1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 5 */ 6 #include <linux/kernel.h> 7 #include <linux/wait.h> 8 #include <linux/blkdev.h> 9 #include <linux/slab.h> 10 #include <linux/raid/md_p.h> 11 #include <linux/crc32c.h> 12 #include <linux/random.h> 13 #include <linux/kthread.h> 14 #include <linux/types.h> 15 #include "md.h" 16 #include "raid5.h" 17 #include "md-bitmap.h" 18 #include "raid5-log.h" 19 20 /* 21 * metadata/data stored in disk with 4k size unit (a block) regardless 22 * underneath hardware sector size. only works with PAGE_SIZE == 4096 23 */ 24 #define BLOCK_SECTORS (8) 25 #define BLOCK_SECTOR_SHIFT (3) 26 27 /* 28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 29 * 30 * In write through mode, the reclaim runs every log->max_free_space. 31 * This can prevent the recovery scans for too long 32 */ 33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 35 36 /* wake up reclaim thread periodically */ 37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 38 /* start flush with these full stripes */ 39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 40 /* reclaim stripes in groups */ 41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 42 43 /* 44 * We only need 2 bios per I/O unit to make progress, but ensure we 45 * have a few more available to not get too tight. 46 */ 47 #define R5L_POOL_SIZE 4 48 49 static char *r5c_journal_mode_str[] = {"write-through", 50 "write-back"}; 51 /* 52 * raid5 cache state machine 53 * 54 * With the RAID cache, each stripe works in two phases: 55 * - caching phase 56 * - writing-out phase 57 * 58 * These two phases are controlled by bit STRIPE_R5C_CACHING: 59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 61 * 62 * When there is no journal, or the journal is in write-through mode, 63 * the stripe is always in writing-out phase. 64 * 65 * For write-back journal, the stripe is sent to caching phase on write 66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 67 * the write-out phase by clearing STRIPE_R5C_CACHING. 68 * 69 * Stripes in caching phase do not write the raid disks. Instead, all 70 * writes are committed from the log device. Therefore, a stripe in 71 * caching phase handles writes as: 72 * - write to log device 73 * - return IO 74 * 75 * Stripes in writing-out phase handle writes as: 76 * - calculate parity 77 * - write pending data and parity to journal 78 * - write data and parity to raid disks 79 * - return IO for pending writes 80 */ 81 82 struct r5l_log { 83 struct md_rdev *rdev; 84 85 u32 uuid_checksum; 86 87 sector_t device_size; /* log device size, round to 88 * BLOCK_SECTORS */ 89 sector_t max_free_space; /* reclaim run if free space is at 90 * this size */ 91 92 sector_t last_checkpoint; /* log tail. where recovery scan 93 * starts from */ 94 u64 last_cp_seq; /* log tail sequence */ 95 96 sector_t log_start; /* log head. where new data appends */ 97 u64 seq; /* log head sequence */ 98 99 sector_t next_checkpoint; 100 101 struct mutex io_mutex; 102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 103 104 spinlock_t io_list_lock; 105 struct list_head running_ios; /* io_units which are still running, 106 * and have not yet been completely 107 * written to the log */ 108 struct list_head io_end_ios; /* io_units which have been completely 109 * written to the log but not yet written 110 * to the RAID */ 111 struct list_head flushing_ios; /* io_units which are waiting for log 112 * cache flush */ 113 struct list_head finished_ios; /* io_units which settle down in log disk */ 114 struct bio flush_bio; 115 116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 117 118 struct kmem_cache *io_kc; 119 mempool_t io_pool; 120 struct bio_set bs; 121 mempool_t meta_pool; 122 123 struct md_thread __rcu *reclaim_thread; 124 unsigned long reclaim_target; /* number of space that need to be 125 * reclaimed. if it's 0, reclaim spaces 126 * used by io_units which are in 127 * IO_UNIT_STRIPE_END state (eg, reclaim 128 * doesn't wait for specific io_unit 129 * switching to IO_UNIT_STRIPE_END 130 * state) */ 131 wait_queue_head_t iounit_wait; 132 133 struct list_head no_space_stripes; /* pending stripes, log has no space */ 134 spinlock_t no_space_stripes_lock; 135 136 bool need_cache_flush; 137 138 /* for r5c_cache */ 139 enum r5c_journal_mode r5c_journal_mode; 140 141 /* all stripes in r5cache, in the order of seq at sh->log_start */ 142 struct list_head stripe_in_journal_list; 143 144 spinlock_t stripe_in_journal_lock; 145 atomic_t stripe_in_journal_count; 146 147 /* to submit async io_units, to fulfill ordering of flush */ 148 struct work_struct deferred_io_work; 149 /* to disable write back during in degraded mode */ 150 struct work_struct disable_writeback_work; 151 152 /* to for chunk_aligned_read in writeback mode, details below */ 153 spinlock_t tree_lock; 154 struct radix_tree_root big_stripe_tree; 155 }; 156 157 /* 158 * Enable chunk_aligned_read() with write back cache. 159 * 160 * Each chunk may contain more than one stripe (for example, a 256kB 161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 162 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 163 * For each big_stripe, we count how many stripes of this big_stripe 164 * are in the write back cache. These data are tracked in a radix tree 165 * (big_stripe_tree). We use radix_tree item pointer as the counter. 166 * r5c_tree_index() is used to calculate keys for the radix tree. 167 * 168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 169 * big_stripe of each chunk in the tree. If this big_stripe is in the 170 * tree, chunk_aligned_read() aborts. This look up is protected by 171 * rcu_read_lock(). 172 * 173 * It is necessary to remember whether a stripe is counted in 174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 176 * two flags are set, the stripe is counted in big_stripe_tree. This 177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 178 * r5c_try_caching_write(); and moving clear_bit of 179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 180 * r5c_finish_stripe_write_out(). 181 */ 182 183 /* 184 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 185 * So it is necessary to left shift the counter by 2 bits before using it 186 * as data pointer of the tree. 187 */ 188 #define R5C_RADIX_COUNT_SHIFT 2 189 190 /* 191 * calculate key for big_stripe_tree 192 * 193 * sect: align_bi->bi_iter.bi_sector or sh->sector 194 */ 195 static inline sector_t r5c_tree_index(struct r5conf *conf, 196 sector_t sect) 197 { 198 sector_div(sect, conf->chunk_sectors); 199 return sect; 200 } 201 202 /* 203 * an IO range starts from a meta data block and end at the next meta data 204 * block. The io unit's the meta data block tracks data/parity followed it. io 205 * unit is written to log disk with normal write, as we always flush log disk 206 * first and then start move data to raid disks, there is no requirement to 207 * write io unit with FLUSH/FUA 208 */ 209 struct r5l_io_unit { 210 struct r5l_log *log; 211 212 struct page *meta_page; /* store meta block */ 213 int meta_offset; /* current offset in meta_page */ 214 215 struct bio *current_bio;/* current_bio accepting new data */ 216 217 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 218 u64 seq; /* seq number of the metablock */ 219 sector_t log_start; /* where the io_unit starts */ 220 sector_t log_end; /* where the io_unit ends */ 221 struct list_head log_sibling; /* log->running_ios */ 222 struct list_head stripe_list; /* stripes added to the io_unit */ 223 224 int state; 225 bool need_split_bio; 226 struct bio *split_bio; 227 228 unsigned int has_flush:1; /* include flush request */ 229 unsigned int has_fua:1; /* include fua request */ 230 unsigned int has_null_flush:1; /* include null flush request */ 231 unsigned int has_flush_payload:1; /* include flush payload */ 232 /* 233 * io isn't sent yet, flush/fua request can only be submitted till it's 234 * the first IO in running_ios list 235 */ 236 unsigned int io_deferred:1; 237 238 struct bio_list flush_barriers; /* size == 0 flush bios */ 239 }; 240 241 /* r5l_io_unit state */ 242 enum r5l_io_unit_state { 243 IO_UNIT_RUNNING = 0, /* accepting new IO */ 244 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 245 * don't accepting new bio */ 246 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 247 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 248 }; 249 250 bool r5c_is_writeback(struct r5l_log *log) 251 { 252 return (log != NULL && 253 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 254 } 255 256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 257 { 258 start += inc; 259 if (start >= log->device_size) 260 start = start - log->device_size; 261 return start; 262 } 263 264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 265 sector_t end) 266 { 267 if (end >= start) 268 return end - start; 269 else 270 return end + log->device_size - start; 271 } 272 273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 274 { 275 sector_t used_size; 276 277 used_size = r5l_ring_distance(log, log->last_checkpoint, 278 log->log_start); 279 280 return log->device_size > used_size + size; 281 } 282 283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 284 enum r5l_io_unit_state state) 285 { 286 if (WARN_ON(io->state >= state)) 287 return; 288 io->state = state; 289 } 290 291 static void 292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 293 { 294 struct bio *wbi, *wbi2; 295 296 wbi = dev->written; 297 dev->written = NULL; 298 while (wbi && wbi->bi_iter.bi_sector < 299 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 300 wbi2 = r5_next_bio(conf, wbi, dev->sector); 301 md_write_end(conf->mddev); 302 bio_endio(wbi); 303 wbi = wbi2; 304 } 305 } 306 307 void r5c_handle_cached_data_endio(struct r5conf *conf, 308 struct stripe_head *sh, int disks) 309 { 310 int i; 311 312 for (i = sh->disks; i--; ) { 313 if (sh->dev[i].written) { 314 set_bit(R5_UPTODATE, &sh->dev[i].flags); 315 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 316 conf->mddev->bitmap_ops->endwrite(conf->mddev, 317 sh->sector, RAID5_STRIPE_SECTORS(conf), 318 !test_bit(STRIPE_DEGRADED, &sh->state), 319 false); 320 } 321 } 322 } 323 324 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 325 326 /* Check whether we should flush some stripes to free up stripe cache */ 327 void r5c_check_stripe_cache_usage(struct r5conf *conf) 328 { 329 int total_cached; 330 struct r5l_log *log = READ_ONCE(conf->log); 331 332 if (!r5c_is_writeback(log)) 333 return; 334 335 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 336 atomic_read(&conf->r5c_cached_full_stripes); 337 338 /* 339 * The following condition is true for either of the following: 340 * - stripe cache pressure high: 341 * total_cached > 3/4 min_nr_stripes || 342 * empty_inactive_list_nr > 0 343 * - stripe cache pressure moderate: 344 * total_cached > 1/2 min_nr_stripes 345 */ 346 if (total_cached > conf->min_nr_stripes * 1 / 2 || 347 atomic_read(&conf->empty_inactive_list_nr) > 0) 348 r5l_wake_reclaim(log, 0); 349 } 350 351 /* 352 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 353 * stripes in the cache 354 */ 355 void r5c_check_cached_full_stripe(struct r5conf *conf) 356 { 357 struct r5l_log *log = READ_ONCE(conf->log); 358 359 if (!r5c_is_writeback(log)) 360 return; 361 362 /* 363 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 364 * or a full stripe (chunk size / 4k stripes). 365 */ 366 if (atomic_read(&conf->r5c_cached_full_stripes) >= 367 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 368 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf))) 369 r5l_wake_reclaim(log, 0); 370 } 371 372 /* 373 * Total log space (in sectors) needed to flush all data in cache 374 * 375 * To avoid deadlock due to log space, it is necessary to reserve log 376 * space to flush critical stripes (stripes that occupying log space near 377 * last_checkpoint). This function helps check how much log space is 378 * required to flush all cached stripes. 