xref: /linux/drivers/md/raid5-cache.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5  */
6 #include <linux/kernel.h>
7 #include <linux/wait.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/raid/md_p.h>
11 #include <linux/crc32c.h>
12 #include <linux/random.h>
13 #include <linux/kthread.h>
14 #include <linux/types.h>
15 #include "md.h"
16 #include "raid5.h"
17 #include "md-bitmap.h"
18 #include "raid5-log.h"
19 
20 /*
21  * metadata/data stored in disk with 4k size unit (a block) regardless
22  * underneath hardware sector size. only works with PAGE_SIZE == 4096
23  */
24 #define BLOCK_SECTORS (8)
25 #define BLOCK_SECTOR_SHIFT (3)
26 
27 /*
28  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29  *
30  * In write through mode, the reclaim runs every log->max_free_space.
31  * This can prevent the recovery scans for too long
32  */
33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35 
36 /* wake up reclaim thread periodically */
37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38 /* start flush with these full stripes */
39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40 /* reclaim stripes in groups */
41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42 
43 /*
44  * We only need 2 bios per I/O unit to make progress, but ensure we
45  * have a few more available to not get too tight.
46  */
47 #define R5L_POOL_SIZE	4
48 
49 static char *r5c_journal_mode_str[] = {"write-through",
50 				       "write-back"};
51 /*
52  * raid5 cache state machine
53  *
54  * With the RAID cache, each stripe works in two phases:
55  *	- caching phase
56  *	- writing-out phase
57  *
58  * These two phases are controlled by bit STRIPE_R5C_CACHING:
59  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61  *
62  * When there is no journal, or the journal is in write-through mode,
63  * the stripe is always in writing-out phase.
64  *
65  * For write-back journal, the stripe is sent to caching phase on write
66  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67  * the write-out phase by clearing STRIPE_R5C_CACHING.
68  *
69  * Stripes in caching phase do not write the raid disks. Instead, all
70  * writes are committed from the log device. Therefore, a stripe in
71  * caching phase handles writes as:
72  *	- write to log device
73  *	- return IO
74  *
75  * Stripes in writing-out phase handle writes as:
76  *	- calculate parity
77  *	- write pending data and parity to journal
78  *	- write data and parity to raid disks
79  *	- return IO for pending writes
80  */
81 
82 struct r5l_log {
83 	struct md_rdev *rdev;
84 
85 	u32 uuid_checksum;
86 
87 	sector_t device_size;		/* log device size, round to
88 					 * BLOCK_SECTORS */
89 	sector_t max_free_space;	/* reclaim run if free space is at
90 					 * this size */
91 
92 	sector_t last_checkpoint;	/* log tail. where recovery scan
93 					 * starts from */
94 	u64 last_cp_seq;		/* log tail sequence */
95 
96 	sector_t log_start;		/* log head. where new data appends */
97 	u64 seq;			/* log head sequence */
98 
99 	sector_t next_checkpoint;
100 
101 	struct mutex io_mutex;
102 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
103 
104 	spinlock_t io_list_lock;
105 	struct list_head running_ios;	/* io_units which are still running,
106 					 * and have not yet been completely
107 					 * written to the log */
108 	struct list_head io_end_ios;	/* io_units which have been completely
109 					 * written to the log but not yet written
110 					 * to the RAID */
111 	struct list_head flushing_ios;	/* io_units which are waiting for log
112 					 * cache flush */
113 	struct list_head finished_ios;	/* io_units which settle down in log disk */
114 	struct bio flush_bio;
115 
116 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
117 
118 	struct kmem_cache *io_kc;
119 	mempool_t io_pool;
120 	struct bio_set bs;
121 	mempool_t meta_pool;
122 
123 	struct md_thread __rcu *reclaim_thread;
124 	unsigned long reclaim_target;	/* number of space that need to be
125 					 * reclaimed.  if it's 0, reclaim spaces
126 					 * used by io_units which are in
127 					 * IO_UNIT_STRIPE_END state (eg, reclaim
128 					 * doesn't wait for specific io_unit
129 					 * switching to IO_UNIT_STRIPE_END
130 					 * state) */
131 	wait_queue_head_t iounit_wait;
132 
133 	struct list_head no_space_stripes; /* pending stripes, log has no space */
134 	spinlock_t no_space_stripes_lock;
135 
136 	bool need_cache_flush;
137 
138 	/* for r5c_cache */
139 	enum r5c_journal_mode r5c_journal_mode;
140 
141 	/* all stripes in r5cache, in the order of seq at sh->log_start */
142 	struct list_head stripe_in_journal_list;
143 
144 	spinlock_t stripe_in_journal_lock;
145 	atomic_t stripe_in_journal_count;
146 
147 	/* to submit async io_units, to fulfill ordering of flush */
148 	struct work_struct deferred_io_work;
149 	/* to disable write back during in degraded mode */
150 	struct work_struct disable_writeback_work;
151 
152 	/* to for chunk_aligned_read in writeback mode, details below */
153 	spinlock_t tree_lock;
154 	struct radix_tree_root big_stripe_tree;
155 };
156 
157 /*
158  * Enable chunk_aligned_read() with write back cache.
159  *
160  * Each chunk may contain more than one stripe (for example, a 256kB
161  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163  * For each big_stripe, we count how many stripes of this big_stripe
164  * are in the write back cache. These data are tracked in a radix tree
165  * (big_stripe_tree). We use radix_tree item pointer as the counter.
166  * r5c_tree_index() is used to calculate keys for the radix tree.
167  *
168  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169  * big_stripe of each chunk in the tree. If this big_stripe is in the
170  * tree, chunk_aligned_read() aborts. This look up is protected by
171  * rcu_read_lock().
172  *
173  * It is necessary to remember whether a stripe is counted in
174  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176  * two flags are set, the stripe is counted in big_stripe_tree. This
177  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178  * r5c_try_caching_write(); and moving clear_bit of
179  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180  * r5c_finish_stripe_write_out().
181  */
182 
183 /*
184  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185  * So it is necessary to left shift the counter by 2 bits before using it
186  * as data pointer of the tree.
187  */
188 #define R5C_RADIX_COUNT_SHIFT 2
189 
190 /*
191  * calculate key for big_stripe_tree
192  *
193  * sect: align_bi->bi_iter.bi_sector or sh->sector
194  */
195 static inline sector_t r5c_tree_index(struct r5conf *conf,
196 				      sector_t sect)
197 {
198 	sector_div(sect, conf->chunk_sectors);
199 	return sect;
200 }
201 
202 /*
203  * an IO range starts from a meta data block and end at the next meta data
204  * block. The io unit's the meta data block tracks data/parity followed it. io
205  * unit is written to log disk with normal write, as we always flush log disk
206  * first and then start move data to raid disks, there is no requirement to
207  * write io unit with FLUSH/FUA
208  */
209 struct r5l_io_unit {
210 	struct r5l_log *log;
211 
212 	struct page *meta_page;	/* store meta block */
213 	int meta_offset;	/* current offset in meta_page */
214 
215 	struct bio *current_bio;/* current_bio accepting new data */
216 
217 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
218 	u64 seq;		/* seq number of the metablock */
219 	sector_t log_start;	/* where the io_unit starts */
220 	sector_t log_end;	/* where the io_unit ends */
221 	struct list_head log_sibling; /* log->running_ios */
222 	struct list_head stripe_list; /* stripes added to the io_unit */
223 
224 	int state;
225 	bool need_split_bio;
226 	struct bio *split_bio;
227 
228 	unsigned int has_flush:1;		/* include flush request */
229 	unsigned int has_fua:1;			/* include fua request */
230 	unsigned int has_null_flush:1;		/* include null flush request */
231 	unsigned int has_flush_payload:1;	/* include flush payload  */
232 	/*
233 	 * io isn't sent yet, flush/fua request can only be submitted till it's
234 	 * the first IO in running_ios list
235 	 */
236 	unsigned int io_deferred:1;
237 
238 	struct bio_list flush_barriers;   /* size == 0 flush bios */
239 };
240 
241 /* r5l_io_unit state */
242 enum r5l_io_unit_state {
243 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
244 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
245 				 * don't accepting new bio */
246 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
247 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
248 };
249 
250 bool r5c_is_writeback(struct r5l_log *log)
251 {
252 	return (log != NULL &&
253 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
254 }
255 
256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
257 {
258 	start += inc;
259 	if (start >= log->device_size)
260 		start = start - log->device_size;
261 	return start;
262 }
263 
264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
265 				  sector_t end)
266 {
267 	if (end >= start)
268 		return end - start;
269 	else
270 		return end + log->device_size - start;
271 }
272 
273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
274 {
275 	sector_t used_size;
276 
277 	used_size = r5l_ring_distance(log, log->last_checkpoint,
278 					log->log_start);
279 
280 	return log->device_size > used_size + size;
281 }
282 
283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
284 				    enum r5l_io_unit_state state)
285 {
286 	if (WARN_ON(io->state >= state))
287 		return;
288 	io->state = state;
289 }
290 
291 static void
292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
293 {
294 	struct bio *wbi, *wbi2;
295 
296 	wbi = dev->written;
297 	dev->written = NULL;
298 	while (wbi && wbi->bi_iter.bi_sector <
299 	       dev->sector + RAID5_STRIPE_SECTORS(conf)) {
300 		wbi2 = r5_next_bio(conf, wbi, dev->sector);
301 		md_write_end(conf->mddev);
302 		bio_endio(wbi);
303 		wbi = wbi2;
304 	}
305 }
306 
307 void r5c_handle_cached_data_endio(struct r5conf *conf,
308 				  struct stripe_head *sh, int disks)
309 {
310 	int i;
311 
312 	for (i = sh->disks; i--; ) {
313 		if (sh->dev[i].written) {
314 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
315 			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
316 		}
317 	}
318 }
319 
320 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
321 
322 /* Check whether we should flush some stripes to free up stripe cache */
323 void r5c_check_stripe_cache_usage(struct r5conf *conf)
324 {
325 	int total_cached;
326 	struct r5l_log *log = READ_ONCE(conf->log);
327 
328 	if (!r5c_is_writeback(log))
329 		return;
330 
331 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
332 		atomic_read(&conf->r5c_cached_full_stripes);
333 
334 	/*
335 	 * The following condition is true for either of the following:
336 	 *   - stripe cache pressure high:
337 	 *          total_cached > 3/4 min_nr_stripes ||
338 	 *          empty_inactive_list_nr > 0
339 	 *   - stripe cache pressure moderate:
340 	 *          total_cached > 1/2 min_nr_stripes
341 	 */
342 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
343 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
344 		r5l_wake_reclaim(log, 0);
345 }
346 
347 /*
348  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
349  * stripes in the cache
350  */
351 void r5c_check_cached_full_stripe(struct r5conf *conf)
352 {
353 	struct r5l_log *log = READ_ONCE(conf->log);
354 
355 	if (!r5c_is_writeback(log))
356 		return;
357 
358 	/*
359 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
360 	 * or a full stripe (chunk size / 4k stripes).
361 	 */
362 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
363 	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
364 		conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
365 		r5l_wake_reclaim(log, 0);
366 }
367 
368 /*
369  * Total log space (in sectors) needed to flush all data in cache
370  *
371  * To avoid deadlock due to log space, it is necessary to reserve log
372  * space to flush critical stripes (stripes that occupying log space near
373  * last_checkpoint). This function helps check how much log space is
374  * required to flush all cached stripes.
375  *
376  * To reduce log space requirements, two mechanisms are used to give cache
377  * flush higher priorities:
378  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
379  *       stripes ALREADY in journal can be flushed w/o pending writes;
380  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
381  *       can be delayed (r5l_add_no_space_stripe).
382  *
383  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
384  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
385  * pages of journal space. For stripes that has not passed 1, flushing it
386  * requires (conf->raid_disks + 1) pages of journal space. There are at
387  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
388  * required to flush all cached stripes (in pages) is:
389  *
390  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
391  *     (group_cnt + 1) * (raid_disks + 1)
392  * or
393  *     (stripe_in_journal_count) * (max_degraded + 1) +
394  *     (group_cnt + 1) * (raid_disks - max_degraded)
395  */
396 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
397 {
398 	struct r5l_log *log = READ_ONCE(conf->log);
399 
400 	if (!r5c_is_writeback(log))
401 		return 0;
402 
403 	return BLOCK_SECTORS *
404 		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
405 		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
406 }
407 
408 /*
409  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
410  *
411  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
412  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
413  * device is less than 2x of reclaim_required_space.
