1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 5 */ 6 #include <linux/kernel.h> 7 #include <linux/wait.h> 8 #include <linux/blkdev.h> 9 #include <linux/slab.h> 10 #include <linux/raid/md_p.h> 11 #include <linux/crc32c.h> 12 #include <linux/random.h> 13 #include <linux/kthread.h> 14 #include <linux/types.h> 15 #include "md.h" 16 #include "raid5.h" 17 #include "md-bitmap.h" 18 #include "raid5-log.h" 19 20 /* 21 * metadata/data stored in disk with 4k size unit (a block) regardless 22 * underneath hardware sector size. only works with PAGE_SIZE == 4096 23 */ 24 #define BLOCK_SECTORS (8) 25 #define BLOCK_SECTOR_SHIFT (3) 26 27 /* 28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 29 * 30 * In write through mode, the reclaim runs every log->max_free_space. 31 * This can prevent the recovery scans for too long 32 */ 33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 35 36 /* wake up reclaim thread periodically */ 37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 38 /* start flush with these full stripes */ 39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 40 /* reclaim stripes in groups */ 41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 42 43 /* 44 * We only need 2 bios per I/O unit to make progress, but ensure we 45 * have a few more available to not get too tight. 46 */ 47 #define R5L_POOL_SIZE 4 48 49 static char *r5c_journal_mode_str[] = {"write-through", 50 "write-back"}; 51 /* 52 * raid5 cache state machine 53 * 54 * With the RAID cache, each stripe works in two phases: 55 * - caching phase 56 * - writing-out phase 57 * 58 * These two phases are controlled by bit STRIPE_R5C_CACHING: 59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 61 * 62 * When there is no journal, or the journal is in write-through mode, 63 * the stripe is always in writing-out phase. 64 * 65 * For write-back journal, the stripe is sent to caching phase on write 66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 67 * the write-out phase by clearing STRIPE_R5C_CACHING. 68 * 69 * Stripes in caching phase do not write the raid disks. Instead, all 70 * writes are committed from the log device. Therefore, a stripe in 71 * caching phase handles writes as: 72 * - write to log device 73 * - return IO 74 * 75 * Stripes in writing-out phase handle writes as: 76 * - calculate parity 77 * - write pending data and parity to journal 78 * - write data and parity to raid disks 79 * - return IO for pending writes 80 */ 81 82 struct r5l_log { 83 struct md_rdev *rdev; 84 85 u32 uuid_checksum; 86 87 sector_t device_size; /* log device size, round to 88 * BLOCK_SECTORS */ 89 sector_t max_free_space; /* reclaim run if free space is at 90 * this size */ 91 92 sector_t last_checkpoint; /* log tail. where recovery scan 93 * starts from */ 94 u64 last_cp_seq; /* log tail sequence */ 95 96 sector_t log_start; /* log head. where new data appends */ 97 u64 seq; /* log head sequence */ 98 99 sector_t next_checkpoint; 100 101 struct mutex io_mutex; 102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 103 104 spinlock_t io_list_lock; 105 struct list_head running_ios; /* io_units which are still running, 106 * and have not yet been completely 107 * written to the log */ 108 struct list_head io_end_ios; /* io_units which have been completely 109 * written to the log but not yet written 110 * to the RAID */ 111 struct list_head flushing_ios; /* io_units which are waiting for log 112 * cache flush */ 113 struct list_head finished_ios; /* io_units which settle down in log disk */ 114 struct bio flush_bio; 115 116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 117 118 struct kmem_cache *io_kc; 119 mempool_t io_pool; 120 struct bio_set bs; 121 mempool_t meta_pool; 122 123 struct md_thread __rcu *reclaim_thread; 124 unsigned long reclaim_target; /* number of space that need to be 125 * reclaimed. if it's 0, reclaim spaces 126 * used by io_units which are in 127 * IO_UNIT_STRIPE_END state (eg, reclaim 128 * doesn't wait for specific io_unit 129 * switching to IO_UNIT_STRIPE_END 130 * state) */ 131 wait_queue_head_t iounit_wait; 132 133 struct list_head no_space_stripes; /* pending stripes, log has no space */ 134 spinlock_t no_space_stripes_lock; 135 136 bool need_cache_flush; 137 138 /* for r5c_cache */ 139 enum r5c_journal_mode r5c_journal_mode; 140 141 /* all stripes in r5cache, in the order of seq at sh->log_start */ 142 struct list_head stripe_in_journal_list; 143 144 spinlock_t stripe_in_journal_lock; 145 atomic_t stripe_in_journal_count; 146 147 /* to submit async io_units, to fulfill ordering of flush */ 148 struct work_struct deferred_io_work; 149 /* to disable write back during in degraded mode */ 150 struct work_struct disable_writeback_work; 151 152 /* to for chunk_aligned_read in writeback mode, details below */ 153 spinlock_t tree_lock; 154 struct radix_tree_root big_stripe_tree; 155 }; 156 157 /* 158 * Enable chunk_aligned_read() with write back cache. 159 * 160 * Each chunk may contain more than one stripe (for example, a 256kB 161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 162 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 163 * For each big_stripe, we count how many stripes of this big_stripe 164 * are in the write back cache. These data are tracked in a radix tree 165 * (big_stripe_tree). We use radix_tree item pointer as the counter. 166 * r5c_tree_index() is used to calculate keys for the radix tree. 167 * 168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 169 * big_stripe of each chunk in the tree. If this big_stripe is in the 170 * tree, chunk_aligned_read() aborts. This look up is protected by 171 * rcu_read_lock(). 172 * 173 * It is necessary to remember whether a stripe is counted in 174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 176 * two flags are set, the stripe is counted in big_stripe_tree. This 177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 178 * r5c_try_caching_write(); and moving clear_bit of 179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 180 * r5c_finish_stripe_write_out(). 181 */ 182 183 /* 184 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 185 * So it is necessary to left shift the counter by 2 bits before using it 186 * as data pointer of the tree. 187 */ 188 #define R5C_RADIX_COUNT_SHIFT 2 189 190 /* 191 * calculate key for big_stripe_tree 192 * 193 * sect: align_bi->bi_iter.bi_sector or sh->sector 194 */ 195 static inline sector_t r5c_tree_index(struct r5conf *conf, 196 sector_t sect) 197 { 198 sector_div(sect, conf->chunk_sectors); 199 return sect; 200 } 201 202 /* 203 * an IO range starts from a meta data block and end at the next meta data 204 * block. The io unit's the meta data block tracks data/parity followed it. io 205 * unit is written to log disk with normal write, as we always flush log disk 206 * first and then start move data to raid disks, there is no requirement to 207 * write io unit with FLUSH/FUA 208 */ 209 struct r5l_io_unit { 210 struct r5l_log *log; 211 212 struct page *meta_page; /* store meta block */ 213 int meta_offset; /* current offset in meta_page */ 214 215 struct bio *current_bio;/* current_bio accepting new data */ 216 217 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 218 u64 seq; /* seq number of the metablock */ 219 sector_t log_start; /* where the io_unit starts */ 220 sector_t log_end; /* where the io_unit ends */ 221 struct list_head log_sibling; /* log->running_ios */ 222 struct list_head stripe_list; /* stripes added to the io_unit */ 223 224 int state; 225 bool need_split_bio; 226 struct bio *split_bio; 227 228 unsigned int has_flush:1; /* include flush request */ 229 unsigned int has_fua:1; /* include fua request */ 230 unsigned int has_null_flush:1; /* include null flush request */ 231 unsigned int has_flush_payload:1; /* include flush payload */ 232 /* 233 * io isn't sent yet, flush/fua request can only be submitted till it's 234 * the first IO in running_ios list 235 */ 236 unsigned int io_deferred:1; 237 238 struct bio_list flush_barriers; /* size == 0 flush bios */ 239 }; 240 241 /* r5l_io_unit state */ 242 enum r5l_io_unit_state { 243 IO_UNIT_RUNNING = 0, /* accepting new IO */ 244 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 245 * don't accepting new bio */ 246 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 247 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 248 }; 249 250 bool r5c_is_writeback(struct r5l_log *log) 251 { 252 return (log != NULL && 253 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 254 } 255 256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 257 { 258 start += inc; 259 if (start >= log->device_size) 260 start = start - log->device_size; 261 return start; 262 } 263 264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 265 sector_t end) 266 { 267 if (end >= start) 268 return end - start; 269 else 270 return end + log->device_size - start; 271 } 272 273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 274 { 275 sector_t used_size; 276 277 used_size = r5l_ring_distance(log, log->last_checkpoint, 278 log->log_start); 279 280 return log->device_size > used_size + size; 281 } 282 283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 284 enum r5l_io_unit_state state) 285 { 286 if (WARN_ON(io->state >= state)) 287 return; 288 io->state = state; 289 } 290 291 static void 292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 293 { 294 struct bio *wbi, *wbi2; 295 296 wbi = dev->written; 297 dev->written = NULL; 298 while (wbi && wbi->bi_iter.bi_sector < 299 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 300 wbi2 = r5_next_bio(conf, wbi, dev->sector); 301 md_write_end(conf->mddev); 302 bio_endio(wbi); 303 wbi = wbi2; 304 } 305 } 306 307 void r5c_handle_cached_data_endio(struct r5conf *conf, 308 struct stripe_head *sh, int disks) 309 { 310 int i; 311 312 for (i = sh->disks; i--; ) { 313 if (sh->dev[i].written) { 314 set_bit(R5_UPTODATE, &sh->dev[i].flags); 315 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 316 } 317 } 318 } 319 320 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 321 322 /* Check whether we should flush some stripes to free up stripe cache */ 323 void r5c_check_stripe_cache_usage(struct r5conf *conf) 324 { 325 int total_cached; 326 struct r5l_log *log = READ_ONCE(conf->log); 327 328 if (!r5c_is_writeback(log)) 329 return; 330 331 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 332 atomic_read(&conf->r5c_cached_full_stripes); 333 334 /* 335 * The following condition is true for either of the following: 336 * - stripe cache pressure high: 337 * total_cached > 3/4 min_nr_stripes || 338 * empty_inactive_list_nr > 0 339 * - stripe cache pressure moderate: 340 * total_cached > 1/2 min_nr_stripes 341 */ 342 if (total_cached > conf->min_nr_stripes * 1 / 2 || 343 atomic_read(&conf->empty_inactive_list_nr) > 0) 344 r5l_wake_reclaim(log, 0); 345 } 346 347 /* 348 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 349 * stripes in the cache 350 */ 351 void r5c_check_cached_full_stripe(struct r5conf *conf) 352 { 353 struct r5l_log *log = READ_ONCE(conf->log); 354 355 if (!r5c_is_writeback(log)) 356 return; 357 358 /* 359 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 360 * or a full stripe (chunk size / 4k stripes). 361 */ 362 if (atomic_read(&conf->r5c_cached_full_stripes) >= 363 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 364 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf))) 365 r5l_wake_reclaim(log, 0); 366 } 367 368 /* 369 * Total log space (in sectors) needed to flush all data in cache 370 * 371 * To avoid deadlock due to log space, it is necessary to reserve log 372 * space to flush critical stripes (stripes that occupying log space near 373 * last_checkpoint). This function helps check how much log space is 374 * required to flush all cached stripes. 