xref: /linux/drivers/md/raid5-cache.c (revision 8c749ce93ee69e789e46b3be98de9e0cbfcf8ed8)
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  */
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
21 #include "md.h"
22 #include "raid5.h"
23 
24 /*
25  * metadata/data stored in disk with 4k size unit (a block) regardless
26  * underneath hardware sector size. only works with PAGE_SIZE == 4096
27  */
28 #define BLOCK_SECTORS (8)
29 
30 /*
31  * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32  * recovery scans a very long log
33  */
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36 
37 /*
38  * We only need 2 bios per I/O unit to make progress, but ensure we
39  * have a few more available to not get too tight.
40  */
41 #define R5L_POOL_SIZE	4
42 
43 struct r5l_log {
44 	struct md_rdev *rdev;
45 
46 	u32 uuid_checksum;
47 
48 	sector_t device_size;		/* log device size, round to
49 					 * BLOCK_SECTORS */
50 	sector_t max_free_space;	/* reclaim run if free space is at
51 					 * this size */
52 
53 	sector_t last_checkpoint;	/* log tail. where recovery scan
54 					 * starts from */
55 	u64 last_cp_seq;		/* log tail sequence */
56 
57 	sector_t log_start;		/* log head. where new data appends */
58 	u64 seq;			/* log head sequence */
59 
60 	sector_t next_checkpoint;
61 	u64 next_cp_seq;
62 
63 	struct mutex io_mutex;
64 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
65 
66 	spinlock_t io_list_lock;
67 	struct list_head running_ios;	/* io_units which are still running,
68 					 * and have not yet been completely
69 					 * written to the log */
70 	struct list_head io_end_ios;	/* io_units which have been completely
71 					 * written to the log but not yet written
72 					 * to the RAID */
73 	struct list_head flushing_ios;	/* io_units which are waiting for log
74 					 * cache flush */
75 	struct list_head finished_ios;	/* io_units which settle down in log disk */
76 	struct bio flush_bio;
77 
78 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
79 
80 	struct kmem_cache *io_kc;
81 	mempool_t *io_pool;
82 	struct bio_set *bs;
83 	mempool_t *meta_pool;
84 
85 	struct md_thread *reclaim_thread;
86 	unsigned long reclaim_target;	/* number of space that need to be
87 					 * reclaimed.  if it's 0, reclaim spaces
88 					 * used by io_units which are in
89 					 * IO_UNIT_STRIPE_END state (eg, reclaim
90 					 * dones't wait for specific io_unit
91 					 * switching to IO_UNIT_STRIPE_END
92 					 * state) */
93 	wait_queue_head_t iounit_wait;
94 
95 	struct list_head no_space_stripes; /* pending stripes, log has no space */
96 	spinlock_t no_space_stripes_lock;
97 
98 	bool need_cache_flush;
99 	bool in_teardown;
100 };
101 
102 /*
103  * an IO range starts from a meta data block and end at the next meta data
104  * block. The io unit's the meta data block tracks data/parity followed it. io
105  * unit is written to log disk with normal write, as we always flush log disk
106  * first and then start move data to raid disks, there is no requirement to
107  * write io unit with FLUSH/FUA
108  */
109 struct r5l_io_unit {
110 	struct r5l_log *log;
111 
112 	struct page *meta_page;	/* store meta block */
113 	int meta_offset;	/* current offset in meta_page */
114 
115 	struct bio *current_bio;/* current_bio accepting new data */
116 
117 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
118 	u64 seq;		/* seq number of the metablock */
119 	sector_t log_start;	/* where the io_unit starts */
120 	sector_t log_end;	/* where the io_unit ends */
121 	struct list_head log_sibling; /* log->running_ios */
122 	struct list_head stripe_list; /* stripes added to the io_unit */
123 
124 	int state;
125 	bool need_split_bio;
126 };
127 
128 /* r5l_io_unit state */
129 enum r5l_io_unit_state {
130 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
131 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
132 				 * don't accepting new bio */
133 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
134 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
135 };
136 
137 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
138 {
139 	start += inc;
140 	if (start >= log->device_size)
141 		start = start - log->device_size;
142 	return start;
143 }
144 
145 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
146 				  sector_t end)
147 {
148 	if (end >= start)
149 		return end - start;
150 	else
151 		return end + log->device_size - start;
152 }
153 
154 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
155 {
156 	sector_t used_size;
157 
158 	used_size = r5l_ring_distance(log, log->last_checkpoint,
159 					log->log_start);
160 
161 	return log->device_size > used_size + size;
162 }
163 
164 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
165 				    enum r5l_io_unit_state state)
166 {
167 	if (WARN_ON(io->state >= state))
168 		return;
169 	io->state = state;
170 }
171 
172 static void r5l_io_run_stripes(struct r5l_io_unit *io)
173 {
174 	struct stripe_head *sh, *next;
175 
176 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
177 		list_del_init(&sh->log_list);
178 		set_bit(STRIPE_HANDLE, &sh->state);
