xref: /linux/drivers/md/raid5.c (revision 05dc8c02bf40090e9ed23932b1980ead48eb8870)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53 
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56 
57 /*
58  * Stripe cache
59  */
60 
61 #define NR_STRIPES		256
62 #define STRIPE_SIZE		PAGE_SIZE
63 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
65 #define	IO_THRESHOLD		1
66 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK		(NR_HASH - 1)
68 
69 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72  * order without overlap.  There may be several bio's per stripe+device, and
73  * a bio could span several devices.
74  * When walking this list for a particular stripe+device, we must never proceed
75  * beyond a bio that extends past this device, as the next bio might no longer
76  * be valid.
77  * This macro is used to determine the 'next' bio in the list, given the sector
78  * of the current stripe+device
79  */
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 /*
82  * The following can be used to debug the driver
83  */
84 #define RAID5_PARANOIA	1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90 
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
95 
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99 #endif
100 
101 static inline int raid6_next_disk(int disk, int raid_disks)
102 {
103 	disk++;
104 	return (disk < raid_disks) ? disk : 0;
105 }
106 
107 static void return_io(struct bio *return_bi)
108 {
109 	struct bio *bi = return_bi;
110 	while (bi) {
111 		int bytes = bi->bi_size;
112 
113 		return_bi = bi->bi_next;
114 		bi->bi_next = NULL;
115 		bi->bi_size = 0;
116 		bi->bi_end_io(bi, bytes,
117 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
118 			        ? 0 : -EIO);
119 		bi = return_bi;
120 	}
121 }
122 
123 static void print_raid5_conf (raid5_conf_t *conf);
124 
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 {
127 	if (atomic_dec_and_test(&sh->count)) {
128 		BUG_ON(!list_empty(&sh->lru));
129 		BUG_ON(atomic_read(&conf->active_stripes)==0);
130 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
131 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
132 				list_add_tail(&sh->lru, &conf->delayed_list);
133 				blk_plug_device(conf->mddev->queue);
134 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135 				   sh->bm_seq - conf->seq_write > 0) {
136 				list_add_tail(&sh->lru, &conf->bitmap_list);
137 				blk_plug_device(conf->mddev->queue);
138 			} else {
139 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
140 				list_add_tail(&sh->lru, &conf->handle_list);
141 			}
142 			md_wakeup_thread(conf->mddev->thread);
143 		} else {
144 			BUG_ON(sh->ops.pending);
145 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 				atomic_dec(&conf->preread_active_stripes);
147 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 					md_wakeup_thread(conf->mddev->thread);
149 			}
150 			atomic_dec(&conf->active_stripes);
151 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 				list_add_tail(&sh->lru, &conf->inactive_list);
153 				wake_up(&conf->wait_for_stripe);
154 				if (conf->retry_read_aligned)
155 					md_wakeup_thread(conf->mddev->thread);
156 			}
157 		}
158 	}
159 }
160 static void release_stripe(struct stripe_head *sh)
161 {
162 	raid5_conf_t *conf = sh->raid_conf;
163 	unsigned long flags;
164 
165 	spin_lock_irqsave(&conf->device_lock, flags);
166 	__release_stripe(conf, sh);
167 	spin_unlock_irqrestore(&conf->device_lock, flags);
168 }
169 
170 static inline void remove_hash(struct stripe_head *sh)
171 {
172 	pr_debug("remove_hash(), stripe %llu\n",
173 		(unsigned long long)sh->sector);
174 
175 	hlist_del_init(&sh->hash);
176 }
177 
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 {
180 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
181 
182 	pr_debug("insert_hash(), stripe %llu\n",
183 		(unsigned long long)sh->sector);
184 
185 	CHECK_DEVLOCK();
186 	hlist_add_head(&sh->hash, hp);
187 }
188 
189 
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 {
193 	struct stripe_head *sh = NULL;
194 	struct list_head *first;
195 
196 	CHECK_DEVLOCK();
197 	if (list_empty(&conf->inactive_list))
198 		goto out;
199 	first = conf->inactive_list.next;
200 	sh = list_entry(first, struct stripe_head, lru);
201 	list_del_init(first);
202 	remove_hash(sh);
203 	atomic_inc(&conf->active_stripes);
204 out:
205 	return sh;
206 }
207 
208 static void shrink_buffers(struct stripe_head *sh, int num)
209 {
210 	struct page *p;
211 	int i;
212 
213 	for (i=0; i<num ; i++) {
214 		p = sh->dev[i].page;
215 		if (!p)
216 			continue;
217 		sh->dev[i].page = NULL;
218 		put_page(p);
219 	}
220 }
221 
222 static int grow_buffers(struct stripe_head *sh, int num)
223 {
224 	int i;
225 
226 	for (i=0; i<num; i++) {
227 		struct page *page;
228 
229 		if (!(page = alloc_page(GFP_KERNEL))) {
230 			return 1;
231 		}
232 		sh->dev[i].page = page;
233 	}
234 	return 0;
235 }
236 
237 static void raid5_build_block (struct stripe_head *sh, int i);
238 
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 {
241 	raid5_conf_t *conf = sh->raid_conf;
242 	int i;
243 
244 	BUG_ON(atomic_read(&sh->count) != 0);
245 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246 	BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247 
248 	CHECK_DEVLOCK();
249 	pr_debug("init_stripe called, stripe %llu\n",
250 		(unsigned long long)sh->sector);
251 
252 	remove_hash(sh);
253 
254 	sh->sector = sector;
255 	sh->pd_idx = pd_idx;
256 	sh->state = 0;
257 
258 	sh->disks = disks;
259 
260 	for (i = sh->disks; i--; ) {
261 		struct r5dev *dev = &sh->dev[i];
262 
263 		if (dev->toread || dev->read || dev->towrite || dev->written ||
264 		    test_bit(R5_LOCKED, &dev->flags)) {
265 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266 			       (unsigned long long)sh->sector, i, dev->toread,
267 			       dev->read, dev->towrite, dev->written,
268 			       test_bit(R5_LOCKED, &dev->flags));
269 			BUG();
270 		}
271 		dev->flags = 0;
272 		raid5_build_block(sh, i);
273 	}
274 	insert_hash(conf, sh);
275 }
276 
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 {
279 	struct stripe_head *sh;
280 	struct hlist_node *hn;
281 
282 	CHECK_DEVLOCK();
283 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285 		if (sh->sector == sector && sh->disks == disks)
286 			return sh;
287 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288 	return NULL;
289 }
290 
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
293 
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 					     int pd_idx, int noblock)
296 {
297 	struct stripe_head *sh;
298 
299 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300 
301 	spin_lock_irq(&conf->device_lock);
302 
303 	do {
304 		wait_event_lock_irq(conf->wait_for_stripe,
305 				    conf->quiesce == 0,
306 				    conf->device_lock, /* nothing */);
307 		sh = __find_stripe(conf, sector, disks);
308 		if (!sh) {
309 			if (!conf->inactive_blocked)
310 				sh = get_free_stripe(conf);
311 			if (noblock && sh == NULL)
312 				break;
313 			if (!sh) {
314 				conf->inactive_blocked = 1;
315 				wait_event_lock_irq(conf->wait_for_stripe,
316 						    !list_empty(&conf->inactive_list) &&
317 						    (atomic_read(&conf->active_stripes)
318 						     < (conf->max_nr_stripes *3/4)
319 						     || !conf->inactive_blocked),
320 						    conf->device_lock,
321 						    raid5_unplug_device(conf->mddev->queue)
322 					);
323 				conf->inactive_blocked = 0;
324 			} else
325 				init_stripe(sh, sector, pd_idx, disks);
326 		} else {
327 			if (atomic_read(&sh->count)) {
328 			  BUG_ON(!list_empty(&sh->lru));
329 			} else {
330 				if (!test_bit(STRIPE_HANDLE, &sh->state))
331 					atomic_inc(&conf->active_stripes);
332 				if (list_empty(&sh->lru) &&
333 				    !test_bit(STRIPE_EXPANDING, &sh->state))
334 					BUG();
335 				list_del_init(&sh->lru);
336 			}
337 		}
338 	} while (sh == NULL);
339 
340 	if (sh)
341 		atomic_inc(&sh->count);
342 
343 	spin_unlock_irq(&conf->device_lock);
344 	return sh;
345 }
346 
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do {							\
350 	if (test_bit(op, &sh->ops.pending) &&		\
351 		!test_bit(op, &sh->ops.complete)) {	\
352 		if (test_and_set_bit(op, &sh->ops.ack)) \
353 			clear_bit(op, &pend);		\
354 		else					\
355 			ack++;				\
356 	} else						\
357 		clear_bit(op, &pend);			\
358 } while (0)
359 
360 /* find new work to run, do not resubmit work that is already
361  * in flight
362  */
363 static unsigned long get_stripe_work(struct stripe_head *sh)
364 {
365 	unsigned long pending;
366 	int ack = 0;
367 
368 	pending = sh->ops.pending;
369 
370 	test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 	test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 	test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 	test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 	test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 	test_and_ack_op(STRIPE_OP_CHECK, pending);
376 	if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377 		ack++;
378 
379 	sh->ops.count -= ack;
380 	BUG_ON(sh->ops.count < 0);
381 
382 	return pending;
383 }
384 
385 static int
386 raid5_end_read_request(struct bio *bi, unsigned int bytes_done, int error);
387 static int
388 raid5_end_write_request (struct bio *bi, unsigned int bytes_done, int error);
389 
390 static void ops_run_io(struct stripe_head *sh)
391 {
392 	raid5_conf_t *conf = sh->raid_conf;
393 	int i, disks = sh->disks;
394 
395 	might_sleep();
396 
397 	for (i = disks; i--; ) {
398 		int rw;
399 		struct bio *bi;
400 		mdk_rdev_t *rdev;
401 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
402 			rw = WRITE;
403 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
404 			rw = READ;
405 		else
406 			continue;
407 
408 		bi = &sh->dev[i].req;
409 
410 		bi->bi_rw = rw;
411 		if (rw == WRITE)
412 			bi->bi_end_io = raid5_end_write_request;
413 		else
414 			bi->bi_end_io = raid5_end_read_request;
415 
416 		rcu_read_lock();
417 		rdev = rcu_dereference(conf->disks[i].rdev);
418 		if (rdev && test_bit(Faulty, &rdev->flags))
419 			rdev = NULL;
420 		if (rdev)
421 			atomic_inc(&rdev->nr_pending);
422 		rcu_read_unlock();
423 
424 		if (rdev) {
425 			if (test_bit(STRIPE_SYNCING, &sh->state) ||
426 				test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
427 				test_bit(STRIPE_EXPAND_READY, &sh->state))
428 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
429 
430 			bi->bi_bdev = rdev->bdev;
431 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
432 				__FUNCTION__, (unsigned long long)sh->sector,
433 				bi->bi_rw, i);
434 			atomic_inc(&sh->count);
435 			bi->bi_sector = sh->sector + rdev->data_offset;
436 			bi->bi_flags = 1 << BIO_UPTODATE;
437 			bi->bi_vcnt = 1;
438 			bi->bi_max_vecs = 1;
439 			bi->bi_idx = 0;
440 			bi->bi_io_vec = &sh->dev[i].vec;
441 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
442 			bi->bi_io_vec[0].bv_offset = 0;
443 			bi->bi_size = STRIPE_SIZE;
444 			bi->bi_next = NULL;
445 			if (rw == WRITE &&
446 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
447 				atomic_add(STRIPE_SECTORS,
448 					&rdev->corrected_errors);
449 			generic_make_request(bi);
450 		} else {
451 			if (rw == WRITE)
452 				set_bit(STRIPE_DEGRADED, &sh->state);
453 			pr_debug("skip op %ld on disc %d for sector %llu\n",
454 				bi->bi_rw, i, (unsigned long long)sh->sector);
455 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
456 			set_bit(STRIPE_HANDLE, &sh->state);
457 		}
458 	}
459 }
460 
461 static struct dma_async_tx_descriptor *
462 async_copy_data(int frombio, struct bio *bio, struct page *page,
463 	sector_t sector, struct dma_async_tx_descriptor *tx)
464 {
465 	struct bio_vec *bvl;
466 	struct page *bio_page;
467 	int i;
468 	int page_offset;
469 
470 	if (bio->bi_sector >= sector)
471 		page_offset = (signed)(bio->bi_sector - sector) * 512;
472 	else
473 		page_offset = (signed)(sector - bio->bi_sector) * -512;
474 	bio_for_each_segment(bvl, bio, i) {
475 		int len = bio_iovec_idx(bio, i)->bv_len;
476 		int clen;
477 		int b_offset = 0;
478 
479 		if (page_offset < 0) {
480 			b_offset = -page_offset;
481 			page_offset += b_offset;
482 			len -= b_offset;
483 		}
484 
485 		if (len > 0 && page_offset + len > STRIPE_SIZE)
486 			clen = STRIPE_SIZE - page_offset;
487 		else
488 			clen = len;
489 
490 		if (clen > 0) {
491 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
492 			bio_page = bio_iovec_idx(bio, i)->bv_page;
493 			if (frombio)
494 				tx = async_memcpy(page, bio_page, page_offset,
495 					b_offset, clen,
496 					ASYNC_TX_DEP_ACK,
497 					tx, NULL, NULL);
498 			else
499 				tx = async_memcpy(bio_page, page, b_offset,
500 					page_offset, clen,
501 					ASYNC_TX_DEP_ACK,
502 					tx, NULL, NULL);
503 		}
504 		if (clen < len) /* hit end of page */
505 			break;
506 		page_offset +=  len;
507 	}
508 
509 	return tx;
510 }
511 
512 static void ops_complete_biofill(void *stripe_head_ref)
513 {
514 	struct stripe_head *sh = stripe_head_ref;
515 	struct bio *return_bi = NULL;
516 	raid5_conf_t *conf = sh->raid_conf;
517 	int i;
518 
519 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
520 		(unsigned long long)sh->sector);
521 
522 	/* clear completed biofills */
523 	for (i = sh->disks; i--; ) {
524 		struct r5dev *dev = &sh->dev[i];
525 
526 		/* acknowledge completion of a biofill operation */
527 		/* and check if we need to reply to a read request,
528 		 * new R5_Wantfill requests are held off until
529 		 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
530 		 */
531 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
532 			struct bio *rbi, *rbi2;
533 
534 			/* The access to dev->read is outside of the
535 			 * spin_lock_irq(&conf->device_lock), but is protected
536 			 * by the STRIPE_OP_BIOFILL pending bit
537 			 */
538 			BUG_ON(!dev->read);
539 			rbi = dev->read;
540 			dev->read = NULL;
541 			while (rbi && rbi->bi_sector <
542 				dev->sector + STRIPE_SECTORS) {
543 				rbi2 = r5_next_bio(rbi, dev->sector);
544 				spin_lock_irq(&conf->device_lock);
545 				if (--rbi->bi_phys_segments == 0) {
546 					rbi->bi_next = return_bi;
547 					return_bi = rbi;
548 				}
549 				spin_unlock_irq(&conf->device_lock);
550 				rbi = rbi2;
551 			}
552 		}
553 	}
554 	clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
555 	clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
556 
557 	return_io(return_bi);
558 
559 	set_bit(STRIPE_HANDLE, &sh->state);
560 	release_stripe(sh);
561 }
562 
563 static void ops_run_biofill(struct stripe_head *sh)
564 {
565 	struct dma_async_tx_descriptor *tx = NULL;
566 	raid5_conf_t *conf = sh->raid_conf;
567 	int i;
568 
569 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
570 		(unsigned long long)sh->sector);
571 
572 	for (i = sh->disks; i--; ) {
573 		struct r5dev *dev = &sh->dev[i];
574 		if (test_bit(R5_Wantfill, &dev->flags)) {
575 			struct bio *rbi;
576 			spin_lock_irq(&conf->device_lock);
577 			dev->read = rbi = dev->toread;
578 			dev->toread = NULL;
579 			spin_unlock_irq(&conf->device_lock);
580 			while (rbi && rbi->bi_sector <
581 				dev->sector + STRIPE_SECTORS) {
582 				tx = async_copy_data(0, rbi, dev->page,
583 					dev->sector, tx);
584 				rbi = r5_next_bio(rbi, dev->sector);
585 			}
586 		}
587 	}
588 
589 	atomic_inc(&sh->count);
590 	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
591 		ops_complete_biofill, sh);
592 }
593 
594 static void ops_complete_compute5(void *stripe_head_ref)
595 {
596 	struct stripe_head *sh = stripe_head_ref;
597 	int target = sh->ops.target;
598 	struct r5dev *tgt = &sh->dev[target];
599 
600 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
601 		(unsigned long long)sh->sector);
602 
603 	set_bit(R5_UPTODATE, &tgt->flags);
604 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
605 	clear_bit(R5_Wantcompute, &tgt->flags);
606 	set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
607 	set_bit(STRIPE_HANDLE, &sh->state);
608 	release_stripe(sh);
609 }
610 
611 static struct dma_async_tx_descriptor *
612 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
613 {
614 	/* kernel stack size limits the total number of disks */
615 	int disks = sh->disks;
616 	struct page *xor_srcs[disks];
617 	int target = sh->ops.target;
618 	struct r5dev *tgt = &sh->dev[target];
619 	struct page *xor_dest = tgt->page;
620 	int count = 0;
621 	struct dma_async_tx_descriptor *tx;
622 	int i;
623 
624 	pr_debug("%s: stripe %llu block: %d\n",
625 		__FUNCTION__, (unsigned long long)sh->sector, target);
626 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
627 
628 	for (i = disks; i--; )
629 		if (i != target)
630 			xor_srcs[count++] = sh->dev[i].page;
631 
632 	atomic_inc(&sh->count);
633 
634 	if (unlikely(count == 1))
635 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
636 			0, NULL, ops_complete_compute5, sh);
637 	else
638 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
639 			ASYNC_TX_XOR_ZERO_DST, NULL,
640 			ops_complete_compute5, sh);
641 
642 	/* ack now if postxor is not set to be run */
643 	if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
644 		async_tx_ack(tx);
645 
646 	return tx;
647 }
648 
649 static void ops_complete_prexor(void *stripe_head_ref)
650 {
651 	struct stripe_head *sh = stripe_head_ref;
652 
653 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
654 		(unsigned long long)sh->sector);
655 
656 	set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
657 }
658 
659 static struct dma_async_tx_descriptor *
660 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
661 {
662 	/* kernel stack size limits the total number of disks */
663 	int disks = sh->disks;
664 	struct page *xor_srcs[disks];
665 	int count = 0, pd_idx = sh->pd_idx, i;
666 
667 	/* existing parity data subtracted */
668 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
669 
670 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
671 		(unsigned long long)sh->sector);
672 
673 	for (i = disks; i--; ) {
674 		struct r5dev *dev = &sh->dev[i];
675 		/* Only process blocks that are known to be uptodate */
676 		if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
677 			xor_srcs[count++] = dev->page;
678 	}
679 
680 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
681 		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
682 		ops_complete_prexor, sh);
683 
684 	return tx;
685 }
686 
687 static struct dma_async_tx_descriptor *
688 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
689 {
690 	int disks = sh->disks;
691 	int pd_idx = sh->pd_idx, i;
692 
693 	/* check if prexor is active which means only process blocks
694 	 * that are part of a read-modify-write (Wantprexor)
695 	 */
696 	int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
697 
698 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
699 		(unsigned long long)sh->sector);
700 
701 	for (i = disks; i--; ) {