379 * 380 * To reduce log space requirements, two mechanisms are used to give cache 381 * flush higher priorities: 382 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 383 * stripes ALREADY in journal can be flushed w/o pending writes; 384 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 385 * can be delayed (r5l_add_no_space_stripe). 386 * 387 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 388 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 389 * pages of journal space. For stripes that has not passed 1, flushing it 390 * requires (conf->raid_disks + 1) pages of journal space. There are at 391 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 392 * required to flush all cached stripes (in pages) is: 393 * 394 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 395 * (group_cnt + 1) * (raid_disks + 1) 396 * or 397 * (stripe_in_journal_count) * (max_degraded + 1) + 398 * (group_cnt + 1) * (raid_disks - max_degraded) 399 */ 400 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 401 { 402 struct r5l_log *log = READ_ONCE(conf->log); 403 404 if (!r5c_is_writeback(log)) 405 return 0; 406 407 return BLOCK_SECTORS * 408 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 409 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 410 } 411 412 /* 413 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 414 * 415 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 416 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 417 * device is less than 2x of reclaim_required_space. 418 */ 419 static inline void r5c_update_log_state(struct r5l_log *log) 420 { 421 struct r5conf *conf = log->rdev->mddev->private; 422 sector_t free_space; 423 sector_t reclaim_space; 424 bool wake_reclaim = false; 425 426 if (!r5c_is_writeback(log)) 427 return; 428 429 free_space = r5l_ring_distance(log, log->log_start, 430 log->last_checkpoint); 431 reclaim_space = r5c_log_required_to_flush_cache(conf); 432 if (free_space < 2 * reclaim_space) 433 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 434 else { 435 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 436 wake_reclaim = true; 437 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 438 } 439 if (free_space < 3 * reclaim_space) 440 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 441 else 442 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 443 444 if (wake_reclaim) 445 r5l_wake_reclaim(log, 0); 446 } 447 448 /* 449 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 450 * This function should only be called in write-back mode. 451 */ 452 void r5c_make_stripe_write_out(struct stripe_head *sh) 453 { 454 struct r5conf *conf = sh->raid_conf; 455 struct r5l_log *log = READ_ONCE(conf->log); 456 457 BUG_ON(!r5c_is_writeback(log)); 458 459 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 460 clear_bit(STRIPE_R5C_CACHING, &sh->state); 461 462 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 463 atomic_inc(&conf->preread_active_stripes); 464 } 465 466 static void r5c_handle_data_cached(struct stripe_head *sh) 467 { 468 int i; 469 470 for (i = sh->disks; i--; ) 471 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 472 set_bit(R5_InJournal, &sh->dev[i].flags); 473 clear_bit(R5_LOCKED, &sh->dev[i].flags); 474 } 475 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 476 } 477 478 /* 479 * this journal write must contain full parity, 480 * it may also contain some data pages 481 */ 482 static void r5c_handle_parity_cached(struct stripe_head *sh) 483 { 484 int i; 485 486 for (i = sh->disks; i--; ) 487 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 488 set_bit(R5_Wantwrite, &sh->dev[i].flags); 489 } 490 491 /* 492 * Setting proper flags after writing (or flushing) data and/or parity to the 493 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 494 */ 495 static void r5c_finish_cache_stripe(struct stripe_head *sh) 496 { 497 struct r5l_log *log = READ_ONCE(sh->raid_conf->log); 498 499 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 500 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 501 /* 502 * Set R5_InJournal for parity dev[pd_idx]. This means 503 * all data AND parity in the journal. For RAID 6, it is 504 * NOT necessary to set the flag for dev[qd_idx], as the 505 * two parities are written out together. 506 */ 507 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 508 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 509 r5c_handle_data_cached(sh); 510 } else { 511 r5c_handle_parity_cached(sh); 512 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 513 } 514 } 515 516 static void r5l_io_run_stripes(struct r5l_io_unit *io) 517 { 518 struct stripe_head *sh, *next; 519 520 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 521 list_del_init(&sh->log_list); 522 523 r5c_finish_cache_stripe(sh); 524 525 set_bit(STRIPE_HANDLE, &sh->state); 526 raid5_release_stripe(sh); 527 } 528 } 529 530 static void r5l_log_run_stripes(struct r5l_log *log) 531 { 532 struct r5l_io_unit *io, *next; 533 534 lockdep_assert_held(&log->io_list_lock); 535 536 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 537 /* don't change list order */ 538 if (io->state < IO_UNIT_IO_END) 539 break; 540 541 list_move_tail(&io->log_sibling, &log->finished_ios); 542 r5l_io_run_stripes(io); 543 } 544 } 545 546 static void r5l_move_to_end_ios(struct r5l_log *log) 547 { 548 struct r5l_io_unit *io, *next; 549 550 lockdep_assert_held(&log->io_list_lock); 551 552 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 553 /* don't change list order */ 554 if (io->state < IO_UNIT_IO_END) 555 break; 556 list_move_tail(&io->log_sibling, &log->io_end_ios); 557 } 558 } 559 560 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 561 static void r5l_log_endio(struct bio *bio) 562 { 563 struct r5l_io_unit *io = bio->bi_private; 564 struct r5l_io_unit *io_deferred; 565 struct r5l_log *log = io->log; 566 unsigned long flags; 567 bool has_null_flush; 568 bool has_flush_payload; 569 570 if (bio->bi_status) 571 md_error(log->rdev->mddev, log->rdev); 572 573 bio_put(bio); 574 mempool_free(io->meta_page, &log->meta_pool); 575 576 spin_lock_irqsave(&log->io_list_lock, flags); 577 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 578 579 /* 580 * if the io doesn't not have null_flush or flush payload, 581 * it is not safe to access it after releasing io_list_lock. 582 * Therefore, it is necessary to check the condition with 583 * the lock held. 584 */ 585 has_null_flush = io->has_null_flush; 586 has_flush_payload = io->has_flush_payload; 587 588 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 589 r5l_move_to_end_ios(log); 590 else 591 r5l_log_run_stripes(log); 592 if (!list_empty(&log->running_ios)) { 593 /* 594 * FLUSH/FUA io_unit is deferred because of ordering, now we 595 * can dispatch it 596 */ 597 io_deferred = list_first_entry(&log->running_ios, 598 struct r5l_io_unit, log_sibling); 599 if (io_deferred->io_deferred) 600 schedule_work(&log->deferred_io_work); 601 } 602 603 spin_unlock_irqrestore(&log->io_list_lock, flags); 604 605 if (log->need_cache_flush) 606 md_wakeup_thread(log->rdev->mddev->thread); 607 608 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 609 if (has_null_flush) { 610 struct bio *bi; 611 612 WARN_ON(bio_list_empty(&io->flush_barriers)); 613 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 614 bio_endio(bi); 615 if (atomic_dec_and_test(&io->pending_stripe)) { 616 __r5l_stripe_write_finished(io); 617 return; 618 } 619 } 620 } 621 /* decrease pending_stripe for flush payload */ 622 if (has_flush_payload) 623 if (atomic_dec_and_test(&io->pending_stripe)) 624 __r5l_stripe_write_finished(io); 625 } 626 627 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 628 { 629 unsigned long flags; 630 631 spin_lock_irqsave(&log->io_list_lock, flags); 632 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 633 spin_unlock_irqrestore(&log->io_list_lock, flags); 634 635 /* 636 * In case of journal device failures, submit_bio will get error 637 * and calls endio, then active stripes will continue write 638 * process. Therefore, it is not necessary to check Faulty bit 639 * of journal device here. 640 * 641 * We can't check split_bio after current_bio is submitted. If 642 * io->split_bio is null, after current_bio is submitted, current_bio 643 * might already be completed and the io_unit is freed. We submit 644 * split_bio first to avoid the issue. 645 */ 646 if (io->split_bio) { 647 if (io->has_flush) 648 io->split_bio->bi_opf |= REQ_PREFLUSH; 649 if (io->has_fua) 650 io->split_bio->bi_opf |= REQ_FUA; 651 submit_bio(io->split_bio); 652 } 653 654 if (io->has_flush) 655 io->current_bio->bi_opf |= REQ_PREFLUSH; 656 if (io->has_fua) 657 io->current_bio->bi_opf |= REQ_FUA; 658 submit_bio(io->current_bio); 659 } 660 661 /* deferred io_unit will be dispatched here */ 662 static void r5l_submit_io_async(struct work_struct *work) 663 { 664 struct r5l_log *log = container_of(work, struct r5l_log, 665 deferred_io_work); 666 struct r5l_io_unit *io = NULL; 667 unsigned long flags; 668 669 spin_lock_irqsave(&log->io_list_lock, flags); 670 if (!list_empty(&log->running_ios)) { 671 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 672 log_sibling); 673 if (!io->io_deferred) 674 io = NULL; 675 else 676 io->io_deferred = 0; 677 } 678 spin_unlock_irqrestore(&log->io_list_lock, flags); 679 if (io) 680 r5l_do_submit_io(log, io); 681 } 682 683 static void r5c_disable_writeback_async(struct work_struct *work) 684 { 685 struct r5l_log *log = container_of(work, struct r5l_log, 686 disable_writeback_work); 687 struct mddev *mddev = log->rdev->mddev; 688 struct r5conf *conf = mddev->private; 689 690 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 691 return; 692 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 693 mdname(mddev)); 694 695 /* wait superblock change before suspend */ 696 wait_event(mddev->sb_wait, 697 !READ_ONCE(conf->log) || 698 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 699 700 log = READ_ONCE(conf->log); 701 if (log) { 702 mddev_suspend(mddev, false); 703 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 704 mddev_resume(mddev); 705 } 706 } 707 708 static void r5l_submit_current_io(struct r5l_log *log) 709 { 710 struct r5l_io_unit *io = log->current_io; 711 struct r5l_meta_block *block; 712 unsigned long flags; 713 u32 crc; 714 bool do_submit = true; 715 716 if (!io) 717 return; 718 719 block = page_address(io->meta_page); 720 block->meta_size = cpu_to_le32(io->meta_offset); 721 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 722 block->checksum = cpu_to_le32(crc); 723 724 log->current_io = NULL; 725 spin_lock_irqsave(&log->io_list_lock, flags); 726 if (io->has_flush || io->has_fua) { 727 if (io != list_first_entry(&log->running_ios, 728 struct r5l_io_unit, log_sibling)) { 729 io->io_deferred = 1; 730 do_submit = false; 731 } 732 } 733 spin_unlock_irqrestore(&log->io_list_lock, flags); 734 if (do_submit) 735 r5l_do_submit_io(log, io); 736 } 737 738 static struct bio *r5l_bio_alloc(struct r5l_log *log) 739 { 740 struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS, 741 REQ_OP_WRITE, GFP_NOIO, &log->bs); 742 743 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 744 745 return bio; 746 } 747 748 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 749 { 750 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 751 752 r5c_update_log_state(log); 753 /* 754 * If we filled up the log device start from the beginning again, 755 * which will require a new bio. 756 * 757 * Note: for this to work properly the log size needs to me a multiple 758 * of BLOCK_SECTORS. 