1 /* 2 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 */ 15 #include <linux/kernel.h> 16 #include <linux/wait.h> 17 #include <linux/blkdev.h> 18 #include <linux/slab.h> 19 #include <linux/raid/md_p.h> 20 #include <linux/crc32c.h> 21 #include <linux/random.h> 22 #include <linux/kthread.h> 23 #include <linux/types.h> 24 #include "md.h" 25 #include "raid5.h" 26 #include "md-bitmap.h" 27 #include "raid5-log.h" 28 29 /* 30 * metadata/data stored in disk with 4k size unit (a block) regardless 31 * underneath hardware sector size. only works with PAGE_SIZE == 4096 32 */ 33 #define BLOCK_SECTORS (8) 34 #define BLOCK_SECTOR_SHIFT (3) 35 36 /* 37 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 38 * 39 * In write through mode, the reclaim runs every log->max_free_space. 40 * This can prevent the recovery scans for too long 41 */ 42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 44 45 /* wake up reclaim thread periodically */ 46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 47 /* start flush with these full stripes */ 48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 49 /* reclaim stripes in groups */ 50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 51 52 /* 53 * We only need 2 bios per I/O unit to make progress, but ensure we 54 * have a few more available to not get too tight. 55 */ 56 #define R5L_POOL_SIZE 4 57 58 static char *r5c_journal_mode_str[] = {"write-through", 59 "write-back"}; 60 /* 61 * raid5 cache state machine 62 * 63 * With the RAID cache, each stripe works in two phases: 64 * - caching phase 65 * - writing-out phase 66 * 67 * These two phases are controlled by bit STRIPE_R5C_CACHING: 68 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 69 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 70 * 71 * When there is no journal, or the journal is in write-through mode, 72 * the stripe is always in writing-out phase. 73 * 74 * For write-back journal, the stripe is sent to caching phase on write 75 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 76 * the write-out phase by clearing STRIPE_R5C_CACHING. 77 * 78 * Stripes in caching phase do not write the raid disks. Instead, all 79 * writes are committed from the log device. Therefore, a stripe in 80 * caching phase handles writes as: 81 * - write to log device 82 * - return IO 83 * 84 * Stripes in writing-out phase handle writes as: 85 * - calculate parity 86 * - write pending data and parity to journal 87 * - write data and parity to raid disks 88 * - return IO for pending writes 89 */ 90 91 struct r5l_log { 92 struct md_rdev *rdev; 93 94 u32 uuid_checksum; 95 96 sector_t device_size; /* log device size, round to 97 * BLOCK_SECTORS */ 98 sector_t max_free_space; /* reclaim run if free space is at 99 * this size */ 100 101 sector_t last_checkpoint; /* log tail. where recovery scan 102 * starts from */ 103 u64 last_cp_seq; /* log tail sequence */ 104 105 sector_t log_start; /* log head. where new data appends */ 106 u64 seq; /* log head sequence */ 107 108 sector_t next_checkpoint; 109 110 struct mutex io_mutex; 111 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 112 113 spinlock_t io_list_lock; 114 struct list_head running_ios; /* io_units which are still running, 115 * and have not yet been completely 116 * written to the log */ 117 struct list_head io_end_ios; /* io_units which have been completely 118 * written to the log but not yet written 119 * to the RAID */ 120 struct list_head flushing_ios; /* io_units which are waiting for log 121 * cache flush */ 122 struct list_head finished_ios; /* io_units which settle down in log disk */ 123 struct bio flush_bio; 124 125 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 126 127 struct kmem_cache *io_kc; 128 mempool_t *io_pool; 129 struct bio_set *bs; 130 mempool_t *meta_pool; 131 132 struct md_thread *reclaim_thread; 133 unsigned long reclaim_target; /* number of space that need to be 134 * reclaimed. if it's 0, reclaim spaces 135 * used by io_units which are in 136 * IO_UNIT_STRIPE_END state (eg, reclaim 137 * dones't wait for specific io_unit 138 * switching to IO_UNIT_STRIPE_END 139 * state) */ 140 wait_queue_head_t iounit_wait; 141 142 struct list_head no_space_stripes; /* pending stripes, log has no space */ 143 spinlock_t no_space_stripes_lock; 144 145 bool need_cache_flush; 146 147 /* for r5c_cache */ 148 enum r5c_journal_mode r5c_journal_mode; 149 150 /* all stripes in r5cache, in the order of seq at sh->log_start */ 151 struct list_head stripe_in_journal_list; 152 153 spinlock_t stripe_in_journal_lock; 154 atomic_t stripe_in_journal_count; 155 156 /* to submit async io_units, to fulfill ordering of flush */ 157 struct work_struct deferred_io_work; 158 /* to disable write back during in degraded mode */ 159 struct work_struct disable_writeback_work; 160 161 /* to for chunk_aligned_read in writeback mode, details below */ 162 spinlock_t tree_lock; 163 struct radix_tree_root big_stripe_tree; 164 }; 165 166 /* 167 * Enable chunk_aligned_read() with write back cache. 168 * 169 * Each chunk may contain more than one stripe (for example, a 256kB 170 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 171 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 172 * For each big_stripe, we count how many stripes of this big_stripe 173 * are in the write back cache. These data are tracked in a radix tree 174 * (big_stripe_tree). We use radix_tree item pointer as the counter. 175 * r5c_tree_index() is used to calculate keys for the radix tree. 176 * 177 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 178 * big_stripe of each chunk in the tree. If this big_stripe is in the 179 * tree, chunk_aligned_read() aborts. This look up is protected by 180 * rcu_read_lock(). 181 * 182 * It is necessary to remember whether a stripe is counted in 183 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 184 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 185 * two flags are set, the stripe is counted in big_stripe_tree. This 186 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 187 * r5c_try_caching_write(); and moving clear_bit of 188 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 189 * r5c_finish_stripe_write_out(). 190 */ 191 192 /* 193 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 194 * So it is necessary to left shift the counter by 2 bits before using it 195 * as data pointer of the tree. 196 */ 197 #define R5C_RADIX_COUNT_SHIFT 2 198 199 /* 200 * calculate key for big_stripe_tree 201 * 202 * sect: align_bi->bi_iter.bi_sector or sh->sector 203 */ 204 static inline sector_t r5c_tree_index(struct r5conf *conf, 205 sector_t sect) 206 { 207 sector_t offset; 208 209 offset = sector_div(sect, conf->chunk_sectors); 210 return sect; 211 } 212 213 /* 214 * an IO range starts from a meta data block and end at the next meta data 215 * block. The io unit's the meta data block tracks data/parity followed it. io 216 * unit is written to log disk with normal write, as we always flush log disk 217 * first and then start move data to raid disks, there is no requirement to 218 * write io unit with FLUSH/FUA 219 */ 220 struct r5l_io_unit { 221 struct r5l_log *log; 222 223 struct page *meta_page; /* store meta block */ 224 int meta_offset; /* current offset in meta_page */ 225 226 struct bio *current_bio;/* current_bio accepting new data */ 227 228 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 229 u64 seq; /* seq number of the metablock */ 230 sector_t log_start; /* where the io_unit starts */ 231 sector_t log_end; /* where the io_unit ends */ 232 struct list_head log_sibling; /* log->running_ios */ 233 struct list_head stripe_list; /* stripes added to the io_unit */ 234 235 int state; 236 bool need_split_bio; 237 struct bio *split_bio; 238 239 unsigned int has_flush:1; /* include flush request */ 240 unsigned int has_fua:1; /* include fua request */ 241 unsigned int has_null_flush:1; /* include null flush request */ 242 unsigned int has_flush_payload:1; /* include flush payload */ 243 /* 244 * io isn't sent yet, flush/fua request can only be submitted till it's 245 * the first IO in running_ios list 246 */ 247 unsigned int io_deferred:1; 248 249 struct bio_list flush_barriers; /* size == 0 flush bios */ 250 }; 251 252 /* r5l_io_unit state */ 253 enum r5l_io_unit_state { 254 IO_UNIT_RUNNING = 0, /* accepting new IO */ 255 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 256 * don't accepting new bio */ 257 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 258 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 259 }; 260 261 bool r5c_is_writeback(struct r5l_log *log) 262 { 263 return (log != NULL && 264 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 265 } 266 267 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 268 { 269 start += inc; 270 if (start >= log->device_size) 271 start = start - log->device_size; 272 return start; 273 } 274 275 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 276 sector_t end) 277 { 278 if (end >= start) 279 return end - start; 280 else 281 return end + log->device_size - start; 282 } 283 284 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 285 { 286 sector_t used_size; 287 288 used_size = r5l_ring_distance(log, log->last_checkpoint, 289 log->log_start); 290 291 return log->device_size > used_size + size; 292 } 293 294 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 295 enum r5l_io_unit_state state) 296 { 297 if (WARN_ON(io->state >= state)) 298 return; 299 io->state = state; 300 } 301 302 static void 303 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 304 { 305 struct bio *wbi, *wbi2; 306 307 wbi = dev->written; 308 dev->written = NULL; 309 while (wbi && wbi->bi_iter.bi_sector < 310 dev->sector + STRIPE_SECTORS) { 311 wbi2 = r5_next_bio(wbi, dev->sector); 312 md_write_end(conf->mddev); 313 bio_endio(wbi); 314 wbi = wbi2; 315 } 316 } 317 318 void r5c_handle_cached_data_endio(struct r5conf *conf, 319 struct stripe_head *sh, int disks) 320 { 321 int i; 322 323 for (i = sh->disks; i--; ) { 324 if (sh->dev[i].written) { 325 set_bit(R5_UPTODATE, &sh->dev[i].flags); 326 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 327 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 328 STRIPE_SECTORS, 329 !test_bit(STRIPE_DEGRADED, &sh->state), 330 0); 331 } 332 } 333 } 334 335 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 336 337 /* Check whether we should flush some stripes to free up stripe cache */ 338 void r5c_check_stripe_cache_usage(struct r5conf *conf) 339 { 340 int total_cached; 341 342 if (!r5c_is_writeback(conf->log)) 343 return; 344 345 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 346 atomic_read(&conf->r5c_cached_full_stripes); 347 348 /* 349 * The following condition is true for either of the following: 350 * - stripe cache pressure high: 351 * total_cached > 3/4 min_nr_stripes || 352 * empty_inactive_list_nr > 0 353 * - stripe cache pressure moderate: 354 * total_cached > 1/2 min_nr_stripes 355 */ 356 if (total_cached > conf->min_nr_stripes * 1 / 2 || 357 atomic_read(&conf->empty_inactive_list_nr) > 0) 358 r5l_wake_reclaim(conf->log, 0); 359 } 360 361 /* 362 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 363 * stripes in the cache 364 */ 365 void r5c_check_cached_full_stripe(struct r5conf *conf) 366 { 367 if (!r5c_is_writeback(conf->log)) 368 return; 369 370 /* 371 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 372 * or a full stripe (chunk size / 4k stripes). 373 */ 374 if (atomic_read(&conf->r5c_cached_full_stripes) >= 375 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 376 conf->chunk_sectors >> STRIPE_SHIFT)) 377 r5l_wake_reclaim(conf->log, 0); 378 } 379 380 /* 381 * Total log space (in sectors) needed to flush all data in cache 382 * 383 * To avoid deadlock due to log space, it is necessary to reserve log 384 * space to flush critical stripes (stripes that occupying log space near 385 * last_checkpoint). This function helps check how much log space is 386 * required to flush all cached stripes. 