1 /* 2 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 */ 14 #include <linux/kernel.h> 15 #include <linux/wait.h> 16 #include <linux/blkdev.h> 17 #include <linux/slab.h> 18 #include <linux/raid/md_p.h> 19 #include <linux/crc32c.h> 20 #include <linux/random.h> 21 #include "md.h" 22 #include "raid5.h" 23 24 /* 25 * metadata/data stored in disk with 4k size unit (a block) regardless 26 * underneath hardware sector size. only works with PAGE_SIZE == 4096 27 */ 28 #define BLOCK_SECTORS (8) 29 30 /* 31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent 32 * recovery scans a very long log 33 */ 34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 36 37 /* 38 * We only need 2 bios per I/O unit to make progress, but ensure we 39 * have a few more available to not get too tight. 40 */ 41 #define R5L_POOL_SIZE 4 42 43 struct r5l_log { 44 struct md_rdev *rdev; 45 46 u32 uuid_checksum; 47 48 sector_t device_size; /* log device size, round to 49 * BLOCK_SECTORS */ 50 sector_t max_free_space; /* reclaim run if free space is at 51 * this size */ 52 53 sector_t last_checkpoint; /* log tail. where recovery scan 54 * starts from */ 55 u64 last_cp_seq; /* log tail sequence */ 56 57 sector_t log_start; /* log head. where new data appends */ 58 u64 seq; /* log head sequence */ 59 60 sector_t next_checkpoint; 61 u64 next_cp_seq; 62 63 struct mutex io_mutex; 64 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 65 66 spinlock_t io_list_lock; 67 struct list_head running_ios; /* io_units which are still running, 68 * and have not yet been completely 69 * written to the log */ 70 struct list_head io_end_ios; /* io_units which have been completely 71 * written to the log but not yet written 72 * to the RAID */ 73 struct list_head flushing_ios; /* io_units which are waiting for log 74 * cache flush */ 75 struct list_head finished_ios; /* io_units which settle down in log disk */ 76 struct bio flush_bio; 77 78 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 79 80 struct kmem_cache *io_kc; 81 mempool_t *io_pool; 82 struct bio_set *bs; 83 mempool_t *meta_pool; 84 85 struct md_thread *reclaim_thread; 86 unsigned long reclaim_target; /* number of space that need to be 87 * reclaimed. if it's 0, reclaim spaces 88 * used by io_units which are in 89 * IO_UNIT_STRIPE_END state (eg, reclaim 90 * dones't wait for specific io_unit 91 * switching to IO_UNIT_STRIPE_END 92 * state) */ 93 wait_queue_head_t iounit_wait; 94 95 struct list_head no_space_stripes; /* pending stripes, log has no space */ 96 spinlock_t no_space_stripes_lock; 97 98 bool need_cache_flush; 99 bool in_teardown; 100 }; 101 102 /* 103 * an IO range starts from a meta data block and end at the next meta data 104 * block. The io unit's the meta data block tracks data/parity followed it. io 105 * unit is written to log disk with normal write, as we always flush log disk 106 * first and then start move data to raid disks, there is no requirement to 107 * write io unit with FLUSH/FUA 108 */ 109 struct r5l_io_unit { 110 struct r5l_log *log; 111 112 struct page *meta_page; /* store meta block */ 113 int meta_offset; /* current offset in meta_page */ 114 115 struct bio *current_bio;/* current_bio accepting new data */ 116 117 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 118 u64 seq; /* seq number of the metablock */ 119 sector_t log_start; /* where the io_unit starts */ 120 sector_t log_end; /* where the io_unit ends */ 121 struct list_head log_sibling; /* log->running_ios */ 122 struct list_head stripe_list; /* stripes added to the io_unit */ 123 124 int state; 125 bool need_split_bio; 126 }; 127 128 /* r5l_io_unit state */ 129 enum r5l_io_unit_state { 130 IO_UNIT_RUNNING = 0, /* accepting new IO */ 131 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 132 * don't accepting new bio */ 133 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 134 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 135 }; 136 137 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 138 { 139 start += inc; 140 if (start >= log->device_size) 141 start = start - log->device_size; 142 return start; 143 } 144 145 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 146 sector_t end) 147 { 148 if (end >= start) 149 return end - start; 150 else 151 return end + log->device_size - start; 152 } 153 154 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 155 { 156 sector_t used_size; 157 158 used_size = r5l_ring_distance(log, log->last_checkpoint, 159 log->log_start); 160 161 return log->device_size > used_size + size; 162 } 163 164 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 