702 		struct r5dev *dev = &sh->dev[i];
703 		struct bio *chosen;
704 		int towrite;
705 
706 		towrite = 0;
707 		if (prexor) { /* rmw */
708 			if (dev->towrite &&
709 			    test_bit(R5_Wantprexor, &dev->flags))
710 				towrite = 1;
711 		} else { /* rcw */
712 			if (i != pd_idx && dev->towrite &&
713 				test_bit(R5_LOCKED, &dev->flags))
714 				towrite = 1;
715 		}
716 
717 		if (towrite) {
718 			struct bio *wbi;
719 
720 			spin_lock(&sh->lock);
721 			chosen = dev->towrite;
722 			dev->towrite = NULL;
723 			BUG_ON(dev->written);
724 			wbi = dev->written = chosen;
725 			spin_unlock(&sh->lock);
726 
727 			while (wbi && wbi->bi_sector <
728 				dev->sector + STRIPE_SECTORS) {
729 				tx = async_copy_data(1, wbi, dev->page,
730 					dev->sector, tx);
731 				wbi = r5_next_bio(wbi, dev->sector);
732 			}
733 		}
734 	}
735 
736 	return tx;
737 }
738 
739 static void ops_complete_postxor(void *stripe_head_ref)
740 {
741 	struct stripe_head *sh = stripe_head_ref;
742 
743 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
744 		(unsigned long long)sh->sector);
745 
746 	set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
747 	set_bit(STRIPE_HANDLE, &sh->state);
748 	release_stripe(sh);
749 }
750 
751 static void ops_complete_write(void *stripe_head_ref)
752 {
753 	struct stripe_head *sh = stripe_head_ref;
754 	int disks = sh->disks, i, pd_idx = sh->pd_idx;
755 
756 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
757 		(unsigned long long)sh->sector);
758 
759 	for (i = disks; i--; ) {
760 		struct r5dev *dev = &sh->dev[i];
761 		if (dev->written || i == pd_idx)
762 			set_bit(R5_UPTODATE, &dev->flags);
763 	}
764 
765 	set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
766 	set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
767 
768 	set_bit(STRIPE_HANDLE, &sh->state);
769 	release_stripe(sh);
770 }
771 
772 static void
773 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
774 {
775 	/* kernel stack size limits the total number of disks */
776 	int disks = sh->disks;
777 	struct page *xor_srcs[disks];
778 
779 	int count = 0, pd_idx = sh->pd_idx, i;
780 	struct page *xor_dest;
781 	int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
782 	unsigned long flags;
783 	dma_async_tx_callback callback;
784 
785 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
786 		(unsigned long long)sh->sector);
787 
788 	/* check if prexor is active which means only process blocks
789 	 * that are part of a read-modify-write (written)
790 	 */
791 	if (prexor) {
792 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
793 		for (i = disks; i--; ) {
794 			struct r5dev *dev = &sh->dev[i];
795 			if (dev->written)
796 				xor_srcs[count++] = dev->page;
797 		}
798 	} else {
799 		xor_dest = sh->dev[pd_idx].page;
800 		for (i = disks; i--; ) {
801 			struct r5dev *dev = &sh->dev[i];
802 			if (i != pd_idx)
803 				xor_srcs[count++] = dev->page;
804 		}
805 	}
806 
807 	/* check whether this postxor is part of a write */
808 	callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
809 		ops_complete_write : ops_complete_postxor;
810 
811 	/* 1/ if we prexor'd then the dest is reused as a source
812 	 * 2/ if we did not prexor then we are redoing the parity
813 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
814 	 * for the synchronous xor case
815 	 */
816 	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
817 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
818 
819 	atomic_inc(&sh->count);
820 
821 	if (unlikely(count == 1)) {
822 		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
823 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
824 			flags, tx, callback, sh);
825 	} else
826 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
827 			flags, tx, callback, sh);
828 }
829 
830 static void ops_complete_check(void *stripe_head_ref)
831 {
832 	struct stripe_head *sh = stripe_head_ref;
833 	int pd_idx = sh->pd_idx;
834 
835 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
836 		(unsigned long long)sh->sector);
837 
838 	if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
839 		sh->ops.zero_sum_result == 0)
840 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
841 
842 	set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
843 	set_bit(STRIPE_HANDLE, &sh->state);
844 	release_stripe(sh);
845 }
846 
847 static void ops_run_check(struct stripe_head *sh)
848 {
849 	/* kernel stack size limits the total number of disks */
850 	int disks = sh->disks;
851 	struct page *xor_srcs[disks];
852 	struct dma_async_tx_descriptor *tx;
853 
854 	int count = 0, pd_idx = sh->pd_idx, i;
855 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
856 
857 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
858 		(unsigned long long)sh->sector);
859 
860 	for (i = disks; i--; ) {
861 		struct r5dev *dev = &sh->dev[i];
862 		if (i != pd_idx)
863 			xor_srcs[count++] = dev->page;
864 	}
865 
866 	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
867 		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
868 
869 	if (tx)
870 		set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
871 	else
872 		clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
873 
874 	atomic_inc(&sh->count);
875 	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
876 		ops_complete_check, sh);
877 }
878 
879 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
880 {
881 	int overlap_clear = 0, i, disks = sh->disks;
882 	struct dma_async_tx_descriptor *tx = NULL;
883 
884 	if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
885 		ops_run_biofill(sh);
886 		overlap_clear++;
887 	}
888 
889 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
890 		tx = ops_run_compute5(sh, pending);
891 
892 	if (test_bit(STRIPE_OP_PREXOR, &pending))
893 		tx = ops_run_prexor(sh, tx);
894 
895 	if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
896 		tx = ops_run_biodrain(sh, tx);
897 		overlap_clear++;
898 	}
899 
900 	if (test_bit(STRIPE_OP_POSTXOR, &pending))
901 		ops_run_postxor(sh, tx);
902 
903 	if (test_bit(STRIPE_OP_CHECK, &pending))
904 		ops_run_check(sh);
905 
906 	if (test_bit(STRIPE_OP_IO, &pending))
907 		ops_run_io(sh);
908 
909 	if (overlap_clear)
910 		for (i = disks; i--; ) {
911 			struct r5dev *dev = &sh->dev[i];
912 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
913 				wake_up(&sh->raid_conf->wait_for_overlap);
914 		}
915 }
916 
917 static int grow_one_stripe(raid5_conf_t *conf)
918 {
919 	struct stripe_head *sh;
920 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
921 	if (!sh)
922 		return 0;
923 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
924 	sh->raid_conf = conf;
925 	spin_lock_init(&sh->lock);
926 
927 	if (grow_buffers(sh, conf->raid_disks)) {
928 		shrink_buffers(sh, conf->raid_disks);
929 		kmem_cache_free(conf->slab_cache, sh);
930 		return 0;
931 	}
932 	sh->disks = conf->raid_disks;
933 	/* we just created an active stripe so... */
934 	atomic_set(&sh->count, 1);
935 	atomic_inc(&conf->active_stripes);
936 	INIT_LIST_HEAD(&sh->lru);
937 	release_stripe(sh);
938 	return 1;
939 }
940 
941 static int grow_stripes(raid5_conf_t *conf, int num)
942 {
943 	struct kmem_cache *sc;
944 	int devs = conf->raid_disks;
945 
946 	sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
947 	sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
948 	conf->active_name = 0;
949 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
950 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
951 			       0, 0, NULL);
952 	if (!sc)
953 		return 1;
954 	conf->slab_cache = sc;
955 	conf->pool_size = devs;
956 	while (num--)
957 		if (!grow_one_stripe(conf))
958 			return 1;
959 	return 0;
960 }
961 
962 #ifdef CONFIG_MD_RAID5_RESHAPE
963 static int resize_stripes(raid5_conf_t *conf, int newsize)
964 {
965 	/* Make all the stripes able to hold 'newsize' devices.
966 	 * New slots in each stripe get 'page' set to a new page.
967 	 *
968 	 * This happens in stages:
969 	 * 1/ create a new kmem_cache and allocate the required number of
970 	 *    stripe_heads.
971 	 * 2/ gather all the old stripe_heads and tranfer the pages across
972 	 *    to the new stripe_heads.  This will have the side effect of
973 	 *    freezing the array as once all stripe_heads have been collected,
974 	 *    no IO will be possible.  Old stripe heads are freed once their
975 	 *    pages have been transferred over, and the old kmem_cache is
976 	 *    freed when all stripes are done.
977 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
978 	 *    we simple return a failre status - no need to clean anything up.
979 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
980 	 *    If this fails, we don't bother trying the shrink the
981 	 *    stripe_heads down again, we just leave them as they are.
982 	 *    As each stripe_head is processed the new one is released into
983 	 *    active service.
984 	 *
985 	 * Once step2 is started, we cannot afford to wait for a write,
986 	 * so we use GFP_NOIO allocations.
987 	 */
988 	struct stripe_head *osh, *nsh;
989 	LIST_HEAD(newstripes);
990 	struct disk_info *ndisks;
991 	int err = 0;
992 	struct kmem_cache *sc;
993 	int i;
994 
995 	if (newsize <= conf->pool_size)
996 		return 0; /* never bother to shrink */
997 
998 	md_allow_write(conf->mddev);
999 
1000 	/* Step 1 */
1001 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1002 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1003 			       0, 0, NULL);
1004 	if (!sc)
1005 		return -ENOMEM;
1006 
1007 	for (i = conf->max_nr_stripes; i; i--) {
1008 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1009 		if (!nsh)
1010 			break;
1011 
1012 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1013 
1014 		nsh->raid_conf = conf;
1015 		spin_lock_init(&nsh->lock);
1016 
1017 		list_add(&nsh->lru, &newstripes);
1018 	}
1019 	if (i) {
1020 		/* didn't get enough, give up */
1021 		while (!list_empty(&newstripes)) {
1022 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1023 			list_del(&nsh->lru);
1024 			kmem_cache_free(sc, nsh);
1025 		}
1026 		kmem_cache_destroy(sc);
1027 		return -ENOMEM;
1028 	}
1029 	/* Step 2 - Must use GFP_NOIO now.
1030 	 * OK, we have enough stripes, start collecting inactive
1031 	 * stripes and copying them over
1032 	 */
1033 	list_for_each_entry(nsh, &newstripes, lru) {
1034 		spin_lock_irq(&conf->device_lock);
1035 		wait_event_lock_irq(conf->wait_for_stripe,
1036 				    !list_empty(&conf->inactive_list),
1037 				    conf->device_lock,
1038 				    unplug_slaves(conf->mddev)
1039 			);
1040 		osh = get_free_stripe(conf);
1041 		spin_unlock_irq(&conf->device_lock);
1042 		atomic_set(&nsh->count, 1);
1043 		for(i=0; i<conf->pool_size; i++)
1044 			nsh->dev[i].page = osh->dev[i].page;
1045 		for( ; i<newsize; i++)
1046 			nsh->dev[i].page = NULL;
1047 		kmem_cache_free(conf->slab_cache, osh);
1048 	}
1049 	kmem_cache_destroy(conf->slab_cache);
1050 
1051 	/* Step 3.
1052 	 * At this point, we are holding all the stripes so the array
1053 	 * is completely stalled, so now is a good time to resize
1054 	 * conf->disks.
1055 	 */
1056 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1057 	if (ndisks) {
1058 		for (i=0; i<conf->raid_disks; i++)
1059 			ndisks[i] = conf->disks[i];
1060 		kfree(conf->disks);
1061 		conf->disks = ndisks;
1062 	} else
1063 		err = -ENOMEM;
1064 
1065 	/* Step 4, return new stripes to service */
1066 	while(!list_empty(&newstripes)) {
1067 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1068 		list_del_init(&nsh->lru);
1069 		for (i=conf->raid_disks; i < newsize; i++)
1070 			if (nsh->dev[i].page == NULL) {
1071 				struct page *p = alloc_page(GFP_NOIO);
1072 				nsh->dev[i].page = p;
1073 				if (!p)
1074 					err = -ENOMEM;
1075 			}
1076 		release_stripe(nsh);
1077 	}
1078 	/* critical section pass, GFP_NOIO no longer needed */
1079 
1080 	conf->slab_cache = sc;
1081 	conf->active_name = 1-conf->active_name;
1082 	conf->pool_size = newsize;
1083 	return err;
1084 }
1085 #endif
1086 
1087 static int drop_one_stripe(raid5_conf_t *conf)
1088 {
1089 	struct stripe_head *sh;
1090 
1091 	spin_lock_irq(&conf->device_lock);
1092 	sh = get_free_stripe(conf);
1093 	spin_unlock_irq(&conf->device_lock);
1094 	if (!sh)
1095 		return 0;
1096 	BUG_ON(atomic_read(&sh->count));
1097 	shrink_buffers(sh, conf->pool_size);
1098 	kmem_cache_free(conf->slab_cache, sh);
1099 	atomic_dec(&conf->active_stripes);
1100 	return 1;
1101 }
1102 
1103 static void shrink_stripes(raid5_conf_t *conf)
1104 {
1105 	while (drop_one_stripe(conf))
1106 		;
1107 
1108 	if (conf->slab_cache)
1109 		kmem_cache_destroy(conf->slab_cache);
1110 	conf->slab_cache = NULL;
1111 }
1112 
1113 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
1114 				   int error)
1115 {
1116  	struct stripe_head *sh = bi->bi_private;
1117 	raid5_conf_t *conf = sh->raid_conf;
1118 	int disks = sh->disks, i;
1119 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1120 	char b[BDEVNAME_SIZE];
1121 	mdk_rdev_t *rdev;
1122 
1123 	if (bi->bi_size)
1124 		return 1;
1125 
1126 	for (i=0 ; i<disks; i++)
1127 		if (bi == &sh->dev[i].req)
1128 			break;
1129 
1130 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1131 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1132 		uptodate);
1133 	if (i == disks) {
1134 		BUG();
1135 		return 0;
1136 	}
1137 
1138 	if (uptodate) {
1139 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1140 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1141 			rdev = conf->disks[i].rdev;
1142 			printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1143 			       mdname(conf->mddev), STRIPE_SECTORS,
1144 			       (unsigned long long)sh->sector + rdev->data_offset,
1145 			       bdevname(rdev->bdev, b));
1146 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1147 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1148 		}
1149 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1150 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1151 	} else {
1152 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1153 		int retry = 0;
1154 		rdev = conf->disks[i].rdev;
1155 
1156 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1157 		atomic_inc(&rdev->read_errors);
1158 		if (conf->mddev->degraded)
1159 			printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1160 			       mdname(conf->mddev),
1161 			       (unsigned long long)sh->sector + rdev->data_offset,
1162 			       bdn);
1163 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1164 			/* Oh, no!!! */
1165 			printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1166 			       mdname(conf->mddev),
1167 			       (unsigned long long)sh->sector + rdev->data_offset,
1168 			       bdn);
1169 		else if (atomic_read(&rdev->read_errors)
1170 			 > conf->max_nr_stripes)
1171 			printk(KERN_WARNING
1172 			       "raid5:%s: Too many read errors, failing device %s.\n",
1173 			       mdname(conf->mddev), bdn);
1174 		else
1175 			retry = 1;
1176 		if (retry)
1177 			set_bit(R5_ReadError, &sh->dev[i].flags);
1178 		else {
1179 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1180 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1181 			md_error(conf->mddev, rdev);
1182 		}
1183 	}
1184 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1185 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1186 	set_bit(STRIPE_HANDLE, &sh->state);
1187 	release_stripe(sh);
1188 	return 0;
1189 }
1190 
1191 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
1192 				    int error)
1193 {
1194  	struct stripe_head *sh = bi->bi_private;
1195 	raid5_conf_t *conf = sh->raid_conf;
1196 	int disks = sh->disks, i;
1197 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1198 
1199 	if (bi->bi_size)
1200 		return 1;
1201 
1202 	for (i=0 ; i<disks; i++)
1203 		if (bi == &sh->dev[i].req)
1204 			break;
1205 
1206 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1207 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1208 		uptodate);
1209 	if (i == disks) {
1210 		BUG();
1211 		return 0;
1212 	}
1213 
1214 	if (!uptodate)
1215 		md_error(conf->mddev, conf->disks[i].rdev);
1216 
1217 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1218 
1219 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1220 	set_bit(STRIPE_HANDLE, &sh->state);
1221 	release_stripe(sh);
1222 	return 0;
1223 }
1224 
1225 
1226 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1227 
1228 static void raid5_build_block (struct stripe_head *sh, int i)
1229 {
1230 	struct r5dev *dev = &sh->dev[i];
1231 
1232 	bio_init(&dev->req);
1233 	dev->req.bi_io_vec = &dev->vec;
1234 	dev->req.bi_vcnt++;
1235 	dev->req.bi_max_vecs++;
1236 	dev->vec.bv_page = dev->page;
1237 	dev->vec.bv_len = STRIPE_SIZE;
1238 	dev->vec.bv_offset = 0;
1239 
1240 	dev->req.bi_sector = sh->sector;
1241 	dev->req.bi_private = sh;
1242 
1243 	dev->flags = 0;
1244 	dev->sector = compute_blocknr(sh, i);
1245 }
1246 
1247 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1248 {
1249 	char b[BDEVNAME_SIZE];
1250 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1251 	pr_debug("raid5: error called\n");
1252 
1253 	if (!test_bit(Faulty, &rdev->flags)) {
1254 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1255 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1256 			unsigned long flags;
1257 			spin_lock_irqsave(&conf->device_lock, flags);
1258 			mddev->degraded++;
1259 			spin_unlock_irqrestore(&conf->device_lock, flags);
1260 			/*
1261 			 * if recovery was running, make sure it aborts.
1262 			 */
1263 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1264 		}
1265 		set_bit(Faulty, &rdev->flags);
1266 		printk (KERN_ALERT
1267 			"raid5: Disk failure on %s, disabling device."
1268 			" Operation continuing on %d devices\n",
1269 			bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1270 	}
1271 }
1272 
1273 /*
1274  * Input: a 'big' sector number,
1275  * Output: index of the data and parity disk, and the sector # in them.
1276  */
1277 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1278 			unsigned int data_disks, unsigned int * dd_idx,
1279 			unsigned int * pd_idx, raid5_conf_t *conf)
1280 {
1281 	long stripe;
1282 	unsigned long chunk_number;
1283 	unsigned int chunk_offset;
1284 	sector_t new_sector;
1285 	int sectors_per_chunk = conf->chunk_size >> 9;
1286 
1287 	/* First compute the information on this sector */
1288 
1289 	/*
1290 	 * Compute the chunk number and the sector offset inside the chunk
1291 	 */
1292 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1293 	chunk_number = r_sector;
1294 	BUG_ON(r_sector != chunk_number);
1295 
1296 	/*
1297 	 * Compute the stripe number
1298 	 */
1299 	stripe = chunk_number / data_disks;
1300 
1301 	/*
1302 	 * Compute the data disk and parity disk indexes inside the stripe
1303 	 */
1304 	*dd_idx = chunk_number % data_disks;
1305 
1306 	/*
1307 	 * Select the parity disk based on the user selected algorithm.
