xref: /linux/drivers/md/raid5-cache.c (revision 016c76ac76e4c678b01a75a602dc6be0282f5b29)
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
24 #include "md.h"
25 #include "raid5.h"
26 #include "bitmap.h"
27 
28 /*
29  * metadata/data stored in disk with 4k size unit (a block) regardless
30  * underneath hardware sector size. only works with PAGE_SIZE == 4096
31  */
32 #define BLOCK_SECTORS (8)
33 #define BLOCK_SECTOR_SHIFT (3)
34 
35 /*
36  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
37  *
38  * In write through mode, the reclaim runs every log->max_free_space.
39  * This can prevent the recovery scans for too long
40  */
41 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
42 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
43 
44 /* wake up reclaim thread periodically */
45 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
46 /* start flush with these full stripes */
47 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
48 /* reclaim stripes in groups */
49 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
50 
51 /*
52  * We only need 2 bios per I/O unit to make progress, but ensure we
53  * have a few more available to not get too tight.
54  */
55 #define R5L_POOL_SIZE	4
56 
57 /*
58  * r5c journal modes of the array: write-back or write-through.
59  * write-through mode has identical behavior as existing log only
60  * implementation.
61  */
62 enum r5c_journal_mode {
63 	R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
64 	R5C_JOURNAL_MODE_WRITE_BACK = 1,
65 };
66 
67 static char *r5c_journal_mode_str[] = {"write-through",
68 				       "write-back"};
69 /*
70  * raid5 cache state machine
71  *
72  * With the RAID cache, each stripe works in two phases:
73  *	- caching phase
74  *	- writing-out phase
75  *
76  * These two phases are controlled by bit STRIPE_R5C_CACHING:
77  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
78  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
79  *
80  * When there is no journal, or the journal is in write-through mode,
81  * the stripe is always in writing-out phase.
82  *
83  * For write-back journal, the stripe is sent to caching phase on write
84  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
85  * the write-out phase by clearing STRIPE_R5C_CACHING.
86  *
87  * Stripes in caching phase do not write the raid disks. Instead, all
88  * writes are committed from the log device. Therefore, a stripe in
89  * caching phase handles writes as:
90  *	- write to log device
91  *	- return IO
92  *
93  * Stripes in writing-out phase handle writes as:
94  *	- calculate parity
95  *	- write pending data and parity to journal
96  *	- write data and parity to raid disks
97  *	- return IO for pending writes
98  */
99 
100 struct r5l_log {
101 	struct md_rdev *rdev;
102 
103 	u32 uuid_checksum;
104 
105 	sector_t device_size;		/* log device size, round to
106 					 * BLOCK_SECTORS */
107 	sector_t max_free_space;	/* reclaim run if free space is at
108 					 * this size */
109 
110 	sector_t last_checkpoint;	/* log tail. where recovery scan
111 					 * starts from */
112 	u64 last_cp_seq;		/* log tail sequence */
113 
114 	sector_t log_start;		/* log head. where new data appends */
115 	u64 seq;			/* log head sequence */
116 
117 	sector_t next_checkpoint;
118 
119 	struct mutex io_mutex;
120 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
121 
122 	spinlock_t io_list_lock;
123 	struct list_head running_ios;	/* io_units which are still running,
124 					 * and have not yet been completely
125 					 * written to the log */
126 	struct list_head io_end_ios;	/* io_units which have been completely
127 					 * written to the log but not yet written
128 					 * to the RAID */
129 	struct list_head flushing_ios;	/* io_units which are waiting for log
130 					 * cache flush */
131 	struct list_head finished_ios;	/* io_units which settle down in log disk */
132 	struct bio flush_bio;
133 
134 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
135 
136 	struct kmem_cache *io_kc;
137 	mempool_t *io_pool;
138 	struct bio_set *bs;
139 	mempool_t *meta_pool;
140 
141 	struct md_thread *reclaim_thread;
142 	unsigned long reclaim_target;	/* number of space that need to be
143 					 * reclaimed.  if it's 0, reclaim spaces
144 					 * used by io_units which are in
145 					 * IO_UNIT_STRIPE_END state (eg, reclaim
146 					 * dones't wait for specific io_unit
147 					 * switching to IO_UNIT_STRIPE_END
148 					 * state) */
149 	wait_queue_head_t iounit_wait;
150 
151 	struct list_head no_space_stripes; /* pending stripes, log has no space */
152 	spinlock_t no_space_stripes_lock;
153 
154 	bool need_cache_flush;
155 
156 	/* for r5c_cache */
157 	enum r5c_journal_mode r5c_journal_mode;
158 
159 	/* all stripes in r5cache, in the order of seq at sh->log_start */
160 	struct list_head stripe_in_journal_list;
161 
162 	spinlock_t stripe_in_journal_lock;
163 	atomic_t stripe_in_journal_count;
164 
165 	/* to submit async io_units, to fulfill ordering of flush */
166 	struct work_struct deferred_io_work;
167 	/* to disable write back during in degraded mode */
168 	struct work_struct disable_writeback_work;
169 
170 	/* to for chunk_aligned_read in writeback mode, details below */
171 	spinlock_t tree_lock;
172 	struct radix_tree_root big_stripe_tree;
173 };
174 
175 /*
176  * Enable chunk_aligned_read() with write back cache.
177  *
178  * Each chunk may contain more than one stripe (for example, a 256kB
179  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
180  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
181  * For each big_stripe, we count how many stripes of this big_stripe
182  * are in the write back cache. These data are tracked in a radix tree
183  * (big_stripe_tree). We use radix_tree item pointer as the counter.
184  * r5c_tree_index() is used to calculate keys for the radix tree.
185  *
186  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
187  * big_stripe of each chunk in the tree. If this big_stripe is in the
188  * tree, chunk_aligned_read() aborts. This look up is protected by
189  * rcu_read_lock().
190  *
191  * It is necessary to remember whether a stripe is counted in
192  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
193  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
194  * two flags are set, the stripe is counted in big_stripe_tree. This
195  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
196  * r5c_try_caching_write(); and moving clear_bit of
197  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
198  * r5c_finish_stripe_write_out().
199  */
200 
201 /*
202  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
203  * So it is necessary to left shift the counter by 2 bits before using it
204  * as data pointer of the tree.