387 * 388 * To reduce log space requirements, two mechanisms are used to give cache 389 * flush higher priorities: 390 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 391 * stripes ALREADY in journal can be flushed w/o pending writes; 392 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 393 * can be delayed (r5l_add_no_space_stripe). 394 * 395 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 396 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 397 * pages of journal space. For stripes that has not passed 1, flushing it 398 * requires (conf->raid_disks + 1) pages of journal space. There are at 399 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 400 * required to flush all cached stripes (in pages) is: 401 * 402 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 403 * (group_cnt + 1) * (raid_disks + 1) 404 * or 405 * (stripe_in_journal_count) * (max_degraded + 1) + 406 * (group_cnt + 1) * (raid_disks - max_degraded) 407 */ 408 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 409 { 410 struct r5l_log *log = conf->log; 411 412 if (!r5c_is_writeback(log)) 413 return 0; 414 415 return BLOCK_SECTORS * 416 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 417 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 418 } 419 420 /* 421 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 422 * 423 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 424 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 425 * device is less than 2x of reclaim_required_space. 426 */ 427 static inline void r5c_update_log_state(struct r5l_log *log) 428 { 429 struct r5conf *conf = log->rdev->mddev->private; 430 sector_t free_space; 431 sector_t reclaim_space; 432 bool wake_reclaim = false; 433 434 if (!r5c_is_writeback(log)) 435 return; 436 437 free_space = r5l_ring_distance(log, log->log_start, 438 log->last_checkpoint); 439 reclaim_space = r5c_log_required_to_flush_cache(conf); 440 if (free_space < 2 * reclaim_space) 441 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 442 else { 443 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 444 wake_reclaim = true; 445 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 446 } 447 if (free_space < 3 * reclaim_space) 448 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 449 else 450 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 451 452 if (wake_reclaim) 453 r5l_wake_reclaim(log, 0); 454 } 455 456 /* 457 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 458 * This function should only be called in write-back mode. 459 */ 460 void r5c_make_stripe_write_out(struct stripe_head *sh) 461 { 462 struct r5conf *conf = sh->raid_conf; 463 struct r5l_log *log = conf->log; 464 465 BUG_ON(!r5c_is_writeback(log)); 466 467 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 468 clear_bit(STRIPE_R5C_CACHING, &sh->state); 469 470 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 471 atomic_inc(&conf->preread_active_stripes); 472 } 473 474 static void r5c_handle_data_cached(struct stripe_head *sh) 475 { 476 int i; 477 478 for (i = sh->disks; i--; ) 479 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 480 set_bit(R5_InJournal, &sh->dev[i].flags); 481 clear_bit(R5_LOCKED, &sh->dev[i].flags); 482 } 483 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 484 } 485 486 /* 487 * this journal write must contain full parity, 488 * it may also contain some data pages 489 */ 490 static void r5c_handle_parity_cached(struct stripe_head *sh) 491 { 492 int i; 493 494 for (i = sh->disks; i--; ) 495 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 496 set_bit(R5_Wantwrite, &sh->dev[i].flags); 497 } 498 499 /* 500 * Setting proper flags after writing (or flushing) data and/or parity to the 501 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 502 */ 503 static void r5c_finish_cache_stripe(struct stripe_head *sh) 504 { 505 struct r5l_log *log = sh->raid_conf->log; 506 507 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 508 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 509 /* 510 * Set R5_InJournal for parity dev[pd_idx]. This means 511 * all data AND parity in the journal. For RAID 6, it is 512 * NOT necessary to set the flag for dev[qd_idx], as the 513 * two parities are written out together. 514 */ 515 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 516 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 517 r5c_handle_data_cached(sh); 518 } else { 519 r5c_handle_parity_cached(sh); 520 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 521 } 522 } 523 524 static void r5l_io_run_stripes(struct r5l_io_unit *io) 525 { 526 struct stripe_head *sh, *next; 527 528 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 529 list_del_init(&sh->log_list); 530 531 r5c_finish_cache_stripe(sh); 532 533 set_bit(STRIPE_HANDLE, &sh->state); 534 raid5_release_stripe(sh); 535 } 536 } 537 538 static void r5l_log_run_stripes(struct r5l_log *log) 539 { 540 struct r5l_io_unit *io, *next; 541 542 lockdep_assert_held(&log->io_list_lock); 543 544 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 545 /* don't change list order */ 546 if (io->state < IO_UNIT_IO_END) 547 break; 548 549 list_move_tail(&io->log_sibling, &log->finished_ios); 550 r5l_io_run_stripes(io); 551 } 552 } 553 554 static void r5l_move_to_end_ios(struct r5l_log *log) 555 { 556 struct r5l_io_unit *io, *next; 557 558 lockdep_assert_held(&log->io_list_lock); 559 560 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 561 /* don't change list order */ 562 if (io->state < IO_UNIT_IO_END) 563 break; 564 list_move_tail(&io->log_sibling, &log->io_end_ios); 565 } 566 } 567 568 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 569 static void r5l_log_endio(struct bio *bio) 570 { 571 struct r5l_io_unit *io = bio->bi_private; 572 struct r5l_io_unit *io_deferred; 573 struct r5l_log *log = io->log; 574 unsigned long flags; 575 bool has_null_flush; 576 bool has_flush_payload; 577 578 if (bio->bi_status) 579 md_error(log->rdev->mddev, log->rdev); 580 581 bio_put(bio); 582 mempool_free(io->meta_page, log->meta_pool); 583 584 spin_lock_irqsave(&log->io_list_lock, flags); 585 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 586 587 /* 588 * if the io doesn't not have null_flush or flush payload, 589 * it is not safe to access it after releasing io_list_lock. 590 * Therefore, it is necessary to check the condition with 591 * the lock held. 592 */ 593 has_null_flush = io->has_null_flush; 594 has_flush_payload = io->has_flush_payload; 595 596 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 597 r5l_move_to_end_ios(log); 598 else 599 r5l_log_run_stripes(log); 600 if (!list_empty(&log->running_ios)) { 601 /* 602 * FLUSH/FUA io_unit is deferred because of ordering, now we 603 * can dispatch it 604 */ 605 io_deferred = list_first_entry(&log->running_ios, 606 struct r5l_io_unit, log_sibling); 607 if (io_deferred->io_deferred) 608 schedule_work(&log->deferred_io_work); 609 } 610 611 spin_unlock_irqrestore(&log->io_list_lock, flags); 612 613 if (log->need_cache_flush) 614 md_wakeup_thread(log->rdev->mddev->thread); 615 616 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 617 if (has_null_flush) { 618 struct bio *bi; 619 620 WARN_ON(bio_list_empty(&io->flush_barriers)); 621 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 622 bio_endio(bi); 623 if (atomic_dec_and_test(&io->pending_stripe)) { 624 __r5l_stripe_write_finished(io); 625 return; 626 } 627 } 628 } 629 /* decrease pending_stripe for flush payload */ 630 if (has_flush_payload) 631 if (atomic_dec_and_test(&io->pending_stripe)) 632 __r5l_stripe_write_finished(io); 633 } 634 635 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 636 { 637 unsigned long flags; 638 639 spin_lock_irqsave(&log->io_list_lock, flags); 640 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 641 spin_unlock_irqrestore(&log->io_list_lock, flags); 642 643 /* 644 * In case of journal device failures, submit_bio will get error 645 * and calls endio, then active stripes will continue write 646 * process. Therefore, it is not necessary to check Faulty bit 647 * of journal device here. 648 * 649 * We can't check split_bio after current_bio is submitted. If 650 * io->split_bio is null, after current_bio is submitted, current_bio 651 * might already be completed and the io_unit is freed. We submit 652 * split_bio first to avoid the issue. 653 */ 654 if (io->split_bio) { 655 if (io->has_flush) 656 io->split_bio->bi_opf |= REQ_PREFLUSH; 657 if (io->has_fua) 658 io->split_bio->bi_opf |= REQ_FUA; 659 submit_bio(io->split_bio); 660 } 661 662 if (io->has_flush) 663 io->current_bio->bi_opf |= REQ_PREFLUSH; 664 if (io->has_fua) 665 io->current_bio->bi_opf |= REQ_FUA; 666 submit_bio(io->current_bio); 667 } 668 669 /* deferred io_unit will be dispatched here */ 670 static void r5l_submit_io_async(struct work_struct *work) 671 { 672 struct r5l_log *log = container_of(work, struct r5l_log, 673 deferred_io_work); 674 struct r5l_io_unit *io = NULL; 675 unsigned long flags; 676 677 spin_lock_irqsave(&log->io_list_lock, flags); 678 if (!list_empty(&log->running_ios)) { 679 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 680 log_sibling); 681 if (!io->io_deferred) 682 io = NULL; 683 else 684 io->io_deferred = 0; 685 } 686 spin_unlock_irqrestore(&log->io_list_lock, flags); 687 if (io) 688 r5l_do_submit_io(log, io); 689 } 690 691 static void r5c_disable_writeback_async(struct work_struct *work) 692 { 693 struct r5l_log *log = container_of(work, struct r5l_log, 694 disable_writeback_work); 695 struct mddev *mddev = log->rdev->mddev; 696 struct r5conf *conf = mddev->private; 697 int locked = 0; 698 699 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 700 return; 701 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 702 mdname(mddev)); 703 704 /* wait superblock change before suspend */ 705 wait_event(mddev->sb_wait, 706 conf->log == NULL || 707 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && 708 (locked = mddev_trylock(mddev)))); 709 if (locked) { 710 mddev_suspend(mddev); 711 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 712 mddev_resume(mddev); 713 mddev_unlock(mddev); 714 } 715 } 716 717 static void r5l_submit_current_io(struct r5l_log *log) 718 { 719 struct r5l_io_unit *io = log->current_io; 720 struct bio *bio; 721 struct r5l_meta_block *block; 722 unsigned long flags; 723 u32 crc; 724 bool do_submit = true; 725 726 if (!io) 727 return; 728 729 block = page_address(io->meta_page); 730 block->meta_size = cpu_to_le32(io->meta_offset); 731 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 732 block->checksum = cpu_to_le32(crc); 733 bio = io->current_bio; 734 735 log->current_io = NULL; 736 spin_lock_irqsave(&log->io_list_lock, flags); 737 if (io->has_flush || io->has_fua) { 738 if (io != list_first_entry(&log->running_ios, 739 struct r5l_io_unit, log_sibling)) { 740 io->io_deferred = 1; 741 do_submit = false; 742 } 743 } 744 spin_unlock_irqrestore(&log->io_list_lock, flags); 745 if (do_submit) 746 r5l_do_submit_io(log, io); 747 } 748 749 static struct bio *r5l_bio_alloc(struct r5l_log *log) 750 { 751 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs); 752 753 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 754 bio_set_dev(bio, log->rdev->bdev); 755 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 756 757 return bio; 758 } 759 760 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 761 { 762 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 763 764 r5c_update_log_state(log); 765 /* 766 * If we filled up the log device start from the beginning again, 767 * which will require a new bio. 768 * 769 * Note: for this to work properly the log size needs to me a multiple 770 * of BLOCK_SECTORS. 