1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 5 */ 6 #include <linux/kernel.h> 7 #include <linux/wait.h> 8 #include <linux/blkdev.h> 9 #include <linux/slab.h> 10 #include <linux/raid/md_p.h> 11 #include <linux/crc32c.h> 12 #include <linux/random.h> 13 #include <linux/kthread.h> 14 #include <linux/types.h> 15 #include "md.h" 16 #include "raid5.h" 17 #include "md-bitmap.h" 18 #include "raid5-log.h" 19 20 /* 21 * metadata/data stored in disk with 4k size unit (a block) regardless 22 * underneath hardware sector size. only works with PAGE_SIZE == 4096 23 */ 24 #define BLOCK_SECTORS (8) 25 #define BLOCK_SECTOR_SHIFT (3) 26 27 /* 28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 29 * 30 * In write through mode, the reclaim runs every log->max_free_space. 31 * This can prevent the recovery scans for too long 32 */ 33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 35 36 /* wake up reclaim thread periodically */ 37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 38 /* start flush with these full stripes */ 39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 40 /* reclaim stripes in groups */ 41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 42 43 /* 44 * We only need 2 bios per I/O unit to make progress, but ensure we 45 * have a few more available to not get too tight. 46 */ 47 #define R5L_POOL_SIZE 4 48 49 static char *r5c_journal_mode_str[] = {"write-through", 50 "write-back"}; 51 /* 52 * raid5 cache state machine 53 * 54 * With the RAID cache, each stripe works in two phases: 55 * - caching phase 56 * - writing-out phase 57 * 58 * These two phases are controlled by bit STRIPE_R5C_CACHING: 59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 61 * 62 * When there is no journal, or the journal is in write-through mode, 63 * the stripe is always in writing-out phase. 64 * 65 * For write-back journal, the stripe is sent to caching phase on write 66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 67 * the write-out phase by clearing STRIPE_R5C_CACHING. 68 * 69 * Stripes in caching phase do not write the raid disks. Instead, all 70 * writes are committed from the log device. Therefore, a stripe in 71 * caching phase handles writes as: 72 * - write to log device 73 * - return IO 74 * 75 * Stripes in writing-out phase handle writes as: 76 * - calculate parity 77 * - write pending data and parity to journal 78 * - write data and parity to raid disks 79 * - return IO for pending writes 80 */ 81 82 struct r5l_log { 83 struct md_rdev *rdev; 84 85 u32 uuid_checksum; 86 87 sector_t device_size; /* log device size, round to 88 * BLOCK_SECTORS */ 89 sector_t max_free_space; /* reclaim run if free space is at 90 * this size */ 91 92 sector_t last_checkpoint; /* log tail. where recovery scan 93 * starts from */ 94 u64 last_cp_seq; /* log tail sequence */ 95 96 sector_t log_start; /* log head. where new data appends */ 97 u64 seq; /* log head sequence */ 98 99 sector_t next_checkpoint; 100 101 struct mutex io_mutex; 102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 103 104 spinlock_t io_list_lock; 105 struct list_head running_ios; /* io_units which are still running, 106 * and have not yet been completely 107 * written to the log */ 108 struct list_head io_end_ios; /* io_units which have been completely 109 * written to the log but not yet written 110 * to the RAID */ 111 struct list_head flushing_ios; /* io_units which are waiting for log 112 * cache flush */ 113 struct list_head finished_ios; /* io_units which settle down in log disk */ 114 struct bio flush_bio; 115 116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 117 118 struct kmem_cache *io_kc; 119 mempool_t io_pool; 120 struct bio_set bs; 121 mempool_t meta_pool; 122 123 struct md_thread __rcu *reclaim_thread; 124 unsigned long reclaim_target; /* number of space that need to be 125 * reclaimed. if it's 0, reclaim spaces 126 * used by io_units which are in 127 * IO_UNIT_STRIPE_END state (eg, reclaim 128 * doesn't wait for specific io_unit 129 * switching to IO_UNIT_STRIPE_END 130 * state) */ 131 wait_queue_head_t iounit_wait; 132 133 struct list_head no_space_stripes; /* pending stripes, log has no space */ 134 spinlock_t no_space_stripes_lock; 135 136 bool need_cache_flush; 137 138 /* for r5c_cache */ 139 enum r5c_journal_mode r5c_journal_mode; 140 141 /* all stripes in r5cache, in the order of seq at sh->log_start */ 142 struct list_head stripe_in_journal_list; 143 144 spinlock_t stripe_in_journal_lock; 145 atomic_t stripe_in_journal_count; 146 147 /* to submit async io_units, to fulfill ordering of flush */ 148 struct work_struct deferred_io_work; 149 /* to disable write back during in degraded mode */ 150 struct work_struct disable_writeback_work; 151 152 /* to for chunk_aligned_read in writeback mode, details below */ 153 spinlock_t tree_lock; 154 struct radix_tree_root big_stripe_tree; 155 }; 156 157 /* 158 * Enable chunk_aligned_read() with write back cache. 159 * 160 * Each chunk may contain more than one stripe (for example, a 256kB 161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 162 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 163 * For each big_stripe, we count how many stripes of this big_stripe 164 * are in the write back cache. These data are tracked in a radix tree 165 * (big_stripe_tree). We use radix_tree item pointer as the counter. 166 * r5c_tree_index() is used to calculate keys for the radix tree. 167 * 168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 169 * big_stripe of each chunk in the tree. If this big_stripe is in the 170 * tree, chunk_aligned_read() aborts. This look up is protected by 171 * rcu_read_lock(). 172 * 173 * It is necessary to remember whether a stripe is counted in 174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 176 * two flags are set, the stripe is counted in big_stripe_tree. This 177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 178 * r5c_try_caching_write(); and moving clear_bit of 179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 180 * r5c_finish_stripe_write_out(). 181 */ 182 183 /* 184 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 185 * So it is necessary to left shift the counter by 2 bits before using it 186 * as data pointer of the tree. 187 */ 188 #define R5C_RADIX_COUNT_SHIFT 2 189 190 /* 191 * calculate key for big_stripe_tree 192 * 193 * sect: align_bi->bi_iter.bi_sector or sh->sector 194 */ 195 static inline sector_t r5c_tree_index(struct r5conf *conf, 196 sector_t sect) 197 { 198 sector_div(sect, conf->chunk_sectors); 199 return sect; 200 } 201 202 /* 203 * an IO range starts from a meta data block and end at the next meta data 204 * block. The io unit's the meta data block tracks data/parity followed it. io 205 * unit is written to log disk with normal write, as we always flush log disk 206 * first and then start move data to raid disks, there is no requirement to 207 * write io unit with FLUSH/FUA 208 */ 209 struct r5l_io_unit { 210 struct r5l_log *log; 211 212 struct page *meta_page; /* store meta block */ 213 int meta_offset; /* current offset in meta_page */ 214 215 struct bio *current_bio;/* current_bio accepting new data */ 216 217 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 218 u64 seq; /* seq number of the metablock */ 219 sector_t log_start; /* where the io_unit starts */ 220 sector_t log_end; /* where the io_unit ends */ 221 struct list_head log_sibling; /* log->running_ios */ 222 struct list_head stripe_list; /* stripes added to the io_unit */ 223 224 int state; 225 bool need_split_bio; 226 struct bio *split_bio; 227 228 unsigned int has_flush:1; /* include flush request */ 229 unsigned int has_fua:1; /* include fua request */ 230 unsigned int has_null_flush:1; /* include null flush request */ 231 unsigned int has_flush_payload:1; /* include flush payload */ 232 /* 233 * io isn't sent yet, flush/fua request can only be submitted till it's 234 * the first IO in running_ios list 235 */ 236 unsigned int io_deferred:1; 237 238 struct bio_list flush_barriers; /* size == 0 flush bios */ 239 }; 240 241 /* r5l_io_unit state */ 242 enum r5l_io_unit_state { 243 IO_UNIT_RUNNING = 0, /* accepting new IO */ 244 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 245 * don't accepting new bio */ 246 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 247 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 248 }; 249 250 bool r5c_is_writeback(struct r5l_log *log) 251 { 252 return (log != NULL && 253 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 254 } 255 256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 257 { 258 start += inc; 259 if (start >= log->device_size) 260 start = start - log->device_size; 261 return start; 262 } 263 264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 265 sector_t end) 266 { 267 if (end >= start) 268 return end - start; 269 else 270 return end + log->device_size - start; 271 } 272 273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 274 { 275 sector_t used_size; 276 277 used_size = r5l_ring_distance(log, log->last_checkpoint, 278 log->log_start); 279 280 return log->device_size > used_size + size; 281 } 282 283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 284 enum r5l_io_unit_state state) 285 { 286 if (WARN_ON(io->state >= state)) 287 return; 288 io->state = state; 289 } 290 291 static void 292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 293 { 294 struct bio *wbi, *wbi2; 295 296 wbi = dev->written; 297 dev->written = NULL; 298 while (wbi && wbi->bi_iter.bi_sector < 299 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 300 wbi2 = r5_next_bio(conf, wbi, dev->sector); 301 md_write_end(conf->mddev); 302 bio_endio(wbi); 303 wbi = wbi2; 304 } 305 } 306 307 void r5c_handle_cached_data_endio(struct r5conf *conf, 308 struct stripe_head *sh, int disks) 309 { 310 int i; 311 312 for (i = sh->disks; i--; ) { 313 if (sh->dev[i].written) { 314 set_bit(R5_UPTODATE, &sh->dev[i].flags); 315 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 316 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 317 RAID5_STRIPE_SECTORS(conf), 318 !test_bit(STRIPE_DEGRADED, &sh->state), 319 0); 320 } 321 } 322 } 323 324 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 325 326 /* Check whether we should flush some stripes to free up stripe cache */ 327 void r5c_check_stripe_cache_usage(struct r5conf *conf) 328 { 329 int total_cached; 330 331 if (!r5c_is_writeback(conf->log)) 332 return; 333 334 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 335 atomic_read(&conf->r5c_cached_full_stripes); 336 337 /* 338 * The following condition is true for either of the following: 339 * - stripe cache pressure high: 340 * total_cached > 3/4 min_nr_stripes || 341 * empty_inactive_list_nr > 0 342 * - stripe cache pressure moderate: 343 * total_cached > 1/2 min_nr_stripes 344 */ 345 if (total_cached > conf->min_nr_stripes * 1 / 2 || 346 atomic_read(&conf->empty_inactive_list_nr) > 0) 347 r5l_wake_reclaim(conf->log, 0); 348 } 349 350 /* 351 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 352 * stripes in the cache 353 */ 354 void r5c_check_cached_full_stripe(struct r5conf *conf) 355 { 356 if (!r5c_is_writeback(conf->log)) 357 return; 358 359 /* 360 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 361 * or a full stripe (chunk size / 4k stripes). 362 */ 363 if (atomic_read(&conf->r5c_cached_full_stripes) >= 364 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 365 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf))) 366 r5l_wake_reclaim(conf->log, 0); 367 } 368 369 /* 370 * Total log space (in sectors) needed to flush all data in cache 371 * 372 * To avoid deadlock due to log space, it is necessary to reserve log 373 * space to flush critical stripes (stripes that occupying log space near 374 * last_checkpoint). This function helps check how much log space is 375 * required to flush all cached stripes. 