1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Partial Parity Log for closing the RAID5 write hole 4 * Copyright (c) 2017, Intel Corporation. 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/blkdev.h> 9 #include <linux/slab.h> 10 #include <linux/crc32c.h> 11 #include <linux/async_tx.h> 12 #include <linux/raid/md_p.h> 13 #include "md.h" 14 #include "raid5.h" 15 #include "raid5-log.h" 16 17 /* 18 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for 19 * partial parity data. The header contains an array of entries 20 * (struct ppl_header_entry) which describe the logged write requests. 21 * Partial parity for the entries comes after the header, written in the same 22 * sequence as the entries: 23 * 24 * Header 25 * entry0 26 * ... 27 * entryN 28 * PP data 29 * PP for entry0 30 * ... 31 * PP for entryN 32 * 33 * An entry describes one or more consecutive stripe_heads, up to a full 34 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the 35 * number of stripe_heads in the entry and n is the number of modified data 36 * disks. Every stripe_head in the entry must write to the same data disks. 37 * An example of a valid case described by a single entry (writes to the first 38 * stripe of a 4 disk array, 16k chunk size): 39 * 40 * sh->sector dd0 dd1 dd2 ppl 41 * +-----+-----+-----+ 42 * 0 | --- | --- | --- | +----+ 43 * 8 | -W- | -W- | --- | | pp | data_sector = 8 44 * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k 45 * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k 46 * +-----+-----+-----+ +----+ 47 * 48 * data_sector is the first raid sector of the modified data, data_size is the 49 * total size of modified data and pp_size is the size of partial parity for 50 * this entry. Entries for full stripe writes contain no partial parity 51 * (pp_size = 0), they only mark the stripes for which parity should be 52 * recalculated after an unclean shutdown. Every entry holds a checksum of its 53 * partial parity, the header also has a checksum of the header itself. 54 * 55 * A write request is always logged to the PPL instance stored on the parity 56 * disk of the corresponding stripe. For each member disk there is one ppl_log 57 * used to handle logging for this disk, independently from others. They are 58 * grouped in child_logs array in struct ppl_conf, which is assigned to 59 * r5conf->log_private. 60 * 61 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header. 62 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head 63 * can be appended to the last entry if it meets the conditions for a valid 64 * entry described above, otherwise a new entry is added. Checksums of entries 65 * are calculated incrementally as stripes containing partial parity are being 66 * added. ppl_submit_iounit() calculates the checksum of the header and submits 67 * a bio containing the header page and partial parity pages (sh->ppl_page) for 68 * all stripes of the io_unit. When the PPL write completes, the stripes 69 * associated with the io_unit are released and raid5d starts writing their data 70 * and parity. When all stripes are written, the io_unit is freed and the next 71 * can be submitted. 72 * 73 * An io_unit is used to gather stripes until it is submitted or becomes full 74 * (if the maximum number of entries or size of PPL is reached). Another io_unit 75 * can't be submitted until the previous has completed (PPL and stripe 76 * data+parity is written). The log->io_list tracks all io_units of a log 77 * (for a single member disk). New io_units are added to the end of the list 78 * and the first io_unit is submitted, if it is not submitted already. 79 * The current io_unit accepting new stripes is always at the end of the list. 80 * 81 * If write-back cache is enabled for any of the disks in the array, its data 82 * must be flushed before next io_unit is submitted. 83 */ 84 85 #define PPL_SPACE_SIZE (128 * 1024) 86 87 struct ppl_conf { 88 struct mddev *mddev; 89 90 /* array of child logs, one for each raid disk */ 91 struct ppl_log *child_logs; 92 int count; 93 94 int block_size; /* the logical block size used for data_sector 95 * in ppl_header_entry */ 96 u32 signature; /* raid array identifier */ 97 atomic64_t seq; /* current log write sequence number */ 98 99 struct kmem_cache *io_kc; 100 mempool_t io_pool; 101 struct bio_set bs; 102 struct bio_set flush_bs; 103 104 /* used only for recovery */ 105 int recovered_entries; 106 int mismatch_count; 107 108 /* stripes to retry if failed to allocate io_unit */ 109 struct list_head no_mem_stripes; 110 spinlock_t no_mem_stripes_lock; 111 112 unsigned short write_hint; 113 }; 114 115 struct ppl_log { 116 struct ppl_conf *ppl_conf; /* shared between all log instances */ 117 118 struct md_rdev *rdev; /* array member disk associated with 119 * this log instance */ 120 struct mutex io_mutex; 121 struct ppl_io_unit *current_io; /* current io_unit accepting new data 122 * always at the end of io_list */ 123 spinlock_t io_list_lock; 124 struct list_head io_list; /* all io_units of this log */ 125 126 sector_t next_io_sector; 127 unsigned int entry_space; 128 bool use_multippl; 129 bool wb_cache_on; 130 unsigned long disk_flush_bitmap; 131 }; 132 133 #define PPL_IO_INLINE_BVECS 32 134 135 struct ppl_io_unit { 136 struct ppl_log *log; 137 138 struct page *header_page; /* for ppl_header */ 139 140 unsigned int entries_count; /* number of entries in ppl_header */ 141 unsigned int pp_size; /* total size current of partial parity */ 142 143 u64 seq; /* sequence number of this log write */ 144 struct list_head log_sibling; /* log->io_list */ 145 146 struct list_head stripe_list; /* stripes added to the io_unit */ 147 atomic_t pending_stripes; /* how many stripes not written to raid */ 148 atomic_t pending_flushes; /* how many disk flushes are in progress */ 149 150 bool submitted; /* true if write to log started */ 151 152 /* inline bio and its biovec for submitting the iounit */ 153 struct bio bio; 154 struct bio_vec biovec[PPL_IO_INLINE_BVECS]; 155 }; 156 157 struct dma_async_tx_descriptor * 158 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu, 159 struct dma_async_tx_descriptor *tx) 160 { 161 int disks = sh->disks; 162 struct page **srcs = percpu->scribble; 163 int count = 0, pd_idx = sh->pd_idx, i; 164 struct async_submit_ctl submit; 165 166 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 167 168 /* 169 * Partial parity is the XOR of stripe data chunks that are not changed 170 * during the write request. Depending on available data 171 * (read-modify-write vs. reconstruct-write case) we calculate it 172 * differently. 