179 		raid5_release_stripe(sh);
180 	}
181 }
182 
183 static void r5l_log_run_stripes(struct r5l_log *log)
184 {
185 	struct r5l_io_unit *io, *next;
186 
187 	assert_spin_locked(&log->io_list_lock);
188 
189 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
190 		/* don't change list order */
191 		if (io->state < IO_UNIT_IO_END)
192 			break;
193 
194 		list_move_tail(&io->log_sibling, &log->finished_ios);
195 		r5l_io_run_stripes(io);
196 	}
197 }
198 
199 static void r5l_move_to_end_ios(struct r5l_log *log)
200 {
201 	struct r5l_io_unit *io, *next;
202 
203 	assert_spin_locked(&log->io_list_lock);
204 
205 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
206 		/* don't change list order */
207 		if (io->state < IO_UNIT_IO_END)
208 			break;
209 		list_move_tail(&io->log_sibling, &log->io_end_ios);
210 	}
211 }
212 
213 static void r5l_log_endio(struct bio *bio)
214 {
215 	struct r5l_io_unit *io = bio->bi_private;
216 	struct r5l_log *log = io->log;
217 	unsigned long flags;
218 
219 	if (bio->bi_error)
220 		md_error(log->rdev->mddev, log->rdev);
221 
222 	bio_put(bio);
223 	mempool_free(io->meta_page, log->meta_pool);
224 
225 	spin_lock_irqsave(&log->io_list_lock, flags);
226 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
227 	if (log->need_cache_flush)
228 		r5l_move_to_end_ios(log);
229 	else
230 		r5l_log_run_stripes(log);
231 	spin_unlock_irqrestore(&log->io_list_lock, flags);
232 
233 	if (log->need_cache_flush)
234 		md_wakeup_thread(log->rdev->mddev->thread);
235 }
236 
237 static void r5l_submit_current_io(struct r5l_log *log)
238 {
239 	struct r5l_io_unit *io = log->current_io;
240 	struct r5l_meta_block *block;
241 	unsigned long flags;
242 	u32 crc;
243 
244 	if (!io)
245 		return;
246 
247 	block = page_address(io->meta_page);
248 	block->meta_size = cpu_to_le32(io->meta_offset);
249 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
250 	block->checksum = cpu_to_le32(crc);
251 
252 	log->current_io = NULL;
253 	spin_lock_irqsave(&log->io_list_lock, flags);
254 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
255 	spin_unlock_irqrestore(&log->io_list_lock, flags);
256 
257 	submit_bio(WRITE, io->current_bio);
258 }
259 
260 static struct bio *r5l_bio_alloc(struct r5l_log *log)
261 {
262 	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
263 
264 	bio->bi_rw = WRITE;
265 	bio->bi_bdev = log->rdev->bdev;
266 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
267 
268 	return bio;
269 }
270 
271 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
272 {
273 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
274 
275 	/*
276 	 * If we filled up the log device start from the beginning again,
277 	 * which will require a new bio.
278 	 *
279 	 * Note: for this to work properly the log size needs to me a multiple
280 	 * of BLOCK_SECTORS.
281 	 */
282 	if (log->log_start == 0)
283 		io->need_split_bio = true;
284 
285 	io->log_end = log->log_start;
286 }
287 
288 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
289 {
290 	struct r5l_io_unit *io;
291 	struct r5l_meta_block *block;
292 
293 	io = mempool_alloc(log->io_pool, GFP_ATOMIC);
294 	if (!io)
295 		return NULL;
296 	memset(io, 0, sizeof(*io));
297 
298 	io->log = log;
299 	INIT_LIST_HEAD(&io->log_sibling);
300 	INIT_LIST_HEAD(&io->stripe_list);
301 	io->state = IO_UNIT_RUNNING;
302 
303 	io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
304 	block = page_address(io->meta_page);
305 	clear_page(block);
306 	block->magic = cpu_to_le32(R5LOG_MAGIC);
307 	block->version = R5LOG_VERSION;
308 	block->seq = cpu_to_le64(log->seq);
309 	block->position = cpu_to_le64(log->log_start);
310 
311 	io->log_start = log->log_start;
312 	io->meta_offset = sizeof(struct r5l_meta_block);
313 	io->seq = log->seq++;
314 
315 	io->current_bio = r5l_bio_alloc(log);
316 	io->current_bio->bi_end_io = r5l_log_endio;
317 	io->current_bio->bi_private = io;
318 	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
319 
320 	r5_reserve_log_entry(log, io);
321 
322 	spin_lock_irq(&log->io_list_lock);
323 	list_add_tail(&io->log_sibling, &log->running_ios);
324 	spin_unlock_irq(&log->io_list_lock);
325 
326 	return io;
327 }
328 
329 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
330 {
331 	if (log->current_io &&
332 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
333 		r5l_submit_current_io(log);
334 
335 	if (!log->current_io) {
336 		log->current_io = r5l_new_meta(log);
337 		if (!log->current_io)
338 			return -ENOMEM;
339 	}
340 
341 	return 0;
342 }
343 
344 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
345 				    sector_t location,
346 				    u32 checksum1, u32 checksum2,
347 				    bool checksum2_valid)
348 {
349 	struct r5l_io_unit *io = log->current_io;
350 	struct r5l_payload_data_parity *payload;
351 
352 	payload = page_address(io->meta_page) + io->meta_offset;
353 	payload->header.type = cpu_to_le16(type);
354 	payload->header.flags = cpu_to_le16(0);
355 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
356 				    (PAGE_SHIFT - 9));
357 	payload->location = cpu_to_le64(location);
358 	payload->checksum[0] = cpu_to_le32(checksum1);
