
7598 					clear_bit(In_sync, &rdev->flags);
7599 				rdev = conf->disks[d].replacement;
7600 				if (rdev)
7601 					clear_bit(In_sync, &rdev->flags);
7602 			}
7603 		}
7604 		mddev->layout = conf->algorithm;
7605 		mddev->chunk_sectors = conf->chunk_sectors;
7606 		mddev->reshape_position = MaxSector;
7607 		mddev->delta_disks = 0;
7608 		mddev->reshape_backwards = 0;
7609 	}
7610 }
7611 
7612 static void raid5_quiesce(struct mddev *mddev, int state)
7613 {
7614 	struct r5conf *conf = mddev->private;
7615 
7616 	switch(state) {
7617 	case 2: /* resume for a suspend */
7618 		wake_up(&conf->wait_for_overlap);
7619 		break;
7620 
7621 	case 1: /* stop all writes */
7622 		lock_all_device_hash_locks_irq(conf);
7623 		/* '2' tells resync/reshape to pause so that all
7624 		 * active stripes can drain
7625 		 */
7626 		conf->quiesce = 2;
7627 		wait_event_cmd(conf->wait_for_quiescent,
7628 				    atomic_read(&conf->active_stripes) == 0 &&
7629 				    atomic_read(&conf->active_aligned_reads) == 0,
7630 				    unlock_all_device_hash_locks_irq(conf),
7631 				    lock_all_device_hash_locks_irq(conf));
7632 		conf->quiesce = 1;
7633 		unlock_all_device_hash_locks_irq(conf);
7634 		/* allow reshape to continue */
7635 		wake_up(&conf->wait_for_overlap);
7636 		break;
7637 
7638 	case 0: /* re-enable writes */
7639 		lock_all_device_hash_locks_irq(conf);
7640 		conf->quiesce = 0;
7641 		wake_up(&conf->wait_for_quiescent);
7642 		wake_up(&conf->wait_for_overlap);
7643 		unlock_all_device_hash_locks_irq(conf);
7644 		break;
7645 	}
7646 	r5l_quiesce(conf->log, state);
7647 }
7648 
7649 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7650 {
7651 	struct r0conf *raid0_conf = mddev->private;
7652 	sector_t sectors;
7653 
7654 	/* for raid0 takeover only one zone is supported */
7655 	if (raid0_conf->nr_strip_zones > 1) {
7656 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7657 		       mdname(mddev));
7658 		return ERR_PTR(-EINVAL);
7659 	}
7660 
7661 	sectors = raid0_conf->strip_zone[0].zone_end;
7662 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7663 	mddev->dev_sectors = sectors;
7664 	mddev->new_level = level;
7665 	mddev->new_layout = ALGORITHM_PARITY_N;
7666 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7667 	mddev->raid_disks += 1;
7668 	mddev->delta_disks = 1;
7669 	/* make sure it will be not marked as dirty */
7670 	mddev->recovery_cp = MaxSector;
7671 
7672 	return setup_conf(mddev);
7673 }
7674 
7675 static void *raid5_takeover_raid1(struct mddev *mddev)
7676 {
7677 	int chunksect;
7678 
7679 	if (mddev->raid_disks != 2 ||
7680 	    mddev->degraded > 1)
7681 		return ERR_PTR(-EINVAL);
7682 
7683 	/* Should check if there are write-behind devices? */
7684 
7685 	chunksect = 64*2; /* 64K by default */
7686 
7687 	/* The array must be an exact multiple of chunksize */
7688 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7689 		chunksect >>= 1;
7690 
7691 	if ((chunksect<<9) < STRIPE_SIZE)
7692 		/* array size does not allow a suitable chunk size */
7693 		return ERR_PTR(-EINVAL);
7694 
7695 	mddev->new_level = 5;
7696 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7697 	mddev->new_chunk_sectors = chunksect;
7698 
7699 	return setup_conf(mddev);
7700 }
7701 
7702 static void *raid5_takeover_raid6(struct mddev *mddev)
7703 {
7704 	int new_layout;
7705 
7706 	switch (mddev->layout) {
7707 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7708 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7709 		break;
7710 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7711 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7712 		break;
7713 	case ALGORITHM_LEFT_SYMMETRIC_6:
7714 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7715 		break;
7716 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7717 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7718 		break;
7719 	case ALGORITHM_PARITY_0_6:
7720 		new_layout = ALGORITHM_PARITY_0;
7721 		break;
7722 	case ALGORITHM_PARITY_N:
7723 		new_layout = ALGORITHM_PARITY_N;
7724 		break;
7725 	default:
7726 		return ERR_PTR(-EINVAL);
7727 	}
7728 	mddev->new_level = 5;
7729 	mddev->new_layout = new_layout;
7730 	mddev->delta_disks = -1;
7731 	mddev->raid_disks -= 1;
7732 	return setup_conf(mddev);
7733 }
7734 
7735 static int raid5_check_reshape(struct mddev *mddev)
7736 {
7737 	/* For a 2-drive array, the layout and chunk size can be changed
7738 	 * immediately as not restriping is needed.
