1 /* 2 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 */ 15 #include <linux/kernel.h> 16 #include <linux/wait.h> 17 #include <linux/blkdev.h> 18 #include <linux/slab.h> 19 #include <linux/raid/md_p.h> 20 #include <linux/crc32c.h> 21 #include <linux/random.h> 22 #include <linux/kthread.h> 23 #include <linux/types.h> 24 #include "md.h" 25 #include "raid5.h" 26 #include "md-bitmap.h" 27 #include "raid5-log.h" 28 29 /* 30 * metadata/data stored in disk with 4k size unit (a block) regardless 31 * underneath hardware sector size. only works with PAGE_SIZE == 4096 32 */ 33 #define BLOCK_SECTORS (8) 34 #define BLOCK_SECTOR_SHIFT (3) 35 36 /* 37 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 38 * 39 * In write through mode, the reclaim runs every log->max_free_space. 40 * This can prevent the recovery scans for too long 41 */ 42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 44 45 /* wake up reclaim thread periodically */ 46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 47 /* start flush with these full stripes */ 48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 49 /* reclaim stripes in groups */ 50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 51 52 /* 53 * We only need 2 bios per I/O unit to make progress, but ensure we 54 * have a few more available to not get too tight. 55 */ 56 #define R5L_POOL_SIZE 4 57 58 static char *r5c_journal_mode_str[] = {"write-through", 59 "write-back"}; 60 /* 61 * raid5 cache state machine 62 * 63 * With the RAID cache, each stripe works in two phases: 64 * - caching phase 65 * - writing-out phase 66 * 67 * These two phases are controlled by bit STRIPE_R5C_CACHING: 68 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 69 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 70 * 71 * When there is no journal, or the journal is in write-through mode, 72 * the stripe is always in writing-out phase. 73 * 74 * For write-back journal, the stripe is sent to caching phase on write 75 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 76 * the write-out phase by clearing STRIPE_R5C_CACHING. 77 * 78 * Stripes in caching phase do not write the raid disks. Instead, all 79 * writes are committed from the log device. Therefore, a stripe in 80 * caching phase handles writes as: 81 * - write to log device 82 * - return IO 83 * 84 * Stripes in writing-out phase handle writes as: 85 * - calculate parity 86 * - write pending data and parity to journal 87 * - write data and parity to raid disks 88 * - return IO for pending writes 89 */ 90 91 struct r5l_log { 92 struct md_rdev *rdev; 93 94 u32 uuid_checksum; 95 96 sector_t device_size; /* log device size, round to 97 * BLOCK_SECTORS */ 98 sector_t max_free_space; /* reclaim run if free space is at 99 * this size */ 100 101 sector_t last_checkpoint; /* log tail. where recovery scan 102 * starts from */ 103 u64 last_cp_seq; /* log tail sequence */ 104 105 sector_t log_start; /* log head. where new data appends */ 106 u64 seq; /* log head sequence */ 107 108 sector_t next_checkpoint; 109 110 struct mutex io_mutex; 111 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 112 113 spinlock_t io_list_lock; 114 struct list_head running_ios; /* io_units which are still running, 115 * and have not yet been completely 116 * written to the log */ 117 struct list_head io_end_ios; /* io_units which have been completely 118 * written to the log but not yet written 119 * to the RAID */ 120 struct list_head flushing_ios; /* io_units which are waiting for log 121 * cache flush */ 122 struct list_head finished_ios; /* io_units which settle down in log disk */ 123 struct bio flush_bio; 124 125 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 126 127 struct kmem_cache *io_kc; 128 mempool_t io_pool; 129 struct bio_set bs; 130 mempool_t meta_pool; 131 132 struct md_thread *reclaim_thread; 133 unsigned long reclaim_target; /* number of space that need to be 134 * reclaimed. if it's 0, reclaim spaces 135 * used by io_units which are in 136 * IO_UNIT_STRIPE_END state (eg, reclaim 137 * dones't wait for specific io_unit 138 * switching to IO_UNIT_STRIPE_END 139 * state) */ 140 wait_queue_head_t iounit_wait; 141 142 struct list_head no_space_stripes; /* pending stripes, log has no space */ 143 spinlock_t no_space_stripes_lock; 144 145 bool need_cache_flush; 146 147 /* for r5c_cache */ 148 enum r5c_journal_mode r5c_journal_mode; 149 150 /* all stripes in r5cache, in the order of seq at sh->log_start */ 151 struct list_head stripe_in_journal_list; 152 153 spinlock_t stripe_in_journal_lock; 154 atomic_t stripe_in_journal_count; 155 156 /* to submit async io_units, to fulfill ordering of flush */ 157 struct work_struct deferred_io_work; 158 /* to disable write back during in degraded mode */ 159 struct work_struct disable_writeback_work; 160 161 /* to for chunk_aligned_read in writeback mode, details below */ 162 spinlock_t tree_lock; 163 struct radix_tree_root big_stripe_tree; 164 }; 165 166 /* 167 * Enable chunk_aligned_read() with write back cache. 168 * 169 * Each chunk may contain more than one stripe (for example, a 256kB 170 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 171 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 172 * For each big_stripe, we count how many stripes of this big_stripe 173 * are in the write back cache. These data are tracked in a radix tree 174 * (big_stripe_tree). We use radix_tree item pointer as the counter. 175 * r5c_tree_index() is used to calculate keys for the radix tree. 176 * 177 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 178 * big_stripe of each chunk in the tree. If this big_stripe is in the 179 * tree, chunk_aligned_read() aborts. This look up is protected by 180 * rcu_read_lock(). 181 * 182 * It is necessary to remember whether a stripe is counted in 183 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 184 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 185 * two flags are set, the stripe is counted in big_stripe_tree. This 186 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 187 * r5c_try_caching_write(); and moving clear_bit of 188 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 189 * r5c_finish_stripe_write_out(). 190 */ 191 192 /* 193 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 194 * So it is necessary to left shift the counter by 2 bits before using it 195 * as data pointer of the tree. 196 */ 197 #define R5C_RADIX_COUNT_SHIFT 2 198 199 /* 200 * calculate key for big_stripe_tree 201 * 202 * sect: align_bi->bi_iter.bi_sector or sh->sector 203 */ 204 static inline sector_t r5c_tree_index(struct r5conf *conf, 205 sector_t sect) 206 { 207 sector_t offset; 208 209 offset = sector_div(sect, conf->chunk_sectors); 210 return sect; 211 } 212 213 /* 214 * an IO range starts from a meta data block and end at the next meta data 215 * block. The io unit's the meta data block tracks data/parity followed it. io 216 * unit is written to log disk with normal write, as we always flush log disk 217 * first and then start move data to raid disks, there is no requirement to 218 * write io unit with FLUSH/FUA 219 */ 220 struct r5l_io_unit { 221 struct r5l_log *log; 222 223 struct page *meta_page; /* store meta block */ 224 int meta_offset; /* current offset in meta_page */ 225 226 struct bio *current_bio;/* current_bio accepting new data */ 227 228 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 229 u64 seq; /* seq number of the metablock */ 230 sector_t log_start; /* where the io_unit starts */ 231 sector_t log_end; /* where the io_unit ends */ 232 struct list_head log_sibling; /* log->running_ios */ 233 struct list_head stripe_list; /* stripes added to the io_unit */ 234 235 int state; 236 bool need_split_bio; 237 struct bio *split_bio; 238 239 unsigned int has_flush:1; /* include flush request */ 240 unsigned int has_fua:1; /* include fua request */ 241 unsigned int has_null_flush:1; /* include null flush request */ 242 unsigned int has_flush_payload:1; /* include flush payload */ 243 /* 244 * io isn't sent yet, flush/fua request can only be submitted till it's 245 * the first IO in running_ios list 246 */ 247 unsigned int io_deferred:1; 248 249 struct bio_list flush_barriers; /* size == 0 flush bios */ 250 }; 251 252 /* r5l_io_unit state */ 253 enum r5l_io_unit_state { 254 IO_UNIT_RUNNING = 0, /* accepting new IO */ 255 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 256 * don't accepting new bio */ 257 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 258 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 259 }; 260 261 bool r5c_is_writeback(struct r5l_log *log) 262 { 263 return (log != NULL && 264 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 265 } 266 267 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 268 { 269 start += inc; 270 if (start >= log->device_size) 271 start = start - log->device_size; 272 return start; 273 } 274 275 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 276 sector_t end) 277 { 278 if (end >= start) 279 return end - start; 280 else 281 return end + log->device_size - start; 282 } 283 284 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 285 { 286 sector_t used_size; 287 288 used_size = r5l_ring_distance(log, log->last_checkpoint, 289 log->log_start); 290 291 return log->device_size > used_size + size; 292 } 293 294 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 295 enum r5l_io_unit_state state) 296 { 297 if (WARN_ON(io->state >= state)) 298 return; 299 io->state = state; 300 } 301 302 static void 303 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 304 { 305 struct bio *wbi, *wbi2; 306 307 wbi = dev->written; 308 dev->written = NULL; 309 while (wbi && wbi->bi_iter.bi_sector < 310 dev->sector + STRIPE_SECTORS) { 311 wbi2 = r5_next_bio(wbi, dev->sector); 312 md_write_end(conf->mddev); 313 bio_endio(wbi); 314 wbi = wbi2; 315 } 316 } 317 318 void r5c_handle_cached_data_endio(struct r5conf *conf, 319 struct stripe_head *sh, int disks) 320 { 321 int i; 322 323 for (i = sh->disks; i--; ) { 324 if (sh->dev[i].written) { 325 set_bit(R5_UPTODATE, &sh->dev[i].flags); 326 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 327 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 328 STRIPE_SECTORS, 329 !test_bit(STRIPE_DEGRADED, &sh->state), 330 0); 331 } 332 } 333 } 334 335 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 336 337 /* Check whether we should flush some stripes to free up stripe cache */ 338 void r5c_check_stripe_cache_usage(struct r5conf *conf) 339 { 340 int total_cached; 341 342 if (!r5c_is_writeback(conf->log)) 343 return; 344 345 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 346 atomic_read(&conf->r5c_cached_full_stripes); 347 348 /* 349 * The following condition is true for either of the following: 350 * - stripe cache pressure high: 351 * total_cached > 3/4 min_nr_stripes || 352 * empty_inactive_list_nr > 0 353 * - stripe cache pressure moderate: 354 * total_cached > 1/2 min_nr_stripes 355 */ 356 if (total_cached > conf->min_nr_stripes * 1 / 2 || 357 atomic_read(&conf->empty_inactive_list_nr) > 0) 358 r5l_wake_reclaim(conf->log, 0); 359 } 360 361 /* 362 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 363 * stripes in the cache 364 */ 365 void r5c_check_cached_full_stripe(struct r5conf *conf) 366 { 367 if (!r5c_is_writeback(conf->log)) 368 return; 369 370 /* 371 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 372 * or a full stripe (chunk size / 4k stripes). 373 */ 374 if (atomic_read(&conf->r5c_cached_full_stripes) >= 375 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 376 conf->chunk_sectors >> STRIPE_SHIFT)) 377 r5l_wake_reclaim(conf->log, 0); 378 } 379 380 /* 381 * Total log space (in sectors) needed to flush all data in cache 382 * 383 * To avoid deadlock due to log space, it is necessary to reserve log 384 * space to flush critical stripes (stripes that occupying log space near 385 * last_checkpoint). This function helps check how much log space is 386 * required to flush all cached stripes. 