173 */ 174 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 175 /* 176 * rmw: xor old data and parity from updated disks 177 * This is calculated earlier by ops_run_prexor5() so just copy 178 * the parity dev page. 179 */ 180 srcs[count++] = sh->dev[pd_idx].page; 181 } else if (sh->reconstruct_state == reconstruct_state_drain_run) { 182 /* rcw: xor data from all not updated disks */ 183 for (i = disks; i--;) { 184 struct r5dev *dev = &sh->dev[i]; 185 if (test_bit(R5_UPTODATE, &dev->flags)) 186 srcs[count++] = dev->page; 187 } 188 } else { 189 return tx; 190 } 191 192 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx, 193 NULL, sh, (void *) (srcs + sh->disks + 2)); 194 195 if (count == 1) 196 tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE, 197 &submit); 198 else 199 tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE, 200 &submit); 201 202 return tx; 203 } 204 205 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data) 206 { 207 struct kmem_cache *kc = pool_data; 208 struct ppl_io_unit *io; 209 210 io = kmem_cache_alloc(kc, gfp_mask); 211 if (!io) 212 return NULL; 213 214 io->header_page = alloc_page(gfp_mask); 215 if (!io->header_page) { 216 kmem_cache_free(kc, io); 217 return NULL; 218 } 219 220 return io; 221 } 222 223 static void ppl_io_pool_free(void *element, void *pool_data) 224 { 225 struct kmem_cache *kc = pool_data; 226 struct ppl_io_unit *io = element; 227 228 __free_page(io->header_page); 229 kmem_cache_free(kc, io); 230 } 231 232 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log, 233 struct stripe_head *sh) 234 { 235 struct ppl_conf *ppl_conf = log->ppl_conf; 236 struct ppl_io_unit *io; 237 struct ppl_header *pplhdr; 238 struct page *header_page; 239 240 io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT); 241 if (!io) 242 return NULL; 243 244 header_page = io->header_page; 245 memset(io, 0, sizeof(*io)); 246 io->header_page = header_page; 247 248 io->log = log; 249 INIT_LIST_HEAD(&io->log_sibling); 250 INIT_LIST_HEAD(&io->stripe_list); 251 atomic_set(&io->pending_stripes, 0); 252 atomic_set(&io->pending_flushes, 0); 253 bio_init(&io->bio, NULL, io->biovec, PPL_IO_INLINE_BVECS, 0); 254 255 pplhdr = page_address(io->header_page); 256 clear_page(pplhdr); 257 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); 258 pplhdr->signature = cpu_to_le32(ppl_conf->signature); 259 260 io->seq = atomic64_add_return(1, &ppl_conf->seq); 261 pplhdr->generation = cpu_to_le64(io->seq); 262 263 return io; 264 } 265 266 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh) 267 { 268 struct ppl_io_unit *io = log->current_io; 269 struct ppl_header_entry *e = NULL; 270 struct ppl_header *pplhdr; 271 int i; 272 sector_t data_sector = 0; 273 int data_disks = 0; 274 struct r5conf *conf = sh->raid_conf; 275 276 pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector); 277 278 /* check if current io_unit is full */ 279 if (io && (io->pp_size == log->entry_space || 280 io->entries_count == PPL_HDR_MAX_ENTRIES)) { 281 pr_debug("%s: add io_unit blocked by seq: %llu\n", 282 __func__, io->seq); 283 io = NULL; 284 } 285 286 /* add a new unit if there is none or the current is full */ 287 if (!io) { 288 io = ppl_new_iounit(log, sh); 289 if (!io) 290 return -ENOMEM; 291 spin_lock_irq(&log->io_list_lock); 292 list_add_tail(&io->log_sibling, &log->io_list); 293 spin_unlock_irq(&log->io_list_lock); 294 295 log->current_io = io; 296 } 297 298 for (i = 0; i < sh->disks; i++) { 299 struct r5dev *dev = &sh->dev[i]; 300 301 if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) { 302 if (!data_disks || dev->sector < data_sector) 303 data_sector = dev->sector; 304 data_disks++; 305 } 306 } 307 BUG_ON(!data_disks); 308 309 pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__, 310 io->seq, (unsigned long long)data_sector, data_disks); 311 312 pplhdr = page_address(io->header_page); 313 314 if (io->entries_count > 0) { 315 struct ppl_header_entry *last = 316 &pplhdr->entries[io->entries_count - 1]; 317 struct stripe_head *sh_last = list_last_entry( 318 &io->stripe_list, struct stripe_head, log_list); 319 u64 data_sector_last = le64_to_cpu(last->data_sector); 320 u32 data_size_last = le32_to_cpu(last->data_size); 321 322 /* 323 * Check if we can append the stripe to the last entry. It must 324 * be just after the last logged stripe and write to the same 325 * disks. Use bit shift and logarithm to avoid 64-bit division. 