205  */
206 #define R5C_RADIX_COUNT_SHIFT 2
207 
208 /*
209  * calculate key for big_stripe_tree
210  *
211  * sect: align_bi->bi_iter.bi_sector or sh->sector
212  */
213 static inline sector_t r5c_tree_index(struct r5conf *conf,
214 				      sector_t sect)
215 {
216 	sector_t offset;
217 
218 	offset = sector_div(sect, conf->chunk_sectors);
219 	return sect;
220 }
221 
222 /*
223  * an IO range starts from a meta data block and end at the next meta data
224  * block. The io unit's the meta data block tracks data/parity followed it. io
225  * unit is written to log disk with normal write, as we always flush log disk
226  * first and then start move data to raid disks, there is no requirement to
227  * write io unit with FLUSH/FUA
228  */
229 struct r5l_io_unit {
230 	struct r5l_log *log;
231 
232 	struct page *meta_page;	/* store meta block */
233 	int meta_offset;	/* current offset in meta_page */
234 
235 	struct bio *current_bio;/* current_bio accepting new data */
236 
237 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
238 	u64 seq;		/* seq number of the metablock */
239 	sector_t log_start;	/* where the io_unit starts */
240 	sector_t log_end;	/* where the io_unit ends */
241 	struct list_head log_sibling; /* log->running_ios */
242 	struct list_head stripe_list; /* stripes added to the io_unit */
243 
244 	int state;
245 	bool need_split_bio;
246 	struct bio *split_bio;
247 
248 	unsigned int has_flush:1;      /* include flush request */
249 	unsigned int has_fua:1;        /* include fua request */
250 	unsigned int has_null_flush:1; /* include empty flush request */
251 	/*
252 	 * io isn't sent yet, flush/fua request can only be submitted till it's
253 	 * the first IO in running_ios list
254 	 */
255 	unsigned int io_deferred:1;
256 
257 	struct bio_list flush_barriers;   /* size == 0 flush bios */
258 };
259 
260 /* r5l_io_unit state */
261 enum r5l_io_unit_state {
262 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
263 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
264 				 * don't accepting new bio */
265 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
266 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
267 };
268 
269 bool r5c_is_writeback(struct r5l_log *log)
270 {
271 	return (log != NULL &&
272 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
273 }
274 
275 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
276 {
277 	start += inc;
278 	if (start >= log->device_size)
279 		start = start - log->device_size;
280 	return start;
281 }
282 
283 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
284 				  sector_t end)
285 {
286 	if (end >= start)
287 		return end - start;
288 	else
289 		return end + log->device_size - start;
290 }
291 
292 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
293 {
294 	sector_t used_size;
295 
296 	used_size = r5l_ring_distance(log, log->last_checkpoint,
297 					log->log_start);
298 
299 	return log->device_size > used_size + size;
300 }
301 
302 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
303 				    enum r5l_io_unit_state state)
304 {
305 	if (WARN_ON(io->state >= state))
306 		return;
307 	io->state = state;
308 }
309 
310 static void
311 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
312 {
313 	struct bio *wbi, *wbi2;
314 
315 	wbi = dev->written;
316 	dev->written = NULL;
317 	while (wbi && wbi->bi_iter.bi_sector <
318 	       dev->sector + STRIPE_SECTORS) {
319 		wbi2 = r5_next_bio(wbi, dev->sector);
320 		md_write_end(conf->mddev);
321 		bio_endio(wbi);
322 		wbi = wbi2;
323 	}
324 }
325 
326 void r5c_handle_cached_data_endio(struct r5conf *conf,
327 				  struct stripe_head *sh, int disks)
328 {
329 	int i;
330 
331 	for (i = sh->disks; i--; ) {
332 		if (sh->dev[i].written) {
333 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
334 			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
335 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
336 					STRIPE_SECTORS,
337 					!test_bit(STRIPE_DEGRADED, &sh->state),
338 					0);
339 		}
340 	}
341 }
342 
343 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
344 
345 /* Check whether we should flush some stripes to free up stripe cache */
346 void r5c_check_stripe_cache_usage(struct r5conf *conf)
347 {
348 	int total_cached;
349 
350 	if (!r5c_is_writeback(conf->log))
351 		return;
352 
353 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
354 		atomic_read(&conf->r5c_cached_full_stripes);
355 
356 	/*
357 	 * The following condition is true for either of the following:
358 	 *   - stripe cache pressure high:
359 	 *          total_cached > 3/4 min_nr_stripes ||
360 	 *          empty_inactive_list_nr > 0
361 	 *   - stripe cache pressure moderate:
362 	 *          total_cached > 1/2 min_nr_stripes
363 	 */
364 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
365 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
366 		r5l_wake_reclaim(conf->log, 0);
367 }
368 
369 /*
370  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
371  * stripes in the cache
372  */
373 void r5c_check_cached_full_stripe(struct r5conf *conf)
374 {
375 	if (!r5c_is_writeback(conf->log))
376 		return;
377 
378 	/*
379 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
380 	 * or a full stripe (chunk size / 4k stripes).
381 	 */
382 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
383 	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
384 		conf->chunk_sectors >> STRIPE_SHIFT))
385 		r5l_wake_reclaim(conf->log, 0);
386 }
387 
388 /*
389  * Total log space (in sectors) needed to flush all data in cache
390  *
391  * To avoid deadlock due to log space, it is necessary to reserve log
392  * space to flush critical stripes (stripes that occupying log space near
393  * last_checkpoint). This function helps check how much log space is
394  * required to flush all cached stripes.
395  *
396  * To reduce log space requirements, two mechanisms are used to give cache
397  * flush higher priorities:
398  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
399  *       stripes ALREADY in journal can be flushed w/o pending writes;
400  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
401  *       can be delayed (r5l_add_no_space_stripe).
402  *
403  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
404  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
405  * pages of journal space. For stripes that has not passed 1, flushing it
406  * requires (conf->raid_disks + 1) pages of journal space. There are at
407  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
408  * required to flush all cached stripes (in pages) is:
409  *
410  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
411  *     (group_cnt + 1) * (raid_disks + 1)
412  * or
413  *     (stripe_in_journal_count) * (max_degraded + 1) +
414  *     (group_cnt + 1) * (raid_disks - max_degraded)
415  */
416 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
417 {
418 	struct r5l_log *log = conf->log;
419 
420 	if (!r5c_is_writeback(log))
421 		return 0;
422 
423 	return BLOCK_SECTORS *
424 		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
425 		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
426 }
427 
428 /*
429  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
430  *
431  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
432  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
433  * device is less than 2x of reclaim_required_space.
434  */
435 static inline void r5c_update_log_state(struct r5l_log *log)
436 {
437 	struct r5conf *conf = log->rdev->mddev->private;
438 	sector_t free_space;
439 	sector_t reclaim_space;
440 	bool wake_reclaim = false;
441 
442 	if (!r5c_is_writeback(log))
443 		return;
444 
445 	free_space = r5l_ring_distance(log, log->log_start,
446 				       log->last_checkpoint);
447 	reclaim_space = r5c_log_required_to_flush_cache(conf);
448 	if (free_space < 2 * reclaim_space)
449 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
450 	else {
451 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
452 			wake_reclaim = true;
453 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
454 	}
455 	if (free_space < 3 * reclaim_space)
456 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
457 	else
458 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
459 
460 	if (wake_reclaim)
461 		r5l_wake_reclaim(log, 0);
462 }
463 
464 /*
465  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
466  * This function should only be called in write-back mode.
467  */
468 void r5c_make_stripe_write_out(struct stripe_head *sh)
469 {
470 	struct r5conf *conf = sh->raid_conf;
471 	struct r5l_log *log = conf->log;
472 
473 	BUG_ON(!r5c_is_writeback(log));
474 
475 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
476 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
477 
478 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
479 		atomic_inc(&conf->preread_active_stripes);
480 }
481 
482 static void r5c_handle_data_cached(struct stripe_head *sh)
483 {
484 	int i;
485 
486 	for (i = sh->disks; i--; )
487 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
488 			set_bit(R5_InJournal, &sh->dev[i].flags);
489 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
490 		}
491 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
492 }
493 
494 /*
495  * this journal write must contain full parity,
496  * it may also contain some data pages
497  */
498 static void r5c_handle_parity_cached(struct stripe_head *sh)
499 {
500 	int i;
501 
502 	for (i = sh->disks; i--; )
503 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
504 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
505 }
506 
507 /*
508  * Setting proper flags after writing (or flushing) data and/or parity to the
509  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
510  */
511 static void r5c_finish_cache_stripe(struct stripe_head *sh)
512 {
513 	struct r5l_log *log = sh->raid_conf->log;
514 
515 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
516 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
517 		/*
518 		 * Set R5_InJournal for parity dev[pd_idx]. This means
519 		 * all data AND parity in the journal. For RAID 6, it is
520 		 * NOT necessary to set the flag for dev[qd_idx], as the
521 		 * two parities are written out together.