376 * 377 * To reduce log space requirements, two mechanisms are used to give cache 378 * flush higher priorities: 379 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 380 * stripes ALREADY in journal can be flushed w/o pending writes; 381 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 382 * can be delayed (r5l_add_no_space_stripe). 383 * 384 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 385 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 386 * pages of journal space. For stripes that has not passed 1, flushing it 387 * requires (conf->raid_disks + 1) pages of journal space. There are at 388 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 389 * required to flush all cached stripes (in pages) is: 390 * 391 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 392 * (group_cnt + 1) * (raid_disks + 1) 393 * or 394 * (stripe_in_journal_count) * (max_degraded + 1) + 395 * (group_cnt + 1) * (raid_disks - max_degraded) 396 */ 397 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 398 { 399 struct r5l_log *log = conf->log; 400 401 if (!r5c_is_writeback(log)) 402 return 0; 403 404 return BLOCK_SECTORS * 405 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 406 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 407 } 408 409 /* 410 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 411 * 412 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 413 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 414 * device is less than 2x of reclaim_required_space. 415 */ 416 static inline void r5c_update_log_state(struct r5l_log *log) 417 { 418 struct r5conf *conf = log->rdev->mddev->private; 419 sector_t free_space; 420 sector_t reclaim_space; 421 bool wake_reclaim = false; 422 423 if (!r5c_is_writeback(log)) 424 return; 425 426 free_space = r5l_ring_distance(log, log->log_start, 427 log->last_checkpoint); 428 reclaim_space = r5c_log_required_to_flush_cache(conf); 429 if (free_space < 2 * reclaim_space) 430 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 431 else { 432 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 433 wake_reclaim = true; 434 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 435 } 436 if (free_space < 3 * reclaim_space) 437 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 438 else 439 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 440 441 if (wake_reclaim) 442 r5l_wake_reclaim(log, 0); 443 } 444 445 /* 446 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 447 * This function should only be called in write-back mode. 448 */ 449 void r5c_make_stripe_write_out(struct stripe_head *sh) 450 { 451 struct r5conf *conf = sh->raid_conf; 452 struct r5l_log *log = conf->log; 453 454 BUG_ON(!r5c_is_writeback(log)); 455 456 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 457 clear_bit(STRIPE_R5C_CACHING, &sh->state); 458 459 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 460 atomic_inc(&conf->preread_active_stripes); 461 } 462 463 static void r5c_handle_data_cached(struct stripe_head *sh) 464 { 465 int i; 466 467 for (i = sh->disks; i--; ) 468 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 469 set_bit(R5_InJournal, &sh->dev[i].flags); 470 clear_bit(R5_LOCKED, &sh->dev[i].flags); 471 } 472 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 473 } 474 475 /* 476 * this journal write must contain full parity, 477 * it may also contain some data pages 478 */ 479 static void r5c_handle_parity_cached(struct stripe_head *sh) 480 { 481 int i; 482 483 for (i = sh->disks; i--; ) 484 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 485 set_bit(R5_Wantwrite, &sh->dev[i].flags); 486 } 487 488 /* 489 * Setting proper flags after writing (or flushing) data and/or parity to the 490 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 491 */ 492 static void r5c_finish_cache_stripe(struct stripe_head *sh) 493 { 494 struct r5l_log *log = sh->raid_conf->log; 495 496 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 497 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 498 /* 499 * Set R5_InJournal for parity dev[pd_idx]. This means 500 * all data AND parity in the journal. For RAID 6, it is 501 * NOT necessary to set the flag for dev[qd_idx], as the 502 * two parities are written out together. 503 */ 504 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 505 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 506 r5c_handle_data_cached(sh); 507 } else { 508 r5c_handle_parity_cached(sh); 509 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 510 } 511 } 512 513 static void r5l_io_run_stripes(struct r5l_io_unit *io) 514 { 515 struct stripe_head *sh, *next; 516 517 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 518 list_del_init(&sh->log_list); 519 520 r5c_finish_cache_stripe(sh); 521 522 set_bit(STRIPE_HANDLE, &sh->state); 523 raid5_release_stripe(sh); 524 } 525 } 526 527 static void r5l_log_run_stripes(struct r5l_log *log) 528 { 529 struct r5l_io_unit *io, *next; 530 531 lockdep_assert_held(&log->io_list_lock); 532 533 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 534 /* don't change list order */ 535 if (io->state < IO_UNIT_IO_END) 536 break; 537 538 list_move_tail(&io->log_sibling, &log->finished_ios); 539 r5l_io_run_stripes(io); 540 } 541 } 542 543 static void r5l_move_to_end_ios(struct r5l_log *log) 544 { 545 struct r5l_io_unit *io, *next; 546 547 lockdep_assert_held(&log->io_list_lock); 548 549 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 550 /* don't change list order */ 551 if (io->state < IO_UNIT_IO_END) 552 break; 553 list_move_tail(&io->log_sibling, &log->io_end_ios); 554 } 555 } 556 557 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 558 static void r5l_log_endio(struct bio *bio) 559 { 560 struct r5l_io_unit *io = bio->bi_private; 561 struct r5l_io_unit *io_deferred; 562 struct r5l_log *log = io->log; 563 unsigned long flags; 564 bool has_null_flush; 565 bool has_flush_payload; 566 567 if (bio->bi_status) 568 md_error(log->rdev->mddev, log->rdev); 569 570 bio_put(bio); 571 mempool_free(io->meta_page, &log->meta_pool); 572 573 spin_lock_irqsave(&log->io_list_lock, flags); 574 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 575 576 /* 577 * if the io doesn't not have null_flush or flush payload, 578 * it is not safe to access it after releasing io_list_lock. 579 * Therefore, it is necessary to check the condition with 580 * the lock held. 581 */ 582 has_null_flush = io->has_null_flush; 583 has_flush_payload = io->has_flush_payload; 584 585 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 586 r5l_move_to_end_ios(log); 587 else 588 r5l_log_run_stripes(log); 589 if (!list_empty(&log->running_ios)) { 590 /* 591 * FLUSH/FUA io_unit is deferred because of ordering, now we 592 * can dispatch it 593 */ 594 io_deferred = list_first_entry(&log->running_ios, 595 struct r5l_io_unit, log_sibling); 596 if (io_deferred->io_deferred) 597 schedule_work(&log->deferred_io_work); 598 } 599 600 spin_unlock_irqrestore(&log->io_list_lock, flags); 601 602 if (log->need_cache_flush) 603 md_wakeup_thread(log->rdev->mddev->thread); 604 605 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 606 if (has_null_flush) { 607 struct bio *bi; 608 609 WARN_ON(bio_list_empty(&io->flush_barriers)); 610 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 611 bio_endio(bi); 612 if (atomic_dec_and_test(&io->pending_stripe)) { 613 __r5l_stripe_write_finished(io); 614 return; 615 } 616 } 617 } 618 /* decrease pending_stripe for flush payload */ 619 if (has_flush_payload) 620 if (atomic_dec_and_test(&io->pending_stripe)) 621 __r5l_stripe_write_finished(io); 622 } 623 624 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 625 { 626 unsigned long flags; 627 628 spin_lock_irqsave(&log->io_list_lock, flags); 629 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 630 spin_unlock_irqrestore(&log->io_list_lock, flags); 631 632 /* 633 * In case of journal device failures, submit_bio will get error 634 * and calls endio, then active stripes will continue write 635 * process. Therefore, it is not necessary to check Faulty bit 636 * of journal device here. 637 * 638 * We can't check split_bio after current_bio is submitted. If 639 * io->split_bio is null, after current_bio is submitted, current_bio 640 * might already be completed and the io_unit is freed. We submit 641 * split_bio first to avoid the issue. 642 */ 643 if (io->split_bio) { 644 if (io->has_flush) 645 io->split_bio->bi_opf |= REQ_PREFLUSH; 646 if (io->has_fua) 647 io->split_bio->bi_opf |= REQ_FUA; 648 submit_bio(io->split_bio); 649 } 650 651 if (io->has_flush) 652 io->current_bio->bi_opf |= REQ_PREFLUSH; 653 if (io->has_fua) 654 io->current_bio->bi_opf |= REQ_FUA; 655 submit_bio(io->current_bio); 656 } 657 658 /* deferred io_unit will be dispatched here */ 659 static void r5l_submit_io_async(struct work_struct *work) 660 { 661 struct r5l_log *log = container_of(work, struct r5l_log, 662 deferred_io_work); 663 struct r5l_io_unit *io = NULL; 664 unsigned long flags; 665 666 spin_lock_irqsave(&log->io_list_lock, flags); 667 if (!list_empty(&log->running_ios)) { 668 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 669 log_sibling); 670 if (!io->io_deferred) 671 io = NULL; 672 else 673 io->io_deferred = 0; 674 } 675 spin_unlock_irqrestore(&log->io_list_lock, flags); 676 if (io) 677 r5l_do_submit_io(log, io); 678 } 679 680 static void r5c_disable_writeback_async(struct work_struct *work) 681 { 682 struct r5l_log *log = container_of(work, struct r5l_log, 683 disable_writeback_work); 684 struct mddev *mddev = log->rdev->mddev; 685 struct r5conf *conf = mddev->private; 686 int locked = 0; 687 688 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 689 return; 690 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 691 mdname(mddev)); 692 693 /* wait superblock change before suspend */ 694 wait_event(mddev->sb_wait, 695 conf->log == NULL || 696 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && 697 (locked = mddev_trylock(mddev)))); 698 if (locked) { 699 mddev_suspend(mddev); 700 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 701 mddev_resume(mddev); 702 mddev_unlock(mddev); 703 } 704 } 705 706 static void r5l_submit_current_io(struct r5l_log *log) 707 { 708 struct r5l_io_unit *io = log->current_io; 709 struct r5l_meta_block *block; 710 unsigned long flags; 711 u32 crc; 712 bool do_submit = true; 713 714 if (!io) 715 return; 716 717 block = page_address(io->meta_page); 718 block->meta_size = cpu_to_le32(io->meta_offset); 719 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 720 block->checksum = cpu_to_le32(crc); 721 722 log->current_io = NULL; 723 spin_lock_irqsave(&log->io_list_lock, flags); 724 if (io->has_flush || io->has_fua) { 725 if (io != list_first_entry(&log->running_ios, 726 struct r5l_io_unit, log_sibling)) { 727 io->io_deferred = 1; 728 do_submit = false; 729 } 730 } 731 spin_unlock_irqrestore(&log->io_list_lock, flags); 732 if (do_submit) 733 r5l_do_submit_io(log, io); 734 } 735 736 static struct bio *r5l_bio_alloc(struct r5l_log *log) 737 { 738 struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS, 739 REQ_OP_WRITE, GFP_NOIO, &log->bs); 740 741 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 742 743 return bio; 744 } 745 746 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 747 { 748 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 749 750 r5c_update_log_state(log); 751 /* 752 * If we filled up the log device start from the beginning again, 753 * which will require a new bio. 754 * 755 * Note: for this to work properly the log size needs to me a multiple 756 * of BLOCK_SECTORS. 