326 */ 327 if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) && 328 (data_sector >> ilog2(conf->chunk_sectors) == 329 data_sector_last >> ilog2(conf->chunk_sectors)) && 330 ((data_sector - data_sector_last) * data_disks == 331 data_size_last >> 9)) 332 e = last; 333 } 334 335 if (!e) { 336 e = &pplhdr->entries[io->entries_count++]; 337 e->data_sector = cpu_to_le64(data_sector); 338 e->parity_disk = cpu_to_le32(sh->pd_idx); 339 e->checksum = cpu_to_le32(~0); 340 } 341 342 le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT); 343 344 /* don't write any PP if full stripe write */ 345 if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) { 346 le32_add_cpu(&e->pp_size, PAGE_SIZE); 347 io->pp_size += PAGE_SIZE; 348 e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum), 349 page_address(sh->ppl_page), 350 PAGE_SIZE)); 351 } 352 353 list_add_tail(&sh->log_list, &io->stripe_list); 354 atomic_inc(&io->pending_stripes); 355 sh->ppl_io = io; 356 357 return 0; 358 } 359 360 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh) 361 { 362 struct ppl_conf *ppl_conf = conf->log_private; 363 struct ppl_io_unit *io = sh->ppl_io; 364 struct ppl_log *log; 365 366 if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page || 367 !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 368 !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) { 369 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 370 return -EAGAIN; 371 } 372 373 log = &ppl_conf->child_logs[sh->pd_idx]; 374 375 mutex_lock(&log->io_mutex); 376 377 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { 378 mutex_unlock(&log->io_mutex); 379 return -EAGAIN; 380 } 381 382 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 383 clear_bit(STRIPE_DELAYED, &sh->state); 384 atomic_inc(&sh->count); 385 386 if (ppl_log_stripe(log, sh)) { 387 spin_lock_irq(&ppl_conf->no_mem_stripes_lock); 388 list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes); 389 spin_unlock_irq(&ppl_conf->no_mem_stripes_lock); 390 } 391 392 mutex_unlock(&log->io_mutex); 393 394 return 0; 395 } 396 397 static void ppl_log_endio(struct bio *bio) 398 { 399 struct ppl_io_unit *io = bio->bi_private; 400 struct ppl_log *log = io->log; 401 struct ppl_conf *ppl_conf = log->ppl_conf; 402 struct stripe_head *sh, *next; 403 404 pr_debug("%s: seq: %llu\n", __func__, io->seq); 405 406 if (bio->bi_status) 407 md_error(ppl_conf->mddev, log->rdev); 408 409 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 410 list_del_init(&sh->log_list); 411 412 set_bit(STRIPE_HANDLE, &sh->state); 413 raid5_release_stripe(sh); 414 } 415 } 416 417 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio) 418 { 419 pr_debug("%s: seq: %llu size: %u sector: %llu dev: %pg\n", 420 __func__, io->seq, bio->bi_iter.bi_size, 421 (unsigned long long)bio->bi_iter.bi_sector, 422 bio->bi_bdev); 423 424 submit_bio(bio); 425 } 426 427 static void ppl_submit_iounit(struct ppl_io_unit *io) 428 { 429 struct ppl_log *log = io->log; 430 struct ppl_conf *ppl_conf = log->ppl_conf; 431 struct ppl_header *pplhdr = page_address(io->header_page); 432 struct bio *bio = &io->bio; 433 struct stripe_head *sh; 434 int i; 435 436 bio->bi_private = io; 437 438 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { 439 ppl_log_endio(bio); 440 return; 441 } 442 443 for (i = 0; i < io->entries_count; i++) { 444 struct ppl_header_entry *e = &pplhdr->entries[i]; 445 446 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n", 447 __func__, io->seq, i, le64_to_cpu(e->data_sector), 448 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size)); 449 450 e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >> 451 ilog2(ppl_conf->block_size >> 9)); 452 e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum)); 453 } 454 455 pplhdr->entries_count = cpu_to_le32(io->entries_count); 456 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE)); 457 458 /* Rewind the buffer if current PPL is larger then remaining space */ 459 if (log->use_multippl && 460 log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector < 461 (PPL_HEADER_SIZE + io->pp_size) >> 9) 462 log->next_io_sector = log->rdev->ppl.sector; 463 464 465 bio->bi_end_io = ppl_log_endio; 466 bio->bi_opf = REQ_OP_WRITE | REQ_FUA; 467 bio_set_dev(bio, log->rdev->bdev); 468 bio->bi_iter.bi_sector = log->next_io_sector; 469 bio_add_page(bio, io->header_page, PAGE_SIZE, 0); 470 bio->bi_write_hint = ppl_conf->write_hint; 471 472 pr_debug("%s: log->current_io_sector: %llu\n", __func__, 473 (unsigned long long)log->next_io_sector); 474 475 if (log->use_multippl) 476 log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9; 477 478 WARN_ON(log->disk_flush_bitmap != 0); 479 480 list_for_each_entry(sh, &io->stripe_list, log_list) { 481 for (i = 0; i < sh->disks; i++) { 482 struct r5dev *dev = &sh->dev[i]; 483 484 if ((ppl_conf->child_logs[i].wb_cache_on) && 485 (test_bit(R5_Wantwrite, &dev->flags))) { 486 set_bit(i, &log->disk_flush_bitmap); 487 } 488 } 489 490 /* entries for full stripe writes have no partial parity */ 491 if (test_bit(STRIPE_FULL_WRITE, &sh->state)) 492 continue; 493 494 if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) { 495 struct bio *prev = bio; 496 497 bio = bio_alloc_bioset(prev->bi_bdev, BIO_MAX_VECS, 498 prev->bi_opf, GFP_NOIO, 499 &ppl_conf->bs); 500 bio->bi_write_hint = prev->bi_write_hint; 501 bio->bi_iter.bi_sector = bio_end_sector(prev); 502 bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0); 503 504 bio_chain(bio, prev); 505 ppl_submit_iounit_bio(io, prev); 506 } 507 } 508 509 ppl_submit_iounit_bio(io, bio); 510 } 511 512 static void ppl_submit_current_io(struct ppl_log *log) 513 { 514 struct ppl_io_unit *io; 515 516 spin_lock_irq(&log->io_list_lock); 517 518 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, 519 log_sibling); 520 if (io && io->submitted) 521 io = NULL; 522 523 spin_unlock_irq(&log->io_list_lock); 524 525 if (io) { 526 io->submitted = true; 527 528 if (io == log->current_io) 529 log->current_io = NULL; 530 531 ppl_submit_iounit(io); 532 } 533 } 534 535 void ppl_write_stripe_run(struct r5conf *conf) 536 { 537 struct ppl_conf *ppl_conf = conf->log_private; 538 struct ppl_log *log; 539 int i; 540 541 for (i = 0; i < ppl_conf->count; i++) { 542 log = &ppl_conf->child_logs[i]; 543 544 mutex_lock(&log->io_mutex); 545 ppl_submit_current_io(log); 546 mutex_unlock(&log->io_mutex); 547 } 548 } 549 550 