522 		 */
523 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
524 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
525 		r5c_handle_data_cached(sh);
526 	} else {
527 		r5c_handle_parity_cached(sh);
528 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
529 	}
530 }
531 
532 static void r5l_io_run_stripes(struct r5l_io_unit *io)
533 {
534 	struct stripe_head *sh, *next;
535 
536 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
537 		list_del_init(&sh->log_list);
538 
539 		r5c_finish_cache_stripe(sh);
540 
541 		set_bit(STRIPE_HANDLE, &sh->state);
542 		raid5_release_stripe(sh);
543 	}
544 }
545 
546 static void r5l_log_run_stripes(struct r5l_log *log)
547 {
548 	struct r5l_io_unit *io, *next;
549 
550 	assert_spin_locked(&log->io_list_lock);
551 
552 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
553 		/* don't change list order */
554 		if (io->state < IO_UNIT_IO_END)
555 			break;
556 
557 		list_move_tail(&io->log_sibling, &log->finished_ios);
558 		r5l_io_run_stripes(io);
559 	}
560 }
561 
562 static void r5l_move_to_end_ios(struct r5l_log *log)
563 {
564 	struct r5l_io_unit *io, *next;
565 
566 	assert_spin_locked(&log->io_list_lock);
567 
568 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
569 		/* don't change list order */
570 		if (io->state < IO_UNIT_IO_END)
571 			break;
572 		list_move_tail(&io->log_sibling, &log->io_end_ios);
573 	}
574 }
575 
576 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
577 static void r5l_log_endio(struct bio *bio)
578 {
579 	struct r5l_io_unit *io = bio->bi_private;
580 	struct r5l_io_unit *io_deferred;
581 	struct r5l_log *log = io->log;
582 	unsigned long flags;
583 
584 	if (bio->bi_error)
585 		md_error(log->rdev->mddev, log->rdev);
586 
587 	bio_put(bio);
588 	mempool_free(io->meta_page, log->meta_pool);
589 
590 	spin_lock_irqsave(&log->io_list_lock, flags);
591 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
592 	if (log->need_cache_flush && !list_empty(&io->stripe_list))
593 		r5l_move_to_end_ios(log);
594 	else
595 		r5l_log_run_stripes(log);
596 	if (!list_empty(&log->running_ios)) {
597 		/*
598 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
599 		 * can dispatch it
600 		 */
601 		io_deferred = list_first_entry(&log->running_ios,
602 					       struct r5l_io_unit, log_sibling);
603 		if (io_deferred->io_deferred)
604 			schedule_work(&log->deferred_io_work);
605 	}
606 
607 	spin_unlock_irqrestore(&log->io_list_lock, flags);
608 
609 	if (log->need_cache_flush)
610 		md_wakeup_thread(log->rdev->mddev->thread);
611 
612 	if (io->has_null_flush) {
613 		struct bio *bi;
614 
615 		WARN_ON(bio_list_empty(&io->flush_barriers));
616 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
617 			bio_endio(bi);
618 			atomic_dec(&io->pending_stripe);
619 		}
620 	}
621 
622 	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
623 	if (atomic_read(&io->pending_stripe) == 0)
624 		__r5l_stripe_write_finished(io);
625 }
626 
627 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
628 {
629 	unsigned long flags;
630 
631 	spin_lock_irqsave(&log->io_list_lock, flags);
632 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
633 	spin_unlock_irqrestore(&log->io_list_lock, flags);
634 
635 	if (io->has_flush)
636 		io->current_bio->bi_opf |= REQ_PREFLUSH;
637 	if (io->has_fua)
638 		io->current_bio->bi_opf |= REQ_FUA;
639 	submit_bio(io->current_bio);
640 
641 	if (!io->split_bio)
642 		return;
643 
644 	if (io->has_flush)
645 		io->split_bio->bi_opf |= REQ_PREFLUSH;
646 	if (io->has_fua)
647 		io->split_bio->bi_opf |= REQ_FUA;
648 	submit_bio(io->split_bio);
649 }
650 
651 /* deferred io_unit will be dispatched here */
652 static void r5l_submit_io_async(struct work_struct *work)
653 {
654 	struct r5l_log *log = container_of(work, struct r5l_log,
655 					   deferred_io_work);
656 	struct r5l_io_unit *io = NULL;
657 	unsigned long flags;
658 
659 	spin_lock_irqsave(&log->io_list_lock, flags);
660 	if (!list_empty(&log->running_ios)) {
661 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
662 				      log_sibling);
663 		if (!io->io_deferred)
664 			io = NULL;
665 		else
666 			io->io_deferred = 0;
667 	}
668 	spin_unlock_irqrestore(&log->io_list_lock, flags);
669 	if (io)
670 		r5l_do_submit_io(log, io);
671 }
672 
673 static void r5c_disable_writeback_async(struct work_struct *work)
674 {
675 	struct r5l_log *log = container_of(work, struct r5l_log,
676 					   disable_writeback_work);
677 	struct mddev *mddev = log->rdev->mddev;
678 
679 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
680 		return;
681 	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
682 		mdname(mddev));
683 	mddev_suspend(mddev);
684 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
685 	mddev_resume(mddev);
686 }
687 
688 static void r5l_submit_current_io(struct r5l_log *log)
689 {
690 	struct r5l_io_unit *io = log->current_io;
691 	struct bio *bio;
692 	struct r5l_meta_block *block;
693 	unsigned long flags;
694 	u32 crc;
695 	bool do_submit = true;
696 
697 	if (!io)
698 		return;
699 
700 	block = page_address(io->meta_page);
701 	block->meta_size = cpu_to_le32(io->meta_offset);
702 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
703 	block->checksum = cpu_to_le32(crc);
704 	bio = io->current_bio;
705 
706 	log->current_io = NULL;
707 	spin_lock_irqsave(&log->io_list_lock, flags);
708 	if (io->has_flush || io->has_fua) {
709 		if (io != list_first_entry(&log->running_ios,
710 					   struct r5l_io_unit, log_sibling)) {
711 			io->io_deferred = 1;
712 			do_submit = false;
713 		}
714 	}
715 	spin_unlock_irqrestore(&log->io_list_lock, flags);
716 	if (do_submit)
717 		r5l_do_submit_io(log, io);
718 }
719 
720 static struct bio *r5l_bio_alloc(struct r5l_log *log)
721 {
722 	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
723 
724 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
725 	bio->bi_bdev = log->rdev->bdev;
726 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
727 
728 	return bio;
729 }
730 
731 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
732 {
733 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
734 
735 	r5c_update_log_state(log);
736 	/*
737 	 * If we filled up the log device start from the beginning again,
738 	 * which will require a new bio.
739 	 *
740 	 * Note: for this to work properly the log size needs to me a multiple
741 	 * of BLOCK_SECTORS.
