1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 #include <trace/events/block.h> 59 60 #include "md.h" 61 #include "raid5.h" 62 #include "raid0.h" 63 #include "bitmap.h" 64 65 #define cpu_to_group(cpu) cpu_to_node(cpu) 66 #define ANY_GROUP NUMA_NO_NODE 67 68 static bool devices_handle_discard_safely = false; 69 module_param(devices_handle_discard_safely, bool, 0644); 70 MODULE_PARM_DESC(devices_handle_discard_safely, 71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 72 static struct workqueue_struct *raid5_wq; 73 /* 74 * Stripe cache 75 */ 76 77 #define NR_STRIPES 256 78 #define STRIPE_SIZE PAGE_SIZE 79 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 80 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 81 #define IO_THRESHOLD 1 82 #define BYPASS_THRESHOLD 1 83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 84 #define HASH_MASK (NR_HASH - 1) 85 #define MAX_STRIPE_BATCH 8 86 87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 88 { 89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 90 return &conf->stripe_hashtbl[hash]; 91 } 92 93 static inline int stripe_hash_locks_hash(sector_t sect) 94 { 95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 96 } 97 98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 99 { 100 spin_lock_irq(conf->hash_locks + hash); 101 spin_lock(&conf->device_lock); 102 } 103 104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 105 { 106 spin_unlock(&conf->device_lock); 107 spin_unlock_irq(conf->hash_locks + hash); 108 } 109 110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 111 { 112 int i; 113 local_irq_disable(); 114 spin_lock(conf->hash_locks); 115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 117 spin_lock(&conf->device_lock); 118 } 119 120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 121 { 122 int i; 123 spin_unlock(&conf->device_lock); 124 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 125 spin_unlock(conf->hash_locks + i - 1); 126 local_irq_enable(); 127 } 128 129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 130 * order without overlap. There may be several bio's per stripe+device, and 131 * a bio could span several devices. 132 * When walking this list for a particular stripe+device, we must never proceed 133 * beyond a bio that extends past this device, as the next bio might no longer 134 * be valid. 135 * This function is used to determine the 'next' bio in the list, given the sector 136 * of the current stripe+device 137 */ 138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 139 { 140 int sectors = bio_sectors(bio); 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS) 142 return bio->bi_next; 143 else 144 return NULL; 145 } 146 147 /* 148 * We maintain a biased count of active stripes in the bottom 16 bits of 149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 150 */ 151 static inline int raid5_bi_processed_stripes(struct bio *bio) 152 { 153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 154 return (atomic_read(segments) >> 16) & 0xffff; 155 } 156 157 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 158 { 159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 160 return atomic_sub_return(1, segments) & 0xffff; 161 } 162 163 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 164 { 165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 166 atomic_inc(segments); 167 } 168 169 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 170 unsigned int cnt) 171 { 172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 173 int old, new; 174 175 do { 176 old = atomic_read(segments); 177 new = (old & 0xffff) | (cnt << 16); 178 } while (atomic_cmpxchg(segments, old, new) != old); 179 } 180 181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 182 { 183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 184 atomic_set(segments, cnt); 185 } 186 187 /* Find first data disk in a raid6 stripe */ 188 static inline int raid6_d0(struct stripe_head *sh) 189 { 190 if (sh->ddf_layout) 191 /* ddf always start from first device */ 192 return 0; 193 /* md starts just after Q block */ 194 if (sh->qd_idx == sh->disks - 1) 195 return 0; 196 else 197 return sh->qd_idx + 1; 198 } 199 static inline int raid6_next_disk(int disk, int raid_disks) 200 { 201 disk++; 202 return (disk < raid_disks) ? disk : 0; 203 } 204 205 /* When walking through the disks in a raid5, starting at raid6_d0, 206 * We need to map each disk to a 'slot', where the data disks are slot 207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 208 * is raid_disks-1. This help does that mapping. 209 */ 210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 211 int *count, int syndrome_disks) 212 { 213 int slot = *count; 214 215 if (sh->ddf_layout) 216 (*count)++; 217 if (idx == sh->pd_idx) 218 return syndrome_disks; 219 if (idx == sh->qd_idx) 220 return syndrome_disks + 1; 221 if (!sh->ddf_layout) 222 (*count)++; 223 return slot; 224 } 225 226 static void return_io(struct bio_list *return_bi) 227 { 228 struct bio *bi; 229 while ((bi = bio_list_pop(return_bi)) != NULL) { 230 bi->bi_iter.bi_size = 0; 231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 232 bi, 0); 233 bio_endio(bi); 234 } 235 } 236 237 static void print_raid5_conf (struct r5conf *conf); 238 239 static int stripe_operations_active(struct stripe_head *sh) 240 { 241 return sh->check_state || sh->reconstruct_state || 242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 243 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 244 } 245 246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 247 { 248 struct r5conf *conf = sh->raid_conf; 249 struct r5worker_group *group; 250 int thread_cnt; 251 int i, cpu = sh->cpu; 252 253 if (!cpu_online(cpu)) { 254 cpu = cpumask_any(cpu_online_mask); 255 sh->cpu = cpu; 256 } 257 258 if (list_empty(&sh->lru)) { 259 struct r5worker_group *group; 260 group = conf->worker_groups + cpu_to_group(cpu); 261 list_add_tail(&sh->lru, &group->handle_list); 262 group->stripes_cnt++; 263 sh->group = group; 264 } 265 266 if (conf->worker_cnt_per_group == 0) { 267 md_wakeup_thread(conf->mddev->thread); 268 return; 269 } 270 271 group = conf->worker_groups + cpu_to_group(sh->cpu); 272 273 group->workers[0].working = true; 274 /* at least one worker should run to avoid race */ 275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 276 277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 278 /* wakeup more workers */ 279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 280 if (group->workers[i].working == false) { 281 group->workers[i].working = true; 282 queue_work_on(sh->cpu, raid5_wq, 283 &group->workers[i].work); 284 thread_cnt--; 285 } 286 } 287 } 288 289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 290 struct list_head *temp_inactive_list) 291 { 292 BUG_ON(!list_empty(&sh->lru)); 293 BUG_ON(atomic_read(&conf->active_stripes)==0); 294 if (test_bit(STRIPE_HANDLE, &sh->state)) { 295 if (test_bit(STRIPE_DELAYED, &sh->state) && 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 297 list_add_tail(&sh->lru, &conf->delayed_list); 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 299 sh->bm_seq - conf->seq_write > 0) 300 list_add_tail(&sh->lru, &conf->bitmap_list); 301 else { 302 clear_bit(STRIPE_DELAYED, &sh->state); 303 clear_bit(STRIPE_BIT_DELAY, &sh->state); 304 if (conf->worker_cnt_per_group == 0) { 305 list_add_tail(&sh->lru, &conf->handle_list); 306 } else { 307 raid5_wakeup_stripe_thread(sh); 308 return; 309 } 310 } 311 md_wakeup_thread(conf->mddev->thread); 312 } else { 313 BUG_ON(stripe_operations_active(sh)); 314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 315 if (atomic_dec_return(&conf->preread_active_stripes) 316 < IO_THRESHOLD) 317 md_wakeup_thread(conf->mddev->thread); 318 atomic_dec(&conf->active_stripes); 319 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 320 list_add_tail(&sh->lru, temp_inactive_list); 321 } 322 } 323 324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 325 struct list_head *temp_inactive_list) 326 { 327 if (atomic_dec_and_test(&sh->count)) 328 do_release_stripe(conf, sh, temp_inactive_list); 329 } 330 331 /* 332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 333 * 334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 335 * given time. Adding stripes only takes device lock, while deleting stripes 336 * only takes hash lock. 337 */ 338 static void release_inactive_stripe_list(struct r5conf *conf, 339 struct list_head *temp_inactive_list, 340 int hash) 341 { 342 int size; 343 bool do_wakeup = false; 344 unsigned long flags; 345 346 if (hash == NR_STRIPE_HASH_LOCKS) { 347 size = NR_STRIPE_HASH_LOCKS; 348 hash = NR_STRIPE_HASH_LOCKS - 1; 349 } else 350 size = 1; 351 while (size) { 352 struct list_head *list = &temp_inactive_list[size - 1]; 353 354 /* 355 * We don't hold any lock here yet, raid5_get_active_stripe() might 356 * remove stripes from the list 357 */ 358 if (!list_empty_careful(list)) { 359 spin_lock_irqsave(conf->hash_locks + hash, flags); 360 if (list_empty(conf->inactive_list + hash) && 361 !list_empty(list)) 362 atomic_dec(&conf->empty_inactive_list_nr); 363 list_splice_tail_init(list, conf->inactive_list + hash); 364 do_wakeup = true; 365 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 366 } 367 size--; 368 hash--; 369 } 370 371 if (do_wakeup) { 372 wake_up(&conf->wait_for_stripe); 373 if (atomic_read(&conf->active_stripes) == 0) 374 wake_up(&conf->wait_for_quiescent); 375 if (conf->retry_read_aligned) 376 md_wakeup_thread(conf->mddev->thread); 377 } 378 } 379 380 /* should hold conf->device_lock already */ 381 static int release_stripe_list(struct r5conf *conf, 382 struct list_head *temp_inactive_list) 383 { 384 struct stripe_head *sh; 385 int count = 0; 386 struct llist_node *head; 387 388 head = llist_del_all(&conf->released_stripes); 389 head = llist_reverse_order(head); 390 while (head) { 391 int hash; 392 393 sh = llist_entry(head, struct stripe_head, release_list); 394 head = llist_next(head); 395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 396 smp_mb(); 397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 398 /* 399 * Don't worry the bit is set here, because if the bit is set 400 * again, the count is always > 1. This is true for 401 * STRIPE_ON_UNPLUG_LIST bit too. 402 */ 403 hash = sh->hash_lock_index; 404 __release_stripe(conf, sh, &temp_inactive_list[hash]); 405 count++; 406 } 407 408 return count; 409 } 410 411 void raid5_release_stripe(struct stripe_head *sh) 412 { 413 struct r5conf *conf = sh->raid_conf; 414 unsigned long flags; 415 struct list_head list; 416 int hash; 417 bool wakeup; 418 419 /* Avoid release_list until the last reference. 420 */ 421 if (atomic_add_unless(&sh->count, -1, 1)) 422 return; 423 424 if (unlikely(!conf->mddev->thread) || 425 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 426 goto slow_path; 427 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 428 if (wakeup) 429 md_wakeup_thread(conf->mddev->thread); 430 return; 431 slow_path: 432 local_irq_save(flags); 433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 434 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 435 INIT_LIST_HEAD(&list); 436 hash = sh->hash_lock_index; 437 do_release_stripe(conf, sh, &list); 438 spin_unlock(&conf->device_lock); 439 release_inactive_stripe_list(conf, &list, hash); 440 } 441 local_irq_restore(flags); 442 } 443 444 static inline void remove_hash(struct stripe_head *sh) 445 { 446 pr_debug("remove_hash(), stripe %llu\n", 447 (unsigned long long)sh->sector); 448 449 hlist_del_init(&sh->hash); 450 } 451 452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 453 { 454 struct hlist_head *hp = stripe_hash(conf, sh->sector); 455 456 pr_debug("insert_hash(), stripe %llu\n", 457 (unsigned long long)sh->sector); 458 459 hlist_add_head(&sh->hash, hp); 460 } 461 462 /* find an idle stripe, make sure it is unhashed, and return it. */ 463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 464 { 465 struct stripe_head *sh = NULL; 466 struct list_head *first; 467 468 if (list_empty(conf->inactive_list + hash)) 469 goto out; 470 first = (conf->inactive_list + hash)->next; 471 sh = list_entry(first, struct stripe_head, lru); 472 list_del_init(first); 473 remove_hash(sh); 474 atomic_inc(&conf->active_stripes); 475 BUG_ON(hash != sh->hash_lock_index); 476 if (list_empty(conf->inactive_list + hash)) 477 atomic_inc(&conf->empty_inactive_list_nr); 478 out: 479 return sh; 480 } 481 482 static void shrink_buffers(struct stripe_head *sh) 483 { 484 struct page *p; 485 int i; 486 int num = sh->raid_conf->pool_size; 487 488 for (i = 0; i < num ; i++) { 489 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 490 p = sh->dev[i].page; 491 if (!p) 492 continue; 493 sh->dev[i].page = NULL; 494 put_page(p); 495 } 496 } 497 498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 499 { 500 int i; 501 int num = sh->raid_conf->pool_size; 502 503 for (i = 0; i < num; i++) { 504 struct page *page; 505 506 if (!(page = alloc_page(gfp))) { 507 return 1; 508 } 509 sh->dev[i].page = page; 510 sh->dev[i].orig_page = page; 511 } 512 return 0; 513 } 514 515 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 517 struct stripe_head *sh); 518 519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 520 { 521 struct r5conf *conf = sh->raid_conf; 522 int i, seq; 523 524 BUG_ON(atomic_read(&sh->count) != 0); 525 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 526 BUG_ON(stripe_operations_active(sh)); 527 BUG_ON(sh->batch_head); 528 529 pr_debug("init_stripe called, stripe %llu\n", 530 (unsigned long long)sector); 531 retry: 532 seq = read_seqcount_begin(&conf->gen_lock); 533 sh->generation = conf->generation - previous; 534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 535 sh->sector = sector; 536 stripe_set_idx(sector, conf, previous, sh); 537 sh->state = 0; 538 539 for (i = sh->disks; i--; ) { 540 struct r5dev *dev = &sh->dev[i]; 541 542 if (dev->toread || dev->read || dev->towrite || dev->written || 543 test_bit(R5_LOCKED, &dev->flags)) { 544 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 545 (unsigned long long)sh->sector, i, dev->toread, 546 dev->read, dev->towrite, dev->written, 547 test_bit(R5_LOCKED, &dev->flags)); 548 WARN_ON(1); 549 } 550 dev->flags = 0; 551 raid5_build_block(sh, i, previous); 552 } 553 if (read_seqcount_retry(&conf->gen_lock, seq)) 554 goto retry; 555 sh->overwrite_disks = 0; 556 insert_hash(conf, sh); 557 sh->cpu = smp_processor_id(); 558 set_bit(STRIPE_BATCH_READY, &sh->state); 559 } 560 561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 562 short generation) 563 { 564 struct stripe_head *sh; 565 566 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 567 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 568 if (sh->sector == sector && sh->generation == generation) 569 return sh; 570 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 571 return NULL; 572 } 573 574 /* 575 * Need to check if array has failed when deciding whether to: 576 * - start an array 577 * - remove non-faulty devices 578 * - add a spare 579 * - allow a reshape 580 * This determination is simple when no reshape is happening. 581 * However if there is a reshape, we need to carefully check 582 * both the before and after sections. 583 * This is because some failed devices may only affect one 584 * of the two sections, and some non-in_sync devices may 585 * be insync in the section most affected by failed devices. 586 */ 587 static int calc_degraded(struct r5conf *conf) 588 { 589 int degraded, degraded2; 590 int i; 591 592 rcu_read_lock(); 593 degraded = 0; 594 for (i = 0; i < conf->previous_raid_disks; i++) { 595 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 596 if (rdev && test_bit(Faulty, &rdev->flags)) 597 rdev = rcu_dereference(conf->disks[i].replacement); 598 if (!rdev || test_bit(Faulty, &rdev->flags)) 599 degraded++; 600 else if (test_bit(In_sync, &rdev->flags)) 601 ; 602 else 603 /* not in-sync or faulty. 604 * If the reshape increases the number of devices, 605 * this is being recovered by the reshape, so 606 * this 'previous' section is not in_sync. 607 * If the number of devices is being reduced however, 608 * the device can only be part of the array if 609 * we are reverting a reshape, so this section will 610 * be in-sync. 611 */ 612 if (conf->raid_disks >= conf->previous_raid_disks) 613 degraded++; 614 } 615 rcu_read_unlock(); 616 if (conf->raid_disks == conf->previous_raid_disks) 617 return degraded; 618 rcu_read_lock(); 619 degraded2 = 0; 620 for (i = 0; i < conf->raid_disks; i++) { 621 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 622 if (rdev && test_bit(Faulty, &rdev->flags)) 623 rdev = rcu_dereference(conf->disks[i].replacement); 624 if (!rdev || test_bit(Faulty, &rdev->flags)) 625 degraded2++; 626 else if (test_bit(In_sync, &rdev->flags)) 627 ; 628 else 629 /* not in-sync or faulty. 630 * If reshape increases the number of devices, this 631 * section has already been recovered, else it 632 * almost certainly hasn't. 633 */ 634 if (conf->raid_disks <= conf->previous_raid_disks) 635 degraded2++; 636 } 637 rcu_read_unlock(); 638 if (degraded2 > degraded) 639 return degraded2; 640 return degraded; 641 } 642 643 static int has_failed(struct r5conf *conf) 644 { 645 int degraded; 646 647 if (conf->mddev->reshape_position == MaxSector) 648 return conf->mddev->degraded > conf->max_degraded; 649 650 degraded = calc_degraded(conf); 651 if (degraded > conf->max_degraded) 652 return 1; 653 return 0; 654 } 655 656 struct stripe_head * 657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 658 int previous, int noblock, int noquiesce) 659 { 660 struct stripe_head *sh; 661 int hash = stripe_hash_locks_hash(sector); 662 663 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 664 665 spin_lock_irq(conf->hash_locks + hash); 666 667 do { 668 wait_event_lock_irq(conf->wait_for_quiescent, 669 conf->quiesce == 0 || noquiesce, 670 *(conf->hash_locks + hash)); 671 sh = __find_stripe(conf, sector, conf->generation - previous); 672 if (!sh) { 673 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 674 sh = get_free_stripe(conf, hash); 675 if (!sh && !test_bit(R5_DID_ALLOC, 676 &conf->cache_state)) 677 set_bit(R5_ALLOC_MORE, 678 &conf->cache_state); 679 } 680 if (noblock && sh == NULL) 681 break; 682 if (!sh) { 683 set_bit(R5_INACTIVE_BLOCKED, 684 &conf->cache_state); 685 wait_event_lock_irq( 686 conf->wait_for_stripe, 687 !list_empty(conf->inactive_list + hash) && 688 (atomic_read(&conf->active_stripes) 689 < (conf->max_nr_stripes * 3 / 4) 690 || !test_bit(R5_INACTIVE_BLOCKED, 691 &conf->cache_state)), 692 *(conf->hash_locks + hash)); 693 clear_bit(R5_INACTIVE_BLOCKED, 694 &conf->cache_state); 695 } else { 696 init_stripe(sh, sector, previous); 697 atomic_inc(&sh->count); 698 } 699 } else if (!atomic_inc_not_zero(&sh->count)) { 700 spin_lock(&conf->device_lock); 701 if (!atomic_read(&sh->count)) { 702 if (!test_bit(STRIPE_HANDLE, &sh->state)) 703 atomic_inc(&conf->active_stripes); 704 BUG_ON(list_empty(&sh->lru) && 705 !test_bit(STRIPE_EXPANDING, &sh->state)); 706 list_del_init(&sh->lru); 707 if (sh->group) { 708 sh->group->stripes_cnt--; 709 sh->group = NULL; 710 } 711 } 712 atomic_inc(&sh->count); 713 spin_unlock(&conf->device_lock); 714 } 715 } while (sh == NULL); 716 717 spin_unlock_irq(conf->hash_locks + hash); 718 return sh; 719 } 720 721 static bool is_full_stripe_write(struct stripe_head *sh) 722 { 723 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 724 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 725 } 726 727 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 728 { 729 local_irq_disable(); 730 if (sh1 > sh2) { 731 spin_lock(&sh2->stripe_lock); 732 spin_lock_nested(&sh1->stripe_lock, 1); 733 } else { 734 spin_lock(&sh1->stripe_lock); 735 spin_lock_nested(&sh2->stripe_lock, 1); 736 } 737 } 738 739 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 740 { 741 spin_unlock(&sh1->stripe_lock); 742 spin_unlock(&sh2->stripe_lock); 743 local_irq_enable(); 744 } 745 746 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 747 static bool stripe_can_batch(struct stripe_head *sh) 748 { 749 struct r5conf *conf = sh->raid_conf; 750 751 if (conf->log) 752 return false; 753 return test_bit(STRIPE_BATCH_READY, &sh->state) && 754 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 755 is_full_stripe_write(sh); 756 } 757 758 /* we only do back search */ 759 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 760 { 761 struct stripe_head *head; 762 sector_t head_sector, tmp_sec; 763 int hash; 764 int dd_idx; 765 766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 767 tmp_sec = sh->sector; 768 if (!sector_div(tmp_sec, conf->chunk_sectors)) 769 return; 770 head_sector = sh->sector - STRIPE_SECTORS; 771 772 hash = stripe_hash_locks_hash(head_sector); 773 spin_lock_irq(conf->hash_locks + hash); 774 head = __find_stripe(conf, head_sector, conf->generation); 775 if (head && !atomic_inc_not_zero(&head->count)) { 776 spin_lock(&conf->device_lock); 777 if (!atomic_read(&head->count)) { 778 if (!test_bit(STRIPE_HANDLE, &head->state)) 779 atomic_inc(&conf->active_stripes); 780 BUG_ON(list_empty(&head->lru) && 781 !test_bit(STRIPE_EXPANDING, &head->state)); 782 list_del_init(&head->lru); 783 if (head->group) { 784 head->group->stripes_cnt--; 785 head->group = NULL; 786 } 787 } 788 atomic_inc(&head->count); 789 spin_unlock(&conf->device_lock); 790 } 791 spin_unlock_irq(conf->hash_locks + hash); 792 793 if (!head) 794 return; 795 if (!stripe_can_batch(head)) 796 goto out; 797 798 lock_two_stripes(head, sh); 799 /* clear_batch_ready clear the flag */ 800 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 801 goto unlock_out; 802 803 if (sh->batch_head) 804 goto unlock_out; 805 806 dd_idx = 0; 807 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 808 dd_idx++; 809 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 810 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 811 goto unlock_out; 812 813 if (head->batch_head) { 814 spin_lock(&head->batch_head->batch_lock); 815 /* This batch list is already running */ 816 if (!stripe_can_batch(head)) { 817 spin_unlock(&head->batch_head->batch_lock); 818 goto unlock_out; 819 } 820 821 /* 822 * at this point, head's BATCH_READY could be cleared, but we 823 * can still add the stripe to batch list 824 */ 825 list_add(&sh->batch_list, &head->batch_list); 826 spin_unlock(&head->batch_head->batch_lock); 827 828 sh->batch_head = head->batch_head; 829 } else { 830 head->batch_head = head; 831 sh->batch_head = head->batch_head; 832 spin_lock(&head->batch_lock); 833 list_add_tail(&sh->batch_list, &head->batch_list); 834 spin_unlock(&head->batch_lock); 835 } 836 837 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 838 if (atomic_dec_return(&conf->preread_active_stripes) 839 < IO_THRESHOLD) 840 md_wakeup_thread(conf->mddev->thread); 841 842 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 843 int seq = sh->bm_seq; 844 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 845 sh->batch_head->bm_seq > seq) 846 seq = sh->batch_head->bm_seq; 847 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 848 sh->batch_head->bm_seq = seq; 849 } 850 851 atomic_inc(&sh->count); 852 unlock_out: 853 unlock_two_stripes(head, sh); 854 out: 855 raid5_release_stripe(head); 856 } 857 858 /* Determine if 'data_offset' or 'new_data_offset' should be used 859 * in this stripe_head. 860 */ 861 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 862 { 863 sector_t progress = conf->reshape_progress; 864 /* Need a memory barrier to make sure we see the value 865 * of conf->generation, or ->data_offset that was set before 866 * reshape_progress was updated. 867 */ 868 smp_rmb(); 869 if (progress == MaxSector) 870 return 0; 871 if (sh->generation == conf->generation - 1) 872 return 0; 873 /* We are in a reshape, and this is a new-generation stripe, 874 * so use new_data_offset. 875 */ 876 return 1; 877 } 878 879 static void 880 raid5_end_read_request(struct bio *bi); 881 static void 882 raid5_end_write_request(struct bio *bi); 883 884 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 885 { 886 struct r5conf *conf = sh->raid_conf; 887 int i, disks = sh->disks; 888 struct stripe_head *head_sh = sh; 889 890 might_sleep(); 891 892 if (r5l_write_stripe(conf->log, sh) == 0) 893 return; 894 for (i = disks; i--; ) { 895 int op, op_flags = 0; 896 int replace_only = 0; 897 struct bio *bi, *rbi; 898 struct md_rdev *rdev, *rrdev = NULL; 899 900 sh = head_sh; 901 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 902 op = REQ_OP_WRITE; 903 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 904 op_flags = WRITE_FUA; 905 if (test_bit(R5_Discard, &sh->dev[i].flags)) 906 op = REQ_OP_DISCARD; 907 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 908 op = REQ_OP_READ; 909 else if (test_and_clear_bit(R5_WantReplace, 910 &sh->dev[i].flags)) { 911 op = REQ_OP_WRITE; 912 replace_only = 1; 913 } else 914 continue; 915 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 916 op_flags |= REQ_SYNC; 917 918 again: 919 bi = &sh->dev[i].req; 920 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 921 922 rcu_read_lock(); 923 rrdev = rcu_dereference(conf->disks[i].replacement); 924 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 925 rdev = rcu_dereference(conf->disks[i].rdev); 926 if (!rdev) { 927 rdev = rrdev; 928 rrdev = NULL; 929 } 930 if (op_is_write(op)) { 931 if (replace_only) 932 rdev = NULL; 933 if (rdev == rrdev) 934 /* We raced and saw duplicates */ 935 rrdev = NULL; 936 } else { 937 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 938 rdev = rrdev; 939 rrdev = NULL; 940 } 941 942 if (rdev && test_bit(Faulty, &rdev->flags)) 943 rdev = NULL; 944 if (rdev) 945 atomic_inc(&rdev->nr_pending); 946 if (rrdev && test_bit(Faulty, &rrdev->flags)) 947 rrdev = NULL; 948 if (rrdev) 949 atomic_inc(&rrdev->nr_pending); 950 rcu_read_unlock(); 951 952 /* We have already checked bad blocks for reads. Now 953 * need to check for writes. We never accept write errors 954 * on the replacement, so we don't to check rrdev. 955 */ 956 while (op_is_write(op) && rdev && 957 test_bit(WriteErrorSeen, &rdev->flags)) { 958 sector_t first_bad; 959 int bad_sectors; 960 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 961 &first_bad, &bad_sectors); 962 if (!bad) 963 break; 964 965 if (bad < 0) { 966 set_bit(BlockedBadBlocks, &rdev->flags); 967 if (!conf->mddev->external && 968 conf->mddev->flags) { 969 /* It is very unlikely, but we might 970 * still need to write out the 971 * bad block log - better give it 972 * a chance*/ 973 md_check_recovery(conf->mddev); 974 } 975 /* 976 * Because md_wait_for_blocked_rdev 977 * will dec nr_pending, we must 978 * increment it first. 