static void ppl_io_unit_finished(struct ppl_io_unit *io) 551 { 552 struct ppl_log *log = io->log; 553 struct ppl_conf *ppl_conf = log->ppl_conf; 554 struct r5conf *conf = ppl_conf->mddev->private; 555 unsigned long flags; 556 557 pr_debug("%s: seq: %llu\n", __func__, io->seq); 558 559 local_irq_save(flags); 560 561 spin_lock(&log->io_list_lock); 562 list_del(&io->log_sibling); 563 spin_unlock(&log->io_list_lock); 564 565 mempool_free(io, &ppl_conf->io_pool); 566 567 spin_lock(&ppl_conf->no_mem_stripes_lock); 568 if (!list_empty(&ppl_conf->no_mem_stripes)) { 569 struct stripe_head *sh; 570 571 sh = list_first_entry(&ppl_conf->no_mem_stripes, 572 struct stripe_head, log_list); 573 list_del_init(&sh->log_list); 574 set_bit(STRIPE_HANDLE, &sh->state); 575 raid5_release_stripe(sh); 576 } 577 spin_unlock(&ppl_conf->no_mem_stripes_lock); 578 579 local_irq_restore(flags); 580 581 wake_up(&conf->wait_for_quiescent); 582 } 583 584 static void ppl_flush_endio(struct bio *bio) 585 { 586 struct ppl_io_unit *io = bio->bi_private; 587 struct ppl_log *log = io->log; 588 struct ppl_conf *ppl_conf = log->ppl_conf; 589 struct r5conf *conf = ppl_conf->mddev->private; 590 591 pr_debug("%s: dev: %pg\n", __func__, bio->bi_bdev); 592 593 if (bio->bi_status) { 594 struct md_rdev *rdev; 595 596 rcu_read_lock(); 597 rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio)); 598 if (rdev) 599 md_error(rdev->mddev, rdev); 600 rcu_read_unlock(); 601 } 602 603 bio_put(bio); 604 605 if (atomic_dec_and_test(&io->pending_flushes)) { 606 ppl_io_unit_finished(io); 607 md_wakeup_thread(conf->mddev->thread); 608 } 609 } 610 611 static void ppl_do_flush(struct ppl_io_unit *io) 612 { 613 struct ppl_log *log = io->log; 614 struct ppl_conf *ppl_conf = log->ppl_conf; 615 struct r5conf *conf = ppl_conf->mddev->private; 616 int raid_disks = conf->raid_disks; 617 int flushed_disks = 0; 618 int i; 619 620 atomic_set(&io->pending_flushes, raid_disks); 621 622 for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) { 623 struct md_rdev *rdev; 624 struct block_device *bdev = NULL; 625 626 rcu_read_lock(); 627 rdev = rcu_dereference(conf->disks[i].rdev); 628 if (rdev && !test_bit(Faulty, &rdev->flags)) 629 bdev = rdev->bdev; 630 rcu_read_unlock(); 631 632 if (bdev) { 633 struct bio *bio; 634 635 bio = bio_alloc_bioset(bdev, 0, GFP_NOIO, 636 REQ_OP_WRITE | REQ_PREFLUSH, 637 &ppl_conf->flush_bs); 638 bio->bi_private = io; 639 bio->bi_end_io = ppl_flush_endio; 640 641 pr_debug("%s: dev: %ps\n", __func__, bio->bi_bdev); 642 643 submit_bio(bio); 644 flushed_disks++; 645 } 646 } 647 648 log->disk_flush_bitmap = 0; 649 650 for (i = flushed_disks ; i < raid_disks; i++) { 651 if (atomic_dec_and_test(&io->pending_flushes)) 652 ppl_io_unit_finished(io); 653 } 654 } 655 656 static inline bool ppl_no_io_unit_submitted(struct r5conf *conf, 657 struct ppl_log *log) 658 { 659 struct ppl_io_unit *io; 660 661 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, 662 log_sibling); 663 664 return !io || !io->submitted; 665 } 666 667 void ppl_quiesce(struct r5conf *conf, int quiesce) 668 { 669 struct ppl_conf *ppl_conf = conf->log_private; 670 int i; 671 672 if (quiesce) { 673 for (i = 0; i < ppl_conf->count; i++) { 674 struct ppl_log *log = &ppl_conf->child_logs[i]; 675 676 spin_lock_irq(&log->io_list_lock); 677 wait_event_lock_irq(conf->wait_for_quiescent, 678 ppl_no_io_unit_submitted(conf, log), 679 log->io_list_lock); 680 spin_unlock_irq(&log->io_list_lock); 681 } 682 } 683 } 684 685 int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio) 686 { 687 if (bio->bi_iter.bi_size == 0) { 688 bio_endio(bio); 689 return 0; 690 } 691 bio->bi_opf &= ~REQ_PREFLUSH; 692 return -EAGAIN; 693 } 694 695 void ppl_stripe_write_finished(struct stripe_head *sh) 696 { 697 struct ppl_io_unit *io; 698 699 io = sh->ppl_io; 700 sh->ppl_io = NULL; 701 702 if (io && atomic_dec_and_test(&io->pending_stripes)) { 703 if (io->log->disk_flush_bitmap) 704 ppl_do_flush(io); 705 else 706 ppl_io_unit_finished(io); 707 } 708 } 709 710 static void ppl_xor(int size, struct page *page1, struct page *page2) 711 { 712 struct async_submit_ctl submit; 713 struct dma_async_tx_descriptor *tx; 714 struct page *xor_srcs[] = { page1, page2 }; 715 716 init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST, 717 NULL, NULL, NULL, NULL); 718 tx = async_xor(page1, xor_srcs, 0, 2, size, &submit); 719 720 async_tx_quiesce(&tx); 721 } 722 723 /* 724 * PPL recovery strategy: xor partial parity and data from all modified data 725 * disks within a stripe and write the result as the new stripe parity. If all 726 * stripe data disks are modified (full stripe write), no partial parity is 727 * available, so just xor the data disks. 728 * 729 * Recovery of a PPL entry shall occur only if all modified data disks are 730 * available and read from all of them succeeds. 731 * 732 * A PPL entry applies to a stripe, partial parity size for an entry is at most 733 * the size of the chunk. Examples of possible cases for a single entry: 734 * 735 * case 0: single data disk write: 736 * data0 data1 data2 ppl parity 737 * +--------+--------+--------+ +--------------------+ 738 * | ------ | ------ | ------ | +----+ | (no change) | 739 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | 740 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | 741 * | ------ | ------ | ------ | +----+ | (no change) | 742 * +--------+--------+--------+ +--------------------+ 743 * pp_size = data_size 744 * 745 * case 1: more than one data disk write: 746 * data0 data1 data2 ppl parity 747 * +--------+--------+--------+ +--------------------+ 748 * | ------ | ------ | ------ | +----+ | (no change) | 749 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | 750 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | 751 * | ------ | ------ | ------ | +----+ | (no change) | 752 * +--------+--------+--------+ +--------------------+ 753 * pp_size = data_size / modified_data_disks 754 * 755 * case 2: write to all data disks (also full stripe write): 756 * data0 data1 data2 parity 757 * +--------+--------+--------+ +--------------------+ 758 * | ------ | ------ | ------ | | (no change) | 759 * | -data- | -data- | -data- | --------> | xor all data | 760 * | ------ | ------ | ------ | --------> | (no change) | 761 * | ------ | ------ | ------ | | (no change) | 762 * +--------+--------+--------+ +--------------------+ 763 * pp_size = 0 764 * 765 * The following cases are possible only in other implementations. The recovery 766 * code can handle them, but they are not generated at runtime because they can 767 * be reduced to cases 0, 1 and 2: 768 * 769 * case 3: 770 * data0 data1 data2 ppl parity 771 * +--------+--------+--------+ +----+ +--------------------+ 772 * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp | 773 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp | 774 * | -data- | -data- | -data- | | -- | -> | xor all data | 775 * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp | 776 * +--------+--------+--------+ +----+ +--------------------+ 777 * pp_size = chunk_size 778 * 779 * case 4: 780 * data0 data1 data2 ppl parity 781 * +--------+--------+--------+ +----+ +--------------------+ 782 * | ------ | -data- | ------ | | pp | | data1 ^ pp | 783 * | ------ | ------ | ------ | | -- | -> | (no change) | 784 * | ------ | ------ | ------ | | -- | -> | (no change) | 785 * | -data- | ------ | ------ | | pp | | data0 ^ pp | 786 * +--------+--------+--------+ +----+ +--------------------+ 787 * pp_size = chunk_size 788 */ 789 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e, 790 sector_t ppl_sector) 791 { 792 struct ppl_conf *ppl_conf = log->ppl_conf; 793 struct mddev *mddev = ppl_conf->mddev; 794 struct r5conf *conf = mddev->private; 795 int block_size = ppl_conf->block_size; 796 struct page *page1; 797 struct page *page2; 798 sector_t r_sector_first; 799 sector_t r_sector_last; 800 int strip_sectors; 801 int data_disks; 802 int i; 803 int ret = 0; 804 char b[BDEVNAME_SIZE]; 805 unsigned int pp_size = le32_to_cpu(e->pp_size); 806 unsigned int data_size = le32_to_cpu(e->data_size); 807 808 page1 = alloc_page(GFP_KERNEL); 809 page2 = alloc_page(GFP_KERNEL); 810 811 if (!page1 || !page2) { 812 ret = -ENOMEM; 813 goto out; 814 } 815 816 r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9); 817 818 if ((pp_size >> 9) < conf->chunk_sectors) { 819 if (pp_size > 0) { 820 data_disks = data_size / pp_size; 821 strip_sectors = pp_size >> 9; 822 } else { 823 data_disks = conf->raid_disks - conf->max_degraded; 824 strip_sectors = (data_size >> 9) / data_disks; 825 } 826 r_sector_last = r_sector_first + 827 (data_disks - 1) * conf->chunk_sectors + 828 strip_sectors; 829 } else { 830 data_disks = conf->raid_disks - conf->max_degraded; 831 strip_sectors = conf->chunk_sectors; 832 r_sector_last = r_sector_first + (data_size >> 9); 833 } 834 835 pr_debug("%s: array sector first: %llu last: %llu\n", __func__, 836 (unsigned long long)r_sector_first, 837 (unsigned long long)r_sector_last); 838 839 /* if start and end is 4k aligned, use a 4k block */ 840 if (block_size == 512 && 841 (r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 && 842 (r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0) 843 block_size = RAID5_STRIPE_SIZE(conf); 844 845 /* iterate through blocks in strip */ 846 for (i = 0; i < strip_sectors; i += (block_size >> 9)) { 847 bool update_parity = false; 848 sector_t parity_sector; 849 struct md_rdev *parity_rdev; 850 struct stripe_head sh; 851 int disk; 852 int indent = 0; 853 854 pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i); 855 indent += 2; 856 857 memset(page_address(page1), 0, PAGE_SIZE); 858 859 /* iterate through data member disks */ 860 for (disk = 0; disk < data_disks; disk++) { 861 int dd_idx; 862 struct md_rdev *rdev; 863 sector_t sector; 864 sector_t r_sector = r_sector_first + i + 865 (disk * conf->chunk_sectors); 866 867 pr_debug("%s:%*s data member disk %d start\n", 868 __func__, indent, "", disk); 869 indent += 2; 870 871 if (r_sector >= r_sector_last) { 872 pr_debug("%s:%*s array sector %llu doesn't need parity update\n", 873 __func__, indent, "", 874 (unsigned long long)r_sector); 875 indent -= 2; 876 continue; 877 } 878 879 update_parity = true; 880 881 /* map raid sector to member disk */ 882 sector = raid5_compute_sector(conf, r_sector, 0, 883 &dd_idx, NULL); 884 pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n", 885 __func__, indent, "", 886 (unsigned long long)r_sector, dd_idx, 887 (unsigned long long)sector); 888 889 rdev = conf->disks[dd_idx].rdev; 890 if (!rdev || (!test_bit(In_sync, &rdev->flags) && 891 sector >= rdev->recovery_offset)) { 892 pr_debug("%s:%*s data member disk %d missing\n", 893 __func__, indent, "", dd_idx); 894 update_parity = false; 895 break; 896 } 897 898 pr_debug("%s:%*s reading data member disk %s sector %llu\n", 899 __func__, indent, "", bdevname(rdev->bdev, b), 900 (unsigned long long)sector); 901 if (!sync_page_io(rdev, sector, block_size, page2, 902 REQ_OP_READ, 0, false)) { 903 md_error(mddev, rdev); 904 pr_debug("%s:%*s read failed!\n", __func__, 905 indent, ""); 906 ret = -EIO; 907 goto out; 908 } 909 910 ppl_xor(block_size, page1, page2); 911 912 indent -= 2; 913 } 914 915 if (!update_parity) 916 continue; 917 918 if (pp_size > 0) { 919 pr_debug("%s:%*s reading pp disk sector %llu\n", 920 __func__, indent, "", 921 (unsigned long long)(ppl_sector + i)); 922 if (!sync_page_io(log->rdev, 923 ppl_sector - log->rdev->data_offset + i, 924 block_size, page2, REQ_OP_READ, 0, 925 false)) { 926 pr_debug("%s:%*s read failed!