xref: /linux/drivers/md/raid5.c (revision 033b5650010652c069494df58424c4b98412fe3b)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58 
59 /*
60  * Stripe cache
61  */
62 
63 #define NR_STRIPES		256
64 #define STRIPE_SIZE		PAGE_SIZE
65 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
67 #define	IO_THRESHOLD		1
68 #define BYPASS_THRESHOLD	1
69 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK		(NR_HASH - 1)
71 
72 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73 
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA	1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93 
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98 
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100 
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107 	return bio->bi_phys_segments & 0xffff;
108 }
109 
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112 	return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114 
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117 	--bio->bi_phys_segments;
118 	return raid5_bi_phys_segments(bio);
119 }
120 
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123 	unsigned short val = raid5_bi_hw_segments(bio);
124 
125 	--val;
126 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 	return val;
128 }
129 
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 }
134 
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138 	if (sh->ddf_layout)
139 		/* ddf always start from first device */
140 		return 0;
141 	/* md starts just after Q block */
142 	if (sh->qd_idx == sh->disks - 1)
143 		return 0;
144 	else
145 		return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149 	disk++;
150 	return (disk < raid_disks) ? disk : 0;
151 }
152 
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 			     int *count, int syndrome_disks)
160 {
161 	int slot = *count;
162 
163 	if (sh->ddf_layout)
164 		(*count)++;
165 	if (idx == sh->pd_idx)
166 		return syndrome_disks;
167 	if (idx == sh->qd_idx)
168 		return syndrome_disks + 1;
169 	if (!sh->ddf_layout)
170 		(*count)++;
171 	return slot;
172 }
173 
174 static void return_io(struct bio *return_bi)
175 {
176 	struct bio *bi = return_bi;
177 	while (bi) {
178 
179 		return_bi = bi->bi_next;
180 		bi->bi_next = NULL;
181 		bi->bi_size = 0;
182 		bio_endio(bi, 0);
183 		bi = return_bi;
184 	}
185 }
186 
187 static void print_raid5_conf (raid5_conf_t *conf);
188 
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191 	return sh->check_state || sh->reconstruct_state ||
192 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195 
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198 	if (atomic_dec_and_test(&sh->count)) {
199 		BUG_ON(!list_empty(&sh->lru));
200 		BUG_ON(atomic_read(&conf->active_stripes)==0);
201 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 			if (test_bit(STRIPE_DELAYED, &sh->state))
203 				list_add_tail(&sh->lru, &conf->delayed_list);
204 			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205 				   sh->bm_seq - conf->seq_write > 0)
206 				list_add_tail(&sh->lru, &conf->bitmap_list);
207 			else {
208 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
209 				list_add_tail(&sh->lru, &conf->handle_list);
210 			}
211 			md_wakeup_thread(conf->mddev->thread);
212 		} else {
213 			BUG_ON(stripe_operations_active(sh));
214 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215 				atomic_dec(&conf->preread_active_stripes);
216 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217 					md_wakeup_thread(conf->mddev->thread);
218 			}
219 			atomic_dec(&conf->active_stripes);
220 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221 				list_add_tail(&sh->lru, &conf->inactive_list);
222 				wake_up(&conf->wait_for_stripe);
223 				if (conf->retry_read_aligned)
224 					md_wakeup_thread(conf->mddev->thread);
225 			}
226 		}
227 	}
228 }
229 
230 static void release_stripe(struct stripe_head *sh)
231 {
232 	raid5_conf_t *conf = sh->raid_conf;
233 	unsigned long flags;
234 
235 	spin_lock_irqsave(&conf->device_lock, flags);
236 	__release_stripe(conf, sh);
237 	spin_unlock_irqrestore(&conf->device_lock, flags);
238 }
239 
240 static inline void remove_hash(struct stripe_head *sh)
241 {
242 	pr_debug("remove_hash(), stripe %llu\n",
243 		(unsigned long long)sh->sector);
244 
245 	hlist_del_init(&sh->hash);
246 }
247 
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 {
250 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
251 
252 	pr_debug("insert_hash(), stripe %llu\n",
253 		(unsigned long long)sh->sector);
254 
255 	CHECK_DEVLOCK();
256 	hlist_add_head(&sh->hash, hp);
257 }
258 
259 
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 {
263 	struct stripe_head *sh = NULL;
264 	struct list_head *first;
265 
266 	CHECK_DEVLOCK();
267 	if (list_empty(&conf->inactive_list))
268 		goto out;
269 	first = conf->inactive_list.next;
270 	sh = list_entry(first, struct stripe_head, lru);
271 	list_del_init(first);
272 	remove_hash(sh);
273 	atomic_inc(&conf->active_stripes);
274 out:
275 	return sh;
276 }
277 
278 static void shrink_buffers(struct stripe_head *sh)
279 {
280 	struct page *p;
281 	int i;
282 	int num = sh->raid_conf->pool_size;
283 
284 	for (i = 0; i < num ; i++) {
285 		p = sh->dev[i].page;
286 		if (!p)
287 			continue;
288 		sh->dev[i].page = NULL;
289 		put_page(p);
290 	}
291 }
292 
293 static int grow_buffers(struct stripe_head *sh)
294 {
295 	int i;
296 	int num = sh->raid_conf->pool_size;
297 
298 	for (i = 0; i < num; i++) {
299 		struct page *page;
300 
301 		if (!(page = alloc_page(GFP_KERNEL))) {
302 			return 1;
303 		}
304 		sh->dev[i].page = page;
305 	}
306 	return 0;
307 }
308 
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311 			    struct stripe_head *sh);
312 
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 {
315 	raid5_conf_t *conf = sh->raid_conf;
316 	int i;
317 
318 	BUG_ON(atomic_read(&sh->count) != 0);
319 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320 	BUG_ON(stripe_operations_active(sh));
321 
322 	CHECK_DEVLOCK();
323 	pr_debug("init_stripe called, stripe %llu\n",
324 		(unsigned long long)sh->sector);
325 
326 	remove_hash(sh);
327 
328 	sh->generation = conf->generation - previous;
329 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330 	sh->sector = sector;
331 	stripe_set_idx(sector, conf, previous, sh);
332 	sh->state = 0;
333 
334 
335 	for (i = sh->disks; i--; ) {
336 		struct r5dev *dev = &sh->dev[i];
337 
338 		if (dev->toread || dev->read || dev->towrite || dev->written ||
339 		    test_bit(R5_LOCKED, &dev->flags)) {
340 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341 			       (unsigned long long)sh->sector, i, dev->toread,
342 			       dev->read, dev->towrite, dev->written,
343 			       test_bit(R5_LOCKED, &dev->flags));
344 			BUG();
345 		}
346 		dev->flags = 0;
347 		raid5_build_block(sh, i, previous);
348 	}
349 	insert_hash(conf, sh);
350 }
351 
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353 					 short generation)
354 {
355 	struct stripe_head *sh;
356 	struct hlist_node *hn;
357 
358 	CHECK_DEVLOCK();
359 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361 		if (sh->sector == sector && sh->generation == generation)
362 			return sh;
363 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364 	return NULL;
365 }
366 
367 /*
368  * Need to check if array has failed when deciding whether to:
369  *  - start an array
370  *  - remove non-faulty devices
371  *  - add a spare
372  *  - allow a reshape
373  * This determination is simple when no reshape is happening.
374  * However if there is a reshape, we need to carefully check
375  * both the before and after sections.
376  * This is because some failed devices may only affect one
377  * of the two sections, and some non-in_sync devices may
378  * be insync in the section most affected by failed devices.
379  */
380 static int has_failed(raid5_conf_t *conf)
381 {
382 	int degraded;
383 	int i;
384 	if (conf->mddev->reshape_position == MaxSector)
385 		return conf->mddev->degraded > conf->max_degraded;
386 
387 	rcu_read_lock();
388 	degraded = 0;
389 	for (i = 0; i < conf->previous_raid_disks; i++) {
390 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391 		if (!rdev || test_bit(Faulty, &rdev->flags))
392 			degraded++;
393 		else if (test_bit(In_sync, &rdev->flags))
394 			;
395 		else
396 			/* not in-sync or faulty.
397 			 * If the reshape increases the number of devices,
398 			 * this is being recovered by the reshape, so
399 			 * this 'previous' section is not in_sync.
400 			 * If the number of devices is being reduced however,
401 			 * the device can only be part of the array if
402 			 * we are reverting a reshape, so this section will
403 			 * be in-sync.
404 			 */
405 			if (conf->raid_disks >= conf->previous_raid_disks)
406 				degraded++;
407 	}
408 	rcu_read_unlock();
409 	if (degraded > conf->max_degraded)
410 		return 1;
411 	rcu_read_lock();
412 	degraded = 0;
413 	for (i = 0; i < conf->raid_disks; i++) {
414 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415 		if (!rdev || test_bit(Faulty, &rdev->flags))
416 			degraded++;
417 		else if (test_bit(In_sync, &rdev->flags))
418 			;
419 		else
420 			/* not in-sync or faulty.
421 			 * If reshape increases the number of devices, this
422 			 * section has already been recovered, else it
423 			 * almost certainly hasn't.
424 			 */
425 			if (conf->raid_disks <= conf->previous_raid_disks)
426 				degraded++;
427 	}
428 	rcu_read_unlock();
429 	if (degraded > conf->max_degraded)
430 		return 1;
431 	return 0;
432 }
433 
434 static struct stripe_head *
435 get_active_stripe(raid5_conf_t *conf, sector_t sector,
436 		  int previous, int noblock, int noquiesce)
437 {
438 	struct stripe_head *sh;
439 
440 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
441 
442 	spin_lock_irq(&conf->device_lock);
443 
444 	do {
445 		wait_event_lock_irq(conf->wait_for_stripe,
446 				    conf->quiesce == 0 || noquiesce,
447 				    conf->device_lock, /* nothing */);
448 		sh = __find_stripe(conf, sector, conf->generation - previous);
449 		if (!sh) {
450 			if (!conf->inactive_blocked)
451 				sh = get_free_stripe(conf);
452 			if (noblock && sh == NULL)
453 				break;
454 			if (!sh) {
455 				conf->inactive_blocked = 1;
456 				wait_event_lock_irq(conf->wait_for_stripe,
457 						    !list_empty(&conf->inactive_list) &&
458 						    (atomic_read(&conf->active_stripes)
459 						     < (conf->max_nr_stripes *3/4)
460 						     || !conf->inactive_blocked),
461 						    conf->device_lock,
462 						    );
463 				conf->inactive_blocked = 0;
464 			} else
465 				init_stripe(sh, sector, previous);
466 		} else {
467 			if (atomic_read(&sh->count)) {
468 				BUG_ON(!list_empty(&sh->lru)
469 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
470 			} else {
471 				if (!test_bit(STRIPE_HANDLE, &sh->state))
472 					atomic_inc(&conf->active_stripes);
473 				if (list_empty(&sh->lru) &&
474 				    !test_bit(STRIPE_EXPANDING, &sh->state))
475 					BUG();
476 				list_del_init(&sh->lru);
477 			}
478 		}
479 	} while (sh == NULL);
480 
481 	if (sh)
482 		atomic_inc(&sh->count);
483 
484 	spin_unlock_irq(&conf->device_lock);
485 	return sh;
486 }
487 
488 static void
489 raid5_end_read_request(struct bio *bi, int error);
490 static void
491 raid5_end_write_request(struct bio *bi, int error);
492 
493 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 {
495 	raid5_conf_t *conf = sh->raid_conf;
496 	int i, disks = sh->disks;
497 
498 	might_sleep();
499 
500 	for (i = disks; i--; ) {
501 		int rw;
502 		struct bio *bi;
503 		mdk_rdev_t *rdev;
504 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506 				rw = WRITE_FUA;
507 			else
508 				rw = WRITE;
509 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510 			rw = READ;
511 		else
512 			continue;
513 
514 		bi = &sh->dev[i].req;
515 
516 		bi->bi_rw = rw;
517 		if (rw & WRITE)
518 			bi->bi_end_io = raid5_end_write_request;
519 		else
520 			bi->bi_end_io = raid5_end_read_request;
521 
522 		rcu_read_lock();
523 		rdev = rcu_dereference(conf->disks[i].rdev);
524 		if (rdev && test_bit(Faulty, &rdev->flags))
525 			rdev = NULL;
526 		if (rdev)
527 			atomic_inc(&rdev->nr_pending);
528 		rcu_read_unlock();
529 
530 		if (rdev) {
531 			if (s->syncing || s->expanding || s->expanded)
532 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533 
534 			set_bit(STRIPE_IO_STARTED, &sh->state);
535 
536 			bi->bi_bdev = rdev->bdev;
537 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538 				__func__, (unsigned long long)sh->sector,
539 				bi->bi_rw, i);
540 			atomic_inc(&sh->count);
541 			bi->bi_sector = sh->sector + rdev->data_offset;
542 			bi->bi_flags = 1 << BIO_UPTODATE;
543 			bi->bi_vcnt = 1;
544 			bi->bi_max_vecs = 1;
545 			bi->bi_idx = 0;
546 			bi->bi_io_vec = &sh->dev[i].vec;
547 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548 			bi->bi_io_vec[0].bv_offset = 0;
549 			bi->bi_size = STRIPE_SIZE;
550 			bi->bi_next = NULL;
551 			if ((rw & WRITE) &&
552 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
553 				atomic_add(STRIPE_SECTORS,
554 					&rdev->corrected_errors);
555 			generic_make_request(bi);
556 		} else {
557 			if (rw & WRITE)
558 				set_bit(STRIPE_DEGRADED, &sh->state);
559 			pr_debug("skip op %ld on disc %d for sector %llu\n",
560 				bi->bi_rw, i, (unsigned long long)sh->sector);
561 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
562 			set_bit(STRIPE_HANDLE, &sh->state);
563 		}
564 	}
565 }
566 
567 static struct dma_async_tx_descriptor *
568 async_copy_data(int frombio, struct bio *bio, struct page *page,
569 	sector_t sector, struct dma_async_tx_descriptor *tx)
570 {
571 	struct bio_vec *bvl;
572 	struct page *bio_page;
573 	int i;
574 	int page_offset;
575 	struct async_submit_ctl submit;
576 	enum async_tx_flags flags = 0;
577 
578 	if (bio->bi_sector >= sector)
579 		page_offset = (signed)(bio->bi_sector - sector) * 512;
580 	else
581 		page_offset = (signed)(sector - bio->bi_sector) * -512;
582 
583 	if (frombio)
584 		flags |= ASYNC_TX_FENCE;
585 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
586 
587 	bio_for_each_segment(bvl, bio, i) {
588 		int len = bvl->bv_len;
589 		int clen;
590 		int b_offset = 0;
591 
592 		if (page_offset < 0) {
593 			b_offset = -page_offset;
594 			page_offset += b_offset;
595 			len -= b_offset;
596 		}
597 
598 		if (len > 0 && page_offset + len > STRIPE_SIZE)
599 			clen = STRIPE_SIZE - page_offset;
600 		else
601 			clen = len;
602 
603 		if (clen > 0) {
604 			b_offset += bvl->bv_offset;
605 			bio_page = bvl->bv_page;
606 			if (frombio)
607 				tx = async_memcpy(page, bio_page, page_offset,
608 						  b_offset, clen, &submit);
609 			else
610 				tx = async_memcpy(bio_page, page, b_offset,
611 						  page_offset, clen, &submit);
612 		}
613 		/* chain the operations */
614 		submit.depend_tx = tx;
615 
616 		if (clen < len) /* hit end of page */
617 			break;
618 		page_offset +=  len;
619 	}
620 
621 	return tx;
622 }
623 
624 static void ops_complete_biofill(void *stripe_head_ref)
625 {
626 	struct stripe_head *sh = stripe_head_ref;
627 	struct bio *return_bi = NULL;
628 	raid5_conf_t *conf = sh->raid_conf;
629 	int i;
630 
631 	pr_debug("%s: stripe %llu\n", __func__,
632 		(unsigned long long)sh->sector);
633 
634 	/* clear completed biofills */
635 	spin_lock_irq(&conf->device_lock);
636 	for (i = sh->disks; i--; ) {
637 		struct r5dev *dev = &sh->dev[i];
638 
639 		/* acknowledge completion of a biofill operation */
640 		/* and check if we need to reply to a read request,
641 		 * new R5_Wantfill requests are held off until
642 		 * !STRIPE_BIOFILL_RUN
643 		 */
644 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645 			struct bio *rbi, *rbi2;
646 
647 			BUG_ON(!dev->read);
648 			rbi = dev->read;
649 			dev->read = NULL;
650 			while (rbi && rbi->bi_sector <
651 				dev->sector + STRIPE_SECTORS) {
652 				rbi2 = r5_next_bio(rbi, dev->sector);
653 				if (!raid5_dec_bi_phys_segments(rbi)) {
654 					rbi->bi_next = return_bi;
655 					return_bi = rbi;
656 				}
657 				rbi = rbi2;
658 			}
659 		}
660 	}
661 	spin_unlock_irq(&conf->device_lock);
662 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663 
664 	return_io(return_bi);
665 
666 	set_bit(STRIPE_HANDLE, &sh->state);
667 	release_stripe(sh);
668 }
669 
670 static void ops_run_biofill(struct stripe_head *sh)
671 {
672 	struct dma_async_tx_descriptor *tx = NULL;
673 	raid5_conf_t *conf = sh->raid_conf;
674 	struct async_submit_ctl submit;
675 	int i;
676 
677 	pr_debug("%s: stripe %llu\n", __func__,
678 		(unsigned long long)sh->sector);
679 
680 	for (i = sh->disks; i--; ) {
681 		struct r5dev *dev = &sh->dev[i];
682 		if (test_bit(R5_Wantfill, &dev->flags)) {
683 			struct bio *rbi;
684 			spin_lock_irq(&conf->device_lock);
685 			dev->read = rbi = dev->toread;
686 			dev->toread = NULL;
687 			spin_unlock_irq(&conf->device_lock);
688 			while (rbi && rbi->bi_sector <
689 				dev->sector + STRIPE_SECTORS) {
690 				tx = async_copy_data(0, rbi, dev->page,
691 					dev->sector, tx);
692 				rbi = r5_next_bio(rbi, dev->sector);
693 			}
694 		}
695 	}
696 
697 	atomic_inc(&sh->count);
698 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699 	async_trigger_callback(&submit);
700 }
701 
702 static void mark_target_uptodate(struct stripe_head *sh, int target)
703 {
704 	struct r5dev *tgt;
705 
706 	if (target < 0)
707 		return;
708 
709 	tgt = &sh->dev[target];
710 	set_bit(R5_UPTODATE, &tgt->flags);
711 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712 	clear_bit(R5_Wantcompute, &tgt->flags);
713 }
714 
715 static void ops_complete_compute(void *stripe_head_ref)
716 {
717 	struct stripe_head *sh = stripe_head_ref;
718 
719 	pr_debug("%s: stripe %llu\n", __func__,
720 		(unsigned long long)sh->sector);
721 
722 	/* mark the computed target(s) as uptodate */
723 	mark_target_uptodate(sh, sh->ops.target);
724 	mark_target_uptodate(sh, sh->ops.target2);
725 
726 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727 	if (sh->check_state == check_state_compute_run)
728 		sh->check_state = check_state_compute_result;
729 	set_bit(STRIPE_HANDLE, &sh->state);
730 	release_stripe(sh);
731 }
732 
733 /* return a pointer to the address conversion region of the scribble buffer */
734 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735 				 struct raid5_percpu *percpu)
736 {
737 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
738 }
739 
740 static struct dma_async_tx_descriptor *
741 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 {
743 	int disks = sh->disks;
744 	struct page **xor_srcs = percpu->scribble;
745 	int target = sh->ops.target;
746 	struct r5dev *tgt = &sh->dev[target];
747 	struct page *xor_dest = tgt->page;
748 	int count = 0;
749 	struct dma_async_tx_descriptor *tx;
750 	struct async_submit_ctl submit;
751 	int i;
752 
753 	pr_debug("%s: stripe %llu block: %d\n",
754 		__func__, (unsigned long long)sh->sector, target);
755 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
756 
757 	for (i = disks; i--; )
758 		if (i != target)
759 			xor_srcs[count++] = sh->dev[i].page;
760 
761 	atomic_inc(&sh->count);
762 
763 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
765 	if (unlikely(count == 1))
766 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767 	else
768 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769 
770 	return tx;
771 }
772 
773 /* set_syndrome_sources - populate source buffers for gen_syndrome
774  * @srcs - (struct page *) array of size sh->disks
775  * @sh - stripe_head to parse
776  *
777  * Populates srcs in proper layout order for the stripe and returns the
778  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
779  * destination buffer is recorded in srcs[count] and the Q destination
780  * is recorded in srcs[count+1]].