387 * 388 * To reduce log space requirements, two mechanisms are used to give cache 389 * flush higher priorities: 390 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 391 * stripes ALREADY in journal can be flushed w/o pending writes; 392 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 393 * can be delayed (r5l_add_no_space_stripe). 394 * 395 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 396 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 397 * pages of journal space. For stripes that has not passed 1, flushing it 398 * requires (conf->raid_disks + 1) pages of journal space. There are at 399 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 400 * required to flush all cached stripes (in pages) is: 401 * 402 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 403 * (group_cnt + 1) * (raid_disks + 1) 404 * or 405 * (stripe_in_journal_count) * (max_degraded + 1) + 406 * (group_cnt + 1) * (raid_disks - max_degraded) 407 */ 408 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 409 { 410 struct r5l_log *log = conf->log; 411 412 if (!r5c_is_writeback(log)) 413 return 0; 414 415 return BLOCK_SECTORS * 416 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 417 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 418 } 419 420 /* 421 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 422 * 423 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 424 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 425 * device is less than 2x of reclaim_required_space. 426 */ 427 static inline void r5c_update_log_state(struct r5l_log *log) 428 { 429 struct r5conf *conf = log->rdev->mddev->private; 430 sector_t free_space; 431 sector_t reclaim_space; 432 bool wake_reclaim = false; 433 434 if (!r5c_is_writeback(log)) 435 return; 436 437 free_space = r5l_ring_distance(log, log->log_start, 438 log->last_checkpoint); 439 reclaim_space = r5c_log_required_to_flush_cache(conf); 440 if (free_space < 2 * reclaim_space) 441 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 442 else { 443 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 444 wake_reclaim = true; 445 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 446 } 447 if (free_space < 3 * reclaim_space) 448 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 449 else 450 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 451 452 if (wake_reclaim) 453 r5l_wake_reclaim(log, 0); 454 } 455 456 /* 457 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 458 * This function should only be called in write-back mode. 459 */ 460 void r5c_make_stripe_write_out(struct stripe_head *sh) 461 { 462 struct r5conf *conf = sh->raid_conf; 463 struct r5l_log *log = conf->log; 464 465 BUG_ON(!r5c_is_writeback(log)); 466 467 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 468 clear_bit(STRIPE_R5C_CACHING, &sh->state); 469 470 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 471 atomic_inc(&conf->preread_active_stripes); 472 } 473 474 static void r5c_handle_data_cached(struct stripe_head *sh) 475 { 476 int i; 477 478 for (i = sh->disks; i--; ) 479 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 480 set_bit(R5_InJournal, &sh->dev[i].flags); 481 clear_bit(R5_LOCKED, &sh->dev[i].flags); 482 } 483 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 484 } 485 486 /* 487 * this journal write must contain full parity, 488 * it may also contain some data pages 489 */ 490 static void r5c_handle_parity_cached(struct stripe_head *sh) 491 { 492 int i; 493 494 for (i = sh->disks; i--; ) 495 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 496 set_bit(R5_Wantwrite, &sh->dev[i].flags); 497 } 498 499 /* 500 * Setting proper flags after writing (or flushing) data and/or parity to the 501 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 502 */ 503 static void r5c_finish_cache_stripe(struct stripe_head *sh) 504 { 505 struct r5l_log *log = sh->raid_conf->log; 506 507 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 508 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 509 /* 510 * Set R5_InJournal for parity dev[pd_idx]. This means 511 * all data AND parity in the journal. For RAID 6, it is 512 * NOT necessary to set the flag for dev[qd_idx], as the 513 * two parities are written out together. 514 */ 515 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 516 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 517 r5c_handle_data_cached(sh); 518 } else { 519 r5c_handle_parity_cached(sh); 520 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 521 } 522 } 523 524 static void r5l_io_run_stripes(struct r5l_io_unit *io) 525 { 526 struct stripe_head *sh, *next; 527 528 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 529 list_del_init(&sh->log_list); 530 531 r5c_finish_cache_stripe(sh); 532 533 set_bit(STRIPE_HANDLE, &sh->state); 534 raid5_release_stripe(sh); 535 } 536 } 537 538 static void r5l_log_run_stripes(struct r5l_log *log) 539 { 540 struct r5l_io_unit *io, *next; 541 542 lockdep_assert_held(&log->io_list_lock); 543 544 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 545 /* don't change list order */ 546 if (io->state < IO_UNIT_IO_END) 547 break; 548 549 list_move_tail(&io->log_sibling, &log->finished_ios); 550 r5l_io_run_stripes(io); 551 } 552 } 553 554 static void r5l_move_to_end_ios(struct r5l_log *log) 555 { 556 struct r5l_io_unit *io, *next; 557 558 lockdep_assert_held(&log->io_list_lock); 559 560 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 561 /* don't change list order */ 562 if (io->state < IO_UNIT_IO_END) 563 break; 564 list_move_tail(&io->log_sibling, &log->io_end_ios); 565 } 566 } 567 568 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 569 static void r5l_log_endio(struct bio *bio) 570 { 571 struct r5l_io_unit *io = bio->bi_private; 572 struct r5l_io_unit *io_deferred; 573 struct r5l_log *log = io->log; 574 unsigned long flags; 575 bool has_null_flush; 576 bool has_flush_payload; 577 578 if (bio->bi_status) 579 md_error(log->rdev->mddev, log->rdev); 580 581 bio_put(bio); 582 mempool_free(io->meta_page, &log->meta_pool); 583 584 spin_lock_irqsave(&log->io_list_lock, flags); 585 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 586 587 /* 588 * if the io doesn't not have null_flush or flush payload, 589 * it is not safe to access it after releasing io_list_lock. 590 * Therefore, it is necessary to check the condition with 591 * the lock held. 592 */ 593 has_null_flush = io->has_null_flush; 594 has_flush_payload = io->has_flush_payload; 595 596 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 597 r5l_move_to_end_ios(log); 598 else 599 r5l_log_run_stripes(log); 600 if (!list_empty(&log->running_ios)) { 601 /* 602 * FLUSH/FUA io_unit is deferred because of ordering, now we 603 * can dispatch it 604 */ 605 io_deferred = list_first_entry(&log->running_ios, 606 struct r5l_io_unit, log_sibling); 607 if (io_deferred->io_deferred) 608 schedule_work(&log->deferred_io_work); 609 } 610 611 spin_unlock_irqrestore(&log->io_list_lock, flags); 612 613 if (log->need_cache_flush) 614 md_wakeup_thread(log->rdev->mddev->thread); 615 616 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 617 if (has_null_flush) { 618 struct bio *bi; 619 620 WARN_ON(bio_list_empty(&io->flush_barriers)); 621 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 622 bio_endio(bi); 623 if (atomic_dec_and_test(&io->pending_stripe)) { 624 __r5l_stripe_write_finished(io); 625 return; 626 } 627 } 628 } 629 /* decrease pending_stripe for flush payload */ 630 if (has_flush_payload) 631 if (atomic_dec_and_test(&io->pending_stripe)) 632 __r5l_stripe_write_finished(io); 633 } 634 635 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 636 { 637 unsigned long flags; 638 639 spin_lock_irqsave(&log->io_list_lock, flags); 640 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 641 spin_unlock_irqrestore(&log->io_list_lock, flags); 642 643 /* 644 * In case of journal device failures, submit_bio will get error 645 * and calls endio, then active stripes will continue write 646 * process. Therefore, it is not necessary to check Faulty bit 647 * of journal device here. 648 * 649 * We can't check split_bio after current_bio is submitted. If 650 * io->split_bio is null, after current_bio is submitted, current_bio 651 * might already be completed and the io_unit is freed. We submit 652 * split_bio first to avoid the issue. 653 */ 654 if (io->split_bio) { 655 if (io->has_flush) 656 io->split_bio->bi_opf |= REQ_PREFLUSH; 657 if (io->has_fua) 658 io->split_bio->bi_opf |= REQ_FUA; 659 submit_bio(io->split_bio); 660 } 661 662 if (io->has_flush) 663 io->current_bio->bi_opf |= REQ_PREFLUSH; 664 if (io->has_fua) 665 io->current_bio->bi_opf |= REQ_FUA; 666 submit_bio(io->current_bio); 667 } 668 669 /* deferred io_unit will be dispatched here */ 670 static void r5l_submit_io_async(struct work_struct *work) 671 { 672 struct r5l_log *log = container_of(work, struct r5l_log, 673 deferred_io_work); 674 struct r5l_io_unit *io = NULL; 675 unsigned long flags; 676 677 spin_lock_irqsave(&log->io_list_lock, flags); 678 if (!list_empty(&log->running_ios)) { 679 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 680 log_sibling); 681 if (!io->io_deferred) 682 io = NULL; 683 else 684 io->io_deferred = 0; 685 } 686 spin_unlock_irqrestore(&log->io_list_lock, flags); 687 if (io) 688 r5l_do_submit_io(log, io); 689 } 690 691 static void r5c_disable_writeback_async(struct work_struct *work) 692 { 693 struct r5l_log *log = container_of(work, struct r5l_log, 694 disable_writeback_work); 695 struct mddev *mddev = log->rdev->mddev; 696 struct r5conf *conf = mddev->private; 697 int locked = 0; 698 699 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 700 return; 701 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 702 mdname(mddev)); 703 704 /* wait superblock change before suspend */ 705 wait_event(mddev->sb_wait, 706 conf->log == NULL || 707 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && 708 (locked = mddev_trylock(mddev)))); 709 if (locked) { 710 mddev_suspend(mddev); 711 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 712 mddev_resume(mddev); 713 mddev_unlock(mddev); 714 } 715 } 716 717 static void r5l_submit_current_io(struct r5l_log *log) 718 { 719 struct r5l_io_unit *io = log->current_io; 720 struct r5l_meta_block *block; 721 unsigned long flags; 722 u32 crc; 723 bool do_submit = true; 724 725 if (!io) 726 return; 727 728 block = page_address(io->meta_page); 729 block->meta_size = cpu_to_le32(io->meta_offset); 730 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 731 block->checksum = cpu_to_le32(crc); 732 733 log->current_io = NULL; 734 spin_lock_irqsave(&log->io_list_lock, flags); 735 if (io->has_flush || io->has_fua) { 736 if (io != list_first_entry(&log->running_ios, 737 struct r5l_io_unit, log_sibling)) { 738 io->io_deferred = 1; 739 do_submit = false; 740 } 741 } 742 spin_unlock_irqrestore(&log->io_list_lock, flags); 743 if (do_submit) 744 r5l_do_submit_io(log, io); 745 } 746 747 static struct bio *r5l_bio_alloc(struct r5l_log *log) 748 { 749 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, &log->bs); 750 751 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 752 bio_set_dev(bio, log->rdev->bdev); 753 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 754 755 return bio; 756 } 757 758 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 759 { 760 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 761 762 r5c_update_log_state(log); 763 /* 764 * If we filled up the log device start from the beginning again, 765 * which will require a new bio. 766 * 767 * Note: for this to work properly the log size needs to me a multiple 768 * of BLOCK_SECTORS. 