359 	if (checksum2_valid)
360 		payload->checksum[1] = cpu_to_le32(checksum2);
361 
362 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
363 		sizeof(__le32) * (1 + !!checksum2_valid);
364 }
365 
366 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
367 {
368 	struct r5l_io_unit *io = log->current_io;
369 
370 	if (io->need_split_bio) {
371 		struct bio *prev = io->current_bio;
372 
373 		io->current_bio = r5l_bio_alloc(log);
374 		bio_chain(io->current_bio, prev);
375 
376 		submit_bio(WRITE, prev);
377 	}
378 
379 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
380 		BUG();
381 
382 	r5_reserve_log_entry(log, io);
383 }
384 
385 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
386 			   int data_pages, int parity_pages)
387 {
388 	int i;
389 	int meta_size;
390 	int ret;
391 	struct r5l_io_unit *io;
392 
393 	meta_size =
394 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
395 		 * data_pages) +
396 		sizeof(struct r5l_payload_data_parity) +
397 		sizeof(__le32) * parity_pages;
398 
399 	ret = r5l_get_meta(log, meta_size);
400 	if (ret)
401 		return ret;
402 
403 	io = log->current_io;
404 
405 	for (i = 0; i < sh->disks; i++) {
406 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
407 			continue;
408 		if (i == sh->pd_idx || i == sh->qd_idx)
409 			continue;
410 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
411 					raid5_compute_blocknr(sh, i, 0),
412 					sh->dev[i].log_checksum, 0, false);
413 		r5l_append_payload_page(log, sh->dev[i].page);
414 	}
415 
416 	if (sh->qd_idx >= 0) {
417 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
418 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
419 					sh->dev[sh->qd_idx].log_checksum, true);
420 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
421 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
422 	} else {
423 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
424 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
425 					0, false);
426 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
427 	}
428 
429 	list_add_tail(&sh->log_list, &io->stripe_list);
430 	atomic_inc(&io->pending_stripe);
431 	sh->log_io = io;
432 
433 	return 0;
434 }
435 
436 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
437 /*
438  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
439  * data from log to raid disks), so we shouldn't wait for reclaim here
440  */
441 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
442 {
443 	int write_disks = 0;
444 	int data_pages, parity_pages;
445 	int meta_size;
446 	int reserve;
447 	int i;
448 	int ret = 0;
449 
450 	if (!log)
451 		return -EAGAIN;
452 	/* Don't support stripe batch */
453 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
454 	    test_bit(STRIPE_SYNCING, &sh->state)) {
455 		/* the stripe is written to log, we start writing it to raid */
456 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
457 		return -EAGAIN;
458 	}
459 
460 	for (i = 0; i < sh->disks; i++) {
461 		void *addr;
462 
463 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
464 			continue;
465 		write_disks++;
466 		/* checksum is already calculated in last run */
467 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
468 			continue;
469 		addr = kmap_atomic(sh->dev[i].page);
470 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
471 						    addr, PAGE_SIZE);
472 		kunmap_atomic(addr);
473 	}
474 	parity_pages = 1 + !!(sh->qd_idx >= 0);
475 	data_pages = write_disks - parity_pages;
476 
477 	meta_size =
478 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
479 		 * data_pages) +
480 		sizeof(struct r5l_payload_data_parity) +
481 		sizeof(__le32) * parity_pages;
482 	/* Doesn't work with very big raid array */
483 	if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
484 		return -EINVAL;
485 
486 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
487 	/*
488 	 * The stripe must enter state machine again to finish the write, so
489 	 * don't delay.
490 	 */
491 	clear_bit(STRIPE_DELAYED, &sh->state);
492 	atomic_inc(&sh->count);
493 
494 	mutex_lock(&log->io_mutex);
495 	/* meta + data */
496 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
497 	if (!r5l_has_free_space(log, reserve)) {
498 		spin_lock(&log->no_space_stripes_lock);
499 		list_add_tail(&sh->log_list, &log->no_space_stripes);
500 		spin_unlock(&log->no_space_stripes_lock);
501 
502 		r5l_wake_reclaim(log, reserve);
503 	} else {
504 		ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
505 		if (ret) {
506 			spin_lock_irq(&log->io_list_lock);
507 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
508 			spin_unlock_irq(&log->io_list_lock);
509 		}
510 	}
511 
512 	mutex_unlock(&log->io_mutex);
513 	return 0;
514 }
515 
516 void r5l_write_stripe_run(struct r5l_log *log)
517 {
518 	if (!log)
519 		return;
520 	mutex_lock(&log->io_mutex);
521 	r5l_submit_current_io(log);
522 	mutex_unlock(&log->io_mutex);
523 }
524 
525 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
526 {
527 	if (!log)
528 		return -ENODEV;
529 	/*
530 	 * we flush log disk cache first, then write stripe data to raid disks.