1308 	 */
1309 	switch(conf->level) {
1310 	case 4:
1311 		*pd_idx = data_disks;
1312 		break;
1313 	case 5:
1314 		switch (conf->algorithm) {
1315 		case ALGORITHM_LEFT_ASYMMETRIC:
1316 			*pd_idx = data_disks - stripe % raid_disks;
1317 			if (*dd_idx >= *pd_idx)
1318 				(*dd_idx)++;
1319 			break;
1320 		case ALGORITHM_RIGHT_ASYMMETRIC:
1321 			*pd_idx = stripe % raid_disks;
1322 			if (*dd_idx >= *pd_idx)
1323 				(*dd_idx)++;
1324 			break;
1325 		case ALGORITHM_LEFT_SYMMETRIC:
1326 			*pd_idx = data_disks - stripe % raid_disks;
1327 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1328 			break;
1329 		case ALGORITHM_RIGHT_SYMMETRIC:
1330 			*pd_idx = stripe % raid_disks;
1331 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1332 			break;
1333 		default:
1334 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1335 				conf->algorithm);
1336 		}
1337 		break;
1338 	case 6:
1339 
1340 		/**** FIX THIS ****/
1341 		switch (conf->algorithm) {
1342 		case ALGORITHM_LEFT_ASYMMETRIC:
1343 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1344 			if (*pd_idx == raid_disks-1)
1345 				(*dd_idx)++; 	/* Q D D D P */
1346 			else if (*dd_idx >= *pd_idx)
1347 				(*dd_idx) += 2; /* D D P Q D */
1348 			break;
1349 		case ALGORITHM_RIGHT_ASYMMETRIC:
1350 			*pd_idx = stripe % raid_disks;
1351 			if (*pd_idx == raid_disks-1)
1352 				(*dd_idx)++; 	/* Q D D D P */
1353 			else if (*dd_idx >= *pd_idx)
1354 				(*dd_idx) += 2; /* D D P Q D */
1355 			break;
1356 		case ALGORITHM_LEFT_SYMMETRIC:
1357 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1358 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1359 			break;
1360 		case ALGORITHM_RIGHT_SYMMETRIC:
1361 			*pd_idx = stripe % raid_disks;
1362 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1363 			break;
1364 		default:
1365 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1366 				conf->algorithm);
1367 		}
1368 		break;
1369 	}
1370 
1371 	/*
1372 	 * Finally, compute the new sector number
1373 	 */
1374 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1375 	return new_sector;
1376 }
1377 
1378 
1379 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1380 {
1381 	raid5_conf_t *conf = sh->raid_conf;
1382 	int raid_disks = sh->disks;
1383 	int data_disks = raid_disks - conf->max_degraded;
1384 	sector_t new_sector = sh->sector, check;
1385 	int sectors_per_chunk = conf->chunk_size >> 9;
1386 	sector_t stripe;
1387 	int chunk_offset;
1388 	int chunk_number, dummy1, dummy2, dd_idx = i;
1389 	sector_t r_sector;
1390 
1391 
1392 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1393 	stripe = new_sector;
1394 	BUG_ON(new_sector != stripe);
1395 
1396 	if (i == sh->pd_idx)
1397 		return 0;
1398 	switch(conf->level) {
1399 	case 4: break;
1400 	case 5:
1401 		switch (conf->algorithm) {
1402 		case ALGORITHM_LEFT_ASYMMETRIC:
1403 		case ALGORITHM_RIGHT_ASYMMETRIC:
1404 			if (i > sh->pd_idx)
1405 				i--;
1406 			break;
1407 		case ALGORITHM_LEFT_SYMMETRIC:
1408 		case ALGORITHM_RIGHT_SYMMETRIC:
1409 			if (i < sh->pd_idx)
1410 				i += raid_disks;
1411 			i -= (sh->pd_idx + 1);
1412 			break;
1413 		default:
1414 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1415 			       conf->algorithm);
1416 		}
1417 		break;
1418 	case 6:
1419 		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1420 			return 0; /* It is the Q disk */
1421 		switch (conf->algorithm) {
1422 		case ALGORITHM_LEFT_ASYMMETRIC:
1423 		case ALGORITHM_RIGHT_ASYMMETRIC:
1424 		  	if (sh->pd_idx == raid_disks-1)
1425 				i--; 	/* Q D D D P */
1426 			else if (i > sh->pd_idx)
1427 				i -= 2; /* D D P Q D */
1428 			break;
1429 		case ALGORITHM_LEFT_SYMMETRIC:
1430 		case ALGORITHM_RIGHT_SYMMETRIC:
1431 			if (sh->pd_idx == raid_disks-1)
1432 				i--; /* Q D D D P */
1433 			else {
1434 				/* D D P Q D */
1435 				if (i < sh->pd_idx)
1436 					i += raid_disks;
1437 				i -= (sh->pd_idx + 2);
1438 			}
1439 			break;
1440 		default:
1441 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1442 				conf->algorithm);
1443 		}
1444 		break;
1445 	}
1446 
1447 	chunk_number = stripe * data_disks + i;
1448 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1449 
1450 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1451 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1452 		printk(KERN_ERR "compute_blocknr: map not correct\n");
1453 		return 0;
1454 	}
1455 	return r_sector;
1456 }
1457 
1458 
1459 
1460 /*
1461  * Copy data between a page in the stripe cache, and one or more bion
1462  * The page could align with the middle of the bio, or there could be
1463  * several bion, each with several bio_vecs, which cover part of the page
1464  * Multiple bion are linked together on bi_next.  There may be extras
1465  * at the end of this list.  We ignore them.
1466  */
1467 static void copy_data(int frombio, struct bio *bio,
1468 		     struct page *page,
1469 		     sector_t sector)
1470 {
1471 	char *pa = page_address(page);
1472 	struct bio_vec *bvl;
1473 	int i;
1474 	int page_offset;
1475 
1476 	if (bio->bi_sector >= sector)
1477 		page_offset = (signed)(bio->bi_sector - sector) * 512;
1478 	else
1479 		page_offset = (signed)(sector - bio->bi_sector) * -512;
1480 	bio_for_each_segment(bvl, bio, i) {
1481 		int len = bio_iovec_idx(bio,i)->bv_len;
1482 		int clen;
1483 		int b_offset = 0;
1484 
1485 		if (page_offset < 0) {
1486 			b_offset = -page_offset;
1487 			page_offset += b_offset;
1488 			len -= b_offset;
1489 		}
1490 
1491 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1492 			clen = STRIPE_SIZE - page_offset;
1493 		else clen = len;
1494 
1495 		if (clen > 0) {
1496 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1497 			if (frombio)
1498 				memcpy(pa+page_offset, ba+b_offset, clen);
1499 			else
1500 				memcpy(ba+b_offset, pa+page_offset, clen);
1501 			__bio_kunmap_atomic(ba, KM_USER0);
1502 		}
1503 		if (clen < len) /* hit end of page */
1504 			break;
1505 		page_offset +=  len;
1506 	}
1507 }
1508 
1509 #define check_xor()	do {						  \
1510 				if (count == MAX_XOR_BLOCKS) {		  \
1511 				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1512 				count = 0;				  \
1513 			   }						  \
1514 			} while(0)
1515 
1516 static void compute_parity6(struct stripe_head *sh, int method)
1517 {
1518 	raid6_conf_t *conf = sh->raid_conf;
1519 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1520 	struct bio *chosen;
1521 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1522 	void *ptrs[disks];
1523 
1524 	qd_idx = raid6_next_disk(pd_idx, disks);
1525 	d0_idx = raid6_next_disk(qd_idx, disks);
1526 
1527 	pr_debug("compute_parity, stripe %llu, method %d\n",
1528 		(unsigned long long)sh->sector, method);
1529 
1530 	switch(method) {
1531 	case READ_MODIFY_WRITE:
1532 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1533 	case RECONSTRUCT_WRITE:
1534 		for (i= disks; i-- ;)
1535 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1536 				chosen = sh->dev[i].towrite;
1537 				sh->dev[i].towrite = NULL;
1538 
1539 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1540 					wake_up(&conf->wait_for_overlap);
1541 
1542 				BUG_ON(sh->dev[i].written);
1543 				sh->dev[i].written = chosen;
1544 			}
1545 		break;
1546 	case CHECK_PARITY:
1547 		BUG();		/* Not implemented yet */
1548 	}
1549 
1550 	for (i = disks; i--;)
1551 		if (sh->dev[i].written) {
1552 			sector_t sector = sh->dev[i].sector;
1553 			struct bio *wbi = sh->dev[i].written;
1554 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1555 				copy_data(1, wbi, sh->dev[i].page, sector);
1556 				wbi = r5_next_bio(wbi, sector);
1557 			}
1558 
1559 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1560 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1561 		}
1562 
1563 //	switch(method) {
1564 //	case RECONSTRUCT_WRITE:
1565 //	case CHECK_PARITY:
1566 //	case UPDATE_PARITY:
1567 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1568 		/* FIX: Is this ordering of drives even remotely optimal? */
1569 		count = 0;
1570 		i = d0_idx;
1571 		do {
1572 			ptrs[count++] = page_address(sh->dev[i].page);
1573 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1574 				printk("block %d/%d not uptodate on parity calc\n", i,count);
1575 			i = raid6_next_disk(i, disks);
1576 		} while ( i != d0_idx );
1577 //		break;
1578 //	}
1579 
1580 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1581 
1582 	switch(method) {
1583 	case RECONSTRUCT_WRITE:
1584 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1585 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1586 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1587 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1588 		break;
1589 	case UPDATE_PARITY:
1590 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1591 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1592 		break;
1593 	}
1594 }
1595 
1596 
1597 /* Compute one missing block */
1598 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1599 {
1600 	int i, count, disks = sh->disks;
1601 	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1602 	int pd_idx = sh->pd_idx;
1603 	int qd_idx = raid6_next_disk(pd_idx, disks);
1604 
1605 	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1606 		(unsigned long long)sh->sector, dd_idx);
1607 
1608 	if ( dd_idx == qd_idx ) {
1609 		/* We're actually computing the Q drive */
1610 		compute_parity6(sh, UPDATE_PARITY);
1611 	} else {
1612 		dest = page_address(sh->dev[dd_idx].page);
1613 		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1614 		count = 0;
1615 		for (i = disks ; i--; ) {
1616 			if (i == dd_idx || i == qd_idx)
1617 				continue;
1618 			p = page_address(sh->dev[i].page);
1619 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1620 				ptr[count++] = p;
1621 			else
1622 				printk("compute_block() %d, stripe %llu, %d"
1623 				       " not present\n", dd_idx,
1624 				       (unsigned long long)sh->sector, i);
1625 
1626 			check_xor();
1627 		}
1628 		if (count)
1629 			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1630 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1631 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1632 	}
1633 }
1634 
1635 /* Compute two missing blocks */
1636 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1637 {
1638 	int i, count, disks = sh->disks;
1639 	int pd_idx = sh->pd_idx;
1640 	int qd_idx = raid6_next_disk(pd_idx, disks);
1641 	int d0_idx = raid6_next_disk(qd_idx, disks);
1642 	int faila, failb;
1643 
1644 	/* faila and failb are disk numbers relative to d0_idx */
1645 	/* pd_idx become disks-2 and qd_idx become disks-1 */
1646 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1647 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1648 
1649 	BUG_ON(faila == failb);
1650 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1651 
1652 	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1653 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1654 
1655 	if ( failb == disks-1 ) {
1656 		/* Q disk is one of the missing disks */
1657 		if ( faila == disks-2 ) {
1658 			/* Missing P+Q, just recompute */
1659 			compute_parity6(sh, UPDATE_PARITY);
1660 			return;
1661 		} else {
1662 			/* We're missing D+Q; recompute D from P */
1663 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1664 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1665 			return;
1666 		}
1667 	}
1668 
1669 	/* We're missing D+P or D+D; build pointer table */
1670 	{
1671 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1672 		void *ptrs[disks];
1673 
1674 		count = 0;
1675 		i = d0_idx;
1676 		do {
1677 			ptrs[count++] = page_address(sh->dev[i].page);
1678 			i = raid6_next_disk(i, disks);
1679 			if (i != dd_idx1 && i != dd_idx2 &&
1680 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1681 				printk("compute_2 with missing block %d/%d\n", count, i);
1682 		} while ( i != d0_idx );
1683 
1684 		if ( failb == disks-2 ) {
1685 			/* We're missing D+P. */
1686 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1687 		} else {
1688 			/* We're missing D+D. */
1689 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1690 		}
1691 
1692 		/* Both the above update both missing blocks */
1693 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1694 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1695 	}
1696 }
1697 
1698 static int
1699 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1700 {
1701 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1702 	int locked = 0;
1703 
1704 	if (rcw) {
1705 		/* if we are not expanding this is a proper write request, and
1706 		 * there will be bios with new data to be drained into the
1707 		 * stripe cache
1708 		 */
1709 		if (!expand) {
1710 			set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1711 			sh->ops.count++;
1712 		}
1713 
1714 		set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1715 		sh->ops.count++;
1716 
1717 		for (i = disks; i--; ) {
1718 			struct r5dev *dev = &sh->dev[i];
1719 
1720 			if (dev->towrite) {
1721 				set_bit(R5_LOCKED, &dev->flags);
1722 				if (!expand)
1723 					clear_bit(R5_UPTODATE, &dev->flags);
1724 				locked++;
1725 			}
1726 		}
1727 	} else {
1728 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1729 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1730 
1731 		set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1732 		set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1733 		set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1734 
1735 		sh->ops.count += 3;
1736 
1737 		for (i = disks; i--; ) {
1738 			struct r5dev *dev = &sh->dev[i];
1739 			if (i == pd_idx)
1740 				continue;
1741 
1742 			/* For a read-modify write there may be blocks that are
1743 			 * locked for reading while others are ready to be
1744 			 * written so we distinguish these blocks by the
1745 			 * R5_Wantprexor bit
1746 			 */
1747 			if (dev->towrite &&
1748 			    (test_bit(R5_UPTODATE, &dev->flags) ||
1749 			    test_bit(R5_Wantcompute, &dev->flags))) {
1750 				set_bit(R5_Wantprexor, &dev->flags);
1751 				set_bit(R5_LOCKED, &dev->flags);
1752 				clear_bit(R5_UPTODATE, &dev->flags);
1753 				locked++;
1754 			}
1755 		}
1756 	}
1757 
1758 	/* keep the parity disk locked while asynchronous operations
1759 	 * are in flight
1760 	 */
1761 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1762 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1763 	locked++;
1764 
1765 	pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1766 		__FUNCTION__, (unsigned long long)sh->sector,
1767 		locked, sh->ops.pending);
1768 
1769 	return locked;
1770 }
1771 
1772 /*
1773  * Each stripe/dev can have one or more bion attached.
1774  * toread/towrite point to the first in a chain.
1775  * The bi_next chain must be in order.
1776  */
1777 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1778 {
1779 	struct bio **bip;
1780 	raid5_conf_t *conf = sh->raid_conf;
1781 	int firstwrite=0;
1782 
1783 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1784 		(unsigned long long)bi->bi_sector,
1785 		(unsigned long long)sh->sector);
1786 
1787 
1788 	spin_lock(&sh->lock);
1789 	spin_lock_irq(&conf->device_lock);
1790 	if (forwrite) {
1791 		bip = &sh->dev[dd_idx].towrite;
1792 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1793 			firstwrite = 1;
1794 	} else
1795 		bip = &sh->dev[dd_idx].toread;
1796 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1797 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1798 			goto overlap;
1799 		bip = & (*bip)->bi_next;
1800 	}
1801 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1802 		goto overlap;
1803 
1804 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1805 	if (*bip)
1806 		bi->bi_next = *bip;
1807 	*bip = bi;
1808 	bi->bi_phys_segments ++;
1809 	spin_unlock_irq(&conf->device_lock);
1810 	spin_unlock(&sh->lock);
1811 
1812 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1813 		(unsigned long long)bi->bi_sector,
1814 		(unsigned long long)sh->sector, dd_idx);
1815 
1816 	if (conf->mddev->bitmap && firstwrite) {
1817 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1818 				  STRIPE_SECTORS, 0);
1819 		sh->bm_seq = conf->seq_flush+1;
1820 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1821 	}
1822 
1823 	if (forwrite) {
1824 		/* check if page is covered */
1825 		sector_t sector = sh->dev[dd_idx].sector;
1826 		for (bi=sh->dev[dd_idx].towrite;
1827 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1828 			     bi && bi->bi_sector <= sector;
1829 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1830 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1831 				sector = bi->bi_sector + (bi->bi_size>>9);
1832 		}
1833 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1834 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1835 	}
1836 	return 1;
1837 
1838  overlap:
1839 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1840 	spin_unlock_irq(&conf->device_lock);
1841 	spin_unlock(&sh->lock);
1842 	return 0;
1843 }
1844 
1845 static void end_reshape(raid5_conf_t *conf);
1846 
1847 static int page_is_zero(struct page *p)
1848 {
1849 	char *a = page_address(p);
1850 	return ((*(u32*)a) == 0 &&
1851 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1852 }
1853 
1854 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1855 {
1856 	int sectors_per_chunk = conf->chunk_size >> 9;
1857 	int pd_idx, dd_idx;
1858 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
1859 
1860 	raid5_compute_sector(stripe * (disks - conf->max_degraded)
1861 			     *sectors_per_chunk + chunk_offset,
1862 			     disks, disks - conf->max_degraded,
1863 			     &dd_idx, &pd_idx, conf);
1864 	return pd_idx;
1865 }
1866 
1867 static void
1868 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1869 				struct stripe_head_state *s, int disks,
1870 				struct bio **return_bi)
1871 {
1872 	int i;
1873 	for (i = disks; i--; ) {
1874 		struct bio *bi;
1875 		int bitmap_end = 0;
1876 
1877 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1878 			mdk_rdev_t *rdev;
1879 			rcu_read_lock();
1880 			rdev = rcu_dereference(conf->disks[i].rdev);
1881 			if (rdev && test_bit(In_sync, &rdev->flags))
1882 				/* multiple read failures in one stripe */
1883 				md_error(conf->mddev, rdev);
1884 			rcu_read_unlock();
1885 		}
1886 		spin_lock_irq(&conf->device_lock);
1887 		/* fail all writes first */
1888 		bi = sh->dev[i].towrite;
1889 		sh->dev[i].towrite = NULL;
1890 		if (bi) {
1891 			s->to_write--;
1892 			bitmap_end = 1;
1893 		}
1894 
1895 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1896 			wake_up(&conf->wait_for_overlap);
1897 
1898 		while (bi && bi->bi_sector <
1899 			sh->dev[i].sector + STRIPE_SECTORS) {
1900 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1901 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1902 			if (--bi->bi_phys_segments == 0) {
1903 				md_write_end(conf->mddev);
1904 				bi->bi_next = *return_bi;
1905 				*return_bi = bi;
1906 			}
1907 			bi = nextbi;
1908 		}
1909 		/* and fail all 'written' */
1910 		bi = sh->dev[i].written;
1911 		sh->dev[i].written = NULL;
1912 		if (bi) bitmap_end = 1;
1913 		while (bi && bi->bi_sector <
1914 		       sh->dev[i].sector + STRIPE_SECTORS) {
1915 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1916 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1917 			if (--bi->bi_phys_segments == 0) {
1918 				md_write_end(conf->mddev);
1919 				bi->bi_next = *return_bi;
1920 				*return_bi = bi;
1921 			}
1922 			bi = bi2;
1923 		}
1924 
1925 		/* fail any reads if this device is non-operational and
1926 		 * the data has not reached the cache yet.
1927 		 */
1928 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1929 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1930 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
1931 			bi = sh->dev[i].toread;
1932 			sh->dev[i].toread = NULL;
1933 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1934 				wake_up(&conf->wait_for_overlap);
1935 			if (bi) s->to_read--;
1936 			while (bi && bi->bi_sector <
1937 			       sh->dev[i].sector + STRIPE_SECTORS) {
1938 				struct bio *nextbi =
1939 					r5_next_bio(bi, sh->dev[i].sector);
1940 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1941 				if (--bi->bi_phys_segments == 0) {
1942 					bi->bi_next = *return_bi;
1943 					*return_bi = bi;
1944 				}
1945 				bi = nextbi;
1946 			}
1947 		}
1948 		spin_unlock_irq(&conf->device_lock);
1949 		if (bitmap_end)
1950 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1951 					STRIPE_SECTORS, 0, 0);
1952 	}
1953 
1954 }
1955 
1956 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1957  * to process
1958  */
1959 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1960 			struct stripe_head_state *s, int disk_idx, int disks)
1961 {
1962 	struct r5dev *dev = &sh->dev[disk_idx];
1963 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
1964 
1965 	/* don't schedule compute operations or reads on the parity block while
1966 	 * a check is in flight
1967 	 */
1968 	if ((disk_idx == sh->pd_idx) &&
1969 	     test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1970 		return ~0;
1971 
1972 	/* is the data in this block needed, and can we get it? */
1973 	if (!test_bit(R5_LOCKED, &dev->flags) &&
1974 	    !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1975 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1976 	     s->syncing || s->expanding || (s->failed &&
1977 	     (failed_dev->toread || (failed_dev->towrite &&
1978 	     !test_bit(R5_OVERWRITE, &failed_dev->flags)
1979 	     ))))) {
1980 		/* 1/ We would like to get this block, possibly by computing it,
1981 		 * but we might not be able to.