414  */
415 static inline void r5c_update_log_state(struct r5l_log *log)
416 {
417 	struct r5conf *conf = log->rdev->mddev->private;
418 	sector_t free_space;
419 	sector_t reclaim_space;
420 	bool wake_reclaim = false;
421 
422 	if (!r5c_is_writeback(log))
423 		return;
424 
425 	free_space = r5l_ring_distance(log, log->log_start,
426 				       log->last_checkpoint);
427 	reclaim_space = r5c_log_required_to_flush_cache(conf);
428 	if (free_space < 2 * reclaim_space)
429 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
430 	else {
431 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
432 			wake_reclaim = true;
433 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
434 	}
435 	if (free_space < 3 * reclaim_space)
436 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
437 	else
438 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
439 
440 	if (wake_reclaim)
441 		r5l_wake_reclaim(log, 0);
442 }
443 
444 /*
445  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
446  * This function should only be called in write-back mode.
447  */
448 void r5c_make_stripe_write_out(struct stripe_head *sh)
449 {
450 	struct r5conf *conf = sh->raid_conf;
451 	struct r5l_log *log = READ_ONCE(conf->log);
452 
453 	BUG_ON(!r5c_is_writeback(log));
454 
455 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
456 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
457 
458 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
459 		atomic_inc(&conf->preread_active_stripes);
460 }
461 
462 static void r5c_handle_data_cached(struct stripe_head *sh)
463 {
464 	int i;
465 
466 	for (i = sh->disks; i--; )
467 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
468 			set_bit(R5_InJournal, &sh->dev[i].flags);
469 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
470 		}
471 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
472 }
473 
474 /*
475  * this journal write must contain full parity,
476  * it may also contain some data pages
477  */
478 static void r5c_handle_parity_cached(struct stripe_head *sh)
479 {
480 	int i;
481 
482 	for (i = sh->disks; i--; )
483 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
484 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
485 }
486 
487 /*
488  * Setting proper flags after writing (or flushing) data and/or parity to the
489  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
490  */
491 static void r5c_finish_cache_stripe(struct stripe_head *sh)
492 {
493 	struct r5l_log *log = READ_ONCE(sh->raid_conf->log);
494 
495 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
496 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
497 		/*
498 		 * Set R5_InJournal for parity dev[pd_idx]. This means
499 		 * all data AND parity in the journal. For RAID 6, it is
500 		 * NOT necessary to set the flag for dev[qd_idx], as the
501 		 * two parities are written out together.
502 		 */
503 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
504 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
505 		r5c_handle_data_cached(sh);
506 	} else {
507 		r5c_handle_parity_cached(sh);
508 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
509 	}
510 }
511 
512 static void r5l_io_run_stripes(struct r5l_io_unit *io)
513 {
514 	struct stripe_head *sh, *next;
515 
516 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
517 		list_del_init(&sh->log_list);
518 
519 		r5c_finish_cache_stripe(sh);
520 
521 		set_bit(STRIPE_HANDLE, &sh->state);
522 		raid5_release_stripe(sh);
523 	}
524 }
525 
526 static void r5l_log_run_stripes(struct r5l_log *log)
527 {
528 	struct r5l_io_unit *io, *next;
529 
530 	lockdep_assert_held(&log->io_list_lock);
531 
532 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
533 		/* don't change list order */
534 		if (io->state < IO_UNIT_IO_END)
535 			break;
536 
537 		list_move_tail(&io->log_sibling, &log->finished_ios);
538 		r5l_io_run_stripes(io);
539 	}
540 }
541 
542 static void r5l_move_to_end_ios(struct r5l_log *log)
543 {
544 	struct r5l_io_unit *io, *next;
545 
546 	lockdep_assert_held(&log->io_list_lock);
547 
548 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
549 		/* don't change list order */
550 		if (io->state < IO_UNIT_IO_END)
551 			break;
552 		list_move_tail(&io->log_sibling, &log->io_end_ios);
553 	}
554 }
555 
556 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
557 static void r5l_log_endio(struct bio *bio)
558 {
559 	struct r5l_io_unit *io = bio->bi_private;
560 	struct r5l_io_unit *io_deferred;
561 	struct r5l_log *log = io->log;
562 	unsigned long flags;
563 	bool has_null_flush;
564 	bool has_flush_payload;
565 
566 	if (bio->bi_status)
567 		md_error(log->rdev->mddev, log->rdev);
568 
569 	bio_put(bio);
570 	mempool_free(io->meta_page, &log->meta_pool);
571 
572 	spin_lock_irqsave(&log->io_list_lock, flags);
573 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
574 
575 	/*
576 	 * if the io doesn't not have null_flush or flush payload,
577 	 * it is not safe to access it after releasing io_list_lock.
578 	 * Therefore, it is necessary to check the condition with
579 	 * the lock held.
580 	 */
581 	has_null_flush = io->has_null_flush;
582 	has_flush_payload = io->has_flush_payload;
583 
584 	if (log->need_cache_flush && !list_empty(&io->stripe_list))
585 		r5l_move_to_end_ios(log);
586 	else
587 		r5l_log_run_stripes(log);
588 	if (!list_empty(&log->running_ios)) {
589 		/*
590 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
591 		 * can dispatch it
592 		 */
593 		io_deferred = list_first_entry(&log->running_ios,
594 					       struct r5l_io_unit, log_sibling);
595 		if (io_deferred->io_deferred)
596 			schedule_work(&log->deferred_io_work);
597 	}
598 
599 	spin_unlock_irqrestore(&log->io_list_lock, flags);
600 
601 	if (log->need_cache_flush)
602 		md_wakeup_thread(log->rdev->mddev->thread);
603 
604 	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
605 	if (has_null_flush) {
606 		struct bio *bi;
607 
608 		WARN_ON(bio_list_empty(&io->flush_barriers));
609 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
610 			bio_endio(bi);
611 			if (atomic_dec_and_test(&io->pending_stripe)) {
612 				__r5l_stripe_write_finished(io);
613 				return;
614 			}
615 		}
616 	}
617 	/* decrease pending_stripe for flush payload */
618 	if (has_flush_payload)
619 		if (atomic_dec_and_test(&io->pending_stripe))
620 			__r5l_stripe_write_finished(io);
621 }
622 
623 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
624 {
625 	unsigned long flags;
626 
627 	spin_lock_irqsave(&log->io_list_lock, flags);
628 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
629 	spin_unlock_irqrestore(&log->io_list_lock, flags);
630 
631 	/*
632 	 * In case of journal device failures, submit_bio will get error
633 	 * and calls endio, then active stripes will continue write
634 	 * process. Therefore, it is not necessary to check Faulty bit
635 	 * of journal device here.
636 	 *
637 	 * We can't check split_bio after current_bio is submitted. If
638 	 * io->split_bio is null, after current_bio is submitted, current_bio
639 	 * might already be completed and the io_unit is freed. We submit
640 	 * split_bio first to avoid the issue.
641 	 */
642 	if (io->split_bio) {
643 		if (io->has_flush)
644 			io->split_bio->bi_opf |= REQ_PREFLUSH;
645 		if (io->has_fua)
646 			io->split_bio->bi_opf |= REQ_FUA;
647 		submit_bio(io->split_bio);
648 	}
649 
650 	if (io->has_flush)
651 		io->current_bio->bi_opf |= REQ_PREFLUSH;
652 	if (io->has_fua)
653 		io->current_bio->bi_opf |= REQ_FUA;
654 	submit_bio(io->current_bio);
655 }
656 
657 /* deferred io_unit will be dispatched here */
658 static void r5l_submit_io_async(struct work_struct *work)
659 {
660 	struct r5l_log *log = container_of(work, struct r5l_log,
661 					   deferred_io_work);
662 	struct r5l_io_unit *io = NULL;
663 	unsigned long flags;
664 
665 	spin_lock_irqsave(&log->io_list_lock, flags);
666 	if (!list_empty(&log->running_ios)) {
667 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
668 				      log_sibling);
669 		if (!io->io_deferred)
670 			io = NULL;
671 		else
672 			io->io_deferred = 0;
673 	}
674 	spin_unlock_irqrestore(&log->io_list_lock, flags);
675 	if (io)
676 		r5l_do_submit_io(log, io);
677 }
678 
679 static void r5c_disable_writeback_async(struct work_struct *work)
680 {
681 	struct r5l_log *log = container_of(work, struct r5l_log,
682 					   disable_writeback_work);
683 	struct mddev *mddev = log->rdev->mddev;
684 	struct r5conf *conf = mddev->private;
685 
686 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
687 		return;
688 	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
689 		mdname(mddev));
690 
691 	/* wait superblock change before suspend */
692 	wait_event(mddev->sb_wait,
693 		   !READ_ONCE(conf->log) ||
694 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
695 
696 	log = READ_ONCE(conf->log);
697 	if (log) {
698 		mddev_suspend(mddev, false);
699 		log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
700 		mddev_resume(mddev);
701 	}
702 }
703 
704 static void r5l_submit_current_io(struct r5l_log *log)
705 {
706 	struct r5l_io_unit *io = log->current_io;
707 	struct r5l_meta_block *block;
708 	unsigned long flags;
709 	u32 crc;
710 	bool do_submit = true;
711 
712 	if (!io)
713 		return;
714 
715 	block = page_address(io->meta_page);
716 	block->meta_size = cpu_to_le32(io->meta_offset);
717 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
718 	block->checksum = cpu_to_le32(crc);
719 
720 	log->current_io = NULL;
721 	spin_lock_irqsave(&log->io_list_lock, flags);
722 	if (io->has_flush || io->has_fua) {
723 		if (io != list_first_entry(&log->running_ios,
724 					   struct r5l_io_unit, log_sibling)) {
725 			io->io_deferred = 1;
726 			do_submit = false;
727 		}
728 	}
729 	spin_unlock_irqrestore(&log->io_list_lock, flags);
730 	if (do_submit)
731 		r5l_do_submit_io(log, io);
732 }
733 
734 static struct bio *r5l_bio_alloc(struct r5l_log *log)
735 {
736 	struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
737 					   REQ_OP_WRITE, GFP_NOIO, &log->bs);
738 
739 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
740 
741 	return bio;
742 }
743 
744 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
745 {
746 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
747 
748 	r5c_update_log_state(log);
749 	/*
750 	 * If we filled up the log device start from the beginning again,
751 	 * which will require a new bio.
752 	 *
753 	 * Note: for this to work properly the log size needs to me a multiple
754 	 * of BLOCK_SECTORS.
755 	 */
756 	if (log->log_start == 0)
757 		io->need_split_bio = true;
758 
759 	io->log_end = log->log_start;
760 }
761 
762 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
763 {
764 	struct r5l_io_unit *io;
765 	struct r5l_meta_block *block;
766 
767 	io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
768 	if (!io)
769 		return NULL;
770 	memset(io, 0, sizeof(*io));
771 
772 	io->log = log;
773 	INIT_LIST_HEAD(&io->log_sibling);
774 	INIT_LIST_HEAD(&io->stripe_list);
775 	bio_list_init(&io->flush_barriers);
776 	io->state = IO_UNIT_RUNNING;
777 
778 	io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
779 	block = page_address(io->meta_page);
780 	clear_page(block);
781 	block->magic = cpu_to_le32(R5LOG_MAGIC);
782 	block->version = R5LOG_VERSION;
783 	block->seq = cpu_to_le64(log->seq);
784 	block->position = cpu_to_le64(log->log_start);
785 
786 	io->log_start = log->log_start;
787 	io->meta_offset = sizeof(struct r5l_meta_block);
788 	io->seq = log->seq++;
789 
790 	io->current_bio = r5l_bio_alloc(log);
791 	io->current_bio->bi_end_io = r5l_log_endio;
792 	io->current_bio->bi_private = io;
793 	__bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
794 
795 	r5_reserve_log_entry(log, io);
796 
797 	spin_lock_irq(&log->io_list_lock);
798 	list_add_tail(&io->log_sibling, &log->running_ios);
799 	spin_unlock_irq(&log->io_list_lock);
800 
801 	return io;
802 }
803 
804 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
805 {
806 	if (log->current_io &&
807 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
808 		r5l_submit_current_io(log);
809 
810 	if (!log->current_io) {
811 		log->current_io = r5l_new_meta(log);
812 		if (!log->current_io)
813 			return -ENOMEM;
814 	}
815 
816 	return 0;
817 }
818 
819 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
820 				    sector_t location,
821 				    u32 checksum1, u32 checksum2,
822 				    bool checksum2_valid)
823 {
824 	struct r5l_io_unit *io = log->current_io;
825 	struct r5l_payload_data_parity *payload;
826 
827 	payload = page_address(io->meta_page) + io->meta_offset;
828 	payload->header.type = cpu_to_le16(type);
829 	payload->header.flags = cpu_to_le16(0);
830 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
831 				    (PAGE_SHIFT - 9));
832 	payload->location = cpu_to_le64(location);
833 	payload->checksum[0] = cpu_to_le32(checksum1);
834 	if (checksum2_valid)
835 		payload->checksum[1] = cpu_to_le32(checksum2);
836 
837 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
838 		sizeof(__le32) * (1 + !!checksum2_valid);
839 }
840 
841 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
842 {
843 	struct r5l_io_unit *io = log->current_io;
844 
845 	if (io->need_split_bio) {
846 		BUG_ON(io->split_bio);
847 		io->split_bio = io->current_bio;
848 		io->current_bio = r5l_bio_alloc(log);
849 		bio_chain(io->current_bio, io->split_bio);
850 		io->need_split_bio = false;
851 	}
852 
853 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
854 		BUG();
855 
856 	r5_reserve_log_entry(log, io);
857 }
858 
859 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
860 {
861 	struct mddev *mddev = log->rdev->mddev;
862 	struct r5conf *conf = mddev->private;
863 	struct r5l_io_unit *io;
864 	struct r5l_payload_flush *payload;
865 	int meta_size;
866 
867 	/*
868 	 * payload_flush requires extra writes to the journal.
