xref: /linux/drivers/md/raid5-cache.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5  */
6 #include <linux/kernel.h>
7 #include <linux/wait.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/raid/md_p.h>
11 #include <linux/crc32c.h>
12 #include <linux/random.h>
13 #include <linux/kthread.h>
14 #include <linux/types.h>
15 #include "md.h"
16 #include "raid5.h"
17 #include "md-bitmap.h"
18 #include "raid5-log.h"
19 
20 /*
21  * metadata/data stored in disk with 4k size unit (a block) regardless
22  * underneath hardware sector size. only works with PAGE_SIZE == 4096
23  */
24 #define BLOCK_SECTORS (8)
25 #define BLOCK_SECTOR_SHIFT (3)
26 
27 /*
28  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29  *
30  * In write through mode, the reclaim runs every log->max_free_space.
31  * This can prevent the recovery scans for too long
32  */
33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35 
36 /* wake up reclaim thread periodically */
37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38 /* start flush with these full stripes */
39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40 /* reclaim stripes in groups */
41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42 
43 /*
44  * We only need 2 bios per I/O unit to make progress, but ensure we
45  * have a few more available to not get too tight.
46  */
47 #define R5L_POOL_SIZE	4
48 
49 static char *r5c_journal_mode_str[] = {"write-through",
50 				       "write-back"};
51 /*
52  * raid5 cache state machine
53  *
54  * With the RAID cache, each stripe works in two phases:
55  *	- caching phase
56  *	- writing-out phase
57  *
58  * These two phases are controlled by bit STRIPE_R5C_CACHING:
59  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61  *
62  * When there is no journal, or the journal is in write-through mode,
63  * the stripe is always in writing-out phase.
64  *
65  * For write-back journal, the stripe is sent to caching phase on write
66  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67  * the write-out phase by clearing STRIPE_R5C_CACHING.
68  *
69  * Stripes in caching phase do not write the raid disks. Instead, all
70  * writes are committed from the log device. Therefore, a stripe in
71  * caching phase handles writes as:
72  *	- write to log device
73  *	- return IO
74  *
75  * Stripes in writing-out phase handle writes as:
76  *	- calculate parity
77  *	- write pending data and parity to journal
78  *	- write data and parity to raid disks
79  *	- return IO for pending writes
80  */
81 
82 struct r5l_log {
83 	struct md_rdev *rdev;
84 
85 	u32 uuid_checksum;
86 
87 	sector_t device_size;		/* log device size, round to
88 					 * BLOCK_SECTORS */
89 	sector_t max_free_space;	/* reclaim run if free space is at
90 					 * this size */
91 
92 	sector_t last_checkpoint;	/* log tail. where recovery scan
93 					 * starts from */
94 	u64 last_cp_seq;		/* log tail sequence */
95 
96 	sector_t log_start;		/* log head. where new data appends */
97 	u64 seq;			/* log head sequence */
98 
99 	sector_t next_checkpoint;
100 
101 	struct mutex io_mutex;
102 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
103 
104 	spinlock_t io_list_lock;
105 	struct list_head running_ios;	/* io_units which are still running,
106 					 * and have not yet been completely
107 					 * written to the log */
108 	struct list_head io_end_ios;	/* io_units which have been completely
109 					 * written to the log but not yet written
110 					 * to the RAID */
111 	struct list_head flushing_ios;	/* io_units which are waiting for log
112 					 * cache flush */
113 	struct list_head finished_ios;	/* io_units which settle down in log disk */
114 	struct bio flush_bio;
115 
116 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
117 
118 	struct kmem_cache *io_kc;
119 	mempool_t io_pool;
120 	struct bio_set bs;
121 	mempool_t meta_pool;
122 
123 	struct md_thread *reclaim_thread;
124 	unsigned long reclaim_target;	/* number of space that need to be
125 					 * reclaimed.  if it's 0, reclaim spaces
126 					 * used by io_units which are in
127 					 * IO_UNIT_STRIPE_END state (eg, reclaim
128 					 * dones't wait for specific io_unit
129 					 * switching to IO_UNIT_STRIPE_END
130 					 * state) */
131 	wait_queue_head_t iounit_wait;
132 
133 	struct list_head no_space_stripes; /* pending stripes, log has no space */
134 	spinlock_t no_space_stripes_lock;
135 
136 	bool need_cache_flush;
137 
138 	/* for r5c_cache */
139 	enum r5c_journal_mode r5c_journal_mode;
140 
141 	/* all stripes in r5cache, in the order of seq at sh->log_start */
142 	struct list_head stripe_in_journal_list;
143 
144 	spinlock_t stripe_in_journal_lock;
145 	atomic_t stripe_in_journal_count;
146 
147 	/* to submit async io_units, to fulfill ordering of flush */
148 	struct work_struct deferred_io_work;
149 	/* to disable write back during in degraded mode */
150 	struct work_struct disable_writeback_work;
151 
152 	/* to for chunk_aligned_read in writeback mode, details below */
153 	spinlock_t tree_lock;
154 	struct radix_tree_root big_stripe_tree;
155 };
156 
157 /*
158  * Enable chunk_aligned_read() with write back cache.
159  *
160  * Each chunk may contain more than one stripe (for example, a 256kB
161  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163  * For each big_stripe, we count how many stripes of this big_stripe
164  * are in the write back cache. These data are tracked in a radix tree
165  * (big_stripe_tree). We use radix_tree item pointer as the counter.
166  * r5c_tree_index() is used to calculate keys for the radix tree.
167  *
168  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169  * big_stripe of each chunk in the tree. If this big_stripe is in the
170  * tree, chunk_aligned_read() aborts. This look up is protected by
171  * rcu_read_lock().
172  *
173  * It is necessary to remember whether a stripe is counted in
174  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176  * two flags are set, the stripe is counted in big_stripe_tree. This
177  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178  * r5c_try_caching_write(); and moving clear_bit of
179  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180  * r5c_finish_stripe_write_out().
181  */
182 
183 /*
184  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185  * So it is necessary to left shift the counter by 2 bits before using it
186  * as data pointer of the tree.
187  */
188 #define R5C_RADIX_COUNT_SHIFT 2
189 
190 /*
191  * calculate key for big_stripe_tree
192  *
193  * sect: align_bi->bi_iter.bi_sector or sh->sector
194  */
195 static inline sector_t r5c_tree_index(struct r5conf *conf,
196 				      sector_t sect)
197 {
198 	sector_t offset;
199 
200 	offset = sector_div(sect, conf->chunk_sectors);
201 	return sect;
202 }
203 
204 /*
205  * an IO range starts from a meta data block and end at the next meta data
206  * block. The io unit's the meta data block tracks data/parity followed it. io
207  * unit is written to log disk with normal write, as we always flush log disk
208  * first and then start move data to raid disks, there is no requirement to
209  * write io unit with FLUSH/FUA
210  */
211 struct r5l_io_unit {
212 	struct r5l_log *log;
213 
214 	struct page *meta_page;	/* store meta block */
215 	int meta_offset;	/* current offset in meta_page */
216 
217 	struct bio *current_bio;/* current_bio accepting new data */
218 
219 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
220 	u64 seq;		/* seq number of the metablock */
221 	sector_t log_start;	/* where the io_unit starts */
222 	sector_t log_end;	/* where the io_unit ends */
223 	struct list_head log_sibling; /* log->running_ios */
224 	struct list_head stripe_list; /* stripes added to the io_unit */
225 
226 	int state;
227 	bool need_split_bio;
228 	struct bio *split_bio;
229 
230 	unsigned int has_flush:1;		/* include flush request */
231 	unsigned int has_fua:1;			/* include fua request */
232 	unsigned int has_null_flush:1;		/* include null flush request */
233 	unsigned int has_flush_payload:1;	/* include flush payload  */
234 	/*
235 	 * io isn't sent yet, flush/fua request can only be submitted till it's
236 	 * the first IO in running_ios list
237 	 */
238 	unsigned int io_deferred:1;
239 
240 	struct bio_list flush_barriers;   /* size == 0 flush bios */
241 };
242 
243 /* r5l_io_unit state */
244 enum r5l_io_unit_state {
245 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
246 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
247 				 * don't accepting new bio */
248 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
249 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
250 };
251 
252 bool r5c_is_writeback(struct r5l_log *log)
253 {
254 	return (log != NULL &&
255 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
256 }
257 
258 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
259 {
260 	start += inc;
261 	if (start >= log->device_size)
262 		start = start - log->device_size;
263 	return start;
264 }
265 
266 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
267 				  sector_t end)
268 {
269 	if (end >= start)
270 		return end - start;
271 	else
272 		return end + log->device_size - start;
273 }
274 
275 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
276 {
277 	sector_t used_size;
278 
279 	used_size = r5l_ring_distance(log, log->last_checkpoint,
280 					log->log_start);
281 
282 	return log->device_size > used_size + size;
283 }
284 
285 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
286 				    enum r5l_io_unit_state state)
287 {
288 	if (WARN_ON(io->state >= state))
289 		return;
290 	io->state = state;
291 }
292 
293 static void
294 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
295 {
296 	struct bio *wbi, *wbi2;
297 
298 	wbi = dev->written;
299 	dev->written = NULL;
300 	while (wbi && wbi->bi_iter.bi_sector <
301 	       dev->sector + STRIPE_SECTORS) {
302 		wbi2 = r5_next_bio(wbi, dev->sector);
303 		md_write_end(conf->mddev);
304 		bio_endio(wbi);
305 		wbi = wbi2;
306 	}
307 }
308 
309 void r5c_handle_cached_data_endio(struct r5conf *conf,
310 				  struct stripe_head *sh, int disks)
311 {
312 	int i;
313 
314 	for (i = sh->disks; i--; ) {
315 		if (sh->dev[i].written) {
316 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
317 			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
318 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
319 					   STRIPE_SECTORS,
320 					   !test_bit(STRIPE_DEGRADED, &sh->state),
321 					   0);
322 		}
323 	}
324 }
325 
326 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
327 
328 /* Check whether we should flush some stripes to free up stripe cache */
329 void r5c_check_stripe_cache_usage(struct r5conf *conf)
330 {
331 	int total_cached;
332 
333 	if (!r5c_is_writeback(conf->log))
334 		return;
335 
336 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
337 		atomic_read(&conf->r5c_cached_full_stripes);
338 
339 	/*
340 	 * The following condition is true for either of the following:
341 	 *   - stripe cache pressure high:
342 	 *          total_cached > 3/4 min_nr_stripes ||
343 	 *          empty_inactive_list_nr > 0
344 	 *   - stripe cache pressure moderate:
345 	 *          total_cached > 1/2 min_nr_stripes
346 	 */
347 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
348 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
349 		r5l_wake_reclaim(conf->log, 0);
350 }
351 
352 /*
353  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
354  * stripes in the cache
355  */
356 void r5c_check_cached_full_stripe(struct r5conf *conf)
357 {
358 	if (!r5c_is_writeback(conf->log))
359 		return;
360 
361 	/*
362 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
363 	 * or a full stripe (chunk size / 4k stripes).
364 	 */
365 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
366 	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
367 		conf->chunk_sectors >> STRIPE_SHIFT))
368 		r5l_wake_reclaim(conf->log, 0);
369 }
370 
371 /*
372  * Total log space (in sectors) needed to flush all data in cache
373  *
374  * To avoid deadlock due to log space, it is necessary to reserve log
375  * space to flush critical stripes (stripes that occupying log space near
376  * last_checkpoint). This function helps check how much log space is
377  * required to flush all cached stripes.
378  *
379  * To reduce log space requirements, two mechanisms are used to give cache
380  * flush higher priorities:
381  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
382  *       stripes ALREADY in journal can be flushed w/o pending writes;
383  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
384  *       can be delayed (r5l_add_no_space_stripe).
385  *
386  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
387  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
388  * pages of journal space. For stripes that has not passed 1, flushing it
389  * requires (conf->raid_disks + 1) pages of journal space. There are at
390  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
391  * required to flush all cached stripes (in pages) is:
392  *
393  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
394  *     (group_cnt + 1) * (raid_disks + 1)
395  * or
396  *     (stripe_in_journal_count) * (max_degraded + 1) +
397  *     (group_cnt + 1) * (raid_disks - max_degraded)
398  */
399 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
400 {
401 	struct r5l_log *log = conf->log;
402 
403 	if (!r5c_is_writeback(log))
404 		return 0;
405 
406 	return BLOCK_SECTORS *
407 		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
408 		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
409 }
410 
411 /*
412  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
413  *
414  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
415  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
416  * device is less than 2x of reclaim_required_space.