1982 		 *
1983 		 * 2/ Since parity check operations potentially make the parity
1984 		 * block !uptodate it will need to be refreshed before any
1985 		 * compute operations on data disks are scheduled.
1986 		 *
1987 		 * 3/ We hold off parity block re-reads until check operations
1988 		 * have quiesced.
1989 		 */
1990 		if ((s->uptodate == disks - 1) &&
1991 		    !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1992 			set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1993 			set_bit(R5_Wantcompute, &dev->flags);
1994 			sh->ops.target = disk_idx;
1995 			s->req_compute = 1;
1996 			sh->ops.count++;
1997 			/* Careful: from this point on 'uptodate' is in the eye
1998 			 * of raid5_run_ops which services 'compute' operations
1999 			 * before writes. R5_Wantcompute flags a block that will
2000 			 * be R5_UPTODATE by the time it is needed for a
2001 			 * subsequent operation.
2002 			 */
2003 			s->uptodate++;
2004 			return 0; /* uptodate + compute == disks */
2005 		} else if ((s->uptodate < disks - 1) &&
2006 			test_bit(R5_Insync, &dev->flags)) {
2007 			/* Note: we hold off compute operations while checks are
2008 			 * in flight, but we still prefer 'compute' over 'read'
2009 			 * hence we only read if (uptodate < * disks-1)
2010 			 */
2011 			set_bit(R5_LOCKED, &dev->flags);
2012 			set_bit(R5_Wantread, &dev->flags);
2013 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2014 				sh->ops.count++;
2015 			s->locked++;
2016 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2017 				s->syncing);
2018 		}
2019 	}
2020 
2021 	return ~0;
2022 }
2023 
2024 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2025 			struct stripe_head_state *s, int disks)
2026 {
2027 	int i;
2028 
2029 	/* Clear completed compute operations.  Parity recovery
2030 	 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2031 	 * later on in this routine
2032 	 */
2033 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2034 		!test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2035 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2036 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2037 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2038 	}
2039 
2040 	/* look for blocks to read/compute, skip this if a compute
2041 	 * is already in flight, or if the stripe contents are in the
2042 	 * midst of changing due to a write
2043 	 */
2044 	if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2045 		!test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2046 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2047 		for (i = disks; i--; )
2048 			if (__handle_issuing_new_read_requests5(
2049 				sh, s, i, disks) == 0)
2050 				break;
2051 	}
2052 	set_bit(STRIPE_HANDLE, &sh->state);
2053 }
2054 
2055 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2056 			struct stripe_head_state *s, struct r6_state *r6s,
2057 			int disks)
2058 {
2059 	int i;
2060 	for (i = disks; i--; ) {
2061 		struct r5dev *dev = &sh->dev[i];
2062 		if (!test_bit(R5_LOCKED, &dev->flags) &&
2063 		    !test_bit(R5_UPTODATE, &dev->flags) &&
2064 		    (dev->toread || (dev->towrite &&
2065 		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
2066 		     s->syncing || s->expanding ||
2067 		     (s->failed >= 1 &&
2068 		      (sh->dev[r6s->failed_num[0]].toread ||
2069 		       s->to_write)) ||
2070 		     (s->failed >= 2 &&
2071 		      (sh->dev[r6s->failed_num[1]].toread ||
2072 		       s->to_write)))) {
2073 			/* we would like to get this block, possibly
2074 			 * by computing it, but we might not be able to
2075 			 */
2076 			if (s->uptodate == disks-1) {
2077 				pr_debug("Computing stripe %llu block %d\n",
2078 				       (unsigned long long)sh->sector, i);
2079 				compute_block_1(sh, i, 0);
2080 				s->uptodate++;
2081 			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2082 				/* Computing 2-failure is *very* expensive; only
2083 				 * do it if failed >= 2
2084 				 */
2085 				int other;
2086 				for (other = disks; other--; ) {
2087 					if (other == i)
2088 						continue;
2089 					if (!test_bit(R5_UPTODATE,
2090 					      &sh->dev[other].flags))
2091 						break;
2092 				}
2093 				BUG_ON(other < 0);
2094 				pr_debug("Computing stripe %llu blocks %d,%d\n",
2095 				       (unsigned long long)sh->sector,
2096 				       i, other);
2097 				compute_block_2(sh, i, other);
2098 				s->uptodate += 2;
2099 			} else if (test_bit(R5_Insync, &dev->flags)) {
2100 				set_bit(R5_LOCKED, &dev->flags);
2101 				set_bit(R5_Wantread, &dev->flags);
2102 				s->locked++;
2103 				pr_debug("Reading block %d (sync=%d)\n",
2104 					i, s->syncing);
2105 			}
2106 		}
2107 	}
2108 	set_bit(STRIPE_HANDLE, &sh->state);
2109 }
2110 
2111 
2112 /* handle_completed_write_requests
2113  * any written block on an uptodate or failed drive can be returned.
2114  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2115  * never LOCKED, so we don't need to test 'failed' directly.
2116  */
2117 static void handle_completed_write_requests(raid5_conf_t *conf,
2118 	struct stripe_head *sh, int disks, struct bio **return_bi)
2119 {
2120 	int i;
2121 	struct r5dev *dev;
2122 
2123 	for (i = disks; i--; )
2124 		if (sh->dev[i].written) {
2125 			dev = &sh->dev[i];
2126 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2127 				test_bit(R5_UPTODATE, &dev->flags)) {
2128 				/* We can return any write requests */
2129 				struct bio *wbi, *wbi2;
2130 				int bitmap_end = 0;
2131 				pr_debug("Return write for disc %d\n", i);
2132 				spin_lock_irq(&conf->device_lock);
2133 				wbi = dev->written;
2134 				dev->written = NULL;
2135 				while (wbi && wbi->bi_sector <
2136 					dev->sector + STRIPE_SECTORS) {
2137 					wbi2 = r5_next_bio(wbi, dev->sector);
2138 					if (--wbi->bi_phys_segments == 0) {
2139 						md_write_end(conf->mddev);
2140 						wbi->bi_next = *return_bi;
2141 						*return_bi = wbi;
2142 					}
2143 					wbi = wbi2;
2144 				}
2145 				if (dev->towrite == NULL)
2146 					bitmap_end = 1;
2147 				spin_unlock_irq(&conf->device_lock);
2148 				if (bitmap_end)
2149 					bitmap_endwrite(conf->mddev->bitmap,
2150 							sh->sector,
2151 							STRIPE_SECTORS,
2152 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2153 							0);
2154 			}
2155 		}
2156 }
2157 
2158 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2159 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2160 {
2161 	int rmw = 0, rcw = 0, i;
2162 	for (i = disks; i--; ) {
2163 		/* would I have to read this buffer for read_modify_write */
2164 		struct r5dev *dev = &sh->dev[i];
2165 		if ((dev->towrite || i == sh->pd_idx) &&
2166 		    !test_bit(R5_LOCKED, &dev->flags) &&
2167 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2168 		      test_bit(R5_Wantcompute, &dev->flags))) {
2169 			if (test_bit(R5_Insync, &dev->flags))
2170 				rmw++;
2171 			else
2172 				rmw += 2*disks;  /* cannot read it */
2173 		}
2174 		/* Would I have to read this buffer for reconstruct_write */
2175 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2176 		    !test_bit(R5_LOCKED, &dev->flags) &&
2177 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2178 		    test_bit(R5_Wantcompute, &dev->flags))) {
2179 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2180 			else
2181 				rcw += 2*disks;
2182 		}
2183 	}
2184 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2185 		(unsigned long long)sh->sector, rmw, rcw);
2186 	set_bit(STRIPE_HANDLE, &sh->state);
2187 	if (rmw < rcw && rmw > 0)
2188 		/* prefer read-modify-write, but need to get some data */
2189 		for (i = disks; i--; ) {
2190 			struct r5dev *dev = &sh->dev[i];
2191 			if ((dev->towrite || i == sh->pd_idx) &&
2192 			    !test_bit(R5_LOCKED, &dev->flags) &&
2193 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2194 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2195 			    test_bit(R5_Insync, &dev->flags)) {
2196 				if (
2197 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2198 					pr_debug("Read_old block "
2199 						"%d for r-m-w\n", i);
2200 					set_bit(R5_LOCKED, &dev->flags);
2201 					set_bit(R5_Wantread, &dev->flags);
2202 					if (!test_and_set_bit(
2203 						STRIPE_OP_IO, &sh->ops.pending))
2204 						sh->ops.count++;
2205 					s->locked++;
2206 				} else {
2207 					set_bit(STRIPE_DELAYED, &sh->state);
2208 					set_bit(STRIPE_HANDLE, &sh->state);
2209 				}
2210 			}
2211 		}
2212 	if (rcw <= rmw && rcw > 0)
2213 		/* want reconstruct write, but need to get some data */
2214 		for (i = disks; i--; ) {
2215 			struct r5dev *dev = &sh->dev[i];
2216 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2217 			    i != sh->pd_idx &&
2218 			    !test_bit(R5_LOCKED, &dev->flags) &&
2219 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2220 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2221 			    test_bit(R5_Insync, &dev->flags)) {
2222 				if (
2223 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2224 					pr_debug("Read_old block "
2225 						"%d for Reconstruct\n", i);
2226 					set_bit(R5_LOCKED, &dev->flags);
2227 					set_bit(R5_Wantread, &dev->flags);
2228 					if (!test_and_set_bit(
2229 						STRIPE_OP_IO, &sh->ops.pending))
2230 						sh->ops.count++;
2231 					s->locked++;
2232 				} else {
2233 					set_bit(STRIPE_DELAYED, &sh->state);
2234 					set_bit(STRIPE_HANDLE, &sh->state);
2235 				}
2236 			}
2237 		}
2238 	/* now if nothing is locked, and if we have enough data,
2239 	 * we can start a write request
2240 	 */
2241 	/* since handle_stripe can be called at any time we need to handle the
2242 	 * case where a compute block operation has been submitted and then a
2243 	 * subsequent call wants to start a write request.  raid5_run_ops only
2244 	 * handles the case where compute block and postxor are requested
2245 	 * simultaneously.  If this is not the case then new writes need to be
2246 	 * held off until the compute completes.
2247 	 */
2248 	if ((s->req_compute ||
2249 	    !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2250 		(s->locked == 0 && (rcw == 0 || rmw == 0) &&
2251 		!test_bit(STRIPE_BIT_DELAY, &sh->state)))
2252 		s->locked += handle_write_operations5(sh, rcw == 0, 0);
2253 }
2254 
2255 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2256 		struct stripe_head *sh,	struct stripe_head_state *s,
2257 		struct r6_state *r6s, int disks)
2258 {
2259 	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2260 	int qd_idx = r6s->qd_idx;
2261 	for (i = disks; i--; ) {
2262 		struct r5dev *dev = &sh->dev[i];
2263 		/* Would I have to read this buffer for reconstruct_write */
2264 		if (!test_bit(R5_OVERWRITE, &dev->flags)
2265 		    && i != pd_idx && i != qd_idx
2266 		    && (!test_bit(R5_LOCKED, &dev->flags)
2267 			    ) &&
2268 		    !test_bit(R5_UPTODATE, &dev->flags)) {
2269 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2270 			else {
2271 				pr_debug("raid6: must_compute: "
2272 					"disk %d flags=%#lx\n", i, dev->flags);
2273 				must_compute++;
2274 			}
2275 		}
2276 	}
2277 	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2278 	       (unsigned long long)sh->sector, rcw, must_compute);
2279 	set_bit(STRIPE_HANDLE, &sh->state);
2280 
2281 	if (rcw > 0)
2282 		/* want reconstruct write, but need to get some data */
2283 		for (i = disks; i--; ) {
2284 			struct r5dev *dev = &sh->dev[i];
2285 			if (!test_bit(R5_OVERWRITE, &dev->flags)
2286 			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2287 			    && !test_bit(R5_LOCKED, &dev->flags) &&
2288 			    !test_bit(R5_UPTODATE, &dev->flags) &&
2289 			    test_bit(R5_Insync, &dev->flags)) {
2290 				if (
2291 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2292 					pr_debug("Read_old stripe %llu "
2293 						"block %d for Reconstruct\n",
2294 					     (unsigned long long)sh->sector, i);
2295 					set_bit(R5_LOCKED, &dev->flags);
2296 					set_bit(R5_Wantread, &dev->flags);
2297 					s->locked++;
2298 				} else {
2299 					pr_debug("Request delayed stripe %llu "
2300 						"block %d for Reconstruct\n",
2301 					     (unsigned long long)sh->sector, i);
2302 					set_bit(STRIPE_DELAYED, &sh->state);
2303 					set_bit(STRIPE_HANDLE, &sh->state);
2304 				}
2305 			}
2306 		}
2307 	/* now if nothing is locked, and if we have enough data, we can start a
2308 	 * write request
2309 	 */
2310 	if (s->locked == 0 && rcw == 0 &&
2311 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2312 		if (must_compute > 0) {
2313 			/* We have failed blocks and need to compute them */
2314 			switch (s->failed) {
2315 			case 0:
2316 				BUG();
2317 			case 1:
2318 				compute_block_1(sh, r6s->failed_num[0], 0);
2319 				break;
2320 			case 2:
2321 				compute_block_2(sh, r6s->failed_num[0],
2322 						r6s->failed_num[1]);
2323 				break;
2324 			default: /* This request should have been failed? */
2325 				BUG();
2326 			}
2327 		}
2328 
2329 		pr_debug("Computing parity for stripe %llu\n",
2330 			(unsigned long long)sh->sector);
2331 		compute_parity6(sh, RECONSTRUCT_WRITE);
2332 		/* now every locked buffer is ready to be written */
2333 		for (i = disks; i--; )
2334 			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2335 				pr_debug("Writing stripe %llu block %d\n",
2336 				       (unsigned long long)sh->sector, i);
2337 				s->locked++;
2338 				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2339 			}
2340 		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2341 		set_bit(STRIPE_INSYNC, &sh->state);
2342 
2343 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2344 			atomic_dec(&conf->preread_active_stripes);
2345 			if (atomic_read(&conf->preread_active_stripes) <
2346 			    IO_THRESHOLD)
2347 				md_wakeup_thread(conf->mddev->thread);
2348 		}
2349 	}
2350 }
2351 
2352 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2353 				struct stripe_head_state *s, int disks)
2354 {
2355 	set_bit(STRIPE_HANDLE, &sh->state);
2356 	/* Take one of the following actions:
2357 	 * 1/ start a check parity operation if (uptodate == disks)
2358 	 * 2/ finish a check parity operation and act on the result
2359 	 * 3/ skip to the writeback section if we previously
2360 	 *    initiated a recovery operation
2361 	 */
2362 	if (s->failed == 0 &&
2363 	    !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2364 		if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2365 			BUG_ON(s->uptodate != disks);
2366 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2367 			sh->ops.count++;
2368 			s->uptodate--;
2369 		} else if (
2370 		       test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2371 			clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2372 			clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2373 
2374 			if (sh->ops.zero_sum_result == 0)
2375 				/* parity is correct (on disc,
2376 				 * not in buffer any more)
2377 				 */
2378 				set_bit(STRIPE_INSYNC, &sh->state);
2379 			else {
2380 				conf->mddev->resync_mismatches +=
2381 					STRIPE_SECTORS;
2382 				if (test_bit(
2383 				     MD_RECOVERY_CHECK, &conf->mddev->recovery))
2384 					/* don't try to repair!! */
2385 					set_bit(STRIPE_INSYNC, &sh->state);
2386 				else {
2387 					set_bit(STRIPE_OP_COMPUTE_BLK,
2388 						&sh->ops.pending);
2389 					set_bit(STRIPE_OP_MOD_REPAIR_PD,
2390 						&sh->ops.pending);
2391 					set_bit(R5_Wantcompute,
2392 						&sh->dev[sh->pd_idx].flags);
2393 					sh->ops.target = sh->pd_idx;
2394 					sh->ops.count++;
2395 					s->uptodate++;
2396 				}
2397 			}
2398 		}
2399 	}
2400 
2401 	/* check if we can clear a parity disk reconstruct */
2402 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2403 		test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2404 
2405 		clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2406 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2407 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2408 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2409 	}
2410 
2411 	/* Wait for check parity and compute block operations to complete
2412 	 * before write-back
2413 	 */
2414 	if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2415 		!test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2416 		!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2417 		struct r5dev *dev;
2418 		/* either failed parity check, or recovery is happening */
2419 		if (s->failed == 0)
2420 			s->failed_num = sh->pd_idx;
2421 		dev = &sh->dev[s->failed_num];
2422 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2423 		BUG_ON(s->uptodate != disks);
2424 
2425 		set_bit(R5_LOCKED, &dev->flags);
2426 		set_bit(R5_Wantwrite, &dev->flags);
2427 		if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2428 			sh->ops.count++;
2429 
2430 		clear_bit(STRIPE_DEGRADED, &sh->state);
2431 		s->locked++;
2432 		set_bit(STRIPE_INSYNC, &sh->state);
2433 	}
2434 }
2435 
2436 
2437 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2438 				struct stripe_head_state *s,
2439 				struct r6_state *r6s, struct page *tmp_page,
2440 				int disks)
2441 {
2442 	int update_p = 0, update_q = 0;
2443 	struct r5dev *dev;
2444 	int pd_idx = sh->pd_idx;
2445 	int qd_idx = r6s->qd_idx;
2446 
2447 	set_bit(STRIPE_HANDLE, &sh->state);
2448 
2449 	BUG_ON(s->failed > 2);
2450 	BUG_ON(s->uptodate < disks);
2451 	/* Want to check and possibly repair P and Q.
2452 	 * However there could be one 'failed' device, in which
2453 	 * case we can only check one of them, possibly using the
2454 	 * other to generate missing data
2455 	 */
2456 
2457 	/* If !tmp_page, we cannot do the calculations,
2458 	 * but as we have set STRIPE_HANDLE, we will soon be called
2459 	 * by stripe_handle with a tmp_page - just wait until then.
2460 	 */
2461 	if (tmp_page) {
2462 		if (s->failed == r6s->q_failed) {
2463 			/* The only possible failed device holds 'Q', so it
2464 			 * makes sense to check P (If anything else were failed,
2465 			 * we would have used P to recreate it).