769 */ 770 if (log->log_start == 0) 771 io->need_split_bio = true; 772 773 io->log_end = log->log_start; 774 } 775 776 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 777 { 778 struct r5l_io_unit *io; 779 struct r5l_meta_block *block; 780 781 io = mempool_alloc(&log->io_pool, GFP_ATOMIC); 782 if (!io) 783 return NULL; 784 memset(io, 0, sizeof(*io)); 785 786 io->log = log; 787 INIT_LIST_HEAD(&io->log_sibling); 788 INIT_LIST_HEAD(&io->stripe_list); 789 bio_list_init(&io->flush_barriers); 790 io->state = IO_UNIT_RUNNING; 791 792 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO); 793 block = page_address(io->meta_page); 794 clear_page(block); 795 block->magic = cpu_to_le32(R5LOG_MAGIC); 796 block->version = R5LOG_VERSION; 797 block->seq = cpu_to_le64(log->seq); 798 block->position = cpu_to_le64(log->log_start); 799 800 io->log_start = log->log_start; 801 io->meta_offset = sizeof(struct r5l_meta_block); 802 io->seq = log->seq++; 803 804 io->current_bio = r5l_bio_alloc(log); 805 io->current_bio->bi_end_io = r5l_log_endio; 806 io->current_bio->bi_private = io; 807 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 808 809 r5_reserve_log_entry(log, io); 810 811 spin_lock_irq(&log->io_list_lock); 812 list_add_tail(&io->log_sibling, &log->running_ios); 813 spin_unlock_irq(&log->io_list_lock); 814 815 return io; 816 } 817 818 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 819 { 820 if (log->current_io && 821 log->current_io->meta_offset + payload_size > PAGE_SIZE) 822 r5l_submit_current_io(log); 823 824 if (!log->current_io) { 825 log->current_io = r5l_new_meta(log); 826 if (!log->current_io) 827 return -ENOMEM; 828 } 829 830 return 0; 831 } 832 833 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 834 sector_t location, 835 u32 checksum1, u32 checksum2, 836 bool checksum2_valid) 837 { 838 struct r5l_io_unit *io = log->current_io; 839 struct r5l_payload_data_parity *payload; 840 841 payload = page_address(io->meta_page) + io->meta_offset; 842 payload->header.type = cpu_to_le16(type); 843 payload->header.flags = cpu_to_le16(0); 844 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 845 (PAGE_SHIFT - 9)); 846 payload->location = cpu_to_le64(location); 847 payload->checksum[0] = cpu_to_le32(checksum1); 848 if (checksum2_valid) 849 payload->checksum[1] = cpu_to_le32(checksum2); 850 851 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 852 sizeof(__le32) * (1 + !!checksum2_valid); 853 } 854 855 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 856 { 857 struct r5l_io_unit *io = log->current_io; 858 859 if (io->need_split_bio) { 860 BUG_ON(io->split_bio); 861 io->split_bio = io->current_bio; 862 io->current_bio = r5l_bio_alloc(log); 863 bio_chain(io->current_bio, io->split_bio); 864 io->need_split_bio = false; 865 } 866 867 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 868 BUG(); 869 870 r5_reserve_log_entry(log, io); 871 } 872 873 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 874 { 875 struct mddev *mddev = log->rdev->mddev; 876 struct r5conf *conf = mddev->private; 877 struct r5l_io_unit *io; 878 struct r5l_payload_flush *payload; 879 int meta_size; 880 881 /* 882 * payload_flush requires extra writes to the journal. 883 * To avoid handling the extra IO in quiesce, just skip 884 * flush_payload 885 */ 886 if (conf->quiesce) 887 return; 888 889 mutex_lock(&log->io_mutex); 890 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 891 892 if (r5l_get_meta(log, meta_size)) { 893 mutex_unlock(&log->io_mutex); 894 return; 895 } 896 897 /* current implementation is one stripe per flush payload */ 898 io = log->current_io; 899 payload = page_address(io->meta_page) + io->meta_offset; 900 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 901 payload->header.flags = cpu_to_le16(0); 902 payload->size = cpu_to_le32(sizeof(__le64)); 903 payload->flush_stripes[0] = cpu_to_le64(sect); 904 io->meta_offset += meta_size; 905 /* multiple flush payloads count as one pending_stripe */ 906 if (!io->has_flush_payload) { 907 io->has_flush_payload = 1; 908 atomic_inc(&io->pending_stripe); 909 } 910 mutex_unlock(&log->io_mutex); 911 } 912 913 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 914 int data_pages, int parity_pages) 915 { 916 int i; 917 int meta_size; 918 int ret; 919 struct r5l_io_unit *io; 920 921 meta_size = 922 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 923 * data_pages) + 924 sizeof(struct r5l_payload_data_parity) + 925 sizeof(__le32) * parity_pages; 926 927 ret = r5l_get_meta(log, meta_size); 928 if (ret) 929 return ret; 930 931 io = log->current_io; 932 933 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 934 io->has_flush = 1; 935 936 for (i = 0; i < sh->disks; i++) { 937 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 938 test_bit(R5_InJournal, &sh->dev[i].flags)) 939 continue; 940 if (i == sh->pd_idx || i == sh->qd_idx) 941 continue; 942 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 943 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 944 io->has_fua = 1; 945 /* 946 * we need to flush journal to make sure recovery can 947 * reach the data with fua flag 948 */ 949 io->has_flush = 1; 950 } 951 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 952 raid5_compute_blocknr(sh, i, 0), 953 sh->dev[i].log_checksum, 0, false); 954 r5l_append_payload_page(log, sh->dev[i].page); 955 } 956 957 if (parity_pages == 2) { 958 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 959 sh->sector, sh->dev[sh->pd_idx].log_checksum, 960 sh->dev[sh->qd_idx].log_checksum, true); 961 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 962 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 963 } else if (parity_pages == 1) { 964 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 965 sh->sector, sh->dev[sh->pd_idx].log_checksum, 966 0, false); 967 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 968 } else /* Just writing data, not parity, in caching phase */ 969 BUG_ON(parity_pages != 0); 970 971 list_add_tail(&sh->log_list, &io->stripe_list); 972 atomic_inc(&io->pending_stripe); 973 sh->log_io = io; 974 975 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 976 return 0; 977 978 if (sh->log_start == MaxSector) { 979 BUG_ON(!list_empty(&sh->r5c)); 980 sh->log_start = io->log_start; 981 spin_lock_irq(&log->stripe_in_journal_lock); 982 list_add_tail(&sh->r5c, 983 &log->stripe_in_journal_list); 984 spin_unlock_irq(&log->stripe_in_journal_lock); 985 atomic_inc(&log->stripe_in_journal_count); 986 } 987 return 0; 988 } 989 990 /* add stripe to no_space_stripes, and then wake up reclaim */ 991 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 992 struct stripe_head *sh) 993 { 994 spin_lock(&log->no_space_stripes_lock); 995 list_add_tail(&sh->log_list, &log->no_space_stripes); 996 spin_unlock(&log->no_space_stripes_lock); 997 } 998 999 /* 1000 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 1001 * data from log to raid disks), so we shouldn't wait for reclaim here 1002 */ 1003 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 1004 { 1005 struct r5conf *conf = sh->raid_conf; 1006 int write_disks = 0; 1007 int data_pages, parity_pages; 1008 int reserve; 1009 int i; 1010 int ret = 0; 1011 bool wake_reclaim = false; 1012 1013 if (!log) 1014 return -EAGAIN; 1015 /* Don't support stripe batch */ 1016 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 1017 test_bit(STRIPE_SYNCING, &sh->state)) { 1018 /* the stripe is written to log, we start writing it to raid */ 1019 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 1020 return -EAGAIN; 1021 } 1022 1023 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 1024 1025 for (i = 0; i < sh->disks; i++) { 1026 void *addr; 1027 1028 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 1029 test_bit(R5_InJournal, &sh->dev[i].flags)) 1030 continue; 1031 1032 write_disks++; 1033 /* checksum is already calculated in last run */ 1034 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1035 continue; 1036 addr = kmap_atomic(sh->dev[i].page); 1037 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1038 addr, PAGE_SIZE); 1039 kunmap_atomic(addr); 1040 } 1041 parity_pages = 1 + !!(sh->qd_idx >= 0); 1042 data_pages = write_disks - parity_pages; 1043 1044 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1045 /* 1046 * The stripe must enter state machine again to finish the write, so 1047 * don't delay. 1048 */ 1049 clear_bit(STRIPE_DELAYED, &sh->state); 1050 atomic_inc(&sh->count); 1051 1052 mutex_lock(&log->io_mutex); 1053 /* meta + data */ 1054 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1055 1056 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1057 if (!r5l_has_free_space(log, reserve)) { 1058 r5l_add_no_space_stripe(log, sh); 1059 wake_reclaim = true; 1060 } else { 1061 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1062 if (ret) { 1063 spin_lock_irq(&log->io_list_lock); 1064 list_add_tail(&sh->log_list, 1065 &log->no_mem_stripes); 1066 spin_unlock_irq(&log->io_list_lock); 1067 } 1068 } 1069 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1070 /* 1071 * log space critical, do not process stripes that are 1072 * not in cache yet (sh->log_start == MaxSector). 1073 */ 1074 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1075 sh->log_start == MaxSector) { 1076 r5l_add_no_space_stripe(log, sh); 1077 wake_reclaim = true; 1078 reserve = 0; 1079 } else if (!r5l_has_free_space(log, reserve)) { 1080 if (sh->log_start == log->last_checkpoint) 1081 BUG(); 1082 else 1083 r5l_add_no_space_stripe(log, sh); 1084 } else { 1085 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1086 if (ret) { 1087 spin_lock_irq(&log->io_list_lock); 1088 list_add_tail(&sh->log_list, 1089 &log->no_mem_stripes); 1090 spin_unlock_irq(&log->io_list_lock); 1091 } 1092 } 1093 } 1094 1095 mutex_unlock(&log->io_mutex); 1096 if (wake_reclaim) 1097 r5l_wake_reclaim(log, reserve); 1098 return 0; 1099 } 1100 1101 void r5l_write_stripe_run(struct r5l_log *log) 1102 { 1103 if (!log) 1104 return; 1105 mutex_lock(&log->io_mutex); 1106 r5l_submit_current_io(log); 1107 mutex_unlock(&log->io_mutex); 1108 } 1109 1110 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1111 { 1112 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1113 /* 1114 * in write through (journal only) 1115 * we flush log disk cache first, then write stripe data to 1116 * raid disks. So if bio is finished, the log disk cache is 1117 * flushed already. The recovery guarantees we can recovery 1118 * the bio from log disk, so we don't need to flush again 1119 */ 1120 if (bio->bi_iter.bi_size == 0) { 1121 bio_endio(bio); 1122 return 0; 1123 } 1124 bio->bi_opf &= ~REQ_PREFLUSH; 1125 } else { 1126 /* write back (with cache) */ 1127 if (bio->bi_iter.bi_size == 0) { 1128 mutex_lock(&log->io_mutex); 1129 r5l_get_meta(log, 0); 1130 bio_list_add(&log->current_io->flush_barriers, bio); 1131 log->current_io->has_flush = 1; 1132 log->current_io->has_null_flush = 1; 1133 atomic_inc(&log->current_io->pending_stripe); 1134 r5l_submit_current_io(log); 1135 mutex_unlock(&log->io_mutex); 1136 return 0; 1137 } 1138 } 1139 return -EAGAIN; 1140 } 1141 1142 /* This will run after log space is reclaimed */ 1143 static void r5l_run_no_space_stripes(struct r5l_log *log) 1144 { 1145 struct stripe_head *sh; 1146 1147 spin_lock(&log->no_space_stripes_lock); 1148 while (!list_empty(&log->no_space_stripes)) { 1149 sh = list_first_entry(&log->no_space_stripes, 1150 struct stripe_head, log_list); 1151 list_del_init(&sh->log_list); 1152 set_bit(STRIPE_HANDLE, &sh->state); 1153 raid5_release_stripe(sh); 1154 } 1155 spin_unlock(&log->no_space_stripes_lock); 1156 } 1157 1158 /* 1159 * calculate new last_checkpoint 1160 * for write through mode, returns log->next_checkpoint 1161 * for write back, returns log_start of first sh in stripe_in_journal_list 1162 */ 1163 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1164 { 1165 struct stripe_head *sh; 1166 struct r5l_log *log = conf->log; 1167 sector_t new_cp; 1168 unsigned long flags; 1169 1170 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1171 return log->next_checkpoint; 1172 1173 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1174 if (list_empty(&conf->log->stripe_in_journal_list)) { 1175 /* all stripes flushed */ 1176 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1177 return log->next_checkpoint; 1178 } 1179 sh = list_first_entry(&conf->log->stripe_in_journal_list, 1180 struct stripe_head, r5c); 1181 