759 */ 760 if (log->log_start == 0) 761 io->need_split_bio = true; 762 763 io->log_end = log->log_start; 764 } 765 766 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 767 { 768 struct r5l_io_unit *io; 769 struct r5l_meta_block *block; 770 771 io = mempool_alloc(&log->io_pool, GFP_ATOMIC); 772 if (!io) 773 return NULL; 774 memset(io, 0, sizeof(*io)); 775 776 io->log = log; 777 INIT_LIST_HEAD(&io->log_sibling); 778 INIT_LIST_HEAD(&io->stripe_list); 779 bio_list_init(&io->flush_barriers); 780 io->state = IO_UNIT_RUNNING; 781 782 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO); 783 block = page_address(io->meta_page); 784 clear_page(block); 785 block->magic = cpu_to_le32(R5LOG_MAGIC); 786 block->version = R5LOG_VERSION; 787 block->seq = cpu_to_le64(log->seq); 788 block->position = cpu_to_le64(log->log_start); 789 790 io->log_start = log->log_start; 791 io->meta_offset = sizeof(struct r5l_meta_block); 792 io->seq = log->seq++; 793 794 io->current_bio = r5l_bio_alloc(log); 795 io->current_bio->bi_end_io = r5l_log_endio; 796 io->current_bio->bi_private = io; 797 __bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 798 799 r5_reserve_log_entry(log, io); 800 801 spin_lock_irq(&log->io_list_lock); 802 list_add_tail(&io->log_sibling, &log->running_ios); 803 spin_unlock_irq(&log->io_list_lock); 804 805 return io; 806 } 807 808 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 809 { 810 if (log->current_io && 811 log->current_io->meta_offset + payload_size > PAGE_SIZE) 812 r5l_submit_current_io(log); 813 814 if (!log->current_io) { 815 log->current_io = r5l_new_meta(log); 816 if (!log->current_io) 817 return -ENOMEM; 818 } 819 820 return 0; 821 } 822 823 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 824 sector_t location, 825 u32 checksum1, u32 checksum2, 826 bool checksum2_valid) 827 { 828 struct r5l_io_unit *io = log->current_io; 829 struct r5l_payload_data_parity *payload; 830 831 payload = page_address(io->meta_page) + io->meta_offset; 832 payload->header.type = cpu_to_le16(type); 833 payload->header.flags = cpu_to_le16(0); 834 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 835 (PAGE_SHIFT - 9)); 836 payload->location = cpu_to_le64(location); 837 payload->checksum[0] = cpu_to_le32(checksum1); 838 if (checksum2_valid) 839 payload->checksum[1] = cpu_to_le32(checksum2); 840 841 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 842 sizeof(__le32) * (1 + !!checksum2_valid); 843 } 844 845 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 846 { 847 struct r5l_io_unit *io = log->current_io; 848 849 if (io->need_split_bio) { 850 BUG_ON(io->split_bio); 851 io->split_bio = io->current_bio; 852 io->current_bio = r5l_bio_alloc(log); 853 bio_chain(io->current_bio, io->split_bio); 854 io->need_split_bio = false; 855 } 856 857 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 858 BUG(); 859 860 r5_reserve_log_entry(log, io); 861 } 862 863 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 864 { 865 struct mddev *mddev = log->rdev->mddev; 866 struct r5conf *conf = mddev->private; 867 struct r5l_io_unit *io; 868 struct r5l_payload_flush *payload; 869 int meta_size; 870 871 /* 872 * payload_flush requires extra writes to the journal. 873 * To avoid handling the extra IO in quiesce, just skip 874 * flush_payload 875 */ 876 if (conf->quiesce) 877 return; 878 879 mutex_lock(&log->io_mutex); 880 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 881 882 if (r5l_get_meta(log, meta_size)) { 883 mutex_unlock(&log->io_mutex); 884 return; 885 } 886 887 /* current implementation is one stripe per flush payload */ 888 io = log->current_io; 889 payload = page_address(io->meta_page) + io->meta_offset; 890 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 891 payload->header.flags = cpu_to_le16(0); 892 payload->size = cpu_to_le32(sizeof(__le64)); 893 payload->flush_stripes[0] = cpu_to_le64(sect); 894 io->meta_offset += meta_size; 895 /* multiple flush payloads count as one pending_stripe */ 896 if (!io->has_flush_payload) { 897 io->has_flush_payload = 1; 898 atomic_inc(&io->pending_stripe); 899 } 900 mutex_unlock(&log->io_mutex); 901 } 902 903 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 904 int data_pages, int parity_pages) 905 { 906 int i; 907 int meta_size; 908 int ret; 909 struct r5l_io_unit *io; 910 911 meta_size = 912 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 913 * data_pages) + 914 sizeof(struct r5l_payload_data_parity) + 915 sizeof(__le32) * parity_pages; 916 917 ret = r5l_get_meta(log, meta_size); 918 if (ret) 919 return ret; 920 921 io = log->current_io; 922 923 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 924 io->has_flush = 1; 925 926 for (i = 0; i < sh->disks; i++) { 927 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 928 test_bit(R5_InJournal, &sh->dev[i].flags)) 929 continue; 930 if (i == sh->pd_idx || i == sh->qd_idx) 931 continue; 932 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 933 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 934 io->has_fua = 1; 935 /* 936 * we need to flush journal to make sure recovery can 937 * reach the data with fua flag 938 */ 939 io->has_flush = 1; 940 } 941 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 942 raid5_compute_blocknr(sh, i, 0), 943 sh->dev[i].log_checksum, 0, false); 944 r5l_append_payload_page(log, sh->dev[i].page); 945 } 946 947 if (parity_pages == 2) { 948 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 949 sh->sector, sh->dev[sh->pd_idx].log_checksum, 950 sh->dev[sh->qd_idx].log_checksum, true); 951 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 952 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 953 } else if (parity_pages == 1) { 954 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 955 sh->sector, sh->dev[sh->pd_idx].log_checksum, 956 0, false); 957 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 958 } else /* Just writing data, not parity, in caching phase */ 959 BUG_ON(parity_pages != 0); 960 961 list_add_tail(&sh->log_list, &io->stripe_list); 962 atomic_inc(&io->pending_stripe); 963 sh->log_io = io; 964 965 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 966 return 0; 967 968 if (sh->log_start == MaxSector) { 969 BUG_ON(!list_empty(&sh->r5c)); 970 sh->log_start = io->log_start; 971 spin_lock_irq(&log->stripe_in_journal_lock); 972 list_add_tail(&sh->r5c, 973 &log->stripe_in_journal_list); 974 spin_unlock_irq(&log->stripe_in_journal_lock); 975 atomic_inc(&log->stripe_in_journal_count); 976 } 977 return 0; 978 } 979 980 /* add stripe to no_space_stripes, and then wake up reclaim */ 981 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 982 struct stripe_head *sh) 983 { 984 spin_lock(&log->no_space_stripes_lock); 985 list_add_tail(&sh->log_list, &log->no_space_stripes); 986 spin_unlock(&log->no_space_stripes_lock); 987 } 988 989 /* 990 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 991 * data from log to raid disks), so we shouldn't wait for reclaim here 992 */ 993 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 994 { 995 struct r5conf *conf = sh->raid_conf; 996 int write_disks = 0; 997 int data_pages, parity_pages; 998 int reserve; 999 int i; 1000 int ret = 0; 1001 bool wake_reclaim = false; 1002 1003 if (!log) 1004 return -EAGAIN; 1005 /* Don't support stripe batch */ 1006 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 1007 test_bit(STRIPE_SYNCING, &sh->state)) { 1008 /* the stripe is written to log, we start writing it to raid */ 1009 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 1010 return -EAGAIN; 1011 } 1012 1013 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 1014 1015 for (i = 0; i < sh->disks; i++) { 1016 void *addr; 1017 1018 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 1019 test_bit(R5_InJournal, &sh->dev[i].flags)) 1020 continue; 1021 1022 write_disks++; 1023 /* checksum is already calculated in last run */ 1024 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1025 continue; 1026 addr = kmap_atomic(sh->dev[i].page); 1027 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1028 addr, PAGE_SIZE); 1029 kunmap_atomic(addr); 1030 } 1031 parity_pages = 1 + !!(sh->qd_idx >= 0); 1032 data_pages = write_disks - parity_pages; 1033 1034 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1035 /* 1036 * The stripe must enter state machine again to finish the write, so 1037 * don't delay. 1038 */ 1039 clear_bit(STRIPE_DELAYED, &sh->state); 1040 atomic_inc(&sh->count); 1041 1042 mutex_lock(&log->io_mutex); 1043 /* meta + data */ 1044 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1045 1046 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1047 if (!r5l_has_free_space(log, reserve)) { 1048 r5l_add_no_space_stripe(log, sh); 1049 wake_reclaim = true; 1050 } else { 1051 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1052 if (ret) { 1053 spin_lock_irq(&log->io_list_lock); 1054 list_add_tail(&sh->log_list, 1055 &log->no_mem_stripes); 1056 spin_unlock_irq(&log->io_list_lock); 1057 } 1058 } 1059 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1060 /* 1061 * log space critical, do not process stripes that are 1062 * not in cache yet (sh->log_start == MaxSector). 1063 */ 1064 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1065 sh->log_start == MaxSector) { 1066 r5l_add_no_space_stripe(log, sh); 1067 wake_reclaim = true; 1068 reserve = 0; 1069 } else if (!r5l_has_free_space(log, reserve)) { 1070 if (sh->log_start == log->last_checkpoint) 1071 BUG(); 1072 else 1073 r5l_add_no_space_stripe(log, sh); 1074 } else { 1075 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1076 if (ret) { 1077 spin_lock_irq(&log->io_list_lock); 1078 list_add_tail(&sh->log_list, 1079 &log->no_mem_stripes); 1080 spin_unlock_irq(&log->io_list_lock); 1081 } 1082 } 1083 } 1084 1085 mutex_unlock(&log->io_mutex); 1086 if (wake_reclaim) 1087 r5l_wake_reclaim(log, reserve); 1088 return 0; 1089 } 1090 1091 void r5l_write_stripe_run(struct r5l_log *log) 1092 { 1093 if (!log) 1094 return; 1095 mutex_lock(&log->io_mutex); 1096 r5l_submit_current_io(log); 1097 mutex_unlock(&log->io_mutex); 1098 } 1099 1100 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1101 { 1102 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1103 /* 1104 * in write through (journal only) 1105 * we flush log disk cache first, then write stripe data to 1106 * raid disks. So if bio is finished, the log disk cache is 1107 * flushed already. The recovery guarantees we can recovery 1108 * the bio from log disk, so we don't need to flush again 1109 */ 1110 if (bio->bi_iter.bi_size == 0) { 1111 bio_endio(bio); 1112 return 0; 1113 } 1114 bio->bi_opf &= ~REQ_PREFLUSH; 1115 } else { 1116 /* write back (with cache) */ 1117 if (bio->bi_iter.bi_size == 0) { 1118 mutex_lock(&log->io_mutex); 1119 r5l_get_meta(log, 0); 1120 bio_list_add(&log->current_io->flush_barriers, bio); 1121 log->current_io->has_flush = 1; 1122 log->current_io->has_null_flush = 1; 1123 atomic_inc(&log->current_io->pending_stripe); 1124 r5l_submit_current_io(log); 1125 mutex_unlock(&log->io_mutex); 1126 return 0; 1127 } 1128 } 1129 return -EAGAIN; 1130 } 1131 1132 /* This will run after log space is reclaimed */ 1133 static void r5l_run_no_space_stripes(struct r5l_log *log) 1134 { 1135 struct stripe_head *sh; 1136 1137 spin_lock(&log->no_space_stripes_lock); 1138 while (!list_empty(&log->no_space_stripes)) { 1139 sh = list_first_entry(&log->no_space_stripes, 1140 struct stripe_head, log_list); 1141 list_del_init(&sh->log_list); 1142 set_bit(STRIPE_HANDLE, &sh->state); 1143 raid5_release_stripe(sh); 1144 } 1145 spin_unlock(&log->no_space_stripes_lock); 1146 } 1147 1148 /* 1149 * calculate new last_checkpoint 1150 * for write through mode, returns log->next_checkpoint 1151 * for write back, returns log_start of first sh in stripe_in_journal_list 1152 */ 1153 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1154 { 1155 struct stripe_head *sh; 1156 struct r5l_log *log = READ_ONCE(conf->log); 1157 sector_t new_cp; 1158 unsigned long flags; 1159 1160 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1161 return log->next_checkpoint; 1162 1163 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1164 if (list_empty(&log->stripe_in_journal_list)) { 1165 /* all stripes flushed */ 1166 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1167 return log->next_checkpoint; 1168 } 1169 sh = list_first_entry(&log->stripe_in_journal_list, 1170 struct stripe_head, r5c); 1171 new_cp = sh->log_start; 