869 	 * To avoid handling the extra IO in quiesce, just skip
870 	 * flush_payload
871 	 */
872 	if (conf->quiesce)
873 		return;
874 
875 	mutex_lock(&log->io_mutex);
876 	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
877 
878 	if (r5l_get_meta(log, meta_size)) {
879 		mutex_unlock(&log->io_mutex);
880 		return;
881 	}
882 
883 	/* current implementation is one stripe per flush payload */
884 	io = log->current_io;
885 	payload = page_address(io->meta_page) + io->meta_offset;
886 	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
887 	payload->header.flags = cpu_to_le16(0);
888 	payload->size = cpu_to_le32(sizeof(__le64));
889 	payload->flush_stripes[0] = cpu_to_le64(sect);
890 	io->meta_offset += meta_size;
891 	/* multiple flush payloads count as one pending_stripe */
892 	if (!io->has_flush_payload) {
893 		io->has_flush_payload = 1;
894 		atomic_inc(&io->pending_stripe);
895 	}
896 	mutex_unlock(&log->io_mutex);
897 }
898 
899 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
900 			   int data_pages, int parity_pages)
901 {
902 	int i;
903 	int meta_size;
904 	int ret;
905 	struct r5l_io_unit *io;
906 
907 	meta_size =
908 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
909 		 * data_pages) +
910 		sizeof(struct r5l_payload_data_parity) +
911 		sizeof(__le32) * parity_pages;
912 
913 	ret = r5l_get_meta(log, meta_size);
914 	if (ret)
915 		return ret;
916 
917 	io = log->current_io;
918 
919 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
920 		io->has_flush = 1;
921 
922 	for (i = 0; i < sh->disks; i++) {
923 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
924 		    test_bit(R5_InJournal, &sh->dev[i].flags))
925 			continue;
926 		if (i == sh->pd_idx || i == sh->qd_idx)
927 			continue;
928 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
929 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
930 			io->has_fua = 1;
931 			/*
932 			 * we need to flush journal to make sure recovery can
933 			 * reach the data with fua flag
934 			 */
935 			io->has_flush = 1;
936 		}
937 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
938 					raid5_compute_blocknr(sh, i, 0),
939 					sh->dev[i].log_checksum, 0, false);
940 		r5l_append_payload_page(log, sh->dev[i].page);
941 	}
942 
943 	if (parity_pages == 2) {
944 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
945 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
946 					sh->dev[sh->qd_idx].log_checksum, true);
947 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
948 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
949 	} else if (parity_pages == 1) {
950 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
951 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
952 					0, false);
953 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
954 	} else  /* Just writing data, not parity, in caching phase */
955 		BUG_ON(parity_pages != 0);
956 
957 	list_add_tail(&sh->log_list, &io->stripe_list);
958 	atomic_inc(&io->pending_stripe);
959 	sh->log_io = io;
960 
961 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
962 		return 0;
963 
964 	if (sh->log_start == MaxSector) {
965 		BUG_ON(!list_empty(&sh->r5c));
966 		sh->log_start = io->log_start;
967 		spin_lock_irq(&log->stripe_in_journal_lock);
968 		list_add_tail(&sh->r5c,
969 			      &log->stripe_in_journal_list);
970 		spin_unlock_irq(&log->stripe_in_journal_lock);
971 		atomic_inc(&log->stripe_in_journal_count);
972 	}
973 	return 0;
974 }
975 
976 /* add stripe to no_space_stripes, and then wake up reclaim */
977 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
978 					   struct stripe_head *sh)
979 {
980 	spin_lock(&log->no_space_stripes_lock);
981 	list_add_tail(&sh->log_list, &log->no_space_stripes);
982 	spin_unlock(&log->no_space_stripes_lock);
983 }
984 
985 /*
986  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
987  * data from log to raid disks), so we shouldn't wait for reclaim here
988  */
989 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
990 {
991 	struct r5conf *conf = sh->raid_conf;
992 	int write_disks = 0;
993 	int data_pages, parity_pages;
994 	int reserve;
995 	int i;
996 	int ret = 0;
997 	bool wake_reclaim = false;
998 
999 	if (!log)
1000 		return -EAGAIN;
1001 	/* Don't support stripe batch */
1002 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1003 	    test_bit(STRIPE_SYNCING, &sh->state)) {
1004 		/* the stripe is written to log, we start writing it to raid */
1005 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1006 		return -EAGAIN;
1007 	}
1008 
1009 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1010 
1011 	for (i = 0; i < sh->disks; i++) {
1012 		void *addr;
1013 
1014 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1015 		    test_bit(R5_InJournal, &sh->dev[i].flags))
1016 			continue;
1017 
1018 		write_disks++;
1019 		/* checksum is already calculated in last run */
1020 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1021 			continue;
1022 		addr = kmap_local_page(sh->dev[i].page);
1023 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1024 						    addr, PAGE_SIZE);
1025 		kunmap_local(addr);
1026 	}
1027 	parity_pages = 1 + !!(sh->qd_idx >= 0);
1028 	data_pages = write_disks - parity_pages;
1029 
1030 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1031 	/*
1032 	 * The stripe must enter state machine again to finish the write, so
1033 	 * don't delay.
1034 	 */
1035 	clear_bit(STRIPE_DELAYED, &sh->state);
1036 	atomic_inc(&sh->count);
1037 
1038 	mutex_lock(&log->io_mutex);
1039 	/* meta + data */
1040 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1041 
1042 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1043 		if (!r5l_has_free_space(log, reserve)) {
1044 			r5l_add_no_space_stripe(log, sh);
1045 			wake_reclaim = true;
1046 		} else {
1047 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1048 			if (ret) {
1049 				spin_lock_irq(&log->io_list_lock);
1050 				list_add_tail(&sh->log_list,
1051 					      &log->no_mem_stripes);
1052 				spin_unlock_irq(&log->io_list_lock);
1053 			}
1054 		}
1055 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1056 		/*
1057 		 * log space critical, do not process stripes that are
1058 		 * not in cache yet (sh->log_start == MaxSector).
1059 		 */
1060 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1061 		    sh->log_start == MaxSector) {
1062 			r5l_add_no_space_stripe(log, sh);
1063 			wake_reclaim = true;
1064 			reserve = 0;
1065 		} else if (!r5l_has_free_space(log, reserve)) {
1066 			if (sh->log_start == log->last_checkpoint)
1067 				BUG();
1068 			else
1069 				r5l_add_no_space_stripe(log, sh);
1070 		} else {
1071 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1072 			if (ret) {
1073 				spin_lock_irq(&log->io_list_lock);
1074 				list_add_tail(&sh->log_list,
1075 					      &log->no_mem_stripes);
1076 				spin_unlock_irq(&log->io_list_lock);
1077 			}
1078 		}
1079 	}
1080 
1081 	mutex_unlock(&log->io_mutex);
1082 	if (wake_reclaim)
1083 		r5l_wake_reclaim(log, reserve);
1084 	return 0;
1085 }
1086 
1087 void r5l_write_stripe_run(struct r5l_log *log)
1088 {
1089 	if (!log)
1090 		return;
1091 	mutex_lock(&log->io_mutex);
1092 	r5l_submit_current_io(log);
1093 	mutex_unlock(&log->io_mutex);
1094 }
1095 
1096 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1097 {
1098 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1099 		/*
1100 		 * in write through (journal only)
1101 		 * we flush log disk cache first, then write stripe data to
1102 		 * raid disks. So if bio is finished, the log disk cache is
1103 		 * flushed already. The recovery guarantees we can recovery
1104 		 * the bio from log disk, so we don't need to flush again
1105 		 */
1106 		if (bio->bi_iter.bi_size == 0) {
1107 			bio_endio(bio);
1108 			return 0;
1109 		}
1110 		bio->bi_opf &= ~REQ_PREFLUSH;
1111 	} else {
1112 		/* write back (with cache) */
1113 		if (bio->bi_iter.bi_size == 0) {
1114 			mutex_lock(&log->io_mutex);
1115 			r5l_get_meta(log, 0);
1116 			bio_list_add(&log->current_io->flush_barriers, bio);
1117 			log->current_io->has_flush = 1;
1118 			log->current_io->has_null_flush = 1;
1119 			atomic_inc(&log->current_io->pending_stripe);
1120 			r5l_submit_current_io(log);
1121 			mutex_unlock(&log->io_mutex);
1122 			return 0;
1123 		}
1124 	}
1125 	return -EAGAIN;
1126 }
1127 
1128 /* This will run after log space is reclaimed */
1129 static void r5l_run_no_space_stripes(struct r5l_log *log)
1130 {
1131 	struct stripe_head *sh;
1132 
1133 	spin_lock(&log->no_space_stripes_lock);
1134 	while (!list_empty(&log->no_space_stripes)) {
1135 		sh = list_first_entry(&log->no_space_stripes,
1136 				      struct stripe_head, log_list);
1137 		list_del_init(&sh->log_list);
1138 		set_bit(STRIPE_HANDLE, &sh->state);
1139 		raid5_release_stripe(sh);
1140 	}
1141 	spin_unlock(&log->no_space_stripes_lock);
1142 }
1143 
1144 /*
1145  * calculate new last_checkpoint
1146  * for write through mode, returns log->next_checkpoint
1147  * for write back, returns log_start of first sh in stripe_in_journal_list
1148  */
1149 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1150 {
1151 	struct stripe_head *sh;
1152 	struct r5l_log *log = READ_ONCE(conf->log);
1153 	sector_t new_cp;
1154 	unsigned long flags;
1155 
1156 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1157 		return log->next_checkpoint;
1158 
1159 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1160 	if (list_empty(&log->stripe_in_journal_list)) {
1161 		/* all stripes flushed */
1162 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1163 		return log->next_checkpoint;
1164 	}
1165 	sh = list_first_entry(&log->stripe_in_journal_list,
1166 			      struct stripe_head, r5c);
1167 	new_cp = sh->log_start;
1168 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1169 	return new_cp;
1170 }
1171 
1172 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1173 {
1174 	struct r5conf *conf = log->rdev->mddev->private;
1175 
1176 	return r5l_ring_distance(log, log->last_checkpoint,
1177 				 r5c_calculate_new_cp(conf));
1178 }
1179 
1180 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1181 {
1182 	struct stripe_head *sh;
1183 
1184 	lockdep_assert_held(&log->io_list_lock);
1185 
1186 	if (!list_empty(&log->no_mem_stripes)) {
1187 		sh = list_first_entry(&log->no_mem_stripes,
1188 				      struct stripe_head, log_list);
1189 		list_del_init(&sh->log_list);
1190 		set_bit(STRIPE_HANDLE, &sh->state);
1191 		raid5_release_stripe(sh);
1192 	}
1193 }
1194 
1195 static bool r5l_complete_finished_ios(struct r5l_log *log)
1196 {
1197 	struct r5l_io_unit *io, *next;
1198 	bool found = false;
1199 
1200 	lockdep_assert_held(&log->io_list_lock);
1201 
1202 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1203 		/* don't change list order */
1204 		if (io->state < IO_UNIT_STRIPE_END)
1205 			break;
1206 
1207 		log->next_checkpoint = io->log_start;
1208 
1209 		list_del(&io->log_sibling);
1210 		mempool_free(io, &log->io_pool);
1211 		r5l_run_no_mem_stripe(log);
1212 
1213 		found = true;
1214 	}
1215 
1216 	return found;
1217 }
1218 
1219 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1220 {
1221 	struct r5l_log *log = io->log;
1222 	struct r5conf *conf = log->rdev->mddev->private;
1223 	unsigned long flags;
1224 
1225 	spin_lock_irqsave(&log->io_list_lock, flags);
1226 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1227 
1228 	if (!r5l_complete_finished_ios(log)) {
1229 		spin_unlock_irqrestore(&log->io_list_lock, flags);
1230 		return;
1231 	}
1232 
1233 	if (r5l_reclaimable_space(log) > log->max_free_space ||
1234 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1235 		r5l_wake_reclaim(log, 0);
1236 
1237 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1238 	wake_up(&log->iounit_wait);
1239 }
1240 
1241 void r5l_stripe_write_finished(struct stripe_head *sh)
1242 {
1243 	struct r5l_io_unit *io;
1244 
1245 	io = sh->log_io;
1246 	sh->log_io = NULL;
1247 
1248 	if (io && atomic_dec_and_test(&io->pending_stripe))
1249 		__r5l_stripe_write_finished(io);
1250 }
1251 
1252 static void r5l_log_flush_endio(struct bio *bio)
1253 {
1254 	struct r5l_log *log = container_of(bio, struct r5l_log,
1255 		flush_bio);
1256 	unsigned long flags;
1257 	struct r5l_io_unit *io;
1258 
1259 	if (bio->bi_status)
1260 		md_error(log->rdev->mddev, log->rdev);
1261 	bio_uninit(bio);
1262 
1263 	spin_lock_irqsave(&log->io_list_lock, flags);
1264 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1265 		r5l_io_run_stripes(io);
1266 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1267 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1268 }
1269 
1270 /*
1271  * Starting dispatch IO to raid.
