1 /* 2 * Partial Parity Log for closing the RAID5 write hole 3 * Copyright (c) 2017, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/blkdev.h> 17 #include <linux/slab.h> 18 #include <linux/crc32c.h> 19 #include <linux/flex_array.h> 20 #include <linux/async_tx.h> 21 #include <linux/raid/md_p.h> 22 #include "md.h" 23 #include "raid5.h" 24 25 /* 26 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for 27 * partial parity data. The header contains an array of entries 28 * (struct ppl_header_entry) which describe the logged write requests. 29 * Partial parity for the entries comes after the header, written in the same 30 * sequence as the entries: 31 * 32 * Header 33 * entry0 34 * ... 35 * entryN 36 * PP data 37 * PP for entry0 38 * ... 39 * PP for entryN 40 * 41 * An entry describes one or more consecutive stripe_heads, up to a full 42 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the 43 * number of stripe_heads in the entry and n is the number of modified data 44 * disks. Every stripe_head in the entry must write to the same data disks. 45 * An example of a valid case described by a single entry (writes to the first 46 * stripe of a 4 disk array, 16k chunk size): 47 * 48 * sh->sector dd0 dd1 dd2 ppl 49 * +-----+-----+-----+ 50 * 0 | --- | --- | --- | +----+ 51 * 8 | -W- | -W- | --- | | pp | data_sector = 8 52 * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k 53 * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k 54 * +-----+-----+-----+ +----+ 55 * 56 * data_sector is the first raid sector of the modified data, data_size is the 57 * total size of modified data and pp_size is the size of partial parity for 58 * this entry. Entries for full stripe writes contain no partial parity 59 * (pp_size = 0), they only mark the stripes for which parity should be 60 * recalculated after an unclean shutdown. Every entry holds a checksum of its 61 * partial parity, the header also has a checksum of the header itself. 62 * 63 * A write request is always logged to the PPL instance stored on the parity 64 * disk of the corresponding stripe. For each member disk there is one ppl_log 65 * used to handle logging for this disk, independently from others. They are 66 * grouped in child_logs array in struct ppl_conf, which is assigned to 67 * r5conf->log_private. 68 * 69 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header. 70 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head 71 * can be appended to the last entry if it meets the conditions for a valid 72 * entry described above, otherwise a new entry is added. Checksums of entries 73 * are calculated incrementally as stripes containing partial parity are being 74 * added. ppl_submit_iounit() calculates the checksum of the header and submits 75 * a bio containing the header page and partial parity pages (sh->ppl_page) for 76 * all stripes of the io_unit. When the PPL write completes, the stripes 77 * associated with the io_unit are released and raid5d starts writing their data 78 * and parity. When all stripes are written, the io_unit is freed and the next 79 * can be submitted. 80 * 81 * An io_unit is used to gather stripes until it is submitted or becomes full 82 * (if the maximum number of entries or size of PPL is reached). Another io_unit 83 * can't be submitted until the previous has completed (PPL and stripe 84 * data+parity is written). The log->io_list tracks all io_units of a log 85 * (for a single member disk). New io_units are added to the end of the list 86 * and the first io_unit is submitted, if it is not submitted already. 87 * The current io_unit accepting new stripes is always at the end of the list. 88 */ 89 90 struct ppl_conf { 91 struct mddev *mddev; 92 93 /* array of child logs, one for each raid disk */ 94 struct ppl_log *child_logs; 95 int count; 96 97 int block_size; /* the logical block size used for data_sector 98 * in ppl_header_entry */ 99 u32 signature; /* raid array identifier */ 100 atomic64_t seq; /* current log write sequence number */ 101 102 struct kmem_cache *io_kc; 103 mempool_t *io_pool; 104 struct bio_set *bs; 105 106 /* used only for recovery */ 107 int recovered_entries; 108 int mismatch_count; 109 110 /* stripes to retry if failed to allocate io_unit */ 111 struct list_head no_mem_stripes; 112 spinlock_t no_mem_stripes_lock; 113 }; 114 115 struct ppl_log { 116 struct ppl_conf *ppl_conf; /* shared between all log instances */ 117 118 struct md_rdev *rdev; /* array member disk associated with 119 * this log instance */ 120 struct mutex io_mutex; 121 struct ppl_io_unit *current_io; /* current io_unit accepting new data 122 * always at the end of io_list */ 123 spinlock_t io_list_lock; 124 struct list_head io_list; /* all io_units of this log */ 125 }; 126 127 #define PPL_IO_INLINE_BVECS 32 128 