771 */ 772 if (log->log_start == 0) 773 io->need_split_bio = true; 774 775 io->log_end = log->log_start; 776 } 777 778 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 779 { 780 struct r5l_io_unit *io; 781 struct r5l_meta_block *block; 782 783 io = mempool_alloc(log->io_pool, GFP_ATOMIC); 784 if (!io) 785 return NULL; 786 memset(io, 0, sizeof(*io)); 787 788 io->log = log; 789 INIT_LIST_HEAD(&io->log_sibling); 790 INIT_LIST_HEAD(&io->stripe_list); 791 bio_list_init(&io->flush_barriers); 792 io->state = IO_UNIT_RUNNING; 793 794 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO); 795 block = page_address(io->meta_page); 796 clear_page(block); 797 block->magic = cpu_to_le32(R5LOG_MAGIC); 798 block->version = R5LOG_VERSION; 799 block->seq = cpu_to_le64(log->seq); 800 block->position = cpu_to_le64(log->log_start); 801 802 io->log_start = log->log_start; 803 io->meta_offset = sizeof(struct r5l_meta_block); 804 io->seq = log->seq++; 805 806 io->current_bio = r5l_bio_alloc(log); 807 io->current_bio->bi_end_io = r5l_log_endio; 808 io->current_bio->bi_private = io; 809 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 810 811 r5_reserve_log_entry(log, io); 812 813 spin_lock_irq(&log->io_list_lock); 814 list_add_tail(&io->log_sibling, &log->running_ios); 815 spin_unlock_irq(&log->io_list_lock); 816 817 return io; 818 } 819 820 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 821 { 822 if (log->current_io && 823 log->current_io->meta_offset + payload_size > PAGE_SIZE) 824 r5l_submit_current_io(log); 825 826 if (!log->current_io) { 827 log->current_io = r5l_new_meta(log); 828 if (!log->current_io) 829 return -ENOMEM; 830 } 831 832 return 0; 833 } 834 835 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 836 sector_t location, 837 u32 checksum1, u32 checksum2, 838 bool checksum2_valid) 839 { 840 struct r5l_io_unit *io = log->current_io; 841 struct r5l_payload_data_parity *payload; 842 843 payload = page_address(io->meta_page) + io->meta_offset; 844 payload->header.type = cpu_to_le16(type); 845 payload->header.flags = cpu_to_le16(0); 846 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 847 (PAGE_SHIFT - 9)); 848 payload->location = cpu_to_le64(location); 849 payload->checksum[0] = cpu_to_le32(checksum1); 850 if (checksum2_valid) 851 payload->checksum[1] = cpu_to_le32(checksum2); 852 853 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 854 sizeof(__le32) * (1 + !!checksum2_valid); 855 } 856 857 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 858 { 859 struct r5l_io_unit *io = log->current_io; 860 861 if (io->need_split_bio) { 862 BUG_ON(io->split_bio); 863 io->split_bio = io->current_bio; 864 io->current_bio = r5l_bio_alloc(log); 865 bio_chain(io->current_bio, io->split_bio); 866 io->need_split_bio = false; 867 } 868 869 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 870 BUG(); 871 872 r5_reserve_log_entry(log, io); 873 } 874 875 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 876 { 877 struct mddev *mddev = log->rdev->mddev; 878 struct r5conf *conf = mddev->private; 879 struct r5l_io_unit *io; 880 struct r5l_payload_flush *payload; 881 int meta_size; 882 883 /* 884 * payload_flush requires extra writes to the journal. 885 * To avoid handling the extra IO in quiesce, just skip 886 * flush_payload 887 */ 888 if (conf->quiesce) 889 return; 890 891 mutex_lock(&log->io_mutex); 892 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 893 894 if (r5l_get_meta(log, meta_size)) { 895 mutex_unlock(&log->io_mutex); 896 return; 897 } 898 899 /* current implementation is one stripe per flush payload */ 900 io = log->current_io; 901 payload = page_address(io->meta_page) + io->meta_offset; 902 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 903 payload->header.flags = cpu_to_le16(0); 904 payload->size = cpu_to_le32(sizeof(__le64)); 905 payload->flush_stripes[0] = cpu_to_le64(sect); 906 io->meta_offset += meta_size; 907 /* multiple flush payloads count as one pending_stripe */ 908 if (!io->has_flush_payload) { 909 io->has_flush_payload = 1; 910 atomic_inc(&io->pending_stripe); 911 } 912 mutex_unlock(&log->io_mutex); 913 } 914 915 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 916 int data_pages, int parity_pages) 917 { 918 int i; 919 int meta_size; 920 int ret; 921 struct r5l_io_unit *io; 922 923 meta_size = 924 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 925 * data_pages) + 926 sizeof(struct r5l_payload_data_parity) + 927 sizeof(__le32) * parity_pages; 928 929 ret = r5l_get_meta(log, meta_size); 930 if (ret) 931 return ret; 932 933 io = log->current_io; 934 935 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 936 io->has_flush = 1; 937 938 for (i = 0; i < sh->disks; i++) { 939 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 940 test_bit(R5_InJournal, &sh->dev[i].flags)) 941 continue; 942 if (i == sh->pd_idx || i == sh->qd_idx) 943 continue; 944 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 945 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 946 io->has_fua = 1; 947 /* 948 * we need to flush journal to make sure recovery can 949 * reach the data with fua flag 950 */ 951 io->has_flush = 1; 952 } 953 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 954 raid5_compute_blocknr(sh, i, 0), 955 sh->dev[i].log_checksum, 0, false); 956 r5l_append_payload_page(log, sh->dev[i].page); 957 } 958 959 if (parity_pages == 2) { 960 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 961 sh->sector, sh->dev[sh->pd_idx].log_checksum, 962 sh->dev[sh->qd_idx].log_checksum, true); 963 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 964 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 965 } else if (parity_pages == 1) { 966 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 967 sh->sector, sh->dev[sh->pd_idx].log_checksum, 968 0, false); 969 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 970 } else /* Just writing data, not parity, in caching phase */ 971 BUG_ON(parity_pages != 0); 972 973 list_add_tail(&sh->log_list, &io->stripe_list); 974 atomic_inc(&io->pending_stripe); 975 sh->log_io = io; 976 977 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 978 return 0; 979 980 if (sh->log_start == MaxSector) { 981 BUG_ON(!list_empty(&sh->r5c)); 982 sh->log_start = io->log_start; 983 spin_lock_irq(&log->stripe_in_journal_lock); 984 list_add_tail(&sh->r5c, 985 &log->stripe_in_journal_list); 986 spin_unlock_irq(&log->stripe_in_journal_lock); 987 atomic_inc(&log->stripe_in_journal_count); 988 } 989 return 0; 990 } 991 992 /* add stripe to no_space_stripes, and then wake up reclaim */ 993 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 994 struct stripe_head *sh) 995 { 996 spin_lock(&log->no_space_stripes_lock); 997 list_add_tail(&sh->log_list, &log->no_space_stripes); 998 spin_unlock(&log->no_space_stripes_lock); 999 } 1000 1001 /* 1002 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 1003 * data from log to raid disks), so we shouldn't wait for reclaim here 1004 */ 1005 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 1006 { 1007 struct r5conf *conf = sh->raid_conf; 1008 int write_disks = 0; 1009 int data_pages, parity_pages; 1010 int reserve; 1011 int i; 1012 int ret = 0; 1013 bool wake_reclaim = false; 1014 1015 if (!log) 1016 return -EAGAIN; 1017 /* Don't support stripe batch */ 1018 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 1019 test_bit(STRIPE_SYNCING, &sh->state)) { 1020 /* the stripe is written to log, we start writing it to raid */ 1021 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 1022 return -EAGAIN; 1023 } 1024 1025 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 1026 1027 for (i = 0; i < sh->disks; i++) { 1028 void *addr; 1029 1030 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 1031 test_bit(R5_InJournal, &sh->dev[i].flags)) 1032 continue; 1033 1034 write_disks++; 1035 /* checksum is already calculated in last run */ 1036 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1037 continue; 1038 addr = kmap_atomic(sh->dev[i].page); 1039 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1040 addr, PAGE_SIZE); 1041 kunmap_atomic(addr); 1042 } 1043 parity_pages = 1 + !!(sh->qd_idx >= 0); 1044 data_pages = write_disks - parity_pages; 1045 1046 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1047 /* 1048 * The stripe must enter state machine again to finish the write, so 1049 * don't delay. 1050 */ 1051 clear_bit(STRIPE_DELAYED, &sh->state); 1052 atomic_inc(&sh->count); 1053 1054 mutex_lock(&log->io_mutex); 1055 /* meta + data */ 1056 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1057 1058 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1059 if (!r5l_has_free_space(log, reserve)) { 1060 r5l_add_no_space_stripe(log, sh); 1061 wake_reclaim = true; 1062 } else { 1063 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1064 if (ret) { 1065 spin_lock_irq(&log->io_list_lock); 1066 list_add_tail(&sh->log_list, 1067 &log->no_mem_stripes); 1068 spin_unlock_irq(&log->io_list_lock); 1069 } 1070 } 1071 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1072 /* 1073 * log space critical, do not process stripes that are 1074 * not in cache yet (sh->log_start == MaxSector). 1075 */ 1076 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1077 sh->log_start == MaxSector) { 1078 r5l_add_no_space_stripe(log, sh); 1079 wake_reclaim = true; 1080 reserve = 0; 1081 } else if (!r5l_has_free_space(log, reserve)) { 1082 if (sh->log_start == log->last_checkpoint) 1083 BUG(); 1084 else 1085 r5l_add_no_space_stripe(log, sh); 1086 } else { 1087 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1088 if (ret) { 1089 spin_lock_irq(&log->io_list_lock); 1090 list_add_tail(&sh->log_list, 1091 &log->no_mem_stripes); 1092 spin_unlock_irq(&log->io_list_lock); 1093 } 1094 } 1095 } 1096 1097 mutex_unlock(&log->io_mutex); 1098 if (wake_reclaim) 1099 r5l_wake_reclaim(log, reserve); 1100 return 0; 1101 } 1102 1103 void r5l_write_stripe_run(struct r5l_log *log) 1104 { 1105 if (!log) 1106 return; 1107 mutex_lock(&log->io_mutex); 1108 r5l_submit_current_io(log); 1109 mutex_unlock(&log->io_mutex); 1110 } 1111 1112 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1113 { 1114 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1115 /* 1116 * in write through (journal only) 1117 * we flush log disk cache first, then write stripe data to 1118 * raid disks. So if bio is finished, the log disk cache is 1119 * flushed already. The recovery guarantees we can recovery 1120 * the bio from log disk, so we don't need to flush again 1121 */ 1122 if (bio->bi_iter.bi_size == 0) { 1123 bio_endio(bio); 1124 return 0; 1125 } 1126 bio->bi_opf &= ~REQ_PREFLUSH; 1127 } else { 1128 /* write back (with cache) */ 1129 if (bio->bi_iter.bi_size == 0) { 1130 mutex_lock(&log->io_mutex); 1131 r5l_get_meta(log, 0); 1132 bio_list_add(&log->current_io->flush_barriers, bio); 1133 log->current_io->has_flush = 1; 1134 log->current_io->has_null_flush = 1; 1135 atomic_inc(&log->current_io->pending_stripe); 1136 r5l_submit_current_io(log); 1137 mutex_unlock(&log->io_mutex); 1138 return 0; 1139 } 1140 } 1141 return -EAGAIN; 1142 } 1143 1144 /* This will run after log space is reclaimed */ 1145 static void r5l_run_no_space_stripes(struct r5l_log *log) 1146 { 1147 struct stripe_head *sh; 1148 1149 spin_lock(&log->no_space_stripes_lock); 1150 while (!list_empty(&log->no_space_stripes)) { 1151 sh = list_first_entry(&log->no_space_stripes, 1152 struct stripe_head, log_list); 1153 list_del_init(&sh->log_list); 1154 set_bit(STRIPE_HANDLE, &sh->state); 1155 raid5_release_stripe(sh); 1156 } 1157 spin_unlock(&log->no_space_stripes_lock); 1158 } 1159 1160 /* 1161 * calculate new last_checkpoint 1162 * for write through mode, returns log->next_checkpoint 1163 * for write back, returns log_start of first sh in stripe_in_journal_list 1164 */ 1165 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1166 { 1167 struct stripe_head *sh; 1168 struct r5l_log *log = conf->log; 1169 sector_t new_cp; 1170 unsigned long flags; 1171 1172 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1173 return log->next_checkpoint; 1174 1175 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1176 if (list_empty(&conf->log->stripe_in_journal_list)) { 1177 /* all stripes flushed */ 1178 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1179 return log->next_checkpoint; 1180 } 1181 sh = list_first_entry(&conf->log->stripe_in_journal_list, 1182 struct stripe_head, r5c); 1183 new_cp = sh->log_start; 1184 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1185 return new_cp; 1186 } 1187 1188 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1189 { 1190 struct r5conf *conf = log->rdev->mddev->private; 1191 1192 return r5l_ring_distance(log, log->last_checkpoint, 1193 r5c_calculate_new_cp(conf)); 1194 } 1195 1196 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1197 { 1198 struct stripe_head *sh; 1199 1200 lockdep_assert_held(&log->io_list_lock); 1201 1202 if (!list_empty(&log->no_mem_stripes)) { 1203 sh = list_first_entry(&log->no_mem_stripes, 1204 struct stripe_head, log_list); 1205 list_del_init(&sh->log_list); 1206 set_bit(STRIPE_HANDLE, &sh->state); 1207 raid5_release_stripe(sh); 1208 } 1209 } 1210 1211 static bool r5l_complete_finished_ios(struct r5l_log *log) 1212 { 1213 struct r5l_io_unit *io, *next; 1214 bool found = false; 1215 1216 lockdep_assert_held(&log->io_list_lock); 1217 1218 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1219 /* don't change list order */ 1220 if (io->state < IO_UNIT_STRIPE_END) 1221 break; 1222 1223 log->next_checkpoint = io->log_start; 1224 1225 list_del(&io->log_sibling); 1226 mempool_free(io, log->io_pool); 1227 r5l_run_no_mem_stripe(log); 1228 1229 found = true; 1230 } 1231 1232 return found; 1233 } 1234 1235 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1236 { 1237 struct r5l_log *log = io->log; 1238 struct r5conf *conf = log->rdev->mddev->private; 1239 unsigned long flags; 1240 1241 spin_lock_irqsave(&log->io_list_lock, flags); 1242 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1243 1244 if (!r5l_complete_finished_ios(log)) { 1245 spin_unlock_irqrestore(&log->io_list_lock, flags); 1246 return; 1247 } 1248 1249 if (r5l_reclaimable_space(log) > log->max_free_space || 1250 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1251 r5l_wake_reclaim(log, 0); 1252 1253 spin_unlock_irqrestore(&log->io_list_lock, flags); 1254 wake_up(&log->iounit_wait); 1255 } 1256 1257 void r5l_stripe_write_finished(struct stripe_head *sh) 1258 { 1259 struct r5l_io_unit *io; 1260 1261 io = sh->log_io; 1262 sh->log_io = NULL; 1263 1264 if (io && atomic_dec_and_test(&io->pending_stripe)) 1265 __r5l_stripe_write_finished(io); 1266 } 1267 1268 static void r5l_log_flush_endio(struct bio *bio) 1269 { 1270 struct r5l_log *log = container_of(bio, struct r5l_log, 1271 flush_bio); 1272 unsigned long flags; 1273 struct r5l_io_unit *io; 1274 1275 if (bio->bi_status) 1276 md_error(log->rdev->mddev, log->rdev); 1277 1278 spin_lock_irqsave(&log->io_list_lock, flags); 1279 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1280 r5l_io_run_stripes(io); 1281 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1282 spin_unlock_irqrestore(&log->io_list_lock, flags); 1283 } 1284 1285 /* 1286 * Starting dispatch IO to raid. 1287 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1288 * broken meta in the middle of a log causes recovery can't find meta at the 1289 * head of log. If operations require meta at the head persistent in log, we 1290 * must make sure meta before it persistent in log too. A case is: 1291 * 1292 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1293 * data/parity must be persistent in log before we do the write to raid disks. 1294 * 1295 * The solution is we restrictly maintain io_unit list order. In this case, we 1296 * only write stripes of an io_unit to raid disks till the io_unit is the first 1297 * one whose data/parity is in log. 1298 */ 1299 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1300 { 1301 bool do_flush; 1302 1303 if (!log || !log->need_cache_flush) 1304 return; 1305 1306 spin_lock_irq(&log->io_list_lock); 1307 /* flush bio is running */ 1308 if (!list_empty(&log->flushing_ios)) { 1309 spin_unlock_irq(&log->io_list_lock); 1310 return; 1311 } 1312 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1313 do_flush = !list_empty(&log->flushing_ios); 1314 spin_unlock_irq(&log->io_list_lock); 1315 1316 if (!do_flush) 1317 return; 1318 bio_reset(&log->flush_bio); 1319 bio_set_dev(&log->flush_bio, log->rdev->bdev); 1320 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1321 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1322 submit_bio(&log->flush_bio); 1323 } 1324 1325 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1326 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1327 sector_t end) 1328 { 1329 struct block_device *bdev = log->rdev->bdev; 1330 struct mddev *mddev; 1331 1332 r5l_write_super(log, end); 1333 1334 if (!blk_queue_discard(bdev_get_queue(bdev))) 1335 return; 1336 1337 mddev = log->rdev->mddev; 1338 /* 1339 * Discard could zero data, so before discard we must make sure 1340 * superblock is updated to new log tail. Updating superblock (either 1341 * directly call md_update_sb() or depend on md thread) must hold 1342 * reconfig mutex. On the other hand, raid5_quiesce is called with 1343 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting 1344 * for all IO finish, hence waitting for reclaim thread, while reclaim 1345 * thread is calling this function and waitting for reconfig mutex. So 1346 * there is a deadlock. We workaround this issue with a trylock. 1347 * FIXME: we could miss discard if we can't take reconfig mutex 1348 */ 1349 set_mask_bits(&mddev->sb_flags, 0, 1350 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1351 if (!mddev_trylock(mddev)) 1352 return; 1353 md_update_sb(mddev, 1); 1354 mddev_unlock(mddev); 1355 1356 /* discard IO error really doesn't matter, ignore it */ 1357 if (log->last_checkpoint < end) { 1358 blkdev_issue_discard(bdev, 1359 log->last_checkpoint + log->rdev->data_offset, 1360 end - log->last_checkpoint, GFP_NOIO, 0); 1361 } else { 1362 blkdev_issue_discard(bdev, 1363 log->last_checkpoint + log->rdev->data_offset, 1364 log->device_size - log->last_checkpoint, 1365 GFP_NOIO, 0); 1366 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1367 GFP_NOIO, 0); 1368 } 1369 } 1370 1371 /* 1372 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1373 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1374 * 1375 * must hold conf->device_lock 1376 */ 1377 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1378 { 1379 BUG_ON(list_empty(&sh->lru)); 1380 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1381 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1382 1383 /* 1384 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1385 * raid5_release_stripe() while holding conf->device_lock 1386 */ 1387 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1388 lockdep_assert_held(&conf->device_lock); 1389 1390 list_del_init(&sh->lru); 1391 atomic_inc(&sh->count); 1392 1393 set_bit(STRIPE_HANDLE, &sh->state); 1394 atomic_inc(&conf->active_stripes); 1395 r5c_make_stripe_write_out(sh); 1396 1397 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1398 atomic_inc(&conf->r5c_flushing_partial_stripes); 1399 else 1400 atomic_inc(&conf->r5c_flushing_full_stripes); 1401 raid5_release_stripe(sh); 1402 } 1403 1404 /* 1405 * if num == 0, flush all full stripes 1406 * if num > 0, flush all full stripes. If less than num full stripes are 1407 * flushed, flush some partial stripes until totally num stripes are 1408 * flushed or there is no more cached stripes. 1409 */ 1410 void r5c_flush_cache(struct r5conf *conf, int num) 1411 { 1412 int count; 1413 struct stripe_head *sh, *next; 1414 1415 lockdep_assert_held(&conf->device_lock); 1416 if (!conf->log) 1417 return; 1418 1419 count = 0; 1420 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1421 r5c_flush_stripe(conf, sh); 1422 count++; 1423 } 1424 1425 if (count >= num) 1426 return; 1427 list_for_each_entry_safe(sh, next, 1428 &conf->r5c_partial_stripe_list, lru) { 1429 r5c_flush_stripe(conf, sh); 1430 if (++count >= num) 1431 break; 1432 } 1433 } 1434 1435 static void r5c_do_reclaim(struct r5conf *conf) 1436 { 1437 struct r5l_log *log = conf->log; 1438 struct stripe_head *sh; 1439 int count = 0; 1440 unsigned long flags; 1441 int total_cached; 1442 int stripes_to_flush; 1443 int flushing_partial, flushing_full; 1444 1445 if (!r5c_is_writeback(log)) 1446 return; 1447 1448 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1449 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1450 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1451 atomic_read(&conf->r5c_cached_full_stripes) - 1452 flushing_full - flushing_partial; 1453 1454 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1455 atomic_read(&conf->empty_inactive_list_nr) > 0) 1456 /* 1457 * if stripe cache pressure high, flush all full stripes and 1458 * some partial stripes 1459 */ 1460 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1461 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1462 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1463 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1464 /* 1465 * if stripe cache pressure moderate, or if there is many full 1466 * stripes,flush all full stripes 1467 */ 1468 stripes_to_flush = 0; 1469 else 1470 /* no need to flush */ 1471 stripes_to_flush = -1; 1472 1473 if (stripes_to_flush >= 0) { 1474 spin_lock_irqsave(&conf->device_lock, flags); 1475 r5c_flush_cache(conf, stripes_to_flush); 1476 spin_unlock_irqrestore(&conf->device_lock, flags); 1477 } 1478 1479 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1480 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1481 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1482 spin_lock(&conf->device_lock); 1483 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1484 /* 1485 * stripes on stripe_in_journal_list could be in any 1486 * state of the stripe_cache state machine. In this 1487 * case, we only want to flush stripe on 1488 * r5c_cached_full/partial_stripes. The following 1489 * condition makes sure the stripe is on one of the 1490 * two lists. 1491 */ 1492 if (!list_empty(&sh->lru) && 1493 !test_bit(STRIPE_HANDLE, &sh->state) && 1494 atomic_read(&sh->count) == 0) { 1495 r5c_flush_stripe(conf, sh); 1496 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1497 break; 1498 } 1499 } 1500 spin_unlock(&conf->device_lock); 1501 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1502 } 1503 1504 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1505 r5l_run_no_space_stripes(log); 1506 1507 md_wakeup_thread(conf->mddev->thread); 1508 } 1509 1510 static void r5l_do_reclaim(struct r5l_log *log) 1511 { 1512 struct r5conf *conf = log->rdev->mddev->private; 1513 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1514 sector_t reclaimable; 1515 sector_t next_checkpoint; 1516 bool write_super; 1517 1518 spin_lock_irq(&log->io_list_lock); 1519 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1520 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1521 /* 1522 * move proper io_unit to reclaim list. We should not change the order. 