1 /* 2 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 */ 15 #include <linux/kernel.h> 16 #include <linux/wait.h> 17 #include <linux/blkdev.h> 18 #include <linux/slab.h> 19 #include <linux/raid/md_p.h> 20 #include <linux/crc32c.h> 21 #include <linux/random.h> 22 #include <linux/kthread.h> 23 #include <linux/types.h> 24 #include "md.h" 25 #include "raid5.h" 26 #include "bitmap.h" 27 28 /* 29 * metadata/data stored in disk with 4k size unit (a block) regardless 30 * underneath hardware sector size. only works with PAGE_SIZE == 4096 31 */ 32 #define BLOCK_SECTORS (8) 33 #define BLOCK_SECTOR_SHIFT (3) 34 35 /* 36 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 37 * 38 * In write through mode, the reclaim runs every log->max_free_space. 39 * This can prevent the recovery scans for too long 40 */ 41 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 42 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 43 44 /* wake up reclaim thread periodically */ 45 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 46 /* start flush with these full stripes */ 47 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 48 /* reclaim stripes in groups */ 49 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 50 51 /* 52 * We only need 2 bios per I/O unit to make progress, but ensure we 53 * have a few more available to not get too tight. 54 */ 55 #define R5L_POOL_SIZE 4 56 57 /* 58 * r5c journal modes of the array: write-back or write-through. 59 * write-through mode has identical behavior as existing log only 60 * implementation. 61 */ 62 enum r5c_journal_mode { 63 R5C_JOURNAL_MODE_WRITE_THROUGH = 0, 64 R5C_JOURNAL_MODE_WRITE_BACK = 1, 65 }; 66 67 static char *r5c_journal_mode_str[] = {"write-through", 68 "write-back"}; 69 /* 70 * raid5 cache state machine 71 * 72 * With the RAID cache, each stripe works in two phases: 73 * - caching phase 74 * - writing-out phase 75 * 76 * These two phases are controlled by bit STRIPE_R5C_CACHING: 77 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 78 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 79 * 80 * When there is no journal, or the journal is in write-through mode, 81 * the stripe is always in writing-out phase. 82 * 83 * For write-back journal, the stripe is sent to caching phase on write 84 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 85 * the write-out phase by clearing STRIPE_R5C_CACHING. 86 * 87 * Stripes in caching phase do not write the raid disks. Instead, all 88 * writes are committed from the log device. Therefore, a stripe in 89 * caching phase handles writes as: 90 * - write to log device 91 * - return IO 92 * 93 * Stripes in writing-out phase handle writes as: 94 * - calculate parity 95 * - write pending data and parity to journal 96 * - write data and parity to raid disks 97 * - return IO for pending writes 98 */ 99 100 struct r5l_log { 101 struct md_rdev *rdev; 102 103 u32 uuid_checksum; 104 105 sector_t device_size; /* log device size, round to 106 * BLOCK_SECTORS */ 107 sector_t max_free_space; /* reclaim run if free space is at 108 * this size */ 109 110 sector_t last_checkpoint; /* log tail. where recovery scan 111 * starts from */ 112 u64 last_cp_seq; /* log tail sequence */ 113 114 sector_t log_start; /* log head. where new data appends */ 115 u64 seq; /* log head sequence */ 116 117 sector_t next_checkpoint; 118 119 struct mutex io_mutex; 120 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 121 122 spinlock_t io_list_lock; 123 struct list_head running_ios; /* io_units which are still running, 124 * and have not yet been completely 125 * written to the log */ 126 struct list_head io_end_ios; /* io_units which have been completely 127 * written to the log but not yet written 128 * to the RAID */ 129 struct list_head flushing_ios; /* io_units which are waiting for log 130 * cache flush */ 131 struct list_head finished_ios; /* io_units which settle down in log disk */ 132 struct bio flush_bio; 133 134 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 135 136 struct kmem_cache *io_kc; 137 mempool_t *io_pool; 138 struct bio_set *bs; 139 mempool_t *meta_pool; 140 141 struct md_thread *reclaim_thread; 142 unsigned long reclaim_target; /* number of space that need to be 143 * reclaimed. if it's 0, reclaim spaces 144 * used by io_units which are in 145 * IO_UNIT_STRIPE_END state (eg, reclaim 146 * dones't wait for specific io_unit 147 * switching to IO_UNIT_STRIPE_END 148 * state) */ 149 wait_queue_head_t iounit_wait; 150 151 struct list_head no_space_stripes; /* pending stripes, log has no space */ 152 spinlock_t no_space_stripes_lock; 153 154 bool need_cache_flush; 155 156 /* for r5c_cache */ 157 enum r5c_journal_mode r5c_journal_mode; 158 159 /* all stripes in r5cache, in the order of seq at sh->log_start */ 160 struct list_head stripe_in_journal_list; 161 162 spinlock_t stripe_in_journal_lock; 163 atomic_t stripe_in_journal_count; 164 165 /* to submit async io_units, to fulfill ordering of flush */ 166 struct work_struct deferred_io_work; 167 /* to disable write back during in degraded mode */ 168 struct work_struct disable_writeback_work; 169 170 /* to for chunk_aligned_read in writeback mode, details below */ 171 spinlock_t tree_lock; 172 struct radix_tree_root big_stripe_tree; 173 }; 174 175 /* 176 * Enable chunk_aligned_read() with write back cache. 177 * 178 * Each chunk may contain more than one stripe (for example, a 256kB 179 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 180 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 181 * For each big_stripe, we count how many stripes of this big_stripe 182 * are in the write back cache. These data are tracked in a radix tree 183 * (big_stripe_tree). We use radix_tree item pointer as the counter. 184 * r5c_tree_index() is used to calculate keys for the radix tree. 185 * 186 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 187 * big_stripe of each chunk in the tree. If this big_stripe is in the 188 * tree, chunk_aligned_read() aborts. This look up is protected by 189 * rcu_read_lock(). 190 * 191 * It is necessary to remember whether a stripe is counted in 192 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 193 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 194 * two flags are set, the stripe is counted in big_stripe_tree. This 195 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 196 * r5c_try_caching_write(); and moving clear_bit of 197 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 198 * r5c_finish_stripe_write_out(). 199 */ 200 201 /* 202 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 203 * So it is necessary to left shift the counter by 2 bits before using it 204 * as data pointer of the tree. 205 */ 206 #define R5C_RADIX_COUNT_SHIFT 2 207 208 /* 209 * calculate key for big_stripe_tree 210 * 211 * sect: align_bi->bi_iter.bi_sector or sh->sector 212 */ 213 static inline sector_t r5c_tree_index(struct r5conf *conf, 214 sector_t sect) 215 { 216 sector_t offset; 217 218 offset = sector_div(sect, conf->chunk_sectors); 219 return sect; 220 } 221 222 /* 223 * an IO range starts from a meta data block and end at the next meta data 224 * block. The io unit's the meta data block tracks data/parity followed it. io 225 * unit is written to log disk with normal write, as we always flush log disk 226 * first and then start move data to raid disks, there is no requirement to 227 * write io unit with FLUSH/FUA 228 */ 229 struct r5l_io_unit { 230 struct r5l_log *log; 231 232 struct page *meta_page; /* store meta block */ 233 int meta_offset; /* current offset in meta_page */ 234 235 struct bio *current_bio;/* current_bio accepting new data */ 236 237 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 238 u64 seq; /* seq number of the metablock */ 239 sector_t log_start; /* where the io_unit starts */ 240 sector_t log_end; /* where the io_unit ends */ 241 struct list_head log_sibling; /* log->running_ios */ 242 struct list_head stripe_list; /* stripes added to the io_unit */ 243 244 int state; 245 bool need_split_bio; 246 struct bio *split_bio; 247 248 unsigned int has_flush:1; /* include flush request */ 249 unsigned int has_fua:1; /* include fua request */ 250 unsigned int has_null_flush:1; /* include empty flush request */ 251 /* 252 * io isn't sent yet, flush/fua request can only be submitted till it's 253 * the first IO in running_ios list 254 */ 255 unsigned int io_deferred:1; 256 257 struct bio_list flush_barriers; /* size == 0 flush bios */ 258 }; 259 260 /* r5l_io_unit state */ 261 enum r5l_io_unit_state { 262 IO_UNIT_RUNNING = 0, /* accepting new IO */ 263 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 264 * don't accepting new bio */ 265 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 266 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 267 }; 268 269 bool r5c_is_writeback(struct r5l_log *log) 270 { 271 return (log != NULL && 272 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 273 } 274 275 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 276 { 277 start += inc; 278 if (start >= log->device_size) 279 start = start - log->device_size; 280 return start; 281 } 282 283 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 284 sector_t end) 285 { 286 if (end >= start) 287 return end - start; 288 else 289 return end + log->device_size - start; 290 } 291 292 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 293 { 294 sector_t used_size; 295 296 used_size = r5l_ring_distance(log, log->last_checkpoint, 297 log->log_start); 298 299 return log->device_size > used_size + size; 300 } 301 302 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 303 enum r5l_io_unit_state state) 304 { 305 if (WARN_ON(io->state >= state)) 306 return; 307 io->state = state; 308 } 309 310 static void 311 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 312 { 313 struct bio *wbi, *wbi2; 314 315 wbi = dev->written; 316 dev->written = NULL; 317 while (wbi && wbi->bi_iter.bi_sector < 318 dev->sector + STRIPE_SECTORS) { 319 wbi2 = r5_next_bio(wbi, dev->sector); 320 md_write_end(conf->mddev); 321 bio_endio(wbi); 322 wbi = wbi2; 323 } 324 } 325 326 void r5c_handle_cached_data_endio(struct r5conf *conf, 327 struct stripe_head *sh, int disks) 328 { 329 int i; 330 331 for (i = sh->disks; i--; ) { 332 if (sh->dev[i].written) { 333 set_bit(R5_UPTODATE, &sh->dev[i].flags); 334 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 335 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 336 STRIPE_SECTORS, 337 !test_bit(STRIPE_DEGRADED, &sh->state), 338 0); 339 } 340 } 341 } 342 343 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 344 345 /* Check whether we should flush some stripes to free up stripe cache */ 346 void r5c_check_stripe_cache_usage(struct r5conf *conf) 347 { 348 int total_cached; 349 350 if (!r5c_is_writeback(conf->log)) 351 return; 352 353 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 354 atomic_read(&conf->r5c_cached_full_stripes); 355 356 /* 357 * The following condition is true for either of the following: 358 * - stripe cache pressure high: 359 * total_cached > 3/4 min_nr_stripes || 360 * empty_inactive_list_nr > 0 361 * - stripe cache pressure moderate: 362 * total_cached > 1/2 min_nr_stripes 363 */ 364 if (total_cached > conf->min_nr_stripes * 1 / 2 || 365 atomic_read(&conf->empty_inactive_list_nr) > 0) 366 r5l_wake_reclaim(conf->log, 0); 367 } 368 369 /* 370 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 371 * stripes in the cache 372 */ 373 void r5c_check_cached_full_stripe(struct r5conf *conf) 374 { 375 if (!r5c_is_writeback(conf->log)) 376 return; 377 378 /* 379 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 380 * or a full stripe (chunk size / 4k stripes). 