2466 			 */
2467 			compute_block_1(sh, pd_idx, 1);
2468 			if (!page_is_zero(sh->dev[pd_idx].page)) {
2469 				compute_block_1(sh, pd_idx, 0);
2470 				update_p = 1;
2471 			}
2472 		}
2473 		if (!r6s->q_failed && s->failed < 2) {
2474 			/* q is not failed, and we didn't use it to generate
2475 			 * anything, so it makes sense to check it
2476 			 */
2477 			memcpy(page_address(tmp_page),
2478 			       page_address(sh->dev[qd_idx].page),
2479 			       STRIPE_SIZE);
2480 			compute_parity6(sh, UPDATE_PARITY);
2481 			if (memcmp(page_address(tmp_page),
2482 				   page_address(sh->dev[qd_idx].page),
2483 				   STRIPE_SIZE) != 0) {
2484 				clear_bit(STRIPE_INSYNC, &sh->state);
2485 				update_q = 1;
2486 			}
2487 		}
2488 		if (update_p || update_q) {
2489 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2490 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2491 				/* don't try to repair!! */
2492 				update_p = update_q = 0;
2493 		}
2494 
2495 		/* now write out any block on a failed drive,
2496 		 * or P or Q if they need it
2497 		 */
2498 
2499 		if (s->failed == 2) {
2500 			dev = &sh->dev[r6s->failed_num[1]];
2501 			s->locked++;
2502 			set_bit(R5_LOCKED, &dev->flags);
2503 			set_bit(R5_Wantwrite, &dev->flags);
2504 		}
2505 		if (s->failed >= 1) {
2506 			dev = &sh->dev[r6s->failed_num[0]];
2507 			s->locked++;
2508 			set_bit(R5_LOCKED, &dev->flags);
2509 			set_bit(R5_Wantwrite, &dev->flags);
2510 		}
2511 
2512 		if (update_p) {
2513 			dev = &sh->dev[pd_idx];
2514 			s->locked++;
2515 			set_bit(R5_LOCKED, &dev->flags);
2516 			set_bit(R5_Wantwrite, &dev->flags);
2517 		}
2518 		if (update_q) {
2519 			dev = &sh->dev[qd_idx];
2520 			s->locked++;
2521 			set_bit(R5_LOCKED, &dev->flags);
2522 			set_bit(R5_Wantwrite, &dev->flags);
2523 		}
2524 		clear_bit(STRIPE_DEGRADED, &sh->state);
2525 
2526 		set_bit(STRIPE_INSYNC, &sh->state);
2527 	}
2528 }
2529 
2530 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2531 				struct r6_state *r6s)
2532 {
2533 	int i;
2534 
2535 	/* We have read all the blocks in this stripe and now we need to
2536 	 * copy some of them into a target stripe for expand.
2537 	 */
2538 	struct dma_async_tx_descriptor *tx = NULL;
2539 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2540 	for (i = 0; i < sh->disks; i++)
2541 		if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2542 			int dd_idx, pd_idx, j;
2543 			struct stripe_head *sh2;
2544 
2545 			sector_t bn = compute_blocknr(sh, i);
2546 			sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2547 						conf->raid_disks -
2548 						conf->max_degraded, &dd_idx,
2549 						&pd_idx, conf);
2550 			sh2 = get_active_stripe(conf, s, conf->raid_disks,
2551 						pd_idx, 1);
2552 			if (sh2 == NULL)
2553 				/* so far only the early blocks of this stripe
2554 				 * have been requested.  When later blocks
2555 				 * get requested, we will try again
2556 				 */
2557 				continue;
2558 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2559 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2560 				/* must have already done this block */
2561 				release_stripe(sh2);
2562 				continue;
2563 			}
2564 
2565 			/* place all the copies on one channel */
2566 			tx = async_memcpy(sh2->dev[dd_idx].page,
2567 				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2568 				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2569 
2570 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2571 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2572 			for (j = 0; j < conf->raid_disks; j++)
2573 				if (j != sh2->pd_idx &&
2574 				    (!r6s || j != raid6_next_disk(sh2->pd_idx,
2575 								 sh2->disks)) &&
2576 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2577 					break;
2578 			if (j == conf->raid_disks) {
2579 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2580 				set_bit(STRIPE_HANDLE, &sh2->state);
2581 			}
2582 			release_stripe(sh2);
2583 
2584 		}
2585 	/* done submitting copies, wait for them to complete */
2586 	if (tx) {
2587 		async_tx_ack(tx);
2588 		dma_wait_for_async_tx(tx);
2589 	}
2590 }
2591 
2592 /*
2593  * handle_stripe - do things to a stripe.
2594  *
2595  * We lock the stripe and then examine the state of various bits
2596  * to see what needs to be done.
2597  * Possible results:
2598  *    return some read request which now have data
2599  *    return some write requests which are safely on disc
2600  *    schedule a read on some buffers
2601  *    schedule a write of some buffers
2602  *    return confirmation of parity correctness
2603  *
2604  * buffers are taken off read_list or write_list, and bh_cache buffers
2605  * get BH_Lock set before the stripe lock is released.
2606  *
2607  */
2608 
2609 static void handle_stripe5(struct stripe_head *sh)
2610 {
2611 	raid5_conf_t *conf = sh->raid_conf;
2612 	int disks = sh->disks, i;
2613 	struct bio *return_bi = NULL;
2614 	struct stripe_head_state s;
2615 	struct r5dev *dev;
2616 	unsigned long pending = 0;
2617 
2618 	memset(&s, 0, sizeof(s));
2619 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2620 		"ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2621 		atomic_read(&sh->count), sh->pd_idx,
2622 		sh->ops.pending, sh->ops.ack, sh->ops.complete);
2623 
2624 	spin_lock(&sh->lock);
2625 	clear_bit(STRIPE_HANDLE, &sh->state);
2626 	clear_bit(STRIPE_DELAYED, &sh->state);
2627 
2628 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2629 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2630 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2631 	/* Now to look around and see what can be done */
2632 
2633 	rcu_read_lock();
2634 	for (i=disks; i--; ) {
2635 		mdk_rdev_t *rdev;
2636 		struct r5dev *dev = &sh->dev[i];
2637 		clear_bit(R5_Insync, &dev->flags);
2638 
2639 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2640 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2641 			dev->towrite, dev->written);
2642 
2643 		/* maybe we can request a biofill operation
2644 		 *
2645 		 * new wantfill requests are only permitted while
2646 		 * STRIPE_OP_BIOFILL is clear
2647 		 */
2648 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2649 			!test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2650 			set_bit(R5_Wantfill, &dev->flags);
2651 
2652 		/* now count some things */
2653 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2654 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2655 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2656 
2657 		if (test_bit(R5_Wantfill, &dev->flags))
2658 			s.to_fill++;
2659 		else if (dev->toread)
2660 			s.to_read++;
2661 		if (dev->towrite) {
2662 			s.to_write++;
2663 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2664 				s.non_overwrite++;
2665 		}
2666 		if (dev->written)
2667 			s.written++;
2668 		rdev = rcu_dereference(conf->disks[i].rdev);
2669 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2670 			/* The ReadError flag will just be confusing now */
2671 			clear_bit(R5_ReadError, &dev->flags);
2672 			clear_bit(R5_ReWrite, &dev->flags);
2673 		}
2674 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2675 		    || test_bit(R5_ReadError, &dev->flags)) {
2676 			s.failed++;
2677 			s.failed_num = i;
2678 		} else
2679 			set_bit(R5_Insync, &dev->flags);
2680 	}
2681 	rcu_read_unlock();
2682 
2683 	if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2684 		sh->ops.count++;
2685 
2686 	pr_debug("locked=%d uptodate=%d to_read=%d"
2687 		" to_write=%d failed=%d failed_num=%d\n",
2688 		s.locked, s.uptodate, s.to_read, s.to_write,
2689 		s.failed, s.failed_num);
2690 	/* check if the array has lost two devices and, if so, some requests might
2691 	 * need to be failed
2692 	 */
2693 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2694 		handle_requests_to_failed_array(conf, sh, &s, disks,
2695 						&return_bi);
2696 	if (s.failed > 1 && s.syncing) {
2697 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2698 		clear_bit(STRIPE_SYNCING, &sh->state);
2699 		s.syncing = 0;
2700 	}
2701 
2702 	/* might be able to return some write requests if the parity block
2703 	 * is safe, or on a failed drive
2704 	 */
2705 	dev = &sh->dev[sh->pd_idx];
2706 	if ( s.written &&
2707 	     ((test_bit(R5_Insync, &dev->flags) &&
2708 	       !test_bit(R5_LOCKED, &dev->flags) &&
2709 	       test_bit(R5_UPTODATE, &dev->flags)) ||
2710 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2711 		handle_completed_write_requests(conf, sh, disks, &return_bi);
2712 
2713 	/* Now we might consider reading some blocks, either to check/generate
2714 	 * parity, or to satisfy requests
2715 	 * or to load a block that is being partially written.
2716 	 */
2717 	if (s.to_read || s.non_overwrite ||
2718 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2719 	    test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2720 		handle_issuing_new_read_requests5(sh, &s, disks);
2721 
2722 	/* Now we check to see if any write operations have recently
2723 	 * completed
2724 	 */
2725 
2726 	/* leave prexor set until postxor is done, allows us to distinguish
2727 	 * a rmw from a rcw during biodrain
2728 	 */
2729 	if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2730 		test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2731 
2732 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2733 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2734 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2735 
2736 		for (i = disks; i--; )
2737 			clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2738 	}
2739 
2740 	/* if only POSTXOR is set then this is an 'expand' postxor */
2741 	if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2742 		test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2743 
2744 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2745 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2746 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2747 
2748 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2749 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2750 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2751 
2752 		/* All the 'written' buffers and the parity block are ready to
2753 		 * be written back to disk
2754 		 */
2755 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2756 		for (i = disks; i--; ) {
2757 			dev = &sh->dev[i];
2758 			if (test_bit(R5_LOCKED, &dev->flags) &&
2759 				(i == sh->pd_idx || dev->written)) {
2760 				pr_debug("Writing block %d\n", i);
2761 				set_bit(R5_Wantwrite, &dev->flags);
2762 				if (!test_and_set_bit(
2763 				    STRIPE_OP_IO, &sh->ops.pending))
2764 					sh->ops.count++;
2765 				if (!test_bit(R5_Insync, &dev->flags) ||
2766 				    (i == sh->pd_idx && s.failed == 0))
2767 					set_bit(STRIPE_INSYNC, &sh->state);
2768 			}
2769 		}
2770 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2771 			atomic_dec(&conf->preread_active_stripes);
2772 			if (atomic_read(&conf->preread_active_stripes) <
2773 				IO_THRESHOLD)
2774 				md_wakeup_thread(conf->mddev->thread);
2775 		}
2776 	}
2777 
2778 	/* Now to consider new write requests and what else, if anything
2779 	 * should be read.  We do not handle new writes when:
2780 	 * 1/ A 'write' operation (copy+xor) is already in flight.
2781 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2782 	 *    block.
2783 	 */
2784 	if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2785 			  !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2786 		handle_issuing_new_write_requests5(conf, sh, &s, disks);
2787 
2788 	/* maybe we need to check and possibly fix the parity for this stripe
2789 	 * Any reads will already have been scheduled, so we just see if enough
2790 	 * data is available.  The parity check is held off while parity
2791 	 * dependent operations are in flight.
2792 	 */
2793 	if ((s.syncing && s.locked == 0 &&
2794 	     !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2795 	     !test_bit(STRIPE_INSYNC, &sh->state)) ||
2796 	      test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2797 	      test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2798 		handle_parity_checks5(conf, sh, &s, disks);
2799 
2800 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2801 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2802 		clear_bit(STRIPE_SYNCING, &sh->state);
2803 	}
2804 
2805 	/* If the failed drive is just a ReadError, then we might need to progress
2806 	 * the repair/check process
2807 	 */
2808 	if (s.failed == 1 && !conf->mddev->ro &&
2809 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2810 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2811 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2812 		) {
2813 		dev = &sh->dev[s.failed_num];
2814 		if (!test_bit(R5_ReWrite, &dev->flags)) {
2815 			set_bit(R5_Wantwrite, &dev->flags);
2816 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2817 				sh->ops.count++;
2818 			set_bit(R5_ReWrite, &dev->flags);
2819 			set_bit(R5_LOCKED, &dev->flags);
2820 			s.locked++;
2821 		} else {
2822 			/* let's read it back */
2823 			set_bit(R5_Wantread, &dev->flags);
2824 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2825 				sh->ops.count++;
2826 			set_bit(R5_LOCKED, &dev->flags);
2827 			s.locked++;
2828 		}
2829 	}
2830 
2831 	/* Finish postxor operations initiated by the expansion
2832 	 * process
2833 	 */
2834 	if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2835 		!test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2836 
2837 		clear_bit(STRIPE_EXPANDING, &sh->state);
2838 
2839 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2840 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2841 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2842 
2843 		for (i = conf->raid_disks; i--; ) {
2844 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2845 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2846 				sh->ops.count++;
2847 		}
2848 	}
2849 
2850 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2851 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2852 		/* Need to write out all blocks after computing parity */
2853 		sh->disks = conf->raid_disks;
2854 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2855 			conf->raid_disks);
2856 		s.locked += handle_write_operations5(sh, 1, 1);
2857 	} else if (s.expanded &&
2858 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2859 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2860 		atomic_dec(&conf->reshape_stripes);
2861 		wake_up(&conf->wait_for_overlap);
2862 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2863 	}
2864 
2865 	if (s.expanding && s.locked == 0)
2866 		handle_stripe_expansion(conf, sh, NULL);
2867 
2868 	if (sh->ops.count)
2869 		pending = get_stripe_work(sh);
2870 
2871 	spin_unlock(&sh->lock);
2872 
2873 	if (pending)
2874 		raid5_run_ops(sh, pending);
2875 
2876 	return_io(return_bi);
2877 
2878 }
2879 
2880 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2881 {
2882 	raid6_conf_t *conf = sh->raid_conf;
2883 	int disks = sh->disks;
2884 	struct bio *return_bi = NULL;
2885 	int i, pd_idx = sh->pd_idx;
2886 	struct stripe_head_state s;
2887 	struct r6_state r6s;
2888 	struct r5dev *dev, *pdev, *qdev;
2889 
2890 	r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2891 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2892 		"pd_idx=%d, qd_idx=%d\n",
2893 	       (unsigned long long)sh->sector, sh->state,
2894 	       atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2895 	memset(&s, 0, sizeof(s));
2896 
2897 	spin_lock(&sh->lock);
2898 	clear_bit(STRIPE_HANDLE, &sh->state);
2899 	clear_bit(STRIPE_DELAYED, &sh->state);
2900 
2901 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2902 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2903 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2904 	/* Now to look around and see what can be done */
2905 
2906 	rcu_read_lock();
2907 	for (i=disks; i--; ) {
2908 		mdk_rdev_t *rdev;
2909 		dev = &sh->dev[i];
2910 		clear_bit(R5_Insync, &dev->flags);
2911 
2912 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2913 			i, dev->flags, dev->toread, dev->towrite, dev->written);
2914 		/* maybe we can reply to a read */
2915 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2916 			struct bio *rbi, *rbi2;
2917 			pr_debug("Return read for disc %d\n", i);
2918 			spin_lock_irq(&conf->device_lock);
2919 			rbi = dev->toread;
2920 			dev->toread = NULL;
2921 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2922 				wake_up(&conf->wait_for_overlap);
2923 			spin_unlock_irq(&conf->device_lock);
2924 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2925 				copy_data(0, rbi, dev->page, dev->sector);
2926 				rbi2 = r5_next_bio(rbi, dev->sector);
2927 				spin_lock_irq(&conf->device_lock);
2928 				if (--rbi->bi_phys_segments == 0) {
2929 					rbi->bi_next = return_bi;
2930 					return_bi = rbi;
2931 				}
2932 				spin_unlock_irq(&conf->device_lock);
2933 				rbi = rbi2;
2934 			}
2935 		}
2936 
2937 		/* now count some things */
2938 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2939 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2940 
2941 
2942 		if (dev->toread)
2943 			s.to_read++;
2944 		if (dev->towrite) {
2945 			s.to_write++;
2946 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2947 				s.non_overwrite++;
2948 		}
2949 		if (dev->written)
2950 			s.written++;
2951 		rdev = rcu_dereference(conf->disks[i].rdev);
2952 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2953 			/* The ReadError flag will just be confusing now */
2954 			clear_bit(R5_ReadError, &dev->flags);
2955 			clear_bit(R5_ReWrite, &dev->flags);
2956 		}
2957 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2958 		    || test_bit(R5_ReadError, &dev->flags)) {
2959 			if (s.failed < 2)
2960 				r6s.failed_num[s.failed] = i;
2961 			s.failed++;
2962 		} else
2963 			set_bit(R5_Insync, &dev->flags);
2964 	}
2965 	rcu_read_unlock();
2966 	pr_debug("locked=%d uptodate=%d to_read=%d"
2967 	       " to_write=%d failed=%d failed_num=%d,%d\n",
2968 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2969 	       r6s.failed_num[0], r6s.failed_num[1]);
2970 	/* check if the array has lost >2 devices and, if so, some requests
2971 	 * might need to be failed
2972 	 */
2973 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
2974 		handle_requests_to_failed_array(conf, sh, &s, disks,
2975 						&return_bi);
2976 	if (s.failed > 2 && s.syncing) {
2977 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2978 		clear_bit(STRIPE_SYNCING, &sh->state);
2979 		s.syncing = 0;
2980 	}
2981 
2982 	/*
2983 	 * might be able to return some write requests if the parity blocks
2984 	 * are safe, or on a failed drive
2985 	 */
2986 	pdev = &sh->dev[pd_idx];
2987 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2988 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2989 	qdev = &sh->dev[r6s.qd_idx];
2990 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2991 		|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2992 
2993 	if ( s.written &&
2994 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2995 			     && !test_bit(R5_LOCKED, &pdev->flags)
2996 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2997 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2998 			     && !test_bit(R5_LOCKED, &qdev->flags)
2999 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3000 		handle_completed_write_requests(conf, sh, disks, &return_bi);
3001 
3002 	/* Now we might consider reading some blocks, either to check/generate
3003 	 * parity, or to satisfy requests
3004 	 * or to load a block that is being partially written.