757 */ 758 if (log->log_start == 0) 759 io->need_split_bio = true; 760 761 io->log_end = log->log_start; 762 } 763 764 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 765 { 766 struct r5l_io_unit *io; 767 struct r5l_meta_block *block; 768 769 io = mempool_alloc(&log->io_pool, GFP_ATOMIC); 770 if (!io) 771 return NULL; 772 memset(io, 0, sizeof(*io)); 773 774 io->log = log; 775 INIT_LIST_HEAD(&io->log_sibling); 776 INIT_LIST_HEAD(&io->stripe_list); 777 bio_list_init(&io->flush_barriers); 778 io->state = IO_UNIT_RUNNING; 779 780 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO); 781 block = page_address(io->meta_page); 782 clear_page(block); 783 block->magic = cpu_to_le32(R5LOG_MAGIC); 784 block->version = R5LOG_VERSION; 785 block->seq = cpu_to_le64(log->seq); 786 block->position = cpu_to_le64(log->log_start); 787 788 io->log_start = log->log_start; 789 io->meta_offset = sizeof(struct r5l_meta_block); 790 io->seq = log->seq++; 791 792 io->current_bio = r5l_bio_alloc(log); 793 io->current_bio->bi_end_io = r5l_log_endio; 794 io->current_bio->bi_private = io; 795 __bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 796 797 r5_reserve_log_entry(log, io); 798 799 spin_lock_irq(&log->io_list_lock); 800 list_add_tail(&io->log_sibling, &log->running_ios); 801 spin_unlock_irq(&log->io_list_lock); 802 803 return io; 804 } 805 806 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 807 { 808 if (log->current_io && 809 log->current_io->meta_offset + payload_size > PAGE_SIZE) 810 r5l_submit_current_io(log); 811 812 if (!log->current_io) { 813 log->current_io = r5l_new_meta(log); 814 if (!log->current_io) 815 return -ENOMEM; 816 } 817 818 return 0; 819 } 820 821 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 822 sector_t location, 823 u32 checksum1, u32 checksum2, 824 bool checksum2_valid) 825 { 826 struct r5l_io_unit *io = log->current_io; 827 struct r5l_payload_data_parity *payload; 828 829 payload = page_address(io->meta_page) + io->meta_offset; 830 payload->header.type = cpu_to_le16(type); 831 payload->header.flags = cpu_to_le16(0); 832 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 833 (PAGE_SHIFT - 9)); 834 payload->location = cpu_to_le64(location); 835 payload->checksum[0] = cpu_to_le32(checksum1); 836 if (checksum2_valid) 837 payload->checksum[1] = cpu_to_le32(checksum2); 838 839 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 840 sizeof(__le32) * (1 + !!checksum2_valid); 841 } 842 843 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 844 { 845 struct r5l_io_unit *io = log->current_io; 846 847 if (io->need_split_bio) { 848 BUG_ON(io->split_bio); 849 io->split_bio = io->current_bio; 850 io->current_bio = r5l_bio_alloc(log); 851 bio_chain(io->current_bio, io->split_bio); 852 io->need_split_bio = false; 853 } 854 855 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 856 BUG(); 857 858 r5_reserve_log_entry(log, io); 859 } 860 861 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 862 { 863 struct mddev *mddev = log->rdev->mddev; 864 struct r5conf *conf = mddev->private; 865 struct r5l_io_unit *io; 866 struct r5l_payload_flush *payload; 867 int meta_size; 868 869 /* 870 * payload_flush requires extra writes to the journal. 871 * To avoid handling the extra IO in quiesce, just skip 872 * flush_payload 873 */ 874 if (conf->quiesce) 875 return; 876 877 mutex_lock(&log->io_mutex); 878 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 879 880 if (r5l_get_meta(log, meta_size)) { 881 mutex_unlock(&log->io_mutex); 882 return; 883 } 884 885 /* current implementation is one stripe per flush payload */ 886 io = log->current_io; 887 payload = page_address(io->meta_page) + io->meta_offset; 888 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 889 payload->header.flags = cpu_to_le16(0); 890 payload->size = cpu_to_le32(sizeof(__le64)); 891 payload->flush_stripes[0] = cpu_to_le64(sect); 892 io->meta_offset += meta_size; 893 /* multiple flush payloads count as one pending_stripe */ 894 if (!io->has_flush_payload) { 895 io->has_flush_payload = 1; 896 atomic_inc(&io->pending_stripe); 897 } 898 mutex_unlock(&log->io_mutex); 899 } 900 901 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 902 int data_pages, int parity_pages) 903 { 904 int i; 905 int meta_size; 906 int ret; 907 struct r5l_io_unit *io; 908 909 meta_size = 910 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 911 * data_pages) + 912 sizeof(struct r5l_payload_data_parity) + 913 sizeof(__le32) * parity_pages; 914 915 ret = r5l_get_meta(log, meta_size); 916 if (ret) 917 return ret; 918 919 io = log->current_io; 920 921 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 922 io->has_flush = 1; 923 924 for (i = 0; i < sh->disks; i++) { 925 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 926 test_bit(R5_InJournal, &sh->dev[i].flags)) 927 continue; 928 if (i == sh->pd_idx || i == sh->qd_idx) 929 continue; 930 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 931 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 932 io->has_fua = 1; 933 /* 934 * we need to flush journal to make sure recovery can 935 * reach the data with fua flag 936 */ 937 io->has_flush = 1; 938 } 939 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 940 raid5_compute_blocknr(sh, i, 0), 941 sh->dev[i].log_checksum, 0, false); 942 r5l_append_payload_page(log, sh->dev[i].page); 943 } 944 945 if (parity_pages == 2) { 946 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 947 sh->sector, sh->dev[sh->pd_idx].log_checksum, 948 sh->dev[sh->qd_idx].log_checksum, true); 949 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 950 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 951 } else if (parity_pages == 1) { 952 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 953 sh->sector, sh->dev[sh->pd_idx].log_checksum, 954 0, false); 955 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 956 } else /* Just writing data, not parity, in caching phase */ 957 BUG_ON(parity_pages != 0); 958 959 list_add_tail(&sh->log_list, &io->stripe_list); 960 atomic_inc(&io->pending_stripe); 961 sh->log_io = io; 962 963 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 964 return 0; 965 966 if (sh->log_start == MaxSector) { 967 BUG_ON(!list_empty(&sh->r5c)); 968 sh->log_start = io->log_start; 969 spin_lock_irq(&log->stripe_in_journal_lock); 970 list_add_tail(&sh->r5c, 971 &log->stripe_in_journal_list); 972 spin_unlock_irq(&log->stripe_in_journal_lock); 973 atomic_inc(&log->stripe_in_journal_count); 974 } 975 return 0; 976 } 977 978 /* add stripe to no_space_stripes, and then wake up reclaim */ 979 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 980 struct stripe_head *sh) 981 { 982 spin_lock(&log->no_space_stripes_lock); 983 list_add_tail(&sh->log_list, &log->no_space_stripes); 984 spin_unlock(&log->no_space_stripes_lock); 985 } 986 987 /* 988 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 989 * data from log to raid disks), so we shouldn't wait for reclaim here 990 */ 991 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 992 { 993 struct r5conf *conf = sh->raid_conf; 994 int write_disks = 0; 995 int data_pages, parity_pages; 996 int reserve; 997 int i; 998 int ret = 0; 999 bool wake_reclaim = false; 1000 1001 if (!log) 1002 return -EAGAIN; 1003 /* Don't support stripe batch */ 1004 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 1005 test_bit(STRIPE_SYNCING, &sh->state)) { 1006 /* the stripe is written to log, we start writing it to raid */ 1007 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 1008 return -EAGAIN; 1009 } 1010 1011 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 1012 1013 for (i = 0; i < sh->disks; i++) { 1014 void *addr; 1015 1016 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 1017 test_bit(R5_InJournal, &sh->dev[i].flags)) 1018 continue; 1019 1020 write_disks++; 1021 /* checksum is already calculated in last run */ 1022 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1023 continue; 1024 addr = kmap_atomic(sh->dev[i].page); 1025 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1026 addr, PAGE_SIZE); 1027 kunmap_atomic(addr); 1028 } 1029 parity_pages = 1 + !!(sh->qd_idx >= 0); 1030 data_pages = write_disks - parity_pages; 1031 1032 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1033 /* 1034 * The stripe must enter state machine again to finish the write, so 1035 * don't delay. 1036 */ 1037 clear_bit(STRIPE_DELAYED, &sh->state); 1038 atomic_inc(&sh->count); 1039 1040 mutex_lock(&log->io_mutex); 1041 /* meta + data */ 1042 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1043 1044 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1045 if (!r5l_has_free_space(log, reserve)) { 1046 r5l_add_no_space_stripe(log, sh); 1047 wake_reclaim = true; 1048 } else { 1049 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1050 if (ret) { 1051 spin_lock_irq(&log->io_list_lock); 1052 list_add_tail(&sh->log_list, 1053 &log->no_mem_stripes); 1054 spin_unlock_irq(&log->io_list_lock); 1055 } 1056 } 1057 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1058 /* 1059 * log space critical, do not process stripes that are 1060 * not in cache yet (sh->log_start == MaxSector). 1061 */ 1062 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1063 sh->log_start == MaxSector) { 1064 r5l_add_no_space_stripe(log, sh); 1065 wake_reclaim = true; 1066 reserve = 0; 1067 } else if (!r5l_has_free_space(log, reserve)) { 1068 if (sh->log_start == log->last_checkpoint) 1069 BUG(); 1070 else 1071 r5l_add_no_space_stripe(log, sh); 1072 } else { 1073 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1074 if (ret) { 1075 spin_lock_irq(&log->io_list_lock); 1076 list_add_tail(&sh->log_list, 1077 &log->no_mem_stripes); 1078 spin_unlock_irq(&log->io_list_lock); 1079 } 1080 } 1081 } 1082 1083 mutex_unlock(&log->io_mutex); 1084 if (wake_reclaim) 1085 r5l_wake_reclaim(log, reserve); 1086 return 0; 1087 } 1088 1089 void r5l_write_stripe_run(struct r5l_log *log) 1090 { 1091 if (!log) 1092 return; 1093 mutex_lock(&log->io_mutex); 1094 r5l_submit_current_io(log); 1095 mutex_unlock(&log->io_mutex); 1096 } 1097 1098 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1099 { 1100 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1101 /* 1102 * in write through (journal only) 1103 * we flush log disk cache first, then write stripe data to 1104 * raid disks. So if bio is finished, the log disk cache is 1105 * flushed already. The recovery guarantees we can recovery 1106 * the bio from log disk, so we don't need to flush again 1107 */ 1108 if (bio->bi_iter.bi_size == 0) { 1109 bio_endio(bio); 1110 return 0; 1111 } 1112 bio->bi_opf &= ~REQ_PREFLUSH; 1113 } else { 1114 /* write back (with cache) */ 1115 if (bio->bi_iter.bi_size == 0) { 1116 mutex_lock(&log->io_mutex); 1117 r5l_get_meta(log, 0); 1118 bio_list_add(&log->current_io->flush_barriers, bio); 1119 log->current_io->has_flush = 1; 1120 log->current_io->has_null_flush = 1; 1121 atomic_inc(&log->current_io->pending_stripe); 1122 r5l_submit_current_io(log); 1123 mutex_unlock(&log->io_mutex); 1124 return 0; 1125 } 1126 } 1127 return -EAGAIN; 1128 } 1129 1130 /* This will run after log space is reclaimed */ 1131 static void r5l_run_no_space_stripes(struct r5l_log *log) 1132 { 1133 struct stripe_head *sh; 1134 1135 spin_lock(&log->no_space_stripes_lock); 1136 while (!list_empty(&log->no_space_stripes)) { 1137 sh = list_first_entry(&log->no_space_stripes, 1138 struct stripe_head, log_list); 1139 list_del_init(&sh->log_list); 1140 set_bit(STRIPE_HANDLE, &sh->state); 1141 raid5_release_stripe(sh); 1142 } 1143 spin_unlock(&log->no_space_stripes_lock); 1144 } 1145 1146 /* 1147 * calculate new last_checkpoint 1148 * for write through mode, returns log->next_checkpoint 1149 * for write back, returns log_start of first sh in stripe_in_journal_list 1150 */ 1151 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1152 { 1153 struct stripe_head *sh; 1154 struct r5l_log *log = conf->log; 1155 sector_t new_cp; 1156 unsigned long flags; 1157 1158 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1159 return log->next_checkpoint; 1160 1161 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1162 if (list_empty(&conf->log->stripe_in_journal_list)) { 1163 /* all stripes flushed */ 1164 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1165 return log->next_checkpoint; 1166 } 1167 sh = list_first_entry(&conf->log->stripe_in_journal_list, 1168 struct stripe_head, r5c); 1169 new_cp = sh->log_start; 1170 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1171 return new_cp; 1172 } 1173 1174 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1175 { 1176 struct r5conf *conf = log->rdev->mddev->private; 1177 1178 return r5l_ring_distance(log, log->last_checkpoint, 1179 r5c_calculate_new_cp(conf)); 1180 } 1181 1182 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1183 { 1184 struct stripe_head *sh; 1185 1186 lockdep_assert_held(&log->io_list_lock); 1187 1188 if (!list_empty(&log->no_mem_stripes)) { 1189 sh = list_first_entry(&log->no_mem_stripes, 1190 struct stripe_head, log_list); 1191 list_del_init(&sh->log_list); 1192 set_bit(STRIPE_HANDLE, &sh->state); 1193 raid5_release_stripe(sh); 1194 } 1195 } 1196 1197 static bool r5l_complete_finished_ios(struct r5l_log *log) 1198 { 1199 struct r5l_io_unit *io, *next; 1200 bool found = false; 1201 1202 lockdep_assert_held(&log->io_list_lock); 1203 1204 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1205 /* don't change list order */ 1206 if (io->state < IO_UNIT_STRIPE_END) 1207 break; 1208 1209 log->next_checkpoint = io->log_start; 1210 1211 list_del(&io->log_sibling); 1212 mempool_free(io, &log->io_pool); 1213 r5l_run_no_mem_stripe(log); 1214 1215 found = true; 1216 } 1217 1218 return found; 1219 } 1220 1221 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1222 { 1223 struct r5l_log *log = io->log; 1224 struct r5conf *conf = log->rdev->mddev->private; 1225 unsigned long flags; 1226 1227 spin_lock_irqsave(&log->io_list_lock, flags); 1228 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1229 1230 if (!r5l_complete_finished_ios(log)) { 1231 spin_unlock_irqrestore(&log->io_list_lock, flags); 1232 return; 1233 } 1234 1235 if (r5l_reclaimable_space(log) > log->max_free_space || 1236 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1237 r5l_wake_reclaim(log, 0); 1238 1239 spin_unlock_irqrestore(&log->io_list_lock, flags); 1240 wake_up(&log->iounit_wait); 1241 } 1242 1243 void r5l_stripe_write_finished(struct stripe_head *sh) 1244 { 1245 struct r5l_io_unit *io; 1246 1247 io = sh->log_io; 1248 sh->log_io = NULL; 1249 1250 if (io && atomic_dec_and_test(&io->pending_stripe)) 1251 __r5l_stripe_write_finished(io); 1252 } 1253 1254 static void r5l_log_flush_endio(struct bio *bio) 1255 { 1256 struct r5l_log *log = container_of(bio, struct r5l_log, 1257 flush_bio); 1258 unsigned long flags; 1259 struct r5l_io_unit *io; 1260 1261 if (bio->bi_status) 1262 md_error(log->rdev->mddev, log->rdev); 1263 1264 spin_lock_irqsave(&log->io_list_lock, flags); 1265 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1266 r5l_io_run_stripes(io); 1267 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1268 spin_unlock_irqrestore(&log->io_list_lock, flags); 1269 1270 bio_uninit(bio); 1271 } 1272 1273 /* 1274 * Starting dispatch IO to raid. 1275 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1276 * broken meta in the middle of a log causes recovery can't find meta at the 1277 * head of log. If operations require meta at the head persistent in log, we 1278 * must make sure meta before it persistent in log too. A case is: 1279 * 1280 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1281 * data/parity must be persistent in log before we do the write to raid disks. 1282 * 1283 * The solution is we restrictly maintain io_unit list order. In this case, we 1284 * only write stripes of an io_unit to raid disks till the io_unit is the first 1285 * one whose data/parity is in log. 1286 */ 1287 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1288 { 1289 bool do_flush; 1290 1291 if (!log || !log->need_cache_flush) 1292 return; 1293 1294 spin_lock_irq(&log->io_list_lock); 1295 /* flush bio is running */ 1296 if (!list_empty(&log->flushing_ios)) { 1297 spin_unlock_irq(&log->io_list_lock); 1298 return; 1299 } 1300 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1301 do_flush = !list_empty(&log->flushing_ios); 1302 spin_unlock_irq(&log->io_list_lock); 1303 1304 if (!do_flush) 1305 return; 1306 bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0, 1307 REQ_OP_WRITE | REQ_PREFLUSH); 1308 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1309 submit_bio(&log->flush_bio); 1310 } 1311 1312 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1313 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1314 sector_t end) 1315 { 1316 struct block_device *bdev = log->rdev->bdev; 1317 struct mddev *mddev; 1318 1319 r5l_write_super(log, end); 1320 1321 if (!bdev_max_discard_sectors(bdev)) 1322 return; 1323 1324 mddev = log->rdev->mddev; 1325 /* 1326 * Discard could zero data, so before discard we must make sure 1327 * superblock is updated to new log tail. Updating superblock (either 1328 * directly call md_update_sb() or depend on md thread) must hold 1329 * reconfig mutex. On the other hand, raid5_quiesce is called with 1330 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting 1331 * for all IO finish, hence waiting for reclaim thread, while reclaim 1332 * thread is calling this function and waiting for reconfig mutex. So 1333 * there is a deadlock. We workaround this issue with a trylock. 1334 * FIXME: we could miss discard if we can't take reconfig mutex 1335 */ 1336 set_mask_bits(&mddev->sb_flags, 0, 1337 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1338 if (!mddev_trylock(mddev)) 1339 return; 1340 md_update_sb(mddev, 1); 1341 mddev_unlock(mddev); 1342 1343 /* discard IO error really doesn't matter, ignore it */ 1344 if (log->last_checkpoint < end) { 1345 blkdev_issue_discard(bdev, 1346 log->last_checkpoint + log->rdev->data_offset, 1347 end - log->last_checkpoint, GFP_NOIO); 1348 } else { 1349 blkdev_issue_discard(bdev, 1350 log->last_checkpoint + log->rdev->data_offset, 1351 log->device_size - log->last_checkpoint, 1352 GFP_NOIO); 1353 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1354 GFP_NOIO); 1355 } 1356 } 1357 1358 /* 1359 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1360 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1361 * 1362 * must hold conf->device_lock 1363 */ 1364 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1365 { 1366 BUG_ON(list_empty(&sh->lru)); 1367 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1368 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1369 1370 /* 1371 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1372 * raid5_release_stripe() while holding conf->device_lock 1373 */ 1374 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1375 lockdep_assert_held(&conf->device_lock); 1376 1377 list_del_init(&sh->lru); 1378 atomic_inc(&sh->count); 1379 1380 set_bit(STRIPE_HANDLE, &sh->state); 1381 atomic_inc(&conf->active_stripes); 1382 r5c_make_stripe_write_out(sh); 1383 1384 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1385 atomic_inc(&conf->r5c_flushing_partial_stripes); 1386 else 1387 atomic_inc(&conf->r5c_flushing_full_stripes); 1388 raid5_release_stripe(sh); 1389 } 1390 1391 /* 1392 * if num == 0, flush all full stripes 1393 * if num > 0, flush all full stripes. If less than num full stripes are 1394 * flushed, flush some partial stripes until totally num stripes are 1395 * flushed or there is no more cached stripes. 1396 */ 1397 void r5c_flush_cache(struct r5conf *conf, int num) 1398 { 1399 int count; 1400 struct stripe_head *sh, *next; 1401 1402 lockdep_assert_held(&conf->device_lock); 1403 if (!conf->log) 1404 return; 1405 1406 count = 0; 1407 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1408 r5c_flush_stripe(conf, sh); 1409 count++; 1410 } 1411 1412 if (count >= num) 1413 return; 1414 list_for_each_entry_safe(sh, next, 1415 &conf->r5c_partial_stripe_list, lru) { 1416 r5c_flush_stripe(conf, sh); 1417 if (++count >= num) 1418 break; 1419 } 1420 } 1421 1422 static void r5c_do_reclaim(struct r5conf *conf) 1423 { 1424 struct r5l_log *log = conf->log; 1425 struct stripe_head *sh; 1426 int count = 0; 1427 unsigned long flags; 1428 int total_cached; 1429 int stripes_to_flush; 1430 int flushing_partial, flushing_full; 1431 1432 if (!r5c_is_writeback(log)) 1433 return; 1434 1435 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1436 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1437 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1438 atomic_read(&conf->r5c_cached_full_stripes) - 1439 flushing_full - flushing_partial; 1440 1441 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1442 atomic_read(&conf->empty_inactive_list_nr) > 0) 1443 /* 1444 * if stripe cache pressure high, flush all full stripes and 1445 * some partial stripes 1446 */ 1447 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1448 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1449 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1450 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1451 /* 1452 * if stripe cache pressure moderate, or if there is many full 1453 * stripes,flush all full stripes 1454 */ 1455 stripes_to_flush = 0; 1456 else 1457 /* no need to flush */ 1458 stripes_to_flush = -1; 1459 1460 if (stripes_to_flush >= 0) { 1461 spin_lock_irqsave(&conf->device_lock, flags); 1462 r5c_flush_cache(conf, stripes_to_flush); 1463 spin_unlock_irqrestore(&conf->device_lock, flags); 1464 } 1465 1466 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1467 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1468 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1469 spin_lock(&conf->device_lock); 1470 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1471 /* 1472 * stripes on stripe_in_journal_list could be in any 1473 * state of the stripe_cache state machine. In this 1474 * case, we only want to flush stripe on 1475 * r5c_cached_full/partial_stripes. The following 1476 * condition makes sure the stripe is on one of the 1477 * two lists. 1478 */ 1479 if (!list_empty(&sh->lru) && 1480 !test_bit(STRIPE_HANDLE, &sh->state) && 1481 atomic_read(&sh->count) == 0) { 1482 r5c_flush_stripe(conf, sh); 1483 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1484 break; 1485 } 1486 } 1487 spin_unlock(&conf->device_lock); 1488 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1489 } 1490 1491 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1492 r5l_run_no_space_stripes(log); 1493 1494 md_wakeup_thread(conf->mddev->thread); 1495 } 1496 1497 static void r5l_do_reclaim(struct r5l_log *log) 1498 { 1499 struct r5conf *conf = log->rdev->mddev->private; 1500 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1501 sector_t reclaimable; 1502 sector_t next_checkpoint; 1503 bool write_super; 1504 1505 spin_lock_irq(&log->io_list_lock); 1506 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1507 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1508 /* 1509 * move proper io_unit to reclaim list. We should not change the order. 