742 	 */
743 	if (log->log_start == 0)
744 		io->need_split_bio = true;
745 
746 	io->log_end = log->log_start;
747 }
748 
749 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
750 {
751 	struct r5l_io_unit *io;
752 	struct r5l_meta_block *block;
753 
754 	io = mempool_alloc(log->io_pool, GFP_ATOMIC);
755 	if (!io)
756 		return NULL;
757 	memset(io, 0, sizeof(*io));
758 
759 	io->log = log;
760 	INIT_LIST_HEAD(&io->log_sibling);
761 	INIT_LIST_HEAD(&io->stripe_list);
762 	bio_list_init(&io->flush_barriers);
763 	io->state = IO_UNIT_RUNNING;
764 
765 	io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
766 	block = page_address(io->meta_page);
767 	clear_page(block);
768 	block->magic = cpu_to_le32(R5LOG_MAGIC);
769 	block->version = R5LOG_VERSION;
770 	block->seq = cpu_to_le64(log->seq);
771 	block->position = cpu_to_le64(log->log_start);
772 
773 	io->log_start = log->log_start;
774 	io->meta_offset = sizeof(struct r5l_meta_block);
775 	io->seq = log->seq++;
776 
777 	io->current_bio = r5l_bio_alloc(log);
778 	io->current_bio->bi_end_io = r5l_log_endio;
779 	io->current_bio->bi_private = io;
780 	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
781 
782 	r5_reserve_log_entry(log, io);
783 
784 	spin_lock_irq(&log->io_list_lock);
785 	list_add_tail(&io->log_sibling, &log->running_ios);
786 	spin_unlock_irq(&log->io_list_lock);
787 
788 	return io;
789 }
790 
791 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
792 {
793 	if (log->current_io &&
794 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
795 		r5l_submit_current_io(log);
796 
797 	if (!log->current_io) {
798 		log->current_io = r5l_new_meta(log);
799 		if (!log->current_io)
800 			return -ENOMEM;
801 	}
802 
803 	return 0;
804 }
805 
806 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
807 				    sector_t location,
808 				    u32 checksum1, u32 checksum2,
809 				    bool checksum2_valid)
810 {
811 	struct r5l_io_unit *io = log->current_io;
812 	struct r5l_payload_data_parity *payload;
813 
814 	payload = page_address(io->meta_page) + io->meta_offset;
815 	payload->header.type = cpu_to_le16(type);
816 	payload->header.flags = cpu_to_le16(0);
817 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
818 				    (PAGE_SHIFT - 9));
819 	payload->location = cpu_to_le64(location);
820 	payload->checksum[0] = cpu_to_le32(checksum1);
821 	if (checksum2_valid)
822 		payload->checksum[1] = cpu_to_le32(checksum2);
823 
824 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
825 		sizeof(__le32) * (1 + !!checksum2_valid);
826 }
827 
828 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
829 {
830 	struct r5l_io_unit *io = log->current_io;
831 
832 	if (io->need_split_bio) {
833 		BUG_ON(io->split_bio);
834 		io->split_bio = io->current_bio;
835 		io->current_bio = r5l_bio_alloc(log);
836 		bio_chain(io->current_bio, io->split_bio);
837 		io->need_split_bio = false;
838 	}
839 
840 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
841 		BUG();
842 
843 	r5_reserve_log_entry(log, io);
844 }
845 
846 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
847 {
848 	struct mddev *mddev = log->rdev->mddev;
849 	struct r5conf *conf = mddev->private;
850 	struct r5l_io_unit *io;
851 	struct r5l_payload_flush *payload;
852 	int meta_size;
853 
854 	/*
855 	 * payload_flush requires extra writes to the journal.
856 	 * To avoid handling the extra IO in quiesce, just skip
857 	 * flush_payload
858 	 */
859 	if (conf->quiesce)
860 		return;
861 
862 	mutex_lock(&log->io_mutex);
863 	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
864 
865 	if (r5l_get_meta(log, meta_size)) {
866 		mutex_unlock(&log->io_mutex);
867 		return;
868 	}
869 
870 	/* current implementation is one stripe per flush payload */
871 	io = log->current_io;
872 	payload = page_address(io->meta_page) + io->meta_offset;
873 	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
874 	payload->header.flags = cpu_to_le16(0);
875 	payload->size = cpu_to_le32(sizeof(__le64));
876 	payload->flush_stripes[0] = cpu_to_le64(sect);
877 	io->meta_offset += meta_size;
878 	mutex_unlock(&log->io_mutex);
879 }
880 
881 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
882 			   int data_pages, int parity_pages)
883 {
884 	int i;
885 	int meta_size;
886 	int ret;
887 	struct r5l_io_unit *io;
888 
889 	meta_size =
890 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
891 		 * data_pages) +
892 		sizeof(struct r5l_payload_data_parity) +
893 		sizeof(__le32) * parity_pages;
894 
895 	ret = r5l_get_meta(log, meta_size);
896 	if (ret)
897 		return ret;
898 
899 	io = log->current_io;
900 
901 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
902 		io->has_flush = 1;
903 
904 	for (i = 0; i < sh->disks; i++) {
905 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
906 		    test_bit(R5_InJournal, &sh->dev[i].flags))
907 			continue;
908 		if (i == sh->pd_idx || i == sh->qd_idx)
909 			continue;
910 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
911 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
912 			io->has_fua = 1;
913 			/*
914 			 * we need to flush journal to make sure recovery can
915 			 * reach the data with fua flag
916 			 */
917 			io->has_flush = 1;
918 		}
919 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
920 					raid5_compute_blocknr(sh, i, 0),
921 					sh->dev[i].log_checksum, 0, false);
922 		r5l_append_payload_page(log, sh->dev[i].page);
923 	}
924 
925 	if (parity_pages == 2) {
926 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
927 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
928 					sh->dev[sh->qd_idx].log_checksum, true);
929 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
930 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
931 	} else if (parity_pages == 1) {
932 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
933 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
934 					0, false);
935 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
936 	} else  /* Just writing data, not parity, in caching phase */
937 		BUG_ON(parity_pages != 0);
938 
939 	list_add_tail(&sh->log_list, &io->stripe_list);
940 	atomic_inc(&io->pending_stripe);
941 	sh->log_io = io;
942 
943 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
944 		return 0;
945 
946 	if (sh->log_start == MaxSector) {
947 		BUG_ON(!list_empty(&sh->r5c));
948 		sh->log_start = io->log_start;
949 		spin_lock_irq(&log->stripe_in_journal_lock);
950 		list_add_tail(&sh->r5c,
951 			      &log->stripe_in_journal_list);
952 		spin_unlock_irq(&log->stripe_in_journal_lock);
953 		atomic_inc(&log->stripe_in_journal_count);
954 	}
955 	return 0;
956 }
957 
958 /* add stripe to no_space_stripes, and then wake up reclaim */
959 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
960 					   struct stripe_head *sh)
961 {
962 	spin_lock(&log->no_space_stripes_lock);
963 	list_add_tail(&sh->log_list, &log->no_space_stripes);
964 	spin_unlock(&log->no_space_stripes_lock);
965 }
966 
967 /*
968  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
969  * data from log to raid disks), so we shouldn't wait for reclaim here
970  */
971 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
972 {
973 	struct r5conf *conf = sh->raid_conf;
974 	int write_disks = 0;
975 	int data_pages, parity_pages;
976 	int reserve;
977 	int i;
978 	int ret = 0;
979 	bool wake_reclaim = false;
980 
981 	if (!log)
982 		return -EAGAIN;
983 	/* Don't support stripe batch */
984 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
985 	    test_bit(STRIPE_SYNCING, &sh->state)) {
986 		/* the stripe is written to log, we start writing it to raid */
987 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
988 		return -EAGAIN;
989 	}
990 
991 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
992 
993 	for (i = 0; i < sh->disks; i++) {
994 		void *addr;
995 
996 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
997 		    test_bit(R5_InJournal, &sh->dev[i].flags))
998 			continue;
999 
1000 		write_disks++;
1001 		/* checksum is already calculated in last run */
1002 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1003 			continue;
1004 		addr = kmap_atomic(sh->dev[i].page);
1005 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1006 						    addr, PAGE_SIZE);
1007 		kunmap_atomic(addr);
1008 	}
1009 	parity_pages = 1 + !!(sh->qd_idx >= 0);
1010 	data_pages = write_disks - parity_pages;
1011 
1012 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1013 	/*
1014 	 * The stripe must enter state machine again to finish the write, so
1015 	 * don't delay.
1016 	 */
1017 	clear_bit(STRIPE_DELAYED, &sh->state);
1018 	atomic_inc(&sh->count);
1019 
1020 	mutex_lock(&log->io_mutex);
1021 	/* meta + data */
1022 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1023 
1024 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1025 		if (!r5l_has_free_space(log, reserve)) {
1026 			r5l_add_no_space_stripe(log, sh);
1027 			wake_reclaim = true;
1028 		} else {
1029 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1030 			if (ret) {
1031 				spin_lock_irq(&log->io_list_lock);
1032 				list_add_tail(&sh->log_list,
1033 					      &log->no_mem_stripes);
1034 				spin_unlock_irq(&log->io_list_lock);
1035 			}
1036 		}
1037 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1038 		/*
1039 		 * log space critical, do not process stripes that are
1040 		 * not in cache yet (sh->log_start == MaxSector).