129 struct ppl_io_unit { 130 struct ppl_log *log; 131 132 struct page *header_page; /* for ppl_header */ 133 134 unsigned int entries_count; /* number of entries in ppl_header */ 135 unsigned int pp_size; /* total size current of partial parity */ 136 137 u64 seq; /* sequence number of this log write */ 138 struct list_head log_sibling; /* log->io_list */ 139 140 struct list_head stripe_list; /* stripes added to the io_unit */ 141 atomic_t pending_stripes; /* how many stripes not written to raid */ 142 143 bool submitted; /* true if write to log started */ 144 145 /* inline bio and its biovec for submitting the iounit */ 146 struct bio bio; 147 struct bio_vec biovec[PPL_IO_INLINE_BVECS]; 148 }; 149 150 struct dma_async_tx_descriptor * 151 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu, 152 struct dma_async_tx_descriptor *tx) 153 { 154 int disks = sh->disks; 155 struct page **srcs = flex_array_get(percpu->scribble, 0); 156 int count = 0, pd_idx = sh->pd_idx, i; 157 struct async_submit_ctl submit; 158 159 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 160 161 /* 162 * Partial parity is the XOR of stripe data chunks that are not changed 163 * during the write request. Depending on available data 164 * (read-modify-write vs. reconstruct-write case) we calculate it 165 * differently. 166 */ 167 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 168 /* 169 * rmw: xor old data and parity from updated disks 170 * This is calculated earlier by ops_run_prexor5() so just copy 171 * the parity dev page. 172 */ 173 srcs[count++] = sh->dev[pd_idx].page; 174 } else if (sh->reconstruct_state == reconstruct_state_drain_run) { 175 /* rcw: xor data from all not updated disks */ 176 for (i = disks; i--;) { 177 struct r5dev *dev = &sh->dev[i]; 178 if (test_bit(R5_UPTODATE, &dev->flags)) 179 srcs[count++] = dev->page; 180 } 181 } else { 182 return tx; 183 } 184 185 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx, 186 NULL, sh, flex_array_get(percpu->scribble, 0) 187 + sizeof(struct page *) * (sh->disks + 2)); 188 189 if (count == 1) 190 tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE, 191 &submit); 192 else 193 tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE, 194 &submit); 195 196 return tx; 197 } 198 199 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data) 200 { 201 struct kmem_cache *kc = pool_data; 202 struct ppl_io_unit *io; 203 204 io = kmem_cache_alloc(kc, gfp_mask); 205 if (!io) 206 return NULL; 207 208 io->header_page = alloc_page(gfp_mask); 209 if (!io->header_page) { 210 kmem_cache_free(kc, io); 211 return NULL; 212 } 213 214 return io; 215 } 216 217 static void ppl_io_pool_free(void *element, void *pool_data) 218 { 219 struct kmem_cache *kc = pool_data; 220 struct ppl_io_unit *io = element; 221 222 __free_page(io->header_page); 223 kmem_cache_free(kc, io); 224 } 225 226 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log, 227 struct stripe_head *sh) 228 { 229 struct ppl_conf *ppl_conf = log->ppl_conf; 230 struct ppl_io_unit *io; 231 struct ppl_header *pplhdr; 232 struct page *header_page; 233 234 io = mempool_alloc(ppl_conf->io_pool, GFP_NOWAIT); 235 if (!io) 236 return NULL; 237 238 header_page = io->header_page; 239 memset(io, 0, sizeof(*io)); 240 io->header_page = header_page; 241 242 io->log = log; 243 INIT_LIST_HEAD(&io->log_sibling); 244 INIT_LIST_HEAD(&io->stripe_list); 245 atomic_set(&io->pending_stripes, 0); 246 bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS); 247 248 pplhdr = page_address(io->header_page); 249 clear_page(pplhdr); 250 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); 251 pplhdr->signature = cpu_to_le32(ppl_conf->signature); 252 253 io->seq = atomic64_add_return(1, &ppl_conf->seq); 254 pplhdr->generation = cpu_to_le64(io->seq); 255 256 return io; 257 } 258 259 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh) 260 { 261 struct ppl_io_unit *io = log->current_io; 262 struct ppl_header_entry *e = NULL; 263 struct ppl_header *pplhdr; 264 int i; 265 sector_t data_sector = 0; 266 int data_disks = 0; 267 unsigned int entry_space = (log->rdev->ppl.size << 9) - PPL_HEADER_SIZE; 268 struct r5conf *conf = sh->raid_conf; 269 270 pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector); 271 272 /* check if current io_unit is full */ 273 if (io && (io->pp_size == entry_space || 274 io->entries_count == PPL_HDR_MAX_ENTRIES)) { 275 pr_debug("%s: add io_unit blocked by seq: %llu\n", 276 __func__, io->seq); 277 io = NULL; 278 } 279 280 /* add a new unit if there is none or the current is full */ 281 if (!io) { 282 io = ppl_new_iounit(log, sh); 283 if (!io) 284 return -ENOMEM; 285 spin_lock_irq(&log->io_list_lock); 286 list_add_tail(&io->log_sibling, &log->io_list); 287 spin_unlock_irq(&log->io_list_lock); 288 289 log->current_io = io; 290 } 291 292 for (i = 0; i < sh->disks; i++) { 293 struct r5dev *dev = &sh->dev[i]; 294 295 if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) { 296 if (!data_disks || dev->sector < data_sector) 297 data_sector = dev->sector; 298 data_disks++; 299 } 300 } 301 BUG_ON(!data_disks); 302 303 pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__, 304 io->seq, (unsigned long long)data_sector, data_disks); 305 306 pplhdr = page_address(io->header_page); 307 308 if (io->entries_count > 0) { 309 struct ppl_header_entry *last = 310 &pplhdr->entries[io->entries_count - 1]; 311 struct stripe_head *sh_last = list_last_entry( 312 &io->stripe_list, struct stripe_head, log_list); 313 u64 data_sector_last = le64_to_cpu(last->data_sector); 314 u32 data_size_last = le32_to_cpu(last->data_size); 315 316 /* 317 * Check if we can append the stripe to the last entry. It must 318 * be just after the last logged stripe and write to the same 319 * disks. Use bit shift and logarithm to avoid 64-bit division. 320 */ 321 if ((sh->sector == sh_last->sector + STRIPE_SECTORS) && 322 (data_sector >> ilog2(conf->chunk_sectors) == 323 data_sector_last >> ilog2(conf->chunk_sectors)) && 324 ((data_sector - data_sector_last) * data_disks == 325 data_size_last >> 9)) 326 e = last; 327 } 328 329 if (!e) { 330 e = &pplhdr->entries[io->entries_count++]; 331 e->data_sector = cpu_to_le64(data_sector); 332 e->parity_disk = cpu_to_le32(sh->pd_idx); 333 e->checksum = cpu_to_le32(~0); 334 } 335 336 le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT); 337 338 /* don't write any PP if full stripe write */ 339 if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) { 340 le32_add_cpu(&e->pp_size, PAGE_SIZE); 341 io->pp_size += PAGE_SIZE; 342 e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum), 343 page_address(sh->ppl_page), 344 PAGE_SIZE)); 345 } 346 347 list_add_tail(&sh->log_list, &io->stripe_list); 348 atomic_inc(&io->pending_stripes); 349 sh->ppl_io = io; 350 351 return 0; 352 } 353 354 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh) 355 { 356 struct ppl_conf *ppl_conf = conf->log_private; 357 struct ppl_io_unit *io = sh->ppl_io; 358 struct ppl_log *log; 359 360 if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page || 361 !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 362 !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) { 363 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 364 return -EAGAIN; 365 } 366 367 log = &ppl_conf->child_logs[sh->pd_idx]; 368 369 mutex_lock(&log->io_mutex); 370 371 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { 372 mutex_unlock(&log->io_mutex); 373 return -EAGAIN; 374 } 375 376 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 377 clear_bit(STRIPE_DELAYED, &sh->state); 378 atomic_inc(&sh->count); 379 380 if (ppl_log_stripe(log, sh)) { 381 spin_lock_irq(&ppl_conf->no_mem_stripes_lock); 382 list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes); 383 spin_unlock_irq(&ppl_conf->no_mem_stripes_lock); 384 } 385 386 mutex_unlock(&log->io_mutex); 387 388 return 0; 389 } 390 391 static void ppl_log_endio(struct bio *bio) 392 { 393 struct ppl_io_unit *io = bio->bi_private; 394 struct ppl_log *log = io->log; 395 struct ppl_conf *ppl_conf = log->ppl_conf; 396 struct stripe_head *sh, *next; 397 398 pr_debug("%s: seq: %llu\n", __func__, io->seq); 399 400 if (bio->bi_error) 401 md_error(ppl_conf->mddev, log->rdev); 402 403 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 404 list_del_init(&sh->log_list); 405 406 set_bit(STRIPE_HANDLE, &sh->state); 407 raid5_release_stripe(sh); 408 } 409 } 410 411 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio) 412 { 413 char b[BDEVNAME_SIZE]; 414 415 pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n", 416 __func__, io->seq, bio->bi_iter.bi_size, 417 (unsigned long long)bio->bi_iter.bi_sector, 418 bdevname(bio->bi_bdev, b)); 419 420 submit_bio(bio); 421 } 422 423 static void ppl_submit_iounit(struct ppl_io_unit *io) 424 { 425 struct ppl_log *log = io->log; 426 struct ppl_conf *ppl_conf = log->ppl_conf; 427 struct ppl_header *pplhdr = page_address(io->header_page); 428 struct bio *bio = &io->bio; 429 struct stripe_head *sh; 430 int i; 431 432 bio->bi_private = io; 433 434 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { 435 ppl_log_endio(bio); 436 return; 437 } 438 439 for (i = 0; i < io->entries_count; i++) { 440 struct ppl_header_entry *e = &pplhdr->entries[i]; 441 442 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n", 443 __func__, io->seq, i, le64_to_cpu(e->data_sector), 444 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size)); 445 446 e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >> 447 ilog2(ppl_conf->block_size >> 9)); 448 e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum)); 