1510 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1511 * shouldn't reuse space of an unreclaimable io_unit 1512 */ 1513 while (1) { 1514 reclaimable = r5l_reclaimable_space(log); 1515 if (reclaimable >= reclaim_target || 1516 (list_empty(&log->running_ios) && 1517 list_empty(&log->io_end_ios) && 1518 list_empty(&log->flushing_ios) && 1519 list_empty(&log->finished_ios))) 1520 break; 1521 1522 md_wakeup_thread(log->rdev->mddev->thread); 1523 wait_event_lock_irq(log->iounit_wait, 1524 r5l_reclaimable_space(log) > reclaimable, 1525 log->io_list_lock); 1526 } 1527 1528 next_checkpoint = r5c_calculate_new_cp(conf); 1529 spin_unlock_irq(&log->io_list_lock); 1530 1531 if (reclaimable == 0 || !write_super) 1532 return; 1533 1534 /* 1535 * write_super will flush cache of each raid disk. We must write super 1536 * here, because the log area might be reused soon and we don't want to 1537 * confuse recovery 1538 */ 1539 r5l_write_super_and_discard_space(log, next_checkpoint); 1540 1541 mutex_lock(&log->io_mutex); 1542 log->last_checkpoint = next_checkpoint; 1543 r5c_update_log_state(log); 1544 mutex_unlock(&log->io_mutex); 1545 1546 r5l_run_no_space_stripes(log); 1547 } 1548 1549 static void r5l_reclaim_thread(struct md_thread *thread) 1550 { 1551 struct mddev *mddev = thread->mddev; 1552 struct r5conf *conf = mddev->private; 1553 struct r5l_log *log = conf->log; 1554 1555 if (!log) 1556 return; 1557 r5c_do_reclaim(conf); 1558 r5l_do_reclaim(log); 1559 } 1560 1561 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1562 { 1563 unsigned long target; 1564 unsigned long new = (unsigned long)space; /* overflow in theory */ 1565 1566 if (!log) 1567 return; 1568 1569 target = READ_ONCE(log->reclaim_target); 1570 do { 1571 if (new < target) 1572 return; 1573 } while (!try_cmpxchg(&log->reclaim_target, &target, new)); 1574 md_wakeup_thread(log->reclaim_thread); 1575 } 1576 1577 void r5l_quiesce(struct r5l_log *log, int quiesce) 1578 { 1579 struct mddev *mddev = log->rdev->mddev; 1580 struct md_thread *thread = rcu_dereference_protected( 1581 log->reclaim_thread, lockdep_is_held(&mddev->reconfig_mutex)); 1582 1583 if (quiesce) { 1584 /* make sure r5l_write_super_and_discard_space exits */ 1585 wake_up(&mddev->sb_wait); 1586 kthread_park(thread->tsk); 1587 r5l_wake_reclaim(log, MaxSector); 1588 r5l_do_reclaim(log); 1589 } else 1590 kthread_unpark(thread->tsk); 1591 } 1592 1593 bool r5l_log_disk_error(struct r5conf *conf) 1594 { 1595 struct r5l_log *log = conf->log; 1596 1597 /* don't allow write if journal disk is missing */ 1598 if (!log) 1599 return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1600 else 1601 return test_bit(Faulty, &log->rdev->flags); 1602 } 1603 1604 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1605 1606 struct r5l_recovery_ctx { 1607 struct page *meta_page; /* current meta */ 1608 sector_t meta_total_blocks; /* total size of current meta and data */ 1609 sector_t pos; /* recovery position */ 1610 u64 seq; /* recovery position seq */ 1611 int data_parity_stripes; /* number of data_parity stripes */ 1612 int data_only_stripes; /* number of data_only stripes */ 1613 struct list_head cached_list; 1614 1615 /* 1616 * read ahead page pool (ra_pool) 1617 * in recovery, log is read sequentially. It is not efficient to 1618 * read every page with sync_page_io(). The read ahead page pool 1619 * reads multiple pages with one IO, so further log read can 1620 * just copy data from the pool. 1621 */ 1622 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1623 struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE]; 1624 sector_t pool_offset; /* offset of first page in the pool */ 1625 int total_pages; /* total allocated pages */ 1626 int valid_pages; /* pages with valid data */ 1627 }; 1628 1629 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1630 struct r5l_recovery_ctx *ctx) 1631 { 1632 struct page *page; 1633 1634 ctx->valid_pages = 0; 1635 ctx->total_pages = 0; 1636 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1637 page = alloc_page(GFP_KERNEL); 1638 1639 if (!page) 1640 break; 1641 ctx->ra_pool[ctx->total_pages] = page; 1642 ctx->total_pages += 1; 1643 } 1644 1645 if (ctx->total_pages == 0) 1646 return -ENOMEM; 1647 1648 ctx->pool_offset = 0; 1649 return 0; 1650 } 1651 1652 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1653 struct r5l_recovery_ctx *ctx) 1654 { 1655 int i; 1656 1657 for (i = 0; i < ctx->total_pages; ++i) 1658 put_page(ctx->ra_pool[i]); 1659 } 1660 1661 /* 1662 * fetch ctx->valid_pages pages from offset 1663 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1664 * However, if the offset is close to the end of the journal device, 1665 * ctx->valid_pages could be smaller than ctx->total_pages 1666 */ 1667 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1668 struct r5l_recovery_ctx *ctx, 1669 sector_t offset) 1670 { 1671 struct bio bio; 1672 int ret; 1673 1674 bio_init(&bio, log->rdev->bdev, ctx->ra_bvec, 1675 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ); 1676 bio.bi_iter.bi_sector = log->rdev->data_offset + offset; 1677 1678 ctx->valid_pages = 0; 1679 ctx->pool_offset = offset; 1680 1681 while (ctx->valid_pages < ctx->total_pages) { 1682 __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 1683 0); 1684 ctx->valid_pages += 1; 1685 1686 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1687 1688 if (offset == 0) /* reached end of the device */ 1689 break; 1690 } 1691 1692 ret = submit_bio_wait(&bio); 1693 bio_uninit(&bio); 1694 return ret; 1695 } 1696 1697 /* 1698 * try read a page from the read ahead page pool, if the page is not in the 1699 * pool, call r5l_recovery_fetch_ra_pool 1700 */ 1701 static int r5l_recovery_read_page(struct r5l_log *log, 1702 struct r5l_recovery_ctx *ctx, 1703 struct page *page, 1704 sector_t offset) 1705 { 1706 int ret; 1707 1708 if (offset < ctx->pool_offset || 1709 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1710 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1711 if (ret) 1712 return ret; 1713 } 1714 1715 BUG_ON(offset < ctx->pool_offset || 1716 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1717 1718 memcpy(page_address(page), 1719 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1720 BLOCK_SECTOR_SHIFT]), 1721 PAGE_SIZE); 1722 return 0; 1723 } 1724 1725 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1726 struct r5l_recovery_ctx *ctx) 1727 { 1728 struct page *page = ctx->meta_page; 1729 struct r5l_meta_block *mb; 1730 u32 crc, stored_crc; 1731 int ret; 1732 1733 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1734 if (ret != 0) 1735 return ret; 1736 1737 mb = page_address(page); 1738 stored_crc = le32_to_cpu(mb->checksum); 1739 mb->checksum = 0; 1740 1741 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1742 le64_to_cpu(mb->seq) != ctx->seq || 1743 mb->version != R5LOG_VERSION || 1744 le64_to_cpu(mb->position) != ctx->pos) 1745 return -EINVAL; 1746 1747 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1748 if (stored_crc != crc) 1749 return -EINVAL; 1750 1751 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1752 return -EINVAL; 1753 1754 ctx->meta_total_blocks = BLOCK_SECTORS; 1755 1756 return 0; 1757 } 1758 1759 static void 1760 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1761 struct page *page, 1762 sector_t pos, u64 seq) 1763 { 1764 struct r5l_meta_block *mb; 1765 1766 mb = page_address(page); 1767 clear_page(mb); 1768 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1769 mb->version = R5LOG_VERSION; 1770 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1771 mb->seq = cpu_to_le64(seq); 1772 mb->position = cpu_to_le64(pos); 1773 } 1774 1775 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1776 u64 seq) 1777 { 1778 struct page *page; 1779 struct r5l_meta_block *mb; 1780 1781 page = alloc_page(GFP_KERNEL); 1782 if (!page) 1783 return -ENOMEM; 1784 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1785 mb = page_address(page); 1786 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1787 mb, PAGE_SIZE)); 1788 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE | 1789 REQ_SYNC | REQ_FUA, false)) { 1790 __free_page(page); 1791 return -EIO; 1792 } 1793 __free_page(page); 1794 return 0; 1795 } 1796 1797 /* 1798 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1799 * to mark valid (potentially not flushed) data in the journal. 1800 * 1801 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1802 * so there should not be any mismatch here. 1803 */ 1804 static void r5l_recovery_load_data(struct r5l_log *log, 1805 struct stripe_head *sh, 1806 struct r5l_recovery_ctx *ctx, 1807 struct r5l_payload_data_parity *payload, 1808 sector_t log_offset) 1809 { 1810 struct mddev *mddev = log->rdev->mddev; 1811 struct r5conf *conf = mddev->private; 1812 int dd_idx; 1813 1814 raid5_compute_sector(conf, 1815 le64_to_cpu(payload->location), 0, 1816 &dd_idx, sh); 1817 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1818 sh->dev[dd_idx].log_checksum = 1819 le32_to_cpu(payload->checksum[0]); 1820 ctx->meta_total_blocks += BLOCK_SECTORS; 1821 1822 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1823 set_bit(STRIPE_R5C_CACHING, &sh->state); 1824 } 1825 1826 static void r5l_recovery_load_parity(struct r5l_log *log, 1827 struct stripe_head *sh, 1828 struct r5l_recovery_ctx *ctx, 1829 struct r5l_payload_data_parity *payload, 1830 sector_t log_offset) 1831 { 1832 struct mddev *mddev = log->rdev->mddev; 1833 struct r5conf *conf = mddev->private; 1834 1835 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1836 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1837 sh->dev[sh->pd_idx].log_checksum = 1838 le32_to_cpu(payload->checksum[0]); 1839 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1840 1841 if (sh->qd_idx >= 0) { 1842 r5l_recovery_read_page( 1843 log, ctx, sh->dev[sh->qd_idx].page, 1844 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1845 sh->dev[sh->qd_idx].log_checksum = 1846 le32_to_cpu(payload->checksum[1]); 1847 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1848 } 1849 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1850 } 1851 1852 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1853 { 1854 int i; 1855 1856 sh->state = 0; 1857 sh->log_start = MaxSector; 1858 for (i = sh->disks; i--; ) 1859 sh->dev[i].flags = 0; 1860 } 1861 1862 static void 1863 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1864 struct stripe_head *sh, 1865 struct r5l_recovery_ctx *ctx) 1866 { 1867 struct md_rdev *rdev, *rrdev; 1868 int disk_index; 1869 int data_count = 0; 1870 1871 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1872 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1873 continue; 1874 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1875 continue; 1876 data_count++; 1877 } 1878 1879 /* 1880 * stripes that only have parity must have been flushed 1881 * before the crash that we are now recovering from, so 1882 * there is nothing more to recovery. 1883 */ 1884 if (data_count == 0) 1885 goto out; 1886 1887 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1888 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1889 continue; 1890 1891 /* in case device is broken */ 1892 rcu_read_lock(); 1893 rdev = rcu_dereference(conf->disks[disk_index].rdev); 1894 if (rdev) { 1895 atomic_inc(&rdev->nr_pending); 1896 rcu_read_unlock(); 1897 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1898 sh->dev[disk_index].page, REQ_OP_WRITE, 1899 false); 1900 rdev_dec_pending(rdev, rdev->mddev); 1901 rcu_read_lock(); 1902 } 1903 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 1904 if (rrdev) { 1905 atomic_inc(&rrdev->nr_pending); 1906 rcu_read_unlock(); 1907 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1908 sh->dev[disk_index].page, REQ_OP_WRITE, 1909 false); 1910 rdev_dec_pending(rrdev, rrdev->mddev); 1911 rcu_read_lock(); 1912 } 1913 rcu_read_unlock(); 1914 } 1915 ctx->data_parity_stripes++; 1916 out: 1917 r5l_recovery_reset_stripe(sh); 1918 } 1919 1920 static struct stripe_head * 1921 r5c_recovery_alloc_stripe( 1922 struct r5conf *conf, 1923 sector_t stripe_sect, 1924 int noblock) 1925 { 1926 struct stripe_head *sh; 1927 1928 sh = raid5_get_active_stripe(conf, NULL, stripe_sect, 1929 noblock ? R5_GAS_NOBLOCK : 0); 1930 if (!sh) 1931 return NULL; /* no more stripe available */ 1932 1933 r5l_recovery_reset_stripe(sh); 1934 1935 return sh; 1936 } 1937 1938 static struct stripe_head * 1939 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1940 { 1941 struct stripe_head *sh; 1942 1943 list_for_each_entry(sh, list, lru) 1944 if (sh->sector == sect) 1945 return sh; 1946 return NULL; 1947 } 1948 1949 static void 1950 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1951 struct r5l_recovery_ctx *ctx) 1952 { 1953 struct stripe_head *sh, *next; 1954 1955 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1956 r5l_recovery_reset_stripe(sh); 1957 list_del_init(&sh->lru); 1958 raid5_release_stripe(sh); 1959 } 1960 } 1961 1962 static void 1963 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1964 struct r5l_recovery_ctx *ctx) 1965 { 1966 struct stripe_head *sh, *next; 1967 1968 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1969 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1970 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1971 list_del_init(&sh->lru); 1972 raid5_release_stripe(sh); 