1041 		 */
1042 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1043 		    sh->log_start == MaxSector) {
1044 			r5l_add_no_space_stripe(log, sh);
1045 			wake_reclaim = true;
1046 			reserve = 0;
1047 		} else if (!r5l_has_free_space(log, reserve)) {
1048 			if (sh->log_start == log->last_checkpoint)
1049 				BUG();
1050 			else
1051 				r5l_add_no_space_stripe(log, sh);
1052 		} else {
1053 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1054 			if (ret) {
1055 				spin_lock_irq(&log->io_list_lock);
1056 				list_add_tail(&sh->log_list,
1057 					      &log->no_mem_stripes);
1058 				spin_unlock_irq(&log->io_list_lock);
1059 			}
1060 		}
1061 	}
1062 
1063 	mutex_unlock(&log->io_mutex);
1064 	if (wake_reclaim)
1065 		r5l_wake_reclaim(log, reserve);
1066 	return 0;
1067 }
1068 
1069 void r5l_write_stripe_run(struct r5l_log *log)
1070 {
1071 	if (!log)
1072 		return;
1073 	mutex_lock(&log->io_mutex);
1074 	r5l_submit_current_io(log);
1075 	mutex_unlock(&log->io_mutex);
1076 }
1077 
1078 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1079 {
1080 	if (!log)
1081 		return -ENODEV;
1082 
1083 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1084 		/*
1085 		 * in write through (journal only)
1086 		 * we flush log disk cache first, then write stripe data to
1087 		 * raid disks. So if bio is finished, the log disk cache is
1088 		 * flushed already. The recovery guarantees we can recovery
1089 		 * the bio from log disk, so we don't need to flush again
1090 		 */
1091 		if (bio->bi_iter.bi_size == 0) {
1092 			bio_endio(bio);
1093 			return 0;
1094 		}
1095 		bio->bi_opf &= ~REQ_PREFLUSH;
1096 	} else {
1097 		/* write back (with cache) */
1098 		if (bio->bi_iter.bi_size == 0) {
1099 			mutex_lock(&log->io_mutex);
1100 			r5l_get_meta(log, 0);
1101 			bio_list_add(&log->current_io->flush_barriers, bio);
1102 			log->current_io->has_flush = 1;
1103 			log->current_io->has_null_flush = 1;
1104 			atomic_inc(&log->current_io->pending_stripe);
1105 			r5l_submit_current_io(log);
1106 			mutex_unlock(&log->io_mutex);
1107 			return 0;
1108 		}
1109 	}
1110 	return -EAGAIN;
1111 }
1112 
1113 /* This will run after log space is reclaimed */
1114 static void r5l_run_no_space_stripes(struct r5l_log *log)
1115 {
1116 	struct stripe_head *sh;
1117 
1118 	spin_lock(&log->no_space_stripes_lock);
1119 	while (!list_empty(&log->no_space_stripes)) {
1120 		sh = list_first_entry(&log->no_space_stripes,
1121 				      struct stripe_head, log_list);
1122 		list_del_init(&sh->log_list);
1123 		set_bit(STRIPE_HANDLE, &sh->state);
1124 		raid5_release_stripe(sh);
1125 	}
1126 	spin_unlock(&log->no_space_stripes_lock);
1127 }
1128 
1129 /*
1130  * calculate new last_checkpoint
1131  * for write through mode, returns log->next_checkpoint
1132  * for write back, returns log_start of first sh in stripe_in_journal_list
1133  */
1134 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1135 {
1136 	struct stripe_head *sh;
1137 	struct r5l_log *log = conf->log;
1138 	sector_t new_cp;
1139 	unsigned long flags;
1140 
1141 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1142 		return log->next_checkpoint;
1143 
1144 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1145 	if (list_empty(&conf->log->stripe_in_journal_list)) {
1146 		/* all stripes flushed */
1147 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1148 		return log->next_checkpoint;
1149 	}
1150 	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1151 			      struct stripe_head, r5c);
1152 	new_cp = sh->log_start;
1153 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1154 	return new_cp;
1155 }
1156 
1157 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1158 {
1159 	struct r5conf *conf = log->rdev->mddev->private;
1160 
1161 	return r5l_ring_distance(log, log->last_checkpoint,
1162 				 r5c_calculate_new_cp(conf));
1163 }
1164 
1165 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1166 {
1167 	struct stripe_head *sh;
1168 
1169 	assert_spin_locked(&log->io_list_lock);
1170 
1171 	if (!list_empty(&log->no_mem_stripes)) {
1172 		sh = list_first_entry(&log->no_mem_stripes,
1173 				      struct stripe_head, log_list);
1174 		list_del_init(&sh->log_list);
1175 		set_bit(STRIPE_HANDLE, &sh->state);
1176 		raid5_release_stripe(sh);
1177 	}
1178 }
1179 
1180 static bool r5l_complete_finished_ios(struct r5l_log *log)
1181 {
1182 	struct r5l_io_unit *io, *next;
1183 	bool found = false;
1184 
1185 	assert_spin_locked(&log->io_list_lock);
1186 
1187 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1188 		/* don't change list order */
1189 		if (io->state < IO_UNIT_STRIPE_END)
1190 			break;
1191 
1192 		log->next_checkpoint = io->log_start;
1193 
1194 		list_del(&io->log_sibling);
1195 		mempool_free(io, log->io_pool);
1196 		r5l_run_no_mem_stripe(log);
1197 
1198 		found = true;
1199 	}
1200 
1201 	return found;
1202 }
1203 
1204 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1205 {
1206 	struct r5l_log *log = io->log;
1207 	struct r5conf *conf = log->rdev->mddev->private;
1208 	unsigned long flags;
1209 
1210 	spin_lock_irqsave(&log->io_list_lock, flags);
1211 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1212 
1213 	if (!r5l_complete_finished_ios(log)) {
1214 		spin_unlock_irqrestore(&log->io_list_lock, flags);
1215 		return;
1216 	}
1217 
1218 	if (r5l_reclaimable_space(log) > log->max_free_space ||
1219 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1220 		r5l_wake_reclaim(log, 0);
1221 
1222 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1223 	wake_up(&log->iounit_wait);
1224 }
1225 
1226 void r5l_stripe_write_finished(struct stripe_head *sh)
1227 {
1228 	struct r5l_io_unit *io;
1229 
1230 	io = sh->log_io;
1231 	sh->log_io = NULL;
1232 
1233 	if (io && atomic_dec_and_test(&io->pending_stripe))
1234 		__r5l_stripe_write_finished(io);
1235 }
1236 
1237 static void r5l_log_flush_endio(struct bio *bio)
1238 {
1239 	struct r5l_log *log = container_of(bio, struct r5l_log,
1240 		flush_bio);
1241 	unsigned long flags;
1242 	struct r5l_io_unit *io;
1243 
1244 	if (bio->bi_error)
1245 		md_error(log->rdev->mddev, log->rdev);
1246 
1247 	spin_lock_irqsave(&log->io_list_lock, flags);
1248 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1249 		r5l_io_run_stripes(io);
1250 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1251 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1252 }
1253 
1254 /*
1255  * Starting dispatch IO to raid.
1256  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1257  * broken meta in the middle of a log causes recovery can't find meta at the
1258  * head of log. If operations require meta at the head persistent in log, we
1259  * must make sure meta before it persistent in log too. A case is:
1260  *
1261  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1262  * data/parity must be persistent in log before we do the write to raid disks.
1263  *
1264  * The solution is we restrictly maintain io_unit list order. In this case, we
1265  * only write stripes of an io_unit to raid disks till the io_unit is the first
1266  * one whose data/parity is in log.