417  */
418 static inline void r5c_update_log_state(struct r5l_log *log)
419 {
420 	struct r5conf *conf = log->rdev->mddev->private;
421 	sector_t free_space;
422 	sector_t reclaim_space;
423 	bool wake_reclaim = false;
424 
425 	if (!r5c_is_writeback(log))
426 		return;
427 
428 	free_space = r5l_ring_distance(log, log->log_start,
429 				       log->last_checkpoint);
430 	reclaim_space = r5c_log_required_to_flush_cache(conf);
431 	if (free_space < 2 * reclaim_space)
432 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
433 	else {
434 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
435 			wake_reclaim = true;
436 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
437 	}
438 	if (free_space < 3 * reclaim_space)
439 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
440 	else
441 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
442 
443 	if (wake_reclaim)
444 		r5l_wake_reclaim(log, 0);
445 }
446 
447 /*
448  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
449  * This function should only be called in write-back mode.
450  */
451 void r5c_make_stripe_write_out(struct stripe_head *sh)
452 {
453 	struct r5conf *conf = sh->raid_conf;
454 	struct r5l_log *log = conf->log;
455 
456 	BUG_ON(!r5c_is_writeback(log));
457 
458 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
459 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
460 
461 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
462 		atomic_inc(&conf->preread_active_stripes);
463 }
464 
465 static void r5c_handle_data_cached(struct stripe_head *sh)
466 {
467 	int i;
468 
469 	for (i = sh->disks; i--; )
470 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
471 			set_bit(R5_InJournal, &sh->dev[i].flags);
472 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
473 		}
474 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
475 }
476 
477 /*
478  * this journal write must contain full parity,
479  * it may also contain some data pages
480  */
481 static void r5c_handle_parity_cached(struct stripe_head *sh)
482 {
483 	int i;
484 
485 	for (i = sh->disks; i--; )
486 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
487 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
488 }
489 
490 /*
491  * Setting proper flags after writing (or flushing) data and/or parity to the
492  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
493  */
494 static void r5c_finish_cache_stripe(struct stripe_head *sh)
495 {
496 	struct r5l_log *log = sh->raid_conf->log;
497 
498 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
499 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
500 		/*
501 		 * Set R5_InJournal for parity dev[pd_idx]. This means
502 		 * all data AND parity in the journal. For RAID 6, it is
503 		 * NOT necessary to set the flag for dev[qd_idx], as the
504 		 * two parities are written out together.
505 		 */
506 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
507 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
508 		r5c_handle_data_cached(sh);
509 	} else {
510 		r5c_handle_parity_cached(sh);
511 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
512 	}
513 }
514 
515 static void r5l_io_run_stripes(struct r5l_io_unit *io)
516 {
517 	struct stripe_head *sh, *next;
518 
519 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
520 		list_del_init(&sh->log_list);
521 
522 		r5c_finish_cache_stripe(sh);
523 
524 		set_bit(STRIPE_HANDLE, &sh->state);
525 		raid5_release_stripe(sh);
526 	}
527 }
528 
529 static void r5l_log_run_stripes(struct r5l_log *log)
530 {
531 	struct r5l_io_unit *io, *next;
532 
533 	lockdep_assert_held(&log->io_list_lock);
534 
535 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
536 		/* don't change list order */
537 		if (io->state < IO_UNIT_IO_END)
538 			break;
539 
540 		list_move_tail(&io->log_sibling, &log->finished_ios);
541 		r5l_io_run_stripes(io);
542 	}
543 }
544 
545 static void r5l_move_to_end_ios(struct r5l_log *log)
546 {
547 	struct r5l_io_unit *io, *next;
548 
549 	lockdep_assert_held(&log->io_list_lock);
550 
551 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
552 		/* don't change list order */
553 		if (io->state < IO_UNIT_IO_END)
554 			break;
555 		list_move_tail(&io->log_sibling, &log->io_end_ios);
556 	}
557 }
558 
559 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
560 static void r5l_log_endio(struct bio *bio)
561 {
562 	struct r5l_io_unit *io = bio->bi_private;
563 	struct r5l_io_unit *io_deferred;
564 	struct r5l_log *log = io->log;
565 	unsigned long flags;
566 	bool has_null_flush;
567 	bool has_flush_payload;
568 
569 	if (bio->bi_status)
570 		md_error(log->rdev->mddev, log->rdev);
571 
572 	bio_put(bio);
573 	mempool_free(io->meta_page, &log->meta_pool);
574 
575 	spin_lock_irqsave(&log->io_list_lock, flags);
576 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
577 
578 	/*
579 	 * if the io doesn't not have null_flush or flush payload,
580 	 * it is not safe to access it after releasing io_list_lock.
581 	 * Therefore, it is necessary to check the condition with
582 	 * the lock held.
583 	 */
584 	has_null_flush = io->has_null_flush;
585 	has_flush_payload = io->has_flush_payload;
586 
587 	if (log->need_cache_flush && !list_empty(&io->stripe_list))
588 		r5l_move_to_end_ios(log);
589 	else
590 		r5l_log_run_stripes(log);
591 	if (!list_empty(&log->running_ios)) {
592 		/*
593 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
594 		 * can dispatch it
595 		 */
596 		io_deferred = list_first_entry(&log->running_ios,
597 					       struct r5l_io_unit, log_sibling);
598 		if (io_deferred->io_deferred)
599 			schedule_work(&log->deferred_io_work);
600 	}
601 
602 	spin_unlock_irqrestore(&log->io_list_lock, flags);
603 
604 	if (log->need_cache_flush)
605 		md_wakeup_thread(log->rdev->mddev->thread);
606 
607 	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
608 	if (has_null_flush) {
609 		struct bio *bi;
610 
611 		WARN_ON(bio_list_empty(&io->flush_barriers));
612 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
613 			bio_endio(bi);
614 			if (atomic_dec_and_test(&io->pending_stripe)) {
615 				__r5l_stripe_write_finished(io);
616 				return;
617 			}
618 		}
619 	}
620 	/* decrease pending_stripe for flush payload */
621 	if (has_flush_payload)
622 		if (atomic_dec_and_test(&io->pending_stripe))
623 			__r5l_stripe_write_finished(io);
624 }
625 
626 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
627 {
628 	unsigned long flags;
629 
630 	spin_lock_irqsave(&log->io_list_lock, flags);
631 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
632 	spin_unlock_irqrestore(&log->io_list_lock, flags);
633 
634 	/*
635 	 * In case of journal device failures, submit_bio will get error
636 	 * and calls endio, then active stripes will continue write
637 	 * process. Therefore, it is not necessary to check Faulty bit
638 	 * of journal device here.
639 	 *
640 	 * We can't check split_bio after current_bio is submitted. If
641 	 * io->split_bio is null, after current_bio is submitted, current_bio
642 	 * might already be completed and the io_unit is freed. We submit
643 	 * split_bio first to avoid the issue.
644 	 */
645 	if (io->split_bio) {
646 		if (io->has_flush)
647 			io->split_bio->bi_opf |= REQ_PREFLUSH;
648 		if (io->has_fua)
649 			io->split_bio->bi_opf |= REQ_FUA;
650 		submit_bio(io->split_bio);
651 	}
652 
653 	if (io->has_flush)
654 		io->current_bio->bi_opf |= REQ_PREFLUSH;
655 	if (io->has_fua)
656 		io->current_bio->bi_opf |= REQ_FUA;
657 	submit_bio(io->current_bio);
658 }
659 
660 /* deferred io_unit will be dispatched here */
661 static void r5l_submit_io_async(struct work_struct *work)
662 {
663 	struct r5l_log *log = container_of(work, struct r5l_log,
664 					   deferred_io_work);
665 	struct r5l_io_unit *io = NULL;
666 	unsigned long flags;
667 
668 	spin_lock_irqsave(&log->io_list_lock, flags);
669 	if (!list_empty(&log->running_ios)) {
670 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
671 				      log_sibling);
672 		if (!io->io_deferred)
673 			io = NULL;
674 		else
675 			io->io_deferred = 0;
676 	}
677 	spin_unlock_irqrestore(&log->io_list_lock, flags);
678 	if (io)
679 		r5l_do_submit_io(log, io);
680 }
681 
682 static void r5c_disable_writeback_async(struct work_struct *work)
683 {
684 	struct r5l_log *log = container_of(work, struct r5l_log,
685 					   disable_writeback_work);
686 	struct mddev *mddev = log->rdev->mddev;
687 	struct r5conf *conf = mddev->private;
688 	int locked = 0;
689 
690 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
691 		return;
692 	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
693 		mdname(mddev));
694 
695 	/* wait superblock change before suspend */
696 	wait_event(mddev->sb_wait,
697 		   conf->log == NULL ||
698 		   (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
699 		    (locked = mddev_trylock(mddev))));
700 	if (locked) {
701 		mddev_suspend(mddev);
702 		log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
703 		mddev_resume(mddev);
704 		mddev_unlock(mddev);
705 	}
706 }
707 
708 static void r5l_submit_current_io(struct r5l_log *log)
709 {
710 	struct r5l_io_unit *io = log->current_io;
711 	struct r5l_meta_block *block;
712 	unsigned long flags;
713 	u32 crc;
714 	bool do_submit = true;
715 
716 	if (!io)
717 		return;
718 
719 	block = page_address(io->meta_page);
720 	block->meta_size = cpu_to_le32(io->meta_offset);
721 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
722 	block->checksum = cpu_to_le32(crc);
723 
724 	log->current_io = NULL;
725 	spin_lock_irqsave(&log->io_list_lock, flags);
726 	if (io->has_flush || io->has_fua) {
727 		if (io != list_first_entry(&log->running_ios,
728 					   struct r5l_io_unit, log_sibling)) {
729 			io->io_deferred = 1;
730 			do_submit = false;
731 		}
732 	}
733 	spin_unlock_irqrestore(&log->io_list_lock, flags);
734 	if (do_submit)
735 		r5l_do_submit_io(log, io);
736 }
737 
738 static struct bio *r5l_bio_alloc(struct r5l_log *log)
739 {
740 	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, &log->bs);
741 
742 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
743 	bio_set_dev(bio, log->rdev->bdev);
744 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
745 
746 	return bio;
747 }
748 
749 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
750 {
751 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
752 
753 	r5c_update_log_state(log);
754 	/*
755 	 * If we filled up the log device start from the beginning again,
756 	 * which will require a new bio.
757 	 *
758 	 * Note: for this to work properly the log size needs to me a multiple
759 	 * of BLOCK_SECTORS.
760 	 */
761 	if (log->log_start == 0)
762 		io->need_split_bio = true;
763 
764 	io->log_end = log->log_start;
765 }
766 
767 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
768 {
769 	struct r5l_io_unit *io;
770 	struct r5l_meta_block *block;
771 
772 	io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
773 	if (!io)
774 		return NULL;
775 	memset(io, 0, sizeof(*io));
776 
777 	io->log = log;
778 	INIT_LIST_HEAD(&io->log_sibling);
779 	INIT_LIST_HEAD(&io->stripe_list);
780 	bio_list_init(&io->flush_barriers);
781 	io->state = IO_UNIT_RUNNING;
782 
783 	io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
784 	block = page_address(io->meta_page);
785 	clear_page(block);
786 	block->magic = cpu_to_le32(R5LOG_MAGIC);
787 	block->version = R5LOG_VERSION;
788 	block->seq = cpu_to_le64(log->seq);
789 	block->position = cpu_to_le64(log->log_start);
790 
791 	io->log_start = log->log_start;
792 	io->meta_offset = sizeof(struct r5l_meta_block);
793 	io->seq = log->seq++;
794 
795 	io->current_bio = r5l_bio_alloc(log);
796 	io->current_bio->bi_end_io = r5l_log_endio;
797 	io->current_bio->bi_private = io;
798 	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
799 
800 	r5_reserve_log_entry(log, io);
801 
802 	spin_lock_irq(&log->io_list_lock);
803 	list_add_tail(&io->log_sibling, &log->running_ios);
804 	spin_unlock_irq(&log->io_list_lock);
805 
806 	return io;
807 }
808 
809 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
810 {
811 	if (log->current_io &&
812 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
813 		r5l_submit_current_io(log);
814 
815 	if (!log->current_io) {
816 		log->current_io = r5l_new_meta(log);
817 		if (!log->current_io)
818 			return -ENOMEM;
819 	}
820 
821 	return 0;
822 }
823 
824 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
825 				    sector_t location,
826 				    u32 checksum1, u32 checksum2,
827 				    bool checksum2_valid)
828 {
829 	struct r5l_io_unit *io = log->current_io;
830 	struct r5l_payload_data_parity *payload;
831 
832 	payload = page_address(io->meta_page) + io->meta_offset;
833 	payload->header.type = cpu_to_le16(type);
834 	payload->header.flags = cpu_to_le16(0);
835 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
836 				    (PAGE_SHIFT - 9));
837 	payload->location = cpu_to_le64(location);
838 	payload->checksum[0] = cpu_to_le32(checksum1);
839 	if (checksum2_valid)
840 		payload->checksum[1] = cpu_to_le32(checksum2);
841 
842 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
843 		sizeof(__le32) * (1 + !!checksum2_valid);
844 }
845 
846 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
847 {
848 	struct r5l_io_unit *io = log->current_io;
849 
850 	if (io->need_split_bio) {
851 		BUG_ON(io->split_bio);
852 		io->split_bio = io->current_bio;
853 		io->current_bio = r5l_bio_alloc(log);
854 		bio_chain(io->current_bio, io->split_bio);
855 		io->need_split_bio = false;
856 	}
857 
858 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
859 		BUG();
860 
861 	r5_reserve_log_entry(log, io);
862 }
863 
864 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
865 {
866 	struct mddev *mddev = log->rdev->mddev;
867 	struct r5conf *conf = mddev->private;
868 	struct r5l_io_unit *io;
869 	struct r5l_payload_flush *payload;
870 	int meta_size;
871 
872 	/*
873 	 * payload_flush requires extra writes to the journal.