781  */
782 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
783 {
784 	int disks = sh->disks;
785 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786 	int d0_idx = raid6_d0(sh);
787 	int count;
788 	int i;
789 
790 	for (i = 0; i < disks; i++)
791 		srcs[i] = NULL;
792 
793 	count = 0;
794 	i = d0_idx;
795 	do {
796 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
797 
798 		srcs[slot] = sh->dev[i].page;
799 		i = raid6_next_disk(i, disks);
800 	} while (i != d0_idx);
801 
802 	return syndrome_disks;
803 }
804 
805 static struct dma_async_tx_descriptor *
806 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
807 {
808 	int disks = sh->disks;
809 	struct page **blocks = percpu->scribble;
810 	int target;
811 	int qd_idx = sh->qd_idx;
812 	struct dma_async_tx_descriptor *tx;
813 	struct async_submit_ctl submit;
814 	struct r5dev *tgt;
815 	struct page *dest;
816 	int i;
817 	int count;
818 
819 	if (sh->ops.target < 0)
820 		target = sh->ops.target2;
821 	else if (sh->ops.target2 < 0)
822 		target = sh->ops.target;
823 	else
824 		/* we should only have one valid target */
825 		BUG();
826 	BUG_ON(target < 0);
827 	pr_debug("%s: stripe %llu block: %d\n",
828 		__func__, (unsigned long long)sh->sector, target);
829 
830 	tgt = &sh->dev[target];
831 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832 	dest = tgt->page;
833 
834 	atomic_inc(&sh->count);
835 
836 	if (target == qd_idx) {
837 		count = set_syndrome_sources(blocks, sh);
838 		blocks[count] = NULL; /* regenerating p is not necessary */
839 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
840 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841 				  ops_complete_compute, sh,
842 				  to_addr_conv(sh, percpu));
843 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844 	} else {
845 		/* Compute any data- or p-drive using XOR */
846 		count = 0;
847 		for (i = disks; i-- ; ) {
848 			if (i == target || i == qd_idx)
849 				continue;
850 			blocks[count++] = sh->dev[i].page;
851 		}
852 
853 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854 				  NULL, ops_complete_compute, sh,
855 				  to_addr_conv(sh, percpu));
856 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
857 	}
858 
859 	return tx;
860 }
861 
862 static struct dma_async_tx_descriptor *
863 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
864 {
865 	int i, count, disks = sh->disks;
866 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867 	int d0_idx = raid6_d0(sh);
868 	int faila = -1, failb = -1;
869 	int target = sh->ops.target;
870 	int target2 = sh->ops.target2;
871 	struct r5dev *tgt = &sh->dev[target];
872 	struct r5dev *tgt2 = &sh->dev[target2];
873 	struct dma_async_tx_descriptor *tx;
874 	struct page **blocks = percpu->scribble;
875 	struct async_submit_ctl submit;
876 
877 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878 		 __func__, (unsigned long long)sh->sector, target, target2);
879 	BUG_ON(target < 0 || target2 < 0);
880 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
882 
883 	/* we need to open-code set_syndrome_sources to handle the
884 	 * slot number conversion for 'faila' and 'failb'
885 	 */
886 	for (i = 0; i < disks ; i++)
887 		blocks[i] = NULL;
888 	count = 0;
889 	i = d0_idx;
890 	do {
891 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
892 
893 		blocks[slot] = sh->dev[i].page;
894 
895 		if (i == target)
896 			faila = slot;
897 		if (i == target2)
898 			failb = slot;
899 		i = raid6_next_disk(i, disks);
900 	} while (i != d0_idx);
901 
902 	BUG_ON(faila == failb);
903 	if (failb < faila)
904 		swap(faila, failb);
905 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906 		 __func__, (unsigned long long)sh->sector, faila, failb);
907 
908 	atomic_inc(&sh->count);
909 
910 	if (failb == syndrome_disks+1) {
911 		/* Q disk is one of the missing disks */
912 		if (faila == syndrome_disks) {
913 			/* Missing P+Q, just recompute */
914 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915 					  ops_complete_compute, sh,
916 					  to_addr_conv(sh, percpu));
917 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918 						  STRIPE_SIZE, &submit);
919 		} else {
920 			struct page *dest;
921 			int data_target;
922 			int qd_idx = sh->qd_idx;
923 
924 			/* Missing D+Q: recompute D from P, then recompute Q */
925 			if (target == qd_idx)
926 				data_target = target2;
927 			else
928 				data_target = target;
929 
930 			count = 0;
931 			for (i = disks; i-- ; ) {
932 				if (i == data_target || i == qd_idx)
933 					continue;
934 				blocks[count++] = sh->dev[i].page;
935 			}
936 			dest = sh->dev[data_target].page;
937 			init_async_submit(&submit,
938 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939 					  NULL, NULL, NULL,
940 					  to_addr_conv(sh, percpu));
941 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942 				       &submit);
943 
944 			count = set_syndrome_sources(blocks, sh);
945 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946 					  ops_complete_compute, sh,
947 					  to_addr_conv(sh, percpu));
948 			return async_gen_syndrome(blocks, 0, count+2,
949 						  STRIPE_SIZE, &submit);
950 		}
951 	} else {
952 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953 				  ops_complete_compute, sh,
954 				  to_addr_conv(sh, percpu));
955 		if (failb == syndrome_disks) {
956 			/* We're missing D+P. */
957 			return async_raid6_datap_recov(syndrome_disks+2,
958 						       STRIPE_SIZE, faila,
959 						       blocks, &submit);
960 		} else {
961 			/* We're missing D+D. */
962 			return async_raid6_2data_recov(syndrome_disks+2,
963 						       STRIPE_SIZE, faila, failb,
964 						       blocks, &submit);
965 		}
966 	}
967 }
968 
969 
970 static void ops_complete_prexor(void *stripe_head_ref)
971 {
972 	struct stripe_head *sh = stripe_head_ref;
973 
974 	pr_debug("%s: stripe %llu\n", __func__,
975 		(unsigned long long)sh->sector);
976 }
977 
978 static struct dma_async_tx_descriptor *
979 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980 	       struct dma_async_tx_descriptor *tx)
981 {
982 	int disks = sh->disks;
983 	struct page **xor_srcs = percpu->scribble;
984 	int count = 0, pd_idx = sh->pd_idx, i;
985 	struct async_submit_ctl submit;
986 
987 	/* existing parity data subtracted */
988 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
989 
990 	pr_debug("%s: stripe %llu\n", __func__,
991 		(unsigned long long)sh->sector);
992 
993 	for (i = disks; i--; ) {
994 		struct r5dev *dev = &sh->dev[i];
995 		/* Only process blocks that are known to be uptodate */
996 		if (test_bit(R5_Wantdrain, &dev->flags))
997 			xor_srcs[count++] = dev->page;
998 	}
999 
1000 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003 
1004 	return tx;
1005 }
1006 
1007 static struct dma_async_tx_descriptor *
1008 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 {
1010 	int disks = sh->disks;
1011 	int i;
1012 
1013 	pr_debug("%s: stripe %llu\n", __func__,
1014 		(unsigned long long)sh->sector);
1015 
1016 	for (i = disks; i--; ) {
1017 		struct r5dev *dev = &sh->dev[i];
1018 		struct bio *chosen;
1019 
1020 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021 			struct bio *wbi;
1022 
1023 			spin_lock(&sh->lock);
1024 			chosen = dev->towrite;
1025 			dev->towrite = NULL;
1026 			BUG_ON(dev->written);
1027 			wbi = dev->written = chosen;
1028 			spin_unlock(&sh->lock);
1029 
1030 			while (wbi && wbi->bi_sector <
1031 				dev->sector + STRIPE_SECTORS) {
1032 				if (wbi->bi_rw & REQ_FUA)
1033 					set_bit(R5_WantFUA, &dev->flags);
1034 				tx = async_copy_data(1, wbi, dev->page,
1035 					dev->sector, tx);
1036 				wbi = r5_next_bio(wbi, dev->sector);
1037 			}
1038 		}
1039 	}
1040 
1041 	return tx;
1042 }
1043 
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1045 {
1046 	struct stripe_head *sh = stripe_head_ref;
1047 	int disks = sh->disks;
1048 	int pd_idx = sh->pd_idx;
1049 	int qd_idx = sh->qd_idx;
1050 	int i;
1051 	bool fua = false;
1052 
1053 	pr_debug("%s: stripe %llu\n", __func__,
1054 		(unsigned long long)sh->sector);
1055 
1056 	for (i = disks; i--; )
1057 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1058 
1059 	for (i = disks; i--; ) {
1060 		struct r5dev *dev = &sh->dev[i];
1061 
1062 		if (dev->written || i == pd_idx || i == qd_idx) {
1063 			set_bit(R5_UPTODATE, &dev->flags);
1064 			if (fua)
1065 				set_bit(R5_WantFUA, &dev->flags);
1066 		}
1067 	}
1068 
1069 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1070 		sh->reconstruct_state = reconstruct_state_drain_result;
1071 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1072 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1073 	else {
1074 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1075 		sh->reconstruct_state = reconstruct_state_result;
1076 	}
1077 
1078 	set_bit(STRIPE_HANDLE, &sh->state);
1079 	release_stripe(sh);
1080 }
1081 
1082 static void
1083 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1084 		     struct dma_async_tx_descriptor *tx)
1085 {
1086 	int disks = sh->disks;
1087 	struct page **xor_srcs = percpu->scribble;
1088 	struct async_submit_ctl submit;
1089 	int count = 0, pd_idx = sh->pd_idx, i;
1090 	struct page *xor_dest;
1091 	int prexor = 0;
1092 	unsigned long flags;
1093 
1094 	pr_debug("%s: stripe %llu\n", __func__,
1095 		(unsigned long long)sh->sector);
1096 
1097 	/* check if prexor is active which means only process blocks
1098 	 * that are part of a read-modify-write (written)
1099 	 */
1100 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1101 		prexor = 1;
1102 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103 		for (i = disks; i--; ) {
1104 			struct r5dev *dev = &sh->dev[i];
1105 			if (dev->written)
1106 				xor_srcs[count++] = dev->page;
1107 		}
1108 	} else {
1109 		xor_dest = sh->dev[pd_idx].page;
1110 		for (i = disks; i--; ) {
1111 			struct r5dev *dev = &sh->dev[i];
1112 			if (i != pd_idx)
1113 				xor_srcs[count++] = dev->page;
1114 		}
1115 	}
1116 
1117 	/* 1/ if we prexor'd then the dest is reused as a source
1118 	 * 2/ if we did not prexor then we are redoing the parity
1119 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1120 	 * for the synchronous xor case
1121 	 */
1122 	flags = ASYNC_TX_ACK |
1123 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1124 
1125 	atomic_inc(&sh->count);
1126 
1127 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128 			  to_addr_conv(sh, percpu));
1129 	if (unlikely(count == 1))
1130 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1131 	else
1132 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 }
1134 
1135 static void
1136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1137 		     struct dma_async_tx_descriptor *tx)
1138 {
1139 	struct async_submit_ctl submit;
1140 	struct page **blocks = percpu->scribble;
1141 	int count;
1142 
1143 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1144 
1145 	count = set_syndrome_sources(blocks, sh);
1146 
1147 	atomic_inc(&sh->count);
1148 
1149 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1150 			  sh, to_addr_conv(sh, percpu));
1151 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 }
1153 
1154 static void ops_complete_check(void *stripe_head_ref)
1155 {
1156 	struct stripe_head *sh = stripe_head_ref;
1157 
1158 	pr_debug("%s: stripe %llu\n", __func__,
1159 		(unsigned long long)sh->sector);
1160 
1161 	sh->check_state = check_state_check_result;
1162 	set_bit(STRIPE_HANDLE, &sh->state);
1163 	release_stripe(sh);
1164 }
1165 
1166 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 {
1168 	int disks = sh->disks;
1169 	int pd_idx = sh->pd_idx;
1170 	int qd_idx = sh->qd_idx;
1171 	struct page *xor_dest;
1172 	struct page **xor_srcs = percpu->scribble;
1173 	struct dma_async_tx_descriptor *tx;
1174 	struct async_submit_ctl submit;
1175 	int count;
1176 	int i;
1177 
1178 	pr_debug("%s: stripe %llu\n", __func__,
1179 		(unsigned long long)sh->sector);
1180 
1181 	count = 0;
1182 	xor_dest = sh->dev[pd_idx].page;
1183 	xor_srcs[count++] = xor_dest;
1184 	for (i = disks; i--; ) {
1185 		if (i == pd_idx || i == qd_idx)
1186 			continue;
1187 		xor_srcs[count++] = sh->dev[i].page;
1188 	}
1189 
1190 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1191 			  to_addr_conv(sh, percpu));
1192 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193 			   &sh->ops.zero_sum_result, &submit);
1194 
1195 	atomic_inc(&sh->count);
1196 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1197 	tx = async_trigger_callback(&submit);
1198 }
1199 
1200 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1201 {
1202 	struct page **srcs = percpu->scribble;
1203 	struct async_submit_ctl submit;
1204 	int count;
1205 
1206 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1207 		(unsigned long long)sh->sector, checkp);
1208 
1209 	count = set_syndrome_sources(srcs, sh);
1210 	if (!checkp)
1211 		srcs[count] = NULL;
1212 
1213 	atomic_inc(&sh->count);
1214 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1215 			  sh, to_addr_conv(sh, percpu));
1216 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1217 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 }
1219 
1220 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 {
1222 	int overlap_clear = 0, i, disks = sh->disks;
1223 	struct dma_async_tx_descriptor *tx = NULL;
1224 	raid5_conf_t *conf = sh->raid_conf;
1225 	int level = conf->level;
1226 	struct raid5_percpu *percpu;
1227 	unsigned long cpu;
1228 
1229 	cpu = get_cpu();
1230 	percpu = per_cpu_ptr(conf->percpu, cpu);
1231 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232 		ops_run_biofill(sh);
1233 		overlap_clear++;
1234 	}
1235 
1236 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237 		if (level < 6)
1238 			tx = ops_run_compute5(sh, percpu);
1239 		else {
1240 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1241 				tx = ops_run_compute6_1(sh, percpu);
1242 			else
1243 				tx = ops_run_compute6_2(sh, percpu);
1244 		}
1245 		/* terminate the chain if reconstruct is not set to be run */
1246 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247 			async_tx_ack(tx);
1248 	}
1249 
1250 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251 		tx = ops_run_prexor(sh, percpu, tx);
1252 
1253 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254 		tx = ops_run_biodrain(sh, tx);
1255 		overlap_clear++;
1256 	}
1257 
1258 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1259 		if (level < 6)
1260 			ops_run_reconstruct5(sh, percpu, tx);
1261 		else
1262 			ops_run_reconstruct6(sh, percpu, tx);
1263 	}
1264 
1265 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1266 		if (sh->check_state == check_state_run)
1267 			ops_run_check_p(sh, percpu);
1268 		else if (sh->check_state == check_state_run_q)
1269 			ops_run_check_pq(sh, percpu, 0);
1270 		else if (sh->check_state == check_state_run_pq)
1271 			ops_run_check_pq(sh, percpu, 1);
1272 		else
1273 			BUG();
1274 	}
1275 
1276 	if (overlap_clear)
1277 		for (i = disks; i--; ) {
1278 			struct r5dev *dev = &sh->dev[i];
1279 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1280 				wake_up(&sh->raid_conf->wait_for_overlap);
1281 		}
1282 	put_cpu();
1283 }
1284 
1285 #ifdef CONFIG_MULTICORE_RAID456
1286 static void async_run_ops(void *param, async_cookie_t cookie)
1287 {
1288 	struct stripe_head *sh = param;
1289 	unsigned long ops_request = sh->ops.request;
1290 
1291 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1292 	wake_up(&sh->ops.wait_for_ops);
1293 
1294 	__raid_run_ops(sh, ops_request);
1295 	release_stripe(sh);
1296 }
1297 
1298 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1299 {
1300 	/* since handle_stripe can be called outside of raid5d context
1301 	 * we need to ensure sh->ops.request is de-staged before another
1302 	 * request arrives
1303 	 */
1304 	wait_event(sh->ops.wait_for_ops,
1305 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1306 	sh->ops.request = ops_request;
1307 
1308 	atomic_inc(&sh->count);
1309 	async_schedule(async_run_ops, sh);
1310 }
1311 #else
1312 #define raid_run_ops __raid_run_ops
1313 #endif
1314 
1315 static int grow_one_stripe(raid5_conf_t *conf)
1316 {
1317 	struct stripe_head *sh;
1318 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1319 	if (!sh)
1320 		return 0;
1321 	memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1322 	sh->raid_conf = conf;
1323 	spin_lock_init(&sh->lock);
1324 	#ifdef CONFIG_MULTICORE_RAID456
1325 	init_waitqueue_head(&sh->ops.wait_for_ops);
1326 	#endif
1327 
1328 	if (grow_buffers(sh)) {
1329 		shrink_buffers(sh);
1330 		kmem_cache_free(conf->slab_cache, sh);
1331 		return 0;
1332 	}
1333 	/* we just created an active stripe so... */
1334 	atomic_set(&sh->count, 1);
1335 	atomic_inc(&conf->active_stripes);
1336 	INIT_LIST_HEAD(&sh->lru);
1337 	release_stripe(sh);
1338 	return 1;
1339 }
1340 
1341 static int grow_stripes(raid5_conf_t *conf, int num)
1342 {
1343 	struct kmem_cache *sc;
1344 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1345 
1346 	if (conf->mddev->gendisk)
1347 		sprintf(conf->cache_name[0],
1348 			"raid%d-%s", conf->level, mdname(conf->mddev));
1349 	else
1350 		sprintf(conf->cache_name[0],
1351 			"raid%d-%p", conf->level, conf->mddev);
1352 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1353 
1354 	conf->active_name = 0;
1355 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1356 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1357 			       0, 0, NULL);
1358 	if (!sc)
1359 		return 1;
1360 	conf->slab_cache = sc;
1361 	conf->pool_size = devs;
1362 	while (num--)
1363 		if (!grow_one_stripe(conf))
1364 			return 1;
1365 	return 0;
1366 }
1367 
1368 /**
1369  * scribble_len - return the required size of the scribble region
1370  * @num - total number of disks in the array
1371  *
1372  * The size must be enough to contain:
1373  * 1/ a struct page pointer for each device in the array +2
1374  * 2/ room to convert each entry in (1) to its corresponding dma
1375  *    (dma_map_page()) or page (page_address()) address.
1376  *
1377  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1378  * calculate over all devices (not just the data blocks), using zeros in place
1379  * of the P and Q blocks.
1380  */
1381 static size_t scribble_len(int num)
1382 {
1383 	size_t len;
1384 
1385 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1386 
1387 	return len;
1388 }
1389 
1390 static int resize_stripes(raid5_conf_t *conf, int newsize)
1391 {
1392 	/* Make all the stripes able to hold 'newsize' devices.
1393 	 * New slots in each stripe get 'page' set to a new page.
1394 	 *
1395 	 * This happens in stages:
1396 	 * 1/ create a new kmem_cache and allocate the required number of
1397 	 *    stripe_heads.
1398 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1399 	 *    to the new stripe_heads.  This will have the side effect of
1400 	 *    freezing the array as once all stripe_heads have been collected,
1401 	 *    no IO will be possible.  Old stripe heads are freed once their
1402 	 *    pages have been transferred over, and the old kmem_cache is
1403 	 *    freed when all stripes are done.
1404 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1405 	 *    we simple return a failre status - no need to clean anything up.
1406 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1407 	 *    If this fails, we don't bother trying the shrink the
1408 	 *    stripe_heads down again, we just leave them as they are.
1409 	 *    As each stripe_head is processed the new one is released into
1410 	 *    active service.
1411 	 *
1412 	 * Once step2 is started, we cannot afford to wait for a write,
1413 	 * so we use GFP_NOIO allocations.
1414 	 */
1415 	struct stripe_head *osh, *nsh;
1416 	LIST_HEAD(newstripes);
1417 	struct disk_info *ndisks;
1418 	unsigned long cpu;
1419 	int err;
1420 	struct kmem_cache *sc;
1421 	int i;
1422 
1423 	if (newsize <= conf->pool_size)
1424 		return 0; /* never bother to shrink */
1425 
1426 	err = md_allow_write(conf->mddev);
1427 	if (err)
1428 		return err;
1429 
1430 	/* Step 1 */
1431 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1432 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1433 			       0, 0, NULL);
1434 	if (!sc)
1435 		return -ENOMEM;
1436 
1437 	for (i = conf->max_nr_stripes; i; i--) {
1438 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1439 		if (!nsh)
1440 			break;
1441 
1442 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1443 
1444 		nsh->raid_conf = conf;
1445 		spin_lock_init(&nsh->lock);
1446 		#ifdef CONFIG_MULTICORE_RAID456
1447 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1448 		#endif
1449 
1450 		list_add(&nsh->lru, &newstripes);
1451 	}
1452 	if (i) {
1453 		/* didn't get enough, give up */
1454 		while (!list_empty(&newstripes)) {
1455 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1456 			list_del(&nsh->lru);
1457 			kmem_cache_free(sc, nsh);
1458 		}
1459 		kmem_cache_destroy(sc);
1460 		return -ENOMEM;
1461 	}
1462 	/* Step 2 - Must use GFP_NOIO now.
1463 	 * OK, we have enough stripes, start collecting inactive
1464 	 * stripes and copying them over
1465 	 */
1466 	list_for_each_entry(nsh, &newstripes, lru) {
1467 		spin_lock_irq(&conf->device_lock);
1468 		wait_event_lock_irq(conf->wait_for_stripe,
1469 				    !list_empty(&conf->inactive_list),
1470 				    conf->device_lock,
1471 				    );
1472 		osh = get_free_stripe(conf);
1473 		spin_unlock_irq(&conf->device_lock);
1474 		atomic_set(&nsh->count, 1);
1475 		for(i=0; i<conf->pool_size; i++)
1476 			nsh->dev[i].page = osh->dev[i].page;
1477 		for( ; i<newsize; i++)
1478 			nsh->dev[i].page = NULL;
1479 		kmem_cache_free(conf->slab_cache, osh);
1480 	}
1481 	kmem_cache_destroy(conf->slab_cache);
1482 
1483 	/* Step 3.
1484 	 * At this point, we are holding all the stripes so the array
1485 	 * is completely stalled, so now is a good time to resize
1486 	 * conf->disks and the scribble region
1487 	 */
1488 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1489 	if (ndisks) {
1490 		for (i=0; i<conf->raid_disks; i++)
1491 			ndisks[i] = conf->disks[i];
1492 		kfree(conf->disks);
1493 		conf->disks = ndisks;
1494 	} else
1495 		err = -ENOMEM;
1496 
1497 	get_online_cpus();
1498 	conf->scribble_len = scribble_len(newsize);
1499 	for_each_present_cpu(cpu) {
1500 		struct raid5_percpu *percpu;
1501 		void *scribble;
1502 
1503 		percpu = per_cpu_ptr(conf->percpu, cpu);
1504 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1505 
1506 		if (scribble) {
1507 			kfree(percpu->scribble);
1508 			percpu->scribble = scribble;
1509 		} else {
1510 			err = -ENOMEM;
1511 			break;
1512 		}
1513 	}
1514 	put_online_cpus();
1515 
1516 	/* Step 4, return new stripes to service */
1517 	while(!list_empty(&newstripes)) {
1518 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1519 		list_del_init(&nsh->lru);
1520 
1521 		for (i=conf->raid_disks; i < newsize; i++)
1522 			if (nsh->dev[i].page == NULL) {
1523 				struct page *p = alloc_page(GFP_NOIO);
1524 				nsh->dev[i].page = p;
1525 				if (!p)
1526 					err = -ENOMEM;
1527 			}
1528 		release_stripe(nsh);
1529 	}
1530 	/* critical section pass, GFP_NOIO no longer needed */
1531 
1532 	conf->slab_cache = sc;
1533 	conf->active_name = 1-conf->active_name;
1534 	conf->pool_size = newsize;
1535 	return err;
1536 }
1537 
1538 static int drop_one_stripe(raid5_conf_t *conf)
1539 {
1540 	struct stripe_head *sh;
1541 
1542 	spin_lock_irq(&conf->device_lock);
1543 	sh = get_free_stripe(conf);
1544 	spin_unlock_irq(&conf->device_lock);
1545 	if (!sh)
1546 		return 0;
1547 	BUG_ON(atomic_read(&sh->count));
1548 	shrink_buffers(sh);
1549 	kmem_cache_free(conf->slab_cache, sh);
1550 	atomic_dec(&conf->active_stripes);
1551 	return 1;
1552 }
1553 
1554 static void shrink_stripes(raid5_conf_t *conf)
1555 {
1556 	while (drop_one_stripe(conf))
1557 		;
1558 
1559 	if (conf->slab_cache)
1560 		kmem_cache_destroy(conf->slab_cache);
1561 	conf->slab_cache = NULL;
1562 }
1563 
1564 static void raid5_end_read_request(struct bio * bi, int error)
1565 {
1566 	struct stripe_head *sh = bi->bi_private;
1567 	raid5_conf_t *conf = sh->raid_conf;
1568 	int disks = sh->disks, i;
1569 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1570 	char b[BDEVNAME_SIZE];
1571 	mdk_rdev_t *rdev;
1572 
1573 
1574 	for (i=0 ; i<disks; i++)
1575 		if (bi == &sh->dev[i].req)
1576 			break;
1577 
1578 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1579 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1580 		uptodate);
1581 	if (i == disks) {
1582 		BUG();
1583 		return;
1584 	}
1585 
1586 	if (uptodate) {
1587 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1588 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1589 			rdev = conf->disks[i].rdev;
1590 			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1591 				  " (%lu sectors at %llu on %s)\n",
1592 				  mdname(conf->mddev), STRIPE_SECTORS,
1593 				  (unsigned long long)(sh->sector
1594 						       + rdev->data_offset),
1595 				  bdevname(rdev->bdev, b));
1596 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1597 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1598 		}
1599 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1600 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1601 	} else {
1602 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1603 		int retry = 0;
1604 		rdev = conf->disks[i].rdev;
1605 
1606 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1607 		atomic_inc(&rdev->read_errors);
1608 		if (conf->mddev->degraded >= conf->max_degraded)
1609 			printk_rl(KERN_WARNING
1610 				  "md/raid:%s: read error not correctable "
1611 				  "(sector %llu on %s).\n",
1612 				  mdname(conf->mddev),
1613 				  (unsigned long long)(sh->sector
1614 						       + rdev->data_offset),
1615 				  bdn);
1616 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1617 			/* Oh, no!!! */
1618 			printk_rl(KERN_WARNING
1619 				  "md/raid:%s: read error NOT corrected!! "
1620 				  "(sector %llu on %s).\n",
1621 				  mdname(conf->mddev),
1622 				  (unsigned long long)(sh->sector
1623 						       + rdev->data_offset),
1624 				  bdn);
1625 		else if (atomic_read(&rdev->read_errors)
1626 			 > conf->max_nr_stripes)
1627 			printk(KERN_WARNING
1628 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1629 			       mdname(conf->mddev), bdn);
1630 		else
1631 			retry = 1;
1632 		if (retry)
1633 			set_bit(R5_ReadError, &sh->dev[i].flags);
1634 		else {
1635 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1636 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1637 			md_error(conf->mddev, rdev);
1638 		}
1639 	}
1640 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1641 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1642 	set_bit(STRIPE_HANDLE, &sh->state);
1643 	release_stripe(sh);
1644 }
1645 
1646 static void raid5_end_write_request(struct bio *bi, int error)
1647 {
1648 	struct stripe_head *sh = bi->bi_private;
1649 	raid5_conf_t *conf = sh->raid_conf;
1650 	int disks = sh->disks, i;
1651 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1652 
1653 	for (i=0 ; i<disks; i++)
1654 		if (bi == &sh->dev[i].req)
1655 			break;
1656 
1657 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1658 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1659 		uptodate);
1660 	if (i == disks) {
1661 		BUG();
1662 		return;
1663 	}
1664 
1665 	if (!uptodate)
1666 		md_error(conf->mddev, conf->disks[i].rdev);
1667 
1668 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1669 
1670 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1671 	set_bit(STRIPE_HANDLE, &sh->state);
1672 	release_stripe(sh);
1673 }
1674 
1675 
1676 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1677 
1678 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1679 {
1680 	struct r5dev *dev = &sh->dev[i];
1681 
1682 	bio_init(&dev->req);
1683 	dev->req.bi_io_vec = &dev->vec;
1684 	dev->req.bi_vcnt++;
1685 	dev->req.bi_max_vecs++;
1686 	dev->vec.bv_page = dev->page;
1687 	dev->vec.bv_len = STRIPE_SIZE;
1688 	dev->vec.bv_offset = 0;
1689 
1690 	dev->req.bi_sector = sh->sector;
1691 	dev->req.bi_private = sh;
1692 
1693 	dev->flags = 0;
1694 	dev->sector = compute_blocknr(sh, i, previous);
1695 }
1696 
1697 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1698 {
1699 	char b[BDEVNAME_SIZE];
1700 	raid5_conf_t *conf = mddev->private;
1701 	pr_debug("raid456: error called\n");
1702 
1703 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1704 		unsigned long flags;
1705 		spin_lock_irqsave(&conf->device_lock, flags);
1706 		mddev->degraded++;
1707 		spin_unlock_irqrestore(&conf->device_lock, flags);
1708 		/*
1709 		 * if recovery was running, make sure it aborts.