\n", __func__, 927 indent, ""); 928 md_error(mddev, log->rdev); 929 ret = -EIO; 930 goto out; 931 } 932 933 ppl_xor(block_size, page1, page2); 934 } 935 936 /* map raid sector to parity disk */ 937 parity_sector = raid5_compute_sector(conf, r_sector_first + i, 938 0, &disk, &sh); 939 BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk)); 940 parity_rdev = conf->disks[sh.pd_idx].rdev; 941 942 BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev); 943 pr_debug("%s:%*s write parity at sector %llu, disk %s\n", 944 __func__, indent, "", 945 (unsigned long long)parity_sector, 946 bdevname(parity_rdev->bdev, b)); 947 if (!sync_page_io(parity_rdev, parity_sector, block_size, 948 page1, REQ_OP_WRITE, 0, false)) { 949 pr_debug("%s:%*s parity write error!\n", __func__, 950 indent, ""); 951 md_error(mddev, parity_rdev); 952 ret = -EIO; 953 goto out; 954 } 955 } 956 out: 957 if (page1) 958 __free_page(page1); 959 if (page2) 960 __free_page(page2); 961 return ret; 962 } 963 964 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr, 965 sector_t offset) 966 { 967 struct ppl_conf *ppl_conf = log->ppl_conf; 968 struct md_rdev *rdev = log->rdev; 969 struct mddev *mddev = rdev->mddev; 970 sector_t ppl_sector = rdev->ppl.sector + offset + 971 (PPL_HEADER_SIZE >> 9); 972 struct page *page; 973 int i; 974 int ret = 0; 975 976 page = alloc_page(GFP_KERNEL); 977 if (!page) 978 return -ENOMEM; 979 980 /* iterate through all PPL entries saved */ 981 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) { 982 struct ppl_header_entry *e = &pplhdr->entries[i]; 983 u32 pp_size = le32_to_cpu(e->pp_size); 984 sector_t sector = ppl_sector; 985 int ppl_entry_sectors = pp_size >> 9; 986 u32 crc, crc_stored; 987 988 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n", 989 __func__, rdev->raid_disk, i, 990 (unsigned long long)ppl_sector, pp_size); 991 992 crc = ~0; 993 crc_stored = le32_to_cpu(e->checksum); 994 995 /* read parial parity for this entry and calculate its checksum */ 996 while (pp_size) { 997 int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size; 998 999 if (!sync_page_io(rdev, sector - rdev->data_offset, 1000 s, page, REQ_OP_READ, 0, false)) { 1001 md_error(mddev, rdev); 1002 ret = -EIO; 1003 goto out; 1004 } 1005 1006 crc = crc32c_le(crc, page_address(page), s); 1007 1008 pp_size -= s; 1009 sector += s >> 9; 1010 } 1011 1012 crc = ~crc; 1013 1014 if (crc != crc_stored) { 1015 /* 1016 * Don't recover this entry if the checksum does not 1017 * match, but keep going and try to recover other 1018 * entries. 1019 */ 1020 pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n", 1021 __func__, crc_stored, crc); 1022 ppl_conf->mismatch_count++; 1023 } else { 1024 ret = ppl_recover_entry(log, e, ppl_sector); 1025 if (ret) 1026 goto out; 1027 ppl_conf->recovered_entries++; 1028 } 1029 1030 ppl_sector += ppl_entry_sectors; 1031 } 1032 1033 /* flush the disk cache after recovery if necessary */ 1034 ret = blkdev_issue_flush(rdev->bdev); 1035 out: 1036 __free_page(page); 1037 return ret; 1038 } 1039 1040 static int ppl_write_empty_header(struct ppl_log *log) 1041 { 1042 struct page *page; 1043 struct ppl_header *pplhdr; 1044 struct md_rdev *rdev = log->rdev; 1045 int ret = 0; 1046 1047 pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__, 1048 rdev->raid_disk, (unsigned long long)rdev->ppl.sector); 1049 1050 page = alloc_page(GFP_NOIO | __GFP_ZERO); 1051 if (!page) 1052 return -ENOMEM; 1053 1054 pplhdr = page_address(page); 1055 /* zero out PPL space to avoid collision with old PPLs */ 1056 blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector, 1057 log->rdev->ppl.size, GFP_NOIO, 0); 1058 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); 1059 pplhdr->signature = cpu_to_le32(log->ppl_conf->signature); 1060 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE)); 1061 1062 if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset, 1063 PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC | 1064 REQ_FUA, 0, false)) { 1065 md_error(rdev->mddev, rdev); 1066 ret = -EIO; 1067 } 1068 1069 __free_page(page); 1070 return ret; 1071 } 1072 1073 static int ppl_load_distributed(struct ppl_log *log) 1074 { 1075 struct ppl_conf *ppl_conf = log->ppl_conf; 1076 struct md_rdev *rdev = log->rdev; 1077 struct mddev *mddev = rdev->mddev; 1078 struct page *page, *page2; 1079 struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL; 1080 u32 crc, crc_stored; 1081 u32 signature; 1082 int ret = 0, i; 1083 sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0; 1084 1085 pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk); 1086 /* read PPL headers, find the recent one */ 1087 page = alloc_page(GFP_KERNEL); 1088 if (!page) 1089 return -ENOMEM; 1090 1091 page2 = alloc_page(GFP_KERNEL); 1092 if (!page2) { 1093 __free_page(page); 1094 return -ENOMEM; 1095 } 1096 1097 /* searching ppl area for latest ppl */ 1098 while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) { 1099 if (!sync_page_io(rdev, 1100 rdev->ppl.sector - rdev->data_offset + 1101 pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ, 1102 0, false)) { 1103 md_error(mddev, rdev); 1104 ret = -EIO; 1105 /* if not able to read - don't recover any PPL */ 1106 pplhdr = NULL; 1107 break; 1108 } 1109 pplhdr = page_address(page); 1110 1111 /* check header validity */ 1112 crc_stored = le32_to_cpu(pplhdr->checksum); 1113 pplhdr->checksum = 0; 1114 crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE); 1115 1116 if (crc_stored != crc) { 1117 pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n", 1118 __func__, crc_stored, crc, 1119 (unsigned long long)pplhdr_offset); 1120 pplhdr = prev_pplhdr; 1121 pplhdr_offset = prev_pplhdr_offset; 1122 break; 1123 } 1124 1125 signature = le32_to_cpu(pplhdr->signature); 1126 1127 if (mddev->external) { 1128 /* 1129 * For external metadata the header signature is set and 1130 * validated in userspace. 