1973 } 1974 } 1975 1976 /* if matches return 0; otherwise return -EINVAL */ 1977 static int 1978 r5l_recovery_verify_data_checksum(struct r5l_log *log, 1979 struct r5l_recovery_ctx *ctx, 1980 struct page *page, 1981 sector_t log_offset, __le32 log_checksum) 1982 { 1983 void *addr; 1984 u32 checksum; 1985 1986 r5l_recovery_read_page(log, ctx, page, log_offset); 1987 addr = kmap_atomic(page); 1988 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 1989 kunmap_atomic(addr); 1990 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 1991 } 1992 1993 /* 1994 * before loading data to stripe cache, we need verify checksum for all data, 1995 * if there is mismatch for any data page, we drop all data in the mata block 1996 */ 1997 static int 1998 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 1999 struct r5l_recovery_ctx *ctx) 2000 { 2001 struct mddev *mddev = log->rdev->mddev; 2002 struct r5conf *conf = mddev->private; 2003 struct r5l_meta_block *mb = page_address(ctx->meta_page); 2004 sector_t mb_offset = sizeof(struct r5l_meta_block); 2005 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2006 struct page *page; 2007 struct r5l_payload_data_parity *payload; 2008 struct r5l_payload_flush *payload_flush; 2009 2010 page = alloc_page(GFP_KERNEL); 2011 if (!page) 2012 return -ENOMEM; 2013 2014 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2015 payload = (void *)mb + mb_offset; 2016 payload_flush = (void *)mb + mb_offset; 2017 2018 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2019 if (r5l_recovery_verify_data_checksum( 2020 log, ctx, page, log_offset, 2021 payload->checksum[0]) < 0) 2022 goto mismatch; 2023 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2024 if (r5l_recovery_verify_data_checksum( 2025 log, ctx, page, log_offset, 2026 payload->checksum[0]) < 0) 2027 goto mismatch; 2028 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2029 r5l_recovery_verify_data_checksum( 2030 log, ctx, page, 2031 r5l_ring_add(log, log_offset, 2032 BLOCK_SECTORS), 2033 payload->checksum[1]) < 0) 2034 goto mismatch; 2035 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2036 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2037 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2038 goto mismatch; 2039 2040 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2041 mb_offset += sizeof(struct r5l_payload_flush) + 2042 le32_to_cpu(payload_flush->size); 2043 } else { 2044 /* DATA or PARITY payload */ 2045 log_offset = r5l_ring_add(log, log_offset, 2046 le32_to_cpu(payload->size)); 2047 mb_offset += sizeof(struct r5l_payload_data_parity) + 2048 sizeof(__le32) * 2049 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2050 } 2051 2052 } 2053 2054 put_page(page); 2055 return 0; 2056 2057 mismatch: 2058 put_page(page); 2059 return -EINVAL; 2060 } 2061 2062 /* 2063 * Analyze all data/parity pages in one meta block 2064 * Returns: 2065 * 0 for success 2066 * -EINVAL for unknown playload type 2067 * -EAGAIN for checksum mismatch of data page 2068 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2069 */ 2070 static int 2071 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2072 struct r5l_recovery_ctx *ctx, 2073 struct list_head *cached_stripe_list) 2074 { 2075 struct mddev *mddev = log->rdev->mddev; 2076 struct r5conf *conf = mddev->private; 2077 struct r5l_meta_block *mb; 2078 struct r5l_payload_data_parity *payload; 2079 struct r5l_payload_flush *payload_flush; 2080 int mb_offset; 2081 sector_t log_offset; 2082 sector_t stripe_sect; 2083 struct stripe_head *sh; 2084 int ret; 2085 2086 /* 2087 * for mismatch in data blocks, we will drop all data in this mb, but 2088 * we will still read next mb for other data with FLUSH flag, as 2089 * io_unit could finish out of order. 2090 */ 2091 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2092 if (ret == -EINVAL) 2093 return -EAGAIN; 2094 else if (ret) 2095 return ret; /* -ENOMEM duo to alloc_page() failed */ 2096 2097 mb = page_address(ctx->meta_page); 2098 mb_offset = sizeof(struct r5l_meta_block); 2099 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2100 2101 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2102 int dd; 2103 2104 payload = (void *)mb + mb_offset; 2105 payload_flush = (void *)mb + mb_offset; 2106 2107 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2108 int i, count; 2109 2110 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2111 for (i = 0; i < count; ++i) { 2112 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2113 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2114 stripe_sect); 2115 if (sh) { 2116 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2117 r5l_recovery_reset_stripe(sh); 2118 list_del_init(&sh->lru); 2119 raid5_release_stripe(sh); 2120 } 2121 } 2122 2123 mb_offset += sizeof(struct r5l_payload_flush) + 2124 le32_to_cpu(payload_flush->size); 2125 continue; 2126 } 2127 2128 /* DATA or PARITY payload */ 2129 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2130 raid5_compute_sector( 2131 conf, le64_to_cpu(payload->location), 0, &dd, 2132 NULL) 2133 : le64_to_cpu(payload->location); 2134 2135 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2136 stripe_sect); 2137 2138 if (!sh) { 2139 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1); 2140 /* 2141 * cannot get stripe from raid5_get_active_stripe 2142 * try replay some stripes 2143 */ 2144 if (!sh) { 2145 r5c_recovery_replay_stripes( 2146 cached_stripe_list, ctx); 2147 sh = r5c_recovery_alloc_stripe( 2148 conf, stripe_sect, 1); 2149 } 2150 if (!sh) { 2151 int new_size = conf->min_nr_stripes * 2; 2152 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2153 mdname(mddev), 2154 new_size); 2155 ret = raid5_set_cache_size(mddev, new_size); 2156 if (conf->min_nr_stripes <= new_size / 2) { 2157 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n", 2158 mdname(mddev), 2159 ret, 2160 new_size, 2161 conf->min_nr_stripes, 2162 conf->max_nr_stripes); 2163 return -ENOMEM; 2164 } 2165 sh = r5c_recovery_alloc_stripe( 2166 conf, stripe_sect, 0); 2167 } 2168 if (!sh) { 2169 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2170 mdname(mddev)); 2171 return -ENOMEM; 2172 } 2173 list_add_tail(&sh->lru, cached_stripe_list); 2174 } 2175 2176 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2177 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2178 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2179 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2180 list_move_tail(&sh->lru, cached_stripe_list); 2181 } 2182 r5l_recovery_load_data(log, sh, ctx, payload, 2183 log_offset); 2184 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2185 r5l_recovery_load_parity(log, sh, ctx, payload, 2186 log_offset); 2187 else 2188 return -EINVAL; 2189 2190 log_offset = r5l_ring_add(log, log_offset, 2191 le32_to_cpu(payload->size)); 2192 2193 mb_offset += sizeof(struct r5l_payload_data_parity) + 2194 sizeof(__le32) * 2195 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2196 } 2197 2198 return 0; 2199 } 2200 2201 /* 2202 * Load the stripe into cache. The stripe will be written out later by 2203 * the stripe cache state machine. 2204 */ 2205 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2206 struct stripe_head *sh) 2207 { 2208 struct r5dev *dev; 2209 int i; 2210 2211 for (i = sh->disks; i--; ) { 2212 dev = sh->dev + i; 2213 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2214 set_bit(R5_InJournal, &dev->flags); 2215 set_bit(R5_UPTODATE, &dev->flags); 2216 } 2217 } 2218 } 2219 2220 /* 2221 * Scan through the log for all to-be-flushed data 2222 * 2223 * For stripes with data and parity, namely Data-Parity stripe 2224 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2225 * 2226 * For stripes with only data, namely Data-Only stripe 2227 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2228 * 2229 * For a stripe, if we see data after parity, we should discard all previous 2230 * data and parity for this stripe, as these data are already flushed to 2231 * the array. 2232 * 2233 * At the end of the scan, we return the new journal_tail, which points to 2234 * first data-only stripe on the journal device, or next invalid meta block. 2235 */ 2236 static int r5c_recovery_flush_log(struct r5l_log *log, 2237 struct r5l_recovery_ctx *ctx) 2238 { 2239 struct stripe_head *sh; 2240 int ret = 0; 2241 2242 /* scan through the log */ 2243 while (1) { 2244 if (r5l_recovery_read_meta_block(log, ctx)) 2245 break; 2246 2247 ret = r5c_recovery_analyze_meta_block(log, ctx, 2248 &ctx->cached_list); 2249 /* 2250 * -EAGAIN means mismatch in data block, in this case, we still 2251 * try scan the next metablock 2252 */ 2253 if (ret && ret != -EAGAIN) 2254 break; /* ret == -EINVAL or -ENOMEM */ 2255 ctx->seq++; 2256 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2257 } 2258 2259 if (ret == -ENOMEM) { 2260 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2261 return ret; 2262 } 2263 2264 /* replay data-parity stripes */ 2265 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2266 2267 /* load data-only stripes to stripe cache */ 2268 list_for_each_entry(sh, &ctx->cached_list, lru) { 2269 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2270 r5c_recovery_load_one_stripe(log, sh); 2271 ctx->data_only_stripes++; 2272 } 2273 2274 return 0; 2275 } 2276 2277 /* 2278 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2279 * log will start here. but we can't let superblock point to last valid 2280 * meta block. The log might looks like: 2281 * | meta 1| meta 2| meta 3| 2282 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2283 * superblock points to meta 1, we write a new valid meta 2n. if crash 2284 * happens again, new recovery will start from meta 1. Since meta 2n is 2285 * valid now, recovery will think meta 3 is valid, which is wrong. 2286 * The solution is we create a new meta in meta2 with its seq == meta 2287 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2288 * will not think meta 3 is a valid meta, because its seq doesn't match 2289 */ 2290 2291 /* 2292 * Before recovery, the log looks like the following 2293 * 2294 * --------------------------------------------- 2295 * | valid log | invalid log | 2296 * --------------------------------------------- 2297 * ^ 2298 * |- log->last_checkpoint 2299 * |- log->last_cp_seq 2300 * 2301 * Now we scan through the log until we see invalid entry 2302 * 2303 * --------------------------------------------- 2304 * | valid log | invalid log | 2305 * --------------------------------------------- 2306 * ^ ^ 2307 * |- log->last_checkpoint |- ctx->pos 2308 * |- log->last_cp_seq |- ctx->seq 2309 * 2310 * From this point, we need to increase seq number by 10 to avoid 2311 * confusing next recovery. 2312 * 2313 * --------------------------------------------- 2314 * | valid log | invalid log | 2315 * --------------------------------------------- 2316 * ^ ^ 2317 * |- log->last_checkpoint |- ctx->pos+1 2318 * |- log->last_cp_seq |- ctx->seq+10001 2319 * 2320 * However, it is not safe to start the state machine yet, because data only 2321 * parities are not yet secured in RAID. To save these data only parities, we 2322 * rewrite them from seq+11. 2323 * 2324 * ----------------------------------------------------------------- 2325 * | valid log | data only stripes | invalid log | 2326 * ----------------------------------------------------------------- 2327 * ^ ^ 2328 * |- log->last_checkpoint |- ctx->pos+n 2329 * |- log->last_cp_seq |- ctx->seq+10000+n 2330 * 2331 * If failure happens again during this process, the recovery can safe start 2332 * again from log->last_checkpoint. 2333 * 2334 * Once data only stripes are rewritten to journal, we move log_tail 2335 * 2336 * ----------------------------------------------------------------- 2337 * | old log | data only stripes | invalid log | 2338 * ----------------------------------------------------------------- 2339 * ^ ^ 2340 * |- log->last_checkpoint |- ctx->pos+n 2341 * |- log->last_cp_seq |- ctx->seq+10000+n 2342 * 2343 * Then we can safely start the state machine. If failure happens from this 2344 * point on, the recovery will start from new log->last_checkpoint. 