1523 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1524 * shouldn't reuse space of an unreclaimable io_unit 1525 */ 1526 while (1) { 1527 reclaimable = r5l_reclaimable_space(log); 1528 if (reclaimable >= reclaim_target || 1529 (list_empty(&log->running_ios) && 1530 list_empty(&log->io_end_ios) && 1531 list_empty(&log->flushing_ios) && 1532 list_empty(&log->finished_ios))) 1533 break; 1534 1535 md_wakeup_thread(log->rdev->mddev->thread); 1536 wait_event_lock_irq(log->iounit_wait, 1537 r5l_reclaimable_space(log) > reclaimable, 1538 log->io_list_lock); 1539 } 1540 1541 next_checkpoint = r5c_calculate_new_cp(conf); 1542 spin_unlock_irq(&log->io_list_lock); 1543 1544 if (reclaimable == 0 || !write_super) 1545 return; 1546 1547 /* 1548 * write_super will flush cache of each raid disk. We must write super 1549 * here, because the log area might be reused soon and we don't want to 1550 * confuse recovery 1551 */ 1552 r5l_write_super_and_discard_space(log, next_checkpoint); 1553 1554 mutex_lock(&log->io_mutex); 1555 log->last_checkpoint = next_checkpoint; 1556 r5c_update_log_state(log); 1557 mutex_unlock(&log->io_mutex); 1558 1559 r5l_run_no_space_stripes(log); 1560 } 1561 1562 static void r5l_reclaim_thread(struct md_thread *thread) 1563 { 1564 struct mddev *mddev = thread->mddev; 1565 struct r5conf *conf = mddev->private; 1566 struct r5l_log *log = conf->log; 1567 1568 if (!log) 1569 return; 1570 r5c_do_reclaim(conf); 1571 r5l_do_reclaim(log); 1572 } 1573 1574 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1575 { 1576 unsigned long target; 1577 unsigned long new = (unsigned long)space; /* overflow in theory */ 1578 1579 if (!log) 1580 return; 1581 do { 1582 target = log->reclaim_target; 1583 if (new < target) 1584 return; 1585 } while (cmpxchg(&log->reclaim_target, target, new) != target); 1586 md_wakeup_thread(log->reclaim_thread); 1587 } 1588 1589 void r5l_quiesce(struct r5l_log *log, int quiesce) 1590 { 1591 struct mddev *mddev; 1592 1593 if (quiesce) { 1594 /* make sure r5l_write_super_and_discard_space exits */ 1595 mddev = log->rdev->mddev; 1596 wake_up(&mddev->sb_wait); 1597 kthread_park(log->reclaim_thread->tsk); 1598 r5l_wake_reclaim(log, MaxSector); 1599 r5l_do_reclaim(log); 1600 } else 1601 kthread_unpark(log->reclaim_thread->tsk); 1602 } 1603 1604 bool r5l_log_disk_error(struct r5conf *conf) 1605 { 1606 struct r5l_log *log; 1607 bool ret; 1608 /* don't allow write if journal disk is missing */ 1609 rcu_read_lock(); 1610 log = rcu_dereference(conf->log); 1611 1612 if (!log) 1613 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1614 else 1615 ret = test_bit(Faulty, &log->rdev->flags); 1616 rcu_read_unlock(); 1617 return ret; 1618 } 1619 1620 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1621 1622 struct r5l_recovery_ctx { 1623 struct page *meta_page; /* current meta */ 1624 sector_t meta_total_blocks; /* total size of current meta and data */ 1625 sector_t pos; /* recovery position */ 1626 u64 seq; /* recovery position seq */ 1627 int data_parity_stripes; /* number of data_parity stripes */ 1628 int data_only_stripes; /* number of data_only stripes */ 1629 struct list_head cached_list; 1630 1631 /* 1632 * read ahead page pool (ra_pool) 1633 * in recovery, log is read sequentially. It is not efficient to 1634 * read every page with sync_page_io(). The read ahead page pool 1635 * reads multiple pages with one IO, so further log read can 1636 * just copy data from the pool. 1637 */ 1638 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1639 sector_t pool_offset; /* offset of first page in the pool */ 1640 int total_pages; /* total allocated pages */ 1641 int valid_pages; /* pages with valid data */ 1642 struct bio *ra_bio; /* bio to do the read ahead */ 1643 }; 1644 1645 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1646 struct r5l_recovery_ctx *ctx) 1647 { 1648 struct page *page; 1649 1650 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs); 1651 if (!ctx->ra_bio) 1652 return -ENOMEM; 1653 1654 ctx->valid_pages = 0; 1655 ctx->total_pages = 0; 1656 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1657 page = alloc_page(GFP_KERNEL); 1658 1659 if (!page) 1660 break; 1661 ctx->ra_pool[ctx->total_pages] = page; 1662 ctx->total_pages += 1; 1663 } 1664 1665 if (ctx->total_pages == 0) { 1666 bio_put(ctx->ra_bio); 1667 return -ENOMEM; 1668 } 1669 1670 ctx->pool_offset = 0; 1671 return 0; 1672 } 1673 1674 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1675 struct r5l_recovery_ctx *ctx) 1676 { 1677 int i; 1678 1679 for (i = 0; i < ctx->total_pages; ++i) 1680 put_page(ctx->ra_pool[i]); 1681 bio_put(ctx->ra_bio); 1682 } 1683 1684 /* 1685 * fetch ctx->valid_pages pages from offset 1686 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1687 * However, if the offset is close to the end of the journal device, 1688 * ctx->valid_pages could be smaller than ctx->total_pages 1689 */ 1690 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1691 struct r5l_recovery_ctx *ctx, 1692 sector_t offset) 1693 { 1694 bio_reset(ctx->ra_bio); 1695 bio_set_dev(ctx->ra_bio, log->rdev->bdev); 1696 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0); 1697 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset; 1698 1699 ctx->valid_pages = 0; 1700 ctx->pool_offset = offset; 1701 1702 while (ctx->valid_pages < ctx->total_pages) { 1703 bio_add_page(ctx->ra_bio, 1704 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0); 1705 ctx->valid_pages += 1; 1706 1707 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1708 1709 if (offset == 0) /* reached end of the device */ 1710 break; 1711 } 1712 1713 return submit_bio_wait(ctx->ra_bio); 1714 } 1715 1716 /* 1717 * try read a page from the read ahead page pool, if the page is not in the 1718 * pool, call r5l_recovery_fetch_ra_pool 1719 */ 1720 static int r5l_recovery_read_page(struct r5l_log *log, 1721 struct r5l_recovery_ctx *ctx, 1722 struct page *page, 1723 sector_t offset) 1724 { 1725 int ret; 1726 1727 if (offset < ctx->pool_offset || 1728 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1729 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1730 if (ret) 1731 return ret; 1732 } 1733 1734 BUG_ON(offset < ctx->pool_offset || 1735 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1736 1737 memcpy(page_address(page), 1738 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1739 BLOCK_SECTOR_SHIFT]), 1740 PAGE_SIZE); 1741 return 0; 1742 } 1743 1744 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1745 struct r5l_recovery_ctx *ctx) 1746 { 1747 struct page *page = ctx->meta_page; 1748 struct r5l_meta_block *mb; 1749 u32 crc, stored_crc; 1750 int ret; 1751 1752 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1753 if (ret != 0) 1754 return ret; 1755 1756 mb = page_address(page); 1757 stored_crc = le32_to_cpu(mb->checksum); 1758 mb->checksum = 0; 1759 1760 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1761 le64_to_cpu(mb->seq) != ctx->seq || 1762 mb->version != R5LOG_VERSION || 1763 le64_to_cpu(mb->position) != ctx->pos) 1764 return -EINVAL; 1765 1766 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1767 if (stored_crc != crc) 1768 return -EINVAL; 1769 1770 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1771 return -EINVAL; 1772 1773 ctx->meta_total_blocks = BLOCK_SECTORS; 1774 1775 return 0; 1776 } 1777 1778 static void 1779 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1780 struct page *page, 1781 sector_t pos, u64 seq) 1782 { 1783 struct r5l_meta_block *mb; 1784 1785 mb = page_address(page); 1786 clear_page(mb); 1787 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1788 mb->version = R5LOG_VERSION; 1789 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1790 mb->seq = cpu_to_le64(seq); 1791 mb->position = cpu_to_le64(pos); 1792 } 1793 1794 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1795 u64 seq) 1796 { 1797 struct page *page; 1798 struct r5l_meta_block *mb; 1799 1800 page = alloc_page(GFP_KERNEL); 1801 if (!page) 1802 return -ENOMEM; 1803 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1804 mb = page_address(page); 1805 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1806 mb, PAGE_SIZE)); 1807 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE, 1808 REQ_SYNC | REQ_FUA, false)) { 1809 __free_page(page); 1810 return -EIO; 1811 } 1812 __free_page(page); 1813 return 0; 1814 } 1815 1816 /* 1817 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1818 * to mark valid (potentially not flushed) data in the journal. 1819 * 1820 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1821 * so there should not be any mismatch here. 1822 */ 1823 static void r5l_recovery_load_data(struct r5l_log *log, 1824 struct stripe_head *sh, 1825 struct r5l_recovery_ctx *ctx, 1826 struct r5l_payload_data_parity *payload, 1827 sector_t log_offset) 1828 { 1829 struct mddev *mddev = log->rdev->mddev; 1830 struct r5conf *conf = mddev->private; 1831 int dd_idx; 1832 1833 raid5_compute_sector(conf, 1834 le64_to_cpu(payload->location), 0, 1835 &dd_idx, sh); 1836 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1837 sh->dev[dd_idx].log_checksum = 1838 le32_to_cpu(payload->checksum[0]); 1839 ctx->meta_total_blocks += BLOCK_SECTORS; 1840 1841 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1842 set_bit(STRIPE_R5C_CACHING, &sh->state); 1843 } 1844 1845 static void r5l_recovery_load_parity(struct r5l_log *log, 1846 struct stripe_head *sh, 1847 struct r5l_recovery_ctx *ctx, 1848 struct r5l_payload_data_parity *payload, 1849 sector_t log_offset) 1850 { 1851 struct mddev *mddev = log->rdev->mddev; 1852 struct r5conf *conf = mddev->private; 1853 1854 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1855 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1856 sh->dev[sh->pd_idx].log_checksum = 1857 le32_to_cpu(payload->checksum[0]); 1858 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1859 1860 if (sh->qd_idx >= 0) { 1861 r5l_recovery_read_page( 1862 log, ctx, sh->dev[sh->qd_idx].page, 1863 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1864 sh->dev[sh->qd_idx].log_checksum = 1865 le32_to_cpu(payload->checksum[1]); 1866 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1867 } 1868 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1869 } 1870 1871 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1872 { 1873 int i; 1874 1875 sh->state = 0; 1876 sh->log_start = MaxSector; 1877 for (i = sh->disks; i--; ) 1878 sh->dev[i].flags = 0; 1879 } 1880 1881 static void 1882 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1883 struct stripe_head *sh, 1884 struct r5l_recovery_ctx *ctx) 1885 { 1886 struct md_rdev *rdev, *rrdev; 1887 int disk_index; 1888 int data_count = 0; 1889 1890 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1891 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1892 continue; 1893 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1894 continue; 1895 data_count++; 1896 } 1897 1898 /* 1899 * stripes that only have parity must have been flushed 1900 * before the crash that we are now recovering from, so 1901 * there is nothing more to recovery. 1902 */ 1903 if (data_count == 0) 1904 goto out; 1905 1906 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1907 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1908 continue; 1909 1910 /* in case device is broken */ 1911 rcu_read_lock(); 1912 rdev = rcu_dereference(conf->disks[disk_index].rdev); 1913 if (rdev) { 1914 atomic_inc(&rdev->nr_pending); 1915 rcu_read_unlock(); 1916 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1917 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1918 false); 1919 rdev_dec_pending(rdev, rdev->mddev); 1920 rcu_read_lock(); 1921 } 1922 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 1923 if (rrdev) { 1924 atomic_inc(&rrdev->nr_pending); 1925 rcu_read_unlock(); 1926 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1927 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1928 false); 1929 rdev_dec_pending(rrdev, rrdev->mddev); 1930 rcu_read_lock(); 1931 } 1932 rcu_read_unlock(); 1933 } 1934 ctx->data_parity_stripes++; 1935 out: 1936 r5l_recovery_reset_stripe(sh); 1937 } 1938 1939 static struct stripe_head * 1940 r5c_recovery_alloc_stripe(struct r5conf *conf, 1941 sector_t stripe_sect) 1942 { 1943 struct stripe_head *sh; 1944 1945 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0); 1946 if (!sh) 1947 return NULL; /* no more stripe available */ 1948 1949 r5l_recovery_reset_stripe(sh); 1950 1951 return sh; 1952 } 1953 1954 static struct stripe_head * 1955 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1956 { 1957 struct stripe_head *sh; 1958 1959 list_for_each_entry(sh, list, lru) 1960 if (sh->sector == sect) 1961 return sh; 1962 return NULL; 1963 } 1964 1965 static void 1966 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1967 struct r5l_recovery_ctx *ctx) 1968 { 1969 struct stripe_head *sh, *next; 1970 1971 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1972 r5l_recovery_reset_stripe(sh); 1973 list_del_init(&sh->lru); 1974 raid5_release_stripe(sh); 1975 } 1976 } 1977 1978 static void 1979 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1980 