1710 		 */
1711 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1712 	}
1713 	set_bit(Faulty, &rdev->flags);
1714 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1715 	printk(KERN_ALERT
1716 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1717 	       "md/raid:%s: Operation continuing on %d devices.\n",
1718 	       mdname(mddev),
1719 	       bdevname(rdev->bdev, b),
1720 	       mdname(mddev),
1721 	       conf->raid_disks - mddev->degraded);
1722 }
1723 
1724 /*
1725  * Input: a 'big' sector number,
1726  * Output: index of the data and parity disk, and the sector # in them.
1727  */
1728 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1729 				     int previous, int *dd_idx,
1730 				     struct stripe_head *sh)
1731 {
1732 	sector_t stripe, stripe2;
1733 	sector_t chunk_number;
1734 	unsigned int chunk_offset;
1735 	int pd_idx, qd_idx;
1736 	int ddf_layout = 0;
1737 	sector_t new_sector;
1738 	int algorithm = previous ? conf->prev_algo
1739 				 : conf->algorithm;
1740 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1741 					 : conf->chunk_sectors;
1742 	int raid_disks = previous ? conf->previous_raid_disks
1743 				  : conf->raid_disks;
1744 	int data_disks = raid_disks - conf->max_degraded;
1745 
1746 	/* First compute the information on this sector */
1747 
1748 	/*
1749 	 * Compute the chunk number and the sector offset inside the chunk
1750 	 */
1751 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1752 	chunk_number = r_sector;
1753 
1754 	/*
1755 	 * Compute the stripe number
1756 	 */
1757 	stripe = chunk_number;
1758 	*dd_idx = sector_div(stripe, data_disks);
1759 	stripe2 = stripe;
1760 	/*
1761 	 * Select the parity disk based on the user selected algorithm.
1762 	 */
1763 	pd_idx = qd_idx = ~0;
1764 	switch(conf->level) {
1765 	case 4:
1766 		pd_idx = data_disks;
1767 		break;
1768 	case 5:
1769 		switch (algorithm) {
1770 		case ALGORITHM_LEFT_ASYMMETRIC:
1771 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1772 			if (*dd_idx >= pd_idx)
1773 				(*dd_idx)++;
1774 			break;
1775 		case ALGORITHM_RIGHT_ASYMMETRIC:
1776 			pd_idx = sector_div(stripe2, raid_disks);
1777 			if (*dd_idx >= pd_idx)
1778 				(*dd_idx)++;
1779 			break;
1780 		case ALGORITHM_LEFT_SYMMETRIC:
1781 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1782 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1783 			break;
1784 		case ALGORITHM_RIGHT_SYMMETRIC:
1785 			pd_idx = sector_div(stripe2, raid_disks);
1786 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1787 			break;
1788 		case ALGORITHM_PARITY_0:
1789 			pd_idx = 0;
1790 			(*dd_idx)++;
1791 			break;
1792 		case ALGORITHM_PARITY_N:
1793 			pd_idx = data_disks;
1794 			break;
1795 		default:
1796 			BUG();
1797 		}
1798 		break;
1799 	case 6:
1800 
1801 		switch (algorithm) {
1802 		case ALGORITHM_LEFT_ASYMMETRIC:
1803 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1804 			qd_idx = pd_idx + 1;
1805 			if (pd_idx == raid_disks-1) {
1806 				(*dd_idx)++;	/* Q D D D P */
1807 				qd_idx = 0;
1808 			} else if (*dd_idx >= pd_idx)
1809 				(*dd_idx) += 2; /* D D P Q D */
1810 			break;
1811 		case ALGORITHM_RIGHT_ASYMMETRIC:
1812 			pd_idx = sector_div(stripe2, raid_disks);
1813 			qd_idx = pd_idx + 1;
1814 			if (pd_idx == raid_disks-1) {
1815 				(*dd_idx)++;	/* Q D D D P */
1816 				qd_idx = 0;
1817 			} else if (*dd_idx >= pd_idx)
1818 				(*dd_idx) += 2; /* D D P Q D */
1819 			break;
1820 		case ALGORITHM_LEFT_SYMMETRIC:
1821 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1822 			qd_idx = (pd_idx + 1) % raid_disks;
1823 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1824 			break;
1825 		case ALGORITHM_RIGHT_SYMMETRIC:
1826 			pd_idx = sector_div(stripe2, raid_disks);
1827 			qd_idx = (pd_idx + 1) % raid_disks;
1828 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1829 			break;
1830 
1831 		case ALGORITHM_PARITY_0:
1832 			pd_idx = 0;
1833 			qd_idx = 1;
1834 			(*dd_idx) += 2;
1835 			break;
1836 		case ALGORITHM_PARITY_N:
1837 			pd_idx = data_disks;
1838 			qd_idx = data_disks + 1;
1839 			break;
1840 
1841 		case ALGORITHM_ROTATING_ZERO_RESTART:
1842 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1843 			 * of blocks for computing Q is different.
1844 			 */
1845 			pd_idx = sector_div(stripe2, raid_disks);
1846 			qd_idx = pd_idx + 1;
1847 			if (pd_idx == raid_disks-1) {
1848 				(*dd_idx)++;	/* Q D D D P */
1849 				qd_idx = 0;
1850 			} else if (*dd_idx >= pd_idx)
1851 				(*dd_idx) += 2; /* D D P Q D */
1852 			ddf_layout = 1;
1853 			break;
1854 
1855 		case ALGORITHM_ROTATING_N_RESTART:
1856 			/* Same a left_asymmetric, by first stripe is
1857 			 * D D D P Q  rather than
1858 			 * Q D D D P
1859 			 */
1860 			stripe2 += 1;
1861 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1862 			qd_idx = pd_idx + 1;
1863 			if (pd_idx == raid_disks-1) {
1864 				(*dd_idx)++;	/* Q D D D P */
1865 				qd_idx = 0;
1866 			} else if (*dd_idx >= pd_idx)
1867 				(*dd_idx) += 2; /* D D P Q D */
1868 			ddf_layout = 1;
1869 			break;
1870 
1871 		case ALGORITHM_ROTATING_N_CONTINUE:
1872 			/* Same as left_symmetric but Q is before P */
1873 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1874 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1875 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1876 			ddf_layout = 1;
1877 			break;
1878 
1879 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1880 			/* RAID5 left_asymmetric, with Q on last device */
1881 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1882 			if (*dd_idx >= pd_idx)
1883 				(*dd_idx)++;
1884 			qd_idx = raid_disks - 1;
1885 			break;
1886 
1887 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1888 			pd_idx = sector_div(stripe2, raid_disks-1);
1889 			if (*dd_idx >= pd_idx)
1890 				(*dd_idx)++;
1891 			qd_idx = raid_disks - 1;
1892 			break;
1893 
1894 		case ALGORITHM_LEFT_SYMMETRIC_6:
1895 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1896 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1897 			qd_idx = raid_disks - 1;
1898 			break;
1899 
1900 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1901 			pd_idx = sector_div(stripe2, raid_disks-1);
1902 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1903 			qd_idx = raid_disks - 1;
1904 			break;
1905 
1906 		case ALGORITHM_PARITY_0_6:
1907 			pd_idx = 0;
1908 			(*dd_idx)++;
1909 			qd_idx = raid_disks - 1;
1910 			break;
1911 
1912 		default:
1913 			BUG();
1914 		}
1915 		break;
1916 	}
1917 
1918 	if (sh) {
1919 		sh->pd_idx = pd_idx;
1920 		sh->qd_idx = qd_idx;
1921 		sh->ddf_layout = ddf_layout;
1922 	}
1923 	/*
1924 	 * Finally, compute the new sector number
1925 	 */
1926 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1927 	return new_sector;
1928 }
1929 
1930 
1931 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1932 {
1933 	raid5_conf_t *conf = sh->raid_conf;
1934 	int raid_disks = sh->disks;
1935 	int data_disks = raid_disks - conf->max_degraded;
1936 	sector_t new_sector = sh->sector, check;
1937 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1938 					 : conf->chunk_sectors;
1939 	int algorithm = previous ? conf->prev_algo
1940 				 : conf->algorithm;
1941 	sector_t stripe;
1942 	int chunk_offset;
1943 	sector_t chunk_number;
1944 	int dummy1, dd_idx = i;
1945 	sector_t r_sector;
1946 	struct stripe_head sh2;
1947 
1948 
1949 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1950 	stripe = new_sector;
1951 
1952 	if (i == sh->pd_idx)
1953 		return 0;
1954 	switch(conf->level) {
1955 	case 4: break;
1956 	case 5:
1957 		switch (algorithm) {
1958 		case ALGORITHM_LEFT_ASYMMETRIC:
1959 		case ALGORITHM_RIGHT_ASYMMETRIC:
1960 			if (i > sh->pd_idx)
1961 				i--;
1962 			break;
1963 		case ALGORITHM_LEFT_SYMMETRIC:
1964 		case ALGORITHM_RIGHT_SYMMETRIC:
1965 			if (i < sh->pd_idx)
1966 				i += raid_disks;
1967 			i -= (sh->pd_idx + 1);
1968 			break;
1969 		case ALGORITHM_PARITY_0:
1970 			i -= 1;
1971 			break;
1972 		case ALGORITHM_PARITY_N:
1973 			break;
1974 		default:
1975 			BUG();
1976 		}
1977 		break;
1978 	case 6:
1979 		if (i == sh->qd_idx)
1980 			return 0; /* It is the Q disk */
1981 		switch (algorithm) {
1982 		case ALGORITHM_LEFT_ASYMMETRIC:
1983 		case ALGORITHM_RIGHT_ASYMMETRIC:
1984 		case ALGORITHM_ROTATING_ZERO_RESTART:
1985 		case ALGORITHM_ROTATING_N_RESTART:
1986 			if (sh->pd_idx == raid_disks-1)
1987 				i--;	/* Q D D D P */
1988 			else if (i > sh->pd_idx)
1989 				i -= 2; /* D D P Q D */
1990 			break;
1991 		case ALGORITHM_LEFT_SYMMETRIC:
1992 		case ALGORITHM_RIGHT_SYMMETRIC:
1993 			if (sh->pd_idx == raid_disks-1)
1994 				i--; /* Q D D D P */
1995 			else {
1996 				/* D D P Q D */
1997 				if (i < sh->pd_idx)
1998 					i += raid_disks;
1999 				i -= (sh->pd_idx + 2);
2000 			}
2001 			break;
2002 		case ALGORITHM_PARITY_0:
2003 			i -= 2;
2004 			break;
2005 		case ALGORITHM_PARITY_N:
2006 			break;
2007 		case ALGORITHM_ROTATING_N_CONTINUE:
2008 			/* Like left_symmetric, but P is before Q */
2009 			if (sh->pd_idx == 0)
2010 				i--;	/* P D D D Q */
2011 			else {
2012 				/* D D Q P D */
2013 				if (i < sh->pd_idx)
2014 					i += raid_disks;
2015 				i -= (sh->pd_idx + 1);
2016 			}
2017 			break;
2018 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2019 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2020 			if (i > sh->pd_idx)
2021 				i--;
2022 			break;
2023 		case ALGORITHM_LEFT_SYMMETRIC_6:
2024 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2025 			if (i < sh->pd_idx)
2026 				i += data_disks + 1;
2027 			i -= (sh->pd_idx + 1);
2028 			break;
2029 		case ALGORITHM_PARITY_0_6:
2030 			i -= 1;
2031 			break;
2032 		default:
2033 			BUG();
2034 		}
2035 		break;
2036 	}
2037 
2038 	chunk_number = stripe * data_disks + i;
2039 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2040 
2041 	check = raid5_compute_sector(conf, r_sector,
2042 				     previous, &dummy1, &sh2);
2043 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2044 		|| sh2.qd_idx != sh->qd_idx) {
2045 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2046 		       mdname(conf->mddev));
2047 		return 0;
2048 	}
2049 	return r_sector;
2050 }
2051 
2052 
2053 static void
2054 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2055 			 int rcw, int expand)
2056 {
2057 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2058 	raid5_conf_t *conf = sh->raid_conf;
2059 	int level = conf->level;
2060 
2061 	if (rcw) {
2062 		/* if we are not expanding this is a proper write request, and
2063 		 * there will be bios with new data to be drained into the
2064 		 * stripe cache
2065 		 */
2066 		if (!expand) {
2067 			sh->reconstruct_state = reconstruct_state_drain_run;
2068 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2069 		} else
2070 			sh->reconstruct_state = reconstruct_state_run;
2071 
2072 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2073 
2074 		for (i = disks; i--; ) {
2075 			struct r5dev *dev = &sh->dev[i];
2076 
2077 			if (dev->towrite) {
2078 				set_bit(R5_LOCKED, &dev->flags);
2079 				set_bit(R5_Wantdrain, &dev->flags);
2080 				if (!expand)
2081 					clear_bit(R5_UPTODATE, &dev->flags);
2082 				s->locked++;
2083 			}
2084 		}
2085 		if (s->locked + conf->max_degraded == disks)
2086 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2087 				atomic_inc(&conf->pending_full_writes);
2088 	} else {
2089 		BUG_ON(level == 6);
2090 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2091 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2092 
2093 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2094 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2095 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2096 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2097 
2098 		for (i = disks; i--; ) {
2099 			struct r5dev *dev = &sh->dev[i];
2100 			if (i == pd_idx)
2101 				continue;
2102 
2103 			if (dev->towrite &&
2104 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2105 			     test_bit(R5_Wantcompute, &dev->flags))) {
2106 				set_bit(R5_Wantdrain, &dev->flags);
2107 				set_bit(R5_LOCKED, &dev->flags);
2108 				clear_bit(R5_UPTODATE, &dev->flags);
2109 				s->locked++;
2110 			}
2111 		}
2112 	}
2113 
2114 	/* keep the parity disk(s) locked while asynchronous operations
2115 	 * are in flight
2116 	 */
2117 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2118 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2119 	s->locked++;
2120 
2121 	if (level == 6) {
2122 		int qd_idx = sh->qd_idx;
2123 		struct r5dev *dev = &sh->dev[qd_idx];
2124 
2125 		set_bit(R5_LOCKED, &dev->flags);
2126 		clear_bit(R5_UPTODATE, &dev->flags);
2127 		s->locked++;
2128 	}
2129 
2130 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2131 		__func__, (unsigned long long)sh->sector,
2132 		s->locked, s->ops_request);
2133 }
2134 
2135 /*
2136  * Each stripe/dev can have one or more bion attached.
2137  * toread/towrite point to the first in a chain.
2138  * The bi_next chain must be in order.
2139  */
2140 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2141 {
2142 	struct bio **bip;
2143 	raid5_conf_t *conf = sh->raid_conf;
2144 	int firstwrite=0;
2145 
2146 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
2147 		(unsigned long long)bi->bi_sector,
2148 		(unsigned long long)sh->sector);
2149 
2150 
2151 	spin_lock(&sh->lock);
2152 	spin_lock_irq(&conf->device_lock);
2153 	if (forwrite) {
2154 		bip = &sh->dev[dd_idx].towrite;
2155 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2156 			firstwrite = 1;
2157 	} else
2158 		bip = &sh->dev[dd_idx].toread;
2159 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2160 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2161 			goto overlap;
2162 		bip = & (*bip)->bi_next;
2163 	}
2164 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2165 		goto overlap;
2166 
2167 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2168 	if (*bip)
2169 		bi->bi_next = *bip;
2170 	*bip = bi;
2171 	bi->bi_phys_segments++;
2172 	spin_unlock_irq(&conf->device_lock);
2173 	spin_unlock(&sh->lock);
2174 
2175 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2176 		(unsigned long long)bi->bi_sector,
2177 		(unsigned long long)sh->sector, dd_idx);
2178 
2179 	if (conf->mddev->bitmap && firstwrite) {
2180 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2181 				  STRIPE_SECTORS, 0);
2182 		sh->bm_seq = conf->seq_flush+1;
2183 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2184 	}
2185 
2186 	if (forwrite) {
2187 		/* check if page is covered */
2188 		sector_t sector = sh->dev[dd_idx].sector;
2189 		for (bi=sh->dev[dd_idx].towrite;
2190 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2191 			     bi && bi->bi_sector <= sector;
2192 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2193 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2194 				sector = bi->bi_sector + (bi->bi_size>>9);
2195 		}
2196 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2197 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2198 	}
2199 	return 1;
2200 
2201  overlap:
2202 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2203 	spin_unlock_irq(&conf->device_lock);
2204 	spin_unlock(&sh->lock);
2205 	return 0;
2206 }
2207 
2208 static void end_reshape(raid5_conf_t *conf);
2209 
2210 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2211 			    struct stripe_head *sh)
2212 {
2213 	int sectors_per_chunk =
2214 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2215 	int dd_idx;
2216 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2217 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2218 
2219 	raid5_compute_sector(conf,
2220 			     stripe * (disks - conf->max_degraded)
2221 			     *sectors_per_chunk + chunk_offset,
2222 			     previous,
2223 			     &dd_idx, sh);
2224 }
2225 
2226 static void
2227 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2228 				struct stripe_head_state *s, int disks,
2229 				struct bio **return_bi)
2230 {
2231 	int i;
2232 	for (i = disks; i--; ) {
2233 		struct bio *bi;
2234 		int bitmap_end = 0;
2235 
2236 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2237 			mdk_rdev_t *rdev;
2238 			rcu_read_lock();
2239 			rdev = rcu_dereference(conf->disks[i].rdev);
2240 			if (rdev && test_bit(In_sync, &rdev->flags))
2241 				/* multiple read failures in one stripe */
2242 				md_error(conf->mddev, rdev);
2243 			rcu_read_unlock();
2244 		}
2245 		spin_lock_irq(&conf->device_lock);
2246 		/* fail all writes first */
2247 		bi = sh->dev[i].towrite;
2248 		sh->dev[i].towrite = NULL;
2249 		if (bi) {
2250 			s->to_write--;
2251 			bitmap_end = 1;
2252 		}
2253 
2254 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2255 			wake_up(&conf->wait_for_overlap);
2256 
2257 		while (bi && bi->bi_sector <
2258 			sh->dev[i].sector + STRIPE_SECTORS) {
2259 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2260 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2261 			if (!raid5_dec_bi_phys_segments(bi)) {
2262 				md_write_end(conf->mddev);
2263 				bi->bi_next = *return_bi;
2264 				*return_bi = bi;
2265 			}
2266 			bi = nextbi;
2267 		}
2268 		/* and fail all 'written' */
2269 		bi = sh->dev[i].written;
2270 		sh->dev[i].written = NULL;
2271 		if (bi) bitmap_end = 1;
2272 		while (bi && bi->bi_sector <
2273 		       sh->dev[i].sector + STRIPE_SECTORS) {
2274 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2275 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2276 			if (!raid5_dec_bi_phys_segments(bi)) {
2277 				md_write_end(conf->mddev);
2278 				bi->bi_next = *return_bi;
2279 				*return_bi = bi;
2280 			}
2281 			bi = bi2;
2282 		}
2283 
2284 		/* fail any reads if this device is non-operational and
2285 		 * the data has not reached the cache yet.
2286 		 */
2287 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2288 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2289 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2290 			bi = sh->dev[i].toread;
2291 			sh->dev[i].toread = NULL;
2292 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2293 				wake_up(&conf->wait_for_overlap);
2294 			if (bi) s->to_read--;
2295 			while (bi && bi->bi_sector <
2296 			       sh->dev[i].sector + STRIPE_SECTORS) {
2297 				struct bio *nextbi =
2298 					r5_next_bio(bi, sh->dev[i].sector);
2299 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2300 				if (!raid5_dec_bi_phys_segments(bi)) {
2301 					bi->bi_next = *return_bi;
2302 					*return_bi = bi;
2303 				}
2304 				bi = nextbi;
2305 			}
2306 		}
2307 		spin_unlock_irq(&conf->device_lock);
2308 		if (bitmap_end)
2309 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2310 					STRIPE_SECTORS, 0, 0);
2311 	}
2312 
2313 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2314 		if (atomic_dec_and_test(&conf->pending_full_writes))
2315 			md_wakeup_thread(conf->mddev->thread);
2316 }
2317 
2318 /* fetch_block5 - checks the given member device to see if its data needs
2319  * to be read or computed to satisfy a request.
2320  *
2321  * Returns 1 when no more member devices need to be checked, otherwise returns
2322  * 0 to tell the loop in handle_stripe_fill5 to continue
2323  */
2324 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2325 			int disk_idx, int disks)
2326 {
2327 	struct r5dev *dev = &sh->dev[disk_idx];
2328 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2329 
2330 	/* is the data in this block needed, and can we get it? */
2331 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2332 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2333 	    (dev->toread ||
2334 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2335 	     s->syncing || s->expanding ||
2336 	     (s->failed &&
2337 	      (failed_dev->toread ||
2338 	       (failed_dev->towrite &&
2339 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2340 		/* We would like to get this block, possibly by computing it,
2341 		 * otherwise read it if the backing disk is insync
2342 		 */
2343 		if ((s->uptodate == disks - 1) &&
2344 		    (s->failed && disk_idx == s->failed_num)) {
2345 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2346 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2347 			set_bit(R5_Wantcompute, &dev->flags);
2348 			sh->ops.target = disk_idx;
2349 			sh->ops.target2 = -1;
2350 			s->req_compute = 1;
2351 			/* Careful: from this point on 'uptodate' is in the eye
2352 			 * of raid_run_ops which services 'compute' operations
2353 			 * before writes. R5_Wantcompute flags a block that will
2354 			 * be R5_UPTODATE by the time it is needed for a
2355 			 * subsequent operation.
2356 			 */
2357 			s->uptodate++;
2358 			return 1; /* uptodate + compute == disks */
2359 		} else if (test_bit(R5_Insync, &dev->flags)) {
2360 			set_bit(R5_LOCKED, &dev->flags);
2361 			set_bit(R5_Wantread, &dev->flags);
2362 			s->locked++;
2363 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2364 				s->syncing);
2365 		}
2366 	}
2367 
2368 	return 0;
2369 }
2370 
2371 /**
2372  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2373  */
2374 static void handle_stripe_fill5(struct stripe_head *sh,
2375 			struct stripe_head_state *s, int disks)
2376 {
2377 	int i;
2378 
2379 	/* look for blocks to read/compute, skip this if a compute
2380 	 * is already in flight, or if the stripe contents are in the
2381 	 * midst of changing due to a write
2382 	 */
2383 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2384 	    !sh->reconstruct_state)
2385 		for (i = disks; i--; )
2386 			if (fetch_block5(sh, s, i, disks))
2387 				break;
2388 	set_bit(STRIPE_HANDLE, &sh->state);
2389 }
2390 
2391 /* fetch_block6 - checks the given member device to see if its data needs
2392  * to be read or computed to satisfy a request.