449 } 450 451 pplhdr->entries_count = cpu_to_le32(io->entries_count); 452 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE)); 453 454 bio->bi_end_io = ppl_log_endio; 455 bio->bi_opf = REQ_OP_WRITE | REQ_FUA; 456 bio->bi_bdev = log->rdev->bdev; 457 bio->bi_iter.bi_sector = log->rdev->ppl.sector; 458 bio_add_page(bio, io->header_page, PAGE_SIZE, 0); 459 460 list_for_each_entry(sh, &io->stripe_list, log_list) { 461 /* entries for full stripe writes have no partial parity */ 462 if (test_bit(STRIPE_FULL_WRITE, &sh->state)) 463 continue; 464 465 if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) { 466 struct bio *prev = bio; 467 468 bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, 469 ppl_conf->bs); 470 bio->bi_opf = prev->bi_opf; 471 bio->bi_bdev = prev->bi_bdev; 472 bio->bi_iter.bi_sector = bio_end_sector(prev); 473 bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0); 474 475 bio_chain(bio, prev); 476 ppl_submit_iounit_bio(io, prev); 477 } 478 } 479 480 ppl_submit_iounit_bio(io, bio); 481 } 482 483 static void ppl_submit_current_io(struct ppl_log *log) 484 { 485 struct ppl_io_unit *io; 486 487 spin_lock_irq(&log->io_list_lock); 488 489 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, 490 log_sibling); 491 if (io && io->submitted) 492 io = NULL; 493 494 spin_unlock_irq(&log->io_list_lock); 495 496 if (io) { 497 io->submitted = true; 498 499 if (io == log->current_io) 500 log->current_io = NULL; 501 502 ppl_submit_iounit(io); 503 } 504 } 505 506 void ppl_write_stripe_run(struct r5conf *conf) 507 { 508 struct ppl_conf *ppl_conf = conf->log_private; 509 struct ppl_log *log; 510 int i; 511 512 for (i = 0; i < ppl_conf->count; i++) { 513 log = &ppl_conf->child_logs[i]; 514 515 mutex_lock(&log->io_mutex); 516 ppl_submit_current_io(log); 517 mutex_unlock(&log->io_mutex); 518 } 519 } 520 521 static void ppl_io_unit_finished(struct ppl_io_unit *io) 522 { 523 struct ppl_log *log = io->log; 524 struct ppl_conf *ppl_conf = log->ppl_conf; 525 unsigned long flags; 526 527 pr_debug("%s: seq: %llu\n", __func__, io->seq); 528 529 local_irq_save(flags); 530 531 spin_lock(&log->io_list_lock); 532 list_del(&io->log_sibling); 533 spin_unlock(&log->io_list_lock); 534 535 mempool_free(io, ppl_conf->io_pool); 536 537 spin_lock(&ppl_conf->no_mem_stripes_lock); 538 if (!list_empty(&ppl_conf->no_mem_stripes)) { 539 struct stripe_head *sh; 540 541 sh = list_first_entry(&ppl_conf->no_mem_stripes, 542 struct stripe_head, log_list); 543 list_del_init(&sh->log_list); 544 set_bit(STRIPE_HANDLE, &sh->state); 545 raid5_release_stripe(sh); 546 } 547 spin_unlock(&ppl_conf->no_mem_stripes_lock); 548 549 local_irq_restore(flags); 550 } 551 552 void ppl_stripe_write_finished(struct stripe_head *sh) 553 { 554 struct ppl_io_unit *io; 555 556 io = sh->ppl_io; 557 sh->ppl_io = NULL; 558 559 if (io && atomic_dec_and_test(&io->pending_stripes)) 560 ppl_io_unit_finished(io); 561 } 562 563 static void ppl_xor(int size, struct page *page1, struct page *page2) 564 { 565 struct async_submit_ctl submit; 566 struct dma_async_tx_descriptor *tx; 567 struct page *xor_srcs[] = { page1, page2 }; 568 569 init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST, 570 NULL, NULL, NULL, NULL); 571 tx = async_xor(page1, xor_srcs, 0, 2, size, &submit); 572 573 async_tx_quiesce(&tx); 574 } 575 576 /* 577 * PPL recovery strategy: xor partial parity and data from all modified data 578 * disks within a stripe and write the result as the new stripe parity. If all 579 * stripe data disks are modified (full stripe write), no partial parity is 580 * available, so just xor the data disks. 581 * 582 * Recovery of a PPL entry shall occur only if all modified data disks are 583 * available and read from all of them succeeds. 584 * 585 * A PPL entry applies to a stripe, partial parity size for an entry is at most 586 * the size of the chunk. Examples of possible cases for a single entry: 587 * 588 * case 0: single data disk write: 589 * data0 data1 data2 ppl parity 590 * +--------+--------+--------+ +--------------------+ 591 * | ------ | ------ | ------ | +----+ | (no change) | 592 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | 593 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | 594 * | ------ | ------ | ------ | +----+ | (no change) | 595 * +--------+--------+--------+ +--------------------+ 596 * pp_size = data_size 597 * 598 * case 1: more than one data disk write: 599 * data0 data1 data2 ppl parity 600 * +--------+--------+--------+ +--------------------+ 601 * | ------ | ------ | ------ | +----+ | (no change) | 602 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | 603 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | 604 * | ------ | ------ | ------ | +----+ | (no change) | 605 * +--------+--------+--------+ +--------------------+ 606 * pp_size = data_size / modified_data_disks 607 * 608 * case 2: write to all data disks (also full stripe write): 609 * data0 data1 data2 parity 610 * +--------+--------+--------+ +--------------------+ 611 * | ------ | ------ | ------ | | (no change) | 612 * | -data- | -data- | -data- | --------> | xor all data | 613 * | ------ | ------ | ------ | --------> | (no change) | 614 * | ------ | ------ | ------ | | (no change) | 615 * +--------+--------+--------+ +--------------------+ 616 * pp_size = 0 617 * 618 * The following cases are possible only in other implementations. The recovery 619 * code can handle them, but they are not generated at runtime because they can 620 * be reduced to cases 0, 1 and 2: 621 * 622 * case 3: 623 * data0 data1 data2 ppl parity 624 * +--------+--------+--------+ +----+ +--------------------+ 625 * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp | 626 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp | 627 * | -data- | -data- | -data- | | -- | -> | xor all data | 628 * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp | 629 * +--------+--------+--------+ +----+ +--------------------+ 630 * pp_size = chunk_size 631 * 632 * case 4: 633 * data0 data1 data2 ppl parity 634 * +--------+--------+--------+ +----+ +--------------------+ 635 * | ------ | -data- | ------ | | pp | | data1 ^ pp | 636 * | ------ | ------ | ------ | | -- | -> | (no change) | 637 * | ------ | ------ | ------ | | -- | -> | (no change) | 638 * | -data- | ------ | ------ | | pp | | data0 ^ pp | 639 * +--------+--------+--------+ +----+ +--------------------+ 640 * pp_size = chunk_size 641 */ 642 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e, 643 sector_t ppl_sector) 644 { 645 struct ppl_conf *ppl_conf = log->ppl_conf; 646 struct mddev *mddev = ppl_conf->mddev; 647 struct r5conf *conf = mddev->private; 648 int block_size = ppl_conf->block_size; 649 struct page *page1; 650 struct page *page2; 651 sector_t r_sector_first; 652 sector_t r_sector_last; 653 int strip_sectors; 654 int data_disks; 655 int i; 656 int ret = 0; 657 char b[BDEVNAME_SIZE]; 658 unsigned int pp_size = le32_to_cpu(e->pp_size); 659 unsigned int data_size = le32_to_cpu(e->data_size); 660 661 page1 = alloc_page(GFP_KERNEL); 662 page2 = alloc_page(GFP_KERNEL); 663 664 if (!page1 || !page2) { 665 ret = -ENOMEM; 666 goto out; 667 } 668 669 r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9); 670 671 if ((pp_size >> 9) < conf->chunk_sectors) { 672 if (pp_size > 0) { 673 data_disks = data_size / pp_size; 674 strip_sectors = pp_size >> 9; 675 } else { 676 data_disks = conf->raid_disks - conf->max_degraded; 677 strip_sectors = (data_size >> 9) / data_disks; 678 } 679 r_sector_last = r_sector_first + 680 (data_disks - 1) * conf->chunk_sectors + 681 strip_sectors; 682 } else { 683 data_disks = conf->raid_disks - conf->max_degraded; 684 strip_sectors = conf->chunk_sectors; 685 r_sector_last = r_sector_first + (data_size >> 9); 686 } 687 688 pr_debug("%s: array sector first: %llu last: %llu\n", __func__, 689 (unsigned long long)r_sector_first, 690 (unsigned long long)r_sector_last); 691 692 /* if start and end is 4k aligned, use a 4k block */ 693 if (block_size == 512 && 694 (r_sector_first & (STRIPE_SECTORS - 1)) == 0 && 695 (r_sector_last & (STRIPE_SECTORS - 1)) == 0) 696 block_size = STRIPE_SIZE; 697 698 /* iterate through blocks in strip */ 699 for (i = 0; i < strip_sectors; i += (block_size >> 9)) { 700 bool update_parity = false; 701 sector_t parity_sector; 702 struct md_rdev *parity_rdev; 703 struct stripe_head sh; 704 int disk; 705 int indent = 0; 706 707 pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i); 708 indent += 2; 709 710 memset(page_address(page1), 0, PAGE_SIZE); 711 712 /* iterate through data member disks */ 713 for (disk = 0; disk < data_disks; disk++) { 714 int dd_idx; 715 struct md_rdev *rdev; 716 sector_t sector; 717 sector_t r_sector = r_sector_first + i + 718 (disk * conf->chunk_sectors); 719 720 pr_debug("%s:%*s data member disk %d start\n", 721 __func__, indent, "", disk); 722 indent += 2; 723 724 if (r_sector >= r_sector_last) { 725 pr_debug("%s:%*s array sector %llu doesn't need parity update\n", 726 __func__, indent, "", 727 (unsigned long long)r_sector); 728 indent -= 2; 729 continue; 730 } 731 732 update_parity = true; 733 734 /* map raid sector to member disk */ 735 sector = raid5_compute_sector(conf, r_sector, 0, 736 &dd_idx, NULL); 737 pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n", 738 __func__, indent, "", 739 (unsigned long long)r_sector, dd_idx, 740 (unsigned long long)sector); 741 742 rdev = conf->disks[dd_idx].rdev; 743 if (!rdev) { 744 pr_debug("%s:%*s data member disk %d missing\n", 745 __func__, indent, "", dd_idx); 746 update_parity = false; 747 break; 748 } 749 750 pr_debug("%s:%*s reading data member disk %s sector %llu\n", 751 __func__, indent, "", bdevname(rdev->bdev, b), 752 (unsigned long long)sector); 753 if (!sync_page_io(rdev, sector, block_size, page2, 754 REQ_OP_READ, 0, false)) { 755 md_error(mddev, rdev); 756 pr_debug("%s:%*s read failed!