1172 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1173 return new_cp; 1174 } 1175 1176 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1177 { 1178 struct r5conf *conf = log->rdev->mddev->private; 1179 1180 return r5l_ring_distance(log, log->last_checkpoint, 1181 r5c_calculate_new_cp(conf)); 1182 } 1183 1184 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1185 { 1186 struct stripe_head *sh; 1187 1188 lockdep_assert_held(&log->io_list_lock); 1189 1190 if (!list_empty(&log->no_mem_stripes)) { 1191 sh = list_first_entry(&log->no_mem_stripes, 1192 struct stripe_head, log_list); 1193 list_del_init(&sh->log_list); 1194 set_bit(STRIPE_HANDLE, &sh->state); 1195 raid5_release_stripe(sh); 1196 } 1197 } 1198 1199 static bool r5l_complete_finished_ios(struct r5l_log *log) 1200 { 1201 struct r5l_io_unit *io, *next; 1202 bool found = false; 1203 1204 lockdep_assert_held(&log->io_list_lock); 1205 1206 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1207 /* don't change list order */ 1208 if (io->state < IO_UNIT_STRIPE_END) 1209 break; 1210 1211 log->next_checkpoint = io->log_start; 1212 1213 list_del(&io->log_sibling); 1214 mempool_free(io, &log->io_pool); 1215 r5l_run_no_mem_stripe(log); 1216 1217 found = true; 1218 } 1219 1220 return found; 1221 } 1222 1223 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1224 { 1225 struct r5l_log *log = io->log; 1226 struct r5conf *conf = log->rdev->mddev->private; 1227 unsigned long flags; 1228 1229 spin_lock_irqsave(&log->io_list_lock, flags); 1230 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1231 1232 if (!r5l_complete_finished_ios(log)) { 1233 spin_unlock_irqrestore(&log->io_list_lock, flags); 1234 return; 1235 } 1236 1237 if (r5l_reclaimable_space(log) > log->max_free_space || 1238 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1239 r5l_wake_reclaim(log, 0); 1240 1241 spin_unlock_irqrestore(&log->io_list_lock, flags); 1242 wake_up(&log->iounit_wait); 1243 } 1244 1245 void r5l_stripe_write_finished(struct stripe_head *sh) 1246 { 1247 struct r5l_io_unit *io; 1248 1249 io = sh->log_io; 1250 sh->log_io = NULL; 1251 1252 if (io && atomic_dec_and_test(&io->pending_stripe)) 1253 __r5l_stripe_write_finished(io); 1254 } 1255 1256 static void r5l_log_flush_endio(struct bio *bio) 1257 { 1258 struct r5l_log *log = container_of(bio, struct r5l_log, 1259 flush_bio); 1260 unsigned long flags; 1261 struct r5l_io_unit *io; 1262 1263 if (bio->bi_status) 1264 md_error(log->rdev->mddev, log->rdev); 1265 bio_uninit(bio); 1266 1267 spin_lock_irqsave(&log->io_list_lock, flags); 1268 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1269 r5l_io_run_stripes(io); 1270 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1271 spin_unlock_irqrestore(&log->io_list_lock, flags); 1272 } 1273 1274 /* 1275 * Starting dispatch IO to raid. 1276 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1277 * broken meta in the middle of a log causes recovery can't find meta at the 1278 * head of log. If operations require meta at the head persistent in log, we 1279 * must make sure meta before it persistent in log too. A case is: 1280 * 1281 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1282 * data/parity must be persistent in log before we do the write to raid disks. 1283 * 1284 * The solution is we restrictly maintain io_unit list order. In this case, we 1285 * only write stripes of an io_unit to raid disks till the io_unit is the first 1286 * one whose data/parity is in log. 1287 */ 1288 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1289 { 1290 bool do_flush; 1291 1292 if (!log || !log->need_cache_flush) 1293 return; 1294 1295 spin_lock_irq(&log->io_list_lock); 1296 /* flush bio is running */ 1297 if (!list_empty(&log->flushing_ios)) { 1298 spin_unlock_irq(&log->io_list_lock); 1299 return; 1300 } 1301 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1302 do_flush = !list_empty(&log->flushing_ios); 1303 spin_unlock_irq(&log->io_list_lock); 1304 1305 if (!do_flush) 1306 return; 1307 bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0, 1308 REQ_OP_WRITE | REQ_PREFLUSH); 1309 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1310 submit_bio(&log->flush_bio); 1311 } 1312 1313 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1314 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1315 sector_t end) 1316 { 1317 struct block_device *bdev = log->rdev->bdev; 1318 struct mddev *mddev; 1319 1320 r5l_write_super(log, end); 1321 1322 if (!bdev_max_discard_sectors(bdev)) 1323 return; 1324 1325 mddev = log->rdev->mddev; 1326 /* 1327 * Discard could zero data, so before discard we must make sure 1328 * superblock is updated to new log tail. Updating superblock (either 1329 * directly call md_update_sb() or depend on md thread) must hold 1330 * reconfig mutex. On the other hand, raid5_quiesce is called with 1331 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting 1332 * for all IO finish, hence waiting for reclaim thread, while reclaim 1333 * thread is calling this function and waiting for reconfig mutex. So 1334 * there is a deadlock. We workaround this issue with a trylock. 1335 * FIXME: we could miss discard if we can't take reconfig mutex 1336 */ 1337 set_mask_bits(&mddev->sb_flags, 0, 1338 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1339 if (!mddev_trylock(mddev)) 1340 return; 1341 md_update_sb(mddev, 1); 1342 mddev_unlock(mddev); 1343 1344 /* discard IO error really doesn't matter, ignore it */ 1345 if (log->last_checkpoint < end) { 1346 blkdev_issue_discard(bdev, 1347 log->last_checkpoint + log->rdev->data_offset, 1348 end - log->last_checkpoint, GFP_NOIO); 1349 } else { 1350 blkdev_issue_discard(bdev, 1351 log->last_checkpoint + log->rdev->data_offset, 1352 log->device_size - log->last_checkpoint, 1353 GFP_NOIO); 1354 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1355 GFP_NOIO); 1356 } 1357 } 1358 1359 /* 1360 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1361 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1362 * 1363 * must hold conf->device_lock 1364 */ 1365 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1366 { 1367 BUG_ON(list_empty(&sh->lru)); 1368 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1369 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1370 1371 /* 1372 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1373 * raid5_release_stripe() while holding conf->device_lock 1374 */ 1375 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1376 lockdep_assert_held(&conf->device_lock); 1377 1378 list_del_init(&sh->lru); 1379 atomic_inc(&sh->count); 1380 1381 set_bit(STRIPE_HANDLE, &sh->state); 1382 atomic_inc(&conf->active_stripes); 1383 r5c_make_stripe_write_out(sh); 1384 1385 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1386 atomic_inc(&conf->r5c_flushing_partial_stripes); 1387 else 1388 atomic_inc(&conf->r5c_flushing_full_stripes); 1389 raid5_release_stripe(sh); 1390 } 1391 1392 /* 1393 * if num == 0, flush all full stripes 1394 * if num > 0, flush all full stripes. If less than num full stripes are 1395 * flushed, flush some partial stripes until totally num stripes are 1396 * flushed or there is no more cached stripes. 1397 */ 1398 void r5c_flush_cache(struct r5conf *conf, int num) 1399 { 1400 int count; 1401 struct stripe_head *sh, *next; 1402 1403 lockdep_assert_held(&conf->device_lock); 1404 if (!READ_ONCE(conf->log)) 1405 return; 1406 1407 count = 0; 1408 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1409 r5c_flush_stripe(conf, sh); 1410 count++; 1411 } 1412 1413 if (count >= num) 1414 return; 1415 list_for_each_entry_safe(sh, next, 1416 &conf->r5c_partial_stripe_list, lru) { 1417 r5c_flush_stripe(conf, sh); 1418 if (++count >= num) 1419 break; 1420 } 1421 } 1422 1423 static void r5c_do_reclaim(struct r5conf *conf) 1424 { 1425 struct r5l_log *log = READ_ONCE(conf->log); 1426 struct stripe_head *sh; 1427 int count = 0; 1428 unsigned long flags; 1429 int total_cached; 1430 int stripes_to_flush; 1431 int flushing_partial, flushing_full; 1432 1433 if (!r5c_is_writeback(log)) 1434 return; 1435 1436 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1437 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1438 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1439 atomic_read(&conf->r5c_cached_full_stripes) - 1440 flushing_full - flushing_partial; 1441 1442 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1443 atomic_read(&conf->empty_inactive_list_nr) > 0) 1444 /* 1445 * if stripe cache pressure high, flush all full stripes and 1446 * some partial stripes 1447 */ 1448 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1449 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1450 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1451 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1452 /* 1453 * if stripe cache pressure moderate, or if there is many full 1454 * stripes,flush all full stripes 1455 */ 1456 stripes_to_flush = 0; 1457 else 1458 /* no need to flush */ 1459 stripes_to_flush = -1; 1460 1461 if (stripes_to_flush >= 0) { 1462 spin_lock_irqsave(&conf->device_lock, flags); 1463 r5c_flush_cache(conf, stripes_to_flush); 1464 spin_unlock_irqrestore(&conf->device_lock, flags); 1465 } 1466 1467 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1468 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1469 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1470 spin_lock(&conf->device_lock); 1471 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1472 /* 1473 * stripes on stripe_in_journal_list could be in any 1474 * state of the stripe_cache state machine. In this 1475 * case, we only want to flush stripe on 1476 * r5c_cached_full/partial_stripes. The following 1477 * condition makes sure the stripe is on one of the 1478 * two lists. 1479 */ 1480 if (!list_empty(&sh->lru) && 1481 !test_bit(STRIPE_HANDLE, &sh->state) && 1482 atomic_read(&sh->count) == 0) { 1483 r5c_flush_stripe(conf, sh); 1484 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1485 break; 1486 } 1487 } 1488 spin_unlock(&conf->device_lock); 1489 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1490 } 1491 1492 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1493 r5l_run_no_space_stripes(log); 1494 1495 md_wakeup_thread(conf->mddev->thread); 1496 } 1497 1498 static void r5l_do_reclaim(struct r5l_log *log) 1499 { 1500 struct r5conf *conf = log->rdev->mddev->private; 1501 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1502 sector_t reclaimable; 1503 sector_t next_checkpoint; 1504 bool write_super; 1505 1506 spin_lock_irq(&log->io_list_lock); 1507 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1508 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1509 /* 1510 * move proper io_unit to reclaim list. We should not change the order. 