2393  *
2394  * Returns 1 when no more member devices need to be checked, otherwise returns
2395  * 0 to tell the loop in handle_stripe_fill6 to continue
2396  */
2397 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2398 			 struct r6_state *r6s, int disk_idx, int disks)
2399 {
2400 	struct r5dev *dev = &sh->dev[disk_idx];
2401 	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2402 				  &sh->dev[r6s->failed_num[1]] };
2403 
2404 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2405 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2406 	    (dev->toread ||
2407 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2408 	     s->syncing || s->expanding ||
2409 	     (s->failed >= 1 &&
2410 	      (fdev[0]->toread || s->to_write)) ||
2411 	     (s->failed >= 2 &&
2412 	      (fdev[1]->toread || s->to_write)))) {
2413 		/* we would like to get this block, possibly by computing it,
2414 		 * otherwise read it if the backing disk is insync
2415 		 */
2416 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2417 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2418 		if ((s->uptodate == disks - 1) &&
2419 		    (s->failed && (disk_idx == r6s->failed_num[0] ||
2420 				   disk_idx == r6s->failed_num[1]))) {
2421 			/* have disk failed, and we're requested to fetch it;
2422 			 * do compute it
2423 			 */
2424 			pr_debug("Computing stripe %llu block %d\n",
2425 			       (unsigned long long)sh->sector, disk_idx);
2426 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2427 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2428 			set_bit(R5_Wantcompute, &dev->flags);
2429 			sh->ops.target = disk_idx;
2430 			sh->ops.target2 = -1; /* no 2nd target */
2431 			s->req_compute = 1;
2432 			s->uptodate++;
2433 			return 1;
2434 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2435 			/* Computing 2-failure is *very* expensive; only
2436 			 * do it if failed >= 2
2437 			 */
2438 			int other;
2439 			for (other = disks; other--; ) {
2440 				if (other == disk_idx)
2441 					continue;
2442 				if (!test_bit(R5_UPTODATE,
2443 				      &sh->dev[other].flags))
2444 					break;
2445 			}
2446 			BUG_ON(other < 0);
2447 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2448 			       (unsigned long long)sh->sector,
2449 			       disk_idx, other);
2450 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2451 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2452 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2453 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2454 			sh->ops.target = disk_idx;
2455 			sh->ops.target2 = other;
2456 			s->uptodate += 2;
2457 			s->req_compute = 1;
2458 			return 1;
2459 		} else if (test_bit(R5_Insync, &dev->flags)) {
2460 			set_bit(R5_LOCKED, &dev->flags);
2461 			set_bit(R5_Wantread, &dev->flags);
2462 			s->locked++;
2463 			pr_debug("Reading block %d (sync=%d)\n",
2464 				disk_idx, s->syncing);
2465 		}
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 /**
2472  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2473  */
2474 static void handle_stripe_fill6(struct stripe_head *sh,
2475 			struct stripe_head_state *s, struct r6_state *r6s,
2476 			int disks)
2477 {
2478 	int i;
2479 
2480 	/* look for blocks to read/compute, skip this if a compute
2481 	 * is already in flight, or if the stripe contents are in the
2482 	 * midst of changing due to a write
2483 	 */
2484 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2485 	    !sh->reconstruct_state)
2486 		for (i = disks; i--; )
2487 			if (fetch_block6(sh, s, r6s, i, disks))
2488 				break;
2489 	set_bit(STRIPE_HANDLE, &sh->state);
2490 }
2491 
2492 
2493 /* handle_stripe_clean_event
2494  * any written block on an uptodate or failed drive can be returned.
2495  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2496  * never LOCKED, so we don't need to test 'failed' directly.
2497  */
2498 static void handle_stripe_clean_event(raid5_conf_t *conf,
2499 	struct stripe_head *sh, int disks, struct bio **return_bi)
2500 {
2501 	int i;
2502 	struct r5dev *dev;
2503 
2504 	for (i = disks; i--; )
2505 		if (sh->dev[i].written) {
2506 			dev = &sh->dev[i];
2507 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2508 				test_bit(R5_UPTODATE, &dev->flags)) {
2509 				/* We can return any write requests */
2510 				struct bio *wbi, *wbi2;
2511 				int bitmap_end = 0;
2512 				pr_debug("Return write for disc %d\n", i);
2513 				spin_lock_irq(&conf->device_lock);
2514 				wbi = dev->written;
2515 				dev->written = NULL;
2516 				while (wbi && wbi->bi_sector <
2517 					dev->sector + STRIPE_SECTORS) {
2518 					wbi2 = r5_next_bio(wbi, dev->sector);
2519 					if (!raid5_dec_bi_phys_segments(wbi)) {
2520 						md_write_end(conf->mddev);
2521 						wbi->bi_next = *return_bi;
2522 						*return_bi = wbi;
2523 					}
2524 					wbi = wbi2;
2525 				}
2526 				if (dev->towrite == NULL)
2527 					bitmap_end = 1;
2528 				spin_unlock_irq(&conf->device_lock);
2529 				if (bitmap_end)
2530 					bitmap_endwrite(conf->mddev->bitmap,
2531 							sh->sector,
2532 							STRIPE_SECTORS,
2533 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2534 							0);
2535 			}
2536 		}
2537 
2538 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2539 		if (atomic_dec_and_test(&conf->pending_full_writes))
2540 			md_wakeup_thread(conf->mddev->thread);
2541 }
2542 
2543 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2544 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2545 {
2546 	int rmw = 0, rcw = 0, i;
2547 	for (i = disks; i--; ) {
2548 		/* would I have to read this buffer for read_modify_write */
2549 		struct r5dev *dev = &sh->dev[i];
2550 		if ((dev->towrite || i == sh->pd_idx) &&
2551 		    !test_bit(R5_LOCKED, &dev->flags) &&
2552 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2553 		      test_bit(R5_Wantcompute, &dev->flags))) {
2554 			if (test_bit(R5_Insync, &dev->flags))
2555 				rmw++;
2556 			else
2557 				rmw += 2*disks;  /* cannot read it */
2558 		}
2559 		/* Would I have to read this buffer for reconstruct_write */
2560 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2561 		    !test_bit(R5_LOCKED, &dev->flags) &&
2562 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2563 		    test_bit(R5_Wantcompute, &dev->flags))) {
2564 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2565 			else
2566 				rcw += 2*disks;
2567 		}
2568 	}
2569 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2570 		(unsigned long long)sh->sector, rmw, rcw);
2571 	set_bit(STRIPE_HANDLE, &sh->state);
2572 	if (rmw < rcw && rmw > 0)
2573 		/* prefer read-modify-write, but need to get some data */
2574 		for (i = disks; i--; ) {
2575 			struct r5dev *dev = &sh->dev[i];
2576 			if ((dev->towrite || i == sh->pd_idx) &&
2577 			    !test_bit(R5_LOCKED, &dev->flags) &&
2578 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2579 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2580 			    test_bit(R5_Insync, &dev->flags)) {
2581 				if (
2582 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2583 					pr_debug("Read_old block "
2584 						"%d for r-m-w\n", i);
2585 					set_bit(R5_LOCKED, &dev->flags);
2586 					set_bit(R5_Wantread, &dev->flags);
2587 					s->locked++;
2588 				} else {
2589 					set_bit(STRIPE_DELAYED, &sh->state);
2590 					set_bit(STRIPE_HANDLE, &sh->state);
2591 				}
2592 			}
2593 		}
2594 	if (rcw <= rmw && rcw > 0)
2595 		/* want reconstruct write, but need to get some data */
2596 		for (i = disks; i--; ) {
2597 			struct r5dev *dev = &sh->dev[i];
2598 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2599 			    i != sh->pd_idx &&
2600 			    !test_bit(R5_LOCKED, &dev->flags) &&
2601 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2602 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2603 			    test_bit(R5_Insync, &dev->flags)) {
2604 				if (
2605 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2606 					pr_debug("Read_old block "
2607 						"%d for Reconstruct\n", i);
2608 					set_bit(R5_LOCKED, &dev->flags);
2609 					set_bit(R5_Wantread, &dev->flags);
2610 					s->locked++;
2611 				} else {
2612 					set_bit(STRIPE_DELAYED, &sh->state);
2613 					set_bit(STRIPE_HANDLE, &sh->state);
2614 				}
2615 			}
2616 		}
2617 	/* now if nothing is locked, and if we have enough data,
2618 	 * we can start a write request
2619 	 */
2620 	/* since handle_stripe can be called at any time we need to handle the
2621 	 * case where a compute block operation has been submitted and then a
2622 	 * subsequent call wants to start a write request.  raid_run_ops only
2623 	 * handles the case where compute block and reconstruct are requested
2624 	 * simultaneously.  If this is not the case then new writes need to be
2625 	 * held off until the compute completes.
2626 	 */
2627 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2628 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2629 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2630 		schedule_reconstruction(sh, s, rcw == 0, 0);
2631 }
2632 
2633 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2634 		struct stripe_head *sh,	struct stripe_head_state *s,
2635 		struct r6_state *r6s, int disks)
2636 {
2637 	int rcw = 0, pd_idx = sh->pd_idx, i;
2638 	int qd_idx = sh->qd_idx;
2639 
2640 	set_bit(STRIPE_HANDLE, &sh->state);
2641 	for (i = disks; i--; ) {
2642 		struct r5dev *dev = &sh->dev[i];
2643 		/* check if we haven't enough data */
2644 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2645 		    i != pd_idx && i != qd_idx &&
2646 		    !test_bit(R5_LOCKED, &dev->flags) &&
2647 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2648 		      test_bit(R5_Wantcompute, &dev->flags))) {
2649 			rcw++;
2650 			if (!test_bit(R5_Insync, &dev->flags))
2651 				continue; /* it's a failed drive */
2652 
2653 			if (
2654 			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2655 				pr_debug("Read_old stripe %llu "
2656 					"block %d for Reconstruct\n",
2657 				     (unsigned long long)sh->sector, i);
2658 				set_bit(R5_LOCKED, &dev->flags);
2659 				set_bit(R5_Wantread, &dev->flags);
2660 				s->locked++;
2661 			} else {
2662 				pr_debug("Request delayed stripe %llu "
2663 					"block %d for Reconstruct\n",
2664 				     (unsigned long long)sh->sector, i);
2665 				set_bit(STRIPE_DELAYED, &sh->state);
2666 				set_bit(STRIPE_HANDLE, &sh->state);
2667 			}
2668 		}
2669 	}
2670 	/* now if nothing is locked, and if we have enough data, we can start a
2671 	 * write request
2672 	 */
2673 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2674 	    s->locked == 0 && rcw == 0 &&
2675 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2676 		schedule_reconstruction(sh, s, 1, 0);
2677 	}
2678 }
2679 
2680 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2681 				struct stripe_head_state *s, int disks)
2682 {
2683 	struct r5dev *dev = NULL;
2684 
2685 	set_bit(STRIPE_HANDLE, &sh->state);
2686 
2687 	switch (sh->check_state) {
2688 	case check_state_idle:
2689 		/* start a new check operation if there are no failures */
2690 		if (s->failed == 0) {
2691 			BUG_ON(s->uptodate != disks);
2692 			sh->check_state = check_state_run;
2693 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2694 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2695 			s->uptodate--;
2696 			break;
2697 		}
2698 		dev = &sh->dev[s->failed_num];
2699 		/* fall through */
2700 	case check_state_compute_result:
2701 		sh->check_state = check_state_idle;
2702 		if (!dev)
2703 			dev = &sh->dev[sh->pd_idx];
2704 
2705 		/* check that a write has not made the stripe insync */
2706 		if (test_bit(STRIPE_INSYNC, &sh->state))
2707 			break;
2708 
2709 		/* either failed parity check, or recovery is happening */
2710 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2711 		BUG_ON(s->uptodate != disks);
2712 
2713 		set_bit(R5_LOCKED, &dev->flags);
2714 		s->locked++;
2715 		set_bit(R5_Wantwrite, &dev->flags);
2716 
2717 		clear_bit(STRIPE_DEGRADED, &sh->state);
2718 		set_bit(STRIPE_INSYNC, &sh->state);
2719 		break;
2720 	case check_state_run:
2721 		break; /* we will be called again upon completion */
2722 	case check_state_check_result:
2723 		sh->check_state = check_state_idle;
2724 
2725 		/* if a failure occurred during the check operation, leave
2726 		 * STRIPE_INSYNC not set and let the stripe be handled again
2727 		 */
2728 		if (s->failed)
2729 			break;
2730 
2731 		/* handle a successful check operation, if parity is correct
2732 		 * we are done.  Otherwise update the mismatch count and repair
2733 		 * parity if !MD_RECOVERY_CHECK
2734 		 */
2735 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2736 			/* parity is correct (on disc,
2737 			 * not in buffer any more)
2738 			 */
2739 			set_bit(STRIPE_INSYNC, &sh->state);
2740 		else {
2741 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2742 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2743 				/* don't try to repair!! */
2744 				set_bit(STRIPE_INSYNC, &sh->state);
2745 			else {
2746 				sh->check_state = check_state_compute_run;
2747 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2748 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2749 				set_bit(R5_Wantcompute,
2750 					&sh->dev[sh->pd_idx].flags);
2751 				sh->ops.target = sh->pd_idx;
2752 				sh->ops.target2 = -1;
2753 				s->uptodate++;
2754 			}
2755 		}
2756 		break;
2757 	case check_state_compute_run:
2758 		break;
2759 	default:
2760 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2761 		       __func__, sh->check_state,
2762 		       (unsigned long long) sh->sector);
2763 		BUG();
2764 	}
2765 }
2766 
2767 
2768 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2769 				  struct stripe_head_state *s,
2770 				  struct r6_state *r6s, int disks)
2771 {
2772 	int pd_idx = sh->pd_idx;
2773 	int qd_idx = sh->qd_idx;
2774 	struct r5dev *dev;
2775 
2776 	set_bit(STRIPE_HANDLE, &sh->state);
2777 
2778 	BUG_ON(s->failed > 2);
2779 
2780 	/* Want to check and possibly repair P and Q.
2781 	 * However there could be one 'failed' device, in which
2782 	 * case we can only check one of them, possibly using the
2783 	 * other to generate missing data
2784 	 */
2785 
2786 	switch (sh->check_state) {
2787 	case check_state_idle:
2788 		/* start a new check operation if there are < 2 failures */
2789 		if (s->failed == r6s->q_failed) {
2790 			/* The only possible failed device holds Q, so it
2791 			 * makes sense to check P (If anything else were failed,
2792 			 * we would have used P to recreate it).
2793 			 */
2794 			sh->check_state = check_state_run;
2795 		}
2796 		if (!r6s->q_failed && s->failed < 2) {
2797 			/* Q is not failed, and we didn't use it to generate
2798 			 * anything, so it makes sense to check it
2799 			 */
2800 			if (sh->check_state == check_state_run)
2801 				sh->check_state = check_state_run_pq;
2802 			else
2803 				sh->check_state = check_state_run_q;
2804 		}
2805 
2806 		/* discard potentially stale zero_sum_result */
2807 		sh->ops.zero_sum_result = 0;
2808 
2809 		if (sh->check_state == check_state_run) {
2810 			/* async_xor_zero_sum destroys the contents of P */
2811 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2812 			s->uptodate--;
2813 		}
2814 		if (sh->check_state >= check_state_run &&
2815 		    sh->check_state <= check_state_run_pq) {
2816 			/* async_syndrome_zero_sum preserves P and Q, so
2817 			 * no need to mark them !uptodate here
2818 			 */
2819 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2820 			break;
2821 		}
2822 
2823 		/* we have 2-disk failure */
2824 		BUG_ON(s->failed != 2);
2825 		/* fall through */
2826 	case check_state_compute_result:
2827 		sh->check_state = check_state_idle;
2828 
2829 		/* check that a write has not made the stripe insync */
2830 		if (test_bit(STRIPE_INSYNC, &sh->state))
2831 			break;
2832 
2833 		/* now write out any block on a failed drive,
2834 		 * or P or Q if they were recomputed
2835 		 */
2836 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2837 		if (s->failed == 2) {
2838 			dev = &sh->dev[r6s->failed_num[1]];
2839 			s->locked++;
2840 			set_bit(R5_LOCKED, &dev->flags);
2841 			set_bit(R5_Wantwrite, &dev->flags);
2842 		}
2843 		if (s->failed >= 1) {
2844 			dev = &sh->dev[r6s->failed_num[0]];
2845 			s->locked++;
2846 			set_bit(R5_LOCKED, &dev->flags);
2847 			set_bit(R5_Wantwrite, &dev->flags);
2848 		}
2849 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2850 			dev = &sh->dev[pd_idx];
2851 			s->locked++;
2852 			set_bit(R5_LOCKED, &dev->flags);
2853 			set_bit(R5_Wantwrite, &dev->flags);
2854 		}
2855 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2856 			dev = &sh->dev[qd_idx];
2857 			s->locked++;
2858 			set_bit(R5_LOCKED, &dev->flags);
2859 			set_bit(R5_Wantwrite, &dev->flags);
2860 		}
2861 		clear_bit(STRIPE_DEGRADED, &sh->state);
2862 
2863 		set_bit(STRIPE_INSYNC, &sh->state);
2864 		break;
2865 	case check_state_run:
2866 	case check_state_run_q:
2867 	case check_state_run_pq:
2868 		break; /* we will be called again upon completion */
2869 	case check_state_check_result:
2870 		sh->check_state = check_state_idle;
2871 
2872 		/* handle a successful check operation, if parity is correct
2873 		 * we are done.  Otherwise update the mismatch count and repair
2874 		 * parity if !MD_RECOVERY_CHECK
2875 		 */
2876 		if (sh->ops.zero_sum_result == 0) {
2877 			/* both parities are correct */
2878 			if (!s->failed)
2879 				set_bit(STRIPE_INSYNC, &sh->state);
2880 			else {
2881 				/* in contrast to the raid5 case we can validate
2882 				 * parity, but still have a failure to write
2883 				 * back
2884 				 */
2885 				sh->check_state = check_state_compute_result;
2886 				/* Returning at this point means that we may go
2887 				 * off and bring p and/or q uptodate again so
2888 				 * we make sure to check zero_sum_result again
2889 				 * to verify if p or q need writeback
2890 				 */
2891 			}
2892 		} else {
2893 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2894 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2895 				/* don't try to repair!! */
2896 				set_bit(STRIPE_INSYNC, &sh->state);
2897 			else {
2898 				int *target = &sh->ops.target;
2899 
2900 				sh->ops.target = -1;
2901 				sh->ops.target2 = -1;
2902 				sh->check_state = check_state_compute_run;
2903 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2904 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2905 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2906 					set_bit(R5_Wantcompute,
2907 						&sh->dev[pd_idx].flags);
2908 					*target = pd_idx;
2909 					target = &sh->ops.target2;
2910 					s->uptodate++;
2911 				}
2912 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2913 					set_bit(R5_Wantcompute,
2914 						&sh->dev[qd_idx].flags);
2915 					*target = qd_idx;
2916 					s->uptodate++;
2917 				}
2918 			}
2919 		}
2920 		break;
2921 	case check_state_compute_run:
2922 		break;
2923 	default:
2924 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2925 		       __func__, sh->check_state,
2926 		       (unsigned long long) sh->sector);
2927 		BUG();
2928 	}
2929 }
2930 
2931 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2932 				struct r6_state *r6s)
2933 {
2934 	int i;
2935 
2936 	/* We have read all the blocks in this stripe and now we need to
2937 	 * copy some of them into a target stripe for expand.
2938 	 */
2939 	struct dma_async_tx_descriptor *tx = NULL;
2940 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2941 	for (i = 0; i < sh->disks; i++)
2942 		if (i != sh->pd_idx && i != sh->qd_idx) {
2943 			int dd_idx, j;
2944 			struct stripe_head *sh2;
2945 			struct async_submit_ctl submit;
2946 
2947 			sector_t bn = compute_blocknr(sh, i, 1);
2948 			sector_t s = raid5_compute_sector(conf, bn, 0,
2949 							  &dd_idx, NULL);
2950 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2951 			if (sh2 == NULL)
2952 				/* so far only the early blocks of this stripe
2953 				 * have been requested.  When later blocks
2954 				 * get requested, we will try again
2955 				 */
2956 				continue;
2957 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2958 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2959 				/* must have already done this block */
2960 				release_stripe(sh2);
2961 				continue;
2962 			}
2963 
2964 			/* place all the copies on one channel */
2965 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2966 			tx = async_memcpy(sh2->dev[dd_idx].page,
2967 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2968 					  &submit);
2969 
2970 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2971 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2972 			for (j = 0; j < conf->raid_disks; j++)
2973 				if (j != sh2->pd_idx &&
2974 				    (!r6s || j != sh2->qd_idx) &&
2975 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2976 					break;
2977 			if (j == conf->raid_disks) {
2978 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2979 				set_bit(STRIPE_HANDLE, &sh2->state);
2980 			}
2981 			release_stripe(sh2);
2982 
2983 		}
2984 	/* done submitting copies, wait for them to complete */
2985 	if (tx) {
2986 		async_tx_ack(tx);
2987 		dma_wait_for_async_tx(tx);
2988 	}
2989 }
2990 
2991 
2992 /*
2993  * handle_stripe - do things to a stripe.
2994  *
2995  * We lock the stripe and then examine the state of various bits
2996  * to see what needs to be done.
2997  * Possible results:
2998  *    return some read request which now have data
2999  *    return some write requests which are safely on disc
3000  *    schedule a read on some buffers
3001  *    schedule a write of some buffers
3002  *    return confirmation of parity correctness
3003  *
3004  * buffers are taken off read_list or write_list, and bh_cache buffers
3005  * get BH_Lock set before the stripe lock is released.
3006  *
3007  */
3008 
3009 static void handle_stripe5(struct stripe_head *sh)
3010 {
3011 	raid5_conf_t *conf = sh->raid_conf;
3012 	int disks = sh->disks, i;
3013 	struct bio *return_bi = NULL;
3014 	struct stripe_head_state s;
3015 	struct r5dev *dev;
3016 	mdk_rdev_t *blocked_rdev = NULL;
3017 	int prexor;
3018 	int dec_preread_active = 0;
3019 
3020 	memset(&s, 0, sizeof(s));
3021 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3022 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3023 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3024 		 sh->reconstruct_state);
3025 
3026 	spin_lock(&sh->lock);
3027 	clear_bit(STRIPE_HANDLE, &sh->state);
3028 	clear_bit(STRIPE_DELAYED, &sh->state);
3029 
3030 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3031 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3032 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3033 
3034 	/* Now to look around and see what can be done */
3035 	rcu_read_lock();
3036 	for (i=disks; i--; ) {
3037 		mdk_rdev_t *rdev;
3038 
3039 		dev = &sh->dev[i];
3040 
3041 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3042 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
3043 			dev->towrite, dev->written);
3044 
3045 		/* maybe we can request a biofill operation
3046 		 *
3047 		 * new wantfill requests are only permitted while
3048 		 * ops_complete_biofill is guaranteed to be inactive
3049 		 */
3050 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3051 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3052 			set_bit(R5_Wantfill, &dev->flags);
3053 
3054 		/* now count some things */
3055 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3056 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3057 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3058 
3059 		if (test_bit(R5_Wantfill, &dev->flags))
3060 			s.to_fill++;
3061 		else if (dev->toread)
3062 			s.to_read++;
3063 		if (dev->towrite) {
3064 			s.to_write++;
3065 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3066 				s.non_overwrite++;
3067 		}
3068 		if (dev->written)
3069 			s.written++;
3070 		rdev = rcu_dereference(conf->disks[i].rdev);
3071 		if (blocked_rdev == NULL &&
3072 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3073 			blocked_rdev = rdev;
3074 			atomic_inc(&rdev->nr_pending);
3075 		}
3076 		clear_bit(R5_Insync, &dev->flags);
3077 		if (!rdev)
3078 			/* Not in-sync */;
3079 		else if (test_bit(In_sync, &rdev->flags))
3080 			set_bit(R5_Insync, &dev->flags);
3081 		else {
3082 			/* could be in-sync depending on recovery/reshape status */
3083 			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3084 				set_bit(R5_Insync, &dev->flags);
3085 		}
3086 		if (!test_bit(R5_Insync, &dev->flags)) {
3087 			/* The ReadError flag will just be confusing now */
3088 			clear_bit(R5_ReadError, &dev->flags);
3089 			clear_bit(R5_ReWrite, &dev->flags);
3090 		}
3091 		if (test_bit(R5_ReadError, &dev->flags))
3092 			clear_bit(R5_Insync, &dev->flags);
3093 		if (!test_bit(R5_Insync, &dev->flags)) {
3094 			s.failed++;
3095 			s.failed_num = i;
3096 		}
3097 	}
3098 	rcu_read_unlock();
3099 
3100 	if (unlikely(blocked_rdev)) {
3101 		if (s.syncing || s.expanding || s.expanded ||
3102 		    s.to_write || s.written) {
3103 			set_bit(STRIPE_HANDLE, &sh->state);
3104 			goto unlock;
3105 		}
3106 		/* There is nothing for the blocked_rdev to block */
3107 		rdev_dec_pending(blocked_rdev, conf->mddev);
3108 		blocked_rdev = NULL;
3109 	}
3110 
3111 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3112 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3113 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3114 	}
3115 
3116 	pr_debug("locked=%d uptodate=%d to_read=%d"
3117 		" to_write=%d failed=%d failed_num=%d\n",
3118 		s.locked, s.uptodate, s.to_read, s.to_write,
3119 		s.failed, s.failed_num);
3120 	/* check if the array has lost two devices and, if so, some requests might
3121 	 * need to be failed
3122 	 */
3123 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3124 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3125 	if (s.failed > 1 && s.syncing) {
3126 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3127 		clear_bit(STRIPE_SYNCING, &sh->state);
3128 		s.syncing = 0;
3129 	}
3130 
3131 	/* might be able to return some write requests if the parity block
3132 	 * is safe, or on a failed drive
3133 	 */
3134 	dev = &sh->dev[sh->pd_idx];
3135 	if ( s.written &&
3136 	     ((test_bit(R5_Insync, &dev->flags) &&
3137 	       !test_bit(R5_LOCKED, &dev->flags) &&
3138 	       test_bit(R5_UPTODATE, &dev->flags)) ||
3139 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3140 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3141 
3142 	/* Now we might consider reading some blocks, either to check/generate
3143 	 * parity, or to satisfy requests
3144 	 * or to load a block that is being partially written.