\n", __func__, 757 indent, ""); 758 ret = -EIO; 759 goto out; 760 } 761 762 ppl_xor(block_size, page1, page2); 763 764 indent -= 2; 765 } 766 767 if (!update_parity) 768 continue; 769 770 if (pp_size > 0) { 771 pr_debug("%s:%*s reading pp disk sector %llu\n", 772 __func__, indent, "", 773 (unsigned long long)(ppl_sector + i)); 774 if (!sync_page_io(log->rdev, 775 ppl_sector - log->rdev->data_offset + i, 776 block_size, page2, REQ_OP_READ, 0, 777 false)) { 778 pr_debug("%s:%*s read failed!\n", __func__, 779 indent, ""); 780 md_error(mddev, log->rdev); 781 ret = -EIO; 782 goto out; 783 } 784 785 ppl_xor(block_size, page1, page2); 786 } 787 788 /* map raid sector to parity disk */ 789 parity_sector = raid5_compute_sector(conf, r_sector_first + i, 790 0, &disk, &sh); 791 BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk)); 792 parity_rdev = conf->disks[sh.pd_idx].rdev; 793 794 BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev); 795 pr_debug("%s:%*s write parity at sector %llu, disk %s\n", 796 __func__, indent, "", 797 (unsigned long long)parity_sector, 798 bdevname(parity_rdev->bdev, b)); 799 if (!sync_page_io(parity_rdev, parity_sector, block_size, 800 page1, REQ_OP_WRITE, 0, false)) { 801 pr_debug("%s:%*s parity write error!\n", __func__, 802 indent, ""); 803 md_error(mddev, parity_rdev); 804 ret = -EIO; 805 goto out; 806 } 807 } 808 out: 809 if (page1) 810 __free_page(page1); 811 if (page2) 812 __free_page(page2); 813 return ret; 814 } 815 816 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr) 817 { 818 struct ppl_conf *ppl_conf = log->ppl_conf; 819 struct md_rdev *rdev = log->rdev; 820 struct mddev *mddev = rdev->mddev; 821 sector_t ppl_sector = rdev->ppl.sector + (PPL_HEADER_SIZE >> 9); 822 struct page *page; 823 int i; 824 int ret = 0; 825 826 page = alloc_page(GFP_KERNEL); 827 if (!page) 828 return -ENOMEM; 829 830 /* iterate through all PPL entries saved */ 831 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) { 832 struct ppl_header_entry *e = &pplhdr->entries[i]; 833 u32 pp_size = le32_to_cpu(e->pp_size); 834 sector_t sector = ppl_sector; 835 int ppl_entry_sectors = pp_size >> 9; 836 u32 crc, crc_stored; 837 838 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n", 839 __func__, rdev->raid_disk, i, 840 (unsigned long long)ppl_sector, pp_size); 841 842 crc = ~0; 843 crc_stored = le32_to_cpu(e->checksum); 844 845 /* read parial parity for this entry and calculate its checksum */ 846 while (pp_size) { 847 int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size; 848 849 if (!sync_page_io(rdev, sector - rdev->data_offset, 850 s, page, REQ_OP_READ, 0, false)) { 851 md_error(mddev, rdev); 852 ret = -EIO; 853 goto out; 854 } 855 856 crc = crc32c_le(crc, page_address(page), s); 857 858 pp_size -= s; 859 sector += s >> 9; 860 } 861 862 crc = ~crc; 863 864 if (crc != crc_stored) { 865 /* 866 * Don't recover this entry if the checksum does not 867 * match, but keep going and try to recover other 868 * entries. 869 */ 870 pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n", 871 __func__, crc_stored, crc); 872 ppl_conf->mismatch_count++; 873 } else { 874 ret = ppl_recover_entry(log, e, ppl_sector); 875 if (ret) 876 goto out; 877 ppl_conf->recovered_entries++; 878 } 879 880 ppl_sector += ppl_entry_sectors; 881 } 882 883 /* flush the disk cache after recovery if necessary */ 884 ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL); 885 out: 886 __free_page(page); 887 return ret; 888 } 889 890 static int ppl_write_empty_header(struct ppl_log *log) 891 { 892 struct page *page; 893 struct ppl_header *pplhdr; 894 struct md_rdev *rdev = log->rdev; 895 int ret = 0; 896 897 pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__, 898 rdev->raid_disk, (unsigned long long)rdev->ppl.sector); 899 900 page = alloc_page(GFP_NOIO | __GFP_ZERO); 901 if (!page) 902 return -ENOMEM; 903 904 pplhdr = page_address(page); 905 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); 906 pplhdr->signature = cpu_to_le32(log->ppl_conf->signature); 907 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE)); 908 909 if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset, 910 PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_FUA, 0, 911 false)) { 912 md_error(rdev->mddev, rdev); 913 ret = -EIO; 914 } 915 916 __free_page(page); 917 return ret; 918 } 919 920 static int ppl_load_distributed(struct ppl_log *log) 921 { 922 struct ppl_conf *ppl_conf = log->ppl_conf; 