375 * 376 * To reduce log space requirements, two mechanisms are used to give cache 377 * flush higher priorities: 378 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 379 * stripes ALREADY in journal can be flushed w/o pending writes; 380 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 381 * can be delayed (r5l_add_no_space_stripe). 382 * 383 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 384 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 385 * pages of journal space. For stripes that has not passed 1, flushing it 386 * requires (conf->raid_disks + 1) pages of journal space. There are at 387 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 388 * required to flush all cached stripes (in pages) is: 389 * 390 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 391 * (group_cnt + 1) * (raid_disks + 1) 392 * or 393 * (stripe_in_journal_count) * (max_degraded + 1) + 394 * (group_cnt + 1) * (raid_disks - max_degraded) 395 */ 396 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 397 { 398 struct r5l_log *log = READ_ONCE(conf->log); 399 400 if (!r5c_is_writeback(log)) 401 return 0; 402 403 return BLOCK_SECTORS * 404 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 405 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 406 } 407 408 /* 409 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 410 * 411 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 412 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 413 * device is less than 2x of reclaim_required_space. 414 */ 415 static inline void r5c_update_log_state(struct r5l_log *log) 416 { 417 struct r5conf *conf = log->rdev->mddev->private; 418 sector_t free_space; 419 sector_t reclaim_space; 420 bool wake_reclaim = false; 421 422 if (!r5c_is_writeback(log)) 423 return; 424 425 free_space = r5l_ring_distance(log, log->log_start, 426 log->last_checkpoint); 427 reclaim_space = r5c_log_required_to_flush_cache(conf); 428 if (free_space < 2 * reclaim_space) 429 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 430 else { 431 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 432 wake_reclaim = true; 433 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 434 } 435 if (free_space < 3 * reclaim_space) 436 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 437 else 438 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 439 440 if (wake_reclaim) 441 r5l_wake_reclaim(log, 0); 442 } 443 444 /* 445 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 446 * This function should only be called in write-back mode. 447 */ 448 void r5c_make_stripe_write_out(struct stripe_head *sh) 449 { 450 struct r5conf *conf = sh->raid_conf; 451 struct r5l_log *log = READ_ONCE(conf->log); 452 453 BUG_ON(!r5c_is_writeback(log)); 454 455 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 456 clear_bit(STRIPE_R5C_CACHING, &sh->state); 457 458 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 459 atomic_inc(&conf->preread_active_stripes); 460 } 461 462 static void r5c_handle_data_cached(struct stripe_head *sh) 463 { 464 int i; 465 466 for (i = sh->disks; i--; ) 467 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 468 set_bit(R5_InJournal, &sh->dev[i].flags); 469 clear_bit(R5_LOCKED, &sh->dev[i].flags); 470 } 471 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 472 } 473 474 /* 475 * this journal write must contain full parity, 476 * it may also contain some data pages 477 */ 478 static void r5c_handle_parity_cached(struct stripe_head *sh) 479 { 480 int i; 481 482 for (i = sh->disks; i--; ) 483 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 484 set_bit(R5_Wantwrite, &sh->dev[i].flags); 485 } 486 487 /* 488 * Setting proper flags after writing (or flushing) data and/or parity to the 489 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 490 */ 491 static void r5c_finish_cache_stripe(struct stripe_head *sh) 492 { 493 struct r5l_log *log = READ_ONCE(sh->raid_conf->log); 494 495 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 496 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 497 /* 498 * Set R5_InJournal for parity dev[pd_idx]. This means 499 * all data AND parity in the journal. For RAID 6, it is 500 * NOT necessary to set the flag for dev[qd_idx], as the 501 * two parities are written out together. 502 */ 503 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 504 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 505 r5c_handle_data_cached(sh); 506 } else { 507 r5c_handle_parity_cached(sh); 508 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 509 } 510 } 511 512 static void r5l_io_run_stripes(struct r5l_io_unit *io) 513 { 514 struct stripe_head *sh, *next; 515 516 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 517 list_del_init(&sh->log_list); 518 519 r5c_finish_cache_stripe(sh); 520 521 set_bit(STRIPE_HANDLE, &sh->state); 522 raid5_release_stripe(sh); 523 } 524 } 525 526 static void r5l_log_run_stripes(struct r5l_log *log) 527 { 528 struct r5l_io_unit *io, *next; 529 530 lockdep_assert_held(&log->io_list_lock); 531 532 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 533 /* don't change list order */ 534 if (io->state < IO_UNIT_IO_END) 535 break; 536 537 list_move_tail(&io->log_sibling, &log->finished_ios); 538 r5l_io_run_stripes(io); 539 } 540 } 541 542 static void r5l_move_to_end_ios(struct r5l_log *log) 543 { 544 struct r5l_io_unit *io, *next; 545 546 lockdep_assert_held(&log->io_list_lock); 547 548 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 549 /* don't change list order */ 550 if (io->state < IO_UNIT_IO_END) 551 break; 552 list_move_tail(&io->log_sibling, &log->io_end_ios); 553 } 554 } 555 556 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 557 static void r5l_log_endio(struct bio *bio) 558 { 559 struct r5l_io_unit *io = bio->bi_private; 560 struct r5l_io_unit *io_deferred; 561 struct r5l_log *log = io->log; 562 unsigned long flags; 563 bool has_null_flush; 564 bool has_flush_payload; 565 566 if (bio->bi_status) 567 md_error(log->rdev->mddev, log->rdev); 568 569 bio_put(bio); 570 mempool_free(io->meta_page, &log->meta_pool); 571 572 spin_lock_irqsave(&log->io_list_lock, flags); 573 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 574 575 /* 576 * if the io doesn't not have null_flush or flush payload, 577 * it is not safe to access it after releasing io_list_lock. 578 * Therefore, it is necessary to check the condition with 579 * the lock held. 580 */ 581 has_null_flush = io->has_null_flush; 582 has_flush_payload = io->has_flush_payload; 583 584 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 585 r5l_move_to_end_ios(log); 586 else 587 r5l_log_run_stripes(log); 588 if (!list_empty(&log->running_ios)) { 589 /* 590 * FLUSH/FUA io_unit is deferred because of ordering, now we 591 * can dispatch it 592 */ 593 io_deferred = list_first_entry(&log->running_ios, 594 struct r5l_io_unit, log_sibling); 595 if (io_deferred->io_deferred) 596 schedule_work(&log->deferred_io_work); 597 } 598 599 spin_unlock_irqrestore(&log->io_list_lock, flags); 600 601 if (log->need_cache_flush) 602 md_wakeup_thread(log->rdev->mddev->thread); 603 604 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 605 if (has_null_flush) { 606 struct bio *bi; 607 608 WARN_ON(bio_list_empty(&io->flush_barriers)); 609 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 610 bio_endio(bi); 611 if (atomic_dec_and_test(&io->pending_stripe)) { 612 __r5l_stripe_write_finished(io); 613 return; 614 } 615 } 616 } 617 /* decrease pending_stripe for flush payload */ 618 if (has_flush_payload) 619 if (atomic_dec_and_test(&io->pending_stripe)) 620 __r5l_stripe_write_finished(io); 621 } 622 623 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 624 { 625 unsigned long flags; 626 627 spin_lock_irqsave(&log->io_list_lock, flags); 628 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 629 spin_unlock_irqrestore(&log->io_list_lock, flags); 630 631 /* 632 * In case of journal device failures, submit_bio will get error 633 * and calls endio, then active stripes will continue write 634 * process. Therefore, it is not necessary to check Faulty bit 635 * of journal device here. 636 * 637 * We can't check split_bio after current_bio is submitted. If 638 * io->split_bio is null, after current_bio is submitted, current_bio 639 * might already be completed and the io_unit is freed. We submit 640 * split_bio first to avoid the issue. 641 */ 642 if (io->split_bio) { 643 if (io->has_flush) 644 io->split_bio->bi_opf |= REQ_PREFLUSH; 645 if (io->has_fua) 646 io->split_bio->bi_opf |= REQ_FUA; 647 submit_bio(io->split_bio); 648 } 649 650 if (io->has_flush) 651 io->current_bio->bi_opf |= REQ_PREFLUSH; 652 if (io->has_fua) 653 io->current_bio->bi_opf |= REQ_FUA; 654 submit_bio(io->current_bio); 655 } 656 657 /* deferred io_unit will be dispatched here */ 658 static void r5l_submit_io_async(struct work_struct *work) 659 { 660 struct r5l_log *log = container_of(work, struct r5l_log, 661 deferred_io_work); 662 struct r5l_io_unit *io = NULL; 663 unsigned long flags; 664 665 spin_lock_irqsave(&log->io_list_lock, flags); 666 if (!list_empty(&log->running_ios)) { 667 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 668 log_sibling); 669 if (!io->io_deferred) 670 io = NULL; 671 else 672 io->io_deferred = 0; 673 } 674 spin_unlock_irqrestore(&log->io_list_lock, flags); 675 if (io) 676 r5l_do_submit_io(log, io); 677 } 678 679 static void r5c_disable_writeback_async(struct work_struct *work) 680 { 681 struct r5l_log *log = container_of(work, struct r5l_log, 682 disable_writeback_work); 683 struct mddev *mddev = log->rdev->mddev; 684 struct r5conf *conf = mddev->private; 685 686 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 687 return; 688 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 689 mdname(mddev)); 690 691 /* wait superblock change before suspend */ 692 wait_event(mddev->sb_wait, 693 !READ_ONCE(conf->log) || 694 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 695 696 log = READ_ONCE(conf->log); 697 if (log) { 698 mddev_suspend(mddev, false); 699 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 700 mddev_resume(mddev); 701 } 702 } 703 704 static void r5l_submit_current_io(struct r5l_log *log) 705 { 706 struct r5l_io_unit *io = log->current_io; 707 struct r5l_meta_block *block; 708 unsigned long flags; 709 u32 crc; 710 bool do_submit = true; 711 712 if (!io) 713 return; 714 715 block = page_address(io->meta_page); 716 block->meta_size = cpu_to_le32(io->meta_offset); 717 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 718 block->checksum = cpu_to_le32(crc); 719 720 log->current_io = NULL; 721 spin_lock_irqsave(&log->io_list_lock, flags); 722 if (io->has_flush || io->has_fua) { 723 if (io != list_first_entry(&log->running_ios, 724 struct r5l_io_unit, log_sibling)) { 725 io->io_deferred = 1; 726 do_submit = false; 727 } 728 } 729 spin_unlock_irqrestore(&log->io_list_lock, flags); 730 if (do_submit) 731 r5l_do_submit_io(log, io); 732 } 733 734 static struct bio *r5l_bio_alloc(struct r5l_log *log) 735 { 736 struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS, 737 REQ_OP_WRITE, GFP_NOIO, &log->bs); 738 739 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 740 741 return bio; 742 } 743 744 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 745 { 746 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 747 748 r5c_update_log_state(log); 749 /* 750 * If we filled up the log device start from the beginning again, 751 * which will require a new bio. 752 * 753 * Note: for this to work properly the log size needs to me a multiple 754 * of BLOCK_SECTORS. 