xref: /linux/drivers/md/raid5-ppl.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Partial Parity Log for closing the RAID5 write hole
4  * Copyright (c) 2017, Intel Corporation.
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/crc32c.h>
11 #include <linux/async_tx.h>
12 #include <linux/raid/md_p.h>
13 #include "md.h"
14 #include "raid5.h"
15 #include "raid5-log.h"
16 
17 /*
18  * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
19  * partial parity data. The header contains an array of entries
20  * (struct ppl_header_entry) which describe the logged write requests.
21  * Partial parity for the entries comes after the header, written in the same
22  * sequence as the entries:
23  *
24  * Header
25  *   entry0
26  *   ...
27  *   entryN
28  * PP data
29  *   PP for entry0
30  *   ...
31  *   PP for entryN
32  *
33  * An entry describes one or more consecutive stripe_heads, up to a full
34  * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
35  * number of stripe_heads in the entry and n is the number of modified data
36  * disks. Every stripe_head in the entry must write to the same data disks.
37  * An example of a valid case described by a single entry (writes to the first
38  * stripe of a 4 disk array, 16k chunk size):
39  *
40  * sh->sector   dd0   dd1   dd2    ppl
41  *            +-----+-----+-----+
42  * 0          | --- | --- | --- | +----+
43  * 8          | -W- | -W- | --- | | pp |   data_sector = 8
44  * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
45  * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
46  *            +-----+-----+-----+ +----+
47  *
48  * data_sector is the first raid sector of the modified data, data_size is the
49  * total size of modified data and pp_size is the size of partial parity for
50  * this entry. Entries for full stripe writes contain no partial parity
51  * (pp_size = 0), they only mark the stripes for which parity should be
52  * recalculated after an unclean shutdown. Every entry holds a checksum of its
53  * partial parity, the header also has a checksum of the header itself.
54  *
55  * A write request is always logged to the PPL instance stored on the parity
56  * disk of the corresponding stripe. For each member disk there is one ppl_log
57  * used to handle logging for this disk, independently from others. They are
58  * grouped in child_logs array in struct ppl_conf, which is assigned to
59  * r5conf->log_private.
60  *
61  * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
62  * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
63  * can be appended to the last entry if it meets the conditions for a valid
64  * entry described above, otherwise a new entry is added. Checksums of entries
65  * are calculated incrementally as stripes containing partial parity are being
66  * added. ppl_submit_iounit() calculates the checksum of the header and submits
67  * a bio containing the header page and partial parity pages (sh->ppl_page) for
68  * all stripes of the io_unit. When the PPL write completes, the stripes
69  * associated with the io_unit are released and raid5d starts writing their data
70  * and parity. When all stripes are written, the io_unit is freed and the next
71  * can be submitted.
72  *
73  * An io_unit is used to gather stripes until it is submitted or becomes full
74  * (if the maximum number of entries or size of PPL is reached). Another io_unit
75  * can't be submitted until the previous has completed (PPL and stripe
76  * data+parity is written). The log->io_list tracks all io_units of a log
77  * (for a single member disk). New io_units are added to the end of the list
78  * and the first io_unit is submitted, if it is not submitted already.
79  * The current io_unit accepting new stripes is always at the end of the list.
80  *
81  * If write-back cache is enabled for any of the disks in the array, its data
82  * must be flushed before next io_unit is submitted.
83  */
84 
85 #define PPL_SPACE_SIZE (128 * 1024)
86 
87 struct ppl_conf {
88 	struct mddev *mddev;
89 
90 	/* array of child logs, one for each raid disk */
91 	struct ppl_log *child_logs;
92 	int count;
93 
94 	int block_size;		/* the logical block size used for data_sector
95 				 * in ppl_header_entry */
96 	u32 signature;		/* raid array identifier */
97 	atomic64_t seq;		/* current log write sequence number */
98 
99 	struct kmem_cache *io_kc;
100 	mempool_t io_pool;
101 	struct bio_set bs;
102 	struct bio_set flush_bs;
103 
104 	/* used only for recovery */
105 	int recovered_entries;
106 	int mismatch_count;
107 
108 	/* stripes to retry if failed to allocate io_unit */
109 	struct list_head no_mem_stripes;
110 	spinlock_t no_mem_stripes_lock;
111 
112 	unsigned short write_hint;
113 };
114 
115 struct ppl_log {
116 	struct ppl_conf *ppl_conf;	/* shared between all log instances */
117 
118 	struct md_rdev *rdev;		/* array member disk associated with
119 					 * this log instance */
120 	struct mutex io_mutex;
121 	struct ppl_io_unit *current_io;	/* current io_unit accepting new data
122 					 * always at the end of io_list */
123 	spinlock_t io_list_lock;
124 	struct list_head io_list;	/* all io_units of this log */
125 
126 	sector_t next_io_sector;
127 	unsigned int entry_space;
128 	bool use_multippl;
129 	bool wb_cache_on;
130 	unsigned long disk_flush_bitmap;
131 };
132 
133 #define PPL_IO_INLINE_BVECS 32
134 
135 struct ppl_io_unit {
136 	struct ppl_log *log;
137 
138 	struct page *header_page;	/* for ppl_header */
139 
140 	unsigned int entries_count;	/* number of entries in ppl_header */
141 	unsigned int pp_size;		/* total size current of partial parity */
142 
143 	u64 seq;			/* sequence number of this log write */
144 	struct list_head log_sibling;	/* log->io_list */
145 
146 	struct list_head stripe_list;	/* stripes added to the io_unit */
147 	atomic_t pending_stripes;	/* how many stripes not written to raid */
148 	atomic_t pending_flushes;	/* how many disk flushes are in progress */
149 
150 	bool submitted;			/* true if write to log started */
151 
152 	/* inline bio and its biovec for submitting the iounit */
153 	struct bio bio;
154 	struct bio_vec biovec[PPL_IO_INLINE_BVECS];
155 };
156 
157 struct dma_async_tx_descriptor *
158 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
159 		       struct dma_async_tx_descriptor *tx)
160 {
161 	int disks = sh->disks;
162 	struct page **srcs = percpu->scribble;
163 	int count = 0, pd_idx = sh->pd_idx, i;
164 	struct async_submit_ctl submit;
165 
166 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
167 
168 	/*
169 	 * Partial parity is the XOR of stripe data chunks that are not changed
170 	 * during the write request. Depending on available data
171 	 * (read-modify-write vs. reconstruct-write case) we calculate it
172 	 * differently.