874 	 * To avoid handling the extra IO in quiesce, just skip
875 	 * flush_payload
876 	 */
877 	if (conf->quiesce)
878 		return;
879 
880 	mutex_lock(&log->io_mutex);
881 	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
882 
883 	if (r5l_get_meta(log, meta_size)) {
884 		mutex_unlock(&log->io_mutex);
885 		return;
886 	}
887 
888 	/* current implementation is one stripe per flush payload */
889 	io = log->current_io;
890 	payload = page_address(io->meta_page) + io->meta_offset;
891 	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
892 	payload->header.flags = cpu_to_le16(0);
893 	payload->size = cpu_to_le32(sizeof(__le64));
894 	payload->flush_stripes[0] = cpu_to_le64(sect);
895 	io->meta_offset += meta_size;
896 	/* multiple flush payloads count as one pending_stripe */
897 	if (!io->has_flush_payload) {
898 		io->has_flush_payload = 1;
899 		atomic_inc(&io->pending_stripe);
900 	}
901 	mutex_unlock(&log->io_mutex);
902 }
903 
904 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
905 			   int data_pages, int parity_pages)
906 {
907 	int i;
908 	int meta_size;
909 	int ret;
910 	struct r5l_io_unit *io;
911 
912 	meta_size =
913 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
914 		 * data_pages) +
915 		sizeof(struct r5l_payload_data_parity) +
916 		sizeof(__le32) * parity_pages;
917 
918 	ret = r5l_get_meta(log, meta_size);
919 	if (ret)
920 		return ret;
921 
922 	io = log->current_io;
923 
924 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
925 		io->has_flush = 1;
926 
927 	for (i = 0; i < sh->disks; i++) {
928 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
929 		    test_bit(R5_InJournal, &sh->dev[i].flags))
930 			continue;
931 		if (i == sh->pd_idx || i == sh->qd_idx)
932 			continue;
933 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
934 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
935 			io->has_fua = 1;
936 			/*
937 			 * we need to flush journal to make sure recovery can
938 			 * reach the data with fua flag
939 			 */
940 			io->has_flush = 1;
941 		}
942 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
943 					raid5_compute_blocknr(sh, i, 0),
944 					sh->dev[i].log_checksum, 0, false);
945 		r5l_append_payload_page(log, sh->dev[i].page);
946 	}
947 
948 	if (parity_pages == 2) {
949 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
950 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
951 					sh->dev[sh->qd_idx].log_checksum, true);
952 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
953 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
954 	} else if (parity_pages == 1) {
955 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
956 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
957 					0, false);
958 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
959 	} else  /* Just writing data, not parity, in caching phase */
960 		BUG_ON(parity_pages != 0);
961 
962 	list_add_tail(&sh->log_list, &io->stripe_list);
963 	atomic_inc(&io->pending_stripe);
964 	sh->log_io = io;
965 
966 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
967 		return 0;
968 
969 	if (sh->log_start == MaxSector) {
970 		BUG_ON(!list_empty(&sh->r5c));
971 		sh->log_start = io->log_start;
972 		spin_lock_irq(&log->stripe_in_journal_lock);
973 		list_add_tail(&sh->r5c,
974 			      &log->stripe_in_journal_list);
975 		spin_unlock_irq(&log->stripe_in_journal_lock);
976 		atomic_inc(&log->stripe_in_journal_count);
977 	}
978 	return 0;
979 }
980 
981 /* add stripe to no_space_stripes, and then wake up reclaim */
982 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
983 					   struct stripe_head *sh)
984 {
985 	spin_lock(&log->no_space_stripes_lock);
986 	list_add_tail(&sh->log_list, &log->no_space_stripes);
987 	spin_unlock(&log->no_space_stripes_lock);
988 }
989 
990 /*
991  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
992  * data from log to raid disks), so we shouldn't wait for reclaim here
993  */
994 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
995 {
996 	struct r5conf *conf = sh->raid_conf;
997 	int write_disks = 0;
998 	int data_pages, parity_pages;
999 	int reserve;
1000 	int i;
1001 	int ret = 0;
1002 	bool wake_reclaim = false;
1003 
1004 	if (!log)
1005 		return -EAGAIN;
1006 	/* Don't support stripe batch */
1007 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1008 	    test_bit(STRIPE_SYNCING, &sh->state)) {
1009 		/* the stripe is written to log, we start writing it to raid */
1010 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1011 		return -EAGAIN;
1012 	}
1013 
1014 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1015 
1016 	for (i = 0; i < sh->disks; i++) {
1017 		void *addr;
1018 
1019 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1020 		    test_bit(R5_InJournal, &sh->dev[i].flags))
1021 			continue;
1022 
1023 		write_disks++;
1024 		/* checksum is already calculated in last run */
1025 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1026 			continue;
1027 		addr = kmap_atomic(sh->dev[i].page);
1028 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1029 						    addr, PAGE_SIZE);
1030 		kunmap_atomic(addr);
1031 	}
1032 	parity_pages = 1 + !!(sh->qd_idx >= 0);
1033 	data_pages = write_disks - parity_pages;
1034 
1035 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1036 	/*
1037 	 * The stripe must enter state machine again to finish the write, so
1038 	 * don't delay.
1039 	 */
1040 	clear_bit(STRIPE_DELAYED, &sh->state);
1041 	atomic_inc(&sh->count);
1042 
1043 	mutex_lock(&log->io_mutex);
1044 	/* meta + data */
1045 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1046 
1047 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1048 		if (!r5l_has_free_space(log, reserve)) {
1049 			r5l_add_no_space_stripe(log, sh);
1050 			wake_reclaim = true;
1051 		} else {
1052 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1053 			if (ret) {
1054 				spin_lock_irq(&log->io_list_lock);
1055 				list_add_tail(&sh->log_list,
1056 					      &log->no_mem_stripes);
1057 				spin_unlock_irq(&log->io_list_lock);
1058 			}
1059 		}
1060 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1061 		/*
1062 		 * log space critical, do not process stripes that are
1063 		 * not in cache yet (sh->log_start == MaxSector).
1064 		 */
1065 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1066 		    sh->log_start == MaxSector) {
1067 			r5l_add_no_space_stripe(log, sh);
1068 			wake_reclaim = true;
1069 			reserve = 0;
1070 		} else if (!r5l_has_free_space(log, reserve)) {
1071 			if (sh->log_start == log->last_checkpoint)
1072 				BUG();
1073 			else
1074 				r5l_add_no_space_stripe(log, sh);
1075 		} else {
1076 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1077 			if (ret) {
1078 				spin_lock_irq(&log->io_list_lock);
1079 				list_add_tail(&sh->log_list,
1080 					      &log->no_mem_stripes);
1081 				spin_unlock_irq(&log->io_list_lock);
1082 			}
1083 		}
1084 	}
1085 
1086 	mutex_unlock(&log->io_mutex);
1087 	if (wake_reclaim)
1088 		r5l_wake_reclaim(log, reserve);
1089 	return 0;
1090 }
1091 
1092 void r5l_write_stripe_run(struct r5l_log *log)
1093 {
1094 	if (!log)
1095 		return;
1096 	mutex_lock(&log->io_mutex);
1097 	r5l_submit_current_io(log);
1098 	mutex_unlock(&log->io_mutex);
1099 }
1100 
1101 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1102 {
1103 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1104 		/*
1105 		 * in write through (journal only)
1106 		 * we flush log disk cache first, then write stripe data to
1107 		 * raid disks. So if bio is finished, the log disk cache is
1108 		 * flushed already. The recovery guarantees we can recovery
1109 		 * the bio from log disk, so we don't need to flush again
1110 		 */
1111 		if (bio->bi_iter.bi_size == 0) {
1112 			bio_endio(bio);
1113 			return 0;
1114 		}
1115 		bio->bi_opf &= ~REQ_PREFLUSH;
1116 	} else {
1117 		/* write back (with cache) */
1118 		if (bio->bi_iter.bi_size == 0) {
1119 			mutex_lock(&log->io_mutex);
1120 			r5l_get_meta(log, 0);
1121 			bio_list_add(&log->current_io->flush_barriers, bio);
1122 			log->current_io->has_flush = 1;
1123 			log->current_io->has_null_flush = 1;
1124 			atomic_inc(&log->current_io->pending_stripe);
1125 			r5l_submit_current_io(log);
1126 			mutex_unlock(&log->io_mutex);
1127 			return 0;
1128 		}
1129 	}
1130 	return -EAGAIN;
1131 }
1132 
1133 /* This will run after log space is reclaimed */
1134 static void r5l_run_no_space_stripes(struct r5l_log *log)
1135 {
1136 	struct stripe_head *sh;
1137 
1138 	spin_lock(&log->no_space_stripes_lock);
1139 	while (!list_empty(&log->no_space_stripes)) {
1140 		sh = list_first_entry(&log->no_space_stripes,
1141 				      struct stripe_head, log_list);
1142 		list_del_init(&sh->log_list);
1143 		set_bit(STRIPE_HANDLE, &sh->state);
1144 		raid5_release_stripe(sh);
1145 	}
1146 	spin_unlock(&log->no_space_stripes_lock);
1147 }
1148 
1149 /*
1150  * calculate new last_checkpoint
1151  * for write through mode, returns log->next_checkpoint
1152  * for write back, returns log_start of first sh in stripe_in_journal_list
1153  */
1154 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1155 {
1156 	struct stripe_head *sh;
1157 	struct r5l_log *log = conf->log;
1158 	sector_t new_cp;
1159 	unsigned long flags;
1160 
1161 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1162 		return log->next_checkpoint;
1163 
1164 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1165 	if (list_empty(&conf->log->stripe_in_journal_list)) {
1166 		/* all stripes flushed */
1167 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1168 		return log->next_checkpoint;
1169 	}
1170 	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1171 			      struct stripe_head, r5c);
1172 	new_cp = sh->log_start;
1173 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1174 	return new_cp;
1175 }
1176 
1177 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1178 {
1179 	struct r5conf *conf = log->rdev->mddev->private;
1180 
1181 	return r5l_ring_distance(log, log->last_checkpoint,
1182 				 r5c_calculate_new_cp(conf));
1183 }
1184 
1185 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1186 {
1187 	struct stripe_head *sh;
1188 
1189 	lockdep_assert_held(&log->io_list_lock);
1190 
1191 	if (!list_empty(&log->no_mem_stripes)) {
1192 		sh = list_first_entry(&log->no_mem_stripes,
1193 				      struct stripe_head, log_list);
1194 		list_del_init(&sh->log_list);
1195 		set_bit(STRIPE_HANDLE, &sh->state);
1196 		raid5_release_stripe(sh);
1197 	}
1198 }
1199 
1200 static bool r5l_complete_finished_ios(struct r5l_log *log)
1201 {
1202 	struct r5l_io_unit *io, *next;
1203 	bool found = false;
1204 
1205 	lockdep_assert_held(&log->io_list_lock);
1206 
1207 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1208 		/* don't change list order */
1209 		if (io->state < IO_UNIT_STRIPE_END)
1210 			break;
1211 
1212 		log->next_checkpoint = io->log_start;
1213 
1214 		list_del(&io->log_sibling);
1215 		mempool_free(io, &log->io_pool);
1216 		r5l_run_no_mem_stripe(log);
1217 
1218 		found = true;
1219 	}
1220 
1221 	return found;
1222 }
1223 
1224 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1225 {
1226 	struct r5l_log *log = io->log;
1227 	struct r5conf *conf = log->rdev->mddev->private;
1228 	unsigned long flags;
1229 
1230 	spin_lock_irqsave(&log->io_list_lock, flags);
1231 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1232 
1233 	if (!r5l_complete_finished_ios(log)) {
1234 		spin_unlock_irqrestore(&log->io_list_lock, flags);
1235 		return;
1236 	}
1237 
1238 	if (r5l_reclaimable_space(log) > log->max_free_space ||
1239 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1240 		r5l_wake_reclaim(log, 0);
1241 
1242 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1243 	wake_up(&log->iounit_wait);
1244 }
1245 
1246 void r5l_stripe_write_finished(struct stripe_head *sh)
1247 {
1248 	struct r5l_io_unit *io;
1249 
1250 	io = sh->log_io;
1251 	sh->log_io = NULL;
1252 
1253 	if (io && atomic_dec_and_test(&io->pending_stripe))
1254 		__r5l_stripe_write_finished(io);
1255 }
1256 
1257 static void r5l_log_flush_endio(struct bio *bio)
1258 {
1259 	struct r5l_log *log = container_of(bio, struct r5l_log,
1260 		flush_bio);
1261 	unsigned long flags;
1262 	struct r5l_io_unit *io;
1263 
1264 	if (bio->bi_status)
1265 		md_error(log->rdev->mddev, log->rdev);
1266 
1267 	spin_lock_irqsave(&log->io_list_lock, flags);
1268 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1269 		r5l_io_run_stripes(io);
1270 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1271 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1272 }
1273 
1274 /*
1275  * Starting dispatch IO to raid.