new_cp = sh->log_start; 1182 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1183 return new_cp; 1184 } 1185 1186 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1187 { 1188 struct r5conf *conf = log->rdev->mddev->private; 1189 1190 return r5l_ring_distance(log, log->last_checkpoint, 1191 r5c_calculate_new_cp(conf)); 1192 } 1193 1194 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1195 { 1196 struct stripe_head *sh; 1197 1198 lockdep_assert_held(&log->io_list_lock); 1199 1200 if (!list_empty(&log->no_mem_stripes)) { 1201 sh = list_first_entry(&log->no_mem_stripes, 1202 struct stripe_head, log_list); 1203 list_del_init(&sh->log_list); 1204 set_bit(STRIPE_HANDLE, &sh->state); 1205 raid5_release_stripe(sh); 1206 } 1207 } 1208 1209 static bool r5l_complete_finished_ios(struct r5l_log *log) 1210 { 1211 struct r5l_io_unit *io, *next; 1212 bool found = false; 1213 1214 lockdep_assert_held(&log->io_list_lock); 1215 1216 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1217 /* don't change list order */ 1218 if (io->state < IO_UNIT_STRIPE_END) 1219 break; 1220 1221 log->next_checkpoint = io->log_start; 1222 1223 list_del(&io->log_sibling); 1224 mempool_free(io, &log->io_pool); 1225 r5l_run_no_mem_stripe(log); 1226 1227 found = true; 1228 } 1229 1230 return found; 1231 } 1232 1233 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1234 { 1235 struct r5l_log *log = io->log; 1236 struct r5conf *conf = log->rdev->mddev->private; 1237 unsigned long flags; 1238 1239 spin_lock_irqsave(&log->io_list_lock, flags); 1240 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1241 1242 if (!r5l_complete_finished_ios(log)) { 1243 spin_unlock_irqrestore(&log->io_list_lock, flags); 1244 return; 1245 } 1246 1247 if (r5l_reclaimable_space(log) > log->max_free_space || 1248 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1249 r5l_wake_reclaim(log, 0); 1250 1251 spin_unlock_irqrestore(&log->io_list_lock, flags); 1252 wake_up(&log->iounit_wait); 1253 } 1254 1255 void r5l_stripe_write_finished(struct stripe_head *sh) 1256 { 1257 struct r5l_io_unit *io; 1258 1259 io = sh->log_io; 1260 sh->log_io = NULL; 1261 1262 if (io && atomic_dec_and_test(&io->pending_stripe)) 1263 __r5l_stripe_write_finished(io); 1264 } 1265 1266 static void r5l_log_flush_endio(struct bio *bio) 1267 { 1268 struct r5l_log *log = container_of(bio, struct r5l_log, 1269 flush_bio); 1270 unsigned long flags; 1271 struct r5l_io_unit *io; 1272 1273 if (bio->bi_status) 1274 md_error(log->rdev->mddev, log->rdev); 1275 1276 spin_lock_irqsave(&log->io_list_lock, flags); 1277 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1278 r5l_io_run_stripes(io); 1279 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1280 spin_unlock_irqrestore(&log->io_list_lock, flags); 1281 } 1282 1283 /* 1284 * Starting dispatch IO to raid. 1285 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1286 * broken meta in the middle of a log causes recovery can't find meta at the 1287 * head of log. If operations require meta at the head persistent in log, we 1288 * must make sure meta before it persistent in log too. A case is: 1289 * 1290 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1291 * data/parity must be persistent in log before we do the write to raid disks. 1292 * 1293 * The solution is we restrictly maintain io_unit list order. In this case, we 1294 * only write stripes of an io_unit to raid disks till the io_unit is the first 1295 * one whose data/parity is in log. 1296 */ 1297 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1298 { 1299 bool do_flush; 1300 1301 if (!log || !log->need_cache_flush) 1302 return; 1303 1304 spin_lock_irq(&log->io_list_lock); 1305 /* flush bio is running */ 1306 if (!list_empty(&log->flushing_ios)) { 1307 spin_unlock_irq(&log->io_list_lock); 1308 return; 1309 } 1310 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1311 do_flush = !list_empty(&log->flushing_ios); 1312 spin_unlock_irq(&log->io_list_lock); 1313 1314 if (!do_flush) 1315 return; 1316 bio_reset(&log->flush_bio); 1317 bio_set_dev(&log->flush_bio, log->rdev->bdev); 1318 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1319 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1320 submit_bio(&log->flush_bio); 1321 } 1322 1323 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1324 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1325 sector_t end) 1326 { 1327 struct block_device *bdev = log->rdev->bdev; 1328 struct mddev *mddev; 1329 1330 r5l_write_super(log, end); 1331 1332 if (!blk_queue_discard(bdev_get_queue(bdev))) 1333 return; 1334 1335 mddev = log->rdev->mddev; 1336 /* 1337 * Discard could zero data, so before discard we must make sure 1338 * superblock is updated to new log tail. Updating superblock (either 1339 * directly call md_update_sb() or depend on md thread) must hold 1340 * reconfig mutex. On the other hand, raid5_quiesce is called with 1341 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting 1342 * for all IO finish, hence waitting for reclaim thread, while reclaim 1343 * thread is calling this function and waitting for reconfig mutex. So 1344 * there is a deadlock. We workaround this issue with a trylock. 1345 * FIXME: we could miss discard if we can't take reconfig mutex 1346 */ 1347 set_mask_bits(&mddev->sb_flags, 0, 1348 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1349 if (!mddev_trylock(mddev)) 1350 return; 1351 md_update_sb(mddev, 1); 1352 mddev_unlock(mddev); 1353 1354 /* discard IO error really doesn't matter, ignore it */ 1355 if (log->last_checkpoint < end) { 1356 blkdev_issue_discard(bdev, 1357 log->last_checkpoint + log->rdev->data_offset, 1358 end - log->last_checkpoint, GFP_NOIO, 0); 1359 } else { 1360 blkdev_issue_discard(bdev, 1361 log->last_checkpoint + log->rdev->data_offset, 1362 log->device_size - log->last_checkpoint, 1363 GFP_NOIO, 0); 1364 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1365 GFP_NOIO, 0); 1366 } 1367 } 1368 1369 /* 1370 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1371 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1372 * 1373 * must hold conf->device_lock 1374 */ 1375 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1376 { 1377 BUG_ON(list_empty(&sh->lru)); 1378 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1379 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1380 1381 /* 1382 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1383 * raid5_release_stripe() while holding conf->device_lock 1384 */ 1385 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1386 lockdep_assert_held(&conf->device_lock); 1387 1388 list_del_init(&sh->lru); 1389 atomic_inc(&sh->count); 1390 1391 set_bit(STRIPE_HANDLE, &sh->state); 1392 atomic_inc(&conf->active_stripes); 1393 r5c_make_stripe_write_out(sh); 1394 1395 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1396 atomic_inc(&conf->r5c_flushing_partial_stripes); 1397 else 1398 atomic_inc(&conf->r5c_flushing_full_stripes); 1399 raid5_release_stripe(sh); 1400 } 1401 1402 /* 1403 * if num == 0, flush all full stripes 1404 * if num > 0, flush all full stripes. If less than num full stripes are 1405 * flushed, flush some partial stripes until totally num stripes are 1406 * flushed or there is no more cached stripes. 1407 */ 1408 void r5c_flush_cache(struct r5conf *conf, int num) 1409 { 1410 int count; 1411 struct stripe_head *sh, *next; 1412 1413 lockdep_assert_held(&conf->device_lock); 1414 if (!conf->log) 1415 return; 1416 1417 count = 0; 1418 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1419 r5c_flush_stripe(conf, sh); 1420 count++; 1421 } 1422 1423 if (count >= num) 1424 return; 1425 list_for_each_entry_safe(sh, next, 1426 &conf->r5c_partial_stripe_list, lru) { 1427 r5c_flush_stripe(conf, sh); 1428 if (++count >= num) 1429 break; 1430 } 1431 } 1432 1433 static void r5c_do_reclaim(struct r5conf *conf) 1434 { 1435 struct r5l_log *log = conf->log; 1436 struct stripe_head *sh; 1437 int count = 0; 1438 unsigned long flags; 1439 int total_cached; 1440 int stripes_to_flush; 1441 int flushing_partial, flushing_full; 1442 1443 if (!r5c_is_writeback(log)) 1444 return; 1445 1446 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1447 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1448 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1449 atomic_read(&conf->r5c_cached_full_stripes) - 1450 flushing_full - flushing_partial; 1451 1452 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1453 atomic_read(&conf->empty_inactive_list_nr) > 0) 1454 /* 1455 * if stripe cache pressure high, flush all full stripes and 1456 * some partial stripes 1457 */ 1458 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1459 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1460 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1461 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1462 /* 1463 * if stripe cache pressure moderate, or if there is many full 1464 * stripes,flush all full stripes 1465 */ 1466 stripes_to_flush = 0; 1467 else 1468 /* no need to flush */ 1469 stripes_to_flush = -1; 1470 1471 if (stripes_to_flush >= 0) { 1472 spin_lock_irqsave(&conf->device_lock, flags); 1473 r5c_flush_cache(conf, stripes_to_flush); 1474 spin_unlock_irqrestore(&conf->device_lock, flags); 1475 } 1476 1477 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1478 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1479 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1480 spin_lock(&conf->device_lock); 1481 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1482 /* 1483 * stripes on stripe_in_journal_list could be in any 1484 * state of the stripe_cache state machine. In this 1485 * case, we only want to flush stripe on 1486 * r5c_cached_full/partial_stripes. The following 1487 * condition makes sure the stripe is on one of the 1488 * two lists. 1489 */ 1490 if (!list_empty(&sh->lru) && 1491 !test_bit(STRIPE_HANDLE, &sh->state) && 1492 atomic_read(&sh->count) == 0) { 1493 r5c_flush_stripe(conf, sh); 1494 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1495 break; 1496 } 1497 } 1498 spin_unlock(&conf->device_lock); 1499 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1500 } 1501 1502 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1503 r5l_run_no_space_stripes(log); 1504 1505 md_wakeup_thread(conf->mddev->thread); 1506 } 1507 1508 static void r5l_do_reclaim(struct r5l_log *log) 1509 { 1510 struct r5conf *conf = log->rdev->mddev->private; 1511 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1512 sector_t reclaimable; 1513 sector_t next_checkpoint; 1514 bool write_super; 1515 1516 spin_lock_irq(&log->io_list_lock); 1517 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1518 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1519 /* 1520 * move proper io_unit to reclaim list. We should not change the order. 