979 */ 980 atomic_inc(&rdev->nr_pending); 981 md_wait_for_blocked_rdev(rdev, conf->mddev); 982 } else { 983 /* Acknowledged bad block - skip the write */ 984 rdev_dec_pending(rdev, conf->mddev); 985 rdev = NULL; 986 } 987 } 988 989 if (rdev) { 990 if (s->syncing || s->expanding || s->expanded 991 || s->replacing) 992 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 993 994 set_bit(STRIPE_IO_STARTED, &sh->state); 995 996 bio_reset(bi); 997 bi->bi_bdev = rdev->bdev; 998 bio_set_op_attrs(bi, op, op_flags); 999 bi->bi_end_io = op_is_write(op) 1000 ? raid5_end_write_request 1001 : raid5_end_read_request; 1002 bi->bi_private = sh; 1003 1004 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1005 __func__, (unsigned long long)sh->sector, 1006 bi->bi_opf, i); 1007 atomic_inc(&sh->count); 1008 if (sh != head_sh) 1009 atomic_inc(&head_sh->count); 1010 if (use_new_offset(conf, sh)) 1011 bi->bi_iter.bi_sector = (sh->sector 1012 + rdev->new_data_offset); 1013 else 1014 bi->bi_iter.bi_sector = (sh->sector 1015 + rdev->data_offset); 1016 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1017 bi->bi_opf |= REQ_NOMERGE; 1018 1019 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1020 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1021 sh->dev[i].vec.bv_page = sh->dev[i].page; 1022 bi->bi_vcnt = 1; 1023 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1024 bi->bi_io_vec[0].bv_offset = 0; 1025 bi->bi_iter.bi_size = STRIPE_SIZE; 1026 /* 1027 * If this is discard request, set bi_vcnt 0. We don't 1028 * want to confuse SCSI because SCSI will replace payload 1029 */ 1030 if (op == REQ_OP_DISCARD) 1031 bi->bi_vcnt = 0; 1032 if (rrdev) 1033 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1034 1035 if (conf->mddev->gendisk) 1036 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 1037 bi, disk_devt(conf->mddev->gendisk), 1038 sh->dev[i].sector); 1039 generic_make_request(bi); 1040 } 1041 if (rrdev) { 1042 if (s->syncing || s->expanding || s->expanded 1043 || s->replacing) 1044 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1045 1046 set_bit(STRIPE_IO_STARTED, &sh->state); 1047 1048 bio_reset(rbi); 1049 rbi->bi_bdev = rrdev->bdev; 1050 bio_set_op_attrs(rbi, op, op_flags); 1051 BUG_ON(!op_is_write(op)); 1052 rbi->bi_end_io = raid5_end_write_request; 1053 rbi->bi_private = sh; 1054 1055 pr_debug("%s: for %llu schedule op %d on " 1056 "replacement disc %d\n", 1057 __func__, (unsigned long long)sh->sector, 1058 rbi->bi_opf, i); 1059 atomic_inc(&sh->count); 1060 if (sh != head_sh) 1061 atomic_inc(&head_sh->count); 1062 if (use_new_offset(conf, sh)) 1063 rbi->bi_iter.bi_sector = (sh->sector 1064 + rrdev->new_data_offset); 1065 else 1066 rbi->bi_iter.bi_sector = (sh->sector 1067 + rrdev->data_offset); 1068 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1069 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1070 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1071 rbi->bi_vcnt = 1; 1072 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1073 rbi->bi_io_vec[0].bv_offset = 0; 1074 rbi->bi_iter.bi_size = STRIPE_SIZE; 1075 /* 1076 * If this is discard request, set bi_vcnt 0. We don't 1077 * want to confuse SCSI because SCSI will replace payload 1078 */ 1079 if (op == REQ_OP_DISCARD) 1080 rbi->bi_vcnt = 0; 1081 if (conf->mddev->gendisk) 1082 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 1083 rbi, disk_devt(conf->mddev->gendisk), 1084 sh->dev[i].sector); 1085 generic_make_request(rbi); 1086 } 1087 if (!rdev && !rrdev) { 1088 if (op_is_write(op)) 1089 set_bit(STRIPE_DEGRADED, &sh->state); 1090 pr_debug("skip op %d on disc %d for sector %llu\n", 1091 bi->bi_opf, i, (unsigned long long)sh->sector); 1092 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1093 set_bit(STRIPE_HANDLE, &sh->state); 1094 } 1095 1096 if (!head_sh->batch_head) 1097 continue; 1098 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1099 batch_list); 1100 if (sh != head_sh) 1101 goto again; 1102 } 1103 } 1104 1105 static struct dma_async_tx_descriptor * 1106 async_copy_data(int frombio, struct bio *bio, struct page **page, 1107 sector_t sector, struct dma_async_tx_descriptor *tx, 1108 struct stripe_head *sh) 1109 { 1110 struct bio_vec bvl; 1111 struct bvec_iter iter; 1112 struct page *bio_page; 1113 int page_offset; 1114 struct async_submit_ctl submit; 1115 enum async_tx_flags flags = 0; 1116 1117 if (bio->bi_iter.bi_sector >= sector) 1118 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1119 else 1120 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1121 1122 if (frombio) 1123 flags |= ASYNC_TX_FENCE; 1124 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1125 1126 bio_for_each_segment(bvl, bio, iter) { 1127 int len = bvl.bv_len; 1128 int clen; 1129 int b_offset = 0; 1130 1131 if (page_offset < 0) { 1132 b_offset = -page_offset; 1133 page_offset += b_offset; 1134 len -= b_offset; 1135 } 1136 1137 if (len > 0 && page_offset + len > STRIPE_SIZE) 1138 clen = STRIPE_SIZE - page_offset; 1139 else 1140 clen = len; 1141 1142 if (clen > 0) { 1143 b_offset += bvl.bv_offset; 1144 bio_page = bvl.bv_page; 1145 if (frombio) { 1146 if (sh->raid_conf->skip_copy && 1147 b_offset == 0 && page_offset == 0 && 1148 clen == STRIPE_SIZE) 1149 *page = bio_page; 1150 else 1151 tx = async_memcpy(*page, bio_page, page_offset, 1152 b_offset, clen, &submit); 1153 } else 1154 tx = async_memcpy(bio_page, *page, b_offset, 1155 page_offset, clen, &submit); 1156 } 1157 /* chain the operations */ 1158 submit.depend_tx = tx; 1159 1160 if (clen < len) /* hit end of page */ 1161 break; 1162 page_offset += len; 1163 } 1164 1165 return tx; 1166 } 1167 1168 static void ops_complete_biofill(void *stripe_head_ref) 1169 { 1170 struct stripe_head *sh = stripe_head_ref; 1171 struct bio_list return_bi = BIO_EMPTY_LIST; 1172 int i; 1173 1174 pr_debug("%s: stripe %llu\n", __func__, 1175 (unsigned long long)sh->sector); 1176 1177 /* clear completed biofills */ 1178 for (i = sh->disks; i--; ) { 1179 struct r5dev *dev = &sh->dev[i]; 1180 1181 /* acknowledge completion of a biofill operation */ 1182 /* and check if we need to reply to a read request, 1183 * new R5_Wantfill requests are held off until 1184 * !STRIPE_BIOFILL_RUN 1185 */ 1186 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1187 struct bio *rbi, *rbi2; 1188 1189 BUG_ON(!dev->read); 1190 rbi = dev->read; 1191 dev->read = NULL; 1192 while (rbi && rbi->bi_iter.bi_sector < 1193 dev->sector + STRIPE_SECTORS) { 1194 rbi2 = r5_next_bio(rbi, dev->sector); 1195 if (!raid5_dec_bi_active_stripes(rbi)) 1196 bio_list_add(&return_bi, rbi); 1197 rbi = rbi2; 1198 } 1199 } 1200 } 1201 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1202 1203 return_io(&return_bi); 1204 1205 set_bit(STRIPE_HANDLE, &sh->state); 1206 raid5_release_stripe(sh); 1207 } 1208 1209 static void ops_run_biofill(struct stripe_head *sh) 1210 { 1211 struct dma_async_tx_descriptor *tx = NULL; 1212 struct async_submit_ctl submit; 1213 int i; 1214 1215 BUG_ON(sh->batch_head); 1216 pr_debug("%s: stripe %llu\n", __func__, 1217 (unsigned long long)sh->sector); 1218 1219 for (i = sh->disks; i--; ) { 1220 struct r5dev *dev = &sh->dev[i]; 1221 if (test_bit(R5_Wantfill, &dev->flags)) { 1222 struct bio *rbi; 1223 spin_lock_irq(&sh->stripe_lock); 1224 dev->read = rbi = dev->toread; 1225 dev->toread = NULL; 1226 spin_unlock_irq(&sh->stripe_lock); 1227 while (rbi && rbi->bi_iter.bi_sector < 1228 dev->sector + STRIPE_SECTORS) { 1229 tx = async_copy_data(0, rbi, &dev->page, 1230 dev->sector, tx, sh); 1231 rbi = r5_next_bio(rbi, dev->sector); 1232 } 1233 } 1234 } 1235 1236 atomic_inc(&sh->count); 1237 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1238 async_trigger_callback(&submit); 1239 } 1240 1241 static void mark_target_uptodate(struct stripe_head *sh, int target) 1242 { 1243 struct r5dev *tgt; 1244 1245 if (target < 0) 1246 return; 1247 1248 tgt = &sh->dev[target]; 1249 set_bit(R5_UPTODATE, &tgt->flags); 1250 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1251 clear_bit(R5_Wantcompute, &tgt->flags); 1252 } 1253 1254 static void ops_complete_compute(void *stripe_head_ref) 1255 { 1256 struct stripe_head *sh = stripe_head_ref; 1257 1258 pr_debug("%s: stripe %llu\n", __func__, 1259 (unsigned long long)sh->sector); 1260 1261 /* mark the computed target(s) as uptodate */ 1262 mark_target_uptodate(sh, sh->ops.target); 1263 mark_target_uptodate(sh, sh->ops.target2); 1264 1265 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1266 if (sh->check_state == check_state_compute_run) 1267 sh->check_state = check_state_compute_result; 1268 set_bit(STRIPE_HANDLE, &sh->state); 1269 raid5_release_stripe(sh); 1270 } 1271 1272 /* return a pointer to the address conversion region of the scribble buffer */ 1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1274 struct raid5_percpu *percpu, int i) 1275 { 1276 void *addr; 1277 1278 addr = flex_array_get(percpu->scribble, i); 1279 return addr + sizeof(struct page *) * (sh->disks + 2); 1280 } 1281 1282 /* return a pointer to the address conversion region of the scribble buffer */ 1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1284 { 1285 void *addr; 1286 1287 addr = flex_array_get(percpu->scribble, i); 1288 return addr; 1289 } 1290 1291 static struct dma_async_tx_descriptor * 1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1293 { 1294 int disks = sh->disks; 1295 struct page **xor_srcs = to_addr_page(percpu, 0); 1296 int target = sh->ops.target; 1297 struct r5dev *tgt = &sh->dev[target]; 1298 struct page *xor_dest = tgt->page; 1299 int count = 0; 1300 struct dma_async_tx_descriptor *tx; 1301 struct async_submit_ctl submit; 1302 int i; 1303 1304 BUG_ON(sh->batch_head); 1305 1306 pr_debug("%s: stripe %llu block: %d\n", 1307 __func__, (unsigned long long)sh->sector, target); 1308 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1309 1310 for (i = disks; i--; ) 1311 if (i != target) 1312 xor_srcs[count++] = sh->dev[i].page; 1313 1314 atomic_inc(&sh->count); 1315 1316 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1317 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1318 if (unlikely(count == 1)) 1319 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1320 else 1321 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1322 1323 return tx; 1324 } 1325 1326 /* set_syndrome_sources - populate source buffers for gen_syndrome 1327 * @srcs - (struct page *) array of size sh->disks 1328 * @sh - stripe_head to parse 1329 * 1330 * Populates srcs in proper layout order for the stripe and returns the 1331 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1332 * destination buffer is recorded in srcs[count] and the Q destination 1333 * is recorded in srcs[count+1]]. 1334 */ 1335 static int set_syndrome_sources(struct page **srcs, 1336 struct stripe_head *sh, 1337 int srctype) 1338 { 1339 int disks = sh->disks; 1340 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1341 int d0_idx = raid6_d0(sh); 1342 int count; 1343 int i; 1344 1345 for (i = 0; i < disks; i++) 1346 srcs[i] = NULL; 1347 1348 count = 0; 1349 i = d0_idx; 1350 do { 1351 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1352 struct r5dev *dev = &sh->dev[i]; 1353 1354 if (i == sh->qd_idx || i == sh->pd_idx || 1355 (srctype == SYNDROME_SRC_ALL) || 1356 (srctype == SYNDROME_SRC_WANT_DRAIN && 1357 test_bit(R5_Wantdrain, &dev->flags)) || 1358 (srctype == SYNDROME_SRC_WRITTEN && 1359 dev->written)) 1360 srcs[slot] = sh->dev[i].page; 1361 i = raid6_next_disk(i, disks); 1362 } while (i != d0_idx); 1363 1364 return syndrome_disks; 1365 } 1366 1367 static struct dma_async_tx_descriptor * 1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1369 { 1370 int disks = sh->disks; 1371 struct page **blocks = to_addr_page(percpu, 0); 1372 int target; 1373 int qd_idx = sh->qd_idx; 1374 struct dma_async_tx_descriptor *tx; 1375 struct async_submit_ctl submit; 1376 struct r5dev *tgt; 1377 struct page *dest; 1378 int i; 1379 int count; 1380 1381 BUG_ON(sh->batch_head); 1382 if (sh->ops.target < 0) 1383 target = sh->ops.target2; 1384 else if (sh->ops.target2 < 0) 1385 target = sh->ops.target; 1386 else 1387 /* we should only have one valid target */ 1388 BUG(); 1389 BUG_ON(target < 0); 1390 pr_debug("%s: stripe %llu block: %d\n", 1391 __func__, (unsigned long long)sh->sector, target); 1392 1393 tgt = &sh->dev[target]; 1394 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1395 dest = tgt->page; 1396 1397 atomic_inc(&sh->count); 1398 1399 if (target == qd_idx) { 1400 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1401 blocks[count] = NULL; /* regenerating p is not necessary */ 1402 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1403 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1404 ops_complete_compute, sh, 1405 to_addr_conv(sh, percpu, 0)); 1406 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1407 } else { 1408 /* Compute any data- or p-drive using XOR */ 1409 count = 0; 1410 for (i = disks; i-- ; ) { 1411 if (i == target || i == qd_idx) 1412 continue; 1413 blocks[count++] = sh->dev[i].page; 1414 } 1415 1416 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1417 NULL, ops_complete_compute, sh, 1418 to_addr_conv(sh, percpu, 0)); 1419 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1420 } 1421 1422 return tx; 1423 } 1424 1425 static struct dma_async_tx_descriptor * 1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1427 { 1428 int i, count, disks = sh->disks; 1429 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1430 int d0_idx = raid6_d0(sh); 1431 int faila = -1, failb = -1; 1432 int target = sh->ops.target; 1433 int target2 = sh->ops.target2; 1434 struct r5dev *tgt = &sh->dev[target]; 1435 struct r5dev *tgt2 = &sh->dev[target2]; 1436 struct dma_async_tx_descriptor *tx; 1437 struct page **blocks = to_addr_page(percpu, 0); 1438 struct async_submit_ctl submit; 1439 1440 BUG_ON(sh->batch_head); 1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1442 __func__, (unsigned long long)sh->sector, target, target2); 1443 BUG_ON(target < 0 || target2 < 0); 1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1445 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1446 1447 /* we need to open-code set_syndrome_sources to handle the 1448 * slot number conversion for 'faila' and 'failb' 1449 */ 1450 for (i = 0; i < disks ; i++) 1451 blocks[i] = NULL; 1452 count = 0; 1453 i = d0_idx; 1454 do { 1455 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1456 1457 blocks[slot] = sh->dev[i].page; 1458 1459 if (i == target) 1460 faila = slot; 1461 if (i == target2) 1462 failb = slot; 1463 i = raid6_next_disk(i, disks); 1464 } while (i != d0_idx); 1465 1466 BUG_ON(faila == failb); 1467 if (failb < faila) 1468 swap(faila, failb); 1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1470 __func__, (unsigned long long)sh->sector, faila, failb); 1471 1472 atomic_inc(&sh->count); 1473 1474 if (failb == syndrome_disks+1) { 1475 /* Q disk is one of the missing disks */ 1476 if (faila == syndrome_disks) { 1477 /* Missing P+Q, just recompute */ 1478 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1479 ops_complete_compute, sh, 1480 to_addr_conv(sh, percpu, 0)); 1481 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1482 STRIPE_SIZE, &submit); 1483 } else { 1484 struct page *dest; 1485 int data_target; 1486 int qd_idx = sh->qd_idx; 1487 1488 /* Missing D+Q: recompute D from P, then recompute Q */ 1489 if (target == qd_idx) 1490 data_target = target2; 1491 else 1492 data_target = target; 1493 1494 count = 0; 1495 for (i = disks; i-- ; ) { 1496 if (i == data_target || i == qd_idx) 1497 continue; 1498 blocks[count++] = sh->dev[i].page; 1499 } 1500 dest = sh->dev[data_target].page; 1501 init_async_submit(&submit, 1502 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1503 NULL, NULL, NULL, 1504 to_addr_conv(sh, percpu, 0)); 1505 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1506 &submit); 1507 1508 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1509 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1510 ops_complete_compute, sh, 1511 to_addr_conv(sh, percpu, 0)); 1512 return async_gen_syndrome(blocks, 0, count+2, 1513 STRIPE_SIZE, &submit); 1514 } 1515 } else { 1516 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1517 ops_complete_compute, sh, 1518 to_addr_conv(sh, percpu, 0)); 1519 if (failb == syndrome_disks) { 1520 /* We're missing D+P. */ 1521 return async_raid6_datap_recov(syndrome_disks+2, 1522 STRIPE_SIZE, faila, 1523 blocks, &submit); 1524 } else { 1525 /* We're missing D+D. */ 1526 return async_raid6_2data_recov(syndrome_disks+2, 1527 STRIPE_SIZE, faila, failb, 1528 blocks, &submit); 1529 } 1530 } 1531 } 1532 1533 static void ops_complete_prexor(void *stripe_head_ref) 1534 { 1535 struct stripe_head *sh = stripe_head_ref; 1536 1537 pr_debug("%s: stripe %llu\n", __func__, 1538 (unsigned long long)sh->sector); 1539 } 1540 1541 static struct dma_async_tx_descriptor * 1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1543 struct dma_async_tx_descriptor *tx) 1544 { 1545 int disks = sh->disks; 1546 struct page **xor_srcs = to_addr_page(percpu, 0); 1547 int count = 0, pd_idx = sh->pd_idx, i; 1548 struct async_submit_ctl submit; 1549 1550 /* existing parity data subtracted */ 1551 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1552 1553 BUG_ON(sh->batch_head); 1554 pr_debug("%s: stripe %llu\n", __func__, 1555 (unsigned long long)sh->sector); 1556 1557 for (i = disks; i--; ) { 1558 struct r5dev *dev = &sh->dev[i]; 1559 /* Only process blocks that are known to be uptodate */ 1560 if (test_bit(R5_Wantdrain, &dev->flags)) 1561 xor_srcs[count++] = dev->page; 1562 } 1563 1564 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1565 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1566 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1567 1568 return tx; 1569 } 1570 1571 static struct dma_async_tx_descriptor * 1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1573 struct dma_async_tx_descriptor *tx) 1574 { 1575 struct page **blocks = to_addr_page(percpu, 0); 1576 int count; 1577 struct async_submit_ctl submit; 1578 1579 pr_debug("%s: stripe %llu\n", __func__, 1580 (unsigned long long)sh->sector); 1581 1582 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1583 1584 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1585 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1586 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1587 1588 return tx; 1589 } 1590 1591 static struct dma_async_tx_descriptor * 1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1593 { 1594 int disks = sh->disks; 1595 int i; 1596 struct stripe_head *head_sh = sh; 1597 1598 pr_debug("%s: stripe %llu\n", __func__, 1599 (unsigned long long)sh->sector); 1600 1601 for (i = disks; i--; ) { 1602 struct r5dev *dev; 1603 struct bio *chosen; 1604 1605 sh = head_sh; 1606 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1607 struct bio *wbi; 1608 1609 again: 1610 dev = &sh->dev[i]; 1611 spin_lock_irq(&sh->stripe_lock); 1612 chosen = dev->towrite; 1613 dev->towrite = NULL; 1614 sh->overwrite_disks = 0; 1615 BUG_ON(dev->written); 1616 wbi = dev->written = chosen; 1617 spin_unlock_irq(&sh->stripe_lock); 1618 WARN_ON(dev->page != dev->orig_page); 1619 1620 while (wbi && wbi->bi_iter.bi_sector < 1621 dev->sector + STRIPE_SECTORS) { 1622 if (wbi->bi_opf & REQ_FUA) 1623 set_bit(R5_WantFUA, &dev->flags); 1624 if (wbi->bi_opf & REQ_SYNC) 1625 set_bit(R5_SyncIO, &dev->flags); 1626 if (bio_op(wbi) == REQ_OP_DISCARD) 1627 set_bit(R5_Discard, &dev->flags); 1628 else { 1629 tx = async_copy_data(1, wbi, &dev->page, 1630 dev->sector, tx, sh); 1631 if (dev->page != dev->orig_page) { 1632 set_bit(R5_SkipCopy, &dev->flags); 1633 clear_bit(R5_UPTODATE, &dev->flags); 1634 clear_bit(R5_OVERWRITE, &dev->flags); 1635 } 1636 } 1637 wbi = r5_next_bio(wbi, dev->sector); 1638 } 1639 1640 if (head_sh->batch_head) { 1641 sh = list_first_entry(&sh->batch_list, 1642 struct stripe_head, 1643 batch_list); 1644 if (sh == head_sh) 1645 continue; 1646 goto again; 1647 } 1648 } 1649 } 1650 1651 return tx; 1652 } 1653 1654 static void ops_complete_reconstruct(void *stripe_head_ref) 1655 { 1656 struct stripe_head *sh = stripe_head_ref; 1657 int disks = sh->disks; 1658 int pd_idx = sh->pd_idx; 1659 int qd_idx = sh->qd_idx; 1660 int i; 1661 bool fua = false, sync = false, discard = false; 1662 1663 pr_debug("%s: stripe %llu\n", __func__, 1664 (unsigned long long)sh->sector); 1665 1666 for (i = disks; i--; ) { 1667 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1668 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1669 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1670 } 1671 1672 for (i = disks; i--; ) { 1673 struct r5dev *dev = &sh->dev[i]; 1674 1675 if (dev->written || i == pd_idx || i == qd_idx) { 1676 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1677 set_bit(R5_UPTODATE, &dev->flags); 1678 if (fua) 1679 set_bit(R5_WantFUA, &dev->flags); 1680 if (sync) 1681 set_bit(R5_SyncIO, &dev->flags); 1682 } 1683 } 1684 1685 if (sh->reconstruct_state == reconstruct_state_drain_run) 1686 sh->reconstruct_state = reconstruct_state_drain_result; 1687 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1688 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1689 else { 1690 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1691 sh->reconstruct_state = reconstruct_state_result; 1692 } 1693 1694 set_bit(STRIPE_HANDLE, &sh->state); 1695 raid5_release_stripe(sh); 1696 } 1697 1698 static void 1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1700 struct dma_async_tx_descriptor *tx) 1701 { 1702 int disks = sh->disks; 1703 struct page **xor_srcs; 1704 struct async_submit_ctl submit; 1705 int count, pd_idx = sh->pd_idx, i; 1706 struct page *xor_dest; 1707 int prexor = 0; 1708 unsigned long flags; 1709 int j = 0; 1710 struct stripe_head *head_sh = sh; 1711 int last_stripe; 1712 1713 pr_debug("%s: stripe %llu\n", __func__, 1714 (unsigned long long)sh->sector); 1715 1716 for (i = 0; i < sh->disks; i++) { 1717 if (pd_idx == i) 1718 continue; 1719 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1720 break; 1721 } 1722 if (i >= sh->disks) { 1723 atomic_inc(&sh->count); 1724 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1725 ops_complete_reconstruct(sh); 1726 return; 1727 } 1728 again: 1729 count = 0; 1730 xor_srcs = to_addr_page(percpu, j); 1731 /* check if prexor is active which means only process blocks 1732 * that are part of a read-modify-write (written) 1733 */ 1734 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1735 prexor = 1; 1736 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1737 for (i = disks; i--; ) { 1738 struct r5dev *dev = &sh->dev[i]; 1739 if (head_sh->dev[i].written) 1740 xor_srcs[count++] = dev->page; 1741 } 1742 } else { 1743 xor_dest = sh->dev[pd_idx].page; 1744 for (i = disks; i--; ) { 1745 struct r5dev *dev = &sh->dev[i]; 1746 if (i != pd_idx) 1747 xor_srcs[count++] = dev->page; 1748 } 1749 } 1750 1751 /* 1/ if we prexor'd then the dest is reused as a source 1752 * 2/ if we did not prexor then we are redoing the parity 1753 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1754 * for the synchronous xor case 1755 */ 1756 last_stripe = !head_sh->batch_head || 1757 list_first_entry(&sh->batch_list, 1758 struct stripe_head, batch_list) == head_sh; 1759 if (last_stripe) { 1760 flags = ASYNC_TX_ACK | 1761 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1762 1763 atomic_inc(&head_sh->count); 1764 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1765 to_addr_conv(sh, percpu, j)); 1766 } else { 1767 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1768 init_async_submit(&submit, flags, tx, NULL, NULL, 1769 to_addr_conv(sh, percpu, j)); 1770 } 1771 1772 if (unlikely(count == 1)) 1773 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1774 else 1775 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1776 if (!last_stripe) { 1777 j++; 1778 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1779 batch_list); 1780 goto again; 1781 } 1782 } 1783 1784 static void 1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1786 struct dma_async_tx_descriptor *tx) 1787 { 1788 struct async_submit_ctl submit; 1789 struct page **blocks; 1790 int count, i, j = 0; 1791 struct stripe_head *head_sh = sh; 1792 int last_stripe; 1793 int synflags; 1794 unsigned long txflags; 1795 1796 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1797 1798 for (i = 0; i < sh->disks; i++) { 1799 if (sh->pd_idx == i || sh->qd_idx == i) 1800 continue; 1801 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1802 break; 1803 } 1804 if (i >= sh->disks) { 1805 atomic_inc(&sh->count); 1806 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1807 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1808 ops_complete_reconstruct(sh); 1809 return; 1810 } 1811 1812 again: 1813 blocks = to_addr_page(percpu, j); 1814 1815 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1816 synflags = SYNDROME_SRC_WRITTEN; 1817 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1818 } else { 1819 synflags = SYNDROME_SRC_ALL; 1820 txflags = ASYNC_TX_ACK; 1821 } 1822 1823 count = set_syndrome_sources(blocks, sh, synflags); 1824 last_stripe = !head_sh->batch_head || 1825 list_first_entry(&sh->batch_list, 1826 struct stripe_head, batch_list) == head_sh; 1827 1828 if (last_stripe) { 1829 atomic_inc(&head_sh->count); 1830 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1831 head_sh, to_addr_conv(sh, percpu, j)); 1832 } else 1833 init_async_submit(&submit, 0, tx, NULL, NULL, 1834 to_addr_conv(sh, percpu, j)); 1835 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1836 if (!last_stripe) { 1837 j++; 1838 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1839 batch_list); 1840 goto again; 1841 } 1842 } 1843 1844 static void ops_complete_check(void *stripe_head_ref) 1845 { 1846 struct stripe_head *sh = stripe_head_ref; 1847 1848 pr_debug("%s: stripe %llu\n", __func__, 1849 (unsigned long long)sh->sector); 1850 1851 sh->check_state = check_state_check_result; 1852 set_bit(STRIPE_HANDLE, &sh->state); 1853 raid5_release_stripe(sh); 1854 } 1855 1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1857 { 1858 int disks = sh->disks; 1859 int pd_idx = sh->pd_idx; 1860 int qd_idx = sh->qd_idx; 1861 struct page *xor_dest; 1862 struct page **xor_srcs = to_addr_page(percpu, 0); 1863 struct dma_async_tx_descriptor *tx; 1864 struct async_submit_ctl submit; 1865 int count; 1866 int i; 1867 1868 pr_debug("%s: stripe %llu\n", __func__, 1869 (unsigned long long)sh->sector); 1870 1871 BUG_ON(sh->batch_head); 1872 count = 0; 1873 xor_dest = sh->dev[pd_idx].page; 1874 xor_srcs[count++] = xor_dest; 1875 for (i = disks; i--; ) { 1876 if (i == pd_idx || i == qd_idx) 1877 continue; 1878 xor_srcs[count++] = sh->dev[i].page; 1879 } 1880 1881 init_async_submit(&submit, 0, NULL, NULL, NULL, 1882 to_addr_conv(sh, percpu, 0)); 1883 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1884 &sh->ops.zero_sum_result, &submit); 1885 1886 atomic_inc(&sh->count); 1887 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1888 tx = async_trigger_callback(&submit); 1889 } 1890 1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1892 { 1893 struct page **srcs = to_addr_page(percpu, 0); 1894 struct async_submit_ctl submit; 1895 int count; 1896 1897 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1898 (unsigned long long)sh->sector, checkp); 1899 1900 BUG_ON(sh->batch_head); 1901 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 1902 if (!checkp) 1903 srcs[count] = NULL; 1904 1905 atomic_inc(&sh->count); 1906 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1907 sh, to_addr_conv(sh, percpu, 0)); 1908 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1909 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1910 } 1911 1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1913 { 1914 int overlap_clear = 0, i, disks = sh->disks; 1915 struct dma_async_tx_descriptor *tx = NULL; 1916 struct r5conf *conf = sh->raid_conf; 1917 int level = conf->level; 1918 struct raid5_percpu *percpu; 1919 unsigned long cpu; 1920 1921 cpu = get_cpu(); 1922 percpu = per_cpu_ptr(conf->percpu, cpu); 1923 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1924 ops_run_biofill(sh); 1925 overlap_clear++; 1926 } 1927 1928 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1929 if (level < 6) 1930 tx = ops_run_compute5(sh, percpu); 1931 else { 1932 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1933 tx = ops_run_compute6_1(sh, percpu); 1934 else 1935 tx = ops_run_compute6_2(sh, percpu); 1936 } 1937 /* terminate the chain if reconstruct is not set to be run */ 1938 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1939 async_tx_ack(tx); 1940 } 1941 1942 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 1943 if (level < 6) 1944 tx = ops_run_prexor5(sh, percpu, tx); 1945 else 1946 tx = ops_run_prexor6(sh, percpu, tx); 1947 } 1948 1949 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1950 tx = ops_run_biodrain(sh, tx); 1951 overlap_clear++; 1952 } 1953 1954 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1955 if (level < 6) 1956 ops_run_reconstruct5(sh, percpu, tx); 1957 else 1958 ops_run_reconstruct6(sh, percpu, tx); 1959 } 1960 1961 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1962 if (sh->check_state == check_state_run) 1963 ops_run_check_p(sh, percpu); 1964 else if (sh->check_state == check_state_run_q) 1965 ops_run_check_pq(sh, percpu, 0); 1966 else if (sh->check_state == check_state_run_pq) 1967 ops_run_check_pq(sh, percpu, 1); 1968 else 1969 BUG(); 1970 } 1971 1972 if (overlap_clear && !sh->batch_head) 1973 for (i = disks; i--; ) { 1974 struct r5dev *dev = &sh->dev[i]; 1975 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1976 wake_up(&sh->raid_conf->wait_for_overlap); 1977 } 1978 put_cpu(); 1979 } 1980 1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp) 1982 { 1983 struct stripe_head *sh; 1984 1985 sh = kmem_cache_zalloc(sc, gfp); 1986 if (sh) { 1987 spin_lock_init(&sh->stripe_lock); 1988 spin_lock_init(&sh->batch_lock); 1989 INIT_LIST_HEAD(&sh->batch_list); 1990 INIT_LIST_HEAD(&sh->lru); 1991 atomic_set(&sh->count, 1); 1992 } 1993 return sh; 1994 } 1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 1996 { 1997 struct stripe_head *sh; 1998 1999 sh = alloc_stripe(conf->slab_cache, gfp); 2000 if (!sh) 2001 return 0; 2002 2003 sh->raid_conf = conf; 2004 2005 if (grow_buffers(sh, gfp)) { 2006 shrink_buffers(sh); 2007 kmem_cache_free(conf->slab_cache, sh); 2008 return 0; 2009 } 2010 sh->hash_lock_index = 2011 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2012 /* we just created an active stripe so... */ 2013 atomic_inc(&conf->active_stripes); 2014 2015 raid5_release_stripe(sh); 2016 conf->max_nr_stripes++; 2017 return 1; 2018 } 2019 2020 static int grow_stripes(struct r5conf *conf, int num) 2021 { 2022 struct kmem_cache *sc; 2023 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2024 2025 if (conf->mddev->gendisk) 2026 sprintf(conf->cache_name[0], 2027 "raid%d-%s", conf->level, mdname(conf->mddev)); 2028 else 2029 sprintf(conf->cache_name[0], 2030 "raid%d-%p", conf->level, conf->mddev); 2031 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 2032 2033 conf->active_name = 0; 2034 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2035 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2036 0, 0, NULL); 2037 if (!sc) 2038 return 1; 2039 conf->slab_cache = sc; 2040 conf->pool_size = devs; 2041 while (num--) 2042 if (!grow_one_stripe(conf, GFP_KERNEL)) 2043 return 1; 2044 2045 return 0; 2046 } 2047 2048 /** 2049 * scribble_len - return the required size of the scribble region 2050 * @num - total number of disks in the array 2051 * 2052 * The size must be enough to contain: 2053 * 1/ a struct page pointer for each device in the array +2 2054 * 2/ room to convert each entry in (1) to its corresponding dma 2055 * (dma_map_page()) or page (page_address()) address. 2056 * 2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2058 * calculate over all devices (not just the data blocks), using zeros in place 2059 * of the P and Q blocks. 2060 */ 2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2062 { 2063 struct flex_array *ret; 2064 size_t len; 2065 2066 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2067 ret = flex_array_alloc(len, cnt, flags); 2068 if (!ret) 2069 return NULL; 2070 /* always prealloc all elements, so no locking is required */ 2071 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2072 flex_array_free(ret); 2073 return NULL; 2074 } 2075 return ret; 2076 } 2077 2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2079 { 2080 unsigned long cpu; 2081 int err = 0; 2082 2083 /* 2084 * Never shrink. And mddev_suspend() could deadlock if this is called 2085 * from raid5d. In that case, scribble_disks and scribble_sectors 2086 * should equal to new_disks and new_sectors 2087 */ 2088 if (conf->scribble_disks >= new_disks && 2089 conf->scribble_sectors >= new_sectors) 2090 return 0; 2091 mddev_suspend(conf->mddev); 2092 get_online_cpus(); 2093 for_each_present_cpu(cpu) { 2094 struct raid5_percpu *percpu; 2095 struct flex_array *scribble; 2096 2097 percpu = per_cpu_ptr(conf->percpu, cpu); 2098 scribble = scribble_alloc(new_disks, 2099 new_sectors / STRIPE_SECTORS, 2100 GFP_NOIO); 2101 2102 if (scribble) { 2103 flex_array_free(percpu->scribble); 2104 percpu->scribble = scribble; 2105 } else { 2106 err = -ENOMEM; 2107 break; 2108 } 2109 } 2110 put_online_cpus(); 2111 mddev_resume(conf->mddev); 2112 if (!err) { 2113 conf->scribble_disks = new_disks; 2114 conf->scribble_sectors = new_sectors; 2115 } 2116 return err; 2117 } 2118 2119 static int resize_stripes(struct r5conf *conf, int newsize) 2120 { 2121 /* Make all the stripes able to hold 'newsize' devices. 2122 * New slots in each stripe get 'page' set to a new page. 2123 * 2124 * This happens in stages: 2125 * 1/ create a new kmem_cache and allocate the required number of 2126 * stripe_heads. 2127 * 2/ gather all the old stripe_heads and transfer the pages across 2128 * to the new stripe_heads. This will have the side effect of 2129 * freezing the array as once all stripe_heads have been collected, 2130 * no IO will be possible. Old stripe heads are freed once their 2131 * pages have been transferred over, and the old kmem_cache is 2132 * freed when all stripes are done. 2133 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2134 * we simple return a failre status - no need to clean anything up. 2135 * 4/ allocate new pages for the new slots in the new stripe_heads. 