755 */ 756 if (log->log_start == 0) 757 io->need_split_bio = true; 758 759 io->log_end = log->log_start; 760 } 761 762 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 763 { 764 struct r5l_io_unit *io; 765 struct r5l_meta_block *block; 766 767 io = mempool_alloc(&log->io_pool, GFP_ATOMIC); 768 if (!io) 769 return NULL; 770 memset(io, 0, sizeof(*io)); 771 772 io->log = log; 773 INIT_LIST_HEAD(&io->log_sibling); 774 INIT_LIST_HEAD(&io->stripe_list); 775 bio_list_init(&io->flush_barriers); 776 io->state = IO_UNIT_RUNNING; 777 778 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO); 779 block = page_address(io->meta_page); 780 clear_page(block); 781 block->magic = cpu_to_le32(R5LOG_MAGIC); 782 block->version = R5LOG_VERSION; 783 block->seq = cpu_to_le64(log->seq); 784 block->position = cpu_to_le64(log->log_start); 785 786 io->log_start = log->log_start; 787 io->meta_offset = sizeof(struct r5l_meta_block); 788 io->seq = log->seq++; 789 790 io->current_bio = r5l_bio_alloc(log); 791 io->current_bio->bi_end_io = r5l_log_endio; 792 io->current_bio->bi_private = io; 793 __bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 794 795 r5_reserve_log_entry(log, io); 796 797 spin_lock_irq(&log->io_list_lock); 798 list_add_tail(&io->log_sibling, &log->running_ios); 799 spin_unlock_irq(&log->io_list_lock); 800 801 return io; 802 } 803 804 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 805 { 806 if (log->current_io && 807 log->current_io->meta_offset + payload_size > PAGE_SIZE) 808 r5l_submit_current_io(log); 809 810 if (!log->current_io) { 811 log->current_io = r5l_new_meta(log); 812 if (!log->current_io) 813 return -ENOMEM; 814 } 815 816 return 0; 817 } 818 819 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 820 sector_t location, 821 u32 checksum1, u32 checksum2, 822 bool checksum2_valid) 823 { 824 struct r5l_io_unit *io = log->current_io; 825 struct r5l_payload_data_parity *payload; 826 827 payload = page_address(io->meta_page) + io->meta_offset; 828 payload->header.type = cpu_to_le16(type); 829 payload->header.flags = cpu_to_le16(0); 830 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 831 (PAGE_SHIFT - 9)); 832 payload->location = cpu_to_le64(location); 833 payload->checksum[0] = cpu_to_le32(checksum1); 834 if (checksum2_valid) 835 payload->checksum[1] = cpu_to_le32(checksum2); 836 837 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 838 sizeof(__le32) * (1 + !!checksum2_valid); 839 } 840 841 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 842 { 843 struct r5l_io_unit *io = log->current_io; 844 845 if (io->need_split_bio) { 846 BUG_ON(io->split_bio); 847 io->split_bio = io->current_bio; 848 io->current_bio = r5l_bio_alloc(log); 849 bio_chain(io->current_bio, io->split_bio); 850 io->need_split_bio = false; 851 } 852 853 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 854 BUG(); 855 856 r5_reserve_log_entry(log, io); 857 } 858 859 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 860 { 861 struct mddev *mddev = log->rdev->mddev; 862 struct r5conf *conf = mddev->private; 863 struct r5l_io_unit *io; 864 struct r5l_payload_flush *payload; 865 int meta_size; 866 867 /* 868 * payload_flush requires extra writes to the journal. 869 * To avoid handling the extra IO in quiesce, just skip 870 * flush_payload 871 */ 872 if (conf->quiesce) 873 return; 874 875 mutex_lock(&log->io_mutex); 876 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 877 878 if (r5l_get_meta(log, meta_size)) { 879 mutex_unlock(&log->io_mutex); 880 return; 881 } 882 883 /* current implementation is one stripe per flush payload */ 884 io = log->current_io; 885 payload = page_address(io->meta_page) + io->meta_offset; 886 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 887 payload->header.flags = cpu_to_le16(0); 888 payload->size = cpu_to_le32(sizeof(__le64)); 889 payload->flush_stripes[0] = cpu_to_le64(sect); 890 io->meta_offset += meta_size; 891 /* multiple flush payloads count as one pending_stripe */ 892 if (!io->has_flush_payload) { 893 io->has_flush_payload = 1; 894 atomic_inc(&io->pending_stripe); 895 } 896 mutex_unlock(&log->io_mutex); 897 } 898 899 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 900 int data_pages, int parity_pages) 901 { 902 int i; 903 int meta_size; 904 int ret; 905 struct r5l_io_unit *io; 906 907 meta_size = 908 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 909 * data_pages) + 910 sizeof(struct r5l_payload_data_parity) + 911 sizeof(__le32) * parity_pages; 912 913 ret = r5l_get_meta(log, meta_size); 914 if (ret) 915 return ret; 916 917 io = log->current_io; 918 919 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 920 io->has_flush = 1; 921 922 for (i = 0; i < sh->disks; i++) { 923 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 924 test_bit(R5_InJournal, &sh->dev[i].flags)) 925 continue; 926 if (i == sh->pd_idx || i == sh->qd_idx) 927 continue; 928 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 929 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 930 io->has_fua = 1; 931 /* 932 * we need to flush journal to make sure recovery can 933 * reach the data with fua flag 934 */ 935 io->has_flush = 1; 936 } 937 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 938 raid5_compute_blocknr(sh, i, 0), 939 sh->dev[i].log_checksum, 0, false); 940 r5l_append_payload_page(log, sh->dev[i].page); 941 } 942 943 if (parity_pages == 2) { 944 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 945 sh->sector, sh->dev[sh->pd_idx].log_checksum, 946 sh->dev[sh->qd_idx].log_checksum, true); 947 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 948 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 949 } else if (parity_pages == 1) { 950 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 951 sh->sector, sh->dev[sh->pd_idx].log_checksum, 952 0, false); 953 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 954 } else /* Just writing data, not parity, in caching phase */ 955 BUG_ON(parity_pages != 0); 956 957 list_add_tail(&sh->log_list, &io->stripe_list); 958 atomic_inc(&io->pending_stripe); 959 sh->log_io = io; 960 961 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 962 return 0; 963 964 if (sh->log_start == MaxSector) { 965 BUG_ON(!list_empty(&sh->r5c)); 966 sh->log_start = io->log_start; 967 spin_lock_irq(&log->stripe_in_journal_lock); 968 list_add_tail(&sh->r5c, 969 &log->stripe_in_journal_list); 970 spin_unlock_irq(&log->stripe_in_journal_lock); 971 atomic_inc(&log->stripe_in_journal_count); 972 } 973 return 0; 974 } 975 976 /* add stripe to no_space_stripes, and then wake up reclaim */ 977 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 978 struct stripe_head *sh) 979 { 980 spin_lock(&log->no_space_stripes_lock); 981 list_add_tail(&sh->log_list, &log->no_space_stripes); 982 spin_unlock(&log->no_space_stripes_lock); 983 } 984 985 /* 986 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 987 * data from log to raid disks), so we shouldn't wait for reclaim here 988 */ 989 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 990 { 991 struct r5conf *conf = sh->raid_conf; 992 int write_disks = 0; 993 int data_pages, parity_pages; 994 int reserve; 995 int i; 996 int ret = 0; 997 bool wake_reclaim = false; 998 999 if (!log) 1000 return -EAGAIN; 1001 /* Don't support stripe batch */ 1002 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 1003 test_bit(STRIPE_SYNCING, &sh->state)) { 1004 /* the stripe is written to log, we start writing it to raid */ 1005 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 1006 return -EAGAIN; 1007 } 1008 1009 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 1010 1011 for (i = 0; i < sh->disks; i++) { 1012 void *addr; 1013 1014 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 1015 test_bit(R5_InJournal, &sh->dev[i].flags)) 1016 continue; 1017 1018 write_disks++; 1019 /* checksum is already calculated in last run */ 1020 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1021 continue; 1022 addr = kmap_local_page(sh->dev[i].page); 1023 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1024 addr, PAGE_SIZE); 1025 kunmap_local(addr); 1026 } 1027 parity_pages = 1 + !!(sh->qd_idx >= 0); 1028 data_pages = write_disks - parity_pages; 1029 1030 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1031 /* 1032 * The stripe must enter state machine again to finish the write, so 1033 * don't delay. 1034 */ 1035 clear_bit(STRIPE_DELAYED, &sh->state); 1036 atomic_inc(&sh->count); 1037 1038 mutex_lock(&log->io_mutex); 1039 /* meta + data */ 1040 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1041 1042 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1043 if (!r5l_has_free_space(log, reserve)) { 1044 r5l_add_no_space_stripe(log, sh); 1045 wake_reclaim = true; 1046 } else { 1047 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1048 if (ret) { 1049 spin_lock_irq(&log->io_list_lock); 1050 list_add_tail(&sh->log_list, 1051 &log->no_mem_stripes); 1052 spin_unlock_irq(&log->io_list_lock); 1053 } 1054 } 1055 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1056 /* 1057 * log space critical, do not process stripes that are 1058 * not in cache yet (sh->log_start == MaxSector). 1059 */ 1060 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1061 sh->log_start == MaxSector) { 1062 r5l_add_no_space_stripe(log, sh); 1063 wake_reclaim = true; 1064 reserve = 0; 1065 } else if (!r5l_has_free_space(log, reserve)) { 1066 if (sh->log_start == log->last_checkpoint) 1067 BUG(); 1068 else 1069 r5l_add_no_space_stripe(log, sh); 1070 } else { 1071 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1072 if (ret) { 1073 spin_lock_irq(&log->io_list_lock); 1074 list_add_tail(&sh->log_list, 1075 &log->no_mem_stripes); 1076 spin_unlock_irq(&log->io_list_lock); 1077 } 1078 } 1079 } 1080 1081 mutex_unlock(&log->io_mutex); 1082 if (wake_reclaim) 1083 r5l_wake_reclaim(log, reserve); 1084 return 0; 1085 } 1086 1087 void r5l_write_stripe_run(struct r5l_log *log) 1088 { 1089 if (!log) 1090 return; 1091 mutex_lock(&log->io_mutex); 1092 r5l_submit_current_io(log); 1093 mutex_unlock(&log->io_mutex); 1094 } 1095 1096 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1097 { 1098 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1099 /* 1100 * in write through (journal only) 1101 * we flush log disk cache first, then write stripe data to 1102 * raid disks. So if bio is finished, the log disk cache is 1103 * flushed already. The recovery guarantees we can recovery 1104 * the bio from log disk, so we don't need to flush again 1105 */ 1106 if (bio->bi_iter.bi_size == 0) { 1107 bio_endio(bio); 1108 return 0; 1109 } 1110 bio->bi_opf &= ~REQ_PREFLUSH; 1111 } else { 1112 /* write back (with cache) */ 1113 if (bio->bi_iter.bi_size == 0) { 1114 mutex_lock(&log->io_mutex); 1115 r5l_get_meta(log, 0); 1116 bio_list_add(&log->current_io->flush_barriers, bio); 1117 log->current_io->has_flush = 1; 1118 log->current_io->has_null_flush = 1; 1119 atomic_inc(&log->current_io->pending_stripe); 1120 r5l_submit_current_io(log); 1121 mutex_unlock(&log->io_mutex); 1122 return 0; 1123 } 1124 } 1125 return -EAGAIN; 1126 } 1127 1128 /* This will run after log space is reclaimed */ 1129 static void r5l_run_no_space_stripes(struct r5l_log *log) 1130 { 1131 struct stripe_head *sh; 1132 1133 spin_lock(&log->no_space_stripes_lock); 1134 while (!list_empty(&log->no_space_stripes)) { 1135 sh = list_first_entry(&log->no_space_stripes, 1136 struct stripe_head, log_list); 1137 list_del_init(&sh->log_list); 1138 set_bit(STRIPE_HANDLE, &sh->state); 1139 raid5_release_stripe(sh); 1140 } 1141 spin_unlock(&log->no_space_stripes_lock); 1142 } 1143 1144 /* 1145 * calculate new last_checkpoint 1146 * for write through mode, returns log->next_checkpoint 1147 * for write back, returns log_start of first sh in stripe_in_journal_list 1148 */ 1149 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1150 { 1151 struct stripe_head *sh; 1152 struct r5l_log *log = READ_ONCE(conf->log); 1153 sector_t new_cp; 1154 unsigned long flags; 1155 1156 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1157 return log->next_checkpoint; 1158 1159 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1160 if (list_empty(&log->stripe_in_journal_list)) { 1161 /* all stripes flushed */ 1162 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1163 return log->next_checkpoint; 1164 } 1165 sh = list_first_entry(&log->stripe_in_journal_list, 1166 struct stripe_head, r5c); 1167 new_cp = sh->log_start; 1168 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1169 return new_cp; 1170 } 1171 1172 