2345 */ 2346 static int 2347 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2348 struct r5l_recovery_ctx *ctx) 2349 { 2350 struct stripe_head *sh; 2351 struct mddev *mddev = log->rdev->mddev; 2352 struct page *page; 2353 sector_t next_checkpoint = MaxSector; 2354 2355 page = alloc_page(GFP_KERNEL); 2356 if (!page) { 2357 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2358 mdname(mddev)); 2359 return -ENOMEM; 2360 } 2361 2362 WARN_ON(list_empty(&ctx->cached_list)); 2363 2364 list_for_each_entry(sh, &ctx->cached_list, lru) { 2365 struct r5l_meta_block *mb; 2366 int i; 2367 int offset; 2368 sector_t write_pos; 2369 2370 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2371 r5l_recovery_create_empty_meta_block(log, page, 2372 ctx->pos, ctx->seq); 2373 mb = page_address(page); 2374 offset = le32_to_cpu(mb->meta_size); 2375 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2376 2377 for (i = sh->disks; i--; ) { 2378 struct r5dev *dev = &sh->dev[i]; 2379 struct r5l_payload_data_parity *payload; 2380 void *addr; 2381 2382 if (test_bit(R5_InJournal, &dev->flags)) { 2383 payload = (void *)mb + offset; 2384 payload->header.type = cpu_to_le16( 2385 R5LOG_PAYLOAD_DATA); 2386 payload->size = cpu_to_le32(BLOCK_SECTORS); 2387 payload->location = cpu_to_le64( 2388 raid5_compute_blocknr(sh, i, 0)); 2389 addr = kmap_atomic(dev->page); 2390 payload->checksum[0] = cpu_to_le32( 2391 crc32c_le(log->uuid_checksum, addr, 2392 PAGE_SIZE)); 2393 kunmap_atomic(addr); 2394 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2395 dev->page, REQ_OP_WRITE, false); 2396 write_pos = r5l_ring_add(log, write_pos, 2397 BLOCK_SECTORS); 2398 offset += sizeof(__le32) + 2399 sizeof(struct r5l_payload_data_parity); 2400 2401 } 2402 } 2403 mb->meta_size = cpu_to_le32(offset); 2404 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2405 mb, PAGE_SIZE)); 2406 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2407 REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false); 2408 sh->log_start = ctx->pos; 2409 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2410 atomic_inc(&log->stripe_in_journal_count); 2411 ctx->pos = write_pos; 2412 ctx->seq += 1; 2413 next_checkpoint = sh->log_start; 2414 } 2415 log->next_checkpoint = next_checkpoint; 2416 __free_page(page); 2417 return 0; 2418 } 2419 2420 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2421 struct r5l_recovery_ctx *ctx) 2422 { 2423 struct mddev *mddev = log->rdev->mddev; 2424 struct r5conf *conf = mddev->private; 2425 struct stripe_head *sh, *next; 2426 bool cleared_pending = false; 2427 2428 if (ctx->data_only_stripes == 0) 2429 return; 2430 2431 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2432 cleared_pending = true; 2433 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2434 } 2435 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2436 2437 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2438 r5c_make_stripe_write_out(sh); 2439 set_bit(STRIPE_HANDLE, &sh->state); 2440 list_del_init(&sh->lru); 2441 raid5_release_stripe(sh); 2442 } 2443 2444 /* reuse conf->wait_for_quiescent in recovery */ 2445 wait_event(conf->wait_for_quiescent, 2446 atomic_read(&conf->active_stripes) == 0); 2447 2448 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2449 if (cleared_pending) 2450 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2451 } 2452 2453 static int r5l_recovery_log(struct r5l_log *log) 2454 { 2455 struct mddev *mddev = log->rdev->mddev; 2456 struct r5l_recovery_ctx *ctx; 2457 int ret; 2458 sector_t pos; 2459 2460 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2461 if (!ctx) 2462 return -ENOMEM; 2463 2464 ctx->pos = log->last_checkpoint; 2465 ctx->seq = log->last_cp_seq; 2466 INIT_LIST_HEAD(&ctx->cached_list); 2467 ctx->meta_page = alloc_page(GFP_KERNEL); 2468 2469 if (!ctx->meta_page) { 2470 ret = -ENOMEM; 2471 goto meta_page; 2472 } 2473 2474 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2475 ret = -ENOMEM; 2476 goto ra_pool; 2477 } 2478 2479 ret = r5c_recovery_flush_log(log, ctx); 2480 2481 if (ret) 2482 goto error; 2483 2484 pos = ctx->pos; 2485 ctx->seq += 10000; 2486 2487 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2488 pr_info("md/raid:%s: starting from clean shutdown\n", 2489 mdname(mddev)); 2490 else 2491 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2492 mdname(mddev), ctx->data_only_stripes, 2493 ctx->data_parity_stripes); 2494 2495 if (ctx->data_only_stripes == 0) { 2496 log->next_checkpoint = ctx->pos; 2497 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2498 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2499 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2500 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2501 mdname(mddev)); 2502 ret = -EIO; 2503 goto error; 2504 } 2505 2506 log->log_start = ctx->pos; 2507 log->seq = ctx->seq; 2508 log->last_checkpoint = pos; 2509 r5l_write_super(log, pos); 2510 2511 r5c_recovery_flush_data_only_stripes(log, ctx); 2512 ret = 0; 2513 error: 2514 r5l_recovery_free_ra_pool(log, ctx); 2515 ra_pool: 2516 __free_page(ctx->meta_page); 2517 meta_page: 2518 kfree(ctx); 2519 return ret; 2520 } 2521 2522 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2523 { 2524 struct mddev *mddev = log->rdev->mddev; 2525 2526 log->rdev->journal_tail = cp; 2527 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2528 } 2529 2530 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2531 { 2532 struct r5conf *conf; 2533 int ret; 2534 2535 ret = mddev_lock(mddev); 2536 if (ret) 2537 return ret; 2538 2539 conf = mddev->private; 2540 if (!conf || !conf->log) 2541 goto out_unlock; 2542 2543 switch (conf->log->r5c_journal_mode) { 2544 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2545 ret = snprintf( 2546 page, PAGE_SIZE, "[%s] %s\n", 2547 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2548 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2549 break; 2550 case R5C_JOURNAL_MODE_WRITE_BACK: 2551 ret = snprintf( 2552 page, PAGE_SIZE, "%s [%s]\n", 2553 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2554 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2555 break; 2556 default: 2557 ret = 0; 2558 } 2559 2560 out_unlock: 2561 mddev_unlock(mddev); 2562 return ret; 2563 } 2564 2565 /* 2566 * Set journal cache mode on @mddev (external API initially needed by dm-raid). 2567 * 2568 * @mode as defined in 'enum r5c_journal_mode'. 2569 * 2570 */ 2571 int r5c_journal_mode_set(struct mddev *mddev, int mode) 2572 { 2573 struct r5conf *conf; 2574 2575 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || 2576 mode > R5C_JOURNAL_MODE_WRITE_BACK) 2577 return -EINVAL; 2578 2579 conf = mddev->private; 2580 if (!conf || !conf->log) 2581 return -ENODEV; 2582 2583 if (raid5_calc_degraded(conf) > 0 && 2584 mode == R5C_JOURNAL_MODE_WRITE_BACK) 2585 return -EINVAL; 2586 2587 mddev_suspend(mddev); 2588 conf->log->r5c_journal_mode = mode; 2589 mddev_resume(mddev); 2590 2591 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2592 mdname(mddev), mode, r5c_journal_mode_str[mode]); 2593 return 0; 2594 } 2595 EXPORT_SYMBOL(r5c_journal_mode_set); 2596 2597 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2598 const char *page, size_t length) 2599 { 2600 int mode = ARRAY_SIZE(r5c_journal_mode_str); 2601 size_t len = length; 2602 int ret; 2603 2604 if (len < 2) 2605 return -EINVAL; 2606 2607 if (page[len - 1] == '\n') 2608 len--; 2609 2610 while (mode--) 2611 if (strlen(r5c_journal_mode_str[mode]) == len && 2612 !strncmp(page, r5c_journal_mode_str[mode], len)) 2613 break; 2614 ret = mddev_lock(mddev); 2615 if (ret) 2616 return ret; 2617 ret = r5c_journal_mode_set(mddev, mode); 2618 mddev_unlock(mddev); 2619 return ret ?: length; 2620 } 2621 2622 struct md_sysfs_entry 2623 r5c_journal_mode = __ATTR(journal_mode, 0644, 2624 r5c_journal_mode_show, r5c_journal_mode_store); 2625 2626 /* 2627 * Try handle write operation in caching phase. This function should only 2628 * be called in write-back mode. 2629 * 2630 * If all outstanding writes can be handled in caching phase, returns 0 2631 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2632 * and returns -EAGAIN 2633 */ 2634 int r5c_try_caching_write(struct r5conf *conf, 2635 struct stripe_head *sh, 2636 struct stripe_head_state *s, 2637 int disks) 2638 { 2639 struct r5l_log *log = conf->log; 2640 int i; 2641 struct r5dev *dev; 2642 int to_cache = 0; 2643 void __rcu **pslot; 2644 sector_t tree_index; 2645 int ret; 2646 uintptr_t refcount; 2647 2648 BUG_ON(!r5c_is_writeback(log)); 2649 2650 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2651 /* 2652 * There are two different scenarios here: 2653 * 1. The stripe has some data cached, and it is sent to 2654 * write-out phase for reclaim 2655 * 2. The stripe is clean, and this is the first write 2656 * 2657 * For 1, return -EAGAIN, so we continue with 2658 * handle_stripe_dirtying(). 2659 * 2660 * For 2, set STRIPE_R5C_CACHING and continue with caching 2661 * write. 2662 */ 2663 2664 /* case 1: anything injournal or anything in written */ 2665 if (s->injournal > 0 || s->written > 0) 2666 return -EAGAIN; 2667 /* case 2 */ 2668 set_bit(STRIPE_R5C_CACHING, &sh->state); 2669 } 2670 2671 /* 2672 * When run in degraded mode, array is set to write-through mode. 2673 * This check helps drain pending write safely in the transition to 2674 * write-through mode. 2675 * 2676 * When a stripe is syncing, the write is also handled in write 2677 * through mode. 2678 */ 2679 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { 2680 r5c_make_stripe_write_out(sh); 2681 return -EAGAIN; 2682 } 2683 2684 for (i = disks; i--; ) { 2685 dev = &sh->dev[i]; 2686 /* if non-overwrite, use writing-out phase */ 2687 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2688 !test_bit(R5_InJournal, &dev->flags)) { 2689 r5c_make_stripe_write_out(sh); 2690 return -EAGAIN; 2691 } 2692 } 2693 2694 /* if the stripe is not counted in big_stripe_tree, add it now */ 2695 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2696 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2697 tree_index = r5c_tree_index(conf, sh->sector); 2698 spin_lock(&log->tree_lock); 2699 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2700 tree_index); 2701 if (pslot) { 2702 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2703 pslot, &log->tree_lock) >> 2704 R5C_RADIX_COUNT_SHIFT; 2705 radix_tree_replace_slot( 2706 &log->big_stripe_tree, pslot, 2707 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2708 } else { 2709 /* 2710 * this radix_tree_insert can fail safely, so no 2711 * need to call radix_tree_preload() 2712 */ 2713 ret = radix_tree_insert( 2714 &log->big_stripe_tree, tree_index, 2715 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2716 if (ret) { 2717 spin_unlock(&log->tree_lock); 2718 r5c_make_stripe_write_out(sh); 2719 return -EAGAIN; 2720 } 2721 } 2722 spin_unlock(&log->tree_lock); 2723 2724 /* 2725 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2726 * counted in the radix tree 2727 */ 2728 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2729 atomic_inc(&conf->r5c_cached_partial_stripes); 2730 } 2731 2732 for (i = disks; i--; ) { 2733 dev = &sh->dev[i]; 2734 if (dev->towrite) { 2735 set_bit(R5_Wantwrite, &dev->flags); 2736 set_bit(R5_Wantdrain, &dev->flags); 2737 set_bit(R5_LOCKED, &dev->flags); 2738 to_cache++; 2739 } 2740 } 2741 2742 if (to_cache) { 2743 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2744 /* 2745 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2746 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2747 * r5c_handle_data_cached() 2748 */ 2749 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2750 } 2751 2752 return 0; 2753 } 2754 2755 /* 2756 * free extra pages (orig_page) we allocated for prexor 2757 */ 2758 void r5c_release_extra_page(struct stripe_head *sh) 2759 { 2760 struct r5conf *conf = sh->raid_conf; 2761 int i; 2762 bool using_disk_info_extra_page; 2763 2764 using_disk_info_extra_page = 2765 sh->dev[0].orig_page == conf->disks[0].extra_page; 2766 2767 for (i = sh->disks; i--; ) 2768 if (sh->dev[i].page != sh->dev[i].orig_page) { 2769 struct page *p = sh->dev[i].orig_page; 2770 2771 sh->dev[i].orig_page = sh->dev[i].page; 2772 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2773 2774 if (!using_disk_info_extra_page) 2775 put_page(p); 2776 } 2777 2778 if (using_disk_info_extra_page) { 2779 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2780 md_wakeup_thread(conf->mddev->thread); 2781 } 2782 } 2783 2784 void r5c_use_extra_page(struct stripe_head *sh) 2785 { 2786 struct r5conf *conf = sh->raid_conf; 2787 int i; 2788 struct r5dev *dev; 2789 2790 for (i = sh->disks; i--; ) { 2791 dev = &sh->dev[i]; 2792 if (dev->orig_page != dev->page) 2793 put_page(dev->orig_page); 2794 dev->orig_page = conf->disks[i].extra_page; 2795 } 2796 } 2797 2798 /* 2799 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2800 * stripe is committed to RAID disks. 