3145 	 */
3146 	if (s.to_read || s.non_overwrite ||
3147 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3148 		handle_stripe_fill5(sh, &s, disks);
3149 
3150 	/* Now we check to see if any write operations have recently
3151 	 * completed
3152 	 */
3153 	prexor = 0;
3154 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3155 		prexor = 1;
3156 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3157 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3158 		sh->reconstruct_state = reconstruct_state_idle;
3159 
3160 		/* All the 'written' buffers and the parity block are ready to
3161 		 * be written back to disk
3162 		 */
3163 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3164 		for (i = disks; i--; ) {
3165 			dev = &sh->dev[i];
3166 			if (test_bit(R5_LOCKED, &dev->flags) &&
3167 				(i == sh->pd_idx || dev->written)) {
3168 				pr_debug("Writing block %d\n", i);
3169 				set_bit(R5_Wantwrite, &dev->flags);
3170 				if (prexor)
3171 					continue;
3172 				if (!test_bit(R5_Insync, &dev->flags) ||
3173 				    (i == sh->pd_idx && s.failed == 0))
3174 					set_bit(STRIPE_INSYNC, &sh->state);
3175 			}
3176 		}
3177 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3178 			dec_preread_active = 1;
3179 	}
3180 
3181 	/* Now to consider new write requests and what else, if anything
3182 	 * should be read.  We do not handle new writes when:
3183 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3184 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3185 	 *    block.
3186 	 */
3187 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3188 		handle_stripe_dirtying5(conf, sh, &s, disks);
3189 
3190 	/* maybe we need to check and possibly fix the parity for this stripe
3191 	 * Any reads will already have been scheduled, so we just see if enough
3192 	 * data is available.  The parity check is held off while parity
3193 	 * dependent operations are in flight.
3194 	 */
3195 	if (sh->check_state ||
3196 	    (s.syncing && s.locked == 0 &&
3197 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3198 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3199 		handle_parity_checks5(conf, sh, &s, disks);
3200 
3201 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3202 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3203 		clear_bit(STRIPE_SYNCING, &sh->state);
3204 	}
3205 
3206 	/* If the failed drive is just a ReadError, then we might need to progress
3207 	 * the repair/check process
3208 	 */
3209 	if (s.failed == 1 && !conf->mddev->ro &&
3210 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3211 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3212 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3213 		) {
3214 		dev = &sh->dev[s.failed_num];
3215 		if (!test_bit(R5_ReWrite, &dev->flags)) {
3216 			set_bit(R5_Wantwrite, &dev->flags);
3217 			set_bit(R5_ReWrite, &dev->flags);
3218 			set_bit(R5_LOCKED, &dev->flags);
3219 			s.locked++;
3220 		} else {
3221 			/* let's read it back */
3222 			set_bit(R5_Wantread, &dev->flags);
3223 			set_bit(R5_LOCKED, &dev->flags);
3224 			s.locked++;
3225 		}
3226 	}
3227 
3228 	/* Finish reconstruct operations initiated by the expansion process */
3229 	if (sh->reconstruct_state == reconstruct_state_result) {
3230 		struct stripe_head *sh2
3231 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3232 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3233 			/* sh cannot be written until sh2 has been read.
3234 			 * so arrange for sh to be delayed a little
3235 			 */
3236 			set_bit(STRIPE_DELAYED, &sh->state);
3237 			set_bit(STRIPE_HANDLE, &sh->state);
3238 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3239 					      &sh2->state))
3240 				atomic_inc(&conf->preread_active_stripes);
3241 			release_stripe(sh2);
3242 			goto unlock;
3243 		}
3244 		if (sh2)
3245 			release_stripe(sh2);
3246 
3247 		sh->reconstruct_state = reconstruct_state_idle;
3248 		clear_bit(STRIPE_EXPANDING, &sh->state);
3249 		for (i = conf->raid_disks; i--; ) {
3250 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3251 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3252 			s.locked++;
3253 		}
3254 	}
3255 
3256 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3257 	    !sh->reconstruct_state) {
3258 		/* Need to write out all blocks after computing parity */
3259 		sh->disks = conf->raid_disks;
3260 		stripe_set_idx(sh->sector, conf, 0, sh);
3261 		schedule_reconstruction(sh, &s, 1, 1);
3262 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3263 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3264 		atomic_dec(&conf->reshape_stripes);
3265 		wake_up(&conf->wait_for_overlap);
3266 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3267 	}
3268 
3269 	if (s.expanding && s.locked == 0 &&
3270 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3271 		handle_stripe_expansion(conf, sh, NULL);
3272 
3273  unlock:
3274 	spin_unlock(&sh->lock);
3275 
3276 	/* wait for this device to become unblocked */
3277 	if (unlikely(blocked_rdev))
3278 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3279 
3280 	if (s.ops_request)
3281 		raid_run_ops(sh, s.ops_request);
3282 
3283 	ops_run_io(sh, &s);
3284 
3285 	if (dec_preread_active) {
3286 		/* We delay this until after ops_run_io so that if make_request
3287 		 * is waiting on a flush, it won't continue until the writes
3288 		 * have actually been submitted.
3289 		 */
3290 		atomic_dec(&conf->preread_active_stripes);
3291 		if (atomic_read(&conf->preread_active_stripes) <
3292 		    IO_THRESHOLD)
3293 			md_wakeup_thread(conf->mddev->thread);
3294 	}
3295 	return_io(return_bi);
3296 }
3297 
3298 static void handle_stripe6(struct stripe_head *sh)
3299 {
3300 	raid5_conf_t *conf = sh->raid_conf;
3301 	int disks = sh->disks;
3302 	struct bio *return_bi = NULL;
3303 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3304 	struct stripe_head_state s;
3305 	struct r6_state r6s;
3306 	struct r5dev *dev, *pdev, *qdev;
3307 	mdk_rdev_t *blocked_rdev = NULL;
3308 	int dec_preread_active = 0;
3309 
3310 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3311 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3312 	       (unsigned long long)sh->sector, sh->state,
3313 	       atomic_read(&sh->count), pd_idx, qd_idx,
3314 	       sh->check_state, sh->reconstruct_state);
3315 	memset(&s, 0, sizeof(s));
3316 
3317 	spin_lock(&sh->lock);
3318 	clear_bit(STRIPE_HANDLE, &sh->state);
3319 	clear_bit(STRIPE_DELAYED, &sh->state);
3320 
3321 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3322 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3323 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3324 	/* Now to look around and see what can be done */
3325 
3326 	rcu_read_lock();
3327 	for (i=disks; i--; ) {
3328 		mdk_rdev_t *rdev;
3329 		dev = &sh->dev[i];
3330 
3331 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3332 			i, dev->flags, dev->toread, dev->towrite, dev->written);
3333 		/* maybe we can reply to a read
3334 		 *
3335 		 * new wantfill requests are only permitted while
3336 		 * ops_complete_biofill is guaranteed to be inactive
3337 		 */
3338 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3339 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3340 			set_bit(R5_Wantfill, &dev->flags);
3341 
3342 		/* now count some things */
3343 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3344 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3345 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3346 			s.compute++;
3347 			BUG_ON(s.compute > 2);
3348 		}
3349 
3350 		if (test_bit(R5_Wantfill, &dev->flags)) {
3351 			s.to_fill++;
3352 		} else if (dev->toread)
3353 			s.to_read++;
3354 		if (dev->towrite) {
3355 			s.to_write++;
3356 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3357 				s.non_overwrite++;
3358 		}
3359 		if (dev->written)
3360 			s.written++;
3361 		rdev = rcu_dereference(conf->disks[i].rdev);
3362 		if (blocked_rdev == NULL &&
3363 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3364 			blocked_rdev = rdev;
3365 			atomic_inc(&rdev->nr_pending);
3366 		}
3367 		clear_bit(R5_Insync, &dev->flags);
3368 		if (!rdev)
3369 			/* Not in-sync */;
3370 		else if (test_bit(In_sync, &rdev->flags))
3371 			set_bit(R5_Insync, &dev->flags);
3372 		else {
3373 			/* in sync if before recovery_offset */
3374 			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3375 				set_bit(R5_Insync, &dev->flags);
3376 		}
3377 		if (!test_bit(R5_Insync, &dev->flags)) {
3378 			/* The ReadError flag will just be confusing now */
3379 			clear_bit(R5_ReadError, &dev->flags);
3380 			clear_bit(R5_ReWrite, &dev->flags);
3381 		}
3382 		if (test_bit(R5_ReadError, &dev->flags))
3383 			clear_bit(R5_Insync, &dev->flags);
3384 		if (!test_bit(R5_Insync, &dev->flags)) {
3385 			if (s.failed < 2)
3386 				r6s.failed_num[s.failed] = i;
3387 			s.failed++;
3388 		}
3389 	}
3390 	rcu_read_unlock();
3391 
3392 	if (unlikely(blocked_rdev)) {
3393 		if (s.syncing || s.expanding || s.expanded ||
3394 		    s.to_write || s.written) {
3395 			set_bit(STRIPE_HANDLE, &sh->state);
3396 			goto unlock;
3397 		}
3398 		/* There is nothing for the blocked_rdev to block */
3399 		rdev_dec_pending(blocked_rdev, conf->mddev);
3400 		blocked_rdev = NULL;
3401 	}
3402 
3403 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3404 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3405 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3406 	}
3407 
3408 	pr_debug("locked=%d uptodate=%d to_read=%d"
3409 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3410 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3411 	       r6s.failed_num[0], r6s.failed_num[1]);
3412 	/* check if the array has lost >2 devices and, if so, some requests
3413 	 * might need to be failed
3414 	 */
3415 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3416 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3417 	if (s.failed > 2 && s.syncing) {
3418 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3419 		clear_bit(STRIPE_SYNCING, &sh->state);
3420 		s.syncing = 0;
3421 	}
3422 
3423 	/*
3424 	 * might be able to return some write requests if the parity blocks
3425 	 * are safe, or on a failed drive
3426 	 */
3427 	pdev = &sh->dev[pd_idx];
3428 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3429 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3430 	qdev = &sh->dev[qd_idx];
3431 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3432 		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3433 
3434 	if ( s.written &&
3435 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3436 			     && !test_bit(R5_LOCKED, &pdev->flags)
3437 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3438 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3439 			     && !test_bit(R5_LOCKED, &qdev->flags)
3440 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3441 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3442 
3443 	/* Now we might consider reading some blocks, either to check/generate
3444 	 * parity, or to satisfy requests
3445 	 * or to load a block that is being partially written.
3446 	 */
3447 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3448 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3449 		handle_stripe_fill6(sh, &s, &r6s, disks);
3450 
3451 	/* Now we check to see if any write operations have recently
3452 	 * completed
3453 	 */
3454 	if (sh->reconstruct_state == reconstruct_state_drain_result) {
3455 
3456 		sh->reconstruct_state = reconstruct_state_idle;
3457 		/* All the 'written' buffers and the parity blocks are ready to
3458 		 * be written back to disk
3459 		 */
3460 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3461 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3462 		for (i = disks; i--; ) {
3463 			dev = &sh->dev[i];
3464 			if (test_bit(R5_LOCKED, &dev->flags) &&
3465 			    (i == sh->pd_idx || i == qd_idx ||
3466 			     dev->written)) {
3467 				pr_debug("Writing block %d\n", i);
3468 				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3469 				set_bit(R5_Wantwrite, &dev->flags);
3470 				if (!test_bit(R5_Insync, &dev->flags) ||
3471 				    ((i == sh->pd_idx || i == qd_idx) &&
3472 				      s.failed == 0))
3473 					set_bit(STRIPE_INSYNC, &sh->state);
3474 			}
3475 		}
3476 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3477 			dec_preread_active = 1;
3478 	}
3479 
3480 	/* Now to consider new write requests and what else, if anything
3481 	 * should be read.  We do not handle new writes when:
3482 	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3483 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3484 	 *    block.
3485 	 */
3486 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3487 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3488 
3489 	/* maybe we need to check and possibly fix the parity for this stripe
3490 	 * Any reads will already have been scheduled, so we just see if enough
3491 	 * data is available.  The parity check is held off while parity
3492 	 * dependent operations are in flight.
3493 	 */
3494 	if (sh->check_state ||
3495 	    (s.syncing && s.locked == 0 &&
3496 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3497 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3498 		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3499 
3500 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3501 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3502 		clear_bit(STRIPE_SYNCING, &sh->state);
3503 	}
3504 
3505 	/* If the failed drives are just a ReadError, then we might need
3506 	 * to progress the repair/check process
3507 	 */
3508 	if (s.failed <= 2 && !conf->mddev->ro)
3509 		for (i = 0; i < s.failed; i++) {
3510 			dev = &sh->dev[r6s.failed_num[i]];
3511 			if (test_bit(R5_ReadError, &dev->flags)
3512 			    && !test_bit(R5_LOCKED, &dev->flags)
3513 			    && test_bit(R5_UPTODATE, &dev->flags)
3514 				) {
3515 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3516 					set_bit(R5_Wantwrite, &dev->flags);
3517 					set_bit(R5_ReWrite, &dev->flags);
3518 					set_bit(R5_LOCKED, &dev->flags);
3519 					s.locked++;
3520 				} else {
3521 					/* let's read it back */
3522 					set_bit(R5_Wantread, &dev->flags);
3523 					set_bit(R5_LOCKED, &dev->flags);
3524 					s.locked++;
3525 				}
3526 			}
3527 		}
3528 
3529 	/* Finish reconstruct operations initiated by the expansion process */
3530 	if (sh->reconstruct_state == reconstruct_state_result) {
3531 		sh->reconstruct_state = reconstruct_state_idle;
3532 		clear_bit(STRIPE_EXPANDING, &sh->state);
3533 		for (i = conf->raid_disks; i--; ) {
3534 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3535 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3536 			s.locked++;
3537 		}
3538 	}
3539 
3540 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3541 	    !sh->reconstruct_state) {
3542 		struct stripe_head *sh2
3543 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3544 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3545 			/* sh cannot be written until sh2 has been read.
3546 			 * so arrange for sh to be delayed a little
3547 			 */
3548 			set_bit(STRIPE_DELAYED, &sh->state);
3549 			set_bit(STRIPE_HANDLE, &sh->state);
3550 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3551 					      &sh2->state))
3552 				atomic_inc(&conf->preread_active_stripes);
3553 			release_stripe(sh2);
3554 			goto unlock;
3555 		}
3556 		if (sh2)
3557 			release_stripe(sh2);
3558 
3559 		/* Need to write out all blocks after computing P&Q */
3560 		sh->disks = conf->raid_disks;
3561 		stripe_set_idx(sh->sector, conf, 0, sh);
3562 		schedule_reconstruction(sh, &s, 1, 1);
3563 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3564 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3565 		atomic_dec(&conf->reshape_stripes);
3566 		wake_up(&conf->wait_for_overlap);
3567 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3568 	}
3569 
3570 	if (s.expanding && s.locked == 0 &&
3571 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3572 		handle_stripe_expansion(conf, sh, &r6s);
3573 
3574  unlock:
3575 	spin_unlock(&sh->lock);
3576 
3577 	/* wait for this device to become unblocked */
3578 	if (unlikely(blocked_rdev))
3579 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3580 
3581 	if (s.ops_request)
3582 		raid_run_ops(sh, s.ops_request);
3583 
3584 	ops_run_io(sh, &s);
3585 
3586 
3587 	if (dec_preread_active) {
3588 		/* We delay this until after ops_run_io so that if make_request
3589 		 * is waiting on a flush, it won't continue until the writes
3590 		 * have actually been submitted.
3591 		 */
3592 		atomic_dec(&conf->preread_active_stripes);
3593 		if (atomic_read(&conf->preread_active_stripes) <
3594 		    IO_THRESHOLD)
3595 			md_wakeup_thread(conf->mddev->thread);
3596 	}
3597 
3598 	return_io(return_bi);
3599 }
3600 
3601 static void handle_stripe(struct stripe_head *sh)
3602 {
3603 	if (sh->raid_conf->level == 6)
3604 		handle_stripe6(sh);
3605 	else
3606 		handle_stripe5(sh);
3607 }
3608 
3609 static void raid5_activate_delayed(raid5_conf_t *conf)
3610 {
3611 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3612 		while (!list_empty(&conf->delayed_list)) {
3613 			struct list_head *l = conf->delayed_list.next;
3614 			struct stripe_head *sh;
3615 			sh = list_entry(l, struct stripe_head, lru);
3616 			list_del_init(l);
3617 			clear_bit(STRIPE_DELAYED, &sh->state);
3618 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3619 				atomic_inc(&conf->preread_active_stripes);
3620 			list_add_tail(&sh->lru, &conf->hold_list);
3621 		}
3622 	}
3623 }
3624 
3625 static void activate_bit_delay(raid5_conf_t *conf)
3626 {
3627 	/* device_lock is held */
3628 	struct list_head head;
3629 	list_add(&head, &conf->bitmap_list);
3630 	list_del_init(&conf->bitmap_list);
3631 	while (!list_empty(&head)) {
3632 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3633 		list_del_init(&sh->lru);
3634 		atomic_inc(&sh->count);
3635 		__release_stripe(conf, sh);
3636 	}
3637 }
3638 
3639 int md_raid5_congested(mddev_t *mddev, int bits)
3640 {
3641 	raid5_conf_t *conf = mddev->private;
3642 
3643 	/* No difference between reads and writes.  Just check
3644 	 * how busy the stripe_cache is
3645 	 */
3646 
3647 	if (conf->inactive_blocked)
3648 		return 1;
3649 	if (conf->quiesce)
3650 		return 1;
3651 	if (list_empty_careful(&conf->inactive_list))
3652 		return 1;
3653 
3654 	return 0;
3655 }
3656 EXPORT_SYMBOL_GPL(md_raid5_congested);
3657 
3658 static int raid5_congested(void *data, int bits)
3659 {
3660 	mddev_t *mddev = data;
3661 
3662 	return mddev_congested(mddev, bits) ||
3663 		md_raid5_congested(mddev, bits);
3664 }
3665 
3666 /* We want read requests to align with chunks where possible,
3667  * but write requests don't need to.
3668  */
3669 static int raid5_mergeable_bvec(struct request_queue *q,
3670 				struct bvec_merge_data *bvm,
3671 				struct bio_vec *biovec)
3672 {
3673 	mddev_t *mddev = q->queuedata;
3674 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3675 	int max;
3676 	unsigned int chunk_sectors = mddev->chunk_sectors;
3677 	unsigned int bio_sectors = bvm->bi_size >> 9;
3678 
3679 	if ((bvm->bi_rw & 1) == WRITE)
3680 		return biovec->bv_len; /* always allow writes to be mergeable */
3681 
3682 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3683 		chunk_sectors = mddev->new_chunk_sectors;
3684 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3685 	if (max < 0) max = 0;
3686 	if (max <= biovec->bv_len && bio_sectors == 0)
3687 		return biovec->bv_len;
3688 	else
3689 		return max;
3690 }
3691 
3692 
3693 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3694 {
3695 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3696 	unsigned int chunk_sectors = mddev->chunk_sectors;
3697 	unsigned int bio_sectors = bio->bi_size >> 9;
3698 
3699 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3700 		chunk_sectors = mddev->new_chunk_sectors;
3701 	return  chunk_sectors >=
3702 		((sector & (chunk_sectors - 1)) + bio_sectors);
3703 }
3704 
3705 /*
3706  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3707  *  later sampled by raid5d.
3708  */
3709 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3710 {
3711 	unsigned long flags;
3712 
3713 	spin_lock_irqsave(&conf->device_lock, flags);
3714 
3715 	bi->bi_next = conf->retry_read_aligned_list;
3716 	conf->retry_read_aligned_list = bi;
3717 
3718 	spin_unlock_irqrestore(&conf->device_lock, flags);
3719 	md_wakeup_thread(conf->mddev->thread);
3720 }
3721 
3722 
3723 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3724 {
3725 	struct bio *bi;
3726 
3727 	bi = conf->retry_read_aligned;
3728 	if (bi) {
3729 		conf->retry_read_aligned = NULL;
3730 		return bi;
3731 	}
3732 	bi = conf->retry_read_aligned_list;
3733 	if(bi) {
3734 		conf->retry_read_aligned_list = bi->bi_next;
3735 		bi->bi_next = NULL;
3736 		/*
3737 		 * this sets the active strip count to 1 and the processed
3738 		 * strip count to zero (upper 8 bits)
3739 		 */
3740 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3741 	}
3742 
3743 	return bi;
3744 }
3745 
3746 
3747 /*
3748  *  The "raid5_align_endio" should check if the read succeeded and if it
3749  *  did, call bio_endio on the original bio (having bio_put the new bio
3750  *  first).
3751  *  If the read failed..
3752  */
3753 static void raid5_align_endio(struct bio *bi, int error)
3754 {
3755 	struct bio* raid_bi  = bi->bi_private;
3756 	mddev_t *mddev;
3757 	raid5_conf_t *conf;
3758 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3759 	mdk_rdev_t *rdev;
3760 
3761 	bio_put(bi);
3762 
3763 	rdev = (void*)raid_bi->bi_next;
3764 	raid_bi->bi_next = NULL;
3765 	mddev = rdev->mddev;
3766 	conf = mddev->private;
3767 
3768 	rdev_dec_pending(rdev, conf->mddev);
3769 
3770 	if (!error && uptodate) {
3771 		bio_endio(raid_bi, 0);
3772 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3773 			wake_up(&conf->wait_for_stripe);
3774 		return;
3775 	}
3776 
3777 
3778 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3779 
3780 	add_bio_to_retry(raid_bi, conf);
3781 }
3782 
3783 static int bio_fits_rdev(struct bio *bi)
3784 {
3785 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3786 
3787 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3788 		return 0;
3789 	blk_recount_segments(q, bi);
3790 	if (bi->bi_phys_segments > queue_max_segments(q))
3791 		return 0;
3792 
3793 	if (q->merge_bvec_fn)
3794 		/* it's too hard to apply the merge_bvec_fn at this stage,
3795 		 * just just give up
3796 		 */
3797 		return 0;
3798 
3799 	return 1;
3800 }
3801 
3802 
3803 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3804 {
3805 	raid5_conf_t *conf = mddev->private;
3806 	int dd_idx;
3807 	struct bio* align_bi;
3808 	mdk_rdev_t *rdev;
3809 
3810 	if (!in_chunk_boundary(mddev, raid_bio)) {
3811 		pr_debug("chunk_aligned_read : non aligned\n");
3812 		return 0;
3813 	}
3814 	/*
3815 	 * use bio_clone_mddev to make a copy of the bio
3816 	 */
3817 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3818 	if (!align_bi)
3819 		return 0;
3820 	/*
3821 	 *   set bi_end_io to a new function, and set bi_private to the
3822 	 *     original bio.
3823 	 */
3824 	align_bi->bi_end_io  = raid5_align_endio;
3825 	align_bi->bi_private = raid_bio;
3826 	/*
3827 	 *	compute position
3828 	 */
3829 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3830 						    0,
3831 						    &dd_idx, NULL);
3832 
3833 	rcu_read_lock();
3834 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3835 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3836 		atomic_inc(&rdev->nr_pending);
3837 		rcu_read_unlock();
3838 		raid_bio->bi_next = (void*)rdev;
3839 		align_bi->bi_bdev =  rdev->bdev;
3840 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3841 		align_bi->bi_sector += rdev->data_offset;
3842 
3843 		if (!bio_fits_rdev(align_bi)) {
3844 			/* too big in some way */
3845 			bio_put(align_bi);
3846 			rdev_dec_pending(rdev, mddev);
3847 			return 0;
3848 		}
3849 
3850 		spin_lock_irq(&conf->device_lock);
3851 		wait_event_lock_irq(conf->wait_for_stripe,
3852 				    conf->quiesce == 0,
3853 				    conf->device_lock, /* nothing */);
3854 		atomic_inc(&conf->active_aligned_reads);
3855 		spin_unlock_irq(&conf->device_lock);
3856 
3857 		generic_make_request(align_bi);
3858 		return 1;
3859 	} else {
3860 		rcu_read_unlock();
3861 		bio_put(align_bi);
3862 		return 0;
3863 	}
3864 }
3865 
3866 /* __get_priority_stripe - get the next stripe to process
3867  *
3868  * Full stripe writes are allowed to pass preread active stripes up until
3869  * the bypass_threshold is exceeded.  In general the bypass_count
3870  * increments when the handle_list is handled before the hold_list; however, it
3871  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3872  * stripe with in flight i/o.  The bypass_count will be reset when the
3873  * head of the hold_list has changed, i.e. the head was promoted to the
3874  * handle_list.