381 */ 382 if (atomic_read(&conf->r5c_cached_full_stripes) >= 383 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 384 conf->chunk_sectors >> STRIPE_SHIFT)) 385 r5l_wake_reclaim(conf->log, 0); 386 } 387 388 /* 389 * Total log space (in sectors) needed to flush all data in cache 390 * 391 * To avoid deadlock due to log space, it is necessary to reserve log 392 * space to flush critical stripes (stripes that occupying log space near 393 * last_checkpoint). This function helps check how much log space is 394 * required to flush all cached stripes. 395 * 396 * To reduce log space requirements, two mechanisms are used to give cache 397 * flush higher priorities: 398 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 399 * stripes ALREADY in journal can be flushed w/o pending writes; 400 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 401 * can be delayed (r5l_add_no_space_stripe). 402 * 403 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 404 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 405 * pages of journal space. For stripes that has not passed 1, flushing it 406 * requires (conf->raid_disks + 1) pages of journal space. There are at 407 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 408 * required to flush all cached stripes (in pages) is: 409 * 410 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 411 * (group_cnt + 1) * (raid_disks + 1) 412 * or 413 * (stripe_in_journal_count) * (max_degraded + 1) + 414 * (group_cnt + 1) * (raid_disks - max_degraded) 415 */ 416 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 417 { 418 struct r5l_log *log = conf->log; 419 420 if (!r5c_is_writeback(log)) 421 return 0; 422 423 return BLOCK_SECTORS * 424 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 425 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 426 } 427 428 /* 429 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 430 * 431 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 432 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 433 * device is less than 2x of reclaim_required_space. 434 */ 435 static inline void r5c_update_log_state(struct r5l_log *log) 436 { 437 struct r5conf *conf = log->rdev->mddev->private; 438 sector_t free_space; 439 sector_t reclaim_space; 440 bool wake_reclaim = false; 441 442 if (!r5c_is_writeback(log)) 443 return; 444 445 free_space = r5l_ring_distance(log, log->log_start, 446 log->last_checkpoint); 447 reclaim_space = r5c_log_required_to_flush_cache(conf); 448 if (free_space < 2 * reclaim_space) 449 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 450 else { 451 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 452 wake_reclaim = true; 453 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 454 } 455 if (free_space < 3 * reclaim_space) 456 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 457 else 458 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 459 460 if (wake_reclaim) 461 r5l_wake_reclaim(log, 0); 462 } 463 464 /* 465 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 466 * This function should only be called in write-back mode. 467 */ 468 void r5c_make_stripe_write_out(struct stripe_head *sh) 469 { 470 struct r5conf *conf = sh->raid_conf; 471 struct r5l_log *log = conf->log; 472 473 BUG_ON(!r5c_is_writeback(log)); 474 475 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 476 clear_bit(STRIPE_R5C_CACHING, &sh->state); 477 478 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 479 atomic_inc(&conf->preread_active_stripes); 480 } 481 482 static void r5c_handle_data_cached(struct stripe_head *sh) 483 { 484 int i; 485 486 for (i = sh->disks; i--; ) 487 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 488 set_bit(R5_InJournal, &sh->dev[i].flags); 489 clear_bit(R5_LOCKED, &sh->dev[i].flags); 490 } 491 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 492 } 493 494 /* 495 * this journal write must contain full parity, 496 * it may also contain some data pages 497 */ 498 static void r5c_handle_parity_cached(struct stripe_head *sh) 499 { 500 int i; 501 502 for (i = sh->disks; i--; ) 503 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 504 set_bit(R5_Wantwrite, &sh->dev[i].flags); 505 } 506 507 /* 508 * Setting proper flags after writing (or flushing) data and/or parity to the 509 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 510 */ 511 static void r5c_finish_cache_stripe(struct stripe_head *sh) 512 { 513 struct r5l_log *log = sh->raid_conf->log; 514 515 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 516 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 517 /* 518 * Set R5_InJournal for parity dev[pd_idx]. This means 519 * all data AND parity in the journal. For RAID 6, it is 520 * NOT necessary to set the flag for dev[qd_idx], as the 521 * two parities are written out together. 522 */ 523 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 524 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 525 r5c_handle_data_cached(sh); 526 } else { 527 r5c_handle_parity_cached(sh); 528 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 529 } 530 } 531 532 static void r5l_io_run_stripes(struct r5l_io_unit *io) 533 { 534 struct stripe_head *sh, *next; 535 536 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 537 list_del_init(&sh->log_list); 538 539 r5c_finish_cache_stripe(sh); 540 541 set_bit(STRIPE_HANDLE, &sh->state); 542 raid5_release_stripe(sh); 543 } 544 } 545 546 static void r5l_log_run_stripes(struct r5l_log *log) 547 { 548 struct r5l_io_unit *io, *next; 549 550 assert_spin_locked(&log->io_list_lock); 551 552 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 553 /* don't change list order */ 554 if (io->state < IO_UNIT_IO_END) 555 break; 556 557 list_move_tail(&io->log_sibling, &log->finished_ios); 558 r5l_io_run_stripes(io); 559 } 560 } 561 562 static void r5l_move_to_end_ios(struct r5l_log *log) 563 { 564 struct r5l_io_unit *io, *next; 565 566 assert_spin_locked(&log->io_list_lock); 567 568 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 569 /* don't change list order */ 570 if (io->state < IO_UNIT_IO_END) 571 break; 572 list_move_tail(&io->log_sibling, &log->io_end_ios); 573 } 574 } 575 576 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 577 static void r5l_log_endio(struct bio *bio) 578 { 579 struct r5l_io_unit *io = bio->bi_private; 580 struct r5l_io_unit *io_deferred; 581 struct r5l_log *log = io->log; 582 unsigned long flags; 583 584 if (bio->bi_error) 585 md_error(log->rdev->mddev, log->rdev); 586 587 bio_put(bio); 588 mempool_free(io->meta_page, log->meta_pool); 589 590 spin_lock_irqsave(&log->io_list_lock, flags); 591 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 592 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 593 r5l_move_to_end_ios(log); 594 else 595 r5l_log_run_stripes(log); 596 if (!list_empty(&log->running_ios)) { 597 /* 598 * FLUSH/FUA io_unit is deferred because of ordering, now we 599 * can dispatch it 600 */ 601 io_deferred = list_first_entry(&log->running_ios, 602 struct r5l_io_unit, log_sibling); 603 if (io_deferred->io_deferred) 604 schedule_work(&log->deferred_io_work); 605 } 606 607 spin_unlock_irqrestore(&log->io_list_lock, flags); 608 609 if (log->need_cache_flush) 610 md_wakeup_thread(log->rdev->mddev->thread); 611 612 if (io->has_null_flush) { 613 struct bio *bi; 614 615 WARN_ON(bio_list_empty(&io->flush_barriers)); 616 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 617 bio_endio(bi); 618 atomic_dec(&io->pending_stripe); 619 } 620 } 621 622 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 623 if (atomic_read(&io->pending_stripe) == 0) 624 __r5l_stripe_write_finished(io); 625 } 626 627 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 628 { 629 unsigned long flags; 630 631 spin_lock_irqsave(&log->io_list_lock, flags); 632 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 633 spin_unlock_irqrestore(&log->io_list_lock, flags); 634 635 if (io->has_flush) 636 io->current_bio->bi_opf |= REQ_PREFLUSH; 637 if (io->has_fua) 638 io->current_bio->bi_opf |= REQ_FUA; 639 submit_bio(io->current_bio); 640 641 if (!io->split_bio) 642 return; 643 644 if (io->has_flush) 645 io->split_bio->bi_opf |= REQ_PREFLUSH; 646 if (io->has_fua) 647 io->split_bio->bi_opf |= REQ_FUA; 648 submit_bio(io->split_bio); 649 } 650 651 /* deferred io_unit will be dispatched here */ 652 static void r5l_submit_io_async(struct work_struct *work) 653 { 654 struct r5l_log *log = container_of(work, struct r5l_log, 655 deferred_io_work); 656 struct r5l_io_unit *io = NULL; 657 unsigned long flags; 658 659 spin_lock_irqsave(&log->io_list_lock, flags); 660 if (!list_empty(&log->running_ios)) { 661 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 662 log_sibling); 663 if (!io->io_deferred) 664 io = NULL; 665 else 666 io->io_deferred = 0; 667 } 668 spin_unlock_irqrestore(&log->io_list_lock, flags); 669 if (io) 670 r5l_do_submit_io(log, io); 671 } 672 673 static void r5c_disable_writeback_async(struct work_struct *work) 674 { 675 struct r5l_log *log = container_of(work, struct r5l_log, 676 disable_writeback_work); 677 struct mddev *mddev = log->rdev->mddev; 678 679 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 680 return; 681 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 682 mdname(mddev)); 683 mddev_suspend(mddev); 684 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 685 mddev_resume(mddev); 686 } 687 688 static void r5l_submit_current_io(struct r5l_log *log) 689 { 690 struct r5l_io_unit *io = log->current_io; 691 struct bio *bio; 692 struct r5l_meta_block *block; 693 unsigned long flags; 694 u32 crc; 695 bool do_submit = true; 696 697 if (!io) 698 return; 699 700 block = page_address(io->meta_page); 701 block->meta_size = cpu_to_le32(io->meta_offset); 702 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 703 block->checksum = cpu_to_le32(crc); 704 bio = io->current_bio; 705 706 log->current_io = NULL; 707 spin_lock_irqsave(&log->io_list_lock, flags); 708 if (io->has_flush || io->has_fua) { 709 if (io != list_first_entry(&log->running_ios, 710 struct r5l_io_unit, log_sibling)) { 711 io->io_deferred = 1; 712 do_submit = false; 713 } 714 } 715 spin_unlock_irqrestore(&log->io_list_lock, flags); 716 if (do_submit) 717 r5l_do_submit_io(log, io); 718 } 719 720 static struct bio *r5l_bio_alloc(struct r5l_log *log) 721 { 722 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs); 723 724 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 725 bio->bi_bdev = log->rdev->bdev; 726 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 727 728 return bio; 729 } 730 731 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 732 { 733 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 734 735 r5c_update_log_state(log); 736 /* 737 * If we filled up the log device start from the beginning again, 738 * which will require a new bio. 739 * 740 * Note: for this to work properly the log size needs to me a multiple 741 * of BLOCK_SECTORS. 