531 	 * So if bio is finished, the log disk cache is flushed already. The
532 	 * recovery guarantees we can recovery the bio from log disk, so we
533 	 * don't need to flush again
534 	 */
535 	if (bio->bi_iter.bi_size == 0) {
536 		bio_endio(bio);
537 		return 0;
538 	}
539 	bio->bi_rw &= ~REQ_FLUSH;
540 	return -EAGAIN;
541 }
542 
543 /* This will run after log space is reclaimed */
544 static void r5l_run_no_space_stripes(struct r5l_log *log)
545 {
546 	struct stripe_head *sh;
547 
548 	spin_lock(&log->no_space_stripes_lock);
549 	while (!list_empty(&log->no_space_stripes)) {
550 		sh = list_first_entry(&log->no_space_stripes,
551 				      struct stripe_head, log_list);
552 		list_del_init(&sh->log_list);
553 		set_bit(STRIPE_HANDLE, &sh->state);
554 		raid5_release_stripe(sh);
555 	}
556 	spin_unlock(&log->no_space_stripes_lock);
557 }
558 
559 static sector_t r5l_reclaimable_space(struct r5l_log *log)
560 {
561 	return r5l_ring_distance(log, log->last_checkpoint,
562 				 log->next_checkpoint);
563 }
564 
565 static void r5l_run_no_mem_stripe(struct r5l_log *log)
566 {
567 	struct stripe_head *sh;
568 
569 	assert_spin_locked(&log->io_list_lock);
570 
571 	if (!list_empty(&log->no_mem_stripes)) {
572 		sh = list_first_entry(&log->no_mem_stripes,
573 				      struct stripe_head, log_list);
574 		list_del_init(&sh->log_list);
575 		set_bit(STRIPE_HANDLE, &sh->state);
576 		raid5_release_stripe(sh);
577 	}
578 }
579 
580 static bool r5l_complete_finished_ios(struct r5l_log *log)
581 {
582 	struct r5l_io_unit *io, *next;
583 	bool found = false;
584 
585 	assert_spin_locked(&log->io_list_lock);
586 
587 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
588 		/* don't change list order */
589 		if (io->state < IO_UNIT_STRIPE_END)
590 			break;
591 
592 		log->next_checkpoint = io->log_start;
593 		log->next_cp_seq = io->seq;
594 
595 		list_del(&io->log_sibling);
596 		mempool_free(io, log->io_pool);
597 		r5l_run_no_mem_stripe(log);
598 
599 		found = true;
600 	}
601 
602 	return found;
603 }
604 
605 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
606 {
607 	struct r5l_log *log = io->log;
608 	unsigned long flags;
609 
610 	spin_lock_irqsave(&log->io_list_lock, flags);
611 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
612 
613 	if (!r5l_complete_finished_ios(log)) {
614 		spin_unlock_irqrestore(&log->io_list_lock, flags);
615 		return;
616 	}
617 
618 	if (r5l_reclaimable_space(log) > log->max_free_space)
619 		r5l_wake_reclaim(log, 0);
620 
621 	spin_unlock_irqrestore(&log->io_list_lock, flags);
622 	wake_up(&log->iounit_wait);
623 }
624 
625 void r5l_stripe_write_finished(struct stripe_head *sh)
626 {
627 	struct r5l_io_unit *io;
628 
629 	io = sh->log_io;
630 	sh->log_io = NULL;
631 
632 	if (io && atomic_dec_and_test(&io->pending_stripe))
633 		__r5l_stripe_write_finished(io);
634 }
635 
636 static void r5l_log_flush_endio(struct bio *bio)
637 {
638 	struct r5l_log *log = container_of(bio, struct r5l_log,
639 		flush_bio);
640 	unsigned long flags;
641 	struct r5l_io_unit *io;
642 
643 	if (bio->bi_error)
644 		md_error(log->rdev->mddev, log->rdev);
645 
646 	spin_lock_irqsave(&log->io_list_lock, flags);
647 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
648 		r5l_io_run_stripes(io);
649 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
650 	spin_unlock_irqrestore(&log->io_list_lock, flags);
651 }
652 
653 /*
654  * Starting dispatch IO to raid.
655  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
656  * broken meta in the middle of a log causes recovery can't find meta at the
657  * head of log. If operations require meta at the head persistent in log, we
658  * must make sure meta before it persistent in log too. A case is:
659  *
660  * stripe data/parity is in log, we start write stripe to raid disks. stripe
661  * data/parity must be persistent in log before we do the write to raid disks.
662  *
663  * The solution is we restrictly maintain io_unit list order. In this case, we
664  * only write stripes of an io_unit to raid disks till the io_unit is the first
665  * one whose data/parity is in log.