1272  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1273  * broken meta in the middle of a log causes recovery can't find meta at the
1274  * head of log. If operations require meta at the head persistent in log, we
1275  * must make sure meta before it persistent in log too. A case is:
1276  *
1277  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1278  * data/parity must be persistent in log before we do the write to raid disks.
1279  *
1280  * The solution is we restrictly maintain io_unit list order. In this case, we
1281  * only write stripes of an io_unit to raid disks till the io_unit is the first
1282  * one whose data/parity is in log.
1283  */
1284 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1285 {
1286 	bool do_flush;
1287 
1288 	if (!log || !log->need_cache_flush)
1289 		return;
1290 
1291 	spin_lock_irq(&log->io_list_lock);
1292 	/* flush bio is running */
1293 	if (!list_empty(&log->flushing_ios)) {
1294 		spin_unlock_irq(&log->io_list_lock);
1295 		return;
1296 	}
1297 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1298 	do_flush = !list_empty(&log->flushing_ios);
1299 	spin_unlock_irq(&log->io_list_lock);
1300 
1301 	if (!do_flush)
1302 		return;
1303 	bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1304 		  REQ_OP_WRITE | REQ_PREFLUSH);
1305 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1306 	submit_bio(&log->flush_bio);
1307 }
1308 
1309 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1310 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1311 	sector_t end)
1312 {
1313 	struct block_device *bdev = log->rdev->bdev;
1314 	struct mddev *mddev;
1315 
1316 	r5l_write_super(log, end);
1317 
1318 	if (!bdev_max_discard_sectors(bdev))
1319 		return;
1320 
1321 	mddev = log->rdev->mddev;
1322 	/*
1323 	 * Discard could zero data, so before discard we must make sure
1324 	 * superblock is updated to new log tail. Updating superblock (either
1325 	 * directly call md_update_sb() or depend on md thread) must hold
1326 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1327 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
1328 	 * for all IO finish, hence waiting for reclaim thread, while reclaim
1329 	 * thread is calling this function and waiting for reconfig mutex. So
1330 	 * there is a deadlock. We workaround this issue with a trylock.
1331 	 * FIXME: we could miss discard if we can't take reconfig mutex
1332 	 */
1333 	set_mask_bits(&mddev->sb_flags, 0,
1334 		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1335 	if (!mddev_trylock(mddev))
1336 		return;
1337 	md_update_sb(mddev, 1);
1338 	mddev_unlock(mddev);
1339 
1340 	/* discard IO error really doesn't matter, ignore it */
1341 	if (log->last_checkpoint < end) {
1342 		blkdev_issue_discard(bdev,
1343 				log->last_checkpoint + log->rdev->data_offset,
1344 				end - log->last_checkpoint, GFP_NOIO);
1345 	} else {
1346 		blkdev_issue_discard(bdev,
1347 				log->last_checkpoint + log->rdev->data_offset,
1348 				log->device_size - log->last_checkpoint,
1349 				GFP_NOIO);
1350 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1351 				GFP_NOIO);
1352 	}
1353 }
1354 
1355 /*
1356  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1357  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1358  *
1359  * must hold conf->device_lock
1360  */
1361 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1362 {
1363 	BUG_ON(list_empty(&sh->lru));
1364 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1365 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1366 
1367 	/*
1368 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1369 	 * raid5_release_stripe() while holding conf->device_lock
1370 	 */
1371 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1372 	lockdep_assert_held(&conf->device_lock);
1373 
1374 	list_del_init(&sh->lru);
1375 	atomic_inc(&sh->count);
1376 
1377 	set_bit(STRIPE_HANDLE, &sh->state);
1378 	atomic_inc(&conf->active_stripes);
1379 	r5c_make_stripe_write_out(sh);
1380 
1381 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1382 		atomic_inc(&conf->r5c_flushing_partial_stripes);
1383 	else
1384 		atomic_inc(&conf->r5c_flushing_full_stripes);
1385 	raid5_release_stripe(sh);
1386 }
1387 
1388 /*
1389  * if num == 0, flush all full stripes
1390  * if num > 0, flush all full stripes. If less than num full stripes are
1391  *             flushed, flush some partial stripes until totally num stripes are
1392  *             flushed or there is no more cached stripes.
1393  */
1394 void r5c_flush_cache(struct r5conf *conf, int num)
1395 {
1396 	int count;
1397 	struct stripe_head *sh, *next;
1398 
1399 	lockdep_assert_held(&conf->device_lock);
1400 	if (!READ_ONCE(conf->log))
1401 		return;
1402 
1403 	count = 0;
1404 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1405 		r5c_flush_stripe(conf, sh);
1406 		count++;
1407 	}
1408 
1409 	if (count >= num)
1410 		return;
1411 	list_for_each_entry_safe(sh, next,
1412 				 &conf->r5c_partial_stripe_list, lru) {
1413 		r5c_flush_stripe(conf, sh);
1414 		if (++count >= num)
1415 			break;
1416 	}
1417 }
1418 
1419 static void r5c_do_reclaim(struct r5conf *conf)
1420 {
1421 	struct r5l_log *log = READ_ONCE(conf->log);
1422 	struct stripe_head *sh;
1423 	int count = 0;
1424 	unsigned long flags;
1425 	int total_cached;
1426 	int stripes_to_flush;
1427 	int flushing_partial, flushing_full;
1428 
1429 	if (!r5c_is_writeback(log))
1430 		return;
1431 
1432 	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1433 	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1434 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1435 		atomic_read(&conf->r5c_cached_full_stripes) -
1436 		flushing_full - flushing_partial;
1437 
1438 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1439 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1440 		/*
1441 		 * if stripe cache pressure high, flush all full stripes and
1442 		 * some partial stripes
1443 		 */
1444 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1445 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1446 		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1447 		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1448 		/*
1449 		 * if stripe cache pressure moderate, or if there is many full
1450 		 * stripes,flush all full stripes
1451 		 */
1452 		stripes_to_flush = 0;
1453 	else
1454 		/* no need to flush */
1455 		stripes_to_flush = -1;
1456 
1457 	if (stripes_to_flush >= 0) {
1458 		spin_lock_irqsave(&conf->device_lock, flags);
1459 		r5c_flush_cache(conf, stripes_to_flush);
1460 		spin_unlock_irqrestore(&conf->device_lock, flags);
1461 	}
1462 
1463 	/* if log space is tight, flush stripes on stripe_in_journal_list */
1464 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1465 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1466 		spin_lock(&conf->device_lock);
1467 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1468 			/*
1469 			 * stripes on stripe_in_journal_list could be in any
1470 			 * state of the stripe_cache state machine. In this
1471 			 * case, we only want to flush stripe on
1472 			 * r5c_cached_full/partial_stripes. The following
1473 			 * condition makes sure the stripe is on one of the
1474 			 * two lists.
1475 			 */
1476 			if (!list_empty(&sh->lru) &&
1477 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1478 			    atomic_read(&sh->count) == 0) {
1479 				r5c_flush_stripe(conf, sh);
1480 				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1481 					break;
1482 			}
1483 		}
1484 		spin_unlock(&conf->device_lock);
1485 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1486 	}
1487 
1488 	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1489 		r5l_run_no_space_stripes(log);
1490 
1491 	md_wakeup_thread(conf->mddev->thread);
1492 }
1493 
1494 static void r5l_do_reclaim(struct r5l_log *log)
1495 {
1496 	struct r5conf *conf = log->rdev->mddev->private;
1497 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1498 	sector_t reclaimable;
1499 	sector_t next_checkpoint;
1500 	bool write_super;
1501 
1502 	spin_lock_irq(&log->io_list_lock);
1503 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1504 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1505 	/*
1506 	 * move proper io_unit to reclaim list. We should not change the order.
1507 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1508 	 * shouldn't reuse space of an unreclaimable io_unit
1509 	 */
1510 	while (1) {
1511 		reclaimable = r5l_reclaimable_space(log);
1512 		if (reclaimable >= reclaim_target ||
1513 		    (list_empty(&log->running_ios) &&
1514 		     list_empty(&log->io_end_ios) &&
1515 		     list_empty(&log->flushing_ios) &&
1516 		     list_empty(&log->finished_ios)))
1517 			break;
1518 
1519 		md_wakeup_thread(log->rdev->mddev->thread);
1520 		wait_event_lock_irq(log->iounit_wait,
1521 				    r5l_reclaimable_space(log) > reclaimable,
1522 				    log->io_list_lock);
1523 	}
1524 
1525 	next_checkpoint = r5c_calculate_new_cp(conf);
1526 	spin_unlock_irq(&log->io_list_lock);
1527 
1528 	if (reclaimable == 0 || !write_super)
1529 		return;
1530 
1531 	/*
1532 	 * write_super will flush cache of each raid disk. We must write super
1533 	 * here, because the log area might be reused soon and we don't want to
1534 	 * confuse recovery
1535 	 */
1536 	r5l_write_super_and_discard_space(log, next_checkpoint);
1537 
1538 	mutex_lock(&log->io_mutex);
1539 	log->last_checkpoint = next_checkpoint;
1540 	r5c_update_log_state(log);
1541 	mutex_unlock(&log->io_mutex);
1542 
1543 	r5l_run_no_space_stripes(log);
1544 }
1545 
1546 static void r5l_reclaim_thread(struct md_thread *thread)
1547 {
1548 	struct mddev *mddev = thread->mddev;
1549 	struct r5conf *conf = mddev->private;
1550 	struct r5l_log *log = READ_ONCE(conf->log);
1551 
1552 	if (!log)
1553 		return;
1554 	r5c_do_reclaim(conf);
1555 	r5l_do_reclaim(log);
1556 }
1557 
1558 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1559 {
1560 	unsigned long target;
1561 	unsigned long new = (unsigned long)space; /* overflow in theory */
1562 
1563 	if (!log)
1564 		return;
1565 
1566 	target = READ_ONCE(log->reclaim_target);
1567 	do {
1568 		if (new < target)
1569 			return;
1570 	} while (!try_cmpxchg(&log->reclaim_target, &target, new));
1571 	md_wakeup_thread(log->reclaim_thread);
1572 }
1573 
1574 void r5l_quiesce(struct r5l_log *log, int quiesce)
1575 {
1576 	struct mddev *mddev = log->rdev->mddev;
1577 	struct md_thread *thread = rcu_dereference_protected(
1578 		log->reclaim_thread, lockdep_is_held(&mddev->reconfig_mutex));
1579 
1580 	if (quiesce) {
1581 		/* make sure r5l_write_super_and_discard_space exits */
1582 		wake_up(&mddev->sb_wait);
1583 		kthread_park(thread->tsk);
1584 		r5l_wake_reclaim(log, MaxSector);
1585 		r5l_do_reclaim(log);
1586 	} else
1587 		kthread_unpark(thread->tsk);
1588 }
1589 
1590 bool r5l_log_disk_error(struct r5conf *conf)
1591 {
1592 	struct r5l_log *log = READ_ONCE(conf->log);
1593 
1594 	/* don't allow write if journal disk is missing */
1595 	if (!log)
1596 		return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1597 	else
1598 		return test_bit(Faulty, &log->rdev->flags);
1599 }
1600 
1601 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1602 
1603 struct r5l_recovery_ctx {
1604 	struct page *meta_page;		/* current meta */
1605 	sector_t meta_total_blocks;	/* total size of current meta and data */
1606 	sector_t pos;			/* recovery position */
1607 	u64 seq;			/* recovery position seq */
1608 	int data_parity_stripes;	/* number of data_parity stripes */
1609 	int data_only_stripes;		/* number of data_only stripes */
1610 	struct list_head cached_list;
1611 
1612 	/*
1613 	 * read ahead page pool (ra_pool)
1614 	 * in recovery, log is read sequentially. It is not efficient to
1615 	 * read every page with sync_page_io(). The read ahead page pool
1616 	 * reads multiple pages with one IO, so further log read can
1617 	 * just copy data from the pool.