1276  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1277  * broken meta in the middle of a log causes recovery can't find meta at the
1278  * head of log. If operations require meta at the head persistent in log, we
1279  * must make sure meta before it persistent in log too. A case is:
1280  *
1281  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1282  * data/parity must be persistent in log before we do the write to raid disks.
1283  *
1284  * The solution is we restrictly maintain io_unit list order. In this case, we
1285  * only write stripes of an io_unit to raid disks till the io_unit is the first
1286  * one whose data/parity is in log.
1287  */
1288 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1289 {
1290 	bool do_flush;
1291 
1292 	if (!log || !log->need_cache_flush)
1293 		return;
1294 
1295 	spin_lock_irq(&log->io_list_lock);
1296 	/* flush bio is running */
1297 	if (!list_empty(&log->flushing_ios)) {
1298 		spin_unlock_irq(&log->io_list_lock);
1299 		return;
1300 	}
1301 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1302 	do_flush = !list_empty(&log->flushing_ios);
1303 	spin_unlock_irq(&log->io_list_lock);
1304 
1305 	if (!do_flush)
1306 		return;
1307 	bio_reset(&log->flush_bio);
1308 	bio_set_dev(&log->flush_bio, log->rdev->bdev);
1309 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1310 	log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1311 	submit_bio(&log->flush_bio);
1312 }
1313 
1314 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1315 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1316 	sector_t end)
1317 {
1318 	struct block_device *bdev = log->rdev->bdev;
1319 	struct mddev *mddev;
1320 
1321 	r5l_write_super(log, end);
1322 
1323 	if (!blk_queue_discard(bdev_get_queue(bdev)))
1324 		return;
1325 
1326 	mddev = log->rdev->mddev;
1327 	/*
1328 	 * Discard could zero data, so before discard we must make sure
1329 	 * superblock is updated to new log tail. Updating superblock (either
1330 	 * directly call md_update_sb() or depend on md thread) must hold
1331 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1332 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1333 	 * for all IO finish, hence waitting for reclaim thread, while reclaim
1334 	 * thread is calling this function and waitting for reconfig mutex. So
1335 	 * there is a deadlock. We workaround this issue with a trylock.
1336 	 * FIXME: we could miss discard if we can't take reconfig mutex
1337 	 */
1338 	set_mask_bits(&mddev->sb_flags, 0,
1339 		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1340 	if (!mddev_trylock(mddev))
1341 		return;
1342 	md_update_sb(mddev, 1);
1343 	mddev_unlock(mddev);
1344 
1345 	/* discard IO error really doesn't matter, ignore it */
1346 	if (log->last_checkpoint < end) {
1347 		blkdev_issue_discard(bdev,
1348 				log->last_checkpoint + log->rdev->data_offset,
1349 				end - log->last_checkpoint, GFP_NOIO, 0);
1350 	} else {
1351 		blkdev_issue_discard(bdev,
1352 				log->last_checkpoint + log->rdev->data_offset,
1353 				log->device_size - log->last_checkpoint,
1354 				GFP_NOIO, 0);
1355 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1356 				GFP_NOIO, 0);
1357 	}
1358 }
1359 
1360 /*
1361  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1362  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1363  *
1364  * must hold conf->device_lock
1365  */
1366 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1367 {
1368 	BUG_ON(list_empty(&sh->lru));
1369 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1370 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1371 
1372 	/*
1373 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1374 	 * raid5_release_stripe() while holding conf->device_lock
1375 	 */
1376 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1377 	lockdep_assert_held(&conf->device_lock);
1378 
1379 	list_del_init(&sh->lru);
1380 	atomic_inc(&sh->count);
1381 
1382 	set_bit(STRIPE_HANDLE, &sh->state);
1383 	atomic_inc(&conf->active_stripes);
1384 	r5c_make_stripe_write_out(sh);
1385 
1386 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1387 		atomic_inc(&conf->r5c_flushing_partial_stripes);
1388 	else
1389 		atomic_inc(&conf->r5c_flushing_full_stripes);
1390 	raid5_release_stripe(sh);
1391 }
1392 
1393 /*
1394  * if num == 0, flush all full stripes
1395  * if num > 0, flush all full stripes. If less than num full stripes are
1396  *             flushed, flush some partial stripes until totally num stripes are
1397  *             flushed or there is no more cached stripes.
1398  */
1399 void r5c_flush_cache(struct r5conf *conf, int num)
1400 {
1401 	int count;
1402 	struct stripe_head *sh, *next;
1403 
1404 	lockdep_assert_held(&conf->device_lock);
1405 	if (!conf->log)
1406 		return;
1407 
1408 	count = 0;
1409 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1410 		r5c_flush_stripe(conf, sh);
1411 		count++;
1412 	}
1413 
1414 	if (count >= num)
1415 		return;
1416 	list_for_each_entry_safe(sh, next,
1417 				 &conf->r5c_partial_stripe_list, lru) {
1418 		r5c_flush_stripe(conf, sh);
1419 		if (++count >= num)
1420 			break;
1421 	}
1422 }
1423 
1424 static void r5c_do_reclaim(struct r5conf *conf)
1425 {
1426 	struct r5l_log *log = conf->log;
1427 	struct stripe_head *sh;
1428 	int count = 0;
1429 	unsigned long flags;
1430 	int total_cached;
1431 	int stripes_to_flush;
1432 	int flushing_partial, flushing_full;
1433 
1434 	if (!r5c_is_writeback(log))
1435 		return;
1436 
1437 	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1438 	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1439 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1440 		atomic_read(&conf->r5c_cached_full_stripes) -
1441 		flushing_full - flushing_partial;
1442 
1443 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1444 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1445 		/*
1446 		 * if stripe cache pressure high, flush all full stripes and
1447 		 * some partial stripes
1448 		 */
1449 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1450 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1451 		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1452 		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1453 		/*
1454 		 * if stripe cache pressure moderate, or if there is many full
1455 		 * stripes,flush all full stripes
1456 		 */
1457 		stripes_to_flush = 0;
1458 	else
1459 		/* no need to flush */
1460 		stripes_to_flush = -1;
1461 
1462 	if (stripes_to_flush >= 0) {
1463 		spin_lock_irqsave(&conf->device_lock, flags);
1464 		r5c_flush_cache(conf, stripes_to_flush);
1465 		spin_unlock_irqrestore(&conf->device_lock, flags);
1466 	}
1467 
1468 	/* if log space is tight, flush stripes on stripe_in_journal_list */
1469 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1470 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1471 		spin_lock(&conf->device_lock);
1472 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1473 			/*
1474 			 * stripes on stripe_in_journal_list could be in any
1475 			 * state of the stripe_cache state machine. In this
1476 			 * case, we only want to flush stripe on
1477 			 * r5c_cached_full/partial_stripes. The following
1478 			 * condition makes sure the stripe is on one of the
1479 			 * two lists.
1480 			 */
1481 			if (!list_empty(&sh->lru) &&
1482 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1483 			    atomic_read(&sh->count) == 0) {
1484 				r5c_flush_stripe(conf, sh);
1485 				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1486 					break;
1487 			}
1488 		}
1489 		spin_unlock(&conf->device_lock);
1490 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1491 	}
1492 
1493 	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1494 		r5l_run_no_space_stripes(log);
1495 
1496 	md_wakeup_thread(conf->mddev->thread);
1497 }
1498 
1499 static void r5l_do_reclaim(struct r5l_log *log)
1500 {
1501 	struct r5conf *conf = log->rdev->mddev->private;
1502 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1503 	sector_t reclaimable;
1504 	sector_t next_checkpoint;
1505 	bool write_super;
1506 
1507 	spin_lock_irq(&log->io_list_lock);
1508 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1509 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1510 	/*
1511 	 * move proper io_unit to reclaim list. We should not change the order.
1512 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1513 	 * shouldn't reuse space of an unreclaimable io_unit
1514 	 */
1515 	while (1) {
1516 		reclaimable = r5l_reclaimable_space(log);
1517 		if (reclaimable >= reclaim_target ||
1518 		    (list_empty(&log->running_ios) &&
1519 		     list_empty(&log->io_end_ios) &&
1520 		     list_empty(&log->flushing_ios) &&
1521 		     list_empty(&log->finished_ios)))
1522 			break;
1523 
1524 		md_wakeup_thread(log->rdev->mddev->thread);
1525 		wait_event_lock_irq(log->iounit_wait,
1526 				    r5l_reclaimable_space(log) > reclaimable,
1527 				    log->io_list_lock);
1528 	}
1529 
1530 	next_checkpoint = r5c_calculate_new_cp(conf);
1531 	spin_unlock_irq(&log->io_list_lock);
1532 
1533 	if (reclaimable == 0 || !write_super)
1534 		return;
1535 
1536 	/*
1537 	 * write_super will flush cache of each raid disk. We must write super
1538 	 * here, because the log area might be reused soon and we don't want to
1539 	 * confuse recovery
1540 	 */
1541 	r5l_write_super_and_discard_space(log, next_checkpoint);
1542 
1543 	mutex_lock(&log->io_mutex);
1544 	log->last_checkpoint = next_checkpoint;
1545 	r5c_update_log_state(log);
1546 	mutex_unlock(&log->io_mutex);
1547 
1548 	r5l_run_no_space_stripes(log);
1549 }
1550 
1551 static void r5l_reclaim_thread(struct md_thread *thread)
1552 {
1553 	struct mddev *mddev = thread->mddev;
1554 	struct r5conf *conf = mddev->private;
1555 	struct r5l_log *log = conf->log;
1556 
1557 	if (!log)
1558 		return;
1559 	r5c_do_reclaim(conf);
1560 	r5l_do_reclaim(log);
1561 }
1562 
1563 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1564 {
1565 	unsigned long target;
1566 	unsigned long new = (unsigned long)space; /* overflow in theory */
1567 
1568 	if (!log)
1569 		return;
1570 	do {
1571 		target = log->reclaim_target;
1572 		if (new < target)
1573 			return;
1574 	} while (cmpxchg(&log->reclaim_target, target, new) != target);
1575 	md_wakeup_thread(log->reclaim_thread);
1576 }
1577 
1578 void r5l_quiesce(struct r5l_log *log, int quiesce)
1579 {
1580 	struct mddev *mddev;
1581 
1582 	if (quiesce) {
1583 		/* make sure r5l_write_super_and_discard_space exits */
1584 		mddev = log->rdev->mddev;
1585 		wake_up(&mddev->sb_wait);
1586 		kthread_park(log->reclaim_thread->tsk);
1587 		r5l_wake_reclaim(log, MaxSector);
1588 		r5l_do_reclaim(log);
1589 	} else
1590 		kthread_unpark(log->reclaim_thread->tsk);
1591 }
1592 
1593 bool r5l_log_disk_error(struct r5conf *conf)
1594 {
1595 	struct r5l_log *log;
1596 	bool ret;
1597 	/* don't allow write if journal disk is missing */
1598 	rcu_read_lock();
1599 	log = rcu_dereference(conf->log);
1600 
1601 	if (!log)
1602 		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1603 	else
1604 		ret = test_bit(Faulty, &log->rdev->flags);
1605 	rcu_read_unlock();
1606 	return ret;
1607 }
1608 
1609 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1610 
1611 struct r5l_recovery_ctx {
1612 	struct page *meta_page;		/* current meta */
1613 	sector_t meta_total_blocks;	/* total size of current meta and data */
1614 	sector_t pos;			/* recovery position */
1615 	u64 seq;			/* recovery position seq */
1616 	int data_parity_stripes;	/* number of data_parity stripes */
1617 	int data_only_stripes;		/* number of data_only stripes */
1618 	struct list_head cached_list;
1619 
1620 	/*
1621 	 * read ahead page pool (ra_pool)
1622 	 * in recovery, log is read sequentially. It is not efficient to
1623 	 * read every page with sync_page_io(). The read ahead page pool
1624 	 * reads multiple pages with one IO, so further log read can
1625 	 * just copy data from the pool.