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1173 { 1174 struct r5conf *conf = log->rdev->mddev->private; 1175 1176 return r5l_ring_distance(log, log->last_checkpoint, 1177 r5c_calculate_new_cp(conf)); 1178 } 1179 1180 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1181 { 1182 struct stripe_head *sh; 1183 1184 lockdep_assert_held(&log->io_list_lock); 1185 1186 if (!list_empty(&log->no_mem_stripes)) { 1187 sh = list_first_entry(&log->no_mem_stripes, 1188 struct stripe_head, log_list); 1189 list_del_init(&sh->log_list); 1190 set_bit(STRIPE_HANDLE, &sh->state); 1191 raid5_release_stripe(sh); 1192 } 1193 } 1194 1195 static bool r5l_complete_finished_ios(struct r5l_log *log) 1196 { 1197 struct r5l_io_unit *io, *next; 1198 bool found = false; 1199 1200 lockdep_assert_held(&log->io_list_lock); 1201 1202 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1203 /* don't change list order */ 1204 if (io->state < IO_UNIT_STRIPE_END) 1205 break; 1206 1207 log->next_checkpoint = io->log_start; 1208 1209 list_del(&io->log_sibling); 1210 mempool_free(io, &log->io_pool); 1211 r5l_run_no_mem_stripe(log); 1212 1213 found = true; 1214 } 1215 1216 return found; 1217 } 1218 1219 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1220 { 1221 struct r5l_log *log = io->log; 1222 struct r5conf *conf = log->rdev->mddev->private; 1223 unsigned long flags; 1224 1225 spin_lock_irqsave(&log->io_list_lock, flags); 1226 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1227 1228 if (!r5l_complete_finished_ios(log)) { 1229 spin_unlock_irqrestore(&log->io_list_lock, flags); 1230 return; 1231 } 1232 1233 if (r5l_reclaimable_space(log) > log->max_free_space || 1234 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1235 r5l_wake_reclaim(log, 0); 1236 1237 spin_unlock_irqrestore(&log->io_list_lock, flags); 1238 wake_up(&log->iounit_wait); 1239 } 1240 1241 void r5l_stripe_write_finished(struct stripe_head *sh) 1242 { 1243 struct r5l_io_unit *io; 1244 1245 io = sh->log_io; 1246 sh->log_io = NULL; 1247 1248 if (io && atomic_dec_and_test(&io->pending_stripe)) 1249 __r5l_stripe_write_finished(io); 1250 } 1251 1252 static void r5l_log_flush_endio(struct bio *bio) 1253 { 1254 struct r5l_log *log = container_of(bio, struct r5l_log, 1255 flush_bio); 1256 unsigned long flags; 1257 struct r5l_io_unit *io; 1258 1259 if (bio->bi_status) 1260 md_error(log->rdev->mddev, log->rdev); 1261 bio_uninit(bio); 1262 1263 spin_lock_irqsave(&log->io_list_lock, flags); 1264 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1265 r5l_io_run_stripes(io); 1266 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1267 spin_unlock_irqrestore(&log->io_list_lock, flags); 1268 } 1269 1270 /* 1271 * Starting dispatch IO to raid. 1272 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1273 * broken meta in the middle of a log causes recovery can't find meta at the 1274 * head of log. If operations require meta at the head persistent in log, we 1275 * must make sure meta before it persistent in log too. A case is: 1276 * 1277 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1278 * data/parity must be persistent in log before we do the write to raid disks. 1279 * 1280 * The solution is we restrictly maintain io_unit list order. In this case, we 1281 * only write stripes of an io_unit to raid disks till the io_unit is the first 1282 * one whose data/parity is in log. 1283 */ 1284 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1285 { 1286 bool do_flush; 1287 1288 if (!log || !log->need_cache_flush) 1289 return; 1290 1291 spin_lock_irq(&log->io_list_lock); 1292 /* flush bio is running */ 1293 if (!list_empty(&log->flushing_ios)) { 1294 spin_unlock_irq(&log->io_list_lock); 1295 return; 1296 } 1297 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1298 do_flush = !list_empty(&log->flushing_ios); 1299 spin_unlock_irq(&log->io_list_lock); 1300 1301 if (!do_flush) 1302 return; 1303 bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0, 1304 REQ_OP_WRITE | REQ_PREFLUSH); 1305 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1306 submit_bio(&log->flush_bio); 1307 } 1308 1309 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1310 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1311 sector_t end) 1312 { 1313 struct block_device *bdev = log->rdev->bdev; 1314 struct mddev *mddev; 1315 1316 r5l_write_super(log, end); 1317 1318 if (!bdev_max_discard_sectors(bdev)) 1319 return; 1320 1321 mddev = log->rdev->mddev; 1322 /* 1323 * Discard could zero data, so before discard we must make sure 1324 * superblock is updated to new log tail. Updating superblock (either 1325 * directly call md_update_sb() or depend on md thread) must hold 1326 * reconfig mutex. On the other hand, raid5_quiesce is called with 1327 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting 1328 * for all IO finish, hence waiting for reclaim thread, while reclaim 1329 * thread is calling this function and waiting for reconfig mutex. So 1330 * there is a deadlock. We workaround this issue with a trylock. 1331 * FIXME: we could miss discard if we can't take reconfig mutex 1332 */ 1333 set_mask_bits(&mddev->sb_flags, 0, 1334 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1335 if (!mddev_trylock(mddev)) 1336 return; 1337 md_update_sb(mddev, 1); 1338 mddev_unlock(mddev); 1339 1340 /* discard IO error really doesn't matter, ignore it */ 1341 if (log->last_checkpoint < end) { 1342 blkdev_issue_discard(bdev, 1343 log->last_checkpoint + log->rdev->data_offset, 1344 end - log->last_checkpoint, GFP_NOIO); 1345 } else { 1346 blkdev_issue_discard(bdev, 1347 log->last_checkpoint + log->rdev->data_offset, 1348 log->device_size - log->last_checkpoint, 1349 GFP_NOIO); 1350 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1351 GFP_NOIO); 1352 } 1353 } 1354 1355 /* 1356 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1357 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1358 * 1359 * must hold conf->device_lock 1360 */ 1361 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1362 { 1363 BUG_ON(list_empty(&sh->lru)); 1364 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1365 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1366 1367 /* 1368 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1369 * raid5_release_stripe() while holding conf->device_lock 1370 */ 1371 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1372 lockdep_assert_held(&conf->device_lock); 1373 1374 list_del_init(&sh->lru); 1375 atomic_inc(&sh->count); 1376 1377 set_bit(STRIPE_HANDLE, &sh->state); 1378 atomic_inc(&conf->active_stripes); 1379 r5c_make_stripe_write_out(sh); 1380 1381 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1382 atomic_inc(&conf->r5c_flushing_partial_stripes); 1383 else 1384 atomic_inc(&conf->r5c_flushing_full_stripes); 1385 raid5_release_stripe(sh); 1386 } 1387 1388 /* 1389 * if num == 0, flush all full stripes 1390 * if num > 0, flush all full stripes. If less than num full stripes are 1391 * flushed, flush some partial stripes until totally num stripes are 1392 * flushed or there is no more cached stripes. 1393 */ 1394 void r5c_flush_cache(struct r5conf *conf, int num) 1395 { 1396 int count; 1397 struct stripe_head *sh, *next; 1398 1399 lockdep_assert_held(&conf->device_lock); 1400 if (!READ_ONCE(conf->log)) 1401 return; 1402 1403 count = 0; 1404 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1405 r5c_flush_stripe(conf, sh); 1406 count++; 1407 } 1408 1409 if (count >= num) 1410 return; 1411 list_for_each_entry_safe(sh, next, 1412 &conf->r5c_partial_stripe_list, lru) { 1413 r5c_flush_stripe(conf, sh); 1414 if (++count >= num) 1415 break; 1416 } 1417 } 1418 1419 static void r5c_do_reclaim(struct r5conf *conf) 1420 { 1421 struct r5l_log *log = READ_ONCE(conf->log); 1422 struct stripe_head *sh; 1423 int count = 0; 1424 unsigned long flags; 1425 int total_cached; 1426 int stripes_to_flush; 1427 int flushing_partial, flushing_full; 1428 1429 if (!r5c_is_writeback(log)) 1430 return; 1431 1432 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1433 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1434 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1435 atomic_read(&conf->r5c_cached_full_stripes) - 1436 flushing_full - flushing_partial; 1437 1438 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1439 atomic_read(&conf->empty_inactive_list_nr) > 0) 1440 /* 1441 * if stripe cache pressure high, flush all full stripes and 1442 * some partial stripes 1443 */ 1444 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1445 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1446 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1447 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1448 /* 1449 * if stripe cache pressure moderate, or if there is many full 1450 * stripes,flush all full stripes 1451 */ 1452 stripes_to_flush = 0; 1453 else 1454 /* no need to flush */ 1455 stripes_to_flush = -1; 1456 1457 if (stripes_to_flush >= 0) { 1458 spin_lock_irqsave(&conf->device_lock, flags); 1459 r5c_flush_cache(conf, stripes_to_flush); 1460 spin_unlock_irqrestore(&conf->device_lock, flags); 1461 } 1462 1463 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1464 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1465 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1466 spin_lock(&conf->device_lock); 1467 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1468 /* 1469 * stripes on stripe_in_journal_list could be in any 1470 * state of the stripe_cache state machine. In this 1471 * case, we only want to flush stripe on 1472 * r5c_cached_full/partial_stripes. The following 1473 * condition makes sure the stripe is on one of the 1474 * two lists. 1475 */ 1476 if (!list_empty(&sh->lru) && 1477 !test_bit(STRIPE_HANDLE, &sh->state) && 1478 atomic_read(&sh->count) == 0) { 1479 r5c_flush_stripe(conf, sh); 1480 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1481 break; 1482 } 1483 } 1484 spin_unlock(&conf->device_lock); 1485 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1486 } 1487 1488 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1489 r5l_run_no_space_stripes(log); 1490 1491 md_wakeup_thread(conf->mddev->thread); 1492 } 1493 1494 static void r5l_do_reclaim(struct r5l_log *log) 1495 { 1496 struct r5conf *conf = log->rdev->mddev->private; 1497 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1498 sector_t reclaimable; 1499 sector_t next_checkpoint; 1500 bool write_super; 1501 1502 spin_lock_irq(&log->io_list_lock); 1503 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1504 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1505 /* 1506 * move proper io_unit to reclaim list. We should not change the order. 