1618 	 */
1619 	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1620 	struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1621 	sector_t pool_offset;	/* offset of first page in the pool */
1622 	int total_pages;	/* total allocated pages */
1623 	int valid_pages;	/* pages with valid data */
1624 };
1625 
1626 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1627 					    struct r5l_recovery_ctx *ctx)
1628 {
1629 	struct page *page;
1630 
1631 	ctx->valid_pages = 0;
1632 	ctx->total_pages = 0;
1633 	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1634 		page = alloc_page(GFP_KERNEL);
1635 
1636 		if (!page)
1637 			break;
1638 		ctx->ra_pool[ctx->total_pages] = page;
1639 		ctx->total_pages += 1;
1640 	}
1641 
1642 	if (ctx->total_pages == 0)
1643 		return -ENOMEM;
1644 
1645 	ctx->pool_offset = 0;
1646 	return 0;
1647 }
1648 
1649 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1650 					struct r5l_recovery_ctx *ctx)
1651 {
1652 	int i;
1653 
1654 	for (i = 0; i < ctx->total_pages; ++i)
1655 		put_page(ctx->ra_pool[i]);
1656 }
1657 
1658 /*
1659  * fetch ctx->valid_pages pages from offset
1660  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1661  * However, if the offset is close to the end of the journal device,
1662  * ctx->valid_pages could be smaller than ctx->total_pages
1663  */
1664 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1665 				      struct r5l_recovery_ctx *ctx,
1666 				      sector_t offset)
1667 {
1668 	struct bio bio;
1669 	int ret;
1670 
1671 	bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1672 		 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1673 	bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1674 
1675 	ctx->valid_pages = 0;
1676 	ctx->pool_offset = offset;
1677 
1678 	while (ctx->valid_pages < ctx->total_pages) {
1679 		__bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1680 			       0);
1681 		ctx->valid_pages += 1;
1682 
1683 		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1684 
1685 		if (offset == 0)  /* reached end of the device */
1686 			break;
1687 	}
1688 
1689 	ret = submit_bio_wait(&bio);
1690 	bio_uninit(&bio);
1691 	return ret;
1692 }
1693 
1694 /*
1695  * try read a page from the read ahead page pool, if the page is not in the
1696  * pool, call r5l_recovery_fetch_ra_pool
1697  */
1698 static int r5l_recovery_read_page(struct r5l_log *log,
1699 				  struct r5l_recovery_ctx *ctx,
1700 				  struct page *page,
1701 				  sector_t offset)
1702 {
1703 	int ret;
1704 
1705 	if (offset < ctx->pool_offset ||
1706 	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1707 		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1708 		if (ret)
1709 			return ret;
1710 	}
1711 
1712 	BUG_ON(offset < ctx->pool_offset ||
1713 	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1714 
1715 	memcpy(page_address(page),
1716 	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1717 					 BLOCK_SECTOR_SHIFT]),
1718 	       PAGE_SIZE);
1719 	return 0;
1720 }
1721 
1722 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1723 					struct r5l_recovery_ctx *ctx)
1724 {
1725 	struct page *page = ctx->meta_page;
1726 	struct r5l_meta_block *mb;
1727 	u32 crc, stored_crc;
1728 	int ret;
1729 
1730 	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1731 	if (ret != 0)
1732 		return ret;
1733 
1734 	mb = page_address(page);
1735 	stored_crc = le32_to_cpu(mb->checksum);
1736 	mb->checksum = 0;
1737 
1738 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1739 	    le64_to_cpu(mb->seq) != ctx->seq ||
1740 	    mb->version != R5LOG_VERSION ||
1741 	    le64_to_cpu(mb->position) != ctx->pos)
1742 		return -EINVAL;
1743 
1744 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1745 	if (stored_crc != crc)
1746 		return -EINVAL;
1747 
1748 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1749 		return -EINVAL;
1750 
1751 	ctx->meta_total_blocks = BLOCK_SECTORS;
1752 
1753 	return 0;
1754 }
1755 
1756 static void
1757 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1758 				     struct page *page,
1759 				     sector_t pos, u64 seq)
1760 {
1761 	struct r5l_meta_block *mb;
1762 
1763 	mb = page_address(page);
1764 	clear_page(mb);
1765 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1766 	mb->version = R5LOG_VERSION;
1767 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1768 	mb->seq = cpu_to_le64(seq);
1769 	mb->position = cpu_to_le64(pos);
1770 }
1771 
1772 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1773 					  u64 seq)
1774 {
1775 	struct page *page;
1776 	struct r5l_meta_block *mb;
1777 
1778 	page = alloc_page(GFP_KERNEL);
1779 	if (!page)
1780 		return -ENOMEM;
1781 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1782 	mb = page_address(page);
1783 	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1784 					     mb, PAGE_SIZE));
1785 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1786 			  REQ_SYNC | REQ_FUA, false)) {
1787 		__free_page(page);
1788 		return -EIO;
1789 	}
1790 	__free_page(page);
1791 	return 0;
1792 }
1793 
1794 /*
1795  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1796  * to mark valid (potentially not flushed) data in the journal.
1797  *
1798  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1799  * so there should not be any mismatch here.
1800  */
1801 static void r5l_recovery_load_data(struct r5l_log *log,
1802 				   struct stripe_head *sh,
1803 				   struct r5l_recovery_ctx *ctx,
1804 				   struct r5l_payload_data_parity *payload,
1805 				   sector_t log_offset)
1806 {
1807 	struct mddev *mddev = log->rdev->mddev;
1808 	struct r5conf *conf = mddev->private;
1809 	int dd_idx;
1810 
1811 	raid5_compute_sector(conf,
1812 			     le64_to_cpu(payload->location), 0,
1813 			     &dd_idx, sh);
1814 	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1815 	sh->dev[dd_idx].log_checksum =
1816 		le32_to_cpu(payload->checksum[0]);
1817 	ctx->meta_total_blocks += BLOCK_SECTORS;
1818 
1819 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1820 	set_bit(STRIPE_R5C_CACHING, &sh->state);
1821 }
1822 
1823 static void r5l_recovery_load_parity(struct r5l_log *log,
1824 				     struct stripe_head *sh,
1825 				     struct r5l_recovery_ctx *ctx,
1826 				     struct r5l_payload_data_parity *payload,
1827 				     sector_t log_offset)
1828 {
1829 	struct mddev *mddev = log->rdev->mddev;
1830 	struct r5conf *conf = mddev->private;
1831 
1832 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1833 	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1834 	sh->dev[sh->pd_idx].log_checksum =
1835 		le32_to_cpu(payload->checksum[0]);
1836 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1837 
1838 	if (sh->qd_idx >= 0) {
1839 		r5l_recovery_read_page(
1840 			log, ctx, sh->dev[sh->qd_idx].page,
1841 			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1842 		sh->dev[sh->qd_idx].log_checksum =
1843 			le32_to_cpu(payload->checksum[1]);
1844 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1845 	}
1846 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1847 }
1848 
1849 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1850 {
1851 	int i;
1852 
1853 	sh->state = 0;
1854 	sh->log_start = MaxSector;
1855 	for (i = sh->disks; i--; )
1856 		sh->dev[i].flags = 0;
1857 }
1858 
1859 static void
1860 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1861 			       struct stripe_head *sh,
1862 			       struct r5l_recovery_ctx *ctx)
1863 {
1864 	struct md_rdev *rdev, *rrdev;
1865 	int disk_index;
1866 	int data_count = 0;
1867 
1868 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1869 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1870 			continue;
1871 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1872 			continue;
1873 		data_count++;
1874 	}
1875 
1876 	/*
1877 	 * stripes that only have parity must have been flushed
1878 	 * before the crash that we are now recovering from, so
1879 	 * there is nothing more to recovery.
1880 	 */
1881 	if (data_count == 0)
1882 		goto out;
1883 
1884 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1885 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1886 			continue;
1887 
1888 		/* in case device is broken */
1889 		rdev = conf->disks[disk_index].rdev;
1890 		if (rdev) {
1891 			atomic_inc(&rdev->nr_pending);
1892 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1893 				     sh->dev[disk_index].page, REQ_OP_WRITE,
1894 				     false);
1895 			rdev_dec_pending(rdev, rdev->mddev);
1896 		}
1897 		rrdev = conf->disks[disk_index].replacement;
1898 		if (rrdev) {
1899 			atomic_inc(&rrdev->nr_pending);
1900 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1901 				     sh->dev[disk_index].page, REQ_OP_WRITE,
1902 				     false);
1903 			rdev_dec_pending(rrdev, rrdev->mddev);
1904 		}
1905 	}
1906 	ctx->data_parity_stripes++;
1907 out:
1908 	r5l_recovery_reset_stripe(sh);
1909 }
1910 
1911 static struct stripe_head *
1912 r5c_recovery_alloc_stripe(
1913 		struct r5conf *conf,
1914 		sector_t stripe_sect,
1915 		int noblock)
1916 {
1917 	struct stripe_head *sh;
1918 
1919 	sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
1920 				     noblock ? R5_GAS_NOBLOCK : 0);
1921 	if (!sh)
1922 		return NULL;  /* no more stripe available */
1923 
1924 	r5l_recovery_reset_stripe(sh);
1925 
1926 	return sh;
1927 }
1928 
1929 static struct stripe_head *
1930 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1931 {
1932 	struct stripe_head *sh;
1933 
1934 	list_for_each_entry(sh, list, lru)
1935 		if (sh->sector == sect)
1936 			return sh;
1937 	return NULL;
1938 }
1939 
1940 static void
1941 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1942 			  struct r5l_recovery_ctx *ctx)
1943 {
1944 	struct stripe_head *sh, *next;
1945 
1946 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1947 		r5l_recovery_reset_stripe(sh);
1948 		list_del_init(&sh->lru);
1949 		raid5_release_stripe(sh);
1950 	}
1951 }
1952 
1953 static void
1954 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1955 			    struct r5l_recovery_ctx *ctx)
1956 {
1957 	struct stripe_head *sh, *next;
1958 
1959 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1960 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1961 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1962 			list_del_init(&sh->lru);
1963 			raid5_release_stripe(sh);
1964 		}
1965 }
1966 
1967 /* if matches return 0; otherwise return -EINVAL */
1968 static int
1969 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1970 				  struct r5l_recovery_ctx *ctx,
1971 				  struct page *page,
1972 				  sector_t log_offset, __le32 log_checksum)
1973 {
1974 	void *addr;
1975 	u32 checksum;
1976 
1977 	r5l_recovery_read_page(log, ctx, page, log_offset);
1978 	addr = kmap_local_page(page);
1979 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1980 	kunmap_local(addr);
1981 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1982 }
1983 
1984 /*
1985  * before loading data to stripe cache, we need verify checksum for all data,
1986  * if there is mismatch for any data page, we drop all data in the mata block
1987  */
1988 static int
1989 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1990 					 struct r5l_recovery_ctx *ctx)
1991 {
1992 	struct mddev *mddev = log->rdev->mddev;
1993 	struct r5conf *conf = mddev->private;
1994 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
1995 	sector_t mb_offset = sizeof(struct r5l_meta_block);
1996 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1997 	struct page *page;
1998 	struct r5l_payload_data_parity *payload;
1999 	struct r5l_payload_flush *payload_flush;
2000 
2001 	page = alloc_page(GFP_KERNEL);
2002 	if (!page)
2003 		return -ENOMEM;
2004 
2005 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2006 		payload = (void *)mb + mb_offset;
2007 		payload_flush = (void *)mb + mb_offset;
2008 
2009 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2010 			if (r5l_recovery_verify_data_checksum(
2011 				    log, ctx, page, log_offset,
2012 				    payload->checksum[0]) < 0)
2013 				goto mismatch;
2014 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2015 			if (r5l_recovery_verify_data_checksum(
2016 				    log, ctx, page, log_offset,
2017 				    payload->checksum[0]) < 0)
2018 				goto mismatch;
2019 			if (conf->max_degraded == 2 && /* q for RAID 6 */
2020 			    r5l_recovery_verify_data_checksum(
2021 				    log, ctx, page,
2022 				    r5l_ring_add(log, log_offset,
2023 						 BLOCK_SECTORS),
2024 				    payload->checksum[1]) < 0)
2025 				goto mismatch;
2026 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2027 			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2028 		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2029 			goto mismatch;
2030 
2031 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2032 			mb_offset += sizeof(struct r5l_payload_flush) +
2033 				le32_to_cpu(payload_flush->size);
2034 		} else {
2035 			/* DATA or PARITY payload */
2036 			log_offset = r5l_ring_add(log, log_offset,
2037 						  le32_to_cpu(payload->size));
2038 			mb_offset += sizeof(struct r5l_payload_data_parity) +
2039 				sizeof(__le32) *
2040 				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2041 		}
2042 
2043 	}
2044 
2045 	put_page(page);
2046 	return 0;
2047 
2048 mismatch:
2049 	put_page(page);
2050 	return -EINVAL;
2051 }
2052 
2053 /*
2054  * Analyze all data/parity pages in one meta block
2055  * Returns:
2056  * 0 for success
2057  * -EINVAL for unknown playload type
2058  * -EAGAIN for checksum mismatch of data page
2059  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2060  */
2061 static int
2062 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2063 				struct r5l_recovery_ctx *ctx,
2064 				struct list_head *cached_stripe_list)
2065 {
2066 	struct mddev *mddev = log->rdev->mddev;
2067 	struct r5conf *conf = mddev->private;
2068 	struct r5l_meta_block *mb;
2069 	struct r5l_payload_data_parity *payload;
2070 	struct r5l_payload_flush *payload_flush;
2071 	int mb_offset;
2072 	sector_t log_offset;
2073 	sector_t stripe_sect;
2074 	struct stripe_head *sh;
2075 	int ret;
2076 
2077 	/*
2078 	 * for mismatch in data blocks, we will drop all data in this mb, but
2079 	 * we will still read next mb for other data with FLUSH flag, as
2080 	 * io_unit could finish out of order.