1626 	 */
1627 	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1628 	sector_t pool_offset;	/* offset of first page in the pool */
1629 	int total_pages;	/* total allocated pages */
1630 	int valid_pages;	/* pages with valid data */
1631 	struct bio *ra_bio;	/* bio to do the read ahead */
1632 };
1633 
1634 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1635 					    struct r5l_recovery_ctx *ctx)
1636 {
1637 	struct page *page;
1638 
1639 	ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, &log->bs);
1640 	if (!ctx->ra_bio)
1641 		return -ENOMEM;
1642 
1643 	ctx->valid_pages = 0;
1644 	ctx->total_pages = 0;
1645 	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1646 		page = alloc_page(GFP_KERNEL);
1647 
1648 		if (!page)
1649 			break;
1650 		ctx->ra_pool[ctx->total_pages] = page;
1651 		ctx->total_pages += 1;
1652 	}
1653 
1654 	if (ctx->total_pages == 0) {
1655 		bio_put(ctx->ra_bio);
1656 		return -ENOMEM;
1657 	}
1658 
1659 	ctx->pool_offset = 0;
1660 	return 0;
1661 }
1662 
1663 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1664 					struct r5l_recovery_ctx *ctx)
1665 {
1666 	int i;
1667 
1668 	for (i = 0; i < ctx->total_pages; ++i)
1669 		put_page(ctx->ra_pool[i]);
1670 	bio_put(ctx->ra_bio);
1671 }
1672 
1673 /*
1674  * fetch ctx->valid_pages pages from offset
1675  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1676  * However, if the offset is close to the end of the journal device,
1677  * ctx->valid_pages could be smaller than ctx->total_pages
1678  */
1679 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1680 				      struct r5l_recovery_ctx *ctx,
1681 				      sector_t offset)
1682 {
1683 	bio_reset(ctx->ra_bio);
1684 	bio_set_dev(ctx->ra_bio, log->rdev->bdev);
1685 	bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1686 	ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1687 
1688 	ctx->valid_pages = 0;
1689 	ctx->pool_offset = offset;
1690 
1691 	while (ctx->valid_pages < ctx->total_pages) {
1692 		bio_add_page(ctx->ra_bio,
1693 			     ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1694 		ctx->valid_pages += 1;
1695 
1696 		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1697 
1698 		if (offset == 0)  /* reached end of the device */
1699 			break;
1700 	}
1701 
1702 	return submit_bio_wait(ctx->ra_bio);
1703 }
1704 
1705 /*
1706  * try read a page from the read ahead page pool, if the page is not in the
1707  * pool, call r5l_recovery_fetch_ra_pool
1708  */
1709 static int r5l_recovery_read_page(struct r5l_log *log,
1710 				  struct r5l_recovery_ctx *ctx,
1711 				  struct page *page,
1712 				  sector_t offset)
1713 {
1714 	int ret;
1715 
1716 	if (offset < ctx->pool_offset ||
1717 	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1718 		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1719 		if (ret)
1720 			return ret;
1721 	}
1722 
1723 	BUG_ON(offset < ctx->pool_offset ||
1724 	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1725 
1726 	memcpy(page_address(page),
1727 	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1728 					 BLOCK_SECTOR_SHIFT]),
1729 	       PAGE_SIZE);
1730 	return 0;
1731 }
1732 
1733 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1734 					struct r5l_recovery_ctx *ctx)
1735 {
1736 	struct page *page = ctx->meta_page;
1737 	struct r5l_meta_block *mb;
1738 	u32 crc, stored_crc;
1739 	int ret;
1740 
1741 	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1742 	if (ret != 0)
1743 		return ret;
1744 
1745 	mb = page_address(page);
1746 	stored_crc = le32_to_cpu(mb->checksum);
1747 	mb->checksum = 0;
1748 
1749 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1750 	    le64_to_cpu(mb->seq) != ctx->seq ||
1751 	    mb->version != R5LOG_VERSION ||
1752 	    le64_to_cpu(mb->position) != ctx->pos)
1753 		return -EINVAL;
1754 
1755 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1756 	if (stored_crc != crc)
1757 		return -EINVAL;
1758 
1759 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1760 		return -EINVAL;
1761 
1762 	ctx->meta_total_blocks = BLOCK_SECTORS;
1763 
1764 	return 0;
1765 }
1766 
1767 static void
1768 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1769 				     struct page *page,
1770 				     sector_t pos, u64 seq)
1771 {
1772 	struct r5l_meta_block *mb;
1773 
1774 	mb = page_address(page);
1775 	clear_page(mb);
1776 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1777 	mb->version = R5LOG_VERSION;
1778 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1779 	mb->seq = cpu_to_le64(seq);
1780 	mb->position = cpu_to_le64(pos);
1781 }
1782 
1783 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1784 					  u64 seq)
1785 {
1786 	struct page *page;
1787 	struct r5l_meta_block *mb;
1788 
1789 	page = alloc_page(GFP_KERNEL);
1790 	if (!page)
1791 		return -ENOMEM;
1792 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1793 	mb = page_address(page);
1794 	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1795 					     mb, PAGE_SIZE));
1796 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1797 			  REQ_SYNC | REQ_FUA, false)) {
1798 		__free_page(page);
1799 		return -EIO;
1800 	}
1801 	__free_page(page);
1802 	return 0;
1803 }
1804 
1805 /*
1806  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1807  * to mark valid (potentially not flushed) data in the journal.
1808  *
1809  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1810  * so there should not be any mismatch here.
1811  */
1812 static void r5l_recovery_load_data(struct r5l_log *log,
1813 				   struct stripe_head *sh,
1814 				   struct r5l_recovery_ctx *ctx,
1815 				   struct r5l_payload_data_parity *payload,
1816 				   sector_t log_offset)
1817 {
1818 	struct mddev *mddev = log->rdev->mddev;
1819 	struct r5conf *conf = mddev->private;
1820 	int dd_idx;
1821 
1822 	raid5_compute_sector(conf,
1823 			     le64_to_cpu(payload->location), 0,
1824 			     &dd_idx, sh);
1825 	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1826 	sh->dev[dd_idx].log_checksum =
1827 		le32_to_cpu(payload->checksum[0]);
1828 	ctx->meta_total_blocks += BLOCK_SECTORS;
1829 
1830 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1831 	set_bit(STRIPE_R5C_CACHING, &sh->state);
1832 }
1833 
1834 static void r5l_recovery_load_parity(struct r5l_log *log,
1835 				     struct stripe_head *sh,
1836 				     struct r5l_recovery_ctx *ctx,
1837 				     struct r5l_payload_data_parity *payload,
1838 				     sector_t log_offset)
1839 {
1840 	struct mddev *mddev = log->rdev->mddev;
1841 	struct r5conf *conf = mddev->private;
1842 
1843 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1844 	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1845 	sh->dev[sh->pd_idx].log_checksum =
1846 		le32_to_cpu(payload->checksum[0]);
1847 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1848 
1849 	if (sh->qd_idx >= 0) {
1850 		r5l_recovery_read_page(
1851 			log, ctx, sh->dev[sh->qd_idx].page,
1852 			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1853 		sh->dev[sh->qd_idx].log_checksum =
1854 			le32_to_cpu(payload->checksum[1]);
1855 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1856 	}
1857 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1858 }
1859 
1860 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1861 {
1862 	int i;
1863 
1864 	sh->state = 0;
1865 	sh->log_start = MaxSector;
1866 	for (i = sh->disks; i--; )
1867 		sh->dev[i].flags = 0;
1868 }
1869 
1870 static void
1871 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1872 			       struct stripe_head *sh,
1873 			       struct r5l_recovery_ctx *ctx)
1874 {
1875 	struct md_rdev *rdev, *rrdev;
1876 	int disk_index;
1877 	int data_count = 0;
1878 
1879 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1880 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1881 			continue;
1882 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1883 			continue;
1884 		data_count++;
1885 	}
1886 
1887 	/*
1888 	 * stripes that only have parity must have been flushed
1889 	 * before the crash that we are now recovering from, so
1890 	 * there is nothing more to recovery.