173 	 */
174 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
175 		/*
176 		 * rmw: xor old data and parity from updated disks
177 		 * This is calculated earlier by ops_run_prexor5() so just copy
178 		 * the parity dev page.
179 		 */
180 		srcs[count++] = sh->dev[pd_idx].page;
181 	} else if (sh->reconstruct_state == reconstruct_state_drain_run) {
182 		/* rcw: xor data from all not updated disks */
183 		for (i = disks; i--;) {
184 			struct r5dev *dev = &sh->dev[i];
185 			if (test_bit(R5_UPTODATE, &dev->flags))
186 				srcs[count++] = dev->page;
187 		}
188 	} else {
189 		return tx;
190 	}
191 
192 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
193 			  NULL, sh, (void *) (srcs + sh->disks + 2));
194 
195 	if (count == 1)
196 		tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
197 				  &submit);
198 	else
199 		tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
200 			       &submit);
201 
202 	return tx;
203 }
204 
205 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
206 {
207 	struct kmem_cache *kc = pool_data;
208 	struct ppl_io_unit *io;
209 
210 	io = kmem_cache_alloc(kc, gfp_mask);
211 	if (!io)
212 		return NULL;
213 
214 	io->header_page = alloc_page(gfp_mask);
215 	if (!io->header_page) {
216 		kmem_cache_free(kc, io);
217 		return NULL;
218 	}
219 
220 	return io;
221 }
222 
223 static void ppl_io_pool_free(void *element, void *pool_data)
224 {
225 	struct kmem_cache *kc = pool_data;
226 	struct ppl_io_unit *io = element;
227 
228 	__free_page(io->header_page);
229 	kmem_cache_free(kc, io);
230 }
231 
232 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
233 					  struct stripe_head *sh)
234 {
235 	struct ppl_conf *ppl_conf = log->ppl_conf;
236 	struct ppl_io_unit *io;
237 	struct ppl_header *pplhdr;
238 	struct page *header_page;
239 
240 	io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
241 	if (!io)
242 		return NULL;
243 
244 	header_page = io->header_page;
245 	memset(io, 0, sizeof(*io));
246 	io->header_page = header_page;
247 
248 	io->log = log;
249 	INIT_LIST_HEAD(&io->log_sibling);
250 	INIT_LIST_HEAD(&io->stripe_list);
251 	atomic_set(&io->pending_stripes, 0);
252 	atomic_set(&io->pending_flushes, 0);
253 	bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS);
254 
255 	pplhdr = page_address(io->header_page);
256 	clear_page(pplhdr);
257 	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
258 	pplhdr->signature = cpu_to_le32(ppl_conf->signature);
259 
260 	io->seq = atomic64_add_return(1, &ppl_conf->seq);
261 	pplhdr->generation = cpu_to_le64(io->seq);
262 
263 	return io;
264 }
265 
266 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
267 {
268 	struct ppl_io_unit *io = log->current_io;
269 	struct ppl_header_entry *e = NULL;
270 	struct ppl_header *pplhdr;
271 	int i;
272 	sector_t data_sector = 0;
273 	int data_disks = 0;
274 	struct r5conf *conf = sh->raid_conf;
275 
276 	pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
277 
278 	/* check if current io_unit is full */
279 	if (io && (io->pp_size == log->entry_space ||
280 		   io->entries_count == PPL_HDR_MAX_ENTRIES)) {
281 		pr_debug("%s: add io_unit blocked by seq: %llu\n",
282 			 __func__, io->seq);
283 		io = NULL;
284 	}
285 
286 	/* add a new unit if there is none or the current is full */
287 	if (!io) {
288 		io = ppl_new_iounit(log, sh);
289 		if (!io)
290 			return -ENOMEM;
291 		spin_lock_irq(&log->io_list_lock);
292 		list_add_tail(&io->log_sibling, &log->io_list);
293 		spin_unlock_irq(&log->io_list_lock);
294 
295 		log->current_io = io;
296 	}
297 
298 	for (i = 0; i < sh->disks; i++) {
299 		struct r5dev *dev = &sh->dev[i];
300 
301 		if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
302 			if (!data_disks || dev->sector < data_sector)
303 				data_sector = dev->sector;
304 			data_disks++;
305 		}
306 	}
307 	BUG_ON(!data_disks);
308 
309 	pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
310 		 io->seq, (unsigned long long)data_sector, data_disks);
311 
312 	pplhdr = page_address(io->header_page);
313 
314 	if (io->entries_count > 0) {
315 		struct ppl_header_entry *last =
316 				&pplhdr->entries[io->entries_count - 1];
317 		struct stripe_head *sh_last = list_last_entry(
318 				&io->stripe_list, struct stripe_head, log_list);
319 		u64 data_sector_last = le64_to_cpu(last->data_sector);
320 		u32 data_size_last = le32_to_cpu(last->data_size);
321 
322 		/*
323 		 * Check if we can append the stripe to the last entry. It must
324 		 * be just after the last logged stripe and write to the same
325 		 * disks. Use bit shift and logarithm to avoid 64-bit division.