742 */ 743 if (log->log_start == 0) 744 io->need_split_bio = true; 745 746 io->log_end = log->log_start; 747 } 748 749 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 750 { 751 struct r5l_io_unit *io; 752 struct r5l_meta_block *block; 753 754 io = mempool_alloc(log->io_pool, GFP_ATOMIC); 755 if (!io) 756 return NULL; 757 memset(io, 0, sizeof(*io)); 758 759 io->log = log; 760 INIT_LIST_HEAD(&io->log_sibling); 761 INIT_LIST_HEAD(&io->stripe_list); 762 bio_list_init(&io->flush_barriers); 763 io->state = IO_UNIT_RUNNING; 764 765 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO); 766 block = page_address(io->meta_page); 767 clear_page(block); 768 block->magic = cpu_to_le32(R5LOG_MAGIC); 769 block->version = R5LOG_VERSION; 770 block->seq = cpu_to_le64(log->seq); 771 block->position = cpu_to_le64(log->log_start); 772 773 io->log_start = log->log_start; 774 io->meta_offset = sizeof(struct r5l_meta_block); 775 io->seq = log->seq++; 776 777 io->current_bio = r5l_bio_alloc(log); 778 io->current_bio->bi_end_io = r5l_log_endio; 779 io->current_bio->bi_private = io; 780 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 781 782 r5_reserve_log_entry(log, io); 783 784 spin_lock_irq(&log->io_list_lock); 785 list_add_tail(&io->log_sibling, &log->running_ios); 786 spin_unlock_irq(&log->io_list_lock); 787 788 return io; 789 } 790 791 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 792 { 793 if (log->current_io && 794 log->current_io->meta_offset + payload_size > PAGE_SIZE) 795 r5l_submit_current_io(log); 796 797 if (!log->current_io) { 798 log->current_io = r5l_new_meta(log); 799 if (!log->current_io) 800 return -ENOMEM; 801 } 802 803 return 0; 804 } 805 806 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 807 sector_t location, 808 u32 checksum1, u32 checksum2, 809 bool checksum2_valid) 810 { 811 struct r5l_io_unit *io = log->current_io; 812 struct r5l_payload_data_parity *payload; 813 814 payload = page_address(io->meta_page) + io->meta_offset; 815 payload->header.type = cpu_to_le16(type); 816 payload->header.flags = cpu_to_le16(0); 817 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 818 (PAGE_SHIFT - 9)); 819 payload->location = cpu_to_le64(location); 820 payload->checksum[0] = cpu_to_le32(checksum1); 821 if (checksum2_valid) 822 payload->checksum[1] = cpu_to_le32(checksum2); 823 824 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 825 sizeof(__le32) * (1 + !!checksum2_valid); 826 } 827 828 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 829 { 830 struct r5l_io_unit *io = log->current_io; 831 832 if (io->need_split_bio) { 833 BUG_ON(io->split_bio); 834 io->split_bio = io->current_bio; 835 io->current_bio = r5l_bio_alloc(log); 836 bio_chain(io->current_bio, io->split_bio); 837 io->need_split_bio = false; 838 } 839 840 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 841 BUG(); 842 843 r5_reserve_log_entry(log, io); 844 } 845 846 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 847 { 848 struct mddev *mddev = log->rdev->mddev; 849 struct r5conf *conf = mddev->private; 850 struct r5l_io_unit *io; 851 struct r5l_payload_flush *payload; 852 int meta_size; 853 854 /* 855 * payload_flush requires extra writes to the journal. 856 * To avoid handling the extra IO in quiesce, just skip 857 * flush_payload 858 */ 859 if (conf->quiesce) 860 return; 861 862 mutex_lock(&log->io_mutex); 863 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 864 865 if (r5l_get_meta(log, meta_size)) { 866 mutex_unlock(&log->io_mutex); 867 return; 868 } 869 870 /* current implementation is one stripe per flush payload */ 871 io = log->current_io; 872 payload = page_address(io->meta_page) + io->meta_offset; 873 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 874 payload->header.flags = cpu_to_le16(0); 875 payload->size = cpu_to_le32(sizeof(__le64)); 876 payload->flush_stripes[0] = cpu_to_le64(sect); 877 io->meta_offset += meta_size; 878 mutex_unlock(&log->io_mutex); 879 } 880 881 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 882 int data_pages, int parity_pages) 883 { 884 int i; 885 int meta_size; 886 int ret; 887 struct r5l_io_unit *io; 888 889 meta_size = 890 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 891 * data_pages) + 892 sizeof(struct r5l_payload_data_parity) + 893 sizeof(__le32) * parity_pages; 894 895 ret = r5l_get_meta(log, meta_size); 896 if (ret) 897 return ret; 898 899 io = log->current_io; 900 901 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 902 io->has_flush = 1; 903 904 for (i = 0; i < sh->disks; i++) { 905 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 906 test_bit(R5_InJournal, &sh->dev[i].flags)) 907 continue; 908 if (i == sh->pd_idx || i == sh->qd_idx) 909 continue; 910 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 911 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 912 io->has_fua = 1; 913 /* 914 * we need to flush journal to make sure recovery can 915 * reach the data with fua flag 916 */ 917 io->has_flush = 1; 918 } 919 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 920 raid5_compute_blocknr(sh, i, 0), 921 sh->dev[i].log_checksum, 0, false); 922 r5l_append_payload_page(log, sh->dev[i].page); 923 } 924 925 if (parity_pages == 2) { 926 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 927 sh->sector, sh->dev[sh->pd_idx].log_checksum, 928 sh->dev[sh->qd_idx].log_checksum, true); 929 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 930 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 931 } else if (parity_pages == 1) { 932 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 933 sh->sector, sh->dev[sh->pd_idx].log_checksum, 934 0, false); 935 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 936 } else /* Just writing data, not parity, in caching phase */ 937 BUG_ON(parity_pages != 0); 938 939 list_add_tail(&sh->log_list, &io->stripe_list); 940 atomic_inc(&io->pending_stripe); 941 sh->log_io = io; 942 943 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 944 return 0; 945 946 if (sh->log_start == MaxSector) { 947 BUG_ON(!list_empty(&sh->r5c)); 948 sh->log_start = io->log_start; 949 spin_lock_irq(&log->stripe_in_journal_lock); 950 list_add_tail(&sh->r5c, 951 &log->stripe_in_journal_list); 952 spin_unlock_irq(&log->stripe_in_journal_lock); 953 atomic_inc(&log->stripe_in_journal_count); 954 } 955 return 0; 956 } 957 958 /* add stripe to no_space_stripes, and then wake up reclaim */ 959 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 960 struct stripe_head *sh) 961 { 962 spin_lock(&log->no_space_stripes_lock); 963 list_add_tail(&sh->log_list, &log->no_space_stripes); 964 spin_unlock(&log->no_space_stripes_lock); 965 } 966 967 /* 968 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 969 * data from log to raid disks), so we shouldn't wait for reclaim here 970 */ 971 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 972 { 973 struct r5conf *conf = sh->raid_conf; 974 int write_disks = 0; 975 int data_pages, parity_pages; 976 int reserve; 977 int i; 978 int ret = 0; 979 bool wake_reclaim = false; 980 981 if (!log) 982 return -EAGAIN; 983 /* Don't support stripe batch */ 984 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 985 test_bit(STRIPE_SYNCING, &sh->state)) { 986 /* the stripe is written to log, we start writing it to raid */ 987 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 988 return -EAGAIN; 989 } 990 991 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 992 993 for (i = 0; i < sh->disks; i++) { 994 void *addr; 995 996 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 997 test_bit(R5_InJournal, &sh->dev[i].flags)) 998 continue; 999 1000 write_disks++; 1001 /* checksum is already calculated in last run */ 1002 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1003 continue; 1004 addr = kmap_atomic(sh->dev[i].page); 1005 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1006 addr, PAGE_SIZE); 1007 kunmap_atomic(addr); 1008 } 1009 parity_pages = 1 + !!(sh->qd_idx >= 0); 1010 data_pages = write_disks - parity_pages; 1011 1012 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1013 /* 1014 * The stripe must enter state machine again to finish the write, so 1015 * don't delay. 1016 */ 1017 clear_bit(STRIPE_DELAYED, &sh->state); 1018 atomic_inc(&sh->count); 1019 1020 mutex_lock(&log->io_mutex); 1021 /* meta + data */ 1022 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1023 1024 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1025 if (!r5l_has_free_space(log, reserve)) { 1026 r5l_add_no_space_stripe(log, sh); 1027 wake_reclaim = true; 1028 } else { 1029 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1030 if (ret) { 1031 spin_lock_irq(&log->io_list_lock); 1032 list_add_tail(&sh->log_list, 1033 &log->no_mem_stripes); 1034 spin_unlock_irq(&log->io_list_lock); 1035 } 1036 } 1037 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1038 /* 1039 * log space critical, do not process stripes that are 1040 * not in cache yet (sh->log_start == MaxSector). 1041 */ 1042 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1043 sh->log_start == MaxSector) { 1044 r5l_add_no_space_stripe(log, sh); 1045 wake_reclaim = true; 1046 reserve = 0; 1047 } else if (!r5l_has_free_space(log, reserve)) { 1048 if (sh->log_start == log->last_checkpoint) 1049 BUG(); 1050 else 1051 r5l_add_no_space_stripe(log, sh); 1052 } else { 1053 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1054 if (ret) { 1055 spin_lock_irq(&log->io_list_lock); 1056 list_add_tail(&sh->log_list, 1057 &log->no_mem_stripes); 1058 spin_unlock_irq(&log->io_list_lock); 1059 } 1060 } 1061 } 1062 1063 mutex_unlock(&log->io_mutex); 1064 if (wake_reclaim) 1065 r5l_wake_reclaim(log, reserve); 1066 return 0; 1067 } 1068 1069 void r5l_write_stripe_run(struct r5l_log *log) 1070 { 1071 if (!log) 1072 return; 1073 mutex_lock(&log->io_mutex); 1074 r5l_submit_current_io(log); 1075 mutex_unlock(&log->io_mutex); 1076 } 1077 1078 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1079 { 1080 if (!log) 1081 return -ENODEV; 1082 1083 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1084 /* 1085 * in write through (journal only) 1086 * we flush log disk cache first, then write stripe data to 1087 * raid disks. So if bio is finished, the log disk cache is 1088 * flushed already. The recovery guarantees we can recovery 1089 * the bio from log disk, so we don't need to flush again 1090 */ 1091 if (bio->bi_iter.bi_size == 0) { 1092 bio_endio(bio); 1093 return 0; 1094 } 1095 bio->bi_opf &= ~REQ_PREFLUSH; 1096 } else { 1097 /* write back (with cache) */ 1098 if (bio->bi_iter.bi_size == 0) { 1099 mutex_lock(&log->io_mutex); 1100 r5l_get_meta(log, 0); 1101 bio_list_add(&log->current_io->flush_barriers, bio); 1102 log->current_io->has_flush = 1; 1103 log->current_io->has_null_flush = 1; 1104 atomic_inc(&log->current_io->pending_stripe); 1105 r5l_submit_current_io(log); 1106 mutex_unlock(&log->io_mutex); 1107 return 0; 1108 } 1109 } 1110 return -EAGAIN; 1111 } 1112 1113 /* This will run after log space is reclaimed */ 1114 static void r5l_run_no_space_stripes(struct r5l_log *log) 1115 { 1116 struct stripe_head *sh; 1117 1118 spin_lock(&log->no_space_stripes_lock); 1119 while (!list_empty(&log->no_space_stripes)) { 1120 sh = list_first_entry(&log->no_space_stripes, 1121 struct stripe_head, log_list); 1122 list_del_init(&sh->log_list); 1123 set_bit(STRIPE_HANDLE, &sh->state); 1124 raid5_release_stripe(sh); 1125 } 1126 spin_unlock(&log->no_space_stripes_lock); 1127 } 1128 1129 /* 1130 * calculate new last_checkpoint 1131 * for write through mode, returns log->next_checkpoint 1132 * for write back, returns log_start of first sh in stripe_in_journal_list 1133 */ 1134 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1135 { 1136 struct stripe_head *sh; 1137 struct r5l_log *log = conf->log; 1138 sector_t new_cp; 1139 unsigned long flags; 1140 1141 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1142 return log->next_checkpoint; 1143 1144 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1145 if (list_empty(&conf->log->stripe_in_journal_list)) { 1146 /* all stripes flushed */ 1147 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1148 return log->next_checkpoint; 1149 } 1150 sh = list_first_entry(&conf->log->stripe_in_journal_list, 1151 struct stripe_head, r5c); 1152 new_cp = sh->log_start; 1153 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1154 return new_cp; 1155 } 1156 1157 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1158 { 1159 struct r5conf *conf = log->rdev->mddev->private; 1160 1161 return r5l_ring_distance(log, log->last_checkpoint, 1162 r5c_calculate_new_cp(conf)); 1163 } 1164 1165 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1166 { 1167 struct stripe_head *sh; 1168 1169 assert_spin_locked(&log->io_list_lock); 1170 1171 if (!list_empty(&log->no_mem_stripes)) { 1172 sh = list_first_entry(&log->no_mem_stripes, 1173 struct stripe_head, log_list); 1174 list_del_init(&sh->log_list); 1175 set_bit(STRIPE_HANDLE, &sh->state); 1176 raid5_release_stripe(sh); 1177 } 1178 } 1179 1180 static bool r5l_complete_finished_ios(struct r5l_log *log) 1181 { 1182 struct r5l_io_unit *io, *next; 1183 bool found = false; 1184 1185 assert_spin_locked(&log->io_list_lock); 1186 1187 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1188 /* don't change list order */ 1189 if (io->state < IO_UNIT_STRIPE_END) 1190 break; 1191 1192 log->next_checkpoint = io->log_start; 1193 1194 list_del(&io->log_sibling); 1195 mempool_free(io, log->io_pool); 1196 r5l_run_no_mem_stripe(log); 1197 1198 found = true; 1199 } 1200 1201 return found; 1202 } 1203 1204 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1205 { 1206 struct r5l_log *log = io->log; 1207 struct r5conf *conf = log->rdev->mddev->private; 1208 unsigned long flags; 1209 1210 spin_lock_irqsave(&log->io_list_lock, flags); 1211 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1212 1213 if (!r5l_complete_finished_ios(log)) { 1214 spin_unlock_irqrestore(&log->io_list_lock, flags); 1215 return; 1216 } 1217 1218 if (r5l_reclaimable_space(log) > log->max_free_space || 1219 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1220 r5l_wake_reclaim(log, 0); 1221 1222 spin_unlock_irqrestore(&log->io_list_lock, flags); 1223 wake_up(&log->iounit_wait); 1224 } 1225 1226 void r5l_stripe_write_finished(struct stripe_head *sh) 1227 { 1228 struct r5l_io_unit *io; 1229 1230 io = sh->log_io; 1231 sh->log_io = NULL; 1232 1233 if (io && atomic_dec_and_test(&io->pending_stripe)) 1234 __r5l_stripe_write_finished(io); 1235 } 1236 1237 static void r5l_log_flush_endio(struct bio *bio) 1238 { 1239 struct r5l_log *log = container_of(bio, struct r5l_log, 1240 flush_bio); 1241 unsigned long flags; 1242 struct r5l_io_unit *io; 1243 1244 if (bio->bi_error) 1245 md_error(log->rdev->mddev, log->rdev); 1246 1247 spin_lock_irqsave(&log->io_list_lock, flags); 1248 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1249 r5l_io_run_stripes(io); 1250 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1251 spin_unlock_irqrestore(&log->io_list_lock, flags); 1252 } 1253 1254 /* 1255 * Starting dispatch IO to raid. 1256 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1257 * broken meta in the middle of a log causes recovery can't find meta at the 1258 * head of log. If operations require meta at the head persistent in log, we 1259 * must make sure meta before it persistent in log too. A case is: 1260 * 1261 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1262 * data/parity must be persistent in log before we do the write to raid disks. 1263 * 1264 * The solution is we restrictly maintain io_unit list order. In this case, we 1265 * only write stripes of an io_unit to raid disks till the io_unit is the first 1266 * one whose data/parity is in log. 1267 */ 1268 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1269 { 1270 bool do_flush; 1271 1272 if (!log || !log->need_cache_flush) 1273 return; 1274 1275 spin_lock_irq(&log->io_list_lock); 1276 /* flush bio is running */ 1277 if (!list_empty(&log->flushing_ios)) { 1278 spin_unlock_irq(&log->io_list_lock); 1279 return; 1280 } 1281 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1282 do_flush = !list_empty(&log->flushing_ios); 1283 spin_unlock_irq(&log->io_list_lock); 1284 1285 if (!do_flush) 1286 return; 1287 bio_reset(&log->flush_bio); 1288 log->flush_bio.bi_bdev = log->rdev->bdev; 1289 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1290 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1291 submit_bio(&log->flush_bio); 1292 } 1293 1294 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1295 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1296 sector_t end) 1297 { 1298 struct block_device *bdev = log->rdev->bdev; 1299 struct mddev *mddev; 1300 1301 r5l_write_super(log, end); 1302 1303 if (!blk_queue_discard(bdev_get_queue(bdev))) 1304 return; 1305 1306 mddev = log->rdev->mddev; 1307 /* 1308 * Discard could zero data, so before discard we must make sure 1309 * superblock is updated to new log tail. Updating superblock (either 1310 * directly call md_update_sb() or depend on md thread) must hold 1311 * reconfig mutex. On the other hand, raid5_quiesce is called with 1312 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting 1313 * for all IO finish, hence waitting for reclaim thread, while reclaim 1314 * thread is calling this function and waitting for reconfig mutex. So 1315 * there is a deadlock. We workaround this issue with a trylock. 1316 * FIXME: we could miss discard if we can't take reconfig mutex 1317 */ 1318 set_mask_bits(&mddev->sb_flags, 0, 1319 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1320 if (!mddev_trylock(mddev)) 1321 return; 1322 md_update_sb(mddev, 1); 1323 mddev_unlock(mddev); 1324 1325 /* discard IO error really doesn't matter, ignore it */ 1326 if (log->last_checkpoint < end) { 1327 blkdev_issue_discard(bdev, 1328 log->last_checkpoint + log->rdev->data_offset, 1329 end - log->last_checkpoint, GFP_NOIO, 0); 1330 } else { 1331 blkdev_issue_discard(bdev, 1332 log->last_checkpoint + log->rdev->data_offset, 1333 log->device_size - log->last_checkpoint, 1334 GFP_NOIO, 0); 1335 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1336 GFP_NOIO, 0); 1337 } 1338 } 1339 1340 /* 1341 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1342 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1343 * 1344 * must hold conf->device_lock 1345 */ 1346 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1347 { 1348 BUG_ON(list_empty(&sh->lru)); 1349 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1350 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1351 1352 /* 1353 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1354 * raid5_release_stripe() while holding conf->device_lock 1355 */ 1356 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1357 assert_spin_locked(&conf->device_lock); 1358 1359 list_del_init(&sh->lru); 1360 atomic_inc(&sh->count); 1361 1362 set_bit(STRIPE_HANDLE, &sh->state); 1363 atomic_inc(&conf->active_stripes); 1364 r5c_make_stripe_write_out(sh); 1365 1366 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1367 atomic_inc(&conf->r5c_flushing_partial_stripes); 1368 else 1369 atomic_inc(&conf->r5c_flushing_full_stripes); 1370 raid5_release_stripe(sh); 1371 } 1372 1373 /* 1374 * if num == 0, flush all full stripes 1375 * if num > 0, flush all full stripes. If less than num full stripes are 1376 * flushed, flush some partial stripes until totally num stripes are 1377 * flushed or there is no more cached stripes. 1378 */ 1379 void r5c_flush_cache(struct r5conf *conf, int num) 1380 { 1381 int count; 1382 struct stripe_head *sh, *next; 1383 1384 assert_spin_locked(&conf->device_lock); 1385 if (!conf->log) 1386 return; 1387 1388 count = 0; 1389 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1390 r5c_flush_stripe(conf, sh); 1391 count++; 1392 } 1393 1394 if (count >= num) 1395 return; 1396 list_for_each_entry_safe(sh, next, 1397 &conf->r5c_partial_stripe_list, lru) { 1398 r5c_flush_stripe(conf, sh); 1399 if (++count >= num) 1400 break; 1401 } 1402 } 1403 1404 static void r5c_do_reclaim(struct r5conf *conf) 1405 { 1406 struct r5l_log *log = conf->log; 1407 struct stripe_head *sh; 1408 int count = 0; 1409 unsigned long flags; 1410 int total_cached; 1411 int stripes_to_flush; 1412 int flushing_partial, flushing_full; 1413 1414 if (!r5c_is_writeback(log)) 1415 return; 1416 1417 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1418 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1419 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1420 atomic_read(&conf->r5c_cached_full_stripes) - 1421 flushing_full - flushing_partial; 1422 1423 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1424 atomic_read(&conf->empty_inactive_list_nr) > 0) 1425 /* 1426 * if stripe cache pressure high, flush all full stripes and 1427 * some partial stripes 1428 */ 1429 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1430 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1431 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1432 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1433 /* 1434 * if stripe cache pressure moderate, or if there is many full 1435 * stripes,flush all full stripes 1436 */ 1437 stripes_to_flush = 0; 1438 else 1439 /* no need to flush */ 1440 stripes_to_flush = -1; 1441 1442 if (stripes_to_flush >= 0) { 1443 spin_lock_irqsave(&conf->device_lock, flags); 1444 r5c_flush_cache(conf, stripes_to_flush); 1445 spin_unlock_irqrestore(&conf->device_lock, flags); 1446 } 1447 1448 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1449 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1450 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1451 spin_lock(&conf->device_lock); 1452 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1453 /* 1454 * stripes on stripe_in_journal_list could be in any 1455 * state of the stripe_cache state machine. In this 1456 * case, we only want to flush stripe on 1457 * r5c_cached_full/partial_stripes. The following 1458 * condition makes sure the stripe is on one of the 1459 * two lists. 1460 */ 1461 if (!list_empty(&sh->lru) && 1462 !test_bit(STRIPE_HANDLE, &sh->state) && 1463 atomic_read(&sh->count) == 0) { 1464 r5c_flush_stripe(conf, sh); 1465 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1466 break; 1467 } 1468 } 1469 spin_unlock(&conf->device_lock); 1470 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1471 } 1472 1473 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1474 r5l_run_no_space_stripes(log); 1475 1476 md_wakeup_thread(conf->mddev->thread); 1477 } 1478 1479 static void r5l_do_reclaim(struct r5l_log *log) 1480 { 1481 struct r5conf *conf = log->rdev->mddev->private; 1482 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1483 sector_t reclaimable; 1484 sector_t next_checkpoint; 1485 bool write_super; 1486 1487 spin_lock_irq(&log->io_list_lock); 1488 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1489 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1490 /* 1491 * move proper io_unit to reclaim list. We should not change the order. 