2136 * If this fails, we don't bother trying the shrink the 2137 * stripe_heads down again, we just leave them as they are. 2138 * As each stripe_head is processed the new one is released into 2139 * active service. 2140 * 2141 * Once step2 is started, we cannot afford to wait for a write, 2142 * so we use GFP_NOIO allocations. 2143 */ 2144 struct stripe_head *osh, *nsh; 2145 LIST_HEAD(newstripes); 2146 struct disk_info *ndisks; 2147 int err; 2148 struct kmem_cache *sc; 2149 int i; 2150 int hash, cnt; 2151 2152 if (newsize <= conf->pool_size) 2153 return 0; /* never bother to shrink */ 2154 2155 err = md_allow_write(conf->mddev); 2156 if (err) 2157 return err; 2158 2159 /* Step 1 */ 2160 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2161 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2162 0, 0, NULL); 2163 if (!sc) 2164 return -ENOMEM; 2165 2166 /* Need to ensure auto-resizing doesn't interfere */ 2167 mutex_lock(&conf->cache_size_mutex); 2168 2169 for (i = conf->max_nr_stripes; i; i--) { 2170 nsh = alloc_stripe(sc, GFP_KERNEL); 2171 if (!nsh) 2172 break; 2173 2174 nsh->raid_conf = conf; 2175 list_add(&nsh->lru, &newstripes); 2176 } 2177 if (i) { 2178 /* didn't get enough, give up */ 2179 while (!list_empty(&newstripes)) { 2180 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2181 list_del(&nsh->lru); 2182 kmem_cache_free(sc, nsh); 2183 } 2184 kmem_cache_destroy(sc); 2185 mutex_unlock(&conf->cache_size_mutex); 2186 return -ENOMEM; 2187 } 2188 /* Step 2 - Must use GFP_NOIO now. 2189 * OK, we have enough stripes, start collecting inactive 2190 * stripes and copying them over 2191 */ 2192 hash = 0; 2193 cnt = 0; 2194 list_for_each_entry(nsh, &newstripes, lru) { 2195 lock_device_hash_lock(conf, hash); 2196 wait_event_cmd(conf->wait_for_stripe, 2197 !list_empty(conf->inactive_list + hash), 2198 unlock_device_hash_lock(conf, hash), 2199 lock_device_hash_lock(conf, hash)); 2200 osh = get_free_stripe(conf, hash); 2201 unlock_device_hash_lock(conf, hash); 2202 2203 for(i=0; i<conf->pool_size; i++) { 2204 nsh->dev[i].page = osh->dev[i].page; 2205 nsh->dev[i].orig_page = osh->dev[i].page; 2206 } 2207 nsh->hash_lock_index = hash; 2208 kmem_cache_free(conf->slab_cache, osh); 2209 cnt++; 2210 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2211 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2212 hash++; 2213 cnt = 0; 2214 } 2215 } 2216 kmem_cache_destroy(conf->slab_cache); 2217 2218 /* Step 3. 2219 * At this point, we are holding all the stripes so the array 2220 * is completely stalled, so now is a good time to resize 2221 * conf->disks and the scribble region 2222 */ 2223 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 2224 if (ndisks) { 2225 for (i=0; i<conf->raid_disks; i++) 2226 ndisks[i] = conf->disks[i]; 2227 kfree(conf->disks); 2228 conf->disks = ndisks; 2229 } else 2230 err = -ENOMEM; 2231 2232 mutex_unlock(&conf->cache_size_mutex); 2233 /* Step 4, return new stripes to service */ 2234 while(!list_empty(&newstripes)) { 2235 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2236 list_del_init(&nsh->lru); 2237 2238 for (i=conf->raid_disks; i < newsize; i++) 2239 if (nsh->dev[i].page == NULL) { 2240 struct page *p = alloc_page(GFP_NOIO); 2241 nsh->dev[i].page = p; 2242 nsh->dev[i].orig_page = p; 2243 if (!p) 2244 err = -ENOMEM; 2245 } 2246 raid5_release_stripe(nsh); 2247 } 2248 /* critical section pass, GFP_NOIO no longer needed */ 2249 2250 conf->slab_cache = sc; 2251 conf->active_name = 1-conf->active_name; 2252 if (!err) 2253 conf->pool_size = newsize; 2254 return err; 2255 } 2256 2257 static int drop_one_stripe(struct r5conf *conf) 2258 { 2259 struct stripe_head *sh; 2260 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2261 2262 spin_lock_irq(conf->hash_locks + hash); 2263 sh = get_free_stripe(conf, hash); 2264 spin_unlock_irq(conf->hash_locks + hash); 2265 if (!sh) 2266 return 0; 2267 BUG_ON(atomic_read(&sh->count)); 2268 shrink_buffers(sh); 2269 kmem_cache_free(conf->slab_cache, sh); 2270 atomic_dec(&conf->active_stripes); 2271 conf->max_nr_stripes--; 2272 return 1; 2273 } 2274 2275 static void shrink_stripes(struct r5conf *conf) 2276 { 2277 while (conf->max_nr_stripes && 2278 drop_one_stripe(conf)) 2279 ; 2280 2281 kmem_cache_destroy(conf->slab_cache); 2282 conf->slab_cache = NULL; 2283 } 2284 2285 static void raid5_end_read_request(struct bio * bi) 2286 { 2287 struct stripe_head *sh = bi->bi_private; 2288 struct r5conf *conf = sh->raid_conf; 2289 int disks = sh->disks, i; 2290 char b[BDEVNAME_SIZE]; 2291 struct md_rdev *rdev = NULL; 2292 sector_t s; 2293 2294 for (i=0 ; i<disks; i++) 2295 if (bi == &sh->dev[i].req) 2296 break; 2297 2298 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2299 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2300 bi->bi_error); 2301 if (i == disks) { 2302 BUG(); 2303 return; 2304 } 2305 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2306 /* If replacement finished while this request was outstanding, 2307 * 'replacement' might be NULL already. 2308 * In that case it moved down to 'rdev'. 2309 * rdev is not removed until all requests are finished. 2310 */ 2311 rdev = conf->disks[i].replacement; 2312 if (!rdev) 2313 rdev = conf->disks[i].rdev; 2314 2315 if (use_new_offset(conf, sh)) 2316 s = sh->sector + rdev->new_data_offset; 2317 else 2318 s = sh->sector + rdev->data_offset; 2319 if (!bi->bi_error) { 2320 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2321 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2322 /* Note that this cannot happen on a 2323 * replacement device. We just fail those on 2324 * any error 2325 */ 2326 printk_ratelimited( 2327 KERN_INFO 2328 "md/raid:%s: read error corrected" 2329 " (%lu sectors at %llu on %s)\n", 2330 mdname(conf->mddev), STRIPE_SECTORS, 2331 (unsigned long long)s, 2332 bdevname(rdev->bdev, b)); 2333 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2334 clear_bit(R5_ReadError, &sh->dev[i].flags); 2335 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2336 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2337 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2338 2339 if (atomic_read(&rdev->read_errors)) 2340 atomic_set(&rdev->read_errors, 0); 2341 } else { 2342 const char *bdn = bdevname(rdev->bdev, b); 2343 int retry = 0; 2344 int set_bad = 0; 2345 2346 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2347 atomic_inc(&rdev->read_errors); 2348 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2349 printk_ratelimited( 2350 KERN_WARNING 2351 "md/raid:%s: read error on replacement device " 2352 "(sector %llu on %s).\n", 2353 mdname(conf->mddev), 2354 (unsigned long long)s, 2355 bdn); 2356 else if (conf->mddev->degraded >= conf->max_degraded) { 2357 set_bad = 1; 2358 printk_ratelimited( 2359 KERN_WARNING 2360 "md/raid:%s: read error not correctable " 2361 "(sector %llu on %s).\n", 2362 mdname(conf->mddev), 2363 (unsigned long long)s, 2364 bdn); 2365 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2366 /* Oh, no!!! */ 2367 set_bad = 1; 2368 printk_ratelimited( 2369 KERN_WARNING 2370 "md/raid:%s: read error NOT corrected!! " 2371 "(sector %llu on %s).\n", 2372 mdname(conf->mddev), 2373 (unsigned long long)s, 2374 bdn); 2375 } else if (atomic_read(&rdev->read_errors) 2376 > conf->max_nr_stripes) 2377 printk(KERN_WARNING 2378 "md/raid:%s: Too many read errors, failing device %s.\n", 2379 mdname(conf->mddev), bdn); 2380 else 2381 retry = 1; 2382 if (set_bad && test_bit(In_sync, &rdev->flags) 2383 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2384 retry = 1; 2385 if (retry) 2386 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2387 set_bit(R5_ReadError, &sh->dev[i].flags); 2388 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2389 } else 2390 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2391 else { 2392 clear_bit(R5_ReadError, &sh->dev[i].flags); 2393 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2394 if (!(set_bad 2395 && test_bit(In_sync, &rdev->flags) 2396 && rdev_set_badblocks( 2397 rdev, sh->sector, STRIPE_SECTORS, 0))) 2398 md_error(conf->mddev, rdev); 2399 } 2400 } 2401 rdev_dec_pending(rdev, conf->mddev); 2402 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2403 set_bit(STRIPE_HANDLE, &sh->state); 2404 raid5_release_stripe(sh); 2405 } 2406 2407 static void raid5_end_write_request(struct bio *bi) 2408 { 2409 struct stripe_head *sh = bi->bi_private; 2410 struct r5conf *conf = sh->raid_conf; 2411 int disks = sh->disks, i; 2412 struct md_rdev *uninitialized_var(rdev); 2413 sector_t first_bad; 2414 int bad_sectors; 2415 int replacement = 0; 2416 2417 for (i = 0 ; i < disks; i++) { 2418 if (bi == &sh->dev[i].req) { 2419 rdev = conf->disks[i].rdev; 2420 break; 2421 } 2422 if (bi == &sh->dev[i].rreq) { 2423 rdev = conf->disks[i].replacement; 2424 if (rdev) 2425 replacement = 1; 2426 else 2427 /* rdev was removed and 'replacement' 2428 * replaced it. rdev is not removed 2429 * until all requests are finished. 2430 */ 2431 rdev = conf->disks[i].rdev; 2432 break; 2433 } 2434 } 2435 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2436 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2437 bi->bi_error); 2438 if (i == disks) { 2439 BUG(); 2440 return; 2441 } 2442 2443 if (replacement) { 2444 if (bi->bi_error) 2445 md_error(conf->mddev, rdev); 2446 else if (is_badblock(rdev, sh->sector, 2447 STRIPE_SECTORS, 2448 &first_bad, &bad_sectors)) 2449 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2450 } else { 2451 if (bi->bi_error) { 2452 set_bit(STRIPE_DEGRADED, &sh->state); 2453 set_bit(WriteErrorSeen, &rdev->flags); 2454 set_bit(R5_WriteError, &sh->dev[i].flags); 2455 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2456 set_bit(MD_RECOVERY_NEEDED, 2457 &rdev->mddev->recovery); 2458 } else if (is_badblock(rdev, sh->sector, 2459 STRIPE_SECTORS, 2460 &first_bad, &bad_sectors)) { 2461 set_bit(R5_MadeGood, &sh->dev[i].flags); 2462 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2463 /* That was a successful write so make 2464 * sure it looks like we already did 2465 * a re-write. 2466 */ 2467 set_bit(R5_ReWrite, &sh->dev[i].flags); 2468 } 2469 } 2470 rdev_dec_pending(rdev, conf->mddev); 2471 2472 if (sh->batch_head && bi->bi_error && !replacement) 2473 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2474 2475 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2476 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2477 set_bit(STRIPE_HANDLE, &sh->state); 2478 raid5_release_stripe(sh); 2479 2480 if (sh->batch_head && sh != sh->batch_head) 2481 raid5_release_stripe(sh->batch_head); 2482 } 2483 2484 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2485 { 2486 struct r5dev *dev = &sh->dev[i]; 2487 2488 bio_init(&dev->req); 2489 dev->req.bi_io_vec = &dev->vec; 2490 dev->req.bi_max_vecs = 1; 2491 dev->req.bi_private = sh; 2492 2493 bio_init(&dev->rreq); 2494 dev->rreq.bi_io_vec = &dev->rvec; 2495 dev->rreq.bi_max_vecs = 1; 2496 dev->rreq.bi_private = sh; 2497 2498 dev->flags = 0; 2499 dev->sector = raid5_compute_blocknr(sh, i, previous); 2500 } 2501 2502 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2503 { 2504 char b[BDEVNAME_SIZE]; 2505 struct r5conf *conf = mddev->private; 2506 unsigned long flags; 2507 pr_debug("raid456: error called\n"); 2508 2509 spin_lock_irqsave(&conf->device_lock, flags); 2510 clear_bit(In_sync, &rdev->flags); 2511 mddev->degraded = calc_degraded(conf); 2512 spin_unlock_irqrestore(&conf->device_lock, flags); 2513 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2514 2515 set_bit(Blocked, &rdev->flags); 2516 set_bit(Faulty, &rdev->flags); 2517 set_mask_bits(&mddev->flags, 0, 2518 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING)); 2519 printk(KERN_ALERT 2520 "md/raid:%s: Disk failure on %s, disabling device.\n" 2521 "md/raid:%s: Operation continuing on %d devices.\n", 2522 mdname(mddev), 2523 bdevname(rdev->bdev, b), 2524 mdname(mddev), 2525 conf->raid_disks - mddev->degraded); 2526 } 2527 2528 /* 2529 * Input: a 'big' sector number, 2530 * Output: index of the data and parity disk, and the sector # in them. 2531 */ 2532 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2533 int previous, int *dd_idx, 2534 struct stripe_head *sh) 2535 { 2536 sector_t stripe, stripe2; 2537 sector_t chunk_number; 2538 unsigned int chunk_offset; 2539 int pd_idx, qd_idx; 2540 int ddf_layout = 0; 2541 sector_t new_sector; 2542 int algorithm = previous ? conf->prev_algo 2543 : conf->algorithm; 2544 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2545 : conf->chunk_sectors; 2546 int raid_disks = previous ? conf->previous_raid_disks 2547 : conf->raid_disks; 2548 int data_disks = raid_disks - conf->max_degraded; 2549 2550 /* First compute the information on this sector */ 2551 2552 /* 2553 * Compute the chunk number and the sector offset inside the chunk 2554 */ 2555 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2556 chunk_number = r_sector; 2557 2558 /* 2559 * Compute the stripe number 2560 */ 2561 stripe = chunk_number; 2562 *dd_idx = sector_div(stripe, data_disks); 2563 stripe2 = stripe; 2564 /* 2565 * Select the parity disk based on the user selected algorithm. 2566 */ 2567 pd_idx = qd_idx = -1; 2568 switch(conf->level) { 2569 case 4: 2570 pd_idx = data_disks; 2571 break; 2572 case 5: 2573 switch (algorithm) { 2574 case ALGORITHM_LEFT_ASYMMETRIC: 2575 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2576 if (*dd_idx >= pd_idx) 2577 (*dd_idx)++; 2578 break; 2579 case ALGORITHM_RIGHT_ASYMMETRIC: 2580 pd_idx = sector_div(stripe2, raid_disks); 2581 if (*dd_idx >= pd_idx) 2582 (*dd_idx)++; 2583 break; 2584 case ALGORITHM_LEFT_SYMMETRIC: 2585 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2586 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2587 break; 2588 case ALGORITHM_RIGHT_SYMMETRIC: 2589 pd_idx = sector_div(stripe2, raid_disks); 2590 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2591 break; 2592 case ALGORITHM_PARITY_0: 2593 pd_idx = 0; 2594 (*dd_idx)++; 2595 break; 2596 case ALGORITHM_PARITY_N: 2597 pd_idx = data_disks; 2598 break; 2599 default: 2600 BUG(); 2601 } 2602 break; 2603 case 6: 2604 2605 switch (algorithm) { 2606 case ALGORITHM_LEFT_ASYMMETRIC: 2607 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2608 qd_idx = pd_idx + 1; 2609 if (pd_idx == raid_disks-1) { 2610 (*dd_idx)++; /* Q D D D P */ 2611 qd_idx = 0; 2612 } else if (*dd_idx >= pd_idx) 2613 (*dd_idx) += 2; /* D D P Q D */ 2614 break; 2615 case ALGORITHM_RIGHT_ASYMMETRIC: 2616 pd_idx = sector_div(stripe2, raid_disks); 2617 qd_idx = pd_idx + 1; 2618 if (pd_idx == raid_disks-1) { 2619 (*dd_idx)++; /* Q D D D P */ 2620 qd_idx = 0; 2621 } else if (*dd_idx >= pd_idx) 2622 (*dd_idx) += 2; /* D D P Q D */ 2623 break; 2624 case ALGORITHM_LEFT_SYMMETRIC: 2625 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2626 qd_idx = (pd_idx + 1) % raid_disks; 2627 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2628 break; 2629 case ALGORITHM_RIGHT_SYMMETRIC: 2630 pd_idx = sector_div(stripe2, raid_disks); 2631 qd_idx = (pd_idx + 1) % raid_disks; 2632 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2633 break; 2634 2635 case ALGORITHM_PARITY_0: 2636 pd_idx = 0; 2637 qd_idx = 1; 2638 (*dd_idx) += 2; 2639 break; 2640 case ALGORITHM_PARITY_N: 2641 pd_idx = data_disks; 2642 qd_idx = data_disks + 1; 2643 break; 2644 2645 case ALGORITHM_ROTATING_ZERO_RESTART: 2646 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2647 * of blocks for computing Q is different. 2648 */ 2649 pd_idx = sector_div(stripe2, raid_disks); 2650 qd_idx = pd_idx + 1; 2651 if (pd_idx == raid_disks-1) { 2652 (*dd_idx)++; /* Q D D D P */ 2653 qd_idx = 0; 2654 } else if (*dd_idx >= pd_idx) 2655 (*dd_idx) += 2; /* D D P Q D */ 2656 ddf_layout = 1; 2657 break; 2658 2659 case ALGORITHM_ROTATING_N_RESTART: 2660 /* Same a left_asymmetric, by first stripe is 2661 * D D D P Q rather than 2662 * Q D D D P 2663 */ 2664 stripe2 += 1; 2665 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2666 qd_idx = pd_idx + 1; 2667 if (pd_idx == raid_disks-1) { 2668 (*dd_idx)++; /* Q D D D P */ 2669 qd_idx = 0; 2670 } else if (*dd_idx >= pd_idx) 2671 (*dd_idx) += 2; /* D D P Q D */ 2672 ddf_layout = 1; 2673 break; 2674 2675 case ALGORITHM_ROTATING_N_CONTINUE: 2676 /* Same as left_symmetric but Q is before P */ 2677 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2678 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2679 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2680 ddf_layout = 1; 2681 break; 2682 2683 case ALGORITHM_LEFT_ASYMMETRIC_6: 2684 /* RAID5 left_asymmetric, with Q on last device */ 2685 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2686 if (*dd_idx >= pd_idx) 2687 (*dd_idx)++; 2688 qd_idx = raid_disks - 1; 2689 break; 2690 2691 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2692 pd_idx = sector_div(stripe2, raid_disks-1); 2693 if (*dd_idx >= pd_idx) 2694 (*dd_idx)++; 2695 qd_idx = raid_disks - 1; 2696 break; 2697 2698 case ALGORITHM_LEFT_SYMMETRIC_6: 2699 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2700 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2701 qd_idx = raid_disks - 1; 2702 break; 2703 2704 case ALGORITHM_RIGHT_SYMMETRIC_6: 2705 pd_idx = sector_div(stripe2, raid_disks-1); 2706 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2707 qd_idx = raid_disks - 1; 2708 break; 2709 2710 case ALGORITHM_PARITY_0_6: 2711 pd_idx = 0; 2712 (*dd_idx)++; 2713 qd_idx = raid_disks - 1; 2714 break; 2715 2716 default: 2717 BUG(); 2718 } 2719 break; 2720 } 2721 2722 if (sh) { 2723 sh->pd_idx = pd_idx; 2724 sh->qd_idx = qd_idx; 2725 sh->ddf_layout = ddf_layout; 2726 } 2727 /* 2728 * Finally, compute the new sector number 2729 */ 2730 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2731 return new_sector; 2732 } 2733 2734 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2735 { 2736 struct r5conf *conf = sh->raid_conf; 2737 int raid_disks = sh->disks; 2738 int data_disks = raid_disks - conf->max_degraded; 2739 sector_t new_sector = sh->sector, check; 2740 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2741 : conf->chunk_sectors; 2742 int algorithm = previous ? conf->prev_algo 2743 : conf->algorithm; 2744 sector_t stripe; 2745 int chunk_offset; 2746 sector_t chunk_number; 2747 int dummy1, dd_idx = i; 2748 sector_t r_sector; 2749 struct stripe_head sh2; 2750 2751 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2752 stripe = new_sector; 2753 2754 if (i == sh->pd_idx) 2755 return 0; 2756 switch(conf->level) { 2757 case 4: break; 2758 case 5: 2759 switch (algorithm) { 2760 case ALGORITHM_LEFT_ASYMMETRIC: 2761 case ALGORITHM_RIGHT_ASYMMETRIC: 2762 if (i > sh->pd_idx) 2763 i--; 2764 break; 2765 case ALGORITHM_LEFT_SYMMETRIC: 2766 case ALGORITHM_RIGHT_SYMMETRIC: 2767 if (i < sh->pd_idx) 2768 i += raid_disks; 2769 i -= (sh->pd_idx + 1); 2770 break; 2771 case ALGORITHM_PARITY_0: 2772 i -= 1; 2773 break; 2774 case ALGORITHM_PARITY_N: 2775 break; 2776 default: 2777 BUG(); 2778 } 2779 break; 2780 case 6: 2781 if (i == sh->qd_idx) 2782 return 0; /* It is the Q disk */ 2783 switch (algorithm) { 2784 case ALGORITHM_LEFT_ASYMMETRIC: 2785 case ALGORITHM_RIGHT_ASYMMETRIC: 2786 case ALGORITHM_ROTATING_ZERO_RESTART: 2787 case ALGORITHM_ROTATING_N_RESTART: 2788 if (sh->pd_idx == raid_disks-1) 2789 i--; /* Q D D D P */ 2790 else if (i > sh->pd_idx) 2791 i -= 2; /* D D P Q D */ 2792 break; 2793 case ALGORITHM_LEFT_SYMMETRIC: 2794 case ALGORITHM_RIGHT_SYMMETRIC: 2795 if (sh->pd_idx == raid_disks-1) 2796 i--; /* Q D D D P */ 2797 else { 2798 /* D D P Q D */ 2799 if (i < sh->pd_idx) 2800 i += raid_disks; 2801 i -= (sh->pd_idx + 2); 2802 } 2803 break; 2804 case ALGORITHM_PARITY_0: 2805 i -= 2; 2806 break; 2807 case ALGORITHM_PARITY_N: 2808 break; 2809 case ALGORITHM_ROTATING_N_CONTINUE: 2810 /* Like left_symmetric, but P is before Q */ 2811 if (sh->pd_idx == 0) 2812 i--; /* P D D D Q */ 2813 else { 2814 /* D D Q P D */ 2815 if (i < sh->pd_idx) 2816 i += raid_disks; 2817 i -= (sh->pd_idx + 1); 2818 } 2819 break; 2820 case ALGORITHM_LEFT_ASYMMETRIC_6: 2821 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2822 if (i > sh->pd_idx) 2823 i--; 2824 break; 2825 case ALGORITHM_LEFT_SYMMETRIC_6: 2826 case ALGORITHM_RIGHT_SYMMETRIC_6: 2827 if (i < sh->pd_idx) 2828 i += data_disks + 1; 2829 i -= (sh->pd_idx + 1); 2830 break; 2831 case ALGORITHM_PARITY_0_6: 2832 i -= 1; 2833 break; 2834 default: 2835 BUG(); 2836 } 2837 break; 2838 } 2839 2840 chunk_number = stripe * data_disks + i; 2841 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2842 2843 check = raid5_compute_sector(conf, r_sector, 2844 previous, &dummy1, &sh2); 2845 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2846 || sh2.qd_idx != sh->qd_idx) { 2847 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2848 mdname(conf->mddev)); 2849 return 0; 2850 } 2851 return r_sector; 2852 } 2853 2854 static void 2855 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2856 int rcw, int expand) 2857 { 2858 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 2859 struct r5conf *conf = sh->raid_conf; 2860 int level = conf->level; 2861 2862 if (rcw) { 2863 2864 for (i = disks; i--; ) { 2865 struct r5dev *dev = &sh->dev[i]; 2866 2867 if (dev->towrite) { 2868 set_bit(R5_LOCKED, &dev->flags); 2869 set_bit(R5_Wantdrain, &dev->flags); 2870 if (!expand) 2871 clear_bit(R5_UPTODATE, &dev->flags); 2872 s->locked++; 2873 } 2874 } 2875 /* if we are not expanding this is a proper write request, and 2876 * there will be bios with new data to be drained into the 2877 * stripe cache 2878 */ 2879 if (!expand) { 2880 if (!s->locked) 2881 /* False alarm, nothing to do */ 2882 return; 2883 sh->reconstruct_state = reconstruct_state_drain_run; 2884 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2885 } else 2886 sh->reconstruct_state = reconstruct_state_run; 2887 2888 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2889 2890 if (s->locked + conf->max_degraded == disks) 2891 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2892 atomic_inc(&conf->pending_full_writes); 2893 } else { 2894 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2895 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2896 BUG_ON(level == 6 && 2897 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 2898 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 2899 2900 for (i = disks; i--; ) { 2901 struct r5dev *dev = &sh->dev[i]; 2902 if (i == pd_idx || i == qd_idx) 2903 continue; 2904 2905 if (dev->towrite && 2906 (test_bit(R5_UPTODATE, &dev->flags) || 2907 test_bit(R5_Wantcompute, &dev->flags))) { 2908 set_bit(R5_Wantdrain, &dev->flags); 2909 set_bit(R5_LOCKED, &dev->flags); 2910 clear_bit(R5_UPTODATE, &dev->flags); 2911 s->locked++; 2912 } 2913 } 2914 if (!s->locked) 2915 /* False alarm - nothing to do */ 2916 return; 2917 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2918 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2919 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2920 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2921 } 2922 2923 /* keep the parity disk(s) locked while asynchronous operations 2924 * are in flight 2925 */ 2926 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2927 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2928 s->locked++; 2929 2930 if (level == 6) { 2931 int qd_idx = sh->qd_idx; 2932 struct r5dev *dev = &sh->dev[qd_idx]; 2933 2934 set_bit(R5_LOCKED, &dev->flags); 2935 clear_bit(R5_UPTODATE, &dev->flags); 2936 s->locked++; 2937 } 2938 2939 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2940 __func__, (unsigned long long)sh->sector, 2941 s->locked, s->ops_request); 2942 } 2943 2944 /* 2945 * Each stripe/dev can have one or more bion attached. 2946 * toread/towrite point to the first in a chain. 2947 * The bi_next chain must be in order. 2948 */ 2949 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 2950 int forwrite, int previous) 2951 { 2952 struct bio **bip; 2953 struct r5conf *conf = sh->raid_conf; 2954 int firstwrite=0; 2955 2956 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2957 (unsigned long long)bi->bi_iter.bi_sector, 2958 (unsigned long long)sh->sector); 2959 2960 /* 2961 * If several bio share a stripe. The bio bi_phys_segments acts as a 2962 * reference count to avoid race. The reference count should already be 2963 * increased before this function is called (for example, in 2964 * raid5_make_request()), so other bio sharing this stripe will not free the 2965 * stripe. If a stripe is owned by one stripe, the stripe lock will 2966 * protect it. 2967 */ 2968 spin_lock_irq(&sh->stripe_lock); 2969 /* Don't allow new IO added to stripes in batch list */ 2970 if (sh->batch_head) 2971 goto overlap; 2972 if (forwrite) { 2973 bip = &sh->dev[dd_idx].towrite; 2974 if (*bip == NULL) 2975 firstwrite = 1; 2976 } else 2977 bip = &sh->dev[dd_idx].toread; 2978 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 2979 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 2980 goto overlap; 2981 bip = & (*bip)->bi_next; 2982 } 2983 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 2984 goto overlap; 2985 2986 if (!forwrite || previous) 2987 clear_bit(STRIPE_BATCH_READY, &sh->state); 2988 2989 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2990 if (*bip) 2991 bi->bi_next = *bip; 2992 *bip = bi; 2993 raid5_inc_bi_active_stripes(bi); 2994 2995 if (forwrite) { 2996 /* check if page is covered */ 2997 sector_t sector = sh->dev[dd_idx].sector; 2998 for (bi=sh->dev[dd_idx].towrite; 2999 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3000 bi && bi->bi_iter.bi_sector <= sector; 3001 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3002 if (bio_end_sector(bi) >= sector) 3003 sector = bio_end_sector(bi); 3004 } 3005 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3006 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3007 sh->overwrite_disks++; 3008 } 3009 3010 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3011 (unsigned long long)(*bip)->bi_iter.bi_sector, 3012 (unsigned long long)sh->sector, dd_idx); 3013 3014 if (conf->mddev->bitmap && firstwrite) { 3015 /* Cannot hold spinlock over bitmap_startwrite, 3016 * but must ensure this isn't added to a batch until 3017 * we have added to the bitmap and set bm_seq. 3018 * So set STRIPE_BITMAP_PENDING to prevent 3019 * batching. 3020 * If multiple add_stripe_bio() calls race here they 3021 * much all set STRIPE_BITMAP_PENDING. So only the first one 3022 * to complete "bitmap_startwrite" gets to set 3023 * STRIPE_BIT_DELAY. This is important as once a stripe 3024 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3025 * any more. 3026 */ 3027 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3028 spin_unlock_irq(&sh->stripe_lock); 3029 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3030 STRIPE_SECTORS, 0); 3031 spin_lock_irq(&sh->stripe_lock); 3032 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3033 if (!sh->batch_head) { 3034 sh->bm_seq = conf->seq_flush+1; 3035 set_bit(STRIPE_BIT_DELAY, &sh->state); 3036 } 3037 } 3038 spin_unlock_irq(&sh->stripe_lock); 3039 3040 if (stripe_can_batch(sh)) 3041 stripe_add_to_batch_list(conf, sh); 3042 return 1; 3043 3044 overlap: 3045 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3046 spin_unlock_irq(&sh->stripe_lock); 3047 return 0; 3048 } 3049 3050 static void end_reshape(struct r5conf *conf); 3051 3052 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3053 struct stripe_head *sh) 3054 { 3055 int sectors_per_chunk = 3056 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3057 int dd_idx; 3058 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3059 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3060 3061 raid5_compute_sector(conf, 3062 stripe * (disks - conf->max_degraded) 3063 *sectors_per_chunk + chunk_offset, 3064 previous, 3065 &dd_idx, sh); 3066 } 3067 3068 static void 3069 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3070 struct stripe_head_state *s, int disks, 3071 struct bio_list *return_bi) 3072 { 3073 int i; 3074 BUG_ON(sh->batch_head); 3075 for (i = disks; i--; ) { 3076 struct bio *bi; 3077 int bitmap_end = 0; 3078 3079 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3080 struct md_rdev *rdev; 3081 rcu_read_lock(); 3082 rdev = rcu_dereference(conf->disks[i].rdev); 3083 if (rdev && test_bit(In_sync, &rdev->flags) && 3084 !test_bit(Faulty, &rdev->flags)) 3085 atomic_inc(&rdev->nr_pending); 3086 else 3087 rdev = NULL; 3088 rcu_read_unlock(); 3089 if (rdev) { 3090 if (!rdev_set_badblocks( 3091 rdev, 3092 sh->sector, 3093 STRIPE_SECTORS, 0)) 3094 md_error(conf->mddev, rdev); 3095 rdev_dec_pending(rdev, conf->mddev); 3096 } 3097 } 3098 spin_lock_irq(&sh->stripe_lock); 3099 /* fail all writes first */ 3100 bi = sh->dev[i].towrite; 3101 sh->dev[i].towrite = NULL; 3102 sh->overwrite_disks = 0; 3103 spin_unlock_irq(&sh->stripe_lock); 3104 if (bi) 3105 bitmap_end = 1; 3106 3107 r5l_stripe_write_finished(sh); 3108 3109 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3110 wake_up(&conf->wait_for_overlap); 3111 3112 while (bi && bi->bi_iter.bi_sector < 3113 sh->dev[i].sector + STRIPE_SECTORS) { 3114 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3115 3116 bi->bi_error = -EIO; 3117 if (!raid5_dec_bi_active_stripes(bi)) { 3118 md_write_end(conf->mddev); 3119 bio_list_add(return_bi, bi); 3120 } 3121 bi = nextbi; 3122 } 3123 if (bitmap_end) 3124 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3125 STRIPE_SECTORS, 0, 0); 3126 bitmap_end = 0; 3127 /* and fail all 'written' */ 3128 bi = sh->dev[i].written; 3129 sh->dev[i].written = NULL; 3130 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3131 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3132 sh->dev[i].page = sh->dev[i].orig_page; 3133 } 3134 3135 if (bi) bitmap_end = 1; 3136 while (bi && bi->bi_iter.bi_sector < 3137 sh->dev[i].sector + STRIPE_SECTORS) { 3138 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3139 3140 bi->bi_error = -EIO; 3141 if (!raid5_dec_bi_active_stripes(bi)) { 3142 md_write_end(conf->mddev); 3143 bio_list_add(return_bi, bi); 3144 } 3145 bi = bi2; 3146 } 3147 3148 /* fail any reads if this device is non-operational and 3149 * the data has not reached the cache yet. 3150 */ 3151 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3152 s->failed > conf->max_degraded && 3153 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3154 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3155 spin_lock_irq(&sh->stripe_lock); 3156 bi = sh->dev[i].toread; 3157 sh->dev[i].toread = NULL; 3158 spin_unlock_irq(&sh->stripe_lock); 3159 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3160 wake_up(&conf->wait_for_overlap); 3161 if (bi) 3162 s->to_read--; 3163 while (bi && bi->bi_iter.bi_sector < 3164 sh->dev[i].sector + STRIPE_SECTORS) { 3165 struct bio *nextbi = 3166 r5_next_bio(bi, sh->dev[i].sector); 3167 3168 bi->bi_error = -EIO; 3169 if (!raid5_dec_bi_active_stripes(bi)) 3170 bio_list_add(return_bi, bi); 3171 bi = nextbi; 3172 } 3173 } 3174 if (bitmap_end) 3175 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3176 STRIPE_SECTORS, 0, 0); 3177 /* If we were in the middle of a write the parity block might 3178 * still be locked - so just clear all R5_LOCKED flags 3179 */ 3180 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3181 } 3182 s->to_write = 0; 3183 s->written = 0; 3184 3185 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3186 if (atomic_dec_and_test(&conf->pending_full_writes)) 3187 md_wakeup_thread(conf->mddev->thread); 3188 } 3189 3190 static void 3191 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3192 struct stripe_head_state *s) 3193 { 3194 int abort = 0; 3195 int i; 3196 3197 BUG_ON(sh->batch_head); 3198 clear_bit(STRIPE_SYNCING, &sh->state); 3199 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3200 wake_up(&conf->wait_for_overlap); 3201 s->syncing = 0; 3202 s->replacing = 0; 3203 /* There is nothing more to do for sync/check/repair. 