326 		 */
327 		if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) &&
328 		    (data_sector >> ilog2(conf->chunk_sectors) ==
329 		     data_sector_last >> ilog2(conf->chunk_sectors)) &&
330 		    ((data_sector - data_sector_last) * data_disks ==
331 		     data_size_last >> 9))
332 			e = last;
333 	}
334 
335 	if (!e) {
336 		e = &pplhdr->entries[io->entries_count++];
337 		e->data_sector = cpu_to_le64(data_sector);
338 		e->parity_disk = cpu_to_le32(sh->pd_idx);
339 		e->checksum = cpu_to_le32(~0);
340 	}
341 
342 	le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
343 
344 	/* don't write any PP if full stripe write */
345 	if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
346 		le32_add_cpu(&e->pp_size, PAGE_SIZE);
347 		io->pp_size += PAGE_SIZE;
348 		e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
349 						    page_address(sh->ppl_page),
350 						    PAGE_SIZE));
351 	}
352 
353 	list_add_tail(&sh->log_list, &io->stripe_list);
354 	atomic_inc(&io->pending_stripes);
355 	sh->ppl_io = io;
356 
357 	return 0;
358 }
359 
360 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
361 {
362 	struct ppl_conf *ppl_conf = conf->log_private;
363 	struct ppl_io_unit *io = sh->ppl_io;
364 	struct ppl_log *log;
365 
366 	if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
367 	    !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
368 	    !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
369 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
370 		return -EAGAIN;
371 	}
372 
373 	log = &ppl_conf->child_logs[sh->pd_idx];
374 
375 	mutex_lock(&log->io_mutex);
376 
377 	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
378 		mutex_unlock(&log->io_mutex);
379 		return -EAGAIN;
380 	}
381 
382 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
383 	clear_bit(STRIPE_DELAYED, &sh->state);
384 	atomic_inc(&sh->count);
385 
386 	if (ppl_log_stripe(log, sh)) {
387 		spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
388 		list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
389 		spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
390 	}
391 
392 	mutex_unlock(&log->io_mutex);
393 
394 	return 0;
395 }
396 
397 static void ppl_log_endio(struct bio *bio)
398 {
399 	struct ppl_io_unit *io = bio->bi_private;
400 	struct ppl_log *log = io->log;
401 	struct ppl_conf *ppl_conf = log->ppl_conf;
402 	struct stripe_head *sh, *next;
403 
404 	pr_debug("%s: seq: %llu\n", __func__, io->seq);
405 
406 	if (bio->bi_status)
407 		md_error(ppl_conf->mddev, log->rdev);
408 
409 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
410 		list_del_init(&sh->log_list);
411 
412 		set_bit(STRIPE_HANDLE, &sh->state);
413 		raid5_release_stripe(sh);
414 	}
415 }
416 
417 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
418 {
419 	char b[BDEVNAME_SIZE];
420 
421 	pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
422 		 __func__, io->seq, bio->bi_iter.bi_size,
423 		 (unsigned long long)bio->bi_iter.bi_sector,
424 		 bio_devname(bio, b));
425 
426 	submit_bio(bio);
427 }
428 
429 static void ppl_submit_iounit(struct ppl_io_unit *io)
430 {
431 	struct ppl_log *log = io->log;
432 	struct ppl_conf *ppl_conf = log->ppl_conf;
433 	struct ppl_header *pplhdr = page_address(io->header_page);
434 	struct bio *bio = &io->bio;
435 	struct stripe_head *sh;
436 	int i;
437 
438 	bio->bi_private = io;
439 
440 	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
441 		ppl_log_endio(bio);
442 		return;
443 	}
444 
445 	for (i = 0; i < io->entries_count; i++) {
446 		struct ppl_header_entry *e = &pplhdr->entries[i];
447 
448 		pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
449 			 __func__, io->seq, i, le64_to_cpu(e->data_sector),
450 			 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
451 
452 		e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
453 					     ilog2(ppl_conf->block_size >> 9));
454 		e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
455 	}
456 
457 	pplhdr->entries_count = cpu_to_le32(io->entries_count);
458 	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
459 
460 	/* Rewind the buffer if current PPL is larger then remaining space */
461 	if (log->use_multippl &&
462 	    log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
463 	    (PPL_HEADER_SIZE + io->pp_size) >> 9)
464 		log->next_io_sector = log->rdev->ppl.sector;
465 
466 
467 	bio->bi_end_io = ppl_log_endio;
468 	bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
469 	bio_set_dev(bio, log->rdev->bdev);
470 	bio->bi_iter.bi_sector = log->next_io_sector;
471 	bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
472 	bio->bi_write_hint = ppl_conf->write_hint;
473 
474 	pr_debug("%s: log->current_io_sector: %llu\n", __func__,
475 	    (unsigned long long)log->next_io_sector);
476 
477 	if (log->use_multippl)
478 		log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
479 
480 	WARN_ON(log->disk_flush_bitmap != 0);
481 
482 	list_for_each_entry(sh, &io->stripe_list, log_list) {
483 		for (i = 0; i < sh->disks; i++) {
484 			struct r5dev *dev = &sh->dev[i];
485 
486 			if ((ppl_conf->child_logs[i].wb_cache_on) &&
487 			    (test_bit(R5_Wantwrite, &dev->flags))) {
488 				set_bit(i, &log->disk_flush_bitmap);
489 			}
490 		}
491 
492 		/* entries for full stripe writes have no partial parity */
493 		if (test_bit(STRIPE_FULL_WRITE, &sh->state))
494 			continue;
495 
496 		if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
497 			struct bio *prev = bio;
498 
499 			bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES,
500 					       &ppl_conf->bs);
501 			bio->bi_opf = prev->bi_opf;
502 			bio->bi_write_hint = prev->bi_write_hint;
503 			bio_copy_dev(bio, prev);
504 			bio->bi_iter.bi_sector = bio_end_sector(prev);
505 			bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
506 
507 			bio_chain(bio, prev);
508 			ppl_submit_iounit_bio(io, prev);
509 		}
510 	}
511 
512 	ppl_submit_iounit_bio(io, bio);
513 }
514 
515 static void ppl_submit_current_io(struct ppl_log *log)