165 enum r5l_io_unit_state state) 166 { 167 if (WARN_ON(io->state >= state)) 168 return; 169 io->state = state; 170 } 171 172 static void r5l_io_run_stripes(struct r5l_io_unit *io) 173 { 174 struct stripe_head *sh, *next; 175 176 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 177 list_del_init(&sh->log_list); 178 set_bit(STRIPE_HANDLE, &sh->state); 179 raid5_release_stripe(sh); 180 } 181 } 182 183 static void r5l_log_run_stripes(struct r5l_log *log) 184 { 185 struct r5l_io_unit *io, *next; 186 187 assert_spin_locked(&log->io_list_lock); 188 189 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 190 /* don't change list order */ 191 if (io->state < IO_UNIT_IO_END) 192 break; 193 194 list_move_tail(&io->log_sibling, &log->finished_ios); 195 r5l_io_run_stripes(io); 196 } 197 } 198 199 static void r5l_move_to_end_ios(struct r5l_log *log) 200 { 201 struct r5l_io_unit *io, *next; 202 203 assert_spin_locked(&log->io_list_lock); 204 205 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 206 /* don't change list order */ 207 if (io->state < IO_UNIT_IO_END) 208 break; 209 list_move_tail(&io->log_sibling, &log->io_end_ios); 210 } 211 } 212 213 static void r5l_log_endio(struct bio *bio) 214 { 215 struct r5l_io_unit *io = bio->bi_private; 216 struct r5l_log *log = io->log; 217 unsigned long flags; 218 219 if (bio->bi_error) 220 md_error(log->rdev->mddev, log->rdev); 221 222 bio_put(bio); 223 mempool_free(io->meta_page, log->meta_pool); 224 225 spin_lock_irqsave(&log->io_list_lock, flags); 226 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 227 if (log->need_cache_flush) 228 r5l_move_to_end_ios(log); 229 else 230 r5l_log_run_stripes(log); 231 spin_unlock_irqrestore(&log->io_list_lock, flags); 232 233 if (log->need_cache_flush) 234 md_wakeup_thread(log->rdev->mddev->thread); 235 } 236 237 static void r5l_submit_current_io(struct r5l_log *log) 238 { 239 struct r5l_io_unit *io = log->current_io; 240 struct r5l_meta_block *block; 241 unsigned long flags; 242 u32 crc; 243 244 if (!io) 245 return; 246 247 block = page_address(io->meta_page); 248 block->meta_size = cpu_to_le32(io->meta_offset); 249 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 250 block->checksum = cpu_to_le32(crc); 251 252 log->current_io = NULL; 253 spin_lock_irqsave(&log->io_list_lock, flags); 254 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 255 spin_unlock_irqrestore(&log->io_list_lock, flags); 256 257 submit_bio(WRITE, io->current_bio); 258 } 259 260 static struct bio *r5l_bio_alloc(struct r5l_log *log) 261 { 262 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs); 263 264 bio->bi_rw = WRITE; 265 bio->bi_bdev = log->rdev->bdev; 266 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 267 268 return bio; 269 } 270 271 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 272 { 273 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 274 275 /* 276 * If we filled up the log device start from the beginning again, 277 * which will require a new bio. 278 * 279 * Note: for this to work properly the log size needs to me a multiple 280 * of BLOCK_SECTORS. 281 */ 282 if (log->log_start == 0) 283 io->need_split_bio = true; 284 285 io->log_end = log->log_start; 286 } 287 288 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 289 { 290 struct r5l_io_unit *io; 291 struct r5l_meta_block *block; 292 293 io = mempool_alloc(log->io_pool, GFP_ATOMIC); 294 if (!io) 295 return NULL; 296 memset(io, 0, sizeof(*io)); 297 298 io->log = log; 299 INIT_LIST_HEAD(&io->log_sibling); 300 INIT_LIST_HEAD(&io->stripe_list); 301 io->state = IO_UNIT_RUNNING; 302 303 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO); 304 block = page_address(io->meta_page); 305 clear_page(block); 306 block->magic = cpu_to_le32(R5LOG_MAGIC); 307 block->version = R5LOG_VERSION; 308 block->seq = cpu_to_le64(log->seq); 309 block->position = cpu_to_le64(log->log_start); 310 311 io->log_start = log->log_start; 312 io->meta_offset = sizeof(struct r5l_meta_block); 313 io->seq = log->seq++; 314 315 io->current_bio = r5l_bio_alloc(log); 316 io->current_bio->bi_end_io = r5l_log_endio; 317 io->current_bio->bi_private = io; 318 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 319 320 r5_reserve_log_entry(log, io); 321 322 spin_lock_irq(&log->io_list_lock); 323 list_add_tail(&io->log_sibling, &log->running_ios); 324 spin_unlock_irq(&log->io_list_lock); 325 326 return io; 327 } 328 329 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 330 { 331 if (log->current_io && 332 log->current_io->meta_offset + payload_size > PAGE_SIZE) 