3204 * Don't even need to abort as that is handled elsewhere 3205 * if needed, and not always wanted e.g. if there is a known 3206 * bad block here. 3207 * For recover/replace we need to record a bad block on all 3208 * non-sync devices, or abort the recovery 3209 */ 3210 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3211 /* During recovery devices cannot be removed, so 3212 * locking and refcounting of rdevs is not needed 3213 */ 3214 rcu_read_lock(); 3215 for (i = 0; i < conf->raid_disks; i++) { 3216 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3217 if (rdev 3218 && !test_bit(Faulty, &rdev->flags) 3219 && !test_bit(In_sync, &rdev->flags) 3220 && !rdev_set_badblocks(rdev, sh->sector, 3221 STRIPE_SECTORS, 0)) 3222 abort = 1; 3223 rdev = rcu_dereference(conf->disks[i].replacement); 3224 if (rdev 3225 && !test_bit(Faulty, &rdev->flags) 3226 && !test_bit(In_sync, &rdev->flags) 3227 && !rdev_set_badblocks(rdev, sh->sector, 3228 STRIPE_SECTORS, 0)) 3229 abort = 1; 3230 } 3231 rcu_read_unlock(); 3232 if (abort) 3233 conf->recovery_disabled = 3234 conf->mddev->recovery_disabled; 3235 } 3236 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3237 } 3238 3239 static int want_replace(struct stripe_head *sh, int disk_idx) 3240 { 3241 struct md_rdev *rdev; 3242 int rv = 0; 3243 3244 rcu_read_lock(); 3245 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3246 if (rdev 3247 && !test_bit(Faulty, &rdev->flags) 3248 && !test_bit(In_sync, &rdev->flags) 3249 && (rdev->recovery_offset <= sh->sector 3250 || rdev->mddev->recovery_cp <= sh->sector)) 3251 rv = 1; 3252 rcu_read_unlock(); 3253 return rv; 3254 } 3255 3256 /* fetch_block - checks the given member device to see if its data needs 3257 * to be read or computed to satisfy a request. 3258 * 3259 * Returns 1 when no more member devices need to be checked, otherwise returns 3260 * 0 to tell the loop in handle_stripe_fill to continue 3261 */ 3262 3263 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3264 int disk_idx, int disks) 3265 { 3266 struct r5dev *dev = &sh->dev[disk_idx]; 3267 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3268 &sh->dev[s->failed_num[1]] }; 3269 int i; 3270 3271 3272 if (test_bit(R5_LOCKED, &dev->flags) || 3273 test_bit(R5_UPTODATE, &dev->flags)) 3274 /* No point reading this as we already have it or have 3275 * decided to get it. 3276 */ 3277 return 0; 3278 3279 if (dev->toread || 3280 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3281 /* We need this block to directly satisfy a request */ 3282 return 1; 3283 3284 if (s->syncing || s->expanding || 3285 (s->replacing && want_replace(sh, disk_idx))) 3286 /* When syncing, or expanding we read everything. 3287 * When replacing, we need the replaced block. 3288 */ 3289 return 1; 3290 3291 if ((s->failed >= 1 && fdev[0]->toread) || 3292 (s->failed >= 2 && fdev[1]->toread)) 3293 /* If we want to read from a failed device, then 3294 * we need to actually read every other device. 3295 */ 3296 return 1; 3297 3298 /* Sometimes neither read-modify-write nor reconstruct-write 3299 * cycles can work. In those cases we read every block we 3300 * can. Then the parity-update is certain to have enough to 3301 * work with. 3302 * This can only be a problem when we need to write something, 3303 * and some device has failed. If either of those tests 3304 * fail we need look no further. 3305 */ 3306 if (!s->failed || !s->to_write) 3307 return 0; 3308 3309 if (test_bit(R5_Insync, &dev->flags) && 3310 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3311 /* Pre-reads at not permitted until after short delay 3312 * to gather multiple requests. However if this 3313 * device is no Insync, the block could only be be computed 3314 * and there is no need to delay that. 3315 */ 3316 return 0; 3317 3318 for (i = 0; i < s->failed && i < 2; i++) { 3319 if (fdev[i]->towrite && 3320 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3321 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3322 /* If we have a partial write to a failed 3323 * device, then we will need to reconstruct 3324 * the content of that device, so all other 3325 * devices must be read. 3326 */ 3327 return 1; 3328 } 3329 3330 /* If we are forced to do a reconstruct-write, either because 3331 * the current RAID6 implementation only supports that, or 3332 * or because parity cannot be trusted and we are currently 3333 * recovering it, there is extra need to be careful. 3334 * If one of the devices that we would need to read, because 3335 * it is not being overwritten (and maybe not written at all) 3336 * is missing/faulty, then we need to read everything we can. 3337 */ 3338 if (sh->raid_conf->level != 6 && 3339 sh->sector < sh->raid_conf->mddev->recovery_cp) 3340 /* reconstruct-write isn't being forced */ 3341 return 0; 3342 for (i = 0; i < s->failed && i < 2; i++) { 3343 if (s->failed_num[i] != sh->pd_idx && 3344 s->failed_num[i] != sh->qd_idx && 3345 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3346 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3347 return 1; 3348 } 3349 3350 return 0; 3351 } 3352 3353 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3354 int disk_idx, int disks) 3355 { 3356 struct r5dev *dev = &sh->dev[disk_idx]; 3357 3358 /* is the data in this block needed, and can we get it? */ 3359 if (need_this_block(sh, s, disk_idx, disks)) { 3360 /* we would like to get this block, possibly by computing it, 3361 * otherwise read it if the backing disk is insync 3362 */ 3363 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3364 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3365 BUG_ON(sh->batch_head); 3366 if ((s->uptodate == disks - 1) && 3367 (s->failed && (disk_idx == s->failed_num[0] || 3368 disk_idx == s->failed_num[1]))) { 3369 /* have disk failed, and we're requested to fetch it; 3370 * do compute it 3371 */ 3372 pr_debug("Computing stripe %llu block %d\n", 3373 (unsigned long long)sh->sector, disk_idx); 3374 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3375 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3376 set_bit(R5_Wantcompute, &dev->flags); 3377 sh->ops.target = disk_idx; 3378 sh->ops.target2 = -1; /* no 2nd target */ 3379 s->req_compute = 1; 3380 /* Careful: from this point on 'uptodate' is in the eye 3381 * of raid_run_ops which services 'compute' operations 3382 * before writes. R5_Wantcompute flags a block that will 3383 * be R5_UPTODATE by the time it is needed for a 3384 * subsequent operation. 3385 */ 3386 s->uptodate++; 3387 return 1; 3388 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3389 /* Computing 2-failure is *very* expensive; only 3390 * do it if failed >= 2 3391 */ 3392 int other; 3393 for (other = disks; other--; ) { 3394 if (other == disk_idx) 3395 continue; 3396 if (!test_bit(R5_UPTODATE, 3397 &sh->dev[other].flags)) 3398 break; 3399 } 3400 BUG_ON(other < 0); 3401 pr_debug("Computing stripe %llu blocks %d,%d\n", 3402 (unsigned long long)sh->sector, 3403 disk_idx, other); 3404 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3405 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3406 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3407 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3408 sh->ops.target = disk_idx; 3409 sh->ops.target2 = other; 3410 s->uptodate += 2; 3411 s->req_compute = 1; 3412 return 1; 3413 } else if (test_bit(R5_Insync, &dev->flags)) { 3414 set_bit(R5_LOCKED, &dev->flags); 3415 set_bit(R5_Wantread, &dev->flags); 3416 s->locked++; 3417 pr_debug("Reading block %d (sync=%d)\n", 3418 disk_idx, s->syncing); 3419 } 3420 } 3421 3422 return 0; 3423 } 3424 3425 /** 3426 * handle_stripe_fill - read or compute data to satisfy pending requests. 3427 */ 3428 static void handle_stripe_fill(struct stripe_head *sh, 3429 struct stripe_head_state *s, 3430 int disks) 3431 { 3432 int i; 3433 3434 /* look for blocks to read/compute, skip this if a compute 3435 * is already in flight, or if the stripe contents are in the 3436 * midst of changing due to a write 3437 */ 3438 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3439 !sh->reconstruct_state) 3440 for (i = disks; i--; ) 3441 if (fetch_block(sh, s, i, disks)) 3442 break; 3443 set_bit(STRIPE_HANDLE, &sh->state); 3444 } 3445 3446 static void break_stripe_batch_list(struct stripe_head *head_sh, 3447 unsigned long handle_flags); 3448 /* handle_stripe_clean_event 3449 * any written block on an uptodate or failed drive can be returned. 3450 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3451 * never LOCKED, so we don't need to test 'failed' directly. 3452 */ 3453 static void handle_stripe_clean_event(struct r5conf *conf, 3454 struct stripe_head *sh, int disks, struct bio_list *return_bi) 3455 { 3456 int i; 3457 struct r5dev *dev; 3458 int discard_pending = 0; 3459 struct stripe_head *head_sh = sh; 3460 bool do_endio = false; 3461 3462 for (i = disks; i--; ) 3463 if (sh->dev[i].written) { 3464 dev = &sh->dev[i]; 3465 if (!test_bit(R5_LOCKED, &dev->flags) && 3466 (test_bit(R5_UPTODATE, &dev->flags) || 3467 test_bit(R5_Discard, &dev->flags) || 3468 test_bit(R5_SkipCopy, &dev->flags))) { 3469 /* We can return any write requests */ 3470 struct bio *wbi, *wbi2; 3471 pr_debug("Return write for disc %d\n", i); 3472 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3473 clear_bit(R5_UPTODATE, &dev->flags); 3474 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3475 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3476 } 3477 do_endio = true; 3478 3479 returnbi: 3480 dev->page = dev->orig_page; 3481 wbi = dev->written; 3482 dev->written = NULL; 3483 while (wbi && wbi->bi_iter.bi_sector < 3484 dev->sector + STRIPE_SECTORS) { 3485 wbi2 = r5_next_bio(wbi, dev->sector); 3486 if (!raid5_dec_bi_active_stripes(wbi)) { 3487 md_write_end(conf->mddev); 3488 bio_list_add(return_bi, wbi); 3489 } 3490 wbi = wbi2; 3491 } 3492 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3493 STRIPE_SECTORS, 3494 !test_bit(STRIPE_DEGRADED, &sh->state), 3495 0); 3496 if (head_sh->batch_head) { 3497 sh = list_first_entry(&sh->batch_list, 3498 struct stripe_head, 3499 batch_list); 3500 if (sh != head_sh) { 3501 dev = &sh->dev[i]; 3502 goto returnbi; 3503 } 3504 } 3505 sh = head_sh; 3506 dev = &sh->dev[i]; 3507 } else if (test_bit(R5_Discard, &dev->flags)) 3508 discard_pending = 1; 3509 } 3510 3511 r5l_stripe_write_finished(sh); 3512 3513 if (!discard_pending && 3514 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3515 int hash; 3516 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3517 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3518 if (sh->qd_idx >= 0) { 3519 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3520 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3521 } 3522 /* now that discard is done we can proceed with any sync */ 3523 clear_bit(STRIPE_DISCARD, &sh->state); 3524 /* 3525 * SCSI discard will change some bio fields and the stripe has 3526 * no updated data, so remove it from hash list and the stripe 3527 * will be reinitialized 3528 */ 3529 unhash: 3530 hash = sh->hash_lock_index; 3531 spin_lock_irq(conf->hash_locks + hash); 3532 remove_hash(sh); 3533 spin_unlock_irq(conf->hash_locks + hash); 3534 if (head_sh->batch_head) { 3535 sh = list_first_entry(&sh->batch_list, 3536 struct stripe_head, batch_list); 3537 if (sh != head_sh) 3538 goto unhash; 3539 } 3540 sh = head_sh; 3541 3542 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3543 set_bit(STRIPE_HANDLE, &sh->state); 3544 3545 } 3546 3547 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3548 if (atomic_dec_and_test(&conf->pending_full_writes)) 3549 md_wakeup_thread(conf->mddev->thread); 3550 3551 if (head_sh->batch_head && do_endio) 3552 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3553 } 3554 3555 static void handle_stripe_dirtying(struct r5conf *conf, 3556 struct stripe_head *sh, 3557 struct stripe_head_state *s, 3558 int disks) 3559 { 3560 int rmw = 0, rcw = 0, i; 3561 sector_t recovery_cp = conf->mddev->recovery_cp; 3562 3563 /* Check whether resync is now happening or should start. 3564 * If yes, then the array is dirty (after unclean shutdown or 3565 * initial creation), so parity in some stripes might be inconsistent. 3566 * In this case, we need to always do reconstruct-write, to ensure 3567 * that in case of drive failure or read-error correction, we 3568 * generate correct data from the parity. 3569 */ 3570 if (conf->rmw_level == PARITY_DISABLE_RMW || 3571 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3572 s->failed == 0)) { 3573 /* Calculate the real rcw later - for now make it 3574 * look like rcw is cheaper 3575 */ 3576 rcw = 1; rmw = 2; 3577 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3578 conf->rmw_level, (unsigned long long)recovery_cp, 3579 (unsigned long long)sh->sector); 3580 } else for (i = disks; i--; ) { 3581 /* would I have to read this buffer for read_modify_write */ 3582 struct r5dev *dev = &sh->dev[i]; 3583 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3584 !test_bit(R5_LOCKED, &dev->flags) && 3585 !(test_bit(R5_UPTODATE, &dev->flags) || 3586 test_bit(R5_Wantcompute, &dev->flags))) { 3587 if (test_bit(R5_Insync, &dev->flags)) 3588 rmw++; 3589 else 3590 rmw += 2*disks; /* cannot read it */ 3591 } 3592 /* Would I have to read this buffer for reconstruct_write */ 3593 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3594 i != sh->pd_idx && i != sh->qd_idx && 3595 !test_bit(R5_LOCKED, &dev->flags) && 3596 !(test_bit(R5_UPTODATE, &dev->flags) || 3597 test_bit(R5_Wantcompute, &dev->flags))) { 3598 if (test_bit(R5_Insync, &dev->flags)) 3599 rcw++; 3600 else 3601 rcw += 2*disks; 3602 } 3603 } 3604 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3605 (unsigned long long)sh->sector, rmw, rcw); 3606 set_bit(STRIPE_HANDLE, &sh->state); 3607 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 3608 /* prefer read-modify-write, but need to get some data */ 3609 if (conf->mddev->queue) 3610 blk_add_trace_msg(conf->mddev->queue, 3611 "raid5 rmw %llu %d", 3612 (unsigned long long)sh->sector, rmw); 3613 for (i = disks; i--; ) { 3614 struct r5dev *dev = &sh->dev[i]; 3615 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3616 !test_bit(R5_LOCKED, &dev->flags) && 3617 !(test_bit(R5_UPTODATE, &dev->flags) || 3618 test_bit(R5_Wantcompute, &dev->flags)) && 3619 test_bit(R5_Insync, &dev->flags)) { 3620 if (test_bit(STRIPE_PREREAD_ACTIVE, 3621 &sh->state)) { 3622 pr_debug("Read_old block %d for r-m-w\n", 3623 i); 3624 set_bit(R5_LOCKED, &dev->flags); 3625 set_bit(R5_Wantread, &dev->flags); 3626 s->locked++; 3627 } else { 3628 set_bit(STRIPE_DELAYED, &sh->state); 3629 set_bit(STRIPE_HANDLE, &sh->state); 3630 } 3631 } 3632 } 3633 } 3634 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 3635 /* want reconstruct write, but need to get some data */ 3636 int qread =0; 3637 rcw = 0; 3638 for (i = disks; i--; ) { 3639 struct r5dev *dev = &sh->dev[i]; 3640 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3641 i != sh->pd_idx && i != sh->qd_idx && 3642 !test_bit(R5_LOCKED, &dev->flags) && 3643 !(test_bit(R5_UPTODATE, &dev->flags) || 3644 test_bit(R5_Wantcompute, &dev->flags))) { 3645 rcw++; 3646 if (test_bit(R5_Insync, &dev->flags) && 3647 test_bit(STRIPE_PREREAD_ACTIVE, 3648 &sh->state)) { 3649 pr_debug("Read_old block " 3650 "%d for Reconstruct\n", i); 3651 set_bit(R5_LOCKED, &dev->flags); 3652 set_bit(R5_Wantread, &dev->flags); 3653 s->locked++; 3654 qread++; 3655 } else { 3656 set_bit(STRIPE_DELAYED, &sh->state); 3657 set_bit(STRIPE_HANDLE, &sh->state); 3658 } 3659 } 3660 } 3661 if (rcw && conf->mddev->queue) 3662 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3663 (unsigned long long)sh->sector, 3664 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3665 } 3666 3667 if (rcw > disks && rmw > disks && 3668 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3669 set_bit(STRIPE_DELAYED, &sh->state); 3670 3671 /* now if nothing is locked, and if we have enough data, 3672 * we can start a write request 3673 */ 3674 /* since handle_stripe can be called at any time we need to handle the 3675 * case where a compute block operation has been submitted and then a 3676 * subsequent call wants to start a write request. raid_run_ops only 3677 * handles the case where compute block and reconstruct are requested 3678 * simultaneously. If this is not the case then new writes need to be 3679 * held off until the compute completes. 3680 */ 3681 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3682 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3683 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3684 schedule_reconstruction(sh, s, rcw == 0, 0); 3685 } 3686 3687 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3688 struct stripe_head_state *s, int disks) 3689 { 3690 struct r5dev *dev = NULL; 3691 3692 BUG_ON(sh->batch_head); 3693 set_bit(STRIPE_HANDLE, &sh->state); 3694 3695 switch (sh->check_state) { 3696 case check_state_idle: 3697 /* start a new check operation if there are no failures */ 3698 if (s->failed == 0) { 3699 BUG_ON(s->uptodate != disks); 3700 sh->check_state = check_state_run; 3701 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3702 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3703 s->uptodate--; 3704 break; 3705 } 3706 dev = &sh->dev[s->failed_num[0]]; 3707 /* fall through */ 3708 case check_state_compute_result: 3709 sh->check_state = check_state_idle; 3710 if (!dev) 3711 dev = &sh->dev[sh->pd_idx]; 3712 3713 /* check that a write has not made the stripe insync */ 3714 if (test_bit(STRIPE_INSYNC, &sh->state)) 3715 break; 3716 3717 /* either failed parity check, or recovery is happening */ 3718 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3719 BUG_ON(s->uptodate != disks); 3720 3721 set_bit(R5_LOCKED, &dev->flags); 3722 s->locked++; 3723 set_bit(R5_Wantwrite, &dev->flags); 3724 3725 clear_bit(STRIPE_DEGRADED, &sh->state); 3726 set_bit(STRIPE_INSYNC, &sh->state); 3727 break; 3728 case check_state_run: 3729 break; /* we will be called again upon completion */ 3730 case check_state_check_result: 3731 sh->check_state = check_state_idle; 3732 3733 /* if a failure occurred during the check operation, leave 3734 * STRIPE_INSYNC not set and let the stripe be handled again 3735 */ 3736 if (s->failed) 3737 break; 3738 3739 /* handle a successful check operation, if parity is correct 3740 * we are done. Otherwise update the mismatch count and repair 3741 * parity if !MD_RECOVERY_CHECK 3742 */ 3743 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3744 /* parity is correct (on disc, 3745 * not in buffer any more) 3746 */ 3747 set_bit(STRIPE_INSYNC, &sh->state); 3748 else { 3749 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3750 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3751 /* don't try to repair!! */ 3752 set_bit(STRIPE_INSYNC, &sh->state); 3753 else { 3754 sh->check_state = check_state_compute_run; 3755 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3756 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3757 set_bit(R5_Wantcompute, 3758 &sh->dev[sh->pd_idx].flags); 3759 sh->ops.target = sh->pd_idx; 3760 sh->ops.target2 = -1; 3761 s->uptodate++; 3762 } 3763 } 3764 break; 3765 case check_state_compute_run: 3766 break; 3767 default: 3768 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3769 __func__, sh->check_state, 3770 (unsigned long long) sh->sector); 3771 BUG(); 3772 } 3773 } 3774 3775 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3776 struct stripe_head_state *s, 3777 int disks) 3778 { 3779 int pd_idx = sh->pd_idx; 3780 int qd_idx = sh->qd_idx; 3781 struct r5dev *dev; 3782 3783 BUG_ON(sh->batch_head); 3784 set_bit(STRIPE_HANDLE, &sh->state); 3785 3786 BUG_ON(s->failed > 2); 3787 3788 /* Want to check and possibly repair P and Q. 3789 * However there could be one 'failed' device, in which 3790 * case we can only check one of them, possibly using the 3791 * other to generate missing data 3792 */ 3793 3794 switch (sh->check_state) { 3795 case check_state_idle: 3796 /* start a new check operation if there are < 2 failures */ 3797 if (s->failed == s->q_failed) { 3798 /* The only possible failed device holds Q, so it 3799 * makes sense to check P (If anything else were failed, 3800 * we would have used P to recreate it). 3801 */ 3802 sh->check_state = check_state_run; 3803 } 3804 if (!s->q_failed && s->failed < 2) { 3805 /* Q is not failed, and we didn't use it to generate 3806 * anything, so it makes sense to check it 3807 */ 3808 if (sh->check_state == check_state_run) 3809 sh->check_state = check_state_run_pq; 3810 else 3811 sh->check_state = check_state_run_q; 3812 } 3813 3814 /* discard potentially stale zero_sum_result */ 3815 sh->ops.zero_sum_result = 0; 3816 3817 if (sh->check_state == check_state_run) { 3818 /* async_xor_zero_sum destroys the contents of P */ 3819 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3820 s->uptodate--; 3821 } 3822 if (sh->check_state >= check_state_run && 3823 sh->check_state <= check_state_run_pq) { 3824 /* async_syndrome_zero_sum preserves P and Q, so 3825 * no need to mark them !uptodate here 3826 */ 3827 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3828 break; 3829 } 3830 3831 /* we have 2-disk failure */ 3832 BUG_ON(s->failed != 2); 3833 /* fall through */ 3834 case check_state_compute_result: 3835 sh->check_state = check_state_idle; 3836 3837 /* check that a write has not made the stripe insync */ 3838 if (test_bit(STRIPE_INSYNC, &sh->state)) 3839 break; 3840 3841 /* now write out any block on a failed drive, 3842 * or P or Q if they were recomputed 3843 */ 3844 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3845 if (s->failed == 2) { 3846 dev = &sh->dev[s->failed_num[1]]; 3847 s->locked++; 3848 set_bit(R5_LOCKED, &dev->flags); 3849 set_bit(R5_Wantwrite, &dev->flags); 3850 } 3851 if (s->failed >= 1) { 3852 dev = &sh->dev[s->failed_num[0]]; 3853 s->locked++; 3854 set_bit(R5_LOCKED, &dev->flags); 3855 set_bit(R5_Wantwrite, &dev->flags); 3856 } 3857 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3858 dev = &sh->dev[pd_idx]; 3859 s->locked++; 3860 set_bit(R5_LOCKED, &dev->flags); 3861 set_bit(R5_Wantwrite, &dev->flags); 3862 } 3863 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3864 dev = &sh->dev[qd_idx]; 3865 s->locked++; 3866 set_bit(R5_LOCKED, &dev->flags); 3867 set_bit(R5_Wantwrite, &dev->flags); 3868 } 3869 clear_bit(STRIPE_DEGRADED, &sh->state); 3870 3871 set_bit(STRIPE_INSYNC, &sh->state); 3872 break; 3873 case check_state_run: 3874 case check_state_run_q: 3875 case check_state_run_pq: 3876 break; /* we will be called again upon completion */ 3877 case check_state_check_result: 3878 sh->check_state = check_state_idle; 3879 3880 /* handle a successful check operation, if parity is correct 3881 * we are done. Otherwise update the mismatch count and repair 3882 * parity if !MD_RECOVERY_CHECK 3883 */ 3884 if (sh->ops.zero_sum_result == 0) { 3885 /* both parities are correct */ 3886 if (!s->failed) 3887 set_bit(STRIPE_INSYNC, &sh->state); 3888 else { 3889 /* in contrast to the raid5 case we can validate 3890 * parity, but still have a failure to write 3891 * back 3892 */ 3893 sh->check_state = check_state_compute_result; 3894 /* Returning at this point means that we may go 3895 * off and bring p and/or q uptodate again so 3896 * we make sure to check zero_sum_result again 3897 * to verify if p or q need writeback 3898 */ 3899 } 3900 } else { 3901 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3902 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3903 /* don't try to repair!! */ 3904 set_bit(STRIPE_INSYNC, &sh->state); 3905 else { 3906 int *target = &sh->ops.target; 3907 3908 sh->ops.target = -1; 3909 sh->ops.target2 = -1; 3910 sh->check_state = check_state_compute_run; 3911 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3912 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3913 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3914 set_bit(R5_Wantcompute, 3915 &sh->dev[pd_idx].flags); 3916 *target = pd_idx; 3917 target = &sh->ops.target2; 3918 s->uptodate++; 3919 } 3920 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3921 set_bit(R5_Wantcompute, 3922 &sh->dev[qd_idx].flags); 3923 *target = qd_idx; 3924 s->uptodate++; 3925 } 3926 } 3927 } 3928 break; 3929 case check_state_compute_run: 3930 break; 3931 default: 3932 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3933 __func__, sh->check_state, 3934 (unsigned long long) sh->sector); 3935 BUG(); 3936 } 3937 } 3938 3939 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3940 { 3941 int i; 3942 3943 /* We have read all the blocks in this stripe and now we need to 3944 * copy some of them into a target stripe for expand. 3945 */ 3946 struct dma_async_tx_descriptor *tx = NULL; 3947 BUG_ON(sh->batch_head); 3948 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3949 for (i = 0; i < sh->disks; i++) 3950 if (i != sh->pd_idx && i != sh->qd_idx) { 3951 int dd_idx, j; 3952 struct stripe_head *sh2; 3953 struct async_submit_ctl submit; 3954 3955 sector_t bn = raid5_compute_blocknr(sh, i, 1); 3956 sector_t s = raid5_compute_sector(conf, bn, 0, 3957 &dd_idx, NULL); 3958 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 3959 if (sh2 == NULL) 3960 /* so far only the early blocks of this stripe 3961 * have been requested. When later blocks 3962 * get requested, we will try again 3963 */ 3964 continue; 3965 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3966 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3967 /* must have already done this block */ 3968 raid5_release_stripe(sh2); 3969 continue; 3970 } 3971 3972 /* place all the copies on one channel */ 3973 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3974 tx = async_memcpy(sh2->dev[dd_idx].page, 3975 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3976 &submit); 3977 3978 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3979 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3980 for (j = 0; j < conf->raid_disks; j++) 3981 if (j != sh2->pd_idx && 3982 j != sh2->qd_idx && 3983 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3984 break; 3985 if (j == conf->raid_disks) { 3986 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3987 set_bit(STRIPE_HANDLE, &sh2->state); 3988 } 3989 raid5_release_stripe(sh2); 3990 3991 } 3992 /* done submitting copies, wait for them to complete */ 3993 async_tx_quiesce(&tx); 3994 } 3995 3996 /* 3997 * handle_stripe - do things to a stripe. 3998 * 3999 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4000 * state of various bits to see what needs to be done. 4001 * Possible results: 4002 * return some read requests which now have data 4003 * return some write requests which are safely on storage 4004 * schedule a read on some buffers 4005 * schedule a write of some buffers 4006 * return confirmation of parity correctness 4007 * 4008 */ 4009 4010 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4011 { 4012 struct r5conf *conf = sh->raid_conf; 4013 int disks = sh->disks; 4014 struct r5dev *dev; 4015 int i; 4016 int do_recovery = 0; 4017 4018 memset(s, 0, sizeof(*s)); 4019 4020 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4021 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4022 s->failed_num[0] = -1; 4023 s->failed_num[1] = -1; 4024 s->log_failed = r5l_log_disk_error(conf); 4025 4026 /* Now to look around and see what can be done */ 4027 rcu_read_lock(); 4028 for (i=disks; i--; ) { 4029 struct md_rdev *rdev; 4030 sector_t first_bad; 4031 int bad_sectors; 4032 int is_bad = 0; 4033 4034 dev = &sh->dev[i]; 4035 4036 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4037 i, dev->flags, 4038 dev->toread, dev->towrite, dev->written); 4039 /* maybe we can reply to a read 4040 * 4041 * new wantfill requests are only permitted while 4042 * ops_complete_biofill is guaranteed to be inactive 4043 */ 4044 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4045 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4046 set_bit(R5_Wantfill, &dev->flags); 4047 4048 /* now count some things */ 4049 if (test_bit(R5_LOCKED, &dev->flags)) 4050 s->locked++; 4051 if (test_bit(R5_UPTODATE, &dev->flags)) 4052 s->uptodate++; 4053 if (test_bit(R5_Wantcompute, &dev->flags)) { 4054 s->compute++; 4055 BUG_ON(s->compute > 2); 4056 } 4057 4058 if (test_bit(R5_Wantfill, &dev->flags)) 4059 s->to_fill++; 4060 else if (dev->toread) 4061 s->to_read++; 4062 if (dev->towrite) { 4063 s->to_write++; 4064 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4065 s->non_overwrite++; 4066 } 4067 if (dev->written) 4068 s->written++; 4069 /* Prefer to use the replacement for reads, but only 4070 * if it is recovered enough and has no bad blocks. 