3875  */
3876 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3877 {
3878 	struct stripe_head *sh;
3879 
3880 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3881 		  __func__,
3882 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3883 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3884 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3885 
3886 	if (!list_empty(&conf->handle_list)) {
3887 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3888 
3889 		if (list_empty(&conf->hold_list))
3890 			conf->bypass_count = 0;
3891 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3892 			if (conf->hold_list.next == conf->last_hold)
3893 				conf->bypass_count++;
3894 			else {
3895 				conf->last_hold = conf->hold_list.next;
3896 				conf->bypass_count -= conf->bypass_threshold;
3897 				if (conf->bypass_count < 0)
3898 					conf->bypass_count = 0;
3899 			}
3900 		}
3901 	} else if (!list_empty(&conf->hold_list) &&
3902 		   ((conf->bypass_threshold &&
3903 		     conf->bypass_count > conf->bypass_threshold) ||
3904 		    atomic_read(&conf->pending_full_writes) == 0)) {
3905 		sh = list_entry(conf->hold_list.next,
3906 				typeof(*sh), lru);
3907 		conf->bypass_count -= conf->bypass_threshold;
3908 		if (conf->bypass_count < 0)
3909 			conf->bypass_count = 0;
3910 	} else
3911 		return NULL;
3912 
3913 	list_del_init(&sh->lru);
3914 	atomic_inc(&sh->count);
3915 	BUG_ON(atomic_read(&sh->count) != 1);
3916 	return sh;
3917 }
3918 
3919 static int make_request(mddev_t *mddev, struct bio * bi)
3920 {
3921 	raid5_conf_t *conf = mddev->private;
3922 	int dd_idx;
3923 	sector_t new_sector;
3924 	sector_t logical_sector, last_sector;
3925 	struct stripe_head *sh;
3926 	const int rw = bio_data_dir(bi);
3927 	int remaining;
3928 	int plugged;
3929 
3930 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3931 		md_flush_request(mddev, bi);
3932 		return 0;
3933 	}
3934 
3935 	md_write_start(mddev, bi);
3936 
3937 	if (rw == READ &&
3938 	     mddev->reshape_position == MaxSector &&
3939 	     chunk_aligned_read(mddev,bi))
3940 		return 0;
3941 
3942 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3943 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3944 	bi->bi_next = NULL;
3945 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3946 
3947 	plugged = mddev_check_plugged(mddev);
3948 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3949 		DEFINE_WAIT(w);
3950 		int disks, data_disks;
3951 		int previous;
3952 
3953 	retry:
3954 		previous = 0;
3955 		disks = conf->raid_disks;
3956 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3957 		if (unlikely(conf->reshape_progress != MaxSector)) {
3958 			/* spinlock is needed as reshape_progress may be
3959 			 * 64bit on a 32bit platform, and so it might be
3960 			 * possible to see a half-updated value
3961 			 * Of course reshape_progress could change after
3962 			 * the lock is dropped, so once we get a reference
3963 			 * to the stripe that we think it is, we will have
3964 			 * to check again.
3965 			 */
3966 			spin_lock_irq(&conf->device_lock);
3967 			if (mddev->delta_disks < 0
3968 			    ? logical_sector < conf->reshape_progress
3969 			    : logical_sector >= conf->reshape_progress) {
3970 				disks = conf->previous_raid_disks;
3971 				previous = 1;
3972 			} else {
3973 				if (mddev->delta_disks < 0
3974 				    ? logical_sector < conf->reshape_safe
3975 				    : logical_sector >= conf->reshape_safe) {
3976 					spin_unlock_irq(&conf->device_lock);
3977 					schedule();
3978 					goto retry;
3979 				}
3980 			}
3981 			spin_unlock_irq(&conf->device_lock);
3982 		}
3983 		data_disks = disks - conf->max_degraded;
3984 
3985 		new_sector = raid5_compute_sector(conf, logical_sector,
3986 						  previous,
3987 						  &dd_idx, NULL);
3988 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
3989 			(unsigned long long)new_sector,
3990 			(unsigned long long)logical_sector);
3991 
3992 		sh = get_active_stripe(conf, new_sector, previous,
3993 				       (bi->bi_rw&RWA_MASK), 0);
3994 		if (sh) {
3995 			if (unlikely(previous)) {
3996 				/* expansion might have moved on while waiting for a
3997 				 * stripe, so we must do the range check again.
3998 				 * Expansion could still move past after this
3999 				 * test, but as we are holding a reference to
4000 				 * 'sh', we know that if that happens,
4001 				 *  STRIPE_EXPANDING will get set and the expansion
4002 				 * won't proceed until we finish with the stripe.
4003 				 */
4004 				int must_retry = 0;
4005 				spin_lock_irq(&conf->device_lock);
4006 				if (mddev->delta_disks < 0
4007 				    ? logical_sector >= conf->reshape_progress
4008 				    : logical_sector < conf->reshape_progress)
4009 					/* mismatch, need to try again */
4010 					must_retry = 1;
4011 				spin_unlock_irq(&conf->device_lock);
4012 				if (must_retry) {
4013 					release_stripe(sh);
4014 					schedule();
4015 					goto retry;
4016 				}
4017 			}
4018 
4019 			if (bio_data_dir(bi) == WRITE &&
4020 			    logical_sector >= mddev->suspend_lo &&
4021 			    logical_sector < mddev->suspend_hi) {
4022 				release_stripe(sh);
4023 				/* As the suspend_* range is controlled by
4024 				 * userspace, we want an interruptible
4025 				 * wait.
4026 				 */
4027 				flush_signals(current);
4028 				prepare_to_wait(&conf->wait_for_overlap,
4029 						&w, TASK_INTERRUPTIBLE);
4030 				if (logical_sector >= mddev->suspend_lo &&
4031 				    logical_sector < mddev->suspend_hi)
4032 					schedule();
4033 				goto retry;
4034 			}
4035 
4036 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4037 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4038 				/* Stripe is busy expanding or
4039 				 * add failed due to overlap.  Flush everything
4040 				 * and wait a while
4041 				 */
4042 				md_wakeup_thread(mddev->thread);
4043 				release_stripe(sh);
4044 				schedule();
4045 				goto retry;
4046 			}
4047 			finish_wait(&conf->wait_for_overlap, &w);
4048 			set_bit(STRIPE_HANDLE, &sh->state);
4049 			clear_bit(STRIPE_DELAYED, &sh->state);
4050 			if ((bi->bi_rw & REQ_SYNC) &&
4051 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4052 				atomic_inc(&conf->preread_active_stripes);
4053 			release_stripe(sh);
4054 		} else {
4055 			/* cannot get stripe for read-ahead, just give-up */
4056 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4057 			finish_wait(&conf->wait_for_overlap, &w);
4058 			break;
4059 		}
4060 
4061 	}
4062 	if (!plugged)
4063 		md_wakeup_thread(mddev->thread);
4064 
4065 	spin_lock_irq(&conf->device_lock);
4066 	remaining = raid5_dec_bi_phys_segments(bi);
4067 	spin_unlock_irq(&conf->device_lock);
4068 	if (remaining == 0) {
4069 
4070 		if ( rw == WRITE )
4071 			md_write_end(mddev);
4072 
4073 		bio_endio(bi, 0);
4074 	}
4075 
4076 	return 0;
4077 }
4078 
4079 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4080 
4081 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4082 {
4083 	/* reshaping is quite different to recovery/resync so it is
4084 	 * handled quite separately ... here.
4085 	 *
4086 	 * On each call to sync_request, we gather one chunk worth of
4087 	 * destination stripes and flag them as expanding.
4088 	 * Then we find all the source stripes and request reads.
4089 	 * As the reads complete, handle_stripe will copy the data
4090 	 * into the destination stripe and release that stripe.
4091 	 */
4092 	raid5_conf_t *conf = mddev->private;
4093 	struct stripe_head *sh;
4094 	sector_t first_sector, last_sector;
4095 	int raid_disks = conf->previous_raid_disks;
4096 	int data_disks = raid_disks - conf->max_degraded;
4097 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4098 	int i;
4099 	int dd_idx;
4100 	sector_t writepos, readpos, safepos;
4101 	sector_t stripe_addr;
4102 	int reshape_sectors;
4103 	struct list_head stripes;
4104 
4105 	if (sector_nr == 0) {
4106 		/* If restarting in the middle, skip the initial sectors */
4107 		if (mddev->delta_disks < 0 &&
4108 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4109 			sector_nr = raid5_size(mddev, 0, 0)
4110 				- conf->reshape_progress;
4111 		} else if (mddev->delta_disks >= 0 &&
4112 			   conf->reshape_progress > 0)
4113 			sector_nr = conf->reshape_progress;
4114 		sector_div(sector_nr, new_data_disks);
4115 		if (sector_nr) {
4116 			mddev->curr_resync_completed = sector_nr;
4117 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4118 			*skipped = 1;
4119 			return sector_nr;
4120 		}
4121 	}
4122 
4123 	/* We need to process a full chunk at a time.
4124 	 * If old and new chunk sizes differ, we need to process the
4125 	 * largest of these
4126 	 */
4127 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4128 		reshape_sectors = mddev->new_chunk_sectors;
4129 	else
4130 		reshape_sectors = mddev->chunk_sectors;
4131 
4132 	/* we update the metadata when there is more than 3Meg
4133 	 * in the block range (that is rather arbitrary, should
4134 	 * probably be time based) or when the data about to be
4135 	 * copied would over-write the source of the data at
4136 	 * the front of the range.
4137 	 * i.e. one new_stripe along from reshape_progress new_maps
4138 	 * to after where reshape_safe old_maps to
4139 	 */
4140 	writepos = conf->reshape_progress;
4141 	sector_div(writepos, new_data_disks);
4142 	readpos = conf->reshape_progress;
4143 	sector_div(readpos, data_disks);
4144 	safepos = conf->reshape_safe;
4145 	sector_div(safepos, data_disks);
4146 	if (mddev->delta_disks < 0) {
4147 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4148 		readpos += reshape_sectors;
4149 		safepos += reshape_sectors;
4150 	} else {
4151 		writepos += reshape_sectors;
4152 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4153 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4154 	}
4155 
4156 	/* 'writepos' is the most advanced device address we might write.
4157 	 * 'readpos' is the least advanced device address we might read.
4158 	 * 'safepos' is the least address recorded in the metadata as having
4159 	 *     been reshaped.
4160 	 * If 'readpos' is behind 'writepos', then there is no way that we can
4161 	 * ensure safety in the face of a crash - that must be done by userspace
4162 	 * making a backup of the data.  So in that case there is no particular
4163 	 * rush to update metadata.
4164 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4165 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4166 	 * we can be safe in the event of a crash.
4167 	 * So we insist on updating metadata if safepos is behind writepos and
4168 	 * readpos is beyond writepos.
4169 	 * In any case, update the metadata every 10 seconds.
4170 	 * Maybe that number should be configurable, but I'm not sure it is
4171 	 * worth it.... maybe it could be a multiple of safemode_delay???
4172 	 */
4173 	if ((mddev->delta_disks < 0
4174 	     ? (safepos > writepos && readpos < writepos)
4175 	     : (safepos < writepos && readpos > writepos)) ||
4176 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4177 		/* Cannot proceed until we've updated the superblock... */
4178 		wait_event(conf->wait_for_overlap,
4179 			   atomic_read(&conf->reshape_stripes)==0);
4180 		mddev->reshape_position = conf->reshape_progress;
4181 		mddev->curr_resync_completed = sector_nr;
4182 		conf->reshape_checkpoint = jiffies;
4183 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4184 		md_wakeup_thread(mddev->thread);
4185 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4186 			   kthread_should_stop());
4187 		spin_lock_irq(&conf->device_lock);
4188 		conf->reshape_safe = mddev->reshape_position;
4189 		spin_unlock_irq(&conf->device_lock);
4190 		wake_up(&conf->wait_for_overlap);
4191 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4192 	}
4193 
4194 	if (mddev->delta_disks < 0) {
4195 		BUG_ON(conf->reshape_progress == 0);
4196 		stripe_addr = writepos;
4197 		BUG_ON((mddev->dev_sectors &
4198 			~((sector_t)reshape_sectors - 1))
4199 		       - reshape_sectors - stripe_addr
4200 		       != sector_nr);
4201 	} else {
4202 		BUG_ON(writepos != sector_nr + reshape_sectors);
4203 		stripe_addr = sector_nr;
4204 	}
4205 	INIT_LIST_HEAD(&stripes);
4206 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4207 		int j;
4208 		int skipped_disk = 0;
4209 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4210 		set_bit(STRIPE_EXPANDING, &sh->state);
4211 		atomic_inc(&conf->reshape_stripes);
4212 		/* If any of this stripe is beyond the end of the old
4213 		 * array, then we need to zero those blocks
4214 		 */
4215 		for (j=sh->disks; j--;) {
4216 			sector_t s;
4217 			if (j == sh->pd_idx)
4218 				continue;
4219 			if (conf->level == 6 &&
4220 			    j == sh->qd_idx)
4221 				continue;
4222 			s = compute_blocknr(sh, j, 0);
4223 			if (s < raid5_size(mddev, 0, 0)) {
4224 				skipped_disk = 1;
4225 				continue;
4226 			}
4227 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4228 			set_bit(R5_Expanded, &sh->dev[j].flags);
4229 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4230 		}
4231 		if (!skipped_disk) {
4232 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4233 			set_bit(STRIPE_HANDLE, &sh->state);
4234 		}
4235 		list_add(&sh->lru, &stripes);
4236 	}
4237 	spin_lock_irq(&conf->device_lock);
4238 	if (mddev->delta_disks < 0)
4239 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4240 	else
4241 		conf->reshape_progress += reshape_sectors * new_data_disks;
4242 	spin_unlock_irq(&conf->device_lock);
4243 	/* Ok, those stripe are ready. We can start scheduling
4244 	 * reads on the source stripes.
4245 	 * The source stripes are determined by mapping the first and last
4246 	 * block on the destination stripes.
4247 	 */
4248 	first_sector =
4249 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4250 				     1, &dd_idx, NULL);
4251 	last_sector =
4252 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4253 					    * new_data_disks - 1),
4254 				     1, &dd_idx, NULL);
4255 	if (last_sector >= mddev->dev_sectors)
4256 		last_sector = mddev->dev_sectors - 1;
4257 	while (first_sector <= last_sector) {
4258 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4259 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4260 		set_bit(STRIPE_HANDLE, &sh->state);
4261 		release_stripe(sh);
4262 		first_sector += STRIPE_SECTORS;
4263 	}
4264 	/* Now that the sources are clearly marked, we can release
4265 	 * the destination stripes
4266 	 */
4267 	while (!list_empty(&stripes)) {
4268 		sh = list_entry(stripes.next, struct stripe_head, lru);
4269 		list_del_init(&sh->lru);
4270 		release_stripe(sh);
4271 	}
4272 	/* If this takes us to the resync_max point where we have to pause,
4273 	 * then we need to write out the superblock.
4274 	 */
4275 	sector_nr += reshape_sectors;
4276 	if ((sector_nr - mddev->curr_resync_completed) * 2
4277 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4278 		/* Cannot proceed until we've updated the superblock... */
4279 		wait_event(conf->wait_for_overlap,
4280 			   atomic_read(&conf->reshape_stripes) == 0);
4281 		mddev->reshape_position = conf->reshape_progress;
4282 		mddev->curr_resync_completed = sector_nr;
4283 		conf->reshape_checkpoint = jiffies;
4284 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4285 		md_wakeup_thread(mddev->thread);
4286 		wait_event(mddev->sb_wait,
4287 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4288 			   || kthread_should_stop());
4289 		spin_lock_irq(&conf->device_lock);
4290 		conf->reshape_safe = mddev->reshape_position;
4291 		spin_unlock_irq(&conf->device_lock);
4292 		wake_up(&conf->wait_for_overlap);
4293 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4294 	}
4295 	return reshape_sectors;
4296 }
4297 
4298 /* FIXME go_faster isn't used */
4299 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4300 {
4301 	raid5_conf_t *conf = mddev->private;
4302 	struct stripe_head *sh;
4303 	sector_t max_sector = mddev->dev_sectors;
4304 	sector_t sync_blocks;
4305 	int still_degraded = 0;
4306 	int i;
4307 
4308 	if (sector_nr >= max_sector) {
4309 		/* just being told to finish up .. nothing much to do */
4310 
4311 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4312 			end_reshape(conf);
4313 			return 0;
4314 		}
4315 
4316 		if (mddev->curr_resync < max_sector) /* aborted */
4317 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4318 					&sync_blocks, 1);
4319 		else /* completed sync */
4320 			conf->fullsync = 0;
4321 		bitmap_close_sync(mddev->bitmap);
4322 
4323 		return 0;
4324 	}
4325 
4326 	/* Allow raid5_quiesce to complete */
4327 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4328 
4329 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4330 		return reshape_request(mddev, sector_nr, skipped);
4331 
4332 	/* No need to check resync_max as we never do more than one
4333 	 * stripe, and as resync_max will always be on a chunk boundary,
4334 	 * if the check in md_do_sync didn't fire, there is no chance
4335 	 * of overstepping resync_max here
4336 	 */
4337 
4338 	/* if there is too many failed drives and we are trying
4339 	 * to resync, then assert that we are finished, because there is
4340 	 * nothing we can do.
4341 	 */
4342 	if (mddev->degraded >= conf->max_degraded &&
4343 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4344 		sector_t rv = mddev->dev_sectors - sector_nr;
4345 		*skipped = 1;
4346 		return rv;
4347 	}
4348 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4349 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4350 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4351 		/* we can skip this block, and probably more */
4352 		sync_blocks /= STRIPE_SECTORS;
4353 		*skipped = 1;
4354 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4355 	}
4356 
4357 
4358 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4359 
4360 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4361 	if (sh == NULL) {
4362 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4363 		/* make sure we don't swamp the stripe cache if someone else
4364 		 * is trying to get access
4365 		 */
4366 		schedule_timeout_uninterruptible(1);
4367 	}
4368 	/* Need to check if array will still be degraded after recovery/resync
4369 	 * We don't need to check the 'failed' flag as when that gets set,
4370 	 * recovery aborts.
4371 	 */
4372 	for (i = 0; i < conf->raid_disks; i++)
4373 		if (conf->disks[i].rdev == NULL)
4374 			still_degraded = 1;
4375 
4376 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4377 
4378 	spin_lock(&sh->lock);
4379 	set_bit(STRIPE_SYNCING, &sh->state);
4380 	clear_bit(STRIPE_INSYNC, &sh->state);
4381 	spin_unlock(&sh->lock);
4382 
4383 	handle_stripe(sh);
4384 	release_stripe(sh);
4385 
4386 	return STRIPE_SECTORS;
4387 }
4388 
4389 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4390 {
4391 	/* We may not be able to submit a whole bio at once as there
4392 	 * may not be enough stripe_heads available.
4393 	 * We cannot pre-allocate enough stripe_heads as we may need
4394 	 * more than exist in the cache (if we allow ever large chunks).
4395 	 * So we do one stripe head at a time and record in
4396 	 * ->bi_hw_segments how many have been done.
4397 	 *
4398 	 * We *know* that this entire raid_bio is in one chunk, so
4399 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4400 	 */
4401 	struct stripe_head *sh;
4402 	int dd_idx;
4403 	sector_t sector, logical_sector, last_sector;
4404 	int scnt = 0;
4405 	int remaining;
4406 	int handled = 0;
4407 
4408 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4409 	sector = raid5_compute_sector(conf, logical_sector,
4410 				      0, &dd_idx, NULL);
4411 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4412 
4413 	for (; logical_sector < last_sector;
4414 	     logical_sector += STRIPE_SECTORS,
4415 		     sector += STRIPE_SECTORS,
4416 		     scnt++) {
4417 
4418 		if (scnt < raid5_bi_hw_segments(raid_bio))
4419 			/* already done this stripe */
4420 			continue;
4421 
4422 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4423 
4424 		if (!sh) {
4425 			/* failed to get a stripe - must wait */
4426 			raid5_set_bi_hw_segments(raid_bio, scnt);
4427 			conf->retry_read_aligned = raid_bio;
4428 			return handled;
4429 		}
4430 
4431 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4432 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4433 			release_stripe(sh);
4434 			raid5_set_bi_hw_segments(raid_bio, scnt);
4435 			conf->retry_read_aligned = raid_bio;
4436 			return handled;
4437 		}
4438 
4439 		handle_stripe(sh);
4440 		release_stripe(sh);
4441 		handled++;
4442 	}
4443 	spin_lock_irq(&conf->device_lock);
4444 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4445 	spin_unlock_irq(&conf->device_lock);
4446 	if (remaining == 0)
4447 		bio_endio(raid_bio, 0);
4448 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4449 		wake_up(&conf->wait_for_stripe);
4450 	return handled;
4451 }
4452 
4453 
4454 /*
4455  * This is our raid5 kernel thread.
4456  *
4457  * We scan the hash table for stripes which can be handled now.
4458  * During the scan, completed stripes are saved for us by the interrupt
4459  * handler, so that they will not have to wait for our next wakeup.