333 r5l_submit_current_io(log); 334 335 if (!log->current_io) { 336 log->current_io = r5l_new_meta(log); 337 if (!log->current_io) 338 return -ENOMEM; 339 } 340 341 return 0; 342 } 343 344 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 345 sector_t location, 346 u32 checksum1, u32 checksum2, 347 bool checksum2_valid) 348 { 349 struct r5l_io_unit *io = log->current_io; 350 struct r5l_payload_data_parity *payload; 351 352 payload = page_address(io->meta_page) + io->meta_offset; 353 payload->header.type = cpu_to_le16(type); 354 payload->header.flags = cpu_to_le16(0); 355 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 356 (PAGE_SHIFT - 9)); 357 payload->location = cpu_to_le64(location); 358 payload->checksum[0] = cpu_to_le32(checksum1); 359 if (checksum2_valid) 360 payload->checksum[1] = cpu_to_le32(checksum2); 361 362 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 363 sizeof(__le32) * (1 + !!checksum2_valid); 364 } 365 366 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 367 { 368 struct r5l_io_unit *io = log->current_io; 369 370 if (io->need_split_bio) { 371 struct bio *prev = io->current_bio; 372 373 io->current_bio = r5l_bio_alloc(log); 374 bio_chain(io->current_bio, prev); 375 376 submit_bio(WRITE, prev); 377 } 378 379 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 380 BUG(); 381 382 r5_reserve_log_entry(log, io); 383 } 384 385 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 386 int data_pages, int parity_pages) 387 { 388 int i; 389 int meta_size; 390 int ret; 391 struct r5l_io_unit *io; 392 393 meta_size = 394 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 395 * data_pages) + 396 sizeof(struct r5l_payload_data_parity) + 397 sizeof(__le32) * parity_pages; 398 399 ret = r5l_get_meta(log, meta_size); 400 if (ret) 401 return ret; 402 403 io = log->current_io; 404 405 for (i = 0; i < sh->disks; i++) { 406 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 407 continue; 408 if (i == sh->pd_idx || i == sh->qd_idx) 409 continue; 410 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 411 raid5_compute_blocknr(sh, i, 0), 412 sh->dev[i].log_checksum, 0, false); 413 r5l_append_payload_page(log, sh->dev[i].page); 414 } 415 416 if (sh->qd_idx >= 0) { 417 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 418 sh->sector, sh->dev[sh->pd_idx].log_checksum, 419 sh->dev[sh->qd_idx].log_checksum, true); 420 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 421 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 422 } else { 423 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 424 sh->sector, sh->dev[sh->pd_idx].log_checksum, 425 0, false); 426 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 427 } 428 429 list_add_tail(&sh->log_list, &io->stripe_list); 430 atomic_inc(&io->pending_stripe); 431 sh->log_io = io; 432 433 return 0; 434 } 435 436 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 437 /* 438 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 439 * data from log to raid disks), so we shouldn't wait for reclaim here 440 */ 441 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 442 { 443 int write_disks = 0; 444 int data_pages, parity_pages; 445 int meta_size; 446 int reserve; 447 int i; 448 int ret = 0; 449 450 if (!log) 451 return -EAGAIN; 452 /* Don't support stripe batch */ 453 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 454 test_bit(STRIPE_SYNCING, &sh->state)) { 455 /* the stripe is written to log, we start writing it to raid */ 456 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 457 return -EAGAIN; 458 } 459 460 for (i = 0; i < sh->disks; i++) { 461 void *addr; 462 463 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 464 continue; 465 write_disks++; 466 /* checksum is already calculated in last run */ 467 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 468 continue; 469 addr = kmap_atomic(sh->dev[i].page); 470 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 471 addr, PAGE_SIZE); 472 kunmap_atomic(addr); 473 } 474 parity_pages = 1 + !!(sh->qd_idx >= 0); 475 data_pages = write_disks - parity_pages; 476 477 meta_size = 478 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 479 * data_pages) + 480 sizeof(struct r5l_payload_data_parity) + 481 sizeof(__le32) * parity_pages; 482 /* Doesn't work with very big raid array */ 483 if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE) 484 return -EINVAL; 485 486 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 487 /* 488 * The stripe must enter state machine again to finish the write, so 489 * don't delay. 