1492 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1493 * shouldn't reuse space of an unreclaimable io_unit 1494 */ 1495 while (1) { 1496 reclaimable = r5l_reclaimable_space(log); 1497 if (reclaimable >= reclaim_target || 1498 (list_empty(&log->running_ios) && 1499 list_empty(&log->io_end_ios) && 1500 list_empty(&log->flushing_ios) && 1501 list_empty(&log->finished_ios))) 1502 break; 1503 1504 md_wakeup_thread(log->rdev->mddev->thread); 1505 wait_event_lock_irq(log->iounit_wait, 1506 r5l_reclaimable_space(log) > reclaimable, 1507 log->io_list_lock); 1508 } 1509 1510 next_checkpoint = r5c_calculate_new_cp(conf); 1511 spin_unlock_irq(&log->io_list_lock); 1512 1513 if (reclaimable == 0 || !write_super) 1514 return; 1515 1516 /* 1517 * write_super will flush cache of each raid disk. We must write super 1518 * here, because the log area might be reused soon and we don't want to 1519 * confuse recovery 1520 */ 1521 r5l_write_super_and_discard_space(log, next_checkpoint); 1522 1523 mutex_lock(&log->io_mutex); 1524 log->last_checkpoint = next_checkpoint; 1525 r5c_update_log_state(log); 1526 mutex_unlock(&log->io_mutex); 1527 1528 r5l_run_no_space_stripes(log); 1529 } 1530 1531 static void r5l_reclaim_thread(struct md_thread *thread) 1532 { 1533 struct mddev *mddev = thread->mddev; 1534 struct r5conf *conf = mddev->private; 1535 struct r5l_log *log = conf->log; 1536 1537 if (!log) 1538 return; 1539 r5c_do_reclaim(conf); 1540 r5l_do_reclaim(log); 1541 } 1542 1543 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1544 { 1545 unsigned long target; 1546 unsigned long new = (unsigned long)space; /* overflow in theory */ 1547 1548 if (!log) 1549 return; 1550 do { 1551 target = log->reclaim_target; 1552 if (new < target) 1553 return; 1554 } while (cmpxchg(&log->reclaim_target, target, new) != target); 1555 md_wakeup_thread(log->reclaim_thread); 1556 } 1557 1558 void r5l_quiesce(struct r5l_log *log, int state) 1559 { 1560 struct mddev *mddev; 1561 if (!log || state == 2) 1562 return; 1563 if (state == 0) 1564 kthread_unpark(log->reclaim_thread->tsk); 1565 else if (state == 1) { 1566 /* make sure r5l_write_super_and_discard_space exits */ 1567 mddev = log->rdev->mddev; 1568 wake_up(&mddev->sb_wait); 1569 kthread_park(log->reclaim_thread->tsk); 1570 r5l_wake_reclaim(log, MaxSector); 1571 r5l_do_reclaim(log); 1572 } 1573 } 1574 1575 bool r5l_log_disk_error(struct r5conf *conf) 1576 { 1577 struct r5l_log *log; 1578 bool ret; 1579 /* don't allow write if journal disk is missing */ 1580 rcu_read_lock(); 1581 log = rcu_dereference(conf->log); 1582 1583 if (!log) 1584 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1585 else 1586 ret = test_bit(Faulty, &log->rdev->flags); 1587 rcu_read_unlock(); 1588 return ret; 1589 } 1590 1591 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1592 1593 struct r5l_recovery_ctx { 1594 struct page *meta_page; /* current meta */ 1595 sector_t meta_total_blocks; /* total size of current meta and data */ 1596 sector_t pos; /* recovery position */ 1597 u64 seq; /* recovery position seq */ 1598 int data_parity_stripes; /* number of data_parity stripes */ 1599 int data_only_stripes; /* number of data_only stripes */ 1600 struct list_head cached_list; 1601 1602 /* 1603 * read ahead page pool (ra_pool) 1604 * in recovery, log is read sequentially. It is not efficient to 1605 * read every page with sync_page_io(). The read ahead page pool 1606 * reads multiple pages with one IO, so further log read can 1607 * just copy data from the pool. 1608 */ 1609 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1610 sector_t pool_offset; /* offset of first page in the pool */ 1611 int total_pages; /* total allocated pages */ 1612 int valid_pages; /* pages with valid data */ 1613 struct bio *ra_bio; /* bio to do the read ahead */ 1614 }; 1615 1616 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1617 struct r5l_recovery_ctx *ctx) 1618 { 1619 struct page *page; 1620 1621 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs); 1622 if (!ctx->ra_bio) 1623 return -ENOMEM; 1624 1625 ctx->valid_pages = 0; 1626 ctx->total_pages = 0; 1627 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1628 page = alloc_page(GFP_KERNEL); 1629 1630 if (!page) 1631 break; 1632 ctx->ra_pool[ctx->total_pages] = page; 1633 ctx->total_pages += 1; 1634 } 1635 1636 if (ctx->total_pages == 0) { 1637 bio_put(ctx->ra_bio); 1638 return -ENOMEM; 1639 } 1640 1641 ctx->pool_offset = 0; 1642 return 0; 1643 } 1644 1645 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1646 struct r5l_recovery_ctx *ctx) 1647 { 1648 int i; 1649 1650 for (i = 0; i < ctx->total_pages; ++i) 1651 put_page(ctx->ra_pool[i]); 1652 bio_put(ctx->ra_bio); 1653 } 1654 1655 /* 1656 * fetch ctx->valid_pages pages from offset 1657 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1658 * However, if the offset is close to the end of the journal device, 1659 * ctx->valid_pages could be smaller than ctx->total_pages 1660 */ 1661 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1662 struct r5l_recovery_ctx *ctx, 1663 sector_t offset) 1664 { 1665 bio_reset(ctx->ra_bio); 1666 ctx->ra_bio->bi_bdev = log->rdev->bdev; 1667 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0); 1668 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset; 1669 1670 ctx->valid_pages = 0; 1671 ctx->pool_offset = offset; 1672 1673 while (ctx->valid_pages < ctx->total_pages) { 1674 bio_add_page(ctx->ra_bio, 1675 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0); 1676 ctx->valid_pages += 1; 1677 1678 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1679 1680 if (offset == 0) /* reached end of the device */ 1681 break; 1682 } 1683 1684 return submit_bio_wait(ctx->ra_bio); 1685 } 1686 1687 /* 1688 * try read a page from the read ahead page pool, if the page is not in the 1689 * pool, call r5l_recovery_fetch_ra_pool 1690 */ 1691 static int r5l_recovery_read_page(struct r5l_log *log, 1692 struct r5l_recovery_ctx *ctx, 1693 struct page *page, 1694 sector_t offset) 1695 { 1696 int ret; 1697 1698 if (offset < ctx->pool_offset || 1699 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1700 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1701 if (ret) 1702 return ret; 1703 } 1704 1705 BUG_ON(offset < ctx->pool_offset || 1706 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1707 1708 memcpy(page_address(page), 1709 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1710 BLOCK_SECTOR_SHIFT]), 1711 PAGE_SIZE); 1712 return 0; 1713 } 1714 1715 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1716 struct r5l_recovery_ctx *ctx) 1717 { 1718 struct page *page = ctx->meta_page; 1719 struct r5l_meta_block *mb; 1720 u32 crc, stored_crc; 1721 int ret; 1722 1723 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1724 if (ret != 0) 1725 return ret; 1726 1727 mb = page_address(page); 1728 stored_crc = le32_to_cpu(mb->checksum); 1729 mb->checksum = 0; 1730 1731 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1732 le64_to_cpu(mb->seq) != ctx->seq || 1733 mb->version != R5LOG_VERSION || 1734 le64_to_cpu(mb->position) != ctx->pos) 1735 return -EINVAL; 1736 1737 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1738 if (stored_crc != crc) 1739 return -EINVAL; 1740 1741 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1742 return -EINVAL; 1743 1744 ctx->meta_total_blocks = BLOCK_SECTORS; 1745 1746 return 0; 1747 } 1748 1749 static void 1750 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1751 struct page *page, 1752 sector_t pos, u64 seq) 1753 { 1754 struct r5l_meta_block *mb; 1755 1756 mb = page_address(page); 1757 clear_page(mb); 1758 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1759 mb->version = R5LOG_VERSION; 1760 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1761 mb->seq = cpu_to_le64(seq); 1762 mb->position = cpu_to_le64(pos); 1763 } 1764 1765 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1766 u64 seq) 1767 { 1768 struct page *page; 1769 struct r5l_meta_block *mb; 1770 1771 page = alloc_page(GFP_KERNEL); 1772 if (!page) 1773 return -ENOMEM; 1774 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1775 mb = page_address(page); 1776 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1777 mb, PAGE_SIZE)); 1778 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE, 1779 REQ_FUA, false)) { 1780 __free_page(page); 1781 return -EIO; 1782 } 1783 __free_page(page); 1784 return 0; 1785 } 1786 1787 /* 1788 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1789 * to mark valid (potentially not flushed) data in the journal. 1790 * 1791 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1792 * so there should not be any mismatch here. 1793 */ 1794 static void r5l_recovery_load_data(struct r5l_log *log, 1795 struct stripe_head *sh, 1796 struct r5l_recovery_ctx *ctx, 1797 struct r5l_payload_data_parity *payload, 1798 sector_t log_offset) 1799 { 1800 struct mddev *mddev = log->rdev->mddev; 1801 struct r5conf *conf = mddev->private; 1802 int dd_idx; 1803 1804 raid5_compute_sector(conf, 1805 le64_to_cpu(payload->location), 0, 1806 &dd_idx, sh); 1807 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1808 sh->dev[dd_idx].log_checksum = 1809 le32_to_cpu(payload->checksum[0]); 1810 ctx->meta_total_blocks += BLOCK_SECTORS; 1811 1812 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1813 set_bit(STRIPE_R5C_CACHING, &sh->state); 1814 } 1815 1816 static void r5l_recovery_load_parity(struct r5l_log *log, 1817 struct stripe_head *sh, 1818 struct r5l_recovery_ctx *ctx, 1819 struct r5l_payload_data_parity *payload, 1820 sector_t log_offset) 1821 { 1822 struct mddev *mddev = log->rdev->mddev; 1823 struct r5conf *conf = mddev->private; 1824 1825 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1826 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1827 sh->dev[sh->pd_idx].log_checksum = 1828 le32_to_cpu(payload->checksum[0]); 1829 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1830 1831 if (sh->qd_idx >= 0) { 1832 r5l_recovery_read_page( 1833 log, ctx, sh->dev[sh->qd_idx].page, 1834 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1835 sh->dev[sh->qd_idx].log_checksum = 1836 le32_to_cpu(payload->checksum[1]); 1837 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1838 } 1839 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1840 } 1841 1842 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1843 { 1844 int i; 1845 1846 sh->state = 0; 1847 sh->log_start = MaxSector; 1848 for (i = sh->disks; i--; ) 1849 sh->dev[i].flags = 0; 1850 } 1851 1852 static void 1853 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1854 struct stripe_head *sh, 1855 struct r5l_recovery_ctx *ctx) 1856 { 1857 struct md_rdev *rdev, *rrdev; 1858 int disk_index; 1859 int data_count = 0; 1860 1861 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1862 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1863 continue; 1864 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1865 continue; 1866 data_count++; 1867 } 1868 1869 /* 1870 * stripes that only have parity must have been flushed 1871 * before the crash that we are now recovering from, so 1872 * there is nothing more to recovery. 