3005 	 */
3006 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3007 	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3008 		handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3009 
3010 	/* now to consider writing and what else, if anything should be read */
3011 	if (s.to_write)
3012 		handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3013 
3014 	/* maybe we need to check and possibly fix the parity for this stripe
3015 	 * Any reads will already have been scheduled, so we just see if enough
3016 	 * data is available
3017 	 */
3018 	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3019 		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3020 
3021 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3022 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3023 		clear_bit(STRIPE_SYNCING, &sh->state);
3024 	}
3025 
3026 	/* If the failed drives are just a ReadError, then we might need
3027 	 * to progress the repair/check process
3028 	 */
3029 	if (s.failed <= 2 && !conf->mddev->ro)
3030 		for (i = 0; i < s.failed; i++) {
3031 			dev = &sh->dev[r6s.failed_num[i]];
3032 			if (test_bit(R5_ReadError, &dev->flags)
3033 			    && !test_bit(R5_LOCKED, &dev->flags)
3034 			    && test_bit(R5_UPTODATE, &dev->flags)
3035 				) {
3036 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3037 					set_bit(R5_Wantwrite, &dev->flags);
3038 					set_bit(R5_ReWrite, &dev->flags);
3039 					set_bit(R5_LOCKED, &dev->flags);
3040 				} else {
3041 					/* let's read it back */
3042 					set_bit(R5_Wantread, &dev->flags);
3043 					set_bit(R5_LOCKED, &dev->flags);
3044 				}
3045 			}
3046 		}
3047 
3048 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3049 		/* Need to write out all blocks after computing P&Q */
3050 		sh->disks = conf->raid_disks;
3051 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3052 					     conf->raid_disks);
3053 		compute_parity6(sh, RECONSTRUCT_WRITE);
3054 		for (i = conf->raid_disks ; i-- ;  ) {
3055 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3056 			s.locked++;
3057 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3058 		}
3059 		clear_bit(STRIPE_EXPANDING, &sh->state);
3060 	} else if (s.expanded) {
3061 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3062 		atomic_dec(&conf->reshape_stripes);
3063 		wake_up(&conf->wait_for_overlap);
3064 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3065 	}
3066 
3067 	if (s.expanding && s.locked == 0)
3068 		handle_stripe_expansion(conf, sh, &r6s);
3069 
3070 	spin_unlock(&sh->lock);
3071 
3072 	return_io(return_bi);
3073 
3074 	for (i=disks; i-- ;) {
3075 		int rw;
3076 		struct bio *bi;
3077 		mdk_rdev_t *rdev;
3078 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3079 			rw = WRITE;
3080 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3081 			rw = READ;
3082 		else
3083 			continue;
3084 
3085 		bi = &sh->dev[i].req;
3086 
3087 		bi->bi_rw = rw;
3088 		if (rw == WRITE)
3089 			bi->bi_end_io = raid5_end_write_request;
3090 		else
3091 			bi->bi_end_io = raid5_end_read_request;
3092 
3093 		rcu_read_lock();
3094 		rdev = rcu_dereference(conf->disks[i].rdev);
3095 		if (rdev && test_bit(Faulty, &rdev->flags))
3096 			rdev = NULL;
3097 		if (rdev)
3098 			atomic_inc(&rdev->nr_pending);
3099 		rcu_read_unlock();
3100 
3101 		if (rdev) {
3102 			if (s.syncing || s.expanding || s.expanded)
3103 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3104 
3105 			bi->bi_bdev = rdev->bdev;
3106 			pr_debug("for %llu schedule op %ld on disc %d\n",
3107 				(unsigned long long)sh->sector, bi->bi_rw, i);
3108 			atomic_inc(&sh->count);
3109 			bi->bi_sector = sh->sector + rdev->data_offset;
3110 			bi->bi_flags = 1 << BIO_UPTODATE;
3111 			bi->bi_vcnt = 1;
3112 			bi->bi_max_vecs = 1;
3113 			bi->bi_idx = 0;
3114 			bi->bi_io_vec = &sh->dev[i].vec;
3115 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3116 			bi->bi_io_vec[0].bv_offset = 0;
3117 			bi->bi_size = STRIPE_SIZE;
3118 			bi->bi_next = NULL;
3119 			if (rw == WRITE &&
3120 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
3121 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3122 			generic_make_request(bi);
3123 		} else {
3124 			if (rw == WRITE)
3125 				set_bit(STRIPE_DEGRADED, &sh->state);
3126 			pr_debug("skip op %ld on disc %d for sector %llu\n",
3127 				bi->bi_rw, i, (unsigned long long)sh->sector);
3128 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
3129 			set_bit(STRIPE_HANDLE, &sh->state);
3130 		}
3131 	}
3132 }
3133 
3134 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3135 {
3136 	if (sh->raid_conf->level == 6)
3137 		handle_stripe6(sh, tmp_page);
3138 	else
3139 		handle_stripe5(sh);
3140 }
3141 
3142 
3143 
3144 static void raid5_activate_delayed(raid5_conf_t *conf)
3145 {
3146 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3147 		while (!list_empty(&conf->delayed_list)) {
3148 			struct list_head *l = conf->delayed_list.next;
3149 			struct stripe_head *sh;
3150 			sh = list_entry(l, struct stripe_head, lru);
3151 			list_del_init(l);
3152 			clear_bit(STRIPE_DELAYED, &sh->state);
3153 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3154 				atomic_inc(&conf->preread_active_stripes);
3155 			list_add_tail(&sh->lru, &conf->handle_list);
3156 		}
3157 	}
3158 }
3159 
3160 static void activate_bit_delay(raid5_conf_t *conf)
3161 {
3162 	/* device_lock is held */
3163 	struct list_head head;
3164 	list_add(&head, &conf->bitmap_list);
3165 	list_del_init(&conf->bitmap_list);
3166 	while (!list_empty(&head)) {
3167 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3168 		list_del_init(&sh->lru);
3169 		atomic_inc(&sh->count);
3170 		__release_stripe(conf, sh);
3171 	}
3172 }
3173 
3174 static void unplug_slaves(mddev_t *mddev)
3175 {
3176 	raid5_conf_t *conf = mddev_to_conf(mddev);
3177 	int i;
3178 
3179 	rcu_read_lock();
3180 	for (i=0; i<mddev->raid_disks; i++) {
3181 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3182 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3183 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3184 
3185 			atomic_inc(&rdev->nr_pending);
3186 			rcu_read_unlock();
3187 
3188 			if (r_queue->unplug_fn)
3189 				r_queue->unplug_fn(r_queue);
3190 
3191 			rdev_dec_pending(rdev, mddev);
3192 			rcu_read_lock();
3193 		}
3194 	}
3195 	rcu_read_unlock();
3196 }
3197 
3198 static void raid5_unplug_device(struct request_queue *q)
3199 {
3200 	mddev_t *mddev = q->queuedata;
3201 	raid5_conf_t *conf = mddev_to_conf(mddev);
3202 	unsigned long flags;
3203 
3204 	spin_lock_irqsave(&conf->device_lock, flags);
3205 
3206 	if (blk_remove_plug(q)) {
3207 		conf->seq_flush++;
3208 		raid5_activate_delayed(conf);
3209 	}
3210 	md_wakeup_thread(mddev->thread);
3211 
3212 	spin_unlock_irqrestore(&conf->device_lock, flags);
3213 
3214 	unplug_slaves(mddev);
3215 }
3216 
3217 static int raid5_issue_flush(struct request_queue *q, struct gendisk *disk,
3218 			     sector_t *error_sector)
3219 {
3220 	mddev_t *mddev = q->queuedata;
3221 	raid5_conf_t *conf = mddev_to_conf(mddev);
3222 	int i, ret = 0;
3223 
3224 	rcu_read_lock();
3225 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
3226 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3227 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
3228 			struct block_device *bdev = rdev->bdev;
3229 			struct request_queue *r_queue = bdev_get_queue(bdev);
3230 
3231 			if (!r_queue->issue_flush_fn)
3232 				ret = -EOPNOTSUPP;
3233 			else {
3234 				atomic_inc(&rdev->nr_pending);
3235 				rcu_read_unlock();
3236 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
3237 							      error_sector);
3238 				rdev_dec_pending(rdev, mddev);
3239 				rcu_read_lock();
3240 			}
3241 		}
3242 	}
3243 	rcu_read_unlock();
3244 	return ret;
3245 }
3246 
3247 static int raid5_congested(void *data, int bits)
3248 {
3249 	mddev_t *mddev = data;
3250 	raid5_conf_t *conf = mddev_to_conf(mddev);
3251 
3252 	/* No difference between reads and writes.  Just check
3253 	 * how busy the stripe_cache is
3254 	 */
3255 	if (conf->inactive_blocked)
3256 		return 1;
3257 	if (conf->quiesce)
3258 		return 1;
3259 	if (list_empty_careful(&conf->inactive_list))
3260 		return 1;
3261 
3262 	return 0;
3263 }
3264 
3265 /* We want read requests to align with chunks where possible,
3266  * but write requests don't need to.
3267  */
3268 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3269 {
3270 	mddev_t *mddev = q->queuedata;
3271 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3272 	int max;
3273 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3274 	unsigned int bio_sectors = bio->bi_size >> 9;
3275 
3276 	if (bio_data_dir(bio) == WRITE)
3277 		return biovec->bv_len; /* always allow writes to be mergeable */
3278 
3279 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3280 	if (max < 0) max = 0;
3281 	if (max <= biovec->bv_len && bio_sectors == 0)
3282 		return biovec->bv_len;
3283 	else
3284 		return max;
3285 }
3286 
3287 
3288 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3289 {
3290 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3291 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3292 	unsigned int bio_sectors = bio->bi_size >> 9;
3293 
3294 	return  chunk_sectors >=
3295 		((sector & (chunk_sectors - 1)) + bio_sectors);
3296 }
3297 
3298 /*
3299  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3300  *  later sampled by raid5d.
3301  */
3302 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3303 {
3304 	unsigned long flags;
3305 
3306 	spin_lock_irqsave(&conf->device_lock, flags);
3307 
3308 	bi->bi_next = conf->retry_read_aligned_list;
3309 	conf->retry_read_aligned_list = bi;
3310 
3311 	spin_unlock_irqrestore(&conf->device_lock, flags);
3312 	md_wakeup_thread(conf->mddev->thread);
3313 }
3314 
3315 
3316 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3317 {
3318 	struct bio *bi;
3319 
3320 	bi = conf->retry_read_aligned;
3321 	if (bi) {
3322 		conf->retry_read_aligned = NULL;
3323 		return bi;
3324 	}
3325 	bi = conf->retry_read_aligned_list;
3326 	if(bi) {
3327 		conf->retry_read_aligned_list = bi->bi_next;
3328 		bi->bi_next = NULL;
3329 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3330 		bi->bi_hw_segments = 0; /* count of processed stripes */
3331 	}
3332 
3333 	return bi;
3334 }
3335 
3336 
3337 /*
3338  *  The "raid5_align_endio" should check if the read succeeded and if it
3339  *  did, call bio_endio on the original bio (having bio_put the new bio
3340  *  first).
3341  *  If the read failed..
3342  */
3343 static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error)
3344 {
3345 	struct bio* raid_bi  = bi->bi_private;
3346 	mddev_t *mddev;
3347 	raid5_conf_t *conf;
3348 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3349 	mdk_rdev_t *rdev;
3350 
3351 	if (bi->bi_size)
3352 		return 1;
3353 	bio_put(bi);
3354 
3355 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3356 	conf = mddev_to_conf(mddev);
3357 	rdev = (void*)raid_bi->bi_next;
3358 	raid_bi->bi_next = NULL;
3359 
3360 	rdev_dec_pending(rdev, conf->mddev);
3361 
3362 	if (!error && uptodate) {
3363 		bio_endio(raid_bi, bytes, 0);
3364 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3365 			wake_up(&conf->wait_for_stripe);
3366 		return 0;
3367 	}
3368 
3369 
3370 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3371 
3372 	add_bio_to_retry(raid_bi, conf);
3373 	return 0;
3374 }
3375 
3376 static int bio_fits_rdev(struct bio *bi)
3377 {
3378 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3379 
3380 	if ((bi->bi_size>>9) > q->max_sectors)
3381 		return 0;
3382 	blk_recount_segments(q, bi);
3383 	if (bi->bi_phys_segments > q->max_phys_segments ||
3384 	    bi->bi_hw_segments > q->max_hw_segments)
3385 		return 0;
3386 
3387 	if (q->merge_bvec_fn)
3388 		/* it's too hard to apply the merge_bvec_fn at this stage,
3389 		 * just just give up
3390 		 */
3391 		return 0;
3392 
3393 	return 1;
3394 }
3395 
3396 
3397 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3398 {
3399 	mddev_t *mddev = q->queuedata;
3400 	raid5_conf_t *conf = mddev_to_conf(mddev);
3401 	const unsigned int raid_disks = conf->raid_disks;
3402 	const unsigned int data_disks = raid_disks - conf->max_degraded;
3403 	unsigned int dd_idx, pd_idx;
3404 	struct bio* align_bi;
3405 	mdk_rdev_t *rdev;
3406 
3407 	if (!in_chunk_boundary(mddev, raid_bio)) {
3408 		pr_debug("chunk_aligned_read : non aligned\n");
3409 		return 0;
3410 	}
3411 	/*
3412  	 * use bio_clone to make a copy of the bio
3413 	 */
3414 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3415 	if (!align_bi)
3416 		return 0;
3417 	/*
3418 	 *   set bi_end_io to a new function, and set bi_private to the
3419 	 *     original bio.
3420 	 */
3421 	align_bi->bi_end_io  = raid5_align_endio;
3422 	align_bi->bi_private = raid_bio;
3423 	/*
3424 	 *	compute position
3425 	 */
3426 	align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3427 					raid_disks,
3428 					data_disks,
3429 					&dd_idx,
3430 					&pd_idx,
3431 					conf);
3432 
3433 	rcu_read_lock();
3434 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3435 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3436 		atomic_inc(&rdev->nr_pending);
3437 		rcu_read_unlock();
3438 		raid_bio->bi_next = (void*)rdev;
3439 		align_bi->bi_bdev =  rdev->bdev;
3440 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3441 		align_bi->bi_sector += rdev->data_offset;
3442 
3443 		if (!bio_fits_rdev(align_bi)) {
3444 			/* too big in some way */
3445 			bio_put(align_bi);
3446 			rdev_dec_pending(rdev, mddev);
3447 			return 0;
3448 		}
3449 
3450 		spin_lock_irq(&conf->device_lock);
3451 		wait_event_lock_irq(conf->wait_for_stripe,
3452 				    conf->quiesce == 0,
3453 				    conf->device_lock, /* nothing */);
3454 		atomic_inc(&conf->active_aligned_reads);
3455 		spin_unlock_irq(&conf->device_lock);
3456 
3457 		generic_make_request(align_bi);
3458 		return 1;
3459 	} else {
3460 		rcu_read_unlock();
3461 		bio_put(align_bi);
3462 		return 0;
3463 	}
3464 }
3465 
3466 
3467 static int make_request(struct request_queue *q, struct bio * bi)
3468 {
3469 	mddev_t *mddev = q->queuedata;
3470 	raid5_conf_t *conf = mddev_to_conf(mddev);
3471 	unsigned int dd_idx, pd_idx;
3472 	sector_t new_sector;
3473 	sector_t logical_sector, last_sector;
3474 	struct stripe_head *sh;
3475 	const int rw = bio_data_dir(bi);
3476 	int remaining;
3477 
3478 	if (unlikely(bio_barrier(bi))) {
3479 		bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
3480 		return 0;
3481 	}
3482 
3483 	md_write_start(mddev, bi);
3484 
3485 	disk_stat_inc(mddev->gendisk, ios[rw]);
3486 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3487 
3488 	if (rw == READ &&
3489 	     mddev->reshape_position == MaxSector &&
3490 	     chunk_aligned_read(q,bi))
3491             	return 0;
3492 
3493 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3494 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3495 	bi->bi_next = NULL;
3496 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3497 
3498 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3499 		DEFINE_WAIT(w);
3500 		int disks, data_disks;
3501 
3502 	retry:
3503 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3504 		if (likely(conf->expand_progress == MaxSector))
3505 			disks = conf->raid_disks;
3506 		else {
3507 			/* spinlock is needed as expand_progress may be
3508 			 * 64bit on a 32bit platform, and so it might be
3509 			 * possible to see a half-updated value
3510 			 * Ofcourse expand_progress could change after
3511 			 * the lock is dropped, so once we get a reference
3512 			 * to the stripe that we think it is, we will have
3513 			 * to check again.
3514 			 */
3515 			spin_lock_irq(&conf->device_lock);
3516 			disks = conf->raid_disks;
3517 			if (logical_sector >= conf->expand_progress)
3518 				disks = conf->previous_raid_disks;
3519 			else {
3520 				if (logical_sector >= conf->expand_lo) {
3521 					spin_unlock_irq(&conf->device_lock);
3522 					schedule();
3523 					goto retry;
3524 				}
3525 			}
3526 			spin_unlock_irq(&conf->device_lock);
3527 		}
3528 		data_disks = disks - conf->max_degraded;
3529 
3530  		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3531 						  &dd_idx, &pd_idx, conf);
3532 		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3533 			(unsigned long long)new_sector,
3534 			(unsigned long long)logical_sector);
3535 
3536 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3537 		if (sh) {
3538 			if (unlikely(conf->expand_progress != MaxSector)) {
3539 				/* expansion might have moved on while waiting for a
3540 				 * stripe, so we must do the range check again.
3541 				 * Expansion could still move past after this
3542 				 * test, but as we are holding a reference to
3543 				 * 'sh', we know that if that happens,
3544 				 *  STRIPE_EXPANDING will get set and the expansion
3545 				 * won't proceed until we finish with the stripe.
3546 				 */
3547 				int must_retry = 0;
3548 				spin_lock_irq(&conf->device_lock);
3549 				if (logical_sector <  conf->expand_progress &&
3550 				    disks == conf->previous_raid_disks)
3551 					/* mismatch, need to try again */
3552 					must_retry = 1;
3553 				spin_unlock_irq(&conf->device_lock);
3554 				if (must_retry) {
3555 					release_stripe(sh);
3556 					goto retry;
3557 				}
3558 			}
3559 			/* FIXME what if we get a false positive because these
3560 			 * are being updated.
3561 			 */
3562 			if (logical_sector >= mddev->suspend_lo &&
3563 			    logical_sector < mddev->suspend_hi) {
3564 				release_stripe(sh);
3565 				schedule();
3566 				goto retry;
3567 			}
3568 
3569 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3570 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3571 				/* Stripe is busy expanding or
3572 				 * add failed due to overlap.  Flush everything
3573 				 * and wait a while
3574 				 */
3575 				raid5_unplug_device(mddev->queue);
3576 				release_stripe(sh);
3577 				schedule();
3578 				goto retry;
3579 			}
3580 			finish_wait(&conf->wait_for_overlap, &w);
3581 			handle_stripe(sh, NULL);
3582 			release_stripe(sh);
3583 		} else {
3584 			/* cannot get stripe for read-ahead, just give-up */
3585 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3586 			finish_wait(&conf->wait_for_overlap, &w);
3587 			break;
3588 		}
3589 
3590 	}
3591 	spin_lock_irq(&conf->device_lock);
3592 	remaining = --bi->bi_phys_segments;
3593 	spin_unlock_irq(&conf->device_lock);
3594 	if (remaining == 0) {
3595 		int bytes = bi->bi_size;
3596 
3597 		if ( rw == WRITE )
3598 			md_write_end(mddev);
3599 		bi->bi_size = 0;
3600 		bi->bi_end_io(bi, bytes,
3601 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
3602 			        ? 0 : -EIO);
3603 	}
3604 	return 0;
3605 }
3606 
3607 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3608 {
3609 	/* reshaping is quite different to recovery/resync so it is
3610 	 * handled quite separately ... here.
3611 	 *
3612 	 * On each call to sync_request, we gather one chunk worth of
3613 	 * destination stripes and flag them as expanding.
3614 	 * Then we find all the source stripes and request reads.
3615 	 * As the reads complete, handle_stripe will copy the data
3616 	 * into the destination stripe and release that stripe.
3617 	 */
3618 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3619 	struct stripe_head *sh;
3620 	int pd_idx;
3621 	sector_t first_sector, last_sector;
3622 	int raid_disks = conf->previous_raid_disks;
3623 	int data_disks = raid_disks - conf->max_degraded;
3624 	int new_data_disks = conf->raid_disks - conf->max_degraded;
3625 	int i;
3626 	int dd_idx;
3627 	sector_t writepos, safepos, gap;
3628 
3629 	if (sector_nr == 0 &&
3630 	    conf->expand_progress != 0) {
3631 		/* restarting in the middle, skip the initial sectors */
3632 		sector_nr = conf->expand_progress;
3633 		sector_div(sector_nr, new_data_disks);
3634 		*skipped = 1;
3635 		return sector_nr;
3636 	}
3637 
3638 	/* we update the metadata when there is more than 3Meg
3639 	 * in the block range (that is rather arbitrary, should
3640 	 * probably be time based) or when the data about to be
3641 	 * copied would over-write the source of the data at
3642 	 * the front of the range.