666  */
667 void r5l_flush_stripe_to_raid(struct r5l_log *log)
668 {
669 	bool do_flush;
670 
671 	if (!log || !log->need_cache_flush)
672 		return;
673 
674 	spin_lock_irq(&log->io_list_lock);
675 	/* flush bio is running */
676 	if (!list_empty(&log->flushing_ios)) {
677 		spin_unlock_irq(&log->io_list_lock);
678 		return;
679 	}
680 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
681 	do_flush = !list_empty(&log->flushing_ios);
682 	spin_unlock_irq(&log->io_list_lock);
683 
684 	if (!do_flush)
685 		return;
686 	bio_reset(&log->flush_bio);
687 	log->flush_bio.bi_bdev = log->rdev->bdev;
688 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
689 	submit_bio(WRITE_FLUSH, &log->flush_bio);
690 }
691 
692 static void r5l_write_super(struct r5l_log *log, sector_t cp);
693 static void r5l_write_super_and_discard_space(struct r5l_log *log,
694 	sector_t end)
695 {
696 	struct block_device *bdev = log->rdev->bdev;
697 	struct mddev *mddev;
698 
699 	r5l_write_super(log, end);
700 
701 	if (!blk_queue_discard(bdev_get_queue(bdev)))
702 		return;
703 
704 	mddev = log->rdev->mddev;
705 	/*
706 	 * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
707 	 * wait for this thread to finish. This thread waits for
708 	 * MD_CHANGE_PENDING clear, which is supposed to be done in
709 	 * md_check_recovery(). md_check_recovery() tries to get
710 	 * reconfig_mutex. Since r5l_quiesce already holds the mutex,
711 	 * md_check_recovery() fails, so the PENDING never get cleared. The
712 	 * in_teardown check workaround this issue.
713 	 */
714 	if (!log->in_teardown) {
715 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
716 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
717 		md_wakeup_thread(mddev->thread);
718 		wait_event(mddev->sb_wait,
719 			!test_bit(MD_CHANGE_PENDING, &mddev->flags) ||
720 			log->in_teardown);
721 		/*
722 		 * r5l_quiesce could run after in_teardown check and hold
723 		 * mutex first. Superblock might get updated twice.
724 		 */
725 		if (log->in_teardown)
726 			md_update_sb(mddev, 1);
727 	} else {
728 		WARN_ON(!mddev_is_locked(mddev));
729 		md_update_sb(mddev, 1);
730 	}
731 
732 	/* discard IO error really doesn't matter, ignore it */
733 	if (log->last_checkpoint < end) {
734 		blkdev_issue_discard(bdev,
735 				log->last_checkpoint + log->rdev->data_offset,
736 				end - log->last_checkpoint, GFP_NOIO, 0);
737 	} else {
738 		blkdev_issue_discard(bdev,
739 				log->last_checkpoint + log->rdev->data_offset,
740 				log->device_size - log->last_checkpoint,
741 				GFP_NOIO, 0);
742 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
743 				GFP_NOIO, 0);
744 	}
745 }
746 
747 
748 static void r5l_do_reclaim(struct r5l_log *log)
749 {
750 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
751 	sector_t reclaimable;
752 	sector_t next_checkpoint;
753 	u64 next_cp_seq;
754 
755 	spin_lock_irq(&log->io_list_lock);
756 	/*
757 	 * move proper io_unit to reclaim list. We should not change the order.
758 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
759 	 * shouldn't reuse space of an unreclaimable io_unit
760 	 */
761 	while (1) {
762 		reclaimable = r5l_reclaimable_space(log);
763 		if (reclaimable >= reclaim_target ||
764 		    (list_empty(&log->running_ios) &&
765 		     list_empty(&log->io_end_ios) &&
766 		     list_empty(&log->flushing_ios) &&
767 		     list_empty(&log->finished_ios)))
768 			break;
769 
770 		md_wakeup_thread(log->rdev->mddev->thread);
771 		wait_event_lock_irq(log->iounit_wait,
772 				    r5l_reclaimable_space(log) > reclaimable,
773 				    log->io_list_lock);
774 	}
775 
776 	next_checkpoint = log->next_checkpoint;
777 	next_cp_seq = log->next_cp_seq;
778 	spin_unlock_irq(&log->io_list_lock);
779 
780 	BUG_ON(reclaimable < 0);
781 	if (reclaimable == 0)
782 		return;
783 
784 	/*
785 	 * write_super will flush cache of each raid disk. We must write super
786 	 * here, because the log area might be reused soon and we don't want to
787 	 * confuse recovery
788 	 */
789 	r5l_write_super_and_discard_space(log, next_checkpoint);
790 
791 	mutex_lock(&log->io_mutex);
792 	log->last_checkpoint = next_checkpoint;
793 	log->last_cp_seq = next_cp_seq;
794 	mutex_unlock(&log->io_mutex);
795 
796 	r5l_run_no_space_stripes(log);
797 }
798 
799 static void r5l_reclaim_thread(struct md_thread *thread)
800 {
801 	struct mddev *mddev = thread->mddev;
802 	struct r5conf *conf = mddev->private;
803 	struct r5l_log *log = conf->log;
804 
805 	if (!log)
806 		return;
807 	r5l_do_reclaim(log);
808 }
809 
810 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
811 {
812 	unsigned long target;
813 	unsigned long new = (unsigned long)space; /* overflow in theory */
814 
815 	do {
816 		target = log->reclaim_target;
817 		if (new < target)
818 			return;
819 	} while (cmpxchg(&log->reclaim_target, target, new) != target);
820 	md_wakeup_thread(log->reclaim_thread);
821 }
822 
823 void r5l_quiesce(struct r5l_log *log, int state)
824 {
825 	struct mddev *mddev;
826 	if (!log || state == 2)
827 		return;
828 	if (state == 0) {
829 		log->in_teardown = 0;
830 		/*
831 		 * This is a special case for hotadd. In suspend, the array has
832 		 * no journal. In resume, journal is initialized as well as the
833 		 * reclaim thread.