923 struct md_rdev *rdev = log->rdev; 924 struct mddev *mddev = rdev->mddev; 925 struct page *page; 926 struct ppl_header *pplhdr; 927 u32 crc, crc_stored; 928 u32 signature; 929 int ret = 0; 930 931 pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk); 932 933 /* read PPL header */ 934 page = alloc_page(GFP_KERNEL); 935 if (!page) 936 return -ENOMEM; 937 938 if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset, 939 PAGE_SIZE, page, REQ_OP_READ, 0, false)) { 940 md_error(mddev, rdev); 941 ret = -EIO; 942 goto out; 943 } 944 pplhdr = page_address(page); 945 946 /* check header validity */ 947 crc_stored = le32_to_cpu(pplhdr->checksum); 948 pplhdr->checksum = 0; 949 crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE); 950 951 if (crc_stored != crc) { 952 pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x\n", 953 __func__, crc_stored, crc); 954 ppl_conf->mismatch_count++; 955 goto out; 956 } 957 958 signature = le32_to_cpu(pplhdr->signature); 959 960 if (mddev->external) { 961 /* 962 * For external metadata the header signature is set and 963 * validated in userspace. 964 */ 965 ppl_conf->signature = signature; 966 } else if (ppl_conf->signature != signature) { 967 pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x\n", 968 __func__, signature, ppl_conf->signature); 969 ppl_conf->mismatch_count++; 970 goto out; 971 } 972 973 /* attempt to recover from log if we are starting a dirty array */ 974 if (!mddev->pers && mddev->recovery_cp != MaxSector) 975 ret = ppl_recover(log, pplhdr); 976 out: 977 /* write empty header if we are starting the array */ 978 if (!ret && !mddev->pers) 979 ret = ppl_write_empty_header(log); 980 981 __free_page(page); 982 983 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", 984 __func__, ret, ppl_conf->mismatch_count, 985 ppl_conf->recovered_entries); 986 return ret; 987 } 988 989 static int ppl_load(struct ppl_conf *ppl_conf) 990 { 991 int ret = 0; 992 u32 signature = 0; 993 bool signature_set = false; 994 int i; 995 996 for (i = 0; i < ppl_conf->count; i++) { 997 struct ppl_log *log = &ppl_conf->child_logs[i]; 998 999 /* skip missing drive */ 1000 if (!log->rdev) 1001 continue; 1002 1003 ret = ppl_load_distributed(log); 1004 if (ret) 1005 break; 1006 1007 /* 1008 * For external metadata we can't check if the signature is 1009 * correct on a single drive, but we can check if it is the same 1010 * on all drives. 1011 */ 1012 if (ppl_conf->mddev->external) { 1013 if (!signature_set) { 1014 signature = ppl_conf->signature; 1015 signature_set = true; 1016 } else if (signature != ppl_conf->signature) { 1017 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n", 1018 mdname(ppl_conf->mddev)); 1019 ret = -EINVAL; 1020 break; 1021 } 1022 } 1023 } 1024 1025 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", 1026 __func__, ret, ppl_conf->mismatch_count, 1027 ppl_conf->recovered_entries); 1028 return ret; 1029 } 1030 1031 static void __ppl_exit_log(struct ppl_conf *ppl_conf) 1032 { 1033 clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); 1034 1035 kfree(ppl_conf->child_logs); 1036 1037 if (ppl_conf->bs) 1038 bioset_free(ppl_conf->bs); 1039 mempool_destroy(ppl_conf->io_pool); 1040 kmem_cache_destroy(ppl_conf->io_kc); 1041 1042 kfree(ppl_conf); 1043 } 1044 1045 void ppl_exit_log(struct r5conf *conf) 1046 { 1047 struct ppl_conf *ppl_conf = conf->log_private; 1048 1049 if (ppl_conf) { 1050 __ppl_exit_log(ppl_conf); 1051 conf->log_private = NULL; 1052 } 1053 } 1054 1055 static int ppl_validate_rdev(struct md_rdev *rdev) 1056 { 1057 char b[BDEVNAME_SIZE]; 1058 int ppl_data_sectors; 1059 int ppl_size_new; 1060 1061 /* 1062 * The configured PPL size must be enough to store 1063 * the header and (at the very least) partial parity 1064 * for one stripe. Round it down to ensure the data 1065 * space is cleanly divisible by stripe size. 1066 */ 1067 ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9); 1068 1069 if (ppl_data_sectors > 0) 1070 ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS); 1071 1072 if (ppl_data_sectors <= 0) { 1073 pr_warn("md/raid:%s: PPL space too small on %s\n", 1074 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1075 return -ENOSPC; 1076 } 1077 1078 ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9); 1079 1080 if ((rdev->ppl.sector < rdev->data_offset && 1081 rdev->ppl.sector + ppl_size_new > rdev->data_offset) || 1082 (rdev->ppl.sector >= rdev->data_offset && 1083 rdev->data_offset + rdev->sectors > rdev->ppl.sector)) { 1084 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n", 1085 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1086 return -EINVAL; 1087 } 1088 1089 if (!rdev->mddev->external && 1090 ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) || 1091 (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) { 