1511 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1512 * shouldn't reuse space of an unreclaimable io_unit 1513 */ 1514 while (1) { 1515 reclaimable = r5l_reclaimable_space(log); 1516 if (reclaimable >= reclaim_target || 1517 (list_empty(&log->running_ios) && 1518 list_empty(&log->io_end_ios) && 1519 list_empty(&log->flushing_ios) && 1520 list_empty(&log->finished_ios))) 1521 break; 1522 1523 md_wakeup_thread(log->rdev->mddev->thread); 1524 wait_event_lock_irq(log->iounit_wait, 1525 r5l_reclaimable_space(log) > reclaimable, 1526 log->io_list_lock); 1527 } 1528 1529 next_checkpoint = r5c_calculate_new_cp(conf); 1530 spin_unlock_irq(&log->io_list_lock); 1531 1532 if (reclaimable == 0 || !write_super) 1533 return; 1534 1535 /* 1536 * write_super will flush cache of each raid disk. We must write super 1537 * here, because the log area might be reused soon and we don't want to 1538 * confuse recovery 1539 */ 1540 r5l_write_super_and_discard_space(log, next_checkpoint); 1541 1542 mutex_lock(&log->io_mutex); 1543 log->last_checkpoint = next_checkpoint; 1544 r5c_update_log_state(log); 1545 mutex_unlock(&log->io_mutex); 1546 1547 r5l_run_no_space_stripes(log); 1548 } 1549 1550 static void r5l_reclaim_thread(struct md_thread *thread) 1551 { 1552 struct mddev *mddev = thread->mddev; 1553 struct r5conf *conf = mddev->private; 1554 struct r5l_log *log = READ_ONCE(conf->log); 1555 1556 if (!log) 1557 return; 1558 r5c_do_reclaim(conf); 1559 r5l_do_reclaim(log); 1560 } 1561 1562 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1563 { 1564 unsigned long target; 1565 unsigned long new = (unsigned long)space; /* overflow in theory */ 1566 1567 if (!log) 1568 return; 1569 1570 target = READ_ONCE(log->reclaim_target); 1571 do { 1572 if (new < target) 1573 return; 1574 } while (!try_cmpxchg(&log->reclaim_target, &target, new)); 1575 md_wakeup_thread(log->reclaim_thread); 1576 } 1577 1578 void r5l_quiesce(struct r5l_log *log, int quiesce) 1579 { 1580 struct mddev *mddev = log->rdev->mddev; 1581 struct md_thread *thread = rcu_dereference_protected( 1582 log->reclaim_thread, lockdep_is_held(&mddev->reconfig_mutex)); 1583 1584 if (quiesce) { 1585 /* make sure r5l_write_super_and_discard_space exits */ 1586 wake_up(&mddev->sb_wait); 1587 kthread_park(thread->tsk); 1588 r5l_wake_reclaim(log, MaxSector); 1589 r5l_do_reclaim(log); 1590 } else 1591 kthread_unpark(thread->tsk); 1592 } 1593 1594 bool r5l_log_disk_error(struct r5conf *conf) 1595 { 1596 struct r5l_log *log = READ_ONCE(conf->log); 1597 1598 /* don't allow write if journal disk is missing */ 1599 if (!log) 1600 return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1601 else 1602 return test_bit(Faulty, &log->rdev->flags); 1603 } 1604 1605 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1606 1607 struct r5l_recovery_ctx { 1608 struct page *meta_page; /* current meta */ 1609 sector_t meta_total_blocks; /* total size of current meta and data */ 1610 sector_t pos; /* recovery position */ 1611 u64 seq; /* recovery position seq */ 1612 int data_parity_stripes; /* number of data_parity stripes */ 1613 int data_only_stripes; /* number of data_only stripes */ 1614 struct list_head cached_list; 1615 1616 /* 1617 * read ahead page pool (ra_pool) 1618 * in recovery, log is read sequentially. It is not efficient to 1619 * read every page with sync_page_io(). The read ahead page pool 1620 * reads multiple pages with one IO, so further log read can 1621 * just copy data from the pool. 1622 */ 1623 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1624 struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE]; 1625 sector_t pool_offset; /* offset of first page in the pool */ 1626 int total_pages; /* total allocated pages */ 1627 int valid_pages; /* pages with valid data */ 1628 }; 1629 1630 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1631 struct r5l_recovery_ctx *ctx) 1632 { 1633 struct page *page; 1634 1635 ctx->valid_pages = 0; 1636 ctx->total_pages = 0; 1637 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1638 page = alloc_page(GFP_KERNEL); 1639 1640 if (!page) 1641 break; 1642 ctx->ra_pool[ctx->total_pages] = page; 1643 ctx->total_pages += 1; 1644 } 1645 1646 if (ctx->total_pages == 0) 1647 return -ENOMEM; 1648 1649 ctx->pool_offset = 0; 1650 return 0; 1651 } 1652 1653 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1654 struct r5l_recovery_ctx *ctx) 1655 { 1656 int i; 1657 1658 for (i = 0; i < ctx->total_pages; ++i) 1659 put_page(ctx->ra_pool[i]); 1660 } 1661 1662 /* 1663 * fetch ctx->valid_pages pages from offset 1664 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1665 * However, if the offset is close to the end of the journal device, 1666 * ctx->valid_pages could be smaller than ctx->total_pages 1667 */ 1668 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1669 struct r5l_recovery_ctx *ctx, 1670 sector_t offset) 1671 { 1672 struct bio bio; 1673 int ret; 1674 1675 bio_init(&bio, log->rdev->bdev, ctx->ra_bvec, 1676 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ); 1677 bio.bi_iter.bi_sector = log->rdev->data_offset + offset; 1678 1679 ctx->valid_pages = 0; 1680 ctx->pool_offset = offset; 1681 1682 while (ctx->valid_pages < ctx->total_pages) { 1683 __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 1684 0); 1685 ctx->valid_pages += 1; 1686 1687 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1688 1689 if (offset == 0) /* reached end of the device */ 1690 break; 1691 } 1692 1693 ret = submit_bio_wait(&bio); 1694 bio_uninit(&bio); 1695 return ret; 1696 } 1697 1698 /* 1699 * try read a page from the read ahead page pool, if the page is not in the 1700 * pool, call r5l_recovery_fetch_ra_pool 1701 */ 1702 static int r5l_recovery_read_page(struct r5l_log *log, 1703 struct r5l_recovery_ctx *ctx, 1704 struct page *page, 1705 sector_t offset) 1706 { 1707 int ret; 1708 1709 if (offset < ctx->pool_offset || 1710 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1711 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1712 if (ret) 1713 return ret; 1714 } 1715 1716 BUG_ON(offset < ctx->pool_offset || 1717 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1718 1719 memcpy(page_address(page), 1720 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1721 BLOCK_SECTOR_SHIFT]), 1722 PAGE_SIZE); 1723 return 0; 1724 } 1725 1726 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1727 struct r5l_recovery_ctx *ctx) 1728 { 1729 struct page *page = ctx->meta_page; 1730 struct r5l_meta_block *mb; 1731 u32 crc, stored_crc; 1732 int ret; 1733 1734 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1735 if (ret != 0) 1736 return ret; 1737 1738 mb = page_address(page); 1739 stored_crc = le32_to_cpu(mb->checksum); 1740 mb->checksum = 0; 1741 1742 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1743 le64_to_cpu(mb->seq) != ctx->seq || 1744 mb->version != R5LOG_VERSION || 1745 le64_to_cpu(mb->position) != ctx->pos) 1746 return -EINVAL; 1747 1748 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1749 if (stored_crc != crc) 1750 return -EINVAL; 1751 1752 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1753 return -EINVAL; 1754 1755 ctx->meta_total_blocks = BLOCK_SECTORS; 1756 1757 return 0; 1758 } 1759 1760 static void 1761 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1762 struct page *page, 1763 sector_t pos, u64 seq) 1764 { 1765 struct r5l_meta_block *mb; 1766 1767 mb = page_address(page); 1768 clear_page(mb); 1769 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1770 mb->version = R5LOG_VERSION; 1771 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1772 mb->seq = cpu_to_le64(seq); 1773 mb->position = cpu_to_le64(pos); 1774 } 1775 1776 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1777 u64 seq) 1778 { 1779 struct page *page; 1780 struct r5l_meta_block *mb; 1781 1782 page = alloc_page(GFP_KERNEL); 1783 if (!page) 1784 return -ENOMEM; 1785 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1786 mb = page_address(page); 1787 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1788 mb, PAGE_SIZE)); 1789 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE | 1790 REQ_SYNC | REQ_FUA, false)) { 1791 __free_page(page); 1792 return -EIO; 1793 } 1794 __free_page(page); 1795 return 0; 1796 } 1797 1798 /* 1799 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1800 * to mark valid (potentially not flushed) data in the journal. 1801 * 1802 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1803 * so there should not be any mismatch here. 1804 */ 1805 static void r5l_recovery_load_data(struct r5l_log *log, 1806 struct stripe_head *sh, 1807 struct r5l_recovery_ctx *ctx, 1808 struct r5l_payload_data_parity *payload, 1809 sector_t log_offset) 1810 { 1811 struct mddev *mddev = log->rdev->mddev; 1812 struct r5conf *conf = mddev->private; 1813 int dd_idx; 1814 1815 raid5_compute_sector(conf, 1816 le64_to_cpu(payload->location), 0, 1817 &dd_idx, sh); 1818 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1819 sh->dev[dd_idx].log_checksum = 1820 le32_to_cpu(payload->checksum[0]); 1821 ctx->meta_total_blocks += BLOCK_SECTORS; 1822 1823 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1824 set_bit(STRIPE_R5C_CACHING, &sh->state); 1825 } 1826 1827 static void r5l_recovery_load_parity(struct r5l_log *log, 1828 struct stripe_head *sh, 1829 struct r5l_recovery_ctx *ctx, 1830 struct r5l_payload_data_parity *payload, 1831 sector_t log_offset) 1832 { 1833 struct mddev *mddev = log->rdev->mddev; 1834 struct r5conf *conf = mddev->private; 1835 1836 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1837 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1838 sh->dev[sh->pd_idx].log_checksum = 1839 le32_to_cpu(payload->checksum[0]); 1840 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1841 1842 if (sh->qd_idx >= 0) { 1843 r5l_recovery_read_page( 1844 log, ctx, sh->dev[sh->qd_idx].page, 1845 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1846 sh->dev[sh->qd_idx].log_checksum = 1847 le32_to_cpu(payload->checksum[1]); 1848 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1849 } 1850 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1851 } 1852 1853 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1854 { 1855 int i; 1856 1857 sh->state = 0; 1858 sh->log_start = MaxSector; 1859 for (i = sh->disks; i--; ) 1860 sh->dev[i].flags = 0; 1861 } 1862 1863 static void 1864 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1865 struct stripe_head *sh, 1866 struct r5l_recovery_ctx *ctx) 1867 { 1868 struct md_rdev *rdev, *rrdev; 1869 int disk_index; 1870 int data_count = 0; 1871 1872 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1873 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1874 continue; 1875 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1876 continue; 1877 data_count++; 1878 } 1879 1880 /* 1881 * stripes that only have parity must have been flushed 1882 * before the crash that we are now recovering from, so 1883 * there is nothing more to recovery. 1884 */ 1885 if (data_count == 0) 1886 goto out; 1887 1888 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1889 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1890 continue; 1891 1892 /* in case device is broken */ 1893 rdev = conf->disks[disk_index].rdev; 1894 if (rdev) { 1895 atomic_inc(&rdev->nr_pending); 1896 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1897 sh->dev[disk_index].page, REQ_OP_WRITE, 1898 false); 1899 rdev_dec_pending(rdev, rdev->mddev); 1900 } 1901 rrdev = conf->disks[disk_index].replacement; 1902 if (rrdev) { 1903 atomic_inc(&rrdev->nr_pending); 1904 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1905 sh->dev[disk_index].page, REQ_OP_WRITE, 1906 false); 1907 rdev_dec_pending(rrdev, rrdev->mddev); 1908 } 1909 } 1910 ctx->data_parity_stripes++; 1911 out: 1912 r5l_recovery_reset_stripe(sh); 1913 } 1914 1915 static struct stripe_head * 1916 r5c_recovery_alloc_stripe( 1917 struct r5conf *conf, 1918 sector_t stripe_sect, 1919 int noblock) 1920 { 1921 struct stripe_head *sh; 1922 1923 sh = raid5_get_active_stripe(conf, NULL, stripe_sect, 1924 noblock ? R5_GAS_NOBLOCK : 0); 1925 if (!sh) 1926 return NULL; /* no more stripe available */ 1927 1928 r5l_recovery_reset_stripe(sh); 1929 1930 return sh; 1931 } 1932 1933 static struct stripe_head * 1934 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1935 { 1936 struct stripe_head *sh; 1937 1938 list_for_each_entry(sh, list, lru) 1939 if (sh->sector == sect) 1940 return sh; 1941 return NULL; 1942 } 1943 1944 static void 1945 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1946 struct r5l_recovery_ctx *ctx) 1947 { 1948 struct stripe_head *sh, *next; 1949 1950 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1951 r5l_recovery_reset_stripe(sh); 1952 list_del_init(&sh->lru); 1953 raid5_release_stripe(sh); 1954 } 1955 } 1956 1957 static void 1958 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1959 struct r5l_recovery_ctx *ctx) 1960 { 1961 struct stripe_head *sh, *next; 1962 1963 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1964 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1965 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1966 list_del_init(&sh->lru); 1967 raid5_release_stripe(sh); 1968 } 1969 } 1970 1971 /* if matches return 0; otherwise return -EINVAL */ 1972 static int 1973 r5l_recovery_verify_data_checksum(struct r5l_log *log, 1974 struct r5l_recovery_ctx *ctx, 1975 struct page *page, 1976 sector_t log_offset, __le32 log_checksum) 1977 { 1978 void *addr; 1979 u32 checksum; 1980 1981 r5l_recovery_read_page(log, ctx, page, log_offset); 1982 addr = kmap_atomic(page); 1983 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 1984 kunmap_atomic(addr); 1985 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 1986 } 1987 1988 /* 1989 * before loading data to stripe cache, we need verify checksum for all data, 1990 * if there is mismatch for any data page, we drop all data in the mata block 1991 */ 1992 static int 1993 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 1994 struct r5l_recovery_ctx *ctx) 1995 { 1996 struct mddev *mddev = log->rdev->mddev; 1997 struct r5conf *conf = mddev->private; 1998 struct r5l_meta_block *mb = page_address(ctx->meta_page); 1999 sector_t mb_offset = sizeof(struct r5l_meta_block); 2000 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2001 struct page *page; 2002 struct r5l_payload_data_parity *payload; 2003 struct r5l_payload_flush *payload_flush; 2004 2005 page = alloc_page(GFP_KERNEL); 2006 if (!page) 2007 return -ENOMEM; 2008 2009 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2010 payload = (void *)mb + mb_offset; 2011 payload_flush = (void *)mb + mb_offset; 2012 2013 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2014 if (r5l_recovery_verify_data_checksum( 2015 log, ctx, page, log_offset, 2016 payload->checksum[0]) < 0) 2017 goto mismatch; 2018 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2019 if (r5l_recovery_verify_data_checksum( 2020 log, ctx, page, log_offset, 2021 payload->checksum[0]) < 0) 2022 goto mismatch; 2023 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2024 r5l_recovery_verify_data_checksum( 2025 log, ctx, page, 2026 r5l_ring_add(log, log_offset, 2027 BLOCK_SECTORS), 2028 payload->checksum[1]) < 0) 2029 goto mismatch; 2030 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2031 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2032 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2033 goto mismatch; 2034 2035 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2036 mb_offset += sizeof(struct r5l_payload_flush) + 2037 le32_to_cpu(payload_flush->size); 2038 } else { 2039 /* DATA or PARITY payload */ 2040 log_offset = r5l_ring_add(log, log_offset, 2041 le32_to_cpu(payload->size)); 2042 mb_offset += sizeof(struct r5l_payload_data_parity) + 2043 sizeof(__le32) * 2044 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2045 } 2046 2047 } 2048 2049 put_page(page); 2050 return 0; 2051 2052 mismatch: 2053 put_page(page); 2054 return -EINVAL; 2055 } 2056 2057 /* 2058 * Analyze all data/parity pages in one meta block 2059 * Returns: 2060 * 0 for success 2061 * -EINVAL for unknown playload type 2062 * -EAGAIN for checksum mismatch of data page 2063 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2064 */ 2065 static int 2066 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2067 struct r5l_recovery_ctx *ctx, 2068 struct list_head *cached_stripe_list) 2069 { 2070 struct mddev *mddev = log->rdev->mddev; 2071 struct r5conf *conf = mddev->private; 2072 struct r5l_meta_block *mb; 2073 struct r5l_payload_data_parity *payload; 2074 struct r5l_payload_flush *payload_flush; 2075 int mb_offset; 2076 sector_t log_offset; 2077 sector_t stripe_sect; 2078 struct stripe_head *sh; 2079 int ret; 2080 2081 /* 2082 * for mismatch in data blocks, we will drop all data in this mb, but 2083 * we will still read next mb for other data with FLUSH flag, as 2084 * io_unit could finish out of order. 2085 */ 2086 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2087 if (ret == -EINVAL) 2088 return -EAGAIN; 2089 else if (ret) 2090 return ret; /* -ENOMEM duo to alloc_page() failed */ 2091 2092 mb = page_address(ctx->meta_page); 2093 mb_offset = sizeof(struct r5l_meta_block); 2094 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2095 2096 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2097 int dd; 2098 2099 payload = (void *)mb + mb_offset; 2100 payload_flush = (void *)mb + mb_offset; 2101 2102 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2103 int i, count; 2104 2105 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2106 for (i = 0; i < count; ++i) { 2107 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2108 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2109 stripe_sect); 2110 if (sh) { 2111 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2112 r5l_recovery_reset_stripe(sh); 2113 list_del_init(&sh->lru); 2114 raid5_release_stripe(sh); 2115 } 2116 } 2117 2118 mb_offset += sizeof(struct r5l_payload_flush) + 2119 le32_to_cpu(payload_flush->size); 2120 continue; 2121 } 2122 2123 /* DATA or PARITY payload */ 2124 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2125 raid5_compute_sector( 2126 conf, le64_to_cpu(payload->location), 0, &dd, 2127 NULL) 2128 : le64_to_cpu(payload->location); 2129 2130 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2131 stripe_sect); 2132 2133 if (!sh) { 2134 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1); 2135 /* 2136 * cannot get stripe from raid5_get_active_stripe 2137 * try replay some stripes 2138 */ 2139 if (!sh) { 2140 r5c_recovery_replay_stripes( 2141 cached_stripe_list, ctx); 2142 sh = r5c_recovery_alloc_stripe( 2143 conf, stripe_sect, 1); 2144 } 2145 if (!sh) { 2146 int new_size = conf->min_nr_stripes * 2; 2147 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2148 mdname(mddev), 2149 new_size); 2150 ret = raid5_set_cache_size(mddev, new_size); 2151 if (conf->min_nr_stripes <= new_size / 2) { 2152 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n", 2153 mdname(mddev), 2154 ret, 2155 new_size, 2156 conf->min_nr_stripes, 2157 conf->max_nr_stripes); 2158 return -ENOMEM; 2159 } 2160 sh = r5c_recovery_alloc_stripe( 2161 conf, stripe_sect, 0); 2162 } 2163 if (!sh) { 2164 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2165 mdname(mddev)); 2166 return -ENOMEM; 2167 } 2168 list_add_tail(&sh->lru, cached_stripe_list); 2169 } 2170 2171 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2172 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2173 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2174 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2175 list_move_tail(&sh->lru, cached_stripe_list); 2176 } 2177 r5l_recovery_load_data(log, sh, ctx, payload, 2178 log_offset); 2179 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2180 r5l_recovery_load_parity(log, sh, ctx, payload, 2181 log_offset); 2182 else 2183 return -EINVAL; 2184 2185 log_offset = r5l_ring_add(log, log_offset, 2186 le32_to_cpu(payload->size)); 2187 2188 mb_offset += sizeof(struct r5l_payload_data_parity) + 2189 sizeof(__le32) * 2190 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2191 } 2192 2193 return 0; 2194 } 2195 2196 /* 2197 * Load the stripe into cache. The stripe will be written out later by 2198 * the stripe cache state machine. 2199 */ 2200 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2201 struct stripe_head *sh) 2202 { 2203 struct r5dev *dev; 2204 int i; 2205 2206 for (i = sh->disks; i--; ) { 2207 dev = sh->dev + i; 2208 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2209 set_bit(R5_InJournal, &dev->flags); 2210 set_bit(R5_UPTODATE, &dev->flags); 2211 } 2212 } 2213 } 2214 2215 /* 2216 * Scan through the log for all to-be-flushed data 2217 * 2218 * For stripes with data and parity, namely Data-Parity stripe 2219 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2220 * 2221 * For stripes with only data, namely Data-Only stripe 2222 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2223 * 2224 * For a stripe, if we see data after parity, we should discard all previous 2225 * data and parity for this stripe, as these data are already flushed to 2226 * the array. 2227 * 2228 * At the end of the scan, we return the new journal_tail, which points to 2229 * first data-only stripe on the journal device, or next invalid meta block. 2230 */ 2231 static int r5c_recovery_flush_log(struct r5l_log *log, 2232 struct r5l_recovery_ctx *ctx) 2233 { 2234 struct stripe_head *sh; 2235 int ret = 0; 2236 2237 /* scan through the log */ 2238 while (1) { 2239 if (r5l_recovery_read_meta_block(log, ctx)) 2240 break; 2241 2242 ret = r5c_recovery_analyze_meta_block(log, ctx, 2243 &ctx->cached_list); 2244 /* 2245 * -EAGAIN means mismatch in data block, in this case, we still 2246 * try scan the next metablock 2247 */ 2248 if (ret && ret != -EAGAIN) 2249 break; /* ret == -EINVAL or -ENOMEM */ 2250 ctx->seq++; 2251 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2252 } 2253 2254 if (ret == -ENOMEM) { 2255 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2256 return ret; 2257 } 2258 2259 /* replay data-parity stripes */ 2260 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2261 2262 /* load data-only stripes to stripe cache */ 2263 list_for_each_entry(sh, &ctx->cached_list, lru) { 2264 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2265 r5c_recovery_load_one_stripe(log, sh); 2266 ctx->data_only_stripes++; 2267 } 2268 2269 return 0; 2270 } 2271 2272 /* 2273 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2274 * log will start here. but we can't let superblock point to last valid 2275 * meta block. The log might looks like: 2276 * | meta 1| meta 2| meta 3| 2277 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2278 * superblock points to meta 1, we write a new valid meta 2n. if crash 2279 * happens again, new recovery will start from meta 1. Since meta 2n is 2280 * valid now, recovery will think meta 3 is valid, which is wrong. 2281 * The solution is we create a new meta in meta2 with its seq == meta 2282 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2283 * will not think meta 3 is a valid meta, because its seq doesn't match 2284 */ 2285 2286 /* 2287 * Before recovery, the log looks like the following 2288 * 2289 * --------------------------------------------- 2290 * | valid log | invalid log | 2291 * --------------------------------------------- 2292 * ^ 2293 * |- log->last_checkpoint 2294 * |- log->last_cp_seq 2295 * 2296 * Now we scan through the log until we see invalid entry 2297 * 2298 * --------------------------------------------- 2299 * | valid log | invalid log | 2300 * --------------------------------------------- 2301 * ^ ^ 2302 * |- log->last_checkpoint |- ctx->pos 2303 * |- log->last_cp_seq |- ctx->seq 2304 * 2305 * From this point, we need to increase seq number by 10 to avoid 2306 * confusing next recovery. 2307 * 2308 * --------------------------------------------- 2309 * | valid log | invalid log | 2310 * --------------------------------------------- 2311 * ^ ^ 2312 * |- log->last_checkpoint |- ctx->pos+1 2313 * |- log->last_cp_seq |- ctx->seq+10001 2314 * 2315 * However, it is not safe to start the state machine yet, because data only 2316 * parities are not yet secured in RAID. To save these data only parities, we 2317 * rewrite them from seq+11. 2318 * 2319 * ----------------------------------------------------------------- 2320 * | valid log | data only stripes | invalid log | 2321 * ----------------------------------------------------------------- 2322 * ^ ^ 2323 * |- log->last_checkpoint |- ctx->pos+n 2324 * |- log->last_cp_seq |- ctx->seq+10000+n 2325 * 2326 * If failure happens again during this process, the recovery can safe start 2327 * again from log->last_checkpoint. 2328 * 2329 * Once data only stripes are rewritten to journal, we move log_tail 2330 * 2331 * ----------------------------------------------------------------- 2332 * | old log | data only stripes | invalid log | 2333 * ----------------------------------------------------------------- 2334 * ^ ^ 2335 * |- log->last_checkpoint |- ctx->pos+n 2336 * |- log->last_cp_seq |- ctx->seq+10000+n 2337 * 2338 * Then we can safely start the state machine. If failure happens from this 2339 * point on, the recovery will start from new log->last_checkpoint. 