1507 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1508 * shouldn't reuse space of an unreclaimable io_unit 1509 */ 1510 while (1) { 1511 reclaimable = r5l_reclaimable_space(log); 1512 if (reclaimable >= reclaim_target || 1513 (list_empty(&log->running_ios) && 1514 list_empty(&log->io_end_ios) && 1515 list_empty(&log->flushing_ios) && 1516 list_empty(&log->finished_ios))) 1517 break; 1518 1519 md_wakeup_thread(log->rdev->mddev->thread); 1520 wait_event_lock_irq(log->iounit_wait, 1521 r5l_reclaimable_space(log) > reclaimable, 1522 log->io_list_lock); 1523 } 1524 1525 next_checkpoint = r5c_calculate_new_cp(conf); 1526 spin_unlock_irq(&log->io_list_lock); 1527 1528 if (reclaimable == 0 || !write_super) 1529 return; 1530 1531 /* 1532 * write_super will flush cache of each raid disk. We must write super 1533 * here, because the log area might be reused soon and we don't want to 1534 * confuse recovery 1535 */ 1536 r5l_write_super_and_discard_space(log, next_checkpoint); 1537 1538 mutex_lock(&log->io_mutex); 1539 log->last_checkpoint = next_checkpoint; 1540 r5c_update_log_state(log); 1541 mutex_unlock(&log->io_mutex); 1542 1543 r5l_run_no_space_stripes(log); 1544 } 1545 1546 static void r5l_reclaim_thread(struct md_thread *thread) 1547 { 1548 struct mddev *mddev = thread->mddev; 1549 struct r5conf *conf = mddev->private; 1550 struct r5l_log *log = READ_ONCE(conf->log); 1551 1552 if (!log) 1553 return; 1554 r5c_do_reclaim(conf); 1555 r5l_do_reclaim(log); 1556 } 1557 1558 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1559 { 1560 unsigned long target; 1561 unsigned long new = (unsigned long)space; /* overflow in theory */ 1562 1563 if (!log) 1564 return; 1565 1566 target = READ_ONCE(log->reclaim_target); 1567 do { 1568 if (new < target) 1569 return; 1570 } while (!try_cmpxchg(&log->reclaim_target, &target, new)); 1571 md_wakeup_thread(log->reclaim_thread); 1572 } 1573 1574 void r5l_quiesce(struct r5l_log *log, int quiesce) 1575 { 1576 struct mddev *mddev = log->rdev->mddev; 1577 struct md_thread *thread = rcu_dereference_protected( 1578 log->reclaim_thread, lockdep_is_held(&mddev->reconfig_mutex)); 1579 1580 if (quiesce) { 1581 /* make sure r5l_write_super_and_discard_space exits */ 1582 wake_up(&mddev->sb_wait); 1583 kthread_park(thread->tsk); 1584 r5l_wake_reclaim(log, MaxSector); 1585 r5l_do_reclaim(log); 1586 } else 1587 kthread_unpark(thread->tsk); 1588 } 1589 1590 bool r5l_log_disk_error(struct r5conf *conf) 1591 { 1592 struct r5l_log *log = READ_ONCE(conf->log); 1593 1594 /* don't allow write if journal disk is missing */ 1595 if (!log) 1596 return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1597 else 1598 return test_bit(Faulty, &log->rdev->flags); 1599 } 1600 1601 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1602 1603 struct r5l_recovery_ctx { 1604 struct page *meta_page; /* current meta */ 1605 sector_t meta_total_blocks; /* total size of current meta and data */ 1606 sector_t pos; /* recovery position */ 1607 u64 seq; /* recovery position seq */ 1608 int data_parity_stripes; /* number of data_parity stripes */ 1609 int data_only_stripes; /* number of data_only stripes */ 1610 struct list_head cached_list; 1611 1612 /* 1613 * read ahead page pool (ra_pool) 1614 * in recovery, log is read sequentially. It is not efficient to 1615 * read every page with sync_page_io(). The read ahead page pool 1616 * reads multiple pages with one IO, so further log read can 1617 * just copy data from the pool. 1618 */ 1619 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1620 struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE]; 1621 sector_t pool_offset; /* offset of first page in the pool */ 1622 int total_pages; /* total allocated pages */ 1623 int valid_pages; /* pages with valid data */ 1624 }; 1625 1626 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1627 struct r5l_recovery_ctx *ctx) 1628 { 1629 struct page *page; 1630 1631 ctx->valid_pages = 0; 1632 ctx->total_pages = 0; 1633 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1634 page = alloc_page(GFP_KERNEL); 1635 1636 if (!page) 1637 break; 1638 ctx->ra_pool[ctx->total_pages] = page; 1639 ctx->total_pages += 1; 1640 } 1641 1642 if (ctx->total_pages == 0) 1643 return -ENOMEM; 1644 1645 ctx->pool_offset = 0; 1646 return 0; 1647 } 1648 1649 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1650 struct r5l_recovery_ctx *ctx) 1651 { 1652 int i; 1653 1654 for (i = 0; i < ctx->total_pages; ++i) 1655 put_page(ctx->ra_pool[i]); 1656 } 1657 1658 /* 1659 * fetch ctx->valid_pages pages from offset 1660 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1661 * However, if the offset is close to the end of the journal device, 1662 * ctx->valid_pages could be smaller than ctx->total_pages 1663 */ 1664 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1665 struct r5l_recovery_ctx *ctx, 1666 sector_t offset) 1667 { 1668 struct bio bio; 1669 int ret; 1670 1671 bio_init(&bio, log->rdev->bdev, ctx->ra_bvec, 1672 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ); 1673 bio.bi_iter.bi_sector = log->rdev->data_offset + offset; 1674 1675 ctx->valid_pages = 0; 1676 ctx->pool_offset = offset; 1677 1678 while (ctx->valid_pages < ctx->total_pages) { 1679 __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 1680 0); 1681 ctx->valid_pages += 1; 1682 1683 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1684 1685 if (offset == 0) /* reached end of the device */ 1686 break; 1687 } 1688 1689 ret = submit_bio_wait(&bio); 1690 bio_uninit(&bio); 1691 return ret; 1692 } 1693 1694 /* 1695 * try read a page from the read ahead page pool, if the page is not in the 1696 * pool, call r5l_recovery_fetch_ra_pool 1697 */ 1698 static int r5l_recovery_read_page(struct r5l_log *log, 1699 struct r5l_recovery_ctx *ctx, 1700 struct page *page, 1701 sector_t offset) 1702 { 1703 int ret; 1704 1705 if (offset < ctx->pool_offset || 1706 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1707 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1708 if (ret) 1709 return ret; 1710 } 1711 1712 BUG_ON(offset < ctx->pool_offset || 1713 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1714 1715 memcpy(page_address(page), 1716 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1717 BLOCK_SECTOR_SHIFT]), 1718 PAGE_SIZE); 1719 return 0; 1720 } 1721 1722 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1723 struct r5l_recovery_ctx *ctx) 1724 { 1725 struct page *page = ctx->meta_page; 1726 struct r5l_meta_block *mb; 1727 u32 crc, stored_crc; 1728 int ret; 1729 1730 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1731 if (ret != 0) 1732 return ret; 1733 1734 mb = page_address(page); 1735 stored_crc = le32_to_cpu(mb->checksum); 1736 mb->checksum = 0; 1737 1738 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1739 le64_to_cpu(mb->seq) != ctx->seq || 1740 mb->version != R5LOG_VERSION || 1741 le64_to_cpu(mb->position) != ctx->pos) 1742 return -EINVAL; 1743 1744 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1745 if (stored_crc != crc) 1746 return -EINVAL; 1747 1748 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1749 return -EINVAL; 1750 1751 ctx->meta_total_blocks = BLOCK_SECTORS; 1752 1753 return 0; 1754 } 1755 1756 static void 1757 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1758 struct page *page, 1759 sector_t pos, u64 seq) 1760 { 1761 struct r5l_meta_block *mb; 1762 1763 mb = page_address(page); 1764 clear_page(mb); 1765 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1766 mb->version = R5LOG_VERSION; 1767 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1768 mb->seq = cpu_to_le64(seq); 1769 mb->position = cpu_to_le64(pos); 1770 } 1771 1772 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1773 u64 seq) 1774 { 1775 struct page *page; 1776 struct r5l_meta_block *mb; 1777 1778 page = alloc_page(GFP_KERNEL); 1779 if (!page) 1780 return -ENOMEM; 1781 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1782 mb = page_address(page); 1783 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1784 mb, PAGE_SIZE)); 1785 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE | 1786 REQ_SYNC | REQ_FUA, false)) { 1787 __free_page(page); 1788 return -EIO; 1789 } 1790 __free_page(page); 1791 return 0; 1792 } 1793 1794 /* 1795 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1796 * to mark valid (potentially not flushed) data in the journal. 1797 * 1798 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1799 * so there should not be any mismatch here. 1800 */ 1801 static void r5l_recovery_load_data(struct r5l_log *log, 1802 struct stripe_head *sh, 1803 struct r5l_recovery_ctx *ctx, 1804 struct r5l_payload_data_parity *payload, 1805 sector_t log_offset) 1806 { 1807 struct mddev *mddev = log->rdev->mddev; 1808 struct r5conf *conf = mddev->private; 1809 int dd_idx; 1810 1811 raid5_compute_sector(conf, 1812 le64_to_cpu(payload->location), 0, 1813 &dd_idx, sh); 1814 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1815 sh->dev[dd_idx].log_checksum = 1816 le32_to_cpu(payload->checksum[0]); 1817 ctx->meta_total_blocks += BLOCK_SECTORS; 1818 1819 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1820 set_bit(STRIPE_R5C_CACHING, &sh->state); 1821 } 1822 1823 static void r5l_recovery_load_parity(struct r5l_log *log, 1824 struct stripe_head *sh, 1825 struct r5l_recovery_ctx *ctx, 1826 struct r5l_payload_data_parity *payload, 1827 sector_t log_offset) 1828 { 1829 struct mddev *mddev = log->rdev->mddev; 1830 struct r5conf *conf = mddev->private; 1831 1832 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1833 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1834 sh->dev[sh->pd_idx].log_checksum = 1835 le32_to_cpu(payload->checksum[0]); 1836 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1837 1838 if (sh->qd_idx >= 0) { 1839 r5l_recovery_read_page( 1840 log, ctx, sh->dev[sh->qd_idx].page, 1841 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1842 sh->dev[sh->qd_idx].log_checksum = 1843 le32_to_cpu(payload->checksum[1]); 1844 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1845 } 1846 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1847 } 1848 1849 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1850 { 1851 int i; 1852 1853 sh->state = 0; 1854 sh->log_start = MaxSector; 1855 for (i = sh->disks; i--; ) 1856 sh->dev[i].flags = 0; 1857 } 1858 1859 static void 1860 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1861 struct stripe_head *sh, 1862 struct r5l_recovery_ctx *ctx) 1863 { 1864 struct md_rdev *rdev, *rrdev; 1865 int disk_index; 1866 int data_count = 0; 1867 1868 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1869 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1870 continue; 1871 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1872 continue; 1873 data_count++; 1874 } 1875 1876 /* 1877 * stripes that only have parity must have been flushed 1878 * before the crash that we are now recovering from, so 1879 * there is nothing more to recovery. 1880 */ 1881 if (data_count == 0) 1882 goto out; 1883 1884 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1885 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1886 continue; 1887 1888 /* in case device is broken */ 1889 rdev = conf->disks[disk_index].rdev; 1890 if (rdev) { 1891 atomic_inc(&rdev->nr_pending); 1892 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1893 sh->dev[disk_index].page, REQ_OP_WRITE, 1894 false); 1895 rdev_dec_pending(rdev, rdev->mddev); 1896 } 1897 rrdev = conf->disks[disk_index].replacement; 1898 if (rrdev) { 1899 atomic_inc(&rrdev->nr_pending); 1900 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1901 sh->dev[disk_index].page, REQ_OP_WRITE, 1902 false); 1903 rdev_dec_pending(rrdev, rrdev->mddev); 1904 } 1905 } 1906 ctx->data_parity_stripes++; 1907 out: 1908 r5l_recovery_reset_stripe(sh); 1909 } 1910 1911 static struct stripe_head * 1912 r5c_recovery_alloc_stripe( 1913 struct r5conf *conf, 1914 sector_t stripe_sect, 1915 int noblock) 1916 { 1917 struct stripe_head *sh; 1918 1919 sh = raid5_get_active_stripe(conf, NULL, stripe_sect, 1920 noblock ? R5_GAS_NOBLOCK : 0); 1921 if (!sh) 1922 return NULL; /* no more stripe available */ 1923 1924 r5l_recovery_reset_stripe(sh); 1925 1926 return sh; 1927 } 1928 1929 static struct stripe_head * 1930 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1931 { 1932 struct stripe_head *sh; 1933 1934 list_for_each_entry(sh, list, lru) 1935 if (sh->sector == sect) 1936 return sh; 1937 return NULL; 1938 } 1939 1940 static void 1941 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1942 struct r5l_recovery_ctx *ctx) 1943 { 1944 struct stripe_head *sh, *next; 1945 1946 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1947 r5l_recovery_reset_stripe(sh); 1948 list_del_init(&sh->lru); 1949 raid5_release_stripe(sh); 1950 } 1951 } 1952 1953 static void 1954 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1955 struct r5l_recovery_ctx *ctx) 1956 { 1957 struct stripe_head *sh, *next; 1958 1959 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1960 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1961 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1962 list_del_init(&sh->lru); 1963 raid5_release_stripe(sh); 1964 } 1965 } 1966 1967 /* if matches return 0; otherwise return -EINVAL */ 1968 static