7739 	 * For larger arrays we record the new value - after validation
7740 	 * to be used by a reshape pass.
7741 	 */
7742 	struct r5conf *conf = mddev->private;
7743 	int new_chunk = mddev->new_chunk_sectors;
7744 
7745 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7746 		return -EINVAL;
7747 	if (new_chunk > 0) {
7748 		if (!is_power_of_2(new_chunk))
7749 			return -EINVAL;
7750 		if (new_chunk < (PAGE_SIZE>>9))
7751 			return -EINVAL;
7752 		if (mddev->array_sectors & (new_chunk-1))
7753 			/* not factor of array size */
7754 			return -EINVAL;
7755 	}
7756 
7757 	/* They look valid */
7758 
7759 	if (mddev->raid_disks == 2) {
7760 		/* can make the change immediately */
7761 		if (mddev->new_layout >= 0) {
7762 			conf->algorithm = mddev->new_layout;
7763 			mddev->layout = mddev->new_layout;
7764 		}
7765 		if (new_chunk > 0) {
7766 			conf->chunk_sectors = new_chunk ;
7767 			mddev->chunk_sectors = new_chunk;
7768 		}
7769 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7770 		md_wakeup_thread(mddev->thread);
7771 	}
7772 	return check_reshape(mddev);
7773 }
7774 
7775 static int raid6_check_reshape(struct mddev *mddev)
7776 {
7777 	int new_chunk = mddev->new_chunk_sectors;
7778 
7779 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7780 		return -EINVAL;
7781 	if (new_chunk > 0) {
7782 		if (!is_power_of_2(new_chunk))
7783 			return -EINVAL;
7784 		if (new_chunk < (PAGE_SIZE >> 9))
7785 			return -EINVAL;
7786 		if (mddev->array_sectors & (new_chunk-1))
7787 			/* not factor of array size */
7788 			return -EINVAL;
7789 	}
7790 
7791 	/* They look valid */
7792 	return check_reshape(mddev);
7793 }
7794 
7795 static void *raid5_takeover(struct mddev *mddev)
7796 {
7797 	/* raid5 can take over:
7798 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7799 	 *  raid1 - if there are two drives.  We need to know the chunk size
7800 	 *  raid4 - trivial - just use a raid4 layout.
7801 	 *  raid6 - Providing it is a *_6 layout
7802 	 */
7803 	if (mddev->level == 0)
7804 		return raid45_takeover_raid0(mddev, 5);
7805 	if (mddev->level == 1)
7806 		return raid5_takeover_raid1(mddev);
7807 	if (mddev->level == 4) {
7808 		mddev->new_layout = ALGORITHM_PARITY_N;
7809 		mddev->new_level = 5;
7810 		return setup_conf(mddev);
7811 	}
7812 	if (mddev->level == 6)
7813 		return raid5_takeover_raid6(mddev);
7814 
7815 	return ERR_PTR(-EINVAL);
7816 }
7817 
7818 static void *raid4_takeover(struct mddev *mddev)
7819 {
7820 	/* raid4 can take over:
7821 	 *  raid0 - if there is only one strip zone
7822 	 *  raid5 - if layout is right
7823 	 */
7824 	if (mddev->level == 0)
7825 		return raid45_takeover_raid0(mddev, 4);
7826 	if (mddev->level == 5 &&
7827 	    mddev->layout == ALGORITHM_PARITY_N) {
7828 		mddev->new_layout = 0;
7829 		mddev->new_level = 4;
7830 		return setup_conf(mddev);
7831 	}
7832 	return ERR_PTR(-EINVAL);
7833 }
7834 
7835 static struct md_personality raid5_personality;
7836 
7837 static void *raid6_takeover(struct mddev *mddev)
7838 {
7839 	/* Currently can only take over a raid5.  We map the
7840 	 * personality to an equivalent raid6 personality
7841 	 * with the Q block at the end.