1131 */ 1132 ppl_conf->signature = signature; 1133 } else if (ppl_conf->signature != signature) { 1134 pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n", 1135 __func__, signature, ppl_conf->signature, 1136 (unsigned long long)pplhdr_offset); 1137 pplhdr = prev_pplhdr; 1138 pplhdr_offset = prev_pplhdr_offset; 1139 break; 1140 } 1141 1142 if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) > 1143 le64_to_cpu(pplhdr->generation)) { 1144 /* previous was newest */ 1145 pplhdr = prev_pplhdr; 1146 pplhdr_offset = prev_pplhdr_offset; 1147 break; 1148 } 1149 1150 prev_pplhdr_offset = pplhdr_offset; 1151 prev_pplhdr = pplhdr; 1152 1153 swap(page, page2); 1154 1155 /* calculate next potential ppl offset */ 1156 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) 1157 pplhdr_offset += 1158 le32_to_cpu(pplhdr->entries[i].pp_size) >> 9; 1159 pplhdr_offset += PPL_HEADER_SIZE >> 9; 1160 } 1161 1162 /* no valid ppl found */ 1163 if (!pplhdr) 1164 ppl_conf->mismatch_count++; 1165 else 1166 pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n", 1167 __func__, (unsigned long long)pplhdr_offset, 1168 le64_to_cpu(pplhdr->generation)); 1169 1170 /* attempt to recover from log if we are starting a dirty array */ 1171 if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector) 1172 ret = ppl_recover(log, pplhdr, pplhdr_offset); 1173 1174 /* write empty header if we are starting the array */ 1175 if (!ret && !mddev->pers) 1176 ret = ppl_write_empty_header(log); 1177 1178 __free_page(page); 1179 __free_page(page2); 1180 1181 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", 1182 __func__, ret, ppl_conf->mismatch_count, 1183 ppl_conf->recovered_entries); 1184 return ret; 1185 } 1186 1187 static int ppl_load(struct ppl_conf *ppl_conf) 1188 { 1189 int ret = 0; 1190 u32 signature = 0; 1191 bool signature_set = false; 1192 int i; 1193 1194 for (i = 0; i < ppl_conf->count; i++) { 1195 struct ppl_log *log = &ppl_conf->child_logs[i]; 1196 1197 /* skip missing drive */ 1198 if (!log->rdev) 1199 continue; 1200 1201 ret = ppl_load_distributed(log); 1202 if (ret) 1203 break; 1204 1205 /* 1206 * For external metadata we can't check if the signature is 1207 * correct on a single drive, but we can check if it is the same 1208 * on all drives. 1209 */ 1210 if (ppl_conf->mddev->external) { 1211 if (!signature_set) { 1212 signature = ppl_conf->signature; 1213 signature_set = true; 1214 } else if (signature != ppl_conf->signature) { 1215 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n", 1216 mdname(ppl_conf->mddev)); 1217 ret = -EINVAL; 1218 break; 1219 } 1220 } 1221 } 1222 1223 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", 1224 __func__, ret, ppl_conf->mismatch_count, 1225 ppl_conf->recovered_entries); 1226 return ret; 1227 } 1228 1229 static void __ppl_exit_log(struct ppl_conf *ppl_conf) 1230 { 1231 clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); 1232 clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags); 1233 1234 kfree(ppl_conf->child_logs); 1235 1236 bioset_exit(&ppl_conf->bs); 1237 bioset_exit(&ppl_conf->flush_bs); 1238 mempool_exit(&ppl_conf->io_pool); 1239 kmem_cache_destroy(ppl_conf->io_kc); 1240 1241 kfree(ppl_conf); 1242 } 1243 1244 void ppl_exit_log(struct r5conf *conf) 1245 { 1246 struct ppl_conf *ppl_conf = conf->log_private; 1247 1248 if (ppl_conf) { 1249 __ppl_exit_log(ppl_conf); 1250 conf->log_private = NULL; 1251 } 1252 } 1253 1254 static int ppl_validate_rdev(struct md_rdev *rdev) 1255 { 1256 char b[BDEVNAME_SIZE]; 1257 int ppl_data_sectors; 1258 int ppl_size_new; 1259 1260 /* 1261 * The configured PPL size must be enough to store 1262 * the header and (at the very least) partial parity 1263 * for one stripe. Round it down to ensure the data 1264 * space is cleanly divisible by stripe size. 1265 */ 1266 ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9); 1267 1268 if (ppl_data_sectors > 0) 1269 ppl_data_sectors = rounddown(ppl_data_sectors, 1270 RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private)); 1271 1272 if (ppl_data_sectors <= 0) { 1273 pr_warn("md/raid:%s: PPL space too small on %s\n", 1274 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1275 return -ENOSPC; 1276 } 1277 1278 ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9); 1279 1280 if ((rdev->ppl.sector < rdev->data_offset && 1281 rdev->ppl.sector + ppl_size_new > rdev->data_offset) || 1282 (rdev->ppl.sector >= rdev->data_offset && 1283 rdev->data_offset + rdev->sectors > rdev->ppl.sector)) { 1284 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n", 1285 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1286 return -EINVAL; 1287 } 1288 1289 if (!rdev->mddev->external && 1290 ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) || 1291 (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) { 1292 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n", 1293 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1294 return -EINVAL; 1295 } 1296 1297 rdev->ppl.size = ppl_size_new; 1298 1299 return 0; 1300 } 1301 1302 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev) 1303 { 1304 struct request_queue *q; 1305 1306 if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE + 1307 PPL_HEADER_SIZE) * 2) { 1308 log->use_multippl = true; 1309 set_bit(MD_HAS_MULTIPLE_PPLS, 1310 &log->ppl_conf->mddev->flags); 1311 log->entry_space = PPL_SPACE_SIZE; 1312 } else { 1313 log->use_multippl = false; 1314 log->entry_space = (log->rdev->ppl.size << 9) - 1315 PPL_HEADER_SIZE; 1316 } 1317 log->next_io_sector = rdev->ppl.sector; 1318 1319 q = bdev_get_queue(rdev->bdev); 1320 if (test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 1321 log->wb_cache_on = true; 1322 } 1323 1324 int ppl_init_log(struct r5conf *conf) 