4071 */ 4072 rdev = rcu_dereference(conf->disks[i].replacement); 4073 if (rdev && !test_bit(Faulty, &rdev->flags) && 4074 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4075 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4076 &first_bad, &bad_sectors)) 4077 set_bit(R5_ReadRepl, &dev->flags); 4078 else { 4079 if (rdev && !test_bit(Faulty, &rdev->flags)) 4080 set_bit(R5_NeedReplace, &dev->flags); 4081 else 4082 clear_bit(R5_NeedReplace, &dev->flags); 4083 rdev = rcu_dereference(conf->disks[i].rdev); 4084 clear_bit(R5_ReadRepl, &dev->flags); 4085 } 4086 if (rdev && test_bit(Faulty, &rdev->flags)) 4087 rdev = NULL; 4088 if (rdev) { 4089 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4090 &first_bad, &bad_sectors); 4091 if (s->blocked_rdev == NULL 4092 && (test_bit(Blocked, &rdev->flags) 4093 || is_bad < 0)) { 4094 if (is_bad < 0) 4095 set_bit(BlockedBadBlocks, 4096 &rdev->flags); 4097 s->blocked_rdev = rdev; 4098 atomic_inc(&rdev->nr_pending); 4099 } 4100 } 4101 clear_bit(R5_Insync, &dev->flags); 4102 if (!rdev) 4103 /* Not in-sync */; 4104 else if (is_bad) { 4105 /* also not in-sync */ 4106 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4107 test_bit(R5_UPTODATE, &dev->flags)) { 4108 /* treat as in-sync, but with a read error 4109 * which we can now try to correct 4110 */ 4111 set_bit(R5_Insync, &dev->flags); 4112 set_bit(R5_ReadError, &dev->flags); 4113 } 4114 } else if (test_bit(In_sync, &rdev->flags)) 4115 set_bit(R5_Insync, &dev->flags); 4116 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4117 /* in sync if before recovery_offset */ 4118 set_bit(R5_Insync, &dev->flags); 4119 else if (test_bit(R5_UPTODATE, &dev->flags) && 4120 test_bit(R5_Expanded, &dev->flags)) 4121 /* If we've reshaped into here, we assume it is Insync. 4122 * We will shortly update recovery_offset to make 4123 * it official. 4124 */ 4125 set_bit(R5_Insync, &dev->flags); 4126 4127 if (test_bit(R5_WriteError, &dev->flags)) { 4128 /* This flag does not apply to '.replacement' 4129 * only to .rdev, so make sure to check that*/ 4130 struct md_rdev *rdev2 = rcu_dereference( 4131 conf->disks[i].rdev); 4132 if (rdev2 == rdev) 4133 clear_bit(R5_Insync, &dev->flags); 4134 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4135 s->handle_bad_blocks = 1; 4136 atomic_inc(&rdev2->nr_pending); 4137 } else 4138 clear_bit(R5_WriteError, &dev->flags); 4139 } 4140 if (test_bit(R5_MadeGood, &dev->flags)) { 4141 /* This flag does not apply to '.replacement' 4142 * only to .rdev, so make sure to check that*/ 4143 struct md_rdev *rdev2 = rcu_dereference( 4144 conf->disks[i].rdev); 4145 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4146 s->handle_bad_blocks = 1; 4147 atomic_inc(&rdev2->nr_pending); 4148 } else 4149 clear_bit(R5_MadeGood, &dev->flags); 4150 } 4151 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4152 struct md_rdev *rdev2 = rcu_dereference( 4153 conf->disks[i].replacement); 4154 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4155 s->handle_bad_blocks = 1; 4156 atomic_inc(&rdev2->nr_pending); 4157 } else 4158 clear_bit(R5_MadeGoodRepl, &dev->flags); 4159 } 4160 if (!test_bit(R5_Insync, &dev->flags)) { 4161 /* The ReadError flag will just be confusing now */ 4162 clear_bit(R5_ReadError, &dev->flags); 4163 clear_bit(R5_ReWrite, &dev->flags); 4164 } 4165 if (test_bit(R5_ReadError, &dev->flags)) 4166 clear_bit(R5_Insync, &dev->flags); 4167 if (!test_bit(R5_Insync, &dev->flags)) { 4168 if (s->failed < 2) 4169 s->failed_num[s->failed] = i; 4170 s->failed++; 4171 if (rdev && !test_bit(Faulty, &rdev->flags)) 4172 do_recovery = 1; 4173 } 4174 } 4175 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4176 /* If there is a failed device being replaced, 4177 * we must be recovering. 4178 * else if we are after recovery_cp, we must be syncing 4179 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4180 * else we can only be replacing 4181 * sync and recovery both need to read all devices, and so 4182 * use the same flag. 4183 */ 4184 if (do_recovery || 4185 sh->sector >= conf->mddev->recovery_cp || 4186 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4187 s->syncing = 1; 4188 else 4189 s->replacing = 1; 4190 } 4191 rcu_read_unlock(); 4192 } 4193 4194 static int clear_batch_ready(struct stripe_head *sh) 4195 { 4196 /* Return '1' if this is a member of batch, or 4197 * '0' if it is a lone stripe or a head which can now be 4198 * handled. 4199 */ 4200 struct stripe_head *tmp; 4201 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4202 return (sh->batch_head && sh->batch_head != sh); 4203 spin_lock(&sh->stripe_lock); 4204 if (!sh->batch_head) { 4205 spin_unlock(&sh->stripe_lock); 4206 return 0; 4207 } 4208 4209 /* 4210 * this stripe could be added to a batch list before we check 4211 * BATCH_READY, skips it 4212 */ 4213 if (sh->batch_head != sh) { 4214 spin_unlock(&sh->stripe_lock); 4215 return 1; 4216 } 4217 spin_lock(&sh->batch_lock); 4218 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4219 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4220 spin_unlock(&sh->batch_lock); 4221 spin_unlock(&sh->stripe_lock); 4222 4223 /* 4224 * BATCH_READY is cleared, no new stripes can be added. 4225 * batch_list can be accessed without lock 4226 */ 4227 return 0; 4228 } 4229 4230 static void break_stripe_batch_list(struct stripe_head *head_sh, 4231 unsigned long handle_flags) 4232 { 4233 struct stripe_head *sh, *next; 4234 int i; 4235 int do_wakeup = 0; 4236 4237 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4238 4239 list_del_init(&sh->batch_list); 4240 4241 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4242 (1 << STRIPE_SYNCING) | 4243 (1 << STRIPE_REPLACED) | 4244 (1 << STRIPE_DELAYED) | 4245 (1 << STRIPE_BIT_DELAY) | 4246 (1 << STRIPE_FULL_WRITE) | 4247 (1 << STRIPE_BIOFILL_RUN) | 4248 (1 << STRIPE_COMPUTE_RUN) | 4249 (1 << STRIPE_OPS_REQ_PENDING) | 4250 (1 << STRIPE_DISCARD) | 4251 (1 << STRIPE_BATCH_READY) | 4252 (1 << STRIPE_BATCH_ERR) | 4253 (1 << STRIPE_BITMAP_PENDING)), 4254 "stripe state: %lx\n", sh->state); 4255 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4256 (1 << STRIPE_REPLACED)), 4257 "head stripe state: %lx\n", head_sh->state); 4258 4259 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4260 (1 << STRIPE_PREREAD_ACTIVE) | 4261 (1 << STRIPE_DEGRADED)), 4262 head_sh->state & (1 << STRIPE_INSYNC)); 4263 4264 sh->check_state = head_sh->check_state; 4265 sh->reconstruct_state = head_sh->reconstruct_state; 4266 for (i = 0; i < sh->disks; i++) { 4267 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4268 do_wakeup = 1; 4269 sh->dev[i].flags = head_sh->dev[i].flags & 4270 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4271 } 4272 spin_lock_irq(&sh->stripe_lock); 4273 sh->batch_head = NULL; 4274 spin_unlock_irq(&sh->stripe_lock); 4275 if (handle_flags == 0 || 4276 sh->state & handle_flags) 4277 set_bit(STRIPE_HANDLE, &sh->state); 4278 raid5_release_stripe(sh); 4279 } 4280 spin_lock_irq(&head_sh->stripe_lock); 4281 head_sh->batch_head = NULL; 4282 spin_unlock_irq(&head_sh->stripe_lock); 4283 for (i = 0; i < head_sh->disks; i++) 4284 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4285 do_wakeup = 1; 4286 if (head_sh->state & handle_flags) 4287 set_bit(STRIPE_HANDLE, &head_sh->state); 4288 4289 if (do_wakeup) 4290 wake_up(&head_sh->raid_conf->wait_for_overlap); 4291 } 4292 4293 static void handle_stripe(struct stripe_head *sh) 4294 { 4295 struct stripe_head_state s; 4296 struct r5conf *conf = sh->raid_conf; 4297 int i; 4298 int prexor; 4299 int disks = sh->disks; 4300 struct r5dev *pdev, *qdev; 4301 4302 clear_bit(STRIPE_HANDLE, &sh->state); 4303 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4304 /* already being handled, ensure it gets handled 4305 * again when current action finishes */ 4306 set_bit(STRIPE_HANDLE, &sh->state); 4307 return; 4308 } 4309 4310 if (clear_batch_ready(sh) ) { 4311 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4312 return; 4313 } 4314 4315 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4316 break_stripe_batch_list(sh, 0); 4317 4318 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4319 spin_lock(&sh->stripe_lock); 4320 /* Cannot process 'sync' concurrently with 'discard' */ 4321 if (!test_bit(STRIPE_DISCARD, &sh->state) && 4322 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4323 set_bit(STRIPE_SYNCING, &sh->state); 4324 clear_bit(STRIPE_INSYNC, &sh->state); 4325 clear_bit(STRIPE_REPLACED, &sh->state); 4326 } 4327 spin_unlock(&sh->stripe_lock); 4328 } 4329 clear_bit(STRIPE_DELAYED, &sh->state); 4330 4331 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4332 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4333 (unsigned long long)sh->sector, sh->state, 4334 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4335 sh->check_state, sh->reconstruct_state); 4336 4337 analyse_stripe(sh, &s); 4338 4339 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4340 goto finish; 4341 4342 if (s.handle_bad_blocks) { 4343 set_bit(STRIPE_HANDLE, &sh->state); 4344 goto finish; 4345 } 4346 4347 if (unlikely(s.blocked_rdev)) { 4348 if (s.syncing || s.expanding || s.expanded || 4349 s.replacing || s.to_write || s.written) { 4350 set_bit(STRIPE_HANDLE, &sh->state); 4351 goto finish; 4352 } 4353 /* There is nothing for the blocked_rdev to block */ 4354 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4355 s.blocked_rdev = NULL; 4356 } 4357 4358 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4359 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4360 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4361 } 4362 4363 pr_debug("locked=%d uptodate=%d to_read=%d" 4364 " to_write=%d failed=%d failed_num=%d,%d\n", 4365 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4366 s.failed_num[0], s.failed_num[1]); 4367 /* check if the array has lost more than max_degraded devices and, 4368 * if so, some requests might need to be failed. 4369 */ 4370 if (s.failed > conf->max_degraded || s.log_failed) { 4371 sh->check_state = 0; 4372 sh->reconstruct_state = 0; 4373 break_stripe_batch_list(sh, 0); 4374 if (s.to_read+s.to_write+s.written) 4375 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 4376 if (s.syncing + s.replacing) 4377 handle_failed_sync(conf, sh, &s); 4378 } 4379 4380 /* Now we check to see if any write operations have recently 4381 * completed 4382 */ 4383 prexor = 0; 4384 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4385 prexor = 1; 4386 if (sh->reconstruct_state == reconstruct_state_drain_result || 4387 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4388 sh->reconstruct_state = reconstruct_state_idle; 4389 4390 /* All the 'written' buffers and the parity block are ready to 4391 * be written back to disk 4392 */ 4393 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4394 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4395 BUG_ON(sh->qd_idx >= 0 && 4396 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4397 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4398 for (i = disks; i--; ) { 4399 struct r5dev *dev = &sh->dev[i]; 4400 if (test_bit(R5_LOCKED, &dev->flags) && 4401 (i == sh->pd_idx || i == sh->qd_idx || 4402 dev->written)) { 4403 pr_debug("Writing block %d\n", i); 4404 set_bit(R5_Wantwrite, &dev->flags); 4405 if (prexor) 4406 continue; 4407 if (s.failed > 1) 4408 continue; 4409 if (!test_bit(R5_Insync, &dev->flags) || 4410 ((i == sh->pd_idx || i == sh->qd_idx) && 4411 s.failed == 0)) 4412 set_bit(STRIPE_INSYNC, &sh->state); 4413 } 4414 } 4415 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4416 s.dec_preread_active = 1; 4417 } 4418 4419 /* 4420 * might be able to return some write requests if the parity blocks 4421 * are safe, or on a failed drive 4422 */ 4423 pdev = &sh->dev[sh->pd_idx]; 4424 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4425 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4426 qdev = &sh->dev[sh->qd_idx]; 4427 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4428 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4429 || conf->level < 6; 4430 4431 if (s.written && 4432 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4433 && !test_bit(R5_LOCKED, &pdev->flags) 4434 && (test_bit(R5_UPTODATE, &pdev->flags) || 4435 test_bit(R5_Discard, &pdev->flags))))) && 4436 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4437 && !test_bit(R5_LOCKED, &qdev->flags) 4438 && (test_bit(R5_UPTODATE, &qdev->flags) || 4439 test_bit(R5_Discard, &qdev->flags)))))) 4440 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 4441 4442 /* Now we might consider reading some blocks, either to check/generate 4443 * parity, or to satisfy requests 4444 * or to load a block that is being partially written. 4445 */ 4446 if (s.to_read || s.non_overwrite 4447 || (conf->level == 6 && s.to_write && s.failed) 4448 || (s.syncing && (s.uptodate + s.compute < disks)) 4449 || s.replacing 4450 || s.expanding) 4451 handle_stripe_fill(sh, &s, disks); 4452 4453 /* Now to consider new write requests and what else, if anything 4454 * should be read. We do not handle new writes when: 4455 * 1/ A 'write' operation (copy+xor) is already in flight. 4456 * 2/ A 'check' operation is in flight, as it may clobber the parity 4457 * block. 4458 */ 4459 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 4460 handle_stripe_dirtying(conf, sh, &s, disks); 4461 4462 /* maybe we need to check and possibly fix the parity for this stripe 4463 * Any reads will already have been scheduled, so we just see if enough 4464 * data is available. The parity check is held off while parity 4465 * dependent operations are in flight. 4466 */ 4467 if (sh->check_state || 4468 (s.syncing && s.locked == 0 && 4469 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4470 !test_bit(STRIPE_INSYNC, &sh->state))) { 4471 if (conf->level == 6) 4472 handle_parity_checks6(conf, sh, &s, disks); 4473 else 4474 handle_parity_checks5(conf, sh, &s, disks); 4475 } 4476 4477 if ((s.replacing || s.syncing) && s.locked == 0 4478 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4479 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4480 /* Write out to replacement devices where possible */ 4481 for (i = 0; i < conf->raid_disks; i++) 4482 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4483 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4484 set_bit(R5_WantReplace, &sh->dev[i].flags); 4485 set_bit(R5_LOCKED, &sh->dev[i].flags); 4486 s.locked++; 4487 } 4488 if (s.replacing) 4489 set_bit(STRIPE_INSYNC, &sh->state); 4490 set_bit(STRIPE_REPLACED, &sh->state); 4491 } 4492 if ((s.syncing || s.replacing) && s.locked == 0 && 4493 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4494 test_bit(STRIPE_INSYNC, &sh->state)) { 4495 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4496 clear_bit(STRIPE_SYNCING, &sh->state); 4497 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4498 wake_up(&conf->wait_for_overlap); 4499 } 4500 4501 /* If the failed drives are just a ReadError, then we might need 4502 * to progress the repair/check process 4503 */ 4504 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4505 for (i = 0; i < s.failed; i++) { 4506 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4507 if (test_bit(R5_ReadError, &dev->flags) 4508 && !test_bit(R5_LOCKED, &dev->flags) 4509 && test_bit(R5_UPTODATE, &dev->flags) 4510 ) { 4511 if (!test_bit(R5_ReWrite, &dev->flags)) { 4512 set_bit(R5_Wantwrite, &dev->flags); 4513 set_bit(R5_ReWrite, &dev->flags); 4514 set_bit(R5_LOCKED, &dev->flags); 4515 s.locked++; 4516 } else { 4517 /* let's read it back */ 4518 set_bit(R5_Wantread, &dev->flags); 4519 set_bit(R5_LOCKED, &dev->flags); 4520 s.locked++; 4521 } 4522 } 4523 } 4524 4525 /* Finish reconstruct operations initiated by the expansion process */ 4526 if (sh->reconstruct_state == reconstruct_state_result) { 4527 struct stripe_head *sh_src 4528 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4529 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4530 /* sh cannot be written until sh_src has been read. 4531 * so arrange for sh to be delayed a little 4532 */ 4533 set_bit(STRIPE_DELAYED, &sh->state); 4534 set_bit(STRIPE_HANDLE, &sh->state); 4535 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4536 &sh_src->state)) 4537 atomic_inc(&conf->preread_active_stripes); 4538 raid5_release_stripe(sh_src); 4539 goto finish; 4540 } 4541 if (sh_src) 4542 raid5_release_stripe(sh_src); 4543 4544 sh->reconstruct_state = reconstruct_state_idle; 4545 clear_bit(STRIPE_EXPANDING, &sh->state); 4546 for (i = conf->raid_disks; i--; ) { 4547 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4548 set_bit(R5_LOCKED, &sh->dev[i].flags); 4549 s.locked++; 4550 } 4551 } 4552 4553 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4554 !sh->reconstruct_state) { 4555 /* Need to write out all blocks after computing parity */ 4556 sh->disks = conf->raid_disks; 4557 stripe_set_idx(sh->sector, conf, 0, sh); 4558 schedule_reconstruction(sh, &s, 1, 1); 4559 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4560 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4561 atomic_dec(&conf->reshape_stripes); 4562 wake_up(&conf->wait_for_overlap); 4563 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4564 } 4565 4566 if (s.expanding && s.locked == 0 && 4567 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4568 handle_stripe_expansion(conf, sh); 4569 4570 finish: 4571 /* wait for this device to become unblocked */ 4572 if (unlikely(s.blocked_rdev)) { 4573 if (conf->mddev->external) 4574 md_wait_for_blocked_rdev(s.blocked_rdev, 4575 conf->mddev); 4576 else 4577 /* Internal metadata will immediately 4578 * be written by raid5d, so we don't 4579 * need to wait here. 4580 */ 4581 rdev_dec_pending(s.blocked_rdev, 4582 conf->mddev); 4583 } 4584 4585 if (s.handle_bad_blocks) 4586 for (i = disks; i--; ) { 4587 struct md_rdev *rdev; 4588 struct r5dev *dev = &sh->dev[i]; 4589 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4590 /* We own a safe reference to the rdev */ 4591 rdev = conf->disks[i].rdev; 4592 if (!rdev_set_badblocks(rdev, sh->sector, 4593 STRIPE_SECTORS, 0)) 4594 md_error(conf->mddev, rdev); 4595 rdev_dec_pending(rdev, conf->mddev); 4596 } 4597 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4598 rdev = conf->disks[i].rdev; 4599 rdev_clear_badblocks(rdev, sh->sector, 4600 STRIPE_SECTORS, 0); 4601 rdev_dec_pending(rdev, conf->mddev); 4602 } 4603 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4604 rdev = conf->disks[i].replacement; 4605 if (!rdev) 4606 /* rdev have been moved down */ 4607 rdev = conf->disks[i].rdev; 4608 rdev_clear_badblocks(rdev, sh->sector, 4609 STRIPE_SECTORS, 0); 4610 rdev_dec_pending(rdev, conf->mddev); 4611 } 4612 } 4613 4614 if (s.ops_request) 4615 raid_run_ops(sh, s.ops_request); 4616 4617 ops_run_io(sh, &s); 4618 4619 if (s.dec_preread_active) { 4620 /* We delay this until after ops_run_io so that if make_request 4621 * is waiting on a flush, it won't continue until the writes 4622 * have actually been submitted. 4623 */ 4624 atomic_dec(&conf->preread_active_stripes); 4625 if (atomic_read(&conf->preread_active_stripes) < 4626 IO_THRESHOLD) 4627 md_wakeup_thread(conf->mddev->thread); 4628 } 4629 4630 if (!bio_list_empty(&s.return_bi)) { 4631 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) { 4632 spin_lock_irq(&conf->device_lock); 4633 bio_list_merge(&conf->return_bi, &s.return_bi); 4634 spin_unlock_irq(&conf->device_lock); 4635 md_wakeup_thread(conf->mddev->thread); 4636 } else 4637 return_io(&s.return_bi); 4638 } 4639 4640 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4641 } 4642 4643 static void raid5_activate_delayed(struct r5conf *conf) 4644 { 4645 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4646 while (!list_empty(&conf->delayed_list)) { 4647 struct list_head *l = conf->delayed_list.next; 4648 struct stripe_head *sh; 4649 sh = list_entry(l, struct stripe_head, lru); 4650 list_del_init(l); 4651 clear_bit(STRIPE_DELAYED, &sh->state); 4652 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4653 atomic_inc(&conf->preread_active_stripes); 4654 list_add_tail(&sh->lru, &conf->hold_list); 4655 raid5_wakeup_stripe_thread(sh); 4656 } 4657 } 4658 } 4659 4660 static void activate_bit_delay(struct r5conf *conf, 4661 struct list_head *temp_inactive_list) 4662 { 4663 /* device_lock is held */ 4664 struct list_head head; 4665 list_add(&head, &conf->bitmap_list); 4666 list_del_init(&conf->bitmap_list); 4667 while (!list_empty(&head)) { 4668 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4669 int hash; 4670 list_del_init(&sh->lru); 4671 atomic_inc(&sh->count); 4672 hash = sh->hash_lock_index; 4673 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4674 } 4675 } 4676 4677 static int raid5_congested(struct mddev *mddev, int bits) 4678 { 4679 struct r5conf *conf = mddev->private; 4680 4681 /* No difference between reads and writes. Just check 4682 * how busy the stripe_cache is 4683 */ 4684 4685 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 4686 return 1; 4687 if (conf->quiesce) 4688 return 1; 4689 if (atomic_read(&conf->empty_inactive_list_nr)) 4690 return 1; 4691 4692 return 0; 4693 } 4694 4695 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4696 { 4697 struct r5conf *conf = mddev->private; 4698 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); 4699 unsigned int chunk_sectors; 4700 unsigned int bio_sectors = bio_sectors(bio); 4701 4702 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 4703 return chunk_sectors >= 4704 ((sector & (chunk_sectors - 1)) + bio_sectors); 4705 } 4706 4707 /* 4708 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4709 * later sampled by raid5d. 4710 */ 4711 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4712 { 4713 unsigned long flags; 4714 4715 spin_lock_irqsave(&conf->device_lock, flags); 4716 4717 bi->bi_next = conf->retry_read_aligned_list; 4718 conf->retry_read_aligned_list = bi; 4719 4720 spin_unlock_irqrestore(&conf->device_lock, flags); 4721 md_wakeup_thread(conf->mddev->thread); 4722 } 4723 4724 static struct bio *remove_bio_from_retry(struct r5conf *conf) 4725 { 4726 struct bio *bi; 4727 4728 bi = conf->retry_read_aligned; 4729 if (bi) { 4730 conf->retry_read_aligned = NULL; 4731 return bi; 4732 } 4733 bi = conf->retry_read_aligned_list; 4734 if(bi) { 4735 conf->retry_read_aligned_list = bi->bi_next; 4736 bi->bi_next = NULL; 4737 /* 4738 * this sets the active strip count to 1 and the processed 4739 * strip count to zero (upper 8 bits) 4740 */ 4741 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4742 } 4743 4744 return bi; 4745 } 4746 4747 /* 4748 * The "raid5_align_endio" should check if the read succeeded and if it 4749 * did, call bio_endio on the original bio (having bio_put the new bio 4750 * first). 4751 * If the read failed.. 4752 */ 4753 static void raid5_align_endio(struct bio *bi) 4754 { 4755 struct bio* raid_bi = bi->bi_private; 4756 struct mddev *mddev; 4757 struct r5conf *conf; 4758 struct md_rdev *rdev; 4759 int error = bi->bi_error; 4760 4761 bio_put(bi); 4762 4763 rdev = (void*)raid_bi->bi_next; 4764 raid_bi->bi_next = NULL; 4765 mddev = rdev->mddev; 4766 conf = mddev->private; 4767 4768 rdev_dec_pending(rdev, conf->mddev); 4769 4770 if (!error) { 4771 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4772 raid_bi, 0); 4773 bio_endio(raid_bi); 4774 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4775 wake_up(&conf->wait_for_quiescent); 4776 return; 4777 } 4778 4779 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4780 4781 add_bio_to_retry(raid_bi, conf); 4782 } 4783 4784 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 4785 { 4786 struct r5conf *conf = mddev->private; 4787 int dd_idx; 4788 struct bio* align_bi; 4789 struct md_rdev *rdev; 4790 sector_t end_sector; 4791 4792 if (!in_chunk_boundary(mddev, raid_bio)) { 4793 pr_debug("%s: non aligned\n", __func__); 4794 return 0; 4795 } 4796 /* 4797 * use bio_clone_mddev to make a copy of the bio 4798 */ 4799 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4800 if (!align_bi) 4801 return 0; 4802 /* 4803 * set bi_end_io to a new function, and set bi_private to the 4804 * original bio. 4805 */ 4806 align_bi->bi_end_io = raid5_align_endio; 4807 align_bi->bi_private = raid_bio; 4808 /* 4809 * compute position 4810 */ 4811 align_bi->bi_iter.bi_sector = 4812 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 4813 0, &dd_idx, NULL); 4814 4815 end_sector = bio_end_sector(align_bi); 4816 rcu_read_lock(); 4817 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4818 if (!rdev || test_bit(Faulty, &rdev->flags) || 4819 rdev->recovery_offset < end_sector) { 4820 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4821 if (rdev && 4822 (test_bit(Faulty, &rdev->flags) || 4823 !(test_bit(In_sync, &rdev->flags) || 4824 rdev->recovery_offset >= end_sector))) 4825 rdev = NULL; 4826 } 4827 if (rdev) { 4828 sector_t first_bad; 4829 int bad_sectors; 4830 4831 atomic_inc(&rdev->nr_pending); 4832 rcu_read_unlock(); 4833 raid_bio->bi_next = (void*)rdev; 4834 align_bi->bi_bdev = rdev->bdev; 4835 bio_clear_flag(align_bi, BIO_SEG_VALID); 4836 4837 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 4838 bio_sectors(align_bi), 4839 &first_bad, &bad_sectors)) { 4840 bio_put(align_bi); 4841 rdev_dec_pending(rdev, mddev); 4842 return 0; 4843 } 4844 4845 /* No reshape active, so we can trust rdev->data_offset */ 4846 align_bi->bi_iter.bi_sector += rdev->data_offset; 4847 4848 spin_lock_irq(&conf->device_lock); 4849 wait_event_lock_irq(conf->wait_for_quiescent, 4850 conf->quiesce == 0, 4851 conf->device_lock); 4852 atomic_inc(&conf->active_aligned_reads); 4853 spin_unlock_irq(&conf->device_lock); 4854 4855 if (mddev->gendisk) 4856 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4857 align_bi, disk_devt(mddev->gendisk), 4858 raid_bio->bi_iter.bi_sector); 4859 generic_make_request(align_bi); 4860 return 1; 4861 } else { 4862 rcu_read_unlock(); 4863 bio_put(align_bi); 4864 return 0; 4865 } 4866 } 4867 4868 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 4869 { 4870 struct bio *split; 4871 4872 do { 4873 sector_t sector = raid_bio->bi_iter.bi_sector; 4874 unsigned chunk_sects = mddev->chunk_sectors; 4875 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 4876 4877 if (sectors < bio_sectors(raid_bio)) { 4878 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set); 4879 bio_chain(split, raid_bio); 4880 } else 4881 split = raid_bio; 4882 4883 if (!raid5_read_one_chunk(mddev, split)) { 4884 if (split != raid_bio) 4885 generic_make_request(raid_bio); 4886 return split; 4887 } 4888 } while (split != raid_bio); 4889 4890 return NULL; 4891 } 4892 4893 /* __get_priority_stripe - get the next stripe to process 4894 * 4895 * Full stripe writes are allowed to pass preread active stripes up until 4896 * the bypass_threshold is exceeded. In general the bypass_count 4897 * increments when the handle_list is handled before the hold_list; however, it 4898 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4899 * stripe with in flight i/o. The bypass_count will be reset when the 4900 * head of the hold_list has changed, i.e. the head was promoted to the 4901 * handle_list. 4902 */ 4903 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4904 { 4905 struct stripe_head *sh = NULL, *tmp; 4906 struct list_head *handle_list = NULL; 4907 struct r5worker_group *wg = NULL; 4908 4909 if (conf->worker_cnt_per_group == 0) { 4910 handle_list = &conf->handle_list; 4911 } else if (group != ANY_GROUP) { 4912 handle_list = &conf->worker_groups[group].handle_list; 4913 wg = &conf->worker_groups[group]; 4914 } else { 4915 int i; 4916 for (i = 0; i < conf->group_cnt; i++) { 4917 handle_list = &conf->worker_groups[i].handle_list; 4918 wg = &conf->worker_groups[i]; 4919 if (!list_empty(handle_list)) 4920 break; 4921 } 4922 } 4923 4924 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4925 __func__, 4926 list_empty(handle_list) ? "empty" : "busy", 4927 list_empty(&conf->hold_list) ? "empty" : "busy", 4928 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4929 4930 if (!list_empty(handle_list)) { 4931 sh = list_entry(handle_list->next, typeof(*sh), lru); 4932 4933 if (list_empty(&conf->hold_list)) 4934 conf->bypass_count = 0; 4935 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4936 if (conf->hold_list.next == conf->last_hold) 4937 conf->bypass_count++; 4938 else { 4939 conf->last_hold = conf->hold_list.next; 4940 conf->bypass_count -= conf->bypass_threshold; 4941 if (conf->bypass_count < 0) 4942 conf->bypass_count = 0; 4943 } 4944 } 4945 } else if (!list_empty(&conf->hold_list) && 4946 ((conf->bypass_threshold && 4947 conf->bypass_count > conf->bypass_threshold) || 4948 atomic_read(&conf->pending_full_writes) == 0)) { 4949 4950 list_for_each_entry(tmp, &conf->hold_list, lru) { 4951 if (conf->worker_cnt_per_group == 0 || 4952 group == ANY_GROUP || 4953 !cpu_online(tmp->cpu) || 4954 cpu_to_group(tmp->cpu) == group) { 4955 sh = tmp; 4956 break; 4957 } 4958 } 4959 4960 if (sh) { 4961 conf->bypass_count -= conf->bypass_threshold; 4962 if (conf->bypass_count < 0) 4963 conf->bypass_count = 0; 4964 } 4965 wg = NULL; 4966 } 4967 4968 if (!sh) 4969 return NULL; 4970 4971 if (wg) { 4972 wg->stripes_cnt--; 4973 sh->group = NULL; 4974 } 4975 list_del_init(&sh->lru); 4976 BUG_ON(atomic_inc_return(&sh->count) != 1); 4977 return sh; 4978 } 4979 4980 struct raid5_plug_cb { 4981 struct blk_plug_cb cb; 4982 struct list_head list; 4983 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 4984 }; 4985 4986 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4987 { 4988 struct raid5_plug_cb *cb = container_of( 4989 blk_cb, struct raid5_plug_cb, cb); 4990 struct stripe_head *sh; 4991 struct mddev *mddev = cb->cb.data; 4992 struct r5conf *conf = mddev->private; 4993 int cnt = 0; 4994 int hash; 4995 4996 if (cb->list.next && !list_empty(&cb->list)) { 4997 spin_lock_irq(&conf->device_lock); 4998 while (!list_empty(&cb->list)) { 4999 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5000 list_del_init(&sh->lru); 5001 /* 5002 * avoid race release_stripe_plug() sees 5003 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5004 * is still in our list 5005 */ 5006 smp_mb__before_atomic(); 5007 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5008 /* 5009 * STRIPE_ON_RELEASE_LIST could be set here. In that 5010 * case, the count is always > 1 here 5011 */ 5012 hash = sh->hash_lock_index; 5013 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5014 cnt++; 5015 } 5016 spin_unlock_irq(&conf->device_lock); 5017 } 5018 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5019 NR_STRIPE_HASH_LOCKS); 5020 if (mddev->queue) 5021 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5022 kfree(cb); 5023 } 5024 5025 static void release_stripe_plug(struct mddev *mddev, 5026 struct stripe_head *sh) 5027 { 5028 struct blk_plug_cb *blk_cb = blk_check_plugged( 5029 raid5_unplug, mddev, 5030 sizeof(struct raid5_plug_cb)); 5031 struct raid5_plug_cb *cb; 5032 5033 if (!blk_cb) { 5034 raid5_release_stripe(sh); 5035 return; 5036 } 5037 5038 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5039 5040 if (cb->list.next == NULL) { 5041 int i; 5042 INIT_LIST_HEAD(&cb->list); 5043 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5044 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5045 } 5046 5047 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5048 list_add_tail(&sh->lru, &cb->list); 5049 else 5050 raid5_release_stripe(sh); 5051 } 5052 5053 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5054 { 5055 struct r5conf *conf = mddev->private; 5056 sector_t logical_sector, last_sector; 5057 struct stripe_head *sh; 5058 int remaining; 5059 int stripe_sectors; 5060 5061 if (mddev->reshape_position != MaxSector) 5062 /* Skip discard while reshape is happening */ 5063 return; 5064 5065 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5066 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5067 5068 bi->bi_next = NULL; 5069 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5070 5071 stripe_sectors = conf->chunk_sectors * 5072 (conf->raid_disks - conf->max_degraded); 5073 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5074 stripe_sectors); 5075 sector_div(last_sector, stripe_sectors); 5076 5077 logical_sector *= conf->chunk_sectors; 5078 last_sector *= conf->chunk_sectors; 5079 5080 for (; logical_sector < last_sector; 5081 logical_sector += STRIPE_SECTORS) { 5082 DEFINE_WAIT(w); 5083 int d; 5084 again: 5085 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5086 prepare_to_wait(&conf->wait_for_overlap, &w, 5087 TASK_UNINTERRUPTIBLE); 5088 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5089 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5090 raid5_release_stripe(sh); 5091 schedule(); 5092 goto again; 5093 } 5094 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5095 spin_lock_irq(&sh->stripe_lock); 5096 for (d = 0; d < conf->raid_disks; d++) { 5097 if (d == sh->pd_idx || d == sh->qd_idx) 5098 continue; 5099 if (sh->dev[d].towrite || sh->dev[d].toread) { 5100 set_bit(R5_Overlap, &sh->dev[d].flags); 5101 spin_unlock_irq(&sh->stripe_lock); 5102 raid5_release_stripe(sh); 5103 schedule(); 5104 goto again; 5105 } 5106 } 5107 set_bit(STRIPE_DISCARD, &sh->state); 5108 finish_wait(&conf->wait_for_overlap, &w); 5109 sh->overwrite_disks = 0; 5110 for (d = 0; d < conf->raid_disks; d++) { 5111 if (d == sh->pd_idx || d == sh->qd_idx) 5112 continue; 5113 sh->dev[d].towrite = bi; 5114 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5115 raid5_inc_bi_active_stripes(bi); 5116 sh->overwrite_disks++; 5117 } 5118 spin_unlock_irq(&sh->stripe_lock); 5119 if (conf->mddev->bitmap) { 5120 for (d = 0; 5121 d < conf->raid_disks - conf->max_degraded; 5122 d++) 5123 bitmap_startwrite(mddev->bitmap, 5124 sh->sector, 5125 STRIPE_SECTORS, 5126 0); 5127 sh->bm_seq = conf->seq_flush + 1; 5128 set_bit(STRIPE_BIT_DELAY, &sh->state); 5129 } 5130 5131 set_bit(STRIPE_HANDLE, &sh->state); 5132 clear_bit(STRIPE_DELAYED, &sh->state); 5133 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5134 atomic_inc(&conf->preread_active_stripes); 5135 release_stripe_plug(mddev, sh); 5136 } 5137 5138 remaining = raid5_dec_bi_active_stripes(bi); 5139 if (remaining == 0) { 5140 md_write_end(mddev); 5141 bio_endio(bi); 5142 } 5143 } 5144 5145 static void raid5_make_request(struct mddev *mddev, struct bio * bi) 5146 { 5147 struct r5conf *conf = mddev->private; 5148 int dd_idx; 5149 sector_t new_sector; 5150 sector_t logical_sector, last_sector; 5151 struct stripe_head *sh; 5152 const int rw = bio_data_dir(bi); 5153 int remaining; 5154 DEFINE_WAIT(w); 5155 bool do_prepare; 5156 5157 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5158 int ret = r5l_handle_flush_request(conf->log, bi); 5159 5160 if (ret == 0) 5161 return; 5162 if (ret == -ENODEV) { 5163 md_flush_request(mddev, bi); 5164 return; 5165 } 5166 /* ret == -EAGAIN, fallback */ 5167 } 5168 5169 md_write_start(mddev, bi); 5170 5171 /* 5172 * If array is degraded, better not do chunk aligned read because 5173 * later we might have to read it again in order to reconstruct 5174 * data on failed drives. 