3643 	 * i.e. one new_stripe forward from expand_progress new_maps
3644 	 * to after where expand_lo old_maps to
3645 	 */
3646 	writepos = conf->expand_progress +
3647 		conf->chunk_size/512*(new_data_disks);
3648 	sector_div(writepos, new_data_disks);
3649 	safepos = conf->expand_lo;
3650 	sector_div(safepos, data_disks);
3651 	gap = conf->expand_progress - conf->expand_lo;
3652 
3653 	if (writepos >= safepos ||
3654 	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3655 		/* Cannot proceed until we've updated the superblock... */
3656 		wait_event(conf->wait_for_overlap,
3657 			   atomic_read(&conf->reshape_stripes)==0);
3658 		mddev->reshape_position = conf->expand_progress;
3659 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3660 		md_wakeup_thread(mddev->thread);
3661 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3662 			   kthread_should_stop());
3663 		spin_lock_irq(&conf->device_lock);
3664 		conf->expand_lo = mddev->reshape_position;
3665 		spin_unlock_irq(&conf->device_lock);
3666 		wake_up(&conf->wait_for_overlap);
3667 	}
3668 
3669 	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3670 		int j;
3671 		int skipped = 0;
3672 		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3673 		sh = get_active_stripe(conf, sector_nr+i,
3674 				       conf->raid_disks, pd_idx, 0);
3675 		set_bit(STRIPE_EXPANDING, &sh->state);
3676 		atomic_inc(&conf->reshape_stripes);
3677 		/* If any of this stripe is beyond the end of the old
3678 		 * array, then we need to zero those blocks
3679 		 */
3680 		for (j=sh->disks; j--;) {
3681 			sector_t s;
3682 			if (j == sh->pd_idx)
3683 				continue;
3684 			if (conf->level == 6 &&
3685 			    j == raid6_next_disk(sh->pd_idx, sh->disks))
3686 				continue;
3687 			s = compute_blocknr(sh, j);
3688 			if (s < (mddev->array_size<<1)) {
3689 				skipped = 1;
3690 				continue;
3691 			}
3692 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3693 			set_bit(R5_Expanded, &sh->dev[j].flags);
3694 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3695 		}
3696 		if (!skipped) {
3697 			set_bit(STRIPE_EXPAND_READY, &sh->state);
3698 			set_bit(STRIPE_HANDLE, &sh->state);
3699 		}
3700 		release_stripe(sh);
3701 	}
3702 	spin_lock_irq(&conf->device_lock);
3703 	conf->expand_progress = (sector_nr + i) * new_data_disks;
3704 	spin_unlock_irq(&conf->device_lock);
3705 	/* Ok, those stripe are ready. We can start scheduling
3706 	 * reads on the source stripes.
3707 	 * The source stripes are determined by mapping the first and last
3708 	 * block on the destination stripes.
3709 	 */
3710 	first_sector =
3711 		raid5_compute_sector(sector_nr*(new_data_disks),
3712 				     raid_disks, data_disks,
3713 				     &dd_idx, &pd_idx, conf);
3714 	last_sector =
3715 		raid5_compute_sector((sector_nr+conf->chunk_size/512)
3716 				     *(new_data_disks) -1,
3717 				     raid_disks, data_disks,
3718 				     &dd_idx, &pd_idx, conf);
3719 	if (last_sector >= (mddev->size<<1))
3720 		last_sector = (mddev->size<<1)-1;
3721 	while (first_sector <= last_sector) {
3722 		pd_idx = stripe_to_pdidx(first_sector, conf,
3723 					 conf->previous_raid_disks);
3724 		sh = get_active_stripe(conf, first_sector,
3725 				       conf->previous_raid_disks, pd_idx, 0);
3726 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3727 		set_bit(STRIPE_HANDLE, &sh->state);
3728 		release_stripe(sh);
3729 		first_sector += STRIPE_SECTORS;
3730 	}
3731 	return conf->chunk_size>>9;
3732 }
3733 
3734 /* FIXME go_faster isn't used */
3735 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3736 {
3737 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3738 	struct stripe_head *sh;
3739 	int pd_idx;
3740 	int raid_disks = conf->raid_disks;
3741 	sector_t max_sector = mddev->size << 1;
3742 	int sync_blocks;
3743 	int still_degraded = 0;
3744 	int i;
3745 
3746 	if (sector_nr >= max_sector) {
3747 		/* just being told to finish up .. nothing much to do */
3748 		unplug_slaves(mddev);
3749 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3750 			end_reshape(conf);
3751 			return 0;
3752 		}
3753 
3754 		if (mddev->curr_resync < max_sector) /* aborted */
3755 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3756 					&sync_blocks, 1);
3757 		else /* completed sync */
3758 			conf->fullsync = 0;
3759 		bitmap_close_sync(mddev->bitmap);
3760 
3761 		return 0;
3762 	}
3763 
3764 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3765 		return reshape_request(mddev, sector_nr, skipped);
3766 
3767 	/* if there is too many failed drives and we are trying
3768 	 * to resync, then assert that we are finished, because there is
3769 	 * nothing we can do.
3770 	 */
3771 	if (mddev->degraded >= conf->max_degraded &&
3772 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3773 		sector_t rv = (mddev->size << 1) - sector_nr;
3774 		*skipped = 1;
3775 		return rv;
3776 	}
3777 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3778 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3779 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3780 		/* we can skip this block, and probably more */
3781 		sync_blocks /= STRIPE_SECTORS;
3782 		*skipped = 1;
3783 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3784 	}
3785 
3786 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3787 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3788 	if (sh == NULL) {
3789 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3790 		/* make sure we don't swamp the stripe cache if someone else
3791 		 * is trying to get access
3792 		 */
3793 		schedule_timeout_uninterruptible(1);
3794 	}
3795 	/* Need to check if array will still be degraded after recovery/resync
3796 	 * We don't need to check the 'failed' flag as when that gets set,
3797 	 * recovery aborts.
3798 	 */
3799 	for (i=0; i<mddev->raid_disks; i++)
3800 		if (conf->disks[i].rdev == NULL)
3801 			still_degraded = 1;
3802 
3803 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3804 
3805 	spin_lock(&sh->lock);
3806 	set_bit(STRIPE_SYNCING, &sh->state);
3807 	clear_bit(STRIPE_INSYNC, &sh->state);
3808 	spin_unlock(&sh->lock);
3809 
3810 	handle_stripe(sh, NULL);
3811 	release_stripe(sh);
3812 
3813 	return STRIPE_SECTORS;
3814 }
3815 
3816 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3817 {
3818 	/* We may not be able to submit a whole bio at once as there
3819 	 * may not be enough stripe_heads available.
3820 	 * We cannot pre-allocate enough stripe_heads as we may need
3821 	 * more than exist in the cache (if we allow ever large chunks).
3822 	 * So we do one stripe head at a time and record in
3823 	 * ->bi_hw_segments how many have been done.
3824 	 *
3825 	 * We *know* that this entire raid_bio is in one chunk, so
3826 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3827 	 */
3828 	struct stripe_head *sh;
3829 	int dd_idx, pd_idx;
3830 	sector_t sector, logical_sector, last_sector;
3831 	int scnt = 0;
3832 	int remaining;
3833 	int handled = 0;
3834 
3835 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3836 	sector = raid5_compute_sector(	logical_sector,
3837 					conf->raid_disks,
3838 					conf->raid_disks - conf->max_degraded,
3839 					&dd_idx,
3840 					&pd_idx,
3841 					conf);
3842 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3843 
3844 	for (; logical_sector < last_sector;
3845 	     logical_sector += STRIPE_SECTORS,
3846 		     sector += STRIPE_SECTORS,
3847 		     scnt++) {
3848 
3849 		if (scnt < raid_bio->bi_hw_segments)
3850 			/* already done this stripe */
3851 			continue;
3852 
3853 		sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3854 
3855 		if (!sh) {
3856 			/* failed to get a stripe - must wait */
3857 			raid_bio->bi_hw_segments = scnt;
3858 			conf->retry_read_aligned = raid_bio;
3859 			return handled;
3860 		}
3861 
3862 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3863 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3864 			release_stripe(sh);
3865 			raid_bio->bi_hw_segments = scnt;
3866 			conf->retry_read_aligned = raid_bio;
3867 			return handled;
3868 		}
3869 
3870 		handle_stripe(sh, NULL);
3871 		release_stripe(sh);
3872 		handled++;
3873 	}
3874 	spin_lock_irq(&conf->device_lock);
3875 	remaining = --raid_bio->bi_phys_segments;
3876 	spin_unlock_irq(&conf->device_lock);
3877 	if (remaining == 0) {
3878 		int bytes = raid_bio->bi_size;
3879 
3880 		raid_bio->bi_size = 0;
3881 		raid_bio->bi_end_io(raid_bio, bytes,
3882 			      test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3883 			        ? 0 : -EIO);
3884 	}
3885 	if (atomic_dec_and_test(&conf->active_aligned_reads))
3886 		wake_up(&conf->wait_for_stripe);
3887 	return handled;
3888 }
3889 
3890 
3891 
3892 /*
3893  * This is our raid5 kernel thread.
3894  *
3895  * We scan the hash table for stripes which can be handled now.
3896  * During the scan, completed stripes are saved for us by the interrupt
3897  * handler, so that they will not have to wait for our next wakeup.
3898  */
3899 static void raid5d (mddev_t *mddev)
3900 {
3901 	struct stripe_head *sh;
3902 	raid5_conf_t *conf = mddev_to_conf(mddev);
3903 	int handled;
3904 
3905 	pr_debug("+++ raid5d active\n");
3906 
3907 	md_check_recovery(mddev);
3908 
3909 	handled = 0;
3910 	spin_lock_irq(&conf->device_lock);
3911 	while (1) {
3912 		struct list_head *first;
3913 		struct bio *bio;
3914 
3915 		if (conf->seq_flush != conf->seq_write) {
3916 			int seq = conf->seq_flush;
3917 			spin_unlock_irq(&conf->device_lock);
3918 			bitmap_unplug(mddev->bitmap);
3919 			spin_lock_irq(&conf->device_lock);
3920 			conf->seq_write = seq;
3921 			activate_bit_delay(conf);
3922 		}
3923 
3924 		if (list_empty(&conf->handle_list) &&
3925 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3926 		    !blk_queue_plugged(mddev->queue) &&
3927 		    !list_empty(&conf->delayed_list))
3928 			raid5_activate_delayed(conf);
3929 
3930 		while ((bio = remove_bio_from_retry(conf))) {
3931 			int ok;
3932 			spin_unlock_irq(&conf->device_lock);
3933 			ok = retry_aligned_read(conf, bio);
3934 			spin_lock_irq(&conf->device_lock);
3935 			if (!ok)
3936 				break;
3937 			handled++;
3938 		}
3939 
3940 		if (list_empty(&conf->handle_list)) {
3941 			async_tx_issue_pending_all();
3942 			break;
3943 		}
3944 
3945 		first = conf->handle_list.next;
3946 		sh = list_entry(first, struct stripe_head, lru);
3947 
3948 		list_del_init(first);
3949 		atomic_inc(&sh->count);
3950 		BUG_ON(atomic_read(&sh->count)!= 1);
3951 		spin_unlock_irq(&conf->device_lock);
3952 
3953 		handled++;
3954 		handle_stripe(sh, conf->spare_page);
3955 		release_stripe(sh);
3956 
3957 		spin_lock_irq(&conf->device_lock);
3958 	}
3959 	pr_debug("%d stripes handled\n", handled);
3960 
3961 	spin_unlock_irq(&conf->device_lock);
3962 
3963 	unplug_slaves(mddev);
3964 
3965 	pr_debug("--- raid5d inactive\n");
3966 }
3967 
3968 static ssize_t
3969 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3970 {
3971 	raid5_conf_t *conf = mddev_to_conf(mddev);
3972 	if (conf)
3973 		return sprintf(page, "%d\n", conf->max_nr_stripes);
3974 	else
3975 		return 0;
3976 }
3977 
3978 static ssize_t
3979 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3980 {
3981 	raid5_conf_t *conf = mddev_to_conf(mddev);
3982 	char *end;
3983 	int new;
3984 	if (len >= PAGE_SIZE)
3985 		return -EINVAL;
3986 	if (!conf)
3987 		return -ENODEV;
3988 
3989 	new = simple_strtoul(page, &end, 10);
3990 	if (!*page || (*end && *end != '\n') )
3991 		return -EINVAL;
3992 	if (new <= 16 || new > 32768)
3993 		return -EINVAL;
3994 	while (new < conf->max_nr_stripes) {
3995 		if (drop_one_stripe(conf))
3996 			conf->max_nr_stripes--;
3997 		else
3998 			break;
3999 	}
4000 	md_allow_write(mddev);
4001 	while (new > conf->max_nr_stripes) {
4002 		if (grow_one_stripe(conf))
4003 			conf->max_nr_stripes++;
4004 		else break;
4005 	}
4006 	return len;
4007 }
4008 
4009 static struct md_sysfs_entry
4010 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4011 				raid5_show_stripe_cache_size,
4012 				raid5_store_stripe_cache_size);
4013 
4014 static ssize_t
4015 stripe_cache_active_show(mddev_t *mddev, char *page)
4016 {
4017 	raid5_conf_t *conf = mddev_to_conf(mddev);
4018 	if (conf)
4019 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4020 	else
4021 		return 0;
4022 }
4023 
4024 static struct md_sysfs_entry
4025 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4026 
4027 static struct attribute *raid5_attrs[] =  {
4028 	&raid5_stripecache_size.attr,
4029 	&raid5_stripecache_active.attr,
4030 	NULL,
4031 };
4032 static struct attribute_group raid5_attrs_group = {
4033 	.name = NULL,
4034 	.attrs = raid5_attrs,
4035 };
4036 
4037 static int run(mddev_t *mddev)
4038 {
4039 	raid5_conf_t *conf;
4040 	int raid_disk, memory;
4041 	mdk_rdev_t *rdev;
4042 	struct disk_info *disk;
4043 	struct list_head *tmp;
4044 	int working_disks = 0;
4045 
4046 	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4047 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4048 		       mdname(mddev), mddev->level);
4049 		return -EIO;
4050 	}
4051 
4052 	if (mddev->reshape_position != MaxSector) {
4053 		/* Check that we can continue the reshape.
4054 		 * Currently only disks can change, it must
4055 		 * increase, and we must be past the point where
4056 		 * a stripe over-writes itself
4057 		 */
4058 		sector_t here_new, here_old;
4059 		int old_disks;
4060 		int max_degraded = (mddev->level == 5 ? 1 : 2);
4061 
4062 		if (mddev->new_level != mddev->level ||
4063 		    mddev->new_layout != mddev->layout ||
4064 		    mddev->new_chunk != mddev->chunk_size) {
4065 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4066 			       "required - aborting.\n",
4067 			       mdname(mddev));
4068 			return -EINVAL;
4069 		}
4070 		if (mddev->delta_disks <= 0) {
4071 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4072 			       "(reduce disks) required - aborting.\n",
4073 			       mdname(mddev));
4074 			return -EINVAL;
4075 		}
4076 		old_disks = mddev->raid_disks - mddev->delta_disks;
4077 		/* reshape_position must be on a new-stripe boundary, and one
4078 		 * further up in new geometry must map after here in old
4079 		 * geometry.