struct r5l_recovery_ctx *ctx) 1981 { 1982 struct stripe_head *sh, *next; 1983 1984 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1985 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1986 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1987 list_del_init(&sh->lru); 1988 raid5_release_stripe(sh); 1989 } 1990 } 1991 1992 /* if matches return 0; otherwise return -EINVAL */ 1993 static int 1994 r5l_recovery_verify_data_checksum(struct r5l_log *log, 1995 struct r5l_recovery_ctx *ctx, 1996 struct page *page, 1997 sector_t log_offset, __le32 log_checksum) 1998 { 1999 void *addr; 2000 u32 checksum; 2001 2002 r5l_recovery_read_page(log, ctx, page, log_offset); 2003 addr = kmap_atomic(page); 2004 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 2005 kunmap_atomic(addr); 2006 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 2007 } 2008 2009 /* 2010 * before loading data to stripe cache, we need verify checksum for all data, 2011 * if there is mismatch for any data page, we drop all data in the mata block 2012 */ 2013 static int 2014 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 2015 struct r5l_recovery_ctx *ctx) 2016 { 2017 struct mddev *mddev = log->rdev->mddev; 2018 struct r5conf *conf = mddev->private; 2019 struct r5l_meta_block *mb = page_address(ctx->meta_page); 2020 sector_t mb_offset = sizeof(struct r5l_meta_block); 2021 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2022 struct page *page; 2023 struct r5l_payload_data_parity *payload; 2024 struct r5l_payload_flush *payload_flush; 2025 2026 page = alloc_page(GFP_KERNEL); 2027 if (!page) 2028 return -ENOMEM; 2029 2030 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2031 payload = (void *)mb + mb_offset; 2032 payload_flush = (void *)mb + mb_offset; 2033 2034 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2035 if (r5l_recovery_verify_data_checksum( 2036 log, ctx, page, log_offset, 2037 payload->checksum[0]) < 0) 2038 goto mismatch; 2039 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2040 if (r5l_recovery_verify_data_checksum( 2041 log, ctx, page, log_offset, 2042 payload->checksum[0]) < 0) 2043 goto mismatch; 2044 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2045 r5l_recovery_verify_data_checksum( 2046 log, ctx, page, 2047 r5l_ring_add(log, log_offset, 2048 BLOCK_SECTORS), 2049 payload->checksum[1]) < 0) 2050 goto mismatch; 2051 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2052 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2053 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2054 goto mismatch; 2055 2056 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2057 mb_offset += sizeof(struct r5l_payload_flush) + 2058 le32_to_cpu(payload_flush->size); 2059 } else { 2060 /* DATA or PARITY payload */ 2061 log_offset = r5l_ring_add(log, log_offset, 2062 le32_to_cpu(payload->size)); 2063 mb_offset += sizeof(struct r5l_payload_data_parity) + 2064 sizeof(__le32) * 2065 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2066 } 2067 2068 } 2069 2070 put_page(page); 2071 return 0; 2072 2073 mismatch: 2074 put_page(page); 2075 return -EINVAL; 2076 } 2077 2078 /* 2079 * Analyze all data/parity pages in one meta block 2080 * Returns: 2081 * 0 for success 2082 * -EINVAL for unknown playload type 2083 * -EAGAIN for checksum mismatch of data page 2084 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2085 */ 2086 static int 2087 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2088 struct r5l_recovery_ctx *ctx, 2089 struct list_head *cached_stripe_list) 2090 { 2091 struct mddev *mddev = log->rdev->mddev; 2092 struct r5conf *conf = mddev->private; 2093 struct r5l_meta_block *mb; 2094 struct r5l_payload_data_parity *payload; 2095 struct r5l_payload_flush *payload_flush; 2096 int mb_offset; 2097 sector_t log_offset; 2098 sector_t stripe_sect; 2099 struct stripe_head *sh; 2100 int ret; 2101 2102 /* 2103 * for mismatch in data blocks, we will drop all data in this mb, but 2104 * we will still read next mb for other data with FLUSH flag, as 2105 * io_unit could finish out of order. 2106 */ 2107 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2108 if (ret == -EINVAL) 2109 return -EAGAIN; 2110 else if (ret) 2111 return ret; /* -ENOMEM duo to alloc_page() failed */ 2112 2113 mb = page_address(ctx->meta_page); 2114 mb_offset = sizeof(struct r5l_meta_block); 2115 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2116 2117 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2118 int dd; 2119 2120 payload = (void *)mb + mb_offset; 2121 payload_flush = (void *)mb + mb_offset; 2122 2123 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2124 int i, count; 2125 2126 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2127 for (i = 0; i < count; ++i) { 2128 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2129 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2130 stripe_sect); 2131 if (sh) { 2132 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2133 r5l_recovery_reset_stripe(sh); 2134 list_del_init(&sh->lru); 2135 raid5_release_stripe(sh); 2136 } 2137 } 2138 2139 mb_offset += sizeof(struct r5l_payload_flush) + 2140 le32_to_cpu(payload_flush->size); 2141 continue; 2142 } 2143 2144 /* DATA or PARITY payload */ 2145 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2146 raid5_compute_sector( 2147 conf, le64_to_cpu(payload->location), 0, &dd, 2148 NULL) 2149 : le64_to_cpu(payload->location); 2150 2151 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2152 stripe_sect); 2153 2154 if (!sh) { 2155 sh = r5c_recovery_alloc_stripe(conf, stripe_sect); 2156 /* 2157 * cannot get stripe from raid5_get_active_stripe 2158 * try replay some stripes 2159 */ 2160 if (!sh) { 2161 r5c_recovery_replay_stripes( 2162 cached_stripe_list, ctx); 2163 sh = r5c_recovery_alloc_stripe( 2164 conf, stripe_sect); 2165 } 2166 if (!sh) { 2167 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2168 mdname(mddev), 2169 conf->min_nr_stripes * 2); 2170 raid5_set_cache_size(mddev, 2171 conf->min_nr_stripes * 2); 2172 sh = r5c_recovery_alloc_stripe(conf, 2173 stripe_sect); 2174 } 2175 if (!sh) { 2176 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2177 mdname(mddev)); 2178 return -ENOMEM; 2179 } 2180 list_add_tail(&sh->lru, cached_stripe_list); 2181 } 2182 2183 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2184 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2185 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2186 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2187 list_move_tail(&sh->lru, cached_stripe_list); 2188 } 2189 r5l_recovery_load_data(log, sh, ctx, payload, 2190 log_offset); 2191 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2192 r5l_recovery_load_parity(log, sh, ctx, payload, 2193 log_offset); 2194 else 2195 return -EINVAL; 2196 2197 log_offset = r5l_ring_add(log, log_offset, 2198 le32_to_cpu(payload->size)); 2199 2200 mb_offset += sizeof(struct r5l_payload_data_parity) + 2201 sizeof(__le32) * 2202 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2203 } 2204 2205 return 0; 2206 } 2207 2208 /* 2209 * Load the stripe into cache. The stripe will be written out later by 2210 * the stripe cache state machine. 2211 */ 2212 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2213 struct stripe_head *sh) 2214 { 2215 struct r5dev *dev; 2216 int i; 2217 2218 for (i = sh->disks; i--; ) { 2219 dev = sh->dev + i; 2220 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2221 set_bit(R5_InJournal, &dev->flags); 2222 set_bit(R5_UPTODATE, &dev->flags); 2223 } 2224 } 2225 } 2226 2227 /* 2228 * Scan through the log for all to-be-flushed data 2229 * 2230 * For stripes with data and parity, namely Data-Parity stripe 2231 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2232 * 2233 * For stripes with only data, namely Data-Only stripe 2234 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2235 * 2236 * For a stripe, if we see data after parity, we should discard all previous 2237 * data and parity for this stripe, as these data are already flushed to 2238 * the array. 2239 * 2240 * At the end of the scan, we return the new journal_tail, which points to 2241 * first data-only stripe on the journal device, or next invalid meta block. 2242 */ 2243 static int r5c_recovery_flush_log(struct r5l_log *log, 2244 struct r5l_recovery_ctx *ctx) 2245 { 2246 struct stripe_head *sh; 2247 int ret = 0; 2248 2249 /* scan through the log */ 2250 while (1) { 2251 if (r5l_recovery_read_meta_block(log, ctx)) 2252 break; 2253 2254 ret = r5c_recovery_analyze_meta_block(log, ctx, 2255 &ctx->cached_list); 2256 /* 2257 * -EAGAIN means mismatch in data block, in this case, we still 2258 * try scan the next metablock 2259 */ 2260 if (ret && ret != -EAGAIN) 2261 break; /* ret == -EINVAL or -ENOMEM */ 2262 ctx->seq++; 2263 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2264 } 2265 2266 if (ret == -ENOMEM) { 2267 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2268 return ret; 2269 } 2270 2271 /* replay data-parity stripes */ 2272 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2273 2274 /* load data-only stripes to stripe cache */ 2275 list_for_each_entry(sh, &ctx->cached_list, lru) { 2276 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2277 r5c_recovery_load_one_stripe(log, sh); 2278 ctx->data_only_stripes++; 2279 } 2280 2281 return 0; 2282 } 2283 2284 /* 2285 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2286 * log will start here. but we can't let superblock point to last valid 2287 * meta block. The log might looks like: 2288 * | meta 1| meta 2| meta 3| 2289 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2290 * superblock points to meta 1, we write a new valid meta 2n. if crash 2291 * happens again, new recovery will start from meta 1. Since meta 2n is 2292 * valid now, recovery will think meta 3 is valid, which is wrong. 2293 * The solution is we create a new meta in meta2 with its seq == meta 2294 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2295 * will not think meta 3 is a valid meta, because its seq doesn't match 2296 */ 2297 2298 /* 2299 * Before recovery, the log looks like the following 2300 * 2301 * --------------------------------------------- 2302 * | valid log | invalid log | 2303 * --------------------------------------------- 2304 * ^ 2305 * |- log->last_checkpoint 2306 * |- log->last_cp_seq 2307 * 2308 * Now we scan through the log until we see invalid entry 2309 * 2310 * --------------------------------------------- 2311 * | valid log | invalid log | 2312 * --------------------------------------------- 2313 * ^ ^ 2314 * |- log->last_checkpoint |- ctx->pos 2315 * |- log->last_cp_seq |- ctx->seq 2316 * 2317 * From this point, we need to increase seq number by 10 to avoid 2318 * confusing next recovery. 2319 * 2320 * --------------------------------------------- 2321 * | valid log | invalid log | 2322 * --------------------------------------------- 2323 * ^ ^ 2324 * |- log->last_checkpoint |- ctx->pos+1 2325 * |- log->last_cp_seq |- ctx->seq+10001 2326 * 2327 * However, it is not safe to start the state machine yet, because data only 2328 * parities are not yet secured in RAID. To save these data only parities, we 2329 * rewrite them from seq+11. 2330 * 2331 * ----------------------------------------------------------------- 2332 * | valid log | data only stripes | invalid log | 2333 * ----------------------------------------------------------------- 2334 * ^ ^ 2335 * |- log->last_checkpoint |- ctx->pos+n 2336 * |- log->last_cp_seq |- ctx->seq+10000+n 2337 * 2338 * If failure happens again during this process, the recovery can safe start 2339 * again from log->last_checkpoint. 2340 * 2341 * Once data only stripes are rewritten to journal, we move log_tail 2342 * 2343 * ----------------------------------------------------------------- 2344 * | old log | data only stripes | invalid log | 2345 * ----------------------------------------------------------------- 2346 * ^ ^ 2347 * |- log->last_checkpoint |- ctx->pos+n 2348 * |- log->last_cp_seq |- ctx->seq+10000+n 2349 * 2350 * Then we can safely start the state machine. If failure happens from this 2351 * point on, the recovery will start from new log->last_checkpoint. 