516 {
517 	struct ppl_io_unit *io;
518 
519 	spin_lock_irq(&log->io_list_lock);
520 
521 	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
522 				      log_sibling);
523 	if (io && io->submitted)
524 		io = NULL;
525 
526 	spin_unlock_irq(&log->io_list_lock);
527 
528 	if (io) {
529 		io->submitted = true;
530 
531 		if (io == log->current_io)
532 			log->current_io = NULL;
533 
534 		ppl_submit_iounit(io);
535 	}
536 }
537 
538 void ppl_write_stripe_run(struct r5conf *conf)
539 {
540 	struct ppl_conf *ppl_conf = conf->log_private;
541 	struct ppl_log *log;
542 	int i;
543 
544 	for (i = 0; i < ppl_conf->count; i++) {
545 		log = &ppl_conf->child_logs[i];
546 
547 		mutex_lock(&log->io_mutex);
548 		ppl_submit_current_io(log);
549 		mutex_unlock(&log->io_mutex);
550 	}
551 }
552 
553 static void ppl_io_unit_finished(struct ppl_io_unit *io)
554 {
555 	struct ppl_log *log = io->log;
556 	struct ppl_conf *ppl_conf = log->ppl_conf;
557 	struct r5conf *conf = ppl_conf->mddev->private;
558 	unsigned long flags;
559 
560 	pr_debug("%s: seq: %llu\n", __func__, io->seq);
561 
562 	local_irq_save(flags);
563 
564 	spin_lock(&log->io_list_lock);
565 	list_del(&io->log_sibling);
566 	spin_unlock(&log->io_list_lock);
567 
568 	mempool_free(io, &ppl_conf->io_pool);
569 
570 	spin_lock(&ppl_conf->no_mem_stripes_lock);
571 	if (!list_empty(&ppl_conf->no_mem_stripes)) {
572 		struct stripe_head *sh;
573 
574 		sh = list_first_entry(&ppl_conf->no_mem_stripes,
575 				      struct stripe_head, log_list);
576 		list_del_init(&sh->log_list);
577 		set_bit(STRIPE_HANDLE, &sh->state);
578 		raid5_release_stripe(sh);
579 	}
580 	spin_unlock(&ppl_conf->no_mem_stripes_lock);
581 
582 	local_irq_restore(flags);
583 
584 	wake_up(&conf->wait_for_quiescent);
585 }
586 
587 static void ppl_flush_endio(struct bio *bio)
588 {
589 	struct ppl_io_unit *io = bio->bi_private;
590 	struct ppl_log *log = io->log;
591 	struct ppl_conf *ppl_conf = log->ppl_conf;
592 	struct r5conf *conf = ppl_conf->mddev->private;
593 	char b[BDEVNAME_SIZE];
594 
595 	pr_debug("%s: dev: %s\n", __func__, bio_devname(bio, b));
596 
597 	if (bio->bi_status) {
598 		struct md_rdev *rdev;
599 
600 		rcu_read_lock();
601 		rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
602 		if (rdev)
603 			md_error(rdev->mddev, rdev);
604 		rcu_read_unlock();
605 	}
606 
607 	bio_put(bio);
608 
609 	if (atomic_dec_and_test(&io->pending_flushes)) {
610 		ppl_io_unit_finished(io);
611 		md_wakeup_thread(conf->mddev->thread);
612 	}
613 }
614 
615 static void ppl_do_flush(struct ppl_io_unit *io)
616 {
617 	struct ppl_log *log = io->log;
618 	struct ppl_conf *ppl_conf = log->ppl_conf;
619 	struct r5conf *conf = ppl_conf->mddev->private;
620 	int raid_disks = conf->raid_disks;
621 	int flushed_disks = 0;
622 	int i;
623 
624 	atomic_set(&io->pending_flushes, raid_disks);
625 
626 	for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
627 		struct md_rdev *rdev;
628 		struct block_device *bdev = NULL;
629 
630 		rcu_read_lock();
631 		rdev = rcu_dereference(conf->disks[i].rdev);
632 		if (rdev && !test_bit(Faulty, &rdev->flags))
633 			bdev = rdev->bdev;
634 		rcu_read_unlock();
635 
636 		if (bdev) {
637 			struct bio *bio;
638 			char b[BDEVNAME_SIZE];
639 
640 			bio = bio_alloc_bioset(GFP_NOIO, 0, &ppl_conf->flush_bs);
641 			bio_set_dev(bio, bdev);
642 			bio->bi_private = io;
643 			bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
644 			bio->bi_end_io = ppl_flush_endio;
645 
646 			pr_debug("%s: dev: %s\n", __func__,
647 				 bio_devname(bio, b));
648 
649 			submit_bio(bio);
650 			flushed_disks++;
651 		}
652 	}
653 
654 	log->disk_flush_bitmap = 0;
655 
656 	for (i = flushed_disks ; i < raid_disks; i++) {
657 		if (atomic_dec_and_test(&io->pending_flushes))
658 			ppl_io_unit_finished(io);
659 	}
660 }
661 
662 static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
663 					    struct ppl_log *log)
664 {
665 	struct ppl_io_unit *io;
666 
667 	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
668 				      log_sibling);
669 
670 	return !io || !io->submitted;
671 }
672 
673 void ppl_quiesce(struct r5conf *conf, int quiesce)
674 {
675 	struct ppl_conf *ppl_conf = conf->log_private;
676 	int i;
677 
678 	if (quiesce) {
679 		for (i = 0; i < ppl_conf->count; i++) {
680 			struct ppl_log *log = &ppl_conf->child_logs[i];
681 
682 			spin_lock_irq(&log->io_list_lock);
683 			wait_event_lock_irq(conf->wait_for_quiescent,
684 					    ppl_no_io_unit_submitted(conf, log),
685 					    log->io_list_lock);
686 			spin_unlock_irq(&log->io_list_lock);
687 		}
688 	}
689 }
690 
691 int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio)
692 {
693 	if (bio->bi_iter.bi_size == 0) {
694 		bio_endio(bio);
695 		return 0;
696 	}
697 	bio->bi_opf &= ~REQ_PREFLUSH;
698 	return -EAGAIN;
699 }
700 
701 void ppl_stripe_write_finished(struct stripe_head *sh)
702 {
703 	struct ppl_io_unit *io;
704 
705 	io = sh->ppl_io;
706 	sh->ppl_io = NULL;
707 
708 	if (io && atomic_dec_and_test(&io->pending_stripes)) {
709 		if (io->log->disk_flush_bitmap)
710 			ppl_do_flush(io);
711 		else
712 			ppl_io_unit_finished(io);
713 	}
714 }
715 
716 static void ppl_xor(int size, struct page *page1, struct page *page2)
717 {
718 	struct async_submit_ctl submit;
719 	struct dma_async_tx_descriptor *tx;
720 	struct page *xor_srcs[] = { page1, page2 };
721 
722 	init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
723 			  NULL, NULL, NULL, NULL);
724 	tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
725 
726 	async_tx_quiesce(&tx);
727 }
728 
729 /*
730  * PPL recovery strategy: xor partial parity and data from all modified data
731  * disks within a stripe and write the result as the new stripe parity. If all
732  * stripe data disks are modified (full stripe write), no partial parity is
733  * available, so just xor the data disks.
734  *
735  * Recovery of a PPL entry shall occur only if all modified data disks are
736  * available and read from all of them succeeds.