1891 	 */
1892 	if (data_count == 0)
1893 		goto out;
1894 
1895 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1896 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1897 			continue;
1898 
1899 		/* in case device is broken */
1900 		rcu_read_lock();
1901 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1902 		if (rdev) {
1903 			atomic_inc(&rdev->nr_pending);
1904 			rcu_read_unlock();
1905 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1906 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1907 				     false);
1908 			rdev_dec_pending(rdev, rdev->mddev);
1909 			rcu_read_lock();
1910 		}
1911 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1912 		if (rrdev) {
1913 			atomic_inc(&rrdev->nr_pending);
1914 			rcu_read_unlock();
1915 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1916 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1917 				     false);
1918 			rdev_dec_pending(rrdev, rrdev->mddev);
1919 			rcu_read_lock();
1920 		}
1921 		rcu_read_unlock();
1922 	}
1923 	ctx->data_parity_stripes++;
1924 out:
1925 	r5l_recovery_reset_stripe(sh);
1926 }
1927 
1928 static struct stripe_head *
1929 r5c_recovery_alloc_stripe(
1930 		struct r5conf *conf,
1931 		sector_t stripe_sect,
1932 		int noblock)
1933 {
1934 	struct stripe_head *sh;
1935 
1936 	sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0);
1937 	if (!sh)
1938 		return NULL;  /* no more stripe available */
1939 
1940 	r5l_recovery_reset_stripe(sh);
1941 
1942 	return sh;
1943 }
1944 
1945 static struct stripe_head *
1946 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1947 {
1948 	struct stripe_head *sh;
1949 
1950 	list_for_each_entry(sh, list, lru)
1951 		if (sh->sector == sect)
1952 			return sh;
1953 	return NULL;
1954 }
1955 
1956 static void
1957 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1958 			  struct r5l_recovery_ctx *ctx)
1959 {
1960 	struct stripe_head *sh, *next;
1961 
1962 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1963 		r5l_recovery_reset_stripe(sh);
1964 		list_del_init(&sh->lru);
1965 		raid5_release_stripe(sh);
1966 	}
1967 }
1968 
1969 static void
1970 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1971 			    struct r5l_recovery_ctx *ctx)
1972 {
1973 	struct stripe_head *sh, *next;
1974 
1975 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1976 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1977 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1978 			list_del_init(&sh->lru);
1979 			raid5_release_stripe(sh);
1980 		}
1981 }
1982 
1983 /* if matches return 0; otherwise return -EINVAL */
1984 static int
1985 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1986 				  struct r5l_recovery_ctx *ctx,
1987 				  struct page *page,
1988 				  sector_t log_offset, __le32 log_checksum)
1989 {
1990 	void *addr;
1991 	u32 checksum;
1992 
1993 	r5l_recovery_read_page(log, ctx, page, log_offset);
1994 	addr = kmap_atomic(page);
1995 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1996 	kunmap_atomic(addr);
1997 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1998 }
1999 
2000 /*
2001  * before loading data to stripe cache, we need verify checksum for all data,
2002  * if there is mismatch for any data page, we drop all data in the mata block
2003  */
2004 static int
2005 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2006 					 struct r5l_recovery_ctx *ctx)
2007 {
2008 	struct mddev *mddev = log->rdev->mddev;
2009 	struct r5conf *conf = mddev->private;
2010 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
2011 	sector_t mb_offset = sizeof(struct r5l_meta_block);
2012 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2013 	struct page *page;
2014 	struct r5l_payload_data_parity *payload;
2015 	struct r5l_payload_flush *payload_flush;
2016 
2017 	page = alloc_page(GFP_KERNEL);
2018 	if (!page)
2019 		return -ENOMEM;
2020 
2021 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2022 		payload = (void *)mb + mb_offset;
2023 		payload_flush = (void *)mb + mb_offset;
2024 
2025 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2026 			if (r5l_recovery_verify_data_checksum(
2027 				    log, ctx, page, log_offset,
2028 				    payload->checksum[0]) < 0)
2029 				goto mismatch;
2030 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2031 			if (r5l_recovery_verify_data_checksum(
2032 				    log, ctx, page, log_offset,
2033 				    payload->checksum[0]) < 0)
2034 				goto mismatch;
2035 			if (conf->max_degraded == 2 && /* q for RAID 6 */
2036 			    r5l_recovery_verify_data_checksum(
2037 				    log, ctx, page,
2038 				    r5l_ring_add(log, log_offset,
2039 						 BLOCK_SECTORS),
2040 				    payload->checksum[1]) < 0)
2041 				goto mismatch;
2042 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2043 			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2044 		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2045 			goto mismatch;
2046 
2047 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2048 			mb_offset += sizeof(struct r5l_payload_flush) +
2049 				le32_to_cpu(payload_flush->size);
2050 		} else {
2051 			/* DATA or PARITY payload */
2052 			log_offset = r5l_ring_add(log, log_offset,
2053 						  le32_to_cpu(payload->size));
2054 			mb_offset += sizeof(struct r5l_payload_data_parity) +
2055 				sizeof(__le32) *
2056 				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2057 		}
2058 
2059 	}
2060 
2061 	put_page(page);
2062 	return 0;
2063 
2064 mismatch:
2065 	put_page(page);
2066 	return -EINVAL;
2067 }
2068 
2069 /*
2070  * Analyze all data/parity pages in one meta block
2071  * Returns:
2072  * 0 for success
2073  * -EINVAL for unknown playload type
2074  * -EAGAIN for checksum mismatch of data page
2075  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2076  */
2077 static int
2078 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2079 				struct r5l_recovery_ctx *ctx,
2080 				struct list_head *cached_stripe_list)
2081 {
2082 	struct mddev *mddev = log->rdev->mddev;
2083 	struct r5conf *conf = mddev->private;
2084 	struct r5l_meta_block *mb;
2085 	struct r5l_payload_data_parity *payload;
2086 	struct r5l_payload_flush *payload_flush;
2087 	int mb_offset;
2088 	sector_t log_offset;
2089 	sector_t stripe_sect;
2090 	struct stripe_head *sh;
2091 	int ret;
2092 
2093 	/*
2094 	 * for mismatch in data blocks, we will drop all data in this mb, but
2095 	 * we will still read next mb for other data with FLUSH flag, as
2096 	 * io_unit could finish out of order.
2097 	 */
2098 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2099 	if (ret == -EINVAL)
2100 		return -EAGAIN;
2101 	else if (ret)
2102 		return ret;   /* -ENOMEM duo to alloc_page() failed */
2103 
2104 	mb = page_address(ctx->meta_page);
2105 	mb_offset = sizeof(struct r5l_meta_block);
2106 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2107 
2108 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2109 		int dd;
2110 
2111 		payload = (void *)mb + mb_offset;
2112 		payload_flush = (void *)mb + mb_offset;
2113 
2114 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2115 			int i, count;
2116 
2117 			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2118 			for (i = 0; i < count; ++i) {
2119 				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2120 				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2121 								stripe_sect);
2122 				if (sh) {
2123 					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2124 					r5l_recovery_reset_stripe(sh);
2125 					list_del_init(&sh->lru);
2126 					raid5_release_stripe(sh);
2127 				}
2128 			}
2129 
2130 			mb_offset += sizeof(struct r5l_payload_flush) +
2131 				le32_to_cpu(payload_flush->size);
2132 			continue;
2133 		}
2134 
2135 		/* DATA or PARITY payload */
2136 		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2137 			raid5_compute_sector(
2138 				conf, le64_to_cpu(payload->location), 0, &dd,
2139 				NULL)
2140 			: le64_to_cpu(payload->location);
2141 
2142 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2143 						stripe_sect);
2144 
2145 		if (!sh) {
2146 			sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2147 			/*
2148 			 * cannot get stripe from raid5_get_active_stripe
2149 			 * try replay some stripes
2150 			 */
2151 			if (!sh) {
2152 				r5c_recovery_replay_stripes(
2153 					cached_stripe_list, ctx);
2154 				sh = r5c_recovery_alloc_stripe(
2155 					conf, stripe_sect, 1);
2156 			}
2157 			if (!sh) {
2158 				int new_size = conf->min_nr_stripes * 2;
2159 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2160 					mdname(mddev),
2161 					new_size);
2162 				ret = raid5_set_cache_size(mddev, new_size);
2163 				if (conf->min_nr_stripes <= new_size / 2) {
2164 					pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2165 						mdname(mddev),
2166 						ret,
2167 						new_size,
2168 						conf->min_nr_stripes,
2169 						conf->max_nr_stripes);
2170 					return -ENOMEM;
2171 				}
2172 				sh = r5c_recovery_alloc_stripe(
2173 					conf, stripe_sect, 0);
2174 			}
2175 			if (!sh) {
2176 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2177 					mdname(mddev));
2178 				return -ENOMEM;
2179 			}
2180 			list_add_tail(&sh->lru, cached_stripe_list);
2181 		}
2182 
2183 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2184 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2185 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2186 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2187 				list_move_tail(&sh->lru, cached_stripe_list);
2188 			}
2189 			r5l_recovery_load_data(log, sh, ctx, payload,
2190 					       log_offset);
2191 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2192 			r5l_recovery_load_parity(log, sh, ctx, payload,
2193 						 log_offset);
2194 		else
2195 			return -EINVAL;
2196 
2197 		log_offset = r5l_ring_add(log, log_offset,
2198 					  le32_to_cpu(payload->size));
2199 
2200 		mb_offset += sizeof(struct r5l_payload_data_parity) +
2201 			sizeof(__le32) *
2202 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 /*
2209  * Load the stripe into cache. The stripe will be written out later by
2210  * the stripe cache state machine.
2211  */
2212 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2213 					 struct stripe_head *sh)
2214 {
2215 	struct r5dev *dev;
2216 	int i;
2217 
2218 	for (i = sh->disks; i--; ) {
2219 		dev = sh->dev + i;
2220 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2221 			set_bit(R5_InJournal, &dev->flags);
2222 			set_bit(R5_UPTODATE, &dev->flags);
2223 		}
2224 	}
2225 }
2226 
2227 /*
2228  * Scan through the log for all to-be-flushed data
2229  *
2230  * For stripes with data and parity, namely Data-Parity stripe
2231  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2232  *
2233  * For stripes with only data, namely Data-Only stripe
2234  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2235  *
2236  * For a stripe, if we see data after parity, we should discard all previous
2237  * data and parity for this stripe, as these data are already flushed to
2238  * the array.
2239  *
2240  * At the end of the scan, we return the new journal_tail, which points to
2241  * first data-only stripe on the journal device, or next invalid meta block.
2242  */
2243 static int r5c_recovery_flush_log(struct r5l_log *log,
2244 				  struct r5l_recovery_ctx *ctx)
2245 {
2246 	struct stripe_head *sh;
2247 	int ret = 0;
2248 
2249 	/* scan through the log */
2250 	while (1) {
2251 		if (r5l_recovery_read_meta_block(log, ctx))
2252 			break;
2253 
2254 		ret = r5c_recovery_analyze_meta_block(log, ctx,
2255 						      &ctx->cached_list);
2256 		/*
2257 		 * -EAGAIN means mismatch in data block, in this case, we still
2258 		 * try scan the next metablock
2259 		 */
2260 		if (ret && ret != -EAGAIN)
2261 			break;   /* ret == -EINVAL or -ENOMEM */
2262 		ctx->seq++;
2263 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2264 	}
2265 
2266 	if (ret == -ENOMEM) {
2267 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2268 		return ret;
2269 	}
2270 
2271 	/* replay data-parity stripes */
2272 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2273 
2274 	/* load data-only stripes to stripe cache */
2275 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2276 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2277 		r5c_recovery_load_one_stripe(log, sh);
2278 		ctx->data_only_stripes++;
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 /*
2285  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2286  * log will start here. but we can't let superblock point to last valid
2287  * meta block. The log might looks like:
2288  * | meta 1| meta 2| meta 3|
2289  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2290  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2291  * happens again, new recovery will start from meta 1. Since meta 2n is
2292  * valid now, recovery will think meta 3 is valid, which is wrong.
2293  * The solution is we create a new meta in meta2 with its seq == meta
2294  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2295  * will not think meta 3 is a valid meta, because its seq doesn't match
2296  */
2297 
2298 /*
2299  * Before recovery, the log looks like the following
2300  *
2301  *   ---------------------------------------------
2302  *   |           valid log        | invalid log  |
2303  *   ---------------------------------------------
2304  *   ^
2305  *   |- log->last_checkpoint
2306  *   |- log->last_cp_seq
2307  *
2308  * Now we scan through the log until we see invalid entry
2309  *
2310  *   ---------------------------------------------
2311  *   |           valid log        | invalid log  |
2312  *   ---------------------------------------------
2313  *   ^                            ^
2314  *   |- log->last_checkpoint      |- ctx->pos
2315  *   |- log->last_cp_seq          |- ctx->seq
2316  *
2317  * From this point, we need to increase seq number by 10 to avoid
2318  * confusing next recovery.
2319  *
2320  *   ---------------------------------------------
2321  *   |           valid log        | invalid log  |
2322  *   ---------------------------------------------
2323  *   ^                              ^
2324  *   |- log->last_checkpoint        |- ctx->pos+1
2325  *   |- log->last_cp_seq            |- ctx->seq+10001
2326  *
2327  * However, it is not safe to start the state machine yet, because data only
2328  * parities are not yet secured in RAID. To save these data only parities, we
2329  * rewrite them from seq+11.
2330  *
2331  *   -----------------------------------------------------------------
2332  *   |           valid log        | data only stripes | invalid log  |
2333  *   -----------------------------------------------------------------
2334  *   ^                                                ^
2335  *   |- log->last_checkpoint                          |- ctx->pos+n
2336  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2337  *
2338  * If failure happens again during this process, the recovery can safe start
2339  * again from log->last_checkpoint.
2340  *
2341  * Once data only stripes are rewritten to journal, we move log_tail
2342  *
2343  *   -----------------------------------------------------------------
2344  *   |     old log        |    data only stripes    | invalid log  |
2345  *   -----------------------------------------------------------------
2346  *                        ^                         ^
2347  *                        |- log->last_checkpoint   |- ctx->pos+n
2348  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2349  *
2350  * Then we can safely start the state machine. If failure happens from this
2351  * point on, the recovery will start from new log->last_checkpoint.