1873 */ 1874 if (data_count == 0) 1875 goto out; 1876 1877 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1878 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1879 continue; 1880 1881 /* in case device is broken */ 1882 rcu_read_lock(); 1883 rdev = rcu_dereference(conf->disks[disk_index].rdev); 1884 if (rdev) { 1885 atomic_inc(&rdev->nr_pending); 1886 rcu_read_unlock(); 1887 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1888 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1889 false); 1890 rdev_dec_pending(rdev, rdev->mddev); 1891 rcu_read_lock(); 1892 } 1893 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 1894 if (rrdev) { 1895 atomic_inc(&rrdev->nr_pending); 1896 rcu_read_unlock(); 1897 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1898 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1899 false); 1900 rdev_dec_pending(rrdev, rrdev->mddev); 1901 rcu_read_lock(); 1902 } 1903 rcu_read_unlock(); 1904 } 1905 ctx->data_parity_stripes++; 1906 out: 1907 r5l_recovery_reset_stripe(sh); 1908 } 1909 1910 static struct stripe_head * 1911 r5c_recovery_alloc_stripe(struct r5conf *conf, 1912 sector_t stripe_sect) 1913 { 1914 struct stripe_head *sh; 1915 1916 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0); 1917 if (!sh) 1918 return NULL; /* no more stripe available */ 1919 1920 r5l_recovery_reset_stripe(sh); 1921 1922 return sh; 1923 } 1924 1925 static struct stripe_head * 1926 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1927 { 1928 struct stripe_head *sh; 1929 1930 list_for_each_entry(sh, list, lru) 1931 if (sh->sector == sect) 1932 return sh; 1933 return NULL; 1934 } 1935 1936 static void 1937 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1938 struct r5l_recovery_ctx *ctx) 1939 { 1940 struct stripe_head *sh, *next; 1941 1942 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1943 r5l_recovery_reset_stripe(sh); 1944 list_del_init(&sh->lru); 1945 raid5_release_stripe(sh); 1946 } 1947 } 1948 1949 static void 1950 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1951 struct r5l_recovery_ctx *ctx) 1952 { 1953 struct stripe_head *sh, *next; 1954 1955 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1956 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1957 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1958 list_del_init(&sh->lru); 1959 raid5_release_stripe(sh); 1960 } 1961 } 1962 1963 /* if matches return 0; otherwise return -EINVAL */ 1964 static int 1965 r5l_recovery_verify_data_checksum(struct r5l_log *log, 1966 struct r5l_recovery_ctx *ctx, 1967 struct page *page, 1968 sector_t log_offset, __le32 log_checksum) 1969 { 1970 void *addr; 1971 u32 checksum; 1972 1973 r5l_recovery_read_page(log, ctx, page, log_offset); 1974 addr = kmap_atomic(page); 1975 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 1976 kunmap_atomic(addr); 1977 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 1978 } 1979 1980 /* 1981 * before loading data to stripe cache, we need verify checksum for all data, 1982 * if there is mismatch for any data page, we drop all data in the mata block 1983 */ 1984 static int 1985 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 1986 struct r5l_recovery_ctx *ctx) 1987 { 1988 struct mddev *mddev = log->rdev->mddev; 1989 struct r5conf *conf = mddev->private; 1990 struct r5l_meta_block *mb = page_address(ctx->meta_page); 1991 sector_t mb_offset = sizeof(struct r5l_meta_block); 1992 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 1993 struct page *page; 1994 struct r5l_payload_data_parity *payload; 1995 struct r5l_payload_flush *payload_flush; 1996 1997 page = alloc_page(GFP_KERNEL); 1998 if (!page) 1999 return -ENOMEM; 2000 2001 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2002 payload = (void *)mb + mb_offset; 2003 payload_flush = (void *)mb + mb_offset; 2004 2005 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2006 if (r5l_recovery_verify_data_checksum( 2007 log, ctx, page, log_offset, 2008 payload->checksum[0]) < 0) 2009 goto mismatch; 2010 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2011 if (r5l_recovery_verify_data_checksum( 2012 log, ctx, page, log_offset, 2013 payload->checksum[0]) < 0) 2014 goto mismatch; 2015 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2016 r5l_recovery_verify_data_checksum( 2017 log, ctx, page, 2018 r5l_ring_add(log, log_offset, 2019 BLOCK_SECTORS), 2020 payload->checksum[1]) < 0) 2021 goto mismatch; 2022 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2023 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2024 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2025 goto mismatch; 2026 2027 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2028 mb_offset += sizeof(struct r5l_payload_flush) + 2029 le32_to_cpu(payload_flush->size); 2030 } else { 2031 /* DATA or PARITY payload */ 2032 log_offset = r5l_ring_add(log, log_offset, 2033 le32_to_cpu(payload->size)); 2034 mb_offset += sizeof(struct r5l_payload_data_parity) + 2035 sizeof(__le32) * 2036 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2037 } 2038 2039 } 2040 2041 put_page(page); 2042 return 0; 2043 2044 mismatch: 2045 put_page(page); 2046 return -EINVAL; 2047 } 2048 2049 /* 2050 * Analyze all data/parity pages in one meta block 2051 * Returns: 2052 * 0 for success 2053 * -EINVAL for unknown playload type 2054 * -EAGAIN for checksum mismatch of data page 2055 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2056 */ 2057 static int 2058 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2059 struct r5l_recovery_ctx *ctx, 2060 struct list_head *cached_stripe_list) 2061 { 2062 struct mddev *mddev = log->rdev->mddev; 2063 struct r5conf *conf = mddev->private; 2064 struct r5l_meta_block *mb; 2065 struct r5l_payload_data_parity *payload; 2066 struct r5l_payload_flush *payload_flush; 2067 int mb_offset; 2068 sector_t log_offset; 2069 sector_t stripe_sect; 2070 struct stripe_head *sh; 2071 int ret; 2072 2073 /* 2074 * for mismatch in data blocks, we will drop all data in this mb, but 2075 * we will still read next mb for other data with FLUSH flag, as 2076 * io_unit could finish out of order. 2077 */ 2078 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2079 if (ret == -EINVAL) 2080 return -EAGAIN; 2081 else if (ret) 2082 return ret; /* -ENOMEM duo to alloc_page() failed */ 2083 2084 mb = page_address(ctx->meta_page); 2085 mb_offset = sizeof(struct r5l_meta_block); 2086 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2087 2088 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2089 int dd; 2090 2091 payload = (void *)mb + mb_offset; 2092 payload_flush = (void *)mb + mb_offset; 2093 2094 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2095 int i, count; 2096 2097 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2098 for (i = 0; i < count; ++i) { 2099 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2100 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2101 stripe_sect); 2102 if (sh) { 2103 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2104 r5l_recovery_reset_stripe(sh); 2105 list_del_init(&sh->lru); 2106 raid5_release_stripe(sh); 2107 } 2108 } 2109 2110 mb_offset += sizeof(struct r5l_payload_flush) + 2111 le32_to_cpu(payload_flush->size); 2112 continue; 2113 } 2114 2115 /* DATA or PARITY payload */ 2116 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2117 raid5_compute_sector( 2118 conf, le64_to_cpu(payload->location), 0, &dd, 2119 NULL) 2120 : le64_to_cpu(payload->location); 2121 2122 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2123 stripe_sect); 2124 2125 if (!sh) { 2126 sh = r5c_recovery_alloc_stripe(conf, stripe_sect); 2127 /* 2128 * cannot get stripe from raid5_get_active_stripe 2129 * try replay some stripes 2130 */ 2131 if (!sh) { 2132 r5c_recovery_replay_stripes( 2133 cached_stripe_list, ctx); 2134 sh = r5c_recovery_alloc_stripe( 2135 conf, stripe_sect); 2136 } 2137 if (!sh) { 2138 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2139 mdname(mddev), 2140 conf->min_nr_stripes * 2); 2141 raid5_set_cache_size(mddev, 2142 conf->min_nr_stripes * 2); 2143 sh = r5c_recovery_alloc_stripe(conf, 2144 stripe_sect); 2145 } 2146 if (!sh) { 2147 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2148 mdname(mddev)); 2149 return -ENOMEM; 2150 } 2151 list_add_tail(&sh->lru, cached_stripe_list); 2152 } 2153 2154 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2155 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2156 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2157 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2158 list_move_tail(&sh->lru, cached_stripe_list); 2159 } 2160 r5l_recovery_load_data(log, sh, ctx, payload, 2161 log_offset); 2162 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2163 r5l_recovery_load_parity(log, sh, ctx, payload, 2164 log_offset); 2165 else 2166 return -EINVAL; 2167 2168 log_offset = r5l_ring_add(log, log_offset, 2169 le32_to_cpu(payload->size)); 2170 2171 mb_offset += sizeof(struct r5l_payload_data_parity) + 2172 sizeof(__le32) * 2173 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2174 } 2175 2176 return 0; 2177 } 2178 2179 /* 2180 * Load the stripe into cache. The stripe will be written out later by 2181 * the stripe cache state machine. 2182 */ 2183 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2184 struct stripe_head *sh) 2185 { 2186 struct r5dev *dev; 2187 int i; 2188 2189 for (i = sh->disks; i--; ) { 2190 dev = sh->dev + i; 2191 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2192 set_bit(R5_InJournal, &dev->flags); 2193 set_bit(R5_UPTODATE, &dev->flags); 2194 } 2195 } 2196 } 2197 2198 /* 2199 * Scan through the log for all to-be-flushed data 2200 * 2201 * For stripes with data and parity, namely Data-Parity stripe 2202 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2203 * 2204 * For stripes with only data, namely Data-Only stripe 2205 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2206 * 2207 * For a stripe, if we see data after parity, we should discard all previous 2208 * data and parity for this stripe, as these data are already flushed to 2209 * the array. 2210 * 2211 * At the end of the scan, we return the new journal_tail, which points to 2212 * first data-only stripe on the journal device, or next invalid meta block. 2213 */ 2214 static int r5c_recovery_flush_log(struct r5l_log *log, 2215 struct r5l_recovery_ctx *ctx) 2216 { 2217 struct stripe_head *sh; 2218 int ret = 0; 2219 2220 /* scan through the log */ 2221 while (1) { 2222 if (r5l_recovery_read_meta_block(log, ctx)) 2223 break; 2224 2225 ret = r5c_recovery_analyze_meta_block(log, ctx, 2226 &ctx->cached_list); 2227 /* 2228 * -EAGAIN means mismatch in data block, in this case, we still 2229 * try scan the next metablock 2230 */ 2231 if (ret && ret != -EAGAIN) 2232 break; /* ret == -EINVAL or -ENOMEM */ 2233 ctx->seq++; 2234 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2235 } 2236 2237 if (ret == -ENOMEM) { 2238 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2239 return ret; 2240 } 2241 2242 /* replay data-parity stripes */ 2243 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2244 2245 /* load data-only stripes to stripe cache */ 2246 list_for_each_entry(sh, &ctx->cached_list, lru) { 2247 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2248 r5c_recovery_load_one_stripe(log, sh); 2249 ctx->data_only_stripes++; 2250 } 2251 2252 return 0; 2253 } 2254 2255 /* 2256 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2257 * log will start here. but we can't let superblock point to last valid 2258 * meta block. The log might looks like: 2259 * | meta 1| meta 2| meta 3| 2260 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2261 * superblock points to meta 1, we write a new valid meta 2n. if crash 2262 * happens again, new recovery will start from meta 1. Since meta 2n is 2263 * valid now, recovery will think meta 3 is valid, which is wrong. 2264 * The solution is we create a new meta in meta2 with its seq == meta 2265 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2266 * will not think meta 3 is a valid meta, because its seq doesn't match 2267 */ 2268 2269 /* 2270 * Before recovery, the log looks like the following 2271 * 2272 * --------------------------------------------- 2273 * | valid log | invalid log | 2274 * --------------------------------------------- 2275 * ^ 2276 * |- log->last_checkpoint 2277 * |- log->last_cp_seq 2278 * 2279 * Now we scan through the log until we see invalid entry 2280 * 2281 * --------------------------------------------- 2282 * | valid log | invalid log | 2283 * --------------------------------------------- 2284 * ^ ^ 2285 * |- log->last_checkpoint |- ctx->pos 2286 * |- log->last_cp_seq |- ctx->seq 2287 * 2288 * From this point, we need to increase seq number by 10 to avoid 2289 * confusing next recovery. 2290 * 2291 * --------------------------------------------- 2292 * | valid log | invalid log | 2293 * --------------------------------------------- 2294 * ^ ^ 2295 * |- log->last_checkpoint |- ctx->pos+1 2296 * |- log->last_cp_seq |- ctx->seq+10001 2297 * 2298 * However, it is not safe to start the state machine yet, because data only 2299 * parities are not yet secured in RAID. To save these data only parities, we 2300 * rewrite them from seq+11. 