490 */ 491 clear_bit(STRIPE_DELAYED, &sh->state); 492 atomic_inc(&sh->count); 493 494 mutex_lock(&log->io_mutex); 495 /* meta + data */ 496 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 497 if (!r5l_has_free_space(log, reserve)) { 498 spin_lock(&log->no_space_stripes_lock); 499 list_add_tail(&sh->log_list, &log->no_space_stripes); 500 spin_unlock(&log->no_space_stripes_lock); 501 502 r5l_wake_reclaim(log, reserve); 503 } else { 504 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 505 if (ret) { 506 spin_lock_irq(&log->io_list_lock); 507 list_add_tail(&sh->log_list, &log->no_mem_stripes); 508 spin_unlock_irq(&log->io_list_lock); 509 } 510 } 511 512 mutex_unlock(&log->io_mutex); 513 return 0; 514 } 515 516 void r5l_write_stripe_run(struct r5l_log *log) 517 { 518 if (!log) 519 return; 520 mutex_lock(&log->io_mutex); 521 r5l_submit_current_io(log); 522 mutex_unlock(&log->io_mutex); 523 } 524 525 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 526 { 527 if (!log) 528 return -ENODEV; 529 /* 530 * we flush log disk cache first, then write stripe data to raid disks. 531 * So if bio is finished, the log disk cache is flushed already. The 532 * recovery guarantees we can recovery the bio from log disk, so we 533 * don't need to flush again 534 */ 535 if (bio->bi_iter.bi_size == 0) { 536 bio_endio(bio); 537 return 0; 538 } 539 bio->bi_rw &= ~REQ_FLUSH; 540 return -EAGAIN; 541 } 542 543 /* This will run after log space is reclaimed */ 544 static void r5l_run_no_space_stripes(struct r5l_log *log) 545 { 546 struct stripe_head *sh; 547 548 spin_lock(&log->no_space_stripes_lock); 549 while (!list_empty(&log->no_space_stripes)) { 550 sh = list_first_entry(&log->no_space_stripes, 551 struct stripe_head, log_list); 552 list_del_init(&sh->log_list); 553 set_bit(STRIPE_HANDLE, &sh->state); 554 raid5_release_stripe(sh); 555 } 556 spin_unlock(&log->no_space_stripes_lock); 557 } 558 559 static sector_t r5l_reclaimable_space(struct r5l_log *log) 560 { 561 return r5l_ring_distance(log, log->last_checkpoint, 562 log->next_checkpoint); 563 } 564 565 static void r5l_run_no_mem_stripe(struct r5l_log *log) 566 { 567 struct stripe_head *sh; 568 569 assert_spin_locked(&log->io_list_lock); 570 571 if (!list_empty(&log->no_mem_stripes)) { 572 sh = list_first_entry(&log->no_mem_stripes, 573 struct stripe_head, log_list); 574 list_del_init(&sh->log_list); 575 set_bit(STRIPE_HANDLE, &sh->state); 576 raid5_release_stripe(sh); 577 } 578 } 579 580 static bool r5l_complete_finished_ios(struct r5l_log *log) 581 { 582 struct r5l_io_unit *io, *next; 583 bool found = false; 584 585 assert_spin_locked(&log->io_list_lock); 586 587 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 588 /* don't change list order */ 589 if (io->state < IO_UNIT_STRIPE_END) 590 break; 591 592 log->next_checkpoint = io->log_start; 593 log->next_cp_seq = io->seq; 594 595 list_del(&io->log_sibling); 596 mempool_free(io, log->io_pool); 597 r5l_run_no_mem_stripe(log); 598 599 found = true; 600 } 601 602 return found; 603 } 604 605 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 606 { 607 struct r5l_log *log = io->log; 608 unsigned long flags; 609 610 spin_lock_irqsave(&log->io_list_lock, flags); 611 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 612 613 if (!r5l_complete_finished_ios(log)) { 614 spin_unlock_irqrestore(&log->io_list_lock, flags); 615 return; 616 } 617 618 if (r5l_reclaimable_space(log) > log->max_free_space) 619 r5l_wake_reclaim(log, 0); 620 621 spin_unlock_irqrestore(&log->io_list_lock, flags); 622 wake_up(&log->iounit_wait); 623 } 624 625 void r5l_stripe_write_finished(struct stripe_head *sh) 626 { 627 struct r5l_io_unit *io; 628 629 io = sh->log_io; 630 sh->log_io = NULL; 631 632 if (io && atomic_dec_and_test(&io->pending_stripe)) 633 __r5l_stripe_write_finished(io); 634 } 635 636 static void r5l_log_flush_endio(struct bio *bio) 637 { 638 struct r5l_log *log = container_of(bio, struct r5l_log, 639 flush_bio); 640 unsigned long flags; 641 struct r5l_io_unit *io; 642 643 if (bio->bi_error) 644 md_error(log->rdev->mddev, log->rdev); 645 646 spin_lock_irqsave(&log->io_list_lock, flags); 647 list_for_each_entry(io, &log->flushing_ios, log_sibling) 648 r5l_io_run_stripes(io); 649 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 650 spin_unlock_irqrestore(&log->io_list_lock, flags); 651 } 652 653 /* 654 * Starting dispatch IO to raid. 655 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 656 * broken meta in the middle of a log causes recovery can't find meta at the 657 * head of log. If operations require meta at the head persistent in log, we 658 * must make sure meta before it persistent in log too. A case is: 659 * 660 * stripe data/parity is in log, we start write stripe to raid disks. stripe 661 * data/parity must be persistent in log before we do the write to raid disks. 