2352  */
2353 static int
2354 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2355 				       struct r5l_recovery_ctx *ctx)
2356 {
2357 	struct stripe_head *sh;
2358 	struct mddev *mddev = log->rdev->mddev;
2359 	struct page *page;
2360 	sector_t next_checkpoint = MaxSector;
2361 
2362 	page = alloc_page(GFP_KERNEL);
2363 	if (!page) {
2364 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2365 		       mdname(mddev));
2366 		return -ENOMEM;
2367 	}
2368 
2369 	WARN_ON(list_empty(&ctx->cached_list));
2370 
2371 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2372 		struct r5l_meta_block *mb;
2373 		int i;
2374 		int offset;
2375 		sector_t write_pos;
2376 
2377 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2378 		r5l_recovery_create_empty_meta_block(log, page,
2379 						     ctx->pos, ctx->seq);
2380 		mb = page_address(page);
2381 		offset = le32_to_cpu(mb->meta_size);
2382 		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2383 
2384 		for (i = sh->disks; i--; ) {
2385 			struct r5dev *dev = &sh->dev[i];
2386 			struct r5l_payload_data_parity *payload;
2387 			void *addr;
2388 
2389 			if (test_bit(R5_InJournal, &dev->flags)) {
2390 				payload = (void *)mb + offset;
2391 				payload->header.type = cpu_to_le16(
2392 					R5LOG_PAYLOAD_DATA);
2393 				payload->size = cpu_to_le32(BLOCK_SECTORS);
2394 				payload->location = cpu_to_le64(
2395 					raid5_compute_blocknr(sh, i, 0));
2396 				addr = kmap_atomic(dev->page);
2397 				payload->checksum[0] = cpu_to_le32(
2398 					crc32c_le(log->uuid_checksum, addr,
2399 						  PAGE_SIZE));
2400 				kunmap_atomic(addr);
2401 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2402 					     dev->page, REQ_OP_WRITE, 0, false);
2403 				write_pos = r5l_ring_add(log, write_pos,
2404 							 BLOCK_SECTORS);
2405 				offset += sizeof(__le32) +
2406 					sizeof(struct r5l_payload_data_parity);
2407 
2408 			}
2409 		}
2410 		mb->meta_size = cpu_to_le32(offset);
2411 		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2412 						     mb, PAGE_SIZE));
2413 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2414 			     REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2415 		sh->log_start = ctx->pos;
2416 		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2417 		atomic_inc(&log->stripe_in_journal_count);
2418 		ctx->pos = write_pos;
2419 		ctx->seq += 1;
2420 		next_checkpoint = sh->log_start;
2421 	}
2422 	log->next_checkpoint = next_checkpoint;
2423 	__free_page(page);
2424 	return 0;
2425 }
2426 
2427 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2428 						 struct r5l_recovery_ctx *ctx)
2429 {
2430 	struct mddev *mddev = log->rdev->mddev;
2431 	struct r5conf *conf = mddev->private;
2432 	struct stripe_head *sh, *next;
2433 
2434 	if (ctx->data_only_stripes == 0)
2435 		return;
2436 
2437 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2438 
2439 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2440 		r5c_make_stripe_write_out(sh);
2441 		set_bit(STRIPE_HANDLE, &sh->state);
2442 		list_del_init(&sh->lru);
2443 		raid5_release_stripe(sh);
2444 	}
2445 
2446 	/* reuse conf->wait_for_quiescent in recovery */
2447 	wait_event(conf->wait_for_quiescent,
2448 		   atomic_read(&conf->active_stripes) == 0);
2449 
2450 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2451 }
2452 
2453 static int r5l_recovery_log(struct r5l_log *log)
2454 {
2455 	struct mddev *mddev = log->rdev->mddev;
2456 	struct r5l_recovery_ctx *ctx;
2457 	int ret;
2458 	sector_t pos;
2459 
2460 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2461 	if (!ctx)
2462 		return -ENOMEM;
2463 
2464 	ctx->pos = log->last_checkpoint;
2465 	ctx->seq = log->last_cp_seq;
2466 	INIT_LIST_HEAD(&ctx->cached_list);
2467 	ctx->meta_page = alloc_page(GFP_KERNEL);
2468 
2469 	if (!ctx->meta_page) {
2470 		ret =  -ENOMEM;
2471 		goto meta_page;
2472 	}
2473 
2474 	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2475 		ret = -ENOMEM;
2476 		goto ra_pool;
2477 	}
2478 
2479 	ret = r5c_recovery_flush_log(log, ctx);
2480 
2481 	if (ret)
2482 		goto error;
2483 
2484 	pos = ctx->pos;
2485 	ctx->seq += 10000;
2486 
2487 	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2488 		pr_info("md/raid:%s: starting from clean shutdown\n",
2489 			 mdname(mddev));
2490 	else
2491 		pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2492 			 mdname(mddev), ctx->data_only_stripes,
2493 			 ctx->data_parity_stripes);
2494 
2495 	if (ctx->data_only_stripes == 0) {
2496 		log->next_checkpoint = ctx->pos;
2497 		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2498 		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2499 	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2500 		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2501 		       mdname(mddev));
2502 		ret =  -EIO;
2503 		goto error;
2504 	}
2505 
2506 	log->log_start = ctx->pos;
2507 	log->seq = ctx->seq;
2508 	log->last_checkpoint = pos;
2509 	r5l_write_super(log, pos);
2510 
2511 	r5c_recovery_flush_data_only_stripes(log, ctx);
2512 	ret = 0;
2513 error:
2514 	r5l_recovery_free_ra_pool(log, ctx);
2515 ra_pool:
2516 	__free_page(ctx->meta_page);
2517 meta_page:
2518 	kfree(ctx);
2519 	return ret;
2520 }
2521 
2522 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2523 {
2524 	struct mddev *mddev = log->rdev->mddev;
2525 
2526 	log->rdev->journal_tail = cp;
2527 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2528 }
2529 
2530 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2531 {
2532 	struct r5conf *conf;
2533 	int ret;
2534 
2535 	ret = mddev_lock(mddev);
2536 	if (ret)
2537 		return ret;
2538 
2539 	conf = mddev->private;
2540 	if (!conf || !conf->log) {
2541 		mddev_unlock(mddev);
2542 		return 0;
2543 	}
2544 
2545 	switch (conf->log->r5c_journal_mode) {
2546 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2547 		ret = snprintf(
2548 			page, PAGE_SIZE, "[%s] %s\n",
2549 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2550 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2551 		break;
2552 	case R5C_JOURNAL_MODE_WRITE_BACK:
2553 		ret = snprintf(
2554 			page, PAGE_SIZE, "%s [%s]\n",
2555 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2556 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2557 		break;
2558 	default:
2559 		ret = 0;
2560 	}
2561 	mddev_unlock(mddev);
2562 	return ret;
2563 }
2564 
2565 /*
2566  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2567  *
2568  * @mode as defined in 'enum r5c_journal_mode'.
2569  *
2570  */
2571 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2572 {
2573 	struct r5conf *conf;
2574 
2575 	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2576 	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2577 		return -EINVAL;
2578 
2579 	conf = mddev->private;
2580 	if (!conf || !conf->log)
2581 		return -ENODEV;
2582 
2583 	if (raid5_calc_degraded(conf) > 0 &&
2584 	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
2585 		return -EINVAL;
2586 
2587 	mddev_suspend(mddev);
2588 	conf->log->r5c_journal_mode = mode;
2589 	mddev_resume(mddev);
2590 
2591 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2592 		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2593 	return 0;
2594 }
2595 EXPORT_SYMBOL(r5c_journal_mode_set);
2596 
2597 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2598 				      const char *page, size_t length)
2599 {
2600 	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2601 	size_t len = length;
2602 	int ret;
2603 
2604 	if (len < 2)
2605 		return -EINVAL;
2606 
2607 	if (page[len - 1] == '\n')
2608 		len--;
2609 
2610 	while (mode--)
2611 		if (strlen(r5c_journal_mode_str[mode]) == len &&
2612 		    !strncmp(page, r5c_journal_mode_str[mode], len))
2613 			break;
2614 	ret = mddev_lock(mddev);
2615 	if (ret)
2616 		return ret;
2617 	ret = r5c_journal_mode_set(mddev, mode);
2618 	mddev_unlock(mddev);
2619 	return ret ?: length;
2620 }
2621 
2622 struct md_sysfs_entry
2623 r5c_journal_mode = __ATTR(journal_mode, 0644,
2624 			  r5c_journal_mode_show, r5c_journal_mode_store);
2625 
2626 /*
2627  * Try handle write operation in caching phase. This function should only
2628  * be called in write-back mode.
2629  *
2630  * If all outstanding writes can be handled in caching phase, returns 0
2631  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2632  * and returns -EAGAIN
2633  */
2634 int r5c_try_caching_write(struct r5conf *conf,
2635 			  struct stripe_head *sh,
2636 			  struct stripe_head_state *s,
2637 			  int disks)
2638 {
2639 	struct r5l_log *log = conf->log;
2640 	int i;
2641 	struct r5dev *dev;
2642 	int to_cache = 0;
2643 	void **pslot;
2644 	sector_t tree_index;
2645 	int ret;
2646 	uintptr_t refcount;
2647 
2648 	BUG_ON(!r5c_is_writeback(log));
2649 
2650 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2651 		/*
2652 		 * There are two different scenarios here:
2653 		 *  1. The stripe has some data cached, and it is sent to
2654 		 *     write-out phase for reclaim
2655 		 *  2. The stripe is clean, and this is the first write
2656 		 *
2657 		 * For 1, return -EAGAIN, so we continue with
2658 		 * handle_stripe_dirtying().
2659 		 *
2660 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2661 		 * write.
2662 		 */
2663 
2664 		/* case 1: anything injournal or anything in written */
2665 		if (s->injournal > 0 || s->written > 0)
2666 			return -EAGAIN;
2667 		/* case 2 */
2668 		set_bit(STRIPE_R5C_CACHING, &sh->state);
2669 	}
2670 
2671 	/*
2672 	 * When run in degraded mode, array is set to write-through mode.
2673 	 * This check helps drain pending write safely in the transition to
2674 	 * write-through mode.
2675 	 *
2676 	 * When a stripe is syncing, the write is also handled in write
2677 	 * through mode.
2678 	 */
2679 	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2680 		r5c_make_stripe_write_out(sh);
2681 		return -EAGAIN;
2682 	}
2683 
2684 	for (i = disks; i--; ) {
2685 		dev = &sh->dev[i];
2686 		/* if non-overwrite, use writing-out phase */
2687 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2688 		    !test_bit(R5_InJournal, &dev->flags)) {
2689 			r5c_make_stripe_write_out(sh);
2690 			return -EAGAIN;
2691 		}
2692 	}
2693 
2694 	/* if the stripe is not counted in big_stripe_tree, add it now */
2695 	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2696 	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2697 		tree_index = r5c_tree_index(conf, sh->sector);
2698 		spin_lock(&log->tree_lock);
2699 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2700 					       tree_index);
2701 		if (pslot) {
2702 			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2703 				pslot, &log->tree_lock) >>
2704 				R5C_RADIX_COUNT_SHIFT;
2705 			radix_tree_replace_slot(
2706 				&log->big_stripe_tree, pslot,
2707 				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2708 		} else {
2709 			/*
2710 			 * this radix_tree_insert can fail safely, so no
2711 			 * need to call radix_tree_preload()
2712 			 */
2713 			ret = radix_tree_insert(
2714 				&log->big_stripe_tree, tree_index,
2715 				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2716 			if (ret) {
2717 				spin_unlock(&log->tree_lock);
2718 				r5c_make_stripe_write_out(sh);
2719 				return -EAGAIN;
2720 			}
2721 		}
2722 		spin_unlock(&log->tree_lock);
2723 
2724 		/*
2725 		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2726 		 * counted in the radix tree
2727 		 */
2728 		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2729 		atomic_inc(&conf->r5c_cached_partial_stripes);
2730 	}
2731 
2732 	for (i = disks; i--; ) {
2733 		dev = &sh->dev[i];
2734 		if (dev->towrite) {
2735 			set_bit(R5_Wantwrite, &dev->flags);
2736 			set_bit(R5_Wantdrain, &dev->flags);
2737 			set_bit(R5_LOCKED, &dev->flags);
2738 			to_cache++;
2739 		}
2740 	}
2741 
2742 	if (to_cache) {
2743 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2744 		/*
2745 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2746 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2747 		 * r5c_handle_data_cached()
2748 		 */
2749 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 /*
2756  * free extra pages (orig_page) we allocated for prexor
2757  */
2758 void r5c_release_extra_page(struct stripe_head *sh)
2759 {
2760 	struct r5conf *conf = sh->raid_conf;
2761 	int i;
2762 	bool using_disk_info_extra_page;
2763 
2764 	using_disk_info_extra_page =
2765 		sh->dev[0].orig_page == conf->disks[0].extra_page;
2766 
2767 	for (i = sh->disks; i--; )
2768 		if (sh->dev[i].page != sh->dev[i].orig_page) {
2769 			struct page *p = sh->dev[i].orig_page;
2770 
2771 			sh->dev[i].orig_page = sh->dev[i].page;
2772 			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2773 
2774 			if (!using_disk_info_extra_page)
2775 				put_page(p);
2776 		}
2777 
2778 	if (using_disk_info_extra_page) {
2779 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2780 		md_wakeup_thread(conf->mddev->thread);
2781 	}
2782 }
2783 
2784 void r5c_use_extra_page(struct stripe_head *sh)
2785 {
2786 	struct r5conf *conf = sh->raid_conf;
2787 	int i;
2788 	struct r5dev *dev;
2789 
2790 	for (i = sh->disks; i--; ) {
2791 		dev = &sh->dev[i];
2792 		if (dev->orig_page != dev->page)
2793 			put_page(dev->orig_page);
2794 		dev->orig_page = conf->disks[i].extra_page;
2795 	}
2796 }
2797 
2798 /*
2799  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2800  * stripe is committed to RAID disks.