2301 * 2302 * ----------------------------------------------------------------- 2303 * | valid log | data only stripes | invalid log | 2304 * ----------------------------------------------------------------- 2305 * ^ ^ 2306 * |- log->last_checkpoint |- ctx->pos+n 2307 * |- log->last_cp_seq |- ctx->seq+10000+n 2308 * 2309 * If failure happens again during this process, the recovery can safe start 2310 * again from log->last_checkpoint. 2311 * 2312 * Once data only stripes are rewritten to journal, we move log_tail 2313 * 2314 * ----------------------------------------------------------------- 2315 * | old log | data only stripes | invalid log | 2316 * ----------------------------------------------------------------- 2317 * ^ ^ 2318 * |- log->last_checkpoint |- ctx->pos+n 2319 * |- log->last_cp_seq |- ctx->seq+10000+n 2320 * 2321 * Then we can safely start the state machine. If failure happens from this 2322 * point on, the recovery will start from new log->last_checkpoint. 2323 */ 2324 static int 2325 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2326 struct r5l_recovery_ctx *ctx) 2327 { 2328 struct stripe_head *sh; 2329 struct mddev *mddev = log->rdev->mddev; 2330 struct page *page; 2331 sector_t next_checkpoint = MaxSector; 2332 2333 page = alloc_page(GFP_KERNEL); 2334 if (!page) { 2335 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2336 mdname(mddev)); 2337 return -ENOMEM; 2338 } 2339 2340 WARN_ON(list_empty(&ctx->cached_list)); 2341 2342 list_for_each_entry(sh, &ctx->cached_list, lru) { 2343 struct r5l_meta_block *mb; 2344 int i; 2345 int offset; 2346 sector_t write_pos; 2347 2348 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2349 r5l_recovery_create_empty_meta_block(log, page, 2350 ctx->pos, ctx->seq); 2351 mb = page_address(page); 2352 offset = le32_to_cpu(mb->meta_size); 2353 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2354 2355 for (i = sh->disks; i--; ) { 2356 struct r5dev *dev = &sh->dev[i]; 2357 struct r5l_payload_data_parity *payload; 2358 void *addr; 2359 2360 if (test_bit(R5_InJournal, &dev->flags)) { 2361 payload = (void *)mb + offset; 2362 payload->header.type = cpu_to_le16( 2363 R5LOG_PAYLOAD_DATA); 2364 payload->size = cpu_to_le32(BLOCK_SECTORS); 2365 payload->location = cpu_to_le64( 2366 raid5_compute_blocknr(sh, i, 0)); 2367 addr = kmap_atomic(dev->page); 2368 payload->checksum[0] = cpu_to_le32( 2369 crc32c_le(log->uuid_checksum, addr, 2370 PAGE_SIZE)); 2371 kunmap_atomic(addr); 2372 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2373 dev->page, REQ_OP_WRITE, 0, false); 2374 write_pos = r5l_ring_add(log, write_pos, 2375 BLOCK_SECTORS); 2376 offset += sizeof(__le32) + 2377 sizeof(struct r5l_payload_data_parity); 2378 2379 } 2380 } 2381 mb->meta_size = cpu_to_le32(offset); 2382 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2383 mb, PAGE_SIZE)); 2384 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2385 REQ_OP_WRITE, REQ_FUA, false); 2386 sh->log_start = ctx->pos; 2387 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2388 atomic_inc(&log->stripe_in_journal_count); 2389 ctx->pos = write_pos; 2390 ctx->seq += 1; 2391 next_checkpoint = sh->log_start; 2392 } 2393 log->next_checkpoint = next_checkpoint; 2394 __free_page(page); 2395 return 0; 2396 } 2397 2398 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2399 struct r5l_recovery_ctx *ctx) 2400 { 2401 struct mddev *mddev = log->rdev->mddev; 2402 struct r5conf *conf = mddev->private; 2403 struct stripe_head *sh, *next; 2404 2405 if (ctx->data_only_stripes == 0) 2406 return; 2407 2408 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2409 2410 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2411 r5c_make_stripe_write_out(sh); 2412 set_bit(STRIPE_HANDLE, &sh->state); 2413 list_del_init(&sh->lru); 2414 raid5_release_stripe(sh); 2415 } 2416 2417 md_wakeup_thread(conf->mddev->thread); 2418 /* reuse conf->wait_for_quiescent in recovery */ 2419 wait_event(conf->wait_for_quiescent, 2420 atomic_read(&conf->active_stripes) == 0); 2421 2422 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2423 } 2424 2425 static int r5l_recovery_log(struct r5l_log *log) 2426 { 2427 struct mddev *mddev = log->rdev->mddev; 2428 struct r5l_recovery_ctx *ctx; 2429 int ret; 2430 sector_t pos; 2431 2432 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2433 if (!ctx) 2434 return -ENOMEM; 2435 2436 ctx->pos = log->last_checkpoint; 2437 ctx->seq = log->last_cp_seq; 2438 INIT_LIST_HEAD(&ctx->cached_list); 2439 ctx->meta_page = alloc_page(GFP_KERNEL); 2440 2441 if (!ctx->meta_page) { 2442 ret = -ENOMEM; 2443 goto meta_page; 2444 } 2445 2446 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2447 ret = -ENOMEM; 2448 goto ra_pool; 2449 } 2450 2451 ret = r5c_recovery_flush_log(log, ctx); 2452 2453 if (ret) 2454 goto error; 2455 2456 pos = ctx->pos; 2457 ctx->seq += 10000; 2458 2459 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2460 pr_debug("md/raid:%s: starting from clean shutdown\n", 2461 mdname(mddev)); 2462 else 2463 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2464 mdname(mddev), ctx->data_only_stripes, 2465 ctx->data_parity_stripes); 2466 2467 if (ctx->data_only_stripes == 0) { 2468 log->next_checkpoint = ctx->pos; 2469 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2470 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2471 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2472 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2473 mdname(mddev)); 2474 ret = -EIO; 2475 goto error; 2476 } 2477 2478 log->log_start = ctx->pos; 2479 log->seq = ctx->seq; 2480 log->last_checkpoint = pos; 2481 r5l_write_super(log, pos); 2482 2483 r5c_recovery_flush_data_only_stripes(log, ctx); 2484 ret = 0; 2485 error: 2486 r5l_recovery_free_ra_pool(log, ctx); 2487 ra_pool: 2488 __free_page(ctx->meta_page); 2489 meta_page: 2490 kfree(ctx); 2491 return ret; 2492 } 2493 2494 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2495 { 2496 struct mddev *mddev = log->rdev->mddev; 2497 2498 log->rdev->journal_tail = cp; 2499 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2500 } 2501 2502 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2503 { 2504 struct r5conf *conf = mddev->private; 2505 int ret; 2506 2507 if (!conf->log) 2508 return 0; 2509 2510 switch (conf->log->r5c_journal_mode) { 2511 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2512 ret = snprintf( 2513 page, PAGE_SIZE, "[%s] %s\n", 2514 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2515 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2516 break; 2517 case R5C_JOURNAL_MODE_WRITE_BACK: 2518 ret = snprintf( 2519 page, PAGE_SIZE, "%s [%s]\n", 2520 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2521 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2522 break; 2523 default: 2524 ret = 0; 2525 } 2526 return ret; 2527 } 2528 2529 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2530 const char *page, size_t length) 2531 { 2532 struct r5conf *conf = mddev->private; 2533 struct r5l_log *log = conf->log; 2534 int val = -1, i; 2535 int len = length; 2536 2537 if (!log) 2538 return -ENODEV; 2539 2540 if (len && page[len - 1] == '\n') 2541 len -= 1; 2542 for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++) 2543 if (strlen(r5c_journal_mode_str[i]) == len && 2544 strncmp(page, r5c_journal_mode_str[i], len) == 0) { 2545 val = i; 2546 break; 2547 } 2548 if (val < R5C_JOURNAL_MODE_WRITE_THROUGH || 2549 val > R5C_JOURNAL_MODE_WRITE_BACK) 2550 return -EINVAL; 2551 2552 if (raid5_calc_degraded(conf) > 0 && 2553 val == R5C_JOURNAL_MODE_WRITE_BACK) 2554 return -EINVAL; 2555 2556 mddev_suspend(mddev); 2557 conf->log->r5c_journal_mode = val; 2558 mddev_resume(mddev); 2559 2560 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2561 mdname(mddev), val, r5c_journal_mode_str[val]); 2562 return length; 2563 } 2564 2565 struct md_sysfs_entry 2566 r5c_journal_mode = __ATTR(journal_mode, 0644, 2567 r5c_journal_mode_show, r5c_journal_mode_store); 2568 2569 /* 2570 * Try handle write operation in caching phase. This function should only 2571 * be called in write-back mode. 2572 * 2573 * If all outstanding writes can be handled in caching phase, returns 0 2574 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2575 * and returns -EAGAIN 2576 */ 2577 int r5c_try_caching_write(struct r5conf *conf, 2578 struct stripe_head *sh, 2579 struct stripe_head_state *s, 2580 int disks) 2581 { 2582 struct r5l_log *log = conf->log; 2583 int i; 2584 struct r5dev *dev; 2585 int to_cache = 0; 2586 void **pslot; 2587 sector_t tree_index; 2588 int ret; 2589 uintptr_t refcount; 2590 2591 BUG_ON(!r5c_is_writeback(log)); 2592 2593 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2594 /* 2595 * There are two different scenarios here: 2596 * 1. The stripe has some data cached, and it is sent to 2597 * write-out phase for reclaim 2598 * 2. The stripe is clean, and this is the first write 2599 * 2600 * For 1, return -EAGAIN, so we continue with 2601 * handle_stripe_dirtying(). 2602 * 2603 * For 2, set STRIPE_R5C_CACHING and continue with caching 2604 * write. 2605 */ 2606 2607 /* case 1: anything injournal or anything in written */ 2608 if (s->injournal > 0 || s->written > 0) 2609 return -EAGAIN; 2610 /* case 2 */ 2611 set_bit(STRIPE_R5C_CACHING, &sh->state); 2612 } 2613 2614 /* 2615 * When run in degraded mode, array is set to write-through mode. 2616 * This check helps drain pending write safely in the transition to 2617 * write-through mode. 2618 */ 2619 if (s->failed) { 2620 r5c_make_stripe_write_out(sh); 2621 return -EAGAIN; 2622 } 2623 2624 for (i = disks; i--; ) { 2625 dev = &sh->dev[i]; 2626 /* if non-overwrite, use writing-out phase */ 2627 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2628 !test_bit(R5_InJournal, &dev->flags)) { 2629 r5c_make_stripe_write_out(sh); 2630 return -EAGAIN; 2631 } 2632 } 2633 2634 /* if the stripe is not counted in big_stripe_tree, add it now */ 2635 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2636 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2637 tree_index = r5c_tree_index(conf, sh->sector); 2638 spin_lock(&log->tree_lock); 2639 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2640 tree_index); 2641 if (pslot) { 2642 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2643 pslot, &log->tree_lock) >> 2644 R5C_RADIX_COUNT_SHIFT; 2645 radix_tree_replace_slot( 2646 &log->big_stripe_tree, pslot, 2647 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2648 } else { 2649 /* 2650 * this radix_tree_insert can fail safely, so no 2651 * need to call radix_tree_preload() 2652 */ 2653 ret = radix_tree_insert( 2654 &log->big_stripe_tree, tree_index, 2655 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2656 if (ret) { 2657 spin_unlock(&log->tree_lock); 2658 r5c_make_stripe_write_out(sh); 2659 return -EAGAIN; 2660 } 2661 } 2662 spin_unlock(&log->tree_lock); 2663 2664 /* 2665 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2666 * counted in the radix tree 2667 */ 2668 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2669 atomic_inc(&conf->r5c_cached_partial_stripes); 2670 } 2671 2672 for (i = disks; i--; ) { 2673 dev = &sh->dev[i]; 2674 if (dev->towrite) { 2675 set_bit(R5_Wantwrite, &dev->flags); 2676 set_bit(R5_Wantdrain, &dev->flags); 2677 set_bit(R5_LOCKED, &dev->flags); 2678 to_cache++; 2679 } 2680 } 2681 2682 if (to_cache) { 2683 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2684 /* 2685 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2686 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2687 * r5c_handle_data_cached() 2688 */ 2689 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2690 } 2691 2692 return 0; 2693 } 2694 2695 /* 2696 * free extra pages (orig_page) we allocated for prexor 2697 */ 2698 void r5c_release_extra_page(struct stripe_head *sh) 2699 { 2700 struct r5conf *conf = sh->raid_conf; 2701 int i; 2702 bool using_disk_info_extra_page; 2703 2704 using_disk_info_extra_page = 2705 sh->dev[0].orig_page == conf->disks[0].extra_page; 2706 2707 for (i = sh->disks; i--; ) 2708 if (sh->dev[i].page != sh->dev[i].orig_page) { 2709 struct page *p = sh->dev[i].orig_page; 2710 2711 sh->dev[i].orig_page = sh->dev[i].page; 2712 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2713 2714 if (!using_disk_info_extra_page) 2715 put_page(p); 2716 } 2717 2718 if (using_disk_info_extra_page) { 2719 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2720 md_wakeup_thread(conf->mddev->thread); 2721 } 2722 } 2723 2724 void r5c_use_extra_page(struct stripe_head *sh) 2725 { 2726 struct r5conf *conf = sh->raid_conf; 2727 int i; 2728 struct r5dev *dev; 2729 2730 for (i = sh->disks; i--; ) { 2731 dev = &sh->dev[i]; 2732 if (dev->orig_page != dev->page) 2733 put_page(dev->orig_page); 2734 dev->orig_page = conf->disks[i].extra_page; 2735 } 2736 } 2737 2738 /* 2739 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2740 * stripe is committed to RAID disks. 