737  *
738  * A PPL entry applies to a stripe, partial parity size for an entry is at most
739  * the size of the chunk. Examples of possible cases for a single entry:
740  *
741  * case 0: single data disk write:
742  *   data0    data1    data2     ppl        parity
743  * +--------+--------+--------+           +--------------------+
744  * | ------ | ------ | ------ | +----+    | (no change)        |
745  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
746  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
747  * | ------ | ------ | ------ | +----+    | (no change)        |
748  * +--------+--------+--------+           +--------------------+
749  * pp_size = data_size
750  *
751  * case 1: more than one data disk write:
752  *   data0    data1    data2     ppl        parity
753  * +--------+--------+--------+           +--------------------+
754  * | ------ | ------ | ------ | +----+    | (no change)        |
755  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
756  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
757  * | ------ | ------ | ------ | +----+    | (no change)        |
758  * +--------+--------+--------+           +--------------------+
759  * pp_size = data_size / modified_data_disks
760  *
761  * case 2: write to all data disks (also full stripe write):
762  *   data0    data1    data2                parity
763  * +--------+--------+--------+           +--------------------+
764  * | ------ | ------ | ------ |           | (no change)        |
765  * | -data- | -data- | -data- | --------> | xor all data       |
766  * | ------ | ------ | ------ | --------> | (no change)        |
767  * | ------ | ------ | ------ |           | (no change)        |
768  * +--------+--------+--------+           +--------------------+
769  * pp_size = 0
770  *
771  * The following cases are possible only in other implementations. The recovery
772  * code can handle them, but they are not generated at runtime because they can
773  * be reduced to cases 0, 1 and 2:
774  *
775  * case 3:
776  *   data0    data1    data2     ppl        parity
777  * +--------+--------+--------+ +----+    +--------------------+
778  * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
779  * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
780  * | -data- | -data- | -data- | | -- | -> | xor all data       |
781  * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
782  * +--------+--------+--------+ +----+    +--------------------+
783  * pp_size = chunk_size
784  *
785  * case 4:
786  *   data0    data1    data2     ppl        parity
787  * +--------+--------+--------+ +----+    +--------------------+
788  * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
789  * | ------ | ------ | ------ | | -- | -> | (no change)        |
790  * | ------ | ------ | ------ | | -- | -> | (no change)        |
791  * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
792  * +--------+--------+--------+ +----+    +--------------------+
793  * pp_size = chunk_size
794  */
795 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
796 			     sector_t ppl_sector)
797 {
798 	struct ppl_conf *ppl_conf = log->ppl_conf;
799 	struct mddev *mddev = ppl_conf->mddev;
800 	struct r5conf *conf = mddev->private;
801 	int block_size = ppl_conf->block_size;
802 	struct page *page1;
803 	struct page *page2;
804 	sector_t r_sector_first;
805 	sector_t r_sector_last;
806 	int strip_sectors;
807 	int data_disks;
808 	int i;
809 	int ret = 0;
810 	char b[BDEVNAME_SIZE];
811 	unsigned int pp_size = le32_to_cpu(e->pp_size);
812 	unsigned int data_size = le32_to_cpu(e->data_size);
813 
814 	page1 = alloc_page(GFP_KERNEL);
815 	page2 = alloc_page(GFP_KERNEL);
816 
817 	if (!page1 || !page2) {
818 		ret = -ENOMEM;
819 		goto out;
820 	}
821 
822 	r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
823 
824 	if ((pp_size >> 9) < conf->chunk_sectors) {
825 		if (pp_size > 0) {
826 			data_disks = data_size / pp_size;
827 			strip_sectors = pp_size >> 9;
828 		} else {
829 			data_disks = conf->raid_disks - conf->max_degraded;
830 			strip_sectors = (data_size >> 9) / data_disks;
831 		}
832 		r_sector_last = r_sector_first +
833 				(data_disks - 1) * conf->chunk_sectors +
834 				strip_sectors;
835 	} else {
836 		data_disks = conf->raid_disks - conf->max_degraded;
837 		strip_sectors = conf->chunk_sectors;
838 		r_sector_last = r_sector_first + (data_size >> 9);
839 	}
840 
841 	pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
842 		 (unsigned long long)r_sector_first,
843 		 (unsigned long long)r_sector_last);
844 
845 	/* if start and end is 4k aligned, use a 4k block */
846 	if (block_size == 512 &&
847 	    (r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 &&
848 	    (r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0)
849 		block_size = RAID5_STRIPE_SIZE(conf);
850 
851 	/* iterate through blocks in strip */
852 	for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
853 		bool update_parity = false;
854 		sector_t parity_sector;
855 		struct md_rdev *parity_rdev;
856 		struct stripe_head sh;
857 		int disk;
858 		int indent = 0;
859 
860 		pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
861 		indent += 2;
862 
863 		memset(page_address(page1), 0, PAGE_SIZE);
864 
865 		/* iterate through data member disks */
866 		for (disk = 0; disk < data_disks; disk++) {
867 			int dd_idx;
868 			struct md_rdev *rdev;
869 			sector_t sector;
870 			sector_t r_sector = r_sector_first + i +
871 					    (disk * conf->chunk_sectors);
872 
873 			pr_debug("%s:%*s data member disk %d start\n",
874 				 __func__, indent, "", disk);
875 			indent += 2;
876 
877 			if (r_sector >= r_sector_last) {
878 				pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
879 					 __func__, indent, "",
880 					 (unsigned long long)r_sector);
881 				indent -= 2;
882 				continue;
883 			}
884 
885 			update_parity = true;
886 
887 			/* map raid sector to member disk */
888 			sector = raid5_compute_sector(conf, r_sector, 0,
889 						      &dd_idx, NULL);
890 			pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
891 				 __func__, indent, "",
892 				 (unsigned long long)r_sector, dd_idx,
893 				 (unsigned long long)sector);
894 
895 			rdev = conf->disks[dd_idx].rdev;
896 			if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
897 				      sector >= rdev->recovery_offset)) {
898 				pr_debug("%s:%*s data member disk %d missing\n",
899 					 __func__, indent, "", dd_idx);
900 				update_parity = false;
901 				break;
902 			}
903 
904 			pr_debug("%s:%*s reading data member disk %s sector %llu\n",
905 				 __func__, indent, "", bdevname(rdev->bdev, b),
906 				 (unsigned long long)sector);
907 			if (!sync_page_io(rdev, sector, block_size, page2,
908 					REQ_OP_READ, 0, false)) {
909 				md_error(mddev, rdev);
910 				pr_debug("%s:%*s read failed!\n", __func__,