1325 { 1326 struct ppl_conf *ppl_conf; 1327 struct mddev *mddev = conf->mddev; 1328 int ret = 0; 1329 int max_disks; 1330 int i; 1331 1332 pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n", 1333 mdname(conf->mddev)); 1334 1335 if (PAGE_SIZE != 4096) 1336 return -EINVAL; 1337 1338 if (mddev->level != 5) { 1339 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n", 1340 mdname(mddev), mddev->level); 1341 return -EINVAL; 1342 } 1343 1344 if (mddev->bitmap_info.file || mddev->bitmap_info.offset) { 1345 pr_warn("md/raid:%s PPL is not compatible with bitmap\n", 1346 mdname(mddev)); 1347 return -EINVAL; 1348 } 1349 1350 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 1351 pr_warn("md/raid:%s PPL is not compatible with journal\n", 1352 mdname(mddev)); 1353 return -EINVAL; 1354 } 1355 1356 max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) * 1357 BITS_PER_BYTE; 1358 if (conf->raid_disks > max_disks) { 1359 pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n", 1360 mdname(mddev), max_disks); 1361 return -EINVAL; 1362 } 1363 1364 ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL); 1365 if (!ppl_conf) 1366 return -ENOMEM; 1367 1368 ppl_conf->mddev = mddev; 1369 1370 ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0); 1371 if (!ppl_conf->io_kc) { 1372 ret = -ENOMEM; 1373 goto err; 1374 } 1375 1376 ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc, 1377 ppl_io_pool_free, ppl_conf->io_kc); 1378 if (ret) 1379 goto err; 1380 1381 ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS); 1382 if (ret) 1383 goto err; 1384 1385 ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0); 1386 if (ret) 1387 goto err; 1388 1389 ppl_conf->count = conf->raid_disks; 1390 ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log), 1391 GFP_KERNEL); 1392 if (!ppl_conf->child_logs) { 1393 ret = -ENOMEM; 1394 goto err; 1395 } 1396 1397 atomic64_set(&ppl_conf->seq, 0); 1398 INIT_LIST_HEAD(&ppl_conf->no_mem_stripes); 1399 spin_lock_init(&ppl_conf->no_mem_stripes_lock); 1400 ppl_conf->write_hint = RWH_WRITE_LIFE_NOT_SET; 1401 1402 if (!mddev->external) { 1403 ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid)); 1404 ppl_conf->block_size = 512; 1405 } else { 1406 ppl_conf->block_size = queue_logical_block_size(mddev->queue); 1407 } 1408 1409 for (i = 0; i < ppl_conf->count; i++) { 1410 struct ppl_log *log = &ppl_conf->child_logs[i]; 1411 struct md_rdev *rdev = conf->disks[i].rdev; 1412 1413 mutex_init(&log->io_mutex); 1414 spin_lock_init(&log->io_list_lock); 1415 INIT_LIST_HEAD(&log->io_list); 1416 1417 log->ppl_conf = ppl_conf; 1418 log->rdev = rdev; 1419 1420 if (rdev) { 1421 ret = ppl_validate_rdev(rdev); 1422 if (ret) 1423 goto err; 1424 1425 ppl_init_child_log(log, rdev); 1426 } 1427 } 1428 1429 /* load and possibly recover the logs from the member disks */ 1430 ret = ppl_load(ppl_conf); 1431 1432 if (ret) { 1433 goto err; 1434 } else if (!mddev->pers && mddev->recovery_cp == 0 && 1435 ppl_conf->recovered_entries > 0 && 1436 ppl_conf->mismatch_count == 0) { 1437 /* 1438 * If we are starting a dirty array and the recovery succeeds 1439 * without any issues, set the array as clean. 1440 */ 1441 mddev->recovery_cp = MaxSector; 1442 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 1443 } else if (mddev->pers && ppl_conf->mismatch_count > 0) { 1444 /* no mismatch allowed when enabling PPL for a running array */ 1445 ret = -EINVAL; 1446 goto err; 1447 } 1448 1449 conf->log_private = ppl_conf; 1450 set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); 1451 1452 return 0; 1453 err: 1454 __ppl_exit_log(ppl_conf); 1455 return ret; 1456 } 1457 1458 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add) 1459 { 1460 struct ppl_conf *ppl_conf = conf->log_private; 1461 struct ppl_log *log; 1462 int ret = 0; 1463 char b[BDEVNAME_SIZE]; 1464 1465 if (!rdev) 1466 return -EINVAL; 1467 1468 pr_debug("%s: disk: %d operation: %s dev: %s\n", 1469 __func__, rdev->raid_disk, add ? "add" : "remove", 1470 bdevname(rdev->bdev, b)); 1471 1472 if (rdev->raid_disk < 0) 1473 return 0; 1474 1475 if (rdev->raid_disk >= ppl_conf->count) 1476 return -ENODEV; 1477 1478 log = &ppl_conf->child_logs[rdev->raid_disk]; 1479 1480 mutex_lock(&log->io_mutex); 1481 if (add) { 1482 ret = ppl_validate_rdev(rdev); 1483 if (!ret) { 1484 log->rdev = rdev; 1485 ret = ppl_write_empty_header(log); 1486 ppl_init_child_log(log, rdev); 1487 } 1488 } else { 1489 log->rdev = NULL; 1490 } 1491 mutex_unlock(&log->io_mutex); 1492 1493 return ret; 1494 } 1495 1496 static ssize_t 1497 ppl_write_hint_show(struct mddev *mddev, char *buf) 1498 { 1499 size_t ret = 0; 1500 struct r5conf *conf; 1501 struct ppl_conf *ppl_conf = NULL; 1502 1503 spin_lock(&mddev->lock); 1504 conf = mddev->private; 1505 if (conf && raid5_has_ppl(conf)) 1506 ppl_conf = conf->log_private; 1507 ret = sprintf(buf, "%d\n", ppl_conf ? ppl_conf->write_hint : 0); 1508 spin_unlock(&mddev->lock); 1509 1510 return ret; 1511 } 1512 1513 static ssize_t 1514 ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len) 1515 { 1516 struct r5conf *conf; 1517 struct ppl_conf *ppl_conf; 1518 int err = 0; 1519 unsigned short new; 1520 1521 if (len >= PAGE_SIZE) 1522 return -EINVAL; 1523 if (kstrtou16(page, 10, &new)) 1524 return -EINVAL; 1525 1526 err = mddev_lock(mddev); 1527 if (err) 1528 return err; 1529 1530 conf = mddev->private; 1531 if (!conf) { 1532 err = -ENODEV; 1533 } else if (raid5_has_ppl(conf)) { 1534 ppl_conf = conf->log_private; 1535 if (!ppl_conf) 1536 err = -EINVAL; 1537 else 1538 ppl_conf->write_hint = new; 1539 } else { 1540 err = -EINVAL; 1541 } 1542 1543 mddev_unlock(mddev); 1544 1545 return err ?: len; 1546 } 1547 1548 struct md_sysfs_entry 1549 ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR, 1550 ppl_write_hint_show, 1551 ppl_write_hint_store); 1552