5175 */ 5176 if (rw == READ && mddev->degraded == 0 && 5177 mddev->reshape_position == MaxSector) { 5178 bi = chunk_aligned_read(mddev, bi); 5179 if (!bi) 5180 return; 5181 } 5182 5183 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5184 make_discard_request(mddev, bi); 5185 return; 5186 } 5187 5188 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5189 last_sector = bio_end_sector(bi); 5190 bi->bi_next = NULL; 5191 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5192 5193 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5194 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5195 int previous; 5196 int seq; 5197 5198 do_prepare = false; 5199 retry: 5200 seq = read_seqcount_begin(&conf->gen_lock); 5201 previous = 0; 5202 if (do_prepare) 5203 prepare_to_wait(&conf->wait_for_overlap, &w, 5204 TASK_UNINTERRUPTIBLE); 5205 if (unlikely(conf->reshape_progress != MaxSector)) { 5206 /* spinlock is needed as reshape_progress may be 5207 * 64bit on a 32bit platform, and so it might be 5208 * possible to see a half-updated value 5209 * Of course reshape_progress could change after 5210 * the lock is dropped, so once we get a reference 5211 * to the stripe that we think it is, we will have 5212 * to check again. 5213 */ 5214 spin_lock_irq(&conf->device_lock); 5215 if (mddev->reshape_backwards 5216 ? logical_sector < conf->reshape_progress 5217 : logical_sector >= conf->reshape_progress) { 5218 previous = 1; 5219 } else { 5220 if (mddev->reshape_backwards 5221 ? logical_sector < conf->reshape_safe 5222 : logical_sector >= conf->reshape_safe) { 5223 spin_unlock_irq(&conf->device_lock); 5224 schedule(); 5225 do_prepare = true; 5226 goto retry; 5227 } 5228 } 5229 spin_unlock_irq(&conf->device_lock); 5230 } 5231 5232 new_sector = raid5_compute_sector(conf, logical_sector, 5233 previous, 5234 &dd_idx, NULL); 5235 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5236 (unsigned long long)new_sector, 5237 (unsigned long long)logical_sector); 5238 5239 sh = raid5_get_active_stripe(conf, new_sector, previous, 5240 (bi->bi_opf & REQ_RAHEAD), 0); 5241 if (sh) { 5242 if (unlikely(previous)) { 5243 /* expansion might have moved on while waiting for a 5244 * stripe, so we must do the range check again. 5245 * Expansion could still move past after this 5246 * test, but as we are holding a reference to 5247 * 'sh', we know that if that happens, 5248 * STRIPE_EXPANDING will get set and the expansion 5249 * won't proceed until we finish with the stripe. 5250 */ 5251 int must_retry = 0; 5252 spin_lock_irq(&conf->device_lock); 5253 if (mddev->reshape_backwards 5254 ? logical_sector >= conf->reshape_progress 5255 : logical_sector < conf->reshape_progress) 5256 /* mismatch, need to try again */ 5257 must_retry = 1; 5258 spin_unlock_irq(&conf->device_lock); 5259 if (must_retry) { 5260 raid5_release_stripe(sh); 5261 schedule(); 5262 do_prepare = true; 5263 goto retry; 5264 } 5265 } 5266 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5267 /* Might have got the wrong stripe_head 5268 * by accident 5269 */ 5270 raid5_release_stripe(sh); 5271 goto retry; 5272 } 5273 5274 if (rw == WRITE && 5275 logical_sector >= mddev->suspend_lo && 5276 logical_sector < mddev->suspend_hi) { 5277 raid5_release_stripe(sh); 5278 /* As the suspend_* range is controlled by 5279 * userspace, we want an interruptible 5280 * wait. 5281 */ 5282 flush_signals(current); 5283 prepare_to_wait(&conf->wait_for_overlap, 5284 &w, TASK_INTERRUPTIBLE); 5285 if (logical_sector >= mddev->suspend_lo && 5286 logical_sector < mddev->suspend_hi) { 5287 schedule(); 5288 do_prepare = true; 5289 } 5290 goto retry; 5291 } 5292 5293 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5294 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5295 /* Stripe is busy expanding or 5296 * add failed due to overlap. Flush everything 5297 * and wait a while 5298 */ 5299 md_wakeup_thread(mddev->thread); 5300 raid5_release_stripe(sh); 5301 schedule(); 5302 do_prepare = true; 5303 goto retry; 5304 } 5305 set_bit(STRIPE_HANDLE, &sh->state); 5306 clear_bit(STRIPE_DELAYED, &sh->state); 5307 if ((!sh->batch_head || sh == sh->batch_head) && 5308 (bi->bi_opf & REQ_SYNC) && 5309 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5310 atomic_inc(&conf->preread_active_stripes); 5311 release_stripe_plug(mddev, sh); 5312 } else { 5313 /* cannot get stripe for read-ahead, just give-up */ 5314 bi->bi_error = -EIO; 5315 break; 5316 } 5317 } 5318 finish_wait(&conf->wait_for_overlap, &w); 5319 5320 remaining = raid5_dec_bi_active_stripes(bi); 5321 if (remaining == 0) { 5322 5323 if ( rw == WRITE ) 5324 md_write_end(mddev); 5325 5326 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 5327 bi, 0); 5328 bio_endio(bi); 5329 } 5330 } 5331 5332 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5333 5334 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5335 { 5336 /* reshaping is quite different to recovery/resync so it is 5337 * handled quite separately ... here. 5338 * 5339 * On each call to sync_request, we gather one chunk worth of 5340 * destination stripes and flag them as expanding. 5341 * Then we find all the source stripes and request reads. 5342 * As the reads complete, handle_stripe will copy the data 5343 * into the destination stripe and release that stripe. 5344 */ 5345 struct r5conf *conf = mddev->private; 5346 struct stripe_head *sh; 5347 sector_t first_sector, last_sector; 5348 int raid_disks = conf->previous_raid_disks; 5349 int data_disks = raid_disks - conf->max_degraded; 5350 int new_data_disks = conf->raid_disks - conf->max_degraded; 5351 int i; 5352 int dd_idx; 5353 sector_t writepos, readpos, safepos; 5354 sector_t stripe_addr; 5355 int reshape_sectors; 5356 struct list_head stripes; 5357 sector_t retn; 5358 5359 if (sector_nr == 0) { 5360 /* If restarting in the middle, skip the initial sectors */ 5361 if (mddev->reshape_backwards && 5362 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5363 sector_nr = raid5_size(mddev, 0, 0) 5364 - conf->reshape_progress; 5365 } else if (mddev->reshape_backwards && 5366 conf->reshape_progress == MaxSector) { 5367 /* shouldn't happen, but just in case, finish up.*/ 5368 sector_nr = MaxSector; 5369 } else if (!mddev->reshape_backwards && 5370 conf->reshape_progress > 0) 5371 sector_nr = conf->reshape_progress; 5372 sector_div(sector_nr, new_data_disks); 5373 if (sector_nr) { 5374 mddev->curr_resync_completed = sector_nr; 5375 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5376 *skipped = 1; 5377 retn = sector_nr; 5378 goto finish; 5379 } 5380 } 5381 5382 /* We need to process a full chunk at a time. 5383 * If old and new chunk sizes differ, we need to process the 5384 * largest of these 5385 */ 5386 5387 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5388 5389 /* We update the metadata at least every 10 seconds, or when 5390 * the data about to be copied would over-write the source of 5391 * the data at the front of the range. i.e. one new_stripe 5392 * along from reshape_progress new_maps to after where 5393 * reshape_safe old_maps to 5394 */ 5395 writepos = conf->reshape_progress; 5396 sector_div(writepos, new_data_disks); 5397 readpos = conf->reshape_progress; 5398 sector_div(readpos, data_disks); 5399 safepos = conf->reshape_safe; 5400 sector_div(safepos, data_disks); 5401 if (mddev->reshape_backwards) { 5402 BUG_ON(writepos < reshape_sectors); 5403 writepos -= reshape_sectors; 5404 readpos += reshape_sectors; 5405 safepos += reshape_sectors; 5406 } else { 5407 writepos += reshape_sectors; 5408 /* readpos and safepos are worst-case calculations. 5409 * A negative number is overly pessimistic, and causes 5410 * obvious problems for unsigned storage. So clip to 0. 5411 */ 5412 readpos -= min_t(sector_t, reshape_sectors, readpos); 5413 safepos -= min_t(sector_t, reshape_sectors, safepos); 5414 } 5415 5416 /* Having calculated the 'writepos' possibly use it 5417 * to set 'stripe_addr' which is where we will write to. 5418 */ 5419 if (mddev->reshape_backwards) { 5420 BUG_ON(conf->reshape_progress == 0); 5421 stripe_addr = writepos; 5422 BUG_ON((mddev->dev_sectors & 5423 ~((sector_t)reshape_sectors - 1)) 5424 - reshape_sectors - stripe_addr 5425 != sector_nr); 5426 } else { 5427 BUG_ON(writepos != sector_nr + reshape_sectors); 5428 stripe_addr = sector_nr; 5429 } 5430 5431 /* 'writepos' is the most advanced device address we might write. 5432 * 'readpos' is the least advanced device address we might read. 5433 * 'safepos' is the least address recorded in the metadata as having 5434 * been reshaped. 5435 * If there is a min_offset_diff, these are adjusted either by 5436 * increasing the safepos/readpos if diff is negative, or 5437 * increasing writepos if diff is positive. 5438 * If 'readpos' is then behind 'writepos', there is no way that we can 5439 * ensure safety in the face of a crash - that must be done by userspace 5440 * making a backup of the data. So in that case there is no particular 5441 * rush to update metadata. 5442 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5443 * update the metadata to advance 'safepos' to match 'readpos' so that 5444 * we can be safe in the event of a crash. 5445 * So we insist on updating metadata if safepos is behind writepos and 5446 * readpos is beyond writepos. 5447 * In any case, update the metadata every 10 seconds. 5448 * Maybe that number should be configurable, but I'm not sure it is 5449 * worth it.... maybe it could be a multiple of safemode_delay??? 5450 */ 5451 if (conf->min_offset_diff < 0) { 5452 safepos += -conf->min_offset_diff; 5453 readpos += -conf->min_offset_diff; 5454 } else 5455 writepos += conf->min_offset_diff; 5456 5457 if ((mddev->reshape_backwards 5458 ? (safepos > writepos && readpos < writepos) 5459 : (safepos < writepos && readpos > writepos)) || 5460 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5461 /* Cannot proceed until we've updated the superblock... */ 5462 wait_event(conf->wait_for_overlap, 5463 atomic_read(&conf->reshape_stripes)==0 5464 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5465 if (atomic_read(&conf->reshape_stripes) != 0) 5466 return 0; 5467 mddev->reshape_position = conf->reshape_progress; 5468 mddev->curr_resync_completed = sector_nr; 5469 conf->reshape_checkpoint = jiffies; 5470 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5471 md_wakeup_thread(mddev->thread); 5472 wait_event(mddev->sb_wait, mddev->flags == 0 || 5473 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5474 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5475 return 0; 5476 spin_lock_irq(&conf->device_lock); 5477 conf->reshape_safe = mddev->reshape_position; 5478 spin_unlock_irq(&conf->device_lock); 5479 wake_up(&conf->wait_for_overlap); 5480 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5481 } 5482 5483 INIT_LIST_HEAD(&stripes); 5484 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5485 int j; 5486 int skipped_disk = 0; 5487 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5488 set_bit(STRIPE_EXPANDING, &sh->state); 5489 atomic_inc(&conf->reshape_stripes); 5490 /* If any of this stripe is beyond the end of the old 5491 * array, then we need to zero those blocks 5492 */ 5493 for (j=sh->disks; j--;) { 5494 sector_t s; 5495 if (j == sh->pd_idx) 5496 continue; 5497 if (conf->level == 6 && 5498 j == sh->qd_idx) 5499 continue; 5500 s = raid5_compute_blocknr(sh, j, 0); 5501 if (s < raid5_size(mddev, 0, 0)) { 5502 skipped_disk = 1; 5503 continue; 5504 } 5505 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5506 set_bit(R5_Expanded, &sh->dev[j].flags); 5507 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5508 } 5509 if (!skipped_disk) { 5510 set_bit(STRIPE_EXPAND_READY, &sh->state); 5511 set_bit(STRIPE_HANDLE, &sh->state); 5512 } 5513 list_add(&sh->lru, &stripes); 5514 } 5515 spin_lock_irq(&conf->device_lock); 5516 if (mddev->reshape_backwards) 5517 conf->reshape_progress -= reshape_sectors * new_data_disks; 5518 else 5519 conf->reshape_progress += reshape_sectors * new_data_disks; 5520 spin_unlock_irq(&conf->device_lock); 5521 /* Ok, those stripe are ready. We can start scheduling 5522 * reads on the source stripes. 5523 * The source stripes are determined by mapping the first and last 5524 * block on the destination stripes. 5525 */ 5526 first_sector = 5527 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5528 1, &dd_idx, NULL); 5529 last_sector = 5530 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5531 * new_data_disks - 1), 5532 1, &dd_idx, NULL); 5533 if (last_sector >= mddev->dev_sectors) 5534 last_sector = mddev->dev_sectors - 1; 5535 while (first_sector <= last_sector) { 5536 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5537 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5538 set_bit(STRIPE_HANDLE, &sh->state); 5539 raid5_release_stripe(sh); 5540 first_sector += STRIPE_SECTORS; 5541 } 5542 /* Now that the sources are clearly marked, we can release 5543 * the destination stripes 5544 */ 5545 while (!list_empty(&stripes)) { 5546 sh = list_entry(stripes.next, struct stripe_head, lru); 5547 list_del_init(&sh->lru); 5548 raid5_release_stripe(sh); 5549 } 5550 /* If this takes us to the resync_max point where we have to pause, 5551 * then we need to write out the superblock. 5552 */ 5553 sector_nr += reshape_sectors; 5554 retn = reshape_sectors; 5555 finish: 5556 if (mddev->curr_resync_completed > mddev->resync_max || 5557 (sector_nr - mddev->curr_resync_completed) * 2 5558 >= mddev->resync_max - mddev->curr_resync_completed) { 5559 /* Cannot proceed until we've updated the superblock... */ 5560 wait_event(conf->wait_for_overlap, 5561 atomic_read(&conf->reshape_stripes) == 0 5562 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5563 if (atomic_read(&conf->reshape_stripes) != 0) 5564 goto ret; 5565 mddev->reshape_position = conf->reshape_progress; 5566 mddev->curr_resync_completed = sector_nr; 5567 conf->reshape_checkpoint = jiffies; 5568 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5569 md_wakeup_thread(mddev->thread); 5570 wait_event(mddev->sb_wait, 5571 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 5572 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5573 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5574 goto ret; 5575 spin_lock_irq(&conf->device_lock); 5576 conf->reshape_safe = mddev->reshape_position; 5577 spin_unlock_irq(&conf->device_lock); 5578 wake_up(&conf->wait_for_overlap); 5579 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5580 } 5581 ret: 5582 return retn; 5583 } 5584 5585 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 5586 int *skipped) 5587 { 5588 struct r5conf *conf = mddev->private; 5589 struct stripe_head *sh; 5590 sector_t max_sector = mddev->dev_sectors; 5591 sector_t sync_blocks; 5592 int still_degraded = 0; 5593 int i; 5594 5595 if (sector_nr >= max_sector) { 5596 /* just being told to finish up .. nothing much to do */ 5597 5598 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 5599 end_reshape(conf); 5600 return 0; 5601 } 5602 5603 if (mddev->curr_resync < max_sector) /* aborted */ 5604 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 5605 &sync_blocks, 1); 5606 else /* completed sync */ 5607 conf->fullsync = 0; 5608 bitmap_close_sync(mddev->bitmap); 5609 5610 return 0; 5611 } 5612 5613 /* Allow raid5_quiesce to complete */ 5614 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 5615 5616 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5617 return reshape_request(mddev, sector_nr, skipped); 5618 5619 /* No need to check resync_max as we never do more than one 5620 * stripe, and as resync_max will always be on a chunk boundary, 5621 * if the check in md_do_sync didn't fire, there is no chance 5622 * of overstepping resync_max here 5623 */ 5624 5625 /* if there is too many failed drives and we are trying 5626 * to resync, then assert that we are finished, because there is 5627 * nothing we can do. 5628 */ 5629 if (mddev->degraded >= conf->max_degraded && 5630 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5631 sector_t rv = mddev->dev_sectors - sector_nr; 5632 *skipped = 1; 5633 return rv; 5634 } 5635 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5636 !conf->fullsync && 5637 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5638 sync_blocks >= STRIPE_SECTORS) { 5639 /* we can skip this block, and probably more */ 5640 sync_blocks /= STRIPE_SECTORS; 5641 *skipped = 1; 5642 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5643 } 5644 5645 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 5646 5647 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 5648 if (sh == NULL) { 5649 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 5650 /* make sure we don't swamp the stripe cache if someone else 5651 * is trying to get access 5652 */ 5653 schedule_timeout_uninterruptible(1); 5654 } 5655 /* Need to check if array will still be degraded after recovery/resync 5656 * Note in case of > 1 drive failures it's possible we're rebuilding 5657 * one drive while leaving another faulty drive in array. 5658 */ 5659 rcu_read_lock(); 5660 for (i = 0; i < conf->raid_disks; i++) { 5661 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev); 5662 5663 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 5664 still_degraded = 1; 5665 } 5666 rcu_read_unlock(); 5667 5668 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5669 5670 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5671 set_bit(STRIPE_HANDLE, &sh->state); 5672 5673 raid5_release_stripe(sh); 5674 5675 return STRIPE_SECTORS; 5676 } 5677 5678 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5679 { 5680 /* We may not be able to submit a whole bio at once as there 5681 * may not be enough stripe_heads available. 5682 * We cannot pre-allocate enough stripe_heads as we may need 5683 * more than exist in the cache (if we allow ever large chunks). 5684 * So we do one stripe head at a time and record in 5685 * ->bi_hw_segments how many have been done. 5686 * 5687 * We *know* that this entire raid_bio is in one chunk, so 5688 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5689 */ 5690 struct stripe_head *sh; 5691 int dd_idx; 5692 sector_t sector, logical_sector, last_sector; 5693 int scnt = 0; 5694 int remaining; 5695 int handled = 0; 5696 5697 logical_sector = raid_bio->bi_iter.bi_sector & 5698 ~((sector_t)STRIPE_SECTORS-1); 5699 sector = raid5_compute_sector(conf, logical_sector, 5700 0, &dd_idx, NULL); 5701 last_sector = bio_end_sector(raid_bio); 5702 5703 for (; logical_sector < last_sector; 5704 logical_sector += STRIPE_SECTORS, 5705 sector += STRIPE_SECTORS, 5706 scnt++) { 5707 5708 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5709 /* already done this stripe */ 5710 continue; 5711 5712 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 5713 5714 if (!sh) { 5715 /* failed to get a stripe - must wait */ 5716 raid5_set_bi_processed_stripes(raid_bio, scnt); 5717 conf->retry_read_aligned = raid_bio; 5718 return handled; 5719 } 5720 5721 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 5722 raid5_release_stripe(sh); 5723 raid5_set_bi_processed_stripes(raid_bio, scnt); 5724 conf->retry_read_aligned = raid_bio; 5725 return handled; 5726 } 5727 5728 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5729 handle_stripe(sh); 5730 raid5_release_stripe(sh); 5731 handled++; 5732 } 5733 remaining = raid5_dec_bi_active_stripes(raid_bio); 5734 if (remaining == 0) { 5735 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5736 raid_bio, 0); 5737 bio_endio(raid_bio); 5738 } 5739 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5740 wake_up(&conf->wait_for_quiescent); 5741 return handled; 5742 } 5743 5744 static int handle_active_stripes(struct r5conf *conf, int group, 5745 struct r5worker *worker, 5746 struct list_head *temp_inactive_list) 5747 { 5748 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5749 int i, batch_size = 0, hash; 5750 bool release_inactive = false; 5751 5752 while (batch_size < MAX_STRIPE_BATCH && 5753 (sh = __get_priority_stripe(conf, group)) != NULL) 5754 batch[batch_size++] = sh; 5755 5756 if (batch_size == 0) { 5757 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5758 if (!list_empty(temp_inactive_list + i)) 5759 break; 5760 if (i == NR_STRIPE_HASH_LOCKS) { 5761 spin_unlock_irq(&conf->device_lock); 5762 r5l_flush_stripe_to_raid(conf->log); 5763 spin_lock_irq(&conf->device_lock); 5764 return batch_size; 5765 } 5766 release_inactive = true; 5767 } 5768 spin_unlock_irq(&conf->device_lock); 5769 5770 release_inactive_stripe_list(conf, temp_inactive_list, 5771 NR_STRIPE_HASH_LOCKS); 5772 5773 r5l_flush_stripe_to_raid(conf->log); 5774 if (release_inactive) { 5775 spin_lock_irq(&conf->device_lock); 5776 return 0; 5777 } 5778 5779 for (i = 0; i < batch_size; i++) 5780 handle_stripe(batch[i]); 5781 r5l_write_stripe_run(conf->log); 5782 5783 cond_resched(); 5784 5785 spin_lock_irq(&conf->device_lock); 5786 for (i = 0; i < batch_size; i++) { 5787 hash = batch[i]->hash_lock_index; 5788 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5789 } 5790 return batch_size; 5791 } 5792 5793 static void raid5_do_work(struct work_struct *work) 5794 { 5795 struct r5worker *worker = container_of(work, struct r5worker, work); 5796 struct r5worker_group *group = worker->group; 5797 struct r5conf *conf = group->conf; 5798 int group_id = group - conf->worker_groups; 5799 int handled; 5800 struct blk_plug plug; 5801 5802 pr_debug("+++ raid5worker active\n"); 5803 5804 blk_start_plug(&plug); 5805 handled = 0; 5806 spin_lock_irq(&conf->device_lock); 5807 while (1) { 5808 int batch_size, released; 5809 5810 released = release_stripe_list(conf, worker->temp_inactive_list); 5811 5812 batch_size = handle_active_stripes(conf, group_id, worker, 5813 worker->temp_inactive_list); 5814 worker->working = false; 5815 if (!batch_size && !released) 5816 break; 5817 handled += batch_size; 5818 } 5819 pr_debug("%d stripes handled\n", handled); 5820 5821 spin_unlock_irq(&conf->device_lock); 5822 blk_finish_plug(&plug); 5823 5824 pr_debug("--- raid5worker inactive\n"); 5825 } 5826 5827 /* 5828 * This is our raid5 kernel thread. 5829 * 5830 * We scan the hash table for stripes which can be handled now. 5831 * During the scan, completed stripes are saved for us by the interrupt 5832 * handler, so that they will not have to wait for our next wakeup. 