1267  */
1268 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1269 {
1270 	bool do_flush;
1271 
1272 	if (!log || !log->need_cache_flush)
1273 		return;
1274 
1275 	spin_lock_irq(&log->io_list_lock);
1276 	/* flush bio is running */
1277 	if (!list_empty(&log->flushing_ios)) {
1278 		spin_unlock_irq(&log->io_list_lock);
1279 		return;
1280 	}
1281 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1282 	do_flush = !list_empty(&log->flushing_ios);
1283 	spin_unlock_irq(&log->io_list_lock);
1284 
1285 	if (!do_flush)
1286 		return;
1287 	bio_reset(&log->flush_bio);
1288 	log->flush_bio.bi_bdev = log->rdev->bdev;
1289 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1290 	log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1291 	submit_bio(&log->flush_bio);
1292 }
1293 
1294 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1295 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1296 	sector_t end)
1297 {
1298 	struct block_device *bdev = log->rdev->bdev;
1299 	struct mddev *mddev;
1300 
1301 	r5l_write_super(log, end);
1302 
1303 	if (!blk_queue_discard(bdev_get_queue(bdev)))
1304 		return;
1305 
1306 	mddev = log->rdev->mddev;
1307 	/*
1308 	 * Discard could zero data, so before discard we must make sure
1309 	 * superblock is updated to new log tail. Updating superblock (either
1310 	 * directly call md_update_sb() or depend on md thread) must hold
1311 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1312 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1313 	 * for all IO finish, hence waitting for reclaim thread, while reclaim
1314 	 * thread is calling this function and waitting for reconfig mutex. So
1315 	 * there is a deadlock. We workaround this issue with a trylock.
1316 	 * FIXME: we could miss discard if we can't take reconfig mutex
1317 	 */
1318 	set_mask_bits(&mddev->sb_flags, 0,
1319 		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1320 	if (!mddev_trylock(mddev))
1321 		return;
1322 	md_update_sb(mddev, 1);
1323 	mddev_unlock(mddev);
1324 
1325 	/* discard IO error really doesn't matter, ignore it */
1326 	if (log->last_checkpoint < end) {
1327 		blkdev_issue_discard(bdev,
1328 				log->last_checkpoint + log->rdev->data_offset,
1329 				end - log->last_checkpoint, GFP_NOIO, 0);
1330 	} else {
1331 		blkdev_issue_discard(bdev,
1332 				log->last_checkpoint + log->rdev->data_offset,
1333 				log->device_size - log->last_checkpoint,
1334 				GFP_NOIO, 0);
1335 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1336 				GFP_NOIO, 0);
1337 	}
1338 }
1339 
1340 /*
1341  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1342  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1343  *
1344  * must hold conf->device_lock
1345  */
1346 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1347 {
1348 	BUG_ON(list_empty(&sh->lru));
1349 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1350 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1351 
1352 	/*
1353 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1354 	 * raid5_release_stripe() while holding conf->device_lock
1355 	 */
1356 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1357 	assert_spin_locked(&conf->device_lock);
1358 
1359 	list_del_init(&sh->lru);
1360 	atomic_inc(&sh->count);
1361 
1362 	set_bit(STRIPE_HANDLE, &sh->state);
1363 	atomic_inc(&conf->active_stripes);
1364 	r5c_make_stripe_write_out(sh);
1365 
1366 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1367 		atomic_inc(&conf->r5c_flushing_partial_stripes);
1368 	else
1369 		atomic_inc(&conf->r5c_flushing_full_stripes);
1370 	raid5_release_stripe(sh);
1371 }
1372 
1373 /*
1374  * if num == 0, flush all full stripes
1375  * if num > 0, flush all full stripes. If less than num full stripes are
1376  *             flushed, flush some partial stripes until totally num stripes are
1377  *             flushed or there is no more cached stripes.
1378  */
1379 void r5c_flush_cache(struct r5conf *conf, int num)
1380 {
1381 	int count;
1382 	struct stripe_head *sh, *next;
1383 
1384 	assert_spin_locked(&conf->device_lock);
1385 	if (!conf->log)
1386 		return;
1387 
1388 	count = 0;
1389 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1390 		r5c_flush_stripe(conf, sh);
1391 		count++;
1392 	}
1393 
1394 	if (count >= num)
1395 		return;
1396 	list_for_each_entry_safe(sh, next,
1397 				 &conf->r5c_partial_stripe_list, lru) {
1398 		r5c_flush_stripe(conf, sh);
1399 		if (++count >= num)
1400 			break;
1401 	}
1402 }
1403 
1404 static void r5c_do_reclaim(struct r5conf *conf)
1405 {
1406 	struct r5l_log *log = conf->log;
1407 	struct stripe_head *sh;
1408 	int count = 0;
1409 	unsigned long flags;
1410 	int total_cached;
1411 	int stripes_to_flush;
1412 	int flushing_partial, flushing_full;
1413 
1414 	if (!r5c_is_writeback(log))
1415 		return;
1416 
1417 	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1418 	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1419 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1420 		atomic_read(&conf->r5c_cached_full_stripes) -
1421 		flushing_full - flushing_partial;
1422 
1423 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1424 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1425 		/*
1426 		 * if stripe cache pressure high, flush all full stripes and
1427 		 * some partial stripes
1428 		 */
1429 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1430 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1431 		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1432 		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1433 		/*
1434 		 * if stripe cache pressure moderate, or if there is many full
1435 		 * stripes,flush all full stripes
1436 		 */
1437 		stripes_to_flush = 0;
1438 	else
1439 		/* no need to flush */
1440 		stripes_to_flush = -1;
1441 
1442 	if (stripes_to_flush >= 0) {
1443 		spin_lock_irqsave(&conf->device_lock, flags);
1444 		r5c_flush_cache(conf, stripes_to_flush);
1445 		spin_unlock_irqrestore(&conf->device_lock, flags);
1446 	}
1447 
1448 	/* if log space is tight, flush stripes on stripe_in_journal_list */
1449 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1450 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1451 		spin_lock(&conf->device_lock);
1452 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1453 			/*
1454 			 * stripes on stripe_in_journal_list could be in any
1455 			 * state of the stripe_cache state machine. In this
1456 			 * case, we only want to flush stripe on
1457 			 * r5c_cached_full/partial_stripes. The following
1458 			 * condition makes sure the stripe is on one of the
1459 			 * two lists.
1460 			 */
1461 			if (!list_empty(&sh->lru) &&
1462 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1463 			    atomic_read(&sh->count) == 0) {
1464 				r5c_flush_stripe(conf, sh);
1465 				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1466 					break;
1467 			}
1468 		}
1469 		spin_unlock(&conf->device_lock);
1470 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1471 	}
1472 
1473 	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1474 		r5l_run_no_space_stripes(log);
1475 
1476 	md_wakeup_thread(conf->mddev->thread);
1477 }
1478 
1479 static void r5l_do_reclaim(struct r5l_log *log)
1480 {
1481 	struct r5conf *conf = log->rdev->mddev->private;
1482 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1483 	sector_t reclaimable;
1484 	sector_t next_checkpoint;
1485 	bool write_super;
1486 
1487 	spin_lock_irq(&log->io_list_lock);
1488 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1489 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1490 	/*
1491 	 * move proper io_unit to reclaim list. We should not change the order.