911 					 indent, "");
912 				ret = -EIO;
913 				goto out;
914 			}
915 
916 			ppl_xor(block_size, page1, page2);
917 
918 			indent -= 2;
919 		}
920 
921 		if (!update_parity)
922 			continue;
923 
924 		if (pp_size > 0) {
925 			pr_debug("%s:%*s reading pp disk sector %llu\n",
926 				 __func__, indent, "",
927 				 (unsigned long long)(ppl_sector + i));
928 			if (!sync_page_io(log->rdev,
929 					ppl_sector - log->rdev->data_offset + i,
930 					block_size, page2, REQ_OP_READ, 0,
931 					false)) {
932 				pr_debug("%s:%*s read failed!\n", __func__,
933 					 indent, "");
934 				md_error(mddev, log->rdev);
935 				ret = -EIO;
936 				goto out;
937 			}
938 
939 			ppl_xor(block_size, page1, page2);
940 		}
941 
942 		/* map raid sector to parity disk */
943 		parity_sector = raid5_compute_sector(conf, r_sector_first + i,
944 				0, &disk, &sh);
945 		BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
946 		parity_rdev = conf->disks[sh.pd_idx].rdev;
947 
948 		BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
949 		pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
950 			 __func__, indent, "",
951 			 (unsigned long long)parity_sector,
952 			 bdevname(parity_rdev->bdev, b));
953 		if (!sync_page_io(parity_rdev, parity_sector, block_size,
954 				page1, REQ_OP_WRITE, 0, false)) {
955 			pr_debug("%s:%*s parity write error!\n", __func__,
956 				 indent, "");
957 			md_error(mddev, parity_rdev);
958 			ret = -EIO;
959 			goto out;
960 		}
961 	}
962 out:
963 	if (page1)
964 		__free_page(page1);
965 	if (page2)
966 		__free_page(page2);
967 	return ret;
968 }
969 
970 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
971 		       sector_t offset)
972 {
973 	struct ppl_conf *ppl_conf = log->ppl_conf;
974 	struct md_rdev *rdev = log->rdev;
975 	struct mddev *mddev = rdev->mddev;
976 	sector_t ppl_sector = rdev->ppl.sector + offset +
977 			      (PPL_HEADER_SIZE >> 9);
978 	struct page *page;
979 	int i;
980 	int ret = 0;
981 
982 	page = alloc_page(GFP_KERNEL);
983 	if (!page)
984 		return -ENOMEM;
985 
986 	/* iterate through all PPL entries saved */
987 	for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
988 		struct ppl_header_entry *e = &pplhdr->entries[i];
989 		u32 pp_size = le32_to_cpu(e->pp_size);
990 		sector_t sector = ppl_sector;
991 		int ppl_entry_sectors = pp_size >> 9;
992 		u32 crc, crc_stored;
993 
994 		pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
995 			 __func__, rdev->raid_disk, i,
996 			 (unsigned long long)ppl_sector, pp_size);
997 
998 		crc = ~0;
999 		crc_stored = le32_to_cpu(e->checksum);
1000 
1001 		/* read parial parity for this entry and calculate its checksum */
1002 		while (pp_size) {
1003 			int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
1004 
1005 			if (!sync_page_io(rdev, sector - rdev->data_offset,
1006 					s, page, REQ_OP_READ, 0, false)) {
1007 				md_error(mddev, rdev);
1008 				ret = -EIO;
1009 				goto out;
1010 			}
1011 
1012 			crc = crc32c_le(crc, page_address(page), s);
1013 
1014 			pp_size -= s;
1015 			sector += s >> 9;
1016 		}
1017 
1018 		crc = ~crc;
1019 
1020 		if (crc != crc_stored) {
1021 			/*
1022 			 * Don't recover this entry if the checksum does not
1023 			 * match, but keep going and try to recover other
1024 			 * entries.
1025 			 */
1026 			pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1027 				 __func__, crc_stored, crc);
1028 			ppl_conf->mismatch_count++;
1029 		} else {
1030 			ret = ppl_recover_entry(log, e, ppl_sector);
1031 			if (ret)
1032 				goto out;
1033 			ppl_conf->recovered_entries++;
1034 		}
1035 
1036 		ppl_sector += ppl_entry_sectors;
1037 	}
1038 
1039 	/* flush the disk cache after recovery if necessary */
1040 	ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL);
1041 out:
1042 	__free_page(page);
1043 	return ret;
1044 }
1045 
1046 static int ppl_write_empty_header(struct ppl_log *log)
1047 {
1048 	struct page *page;
1049 	struct ppl_header *pplhdr;
1050 	struct md_rdev *rdev = log->rdev;
1051 	int ret = 0;
1052 
1053 	pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
1054 		 rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
1055 
1056 	page = alloc_page(GFP_NOIO | __GFP_ZERO);
1057 	if (!page)
1058 		return -ENOMEM;
1059 
1060 	pplhdr = page_address(page);
1061 	/* zero out PPL space to avoid collision with old PPLs */
1062 	blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
1063 			    log->rdev->ppl.size, GFP_NOIO, 0);
1064 	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
1065 	pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
1066 	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
1067 
1068 	if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
1069 			  PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
1070 			  REQ_FUA, 0, false)) {
1071 		md_error(rdev->mddev, rdev);
1072 		ret = -EIO;
1073 	}
1074 
1075 	__free_page(page);
1076 	return ret;
1077 }
1078 
1079 static int ppl_load_distributed(struct ppl_log *log)
1080 {
1081 	struct ppl_conf *ppl_conf = log->ppl_conf;
1082 	struct md_rdev *rdev = log->rdev;
1083 	struct mddev *mddev = rdev->mddev;
1084 	struct page *page, *page2, *tmp;
1085 	struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
1086 	u32 crc, crc_stored;
1087 	u32 signature;
1088 	int ret = 0, i;
1089 	sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
1090 
1091 	pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
1092 	/* read PPL headers, find the recent one */
1093 	page = alloc_page(GFP_KERNEL);
1094 	if (!page)
1095 		return -ENOMEM;
1096 
1097 	page2 = alloc_page(GFP_KERNEL);
1098 	if (!page2) {
1099 		__free_page(page);
1100 		return -ENOMEM;
1101 	}
1102 
1103 	/* searching ppl area for latest ppl */
1104 	while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
1105 		if (!sync_page_io(rdev,
1106 				  rdev->ppl.sector - rdev->data_offset +
1107 				  pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
1108 				  0, false)) {
1109 			md_error(mddev, rdev);
1110 			ret = -EIO;
1111 			/* if not able to read - don't recover any PPL */
1112 			pplhdr = NULL;
1113 			break;
1114 		}
1115 		pplhdr = page_address(page);
1116 
1117 		/* check header validity */
1118 		crc_stored = le32_to_cpu(pplhdr->checksum);
1119 		pplhdr->checksum = 0;
1120 		crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
1121 
1122 		if (crc_stored != crc) {
1123 			pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1124 				 __func__, crc_stored, crc,
1125 				 (unsigned long long)pplhdr_offset);
1126 			pplhdr = prev_pplhdr;
1127 			pplhdr_offset = prev_pplhdr_offset;
1128 			break;
1129 		}
1130 
1131 		signature = le32_to_cpu(pplhdr->signature);
1132 
1133 		if (mddev->external) {
1134 			/*
1135 			 * For external metadata the header signature is set and
1136 			 * validated in userspace.