662 * 663 * The solution is we restrictly maintain io_unit list order. In this case, we 664 * only write stripes of an io_unit to raid disks till the io_unit is the first 665 * one whose data/parity is in log. 666 */ 667 void r5l_flush_stripe_to_raid(struct r5l_log *log) 668 { 669 bool do_flush; 670 671 if (!log || !log->need_cache_flush) 672 return; 673 674 spin_lock_irq(&log->io_list_lock); 675 /* flush bio is running */ 676 if (!list_empty(&log->flushing_ios)) { 677 spin_unlock_irq(&log->io_list_lock); 678 return; 679 } 680 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 681 do_flush = !list_empty(&log->flushing_ios); 682 spin_unlock_irq(&log->io_list_lock); 683 684 if (!do_flush) 685 return; 686 bio_reset(&log->flush_bio); 687 log->flush_bio.bi_bdev = log->rdev->bdev; 688 log->flush_bio.bi_end_io = r5l_log_flush_endio; 689 submit_bio(WRITE_FLUSH, &log->flush_bio); 690 } 691 692 static void r5l_write_super(struct r5l_log *log, sector_t cp); 693 static void r5l_write_super_and_discard_space(struct r5l_log *log, 694 sector_t end) 695 { 696 struct block_device *bdev = log->rdev->bdev; 697 struct mddev *mddev; 698 699 r5l_write_super(log, end); 700 701 if (!blk_queue_discard(bdev_get_queue(bdev))) 702 return; 703 704 mddev = log->rdev->mddev; 705 /* 706 * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and 707 * wait for this thread to finish. This thread waits for 708 * MD_CHANGE_PENDING clear, which is supposed to be done in 709 * md_check_recovery(). md_check_recovery() tries to get 710 * reconfig_mutex. Since r5l_quiesce already holds the mutex, 711 * md_check_recovery() fails, so the PENDING never get cleared. The 712 * in_teardown check workaround this issue. 713 */ 714 if (!log->in_teardown) { 715 set_mask_bits(&mddev->flags, 0, 716 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING)); 717 md_wakeup_thread(mddev->thread); 718 wait_event(mddev->sb_wait, 719 !test_bit(MD_CHANGE_PENDING, &mddev->flags) || 720 log->in_teardown); 721 /* 722 * r5l_quiesce could run after in_teardown check and hold 723 * mutex first. Superblock might get updated twice. 724 */ 725 if (log->in_teardown) 726 md_update_sb(mddev, 1); 727 } else { 728 WARN_ON(!mddev_is_locked(mddev)); 729 md_update_sb(mddev, 1); 730 } 731 732 /* discard IO error really doesn't matter, ignore it */ 733 if (log->last_checkpoint < end) { 734 blkdev_issue_discard(bdev, 735 log->last_checkpoint + log->rdev->data_offset, 736 end - log->last_checkpoint, GFP_NOIO, 0); 737 } else { 738 blkdev_issue_discard(bdev, 739 log->last_checkpoint + log->rdev->data_offset, 740 log->device_size - log->last_checkpoint, 741 GFP_NOIO, 0); 742 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 743 GFP_NOIO, 0); 744 } 745 } 746 747 748 static void r5l_do_reclaim(struct r5l_log *log) 749 { 750 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 751 sector_t reclaimable; 752 sector_t next_checkpoint; 753 u64 next_cp_seq; 754 755 spin_lock_irq(&log->io_list_lock); 756 /* 757 * move proper io_unit to reclaim list. We should not change the order. 758 * reclaimable/unreclaimable io_unit can be mixed in the list, we 759 * shouldn't reuse space of an unreclaimable io_unit 760 */ 761 while (1) { 762 reclaimable = r5l_reclaimable_space(log); 763 if (reclaimable >= reclaim_target || 764 (list_empty(&log->running_ios) && 765 list_empty(&log->io_end_ios) && 766 list_empty(&log->flushing_ios) && 767 list_empty(&log->finished_ios))) 768 break; 769 770 md_wakeup_thread(log->rdev->mddev->thread); 771 wait_event_lock_irq(log->iounit_wait, 772 r5l_reclaimable_space(log) > reclaimable, 773 log->io_list_lock); 774 } 775 776 next_checkpoint = log->next_checkpoint; 777 next_cp_seq = log->next_cp_seq; 778 spin_unlock_irq(&log->io_list_lock); 779 780 BUG_ON(reclaimable < 0); 781 if (reclaimable == 0) 782 return; 783 784 /* 785 * write_super will flush cache of each raid disk. We must write super 786 * here, because the log area might be reused soon and we don't want to 787 * confuse recovery 788 */ 789 r5l_write_super_and_discard_space(log, next_checkpoint); 790 791 mutex_lock(&log->io_mutex); 792 log->last_checkpoint = next_checkpoint; 793 log->last_cp_seq = next_cp_seq; 794 mutex_unlock(&log->io_mutex); 795 796 r5l_run_no_space_stripes(log); 797 } 798 799 static void r5l_reclaim_thread(struct md_thread *thread) 800 { 801 struct mddev *mddev = thread->mddev; 802 struct r5conf *conf = mddev->private; 803 struct r5l_log *log = conf->log; 804 805 if (!log) 806 return; 807 r5l_do_reclaim(log); 808 } 809 810 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 811 { 812 unsigned long target; 813 unsigned long new = (unsigned long)space; /* overflow in theory */ 814 815 do { 816 target = log->reclaim_target; 817 if (new < target) 818 return; 819 } while (cmpxchg(&log->reclaim_target, target, new) != target); 820 md_wakeup_thread(log->reclaim_thread); 821 } 822 823 void r5l_quiesce(struct r5l_log *log, int state) 824 { 825 struct mddev *mddev; 826 if (!log || state == 2) 827 return; 828 if (state == 0) { 829 log->in_teardown = 0; 830 /* 831 * This is a special case for hotadd. In suspend, the array has 832 * no journal. In resume, journal is initialized as well as the 833 * reclaim thread. 834 */ 835 if (log->reclaim_thread) 836 return; 837 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 838 log->rdev->mddev, "reclaim"); 839 } else if (state == 1) { 840 /* 841 * at this point all stripes are finished, so io_unit is at 842 * least in STRIPE_END state 843 */ 844 log->in_teardown = 1; 845 /* make sure r5l_write_super_and_discard_space exits */ 846 mddev = log->rdev->mddev; 847 wake_up(&mddev->sb_wait); 848 r5l_wake_reclaim(log, -1L); 849 md_unregister_thread(&log->reclaim_thread); 850 r5l_do_reclaim(log); 851 } 852 } 853 854 bool r5l_log_disk_error(struct r5conf *conf) 855 { 856 struct r5l_log *log; 857 bool ret; 858 /* don't allow write if journal disk is missing */ 859 rcu_read_lock(); 860 log = rcu_dereference(conf->log); 861 862 if (!log) 863 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 864 else 865 ret = test_bit(Faulty, &log->rdev->flags); 866 rcu_read_unlock(); 867 return ret; 868 } 869 870 struct r5l_recovery_ctx { 871 struct page *meta_page; /* current meta */ 872 sector_t meta_total_blocks; /* total size of current meta and data */ 873 sector_t pos; /* recovery position */ 874 u64 seq; /* recovery position seq */ 875 }; 876 877 static int r5l_read_meta_block(struct r5l_log *log, 878 struct r5l_recovery_ctx *ctx) 879 { 880 struct page *page = ctx->meta_page; 881 struct r5l_meta_block *mb; 882 u32 crc, stored_crc; 883 884 if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false)) 885 return -EIO; 886 887 mb = page_address(page); 888 stored_crc = le32_to_cpu(mb->checksum); 889 mb->checksum = 0; 890 891 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 892 le64_to_cpu(mb->seq) != ctx->seq || 893 mb->version != R5LOG_VERSION || 894 le64_to_cpu(mb->position) != ctx->pos) 895 return -EINVAL; 896 897 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 898 if (stored_crc != crc) 899 return -EINVAL; 900 901 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 902 return -EINVAL; 903 904 ctx->meta_total_blocks = BLOCK_SECTORS; 905 906 return 0; 907 } 908 909 static int r5l_recovery_flush_one_stripe(struct r5l_log *log, 910 struct r5l_recovery_ctx *ctx, 911 sector_t stripe_sect, 912 int *offset, sector_t *log_offset) 913 { 914 struct r5conf *conf = log->rdev->mddev->private; 915 struct stripe_head *sh; 916 struct r5l_payload_data_parity *payload; 917 int disk_index; 918 919 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0); 920 while (1) { 921 payload = page_address(ctx->meta_page) + *offset; 922 923 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 924 raid5_compute_sector(conf, 925 le64_to_cpu(payload->location), 0, 926 &disk_index, sh); 927 928 sync_page_io(log->rdev, *log_offset, PAGE_SIZE, 929 sh->dev[disk_index].page, READ, false); 930 sh->dev[disk_index].log_checksum = 931 le32_to_cpu(payload->checksum[0]); 932 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags); 933 ctx->meta_total_blocks += BLOCK_SECTORS; 934 } else { 935 disk_index = sh->pd_idx; 936 sync_page_io(log->rdev, *log_offset, PAGE_SIZE, 937 sh->dev[disk_index].page, READ, false); 938 sh->dev[disk_index].log_checksum = 939 le32_to_cpu(payload->checksum[0]); 940 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags); 941 942 if (sh->qd_idx >= 0) { 943 disk_index = sh->qd_idx; 944 sync_page_io(log->rdev, 945 r5l_ring_add(log, *log_offset, BLOCK_SECTORS), 946 PAGE_SIZE, sh->dev[disk_index].page, 947 READ, false); 948 sh->dev[disk_index].log_checksum = 949 le32_to_cpu(payload->checksum[1]); 950 set_bit(R5_Wantwrite, 951 &sh->dev[disk_index].flags); 952 } 953 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 954 } 955 956 *log_offset = r5l_ring_add(log, *log_offset, 957 le32_to_cpu(payload->size)); 958 *offset += sizeof(struct r5l_payload_data_parity) + 959 sizeof(__le32) * 960 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 961 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 962 break; 963 } 964 965 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 966 void *addr; 967 u32 checksum; 968 969 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 970 continue; 971 addr = kmap_atomic(sh->dev[disk_index].page); 972 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 973 kunmap_atomic(addr); 974 if (checksum != sh->dev[disk_index].log_checksum) 975 goto error; 976 } 977 978 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 979 struct md_rdev *rdev, *rrdev; 980 981 if (!test_and_clear_bit(R5_Wantwrite, 982 &sh->dev[disk_index].flags)) 983 continue; 984 985 /* in case device is broken */ 986 rdev = rcu_dereference(conf->disks[disk_index].rdev); 987 if (rdev) 988 sync_page_io(rdev, stripe_sect, PAGE_SIZE, 989 sh->dev[disk_index].page, WRITE, false); 990 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 991 if (rrdev) 992 sync_page_io(rrdev, stripe_sect, PAGE_SIZE, 993 sh->dev[disk_index].page, WRITE, false); 994 } 995 raid5_release_stripe(sh); 996 return 0; 997 998 error: 999 for (disk_index = 0; disk_index < sh->disks; disk_index++) 1000 sh->dev[disk_index].flags = 0; 1001 raid5_release_stripe(sh); 1002 return -EINVAL; 1003 } 1004 1005 static int r5l_recovery_flush_one_meta(struct r5l_log *log, 1006 struct r5l_recovery_ctx *ctx) 1007 { 1008 struct r5conf *conf = log->rdev->mddev->private; 1009 struct r5l_payload_data_parity *payload; 1010 struct r5l_meta_block *mb; 1011 int offset; 1012 sector_t log_offset; 1013 sector_t stripe_sector; 1014 1015 mb = page_address(ctx->meta_page); 1016 offset = sizeof(struct r5l_meta_block); 1017 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 1018 1019 while (offset < le32_to_cpu(mb->meta_size)) { 1020 int dd; 1021 1022 payload = (void *)mb + offset; 1023 stripe_sector = raid5_compute_sector(conf, 1024 le64_to_cpu(payload->location), 0, &dd, NULL); 1025 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector, 1026 &offset, &log_offset)) 1027 return -EINVAL; 1028 } 1029 return 0; 1030 } 1031 1032 /* copy data/parity from log to raid disks */ 1033 static void r5l_recovery_flush_log(struct r5l_log *log, 1034 struct r5l_recovery_ctx *ctx) 1035 { 1036 while (1) { 1037 if (r5l_read_meta_block(log, ctx)) 1038 return; 1039 if (r5l_recovery_flush_one_meta(log, ctx)) 1040 return; 1041 ctx->seq++; 1042 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 1043 } 1044 } 1045 1046 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1047 u64 seq) 1048 { 1049 struct page *page; 1050 struct r5l_meta_block *mb; 1051 u32 crc; 1052 1053 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 1054 if (!page) 1055 return -ENOMEM; 1056 mb = page_address(page); 1057 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1058 mb->version = R5LOG_VERSION; 1059 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1060 mb->seq = cpu_to_le64(seq); 1061 mb->position = cpu_to_le64(pos); 1062 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1063 mb->checksum = cpu_to_le32(crc); 1064 1065 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) { 1066 __free_page(page); 1067 return -EIO; 1068 } 1069 __free_page(page); 1070 return 0; 1071 } 1072 1073 static int r5l_recovery_log(struct r5l_log *log) 1074 { 1075 struct r5l_recovery_ctx ctx; 1076 1077 ctx.pos = log->last_checkpoint; 1078 ctx.seq = log->last_cp_seq; 1079 ctx.meta_page = alloc_page(GFP_KERNEL); 1080 if (!ctx.meta_page) 1081 return -ENOMEM; 1082 1083 r5l_recovery_flush_log(log, &ctx); 1084 __free_page(ctx.meta_page); 1085 1086 /* 1087 * we did a recovery. Now ctx.pos points to an invalid meta block. New 1088 * log will start here. but we can't let superblock point to last valid 1089 * meta block. The log might looks like: 1090 * | meta 1| meta 2| meta 3| 1091 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 1092 * superblock points to meta 1, we write a new valid meta 2n. if crash 1093 * happens again, new recovery will start from meta 1. Since meta 2n is 1094 * valid now, recovery will think meta 3 is valid, which is wrong. 