1521 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1522 * shouldn't reuse space of an unreclaimable io_unit 1523 */ 1524 while (1) { 1525 reclaimable = r5l_reclaimable_space(log); 1526 if (reclaimable >= reclaim_target || 1527 (list_empty(&log->running_ios) && 1528 list_empty(&log->io_end_ios) && 1529 list_empty(&log->flushing_ios) && 1530 list_empty(&log->finished_ios))) 1531 break; 1532 1533 md_wakeup_thread(log->rdev->mddev->thread); 1534 wait_event_lock_irq(log->iounit_wait, 1535 r5l_reclaimable_space(log) > reclaimable, 1536 log->io_list_lock); 1537 } 1538 1539 next_checkpoint = r5c_calculate_new_cp(conf); 1540 spin_unlock_irq(&log->io_list_lock); 1541 1542 if (reclaimable == 0 || !write_super) 1543 return; 1544 1545 /* 1546 * write_super will flush cache of each raid disk. We must write super 1547 * here, because the log area might be reused soon and we don't want to 1548 * confuse recovery 1549 */ 1550 r5l_write_super_and_discard_space(log, next_checkpoint); 1551 1552 mutex_lock(&log->io_mutex); 1553 log->last_checkpoint = next_checkpoint; 1554 r5c_update_log_state(log); 1555 mutex_unlock(&log->io_mutex); 1556 1557 r5l_run_no_space_stripes(log); 1558 } 1559 1560 static void r5l_reclaim_thread(struct md_thread *thread) 1561 { 1562 struct mddev *mddev = thread->mddev; 1563 struct r5conf *conf = mddev->private; 1564 struct r5l_log *log = conf->log; 1565 1566 if (!log) 1567 return; 1568 r5c_do_reclaim(conf); 1569 r5l_do_reclaim(log); 1570 } 1571 1572 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1573 { 1574 unsigned long target; 1575 unsigned long new = (unsigned long)space; /* overflow in theory */ 1576 1577 if (!log) 1578 return; 1579 do { 1580 target = log->reclaim_target; 1581 if (new < target) 1582 return; 1583 } while (cmpxchg(&log->reclaim_target, target, new) != target); 1584 md_wakeup_thread(log->reclaim_thread); 1585 } 1586 1587 void r5l_quiesce(struct r5l_log *log, int quiesce) 1588 { 1589 struct mddev *mddev; 1590 1591 if (quiesce) { 1592 /* make sure r5l_write_super_and_discard_space exits */ 1593 mddev = log->rdev->mddev; 1594 wake_up(&mddev->sb_wait); 1595 kthread_park(log->reclaim_thread->tsk); 1596 r5l_wake_reclaim(log, MaxSector); 1597 r5l_do_reclaim(log); 1598 } else 1599 kthread_unpark(log->reclaim_thread->tsk); 1600 } 1601 1602 bool r5l_log_disk_error(struct r5conf *conf) 1603 { 1604 struct r5l_log *log; 1605 bool ret; 1606 /* don't allow write if journal disk is missing */ 1607 rcu_read_lock(); 1608 log = rcu_dereference(conf->log); 1609 1610 if (!log) 1611 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1612 else 1613 ret = test_bit(Faulty, &log->rdev->flags); 1614 rcu_read_unlock(); 1615 return ret; 1616 } 1617 1618 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1619 1620 struct r5l_recovery_ctx { 1621 struct page *meta_page; /* current meta */ 1622 sector_t meta_total_blocks; /* total size of current meta and data */ 1623 sector_t pos; /* recovery position */ 1624 u64 seq; /* recovery position seq */ 1625 int data_parity_stripes; /* number of data_parity stripes */ 1626 int data_only_stripes; /* number of data_only stripes */ 1627 struct list_head cached_list; 1628 1629 /* 1630 * read ahead page pool (ra_pool) 1631 * in recovery, log is read sequentially. It is not efficient to 1632 * read every page with sync_page_io(). The read ahead page pool 1633 * reads multiple pages with one IO, so further log read can 1634 * just copy data from the pool. 1635 */ 1636 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1637 sector_t pool_offset; /* offset of first page in the pool */ 1638 int total_pages; /* total allocated pages */ 1639 int valid_pages; /* pages with valid data */ 1640 struct bio *ra_bio; /* bio to do the read ahead */ 1641 }; 1642 1643 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1644 struct r5l_recovery_ctx *ctx) 1645 { 1646 struct page *page; 1647 1648 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, &log->bs); 1649 if (!ctx->ra_bio) 1650 return -ENOMEM; 1651 1652 ctx->valid_pages = 0; 1653 ctx->total_pages = 0; 1654 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1655 page = alloc_page(GFP_KERNEL); 1656 1657 if (!page) 1658 break; 1659 ctx->ra_pool[ctx->total_pages] = page; 1660 ctx->total_pages += 1; 1661 } 1662 1663 if (ctx->total_pages == 0) { 1664 bio_put(ctx->ra_bio); 1665 return -ENOMEM; 1666 } 1667 1668 ctx->pool_offset = 0; 1669 return 0; 1670 } 1671 1672 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1673 struct r5l_recovery_ctx *ctx) 1674 { 1675 int i; 1676 1677 for (i = 0; i < ctx->total_pages; ++i) 1678 put_page(ctx->ra_pool[i]); 1679 bio_put(ctx->ra_bio); 1680 } 1681 1682 /* 1683 * fetch ctx->valid_pages pages from offset 1684 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1685 * However, if the offset is close to the end of the journal device, 1686 * ctx->valid_pages could be smaller than ctx->total_pages 1687 */ 1688 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1689 struct r5l_recovery_ctx *ctx, 1690 sector_t offset) 1691 { 1692 bio_reset(ctx->ra_bio); 1693 bio_set_dev(ctx->ra_bio, log->rdev->bdev); 1694 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0); 1695 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset; 1696 1697 ctx->valid_pages = 0; 1698 ctx->pool_offset = offset; 1699 1700 while (ctx->valid_pages < ctx->total_pages) { 1701 bio_add_page(ctx->ra_bio, 1702 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0); 1703 ctx->valid_pages += 1; 1704 1705 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1706 1707 if (offset == 0) /* reached end of the device */ 1708 break; 1709 } 1710 1711 return submit_bio_wait(ctx->ra_bio); 1712 } 1713 1714 /* 1715 * try read a page from the read ahead page pool, if the page is not in the 1716 * pool, call r5l_recovery_fetch_ra_pool 1717 */ 1718 static int r5l_recovery_read_page(struct r5l_log *log, 1719 struct r5l_recovery_ctx *ctx, 1720 struct page *page, 1721 sector_t offset) 1722 { 1723 int ret; 1724 1725 if (offset < ctx->pool_offset || 1726 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1727 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1728 if (ret) 1729 return ret; 1730 } 1731 1732 BUG_ON(offset < ctx->pool_offset || 1733 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1734 1735 memcpy(page_address(page), 1736 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1737 BLOCK_SECTOR_SHIFT]), 1738 PAGE_SIZE); 1739 return 0; 1740 } 1741 1742 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1743 struct r5l_recovery_ctx *ctx) 1744 { 1745 struct page *page = ctx->meta_page; 1746 struct r5l_meta_block *mb; 1747 u32 crc, stored_crc; 1748 int ret; 1749 1750 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1751 if (ret != 0) 1752 return ret; 1753 1754 mb = page_address(page); 1755 stored_crc = le32_to_cpu(mb->checksum); 1756 mb->checksum = 0; 1757 1758 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1759 le64_to_cpu(mb->seq) != ctx->seq || 1760 mb->version != R5LOG_VERSION || 1761 le64_to_cpu(mb->position) != ctx->pos) 1762 return -EINVAL; 1763 1764 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1765 if (stored_crc != crc) 1766 return -EINVAL; 1767 1768 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1769 return -EINVAL; 1770 1771 ctx->meta_total_blocks = BLOCK_SECTORS; 1772 1773 return 0; 1774 } 1775 1776 static void 1777 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1778 struct page *page, 1779 sector_t pos, u64 seq) 1780 { 1781 struct r5l_meta_block *mb; 1782 1783 mb = page_address(page); 1784 clear_page(mb); 1785 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1786 mb->version = R5LOG_VERSION; 1787 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1788 mb->seq = cpu_to_le64(seq); 1789 mb->position = cpu_to_le64(pos); 1790 } 1791 1792 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1793 u64 seq) 1794 { 1795 struct page *page; 1796 struct r5l_meta_block *mb; 1797 1798 page = alloc_page(GFP_KERNEL); 1799 if (!page) 1800 return -ENOMEM; 1801 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1802 mb = page_address(page); 1803 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1804 mb, PAGE_SIZE)); 1805 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE, 1806 REQ_SYNC | REQ_FUA, false)) { 1807 __free_page(page); 1808 return -EIO; 1809 } 1810 __free_page(page); 1811 return 0; 1812 } 1813 1814 /* 1815 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1816 * to mark valid (potentially not flushed) data in the journal. 1817 * 1818 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1819 * so there should not be any mismatch here. 1820 */ 1821 static void r5l_recovery_load_data(struct r5l_log *log, 1822 struct stripe_head *sh, 1823 struct r5l_recovery_ctx *ctx, 1824 struct r5l_payload_data_parity *payload, 1825 sector_t log_offset) 1826 { 1827 struct mddev *mddev = log->rdev->mddev; 1828 struct r5conf *conf = mddev->private; 1829 int dd_idx; 1830 1831 raid5_compute_sector(conf, 1832 le64_to_cpu(payload->location), 0, 1833 &dd_idx, sh); 1834 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1835 sh->dev[dd_idx].log_checksum = 1836 le32_to_cpu(payload->checksum[0]); 1837 ctx->meta_total_blocks += BLOCK_SECTORS; 1838 1839 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1840 set_bit(STRIPE_R5C_CACHING, &sh->state); 1841 } 1842 1843 static void r5l_recovery_load_parity(struct r5l_log *log, 1844 struct stripe_head *sh, 1845 struct r5l_recovery_ctx *ctx, 1846 struct r5l_payload_data_parity *payload, 1847 sector_t log_offset) 1848 { 1849 struct mddev *mddev = log->rdev->mddev; 1850 struct r5conf *conf = mddev->private; 1851 1852 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1853 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1854 sh->dev[sh->pd_idx].log_checksum = 1855 le32_to_cpu(payload->checksum[0]); 1856 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1857 1858 if (sh->qd_idx >= 0) { 1859 r5l_recovery_read_page( 1860 log, ctx, sh->dev[sh->qd_idx].page, 1861 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1862 sh->dev[sh->qd_idx].log_checksum = 1863 le32_to_cpu(payload->checksum[1]); 1864 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1865 } 1866 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1867 } 1868 1869 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1870 { 1871 int i; 1872 1873 sh->state = 0; 1874 sh->log_start = MaxSector; 1875 for (i = sh->disks; i--; ) 1876 sh->dev[i].flags = 0; 1877 } 1878 1879 static void 1880 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1881 struct stripe_head *sh, 1882 struct r5l_recovery_ctx *ctx) 1883 { 1884 struct md_rdev *rdev, *rrdev; 1885 int disk_index; 1886 int data_count = 0; 1887 1888 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1889 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1890 continue; 1891 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1892 continue; 1893 data_count++; 1894 } 1895 1896 /* 1897 * stripes that only have parity must have been flushed 1898 * before the crash that we are now recovering from, so 1899 * there is nothing more to recovery. 1900 */ 1901 if (data_count == 0) 1902 goto out; 1903 1904 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1905 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1906 continue; 1907 1908 /* in case device is broken */ 1909 rcu_read_lock(); 1910 rdev = rcu_dereference(conf->disks[disk_index].rdev); 1911 if (rdev) { 1912 atomic_inc(&rdev->nr_pending); 1913 rcu_read_unlock(); 1914 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1915 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1916 false); 1917 rdev_dec_pending(rdev, rdev->mddev); 1918 rcu_read_lock(); 1919 } 1920 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 1921 if (rrdev) { 1922 atomic_inc(&rrdev->nr_pending); 1923 rcu_read_unlock(); 1924 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1925 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1926 false); 1927 rdev_dec_pending(rrdev, rrdev->mddev); 1928 rcu_read_lock(); 1929 } 1930 rcu_read_unlock(); 1931 } 1932 ctx->data_parity_stripes++; 1933 out: 1934 r5l_recovery_reset_stripe(sh); 1935 } 1936 1937 static struct stripe_head * 1938 r5c_recovery_alloc_stripe( 1939 struct r5conf *conf, 1940 sector_t stripe_sect, 1941 int noblock) 1942 { 1943 struct stripe_head *sh; 1944 1945 sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0); 1946 if (!sh) 1947 return NULL; /* no more stripe available */ 1948 1949 r5l_recovery_reset_stripe(sh); 1950 1951 return sh; 1952 } 1953 1954 static struct stripe_head * 1955 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1956 { 1957 struct stripe_head *sh; 1958 1959 list_for_each_entry(sh, list, lru) 1960 if (sh->sector == sect) 1961 return sh; 1962 return NULL; 1963 } 1964 1965 static void 1966 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1967 struct r5l_recovery_ctx *ctx) 1968 { 1969 struct stripe_head *sh, *next; 1970 1971 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1972 r5l_recovery_reset_stripe(sh); 1973 list_del_init(&sh->lru); 1974 raid5_release_stripe(sh); 1975 } 1976 } 1977 1978 static void 1979 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1980 struct r5l_recovery_ctx *ctx) 1981 { 1982 struct stripe_head *sh, *next; 1983 1984 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1985 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1986 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1987 list_del_init(&sh->lru); 1988 raid5_release_stripe(sh); 1989 } 1990 } 1991 1992 /* if matches return 0; otherwise return -EINVAL */ 1993 static int 1994 r5l_recovery_verify_data_checksum(struct r5l_log *log, 1995 struct r5l_recovery_ctx *ctx, 1996 struct page *page, 1997 sector_t log_offset, __le32 log_checksum) 1998 { 1999 void *addr; 2000 u32 checksum; 2001 2002 r5l_recovery_read_page(log, ctx, page, log_offset); 2003 addr = kmap_atomic(page); 2004 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 2005 kunmap_atomic(addr); 2006 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 2007 } 2008 2009 /* 2010 * before loading data to stripe cache, we need verify checksum for all data, 2011 * if there is mismatch for any data page, we drop all data in the mata block 2012 */ 2013 static int 2014 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 2015 struct r5l_recovery_ctx *ctx) 2016 { 2017 struct mddev *mddev = log->rdev->mddev; 2018 struct r5conf *conf = mddev->private; 2019 struct r5l_meta_block *mb = page_address(ctx->meta_page); 2020 sector_t mb_offset = sizeof(struct r5l_meta_block); 2021 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2022 struct page *page; 2023 struct r5l_payload_data_parity *payload; 2024 struct r5l_payload_flush *payload_flush; 2025 2026 page = alloc_page(GFP_KERNEL); 2027 if (!page) 2028 return -ENOMEM; 2029 2030 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2031 payload = (void *)mb + mb_offset; 2032 payload_flush = (void *)mb + mb_offset; 2033 2034 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2035 if (r5l_recovery_verify_data_checksum( 2036 log, ctx, page, log_offset, 2037 payload->checksum[0]) < 0) 2038 goto mismatch; 2039 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2040 if (r5l_recovery_verify_data_checksum( 2041 log, ctx, page, log_offset, 2042 payload->checksum[0]) < 0) 2043 goto mismatch; 2044 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2045 r5l_recovery_verify_data_checksum( 2046 log, ctx, page, 2047 r5l_ring_add(log, log_offset, 2048 BLOCK_SECTORS), 2049 payload->checksum[1]) < 0) 2050 goto mismatch; 2051 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2052 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2053 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2054 goto mismatch; 2055 2056 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2057 mb_offset += sizeof(struct r5l_payload_flush) + 2058 le32_to_cpu(payload_flush->size); 2059 } else { 2060 /* DATA or PARITY payload */ 2061 log_offset = r5l_ring_add(log, log_offset, 2062 le32_to_cpu(payload->size)); 2063 mb_offset += sizeof(struct r5l_payload_data_parity) + 2064 sizeof(__le32) * 2065 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2066 } 2067 2068 } 2069 2070 put_page(page); 2071 return 0; 2072 2073 mismatch: 2074 put_page(page); 2075 return -EINVAL; 2076 } 2077 2078 /* 2079 * Analyze all data/parity pages in one meta block 2080 * Returns: 2081 * 0 for success 2082 * -EINVAL for unknown playload type 2083 * -EAGAIN for checksum mismatch of data page 2084 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2085 */ 2086 static int 2087 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2088 struct r5l_recovery_ctx *ctx, 2089 struct list_head *cached_stripe_list) 2090 { 2091 struct mddev *mddev = log->rdev->mddev; 2092 struct r5conf *conf = mddev->private; 2093 struct r5l_meta_block *mb; 2094 struct r5l_payload_data_parity *payload; 2095 struct r5l_payload_flush *payload_flush; 2096 int mb_offset; 2097 sector_t log_offset; 2098 sector_t stripe_sect; 2099 struct stripe_head *sh; 2100 int ret; 2101 2102 /* 2103 * for mismatch in data blocks, we will drop all data in this mb, but 2104 * we will still read next mb for other data with FLUSH flag, as 2105 * io_unit could finish out of order. 2106 */ 2107 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2108 if (ret == -EINVAL) 2109 return -EAGAIN; 2110 else if (ret) 2111 return ret; /* -ENOMEM duo to alloc_page() failed */ 2112 2113 mb = page_address(ctx->meta_page); 2114 mb_offset = sizeof(struct r5l_meta_block); 2115 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2116 2117 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2118 int dd; 2119 2120 payload = (void *)mb + mb_offset; 2121 payload_flush = (void *)mb + mb_offset; 2122 2123 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2124 int i, count; 2125 2126 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2127 for (i = 0; i < count; ++i) { 2128 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2129 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2130 stripe_sect); 2131 if (sh) { 2132 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2133 r5l_recovery_reset_stripe(sh); 2134 list_del_init(&sh->lru); 2135 raid5_release_stripe(sh); 2136 } 2137 } 2138 2139 mb_offset += sizeof(struct r5l_payload_flush) + 2140 le32_to_cpu(payload_flush->size); 2141 continue; 2142 } 2143 2144 /* DATA or PARITY payload */ 2145 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2146 raid5_compute_sector( 2147 conf, le64_to_cpu(payload->location), 0, &dd, 2148 NULL) 2149 : le64_to_cpu(payload->location); 2150 2151 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2152 stripe_sect); 2153 2154 if (!sh) { 2155 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1); 2156 /* 2157 * cannot get stripe from raid5_get_active_stripe 2158 * try replay some stripes 2159 */ 2160 if (!sh) { 2161 r5c_recovery_replay_stripes( 2162 cached_stripe_list, ctx); 2163 sh = r5c_recovery_alloc_stripe( 2164 conf, stripe_sect, 1); 2165 } 2166 if (!sh) { 2167 int new_size = conf->min_nr_stripes * 2; 2168 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2169 mdname(mddev), 2170 new_size); 2171 ret = raid5_set_cache_size(mddev, new_size); 2172 if (conf->min_nr_stripes <= new_size / 2) { 2173 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n", 2174 mdname(mddev), 2175 ret, 2176 new_size, 2177 conf->min_nr_stripes, 2178 conf->max_nr_stripes); 2179 return -ENOMEM; 2180 } 2181 sh = r5c_recovery_alloc_stripe( 2182 conf, stripe_sect, 0); 2183 } 2184 if (!sh) { 2185 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2186 mdname(mddev)); 2187 return -ENOMEM; 2188 } 2189 list_add_tail(&sh->lru, cached_stripe_list); 2190 } 2191 2192 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2193 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2194 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2195 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2196 list_move_tail(&sh->lru, cached_stripe_list); 2197 } 2198 r5l_recovery_load_data(log, sh, ctx, payload, 2199 log_offset); 2200 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2201 r5l_recovery_load_parity(log, sh, ctx, payload, 2202 log_offset); 2203 else 2204 return -EINVAL; 2205 2206 log_offset = r5l_ring_add(log, log_offset, 2207 le32_to_cpu(payload->size)); 2208 2209 mb_offset += sizeof(struct r5l_payload_data_parity) + 2210 sizeof(__le32) * 2211 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2212 } 2213 2214 return 0; 2215 } 2216 2217 /* 2218 * Load the stripe into cache. The stripe will be written out later by 2219 * the stripe cache state machine. 2220 */ 2221 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2222 struct stripe_head *sh) 2223 { 2224 struct r5dev *dev; 2225 int i; 2226 2227 for (i = sh->disks; i--; ) { 2228 dev = sh->dev + i; 2229 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2230 set_bit(R5_InJournal, &dev->flags); 2231 set_bit(R5_UPTODATE, &dev->flags); 2232 } 2233 } 2234 } 2235 2236 /* 2237 * Scan through the log for all to-be-flushed data 2238 * 2239 * For stripes with data and parity, namely Data-Parity stripe 2240 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2241 * 2242 * For stripes with only data, namely Data-Only stripe 2243 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2244 * 2245 * For a stripe, if we see data after parity, we should discard all previous 2246 * data and parity for this stripe, as these data are already flushed to 2247 * the array. 2248 * 2249 * At the end of the scan, we return the new journal_tail, which points to 2250 * first data-only stripe on the journal device, or next invalid meta block. 2251 */ 2252 static int r5c_recovery_flush_log(struct r5l_log *log, 2253 struct r5l_recovery_ctx *ctx) 2254 { 2255 struct stripe_head *sh; 2256 int ret = 0; 2257 2258 /* scan through the log */ 2259 while (1) { 2260 if (r5l_recovery_read_meta_block(log, ctx)) 2261 break; 2262 2263 ret = r5c_recovery_analyze_meta_block(log, ctx, 2264 &ctx->cached_list); 2265 /* 2266 * -EAGAIN means mismatch in data block, in this case, we still 2267 * try scan the next metablock 2268 */ 2269 if (ret && ret != -EAGAIN) 2270 break; /* ret == -EINVAL or -ENOMEM */ 2271 ctx->seq++; 2272 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2273 } 2274 2275 if (ret == -ENOMEM) { 2276 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2277 return ret; 2278 } 2279 2280 /* replay data-parity stripes */ 2281 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2282 2283 /* load data-only stripes to stripe cache */ 2284 list_for_each_entry(sh, &ctx->cached_list, lru) { 2285 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2286 r5c_recovery_load_one_stripe(log, sh); 2287 ctx->data_only_stripes++; 2288 } 2289 2290 return 0; 2291 } 2292 2293 /* 2294 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2295 * log will start here. but we can't let superblock point to last valid 2296 * meta block. The log might looks like: 2297 * | meta 1| meta 2| meta 3| 2298 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2299 * superblock points to meta 1, we write a new valid meta 2n. if crash 2300 * happens again, new recovery will start from meta 1. Since meta 2n is 2301 * valid now, recovery will think meta 3 is valid, which is wrong. 2302 * The solution is we create a new meta in meta2 with its seq == meta 2303 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2304 * will not think meta 3 is a valid meta, because its seq doesn't match 2305 */ 2306 2307 /* 2308 * Before recovery, the log looks like the following 2309 * 2310 * --------------------------------------------- 2311 * | valid log | invalid log | 2312 * --------------------------------------------- 2313 * ^ 2314 * |- log->last_checkpoint 2315 * |- log->last_cp_seq 2316 * 2317 * Now we scan through the log until we see invalid entry 2318 * 2319 * --------------------------------------------- 2320 * | valid log | invalid log | 2321 * --------------------------------------------- 2322 * ^ ^ 2323 * |- log->last_checkpoint |- ctx->pos 2324 * |- log->last_cp_seq |- ctx->seq 2325 * 2326 * From this point, we need to increase seq number by 10 to avoid 2327 * confusing next recovery. 2328 * 2329 * --------------------------------------------- 2330 * | valid log | invalid log | 2331 * --------------------------------------------- 2332 * ^ ^ 2333 * |- log->last_checkpoint |- ctx->pos+1 2334 * |- log->last_cp_seq |- ctx->seq+10001 2335 * 2336 * However, it is not safe to start the state machine yet, because data only 2337 * parities are not yet secured in RAID. To save these data only parities, we 2338 * rewrite them from seq+11. 2339 * 2340 * ----------------------------------------------------------------- 2341 * | valid log | data only stripes | invalid log | 2342 * ----------------------------------------------------------------- 2343 * ^ ^ 2344 * |- log->last_checkpoint |- ctx->pos+n 2345 * |- log->last_cp_seq |- ctx->seq+10000+n 2346 * 2347 * If failure happens again during this process, the recovery can safe start 2348 * again from log->last_checkpoint. 