2340 */ 2341 static int 2342 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2343 struct r5l_recovery_ctx *ctx) 2344 { 2345 struct stripe_head *sh; 2346 struct mddev *mddev = log->rdev->mddev; 2347 struct page *page; 2348 sector_t next_checkpoint = MaxSector; 2349 2350 page = alloc_page(GFP_KERNEL); 2351 if (!page) { 2352 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2353 mdname(mddev)); 2354 return -ENOMEM; 2355 } 2356 2357 WARN_ON(list_empty(&ctx->cached_list)); 2358 2359 list_for_each_entry(sh, &ctx->cached_list, lru) { 2360 struct r5l_meta_block *mb; 2361 int i; 2362 int offset; 2363 sector_t write_pos; 2364 2365 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2366 r5l_recovery_create_empty_meta_block(log, page, 2367 ctx->pos, ctx->seq); 2368 mb = page_address(page); 2369 offset = le32_to_cpu(mb->meta_size); 2370 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2371 2372 for (i = sh->disks; i--; ) { 2373 struct r5dev *dev = &sh->dev[i]; 2374 struct r5l_payload_data_parity *payload; 2375 void *addr; 2376 2377 if (test_bit(R5_InJournal, &dev->flags)) { 2378 payload = (void *)mb + offset; 2379 payload->header.type = cpu_to_le16( 2380 R5LOG_PAYLOAD_DATA); 2381 payload->size = cpu_to_le32(BLOCK_SECTORS); 2382 payload->location = cpu_to_le64( 2383 raid5_compute_blocknr(sh, i, 0)); 2384 addr = kmap_atomic(dev->page); 2385 payload->checksum[0] = cpu_to_le32( 2386 crc32c_le(log->uuid_checksum, addr, 2387 PAGE_SIZE)); 2388 kunmap_atomic(addr); 2389 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2390 dev->page, REQ_OP_WRITE, false); 2391 write_pos = r5l_ring_add(log, write_pos, 2392 BLOCK_SECTORS); 2393 offset += sizeof(__le32) + 2394 sizeof(struct r5l_payload_data_parity); 2395 2396 } 2397 } 2398 mb->meta_size = cpu_to_le32(offset); 2399 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2400 mb, PAGE_SIZE)); 2401 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2402 REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false); 2403 sh->log_start = ctx->pos; 2404 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2405 atomic_inc(&log->stripe_in_journal_count); 2406 ctx->pos = write_pos; 2407 ctx->seq += 1; 2408 next_checkpoint = sh->log_start; 2409 } 2410 log->next_checkpoint = next_checkpoint; 2411 __free_page(page); 2412 return 0; 2413 } 2414 2415 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2416 struct r5l_recovery_ctx *ctx) 2417 { 2418 struct mddev *mddev = log->rdev->mddev; 2419 struct r5conf *conf = mddev->private; 2420 struct stripe_head *sh, *next; 2421 bool cleared_pending = false; 2422 2423 if (ctx->data_only_stripes == 0) 2424 return; 2425 2426 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2427 cleared_pending = true; 2428 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2429 } 2430 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2431 2432 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2433 r5c_make_stripe_write_out(sh); 2434 set_bit(STRIPE_HANDLE, &sh->state); 2435 list_del_init(&sh->lru); 2436 raid5_release_stripe(sh); 2437 } 2438 2439 /* reuse conf->wait_for_quiescent in recovery */ 2440 wait_event(conf->wait_for_quiescent, 2441 atomic_read(&conf->active_stripes) == 0); 2442 2443 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2444 if (cleared_pending) 2445 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2446 } 2447 2448 static int r5l_recovery_log(struct r5l_log *log) 2449 { 2450 struct mddev *mddev = log->rdev->mddev; 2451 struct r5l_recovery_ctx *ctx; 2452 int ret; 2453 sector_t pos; 2454 2455 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2456 if (!ctx) 2457 return -ENOMEM; 2458 2459 ctx->pos = log->last_checkpoint; 2460 ctx->seq = log->last_cp_seq; 2461 INIT_LIST_HEAD(&ctx->cached_list); 2462 ctx->meta_page = alloc_page(GFP_KERNEL); 2463 2464 if (!ctx->meta_page) { 2465 ret = -ENOMEM; 2466 goto meta_page; 2467 } 2468 2469 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2470 ret = -ENOMEM; 2471 goto ra_pool; 2472 } 2473 2474 ret = r5c_recovery_flush_log(log, ctx); 2475 2476 if (ret) 2477 goto error; 2478 2479 pos = ctx->pos; 2480 ctx->seq += 10000; 2481 2482 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2483 pr_info("md/raid:%s: starting from clean shutdown\n", 2484 mdname(mddev)); 2485 else 2486 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2487 mdname(mddev), ctx->data_only_stripes, 2488 ctx->data_parity_stripes); 2489 2490 if (ctx->data_only_stripes == 0) { 2491 log->next_checkpoint = ctx->pos; 2492 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2493 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2494 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2495 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2496 mdname(mddev)); 2497 ret = -EIO; 2498 goto error; 2499 } 2500 2501 log->log_start = ctx->pos; 2502 log->seq = ctx->seq; 2503 log->last_checkpoint = pos; 2504 r5l_write_super(log, pos); 2505 2506 r5c_recovery_flush_data_only_stripes(log, ctx); 2507 ret = 0; 2508 error: 2509 r5l_recovery_free_ra_pool(log, ctx); 2510 ra_pool: 2511 __free_page(ctx->meta_page); 2512 meta_page: 2513 kfree(ctx); 2514 return ret; 2515 } 2516 2517 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2518 { 2519 struct mddev *mddev = log->rdev->mddev; 2520 2521 log->rdev->journal_tail = cp; 2522 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2523 } 2524 2525 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2526 { 2527 struct r5conf *conf; 2528 int ret; 2529 2530 ret = mddev_lock(mddev); 2531 if (ret) 2532 return ret; 2533 2534 conf = mddev->private; 2535 if (!conf || !conf->log) 2536 goto out_unlock; 2537 2538 switch (conf->log->r5c_journal_mode) { 2539 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2540 ret = snprintf( 2541 page, PAGE_SIZE, "[%s] %s\n", 2542 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2543 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2544 break; 2545 case R5C_JOURNAL_MODE_WRITE_BACK: 2546 ret = snprintf( 2547 page, PAGE_SIZE, "%s [%s]\n", 2548 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2549 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2550 break; 2551 default: 2552 ret = 0; 2553 } 2554 2555 out_unlock: 2556 mddev_unlock(mddev); 2557 return ret; 2558 } 2559 2560 /* 2561 * Set journal cache mode on @mddev (external API initially needed by dm-raid). 2562 * 2563 * @mode as defined in 'enum r5c_journal_mode'. 2564 * 2565 */ 2566 int r5c_journal_mode_set(struct mddev *mddev, int mode) 2567 { 2568 struct r5conf *conf; 2569 2570 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || 2571 mode > R5C_JOURNAL_MODE_WRITE_BACK) 2572 return -EINVAL; 2573 2574 conf = mddev->private; 2575 if (!conf || !conf->log) 2576 return -ENODEV; 2577 2578 if (raid5_calc_degraded(conf) > 0 && 2579 mode == R5C_JOURNAL_MODE_WRITE_BACK) 2580 return -EINVAL; 2581 2582 conf->log->r5c_journal_mode = mode; 2583 2584 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2585 mdname(mddev), mode, r5c_journal_mode_str[mode]); 2586 return 0; 2587 } 2588 EXPORT_SYMBOL(r5c_journal_mode_set); 2589 2590 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2591 const char *page, size_t length) 2592 { 2593 int mode = ARRAY_SIZE(r5c_journal_mode_str); 2594 size_t len = length; 2595 int ret; 2596 2597 if (len < 2) 2598 return -EINVAL; 2599 2600 if (page[len - 1] == '\n') 2601 len--; 2602 2603 while (mode--) 2604 if (strlen(r5c_journal_mode_str[mode]) == len && 2605 !strncmp(page, r5c_journal_mode_str[mode], len)) 2606 break; 2607 ret = mddev_suspend_and_lock(mddev); 2608 if (ret) 2609 return ret; 2610 ret = r5c_journal_mode_set(mddev, mode); 2611 mddev_unlock_and_resume(mddev); 2612 return ret ?: length; 2613 } 2614 2615 struct md_sysfs_entry 2616 r5c_journal_mode = __ATTR(journal_mode, 0644, 2617 r5c_journal_mode_show, r5c_journal_mode_store); 2618 2619 /* 2620 * Try handle write operation in caching phase. This function should only 2621 * be called in write-back mode. 2622 * 2623 * If all outstanding writes can be handled in caching phase, returns 0 2624 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2625 * and returns -EAGAIN 2626 */ 2627 int r5c_try_caching_write(struct r5conf *conf, 2628 struct stripe_head *sh, 2629 struct stripe_head_state *s, 2630 int disks) 2631 { 2632 struct r5l_log *log = READ_ONCE(conf->log); 2633 int i; 2634 struct r5dev *dev; 2635 int to_cache = 0; 2636 void __rcu **pslot; 2637 sector_t tree_index; 2638 int ret; 2639 uintptr_t refcount; 2640 2641 BUG_ON(!r5c_is_writeback(log)); 2642 2643 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2644 /* 2645 * There are two different scenarios here: 2646 * 1. The stripe has some data cached, and it is sent to 2647 * write-out phase for reclaim 2648 * 2. The stripe is clean, and this is the first write 2649 * 2650 * For 1, return -EAGAIN, so we continue with 2651 * handle_stripe_dirtying(). 2652 * 2653 * For 2, set STRIPE_R5C_CACHING and continue with caching 2654 * write. 2655 */ 2656 2657 /* case 1: anything injournal or anything in written */ 2658 if (s->injournal > 0 || s->written > 0) 2659 return -EAGAIN; 2660 /* case 2 */ 2661 set_bit(STRIPE_R5C_CACHING, &sh->state); 2662 } 2663 2664 /* 2665 * When run in degraded mode, array is set to write-through mode. 2666 * This check helps drain pending write safely in the transition to 2667 * write-through mode. 2668 * 2669 * When a stripe is syncing, the write is also handled in write 2670 * through mode. 2671 */ 2672 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { 2673 r5c_make_stripe_write_out(sh); 2674 return -EAGAIN; 2675 } 2676 2677 for (i = disks; i--; ) { 2678 dev = &sh->dev[i]; 2679 /* if non-overwrite, use writing-out phase */ 2680 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2681 !test_bit(R5_InJournal, &dev->flags)) { 2682 r5c_make_stripe_write_out(sh); 2683 return -EAGAIN; 2684 } 2685 } 2686 2687 /* if the stripe is not counted in big_stripe_tree, add it now */ 2688 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2689 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2690 tree_index = r5c_tree_index(conf, sh->sector); 2691 spin_lock(&log->tree_lock); 2692 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2693 tree_index); 2694 if (pslot) { 2695 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2696 pslot, &log->tree_lock) >> 2697 R5C_RADIX_COUNT_SHIFT; 2698 radix_tree_replace_slot( 2699 &log->big_stripe_tree, pslot, 2700 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2701 } else { 2702 /* 2703 * this radix_tree_insert can fail safely, so no 2704 * need to call radix_tree_preload() 2705 */ 2706 ret = radix_tree_insert( 2707 &log->big_stripe_tree, tree_index, 2708 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2709 if (ret) { 2710 spin_unlock(&log->tree_lock); 2711 r5c_make_stripe_write_out(sh); 2712 return -EAGAIN; 2713 } 2714 } 2715 spin_unlock(&log->tree_lock); 2716 2717 /* 2718 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2719 * counted in the radix tree 2720 */ 2721 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2722 atomic_inc(&conf->r5c_cached_partial_stripes); 2723 } 2724 2725 for (i = disks; i--; ) { 2726 dev = &sh->dev[i]; 2727 if (dev->towrite) { 2728 set_bit(R5_Wantwrite, &dev->flags); 2729 set_bit(R5_Wantdrain, &dev->flags); 2730 set_bit(R5_LOCKED, &dev->flags); 2731 to_cache++; 2732 } 2733 } 2734 2735 if (to_cache) { 2736 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2737 /* 2738 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2739 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2740 * r5c_handle_data_cached() 2741 */ 2742 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2743 } 2744 2745 return 0; 2746 } 2747 2748 /* 2749 * free extra pages (orig_page) we allocated for prexor 2750 */ 2751 void r5c_release_extra_page(struct stripe_head *sh) 2752 { 2753 struct r5conf *conf = sh->raid_conf; 2754 int i; 2755 bool using_disk_info_extra_page; 2756 2757 using_disk_info_extra_page = 2758 sh->dev[0].orig_page == conf->disks[0].extra_page; 2759 2760 for (i = sh->disks; i--; ) 2761 if (sh->dev[i].page != sh->dev[i].orig_page) { 2762 struct page *p = sh->dev[i].orig_page; 2763 2764 sh->dev[i].orig_page = sh->dev[i].page; 2765 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2766 2767 if (!using_disk_info_extra_page) 2768 put_page(p); 2769 } 2770 2771 if (using_disk_info_extra_page) { 2772 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2773 md_wakeup_thread(conf->mddev->thread); 2774 } 2775 } 2776 2777 void r5c_use_extra_page(struct stripe_head *sh) 2778 { 2779 struct r5conf *conf = sh->raid_conf; 2780 int i; 2781 struct r5dev *dev; 2782 2783 for (i = sh->disks; i--; ) { 2784 dev = &sh->dev[i]; 2785 if (dev->orig_page != dev->page) 2786 put_page(dev->orig_page); 2787 dev->orig_page = conf->disks[i].extra_page; 2788 } 2789 } 2790 2791 /* 2792 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2793 * stripe is committed to RAID disks. 