4460  */
4461 static void raid5d(mddev_t *mddev)
4462 {
4463 	struct stripe_head *sh;
4464 	raid5_conf_t *conf = mddev->private;
4465 	int handled;
4466 	struct blk_plug plug;
4467 
4468 	pr_debug("+++ raid5d active\n");
4469 
4470 	md_check_recovery(mddev);
4471 
4472 	blk_start_plug(&plug);
4473 	handled = 0;
4474 	spin_lock_irq(&conf->device_lock);
4475 	while (1) {
4476 		struct bio *bio;
4477 
4478 		if (atomic_read(&mddev->plug_cnt) == 0 &&
4479 		    !list_empty(&conf->bitmap_list)) {
4480 			/* Now is a good time to flush some bitmap updates */
4481 			conf->seq_flush++;
4482 			spin_unlock_irq(&conf->device_lock);
4483 			bitmap_unplug(mddev->bitmap);
4484 			spin_lock_irq(&conf->device_lock);
4485 			conf->seq_write = conf->seq_flush;
4486 			activate_bit_delay(conf);
4487 		}
4488 		if (atomic_read(&mddev->plug_cnt) == 0)
4489 			raid5_activate_delayed(conf);
4490 
4491 		while ((bio = remove_bio_from_retry(conf))) {
4492 			int ok;
4493 			spin_unlock_irq(&conf->device_lock);
4494 			ok = retry_aligned_read(conf, bio);
4495 			spin_lock_irq(&conf->device_lock);
4496 			if (!ok)
4497 				break;
4498 			handled++;
4499 		}
4500 
4501 		sh = __get_priority_stripe(conf);
4502 
4503 		if (!sh)
4504 			break;
4505 		spin_unlock_irq(&conf->device_lock);
4506 
4507 		handled++;
4508 		handle_stripe(sh);
4509 		release_stripe(sh);
4510 		cond_resched();
4511 
4512 		spin_lock_irq(&conf->device_lock);
4513 	}
4514 	pr_debug("%d stripes handled\n", handled);
4515 
4516 	spin_unlock_irq(&conf->device_lock);
4517 
4518 	async_tx_issue_pending_all();
4519 	blk_finish_plug(&plug);
4520 
4521 	pr_debug("--- raid5d inactive\n");
4522 }
4523 
4524 static ssize_t
4525 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4526 {
4527 	raid5_conf_t *conf = mddev->private;
4528 	if (conf)
4529 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4530 	else
4531 		return 0;
4532 }
4533 
4534 int
4535 raid5_set_cache_size(mddev_t *mddev, int size)
4536 {
4537 	raid5_conf_t *conf = mddev->private;
4538 	int err;
4539 
4540 	if (size <= 16 || size > 32768)
4541 		return -EINVAL;
4542 	while (size < conf->max_nr_stripes) {
4543 		if (drop_one_stripe(conf))
4544 			conf->max_nr_stripes--;
4545 		else
4546 			break;
4547 	}
4548 	err = md_allow_write(mddev);
4549 	if (err)
4550 		return err;
4551 	while (size > conf->max_nr_stripes) {
4552 		if (grow_one_stripe(conf))
4553 			conf->max_nr_stripes++;
4554 		else break;
4555 	}
4556 	return 0;
4557 }
4558 EXPORT_SYMBOL(raid5_set_cache_size);
4559 
4560 static ssize_t
4561 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4562 {
4563 	raid5_conf_t *conf = mddev->private;
4564 	unsigned long new;
4565 	int err;
4566 
4567 	if (len >= PAGE_SIZE)
4568 		return -EINVAL;
4569 	if (!conf)
4570 		return -ENODEV;
4571 
4572 	if (strict_strtoul(page, 10, &new))
4573 		return -EINVAL;
4574 	err = raid5_set_cache_size(mddev, new);
4575 	if (err)
4576 		return err;
4577 	return len;
4578 }
4579 
4580 static struct md_sysfs_entry
4581 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4582 				raid5_show_stripe_cache_size,
4583 				raid5_store_stripe_cache_size);
4584 
4585 static ssize_t
4586 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4587 {
4588 	raid5_conf_t *conf = mddev->private;
4589 	if (conf)
4590 		return sprintf(page, "%d\n", conf->bypass_threshold);
4591 	else
4592 		return 0;
4593 }
4594 
4595 static ssize_t
4596 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4597 {
4598 	raid5_conf_t *conf = mddev->private;
4599 	unsigned long new;
4600 	if (len >= PAGE_SIZE)
4601 		return -EINVAL;
4602 	if (!conf)
4603 		return -ENODEV;
4604 
4605 	if (strict_strtoul(page, 10, &new))
4606 		return -EINVAL;
4607 	if (new > conf->max_nr_stripes)
4608 		return -EINVAL;
4609 	conf->bypass_threshold = new;
4610 	return len;
4611 }
4612 
4613 static struct md_sysfs_entry
4614 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4615 					S_IRUGO | S_IWUSR,
4616 					raid5_show_preread_threshold,
4617 					raid5_store_preread_threshold);
4618 
4619 static ssize_t
4620 stripe_cache_active_show(mddev_t *mddev, char *page)
4621 {
4622 	raid5_conf_t *conf = mddev->private;
4623 	if (conf)
4624 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4625 	else
4626 		return 0;
4627 }
4628 
4629 static struct md_sysfs_entry
4630 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4631 
4632 static struct attribute *raid5_attrs[] =  {
4633 	&raid5_stripecache_size.attr,
4634 	&raid5_stripecache_active.attr,
4635 	&raid5_preread_bypass_threshold.attr,
4636 	NULL,
4637 };
4638 static struct attribute_group raid5_attrs_group = {
4639 	.name = NULL,
4640 	.attrs = raid5_attrs,
4641 };
4642 
4643 static sector_t
4644 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4645 {
4646 	raid5_conf_t *conf = mddev->private;
4647 
4648 	if (!sectors)
4649 		sectors = mddev->dev_sectors;
4650 	if (!raid_disks)
4651 		/* size is defined by the smallest of previous and new size */
4652 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4653 
4654 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4655 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4656 	return sectors * (raid_disks - conf->max_degraded);
4657 }
4658 
4659 static void raid5_free_percpu(raid5_conf_t *conf)
4660 {
4661 	struct raid5_percpu *percpu;
4662 	unsigned long cpu;
4663 
4664 	if (!conf->percpu)
4665 		return;
4666 
4667 	get_online_cpus();
4668 	for_each_possible_cpu(cpu) {
4669 		percpu = per_cpu_ptr(conf->percpu, cpu);
4670 		safe_put_page(percpu->spare_page);
4671 		kfree(percpu->scribble);
4672 	}
4673 #ifdef CONFIG_HOTPLUG_CPU
4674 	unregister_cpu_notifier(&conf->cpu_notify);
4675 #endif
4676 	put_online_cpus();
4677 
4678 	free_percpu(conf->percpu);
4679 }
4680 
4681 static void free_conf(raid5_conf_t *conf)
4682 {
4683 	shrink_stripes(conf);
4684 	raid5_free_percpu(conf);
4685 	kfree(conf->disks);
4686 	kfree(conf->stripe_hashtbl);
4687 	kfree(conf);
4688 }
4689 
4690 #ifdef CONFIG_HOTPLUG_CPU
4691 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4692 			      void *hcpu)
4693 {
4694 	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4695 	long cpu = (long)hcpu;
4696 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4697 
4698 	switch (action) {
4699 	case CPU_UP_PREPARE:
4700 	case CPU_UP_PREPARE_FROZEN:
4701 		if (conf->level == 6 && !percpu->spare_page)
4702 			percpu->spare_page = alloc_page(GFP_KERNEL);
4703 		if (!percpu->scribble)
4704 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4705 
4706 		if (!percpu->scribble ||
4707 		    (conf->level == 6 && !percpu->spare_page)) {
4708 			safe_put_page(percpu->spare_page);
4709 			kfree(percpu->scribble);
4710 			pr_err("%s: failed memory allocation for cpu%ld\n",
4711 			       __func__, cpu);
4712 			return notifier_from_errno(-ENOMEM);
4713 		}
4714 		break;
4715 	case CPU_DEAD:
4716 	case CPU_DEAD_FROZEN:
4717 		safe_put_page(percpu->spare_page);
4718 		kfree(percpu->scribble);
4719 		percpu->spare_page = NULL;
4720 		percpu->scribble = NULL;
4721 		break;
4722 	default:
4723 		break;
4724 	}
4725 	return NOTIFY_OK;
4726 }
4727 #endif
4728 
4729 static int raid5_alloc_percpu(raid5_conf_t *conf)
4730 {
4731 	unsigned long cpu;
4732 	struct page *spare_page;
4733 	struct raid5_percpu __percpu *allcpus;
4734 	void *scribble;
4735 	int err;
4736 
4737 	allcpus = alloc_percpu(struct raid5_percpu);
4738 	if (!allcpus)
4739 		return -ENOMEM;
4740 	conf->percpu = allcpus;
4741 
4742 	get_online_cpus();
4743 	err = 0;
4744 	for_each_present_cpu(cpu) {
4745 		if (conf->level == 6) {
4746 			spare_page = alloc_page(GFP_KERNEL);
4747 			if (!spare_page) {
4748 				err = -ENOMEM;
4749 				break;
4750 			}
4751 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4752 		}
4753 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4754 		if (!scribble) {
4755 			err = -ENOMEM;
4756 			break;
4757 		}
4758 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4759 	}
4760 #ifdef CONFIG_HOTPLUG_CPU
4761 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4762 	conf->cpu_notify.priority = 0;
4763 	if (err == 0)
4764 		err = register_cpu_notifier(&conf->cpu_notify);
4765 #endif
4766 	put_online_cpus();
4767 
4768 	return err;
4769 }
4770 
4771 static raid5_conf_t *setup_conf(mddev_t *mddev)
4772 {
4773 	raid5_conf_t *conf;
4774 	int raid_disk, memory, max_disks;
4775 	mdk_rdev_t *rdev;
4776 	struct disk_info *disk;
4777 
4778 	if (mddev->new_level != 5
4779 	    && mddev->new_level != 4
4780 	    && mddev->new_level != 6) {
4781 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4782 		       mdname(mddev), mddev->new_level);
4783 		return ERR_PTR(-EIO);
4784 	}
4785 	if ((mddev->new_level == 5
4786 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4787 	    (mddev->new_level == 6
4788 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4789 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4790 		       mdname(mddev), mddev->new_layout);
4791 		return ERR_PTR(-EIO);
4792 	}
4793 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4794 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4795 		       mdname(mddev), mddev->raid_disks);
4796 		return ERR_PTR(-EINVAL);
4797 	}
4798 
4799 	if (!mddev->new_chunk_sectors ||
4800 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4801 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4802 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4803 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4804 		return ERR_PTR(-EINVAL);
4805 	}
4806 
4807 	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4808 	if (conf == NULL)
4809 		goto abort;
4810 	spin_lock_init(&conf->device_lock);
4811 	init_waitqueue_head(&conf->wait_for_stripe);
4812 	init_waitqueue_head(&conf->wait_for_overlap);
4813 	INIT_LIST_HEAD(&conf->handle_list);
4814 	INIT_LIST_HEAD(&conf->hold_list);
4815 	INIT_LIST_HEAD(&conf->delayed_list);
4816 	INIT_LIST_HEAD(&conf->bitmap_list);
4817 	INIT_LIST_HEAD(&conf->inactive_list);
4818 	atomic_set(&conf->active_stripes, 0);
4819 	atomic_set(&conf->preread_active_stripes, 0);
4820 	atomic_set(&conf->active_aligned_reads, 0);
4821 	conf->bypass_threshold = BYPASS_THRESHOLD;
4822 
4823 	conf->raid_disks = mddev->raid_disks;
4824 	if (mddev->reshape_position == MaxSector)
4825 		conf->previous_raid_disks = mddev->raid_disks;
4826 	else
4827 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4828 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4829 	conf->scribble_len = scribble_len(max_disks);
4830 
4831 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4832 			      GFP_KERNEL);
4833 	if (!conf->disks)
4834 		goto abort;
4835 
4836 	conf->mddev = mddev;
4837 
4838 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4839 		goto abort;
4840 
4841 	conf->level = mddev->new_level;
4842 	if (raid5_alloc_percpu(conf) != 0)
4843 		goto abort;
4844 
4845 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4846 
4847 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4848 		raid_disk = rdev->raid_disk;
4849 		if (raid_disk >= max_disks
4850 		    || raid_disk < 0)
4851 			continue;
4852 		disk = conf->disks + raid_disk;
4853 
4854 		disk->rdev = rdev;
4855 
4856 		if (test_bit(In_sync, &rdev->flags)) {
4857 			char b[BDEVNAME_SIZE];
4858 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4859 			       " disk %d\n",
4860 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4861 		} else if (rdev->saved_raid_disk != raid_disk)
4862 			/* Cannot rely on bitmap to complete recovery */
4863 			conf->fullsync = 1;
4864 	}
4865 
4866 	conf->chunk_sectors = mddev->new_chunk_sectors;
4867 	conf->level = mddev->new_level;
4868 	if (conf->level == 6)
4869 		conf->max_degraded = 2;
4870 	else
4871 		conf->max_degraded = 1;
4872 	conf->algorithm = mddev->new_layout;
4873 	conf->max_nr_stripes = NR_STRIPES;
4874 	conf->reshape_progress = mddev->reshape_position;
4875 	if (conf->reshape_progress != MaxSector) {
4876 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4877 		conf->prev_algo = mddev->layout;
4878 	}
4879 
4880 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4881 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4882 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4883 		printk(KERN_ERR
4884 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4885 		       mdname(mddev), memory);
4886 		goto abort;
4887 	} else
4888 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4889 		       mdname(mddev), memory);
4890 
4891 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4892 	if (!conf->thread) {
4893 		printk(KERN_ERR
4894 		       "md/raid:%s: couldn't allocate thread.\n",
4895 		       mdname(mddev));
4896 		goto abort;
4897 	}
4898 
4899 	return conf;
4900 
4901  abort:
4902 	if (conf) {
4903 		free_conf(conf);
4904 		return ERR_PTR(-EIO);
4905 	} else
4906 		return ERR_PTR(-ENOMEM);
4907 }
4908 
4909 
4910 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4911 {
4912 	switch (algo) {
4913 	case ALGORITHM_PARITY_0:
4914 		if (raid_disk < max_degraded)
4915 			return 1;
4916 		break;
4917 	case ALGORITHM_PARITY_N:
4918 		if (raid_disk >= raid_disks - max_degraded)
4919 			return 1;
4920 		break;
4921 	case ALGORITHM_PARITY_0_6:
4922 		if (raid_disk == 0 ||
4923 		    raid_disk == raid_disks - 1)
4924 			return 1;
4925 		break;
4926 	case ALGORITHM_LEFT_ASYMMETRIC_6:
4927 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4928 	case ALGORITHM_LEFT_SYMMETRIC_6:
4929 	case ALGORITHM_RIGHT_SYMMETRIC_6:
4930 		if (raid_disk == raid_disks - 1)
4931 			return 1;
4932 	}
4933 	return 0;
4934 }
4935 
4936 static int run(mddev_t *mddev)
4937 {
4938 	raid5_conf_t *conf;
4939 	int working_disks = 0;
4940 	int dirty_parity_disks = 0;
4941 	mdk_rdev_t *rdev;
4942 	sector_t reshape_offset = 0;
4943 
4944 	if (mddev->recovery_cp != MaxSector)
4945 		printk(KERN_NOTICE "md/raid:%s: not clean"
4946 		       " -- starting background reconstruction\n",
4947 		       mdname(mddev));
4948 	if (mddev->reshape_position != MaxSector) {
4949 		/* Check that we can continue the reshape.
4950 		 * Currently only disks can change, it must
4951 		 * increase, and we must be past the point where
4952 		 * a stripe over-writes itself
4953 		 */
4954 		sector_t here_new, here_old;
4955 		int old_disks;
4956 		int max_degraded = (mddev->level == 6 ? 2 : 1);
4957 
4958 		if (mddev->new_level != mddev->level) {
4959 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
4960 			       "required - aborting.\n",
4961 			       mdname(mddev));
4962 			return -EINVAL;
4963 		}
4964 		old_disks = mddev->raid_disks - mddev->delta_disks;
4965 		/* reshape_position must be on a new-stripe boundary, and one
4966 		 * further up in new geometry must map after here in old
4967 		 * geometry.
4968 		 */
4969 		here_new = mddev->reshape_position;
4970 		if (sector_div(here_new, mddev->new_chunk_sectors *
4971 			       (mddev->raid_disks - max_degraded))) {
4972 			printk(KERN_ERR "md/raid:%s: reshape_position not "
4973 			       "on a stripe boundary\n", mdname(mddev));
4974 			return -EINVAL;
4975 		}
4976 		reshape_offset = here_new * mddev->new_chunk_sectors;
4977 		/* here_new is the stripe we will write to */
4978 		here_old = mddev->reshape_position;
4979 		sector_div(here_old, mddev->chunk_sectors *
4980 			   (old_disks-max_degraded));
4981 		/* here_old is the first stripe that we might need to read
4982 		 * from */
4983 		if (mddev->delta_disks == 0) {
4984 			/* We cannot be sure it is safe to start an in-place
4985 			 * reshape.  It is only safe if user-space if monitoring
4986 			 * and taking constant backups.
4987 			 * mdadm always starts a situation like this in
4988 			 * readonly mode so it can take control before
4989 			 * allowing any writes.  So just check for that.
4990 			 */
4991 			if ((here_new * mddev->new_chunk_sectors !=
4992 			     here_old * mddev->chunk_sectors) ||
4993 			    mddev->ro == 0) {
4994 				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4995 				       " in read-only mode - aborting\n",
4996 				       mdname(mddev));
4997 				return -EINVAL;
4998 			}
4999 		} else if (mddev->delta_disks < 0
5000 		    ? (here_new * mddev->new_chunk_sectors <=
5001 		       here_old * mddev->chunk_sectors)
5002 		    : (here_new * mddev->new_chunk_sectors >=
5003 		       here_old * mddev->chunk_sectors)) {
5004 			/* Reading from the same stripe as writing to - bad */
5005 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5006 			       "auto-recovery - aborting.\n",
5007 			       mdname(mddev));
5008 			return -EINVAL;
5009 		}
5010 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5011 		       mdname(mddev));
5012 		/* OK, we should be able to continue; */
5013 	} else {
5014 		BUG_ON(mddev->level != mddev->new_level);
5015 		BUG_ON(mddev->layout != mddev->new_layout);
5016 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5017 		BUG_ON(mddev->delta_disks != 0);
5018 	}
5019 
5020 	if (mddev->private == NULL)
5021 		conf = setup_conf(mddev);
5022 	else
5023 		conf = mddev->private;
5024 
5025 	if (IS_ERR(conf))
5026 		return PTR_ERR(conf);
5027 
5028 	mddev->thread = conf->thread;
5029 	conf->thread = NULL;
5030 	mddev->private = conf;
5031 
5032 	/*
5033 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5034 	 */
5035 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5036 		if (rdev->raid_disk < 0)
5037 			continue;
5038 		if (test_bit(In_sync, &rdev->flags)) {
5039 			working_disks++;
5040 			continue;
5041 		}
5042 		/* This disc is not fully in-sync.  However if it
5043 		 * just stored parity (beyond the recovery_offset),
5044 		 * when we don't need to be concerned about the
5045 		 * array being dirty.
5046 		 * When reshape goes 'backwards', we never have
5047 		 * partially completed devices, so we only need
5048 		 * to worry about reshape going forwards.
5049 		 */
5050 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5051 		if (mddev->major_version == 0 &&
5052 		    mddev->minor_version > 90)
5053 			rdev->recovery_offset = reshape_offset;
5054 
5055 		if (rdev->recovery_offset < reshape_offset) {
5056 			/* We need to check old and new layout */
5057 			if (!only_parity(rdev->raid_disk,
5058 					 conf->algorithm,
5059 					 conf->raid_disks,
5060 					 conf->max_degraded))
5061 				continue;
5062 		}
5063 		if (!only_parity(rdev->raid_disk,
5064 				 conf->prev_algo,
5065 				 conf->previous_raid_disks,
5066 				 conf->max_degraded))
5067 			continue;
5068 		dirty_parity_disks++;
5069 	}
5070 
5071 	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5072 			   - working_disks);
5073 
5074 	if (has_failed(conf)) {
5075 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5076 			" (%d/%d failed)\n",
5077 			mdname(mddev), mddev->degraded, conf->raid_disks);
5078 		goto abort;
5079 	}
5080 
5081 	/* device size must be a multiple of chunk size */
5082 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5083 	mddev->resync_max_sectors = mddev->dev_sectors;
5084 
5085 	if (mddev->degraded > dirty_parity_disks &&
5086 	    mddev->recovery_cp != MaxSector) {
5087 		if (mddev->ok_start_degraded)
5088 			printk(KERN_WARNING
5089 			       "md/raid:%s: starting dirty degraded array"
5090 			       " - data corruption possible.\n",
5091 			       mdname(mddev));
5092 		else {
5093 			printk(KERN_ERR
5094 			       "md/raid:%s: cannot start dirty degraded array.\n",
5095 			       mdname(mddev));
5096 			goto abort;
5097 		}
5098 	}
5099 
5100 	if (mddev->degraded == 0)
5101 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5102 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5103 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5104 		       mddev->new_layout);
5105 	else
5106 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5107 		       " out of %d devices, algorithm %d\n",
5108 		       mdname(mddev), conf->level,
5109 		       mddev->raid_disks - mddev->degraded,
5110 		       mddev->raid_disks, mddev->new_layout);
5111 
5112 	print_raid5_conf(conf);
5113 
5114 	if (conf->reshape_progress != MaxSector) {
5115 		conf->reshape_safe = conf->reshape_progress;
5116 		atomic_set(&conf->reshape_stripes, 0);
5117 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5118 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5119 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5120 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5121 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5122 							"reshape");
5123 	}
5124 
5125 
5126 	/* Ok, everything is just fine now */
5127 	if (mddev->to_remove == &raid5_attrs_group)
5128 		mddev->to_remove = NULL;
5129 	else if (mddev->kobj.sd &&
5130 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5131 		printk(KERN_WARNING
5132 		       "raid5: failed to create sysfs attributes for %s\n",
5133 		       mdname(mddev));
5134 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5135 
5136 	if (mddev->queue) {
5137 		int chunk_size;
5138 		/* read-ahead size must cover two whole stripes, which
5139 		 * is 2 * (datadisks) * chunksize where 'n' is the
5140 		 * number of raid devices
5141 		 */
5142 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5143 		int stripe = data_disks *
5144 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5145 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5146 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5147 
5148 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5149 
5150 		mddev->queue->backing_dev_info.congested_data = mddev;
5151 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5152 
5153 		chunk_size = mddev->chunk_sectors << 9;
5154 		blk_queue_io_min(mddev->queue, chunk_size);
5155 		blk_queue_io_opt(mddev->queue, chunk_size *
5156 				 (conf->raid_disks - conf->max_degraded));
5157 
5158 		list_for_each_entry(rdev, &mddev->disks, same_set)
5159 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5160 					  rdev->data_offset << 9);
5161 	}
5162 
5163 	return 0;
5164 abort:
5165 	md_unregister_thread(mddev->thread);
5166 	mddev->thread = NULL;
5167 	if (conf) {
5168 		print_raid5_conf(conf);
5169 		free_conf(conf);
5170 	}
5171 	mddev->private = NULL;
5172 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5173 	return -EIO;
5174 }
5175 
5176 static int stop(mddev_t *mddev)
5177 {
5178 	raid5_conf_t *conf = mddev->private;
5179 
5180 	md_unregister_thread(mddev->thread);
5181 	mddev->thread = NULL;
5182 	if (mddev->queue)
5183 		mddev->queue->backing_dev_info.congested_fn = NULL;
5184 	free_conf(conf);
5185 	mddev->private = NULL;
5186 	mddev->to_remove = &raid5_attrs_group;
5187 	return 0;
5188 }
5189 
5190 #ifdef DEBUG
5191 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5192 {
5193 	int i;
5194 
5195 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5196 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5197 	seq_printf(seq, "sh %llu,  count %d.\n",
5198 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
5199 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5200 	for (i = 0; i < sh->disks; i++) {
5201 		seq_printf(seq, "(cache%d: %p %ld) ",
5202 			   i, sh->dev[i].page, sh->dev[i].flags);
5203 	}
5204 	seq_printf(seq, "\n");
5205 }
5206 
5207 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5208 {
5209 	struct stripe_head *sh;
5210 	struct hlist_node *hn;
5211 	int i;
5212 
5213 	spin_lock_irq(&conf->device_lock);
5214 	for (i = 0; i < NR_HASH; i++) {
5215 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5216 			if (sh->raid_conf != conf)
5217 				continue;
5218 			print_sh(seq, sh);
5219 		}
5220 	}
5221 	spin_unlock_irq(&conf->device_lock);
5222 }
5223 #endif
5224 
5225 static void status(struct seq_file *seq, mddev_t *mddev)
5226 {
5227 	raid5_conf_t *conf = mddev->private;
5228 	int i;
5229 
5230 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5231 		mddev->chunk_sectors / 2, mddev->layout);
5232 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5233 	for (i = 0; i < conf->raid_disks; i++)
5234 		seq_printf (seq, "%s",
5235 			       conf->disks[i].rdev &&
5236 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5237 	seq_printf (seq, "]");
5238 #ifdef DEBUG
5239 	seq_printf (seq, "\n");
5240 	printall(seq, conf);
5241 #endif
5242 }
5243 
5244 static void print_raid5_conf (raid5_conf_t *conf)
5245 {
5246 	int i;
5247 	struct disk_info *tmp;
5248 
5249 	printk(KERN_DEBUG "RAID conf printout:\n");
5250 	if (!conf) {
5251 		printk("(conf==NULL)\n");
5252 		return;
5253 	}
5254 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5255 	       conf->raid_disks,
5256 	       conf->raid_disks - conf->mddev->degraded);
5257 
5258 	for (i = 0; i < conf->raid_disks; i++) {
5259 		char b[BDEVNAME_SIZE];
5260 		tmp = conf->disks + i;
5261 		if (tmp->rdev)
5262 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5263 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5264 			       bdevname(tmp->rdev->bdev, b));
5265 	}
5266 }
5267 
5268 static int raid5_spare_active(mddev_t *mddev)
5269 {
5270 	int i;
5271 	raid5_conf_t *conf = mddev->private;
5272 	struct disk_info *tmp;
5273 	int count = 0;
5274 	unsigned long flags;
5275 
5276 	for (i = 0; i < conf->raid_disks; i++) {
5277 		tmp = conf->disks + i;
5278 		if (tmp->rdev
5279 		    && tmp->rdev->recovery_offset == MaxSector
5280 		    && !test_bit(Faulty, &tmp->rdev->flags)
5281 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5282 			count++;
5283 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5284 		}
5285 	}
5286 	spin_lock_irqsave(&conf->device_lock, flags);
5287 	mddev->degraded -= count;
5288 	spin_unlock_irqrestore(&conf->device_lock, flags);
5289 	print_raid5_conf(conf);
5290 	return count;
5291 }
5292 
5293 static int raid5_remove_disk(mddev_t *mddev, int number)
5294 {
5295 	raid5_conf_t *conf = mddev->private;
5296 	int err = 0;
5297 	mdk_rdev_t *rdev;
5298 	struct disk_info *p = conf->disks + number;
5299 
5300 	print_raid5_conf(conf);
5301 	rdev = p->rdev;
5302 	if (rdev) {
5303 		if (number >= conf->raid_disks &&
5304 		    conf->reshape_progress == MaxSector)
5305 			clear_bit(In_sync, &rdev->flags);
5306 
5307 		if (test_bit(In_sync, &rdev->flags) ||
5308 		    atomic_read(&rdev->nr_pending)) {
5309 			err = -EBUSY;
5310 			goto abort;
5311 		}
5312 		/* Only remove non-faulty devices if recovery
5313 		 * isn't possible.