int 1969 r5l_recovery_verify_data_checksum(struct r5l_log *log, 1970 struct r5l_recovery_ctx *ctx, 1971 struct page *page, 1972 sector_t log_offset, __le32 log_checksum) 1973 { 1974 void *addr; 1975 u32 checksum; 1976 1977 r5l_recovery_read_page(log, ctx, page, log_offset); 1978 addr = kmap_local_page(page); 1979 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 1980 kunmap_local(addr); 1981 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 1982 } 1983 1984 /* 1985 * before loading data to stripe cache, we need verify checksum for all data, 1986 * if there is mismatch for any data page, we drop all data in the mata block 1987 */ 1988 static int 1989 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 1990 struct r5l_recovery_ctx *ctx) 1991 { 1992 struct mddev *mddev = log->rdev->mddev; 1993 struct r5conf *conf = mddev->private; 1994 struct r5l_meta_block *mb = page_address(ctx->meta_page); 1995 sector_t mb_offset = sizeof(struct r5l_meta_block); 1996 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 1997 struct page *page; 1998 struct r5l_payload_data_parity *payload; 1999 struct r5l_payload_flush *payload_flush; 2000 2001 page = alloc_page(GFP_KERNEL); 2002 if (!page) 2003 return -ENOMEM; 2004 2005 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2006 payload = (void *)mb + mb_offset; 2007 payload_flush = (void *)mb + mb_offset; 2008 2009 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2010 if (r5l_recovery_verify_data_checksum( 2011 log, ctx, page, log_offset, 2012 payload->checksum[0]) < 0) 2013 goto mismatch; 2014 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2015 if (r5l_recovery_verify_data_checksum( 2016 log, ctx, page, log_offset, 2017 payload->checksum[0]) < 0) 2018 goto mismatch; 2019 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2020 r5l_recovery_verify_data_checksum( 2021 log, ctx, page, 2022 r5l_ring_add(log, log_offset, 2023 BLOCK_SECTORS), 2024 payload->checksum[1]) < 0) 2025 goto mismatch; 2026 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2027 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2028 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2029 goto mismatch; 2030 2031 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2032 mb_offset += sizeof(struct r5l_payload_flush) + 2033 le32_to_cpu(payload_flush->size); 2034 } else { 2035 /* DATA or PARITY payload */ 2036 log_offset = r5l_ring_add(log, log_offset, 2037 le32_to_cpu(payload->size)); 2038 mb_offset += sizeof(struct r5l_payload_data_parity) + 2039 sizeof(__le32) * 2040 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2041 } 2042 2043 } 2044 2045 put_page(page); 2046 return 0; 2047 2048 mismatch: 2049 put_page(page); 2050 return -EINVAL; 2051 } 2052 2053 /* 2054 * Analyze all data/parity pages in one meta block 2055 * Returns: 2056 * 0 for success 2057 * -EINVAL for unknown playload type 2058 * -EAGAIN for checksum mismatch of data page 2059 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2060 */ 2061 static int 2062 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2063 struct r5l_recovery_ctx *ctx, 2064 struct list_head *cached_stripe_list) 2065 { 2066 struct mddev *mddev = log->rdev->mddev; 2067 struct r5conf *conf = mddev->private; 2068 struct r5l_meta_block *mb; 2069 struct r5l_payload_data_parity *payload; 2070 struct r5l_payload_flush *payload_flush; 2071 int mb_offset; 2072 sector_t log_offset; 2073 sector_t stripe_sect; 2074 struct stripe_head *sh; 2075 int ret; 2076 2077 /* 2078 * for mismatch in data blocks, we will drop all data in this mb, but 2079 * we will still read next mb for other data with FLUSH flag, as 2080 * io_unit could finish out of order. 2081 */ 2082 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2083 if (ret == -EINVAL) 2084 return -EAGAIN; 2085 else if (ret) 2086 return ret; /* -ENOMEM duo to alloc_page() failed */ 2087 2088 mb = page_address(ctx->meta_page); 2089 mb_offset = sizeof(struct r5l_meta_block); 2090 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2091 2092 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2093 int dd; 2094 2095 payload = (void *)mb + mb_offset; 2096 payload_flush = (void *)mb + mb_offset; 2097 2098 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2099 int i, count; 2100 2101 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2102 for (i = 0; i < count; ++i) { 2103 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2104 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2105 stripe_sect); 2106 if (sh) { 2107 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2108 r5l_recovery_reset_stripe(sh); 2109 list_del_init(&sh->lru); 2110 raid5_release_stripe(sh); 2111 } 2112 } 2113 2114 mb_offset += sizeof(struct r5l_payload_flush) + 2115 le32_to_cpu(payload_flush->size); 2116 continue; 2117 } 2118 2119 /* DATA or PARITY payload */ 2120 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2121 raid5_compute_sector( 2122 conf, le64_to_cpu(payload->location), 0, &dd, 2123 NULL) 2124 : le64_to_cpu(payload->location); 2125 2126 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2127 stripe_sect); 2128 2129 if (!sh) { 2130 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1); 2131 /* 2132 * cannot get stripe from raid5_get_active_stripe 2133 * try replay some stripes 2134 */ 2135 if (!sh) { 2136 r5c_recovery_replay_stripes( 2137 cached_stripe_list, ctx); 2138 sh = r5c_recovery_alloc_stripe( 2139 conf, stripe_sect, 1); 2140 } 2141 if (!sh) { 2142 int new_size = conf->min_nr_stripes * 2; 2143 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2144 mdname(mddev), 2145 new_size); 2146 ret = raid5_set_cache_size(mddev, new_size); 2147 if (conf->min_nr_stripes <= new_size / 2) { 2148 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n", 2149 mdname(mddev), 2150 ret, 2151 new_size, 2152 conf->min_nr_stripes, 2153 conf->max_nr_stripes); 2154 return -ENOMEM; 2155 } 2156 sh = r5c_recovery_alloc_stripe( 2157 conf, stripe_sect, 0); 2158 } 2159 if (!sh) { 2160 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2161 mdname(mddev)); 2162 return -ENOMEM; 2163 } 2164 list_add_tail(&sh->lru, cached_stripe_list); 2165 } 2166 2167 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2168 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2169 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2170 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2171 list_move_tail(&sh->lru, cached_stripe_list); 2172 } 2173 r5l_recovery_load_data(log, sh, ctx, payload, 2174 log_offset); 2175 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2176 r5l_recovery_load_parity(log, sh, ctx, payload, 2177 log_offset); 2178 else 2179 return -EINVAL; 2180 2181 log_offset = r5l_ring_add(log, log_offset, 2182 le32_to_cpu(payload->size)); 2183 2184 mb_offset += sizeof(struct r5l_payload_data_parity) + 2185 sizeof(__le32) * 2186 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2187 } 2188 2189 return 0; 2190 } 2191 2192 /* 2193 * Load the stripe into cache. The stripe will be written out later by 2194 * the stripe cache state machine. 2195 */ 2196 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2197 struct stripe_head *sh) 2198 { 2199 struct r5dev *dev; 2200 int i; 2201 2202 for (i = sh->disks; i--; ) { 2203 dev = sh->dev + i; 2204 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2205 set_bit(R5_InJournal, &dev->flags); 2206 set_bit(R5_UPTODATE, &dev->flags); 2207 } 2208 } 2209 } 2210 2211 /* 2212 * Scan through the log for all to-be-flushed data 2213 * 2214 * For stripes with data and parity, namely Data-Parity stripe 2215 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2216 * 2217 * For stripes with only data, namely Data-Only stripe 2218 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2219 * 2220 * For a stripe, if we see data after parity, we should discard all previous 2221 * data and parity for this stripe, as these data are already flushed to 2222 * the array. 2223 * 2224 * At the end of the scan, we return the new journal_tail, which points to 2225 * first data-only stripe on the journal device, or next invalid meta block. 2226 */ 2227 static int r5c_recovery_flush_log(struct r5l_log *log, 2228 struct r5l_recovery_ctx *ctx) 2229 { 2230 struct stripe_head *sh; 2231 int ret = 0; 2232 2233 /* scan through the log */ 2234 while (1) { 2235 if (r5l_recovery_read_meta_block(log, ctx)) 2236 break; 2237 2238 ret = r5c_recovery_analyze_meta_block(log, ctx, 2239 &ctx->cached_list); 2240 /* 2241 * -EAGAIN means mismatch in data block, in this case, we still 2242 * try scan the next metablock 2243 */ 2244 if (ret && ret != -EAGAIN) 2245 break; /* ret == -EINVAL or -ENOMEM */ 2246 ctx->seq++; 2247 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2248 } 2249 2250 if (ret == -ENOMEM) { 2251 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2252 return ret; 2253 } 2254 2255 /* replay data-parity stripes */ 2256 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2257 2258 /* load data-only stripes to stripe cache */ 2259 list_for_each_entry(sh, &ctx->cached_list, lru) { 2260 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2261 r5c_recovery_load_one_stripe(log, sh); 2262 ctx->data_only_stripes++; 2263 } 2264 2265 return 0; 2266 } 2267 2268 /* 2269 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2270 * log will start here. but we can't let superblock point to last valid 2271 * meta block. The log might looks like: 2272 * | meta 1| meta 2| meta 3| 2273 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2274 * superblock points to meta 1, we write a new valid meta 2n. if crash 2275 * happens again, new recovery will start from meta 1. Since meta 2n is 2276 * valid now, recovery will think meta 3 is valid, which is wrong. 2277 * The solution is we create a new meta in meta2 with its seq == meta 2278 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2279 * will not think meta 3 is a valid meta, because its seq doesn't match 2280 */ 2281 2282 /* 2283 * Before recovery, the log looks like the following 2284 * 2285 * --------------------------------------------- 2286 * | valid log | invalid log | 2287 * --------------------------------------------- 2288 * ^ 2289 * |- log->last_checkpoint 2290 * |- log->last_cp_seq 2291 * 2292 * Now we scan through the log until we see invalid entry 2293 * 2294 * --------------------------------------------- 2295 * | valid log | invalid log | 2296 * --------------------------------------------- 2297 * ^ ^ 2298 * |- log->last_checkpoint |- ctx->pos 2299 * |- log->last_cp_seq |- ctx->seq 2300 * 2301 * From this point, we need to increase seq number by 10 to avoid 2302 * confusing next recovery. 2303 * 2304 * --------------------------------------------- 2305 * | valid log | invalid log | 2306 * --------------------------------------------- 2307 * ^ ^ 2308 * |- log->last_checkpoint |- ctx->pos+1 2309 * |- log->last_cp_seq |- ctx->seq+10001 2310 * 2311 * However, it is not safe to start the state machine yet, because data only 2312 * parities are not yet secured in RAID. To save these data only parities, we 2313 * rewrite them from seq+11. 2314 * 2315 * ----------------------------------------------------------------- 2316 * | valid log | data only stripes | invalid log | 2317 * ----------------------------------------------------------------- 2318 * ^ ^ 2319 * |- log->last_checkpoint |- ctx->pos+n 2320 * |- log->last_cp_seq |- ctx->seq+10000+n 2321 * 2322 * If failure happens again during this process, the recovery can safe start 2323 * again from log->last_checkpoint. 2324 * 2325 * Once data only stripes are rewritten to journal, we move log_tail 2326 * 2327 * ----------------------------------------------------------------- 2328 * | old log | data only stripes | invalid log | 2329 * ----------------------------------------------------------------- 2330 * ^ ^ 2331 * |- log->last_checkpoint |- ctx->pos+n 2332 * |- log->last_cp_seq |- ctx->seq+10000+n 2333 * 2334 * Then we can safely start the state machine. If failure happens from this 2335 * point on, the recovery will start from new log->last_checkpoint. 