2349 * 2350 * Once data only stripes are rewritten to journal, we move log_tail 2351 * 2352 * ----------------------------------------------------------------- 2353 * | old log | data only stripes | invalid log | 2354 * ----------------------------------------------------------------- 2355 * ^ ^ 2356 * |- log->last_checkpoint |- ctx->pos+n 2357 * |- log->last_cp_seq |- ctx->seq+10000+n 2358 * 2359 * Then we can safely start the state machine. If failure happens from this 2360 * point on, the recovery will start from new log->last_checkpoint. 2361 */ 2362 static int 2363 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2364 struct r5l_recovery_ctx *ctx) 2365 { 2366 struct stripe_head *sh; 2367 struct mddev *mddev = log->rdev->mddev; 2368 struct page *page; 2369 sector_t next_checkpoint = MaxSector; 2370 2371 page = alloc_page(GFP_KERNEL); 2372 if (!page) { 2373 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2374 mdname(mddev)); 2375 return -ENOMEM; 2376 } 2377 2378 WARN_ON(list_empty(&ctx->cached_list)); 2379 2380 list_for_each_entry(sh, &ctx->cached_list, lru) { 2381 struct r5l_meta_block *mb; 2382 int i; 2383 int offset; 2384 sector_t write_pos; 2385 2386 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2387 r5l_recovery_create_empty_meta_block(log, page, 2388 ctx->pos, ctx->seq); 2389 mb = page_address(page); 2390 offset = le32_to_cpu(mb->meta_size); 2391 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2392 2393 for (i = sh->disks; i--; ) { 2394 struct r5dev *dev = &sh->dev[i]; 2395 struct r5l_payload_data_parity *payload; 2396 void *addr; 2397 2398 if (test_bit(R5_InJournal, &dev->flags)) { 2399 payload = (void *)mb + offset; 2400 payload->header.type = cpu_to_le16( 2401 R5LOG_PAYLOAD_DATA); 2402 payload->size = cpu_to_le32(BLOCK_SECTORS); 2403 payload->location = cpu_to_le64( 2404 raid5_compute_blocknr(sh, i, 0)); 2405 addr = kmap_atomic(dev->page); 2406 payload->checksum[0] = cpu_to_le32( 2407 crc32c_le(log->uuid_checksum, addr, 2408 PAGE_SIZE)); 2409 kunmap_atomic(addr); 2410 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2411 dev->page, REQ_OP_WRITE, 0, false); 2412 write_pos = r5l_ring_add(log, write_pos, 2413 BLOCK_SECTORS); 2414 offset += sizeof(__le32) + 2415 sizeof(struct r5l_payload_data_parity); 2416 2417 } 2418 } 2419 mb->meta_size = cpu_to_le32(offset); 2420 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2421 mb, PAGE_SIZE)); 2422 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2423 REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false); 2424 sh->log_start = ctx->pos; 2425 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2426 atomic_inc(&log->stripe_in_journal_count); 2427 ctx->pos = write_pos; 2428 ctx->seq += 1; 2429 next_checkpoint = sh->log_start; 2430 } 2431 log->next_checkpoint = next_checkpoint; 2432 __free_page(page); 2433 return 0; 2434 } 2435 2436 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2437 struct r5l_recovery_ctx *ctx) 2438 { 2439 struct mddev *mddev = log->rdev->mddev; 2440 struct r5conf *conf = mddev->private; 2441 struct stripe_head *sh, *next; 2442 2443 if (ctx->data_only_stripes == 0) 2444 return; 2445 2446 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2447 2448 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2449 r5c_make_stripe_write_out(sh); 2450 set_bit(STRIPE_HANDLE, &sh->state); 2451 list_del_init(&sh->lru); 2452 raid5_release_stripe(sh); 2453 } 2454 2455 /* reuse conf->wait_for_quiescent in recovery */ 2456 wait_event(conf->wait_for_quiescent, 2457 atomic_read(&conf->active_stripes) == 0); 2458 2459 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2460 } 2461 2462 static int r5l_recovery_log(struct r5l_log *log) 2463 { 2464 struct mddev *mddev = log->rdev->mddev; 2465 struct r5l_recovery_ctx *ctx; 2466 int ret; 2467 sector_t pos; 2468 2469 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2470 if (!ctx) 2471 return -ENOMEM; 2472 2473 ctx->pos = log->last_checkpoint; 2474 ctx->seq = log->last_cp_seq; 2475 INIT_LIST_HEAD(&ctx->cached_list); 2476 ctx->meta_page = alloc_page(GFP_KERNEL); 2477 2478 if (!ctx->meta_page) { 2479 ret = -ENOMEM; 2480 goto meta_page; 2481 } 2482 2483 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2484 ret = -ENOMEM; 2485 goto ra_pool; 2486 } 2487 2488 ret = r5c_recovery_flush_log(log, ctx); 2489 2490 if (ret) 2491 goto error; 2492 2493 pos = ctx->pos; 2494 ctx->seq += 10000; 2495 2496 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2497 pr_info("md/raid:%s: starting from clean shutdown\n", 2498 mdname(mddev)); 2499 else 2500 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2501 mdname(mddev), ctx->data_only_stripes, 2502 ctx->data_parity_stripes); 2503 2504 if (ctx->data_only_stripes == 0) { 2505 log->next_checkpoint = ctx->pos; 2506 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2507 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2508 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2509 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2510 mdname(mddev)); 2511 ret = -EIO; 2512 goto error; 2513 } 2514 2515 log->log_start = ctx->pos; 2516 log->seq = ctx->seq; 2517 log->last_checkpoint = pos; 2518 r5l_write_super(log, pos); 2519 2520 r5c_recovery_flush_data_only_stripes(log, ctx); 2521 ret = 0; 2522 error: 2523 r5l_recovery_free_ra_pool(log, ctx); 2524 ra_pool: 2525 __free_page(ctx->meta_page); 2526 meta_page: 2527 kfree(ctx); 2528 return ret; 2529 } 2530 2531 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2532 { 2533 struct mddev *mddev = log->rdev->mddev; 2534 2535 log->rdev->journal_tail = cp; 2536 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2537 } 2538 2539 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2540 { 2541 struct r5conf *conf; 2542 int ret; 2543 2544 ret = mddev_lock(mddev); 2545 if (ret) 2546 return ret; 2547 2548 conf = mddev->private; 2549 if (!conf || !conf->log) { 2550 mddev_unlock(mddev); 2551 return 0; 2552 } 2553 2554 switch (conf->log->r5c_journal_mode) { 2555 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2556 ret = snprintf( 2557 page, PAGE_SIZE, "[%s] %s\n", 2558 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2559 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2560 break; 2561 case R5C_JOURNAL_MODE_WRITE_BACK: 2562 ret = snprintf( 2563 page, PAGE_SIZE, "%s [%s]\n", 2564 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2565 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2566 break; 2567 default: 2568 ret = 0; 2569 } 2570 mddev_unlock(mddev); 2571 return ret; 2572 } 2573 2574 /* 2575 * Set journal cache mode on @mddev (external API initially needed by dm-raid). 2576 * 2577 * @mode as defined in 'enum r5c_journal_mode'. 2578 * 2579 */ 2580 int r5c_journal_mode_set(struct mddev *mddev, int mode) 2581 { 2582 struct r5conf *conf; 2583 2584 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || 2585 mode > R5C_JOURNAL_MODE_WRITE_BACK) 2586 return -EINVAL; 2587 2588 conf = mddev->private; 2589 if (!conf || !conf->log) 2590 return -ENODEV; 2591 2592 if (raid5_calc_degraded(conf) > 0 && 2593 mode == R5C_JOURNAL_MODE_WRITE_BACK) 2594 return -EINVAL; 2595 2596 mddev_suspend(mddev); 2597 conf->log->r5c_journal_mode = mode; 2598 mddev_resume(mddev); 2599 2600 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2601 mdname(mddev), mode, r5c_journal_mode_str[mode]); 2602 return 0; 2603 } 2604 EXPORT_SYMBOL(r5c_journal_mode_set); 2605 2606 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2607 const char *page, size_t length) 2608 { 2609 int mode = ARRAY_SIZE(r5c_journal_mode_str); 2610 size_t len = length; 2611 int ret; 2612 2613 if (len < 2) 2614 return -EINVAL; 2615 2616 if (page[len - 1] == '\n') 2617 len--; 2618 2619 while (mode--) 2620 if (strlen(r5c_journal_mode_str[mode]) == len && 2621 !strncmp(page, r5c_journal_mode_str[mode], len)) 2622 break; 2623 ret = mddev_lock(mddev); 2624 if (ret) 2625 return ret; 2626 ret = r5c_journal_mode_set(mddev, mode); 2627 mddev_unlock(mddev); 2628 return ret ?: length; 2629 } 2630 2631 struct md_sysfs_entry 2632 r5c_journal_mode = __ATTR(journal_mode, 0644, 2633 r5c_journal_mode_show, r5c_journal_mode_store); 2634 2635 /* 2636 * Try handle write operation in caching phase. This function should only 2637 * be called in write-back mode. 2638 * 2639 * If all outstanding writes can be handled in caching phase, returns 0 2640 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2641 * and returns -EAGAIN 2642 */ 2643 int r5c_try_caching_write(struct r5conf *conf, 2644 struct stripe_head *sh, 2645 struct stripe_head_state *s, 2646 int disks) 2647 { 2648 struct r5l_log *log = conf->log; 2649 int i; 2650 struct r5dev *dev; 2651 int to_cache = 0; 2652 void **pslot; 2653 sector_t tree_index; 2654 int ret; 2655 uintptr_t refcount; 2656 2657 BUG_ON(!r5c_is_writeback(log)); 2658 2659 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2660 /* 2661 * There are two different scenarios here: 2662 * 1. The stripe has some data cached, and it is sent to 2663 * write-out phase for reclaim 2664 * 2. The stripe is clean, and this is the first write 2665 * 2666 * For 1, return -EAGAIN, so we continue with 2667 * handle_stripe_dirtying(). 2668 * 2669 * For 2, set STRIPE_R5C_CACHING and continue with caching 2670 * write. 2671 */ 2672 2673 /* case 1: anything injournal or anything in written */ 2674 if (s->injournal > 0 || s->written > 0) 2675 return -EAGAIN; 2676 /* case 2 */ 2677 set_bit(STRIPE_R5C_CACHING, &sh->state); 2678 } 2679 2680 /* 2681 * When run in degraded mode, array is set to write-through mode. 2682 * This check helps drain pending write safely in the transition to 2683 * write-through mode. 2684 * 2685 * When a stripe is syncing, the write is also handled in write 2686 * through mode. 2687 */ 2688 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { 2689 r5c_make_stripe_write_out(sh); 2690 return -EAGAIN; 2691 } 2692 2693 for (i = disks; i--; ) { 2694 dev = &sh->dev[i]; 2695 /* if non-overwrite, use writing-out phase */ 2696 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2697 !test_bit(R5_InJournal, &dev->flags)) { 2698 r5c_make_stripe_write_out(sh); 2699 return -EAGAIN; 2700 } 2701 } 2702 2703 /* if the stripe is not counted in big_stripe_tree, add it now */ 2704 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2705 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2706 tree_index = r5c_tree_index(conf, sh->sector); 2707 spin_lock(&log->tree_lock); 2708 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2709 tree_index); 2710 if (pslot) { 2711 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2712 pslot, &log->tree_lock) >> 2713 R5C_RADIX_COUNT_SHIFT; 2714 radix_tree_replace_slot( 2715 &log->big_stripe_tree, pslot, 2716 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2717 } else { 2718 /* 2719 * this radix_tree_insert can fail safely, so no 2720 * need to call radix_tree_preload() 2721 */ 2722 ret = radix_tree_insert( 2723 &log->big_stripe_tree, tree_index, 2724 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2725 if (ret) { 2726 spin_unlock(&log->tree_lock); 2727 r5c_make_stripe_write_out(sh); 2728 return -EAGAIN; 2729 } 2730 } 2731 spin_unlock(&log->tree_lock); 2732 2733 /* 2734 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2735 * counted in the radix tree 2736 */ 2737 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2738 atomic_inc(&conf->r5c_cached_partial_stripes); 2739 } 2740 2741 for (i = disks; i--; ) { 2742 dev = &sh->dev[i]; 2743 if (dev->towrite) { 2744 set_bit(R5_Wantwrite, &dev->flags); 2745 set_bit(R5_Wantdrain, &dev->flags); 2746 set_bit(R5_LOCKED, &dev->flags); 2747 to_cache++; 2748 } 2749 } 2750 2751 if (to_cache) { 2752 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2753 /* 2754 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2755 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2756 * r5c_handle_data_cached() 2757 */ 2758 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2759 } 2760 2761 return 0; 2762 } 2763 2764 /* 2765 * free extra pages (orig_page) we allocated for prexor 2766 */ 2767 void r5c_release_extra_page(struct stripe_head *sh) 2768 { 2769 struct r5conf *conf = sh->raid_conf; 2770 int i; 2771 bool using_disk_info_extra_page; 2772 2773 using_disk_info_extra_page = 2774 sh->dev[0].orig_page == conf->disks[0].extra_page; 2775 2776 for (i = sh->disks; i--; ) 2777 if (sh->dev[i].page != sh->dev[i].orig_page) { 2778 struct page *p = sh->dev[i].orig_page; 2779 2780 sh->dev[i].orig_page = sh->dev[i].page; 2781 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2782 2783 if (!using_disk_info_extra_page) 2784 put_page(p); 2785 } 2786 2787 if (using_disk_info_extra_page) { 2788 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2789 md_wakeup_thread(conf->mddev->thread); 2790 } 2791 } 2792 2793 void r5c_use_extra_page(struct stripe_head *sh) 2794 { 2795 struct r5conf *conf = sh->raid_conf; 2796 int i; 2797 struct r5dev *dev; 2798 2799 for (i = sh->disks; i--; ) { 2800 dev = &sh->dev[i]; 2801 if (dev->orig_page != dev->page) 2802 put_page(dev->orig_page); 2803 dev->orig_page = conf->disks[i].extra_page; 2804 } 2805 } 2806 2807 /* 2808 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2809 * stripe is committed to RAID disks. 