2081 	 */
2082 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2083 	if (ret == -EINVAL)
2084 		return -EAGAIN;
2085 	else if (ret)
2086 		return ret;   /* -ENOMEM duo to alloc_page() failed */
2087 
2088 	mb = page_address(ctx->meta_page);
2089 	mb_offset = sizeof(struct r5l_meta_block);
2090 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2091 
2092 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2093 		int dd;
2094 
2095 		payload = (void *)mb + mb_offset;
2096 		payload_flush = (void *)mb + mb_offset;
2097 
2098 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2099 			int i, count;
2100 
2101 			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2102 			for (i = 0; i < count; ++i) {
2103 				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2104 				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2105 								stripe_sect);
2106 				if (sh) {
2107 					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2108 					r5l_recovery_reset_stripe(sh);
2109 					list_del_init(&sh->lru);
2110 					raid5_release_stripe(sh);
2111 				}
2112 			}
2113 
2114 			mb_offset += sizeof(struct r5l_payload_flush) +
2115 				le32_to_cpu(payload_flush->size);
2116 			continue;
2117 		}
2118 
2119 		/* DATA or PARITY payload */
2120 		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2121 			raid5_compute_sector(
2122 				conf, le64_to_cpu(payload->location), 0, &dd,
2123 				NULL)
2124 			: le64_to_cpu(payload->location);
2125 
2126 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2127 						stripe_sect);
2128 
2129 		if (!sh) {
2130 			sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2131 			/*
2132 			 * cannot get stripe from raid5_get_active_stripe
2133 			 * try replay some stripes
2134 			 */
2135 			if (!sh) {
2136 				r5c_recovery_replay_stripes(
2137 					cached_stripe_list, ctx);
2138 				sh = r5c_recovery_alloc_stripe(
2139 					conf, stripe_sect, 1);
2140 			}
2141 			if (!sh) {
2142 				int new_size = conf->min_nr_stripes * 2;
2143 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2144 					mdname(mddev),
2145 					new_size);
2146 				ret = raid5_set_cache_size(mddev, new_size);
2147 				if (conf->min_nr_stripes <= new_size / 2) {
2148 					pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2149 						mdname(mddev),
2150 						ret,
2151 						new_size,
2152 						conf->min_nr_stripes,
2153 						conf->max_nr_stripes);
2154 					return -ENOMEM;
2155 				}
2156 				sh = r5c_recovery_alloc_stripe(
2157 					conf, stripe_sect, 0);
2158 			}
2159 			if (!sh) {
2160 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2161 					mdname(mddev));
2162 				return -ENOMEM;
2163 			}
2164 			list_add_tail(&sh->lru, cached_stripe_list);
2165 		}
2166 
2167 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2168 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2169 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2170 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2171 				list_move_tail(&sh->lru, cached_stripe_list);
2172 			}
2173 			r5l_recovery_load_data(log, sh, ctx, payload,
2174 					       log_offset);
2175 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2176 			r5l_recovery_load_parity(log, sh, ctx, payload,
2177 						 log_offset);
2178 		else
2179 			return -EINVAL;
2180 
2181 		log_offset = r5l_ring_add(log, log_offset,
2182 					  le32_to_cpu(payload->size));
2183 
2184 		mb_offset += sizeof(struct r5l_payload_data_parity) +
2185 			sizeof(__le32) *
2186 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 /*
2193  * Load the stripe into cache. The stripe will be written out later by
2194  * the stripe cache state machine.
2195  */
2196 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2197 					 struct stripe_head *sh)
2198 {
2199 	struct r5dev *dev;
2200 	int i;
2201 
2202 	for (i = sh->disks; i--; ) {
2203 		dev = sh->dev + i;
2204 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2205 			set_bit(R5_InJournal, &dev->flags);
2206 			set_bit(R5_UPTODATE, &dev->flags);
2207 		}
2208 	}
2209 }
2210 
2211 /*
2212  * Scan through the log for all to-be-flushed data
2213  *
2214  * For stripes with data and parity, namely Data-Parity stripe
2215  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2216  *
2217  * For stripes with only data, namely Data-Only stripe
2218  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2219  *
2220  * For a stripe, if we see data after parity, we should discard all previous
2221  * data and parity for this stripe, as these data are already flushed to
2222  * the array.
2223  *
2224  * At the end of the scan, we return the new journal_tail, which points to
2225  * first data-only stripe on the journal device, or next invalid meta block.
2226  */
2227 static int r5c_recovery_flush_log(struct r5l_log *log,
2228 				  struct r5l_recovery_ctx *ctx)
2229 {
2230 	struct stripe_head *sh;
2231 	int ret = 0;
2232 
2233 	/* scan through the log */
2234 	while (1) {
2235 		if (r5l_recovery_read_meta_block(log, ctx))
2236 			break;
2237 
2238 		ret = r5c_recovery_analyze_meta_block(log, ctx,
2239 						      &ctx->cached_list);
2240 		/*
2241 		 * -EAGAIN means mismatch in data block, in this case, we still
2242 		 * try scan the next metablock
2243 		 */
2244 		if (ret && ret != -EAGAIN)
2245 			break;   /* ret == -EINVAL or -ENOMEM */
2246 		ctx->seq++;
2247 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2248 	}
2249 
2250 	if (ret == -ENOMEM) {
2251 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2252 		return ret;
2253 	}
2254 
2255 	/* replay data-parity stripes */
2256 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2257 
2258 	/* load data-only stripes to stripe cache */
2259 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2260 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2261 		r5c_recovery_load_one_stripe(log, sh);
2262 		ctx->data_only_stripes++;
2263 	}
2264 
2265 	return 0;
2266 }
2267 
2268 /*
2269  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2270  * log will start here. but we can't let superblock point to last valid
2271  * meta block. The log might looks like:
2272  * | meta 1| meta 2| meta 3|
2273  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2274  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2275  * happens again, new recovery will start from meta 1. Since meta 2n is
2276  * valid now, recovery will think meta 3 is valid, which is wrong.
2277  * The solution is we create a new meta in meta2 with its seq == meta
2278  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2279  * will not think meta 3 is a valid meta, because its seq doesn't match
2280  */
2281 
2282 /*
2283  * Before recovery, the log looks like the following
2284  *
2285  *   ---------------------------------------------
2286  *   |           valid log        | invalid log  |
2287  *   ---------------------------------------------
2288  *   ^
2289  *   |- log->last_checkpoint
2290  *   |- log->last_cp_seq
2291  *
2292  * Now we scan through the log until we see invalid entry
2293  *
2294  *   ---------------------------------------------
2295  *   |           valid log        | invalid log  |
2296  *   ---------------------------------------------
2297  *   ^                            ^
2298  *   |- log->last_checkpoint      |- ctx->pos
2299  *   |- log->last_cp_seq          |- ctx->seq
2300  *
2301  * From this point, we need to increase seq number by 10 to avoid
2302  * confusing next recovery.
2303  *
2304  *   ---------------------------------------------
2305  *   |           valid log        | invalid log  |
2306  *   ---------------------------------------------
2307  *   ^                              ^
2308  *   |- log->last_checkpoint        |- ctx->pos+1
2309  *   |- log->last_cp_seq            |- ctx->seq+10001
2310  *
2311  * However, it is not safe to start the state machine yet, because data only
2312  * parities are not yet secured in RAID. To save these data only parities, we
2313  * rewrite them from seq+11.
2314  *
2315  *   -----------------------------------------------------------------
2316  *   |           valid log        | data only stripes | invalid log  |
2317  *   -----------------------------------------------------------------
2318  *   ^                                                ^
2319  *   |- log->last_checkpoint                          |- ctx->pos+n
2320  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2321  *
2322  * If failure happens again during this process, the recovery can safe start
2323  * again from log->last_checkpoint.
2324  *
2325  * Once data only stripes are rewritten to journal, we move log_tail
2326  *
2327  *   -----------------------------------------------------------------
2328  *   |     old log        |    data only stripes    | invalid log  |
2329  *   -----------------------------------------------------------------
2330  *                        ^                         ^
2331  *                        |- log->last_checkpoint   |- ctx->pos+n
2332  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2333  *
2334  * Then we can safely start the state machine. If failure happens from this
2335  * point on, the recovery will start from new log->last_checkpoint.