1492 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1493 	 * shouldn't reuse space of an unreclaimable io_unit
1494 	 */
1495 	while (1) {
1496 		reclaimable = r5l_reclaimable_space(log);
1497 		if (reclaimable >= reclaim_target ||
1498 		    (list_empty(&log->running_ios) &&
1499 		     list_empty(&log->io_end_ios) &&
1500 		     list_empty(&log->flushing_ios) &&
1501 		     list_empty(&log->finished_ios)))
1502 			break;
1503 
1504 		md_wakeup_thread(log->rdev->mddev->thread);
1505 		wait_event_lock_irq(log->iounit_wait,
1506 				    r5l_reclaimable_space(log) > reclaimable,
1507 				    log->io_list_lock);
1508 	}
1509 
1510 	next_checkpoint = r5c_calculate_new_cp(conf);
1511 	spin_unlock_irq(&log->io_list_lock);
1512 
1513 	if (reclaimable == 0 || !write_super)
1514 		return;
1515 
1516 	/*
1517 	 * write_super will flush cache of each raid disk. We must write super
1518 	 * here, because the log area might be reused soon and we don't want to
1519 	 * confuse recovery
1520 	 */
1521 	r5l_write_super_and_discard_space(log, next_checkpoint);
1522 
1523 	mutex_lock(&log->io_mutex);
1524 	log->last_checkpoint = next_checkpoint;
1525 	r5c_update_log_state(log);
1526 	mutex_unlock(&log->io_mutex);
1527 
1528 	r5l_run_no_space_stripes(log);
1529 }
1530 
1531 static void r5l_reclaim_thread(struct md_thread *thread)
1532 {
1533 	struct mddev *mddev = thread->mddev;
1534 	struct r5conf *conf = mddev->private;
1535 	struct r5l_log *log = conf->log;
1536 
1537 	if (!log)
1538 		return;
1539 	r5c_do_reclaim(conf);
1540 	r5l_do_reclaim(log);
1541 }
1542 
1543 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1544 {
1545 	unsigned long target;
1546 	unsigned long new = (unsigned long)space; /* overflow in theory */
1547 
1548 	if (!log)
1549 		return;
1550 	do {
1551 		target = log->reclaim_target;
1552 		if (new < target)
1553 			return;
1554 	} while (cmpxchg(&log->reclaim_target, target, new) != target);
1555 	md_wakeup_thread(log->reclaim_thread);
1556 }
1557 
1558 void r5l_quiesce(struct r5l_log *log, int state)
1559 {
1560 	struct mddev *mddev;
1561 	if (!log || state == 2)
1562 		return;
1563 	if (state == 0)
1564 		kthread_unpark(log->reclaim_thread->tsk);
1565 	else if (state == 1) {
1566 		/* make sure r5l_write_super_and_discard_space exits */
1567 		mddev = log->rdev->mddev;
1568 		wake_up(&mddev->sb_wait);
1569 		kthread_park(log->reclaim_thread->tsk);
1570 		r5l_wake_reclaim(log, MaxSector);
1571 		r5l_do_reclaim(log);
1572 	}
1573 }
1574 
1575 bool r5l_log_disk_error(struct r5conf *conf)
1576 {
1577 	struct r5l_log *log;
1578 	bool ret;
1579 	/* don't allow write if journal disk is missing */
1580 	rcu_read_lock();
1581 	log = rcu_dereference(conf->log);
1582 
1583 	if (!log)
1584 		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1585 	else
1586 		ret = test_bit(Faulty, &log->rdev->flags);
1587 	rcu_read_unlock();
1588 	return ret;
1589 }
1590 
1591 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1592 
1593 struct r5l_recovery_ctx {
1594 	struct page *meta_page;		/* current meta */
1595 	sector_t meta_total_blocks;	/* total size of current meta and data */
1596 	sector_t pos;			/* recovery position */
1597 	u64 seq;			/* recovery position seq */
1598 	int data_parity_stripes;	/* number of data_parity stripes */
1599 	int data_only_stripes;		/* number of data_only stripes */
1600 	struct list_head cached_list;
1601 
1602 	/*
1603 	 * read ahead page pool (ra_pool)
1604 	 * in recovery, log is read sequentially. It is not efficient to
1605 	 * read every page with sync_page_io(). The read ahead page pool
1606 	 * reads multiple pages with one IO, so further log read can
1607 	 * just copy data from the pool.
1608 	 */
1609 	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1610 	sector_t pool_offset;	/* offset of first page in the pool */
1611 	int total_pages;	/* total allocated pages */
1612 	int valid_pages;	/* pages with valid data */
1613 	struct bio *ra_bio;	/* bio to do the read ahead */
1614 };
1615 
1616 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1617 					    struct r5l_recovery_ctx *ctx)
1618 {
1619 	struct page *page;
1620 
1621 	ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1622 	if (!ctx->ra_bio)
1623 		return -ENOMEM;
1624 
1625 	ctx->valid_pages = 0;
1626 	ctx->total_pages = 0;
1627 	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1628 		page = alloc_page(GFP_KERNEL);
1629 
1630 		if (!page)
1631 			break;
1632 		ctx->ra_pool[ctx->total_pages] = page;
1633 		ctx->total_pages += 1;
1634 	}
1635 
1636 	if (ctx->total_pages == 0) {
1637 		bio_put(ctx->ra_bio);
1638 		return -ENOMEM;
1639 	}
1640 
1641 	ctx->pool_offset = 0;
1642 	return 0;
1643 }
1644 
1645 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1646 					struct r5l_recovery_ctx *ctx)
1647 {
1648 	int i;
1649 
1650 	for (i = 0; i < ctx->total_pages; ++i)
1651 		put_page(ctx->ra_pool[i]);
1652 	bio_put(ctx->ra_bio);
1653 }
1654 
1655 /*
1656  * fetch ctx->valid_pages pages from offset
1657  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1658  * However, if the offset is close to the end of the journal device,
1659  * ctx->valid_pages could be smaller than ctx->total_pages
1660  */
1661 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1662 				      struct r5l_recovery_ctx *ctx,
1663 				      sector_t offset)
1664 {
1665 	bio_reset(ctx->ra_bio);
1666 	ctx->ra_bio->bi_bdev = log->rdev->bdev;
1667 	bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1668 	ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1669 
1670 	ctx->valid_pages = 0;
1671 	ctx->pool_offset = offset;
1672 
1673 	while (ctx->valid_pages < ctx->total_pages) {
1674 		bio_add_page(ctx->ra_bio,
1675 			     ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1676 		ctx->valid_pages += 1;
1677 
1678 		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1679 
1680 		if (offset == 0)  /* reached end of the device */
1681 			break;
1682 	}
1683 
1684 	return submit_bio_wait(ctx->ra_bio);
1685 }
1686 
1687 /*
1688  * try read a page from the read ahead page pool, if the page is not in the
1689  * pool, call r5l_recovery_fetch_ra_pool
1690  */
1691 static int r5l_recovery_read_page(struct r5l_log *log,
1692 				  struct r5l_recovery_ctx *ctx,
1693 				  struct page *page,
1694 				  sector_t offset)
1695 {
1696 	int ret;
1697 
1698 	if (offset < ctx->pool_offset ||
1699 	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1700 		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1701 		if (ret)
1702 			return ret;
1703 	}
1704 
1705 	BUG_ON(offset < ctx->pool_offset ||
1706 	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1707 
1708 	memcpy(page_address(page),
1709 	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1710 					 BLOCK_SECTOR_SHIFT]),
1711 	       PAGE_SIZE);
1712 	return 0;
1713 }
1714 
1715 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1716 					struct r5l_recovery_ctx *ctx)
1717 {
1718 	struct page *page = ctx->meta_page;
1719 	struct r5l_meta_block *mb;
1720 	u32 crc, stored_crc;
1721 	int ret;
1722 
1723 	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1724 	if (ret != 0)
1725 		return ret;
1726 
1727 	mb = page_address(page);
1728 	stored_crc = le32_to_cpu(mb->checksum);
1729 	mb->checksum = 0;
1730 
1731 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1732 	    le64_to_cpu(mb->seq) != ctx->seq ||
1733 	    mb->version != R5LOG_VERSION ||
1734 	    le64_to_cpu(mb->position) != ctx->pos)
1735 		return -EINVAL;
1736 
1737 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1738 	if (stored_crc != crc)
1739 		return -EINVAL;
1740 
1741 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1742 		return -EINVAL;
1743 
1744 	ctx->meta_total_blocks = BLOCK_SECTORS;
1745 
1746 	return 0;
1747 }
1748 
1749 static void
1750 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1751 				     struct page *page,
1752 				     sector_t pos, u64 seq)
1753 {
1754 	struct r5l_meta_block *mb;
1755 
1756 	mb = page_address(page);
1757 	clear_page(mb);
1758 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1759 	mb->version = R5LOG_VERSION;
1760 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1761 	mb->seq = cpu_to_le64(seq);
1762 	mb->position = cpu_to_le64(pos);
1763 }
1764 
1765 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1766 					  u64 seq)
1767 {
1768 	struct page *page;
1769 	struct r5l_meta_block *mb;
1770 
1771 	page = alloc_page(GFP_KERNEL);
1772 	if (!page)
1773 		return -ENOMEM;
1774 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1775 	mb = page_address(page);
1776 	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1777 					     mb, PAGE_SIZE));
1778 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1779 			  REQ_FUA, false)) {
1780 		__free_page(page);
1781 		return -EIO;
1782 	}
1783 	__free_page(page);
1784 	return 0;
1785 }
1786 
1787 /*
1788  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1789  * to mark valid (potentially not flushed) data in the journal.