2801  */
2802 void r5c_finish_stripe_write_out(struct r5conf *conf,
2803 				 struct stripe_head *sh,
2804 				 struct stripe_head_state *s)
2805 {
2806 	struct r5l_log *log = conf->log;
2807 	int i;
2808 	int do_wakeup = 0;
2809 	sector_t tree_index;
2810 	void **pslot;
2811 	uintptr_t refcount;
2812 
2813 	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2814 		return;
2815 
2816 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2817 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2818 
2819 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2820 		return;
2821 
2822 	for (i = sh->disks; i--; ) {
2823 		clear_bit(R5_InJournal, &sh->dev[i].flags);
2824 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2825 			do_wakeup = 1;
2826 	}
2827 
2828 	/*
2829 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2830 	 * We updated R5_InJournal, so we also update s->injournal.
2831 	 */
2832 	s->injournal = 0;
2833 
2834 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2835 		if (atomic_dec_and_test(&conf->pending_full_writes))
2836 			md_wakeup_thread(conf->mddev->thread);
2837 
2838 	if (do_wakeup)
2839 		wake_up(&conf->wait_for_overlap);
2840 
2841 	spin_lock_irq(&log->stripe_in_journal_lock);
2842 	list_del_init(&sh->r5c);
2843 	spin_unlock_irq(&log->stripe_in_journal_lock);
2844 	sh->log_start = MaxSector;
2845 
2846 	atomic_dec(&log->stripe_in_journal_count);
2847 	r5c_update_log_state(log);
2848 
2849 	/* stop counting this stripe in big_stripe_tree */
2850 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2851 	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2852 		tree_index = r5c_tree_index(conf, sh->sector);
2853 		spin_lock(&log->tree_lock);
2854 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2855 					       tree_index);
2856 		BUG_ON(pslot == NULL);
2857 		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2858 			pslot, &log->tree_lock) >>
2859 			R5C_RADIX_COUNT_SHIFT;
2860 		if (refcount == 1)
2861 			radix_tree_delete(&log->big_stripe_tree, tree_index);
2862 		else
2863 			radix_tree_replace_slot(
2864 				&log->big_stripe_tree, pslot,
2865 				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2866 		spin_unlock(&log->tree_lock);
2867 	}
2868 
2869 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2870 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2871 		atomic_dec(&conf->r5c_flushing_partial_stripes);
2872 		atomic_dec(&conf->r5c_cached_partial_stripes);
2873 	}
2874 
2875 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2876 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2877 		atomic_dec(&conf->r5c_flushing_full_stripes);
2878 		atomic_dec(&conf->r5c_cached_full_stripes);
2879 	}
2880 
2881 	r5l_append_flush_payload(log, sh->sector);
2882 	/* stripe is flused to raid disks, we can do resync now */
2883 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2884 		set_bit(STRIPE_HANDLE, &sh->state);
2885 }
2886 
2887 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2888 {
2889 	struct r5conf *conf = sh->raid_conf;
2890 	int pages = 0;
2891 	int reserve;
2892 	int i;
2893 	int ret = 0;
2894 
2895 	BUG_ON(!log);
2896 
2897 	for (i = 0; i < sh->disks; i++) {
2898 		void *addr;
2899 
2900 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2901 			continue;
2902 		addr = kmap_atomic(sh->dev[i].page);
2903 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2904 						    addr, PAGE_SIZE);
2905 		kunmap_atomic(addr);
2906 		pages++;
2907 	}
2908 	WARN_ON(pages == 0);
2909 
2910 	/*
2911 	 * The stripe must enter state machine again to call endio, so
2912 	 * don't delay.
2913 	 */
2914 	clear_bit(STRIPE_DELAYED, &sh->state);
2915 	atomic_inc(&sh->count);
2916 
2917 	mutex_lock(&log->io_mutex);
2918 	/* meta + data */
2919 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2920 
2921 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2922 	    sh->log_start == MaxSector)
2923 		r5l_add_no_space_stripe(log, sh);
2924 	else if (!r5l_has_free_space(log, reserve)) {
2925 		if (sh->log_start == log->last_checkpoint)
2926 			BUG();
2927 		else
2928 			r5l_add_no_space_stripe(log, sh);
2929 	} else {
2930 		ret = r5l_log_stripe(log, sh, pages, 0);
2931 		if (ret) {
2932 			spin_lock_irq(&log->io_list_lock);
2933 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2934 			spin_unlock_irq(&log->io_list_lock);
2935 		}
2936 	}
2937 
2938 	mutex_unlock(&log->io_mutex);
2939 	return 0;
2940 }
2941 
2942 /* check whether this big stripe is in write back cache. */
2943 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2944 {
2945 	struct r5l_log *log = conf->log;
2946 	sector_t tree_index;
2947 	void *slot;
2948 
2949 	if (!log)
2950 		return false;
2951 
2952 	WARN_ON_ONCE(!rcu_read_lock_held());
2953 	tree_index = r5c_tree_index(conf, sect);
2954 	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2955 	return slot != NULL;
2956 }
2957 
2958 static int r5l_load_log(struct r5l_log *log)
2959 {
2960 	struct md_rdev *rdev = log->rdev;
2961 	struct page *page;
2962 	struct r5l_meta_block *mb;
2963 	sector_t cp = log->rdev->journal_tail;
2964 	u32 stored_crc, expected_crc;
2965 	bool create_super = false;
2966 	int ret = 0;
2967 
2968 	/* Make sure it's valid */
2969 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2970 		cp = 0;
2971 	page = alloc_page(GFP_KERNEL);
2972 	if (!page)
2973 		return -ENOMEM;
2974 
2975 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2976 		ret = -EIO;
2977 		goto ioerr;
2978 	}
2979 	mb = page_address(page);
2980 
2981 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2982 	    mb->version != R5LOG_VERSION) {
2983 		create_super = true;
2984 		goto create;
2985 	}
2986 	stored_crc = le32_to_cpu(mb->checksum);
2987 	mb->checksum = 0;
2988 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2989 	if (stored_crc != expected_crc) {
2990 		create_super = true;
2991 		goto create;
2992 	}
2993 	if (le64_to_cpu(mb->position) != cp) {
2994 		create_super = true;
2995 		goto create;
2996 	}
2997 create:
2998 	if (create_super) {
2999 		log->last_cp_seq = prandom_u32();
3000 		cp = 0;
3001 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3002 		/*
3003 		 * Make sure super points to correct address. Log might have
3004 		 * data very soon. If super hasn't correct log tail address,
3005 		 * recovery can't find the log
3006 		 */
3007 		r5l_write_super(log, cp);
3008 	} else
3009 		log->last_cp_seq = le64_to_cpu(mb->seq);
3010 
3011 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3012 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3013 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3014 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3015 	log->last_checkpoint = cp;
3016 
3017 	__free_page(page);
3018 
3019 	if (create_super) {
3020 		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3021 		log->seq = log->last_cp_seq + 1;
3022 		log->next_checkpoint = cp;
3023 	} else
3024 		ret = r5l_recovery_log(log);
3025 
3026 	r5c_update_log_state(log);
3027 	return ret;
3028 ioerr:
3029 	__free_page(page);
3030 	return ret;
3031 }
3032 
3033 int r5l_start(struct r5l_log *log)
3034 {
3035 	int ret;
3036 
3037 	if (!log)
3038 		return 0;
3039 
3040 	ret = r5l_load_log(log);
3041 	if (ret) {
3042 		struct mddev *mddev = log->rdev->mddev;
3043 		struct r5conf *conf = mddev->private;
3044 
3045 		r5l_exit_log(conf);
3046 	}
3047 	return ret;
3048 }
3049 
3050 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3051 {
3052 	struct r5conf *conf = mddev->private;
3053 	struct r5l_log *log = conf->log;
3054 
3055 	if (!log)
3056 		return;
3057 
3058 	if ((raid5_calc_degraded(conf) > 0 ||
3059 	     test_bit(Journal, &rdev->flags)) &&
3060 	    conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3061 		schedule_work(&log->disable_writeback_work);
3062 }
3063 
3064 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3065 {
3066 	struct request_queue *q = bdev_get_queue(rdev->bdev);
3067 	struct r5l_log *log;
3068 	char b[BDEVNAME_SIZE];
3069 	int ret;
3070 
3071 	pr_debug("md/raid:%s: using device %s as journal\n",
3072 		 mdname(conf->mddev), bdevname(rdev->bdev, b));
3073 
3074 	if (PAGE_SIZE != 4096)
3075 		return -EINVAL;
3076 
3077 	/*
3078 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3079 	 * raid_disks r5l_payload_data_parity.
3080 	 *
3081 	 * Write journal and cache does not work for very big array
3082 	 * (raid_disks > 203)
3083 	 */
3084 	if (sizeof(struct r5l_meta_block) +
3085 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3086 	     conf->raid_disks) > PAGE_SIZE) {
3087 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3088 		       mdname(conf->mddev), conf->raid_disks);
3089 		return -EINVAL;
3090 	}
3091 
3092 	log = kzalloc(sizeof(*log), GFP_KERNEL);
3093 	if (!log)
3094 		return -ENOMEM;
3095 	log->rdev = rdev;
3096 
3097 	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3098 
3099 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3100 				       sizeof(rdev->mddev->uuid));
3101 
3102 	mutex_init(&log->io_mutex);
3103 
3104 	spin_lock_init(&log->io_list_lock);
3105 	INIT_LIST_HEAD(&log->running_ios);
3106 	INIT_LIST_HEAD(&log->io_end_ios);
3107 	INIT_LIST_HEAD(&log->flushing_ios);
3108 	INIT_LIST_HEAD(&log->finished_ios);
3109 	bio_init(&log->flush_bio, NULL, 0);
3110 
3111 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3112 	if (!log->io_kc)
3113 		goto io_kc;
3114 
3115 	ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3116 	if (ret)
3117 		goto io_pool;
3118 
3119 	ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3120 	if (ret)
3121 		goto io_bs;
3122 
3123 	ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3124 	if (ret)
3125 		goto out_mempool;
3126 
3127 	spin_lock_init(&log->tree_lock);
3128 	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3129 
3130 	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3131 						 log->rdev->mddev, "reclaim");
3132 	if (!log->reclaim_thread)
3133 		goto reclaim_thread;
3134 	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3135 
3136 	init_waitqueue_head(&log->iounit_wait);
3137 
3138 	INIT_LIST_HEAD(&log->no_mem_stripes);
3139 
3140 	INIT_LIST_HEAD(&log->no_space_stripes);
3141 	spin_lock_init(&log->no_space_stripes_lock);
3142 
3143 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3144 	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3145 
3146 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3147 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3148 	spin_lock_init(&log->stripe_in_journal_lock);
3149 	atomic_set(&log->stripe_in_journal_count, 0);
3150 
3151 	rcu_assign_pointer(conf->log, log);
3152 
3153 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3154 	return 0;
3155 
3156 reclaim_thread:
3157 	mempool_exit(&log->meta_pool);
3158 out_mempool:
3159 	bioset_exit(&log->bs);
3160 io_bs:
3161 	mempool_exit(&log->io_pool);
3162 io_pool:
3163 	kmem_cache_destroy(log->io_kc);
3164 io_kc:
3165 	kfree(log);
3166 	return -EINVAL;
3167 }
3168 
3169 void r5l_exit_log(struct r5conf *conf)
3170 {
3171 	struct r5l_log *log = conf->log;
3172 
3173 	conf->log = NULL;
3174 	synchronize_rcu();
3175 
3176 	/* Ensure disable_writeback_work wakes up and exits */
3177 	wake_up(&conf->mddev->sb_wait);
3178 	flush_work(&log->disable_writeback_work);
3179 	md_unregister_thread(&log->reclaim_thread);
3180 	mempool_exit(&log->meta_pool);
3181 	bioset_exit(&log->bs);
3182 	mempool_exit(&log->io_pool);
3183 	kmem_cache_destroy(log->io_kc);
3184 	kfree(log);
3185 }
3186