5833 */ 5834 static void raid5d(struct md_thread *thread) 5835 { 5836 struct mddev *mddev = thread->mddev; 5837 struct r5conf *conf = mddev->private; 5838 int handled; 5839 struct blk_plug plug; 5840 5841 pr_debug("+++ raid5d active\n"); 5842 5843 md_check_recovery(mddev); 5844 5845 if (!bio_list_empty(&conf->return_bi) && 5846 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5847 struct bio_list tmp = BIO_EMPTY_LIST; 5848 spin_lock_irq(&conf->device_lock); 5849 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5850 bio_list_merge(&tmp, &conf->return_bi); 5851 bio_list_init(&conf->return_bi); 5852 } 5853 spin_unlock_irq(&conf->device_lock); 5854 return_io(&tmp); 5855 } 5856 5857 blk_start_plug(&plug); 5858 handled = 0; 5859 spin_lock_irq(&conf->device_lock); 5860 while (1) { 5861 struct bio *bio; 5862 int batch_size, released; 5863 5864 released = release_stripe_list(conf, conf->temp_inactive_list); 5865 if (released) 5866 clear_bit(R5_DID_ALLOC, &conf->cache_state); 5867 5868 if ( 5869 !list_empty(&conf->bitmap_list)) { 5870 /* Now is a good time to flush some bitmap updates */ 5871 conf->seq_flush++; 5872 spin_unlock_irq(&conf->device_lock); 5873 bitmap_unplug(mddev->bitmap); 5874 spin_lock_irq(&conf->device_lock); 5875 conf->seq_write = conf->seq_flush; 5876 activate_bit_delay(conf, conf->temp_inactive_list); 5877 } 5878 raid5_activate_delayed(conf); 5879 5880 while ((bio = remove_bio_from_retry(conf))) { 5881 int ok; 5882 spin_unlock_irq(&conf->device_lock); 5883 ok = retry_aligned_read(conf, bio); 5884 spin_lock_irq(&conf->device_lock); 5885 if (!ok) 5886 break; 5887 handled++; 5888 } 5889 5890 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5891 conf->temp_inactive_list); 5892 if (!batch_size && !released) 5893 break; 5894 handled += batch_size; 5895 5896 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5897 spin_unlock_irq(&conf->device_lock); 5898 md_check_recovery(mddev); 5899 spin_lock_irq(&conf->device_lock); 5900 } 5901 } 5902 pr_debug("%d stripes handled\n", handled); 5903 5904 spin_unlock_irq(&conf->device_lock); 5905 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 5906 mutex_trylock(&conf->cache_size_mutex)) { 5907 grow_one_stripe(conf, __GFP_NOWARN); 5908 /* Set flag even if allocation failed. This helps 5909 * slow down allocation requests when mem is short 5910 */ 5911 set_bit(R5_DID_ALLOC, &conf->cache_state); 5912 mutex_unlock(&conf->cache_size_mutex); 5913 } 5914 5915 r5l_flush_stripe_to_raid(conf->log); 5916 5917 async_tx_issue_pending_all(); 5918 blk_finish_plug(&plug); 5919 5920 pr_debug("--- raid5d inactive\n"); 5921 } 5922 5923 static ssize_t 5924 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5925 { 5926 struct r5conf *conf; 5927 int ret = 0; 5928 spin_lock(&mddev->lock); 5929 conf = mddev->private; 5930 if (conf) 5931 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 5932 spin_unlock(&mddev->lock); 5933 return ret; 5934 } 5935 5936 int 5937 raid5_set_cache_size(struct mddev *mddev, int size) 5938 { 5939 struct r5conf *conf = mddev->private; 5940 int err; 5941 5942 if (size <= 16 || size > 32768) 5943 return -EINVAL; 5944 5945 conf->min_nr_stripes = size; 5946 mutex_lock(&conf->cache_size_mutex); 5947 while (size < conf->max_nr_stripes && 5948 drop_one_stripe(conf)) 5949 ; 5950 mutex_unlock(&conf->cache_size_mutex); 5951 5952 5953 err = md_allow_write(mddev); 5954 if (err) 5955 return err; 5956 5957 mutex_lock(&conf->cache_size_mutex); 5958 while (size > conf->max_nr_stripes) 5959 if (!grow_one_stripe(conf, GFP_KERNEL)) 5960 break; 5961 mutex_unlock(&conf->cache_size_mutex); 5962 5963 return 0; 5964 } 5965 EXPORT_SYMBOL(raid5_set_cache_size); 5966 5967 static ssize_t 5968 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5969 { 5970 struct r5conf *conf; 5971 unsigned long new; 5972 int err; 5973 5974 if (len >= PAGE_SIZE) 5975 return -EINVAL; 5976 if (kstrtoul(page, 10, &new)) 5977 return -EINVAL; 5978 err = mddev_lock(mddev); 5979 if (err) 5980 return err; 5981 conf = mddev->private; 5982 if (!conf) 5983 err = -ENODEV; 5984 else 5985 err = raid5_set_cache_size(mddev, new); 5986 mddev_unlock(mddev); 5987 5988 return err ?: len; 5989 } 5990 5991 static struct md_sysfs_entry 5992 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 5993 raid5_show_stripe_cache_size, 5994 raid5_store_stripe_cache_size); 5995 5996 static ssize_t 5997 raid5_show_rmw_level(struct mddev *mddev, char *page) 5998 { 5999 struct r5conf *conf = mddev->private; 6000 if (conf) 6001 return sprintf(page, "%d\n", conf->rmw_level); 6002 else 6003 return 0; 6004 } 6005 6006 static ssize_t 6007 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6008 { 6009 struct r5conf *conf = mddev->private; 6010 unsigned long new; 6011 6012 if (!conf) 6013 return -ENODEV; 6014 6015 if (len >= PAGE_SIZE) 6016 return -EINVAL; 6017 6018 if (kstrtoul(page, 10, &new)) 6019 return -EINVAL; 6020 6021 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6022 return -EINVAL; 6023 6024 if (new != PARITY_DISABLE_RMW && 6025 new != PARITY_ENABLE_RMW && 6026 new != PARITY_PREFER_RMW) 6027 return -EINVAL; 6028 6029 conf->rmw_level = new; 6030 return len; 6031 } 6032 6033 static struct md_sysfs_entry 6034 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6035 raid5_show_rmw_level, 6036 raid5_store_rmw_level); 6037 6038 6039 static ssize_t 6040 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6041 { 6042 struct r5conf *conf; 6043 int ret = 0; 6044 spin_lock(&mddev->lock); 6045 conf = mddev->private; 6046 if (conf) 6047 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6048 spin_unlock(&mddev->lock); 6049 return ret; 6050 } 6051 6052 static ssize_t 6053 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6054 { 6055 struct r5conf *conf; 6056 unsigned long new; 6057 int err; 6058 6059 if (len >= PAGE_SIZE) 6060 return -EINVAL; 6061 if (kstrtoul(page, 10, &new)) 6062 return -EINVAL; 6063 6064 err = mddev_lock(mddev); 6065 if (err) 6066 return err; 6067 conf = mddev->private; 6068 if (!conf) 6069 err = -ENODEV; 6070 else if (new > conf->min_nr_stripes) 6071 err = -EINVAL; 6072 else 6073 conf->bypass_threshold = new; 6074 mddev_unlock(mddev); 6075 return err ?: len; 6076 } 6077 6078 static struct md_sysfs_entry 6079 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6080 S_IRUGO | S_IWUSR, 6081 raid5_show_preread_threshold, 6082 raid5_store_preread_threshold); 6083 6084 static ssize_t 6085 raid5_show_skip_copy(struct mddev *mddev, char *page) 6086 { 6087 struct r5conf *conf; 6088 int ret = 0; 6089 spin_lock(&mddev->lock); 6090 conf = mddev->private; 6091 if (conf) 6092 ret = sprintf(page, "%d\n", conf->skip_copy); 6093 spin_unlock(&mddev->lock); 6094 return ret; 6095 } 6096 6097 static ssize_t 6098 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6099 { 6100 struct r5conf *conf; 6101 unsigned long new; 6102 int err; 6103 6104 if (len >= PAGE_SIZE) 6105 return -EINVAL; 6106 if (kstrtoul(page, 10, &new)) 6107 return -EINVAL; 6108 new = !!new; 6109 6110 err = mddev_lock(mddev); 6111 if (err) 6112 return err; 6113 conf = mddev->private; 6114 if (!conf) 6115 err = -ENODEV; 6116 else if (new != conf->skip_copy) { 6117 mddev_suspend(mddev); 6118 conf->skip_copy = new; 6119 if (new) 6120 mddev->queue->backing_dev_info.capabilities |= 6121 BDI_CAP_STABLE_WRITES; 6122 else 6123 mddev->queue->backing_dev_info.capabilities &= 6124 ~BDI_CAP_STABLE_WRITES; 6125 mddev_resume(mddev); 6126 } 6127 mddev_unlock(mddev); 6128 return err ?: len; 6129 } 6130 6131 static struct md_sysfs_entry 6132 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6133 raid5_show_skip_copy, 6134 raid5_store_skip_copy); 6135 6136 static ssize_t 6137 stripe_cache_active_show(struct mddev *mddev, char *page) 6138 { 6139 struct r5conf *conf = mddev->private; 6140 if (conf) 6141 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6142 else 6143 return 0; 6144 } 6145 6146 static struct md_sysfs_entry 6147 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6148 6149 static ssize_t 6150 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6151 { 6152 struct r5conf *conf; 6153 int ret = 0; 6154 spin_lock(&mddev->lock); 6155 conf = mddev->private; 6156 if (conf) 6157 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6158 spin_unlock(&mddev->lock); 6159 return ret; 6160 } 6161 6162 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6163 int *group_cnt, 6164 int *worker_cnt_per_group, 6165 struct r5worker_group **worker_groups); 6166 static ssize_t 6167 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6168 { 6169 struct r5conf *conf; 6170 unsigned long new; 6171 int err; 6172 struct r5worker_group *new_groups, *old_groups; 6173 int group_cnt, worker_cnt_per_group; 6174 6175 if (len >= PAGE_SIZE) 6176 return -EINVAL; 6177 if (kstrtoul(page, 10, &new)) 6178 return -EINVAL; 6179 6180 err = mddev_lock(mddev); 6181 if (err) 6182 return err; 6183 conf = mddev->private; 6184 if (!conf) 6185 err = -ENODEV; 6186 else if (new != conf->worker_cnt_per_group) { 6187 mddev_suspend(mddev); 6188 6189 old_groups = conf->worker_groups; 6190 if (old_groups) 6191 flush_workqueue(raid5_wq); 6192 6193 err = alloc_thread_groups(conf, new, 6194 &group_cnt, &worker_cnt_per_group, 6195 &new_groups); 6196 if (!err) { 6197 spin_lock_irq(&conf->device_lock); 6198 conf->group_cnt = group_cnt; 6199 conf->worker_cnt_per_group = worker_cnt_per_group; 6200 conf->worker_groups = new_groups; 6201 spin_unlock_irq(&conf->device_lock); 6202 6203 if (old_groups) 6204 kfree(old_groups[0].workers); 6205 kfree(old_groups); 6206 } 6207 mddev_resume(mddev); 6208 } 6209 mddev_unlock(mddev); 6210 6211 return err ?: len; 6212 } 6213 6214 static struct md_sysfs_entry 6215 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6216 raid5_show_group_thread_cnt, 6217 raid5_store_group_thread_cnt); 6218 6219 static struct attribute *raid5_attrs[] = { 6220 &raid5_stripecache_size.attr, 6221 &raid5_stripecache_active.attr, 6222 &raid5_preread_bypass_threshold.attr, 6223 &raid5_group_thread_cnt.attr, 6224 &raid5_skip_copy.attr, 6225 &raid5_rmw_level.attr, 6226 NULL, 6227 }; 6228 static struct attribute_group raid5_attrs_group = { 6229 .name = NULL, 6230 .attrs = raid5_attrs, 6231 }; 6232 6233 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6234 int *group_cnt, 6235 int *worker_cnt_per_group, 6236 struct r5worker_group **worker_groups) 6237 { 6238 int i, j, k; 6239 ssize_t size; 6240 struct r5worker *workers; 6241 6242 *worker_cnt_per_group = cnt; 6243 if (cnt == 0) { 6244 *group_cnt = 0; 6245 *worker_groups = NULL; 6246 return 0; 6247 } 6248 *group_cnt = num_possible_nodes(); 6249 size = sizeof(struct r5worker) * cnt; 6250 workers = kzalloc(size * *group_cnt, GFP_NOIO); 6251 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 6252 *group_cnt, GFP_NOIO); 6253 if (!*worker_groups || !workers) { 6254 kfree(workers); 6255 kfree(*worker_groups); 6256 return -ENOMEM; 6257 } 6258 6259 for (i = 0; i < *group_cnt; i++) { 6260 struct r5worker_group *group; 6261 6262 group = &(*worker_groups)[i]; 6263 INIT_LIST_HEAD(&group->handle_list); 6264 group->conf = conf; 6265 group->workers = workers + i * cnt; 6266 6267 for (j = 0; j < cnt; j++) { 6268 struct r5worker *worker = group->workers + j; 6269 worker->group = group; 6270 INIT_WORK(&worker->work, raid5_do_work); 6271 6272 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6273 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6274 } 6275 } 6276 6277 return 0; 6278 } 6279 6280 static void free_thread_groups(struct r5conf *conf) 6281 { 6282 if (conf->worker_groups) 6283 kfree(conf->worker_groups[0].workers); 6284 kfree(conf->worker_groups); 6285 conf->worker_groups = NULL; 6286 } 6287 6288 static sector_t 6289 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6290 { 6291 struct r5conf *conf = mddev->private; 6292 6293 if (!sectors) 6294 sectors = mddev->dev_sectors; 6295 if (!raid_disks) 6296 /* size is defined by the smallest of previous and new size */ 6297 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6298 6299 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6300 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6301 return sectors * (raid_disks - conf->max_degraded); 6302 } 6303 6304 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6305 { 6306 safe_put_page(percpu->spare_page); 6307 if (percpu->scribble) 6308 flex_array_free(percpu->scribble); 6309 percpu->spare_page = NULL; 6310 percpu->scribble = NULL; 6311 } 6312 6313 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6314 { 6315 if (conf->level == 6 && !percpu->spare_page) 6316 percpu->spare_page = alloc_page(GFP_KERNEL); 6317 if (!percpu->scribble) 6318 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6319 conf->previous_raid_disks), 6320 max(conf->chunk_sectors, 6321 conf->prev_chunk_sectors) 6322 / STRIPE_SECTORS, 6323 GFP_KERNEL); 6324 6325 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6326 free_scratch_buffer(conf, percpu); 6327 return -ENOMEM; 6328 } 6329 6330 return 0; 6331 } 6332 6333 static void raid5_free_percpu(struct r5conf *conf) 6334 { 6335 unsigned long cpu; 6336 6337 if (!conf->percpu) 6338 return; 6339 6340 #ifdef CONFIG_HOTPLUG_CPU 6341 unregister_cpu_notifier(&conf->cpu_notify); 6342 #endif 6343 6344 get_online_cpus(); 6345 for_each_possible_cpu(cpu) 6346 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6347 put_online_cpus(); 6348 6349 free_percpu(conf->percpu); 6350 } 6351 6352 static void free_conf(struct r5conf *conf) 6353 { 6354 if (conf->log) 6355 r5l_exit_log(conf->log); 6356 if (conf->shrinker.seeks) 6357 unregister_shrinker(&conf->shrinker); 6358 6359 free_thread_groups(conf); 6360 shrink_stripes(conf); 6361 raid5_free_percpu(conf); 6362 kfree(conf->disks); 6363 kfree(conf->stripe_hashtbl); 6364 kfree(conf); 6365 } 6366 6367 #ifdef CONFIG_HOTPLUG_CPU 6368 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 6369 void *hcpu) 6370 { 6371 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 6372 long cpu = (long)hcpu; 6373 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6374 6375 switch (action) { 6376 case CPU_UP_PREPARE: 6377 case CPU_UP_PREPARE_FROZEN: 6378 if (alloc_scratch_buffer(conf, percpu)) { 6379 pr_err("%s: failed memory allocation for cpu%ld\n", 6380 __func__, cpu); 6381 return notifier_from_errno(-ENOMEM); 6382 } 6383 break; 6384 case CPU_DEAD: 6385 case CPU_DEAD_FROZEN: 6386 case CPU_UP_CANCELED: 6387 case CPU_UP_CANCELED_FROZEN: 6388 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6389 break; 6390 default: 6391 break; 6392 } 6393 return NOTIFY_OK; 6394 } 6395 #endif 6396 6397 static int raid5_alloc_percpu(struct r5conf *conf) 6398 { 6399 unsigned long cpu; 6400 int err = 0; 6401 6402 conf->percpu = alloc_percpu(struct raid5_percpu); 6403 if (!conf->percpu) 6404 return -ENOMEM; 6405 6406 #ifdef CONFIG_HOTPLUG_CPU 6407 conf->cpu_notify.notifier_call = raid456_cpu_notify; 6408 conf->cpu_notify.priority = 0; 6409 err = register_cpu_notifier(&conf->cpu_notify); 6410 if (err) 6411 return err; 6412 #endif 6413 6414 get_online_cpus(); 6415 for_each_present_cpu(cpu) { 6416 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6417 if (err) { 6418 pr_err("%s: failed memory allocation for cpu%ld\n", 6419 __func__, cpu); 6420 break; 6421 } 6422 } 6423 put_online_cpus(); 6424 6425 if (!err) { 6426 conf->scribble_disks = max(conf->raid_disks, 6427 conf->previous_raid_disks); 6428 conf->scribble_sectors = max(conf->chunk_sectors, 6429 conf->prev_chunk_sectors); 6430 } 6431 return err; 6432 } 6433 6434 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6435 struct shrink_control *sc) 6436 { 6437 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6438 unsigned long ret = SHRINK_STOP; 6439 6440 if (mutex_trylock(&conf->cache_size_mutex)) { 6441 ret= 0; 6442 while (ret < sc->nr_to_scan && 6443 conf->max_nr_stripes > conf->min_nr_stripes) { 6444 if (drop_one_stripe(conf) == 0) { 6445 ret = SHRINK_STOP; 6446 break; 6447 } 6448 ret++; 6449 } 6450 mutex_unlock(&conf->cache_size_mutex); 6451 } 6452 return ret; 6453 } 6454 6455 static unsigned long raid5_cache_count(struct shrinker *shrink, 6456 struct shrink_control *sc) 6457 { 6458 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6459 6460 if (conf->max_nr_stripes < conf->min_nr_stripes) 6461 /* unlikely, but not impossible */ 6462 return 0; 6463 return conf->max_nr_stripes - conf->min_nr_stripes; 6464 } 6465 6466 static struct r5conf *setup_conf(struct mddev *mddev) 6467 { 6468 struct r5conf *conf; 6469 int raid_disk, memory, max_disks; 6470 struct md_rdev *rdev; 6471 struct disk_info *disk; 6472 char pers_name[6]; 6473 int i; 6474 int group_cnt, worker_cnt_per_group; 6475 struct r5worker_group *new_group; 6476 6477 if (mddev->new_level != 5 6478 && mddev->new_level != 4 6479 && mddev->new_level != 6) { 6480 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6481 mdname(mddev), mddev->new_level); 6482 return ERR_PTR(-EIO); 6483 } 6484 if ((mddev->new_level == 5 6485 && !algorithm_valid_raid5(mddev->new_layout)) || 6486 (mddev->new_level == 6 6487 && !algorithm_valid_raid6(mddev->new_layout))) { 6488 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 6489 mdname(mddev), mddev->new_layout); 6490 return ERR_PTR(-EIO); 6491 } 6492 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6493 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6494 mdname(mddev), mddev->raid_disks); 6495 return ERR_PTR(-EINVAL); 6496 } 6497 6498 if (!mddev->new_chunk_sectors || 6499 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6500 !is_power_of_2(mddev->new_chunk_sectors)) { 6501 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 6502 mdname(mddev), mddev->new_chunk_sectors << 9); 6503 return ERR_PTR(-EINVAL); 6504 } 6505 6506 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6507 if (conf == NULL) 6508 goto abort; 6509 /* Don't enable multi-threading by default*/ 6510 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6511 &new_group)) { 6512 conf->group_cnt = group_cnt; 6513 conf->worker_cnt_per_group = worker_cnt_per_group; 6514 conf->worker_groups = new_group; 6515 } else 6516 goto abort; 6517 spin_lock_init(&conf->device_lock); 6518 seqcount_init(&conf->gen_lock); 6519 mutex_init(&conf->cache_size_mutex); 6520 init_waitqueue_head(&conf->wait_for_quiescent); 6521 init_waitqueue_head(&conf->wait_for_stripe); 6522 init_waitqueue_head(&conf->wait_for_overlap); 6523 INIT_LIST_HEAD(&conf->handle_list); 6524 INIT_LIST_HEAD(&conf->hold_list); 6525 INIT_LIST_HEAD(&conf->delayed_list); 6526 INIT_LIST_HEAD(&conf->bitmap_list); 6527 bio_list_init(&conf->return_bi); 6528 init_llist_head(&conf->released_stripes); 6529 atomic_set(&conf->active_stripes, 0); 6530 atomic_set(&conf->preread_active_stripes, 0); 6531 atomic_set(&conf->active_aligned_reads, 0); 6532 conf->bypass_threshold = BYPASS_THRESHOLD; 6533 conf->recovery_disabled = mddev->recovery_disabled - 1; 6534 6535 conf->raid_disks = mddev->raid_disks; 6536 if (mddev->reshape_position == MaxSector) 6537 conf->previous_raid_disks = mddev->raid_disks; 6538 else 6539 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6540 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6541 6542 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 6543 GFP_KERNEL); 6544 if (!conf->disks) 6545 goto abort; 6546 6547 conf->mddev = mddev; 6548 6549 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6550 goto abort; 6551 6552 /* We init hash_locks[0] separately to that it can be used 6553 * as the reference lock in the spin_lock_nest_lock() call 6554 * in lock_all_device_hash_locks_irq in order to convince 6555 * lockdep that we know what we are doing. 6556 */ 6557 spin_lock_init(conf->hash_locks); 6558 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6559 spin_lock_init(conf->hash_locks + i); 6560 6561 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6562 INIT_LIST_HEAD(conf->inactive_list + i); 6563 6564 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6565 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6566 6567 conf->level = mddev->new_level; 6568 conf->chunk_sectors = mddev->new_chunk_sectors; 6569 if (raid5_alloc_percpu(conf) != 0) 6570 goto abort; 6571 6572 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6573 6574 rdev_for_each(rdev, mddev) { 6575 raid_disk = rdev->raid_disk; 6576 if (raid_disk >= max_disks 6577 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 6578 continue; 6579 disk = conf->disks + raid_disk; 6580 6581 if (test_bit(Replacement, &rdev->flags)) { 6582 if (disk->replacement) 6583 goto abort; 6584 disk->replacement = rdev; 6585 } else { 6586 if (disk->rdev) 6587 goto abort; 6588 disk->rdev = rdev; 6589 } 6590 6591 if (test_bit(In_sync, &rdev->flags)) { 6592 char b[BDEVNAME_SIZE]; 6593 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 6594 " disk %d\n", 6595 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 6596 } else if (rdev->saved_raid_disk != raid_disk) 6597 /* Cannot rely on bitmap to complete recovery */ 6598 conf->fullsync = 1; 6599 } 6600 6601 conf->level = mddev->new_level; 6602 if (conf->level == 6) { 6603 conf->max_degraded = 2; 6604 if (raid6_call.xor_syndrome) 6605 conf->rmw_level = PARITY_ENABLE_RMW; 6606 else 6607 conf->rmw_level = PARITY_DISABLE_RMW; 6608 } else { 6609 conf->max_degraded = 1; 6610 conf->rmw_level = PARITY_ENABLE_RMW; 6611 } 6612 conf->algorithm = mddev->new_layout; 6613 conf->reshape_progress = mddev->reshape_position; 6614 if (conf->reshape_progress != MaxSector) { 6615 conf->prev_chunk_sectors = mddev->chunk_sectors; 6616 conf->prev_algo = mddev->layout; 6617 } else { 6618 conf->prev_chunk_sectors = conf->chunk_sectors; 6619 conf->prev_algo = conf->algorithm; 6620 } 6621 6622 conf->min_nr_stripes = NR_STRIPES; 6623 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 6624 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 6625 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 6626 if (grow_stripes(conf, conf->min_nr_stripes)) { 6627 printk(KERN_ERR 6628 "md/raid:%s: couldn't allocate %dkB for buffers\n", 6629 mdname(mddev), memory); 6630 goto abort; 6631 } else 6632 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 6633 mdname(mddev), memory); 6634 /* 6635 * Losing a stripe head costs more than the time to refill it, 6636 * it reduces the queue depth and so can hurt throughput. 6637 * So set it rather large, scaled by number of devices. 6638 */ 6639 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 6640 conf->shrinker.scan_objects = raid5_cache_scan; 6641 conf->shrinker.count_objects = raid5_cache_count; 6642 conf->shrinker.batch = 128; 6643 conf->shrinker.flags = 0; 6644 register_shrinker(&conf->shrinker); 6645 6646 sprintf(pers_name, "raid%d", mddev->new_level); 6647 conf->thread = md_register_thread(raid5d, mddev, pers_name); 6648 if (!conf->thread) { 6649 printk(KERN_ERR 6650 "md/raid:%s: couldn't allocate thread.\n", 6651 mdname(mddev)); 6652 goto abort; 6653 } 6654 6655 return conf; 6656 6657 abort: 6658 if (conf) { 6659 free_conf(conf); 6660 return ERR_PTR(-EIO); 6661 } else 6662 return ERR_PTR(-ENOMEM); 6663 } 6664 6665 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 6666 { 6667 switch (algo) { 6668 case ALGORITHM_PARITY_0: 6669 if (raid_disk < max_degraded) 6670 return 1; 6671 break; 6672 case ALGORITHM_PARITY_N: 6673 if (raid_disk >= raid_disks - max_degraded) 6674 return 1; 6675 break; 6676 case ALGORITHM_PARITY_0_6: 6677 if (raid_disk == 0 || 6678 raid_disk == raid_disks - 1) 6679 return 1; 6680 break; 6681 case ALGORITHM_LEFT_ASYMMETRIC_6: 6682 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6683 case ALGORITHM_LEFT_SYMMETRIC_6: 6684 case ALGORITHM_RIGHT_SYMMETRIC_6: 6685 if (raid_disk == raid_disks - 1) 6686 return 1; 6687 } 6688 return 0; 6689 } 6690 6691 static int raid5_run(struct mddev *mddev) 6692 { 6693 struct r5conf *conf; 6694 int working_disks = 0; 6695 int dirty_parity_disks = 0; 6696 struct md_rdev *rdev; 6697 struct md_rdev *journal_dev = NULL; 6698 sector_t reshape_offset = 0; 6699 int i; 6700 long long min_offset_diff = 0; 6701 int first = 1; 6702 6703 if (mddev->recovery_cp != MaxSector) 6704 printk(KERN_NOTICE "md/raid:%s: not clean" 6705 " -- starting background reconstruction\n", 6706 mdname(mddev)); 6707 6708 rdev_for_each(rdev, mddev) { 6709 long long diff; 6710 6711 if (test_bit(Journal, &rdev->flags)) { 6712 journal_dev = rdev; 6713 continue; 6714 } 6715 if (rdev->raid_disk < 0) 6716 continue; 6717 diff = (rdev->new_data_offset - rdev->data_offset); 6718 if (first) { 6719 min_offset_diff = diff; 6720 first = 0; 6721 } else if (mddev->reshape_backwards && 6722 diff < min_offset_diff) 6723 min_offset_diff = diff; 6724 else if (!mddev->reshape_backwards && 6725 diff > min_offset_diff) 6726 min_offset_diff = diff; 6727 } 6728 6729 if (mddev->reshape_position != MaxSector) { 6730 /* Check that we can continue the reshape. 6731 * Difficulties arise if the stripe we would write to 6732 * next is at or after the stripe we would read from next. 6733 * For a reshape that changes the number of devices, this 6734 * is only possible for a very short time, and mdadm makes 6735 * sure that time appears to have past before assembling 6736 * the array. So we fail if that time hasn't passed. 6737 * For a reshape that keeps the number of devices the same 6738 * mdadm must be monitoring the reshape can keeping the 6739 * critical areas read-only and backed up. It will start 6740 * the array in read-only mode, so we check for that. 6741 */ 6742 sector_t here_new, here_old; 6743 int old_disks; 6744 int max_degraded = (mddev->level == 6 ? 2 : 1); 6745 int chunk_sectors; 6746 int new_data_disks; 6747 6748 if (journal_dev) { 6749 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n", 6750 mdname(mddev)); 6751 return -EINVAL; 6752 } 6753 6754 if (mddev->new_level != mddev->level) { 6755 printk(KERN_ERR "md/raid:%s: unsupported reshape " 6756 "required - aborting.\n", 6757 mdname(mddev)); 6758 return -EINVAL; 6759 } 6760 old_disks = mddev->raid_disks - mddev->delta_disks; 6761 /* reshape_position must be on a new-stripe boundary, and one 6762 * further up in new geometry must map after here in old 6763 * geometry. 6764 * If the chunk sizes are different, then as we perform reshape 6765 * in units of the largest of the two, reshape_position needs 6766 * be a multiple of the largest chunk size times new data disks. 6767 */ 6768 here_new = mddev->reshape_position; 6769 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 6770 new_data_disks = mddev->raid_disks - max_degraded; 6771 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 6772 printk(KERN_ERR "md/raid:%s: reshape_position not " 6773 "on a stripe boundary\n", mdname(mddev)); 6774 return -EINVAL; 6775 } 6776 reshape_offset = here_new * chunk_sectors; 6777 /* here_new is the stripe we will write to */ 6778 here_old = mddev->reshape_position; 6779 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 6780 /* here_old is the first stripe that we might need to read 6781 * from */ 6782 if (mddev->delta_disks == 0) { 6783 /* We cannot be sure it is safe to start an in-place 6784 * reshape. It is only safe if user-space is monitoring 6785 * and taking constant backups. 6786 * mdadm always starts a situation like this in 6787 * readonly mode so it can take control before 6788 * allowing any writes. So just check for that. 6789 */ 6790 if (abs(min_offset_diff) >= mddev->chunk_sectors && 6791 abs(min_offset_diff) >= mddev->new_chunk_sectors) 6792 /* not really in-place - so OK */; 6793 else if (mddev->ro == 0) { 6794 printk(KERN_ERR "md/raid:%s: in-place reshape " 6795 "must be started in read-only mode " 6796 "- aborting\n", 6797 mdname(mddev)); 6798 return -EINVAL; 6799 } 6800 } else if (mddev->reshape_backwards 6801 ? (here_new * chunk_sectors + min_offset_diff <= 6802 here_old * chunk_sectors) 6803 : (here_new * chunk_sectors >= 6804 here_old * chunk_sectors + (-min_offset_diff))) { 6805 /* Reading from the same stripe as writing to - bad */ 6806 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 6807 "auto-recovery - aborting.\n", 6808 mdname(mddev)); 6809 return -EINVAL; 6810 } 6811 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 6812 mdname(mddev)); 6813 /* OK, we should be able to continue; */ 6814 } else { 6815 BUG_ON(mddev->level != mddev->new_level); 6816 BUG_ON(mddev->layout != mddev->new_layout); 6817 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 6818 BUG_ON(mddev->delta_disks != 0); 6819 } 6820 6821 if (mddev->private == NULL) 6822 conf = setup_conf(mddev); 6823 else 6824 conf = mddev->private; 6825 6826 if (IS_ERR(conf)) 6827 return PTR_ERR(conf); 6828 6829 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) { 6830 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n", 6831 mdname(mddev)); 6832 mddev->ro = 1; 6833 set_disk_ro(mddev->gendisk, 1); 6834 } 6835 6836 conf->min_offset_diff = min_offset_diff; 6837 mddev->thread = conf->thread; 6838 conf->thread = NULL; 6839 mddev->private = conf; 6840 6841 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 6842 i++) { 6843 rdev = conf->disks[i].rdev; 6844 if (!rdev && conf->disks[i].replacement) { 6845 /* The replacement is all we have yet */ 6846 rdev = conf->disks[i].replacement; 6847 conf->disks[i].replacement = NULL; 6848 clear_bit(Replacement, &rdev->flags); 6849 conf->disks[i].rdev = rdev; 6850 } 6851 if (!rdev) 6852 continue; 6853 if (conf->disks[i].replacement && 6854 conf->reshape_progress != MaxSector) { 6855 /* replacements and reshape simply do not mix. */ 6856 printk(KERN_ERR "md: cannot handle concurrent " 6857 "replacement and reshape.\n"); 6858 goto abort; 6859 } 6860 if (test_bit(In_sync, &rdev->flags)) { 6861 working_disks++; 6862 continue; 6863 } 6864 /* This disc is not fully in-sync. However if it 6865 * just stored parity (beyond the recovery_offset), 6866 * when we don't need to be concerned about the 6867 * array being dirty. 6868 * When reshape goes 'backwards', we never have 6869 * partially completed devices, so we only need 6870 * to worry about reshape going forwards. 6871 */ 6872 /* Hack because v0.91 doesn't store recovery_offset properly. */ 6873 if (mddev->major_version == 0 && 6874 mddev->minor_version > 90) 6875 rdev->recovery_offset = reshape_offset; 6876 6877 if (rdev->recovery_offset < reshape_offset) { 6878 /* We need to check old and new layout */ 6879 if (!only_parity(rdev->raid_disk, 6880 conf->algorithm, 6881 conf->raid_disks, 6882 conf->max_degraded)) 6883 continue; 6884 } 6885 if (!only_parity(rdev->raid_disk, 6886 conf->prev_algo, 6887 conf->previous_raid_disks, 6888 conf->max_degraded)) 6889 continue; 6890 dirty_parity_disks++; 6891 } 6892 6893 /* 6894 * 0 for a fully functional array, 1 or 2 for a degraded array. 6895 */ 6896 mddev->degraded = calc_degraded(conf); 6897 6898 if (has_failed(conf)) { 6899 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6900 " (%d/%d failed)\n", 6901 mdname(mddev), mddev->degraded, conf->raid_disks); 6902 goto abort; 6903 } 6904 6905 /* device size must be a multiple of chunk size */ 6906 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6907 mddev->resync_max_sectors = mddev->dev_sectors; 6908 6909 if (mddev->degraded > dirty_parity_disks && 6910 mddev->recovery_cp != MaxSector) { 6911 if (mddev->ok_start_degraded) 6912 printk(KERN_WARNING 6913 "md/raid:%s: starting dirty degraded array" 6914 " - data corruption possible.\n", 6915 mdname(mddev)); 6916 else { 6917 printk(KERN_ERR 6918 "md/raid:%s: cannot start dirty degraded array.\n", 6919 mdname(mddev)); 6920 goto abort; 6921 } 6922 } 6923 6924 if (mddev->degraded == 0) 6925 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6926 " devices, algorithm %d\n", mdname(mddev), conf->level, 6927 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6928 mddev->new_layout); 6929 else 6930 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6931 " out of %d devices, algorithm %d\n", 6932 mdname(mddev), conf->level, 6933 mddev->raid_disks - mddev->degraded, 6934 mddev->raid_disks, mddev->new_layout); 6935 6936 print_raid5_conf(conf); 6937 6938 if (conf->reshape_progress != MaxSector) { 6939 conf->reshape_safe = conf->reshape_progress; 6940 atomic_set(&conf->reshape_stripes, 0); 6941 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6942 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6943 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6944 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6945 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6946 "reshape"); 6947 } 6948 6949 /* Ok, everything is just fine now */ 6950 if (mddev->to_remove == &raid5_attrs_group) 6951 mddev->to_remove = NULL; 6952 else if (mddev->kobj.sd && 6953 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6954 printk(KERN_WARNING 6955 "raid5: failed to create sysfs attributes for %s\n", 6956 mdname(mddev)); 6957 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6958 6959 if (mddev->queue) { 6960 int chunk_size; 6961 bool discard_supported = true; 6962 /* read-ahead size must cover two whole stripes, which 6963 * is 2 * (datadisks) * chunksize where 'n' is the 6964 * number of raid devices 6965 */ 6966 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6967 int stripe = data_disks * 6968 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6969 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6970 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6971 6972 chunk_size = mddev->chunk_sectors << 9; 6973 blk_queue_io_min(mddev->queue, chunk_size); 6974 blk_queue_io_opt(mddev->queue, chunk_size * 6975 (conf->raid_disks - conf->max_degraded)); 6976 mddev->queue->limits.raid_partial_stripes_expensive = 1; 6977 /* 6978 * We can only discard a whole stripe. It doesn't make sense to 6979 * discard data disk but write parity disk 6980 */ 6981 stripe = stripe * PAGE_SIZE; 6982 /* Round up to power of 2, as discard handling 6983 * currently assumes that */ 6984 while ((stripe-1) & stripe) 6985 stripe = (stripe | (stripe-1)) + 1; 6986 mddev->queue->limits.discard_alignment = stripe; 6987 mddev->queue->limits.discard_granularity = stripe; 6988 /* 6989 * unaligned part of discard request will be ignored, so can't 6990 * guarantee discard_zeroes_data 6991 */ 6992 mddev->queue->limits.discard_zeroes_data = 0; 6993 6994 blk_queue_max_write_same_sectors(mddev->queue, 0); 6995 6996 rdev_for_each(rdev, mddev) { 6997 disk_stack_limits(mddev->gendisk, rdev->bdev, 6998 rdev->data_offset << 9); 6999 disk_stack_limits(mddev->gendisk, rdev->bdev, 7000 rdev->new_data_offset << 9); 7001 /* 7002 * discard_zeroes_data is required, otherwise data 7003 * could be lost. Consider a scenario: discard a stripe 7004 * (the stripe could be inconsistent if 7005 * discard_zeroes_data is 0); write one disk of the 7006 * stripe (the stripe could be inconsistent again 7007 * depending on which disks are used to calculate 7008 * parity); the disk is broken; The stripe data of this 7009 * disk is lost. 7010 */ 7011 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 7012 !bdev_get_queue(rdev->bdev)-> 7013 limits.discard_zeroes_data) 7014 discard_supported = false; 7015 /* Unfortunately, discard_zeroes_data is not currently 7016 * a guarantee - just a hint. So we only allow DISCARD 7017 * if the sysadmin has confirmed that only safe devices 7018 * are in use by setting a module parameter. 