2794 */ 2795 void r5c_finish_stripe_write_out(struct r5conf *conf, 2796 struct stripe_head *sh, 2797 struct stripe_head_state *s) 2798 { 2799 struct r5l_log *log = READ_ONCE(conf->log); 2800 int i; 2801 sector_t tree_index; 2802 void __rcu **pslot; 2803 uintptr_t refcount; 2804 2805 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2806 return; 2807 2808 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2809 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2810 2811 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2812 return; 2813 2814 for (i = sh->disks; i--; ) { 2815 clear_bit(R5_InJournal, &sh->dev[i].flags); 2816 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2817 wake_up_bit(&sh->dev[i].flags, R5_Overlap); 2818 } 2819 2820 /* 2821 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2822 * We updated R5_InJournal, so we also update s->injournal. 2823 */ 2824 s->injournal = 0; 2825 2826 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2827 if (atomic_dec_and_test(&conf->pending_full_writes)) 2828 md_wakeup_thread(conf->mddev->thread); 2829 2830 spin_lock_irq(&log->stripe_in_journal_lock); 2831 list_del_init(&sh->r5c); 2832 spin_unlock_irq(&log->stripe_in_journal_lock); 2833 sh->log_start = MaxSector; 2834 2835 atomic_dec(&log->stripe_in_journal_count); 2836 r5c_update_log_state(log); 2837 2838 /* stop counting this stripe in big_stripe_tree */ 2839 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2840 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2841 tree_index = r5c_tree_index(conf, sh->sector); 2842 spin_lock(&log->tree_lock); 2843 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2844 tree_index); 2845 BUG_ON(pslot == NULL); 2846 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2847 pslot, &log->tree_lock) >> 2848 R5C_RADIX_COUNT_SHIFT; 2849 if (refcount == 1) 2850 radix_tree_delete(&log->big_stripe_tree, tree_index); 2851 else 2852 radix_tree_replace_slot( 2853 &log->big_stripe_tree, pslot, 2854 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2855 spin_unlock(&log->tree_lock); 2856 } 2857 2858 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2859 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2860 atomic_dec(&conf->r5c_flushing_partial_stripes); 2861 atomic_dec(&conf->r5c_cached_partial_stripes); 2862 } 2863 2864 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2865 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2866 atomic_dec(&conf->r5c_flushing_full_stripes); 2867 atomic_dec(&conf->r5c_cached_full_stripes); 2868 } 2869 2870 r5l_append_flush_payload(log, sh->sector); 2871 /* stripe is flused to raid disks, we can do resync now */ 2872 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2873 set_bit(STRIPE_HANDLE, &sh->state); 2874 } 2875 2876 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2877 { 2878 struct r5conf *conf = sh->raid_conf; 2879 int pages = 0; 2880 int reserve; 2881 int i; 2882 int ret = 0; 2883 2884 BUG_ON(!log); 2885 2886 for (i = 0; i < sh->disks; i++) { 2887 void *addr; 2888 2889 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2890 continue; 2891 addr = kmap_atomic(sh->dev[i].page); 2892 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2893 addr, PAGE_SIZE); 2894 kunmap_atomic(addr); 2895 pages++; 2896 } 2897 WARN_ON(pages == 0); 2898 2899 /* 2900 * The stripe must enter state machine again to call endio, so 2901 * don't delay. 2902 */ 2903 clear_bit(STRIPE_DELAYED, &sh->state); 2904 atomic_inc(&sh->count); 2905 2906 mutex_lock(&log->io_mutex); 2907 /* meta + data */ 2908 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2909 2910 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2911 sh->log_start == MaxSector) 2912 r5l_add_no_space_stripe(log, sh); 2913 else if (!r5l_has_free_space(log, reserve)) { 2914 if (sh->log_start == log->last_checkpoint) 2915 BUG(); 2916 else 2917 r5l_add_no_space_stripe(log, sh); 2918 } else { 2919 ret = r5l_log_stripe(log, sh, pages, 0); 2920 if (ret) { 2921 spin_lock_irq(&log->io_list_lock); 2922 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2923 spin_unlock_irq(&log->io_list_lock); 2924 } 2925 } 2926 2927 mutex_unlock(&log->io_mutex); 2928 return 0; 2929 } 2930 2931 /* check whether this big stripe is in write back cache. */ 2932 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2933 { 2934 struct r5l_log *log = READ_ONCE(conf->log); 2935 sector_t tree_index; 2936 void *slot; 2937 2938 if (!log) 2939 return false; 2940 2941 tree_index = r5c_tree_index(conf, sect); 2942 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2943 return slot != NULL; 2944 } 2945 2946 static int r5l_load_log(struct r5l_log *log) 2947 { 2948 struct md_rdev *rdev = log->rdev; 2949 struct page *page; 2950 struct r5l_meta_block *mb; 2951 sector_t cp = log->rdev->journal_tail; 2952 u32 stored_crc, expected_crc; 2953 bool create_super = false; 2954 int ret = 0; 2955 2956 /* Make sure it's valid */ 2957 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2958 cp = 0; 2959 page = alloc_page(GFP_KERNEL); 2960 if (!page) 2961 return -ENOMEM; 2962 2963 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) { 2964 ret = -EIO; 2965 goto ioerr; 2966 } 2967 mb = page_address(page); 2968 2969 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2970 mb->version != R5LOG_VERSION) { 2971 create_super = true; 2972 goto create; 2973 } 2974 stored_crc = le32_to_cpu(mb->checksum); 2975 mb->checksum = 0; 2976 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2977 if (stored_crc != expected_crc) { 2978 create_super = true; 2979 goto create; 2980 } 2981 if (le64_to_cpu(mb->position) != cp) { 2982 create_super = true; 2983 goto create; 2984 } 2985 create: 2986 if (create_super) { 2987 log->last_cp_seq = get_random_u32(); 2988 cp = 0; 2989 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 2990 /* 2991 * Make sure super points to correct address. Log might have 2992 * data very soon. If super hasn't correct log tail address, 2993 * recovery can't find the log 2994 */ 2995 r5l_write_super(log, cp); 2996 } else 2997 log->last_cp_seq = le64_to_cpu(mb->seq); 2998 2999 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 3000 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 3001 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 3002 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 3003 log->last_checkpoint = cp; 3004 3005 __free_page(page); 3006 3007 if (create_super) { 3008 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 3009 log->seq = log->last_cp_seq + 1; 3010 log->next_checkpoint = cp; 3011 } else 3012 ret = r5l_recovery_log(log); 3013 3014 r5c_update_log_state(log); 3015 return ret; 3016 ioerr: 3017 __free_page(page); 3018 return ret; 3019 } 3020 3021 int r5l_start(struct r5l_log *log) 3022 { 3023 int ret; 3024 3025 if (!log) 3026 return 0; 3027 3028 ret = r5l_load_log(log); 3029 if (ret) { 3030 struct mddev *mddev = log->rdev->mddev; 3031 struct r5conf *conf = mddev->private; 3032 3033 r5l_exit_log(conf); 3034 } 3035 return ret; 3036 } 3037 3038 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) 3039 { 3040 struct r5conf *conf = mddev->private; 3041 struct r5l_log *log = READ_ONCE(conf->log); 3042 3043 if (!log) 3044 return; 3045 3046 if ((raid5_calc_degraded(conf) > 0 || 3047 test_bit(Journal, &rdev->flags)) && 3048 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 3049 schedule_work(&log->disable_writeback_work); 3050 } 3051 3052 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 3053 { 3054 struct r5l_log *log; 3055 struct md_thread *thread; 3056 int ret; 3057 3058 pr_debug("md/raid:%s: using device %pg as journal\n", 3059 mdname(conf->mddev), rdev->bdev); 3060 3061 if (PAGE_SIZE != 4096) 3062 return -EINVAL; 3063 3064 /* 3065 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 3066 * raid_disks r5l_payload_data_parity. 3067 * 3068 * Write journal and cache does not work for very big array 3069 * (raid_disks > 203) 3070 */ 3071 if (sizeof(struct r5l_meta_block) + 3072 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3073 conf->raid_disks) > PAGE_SIZE) { 3074 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3075 mdname(conf->mddev), conf->raid_disks); 3076 return -EINVAL; 3077 } 3078 3079 log = kzalloc(sizeof(*log), GFP_KERNEL); 3080 if (!log) 3081 return -ENOMEM; 3082 log->rdev = rdev; 3083 log->need_cache_flush = bdev_write_cache(rdev->bdev); 3084 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3085 sizeof(rdev->mddev->uuid)); 3086 3087 mutex_init(&log->io_mutex); 3088 3089 spin_lock_init(&log->io_list_lock); 3090 INIT_LIST_HEAD(&log->running_ios); 3091 INIT_LIST_HEAD(&log->io_end_ios); 3092 INIT_LIST_HEAD(&log->flushing_ios); 3093 INIT_LIST_HEAD(&log->finished_ios); 3094 3095 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3096 if (!log->io_kc) 3097 goto io_kc; 3098 3099 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc); 3100 if (ret) 3101 goto io_pool; 3102 3103 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); 3104 if (ret) 3105 goto io_bs; 3106 3107 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0); 3108 if (ret) 3109 goto out_mempool; 3110 3111 spin_lock_init(&log->tree_lock); 3112 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3113 3114 thread = md_register_thread(r5l_reclaim_thread, log->rdev->mddev, 3115 "reclaim"); 3116 if (!thread) 3117 goto reclaim_thread; 3118 3119 thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3120 rcu_assign_pointer(log->reclaim_thread, thread); 3121 3122 init_waitqueue_head(&log->iounit_wait); 3123 3124 INIT_LIST_HEAD(&log->no_mem_stripes); 3125 3126 INIT_LIST_HEAD(&log->no_space_stripes); 3127 spin_lock_init(&log->no_space_stripes_lock); 3128 3129 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3130 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3131 3132 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3133 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3134 spin_lock_init(&log->stripe_in_journal_lock); 3135 atomic_set(&log->stripe_in_journal_count, 0); 3136 3137 WRITE_ONCE(conf->log, log); 3138 3139 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3140 return 0; 3141 3142 reclaim_thread: 3143 mempool_exit(&log->meta_pool); 3144 out_mempool: 3145 bioset_exit(&log->bs); 3146 io_bs: 3147 mempool_exit(&log->io_pool); 3148 io_pool: 3149 kmem_cache_destroy(log->io_kc); 3150 io_kc: 3151 kfree(log); 3152 return -EINVAL; 3153 } 3154 3155 void r5l_exit_log(struct r5conf *conf) 3156 { 3157 struct r5l_log *log = conf->log; 3158 3159 md_unregister_thread(conf->mddev, &log->reclaim_thread); 3160 3161 /* 3162 * 'reconfig_mutex' is held by caller, set 'confg->log' to NULL to 3163 * ensure disable_writeback_work wakes up and exits. 3164 */ 3165 WRITE_ONCE(conf->log, NULL); 3166 wake_up(&conf->mddev->sb_wait); 3167 flush_work(&log->disable_writeback_work); 3168 3169 mempool_exit(&log->meta_pool); 3170 bioset_exit(&log->bs); 3171 mempool_exit(&log->io_pool); 3172 kmem_cache_destroy(log->io_kc); 3173 kfree(log); 3174 } 3175