2352 */ 2353 static int 2354 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2355 struct r5l_recovery_ctx *ctx) 2356 { 2357 struct stripe_head *sh; 2358 struct mddev *mddev = log->rdev->mddev; 2359 struct page *page; 2360 sector_t next_checkpoint = MaxSector; 2361 2362 page = alloc_page(GFP_KERNEL); 2363 if (!page) { 2364 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2365 mdname(mddev)); 2366 return -ENOMEM; 2367 } 2368 2369 WARN_ON(list_empty(&ctx->cached_list)); 2370 2371 list_for_each_entry(sh, &ctx->cached_list, lru) { 2372 struct r5l_meta_block *mb; 2373 int i; 2374 int offset; 2375 sector_t write_pos; 2376 2377 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2378 r5l_recovery_create_empty_meta_block(log, page, 2379 ctx->pos, ctx->seq); 2380 mb = page_address(page); 2381 offset = le32_to_cpu(mb->meta_size); 2382 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2383 2384 for (i = sh->disks; i--; ) { 2385 struct r5dev *dev = &sh->dev[i]; 2386 struct r5l_payload_data_parity *payload; 2387 void *addr; 2388 2389 if (test_bit(R5_InJournal, &dev->flags)) { 2390 payload = (void *)mb + offset; 2391 payload->header.type = cpu_to_le16( 2392 R5LOG_PAYLOAD_DATA); 2393 payload->size = cpu_to_le32(BLOCK_SECTORS); 2394 payload->location = cpu_to_le64( 2395 raid5_compute_blocknr(sh, i, 0)); 2396 addr = kmap_atomic(dev->page); 2397 payload->checksum[0] = cpu_to_le32( 2398 crc32c_le(log->uuid_checksum, addr, 2399 PAGE_SIZE)); 2400 kunmap_atomic(addr); 2401 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2402 dev->page, REQ_OP_WRITE, 0, false); 2403 write_pos = r5l_ring_add(log, write_pos, 2404 BLOCK_SECTORS); 2405 offset += sizeof(__le32) + 2406 sizeof(struct r5l_payload_data_parity); 2407 2408 } 2409 } 2410 mb->meta_size = cpu_to_le32(offset); 2411 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2412 mb, PAGE_SIZE)); 2413 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2414 REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false); 2415 sh->log_start = ctx->pos; 2416 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2417 atomic_inc(&log->stripe_in_journal_count); 2418 ctx->pos = write_pos; 2419 ctx->seq += 1; 2420 next_checkpoint = sh->log_start; 2421 } 2422 log->next_checkpoint = next_checkpoint; 2423 __free_page(page); 2424 return 0; 2425 } 2426 2427 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2428 struct r5l_recovery_ctx *ctx) 2429 { 2430 struct mddev *mddev = log->rdev->mddev; 2431 struct r5conf *conf = mddev->private; 2432 struct stripe_head *sh, *next; 2433 2434 if (ctx->data_only_stripes == 0) 2435 return; 2436 2437 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2438 2439 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2440 r5c_make_stripe_write_out(sh); 2441 set_bit(STRIPE_HANDLE, &sh->state); 2442 list_del_init(&sh->lru); 2443 raid5_release_stripe(sh); 2444 } 2445 2446 /* reuse conf->wait_for_quiescent in recovery */ 2447 wait_event(conf->wait_for_quiescent, 2448 atomic_read(&conf->active_stripes) == 0); 2449 2450 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2451 } 2452 2453 static int r5l_recovery_log(struct r5l_log *log) 2454 { 2455 struct mddev *mddev = log->rdev->mddev; 2456 struct r5l_recovery_ctx *ctx; 2457 int ret; 2458 sector_t pos; 2459 2460 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2461 if (!ctx) 2462 return -ENOMEM; 2463 2464 ctx->pos = log->last_checkpoint; 2465 ctx->seq = log->last_cp_seq; 2466 INIT_LIST_HEAD(&ctx->cached_list); 2467 ctx->meta_page = alloc_page(GFP_KERNEL); 2468 2469 if (!ctx->meta_page) { 2470 ret = -ENOMEM; 2471 goto meta_page; 2472 } 2473 2474 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2475 ret = -ENOMEM; 2476 goto ra_pool; 2477 } 2478 2479 ret = r5c_recovery_flush_log(log, ctx); 2480 2481 if (ret) 2482 goto error; 2483 2484 pos = ctx->pos; 2485 ctx->seq += 10000; 2486 2487 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2488 pr_info("md/raid:%s: starting from clean shutdown\n", 2489 mdname(mddev)); 2490 else 2491 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2492 mdname(mddev), ctx->data_only_stripes, 2493 ctx->data_parity_stripes); 2494 2495 if (ctx->data_only_stripes == 0) { 2496 log->next_checkpoint = ctx->pos; 2497 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2498 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2499 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2500 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2501 mdname(mddev)); 2502 ret = -EIO; 2503 goto error; 2504 } 2505 2506 log->log_start = ctx->pos; 2507 log->seq = ctx->seq; 2508 log->last_checkpoint = pos; 2509 r5l_write_super(log, pos); 2510 2511 r5c_recovery_flush_data_only_stripes(log, ctx); 2512 ret = 0; 2513 error: 2514 r5l_recovery_free_ra_pool(log, ctx); 2515 ra_pool: 2516 __free_page(ctx->meta_page); 2517 meta_page: 2518 kfree(ctx); 2519 return ret; 2520 } 2521 2522 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2523 { 2524 struct mddev *mddev = log->rdev->mddev; 2525 2526 log->rdev->journal_tail = cp; 2527 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2528 } 2529 2530 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2531 { 2532 struct r5conf *conf; 2533 int ret; 2534 2535 ret = mddev_lock(mddev); 2536 if (ret) 2537 return ret; 2538 2539 conf = mddev->private; 2540 if (!conf || !conf->log) { 2541 mddev_unlock(mddev); 2542 return 0; 2543 } 2544 2545 switch (conf->log->r5c_journal_mode) { 2546 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2547 ret = snprintf( 2548 page, PAGE_SIZE, "[%s] %s\n", 2549 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2550 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2551 break; 2552 case R5C_JOURNAL_MODE_WRITE_BACK: 2553 ret = snprintf( 2554 page, PAGE_SIZE, "%s [%s]\n", 2555 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2556 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2557 break; 2558 default: 2559 ret = 0; 2560 } 2561 mddev_unlock(mddev); 2562 return ret; 2563 } 2564 2565 /* 2566 * Set journal cache mode on @mddev (external API initially needed by dm-raid). 2567 * 2568 * @mode as defined in 'enum r5c_journal_mode'. 2569 * 2570 */ 2571 int r5c_journal_mode_set(struct mddev *mddev, int mode) 2572 { 2573 struct r5conf *conf; 2574 2575 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || 2576 mode > R5C_JOURNAL_MODE_WRITE_BACK) 2577 return -EINVAL; 2578 2579 conf = mddev->private; 2580 if (!conf || !conf->log) 2581 return -ENODEV; 2582 2583 if (raid5_calc_degraded(conf) > 0 && 2584 mode == R5C_JOURNAL_MODE_WRITE_BACK) 2585 return -EINVAL; 2586 2587 mddev_suspend(mddev); 2588 conf->log->r5c_journal_mode = mode; 2589 mddev_resume(mddev); 2590 2591 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2592 mdname(mddev), mode, r5c_journal_mode_str[mode]); 2593 return 0; 2594 } 2595 EXPORT_SYMBOL(r5c_journal_mode_set); 2596 2597 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2598 const char *page, size_t length) 2599 { 2600 int mode = ARRAY_SIZE(r5c_journal_mode_str); 2601 size_t len = length; 2602 int ret; 2603 2604 if (len < 2) 2605 return -EINVAL; 2606 2607 if (page[len - 1] == '\n') 2608 len--; 2609 2610 while (mode--) 2611 if (strlen(r5c_journal_mode_str[mode]) == len && 2612 !strncmp(page, r5c_journal_mode_str[mode], len)) 2613 break; 2614 ret = mddev_lock(mddev); 2615 if (ret) 2616 return ret; 2617 ret = r5c_journal_mode_set(mddev, mode); 2618 mddev_unlock(mddev); 2619 return ret ?: length; 2620 } 2621 2622 struct md_sysfs_entry 2623 r5c_journal_mode = __ATTR(journal_mode, 0644, 2624 r5c_journal_mode_show, r5c_journal_mode_store); 2625 2626 /* 2627 * Try handle write operation in caching phase. This function should only 2628 * be called in write-back mode. 2629 * 2630 * If all outstanding writes can be handled in caching phase, returns 0 2631 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2632 * and returns -EAGAIN 2633 */ 2634 int r5c_try_caching_write(struct r5conf *conf, 2635 struct stripe_head *sh, 2636 struct stripe_head_state *s, 2637 int disks) 2638 { 2639 struct r5l_log *log = conf->log; 2640 int i; 2641 struct r5dev *dev; 2642 int to_cache = 0; 2643 void **pslot; 2644 sector_t tree_index; 2645 int ret; 2646 uintptr_t refcount; 2647 2648 BUG_ON(!r5c_is_writeback(log)); 2649 2650 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2651 /* 2652 * There are two different scenarios here: 2653 * 1. The stripe has some data cached, and it is sent to 2654 * write-out phase for reclaim 2655 * 2. The stripe is clean, and this is the first write 2656 * 2657 * For 1, return -EAGAIN, so we continue with 2658 * handle_stripe_dirtying(). 2659 * 2660 * For 2, set STRIPE_R5C_CACHING and continue with caching 2661 * write. 2662 */ 2663 2664 /* case 1: anything injournal or anything in written */ 2665 if (s->injournal > 0 || s->written > 0) 2666 return -EAGAIN; 2667 /* case 2 */ 2668 set_bit(STRIPE_R5C_CACHING, &sh->state); 2669 } 2670 2671 /* 2672 * When run in degraded mode, array is set to write-through mode. 2673 * This check helps drain pending write safely in the transition to 2674 * write-through mode. 2675 * 2676 * When a stripe is syncing, the write is also handled in write 2677 * through mode. 2678 */ 2679 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { 2680 r5c_make_stripe_write_out(sh); 2681 return -EAGAIN; 2682 } 2683 2684 for (i = disks; i--; ) { 2685 dev = &sh->dev[i]; 2686 /* if non-overwrite, use writing-out phase */ 2687 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2688 !test_bit(R5_InJournal, &dev->flags)) { 2689 r5c_make_stripe_write_out(sh); 2690 return -EAGAIN; 2691 } 2692 } 2693 2694 /* if the stripe is not counted in big_stripe_tree, add it now */ 2695 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2696 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2697 tree_index = r5c_tree_index(conf, sh->sector); 2698 spin_lock(&log->tree_lock); 2699 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2700 tree_index); 2701 if (pslot) { 2702 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2703 pslot, &log->tree_lock) >> 2704 R5C_RADIX_COUNT_SHIFT; 2705 radix_tree_replace_slot( 2706 &log->big_stripe_tree, pslot, 2707 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2708 } else { 2709 /* 2710 * this radix_tree_insert can fail safely, so no 2711 * need to call radix_tree_preload() 2712 */ 2713 ret = radix_tree_insert( 2714 &log->big_stripe_tree, tree_index, 2715 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2716 if (ret) { 2717 spin_unlock(&log->tree_lock); 2718 r5c_make_stripe_write_out(sh); 2719 return -EAGAIN; 2720 } 2721 } 2722 spin_unlock(&log->tree_lock); 2723 2724 /* 2725 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2726 * counted in the radix tree 2727 */ 2728 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2729 atomic_inc(&conf->r5c_cached_partial_stripes); 2730 } 2731 2732 for (i = disks; i--; ) { 2733 dev = &sh->dev[i]; 2734 if (dev->towrite) { 2735 set_bit(R5_Wantwrite, &dev->flags); 2736 set_bit(R5_Wantdrain, &dev->flags); 2737 set_bit(R5_LOCKED, &dev->flags); 2738 to_cache++; 2739 } 2740 } 2741 2742 if (to_cache) { 2743 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2744 /* 2745 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2746 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2747 * r5c_handle_data_cached() 2748 */ 2749 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2750 } 2751 2752 return 0; 2753 } 2754 2755 /* 2756 * free extra pages (orig_page) we allocated for prexor 2757 */ 2758 void r5c_release_extra_page(struct stripe_head *sh) 2759 { 2760 struct r5conf *conf = sh->raid_conf; 2761 int i; 2762 bool using_disk_info_extra_page; 2763 2764 using_disk_info_extra_page = 2765 sh->dev[0].orig_page == conf->disks[0].extra_page; 2766 2767 for (i = sh->disks; i--; ) 2768 if (sh->dev[i].page != sh->dev[i].orig_page) { 2769 struct page *p = sh->dev[i].orig_page; 2770 2771 sh->dev[i].orig_page = sh->dev[i].page; 2772 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2773 2774 if (!using_disk_info_extra_page) 2775 put_page(p); 2776 } 2777 2778 if (using_disk_info_extra_page) { 2779 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2780 md_wakeup_thread(conf->mddev->thread); 2781 } 2782 } 2783 2784 void r5c_use_extra_page(struct stripe_head *sh) 2785 { 2786 struct r5conf *conf = sh->raid_conf; 2787 int i; 2788 struct r5dev *dev; 2789 2790 for (i = sh->disks; i--; ) { 2791 dev = &sh->dev[i]; 2792 if (dev->orig_page != dev->page) 2793 put_page(dev->orig_page); 2794 dev->orig_page = conf->disks[i].extra_page; 2795 } 2796 } 2797 2798 /* 2799 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2800 * stripe is committed to RAID disks. 