2336  */
2337 static int
2338 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2339 				       struct r5l_recovery_ctx *ctx)
2340 {
2341 	struct stripe_head *sh;
2342 	struct mddev *mddev = log->rdev->mddev;
2343 	struct page *page;
2344 	sector_t next_checkpoint = MaxSector;
2345 
2346 	page = alloc_page(GFP_KERNEL);
2347 	if (!page) {
2348 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2349 		       mdname(mddev));
2350 		return -ENOMEM;
2351 	}
2352 
2353 	WARN_ON(list_empty(&ctx->cached_list));
2354 
2355 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2356 		struct r5l_meta_block *mb;
2357 		int i;
2358 		int offset;
2359 		sector_t write_pos;
2360 
2361 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2362 		r5l_recovery_create_empty_meta_block(log, page,
2363 						     ctx->pos, ctx->seq);
2364 		mb = page_address(page);
2365 		offset = le32_to_cpu(mb->meta_size);
2366 		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2367 
2368 		for (i = sh->disks; i--; ) {
2369 			struct r5dev *dev = &sh->dev[i];
2370 			struct r5l_payload_data_parity *payload;
2371 			void *addr;
2372 
2373 			if (test_bit(R5_InJournal, &dev->flags)) {
2374 				payload = (void *)mb + offset;
2375 				payload->header.type = cpu_to_le16(
2376 					R5LOG_PAYLOAD_DATA);
2377 				payload->size = cpu_to_le32(BLOCK_SECTORS);
2378 				payload->location = cpu_to_le64(
2379 					raid5_compute_blocknr(sh, i, 0));
2380 				addr = kmap_local_page(dev->page);
2381 				payload->checksum[0] = cpu_to_le32(
2382 					crc32c_le(log->uuid_checksum, addr,
2383 						  PAGE_SIZE));
2384 				kunmap_local(addr);
2385 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2386 					     dev->page, REQ_OP_WRITE, false);
2387 				write_pos = r5l_ring_add(log, write_pos,
2388 							 BLOCK_SECTORS);
2389 				offset += sizeof(__le32) +
2390 					sizeof(struct r5l_payload_data_parity);
2391 
2392 			}
2393 		}
2394 		mb->meta_size = cpu_to_le32(offset);
2395 		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2396 						     mb, PAGE_SIZE));
2397 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2398 			     REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2399 		sh->log_start = ctx->pos;
2400 		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2401 		atomic_inc(&log->stripe_in_journal_count);
2402 		ctx->pos = write_pos;
2403 		ctx->seq += 1;
2404 		next_checkpoint = sh->log_start;
2405 	}
2406 	log->next_checkpoint = next_checkpoint;
2407 	__free_page(page);
2408 	return 0;
2409 }
2410 
2411 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2412 						 struct r5l_recovery_ctx *ctx)
2413 {
2414 	struct mddev *mddev = log->rdev->mddev;
2415 	struct r5conf *conf = mddev->private;
2416 	struct stripe_head *sh, *next;
2417 	bool cleared_pending = false;
2418 
2419 	if (ctx->data_only_stripes == 0)
2420 		return;
2421 
2422 	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2423 		cleared_pending = true;
2424 		clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2425 	}
2426 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2427 
2428 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2429 		r5c_make_stripe_write_out(sh);
2430 		set_bit(STRIPE_HANDLE, &sh->state);
2431 		list_del_init(&sh->lru);
2432 		raid5_release_stripe(sh);
2433 	}
2434 
2435 	/* reuse conf->wait_for_quiescent in recovery */
2436 	wait_event(conf->wait_for_quiescent,
2437 		   atomic_read(&conf->active_stripes) == 0);
2438 
2439 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2440 	if (cleared_pending)
2441 		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2442 }
2443 
2444 static int r5l_recovery_log(struct r5l_log *log)
2445 {
2446 	struct mddev *mddev = log->rdev->mddev;
2447 	struct r5l_recovery_ctx *ctx;
2448 	int ret;
2449 	sector_t pos;
2450 
2451 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2452 	if (!ctx)
2453 		return -ENOMEM;
2454 
2455 	ctx->pos = log->last_checkpoint;
2456 	ctx->seq = log->last_cp_seq;
2457 	INIT_LIST_HEAD(&ctx->cached_list);
2458 	ctx->meta_page = alloc_page(GFP_KERNEL);
2459 
2460 	if (!ctx->meta_page) {
2461 		ret =  -ENOMEM;
2462 		goto meta_page;
2463 	}
2464 
2465 	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2466 		ret = -ENOMEM;
2467 		goto ra_pool;
2468 	}
2469 
2470 	ret = r5c_recovery_flush_log(log, ctx);
2471 
2472 	if (ret)
2473 		goto error;
2474 
2475 	pos = ctx->pos;
2476 	ctx->seq += 10000;
2477 
2478 	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2479 		pr_info("md/raid:%s: starting from clean shutdown\n",
2480 			 mdname(mddev));
2481 	else
2482 		pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2483 			 mdname(mddev), ctx->data_only_stripes,
2484 			 ctx->data_parity_stripes);
2485 
2486 	if (ctx->data_only_stripes == 0) {
2487 		log->next_checkpoint = ctx->pos;
2488 		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2489 		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2490 	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2491 		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2492 		       mdname(mddev));
2493 		ret =  -EIO;
2494 		goto error;
2495 	}
2496 
2497 	log->log_start = ctx->pos;
2498 	log->seq = ctx->seq;
2499 	log->last_checkpoint = pos;
2500 	r5l_write_super(log, pos);
2501 
2502 	r5c_recovery_flush_data_only_stripes(log, ctx);
2503 	ret = 0;
2504 error:
2505 	r5l_recovery_free_ra_pool(log, ctx);
2506 ra_pool:
2507 	__free_page(ctx->meta_page);
2508 meta_page:
2509 	kfree(ctx);
2510 	return ret;
2511 }
2512 
2513 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2514 {
2515 	struct mddev *mddev = log->rdev->mddev;
2516 
2517 	log->rdev->journal_tail = cp;
2518 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2519 }
2520 
2521 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2522 {
2523 	struct r5conf *conf;
2524 	int ret;
2525 
2526 	ret = mddev_lock(mddev);
2527 	if (ret)
2528 		return ret;
2529 
2530 	conf = mddev->private;
2531 	if (!conf || !conf->log)
2532 		goto out_unlock;
2533 
2534 	switch (conf->log->r5c_journal_mode) {
2535 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2536 		ret = snprintf(
2537 			page, PAGE_SIZE, "[%s] %s\n",
2538 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2539 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2540 		break;
2541 	case R5C_JOURNAL_MODE_WRITE_BACK:
2542 		ret = snprintf(
2543 			page, PAGE_SIZE, "%s [%s]\n",
2544 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2545 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2546 		break;
2547 	default:
2548 		ret = 0;
2549 	}
2550 
2551 out_unlock:
2552 	mddev_unlock(mddev);
2553 	return ret;
2554 }
2555 
2556 /*
2557  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2558  *
2559  * @mode as defined in 'enum r5c_journal_mode'.
2560  *
2561  */
2562 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2563 {
2564 	struct r5conf *conf;
2565 
2566 	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2567 	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2568 		return -EINVAL;
2569 
2570 	conf = mddev->private;
2571 	if (!conf || !conf->log)
2572 		return -ENODEV;
2573 
2574 	if (raid5_calc_degraded(conf) > 0 &&
2575 	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
2576 		return -EINVAL;
2577 
2578 	conf->log->r5c_journal_mode = mode;
2579 
2580 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2581 		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2582 	return 0;
2583 }
2584 EXPORT_SYMBOL(r5c_journal_mode_set);
2585 
2586 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2587 				      const char *page, size_t length)
2588 {
2589 	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2590 	size_t len = length;
2591 	int ret;
2592 
2593 	if (len < 2)
2594 		return -EINVAL;
2595 
2596 	if (page[len - 1] == '\n')
2597 		len--;
2598 
2599 	while (mode--)
2600 		if (strlen(r5c_journal_mode_str[mode]) == len &&
2601 		    !strncmp(page, r5c_journal_mode_str[mode], len))
2602 			break;
2603 	ret = mddev_suspend_and_lock(mddev);
2604 	if (ret)
2605 		return ret;
2606 	ret = r5c_journal_mode_set(mddev, mode);
2607 	mddev_unlock_and_resume(mddev);
2608 	return ret ?: length;
2609 }
2610 
2611 struct md_sysfs_entry
2612 r5c_journal_mode = __ATTR(journal_mode, 0644,
2613 			  r5c_journal_mode_show, r5c_journal_mode_store);
2614 
2615 /*
2616  * Try handle write operation in caching phase. This function should only
2617  * be called in write-back mode.
2618  *
2619  * If all outstanding writes can be handled in caching phase, returns 0
2620  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2621  * and returns -EAGAIN
2622  */
2623 int r5c_try_caching_write(struct r5conf *conf,
2624 			  struct stripe_head *sh,
2625 			  struct stripe_head_state *s,
2626 			  int disks)
2627 {
2628 	struct r5l_log *log = READ_ONCE(conf->log);
2629 	int i;
2630 	struct r5dev *dev;
2631 	int to_cache = 0;
2632 	void __rcu **pslot;
2633 	sector_t tree_index;
2634 	int ret;
2635 	uintptr_t refcount;
2636 
2637 	BUG_ON(!r5c_is_writeback(log));
2638 
2639 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2640 		/*
2641 		 * There are two different scenarios here:
2642 		 *  1. The stripe has some data cached, and it is sent to
2643 		 *     write-out phase for reclaim
2644 		 *  2. The stripe is clean, and this is the first write
2645 		 *
2646 		 * For 1, return -EAGAIN, so we continue with
2647 		 * handle_stripe_dirtying().
2648 		 *
2649 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2650 		 * write.
2651 		 */
2652 
2653 		/* case 1: anything injournal or anything in written */
2654 		if (s->injournal > 0 || s->written > 0)
2655 			return -EAGAIN;
2656 		/* case 2 */
2657 		set_bit(STRIPE_R5C_CACHING, &sh->state);
2658 	}
2659 
2660 	/*
2661 	 * When run in degraded mode, array is set to write-through mode.
2662 	 * This check helps drain pending write safely in the transition to
2663 	 * write-through mode.
2664 	 *
2665 	 * When a stripe is syncing, the write is also handled in write
2666 	 * through mode.
2667 	 */
2668 	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2669 		r5c_make_stripe_write_out(sh);
2670 		return -EAGAIN;
2671 	}
2672 
2673 	for (i = disks; i--; ) {
2674 		dev = &sh->dev[i];
2675 		/* if non-overwrite, use writing-out phase */
2676 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2677 		    !test_bit(R5_InJournal, &dev->flags)) {
2678 			r5c_make_stripe_write_out(sh);
2679 			return -EAGAIN;
2680 		}
2681 	}
2682 
2683 	/* if the stripe is not counted in big_stripe_tree, add it now */
2684 	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2685 	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2686 		tree_index = r5c_tree_index(conf, sh->sector);
2687 		spin_lock(&log->tree_lock);
2688 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2689 					       tree_index);
2690 		if (pslot) {
2691 			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2692 				pslot, &log->tree_lock) >>
2693 				R5C_RADIX_COUNT_SHIFT;
2694 			radix_tree_replace_slot(
2695 				&log->big_stripe_tree, pslot,
2696 				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2697 		} else {
2698 			/*
2699 			 * this radix_tree_insert can fail safely, so no
2700 			 * need to call radix_tree_preload()
2701 			 */
2702 			ret = radix_tree_insert(
2703 				&log->big_stripe_tree, tree_index,
2704 				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2705 			if (ret) {
2706 				spin_unlock(&log->tree_lock);
2707 				r5c_make_stripe_write_out(sh);
2708 				return -EAGAIN;
2709 			}
2710 		}
2711 		spin_unlock(&log->tree_lock);
2712 
2713 		/*
2714 		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2715 		 * counted in the radix tree
2716 		 */
2717 		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2718 		atomic_inc(&conf->r5c_cached_partial_stripes);
2719 	}
2720 
2721 	for (i = disks; i--; ) {
2722 		dev = &sh->dev[i];
2723 		if (dev->towrite) {
2724 			set_bit(R5_Wantwrite, &dev->flags);
2725 			set_bit(R5_Wantdrain, &dev->flags);
2726 			set_bit(R5_LOCKED, &dev->flags);
2727 			to_cache++;
2728 		}
2729 	}
2730 
2731 	if (to_cache) {
2732 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2733 		/*
2734 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2735 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2736 		 * r5c_handle_data_cached()
2737 		 */
2738 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2739 	}
2740 
2741 	return 0;
2742 }
2743 
2744 /*
2745  * free extra pages (orig_page) we allocated for prexor
2746  */
2747 void r5c_release_extra_page(struct stripe_head *sh)
2748 {
2749 	struct r5conf *conf = sh->raid_conf;
2750 	int i;
2751 	bool using_disk_info_extra_page;
2752 
2753 	using_disk_info_extra_page =
2754 		sh->dev[0].orig_page == conf->disks[0].extra_page;
2755 
2756 	for (i = sh->disks; i--; )
2757 		if (sh->dev[i].page != sh->dev[i].orig_page) {
2758 			struct page *p = sh->dev[i].orig_page;
2759 
2760 			sh->dev[i].orig_page = sh->dev[i].page;
2761 			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2762 
2763 			if (!using_disk_info_extra_page)
2764 				put_page(p);
2765 		}
2766 
2767 	if (using_disk_info_extra_page) {
2768 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2769 		md_wakeup_thread(conf->mddev->thread);
2770 	}
2771 }
2772 
2773 void r5c_use_extra_page(struct stripe_head *sh)
2774 {
2775 	struct r5conf *conf = sh->raid_conf;
2776 	int i;
2777 	struct r5dev *dev;
2778 
2779 	for (i = sh->disks; i--; ) {
2780 		dev = &sh->dev[i];
2781 		if (dev->orig_page != dev->page)
2782 			put_page(dev->orig_page);
2783 		dev->orig_page = conf->disks[i].extra_page;
2784 	}
2785 }
2786 
2787 /*
2788  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2789  * stripe is committed to RAID disks.