5314 		 */
5315 		if (!test_bit(Faulty, &rdev->flags) &&
5316 		    !has_failed(conf) &&
5317 		    number < conf->raid_disks) {
5318 			err = -EBUSY;
5319 			goto abort;
5320 		}
5321 		p->rdev = NULL;
5322 		synchronize_rcu();
5323 		if (atomic_read(&rdev->nr_pending)) {
5324 			/* lost the race, try later */
5325 			err = -EBUSY;
5326 			p->rdev = rdev;
5327 		}
5328 	}
5329 abort:
5330 
5331 	print_raid5_conf(conf);
5332 	return err;
5333 }
5334 
5335 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5336 {
5337 	raid5_conf_t *conf = mddev->private;
5338 	int err = -EEXIST;
5339 	int disk;
5340 	struct disk_info *p;
5341 	int first = 0;
5342 	int last = conf->raid_disks - 1;
5343 
5344 	if (has_failed(conf))
5345 		/* no point adding a device */
5346 		return -EINVAL;
5347 
5348 	if (rdev->raid_disk >= 0)
5349 		first = last = rdev->raid_disk;
5350 
5351 	/*
5352 	 * find the disk ... but prefer rdev->saved_raid_disk
5353 	 * if possible.
5354 	 */
5355 	if (rdev->saved_raid_disk >= 0 &&
5356 	    rdev->saved_raid_disk >= first &&
5357 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5358 		disk = rdev->saved_raid_disk;
5359 	else
5360 		disk = first;
5361 	for ( ; disk <= last ; disk++)
5362 		if ((p=conf->disks + disk)->rdev == NULL) {
5363 			clear_bit(In_sync, &rdev->flags);
5364 			rdev->raid_disk = disk;
5365 			err = 0;
5366 			if (rdev->saved_raid_disk != disk)
5367 				conf->fullsync = 1;
5368 			rcu_assign_pointer(p->rdev, rdev);
5369 			break;
5370 		}
5371 	print_raid5_conf(conf);
5372 	return err;
5373 }
5374 
5375 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5376 {
5377 	/* no resync is happening, and there is enough space
5378 	 * on all devices, so we can resize.
5379 	 * We need to make sure resync covers any new space.
5380 	 * If the array is shrinking we should possibly wait until
5381 	 * any io in the removed space completes, but it hardly seems
5382 	 * worth it.
5383 	 */
5384 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5385 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5386 					       mddev->raid_disks));
5387 	if (mddev->array_sectors >
5388 	    raid5_size(mddev, sectors, mddev->raid_disks))
5389 		return -EINVAL;
5390 	set_capacity(mddev->gendisk, mddev->array_sectors);
5391 	revalidate_disk(mddev->gendisk);
5392 	if (sectors > mddev->dev_sectors &&
5393 	    mddev->recovery_cp > mddev->dev_sectors) {
5394 		mddev->recovery_cp = mddev->dev_sectors;
5395 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5396 	}
5397 	mddev->dev_sectors = sectors;
5398 	mddev->resync_max_sectors = sectors;
5399 	return 0;
5400 }
5401 
5402 static int check_stripe_cache(mddev_t *mddev)
5403 {
5404 	/* Can only proceed if there are plenty of stripe_heads.
5405 	 * We need a minimum of one full stripe,, and for sensible progress
5406 	 * it is best to have about 4 times that.
5407 	 * If we require 4 times, then the default 256 4K stripe_heads will
5408 	 * allow for chunk sizes up to 256K, which is probably OK.
5409 	 * If the chunk size is greater, user-space should request more
5410 	 * stripe_heads first.
5411 	 */
5412 	raid5_conf_t *conf = mddev->private;
5413 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5414 	    > conf->max_nr_stripes ||
5415 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5416 	    > conf->max_nr_stripes) {
5417 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5418 		       mdname(mddev),
5419 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5420 			/ STRIPE_SIZE)*4);
5421 		return 0;
5422 	}
5423 	return 1;
5424 }
5425 
5426 static int check_reshape(mddev_t *mddev)
5427 {
5428 	raid5_conf_t *conf = mddev->private;
5429 
5430 	if (mddev->delta_disks == 0 &&
5431 	    mddev->new_layout == mddev->layout &&
5432 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5433 		return 0; /* nothing to do */
5434 	if (mddev->bitmap)
5435 		/* Cannot grow a bitmap yet */
5436 		return -EBUSY;
5437 	if (has_failed(conf))
5438 		return -EINVAL;
5439 	if (mddev->delta_disks < 0) {
5440 		/* We might be able to shrink, but the devices must
5441 		 * be made bigger first.
5442 		 * For raid6, 4 is the minimum size.
5443 		 * Otherwise 2 is the minimum
5444 		 */
5445 		int min = 2;
5446 		if (mddev->level == 6)
5447 			min = 4;
5448 		if (mddev->raid_disks + mddev->delta_disks < min)
5449 			return -EINVAL;
5450 	}
5451 
5452 	if (!check_stripe_cache(mddev))
5453 		return -ENOSPC;
5454 
5455 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5456 }
5457 
5458 static int raid5_start_reshape(mddev_t *mddev)
5459 {
5460 	raid5_conf_t *conf = mddev->private;
5461 	mdk_rdev_t *rdev;
5462 	int spares = 0;
5463 	unsigned long flags;
5464 
5465 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5466 		return -EBUSY;
5467 
5468 	if (!check_stripe_cache(mddev))
5469 		return -ENOSPC;
5470 
5471 	list_for_each_entry(rdev, &mddev->disks, same_set)
5472 		if (!test_bit(In_sync, &rdev->flags)
5473 		    && !test_bit(Faulty, &rdev->flags))
5474 			spares++;
5475 
5476 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5477 		/* Not enough devices even to make a degraded array
5478 		 * of that size
5479 		 */
5480 		return -EINVAL;
5481 
5482 	/* Refuse to reduce size of the array.  Any reductions in
5483 	 * array size must be through explicit setting of array_size
5484 	 * attribute.
5485 	 */
5486 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5487 	    < mddev->array_sectors) {
5488 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5489 		       "before number of disks\n", mdname(mddev));
5490 		return -EINVAL;
5491 	}
5492 
5493 	atomic_set(&conf->reshape_stripes, 0);
5494 	spin_lock_irq(&conf->device_lock);
5495 	conf->previous_raid_disks = conf->raid_disks;
5496 	conf->raid_disks += mddev->delta_disks;
5497 	conf->prev_chunk_sectors = conf->chunk_sectors;
5498 	conf->chunk_sectors = mddev->new_chunk_sectors;
5499 	conf->prev_algo = conf->algorithm;
5500 	conf->algorithm = mddev->new_layout;
5501 	if (mddev->delta_disks < 0)
5502 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5503 	else
5504 		conf->reshape_progress = 0;
5505 	conf->reshape_safe = conf->reshape_progress;
5506 	conf->generation++;
5507 	spin_unlock_irq(&conf->device_lock);
5508 
5509 	/* Add some new drives, as many as will fit.
5510 	 * We know there are enough to make the newly sized array work.
5511 	 * Don't add devices if we are reducing the number of
5512 	 * devices in the array.  This is because it is not possible
5513 	 * to correctly record the "partially reconstructed" state of
5514 	 * such devices during the reshape and confusion could result.
5515 	 */
5516 	if (mddev->delta_disks >= 0) {
5517 		int added_devices = 0;
5518 		list_for_each_entry(rdev, &mddev->disks, same_set)
5519 			if (rdev->raid_disk < 0 &&
5520 			    !test_bit(Faulty, &rdev->flags)) {
5521 				if (raid5_add_disk(mddev, rdev) == 0) {
5522 					char nm[20];
5523 					if (rdev->raid_disk
5524 					    >= conf->previous_raid_disks) {
5525 						set_bit(In_sync, &rdev->flags);
5526 						added_devices++;
5527 					} else
5528 						rdev->recovery_offset = 0;
5529 					sprintf(nm, "rd%d", rdev->raid_disk);
5530 					if (sysfs_create_link(&mddev->kobj,
5531 							      &rdev->kobj, nm))
5532 						/* Failure here is OK */;
5533 				}
5534 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5535 				   && !test_bit(Faulty, &rdev->flags)) {
5536 				/* This is a spare that was manually added */
5537 				set_bit(In_sync, &rdev->flags);
5538 				added_devices++;
5539 			}
5540 
5541 		/* When a reshape changes the number of devices,
5542 		 * ->degraded is measured against the larger of the
5543 		 * pre and post number of devices.
5544 		 */
5545 		spin_lock_irqsave(&conf->device_lock, flags);
5546 		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5547 			- added_devices;
5548 		spin_unlock_irqrestore(&conf->device_lock, flags);
5549 	}
5550 	mddev->raid_disks = conf->raid_disks;
5551 	mddev->reshape_position = conf->reshape_progress;
5552 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5553 
5554 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5555 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5556 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5557 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5558 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5559 						"reshape");
5560 	if (!mddev->sync_thread) {
5561 		mddev->recovery = 0;
5562 		spin_lock_irq(&conf->device_lock);
5563 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5564 		conf->reshape_progress = MaxSector;
5565 		spin_unlock_irq(&conf->device_lock);
5566 		return -EAGAIN;
5567 	}
5568 	conf->reshape_checkpoint = jiffies;
5569 	md_wakeup_thread(mddev->sync_thread);
5570 	md_new_event(mddev);
5571 	return 0;
5572 }
5573 
5574 /* This is called from the reshape thread and should make any
5575  * changes needed in 'conf'
5576  */
5577 static void end_reshape(raid5_conf_t *conf)
5578 {
5579 
5580 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5581 
5582 		spin_lock_irq(&conf->device_lock);
5583 		conf->previous_raid_disks = conf->raid_disks;
5584 		conf->reshape_progress = MaxSector;
5585 		spin_unlock_irq(&conf->device_lock);
5586 		wake_up(&conf->wait_for_overlap);
5587 
5588 		/* read-ahead size must cover two whole stripes, which is
5589 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5590 		 */
5591 		if (conf->mddev->queue) {
5592 			int data_disks = conf->raid_disks - conf->max_degraded;
5593 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5594 						   / PAGE_SIZE);
5595 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5596 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5597 		}
5598 	}
5599 }
5600 
5601 /* This is called from the raid5d thread with mddev_lock held.
5602  * It makes config changes to the device.
5603  */
5604 static void raid5_finish_reshape(mddev_t *mddev)
5605 {
5606 	raid5_conf_t *conf = mddev->private;
5607 
5608 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5609 
5610 		if (mddev->delta_disks > 0) {
5611 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5612 			set_capacity(mddev->gendisk, mddev->array_sectors);
5613 			revalidate_disk(mddev->gendisk);
5614 		} else {
5615 			int d;
5616 			mddev->degraded = conf->raid_disks;
5617 			for (d = 0; d < conf->raid_disks ; d++)
5618 				if (conf->disks[d].rdev &&
5619 				    test_bit(In_sync,
5620 					     &conf->disks[d].rdev->flags))
5621 					mddev->degraded--;
5622 			for (d = conf->raid_disks ;
5623 			     d < conf->raid_disks - mddev->delta_disks;
5624 			     d++) {
5625 				mdk_rdev_t *rdev = conf->disks[d].rdev;
5626 				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5627 					char nm[20];
5628 					sprintf(nm, "rd%d", rdev->raid_disk);
5629 					sysfs_remove_link(&mddev->kobj, nm);
5630 					rdev->raid_disk = -1;
5631 				}
5632 			}
5633 		}
5634 		mddev->layout = conf->algorithm;
5635 		mddev->chunk_sectors = conf->chunk_sectors;
5636 		mddev->reshape_position = MaxSector;
5637 		mddev->delta_disks = 0;
5638 	}
5639 }
5640 
5641 static void raid5_quiesce(mddev_t *mddev, int state)
5642 {
5643 	raid5_conf_t *conf = mddev->private;
5644 
5645 	switch(state) {
5646 	case 2: /* resume for a suspend */
5647 		wake_up(&conf->wait_for_overlap);
5648 		break;
5649 
5650 	case 1: /* stop all writes */
5651 		spin_lock_irq(&conf->device_lock);
5652 		/* '2' tells resync/reshape to pause so that all
5653 		 * active stripes can drain
5654 		 */
5655 		conf->quiesce = 2;
5656 		wait_event_lock_irq(conf->wait_for_stripe,
5657 				    atomic_read(&conf->active_stripes) == 0 &&
5658 				    atomic_read(&conf->active_aligned_reads) == 0,
5659 				    conf->device_lock, /* nothing */);
5660 		conf->quiesce = 1;
5661 		spin_unlock_irq(&conf->device_lock);
5662 		/* allow reshape to continue */
5663 		wake_up(&conf->wait_for_overlap);
5664 		break;
5665 
5666 	case 0: /* re-enable writes */
5667 		spin_lock_irq(&conf->device_lock);
5668 		conf->quiesce = 0;
5669 		wake_up(&conf->wait_for_stripe);
5670 		wake_up(&conf->wait_for_overlap);
5671 		spin_unlock_irq(&conf->device_lock);
5672 		break;
5673 	}
5674 }
5675 
5676 
5677 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5678 {
5679 	struct raid0_private_data *raid0_priv = mddev->private;
5680 	sector_t sectors;
5681 
5682 	/* for raid0 takeover only one zone is supported */
5683 	if (raid0_priv->nr_strip_zones > 1) {
5684 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5685 		       mdname(mddev));
5686 		return ERR_PTR(-EINVAL);
5687 	}
5688 
5689 	sectors = raid0_priv->strip_zone[0].zone_end;
5690 	sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5691 	mddev->dev_sectors = sectors;
5692 	mddev->new_level = level;
5693 	mddev->new_layout = ALGORITHM_PARITY_N;
5694 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5695 	mddev->raid_disks += 1;
5696 	mddev->delta_disks = 1;
5697 	/* make sure it will be not marked as dirty */
5698 	mddev->recovery_cp = MaxSector;
5699 
5700 	return setup_conf(mddev);
5701 }
5702 
5703 
5704 static void *raid5_takeover_raid1(mddev_t *mddev)
5705 {
5706 	int chunksect;
5707 
5708 	if (mddev->raid_disks != 2 ||
5709 	    mddev->degraded > 1)
5710 		return ERR_PTR(-EINVAL);
5711 
5712 	/* Should check if there are write-behind devices? */
5713 
5714 	chunksect = 64*2; /* 64K by default */
5715 
5716 	/* The array must be an exact multiple of chunksize */
5717 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5718 		chunksect >>= 1;
5719 
5720 	if ((chunksect<<9) < STRIPE_SIZE)
5721 		/* array size does not allow a suitable chunk size */
5722 		return ERR_PTR(-EINVAL);
5723 
5724 	mddev->new_level = 5;
5725 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5726 	mddev->new_chunk_sectors = chunksect;
5727 
5728 	return setup_conf(mddev);
5729 }
5730 
5731 static void *raid5_takeover_raid6(mddev_t *mddev)
5732 {
5733 	int new_layout;
5734 
5735 	switch (mddev->layout) {
5736 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5737 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5738 		break;
5739 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5740 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5741 		break;
5742 	case ALGORITHM_LEFT_SYMMETRIC_6:
5743 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5744 		break;
5745 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5746 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5747 		break;
5748 	case ALGORITHM_PARITY_0_6:
5749 		new_layout = ALGORITHM_PARITY_0;
5750 		break;
5751 	case ALGORITHM_PARITY_N:
5752 		new_layout = ALGORITHM_PARITY_N;
5753 		break;
5754 	default:
5755 		return ERR_PTR(-EINVAL);
5756 	}
5757 	mddev->new_level = 5;
5758 	mddev->new_layout = new_layout;
5759 	mddev->delta_disks = -1;
5760 	mddev->raid_disks -= 1;
5761 	return setup_conf(mddev);
5762 }
5763 
5764 
5765 static int raid5_check_reshape(mddev_t *mddev)
5766 {
5767 	/* For a 2-drive array, the layout and chunk size can be changed
5768 	 * immediately as not restriping is needed.
5769 	 * For larger arrays we record the new value - after validation
5770 	 * to be used by a reshape pass.
5771 	 */
5772 	raid5_conf_t *conf = mddev->private;
5773 	int new_chunk = mddev->new_chunk_sectors;
5774 
5775 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5776 		return -EINVAL;
5777 	if (new_chunk > 0) {
5778 		if (!is_power_of_2(new_chunk))
5779 			return -EINVAL;
5780 		if (new_chunk < (PAGE_SIZE>>9))
5781 			return -EINVAL;
5782 		if (mddev->array_sectors & (new_chunk-1))
5783 			/* not factor of array size */
5784 			return -EINVAL;
5785 	}
5786 
5787 	/* They look valid */
5788 
5789 	if (mddev->raid_disks == 2) {
5790 		/* can make the change immediately */
5791 		if (mddev->new_layout >= 0) {
5792 			conf->algorithm = mddev->new_layout;
5793 			mddev->layout = mddev->new_layout;
5794 		}
5795 		if (new_chunk > 0) {
5796 			conf->chunk_sectors = new_chunk ;
5797 			mddev->chunk_sectors = new_chunk;
5798 		}
5799 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5800 		md_wakeup_thread(mddev->thread);
5801 	}
5802 	return check_reshape(mddev);
5803 }
5804 
5805 static int raid6_check_reshape(mddev_t *mddev)
5806 {
5807 	int new_chunk = mddev->new_chunk_sectors;
5808 
5809 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5810 		return -EINVAL;
5811 	if (new_chunk > 0) {
5812 		if (!is_power_of_2(new_chunk))
5813 			return -EINVAL;
5814 		if (new_chunk < (PAGE_SIZE >> 9))
5815 			return -EINVAL;
5816 		if (mddev->array_sectors & (new_chunk-1))
5817 			/* not factor of array size */
5818 			return -EINVAL;
5819 	}
5820 
5821 	/* They look valid */
5822 	return check_reshape(mddev);
5823 }
5824 
5825 static void *raid5_takeover(mddev_t *mddev)
5826 {
5827 	/* raid5 can take over:
5828 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5829 	 *  raid1 - if there are two drives.  We need to know the chunk size
5830 	 *  raid4 - trivial - just use a raid4 layout.
5831 	 *  raid6 - Providing it is a *_6 layout
5832 	 */
5833 	if (mddev->level == 0)
5834 		return raid45_takeover_raid0(mddev, 5);
5835 	if (mddev->level == 1)
5836 		return raid5_takeover_raid1(mddev);
5837 	if (mddev->level == 4) {
5838 		mddev->new_layout = ALGORITHM_PARITY_N;
5839 		mddev->new_level = 5;
5840 		return setup_conf(mddev);
5841 	}
5842 	if (mddev->level == 6)
5843 		return raid5_takeover_raid6(mddev);
5844 
5845 	return ERR_PTR(-EINVAL);
5846 }
5847 
5848 static void *raid4_takeover(mddev_t *mddev)
5849 {
5850 	/* raid4 can take over:
5851 	 *  raid0 - if there is only one strip zone
5852 	 *  raid5 - if layout is right
5853 	 */
5854 	if (mddev->level == 0)
5855 		return raid45_takeover_raid0(mddev, 4);
5856 	if (mddev->level == 5 &&
5857 	    mddev->layout == ALGORITHM_PARITY_N) {
5858 		mddev->new_layout = 0;
5859 		mddev->new_level = 4;
5860 		return setup_conf(mddev);
5861 	}
5862 	return ERR_PTR(-EINVAL);
5863 }
5864 
5865 static struct mdk_personality raid5_personality;
5866 
5867 static void *raid6_takeover(mddev_t *mddev)
5868 {
5869 	/* Currently can only take over a raid5.  We map the
5870 	 * personality to an equivalent raid6 personality
5871 	 * with the Q block at the end.
5872 	 */
5873 	int new_layout;
5874 
5875 	if (mddev->pers != &raid5_personality)
5876 		return ERR_PTR(-EINVAL);
5877 	if (mddev->degraded > 1)
5878 		return ERR_PTR(-EINVAL);
5879 	if (mddev->raid_disks > 253)
5880 		return ERR_PTR(-EINVAL);
5881 	if (mddev->raid_disks < 3)
5882 		return ERR_PTR(-EINVAL);
5883 
5884 	switch (mddev->layout) {
5885 	case ALGORITHM_LEFT_ASYMMETRIC:
5886 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5887 		break;
5888 	case ALGORITHM_RIGHT_ASYMMETRIC:
5889 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5890 		break;
5891 	case ALGORITHM_LEFT_SYMMETRIC:
5892 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5893 		break;
5894 	case ALGORITHM_RIGHT_SYMMETRIC:
5895 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5896 		break;
5897 	case ALGORITHM_PARITY_0:
5898 		new_layout = ALGORITHM_PARITY_0_6;
5899 		break;
5900 	case ALGORITHM_PARITY_N:
5901 		new_layout = ALGORITHM_PARITY_N;
5902 		break;
5903 	default:
5904 		return ERR_PTR(-EINVAL);
5905 	}
5906 	mddev->new_level = 6;
5907 	mddev->new_layout = new_layout;
5908 	mddev->delta_disks = 1;
5909 	mddev->raid_disks += 1;
5910 	return setup_conf(mddev);
5911 }
5912 
5913 
5914 static struct mdk_personality raid6_personality =
5915 {
5916 	.name		= "raid6",
5917 	.level		= 6,
5918 	.owner		= THIS_MODULE,
5919 	.make_request	= make_request,
5920 	.run		= run,
5921 	.stop		= stop,
5922 	.status		= status,
5923 	.error_handler	= error,
5924 	.hot_add_disk	= raid5_add_disk,
5925 	.hot_remove_disk= raid5_remove_disk,
5926 	.spare_active	= raid5_spare_active,
5927 	.sync_request	= sync_request,
5928 	.resize		= raid5_resize,
5929 	.size		= raid5_size,
5930 	.check_reshape	= raid6_check_reshape,
5931 	.start_reshape  = raid5_start_reshape,
5932 	.finish_reshape = raid5_finish_reshape,
5933 	.quiesce	= raid5_quiesce,
5934 	.takeover	= raid6_takeover,
5935 };
5936 static struct mdk_personality raid5_personality =
5937 {
5938 	.name		= "raid5",
5939 	.level		= 5,
5940 	.owner		= THIS_MODULE,
5941 	.make_request	= make_request,
5942 	.run		= run,
5943 	.stop		= stop,
5944 	.status		= status,
5945 	.error_handler	= error,
5946 	.hot_add_disk	= raid5_add_disk,
5947 	.hot_remove_disk= raid5_remove_disk,
5948 	.spare_active	= raid5_spare_active,
5949 	.sync_request	= sync_request,
5950 	.resize		= raid5_resize,
5951 	.size		= raid5_size,
5952 	.check_reshape	= raid5_check_reshape,
5953 	.start_reshape  = raid5_start_reshape,
5954 	.finish_reshape = raid5_finish_reshape,
5955 	.quiesce	= raid5_quiesce,
5956 	.takeover	= raid5_takeover,
5957 };
5958 
5959 static struct mdk_personality raid4_personality =
5960 {
5961 	.name		= "raid4",
5962 	.level		= 4,
5963 	.owner		= THIS_MODULE,
5964 	.make_request	= make_request,
5965 	.run		= run,
5966 	.stop		= stop,
5967 	.status		= status,
5968 	.error_handler	= error,
5969 	.hot_add_disk	= raid5_add_disk,
5970 	.hot_remove_disk= raid5_remove_disk,
5971 	.spare_active	= raid5_spare_active,
5972 	.sync_request	= sync_request,
5973 	.resize		= raid5_resize,
5974 	.size		= raid5_size,
5975 	.check_reshape	= raid5_check_reshape,
5976 	.start_reshape  = raid5_start_reshape,
5977 	.finish_reshape = raid5_finish_reshape,
5978 	.quiesce	= raid5_quiesce,
5979 	.takeover	= raid4_takeover,
5980 };
5981 
5982 static int __init raid5_init(void)
5983 {
5984 	register_md_personality(&raid6_personality);
5985 	register_md_personality(&raid5_personality);
5986 	register_md_personality(&raid4_personality);
5987 	return 0;
5988 }
5989 
5990 static void raid5_exit(void)
5991 {
5992 	unregister_md_personality(&raid6_personality);
5993 	unregister_md_personality(&raid5_personality);
5994 	unregister_md_personality(&raid4_personality);
5995 }
5996 
5997 module_init(raid5_init);
5998 module_exit(raid5_exit);
5999 MODULE_LICENSE("GPL");
6000 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6001 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6002 MODULE_ALIAS("md-raid5");
6003 MODULE_ALIAS("md-raid4");
6004 MODULE_ALIAS("md-level-5");
6005 MODULE_ALIAS("md-level-4");
6006 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6007 MODULE_ALIAS("md-raid6");
6008 MODULE_ALIAS("md-level-6");
6009 
6010 /* This used to be two separate modules, they were: */
6011 MODULE_ALIAS("raid5");
6012 MODULE_ALIAS("raid6");
6013