7019 */ 7020 if (!devices_handle_discard_safely) { 7021 if (discard_supported) { 7022 pr_info("md/raid456: discard support disabled due to uncertainty.\n"); 7023 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n"); 7024 } 7025 discard_supported = false; 7026 } 7027 } 7028 7029 if (discard_supported && 7030 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7031 mddev->queue->limits.discard_granularity >= stripe) 7032 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 7033 mddev->queue); 7034 else 7035 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 7036 mddev->queue); 7037 } 7038 7039 if (journal_dev) { 7040 char b[BDEVNAME_SIZE]; 7041 7042 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7043 mdname(mddev), bdevname(journal_dev->bdev, b)); 7044 r5l_init_log(conf, journal_dev); 7045 } 7046 7047 return 0; 7048 abort: 7049 md_unregister_thread(&mddev->thread); 7050 print_raid5_conf(conf); 7051 free_conf(conf); 7052 mddev->private = NULL; 7053 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7054 return -EIO; 7055 } 7056 7057 static void raid5_free(struct mddev *mddev, void *priv) 7058 { 7059 struct r5conf *conf = priv; 7060 7061 free_conf(conf); 7062 mddev->to_remove = &raid5_attrs_group; 7063 } 7064 7065 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7066 { 7067 struct r5conf *conf = mddev->private; 7068 int i; 7069 7070 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7071 conf->chunk_sectors / 2, mddev->layout); 7072 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7073 rcu_read_lock(); 7074 for (i = 0; i < conf->raid_disks; i++) { 7075 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7076 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7077 } 7078 rcu_read_unlock(); 7079 seq_printf (seq, "]"); 7080 } 7081 7082 static void print_raid5_conf (struct r5conf *conf) 7083 { 7084 int i; 7085 struct disk_info *tmp; 7086 7087 printk(KERN_DEBUG "RAID conf printout:\n"); 7088 if (!conf) { 7089 printk("(conf==NULL)\n"); 7090 return; 7091 } 7092 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 7093 conf->raid_disks, 7094 conf->raid_disks - conf->mddev->degraded); 7095 7096 for (i = 0; i < conf->raid_disks; i++) { 7097 char b[BDEVNAME_SIZE]; 7098 tmp = conf->disks + i; 7099 if (tmp->rdev) 7100 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 7101 i, !test_bit(Faulty, &tmp->rdev->flags), 7102 bdevname(tmp->rdev->bdev, b)); 7103 } 7104 } 7105 7106 static int raid5_spare_active(struct mddev *mddev) 7107 { 7108 int i; 7109 struct r5conf *conf = mddev->private; 7110 struct disk_info *tmp; 7111 int count = 0; 7112 unsigned long flags; 7113 7114 for (i = 0; i < conf->raid_disks; i++) { 7115 tmp = conf->disks + i; 7116 if (tmp->replacement 7117 && tmp->replacement->recovery_offset == MaxSector 7118 && !test_bit(Faulty, &tmp->replacement->flags) 7119 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7120 /* Replacement has just become active. */ 7121 if (!tmp->rdev 7122 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7123 count++; 7124 if (tmp->rdev) { 7125 /* Replaced device not technically faulty, 7126 * but we need to be sure it gets removed 7127 * and never re-added. 7128 */ 7129 set_bit(Faulty, &tmp->rdev->flags); 7130 sysfs_notify_dirent_safe( 7131 tmp->rdev->sysfs_state); 7132 } 7133 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7134 } else if (tmp->rdev 7135 && tmp->rdev->recovery_offset == MaxSector 7136 && !test_bit(Faulty, &tmp->rdev->flags) 7137 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7138 count++; 7139 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7140 } 7141 } 7142 spin_lock_irqsave(&conf->device_lock, flags); 7143 mddev->degraded = calc_degraded(conf); 7144 spin_unlock_irqrestore(&conf->device_lock, flags); 7145 print_raid5_conf(conf); 7146 return count; 7147 } 7148 7149 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7150 { 7151 struct r5conf *conf = mddev->private; 7152 int err = 0; 7153 int number = rdev->raid_disk; 7154 struct md_rdev **rdevp; 7155 struct disk_info *p = conf->disks + number; 7156 7157 print_raid5_conf(conf); 7158 if (test_bit(Journal, &rdev->flags) && conf->log) { 7159 struct r5l_log *log; 7160 /* 7161 * we can't wait pending write here, as this is called in 7162 * raid5d, wait will deadlock. 7163 */ 7164 if (atomic_read(&mddev->writes_pending)) 7165 return -EBUSY; 7166 log = conf->log; 7167 conf->log = NULL; 7168 synchronize_rcu(); 7169 r5l_exit_log(log); 7170 return 0; 7171 } 7172 if (rdev == p->rdev) 7173 rdevp = &p->rdev; 7174 else if (rdev == p->replacement) 7175 rdevp = &p->replacement; 7176 else 7177 return 0; 7178 7179 if (number >= conf->raid_disks && 7180 conf->reshape_progress == MaxSector) 7181 clear_bit(In_sync, &rdev->flags); 7182 7183 if (test_bit(In_sync, &rdev->flags) || 7184 atomic_read(&rdev->nr_pending)) { 7185 err = -EBUSY; 7186 goto abort; 7187 } 7188 /* Only remove non-faulty devices if recovery 7189 * isn't possible. 7190 */ 7191 if (!test_bit(Faulty, &rdev->flags) && 7192 mddev->recovery_disabled != conf->recovery_disabled && 7193 !has_failed(conf) && 7194 (!p->replacement || p->replacement == rdev) && 7195 number < conf->raid_disks) { 7196 err = -EBUSY; 7197 goto abort; 7198 } 7199 *rdevp = NULL; 7200 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7201 synchronize_rcu(); 7202 if (atomic_read(&rdev->nr_pending)) { 7203 /* lost the race, try later */ 7204 err = -EBUSY; 7205 *rdevp = rdev; 7206 } 7207 } 7208 if (p->replacement) { 7209 /* We must have just cleared 'rdev' */ 7210 p->rdev = p->replacement; 7211 clear_bit(Replacement, &p->replacement->flags); 7212 smp_mb(); /* Make sure other CPUs may see both as identical 7213 * but will never see neither - if they are careful 7214 */ 7215 p->replacement = NULL; 7216 clear_bit(WantReplacement, &rdev->flags); 7217 } else 7218 /* We might have just removed the Replacement as faulty- 7219 * clear the bit just in case 7220 */ 7221 clear_bit(WantReplacement, &rdev->flags); 7222 abort: 7223 7224 print_raid5_conf(conf); 7225 return err; 7226 } 7227 7228 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7229 { 7230 struct r5conf *conf = mddev->private; 7231 int err = -EEXIST; 7232 int disk; 7233 struct disk_info *p; 7234 int first = 0; 7235 int last = conf->raid_disks - 1; 7236 7237 if (test_bit(Journal, &rdev->flags)) { 7238 char b[BDEVNAME_SIZE]; 7239 if (conf->log) 7240 return -EBUSY; 7241 7242 rdev->raid_disk = 0; 7243 /* 7244 * The array is in readonly mode if journal is missing, so no 7245 * write requests running. We should be safe 7246 */ 7247 r5l_init_log(conf, rdev); 7248 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7249 mdname(mddev), bdevname(rdev->bdev, b)); 7250 return 0; 7251 } 7252 if (mddev->recovery_disabled == conf->recovery_disabled) 7253 return -EBUSY; 7254 7255 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7256 /* no point adding a device */ 7257 return -EINVAL; 7258 7259 if (rdev->raid_disk >= 0) 7260 first = last = rdev->raid_disk; 7261 7262 /* 7263 * find the disk ... but prefer rdev->saved_raid_disk 7264 * if possible. 7265 */ 7266 if (rdev->saved_raid_disk >= 0 && 7267 rdev->saved_raid_disk >= first && 7268 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7269 first = rdev->saved_raid_disk; 7270 7271 for (disk = first; disk <= last; disk++) { 7272 p = conf->disks + disk; 7273 if (p->rdev == NULL) { 7274 clear_bit(In_sync, &rdev->flags); 7275 rdev->raid_disk = disk; 7276 err = 0; 7277 if (rdev->saved_raid_disk != disk) 7278 conf->fullsync = 1; 7279 rcu_assign_pointer(p->rdev, rdev); 7280 goto out; 7281 } 7282 } 7283 for (disk = first; disk <= last; disk++) { 7284 p = conf->disks + disk; 7285 if (test_bit(WantReplacement, &p->rdev->flags) && 7286 p->replacement == NULL) { 7287 clear_bit(In_sync, &rdev->flags); 7288 set_bit(Replacement, &rdev->flags); 7289 rdev->raid_disk = disk; 7290 err = 0; 7291 conf->fullsync = 1; 7292 rcu_assign_pointer(p->replacement, rdev); 7293 break; 7294 } 7295 } 7296 out: 7297 print_raid5_conf(conf); 7298 return err; 7299 } 7300 7301 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7302 { 7303 /* no resync is happening, and there is enough space 7304 * on all devices, so we can resize. 7305 * We need to make sure resync covers any new space. 7306 * If the array is shrinking we should possibly wait until 7307 * any io in the removed space completes, but it hardly seems 7308 * worth it. 7309 */ 7310 sector_t newsize; 7311 struct r5conf *conf = mddev->private; 7312 7313 if (conf->log) 7314 return -EINVAL; 7315 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7316 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7317 if (mddev->external_size && 7318 mddev->array_sectors > newsize) 7319 return -EINVAL; 7320 if (mddev->bitmap) { 7321 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7322 if (ret) 7323 return ret; 7324 } 7325 md_set_array_sectors(mddev, newsize); 7326 set_capacity(mddev->gendisk, mddev->array_sectors); 7327 revalidate_disk(mddev->gendisk); 7328 if (sectors > mddev->dev_sectors && 7329 mddev->recovery_cp > mddev->dev_sectors) { 7330 mddev->recovery_cp = mddev->dev_sectors; 7331 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7332 } 7333 mddev->dev_sectors = sectors; 7334 mddev->resync_max_sectors = sectors; 7335 return 0; 7336 } 7337 7338 static int check_stripe_cache(struct mddev *mddev) 7339 { 7340 /* Can only proceed if there are plenty of stripe_heads. 7341 * We need a minimum of one full stripe,, and for sensible progress 7342 * it is best to have about 4 times that. 7343 * If we require 4 times, then the default 256 4K stripe_heads will 7344 * allow for chunk sizes up to 256K, which is probably OK. 7345 * If the chunk size is greater, user-space should request more 7346 * stripe_heads first. 7347 */ 7348 struct r5conf *conf = mddev->private; 7349 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7350 > conf->min_nr_stripes || 7351 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7352 > conf->min_nr_stripes) { 7353 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7354 mdname(mddev), 7355 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7356 / STRIPE_SIZE)*4); 7357 return 0; 7358 } 7359 return 1; 7360 } 7361 7362 static int check_reshape(struct mddev *mddev) 7363 { 7364 struct r5conf *conf = mddev->private; 7365 7366 if (conf->log) 7367 return -EINVAL; 7368 if (mddev->delta_disks == 0 && 7369 mddev->new_layout == mddev->layout && 7370 mddev->new_chunk_sectors == mddev->chunk_sectors) 7371 return 0; /* nothing to do */ 7372 if (has_failed(conf)) 7373 return -EINVAL; 7374 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7375 /* We might be able to shrink, but the devices must 7376 * be made bigger first. 7377 * For raid6, 4 is the minimum size. 7378 * Otherwise 2 is the minimum 7379 */ 7380 int min = 2; 7381 if (mddev->level == 6) 7382 min = 4; 7383 if (mddev->raid_disks + mddev->delta_disks < min) 7384 return -EINVAL; 7385 } 7386 7387 if (!check_stripe_cache(mddev)) 7388 return -ENOSPC; 7389 7390 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7391 mddev->delta_disks > 0) 7392 if (resize_chunks(conf, 7393 conf->previous_raid_disks 7394 + max(0, mddev->delta_disks), 7395 max(mddev->new_chunk_sectors, 7396 mddev->chunk_sectors) 7397 ) < 0) 7398 return -ENOMEM; 7399 return resize_stripes(conf, (conf->previous_raid_disks 7400 + mddev->delta_disks)); 7401 } 7402 7403 static int raid5_start_reshape(struct mddev *mddev) 7404 { 7405 struct r5conf *conf = mddev->private; 7406 struct md_rdev *rdev; 7407 int spares = 0; 7408 unsigned long flags; 7409 7410 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7411 return -EBUSY; 7412 7413 if (!check_stripe_cache(mddev)) 7414 return -ENOSPC; 7415 7416 if (has_failed(conf)) 7417 return -EINVAL; 7418 7419 rdev_for_each(rdev, mddev) { 7420 if (!test_bit(In_sync, &rdev->flags) 7421 && !test_bit(Faulty, &rdev->flags)) 7422 spares++; 7423 } 7424 7425 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7426 /* Not enough devices even to make a degraded array 7427 * of that size 7428 */ 7429 return -EINVAL; 7430 7431 /* Refuse to reduce size of the array. Any reductions in 7432 * array size must be through explicit setting of array_size 7433 * attribute. 7434 */ 7435 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7436 < mddev->array_sectors) { 7437 printk(KERN_ERR "md/raid:%s: array size must be reduced " 7438 "before number of disks\n", mdname(mddev)); 7439 return -EINVAL; 7440 } 7441 7442 atomic_set(&conf->reshape_stripes, 0); 7443 spin_lock_irq(&conf->device_lock); 7444 write_seqcount_begin(&conf->gen_lock); 7445 conf->previous_raid_disks = conf->raid_disks; 7446 conf->raid_disks += mddev->delta_disks; 7447 conf->prev_chunk_sectors = conf->chunk_sectors; 7448 conf->chunk_sectors = mddev->new_chunk_sectors; 7449 conf->prev_algo = conf->algorithm; 7450 conf->algorithm = mddev->new_layout; 7451 conf->generation++; 7452 /* Code that selects data_offset needs to see the generation update 7453 * if reshape_progress has been set - so a memory barrier needed. 7454 */ 7455 smp_mb(); 7456 if (mddev->reshape_backwards) 7457 conf->reshape_progress = raid5_size(mddev, 0, 0); 7458 else 7459 conf->reshape_progress = 0; 7460 conf->reshape_safe = conf->reshape_progress; 7461 write_seqcount_end(&conf->gen_lock); 7462 spin_unlock_irq(&conf->device_lock); 7463 7464 /* Now make sure any requests that proceeded on the assumption 7465 * the reshape wasn't running - like Discard or Read - have 7466 * completed. 7467 */ 7468 mddev_suspend(mddev); 7469 mddev_resume(mddev); 7470 7471 /* Add some new drives, as many as will fit. 7472 * We know there are enough to make the newly sized array work. 7473 * Don't add devices if we are reducing the number of 7474 * devices in the array. This is because it is not possible 7475 * to correctly record the "partially reconstructed" state of 7476 * such devices during the reshape and confusion could result. 7477 */ 7478 if (mddev->delta_disks >= 0) { 7479 rdev_for_each(rdev, mddev) 7480 if (rdev->raid_disk < 0 && 7481 !test_bit(Faulty, &rdev->flags)) { 7482 if (raid5_add_disk(mddev, rdev) == 0) { 7483 if (rdev->raid_disk 7484 >= conf->previous_raid_disks) 7485 set_bit(In_sync, &rdev->flags); 7486 else 7487 rdev->recovery_offset = 0; 7488 7489 if (sysfs_link_rdev(mddev, rdev)) 7490 /* Failure here is OK */; 7491 } 7492 } else if (rdev->raid_disk >= conf->previous_raid_disks 7493 && !test_bit(Faulty, &rdev->flags)) { 7494 /* This is a spare that was manually added */ 7495 set_bit(In_sync, &rdev->flags); 7496 } 7497 7498 /* When a reshape changes the number of devices, 7499 * ->degraded is measured against the larger of the 7500 * pre and post number of devices. 7501 */ 7502 spin_lock_irqsave(&conf->device_lock, flags); 7503 mddev->degraded = calc_degraded(conf); 7504 spin_unlock_irqrestore(&conf->device_lock, flags); 7505 } 7506 mddev->raid_disks = conf->raid_disks; 7507 mddev->reshape_position = conf->reshape_progress; 7508 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7509 7510 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7511 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7512 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7513 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7514 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7515 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7516 "reshape"); 7517 if (!mddev->sync_thread) { 7518 mddev->recovery = 0; 7519 spin_lock_irq(&conf->device_lock); 7520 write_seqcount_begin(&conf->gen_lock); 7521 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7522 mddev->new_chunk_sectors = 7523 conf->chunk_sectors = conf->prev_chunk_sectors; 7524 mddev->new_layout = conf->algorithm = conf->prev_algo; 7525 rdev_for_each(rdev, mddev) 7526 rdev->new_data_offset = rdev->data_offset; 7527 smp_wmb(); 7528 conf->generation --; 7529 conf->reshape_progress = MaxSector; 7530 mddev->reshape_position = MaxSector; 7531 write_seqcount_end(&conf->gen_lock); 7532 spin_unlock_irq(&conf->device_lock); 7533 return -EAGAIN; 7534 } 7535 conf->reshape_checkpoint = jiffies; 7536 md_wakeup_thread(mddev->sync_thread); 7537 md_new_event(mddev); 7538 return 0; 7539 } 7540 7541 /* This is called from the reshape thread and should make any 7542 * changes needed in 'conf' 7543 */ 7544 static void end_reshape(struct r5conf *conf) 7545 { 7546 7547 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7548 struct md_rdev *rdev; 7549 7550 spin_lock_irq(&conf->device_lock); 7551 conf->previous_raid_disks = conf->raid_disks; 7552 rdev_for_each(rdev, conf->mddev) 7553 rdev->data_offset = rdev->new_data_offset; 7554 smp_wmb(); 7555 conf->reshape_progress = MaxSector; 7556 conf->mddev->reshape_position = MaxSector; 7557 spin_unlock_irq(&conf->device_lock); 7558 wake_up(&conf->wait_for_overlap); 7559 7560 /* read-ahead size must cover two whole stripes, which is 7561 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7562 */ 7563 if (conf->mddev->queue) { 7564 int data_disks = conf->raid_disks - conf->max_degraded; 7565 int stripe = data_disks * ((conf->chunk_sectors << 9) 7566 / PAGE_SIZE); 7567 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 7568 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 7569 } 7570 } 7571 } 7572 7573 /* This is called from the raid5d thread with mddev_lock held. 7574 * It makes config changes to the device. 7575 */ 7576 static void raid5_finish_reshape(struct mddev *mddev) 7577 { 7578 struct r5conf *conf = mddev->private; 7579 7580 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7581 7582 if (mddev->delta_disks > 0) { 7583 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7584 if (mddev->queue) { 7585 set_capacity(mddev->gendisk, mddev->array_sectors); 7586 revalidate_disk(mddev->gendisk); 7587 } 7588 } else { 7589 int d; 7590 spin_lock_irq(&conf->device_lock); 7591 mddev->degraded = calc_degraded(conf); 7592 spin_unlock_irq(&conf->device_lock); 7593 for (d = conf->raid_disks ; 7594 d < conf->raid_disks - mddev->delta_disks; 7595 d++) { 7596 struct md_rdev *rdev = conf->disks[d].rdev; 7597 if (rdev) 7598 clear_bit(In_sync, &rdev->flags); 7599 rdev = conf->disks[d].replacement; 7600 if (rdev) 7601 clear_bit(In_sync, &rdev->flags); 7602 } 7603 } 7604 mddev->layout = conf->algorithm; 7605 mddev->chunk_sectors = conf->chunk_sectors; 7606 mddev->reshape_position = MaxSector; 7607 mddev->delta_disks = 0; 7608 mddev->reshape_backwards = 0; 7609 } 7610 } 7611 7612 static void raid5_quiesce(struct mddev *mddev, int state) 7613 { 7614 struct r5conf *conf = mddev->private; 7615 7616 switch(state) { 7617 case 2: /* resume for a suspend */ 7618 wake_up(&conf->wait_for_overlap); 7619 break; 7620 7621 case 1: /* stop all writes */ 7622 lock_all_device_hash_locks_irq(conf); 7623 /* '2' tells resync/reshape to pause so that all 7624 * active stripes can drain 7625 */ 7626 conf->quiesce = 2; 7627 wait_event_cmd(conf->wait_for_quiescent, 7628 atomic_read(&conf->active_stripes) == 0 && 7629 atomic_read(&conf->active_aligned_reads) == 0, 7630 unlock_all_device_hash_locks_irq(conf), 7631 lock_all_device_hash_locks_irq(conf)); 7632 conf->quiesce = 1; 7633 unlock_all_device_hash_locks_irq(conf); 7634 /* allow reshape to continue */ 7635 wake_up(&conf->wait_for_overlap); 7636 break; 7637 7638 case 0: /* re-enable writes */ 7639 lock_all_device_hash_locks_irq(conf); 7640 conf->quiesce = 0; 7641 wake_up(&conf->wait_for_quiescent); 7642 wake_up(&conf->wait_for_overlap); 7643 unlock_all_device_hash_locks_irq(conf); 7644 break; 7645 } 7646 r5l_quiesce(conf->log, state); 7647 } 7648 7649 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 7650 { 7651 struct r0conf *raid0_conf = mddev->private; 7652 sector_t sectors; 7653 7654 /* for raid0 takeover only one zone is supported */ 7655 if (raid0_conf->nr_strip_zones > 1) { 7656 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 7657 mdname(mddev)); 7658 return ERR_PTR(-EINVAL); 7659 } 7660 7661 sectors = raid0_conf->strip_zone[0].zone_end; 7662 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 7663 mddev->dev_sectors = sectors; 7664 mddev->new_level = level; 7665 mddev->new_layout = ALGORITHM_PARITY_N; 7666 mddev->new_chunk_sectors = mddev->chunk_sectors; 7667 mddev->raid_disks += 1; 7668 mddev->delta_disks = 1; 7669 /* make sure it will be not marked as dirty */ 7670 mddev->recovery_cp = MaxSector; 7671 7672 return setup_conf(mddev); 7673 } 7674 7675 static void *raid5_takeover_raid1(struct mddev *mddev) 7676 { 7677 int chunksect; 7678 7679 if (mddev->raid_disks != 2 || 7680 mddev->degraded > 1) 7681 return ERR_PTR(-EINVAL); 7682 7683 /* Should check if there are write-behind devices? */ 7684 7685 chunksect = 64*2; /* 64K by default */ 7686 7687 /* The array must be an exact multiple of chunksize */ 7688 while (chunksect && (mddev->array_sectors & (chunksect-1))) 7689 chunksect >>= 1; 7690 7691 if ((chunksect<<9) < STRIPE_SIZE) 7692 /* array size does not allow a suitable chunk size */ 7693 return ERR_PTR(-EINVAL); 7694 7695 mddev->new_level = 5; 7696 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 7697 mddev->new_chunk_sectors = chunksect; 7698 7699 return setup_conf(mddev); 7700 } 7701 7702 static void *raid5_takeover_raid6(struct mddev *mddev) 7703 { 7704 int new_layout; 7705 7706 switch (mddev->layout) { 7707 case ALGORITHM_LEFT_ASYMMETRIC_6: 7708 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 7709 break; 7710 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7711 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 7712 break; 7713 case ALGORITHM_LEFT_SYMMETRIC_6: 7714 new_layout = ALGORITHM_LEFT_SYMMETRIC; 7715 break; 7716 case ALGORITHM_RIGHT_SYMMETRIC_6: 7717 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 7718 break; 7719 case ALGORITHM_PARITY_0_6: 7720 new_layout = ALGORITHM_PARITY_0; 7721 break; 7722 case ALGORITHM_PARITY_N: 7723 new_layout = ALGORITHM_PARITY_N; 7724 break; 7725 default: 7726 return ERR_PTR(-EINVAL); 7727 } 7728 mddev->new_level = 5; 7729 mddev->new_layout = new_layout; 7730 mddev->delta_disks = -1; 7731 mddev->raid_disks -= 1; 7732 return setup_conf(mddev); 7733 } 7734 7735 static int raid5_check_reshape(struct mddev *mddev) 7736 { 7737 /* For a 2-drive array, the layout and chunk size can be changed 7738 * immediately as not restriping is needed. 7739 * For larger arrays we record the new value - after validation 7740 * to be used by a reshape pass. 7741 */ 7742 struct r5conf *conf = mddev->private; 7743 int new_chunk = mddev->new_chunk_sectors; 7744 7745 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 7746 return -EINVAL; 7747 if (new_chunk > 0) { 7748 if (!is_power_of_2(new_chunk)) 7749 return -EINVAL; 7750 if (new_chunk < (PAGE_SIZE>>9)) 7751 return -EINVAL; 7752 if (mddev->array_sectors & (new_chunk-1)) 7753 /* not factor of array size */ 7754 return -EINVAL; 7755 } 7756 7757 /* They look valid */ 7758 7759 if (mddev->raid_disks == 2) { 7760 /* can make the change immediately */ 7761 if (mddev->new_layout >= 0) { 7762 conf->algorithm = mddev->new_layout; 7763 mddev->layout = mddev->new_layout; 7764 } 7765 if (new_chunk > 0) { 7766 conf->chunk_sectors = new_chunk ; 7767 mddev->chunk_sectors = new_chunk; 7768 } 7769 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7770 md_wakeup_thread(mddev->thread); 7771 } 7772 return check_reshape(mddev); 7773 } 7774 7775 static int raid6_check_reshape(struct mddev *mddev) 7776 { 7777 int new_chunk = mddev->new_chunk_sectors; 7778 7779 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 7780 return -EINVAL; 7781 if (new_chunk > 0) { 7782 if (!is_power_of_2(new_chunk)) 7783 return -EINVAL; 7784 if (new_chunk < (PAGE_SIZE >> 9)) 7785 return -EINVAL; 7786 if (mddev->array_sectors & (new_chunk-1)) 7787 /* not factor of array size */ 7788 return -EINVAL; 7789 } 7790 7791 /* They look valid */ 7792 return check_reshape(mddev); 7793 } 7794 7795 static void *raid5_takeover(struct mddev *mddev) 7796 { 7797 /* raid5 can take over: 7798 * raid0 - if there is only one strip zone - make it a raid4 layout 7799 * raid1 - if there are two drives. We need to know the chunk size 7800 * raid4 - trivial - just use a raid4 layout. 7801 * raid6 - Providing it is a *_6 layout 7802 */ 7803 if (mddev->level == 0) 7804 return raid45_takeover_raid0(mddev, 5); 7805 if (mddev->level == 1) 7806 return raid5_takeover_raid1(mddev); 7807 if (mddev->level == 4) { 7808 mddev->new_layout = ALGORITHM_PARITY_N; 7809 mddev->new_level = 5; 7810 return setup_conf(mddev); 7811 } 7812 if (mddev->level == 6) 7813 return raid5_takeover_raid6(mddev); 7814 7815 return ERR_PTR(-EINVAL); 7816 } 7817 7818 static void *raid4_takeover(struct mddev *mddev) 7819 { 7820 /* raid4 can take over: 7821 * raid0 - if there is only one strip zone 7822 * raid5 - if layout is right 7823 */ 7824 if (mddev->level == 0) 7825 return raid45_takeover_raid0(mddev, 4); 7826 if (mddev->level == 5 && 7827 mddev->layout == ALGORITHM_PARITY_N) { 7828 mddev->new_layout = 0; 7829 mddev->new_level = 4; 7830 return setup_conf(mddev); 7831 } 7832 return ERR_PTR(-EINVAL); 7833 } 7834 7835 static struct md_personality raid5_personality; 7836 7837 static void *raid6_takeover(struct mddev *mddev) 7838 { 7839 /* Currently can only take over a raid5. We map the 7840 * personality to an equivalent raid6 personality 7841 * with the Q block at the end. 7842 */ 7843 int new_layout; 7844 7845 if (mddev->pers != &raid5_personality) 7846 return ERR_PTR(-EINVAL); 7847 if (mddev->degraded > 1) 7848 return ERR_PTR(-EINVAL); 7849 if (mddev->raid_disks > 253) 7850 return ERR_PTR(-EINVAL); 7851 if (mddev->raid_disks < 3) 7852 return ERR_PTR(-EINVAL); 7853 7854 switch (mddev->layout) { 7855 case ALGORITHM_LEFT_ASYMMETRIC: 7856 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 7857 break; 7858 case ALGORITHM_RIGHT_ASYMMETRIC: 7859 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 7860 break; 7861 case ALGORITHM_LEFT_SYMMETRIC: 7862 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 7863 break; 7864 case ALGORITHM_RIGHT_SYMMETRIC: 7865 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 7866 break; 7867 case ALGORITHM_PARITY_0: 7868 new_layout = ALGORITHM_PARITY_0_6; 7869 break; 7870 case ALGORITHM_PARITY_N: 7871 new_layout = ALGORITHM_PARITY_N; 7872 break; 7873 default: 7874 return ERR_PTR(-EINVAL); 7875 } 7876 mddev->new_level = 6; 7877 mddev->new_layout = new_layout; 7878 mddev->delta_disks = 1; 7879 mddev->raid_disks += 1; 7880 return setup_conf(mddev); 7881 } 7882 7883 static struct md_personality raid6_personality = 7884 { 7885 .name = "raid6", 7886 .level = 6, 7887 .owner = THIS_MODULE, 7888 .make_request = raid5_make_request, 7889 .run = raid5_run, 7890 .free = raid5_free, 7891 .status = raid5_status, 7892 .error_handler = raid5_error, 7893 .hot_add_disk = raid5_add_disk, 7894 .hot_remove_disk= raid5_remove_disk, 7895 .spare_active = raid5_spare_active, 7896 .sync_request = raid5_sync_request, 7897 .resize = raid5_resize, 7898 .size = raid5_size, 7899 .check_reshape = raid6_check_reshape, 7900 .start_reshape = raid5_start_reshape, 7901 .finish_reshape = raid5_finish_reshape, 7902 .quiesce = raid5_quiesce, 7903 .takeover = raid6_takeover, 7904 .congested = raid5_congested, 7905 }; 7906 static struct md_personality raid5_personality = 7907 { 7908 .name = "raid5", 7909 .level = 5, 7910 .owner = THIS_MODULE, 7911 .make_request = raid5_make_request, 7912 .run = raid5_run, 7913 .free = raid5_free, 7914 .status = raid5_status, 7915 .error_handler = raid5_error, 7916 .hot_add_disk = raid5_add_disk, 7917 .hot_remove_disk= raid5_remove_disk, 7918 .spare_active = raid5_spare_active, 7919 .sync_request = raid5_sync_request, 7920 .resize = raid5_resize, 7921 .size = raid5_size, 7922 .check_reshape = raid5_check_reshape, 7923 .start_reshape = raid5_start_reshape, 7924 .finish_reshape = raid5_finish_reshape, 7925 .quiesce = raid5_quiesce, 7926 .takeover = raid5_takeover, 7927 .congested = raid5_congested, 7928 }; 7929 7930 static struct md_personality raid4_personality = 7931 { 7932 .name = "raid4", 7933 .level = 4, 7934 .owner = THIS_MODULE, 7935 .make_request = raid5_make_request, 7936 .run = raid5_run, 7937 .free = raid5_free, 7938 .status = raid5_status, 7939 .error_handler = raid5_error, 7940 .hot_add_disk = raid5_add_disk, 7941 .hot_remove_disk= raid5_remove_disk, 7942 .spare_active = raid5_spare_active, 7943 .sync_request = raid5_sync_request, 7944 .resize = raid5_resize, 7945 .size = raid5_size, 7946 .check_reshape = raid5_check_reshape, 7947 .start_reshape = raid5_start_reshape, 7948 .finish_reshape = raid5_finish_reshape, 7949 .quiesce = raid5_quiesce, 7950 .takeover = raid4_takeover, 7951 .congested = raid5_congested, 7952 }; 7953 7954 static int __init raid5_init(void) 7955 { 7956 raid5_wq = alloc_workqueue("raid5wq", 7957 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7958 if (!raid5_wq) 7959 return -ENOMEM; 7960 register_md_personality(&raid6_personality); 7961 register_md_personality(&raid5_personality); 7962 register_md_personality(&raid4_personality); 7963 return 0; 7964 } 7965 7966 static void raid5_exit(void) 7967 { 7968 unregister_md_personality(&raid6_personality); 7969 unregister_md_personality(&raid5_personality); 7970 unregister_md_personality(&raid4_personality); 7971 destroy_workqueue(raid5_wq); 7972 } 7973 7974 module_init(raid5_init); 7975 module_exit(raid5_exit); 7976 MODULE_LICENSE("GPL"); 7977 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 7978 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 7979 MODULE_ALIAS("md-raid5"); 7980 MODULE_ALIAS("md-raid4"); 7981 MODULE_ALIAS("md-level-5"); 7982 MODULE_ALIAS("md-level-4"); 7983 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 7984 MODULE_ALIAS("md-raid6"); 7985 MODULE_ALIAS("md-level-6"); 7986 7987 /* This used to be two separate modules, they were: */ 7988 MODULE_ALIAS("raid5"); 7989 MODULE_ALIAS("raid6"); 7990