2790  */
2791 void r5c_finish_stripe_write_out(struct r5conf *conf,
2792 				 struct stripe_head *sh,
2793 				 struct stripe_head_state *s)
2794 {
2795 	struct r5l_log *log = READ_ONCE(conf->log);
2796 	int i;
2797 	sector_t tree_index;
2798 	void __rcu **pslot;
2799 	uintptr_t refcount;
2800 
2801 	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2802 		return;
2803 
2804 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2805 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2806 
2807 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2808 		return;
2809 
2810 	for (i = sh->disks; i--; ) {
2811 		clear_bit(R5_InJournal, &sh->dev[i].flags);
2812 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2813 			wake_up_bit(&sh->dev[i].flags, R5_Overlap);
2814 	}
2815 
2816 	/*
2817 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2818 	 * We updated R5_InJournal, so we also update s->injournal.
2819 	 */
2820 	s->injournal = 0;
2821 
2822 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2823 		if (atomic_dec_and_test(&conf->pending_full_writes))
2824 			md_wakeup_thread(conf->mddev->thread);
2825 
2826 	spin_lock_irq(&log->stripe_in_journal_lock);
2827 	list_del_init(&sh->r5c);
2828 	spin_unlock_irq(&log->stripe_in_journal_lock);
2829 	sh->log_start = MaxSector;
2830 
2831 	atomic_dec(&log->stripe_in_journal_count);
2832 	r5c_update_log_state(log);
2833 
2834 	/* stop counting this stripe in big_stripe_tree */
2835 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2836 	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2837 		tree_index = r5c_tree_index(conf, sh->sector);
2838 		spin_lock(&log->tree_lock);
2839 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2840 					       tree_index);
2841 		BUG_ON(pslot == NULL);
2842 		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2843 			pslot, &log->tree_lock) >>
2844 			R5C_RADIX_COUNT_SHIFT;
2845 		if (refcount == 1)
2846 			radix_tree_delete(&log->big_stripe_tree, tree_index);
2847 		else
2848 			radix_tree_replace_slot(
2849 				&log->big_stripe_tree, pslot,
2850 				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2851 		spin_unlock(&log->tree_lock);
2852 	}
2853 
2854 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2855 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2856 		atomic_dec(&conf->r5c_flushing_partial_stripes);
2857 		atomic_dec(&conf->r5c_cached_partial_stripes);
2858 	}
2859 
2860 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2861 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2862 		atomic_dec(&conf->r5c_flushing_full_stripes);
2863 		atomic_dec(&conf->r5c_cached_full_stripes);
2864 	}
2865 
2866 	r5l_append_flush_payload(log, sh->sector);
2867 	/* stripe is flused to raid disks, we can do resync now */
2868 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2869 		set_bit(STRIPE_HANDLE, &sh->state);
2870 }
2871 
2872 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2873 {
2874 	struct r5conf *conf = sh->raid_conf;
2875 	int pages = 0;
2876 	int reserve;
2877 	int i;
2878 	int ret = 0;
2879 
2880 	BUG_ON(!log);
2881 
2882 	for (i = 0; i < sh->disks; i++) {
2883 		void *addr;
2884 
2885 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2886 			continue;
2887 		addr = kmap_local_page(sh->dev[i].page);
2888 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2889 						    addr, PAGE_SIZE);
2890 		kunmap_local(addr);
2891 		pages++;
2892 	}
2893 	WARN_ON(pages == 0);
2894 
2895 	/*
2896 	 * The stripe must enter state machine again to call endio, so
2897 	 * don't delay.
2898 	 */
2899 	clear_bit(STRIPE_DELAYED, &sh->state);
2900 	atomic_inc(&sh->count);
2901 
2902 	mutex_lock(&log->io_mutex);
2903 	/* meta + data */
2904 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2905 
2906 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2907 	    sh->log_start == MaxSector)
2908 		r5l_add_no_space_stripe(log, sh);
2909 	else if (!r5l_has_free_space(log, reserve)) {
2910 		if (sh->log_start == log->last_checkpoint)
2911 			BUG();
2912 		else
2913 			r5l_add_no_space_stripe(log, sh);
2914 	} else {
2915 		ret = r5l_log_stripe(log, sh, pages, 0);
2916 		if (ret) {
2917 			spin_lock_irq(&log->io_list_lock);
2918 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2919 			spin_unlock_irq(&log->io_list_lock);
2920 		}
2921 	}
2922 
2923 	mutex_unlock(&log->io_mutex);
2924 	return 0;
2925 }
2926 
2927 /* check whether this big stripe is in write back cache. */
2928 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2929 {
2930 	struct r5l_log *log = READ_ONCE(conf->log);
2931 	sector_t tree_index;
2932 	void *slot;
2933 
2934 	if (!log)
2935 		return false;
2936 
2937 	tree_index = r5c_tree_index(conf, sect);
2938 	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2939 	return slot != NULL;
2940 }
2941 
2942 static int r5l_load_log(struct r5l_log *log)
2943 {
2944 	struct md_rdev *rdev = log->rdev;
2945 	struct page *page;
2946 	struct r5l_meta_block *mb;
2947 	sector_t cp = log->rdev->journal_tail;
2948 	u32 stored_crc, expected_crc;
2949 	bool create_super = false;
2950 	int ret = 0;
2951 
2952 	/* Make sure it's valid */
2953 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2954 		cp = 0;
2955 	page = alloc_page(GFP_KERNEL);
2956 	if (!page)
2957 		return -ENOMEM;
2958 
2959 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2960 		ret = -EIO;
2961 		goto ioerr;
2962 	}
2963 	mb = page_address(page);
2964 
2965 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2966 	    mb->version != R5LOG_VERSION) {
2967 		create_super = true;
2968 		goto create;
2969 	}
2970 	stored_crc = le32_to_cpu(mb->checksum);
2971 	mb->checksum = 0;
2972 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2973 	if (stored_crc != expected_crc) {
2974 		create_super = true;
2975 		goto create;
2976 	}
2977 	if (le64_to_cpu(mb->position) != cp) {
2978 		create_super = true;
2979 		goto create;
2980 	}
2981 create:
2982 	if (create_super) {
2983 		log->last_cp_seq = get_random_u32();
2984 		cp = 0;
2985 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2986 		/*
2987 		 * Make sure super points to correct address. Log might have
2988 		 * data very soon. If super hasn't correct log tail address,
2989 		 * recovery can't find the log
2990 		 */
2991 		r5l_write_super(log, cp);
2992 	} else
2993 		log->last_cp_seq = le64_to_cpu(mb->seq);
2994 
2995 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2996 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2997 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2998 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2999 	log->last_checkpoint = cp;
3000 
3001 	__free_page(page);
3002 
3003 	if (create_super) {
3004 		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3005 		log->seq = log->last_cp_seq + 1;
3006 		log->next_checkpoint = cp;
3007 	} else
3008 		ret = r5l_recovery_log(log);
3009 
3010 	r5c_update_log_state(log);
3011 	return ret;
3012 ioerr:
3013 	__free_page(page);
3014 	return ret;
3015 }
3016 
3017 int r5l_start(struct r5l_log *log)
3018 {
3019 	int ret;
3020 
3021 	if (!log)
3022 		return 0;
3023 
3024 	ret = r5l_load_log(log);
3025 	if (ret) {
3026 		struct mddev *mddev = log->rdev->mddev;
3027 		struct r5conf *conf = mddev->private;
3028 
3029 		r5l_exit_log(conf);
3030 	}
3031 	return ret;
3032 }
3033 
3034 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3035 {
3036 	struct r5conf *conf = mddev->private;
3037 	struct r5l_log *log = READ_ONCE(conf->log);
3038 
3039 	if (!log)
3040 		return;
3041 
3042 	if ((raid5_calc_degraded(conf) > 0 ||
3043 	     test_bit(Journal, &rdev->flags)) &&
3044 	    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3045 		schedule_work(&log->disable_writeback_work);
3046 }
3047 
3048 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3049 {
3050 	struct r5l_log *log;
3051 	struct md_thread *thread;
3052 	int ret;
3053 
3054 	pr_debug("md/raid:%s: using device %pg as journal\n",
3055 		 mdname(conf->mddev), rdev->bdev);
3056 
3057 	if (PAGE_SIZE != 4096)
3058 		return -EINVAL;
3059 
3060 	/*
3061 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3062 	 * raid_disks r5l_payload_data_parity.
3063 	 *
3064 	 * Write journal and cache does not work for very big array
3065 	 * (raid_disks > 203)
3066 	 */
3067 	if (sizeof(struct r5l_meta_block) +
3068 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3069 	     conf->raid_disks) > PAGE_SIZE) {
3070 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3071 		       mdname(conf->mddev), conf->raid_disks);
3072 		return -EINVAL;
3073 	}
3074 
3075 	log = kzalloc(sizeof(*log), GFP_KERNEL);
3076 	if (!log)
3077 		return -ENOMEM;
3078 	log->rdev = rdev;
3079 	log->need_cache_flush = bdev_write_cache(rdev->bdev);
3080 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3081 				       sizeof(rdev->mddev->uuid));
3082 
3083 	mutex_init(&log->io_mutex);
3084 
3085 	spin_lock_init(&log->io_list_lock);
3086 	INIT_LIST_HEAD(&log->running_ios);
3087 	INIT_LIST_HEAD(&log->io_end_ios);
3088 	INIT_LIST_HEAD(&log->flushing_ios);
3089 	INIT_LIST_HEAD(&log->finished_ios);
3090 
3091 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3092 	if (!log->io_kc)
3093 		goto io_kc;
3094 
3095 	ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3096 	if (ret)
3097 		goto io_pool;
3098 
3099 	ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3100 	if (ret)
3101 		goto io_bs;
3102 
3103 	ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3104 	if (ret)
3105 		goto out_mempool;
3106 
3107 	spin_lock_init(&log->tree_lock);
3108 	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3109 
3110 	thread = md_register_thread(r5l_reclaim_thread, log->rdev->mddev,
3111 				    "reclaim");
3112 	if (!thread)
3113 		goto reclaim_thread;
3114 
3115 	thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3116 	rcu_assign_pointer(log->reclaim_thread, thread);
3117 
3118 	init_waitqueue_head(&log->iounit_wait);
3119 
3120 	INIT_LIST_HEAD(&log->no_mem_stripes);
3121 
3122 	INIT_LIST_HEAD(&log->no_space_stripes);
3123 	spin_lock_init(&log->no_space_stripes_lock);
3124 
3125 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3126 	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3127 
3128 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3129 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3130 	spin_lock_init(&log->stripe_in_journal_lock);
3131 	atomic_set(&log->stripe_in_journal_count, 0);
3132 
3133 	WRITE_ONCE(conf->log, log);
3134 
3135 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3136 	return 0;
3137 
3138 reclaim_thread:
3139 	mempool_exit(&log->meta_pool);
3140 out_mempool:
3141 	bioset_exit(&log->bs);
3142 io_bs:
3143 	mempool_exit(&log->io_pool);
3144 io_pool:
3145 	kmem_cache_destroy(log->io_kc);
3146 io_kc:
3147 	kfree(log);
3148 	return -EINVAL;
3149 }
3150 
3151 void r5l_exit_log(struct r5conf *conf)
3152 {
3153 	struct r5l_log *log = conf->log;
3154 
3155 	md_unregister_thread(conf->mddev, &log->reclaim_thread);
3156 
3157 	/*
3158 	 * 'reconfig_mutex' is held by caller, set 'confg->log' to NULL to
3159 	 * ensure disable_writeback_work wakes up and exits.
3160 	 */
3161 	WRITE_ONCE(conf->log, NULL);
3162 	wake_up(&conf->mddev->sb_wait);
3163 	flush_work(&log->disable_writeback_work);
3164 
3165 	mempool_exit(&log->meta_pool);
3166 	bioset_exit(&log->bs);
3167 	mempool_exit(&log->io_pool);
3168 	kmem_cache_destroy(log->io_kc);
3169 	kfree(log);
3170 }
3171