2810 */ 2811 void r5c_finish_stripe_write_out(struct r5conf *conf, 2812 struct stripe_head *sh, 2813 struct stripe_head_state *s) 2814 { 2815 struct r5l_log *log = conf->log; 2816 int i; 2817 int do_wakeup = 0; 2818 sector_t tree_index; 2819 void **pslot; 2820 uintptr_t refcount; 2821 2822 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2823 return; 2824 2825 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2826 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2827 2828 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2829 return; 2830 2831 for (i = sh->disks; i--; ) { 2832 clear_bit(R5_InJournal, &sh->dev[i].flags); 2833 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2834 do_wakeup = 1; 2835 } 2836 2837 /* 2838 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2839 * We updated R5_InJournal, so we also update s->injournal. 2840 */ 2841 s->injournal = 0; 2842 2843 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2844 if (atomic_dec_and_test(&conf->pending_full_writes)) 2845 md_wakeup_thread(conf->mddev->thread); 2846 2847 if (do_wakeup) 2848 wake_up(&conf->wait_for_overlap); 2849 2850 spin_lock_irq(&log->stripe_in_journal_lock); 2851 list_del_init(&sh->r5c); 2852 spin_unlock_irq(&log->stripe_in_journal_lock); 2853 sh->log_start = MaxSector; 2854 2855 atomic_dec(&log->stripe_in_journal_count); 2856 r5c_update_log_state(log); 2857 2858 /* stop counting this stripe in big_stripe_tree */ 2859 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2860 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2861 tree_index = r5c_tree_index(conf, sh->sector); 2862 spin_lock(&log->tree_lock); 2863 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2864 tree_index); 2865 BUG_ON(pslot == NULL); 2866 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2867 pslot, &log->tree_lock) >> 2868 R5C_RADIX_COUNT_SHIFT; 2869 if (refcount == 1) 2870 radix_tree_delete(&log->big_stripe_tree, tree_index); 2871 else 2872 radix_tree_replace_slot( 2873 &log->big_stripe_tree, pslot, 2874 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2875 spin_unlock(&log->tree_lock); 2876 } 2877 2878 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2879 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2880 atomic_dec(&conf->r5c_flushing_partial_stripes); 2881 atomic_dec(&conf->r5c_cached_partial_stripes); 2882 } 2883 2884 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2885 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2886 atomic_dec(&conf->r5c_flushing_full_stripes); 2887 atomic_dec(&conf->r5c_cached_full_stripes); 2888 } 2889 2890 r5l_append_flush_payload(log, sh->sector); 2891 /* stripe is flused to raid disks, we can do resync now */ 2892 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2893 set_bit(STRIPE_HANDLE, &sh->state); 2894 } 2895 2896 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2897 { 2898 struct r5conf *conf = sh->raid_conf; 2899 int pages = 0; 2900 int reserve; 2901 int i; 2902 int ret = 0; 2903 2904 BUG_ON(!log); 2905 2906 for (i = 0; i < sh->disks; i++) { 2907 void *addr; 2908 2909 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2910 continue; 2911 addr = kmap_atomic(sh->dev[i].page); 2912 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2913 addr, PAGE_SIZE); 2914 kunmap_atomic(addr); 2915 pages++; 2916 } 2917 WARN_ON(pages == 0); 2918 2919 /* 2920 * The stripe must enter state machine again to call endio, so 2921 * don't delay. 2922 */ 2923 clear_bit(STRIPE_DELAYED, &sh->state); 2924 atomic_inc(&sh->count); 2925 2926 mutex_lock(&log->io_mutex); 2927 /* meta + data */ 2928 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2929 2930 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2931 sh->log_start == MaxSector) 2932 r5l_add_no_space_stripe(log, sh); 2933 else if (!r5l_has_free_space(log, reserve)) { 2934 if (sh->log_start == log->last_checkpoint) 2935 BUG(); 2936 else 2937 r5l_add_no_space_stripe(log, sh); 2938 } else { 2939 ret = r5l_log_stripe(log, sh, pages, 0); 2940 if (ret) { 2941 spin_lock_irq(&log->io_list_lock); 2942 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2943 spin_unlock_irq(&log->io_list_lock); 2944 } 2945 } 2946 2947 mutex_unlock(&log->io_mutex); 2948 return 0; 2949 } 2950 2951 /* check whether this big stripe is in write back cache. */ 2952 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2953 { 2954 struct r5l_log *log = conf->log; 2955 sector_t tree_index; 2956 void *slot; 2957 2958 if (!log) 2959 return false; 2960 2961 WARN_ON_ONCE(!rcu_read_lock_held()); 2962 tree_index = r5c_tree_index(conf, sect); 2963 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2964 return slot != NULL; 2965 } 2966 2967 static int r5l_load_log(struct r5l_log *log) 2968 { 2969 struct md_rdev *rdev = log->rdev; 2970 struct page *page; 2971 struct r5l_meta_block *mb; 2972 sector_t cp = log->rdev->journal_tail; 2973 u32 stored_crc, expected_crc; 2974 bool create_super = false; 2975 int ret = 0; 2976 2977 /* Make sure it's valid */ 2978 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2979 cp = 0; 2980 page = alloc_page(GFP_KERNEL); 2981 if (!page) 2982 return -ENOMEM; 2983 2984 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { 2985 ret = -EIO; 2986 goto ioerr; 2987 } 2988 mb = page_address(page); 2989 2990 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2991 mb->version != R5LOG_VERSION) { 2992 create_super = true; 2993 goto create; 2994 } 2995 stored_crc = le32_to_cpu(mb->checksum); 2996 mb->checksum = 0; 2997 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2998 if (stored_crc != expected_crc) { 2999 create_super = true; 3000 goto create; 3001 } 3002 if (le64_to_cpu(mb->position) != cp) { 3003 create_super = true; 3004 goto create; 3005 } 3006 create: 3007 if (create_super) { 3008 log->last_cp_seq = prandom_u32(); 3009 cp = 0; 3010 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 3011 /* 3012 * Make sure super points to correct address. Log might have 3013 * data very soon. If super hasn't correct log tail address, 3014 * recovery can't find the log 3015 */ 3016 r5l_write_super(log, cp); 3017 } else 3018 log->last_cp_seq = le64_to_cpu(mb->seq); 3019 3020 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 3021 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 3022 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 3023 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 3024 log->last_checkpoint = cp; 3025 3026 __free_page(page); 3027 3028 if (create_super) { 3029 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 3030 log->seq = log->last_cp_seq + 1; 3031 log->next_checkpoint = cp; 3032 } else 3033 ret = r5l_recovery_log(log); 3034 3035 r5c_update_log_state(log); 3036 return ret; 3037 ioerr: 3038 __free_page(page); 3039 return ret; 3040 } 3041 3042 int r5l_start(struct r5l_log *log) 3043 { 3044 int ret; 3045 3046 if (!log) 3047 return 0; 3048 3049 ret = r5l_load_log(log); 3050 if (ret) { 3051 struct mddev *mddev = log->rdev->mddev; 3052 struct r5conf *conf = mddev->private; 3053 3054 r5l_exit_log(conf); 3055 } 3056 return ret; 3057 } 3058 3059 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) 3060 { 3061 struct r5conf *conf = mddev->private; 3062 struct r5l_log *log = conf->log; 3063 3064 if (!log) 3065 return; 3066 3067 if ((raid5_calc_degraded(conf) > 0 || 3068 test_bit(Journal, &rdev->flags)) && 3069 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 3070 schedule_work(&log->disable_writeback_work); 3071 } 3072 3073 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 3074 { 3075 struct request_queue *q = bdev_get_queue(rdev->bdev); 3076 struct r5l_log *log; 3077 char b[BDEVNAME_SIZE]; 3078 int ret; 3079 3080 pr_debug("md/raid:%s: using device %s as journal\n", 3081 mdname(conf->mddev), bdevname(rdev->bdev, b)); 3082 3083 if (PAGE_SIZE != 4096) 3084 return -EINVAL; 3085 3086 /* 3087 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 3088 * raid_disks r5l_payload_data_parity. 3089 * 3090 * Write journal and cache does not work for very big array 3091 * (raid_disks > 203) 3092 */ 3093 if (sizeof(struct r5l_meta_block) + 3094 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3095 conf->raid_disks) > PAGE_SIZE) { 3096 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3097 mdname(conf->mddev), conf->raid_disks); 3098 return -EINVAL; 3099 } 3100 3101 log = kzalloc(sizeof(*log), GFP_KERNEL); 3102 if (!log) 3103 return -ENOMEM; 3104 log->rdev = rdev; 3105 3106 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0; 3107 3108 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3109 sizeof(rdev->mddev->uuid)); 3110 3111 mutex_init(&log->io_mutex); 3112 3113 spin_lock_init(&log->io_list_lock); 3114 INIT_LIST_HEAD(&log->running_ios); 3115 INIT_LIST_HEAD(&log->io_end_ios); 3116 INIT_LIST_HEAD(&log->flushing_ios); 3117 INIT_LIST_HEAD(&log->finished_ios); 3118 bio_init(&log->flush_bio, NULL, 0); 3119 3120 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3121 if (!log->io_kc) 3122 goto io_kc; 3123 3124 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc); 3125 if (ret) 3126 goto io_pool; 3127 3128 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); 3129 if (ret) 3130 goto io_bs; 3131 3132 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0); 3133 if (ret) 3134 goto out_mempool; 3135 3136 spin_lock_init(&log->tree_lock); 3137 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3138 3139 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 3140 log->rdev->mddev, "reclaim"); 3141 if (!log->reclaim_thread) 3142 goto reclaim_thread; 3143 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3144 3145 init_waitqueue_head(&log->iounit_wait); 3146 3147 INIT_LIST_HEAD(&log->no_mem_stripes); 3148 3149 INIT_LIST_HEAD(&log->no_space_stripes); 3150 spin_lock_init(&log->no_space_stripes_lock); 3151 3152 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3153 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3154 3155 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3156 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3157 spin_lock_init(&log->stripe_in_journal_lock); 3158 atomic_set(&log->stripe_in_journal_count, 0); 3159 3160 rcu_assign_pointer(conf->log, log); 3161 3162 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3163 return 0; 3164 3165 reclaim_thread: 3166 mempool_exit(&log->meta_pool); 3167 out_mempool: 3168 bioset_exit(&log->bs); 3169 io_bs: 3170 mempool_exit(&log->io_pool); 3171 io_pool: 3172 kmem_cache_destroy(log->io_kc); 3173 io_kc: 3174 kfree(log); 3175 return -EINVAL; 3176 } 3177 3178 void r5l_exit_log(struct r5conf *conf) 3179 { 3180 struct r5l_log *log = conf->log; 3181 3182 conf->log = NULL; 3183 synchronize_rcu(); 3184 3185 /* Ensure disable_writeback_work wakes up and exits */ 3186 wake_up(&conf->mddev->sb_wait); 3187 flush_work(&log->disable_writeback_work); 3188 md_unregister_thread(&log->reclaim_thread); 3189 mempool_exit(&log->meta_pool); 3190 bioset_exit(&log->bs); 3191 mempool_exit(&log->io_pool); 3192 kmem_cache_destroy(log->io_kc); 3193 kfree(log); 3194 } 3195