834 		 */
835 		if (log->reclaim_thread)
836 			return;
837 		log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
838 					log->rdev->mddev, "reclaim");
839 	} else if (state == 1) {
840 		/*
841 		 * at this point all stripes are finished, so io_unit is at
842 		 * least in STRIPE_END state
843 		 */
844 		log->in_teardown = 1;
845 		/* make sure r5l_write_super_and_discard_space exits */
846 		mddev = log->rdev->mddev;
847 		wake_up(&mddev->sb_wait);
848 		r5l_wake_reclaim(log, -1L);
849 		md_unregister_thread(&log->reclaim_thread);
850 		r5l_do_reclaim(log);
851 	}
852 }
853 
854 bool r5l_log_disk_error(struct r5conf *conf)
855 {
856 	struct r5l_log *log;
857 	bool ret;
858 	/* don't allow write if journal disk is missing */
859 	rcu_read_lock();
860 	log = rcu_dereference(conf->log);
861 
862 	if (!log)
863 		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
864 	else
865 		ret = test_bit(Faulty, &log->rdev->flags);
866 	rcu_read_unlock();
867 	return ret;
868 }
869 
870 struct r5l_recovery_ctx {
871 	struct page *meta_page;		/* current meta */
872 	sector_t meta_total_blocks;	/* total size of current meta and data */
873 	sector_t pos;			/* recovery position */
874 	u64 seq;			/* recovery position seq */
875 };
876 
877 static int r5l_read_meta_block(struct r5l_log *log,
878 			       struct r5l_recovery_ctx *ctx)
879 {
880 	struct page *page = ctx->meta_page;
881 	struct r5l_meta_block *mb;
882 	u32 crc, stored_crc;
883 
884 	if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
885 		return -EIO;
886 
887 	mb = page_address(page);
888 	stored_crc = le32_to_cpu(mb->checksum);
889 	mb->checksum = 0;
890 
891 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
892 	    le64_to_cpu(mb->seq) != ctx->seq ||
893 	    mb->version != R5LOG_VERSION ||
894 	    le64_to_cpu(mb->position) != ctx->pos)
895 		return -EINVAL;
896 
897 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
898 	if (stored_crc != crc)
899 		return -EINVAL;
900 
901 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
902 		return -EINVAL;
903 
904 	ctx->meta_total_blocks = BLOCK_SECTORS;
905 
906 	return 0;
907 }
908 
909 static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
910 					 struct r5l_recovery_ctx *ctx,
911 					 sector_t stripe_sect,
912 					 int *offset, sector_t *log_offset)
913 {
914 	struct r5conf *conf = log->rdev->mddev->private;
915 	struct stripe_head *sh;
916 	struct r5l_payload_data_parity *payload;
917 	int disk_index;
918 
919 	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
920 	while (1) {
921 		payload = page_address(ctx->meta_page) + *offset;
922 
923 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
924 			raid5_compute_sector(conf,
925 					     le64_to_cpu(payload->location), 0,
926 					     &disk_index, sh);
927 
928 			sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
929 				     sh->dev[disk_index].page, READ, false);
930 			sh->dev[disk_index].log_checksum =
931 				le32_to_cpu(payload->checksum[0]);
932 			set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
933 			ctx->meta_total_blocks += BLOCK_SECTORS;
934 		} else {
935 			disk_index = sh->pd_idx;
936 			sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
937 				     sh->dev[disk_index].page, READ, false);
938 			sh->dev[disk_index].log_checksum =
939 				le32_to_cpu(payload->checksum[0]);
940 			set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
941 
942 			if (sh->qd_idx >= 0) {
943 				disk_index = sh->qd_idx;
944 				sync_page_io(log->rdev,
945 					     r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
946 					     PAGE_SIZE, sh->dev[disk_index].page,
947 					     READ, false);
948 				sh->dev[disk_index].log_checksum =
949 					le32_to_cpu(payload->checksum[1]);
950 				set_bit(R5_Wantwrite,
951 					&sh->dev[disk_index].flags);
952 			}
953 			ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
954 		}
955 
956 		*log_offset = r5l_ring_add(log, *log_offset,
957 					   le32_to_cpu(payload->size));
958 		*offset += sizeof(struct r5l_payload_data_parity) +
959 			sizeof(__le32) *
960 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
961 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