2801 */ 2802 void r5c_finish_stripe_write_out(struct r5conf *conf, 2803 struct stripe_head *sh, 2804 struct stripe_head_state *s) 2805 { 2806 struct r5l_log *log = conf->log; 2807 int i; 2808 int do_wakeup = 0; 2809 sector_t tree_index; 2810 void __rcu **pslot; 2811 uintptr_t refcount; 2812 2813 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2814 return; 2815 2816 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2817 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2818 2819 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2820 return; 2821 2822 for (i = sh->disks; i--; ) { 2823 clear_bit(R5_InJournal, &sh->dev[i].flags); 2824 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2825 do_wakeup = 1; 2826 } 2827 2828 /* 2829 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2830 * We updated R5_InJournal, so we also update s->injournal. 2831 */ 2832 s->injournal = 0; 2833 2834 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2835 if (atomic_dec_and_test(&conf->pending_full_writes)) 2836 md_wakeup_thread(conf->mddev->thread); 2837 2838 if (do_wakeup) 2839 wake_up(&conf->wait_for_overlap); 2840 2841 spin_lock_irq(&log->stripe_in_journal_lock); 2842 list_del_init(&sh->r5c); 2843 spin_unlock_irq(&log->stripe_in_journal_lock); 2844 sh->log_start = MaxSector; 2845 2846 atomic_dec(&log->stripe_in_journal_count); 2847 r5c_update_log_state(log); 2848 2849 /* stop counting this stripe in big_stripe_tree */ 2850 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2851 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2852 tree_index = r5c_tree_index(conf, sh->sector); 2853 spin_lock(&log->tree_lock); 2854 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2855 tree_index); 2856 BUG_ON(pslot == NULL); 2857 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2858 pslot, &log->tree_lock) >> 2859 R5C_RADIX_COUNT_SHIFT; 2860 if (refcount == 1) 2861 radix_tree_delete(&log->big_stripe_tree, tree_index); 2862 else 2863 radix_tree_replace_slot( 2864 &log->big_stripe_tree, pslot, 2865 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2866 spin_unlock(&log->tree_lock); 2867 } 2868 2869 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2870 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2871 atomic_dec(&conf->r5c_flushing_partial_stripes); 2872 atomic_dec(&conf->r5c_cached_partial_stripes); 2873 } 2874 2875 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2876 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2877 atomic_dec(&conf->r5c_flushing_full_stripes); 2878 atomic_dec(&conf->r5c_cached_full_stripes); 2879 } 2880 2881 r5l_append_flush_payload(log, sh->sector); 2882 /* stripe is flused to raid disks, we can do resync now */ 2883 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2884 set_bit(STRIPE_HANDLE, &sh->state); 2885 } 2886 2887 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2888 { 2889 struct r5conf *conf = sh->raid_conf; 2890 int pages = 0; 2891 int reserve; 2892 int i; 2893 int ret = 0; 2894 2895 BUG_ON(!log); 2896 2897 for (i = 0; i < sh->disks; i++) { 2898 void *addr; 2899 2900 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2901 continue; 2902 addr = kmap_atomic(sh->dev[i].page); 2903 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2904 addr, PAGE_SIZE); 2905 kunmap_atomic(addr); 2906 pages++; 2907 } 2908 WARN_ON(pages == 0); 2909 2910 /* 2911 * The stripe must enter state machine again to call endio, so 2912 * don't delay. 2913 */ 2914 clear_bit(STRIPE_DELAYED, &sh->state); 2915 atomic_inc(&sh->count); 2916 2917 mutex_lock(&log->io_mutex); 2918 /* meta + data */ 2919 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2920 2921 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2922 sh->log_start == MaxSector) 2923 r5l_add_no_space_stripe(log, sh); 2924 else if (!r5l_has_free_space(log, reserve)) { 2925 if (sh->log_start == log->last_checkpoint) 2926 BUG(); 2927 else 2928 r5l_add_no_space_stripe(log, sh); 2929 } else { 2930 ret = r5l_log_stripe(log, sh, pages, 0); 2931 if (ret) { 2932 spin_lock_irq(&log->io_list_lock); 2933 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2934 spin_unlock_irq(&log->io_list_lock); 2935 } 2936 } 2937 2938 mutex_unlock(&log->io_mutex); 2939 return 0; 2940 } 2941 2942 /* check whether this big stripe is in write back cache. */ 2943 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2944 { 2945 struct r5l_log *log = conf->log; 2946 sector_t tree_index; 2947 void *slot; 2948 2949 if (!log) 2950 return false; 2951 2952 WARN_ON_ONCE(!rcu_read_lock_held()); 2953 tree_index = r5c_tree_index(conf, sect); 2954 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2955 return slot != NULL; 2956 } 2957 2958 static int r5l_load_log(struct r5l_log *log) 2959 { 2960 struct md_rdev *rdev = log->rdev; 2961 struct page *page; 2962 struct r5l_meta_block *mb; 2963 sector_t cp = log->rdev->journal_tail; 2964 u32 stored_crc, expected_crc; 2965 bool create_super = false; 2966 int ret = 0; 2967 2968 /* Make sure it's valid */ 2969 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2970 cp = 0; 2971 page = alloc_page(GFP_KERNEL); 2972 if (!page) 2973 return -ENOMEM; 2974 2975 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) { 2976 ret = -EIO; 2977 goto ioerr; 2978 } 2979 mb = page_address(page); 2980 2981 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2982 mb->version != R5LOG_VERSION) { 2983 create_super = true; 2984 goto create; 2985 } 2986 stored_crc = le32_to_cpu(mb->checksum); 2987 mb->checksum = 0; 2988 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2989 if (stored_crc != expected_crc) { 2990 create_super = true; 2991 goto create; 2992 } 2993 if (le64_to_cpu(mb->position) != cp) { 2994 create_super = true; 2995 goto create; 2996 } 2997 create: 2998 if (create_super) { 2999 log->last_cp_seq = get_random_u32(); 3000 cp = 0; 3001 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 3002 /* 3003 * Make sure super points to correct address. Log might have 3004 * data very soon. If super hasn't correct log tail address, 3005 * recovery can't find the log 3006 */ 3007 r5l_write_super(log, cp); 3008 } else 3009 log->last_cp_seq = le64_to_cpu(mb->seq); 3010 3011 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 3012 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 3013 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 3014 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 3015 log->last_checkpoint = cp; 3016 3017 __free_page(page); 3018 3019 if (create_super) { 3020 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 3021 log->seq = log->last_cp_seq + 1; 3022 log->next_checkpoint = cp; 3023 } else 3024 ret = r5l_recovery_log(log); 3025 3026 r5c_update_log_state(log); 3027 return ret; 3028 ioerr: 3029 __free_page(page); 3030 return ret; 3031 } 3032 3033 int r5l_start(struct r5l_log *log) 3034 { 3035 int ret; 3036 3037 if (!log) 3038 return 0; 3039 3040 ret = r5l_load_log(log); 3041 if (ret) { 3042 struct mddev *mddev = log->rdev->mddev; 3043 struct r5conf *conf = mddev->private; 3044 3045 r5l_exit_log(conf); 3046 } 3047 return ret; 3048 } 3049 3050 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) 3051 { 3052 struct r5conf *conf = mddev->private; 3053 struct r5l_log *log = conf->log; 3054 3055 if (!log) 3056 return; 3057 3058 if ((raid5_calc_degraded(conf) > 0 || 3059 test_bit(Journal, &rdev->flags)) && 3060 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 3061 schedule_work(&log->disable_writeback_work); 3062 } 3063 3064 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 3065 { 3066 struct r5l_log *log; 3067 struct md_thread *thread; 3068 int ret; 3069 3070 pr_debug("md/raid:%s: using device %pg as journal\n", 3071 mdname(conf->mddev), rdev->bdev); 3072 3073 if (PAGE_SIZE != 4096) 3074 return -EINVAL; 3075 3076 /* 3077 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 3078 * raid_disks r5l_payload_data_parity. 3079 * 3080 * Write journal and cache does not work for very big array 3081 * (raid_disks > 203) 3082 */ 3083 if (sizeof(struct r5l_meta_block) + 3084 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3085 conf->raid_disks) > PAGE_SIZE) { 3086 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3087 mdname(conf->mddev), conf->raid_disks); 3088 return -EINVAL; 3089 } 3090 3091 log = kzalloc(sizeof(*log), GFP_KERNEL); 3092 if (!log) 3093 return -ENOMEM; 3094 log->rdev = rdev; 3095 log->need_cache_flush = bdev_write_cache(rdev->bdev); 3096 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3097 sizeof(rdev->mddev->uuid)); 3098 3099 mutex_init(&log->io_mutex); 3100 3101 spin_lock_init(&log->io_list_lock); 3102 INIT_LIST_HEAD(&log->running_ios); 3103 INIT_LIST_HEAD(&log->io_end_ios); 3104 INIT_LIST_HEAD(&log->flushing_ios); 3105 INIT_LIST_HEAD(&log->finished_ios); 3106 3107 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3108 if (!log->io_kc) 3109 goto io_kc; 3110 3111 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc); 3112 if (ret) 3113 goto io_pool; 3114 3115 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); 3116 if (ret) 3117 goto io_bs; 3118 3119 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0); 3120 if (ret) 3121 goto out_mempool; 3122 3123 spin_lock_init(&log->tree_lock); 3124 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3125 3126 thread = md_register_thread(r5l_reclaim_thread, log->rdev->mddev, 3127 "reclaim"); 3128 if (!thread) 3129 goto reclaim_thread; 3130 3131 thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3132 rcu_assign_pointer(log->reclaim_thread, thread); 3133 3134 init_waitqueue_head(&log->iounit_wait); 3135 3136 INIT_LIST_HEAD(&log->no_mem_stripes); 3137 3138 INIT_LIST_HEAD(&log->no_space_stripes); 3139 spin_lock_init(&log->no_space_stripes_lock); 3140 3141 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3142 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3143 3144 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3145 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3146 spin_lock_init(&log->stripe_in_journal_lock); 3147 atomic_set(&log->stripe_in_journal_count, 0); 3148 3149 conf->log = log; 3150 3151 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3152 return 0; 3153 3154 reclaim_thread: 3155 mempool_exit(&log->meta_pool); 3156 out_mempool: 3157 bioset_exit(&log->bs); 3158 io_bs: 3159 mempool_exit(&log->io_pool); 3160 io_pool: 3161 kmem_cache_destroy(log->io_kc); 3162 io_kc: 3163 kfree(log); 3164 return -EINVAL; 3165 } 3166 3167 void r5l_exit_log(struct r5conf *conf) 3168 { 3169 struct r5l_log *log = conf->log; 3170 3171 /* Ensure disable_writeback_work wakes up and exits */ 3172 wake_up(&conf->mddev->sb_wait); 3173 flush_work(&log->disable_writeback_work); 3174 md_unregister_thread(&log->reclaim_thread); 3175 3176 conf->log = NULL; 3177 3178 mempool_exit(&log->meta_pool); 3179 bioset_exit(&log->bs); 3180 mempool_exit(&log->io_pool); 3181 kmem_cache_destroy(log->io_kc); 3182 kfree(log); 3183 } 3184