2336 */ 2337 static int 2338 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2339 struct r5l_recovery_ctx *ctx) 2340 { 2341 struct stripe_head *sh; 2342 struct mddev *mddev = log->rdev->mddev; 2343 struct page *page; 2344 sector_t next_checkpoint = MaxSector; 2345 2346 page = alloc_page(GFP_KERNEL); 2347 if (!page) { 2348 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2349 mdname(mddev)); 2350 return -ENOMEM; 2351 } 2352 2353 WARN_ON(list_empty(&ctx->cached_list)); 2354 2355 list_for_each_entry(sh, &ctx->cached_list, lru) { 2356 struct r5l_meta_block *mb; 2357 int i; 2358 int offset; 2359 sector_t write_pos; 2360 2361 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2362 r5l_recovery_create_empty_meta_block(log, page, 2363 ctx->pos, ctx->seq); 2364 mb = page_address(page); 2365 offset = le32_to_cpu(mb->meta_size); 2366 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2367 2368 for (i = sh->disks; i--; ) { 2369 struct r5dev *dev = &sh->dev[i]; 2370 struct r5l_payload_data_parity *payload; 2371 void *addr; 2372 2373 if (test_bit(R5_InJournal, &dev->flags)) { 2374 payload = (void *)mb + offset; 2375 payload->header.type = cpu_to_le16( 2376 R5LOG_PAYLOAD_DATA); 2377 payload->size = cpu_to_le32(BLOCK_SECTORS); 2378 payload->location = cpu_to_le64( 2379 raid5_compute_blocknr(sh, i, 0)); 2380 addr = kmap_local_page(dev->page); 2381 payload->checksum[0] = cpu_to_le32( 2382 crc32c_le(log->uuid_checksum, addr, 2383 PAGE_SIZE)); 2384 kunmap_local(addr); 2385 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2386 dev->page, REQ_OP_WRITE, false); 2387 write_pos = r5l_ring_add(log, write_pos, 2388 BLOCK_SECTORS); 2389 offset += sizeof(__le32) + 2390 sizeof(struct r5l_payload_data_parity); 2391 2392 } 2393 } 2394 mb->meta_size = cpu_to_le32(offset); 2395 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2396 mb, PAGE_SIZE)); 2397 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2398 REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false); 2399 sh->log_start = ctx->pos; 2400 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2401 atomic_inc(&log->stripe_in_journal_count); 2402 ctx->pos = write_pos; 2403 ctx->seq += 1; 2404 next_checkpoint = sh->log_start; 2405 } 2406 log->next_checkpoint = next_checkpoint; 2407 __free_page(page); 2408 return 0; 2409 } 2410 2411 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2412 struct r5l_recovery_ctx *ctx) 2413 { 2414 struct mddev *mddev = log->rdev->mddev; 2415 struct r5conf *conf = mddev->private; 2416 struct stripe_head *sh, *next; 2417 bool cleared_pending = false; 2418 2419 if (ctx->data_only_stripes == 0) 2420 return; 2421 2422 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2423 cleared_pending = true; 2424 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2425 } 2426 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2427 2428 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2429 r5c_make_stripe_write_out(sh); 2430 set_bit(STRIPE_HANDLE, &sh->state); 2431 list_del_init(&sh->lru); 2432 raid5_release_stripe(sh); 2433 } 2434 2435 /* reuse conf->wait_for_quiescent in recovery */ 2436 wait_event(conf->wait_for_quiescent, 2437 atomic_read(&conf->active_stripes) == 0); 2438 2439 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2440 if (cleared_pending) 2441 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2442 } 2443 2444 static int r5l_recovery_log(struct r5l_log *log) 2445 { 2446 struct mddev *mddev = log->rdev->mddev; 2447 struct r5l_recovery_ctx *ctx; 2448 int ret; 2449 sector_t pos; 2450 2451 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2452 if (!ctx) 2453 return -ENOMEM; 2454 2455 ctx->pos = log->last_checkpoint; 2456 ctx->seq = log->last_cp_seq; 2457 INIT_LIST_HEAD(&ctx->cached_list); 2458 ctx->meta_page = alloc_page(GFP_KERNEL); 2459 2460 if (!ctx->meta_page) { 2461 ret = -ENOMEM; 2462 goto meta_page; 2463 } 2464 2465 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2466 ret = -ENOMEM; 2467 goto ra_pool; 2468 } 2469 2470 ret = r5c_recovery_flush_log(log, ctx); 2471 2472 if (ret) 2473 goto error; 2474 2475 pos = ctx->pos; 2476 ctx->seq += 10000; 2477 2478 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2479 pr_info("md/raid:%s: starting from clean shutdown\n", 2480 mdname(mddev)); 2481 else 2482 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2483 mdname(mddev), ctx->data_only_stripes, 2484 ctx->data_parity_stripes); 2485 2486 if (ctx->data_only_stripes == 0) { 2487 log->next_checkpoint = ctx->pos; 2488 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2489 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2490 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2491 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2492 mdname(mddev)); 2493 ret = -EIO; 2494 goto error; 2495 } 2496 2497 log->log_start = ctx->pos; 2498 log->seq = ctx->seq; 2499 log->last_checkpoint = pos; 2500 r5l_write_super(log, pos); 2501 2502 r5c_recovery_flush_data_only_stripes(log, ctx); 2503 ret = 0; 2504 error: 2505 r5l_recovery_free_ra_pool(log, ctx); 2506 ra_pool: 2507 __free_page(ctx->meta_page); 2508 meta_page: 2509 kfree(ctx); 2510 return ret; 2511 } 2512 2513 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2514 { 2515 struct mddev *mddev = log->rdev->mddev; 2516 2517 log->rdev->journal_tail = cp; 2518 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2519 } 2520 2521 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2522 { 2523 struct r5conf *conf; 2524 int ret; 2525 2526 ret = mddev_lock(mddev); 2527 if (ret) 2528 return ret; 2529 2530 conf = mddev->private; 2531 if (!conf || !conf->log) 2532 goto out_unlock; 2533 2534 switch (conf->log->r5c_journal_mode) { 2535 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2536 ret = snprintf( 2537 page, PAGE_SIZE, "[%s] %s\n", 2538 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2539 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2540 break; 2541 case R5C_JOURNAL_MODE_WRITE_BACK: 2542 ret = snprintf( 2543 page, PAGE_SIZE, "%s [%s]\n", 2544 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2545 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2546 break; 2547 default: 2548 ret = 0; 2549 } 2550 2551 out_unlock: 2552 mddev_unlock(mddev); 2553 return ret; 2554 } 2555 2556 /* 2557 * Set journal cache mode on @mddev (external API initially needed by dm-raid). 2558 * 2559 * @mode as defined in 'enum r5c_journal_mode'. 2560 * 2561 */ 2562 int r5c_journal_mode_set(struct mddev *mddev, int mode) 2563 { 2564 struct r5conf *conf; 2565 2566 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || 2567 mode > R5C_JOURNAL_MODE_WRITE_BACK) 2568 return -EINVAL; 2569 2570 conf = mddev->private; 2571 if (!conf || !conf->log) 2572 return -ENODEV; 2573 2574 if (raid5_calc_degraded(conf) > 0 && 2575 mode == R5C_JOURNAL_MODE_WRITE_BACK) 2576 return -EINVAL; 2577 2578 conf->log->r5c_journal_mode = mode; 2579 2580 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2581 mdname(mddev), mode, r5c_journal_mode_str[mode]); 2582 return 0; 2583 } 2584 EXPORT_SYMBOL(r5c_journal_mode_set); 2585 2586 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2587 const char *page, size_t length) 2588 { 2589 int mode = ARRAY_SIZE(r5c_journal_mode_str); 2590 size_t len = length; 2591 int ret; 2592 2593 if (len < 2) 2594 return -EINVAL; 2595 2596 if (page[len - 1] == '\n') 2597 len--; 2598 2599 while (mode--) 2600 if (strlen(r5c_journal_mode_str[mode]) == len && 2601 !strncmp(page, r5c_journal_mode_str[mode], len)) 2602 break; 2603 ret = mddev_suspend_and_lock(mddev); 2604 if (ret) 2605 return ret; 2606 ret = r5c_journal_mode_set(mddev, mode); 2607 mddev_unlock_and_resume(mddev); 2608 return ret ?: length; 2609 } 2610 2611 struct md_sysfs_entry 2612 r5c_journal_mode = __ATTR(journal_mode, 0644, 2613 r5c_journal_mode_show, r5c_journal_mode_store); 2614 2615 /* 2616 * Try handle write operation in caching phase. This function should only 2617 * be called in write-back mode. 2618 * 2619 * If all outstanding writes can be handled in caching phase, returns 0 2620 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2621 * and returns -EAGAIN 2622 */ 2623 int r5c_try_caching_write(struct r5conf *conf, 2624 struct stripe_head *sh, 2625 struct stripe_head_state *s, 2626 int disks) 2627 { 2628 struct r5l_log *log = READ_ONCE(conf->log); 2629 int i; 2630 struct r5dev *dev; 2631 int to_cache = 0; 2632 void __rcu **pslot; 2633 sector_t tree_index; 2634 int ret; 2635 uintptr_t refcount; 2636 2637 BUG_ON(!r5c_is_writeback(log)); 2638 2639 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2640 /* 2641 * There are two different scenarios here: 2642 * 1. The stripe has some data cached, and it is sent to 2643 * write-out phase for reclaim 2644 * 2. The stripe is clean, and this is the first write 2645 * 2646 * For 1, return -EAGAIN, so we continue with 2647 * handle_stripe_dirtying(). 2648 * 2649 * For 2, set STRIPE_R5C_CACHING and continue with caching 2650 * write. 2651 */ 2652 2653 /* case 1: anything injournal or anything in written */ 2654 if (s->injournal > 0 || s->written > 0) 2655 return -EAGAIN; 2656 /* case 2 */ 2657 set_bit(STRIPE_R5C_CACHING, &sh->state); 2658 } 2659 2660 /* 2661 * When run in degraded mode, array is set to write-through mode. 2662 * This check helps drain pending write safely in the transition to 2663 * write-through mode. 2664 * 2665 * When a stripe is syncing, the write is also handled in write 2666 * through mode. 2667 */ 2668 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { 2669 r5c_make_stripe_write_out(sh); 2670 return -EAGAIN; 2671 } 2672 2673 for (i = disks; i--; ) { 2674 dev = &sh->dev[i]; 2675 /* if non-overwrite, use writing-out phase */ 2676 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2677 !test_bit(R5_InJournal, &dev->flags)) { 2678 r5c_make_stripe_write_out(sh); 2679 return -EAGAIN; 2680 } 2681 } 2682 2683 /* if the stripe is not counted in big_stripe_tree, add it now */ 2684 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2685 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2686 tree_index = r5c_tree_index(conf, sh->sector); 2687 spin_lock(&log->tree_lock); 2688 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2689 tree_index); 2690 if (pslot) { 2691 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2692 pslot, &log->tree_lock) >> 2693 R5C_RADIX_COUNT_SHIFT; 2694 radix_tree_replace_slot( 2695 &log->big_stripe_tree, pslot, 2696 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2697 } else { 2698 /* 2699 * this radix_tree_insert can fail safely, so no 2700 * need to call radix_tree_preload() 2701 */ 2702 ret = radix_tree_insert( 2703 &log->big_stripe_tree, tree_index, 2704 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2705 if (ret) { 2706 spin_unlock(&log->tree_lock); 2707 r5c_make_stripe_write_out(sh); 2708 return -EAGAIN; 2709 } 2710 } 2711 spin_unlock(&log->tree_lock); 2712 2713 /* 2714 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2715 * counted in the radix tree 2716 */ 2717 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2718 atomic_inc(&conf->r5c_cached_partial_stripes); 2719 } 2720 2721 for (i = disks; i--; ) { 2722 dev = &sh->dev[i]; 2723 if (dev->towrite) { 2724 set_bit(R5_Wantwrite, &dev->flags); 2725 set_bit(R5_Wantdrain, &dev->flags); 2726 set_bit(R5_LOCKED, &dev->flags); 2727 to_cache++; 2728 } 2729 } 2730 2731 if (to_cache) { 2732 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2733 /* 2734 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2735 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2736 * r5c_handle_data_cached() 2737 */ 2738 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2739 } 2740 2741 return 0; 2742 } 2743 2744 /* 2745 * free extra pages (orig_page) we allocated for prexor 2746 */ 2747 void r5c_release_extra_page(struct stripe_head *sh) 2748 { 2749 struct r5conf *conf = sh->raid_conf; 2750 int i; 2751 bool using_disk_info_extra_page; 2752 2753 using_disk_info_extra_page = 2754 sh->dev[0].orig_page == conf->disks[0].extra_page; 2755 2756 for (i = sh->disks; i--; ) 2757 if (sh->dev[i].page != sh->dev[i].orig_page) { 2758 struct page *p = sh->dev[i].orig_page; 2759 2760 sh->dev[i].orig_page = sh->dev[i].page; 2761 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2762 2763 if (!using_disk_info_extra_page) 2764 put_page(p); 2765 } 2766 2767 if (using_disk_info_extra_page) { 2768 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2769 md_wakeup_thread(conf->mddev->thread); 2770 } 2771 } 2772 2773 void r5c_use_extra_page(struct stripe_head *sh) 2774 { 2775 struct r5conf *conf = sh->raid_conf; 2776 int i; 2777 struct r5dev *dev; 2778 2779 for (i = sh->disks; i--; ) { 2780 dev = &sh->dev[i]; 2781 if (dev->orig_page != dev->page) 2782 put_page(dev->orig_page); 2783 dev->orig_page = conf->disks[i].extra_page; 2784 } 2785 } 2786 2787 /* 2788 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2789 * stripe is committed to RAID disks. 