962 			break;
963 	}
964 
965 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
966 		void *addr;
967 		u32 checksum;
968 
969 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
970 			continue;
971 		addr = kmap_atomic(sh->dev[disk_index].page);
972 		checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
973 		kunmap_atomic(addr);
974 		if (checksum != sh->dev[disk_index].log_checksum)
975 			goto error;
976 	}
977 
978 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
979 		struct md_rdev *rdev, *rrdev;
980 
981 		if (!test_and_clear_bit(R5_Wantwrite,
982 					&sh->dev[disk_index].flags))
983 			continue;
984 
985 		/* in case device is broken */
986 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
987 		if (rdev)
988 			sync_page_io(rdev, stripe_sect, PAGE_SIZE,
989 				     sh->dev[disk_index].page, WRITE, false);
990 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
991 		if (rrdev)
992 			sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
993 				     sh->dev[disk_index].page, WRITE, false);
994 	}
995 	raid5_release_stripe(sh);
996 	return 0;
997 
998 error:
999 	for (disk_index = 0; disk_index < sh->disks; disk_index++)
1000 		sh->dev[disk_index].flags = 0;
1001 	raid5_release_stripe(sh);
1002 	return -EINVAL;
1003 }
1004 
1005 static int r5l_recovery_flush_one_meta(struct r5l_log *log,
1006 				       struct r5l_recovery_ctx *ctx)
1007 {
1008 	struct r5conf *conf = log->rdev->mddev->private;
1009 	struct r5l_payload_data_parity *payload;
1010 	struct r5l_meta_block *mb;
1011 	int offset;
1012 	sector_t log_offset;
1013 	sector_t stripe_sector;
1014 
1015 	mb = page_address(ctx->meta_page);
1016 	offset = sizeof(struct r5l_meta_block);
1017 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1018 
1019 	while (offset < le32_to_cpu(mb->meta_size)) {
1020 		int dd;
1021 
1022 		payload = (void *)mb + offset;
1023 		stripe_sector = raid5_compute_sector(conf,
1024 						     le64_to_cpu(payload->location), 0, &dd, NULL);
1025 		if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
1026 						  &offset, &log_offset))
1027 			return -EINVAL;
1028 	}
1029 	return 0;
1030 }
1031 
1032 /* copy data/parity from log to raid disks */
1033 static void r5l_recovery_flush_log(struct r5l_log *log,
1034 				   struct r5l_recovery_ctx *ctx)
1035 {
1036 	while (1) {
1037 		if (r5l_read_meta_block(log, ctx))
1038 			return;
1039 		if (r5l_recovery_flush_one_meta(log, ctx))
1040 			return;
1041 		ctx->seq++;
1042 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1043 	}
1044 }
1045 
1046 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1047 					  u64 seq)
1048 {
1049 	struct page *page;
1050 	struct r5l_meta_block *mb;
1051 	u32 crc;
1052 
1053 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1054 	if (!page)
1055 		return -ENOMEM;
1056 	mb = page_address(page);
1057 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1058 	mb->version = R5LOG_VERSION;
1059 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1060 	mb->seq = cpu_to_le64(seq);
1061 	mb->position = cpu_to_le64(pos);
1062 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1063 	mb->checksum = cpu_to_le32(crc);
1064 
1065 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
1066 		__free_page(page);
1067 		return -EIO;
1068 	}
1069 	__free_page(page);
1070 	return 0;
1071 }
1072 
1073 static int r5l_recovery_log(struct r5l_log *log)
1074 {
1075 	struct r5l_recovery_ctx ctx;
1076 
1077 	ctx.pos = log->last_checkpoint;
1078 	ctx.seq = log->last_cp_seq;
1079 	ctx.meta_page = alloc_page(GFP_KERNEL);
1080 	if (!ctx.meta_page)
1081 		return -ENOMEM;
1082 
1083 	r5l_recovery_flush_log(log, &ctx);
1084 	__free_page(ctx.meta_page);
1085 
1086 	/*
1087 	 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1088 	 * log will start here. but we can't let superblock point to last valid
1089 	 * meta block. The log might looks like:
1090 	 * | meta 1| meta 2| meta 3|
1091 	 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1092 	 * superblock points to meta 1, we write a new valid meta 2n.  if crash
1093 	 * happens again, new recovery will start from meta 1. Since meta 2n is
1094 	 * valid now, recovery will think meta 3 is valid, which is wrong.