7842 	 */
7843 	int new_layout;
7844 
7845 	if (mddev->pers != &raid5_personality)
7846 		return ERR_PTR(-EINVAL);
7847 	if (mddev->degraded > 1)
7848 		return ERR_PTR(-EINVAL);
7849 	if (mddev->raid_disks > 253)
7850 		return ERR_PTR(-EINVAL);
7851 	if (mddev->raid_disks < 3)
7852 		return ERR_PTR(-EINVAL);
7853 
7854 	switch (mddev->layout) {
7855 	case ALGORITHM_LEFT_ASYMMETRIC:
7856 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7857 		break;
7858 	case ALGORITHM_RIGHT_ASYMMETRIC:
7859 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7860 		break;
7861 	case ALGORITHM_LEFT_SYMMETRIC:
7862 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7863 		break;
7864 	case ALGORITHM_RIGHT_SYMMETRIC:
7865 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7866 		break;
7867 	case ALGORITHM_PARITY_0:
7868 		new_layout = ALGORITHM_PARITY_0_6;
7869 		break;
7870 	case ALGORITHM_PARITY_N:
7871 		new_layout = ALGORITHM_PARITY_N;
7872 		break;
7873 	default:
7874 		return ERR_PTR(-EINVAL);
7875 	}
7876 	mddev->new_level = 6;
7877 	mddev->new_layout = new_layout;
7878 	mddev->delta_disks = 1;
7879 	mddev->raid_disks += 1;
7880 	return setup_conf(mddev);
7881 }
7882 
7883 static struct md_personality raid6_personality =
7884 {
7885 	.name		= "raid6",
7886 	.level		= 6,
7887 	.owner		= THIS_MODULE,
7888 	.make_request	= raid5_make_request,
7889 	.run		= raid5_run,
7890 	.free		= raid5_free,
7891 	.status		= raid5_status,
7892 	.error_handler	= raid5_error,
7893 	.hot_add_disk	= raid5_add_disk,
7894 	.hot_remove_disk= raid5_remove_disk,
7895 	.spare_active	= raid5_spare_active,
7896 	.sync_request	= raid5_sync_request,
7897 	.resize		= raid5_resize,
7898 	.size		= raid5_size,
7899 	.check_reshape	= raid6_check_reshape,
7900 	.start_reshape  = raid5_start_reshape,
7901 	.finish_reshape = raid5_finish_reshape,
7902 	.quiesce	= raid5_quiesce,
7903 	.takeover	= raid6_takeover,
7904 	.congested	= raid5_congested,
7905 };
7906 static struct md_personality raid5_personality =
7907 {
7908 	.name		= "raid5",
7909 	.level		= 5,
7910 	.owner		= THIS_MODULE,
7911 	.make_request	= raid5_make_request,
7912 	.run		= raid5_run,
7913 	.free		= raid5_free,
7914 	.status		= raid5_status,
7915 	.error_handler	= raid5_error,
7916 	.hot_add_disk	= raid5_add_disk,
7917 	.hot_remove_disk= raid5_remove_disk,
7918 	.spare_active	= raid5_spare_active,
7919 	.sync_request	= raid5_sync_request,
7920 	.resize		= raid5_resize,
7921 	.size		= raid5_size,
7922 	.check_reshape	= raid5_check_reshape,
7923 	.start_reshape  = raid5_start_reshape,
7924 	.finish_reshape = raid5_finish_reshape,
7925 	.quiesce	= raid5_quiesce,
7926 	.takeover	= raid5_takeover,
7927 	.congested	= raid5_congested,
7928 };
7929 
7930 static struct md_personality raid4_personality =
7931 {
7932 	.name		= "raid4",
7933 	.level		= 4,
7934 	.owner		= THIS_MODULE,
7935 	.make_request	= raid5_make_request,
7936 	.run		= raid5_run,
7937 	.free		= raid5_free,
7938 	.status		= raid5_status,
7939 	.error_handler	= raid5_error,
7940 	.hot_add_disk	= raid5_add_disk,
7941 	.hot_remove_disk= raid5_remove_disk,
7942 	.spare_active	= raid5_spare_active,
7943 	.sync_request	= raid5_sync_request,
7944 	.resize		= raid5_resize,
7945 	.size		= raid5_size,
7946 	.check_reshape	= raid5_check_reshape,
7947 	.start_reshape  = raid5_start_reshape,
7948 	.finish_reshape = raid5_finish_reshape,
7949 	.quiesce	= raid5_quiesce,
7950 	.takeover	= raid4_takeover,
7951 	.congested	= raid5_congested,
7952 };
7953 
7954 static int __init raid5_init(void)
7955 {
7956 	raid5_wq = alloc_workqueue("raid5wq",
7957 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7958 	if (!raid5_wq)
7959 		return -ENOMEM;
7960 	register_md_personality(&raid6_personality);
7961 	register_md_personality(&raid5_personality);
7962 	register_md_personality(&raid4_personality);
7963 	return 0;
7964 }
7965 
7966 static void raid5_exit(void)
7967 {
7968 	unregister_md_personality(&raid6_personality);
7969 	unregister_md_personality(&raid5_personality);
7970 	unregister_md_personality(&raid4_personality);
7971 	destroy_workqueue(raid5_wq);
7972 }
7973 
7974 module_init(raid5_init);
7975 module_exit(raid5_exit);
7976 MODULE_LICENSE("GPL");
7977 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7978 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7979 MODULE_ALIAS("md-raid5");
7980 MODULE_ALIAS("md-raid4");
7981 MODULE_ALIAS("md-level-5");
7982 MODULE_ALIAS("md-level-4");
7983 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7984 MODULE_ALIAS("md-raid6");
7985 MODULE_ALIAS("md-level-6");
7986 
7987 /* This used to be two separate modules, they were: */
7988 MODULE_ALIAS("raid5");
7989 MODULE_ALIAS("raid6");
7990