2790 */ 2791 void r5c_finish_stripe_write_out(struct r5conf *conf, 2792 struct stripe_head *sh, 2793 struct stripe_head_state *s) 2794 { 2795 struct r5l_log *log = READ_ONCE(conf->log); 2796 int i; 2797 sector_t tree_index; 2798 void __rcu **pslot; 2799 uintptr_t refcount; 2800 2801 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2802 return; 2803 2804 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2805 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2806 2807 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2808 return; 2809 2810 for (i = sh->disks; i--; ) { 2811 clear_bit(R5_InJournal, &sh->dev[i].flags); 2812 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2813 wake_up_bit(&sh->dev[i].flags, R5_Overlap); 2814 } 2815 2816 /* 2817 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2818 * We updated R5_InJournal, so we also update s->injournal. 2819 */ 2820 s->injournal = 0; 2821 2822 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2823 if (atomic_dec_and_test(&conf->pending_full_writes)) 2824 md_wakeup_thread(conf->mddev->thread); 2825 2826 spin_lock_irq(&log->stripe_in_journal_lock); 2827 list_del_init(&sh->r5c); 2828 spin_unlock_irq(&log->stripe_in_journal_lock); 2829 sh->log_start = MaxSector; 2830 2831 atomic_dec(&log->stripe_in_journal_count); 2832 r5c_update_log_state(log); 2833 2834 /* stop counting this stripe in big_stripe_tree */ 2835 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2836 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2837 tree_index = r5c_tree_index(conf, sh->sector); 2838 spin_lock(&log->tree_lock); 2839 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2840 tree_index); 2841 BUG_ON(pslot == NULL); 2842 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2843 pslot, &log->tree_lock) >> 2844 R5C_RADIX_COUNT_SHIFT; 2845 if (refcount == 1) 2846 radix_tree_delete(&log->big_stripe_tree, tree_index); 2847 else 2848 radix_tree_replace_slot( 2849 &log->big_stripe_tree, pslot, 2850 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2851 spin_unlock(&log->tree_lock); 2852 } 2853 2854 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2855 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2856 atomic_dec(&conf->r5c_flushing_partial_stripes); 2857 atomic_dec(&conf->r5c_cached_partial_stripes); 2858 } 2859 2860 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2861 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2862 atomic_dec(&conf->r5c_flushing_full_stripes); 2863 atomic_dec(&conf->r5c_cached_full_stripes); 2864 } 2865 2866 r5l_append_flush_payload(log, sh->sector); 2867 /* stripe is flused to raid disks, we can do resync now */ 2868 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2869 set_bit(STRIPE_HANDLE, &sh->state); 2870 } 2871 2872 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2873 { 2874 struct r5conf *conf = sh->raid_conf; 2875 int pages = 0; 2876 int reserve; 2877 int i; 2878 int ret = 0; 2879 2880 BUG_ON(!log); 2881 2882 for (i = 0; i < sh->disks; i++) { 2883 void *addr; 2884 2885 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2886 continue; 2887 addr = kmap_local_page(sh->dev[i].page); 2888 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2889 addr, PAGE_SIZE); 2890 kunmap_local(addr); 2891 pages++; 2892 } 2893 WARN_ON(pages == 0); 2894 2895 /* 2896 * The stripe must enter state machine again to call endio, so 2897 * don't delay. 2898 */ 2899 clear_bit(STRIPE_DELAYED, &sh->state); 2900 atomic_inc(&sh->count); 2901 2902 mutex_lock(&log->io_mutex); 2903 /* meta + data */ 2904 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2905 2906 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2907 sh->log_start == MaxSector) 2908 r5l_add_no_space_stripe(log, sh); 2909 else if (!r5l_has_free_space(log, reserve)) { 2910 if (sh->log_start == log->last_checkpoint) 2911 BUG(); 2912 else 2913 r5l_add_no_space_stripe(log, sh); 2914 } else { 2915 ret = r5l_log_stripe(log, sh, pages, 0); 2916 if (ret) { 2917 spin_lock_irq(&log->io_list_lock); 2918 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2919 spin_unlock_irq(&log->io_list_lock); 2920 } 2921 } 2922 2923 mutex_unlock(&log->io_mutex); 2924 return 0; 2925 } 2926 2927 /* check whether this big stripe is in write back cache. */ 2928 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2929 { 2930 struct r5l_log *log = READ_ONCE(conf->log); 2931 sector_t tree_index; 2932 void *slot; 2933 2934 if (!log) 2935 return false; 2936 2937 tree_index = r5c_tree_index(conf, sect); 2938 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2939 return slot != NULL; 2940 } 2941 2942 static int r5l_load_log(struct r5l_log *log) 2943 { 2944 struct md_rdev *rdev = log->rdev; 2945 struct page *page; 2946 struct r5l_meta_block *mb; 2947 sector_t cp = log->rdev->journal_tail; 2948 u32 stored_crc, expected_crc; 2949 bool create_super = false; 2950 int ret = 0; 2951 2952 /* Make sure it's valid */ 2953 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2954 cp = 0; 2955 page = alloc_page(GFP_KERNEL); 2956 if (!page) 2957 return -ENOMEM; 2958 2959 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) { 2960 ret = -EIO; 2961 goto ioerr; 2962 } 2963 mb = page_address(page); 2964 2965 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2966 mb->version != R5LOG_VERSION) { 2967 create_super = true; 2968 goto create; 2969 } 2970 stored_crc = le32_to_cpu(mb->checksum); 2971 mb->checksum = 0; 2972 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2973 if (stored_crc != expected_crc) { 2974 create_super = true; 2975 goto create; 2976 } 2977 if (le64_to_cpu(mb->position) != cp) { 2978 create_super = true; 2979 goto create; 2980 } 2981 create: 2982 if (create_super) { 2983 log->last_cp_seq = get_random_u32(); 2984 cp = 0; 2985 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 2986 /* 2987 * Make sure super points to correct address. Log might have 2988 * data very soon. If super hasn't correct log tail address, 2989 * recovery can't find the log 2990 */ 2991 r5l_write_super(log, cp); 2992 } else 2993 log->last_cp_seq = le64_to_cpu(mb->seq); 2994 2995 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 2996 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 2997 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 2998 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 2999 log->last_checkpoint = cp; 3000 3001 __free_page(page); 3002 3003 if (create_super) { 3004 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 3005 log->seq = log->last_cp_seq + 1; 3006 log->next_checkpoint = cp; 3007 } else 3008 ret = r5l_recovery_log(log); 3009 3010 r5c_update_log_state(log); 3011 return ret; 3012 ioerr: 3013 __free_page(page); 3014 return ret; 3015 } 3016 3017 int r5l_start(struct r5l_log *log) 3018 { 3019 int ret; 3020 3021 if (!log) 3022 return 0; 3023 3024 ret = r5l_load_log(log); 3025 if (ret) { 3026 struct mddev *mddev = log->rdev->mddev; 3027 struct r5conf *conf = mddev->private; 3028 3029 r5l_exit_log(conf); 3030 } 3031 return ret; 3032 } 3033 3034 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) 3035 { 3036 struct r5conf *conf = mddev->private; 3037 struct r5l_log *log = READ_ONCE(conf->log); 3038 3039 if (!log) 3040 return; 3041 3042 if ((raid5_calc_degraded(conf) > 0 || 3043 test_bit(Journal, &rdev->flags)) && 3044 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 3045 schedule_work(&log->disable_writeback_work); 3046 } 3047 3048 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 3049 { 3050 struct r5l_log *log; 3051 struct md_thread *thread; 3052 int ret; 3053 3054 pr_debug("md/raid:%s: using device %pg as journal\n", 3055 mdname(conf->mddev), rdev->bdev); 3056 3057 if (PAGE_SIZE != 4096) 3058 return -EINVAL; 3059 3060 /* 3061 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 3062 * raid_disks r5l_payload_data_parity. 3063 * 3064 * Write journal and cache does not work for very big array 3065 * (raid_disks > 203) 3066 */ 3067 if (sizeof(struct r5l_meta_block) + 3068 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3069 conf->raid_disks) > PAGE_SIZE) { 3070 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3071 mdname(conf->mddev), conf->raid_disks); 3072 return -EINVAL; 3073 } 3074 3075 log = kzalloc(sizeof(*log), GFP_KERNEL); 3076 if (!log) 3077 return -ENOMEM; 3078 log->rdev = rdev; 3079 log->need_cache_flush = bdev_write_cache(rdev->bdev); 3080 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3081 sizeof(rdev->mddev->uuid)); 3082 3083 mutex_init(&log->io_mutex); 3084 3085 spin_lock_init(&log->io_list_lock); 3086 INIT_LIST_HEAD(&log->running_ios); 3087 INIT_LIST_HEAD(&log->io_end_ios); 3088 INIT_LIST_HEAD(&log->flushing_ios); 3089 INIT_LIST_HEAD(&log->finished_ios); 3090 3091 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3092 if (!log->io_kc) 3093 goto io_kc; 3094 3095 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc); 3096 if (ret) 3097 goto io_pool; 3098 3099 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); 3100 if (ret) 3101 goto io_bs; 3102 3103 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0); 3104 if (ret) 3105 goto out_mempool; 3106 3107 spin_lock_init(&log->tree_lock); 3108 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3109 3110 thread = md_register_thread(r5l_reclaim_thread, log->rdev->mddev, 3111 "reclaim"); 3112 if (!thread) 3113 goto reclaim_thread; 3114 3115 thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3116 rcu_assign_pointer(log->reclaim_thread, thread); 3117 3118 init_waitqueue_head(&log->iounit_wait); 3119 3120 INIT_LIST_HEAD(&log->no_mem_stripes); 3121 3122 INIT_LIST_HEAD(&log->no_space_stripes); 3123 spin_lock_init(&log->no_space_stripes_lock); 3124 3125 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3126 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3127 3128 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3129 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3130 spin_lock_init(&log->stripe_in_journal_lock); 3131 atomic_set(&log->stripe_in_journal_count, 0); 3132 3133 WRITE_ONCE(conf->log, log); 3134 3135 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3136 return 0; 3137 3138 reclaim_thread: 3139 mempool_exit(&log->meta_pool); 3140 out_mempool: 3141 bioset_exit(&log->bs); 3142 io_bs: 3143 mempool_exit(&log->io_pool); 3144 io_pool: 3145 kmem_cache_destroy(log->io_kc); 3146 io_kc: 3147 kfree(log); 3148 return -EINVAL; 3149 } 3150 3151 void r5l_exit_log(struct r5conf *conf) 3152 { 3153 struct r5l_log *log = conf->log; 3154 3155 md_unregister_thread(conf->mddev, &log->reclaim_thread); 3156 3157 /* 3158 * 'reconfig_mutex' is held by caller, set 'confg->log' to NULL to 3159 * ensure disable_writeback_work wakes up and exits. 3160 */ 3161 WRITE_ONCE(conf->log, NULL); 3162 wake_up(&conf->mddev->sb_wait); 3163 flush_work(&log->disable_writeback_work); 3164 3165 mempool_exit(&log->meta_pool); 3166 bioset_exit(&log->bs); 3167 mempool_exit(&log->io_pool); 3168 kmem_cache_destroy(log->io_kc); 3169 kfree(log); 3170 } 3171