1095 	 * The solution is we create a new meta in meta2 with its seq == meta
1096 	 * 1's seq + 10 and let superblock points to meta2. The same recovery will
1097 	 * not think meta 3 is a valid meta, because its seq doesn't match
1098 	 */
1099 	if (ctx.seq > log->last_cp_seq + 1) {
1100 		int ret;
1101 
1102 		ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1103 		if (ret)
1104 			return ret;
1105 		log->seq = ctx.seq + 11;
1106 		log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1107 		r5l_write_super(log, ctx.pos);
1108 	} else {
1109 		log->log_start = ctx.pos;
1110 		log->seq = ctx.seq;
1111 	}
1112 	return 0;
1113 }
1114 
1115 static void r5l_write_super(struct r5l_log *log, sector_t cp)
1116 {
1117 	struct mddev *mddev = log->rdev->mddev;
1118 
1119 	log->rdev->journal_tail = cp;
1120 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1121 }
1122 
1123 static int r5l_load_log(struct r5l_log *log)
1124 {
1125 	struct md_rdev *rdev = log->rdev;
1126 	struct page *page;
1127 	struct r5l_meta_block *mb;
1128 	sector_t cp = log->rdev->journal_tail;
1129 	u32 stored_crc, expected_crc;
1130 	bool create_super = false;
1131 	int ret;
1132 
1133 	/* Make sure it's valid */
1134 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1135 		cp = 0;
1136 	page = alloc_page(GFP_KERNEL);
1137 	if (!page)
1138 		return -ENOMEM;
1139 
1140 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1141 		ret = -EIO;
1142 		goto ioerr;
1143 	}
1144 	mb = page_address(page);
1145 
1146 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1147 	    mb->version != R5LOG_VERSION) {
1148 		create_super = true;
1149 		goto create;
1150 	}
1151 	stored_crc = le32_to_cpu(mb->checksum);
1152 	mb->checksum = 0;
1153 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1154 	if (stored_crc != expected_crc) {
1155 		create_super = true;
1156 		goto create;
1157 	}
1158 	if (le64_to_cpu(mb->position) != cp) {
1159 		create_super = true;
1160 		goto create;
1161 	}
1162 create:
1163 	if (create_super) {
1164 		log->last_cp_seq = prandom_u32();
1165 		cp = 0;
1166 		/*
1167 		 * Make sure super points to correct address. Log might have
1168 		 * data very soon. If super hasn't correct log tail address,
1169 		 * recovery can't find the log
1170 		 */
1171 		r5l_write_super(log, cp);
1172 	} else
1173 		log->last_cp_seq = le64_to_cpu(mb->seq);
1174 
1175 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1176 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1177 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1178 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1179 	log->last_checkpoint = cp;
1180 
1181 	__free_page(page);
1182 
1183 	return r5l_recovery_log(log);
1184 ioerr:
1185 	__free_page(page);
1186 	return ret;
1187 }
1188 
1189 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1190 {
1191 	struct r5l_log *log;
1192 
1193 	if (PAGE_SIZE != 4096)
1194 		return -EINVAL;
1195 	log = kzalloc(sizeof(*log), GFP_KERNEL);
1196 	if (!log)
1197 		return -ENOMEM;
1198 	log->rdev = rdev;
1199 
1200 	log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0);
1201 
1202 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1203 				       sizeof(rdev->mddev->uuid));
1204 
1205 	mutex_init(&log->io_mutex);
1206 
1207 	spin_lock_init(&log->io_list_lock);
1208 	INIT_LIST_HEAD(&log->running_ios);
1209 	INIT_LIST_HEAD(&log->io_end_ios);
1210 	INIT_LIST_HEAD(&log->flushing_ios);
1211 	INIT_LIST_HEAD(&log->finished_ios);
1212 	bio_init(&log->flush_bio);
1213 
1214 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1215 	if (!log->io_kc)
1216 		goto io_kc;
1217 
1218 	log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
1219 	if (!log->io_pool)
1220 		goto io_pool;
1221 
1222 	log->bs = bioset_create(R5L_POOL_SIZE, 0);
1223 	if (!log->bs)
1224 		goto io_bs;
1225 
1226 	log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
1227 	if (!log->meta_pool)
1228 		goto out_mempool;
1229 
1230 	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1231 						 log->rdev->mddev, "reclaim");
1232 	if (!log->reclaim_thread)
1233 		goto reclaim_thread;
1234 	init_waitqueue_head(&log->iounit_wait);
1235 
1236 	INIT_LIST_HEAD(&log->no_mem_stripes);
1237 
1238 	INIT_LIST_HEAD(&log->no_space_stripes);
1239 	spin_lock_init(&log->no_space_stripes_lock);
1240 
1241 	if (r5l_load_log(log))
1242 		goto error;
1243 
1244 	rcu_assign_pointer(conf->log, log);
1245 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1246 	return 0;
1247 
1248 error:
1249 	md_unregister_thread(&log->reclaim_thread);
1250 reclaim_thread:
1251 	mempool_destroy(log->meta_pool);
1252 out_mempool:
1253 	bioset_free(log->bs);
1254 io_bs:
1255 	mempool_destroy(log->io_pool);
1256 io_pool:
1257 	kmem_cache_destroy(log->io_kc);
1258 io_kc:
1259 	kfree(log);
1260 	return -EINVAL;
1261 }
1262 
1263 void r5l_exit_log(struct r5l_log *log)
1264 {
1265 	md_unregister_thread(&log->reclaim_thread);
1266 	mempool_destroy(log->meta_pool);
1267 	bioset_free(log->bs);
1268 	mempool_destroy(log->io_pool);
1269 	kmem_cache_destroy(log->io_kc);
1270 	kfree(log);
1271 }
1272