2741 */ 2742 void r5c_finish_stripe_write_out(struct r5conf *conf, 2743 struct stripe_head *sh, 2744 struct stripe_head_state *s) 2745 { 2746 struct r5l_log *log = conf->log; 2747 int i; 2748 int do_wakeup = 0; 2749 sector_t tree_index; 2750 void **pslot; 2751 uintptr_t refcount; 2752 2753 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2754 return; 2755 2756 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2757 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2758 2759 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2760 return; 2761 2762 for (i = sh->disks; i--; ) { 2763 clear_bit(R5_InJournal, &sh->dev[i].flags); 2764 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2765 do_wakeup = 1; 2766 } 2767 2768 /* 2769 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2770 * We updated R5_InJournal, so we also update s->injournal. 2771 */ 2772 s->injournal = 0; 2773 2774 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2775 if (atomic_dec_and_test(&conf->pending_full_writes)) 2776 md_wakeup_thread(conf->mddev->thread); 2777 2778 if (do_wakeup) 2779 wake_up(&conf->wait_for_overlap); 2780 2781 spin_lock_irq(&log->stripe_in_journal_lock); 2782 list_del_init(&sh->r5c); 2783 spin_unlock_irq(&log->stripe_in_journal_lock); 2784 sh->log_start = MaxSector; 2785 2786 atomic_dec(&log->stripe_in_journal_count); 2787 r5c_update_log_state(log); 2788 2789 /* stop counting this stripe in big_stripe_tree */ 2790 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2791 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2792 tree_index = r5c_tree_index(conf, sh->sector); 2793 spin_lock(&log->tree_lock); 2794 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2795 tree_index); 2796 BUG_ON(pslot == NULL); 2797 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2798 pslot, &log->tree_lock) >> 2799 R5C_RADIX_COUNT_SHIFT; 2800 if (refcount == 1) 2801 radix_tree_delete(&log->big_stripe_tree, tree_index); 2802 else 2803 radix_tree_replace_slot( 2804 &log->big_stripe_tree, pslot, 2805 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2806 spin_unlock(&log->tree_lock); 2807 } 2808 2809 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2810 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2811 atomic_dec(&conf->r5c_flushing_partial_stripes); 2812 atomic_dec(&conf->r5c_cached_partial_stripes); 2813 } 2814 2815 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2816 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2817 atomic_dec(&conf->r5c_flushing_full_stripes); 2818 atomic_dec(&conf->r5c_cached_full_stripes); 2819 } 2820 2821 r5l_append_flush_payload(log, sh->sector); 2822 } 2823 2824 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2825 { 2826 struct r5conf *conf = sh->raid_conf; 2827 int pages = 0; 2828 int reserve; 2829 int i; 2830 int ret = 0; 2831 2832 BUG_ON(!log); 2833 2834 for (i = 0; i < sh->disks; i++) { 2835 void *addr; 2836 2837 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2838 continue; 2839 addr = kmap_atomic(sh->dev[i].page); 2840 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2841 addr, PAGE_SIZE); 2842 kunmap_atomic(addr); 2843 pages++; 2844 } 2845 WARN_ON(pages == 0); 2846 2847 /* 2848 * The stripe must enter state machine again to call endio, so 2849 * don't delay. 2850 */ 2851 clear_bit(STRIPE_DELAYED, &sh->state); 2852 atomic_inc(&sh->count); 2853 2854 mutex_lock(&log->io_mutex); 2855 /* meta + data */ 2856 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2857 2858 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2859 sh->log_start == MaxSector) 2860 r5l_add_no_space_stripe(log, sh); 2861 else if (!r5l_has_free_space(log, reserve)) { 2862 if (sh->log_start == log->last_checkpoint) 2863 BUG(); 2864 else 2865 r5l_add_no_space_stripe(log, sh); 2866 } else { 2867 ret = r5l_log_stripe(log, sh, pages, 0); 2868 if (ret) { 2869 spin_lock_irq(&log->io_list_lock); 2870 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2871 spin_unlock_irq(&log->io_list_lock); 2872 } 2873 } 2874 2875 mutex_unlock(&log->io_mutex); 2876 return 0; 2877 } 2878 2879 /* check whether this big stripe is in write back cache. */ 2880 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2881 { 2882 struct r5l_log *log = conf->log; 2883 sector_t tree_index; 2884 void *slot; 2885 2886 if (!log) 2887 return false; 2888 2889 WARN_ON_ONCE(!rcu_read_lock_held()); 2890 tree_index = r5c_tree_index(conf, sect); 2891 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2892 return slot != NULL; 2893 } 2894 2895 static int r5l_load_log(struct r5l_log *log) 2896 { 2897 struct md_rdev *rdev = log->rdev; 2898 struct page *page; 2899 struct r5l_meta_block *mb; 2900 sector_t cp = log->rdev->journal_tail; 2901 u32 stored_crc, expected_crc; 2902 bool create_super = false; 2903 int ret = 0; 2904 2905 /* Make sure it's valid */ 2906 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2907 cp = 0; 2908 page = alloc_page(GFP_KERNEL); 2909 if (!page) 2910 return -ENOMEM; 2911 2912 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { 2913 ret = -EIO; 2914 goto ioerr; 2915 } 2916 mb = page_address(page); 2917 2918 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2919 mb->version != R5LOG_VERSION) { 2920 create_super = true; 2921 goto create; 2922 } 2923 stored_crc = le32_to_cpu(mb->checksum); 2924 mb->checksum = 0; 2925 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2926 if (stored_crc != expected_crc) { 2927 create_super = true; 2928 goto create; 2929 } 2930 if (le64_to_cpu(mb->position) != cp) { 2931 create_super = true; 2932 goto create; 2933 } 2934 create: 2935 if (create_super) { 2936 log->last_cp_seq = prandom_u32(); 2937 cp = 0; 2938 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 2939 /* 2940 * Make sure super points to correct address. Log might have 2941 * data very soon. If super hasn't correct log tail address, 2942 * recovery can't find the log 2943 */ 2944 r5l_write_super(log, cp); 2945 } else 2946 log->last_cp_seq = le64_to_cpu(mb->seq); 2947 2948 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 2949 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 2950 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 2951 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 2952 log->last_checkpoint = cp; 2953 2954 __free_page(page); 2955 2956 if (create_super) { 2957 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 2958 log->seq = log->last_cp_seq + 1; 2959 log->next_checkpoint = cp; 2960 } else 2961 ret = r5l_recovery_log(log); 2962 2963 r5c_update_log_state(log); 2964 return ret; 2965 ioerr: 2966 __free_page(page); 2967 return ret; 2968 } 2969 2970 void r5c_update_on_rdev_error(struct mddev *mddev) 2971 { 2972 struct r5conf *conf = mddev->private; 2973 struct r5l_log *log = conf->log; 2974 2975 if (!log) 2976 return; 2977 2978 if (raid5_calc_degraded(conf) > 0 && 2979 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 2980 schedule_work(&log->disable_writeback_work); 2981 } 2982 2983 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 2984 { 2985 struct request_queue *q = bdev_get_queue(rdev->bdev); 2986 struct r5l_log *log; 2987 char b[BDEVNAME_SIZE]; 2988 2989 pr_debug("md/raid:%s: using device %s as journal\n", 2990 mdname(conf->mddev), bdevname(rdev->bdev, b)); 2991 2992 if (PAGE_SIZE != 4096) 2993 return -EINVAL; 2994 2995 /* 2996 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 2997 * raid_disks r5l_payload_data_parity. 2998 * 2999 * Write journal and cache does not work for very big array 3000 * (raid_disks > 203) 3001 */ 3002 if (sizeof(struct r5l_meta_block) + 3003 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3004 conf->raid_disks) > PAGE_SIZE) { 3005 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3006 mdname(conf->mddev), conf->raid_disks); 3007 return -EINVAL; 3008 } 3009 3010 log = kzalloc(sizeof(*log), GFP_KERNEL); 3011 if (!log) 3012 return -ENOMEM; 3013 log->rdev = rdev; 3014 3015 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0; 3016 3017 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3018 sizeof(rdev->mddev->uuid)); 3019 3020 mutex_init(&log->io_mutex); 3021 3022 spin_lock_init(&log->io_list_lock); 3023 INIT_LIST_HEAD(&log->running_ios); 3024 INIT_LIST_HEAD(&log->io_end_ios); 3025 INIT_LIST_HEAD(&log->flushing_ios); 3026 INIT_LIST_HEAD(&log->finished_ios); 3027 bio_init(&log->flush_bio, NULL, 0); 3028 3029 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3030 if (!log->io_kc) 3031 goto io_kc; 3032 3033 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc); 3034 if (!log->io_pool) 3035 goto io_pool; 3036 3037 log->bs = bioset_create(R5L_POOL_SIZE, 0); 3038 if (!log->bs) 3039 goto io_bs; 3040 3041 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0); 3042 if (!log->meta_pool) 3043 goto out_mempool; 3044 3045 spin_lock_init(&log->tree_lock); 3046 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3047 3048 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 3049 log->rdev->mddev, "reclaim"); 3050 if (!log->reclaim_thread) 3051 goto reclaim_thread; 3052 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3053 3054 init_waitqueue_head(&log->iounit_wait); 3055 3056 INIT_LIST_HEAD(&log->no_mem_stripes); 3057 3058 INIT_LIST_HEAD(&log->no_space_stripes); 3059 spin_lock_init(&log->no_space_stripes_lock); 3060 3061 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3062 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3063 3064 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3065 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3066 spin_lock_init(&log->stripe_in_journal_lock); 3067 atomic_set(&log->stripe_in_journal_count, 0); 3068 3069 rcu_assign_pointer(conf->log, log); 3070 3071 if (r5l_load_log(log)) 3072 goto error; 3073 3074 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3075 return 0; 3076 3077 error: 3078 rcu_assign_pointer(conf->log, NULL); 3079 md_unregister_thread(&log->reclaim_thread); 3080 reclaim_thread: 3081 mempool_destroy(log->meta_pool); 3082 out_mempool: 3083 bioset_free(log->bs); 3084 io_bs: 3085 mempool_destroy(log->io_pool); 3086 io_pool: 3087 kmem_cache_destroy(log->io_kc); 3088 io_kc: 3089 kfree(log); 3090 return -EINVAL; 3091 } 3092 3093 void r5l_exit_log(struct r5conf *conf) 3094 { 3095 struct r5l_log *log = conf->log; 3096 3097 conf->log = NULL; 3098 synchronize_rcu(); 3099 3100 flush_work(&log->disable_writeback_work); 3101 md_unregister_thread(&log->reclaim_thread); 3102 mempool_destroy(log->meta_pool); 3103 bioset_free(log->bs); 3104 mempool_destroy(log->io_pool); 3105 kmem_cache_destroy(log->io_kc); 3106 kfree(log); 3107 } 3108