1092 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n", 1093 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1094 return -EINVAL; 1095 } 1096 1097 rdev->ppl.size = ppl_size_new; 1098 1099 return 0; 1100 } 1101 1102 int ppl_init_log(struct r5conf *conf) 1103 { 1104 struct ppl_conf *ppl_conf; 1105 struct mddev *mddev = conf->mddev; 1106 int ret = 0; 1107 int i; 1108 bool need_cache_flush = false; 1109 1110 pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n", 1111 mdname(conf->mddev)); 1112 1113 if (PAGE_SIZE != 4096) 1114 return -EINVAL; 1115 1116 if (mddev->level != 5) { 1117 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n", 1118 mdname(mddev), mddev->level); 1119 return -EINVAL; 1120 } 1121 1122 if (mddev->bitmap_info.file || mddev->bitmap_info.offset) { 1123 pr_warn("md/raid:%s PPL is not compatible with bitmap\n", 1124 mdname(mddev)); 1125 return -EINVAL; 1126 } 1127 1128 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 1129 pr_warn("md/raid:%s PPL is not compatible with journal\n", 1130 mdname(mddev)); 1131 return -EINVAL; 1132 } 1133 1134 ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL); 1135 if (!ppl_conf) 1136 return -ENOMEM; 1137 1138 ppl_conf->mddev = mddev; 1139 1140 ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0); 1141 if (!ppl_conf->io_kc) { 1142 ret = -ENOMEM; 1143 goto err; 1144 } 1145 1146 ppl_conf->io_pool = mempool_create(conf->raid_disks, ppl_io_pool_alloc, 1147 ppl_io_pool_free, ppl_conf->io_kc); 1148 if (!ppl_conf->io_pool) { 1149 ret = -ENOMEM; 1150 goto err; 1151 } 1152 1153 ppl_conf->bs = bioset_create(conf->raid_disks, 0); 1154 if (!ppl_conf->bs) { 1155 ret = -ENOMEM; 1156 goto err; 1157 } 1158 1159 ppl_conf->count = conf->raid_disks; 1160 ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log), 1161 GFP_KERNEL); 1162 if (!ppl_conf->child_logs) { 1163 ret = -ENOMEM; 1164 goto err; 1165 } 1166 1167 atomic64_set(&ppl_conf->seq, 0); 1168 INIT_LIST_HEAD(&ppl_conf->no_mem_stripes); 1169 spin_lock_init(&ppl_conf->no_mem_stripes_lock); 1170 1171 if (!mddev->external) { 1172 ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid)); 1173 ppl_conf->block_size = 512; 1174 } else { 1175 ppl_conf->block_size = queue_logical_block_size(mddev->queue); 1176 } 1177 1178 for (i = 0; i < ppl_conf->count; i++) { 1179 struct ppl_log *log = &ppl_conf->child_logs[i]; 1180 struct md_rdev *rdev = conf->disks[i].rdev; 1181 1182 mutex_init(&log->io_mutex); 1183 spin_lock_init(&log->io_list_lock); 1184 INIT_LIST_HEAD(&log->io_list); 1185 1186 log->ppl_conf = ppl_conf; 1187 log->rdev = rdev; 1188 1189 if (rdev) { 1190 struct request_queue *q; 1191 1192 ret = ppl_validate_rdev(rdev); 1193 if (ret) 1194 goto err; 1195 1196 q = bdev_get_queue(rdev->bdev); 1197 if (test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 1198 need_cache_flush = true; 1199 } 1200 } 1201 1202 if (need_cache_flush) 1203 pr_warn("md/raid:%s: Volatile write-back cache should be disabled on all member drives when using PPL!\n", 1204 mdname(mddev)); 1205 1206 /* load and possibly recover the logs from the member disks */ 1207 ret = ppl_load(ppl_conf); 1208 1209 if (ret) { 1210 goto err; 1211 } else if (!mddev->pers && 1212 mddev->recovery_cp == 0 && !mddev->degraded && 1213 ppl_conf->recovered_entries > 0 && 1214 ppl_conf->mismatch_count == 0) { 1215 /* 1216 * If we are starting a dirty array and the recovery succeeds 1217 * without any issues, set the array as clean. 1218 */ 1219 mddev->recovery_cp = MaxSector; 1220 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 1221 } else if (mddev->pers && ppl_conf->mismatch_count > 0) { 1222 /* no mismatch allowed when enabling PPL for a running array */ 1223 ret = -EINVAL; 1224 goto err; 1225 } 1226 1227 conf->log_private = ppl_conf; 1228 set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); 1229 1230 return 0; 1231 err: 1232 __ppl_exit_log(ppl_conf); 1233 return ret; 1234 } 1235 1236 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add) 1237 { 1238 struct ppl_conf *ppl_conf = conf->log_private; 1239 struct ppl_log *log; 1240 int ret = 0; 1241 char b[BDEVNAME_SIZE]; 1242 1243 if (!rdev) 1244 return -EINVAL; 1245 1246 pr_debug("%s: disk: %d operation: %s dev: %s\n", 1247 __func__, rdev->raid_disk, add ? "add" : "remove", 1248 bdevname(rdev->bdev, b)); 1249 1250 if (rdev->raid_disk < 0) 1251 return 0; 1252 1253 if (rdev->raid_disk >= ppl_conf->count) 1254 return -ENODEV; 1255 1256 log = &ppl_conf->child_logs[rdev->raid_disk]; 1257 1258 mutex_lock(&log->io_mutex); 1259 if (add) { 1260 ret = ppl_validate_rdev(rdev); 1261 if (!ret) { 1262 log->rdev = rdev; 1263 ret = ppl_write_empty_header(log); 1264 } 1265 } else { 1266 log->rdev = NULL; 1267 } 1268 mutex_unlock(&log->io_mutex); 1269 1270 return ret; 1271 } 1272