2801 */ 2802 void r5c_finish_stripe_write_out(struct r5conf *conf, 2803 struct stripe_head *sh, 2804 struct stripe_head_state *s) 2805 { 2806 struct r5l_log *log = conf->log; 2807 int i; 2808 int do_wakeup = 0; 2809 sector_t tree_index; 2810 void **pslot; 2811 uintptr_t refcount; 2812 2813 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2814 return; 2815 2816 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2817 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2818 2819 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2820 return; 2821 2822 for (i = sh->disks; i--; ) { 2823 clear_bit(R5_InJournal, &sh->dev[i].flags); 2824 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2825 do_wakeup = 1; 2826 } 2827 2828 /* 2829 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2830 * We updated R5_InJournal, so we also update s->injournal. 2831 */ 2832 s->injournal = 0; 2833 2834 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2835 if (atomic_dec_and_test(&conf->pending_full_writes)) 2836 md_wakeup_thread(conf->mddev->thread); 2837 2838 if (do_wakeup) 2839 wake_up(&conf->wait_for_overlap); 2840 2841 spin_lock_irq(&log->stripe_in_journal_lock); 2842 list_del_init(&sh->r5c); 2843 spin_unlock_irq(&log->stripe_in_journal_lock); 2844 sh->log_start = MaxSector; 2845 2846 atomic_dec(&log->stripe_in_journal_count); 2847 r5c_update_log_state(log); 2848 2849 /* stop counting this stripe in big_stripe_tree */ 2850 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2851 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2852 tree_index = r5c_tree_index(conf, sh->sector); 2853 spin_lock(&log->tree_lock); 2854 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2855 tree_index); 2856 BUG_ON(pslot == NULL); 2857 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2858 pslot, &log->tree_lock) >> 2859 R5C_RADIX_COUNT_SHIFT; 2860 if (refcount == 1) 2861 radix_tree_delete(&log->big_stripe_tree, tree_index); 2862 else 2863 radix_tree_replace_slot( 2864 &log->big_stripe_tree, pslot, 2865 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2866 spin_unlock(&log->tree_lock); 2867 } 2868 2869 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2870 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2871 atomic_dec(&conf->r5c_flushing_partial_stripes); 2872 atomic_dec(&conf->r5c_cached_partial_stripes); 2873 } 2874 2875 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2876 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2877 atomic_dec(&conf->r5c_flushing_full_stripes); 2878 atomic_dec(&conf->r5c_cached_full_stripes); 2879 } 2880 2881 r5l_append_flush_payload(log, sh->sector); 2882 /* stripe is flused to raid disks, we can do resync now */ 2883 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2884 set_bit(STRIPE_HANDLE, &sh->state); 2885 } 2886 2887 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2888 { 2889 struct r5conf *conf = sh->raid_conf; 2890 int pages = 0; 2891 int reserve; 2892 int i; 2893 int ret = 0; 2894 2895 BUG_ON(!log); 2896 2897 for (i = 0; i < sh->disks; i++) { 2898 void *addr; 2899 2900 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2901 continue; 2902 addr = kmap_atomic(sh->dev[i].page); 2903 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2904 addr, PAGE_SIZE); 2905 kunmap_atomic(addr); 2906 pages++; 2907 } 2908 WARN_ON(pages == 0); 2909 2910 /* 2911 * The stripe must enter state machine again to call endio, so 2912 * don't delay. 2913 */ 2914 clear_bit(STRIPE_DELAYED, &sh->state); 2915 atomic_inc(&sh->count); 2916 2917 mutex_lock(&log->io_mutex); 2918 /* meta + data */ 2919 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2920 2921 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2922 sh->log_start == MaxSector) 2923 r5l_add_no_space_stripe(log, sh); 2924 else if (!r5l_has_free_space(log, reserve)) { 2925 if (sh->log_start == log->last_checkpoint) 2926 BUG(); 2927 else 2928 r5l_add_no_space_stripe(log, sh); 2929 } else { 2930 ret = r5l_log_stripe(log, sh, pages, 0); 2931 if (ret) { 2932 spin_lock_irq(&log->io_list_lock); 2933 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2934 spin_unlock_irq(&log->io_list_lock); 2935 } 2936 } 2937 2938 mutex_unlock(&log->io_mutex); 2939 return 0; 2940 } 2941 2942 /* check whether this big stripe is in write back cache. */ 2943 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2944 { 2945 struct r5l_log *log = conf->log; 2946 sector_t tree_index; 2947 void *slot; 2948 2949 if (!log) 2950 return false; 2951 2952 WARN_ON_ONCE(!rcu_read_lock_held()); 2953 tree_index = r5c_tree_index(conf, sect); 2954 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2955 return slot != NULL; 2956 } 2957 2958 static int r5l_load_log(struct r5l_log *log) 2959 { 2960 struct md_rdev *rdev = log->rdev; 2961 struct page *page; 2962 struct r5l_meta_block *mb; 2963 sector_t cp = log->rdev->journal_tail; 2964 u32 stored_crc, expected_crc; 2965 bool create_super = false; 2966 int ret = 0; 2967 2968 /* Make sure it's valid */ 2969 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2970 cp = 0; 2971 page = alloc_page(GFP_KERNEL); 2972 if (!page) 2973 return -ENOMEM; 2974 2975 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { 2976 ret = -EIO; 2977 goto ioerr; 2978 } 2979 mb = page_address(page); 2980 2981 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2982 mb->version != R5LOG_VERSION) { 2983 create_super = true; 2984 goto create; 2985 } 2986 stored_crc = le32_to_cpu(mb->checksum); 2987 mb->checksum = 0; 2988 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2989 if (stored_crc != expected_crc) { 2990 create_super = true; 2991 goto create; 2992 } 2993 if (le64_to_cpu(mb->position) != cp) { 2994 create_super = true; 2995 goto create; 2996 } 2997 create: 2998 if (create_super) { 2999 log->last_cp_seq = prandom_u32(); 3000 cp = 0; 3001 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 3002 /* 3003 * Make sure super points to correct address. Log might have 3004 * data very soon. If super hasn't correct log tail address, 3005 * recovery can't find the log 3006 */ 3007 r5l_write_super(log, cp); 3008 } else 3009 log->last_cp_seq = le64_to_cpu(mb->seq); 3010 3011 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 3012 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 3013 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 3014 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 3015 log->last_checkpoint = cp; 3016 3017 __free_page(page); 3018 3019 if (create_super) { 3020 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 3021 log->seq = log->last_cp_seq + 1; 3022 log->next_checkpoint = cp; 3023 } else 3024 ret = r5l_recovery_log(log); 3025 3026 r5c_update_log_state(log); 3027 return ret; 3028 ioerr: 3029 __free_page(page); 3030 return ret; 3031 } 3032 3033 int r5l_start(struct r5l_log *log) 3034 { 3035 int ret; 3036 3037 if (!log) 3038 return 0; 3039 3040 ret = r5l_load_log(log); 3041 if (ret) { 3042 struct mddev *mddev = log->rdev->mddev; 3043 struct r5conf *conf = mddev->private; 3044 3045 r5l_exit_log(conf); 3046 } 3047 return ret; 3048 } 3049 3050 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) 3051 { 3052 struct r5conf *conf = mddev->private; 3053 struct r5l_log *log = conf->log; 3054 3055 if (!log) 3056 return; 3057 3058 if ((raid5_calc_degraded(conf) > 0 || 3059 test_bit(Journal, &rdev->flags)) && 3060 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 3061 schedule_work(&log->disable_writeback_work); 3062 } 3063 3064 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 3065 { 3066 struct request_queue *q = bdev_get_queue(rdev->bdev); 3067 struct r5l_log *log; 3068 char b[BDEVNAME_SIZE]; 3069 3070 pr_debug("md/raid:%s: using device %s as journal\n", 3071 mdname(conf->mddev), bdevname(rdev->bdev, b)); 3072 3073 if (PAGE_SIZE != 4096) 3074 return -EINVAL; 3075 3076 /* 3077 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 3078 * raid_disks r5l_payload_data_parity. 3079 * 3080 * Write journal and cache does not work for very big array 3081 * (raid_disks > 203) 3082 */ 3083 if (sizeof(struct r5l_meta_block) + 3084 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3085 conf->raid_disks) > PAGE_SIZE) { 3086 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3087 mdname(conf->mddev), conf->raid_disks); 3088 return -EINVAL; 3089 } 3090 3091 log = kzalloc(sizeof(*log), GFP_KERNEL); 3092 if (!log) 3093 return -ENOMEM; 3094 log->rdev = rdev; 3095 3096 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0; 3097 3098 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3099 sizeof(rdev->mddev->uuid)); 3100 3101 mutex_init(&log->io_mutex); 3102 3103 spin_lock_init(&log->io_list_lock); 3104 INIT_LIST_HEAD(&log->running_ios); 3105 INIT_LIST_HEAD(&log->io_end_ios); 3106 INIT_LIST_HEAD(&log->flushing_ios); 3107 INIT_LIST_HEAD(&log->finished_ios); 3108 bio_init(&log->flush_bio, NULL, 0); 3109 3110 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3111 if (!log->io_kc) 3112 goto io_kc; 3113 3114 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc); 3115 if (!log->io_pool) 3116 goto io_pool; 3117 3118 log->bs = bioset_create(R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); 3119 if (!log->bs) 3120 goto io_bs; 3121 3122 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0); 3123 if (!log->meta_pool) 3124 goto out_mempool; 3125 3126 spin_lock_init(&log->tree_lock); 3127 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3128 3129 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 3130 log->rdev->mddev, "reclaim"); 3131 if (!log->reclaim_thread) 3132 goto reclaim_thread; 3133 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3134 3135 init_waitqueue_head(&log->iounit_wait); 3136 3137 INIT_LIST_HEAD(&log->no_mem_stripes); 3138 3139 INIT_LIST_HEAD(&log->no_space_stripes); 3140 spin_lock_init(&log->no_space_stripes_lock); 3141 3142 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3143 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3144 3145 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3146 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3147 spin_lock_init(&log->stripe_in_journal_lock); 3148 atomic_set(&log->stripe_in_journal_count, 0); 3149 3150 rcu_assign_pointer(conf->log, log); 3151 3152 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3153 return 0; 3154 3155 rcu_assign_pointer(conf->log, NULL); 3156 md_unregister_thread(&log->reclaim_thread); 3157 reclaim_thread: 3158 mempool_destroy(log->meta_pool); 3159 out_mempool: 3160 bioset_free(log->bs); 3161 io_bs: 3162 mempool_destroy(log->io_pool); 3163 io_pool: 3164 kmem_cache_destroy(log->io_kc); 3165 io_kc: 3166 kfree(log); 3167 return -EINVAL; 3168 } 3169 3170 void r5l_exit_log(struct r5conf *conf) 3171 { 3172 struct r5l_log *log = conf->log; 3173 3174 conf->log = NULL; 3175 synchronize_rcu(); 3176 3177 /* Ensure disable_writeback_work wakes up and exits */ 3178 wake_up(&conf->mddev->sb_wait); 3179 flush_work(&log->disable_writeback_work); 3180 md_unregister_thread(&log->reclaim_thread); 3181 mempool_destroy(log->meta_pool); 3182 bioset_free(log->bs); 3183 mempool_destroy(log->io_pool); 3184 kmem_cache_destroy(log->io_kc); 3185 kfree(log); 3186 } 3187