1095 * The solution is we create a new meta in meta2 with its seq == meta 1096 * 1's seq + 10 and let superblock points to meta2. The same recovery will 1097 * not think meta 3 is a valid meta, because its seq doesn't match 1098 */ 1099 if (ctx.seq > log->last_cp_seq + 1) { 1100 int ret; 1101 1102 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10); 1103 if (ret) 1104 return ret; 1105 log->seq = ctx.seq + 11; 1106 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS); 1107 r5l_write_super(log, ctx.pos); 1108 } else { 1109 log->log_start = ctx.pos; 1110 log->seq = ctx.seq; 1111 } 1112 return 0; 1113 } 1114 1115 static void r5l_write_super(struct r5l_log *log, sector_t cp) 1116 { 1117 struct mddev *mddev = log->rdev->mddev; 1118 1119 log->rdev->journal_tail = cp; 1120 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1121 } 1122 1123 static int r5l_load_log(struct r5l_log *log) 1124 { 1125 struct md_rdev *rdev = log->rdev; 1126 struct page *page; 1127 struct r5l_meta_block *mb; 1128 sector_t cp = log->rdev->journal_tail; 1129 u32 stored_crc, expected_crc; 1130 bool create_super = false; 1131 int ret; 1132 1133 /* Make sure it's valid */ 1134 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 1135 cp = 0; 1136 page = alloc_page(GFP_KERNEL); 1137 if (!page) 1138 return -ENOMEM; 1139 1140 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) { 1141 ret = -EIO; 1142 goto ioerr; 1143 } 1144 mb = page_address(page); 1145 1146 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1147 mb->version != R5LOG_VERSION) { 1148 create_super = true; 1149 goto create; 1150 } 1151 stored_crc = le32_to_cpu(mb->checksum); 1152 mb->checksum = 0; 1153 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1154 if (stored_crc != expected_crc) { 1155 create_super = true; 1156 goto create; 1157 } 1158 if (le64_to_cpu(mb->position) != cp) { 1159 create_super = true; 1160 goto create; 1161 } 1162 create: 1163 if (create_super) { 1164 log->last_cp_seq = prandom_u32(); 1165 cp = 0; 1166 /* 1167 * Make sure super points to correct address. Log might have 1168 * data very soon. If super hasn't correct log tail address, 1169 * recovery can't find the log 1170 */ 1171 r5l_write_super(log, cp); 1172 } else 1173 log->last_cp_seq = le64_to_cpu(mb->seq); 1174 1175 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 1176 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 1177 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 1178 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 1179 log->last_checkpoint = cp; 1180 1181 __free_page(page); 1182 1183 return r5l_recovery_log(log); 1184 ioerr: 1185 __free_page(page); 1186 return ret; 1187 } 1188 1189 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 1190 { 1191 struct request_queue *q = bdev_get_queue(rdev->bdev); 1192 struct r5l_log *log; 1193 1194 if (PAGE_SIZE != 4096) 1195 return -EINVAL; 1196 log = kzalloc(sizeof(*log), GFP_KERNEL); 1197 if (!log) 1198 return -ENOMEM; 1199 log->rdev = rdev; 1200 1201 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0; 1202 1203 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 1204 sizeof(rdev->mddev->uuid)); 1205 1206 mutex_init(&log->io_mutex); 1207 1208 spin_lock_init(&log->io_list_lock); 1209 INIT_LIST_HEAD(&log->running_ios); 1210 INIT_LIST_HEAD(&log->io_end_ios); 1211 INIT_LIST_HEAD(&log->flushing_ios); 1212 INIT_LIST_HEAD(&log->finished_ios); 1213 bio_init(&log->flush_bio); 1214 1215 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 1216 if (!log->io_kc) 1217 goto io_kc; 1218 1219 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc); 1220 if (!log->io_pool) 1221 goto io_pool; 1222 1223 log->bs = bioset_create(R5L_POOL_SIZE, 0); 1224 if (!log->bs) 1225 goto io_bs; 1226 1227 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0); 1228 if (!log->meta_pool) 1229 goto out_mempool; 1230 1231 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 1232 log->rdev->mddev, "reclaim"); 1233 if (!log->reclaim_thread) 1234 goto reclaim_thread; 1235 init_waitqueue_head(&log->iounit_wait); 1236 1237 INIT_LIST_HEAD(&log->no_mem_stripes); 1238 1239 INIT_LIST_HEAD(&log->no_space_stripes); 1240 spin_lock_init(&log->no_space_stripes_lock); 1241 1242 if (r5l_load_log(log)) 1243 goto error; 1244 1245 rcu_assign_pointer(conf->log, log); 1246 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1247 return 0; 1248 1249 error: 1250 md_unregister_thread(&log->reclaim_thread); 1251 reclaim_thread: 1252 mempool_destroy(log->meta_pool); 1253 out_mempool: 1254 bioset_free(log->bs); 1255 io_bs: 1256 mempool_destroy(log->io_pool); 1257 io_pool: 1258 kmem_cache_destroy(log->io_kc); 1259 io_kc: 1260 kfree(log); 1261 return -EINVAL; 1262 } 1263 1264 void r5l_exit_log(struct r5l_log *log) 1265 { 1266 md_unregister_thread(&log->reclaim_thread); 1267 mempool_destroy(log->meta_pool); 1268 bioset_free(log->bs); 1269 mempool_destroy(log->io_pool); 1270 kmem_cache_destroy(log->io_kc); 1271 kfree(log); 1272 } 1273