1137 			 */
1138 			ppl_conf->signature = signature;
1139 		} else if (ppl_conf->signature != signature) {
1140 			pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1141 				 __func__, signature, ppl_conf->signature,
1142 				 (unsigned long long)pplhdr_offset);
1143 			pplhdr = prev_pplhdr;
1144 			pplhdr_offset = prev_pplhdr_offset;
1145 			break;
1146 		}
1147 
1148 		if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1149 		    le64_to_cpu(pplhdr->generation)) {
1150 			/* previous was newest */
1151 			pplhdr = prev_pplhdr;
1152 			pplhdr_offset = prev_pplhdr_offset;
1153 			break;
1154 		}
1155 
1156 		prev_pplhdr_offset = pplhdr_offset;
1157 		prev_pplhdr = pplhdr;
1158 
1159 		tmp = page;
1160 		page = page2;
1161 		page2 = tmp;
1162 
1163 		/* calculate next potential ppl offset */
1164 		for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1165 			pplhdr_offset +=
1166 			    le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1167 		pplhdr_offset += PPL_HEADER_SIZE >> 9;
1168 	}
1169 
1170 	/* no valid ppl found */
1171 	if (!pplhdr)
1172 		ppl_conf->mismatch_count++;
1173 	else
1174 		pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1175 		    __func__, (unsigned long long)pplhdr_offset,
1176 		    le64_to_cpu(pplhdr->generation));
1177 
1178 	/* attempt to recover from log if we are starting a dirty array */
1179 	if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1180 		ret = ppl_recover(log, pplhdr, pplhdr_offset);
1181 
1182 	/* write empty header if we are starting the array */
1183 	if (!ret && !mddev->pers)
1184 		ret = ppl_write_empty_header(log);
1185 
1186 	__free_page(page);
1187 	__free_page(page2);
1188 
1189 	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1190 		 __func__, ret, ppl_conf->mismatch_count,
1191 		 ppl_conf->recovered_entries);
1192 	return ret;
1193 }
1194 
1195 static int ppl_load(struct ppl_conf *ppl_conf)
1196 {
1197 	int ret = 0;
1198 	u32 signature = 0;
1199 	bool signature_set = false;
1200 	int i;
1201 
1202 	for (i = 0; i < ppl_conf->count; i++) {
1203 		struct ppl_log *log = &ppl_conf->child_logs[i];
1204 
1205 		/* skip missing drive */
1206 		if (!log->rdev)
1207 			continue;
1208 
1209 		ret = ppl_load_distributed(log);
1210 		if (ret)
1211 			break;
1212 
1213 		/*
1214 		 * For external metadata we can't check if the signature is
1215 		 * correct on a single drive, but we can check if it is the same
1216 		 * on all drives.
1217 		 */
1218 		if (ppl_conf->mddev->external) {
1219 			if (!signature_set) {
1220 				signature = ppl_conf->signature;
1221 				signature_set = true;
1222 			} else if (signature != ppl_conf->signature) {
1223 				pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1224 					mdname(ppl_conf->mddev));
1225 				ret = -EINVAL;
1226 				break;
1227 			}
1228 		}
1229 	}
1230 
1231 	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1232 		 __func__, ret, ppl_conf->mismatch_count,
1233 		 ppl_conf->recovered_entries);
1234 	return ret;
1235 }
1236 
1237 static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1238 {
1239 	clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1240 	clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1241 
1242 	kfree(ppl_conf->child_logs);
1243 
1244 	bioset_exit(&ppl_conf->bs);
1245 	bioset_exit(&ppl_conf->flush_bs);
1246 	mempool_exit(&ppl_conf->io_pool);
1247 	kmem_cache_destroy(ppl_conf->io_kc);
1248 
1249 	kfree(ppl_conf);
1250 }
1251 
1252 void ppl_exit_log(struct r5conf *conf)
1253 {
1254 	struct ppl_conf *ppl_conf = conf->log_private;
1255 
1256 	if (ppl_conf) {
1257 		__ppl_exit_log(ppl_conf);
1258 		conf->log_private = NULL;
1259 	}
1260 }
1261 
1262 static int ppl_validate_rdev(struct md_rdev *rdev)
1263 {
1264 	char b[BDEVNAME_SIZE];
1265 	int ppl_data_sectors;
1266 	int ppl_size_new;
1267 
1268 	/*
1269 	 * The configured PPL size must be enough to store
1270 	 * the header and (at the very least) partial parity
1271 	 * for one stripe. Round it down to ensure the data
1272 	 * space is cleanly divisible by stripe size.
1273 	 */
1274 	ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1275 
1276 	if (ppl_data_sectors > 0)
1277 		ppl_data_sectors = rounddown(ppl_data_sectors,
1278 				RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private));
1279 
1280 	if (ppl_data_sectors <= 0) {
1281 		pr_warn("md/raid:%s: PPL space too small on %s\n",
1282 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1283 		return -ENOSPC;
1284 	}
1285 
1286 	ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1287 
1288 	if ((rdev->ppl.sector < rdev->data_offset &&
1289 	     rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1290 	    (rdev->ppl.sector >= rdev->data_offset &&
1291 	     rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1292 		pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1293 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1294 		return -EINVAL;
1295 	}
1296 
1297 	if (!rdev->mddev->external &&
1298 	    ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1299 	     (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1300 		pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1301 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1302 		return -EINVAL;
1303 	}
1304 
1305 	rdev->ppl.size = ppl_size_new;
1306 
1307 	return 0;
1308 }
1309 
1310 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1311 {
1312 	struct request_queue *q;
1313 
1314 	if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1315 				      PPL_HEADER_SIZE) * 2) {
1316 		log->use_multippl = true;
1317 		set_bit(MD_HAS_MULTIPLE_PPLS,
1318 			&log->ppl_conf->mddev->flags);
1319 		log->entry_space = PPL_SPACE_SIZE;
1320 	} else {
1321 		log->use_multippl = false;
1322 		log->entry_space = (log->rdev->ppl.size << 9) -
1323 				   PPL_HEADER_SIZE;
1324 	}
1325 	log->next_io_sector = rdev->ppl.sector;
1326 
1327 	q = bdev_get_queue(rdev->bdev);
1328 	if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1329 		log->wb_cache_on = true;
1330 }
1331 
1332 int ppl_init_log(struct r5conf *conf)
1333 {