4080 		 */
4081 		here_new = mddev->reshape_position;
4082 		if (sector_div(here_new, (mddev->chunk_size>>9)*
4083 			       (mddev->raid_disks - max_degraded))) {
4084 			printk(KERN_ERR "raid5: reshape_position not "
4085 			       "on a stripe boundary\n");
4086 			return -EINVAL;
4087 		}
4088 		/* here_new is the stripe we will write to */
4089 		here_old = mddev->reshape_position;
4090 		sector_div(here_old, (mddev->chunk_size>>9)*
4091 			   (old_disks-max_degraded));
4092 		/* here_old is the first stripe that we might need to read
4093 		 * from */
4094 		if (here_new >= here_old) {
4095 			/* Reading from the same stripe as writing to - bad */
4096 			printk(KERN_ERR "raid5: reshape_position too early for "
4097 			       "auto-recovery - aborting.\n");
4098 			return -EINVAL;
4099 		}
4100 		printk(KERN_INFO "raid5: reshape will continue\n");
4101 		/* OK, we should be able to continue; */
4102 	}
4103 
4104 
4105 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4106 	if ((conf = mddev->private) == NULL)
4107 		goto abort;
4108 	if (mddev->reshape_position == MaxSector) {
4109 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4110 	} else {
4111 		conf->raid_disks = mddev->raid_disks;
4112 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4113 	}
4114 
4115 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4116 			      GFP_KERNEL);
4117 	if (!conf->disks)
4118 		goto abort;
4119 
4120 	conf->mddev = mddev;
4121 
4122 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4123 		goto abort;
4124 
4125 	if (mddev->level == 6) {
4126 		conf->spare_page = alloc_page(GFP_KERNEL);
4127 		if (!conf->spare_page)
4128 			goto abort;
4129 	}
4130 	spin_lock_init(&conf->device_lock);
4131 	init_waitqueue_head(&conf->wait_for_stripe);
4132 	init_waitqueue_head(&conf->wait_for_overlap);
4133 	INIT_LIST_HEAD(&conf->handle_list);
4134 	INIT_LIST_HEAD(&conf->delayed_list);
4135 	INIT_LIST_HEAD(&conf->bitmap_list);
4136 	INIT_LIST_HEAD(&conf->inactive_list);
4137 	atomic_set(&conf->active_stripes, 0);
4138 	atomic_set(&conf->preread_active_stripes, 0);
4139 	atomic_set(&conf->active_aligned_reads, 0);
4140 
4141 	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4142 
4143 	ITERATE_RDEV(mddev,rdev,tmp) {
4144 		raid_disk = rdev->raid_disk;
4145 		if (raid_disk >= conf->raid_disks
4146 		    || raid_disk < 0)
4147 			continue;
4148 		disk = conf->disks + raid_disk;
4149 
4150 		disk->rdev = rdev;
4151 
4152 		if (test_bit(In_sync, &rdev->flags)) {
4153 			char b[BDEVNAME_SIZE];
4154 			printk(KERN_INFO "raid5: device %s operational as raid"
4155 				" disk %d\n", bdevname(rdev->bdev,b),
4156 				raid_disk);
4157 			working_disks++;
4158 		}
4159 	}
4160 
4161 	/*
4162 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4163 	 */
4164 	mddev->degraded = conf->raid_disks - working_disks;
4165 	conf->mddev = mddev;
4166 	conf->chunk_size = mddev->chunk_size;
4167 	conf->level = mddev->level;
4168 	if (conf->level == 6)
4169 		conf->max_degraded = 2;
4170 	else
4171 		conf->max_degraded = 1;
4172 	conf->algorithm = mddev->layout;
4173 	conf->max_nr_stripes = NR_STRIPES;
4174 	conf->expand_progress = mddev->reshape_position;
4175 
4176 	/* device size must be a multiple of chunk size */
4177 	mddev->size &= ~(mddev->chunk_size/1024 -1);
4178 	mddev->resync_max_sectors = mddev->size << 1;
4179 
4180 	if (conf->level == 6 && conf->raid_disks < 4) {
4181 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4182 		       mdname(mddev), conf->raid_disks);
4183 		goto abort;
4184 	}
4185 	if (!conf->chunk_size || conf->chunk_size % 4) {
4186 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4187 			conf->chunk_size, mdname(mddev));
4188 		goto abort;
4189 	}
4190 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4191 		printk(KERN_ERR
4192 			"raid5: unsupported parity algorithm %d for %s\n",
4193 			conf->algorithm, mdname(mddev));
4194 		goto abort;
4195 	}
4196 	if (mddev->degraded > conf->max_degraded) {
4197 		printk(KERN_ERR "raid5: not enough operational devices for %s"
4198 			" (%d/%d failed)\n",
4199 			mdname(mddev), mddev->degraded, conf->raid_disks);
4200 		goto abort;
4201 	}
4202 
4203 	if (mddev->degraded > 0 &&
4204 	    mddev->recovery_cp != MaxSector) {
4205 		if (mddev->ok_start_degraded)
4206 			printk(KERN_WARNING
4207 			       "raid5: starting dirty degraded array: %s"
4208 			       "- data corruption possible.\n",
4209 			       mdname(mddev));
4210 		else {
4211 			printk(KERN_ERR
4212 			       "raid5: cannot start dirty degraded array for %s\n",
4213 			       mdname(mddev));
4214 			goto abort;
4215 		}
4216 	}
4217 
4218 	{
4219 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4220 		if (!mddev->thread) {
4221 			printk(KERN_ERR
4222 				"raid5: couldn't allocate thread for %s\n",
4223 				mdname(mddev));
4224 			goto abort;
4225 		}
4226 	}
4227 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4228 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4229 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4230 		printk(KERN_ERR
4231 			"raid5: couldn't allocate %dkB for buffers\n", memory);
4232 		shrink_stripes(conf);
4233 		md_unregister_thread(mddev->thread);
4234 		goto abort;
4235 	} else
4236 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4237 			memory, mdname(mddev));
4238 
4239 	if (mddev->degraded == 0)
4240 		printk("raid5: raid level %d set %s active with %d out of %d"
4241 			" devices, algorithm %d\n", conf->level, mdname(mddev),
4242 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4243 			conf->algorithm);
4244 	else
4245 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4246 			" out of %d devices, algorithm %d\n", conf->level,
4247 			mdname(mddev), mddev->raid_disks - mddev->degraded,
4248 			mddev->raid_disks, conf->algorithm);
4249 
4250 	print_raid5_conf(conf);
4251 
4252 	if (conf->expand_progress != MaxSector) {
4253 		printk("...ok start reshape thread\n");
4254 		conf->expand_lo = conf->expand_progress;
4255 		atomic_set(&conf->reshape_stripes, 0);
4256 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4257 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4258 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4259 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4260 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4261 							"%s_reshape");
4262 	}
4263 
4264 	/* read-ahead size must cover two whole stripes, which is
4265 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4266 	 */
4267 	{
4268 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4269 		int stripe = data_disks *
4270 			(mddev->chunk_size / PAGE_SIZE);
4271 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4272 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4273 	}
4274 
4275 	/* Ok, everything is just fine now */
4276 	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4277 		printk(KERN_WARNING
4278 		       "raid5: failed to create sysfs attributes for %s\n",
4279 		       mdname(mddev));
4280 
4281 	mddev->queue->unplug_fn = raid5_unplug_device;
4282 	mddev->queue->issue_flush_fn = raid5_issue_flush;
4283 	mddev->queue->backing_dev_info.congested_data = mddev;
4284 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4285 
4286 	mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4287 					    conf->max_degraded);
4288 
4289 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4290 
4291 	return 0;
4292 abort:
4293 	if (conf) {
4294 		print_raid5_conf(conf);
4295 		safe_put_page(conf->spare_page);
4296 		kfree(conf->disks);
4297 		kfree(conf->stripe_hashtbl);
4298 		kfree(conf);
4299 	}
4300 	mddev->private = NULL;
4301 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4302 	return -EIO;
4303 }
4304 
4305 
4306 
4307 static int stop(mddev_t *mddev)
4308 {
4309 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4310 
4311 	md_unregister_thread(mddev->thread);
4312 	mddev->thread = NULL;
4313 	shrink_stripes(conf);
4314 	kfree(conf->stripe_hashtbl);
4315 	mddev->queue->backing_dev_info.congested_fn = NULL;
4316 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4317 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4318 	kfree(conf->disks);
4319 	kfree(conf);
4320 	mddev->private = NULL;
4321 	return 0;
4322 }
4323 
4324 #ifdef DEBUG
4325 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4326 {
4327 	int i;
4328 
4329 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4330 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4331 	seq_printf(seq, "sh %llu,  count %d.\n",
4332 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4333 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4334 	for (i = 0; i < sh->disks; i++) {
4335 		seq_printf(seq, "(cache%d: %p %ld) ",
4336 			   i, sh->dev[i].page, sh->dev[i].flags);
4337 	}
4338 	seq_printf(seq, "\n");
4339 }
4340 
4341 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4342 {
4343 	struct stripe_head *sh;
4344 	struct hlist_node *hn;
4345 	int i;
4346 
4347 	spin_lock_irq(&conf->device_lock);
4348 	for (i = 0; i < NR_HASH; i++) {
4349 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4350 			if (sh->raid_conf != conf)
4351 				continue;
4352 			print_sh(seq, sh);
4353 		}
4354 	}
4355 	spin_unlock_irq(&conf->device_lock);
4356 }
4357 #endif
4358 
4359 static void status (struct seq_file *seq, mddev_t *mddev)
4360 {
4361 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4362 	int i;
4363 
4364 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4365 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4366 	for (i = 0; i < conf->raid_disks; i++)
4367 		seq_printf (seq, "%s",
4368 			       conf->disks[i].rdev &&
4369 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4370 	seq_printf (seq, "]");
4371 #ifdef DEBUG
4372 	seq_printf (seq, "\n");
4373 	printall(seq, conf);
4374 #endif
4375 }
4376 
4377 static void print_raid5_conf (raid5_conf_t *conf)
4378 {
4379 	int i;
4380 	struct disk_info *tmp;
4381 
4382 	printk("RAID5 conf printout:\n");
4383 	if (!conf) {
4384 		printk("(conf==NULL)\n");
4385 		return;
4386 	}
4387 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4388 		 conf->raid_disks - conf->mddev->degraded);
4389 
4390 	for (i = 0; i < conf->raid_disks; i++) {
4391 		char b[BDEVNAME_SIZE];
4392 		tmp = conf->disks + i;
4393 		if (tmp->rdev)
4394 		printk(" disk %d, o:%d, dev:%s\n",
4395 			i, !test_bit(Faulty, &tmp->rdev->flags),
4396 			bdevname(tmp->rdev->bdev,b));
4397 	}
4398 }
4399 
4400 static int raid5_spare_active(mddev_t *mddev)
4401 {
4402 	int i;
4403 	raid5_conf_t *conf = mddev->private;
4404 	struct disk_info *tmp;
4405 
4406 	for (i = 0; i < conf->raid_disks; i++) {
4407 		tmp = conf->disks + i;
4408 		if (tmp->rdev
4409 		    && !test_bit(Faulty, &tmp->rdev->flags)
4410 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4411 			unsigned long flags;
4412 			spin_lock_irqsave(&conf->device_lock, flags);
4413 			mddev->degraded--;
4414 			spin_unlock_irqrestore(&conf->device_lock, flags);
4415 		}
4416 	}
4417 	print_raid5_conf(conf);
4418 	return 0;
4419 }
4420 
4421 static int raid5_remove_disk(mddev_t *mddev, int number)
4422 {
4423 	raid5_conf_t *conf = mddev->private;
4424 	int err = 0;
4425 	mdk_rdev_t *rdev;
4426 	struct disk_info *p = conf->disks + number;
4427 
4428 	print_raid5_conf(conf);
4429 	rdev = p->rdev;
4430 	if (rdev) {
4431 		if (test_bit(In_sync, &rdev->flags) ||
4432 		    atomic_read(&rdev->nr_pending)) {
4433 			err = -EBUSY;
4434 			goto abort;
4435 		}
4436 		p->rdev = NULL;
4437 		synchronize_rcu();
4438 		if (atomic_read(&rdev->nr_pending)) {
4439 			/* lost the race, try later */
4440 			err = -EBUSY;
4441 			p->rdev = rdev;
4442 		}
4443 	}
4444 abort:
4445 
4446 	print_raid5_conf(conf);
4447 	return err;
4448 }
4449 
4450 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4451 {
4452 	raid5_conf_t *conf = mddev->private;
4453 	int found = 0;
4454 	int disk;
4455 	struct disk_info *p;
4456 
4457 	if (mddev->degraded > conf->max_degraded)
4458 		/* no point adding a device */
4459 		return 0;
4460 
4461 	/*
4462 	 * find the disk ... but prefer rdev->saved_raid_disk
4463 	 * if possible.
4464 	 */
4465 	if (rdev->saved_raid_disk >= 0 &&
4466 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4467 		disk = rdev->saved_raid_disk;
4468 	else
4469 		disk = 0;
4470 	for ( ; disk < conf->raid_disks; disk++)
4471 		if ((p=conf->disks + disk)->rdev == NULL) {
4472 			clear_bit(In_sync, &rdev->flags);
4473 			rdev->raid_disk = disk;
4474 			found = 1;
4475 			if (rdev->saved_raid_disk != disk)
4476 				conf->fullsync = 1;
4477 			rcu_assign_pointer(p->rdev, rdev);
4478 			break;
4479 		}
4480 	print_raid5_conf(conf);
4481 	return found;
4482 }
4483 
4484 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4485 {
4486 	/* no resync is happening, and there is enough space
4487 	 * on all devices, so we can resize.
4488 	 * We need to make sure resync covers any new space.
4489 	 * If the array is shrinking we should possibly wait until
4490 	 * any io in the removed space completes, but it hardly seems
4491 	 * worth it.
4492 	 */
4493 	raid5_conf_t *conf = mddev_to_conf(mddev);
4494 
4495 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4496 	mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4497 	set_capacity(mddev->gendisk, mddev->array_size << 1);
4498 	mddev->changed = 1;
4499 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4500 		mddev->recovery_cp = mddev->size << 1;
4501 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4502 	}
4503 	mddev->size = sectors /2;
4504 	mddev->resync_max_sectors = sectors;
4505 	return 0;
4506 }
4507 
4508 #ifdef CONFIG_MD_RAID5_RESHAPE
4509 static int raid5_check_reshape(mddev_t *mddev)
4510 {
4511 	raid5_conf_t *conf = mddev_to_conf(mddev);
4512 	int err;
4513 
4514 	if (mddev->delta_disks < 0 ||
4515 	    mddev->new_level != mddev->level)
4516 		return -EINVAL; /* Cannot shrink array or change level yet */
4517 	if (mddev->delta_disks == 0)
4518 		return 0; /* nothing to do */
4519 
4520 	/* Can only proceed if there are plenty of stripe_heads.
4521 	 * We need a minimum of one full stripe,, and for sensible progress
4522 	 * it is best to have about 4 times that.
4523 	 * If we require 4 times, then the default 256 4K stripe_heads will
4524 	 * allow for chunk sizes up to 256K, which is probably OK.
4525 	 * If the chunk size is greater, user-space should request more
4526 	 * stripe_heads first.
4527 	 */
4528 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4529 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4530 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4531 		       (mddev->chunk_size / STRIPE_SIZE)*4);
4532 		return -ENOSPC;
4533 	}
4534 
4535 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4536 	if (err)
4537 		return err;
4538 
4539 	if (mddev->degraded > conf->max_degraded)
4540 		return -EINVAL;
4541 	/* looks like we might be able to manage this */
4542 	return 0;
4543 }
4544 
4545 static int raid5_start_reshape(mddev_t *mddev)
4546 {
4547 	raid5_conf_t *conf = mddev_to_conf(mddev);
4548 	mdk_rdev_t *rdev;
4549 	struct list_head *rtmp;
4550 	int spares = 0;
4551 	int added_devices = 0;
4552 	unsigned long flags;
4553 
4554 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4555 		return -EBUSY;
4556 
4557 	ITERATE_RDEV(mddev, rdev, rtmp)
4558 		if (rdev->raid_disk < 0 &&
4559 		    !test_bit(Faulty, &rdev->flags))
4560 			spares++;
4561 
4562 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4563 		/* Not enough devices even to make a degraded array
4564 		 * of that size
4565 		 */
4566 		return -EINVAL;
4567 
4568 	atomic_set(&conf->reshape_stripes, 0);
4569 	spin_lock_irq(&conf->device_lock);
4570 	conf->previous_raid_disks = conf->raid_disks;
4571 	conf->raid_disks += mddev->delta_disks;
4572 	conf->expand_progress = 0;
4573 	conf->expand_lo = 0;
4574 	spin_unlock_irq(&conf->device_lock);
4575 
4576 	/* Add some new drives, as many as will fit.
4577 	 * We know there are enough to make the newly sized array work.
4578 	 */
4579 	ITERATE_RDEV(mddev, rdev, rtmp)
4580 		if (rdev->raid_disk < 0 &&
4581 		    !test_bit(Faulty, &rdev->flags)) {
4582 			if (raid5_add_disk(mddev, rdev)) {
4583 				char nm[20];
4584 				set_bit(In_sync, &rdev->flags);
4585 				added_devices++;
4586 				rdev->recovery_offset = 0;
4587 				sprintf(nm, "rd%d", rdev->raid_disk);
4588 				if (sysfs_create_link(&mddev->kobj,
4589 						      &rdev->kobj, nm))
4590 					printk(KERN_WARNING
4591 					       "raid5: failed to create "
4592 					       " link %s for %s\n",
4593 					       nm, mdname(mddev));
4594 			} else
4595 				break;
4596 		}
4597 
4598 	spin_lock_irqsave(&conf->device_lock, flags);
4599 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4600 	spin_unlock_irqrestore(&conf->device_lock, flags);
4601 	mddev->raid_disks = conf->raid_disks;
4602 	mddev->reshape_position = 0;
4603 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4604 
4605 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4606 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4607 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4608 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4609 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4610 						"%s_reshape");
4611 	if (!mddev->sync_thread) {
4612 		mddev->recovery = 0;
4613 		spin_lock_irq(&conf->device_lock);
4614 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4615 		conf->expand_progress = MaxSector;
4616 		spin_unlock_irq(&conf->device_lock);
4617 		return -EAGAIN;
4618 	}
4619 	md_wakeup_thread(mddev->sync_thread);
4620 	md_new_event(mddev);
4621 	return 0;
4622 }
4623 #endif
4624 
4625 static void end_reshape(raid5_conf_t *conf)
4626 {
4627 	struct block_device *bdev;
4628 
4629 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4630 		conf->mddev->array_size = conf->mddev->size *
4631 			(conf->raid_disks - conf->max_degraded);
4632 		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4633 		conf->mddev->changed = 1;
4634 
4635 		bdev = bdget_disk(conf->mddev->gendisk, 0);
4636 		if (bdev) {
4637 			mutex_lock(&bdev->bd_inode->i_mutex);
4638 			i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4639 			mutex_unlock(&bdev->bd_inode->i_mutex);
4640 			bdput(bdev);
4641 		}
4642 		spin_lock_irq(&conf->device_lock);
4643 		conf->expand_progress = MaxSector;
4644 		spin_unlock_irq(&conf->device_lock);
4645 		conf->mddev->reshape_position = MaxSector;
4646 
4647 		/* read-ahead size must cover two whole stripes, which is
4648 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4649 		 */
4650 		{
4651 			int data_disks = conf->previous_raid_disks - conf->max_degraded;
4652 			int stripe = data_disks *
4653 				(conf->mddev->chunk_size / PAGE_SIZE);
4654 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4655 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4656 		}
4657 	}
4658 }
4659 
4660 static void raid5_quiesce(mddev_t *mddev, int state)
4661 {
4662 	raid5_conf_t *conf = mddev_to_conf(mddev);
4663 
4664 	switch(state) {
4665 	case 2: /* resume for a suspend */
4666 		wake_up(&conf->wait_for_overlap);
4667 		break;
4668 
4669 	case 1: /* stop all writes */
4670 		spin_lock_irq(&conf->device_lock);
4671 		conf->quiesce = 1;
4672 		wait_event_lock_irq(conf->wait_for_stripe,
4673 				    atomic_read(&conf->active_stripes) == 0 &&
4674 				    atomic_read(&conf->active_aligned_reads) == 0,
4675 				    conf->device_lock, /* nothing */);
4676 		spin_unlock_irq(&conf->device_lock);
4677 		break;
4678 
4679 	case 0: /* re-enable writes */
4680 		spin_lock_irq(&conf->device_lock);
4681 		conf->quiesce = 0;
4682 		wake_up(&conf->wait_for_stripe);
4683 		wake_up(&conf->wait_for_overlap);
4684 		spin_unlock_irq(&conf->device_lock);
4685 		break;
4686 	}
4687 }
4688 
4689 static struct mdk_personality raid6_personality =
4690 {
4691 	.name		= "raid6",
4692 	.level		= 6,
4693 	.owner		= THIS_MODULE,
4694 	.make_request	= make_request,
4695 	.run		= run,
4696 	.stop		= stop,
4697 	.status		= status,
4698 	.error_handler	= error,
4699 	.hot_add_disk	= raid5_add_disk,
4700 	.hot_remove_disk= raid5_remove_disk,
4701 	.spare_active	= raid5_spare_active,
4702 	.sync_request	= sync_request,
4703 	.resize		= raid5_resize,
4704 #ifdef CONFIG_MD_RAID5_RESHAPE
4705 	.check_reshape	= raid5_check_reshape,
4706 	.start_reshape  = raid5_start_reshape,
4707 #endif
4708 	.quiesce	= raid5_quiesce,
4709 };
4710 static struct mdk_personality raid5_personality =
4711 {
4712 	.name		= "raid5",
4713 	.level		= 5,
4714 	.owner		= THIS_MODULE,
4715 	.make_request	= make_request,
4716 	.run		= run,
4717 	.stop		= stop,
4718 	.status		= status,
4719 	.error_handler	= error,
4720 	.hot_add_disk	= raid5_add_disk,
4721 	.hot_remove_disk= raid5_remove_disk,
4722 	.spare_active	= raid5_spare_active,
4723 	.sync_request	= sync_request,
4724 	.resize		= raid5_resize,
4725 #ifdef CONFIG_MD_RAID5_RESHAPE
4726 	.check_reshape	= raid5_check_reshape,
4727 	.start_reshape  = raid5_start_reshape,
4728 #endif
4729 	.quiesce	= raid5_quiesce,
4730 };
4731 
4732 static struct mdk_personality raid4_personality =
4733 {
4734 	.name		= "raid4",
4735 	.level		= 4,
4736 	.owner		= THIS_MODULE,
4737 	.make_request	= make_request,
4738 	.run		= run,
4739 	.stop		= stop,
4740 	.status		= status,
4741 	.error_handler	= error,
4742 	.hot_add_disk	= raid5_add_disk,
4743 	.hot_remove_disk= raid5_remove_disk,
4744 	.spare_active	= raid5_spare_active,
4745 	.sync_request	= sync_request,
4746 	.resize		= raid5_resize,
4747 #ifdef CONFIG_MD_RAID5_RESHAPE
4748 	.check_reshape	= raid5_check_reshape,
4749 	.start_reshape  = raid5_start_reshape,
4750 #endif
4751 	.quiesce	= raid5_quiesce,
4752 };
4753 
4754 static int __init raid5_init(void)
4755 {
4756 	int e;
4757 
4758 	e = raid6_select_algo();
4759 	if ( e )
4760 		return e;
4761 	register_md_personality(&raid6_personality);
4762 	register_md_personality(&raid5_personality);
4763 	register_md_personality(&raid4_personality);
4764 	return 0;
4765 }
4766 
4767 static void raid5_exit(void)
4768 {
4769 	unregister_md_personality(&raid6_personality);
4770 	unregister_md_personality(&raid5_personality);
4771 	unregister_md_personality(&raid4_personality);
4772 }
4773 
4774 module_init(raid5_init);
4775 module_exit(raid5_exit);
4776 MODULE_LICENSE("GPL");
4777 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4778 MODULE_ALIAS("md-raid5");
4779 MODULE_ALIAS("md-raid4");
4780 MODULE_ALIAS("md-level-5");
4781 MODULE_ALIAS("md-level-4");
4782 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4783 MODULE_ALIAS("md-raid6");
4784 MODULE_ALIAS("md-level-6");
4785 
4786 /* This used to be two separate modules, they were: */
4787 MODULE_ALIAS("raid5");
4788 MODULE_ALIAS("raid6");
4789