1334 	struct ppl_conf *ppl_conf;
1335 	struct mddev *mddev = conf->mddev;
1336 	int ret = 0;
1337 	int max_disks;
1338 	int i;
1339 
1340 	pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1341 		 mdname(conf->mddev));
1342 
1343 	if (PAGE_SIZE != 4096)
1344 		return -EINVAL;
1345 
1346 	if (mddev->level != 5) {
1347 		pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1348 			mdname(mddev), mddev->level);
1349 		return -EINVAL;
1350 	}
1351 
1352 	if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1353 		pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1354 			mdname(mddev));
1355 		return -EINVAL;
1356 	}
1357 
1358 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1359 		pr_warn("md/raid:%s PPL is not compatible with journal\n",
1360 			mdname(mddev));
1361 		return -EINVAL;
1362 	}
1363 
1364 	max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) *
1365 		BITS_PER_BYTE;
1366 	if (conf->raid_disks > max_disks) {
1367 		pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1368 			mdname(mddev), max_disks);
1369 		return -EINVAL;
1370 	}
1371 
1372 	ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1373 	if (!ppl_conf)
1374 		return -ENOMEM;
1375 
1376 	ppl_conf->mddev = mddev;
1377 
1378 	ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1379 	if (!ppl_conf->io_kc) {
1380 		ret = -ENOMEM;
1381 		goto err;
1382 	}
1383 
1384 	ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
1385 			   ppl_io_pool_free, ppl_conf->io_kc);
1386 	if (ret)
1387 		goto err;
1388 
1389 	ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
1390 	if (ret)
1391 		goto err;
1392 
1393 	ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
1394 	if (ret)
1395 		goto err;
1396 
1397 	ppl_conf->count = conf->raid_disks;
1398 	ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1399 				       GFP_KERNEL);
1400 	if (!ppl_conf->child_logs) {
1401 		ret = -ENOMEM;
1402 		goto err;
1403 	}
1404 
1405 	atomic64_set(&ppl_conf->seq, 0);
1406 	INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1407 	spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1408 	ppl_conf->write_hint = RWH_WRITE_LIFE_NOT_SET;
1409 
1410 	if (!mddev->external) {
1411 		ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1412 		ppl_conf->block_size = 512;
1413 	} else {
1414 		ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1415 	}
1416 
1417 	for (i = 0; i < ppl_conf->count; i++) {
1418 		struct ppl_log *log = &ppl_conf->child_logs[i];
1419 		struct md_rdev *rdev = conf->disks[i].rdev;
1420 
1421 		mutex_init(&log->io_mutex);
1422 		spin_lock_init(&log->io_list_lock);
1423 		INIT_LIST_HEAD(&log->io_list);
1424 
1425 		log->ppl_conf = ppl_conf;
1426 		log->rdev = rdev;
1427 
1428 		if (rdev) {
1429 			ret = ppl_validate_rdev(rdev);
1430 			if (ret)
1431 				goto err;
1432 
1433 			ppl_init_child_log(log, rdev);
1434 		}
1435 	}
1436 
1437 	/* load and possibly recover the logs from the member disks */
1438 	ret = ppl_load(ppl_conf);
1439 
1440 	if (ret) {
1441 		goto err;
1442 	} else if (!mddev->pers && mddev->recovery_cp == 0 &&
1443 		   ppl_conf->recovered_entries > 0 &&
1444 		   ppl_conf->mismatch_count == 0) {
1445 		/*
1446 		 * If we are starting a dirty array and the recovery succeeds
1447 		 * without any issues, set the array as clean.
1448 		 */
1449 		mddev->recovery_cp = MaxSector;
1450 		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1451 	} else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1452 		/* no mismatch allowed when enabling PPL for a running array */
1453 		ret = -EINVAL;
1454 		goto err;
1455 	}
1456 
1457 	conf->log_private = ppl_conf;
1458 	set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1459 
1460 	return 0;
1461 err:
1462 	__ppl_exit_log(ppl_conf);
1463 	return ret;
1464 }
1465 
1466 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1467 {
1468 	struct ppl_conf *ppl_conf = conf->log_private;
1469 	struct ppl_log *log;
1470 	int ret = 0;
1471 	char b[BDEVNAME_SIZE];
1472 
1473 	if (!rdev)
1474 		return -EINVAL;
1475 
1476 	pr_debug("%s: disk: %d operation: %s dev: %s\n",
1477 		 __func__, rdev->raid_disk, add ? "add" : "remove",
1478 		 bdevname(rdev->bdev, b));
1479 
1480 	if (rdev->raid_disk < 0)
1481 		return 0;
1482 
1483 	if (rdev->raid_disk >= ppl_conf->count)
1484 		return -ENODEV;
1485 
1486 	log = &ppl_conf->child_logs[rdev->raid_disk];
1487 
1488 	mutex_lock(&log->io_mutex);
1489 	if (add) {
1490 		ret = ppl_validate_rdev(rdev);
1491 		if (!ret) {
1492 			log->rdev = rdev;
1493 			ret = ppl_write_empty_header(log);
1494 			ppl_init_child_log(log, rdev);
1495 		}
1496 	} else {
1497 		log->rdev = NULL;
1498 	}
1499 	mutex_unlock(&log->io_mutex);
1500 
1501 	return ret;
1502 }
1503 
1504 static ssize_t
1505 ppl_write_hint_show(struct mddev *mddev, char *buf)
1506 {
1507 	size_t ret = 0;
1508 	struct r5conf *conf;
1509 	struct ppl_conf *ppl_conf = NULL;
1510 
1511 	spin_lock(&mddev->lock);
1512 	conf = mddev->private;
1513 	if (conf && raid5_has_ppl(conf))
1514 		ppl_conf = conf->log_private;
1515 	ret = sprintf(buf, "%d\n", ppl_conf ? ppl_conf->write_hint : 0);
1516 	spin_unlock(&mddev->lock);
1517 
1518 	return ret;
1519 }
1520 
1521 static ssize_t
1522 ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len)
1523 {
1524 	struct r5conf *conf;
1525 	struct ppl_conf *ppl_conf;
1526 	int err = 0;
1527 	unsigned short new;
1528 
1529 	if (len >= PAGE_SIZE)
1530 		return -EINVAL;
1531 	if (kstrtou16(page, 10, &new))
1532 		return -EINVAL;
1533 
1534 	err = mddev_lock(mddev);
1535 	if (err)
1536 		return err;
1537 
1538 	conf = mddev->private;
1539 	if (!conf) {
1540 		err = -ENODEV;
1541 	} else if (raid5_has_ppl(conf)) {
1542 		ppl_conf = conf->log_private;
1543 		if (!ppl_conf)
1544 			err = -EINVAL;
1545 		else
1546 			ppl_conf->write_hint = new;
1547 	} else {
1548 		err = -EINVAL;
1549 	}
1550 
1551 	mddev_unlock(mddev);
1552 
1553 	return err ?: len;
1554 }
1555 
1556 struct md_sysfs_entry
1557 ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR,
1558 			ppl_write_hint_show,
1559 			ppl_write_hint_store);
1560