1790  *
1791  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1792  * so there should not be any mismatch here.
1793  */
1794 static void r5l_recovery_load_data(struct r5l_log *log,
1795 				   struct stripe_head *sh,
1796 				   struct r5l_recovery_ctx *ctx,
1797 				   struct r5l_payload_data_parity *payload,
1798 				   sector_t log_offset)
1799 {
1800 	struct mddev *mddev = log->rdev->mddev;
1801 	struct r5conf *conf = mddev->private;
1802 	int dd_idx;
1803 
1804 	raid5_compute_sector(conf,
1805 			     le64_to_cpu(payload->location), 0,
1806 			     &dd_idx, sh);
1807 	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1808 	sh->dev[dd_idx].log_checksum =
1809 		le32_to_cpu(payload->checksum[0]);
1810 	ctx->meta_total_blocks += BLOCK_SECTORS;
1811 
1812 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1813 	set_bit(STRIPE_R5C_CACHING, &sh->state);
1814 }
1815 
1816 static void r5l_recovery_load_parity(struct r5l_log *log,
1817 				     struct stripe_head *sh,
1818 				     struct r5l_recovery_ctx *ctx,
1819 				     struct r5l_payload_data_parity *payload,
1820 				     sector_t log_offset)
1821 {
1822 	struct mddev *mddev = log->rdev->mddev;
1823 	struct r5conf *conf = mddev->private;
1824 
1825 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1826 	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1827 	sh->dev[sh->pd_idx].log_checksum =
1828 		le32_to_cpu(payload->checksum[0]);
1829 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1830 
1831 	if (sh->qd_idx >= 0) {
1832 		r5l_recovery_read_page(
1833 			log, ctx, sh->dev[sh->qd_idx].page,
1834 			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1835 		sh->dev[sh->qd_idx].log_checksum =
1836 			le32_to_cpu(payload->checksum[1]);
1837 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1838 	}
1839 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1840 }
1841 
1842 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1843 {
1844 	int i;
1845 
1846 	sh->state = 0;
1847 	sh->log_start = MaxSector;
1848 	for (i = sh->disks; i--; )
1849 		sh->dev[i].flags = 0;
1850 }
1851 
1852 static void
1853 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1854 			       struct stripe_head *sh,
1855 			       struct r5l_recovery_ctx *ctx)
1856 {
1857 	struct md_rdev *rdev, *rrdev;
1858 	int disk_index;
1859 	int data_count = 0;
1860 
1861 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1862 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1863 			continue;
1864 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1865 			continue;
1866 		data_count++;
1867 	}
1868 
1869 	/*
1870 	 * stripes that only have parity must have been flushed
1871 	 * before the crash that we are now recovering from, so
1872 	 * there is nothing more to recovery.
1873 	 */
1874 	if (data_count == 0)
1875 		goto out;
1876 
1877 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1878 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1879 			continue;
1880 
1881 		/* in case device is broken */
1882 		rcu_read_lock();
1883 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1884 		if (rdev) {
1885 			atomic_inc(&rdev->nr_pending);
1886 			rcu_read_unlock();
1887 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1888 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1889 				     false);
1890 			rdev_dec_pending(rdev, rdev->mddev);
1891 			rcu_read_lock();
1892 		}
1893 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1894 		if (rrdev) {
1895 			atomic_inc(&rrdev->nr_pending);
1896 			rcu_read_unlock();
1897 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1898 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1899 				     false);
1900 			rdev_dec_pending(rrdev, rrdev->mddev);
1901 			rcu_read_lock();
1902 		}
1903 		rcu_read_unlock();
1904 	}
1905 	ctx->data_parity_stripes++;
1906 out:
1907 	r5l_recovery_reset_stripe(sh);
1908 }
1909 
1910 static struct stripe_head *
1911 r5c_recovery_alloc_stripe(struct r5conf *conf,
1912 			  sector_t stripe_sect)
1913 {
1914 	struct stripe_head *sh;
1915 
1916 	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1917 	if (!sh)
1918 		return NULL;  /* no more stripe available */
1919 
1920 	r5l_recovery_reset_stripe(sh);
1921 
1922 	return sh;
1923 }
1924 
1925 static struct stripe_head *
1926 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1927 {
1928 	struct stripe_head *sh;
1929 
1930 	list_for_each_entry(sh, list, lru)
1931 		if (sh->sector == sect)
1932 			return sh;
1933 	return NULL;
1934 }
1935 
1936 static void
1937 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1938 			  struct r5l_recovery_ctx *ctx)
1939 {
1940 	struct stripe_head *sh, *next;
1941 
1942 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1943 		r5l_recovery_reset_stripe(sh);
1944 		list_del_init(&sh->lru);
1945 		raid5_release_stripe(sh);
1946 	}
1947 }
1948 
1949 static void
1950 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1951 			    struct r5l_recovery_ctx *ctx)
1952 {
1953 	struct stripe_head *sh, *next;
1954 
1955 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1956 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1957 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1958 			list_del_init(&sh->lru);
1959 			raid5_release_stripe(sh);
1960 		}
1961 }
1962 
1963 /* if matches return 0; otherwise return -EINVAL */
1964 static int
1965 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1966 				  struct r5l_recovery_ctx *ctx,
1967 				  struct page *page,
1968 				  sector_t log_offset, __le32 log_checksum)
1969 {
1970 	void *addr;
1971 	u32 checksum;
1972 
1973 	r5l_recovery_read_page(log, ctx, page, log_offset);
1974 	addr = kmap_atomic(page);
1975 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1976 	kunmap_atomic(addr);
1977 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1978 }
1979 
1980 /*
1981  * before loading data to stripe cache, we need verify checksum for all data,
1982  * if there is mismatch for any data page, we drop all data in the mata block
1983  */
1984 static int
1985 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1986 					 struct r5l_recovery_ctx *ctx)
1987 {
1988 	struct mddev *mddev = log->rdev->mddev;
1989 	struct r5conf *conf = mddev->private;
1990 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
1991 	sector_t mb_offset = sizeof(struct r5l_meta_block);
1992 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1993 	struct page *page;
1994 	struct r5l_payload_data_parity *payload;
1995 	struct r5l_payload_flush *payload_flush;
1996 
1997 	page = alloc_page(GFP_KERNEL);
1998 	if (!page)
1999 		return -ENOMEM;
2000 
2001 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2002 		payload = (void *)mb + mb_offset;
2003 		payload_flush = (void *)mb + mb_offset;
2004 
2005 		if (payload->header.type == R5LOG_PAYLOAD_DATA) {
2006 			if (r5l_recovery_verify_data_checksum(
2007 				    log, ctx, page, log_offset,
2008 				    payload->checksum[0]) < 0)
2009 				goto mismatch;
2010 		} else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
2011 			if (r5l_recovery_verify_data_checksum(
2012 				    log, ctx, page, log_offset,
2013 				    payload->checksum[0]) < 0)
2014 				goto mismatch;
2015 			if (conf->max_degraded == 2 && /* q for RAID 6 */
2016 			    r5l_recovery_verify_data_checksum(
2017 				    log, ctx, page,
2018 				    r5l_ring_add(log, log_offset,
2019 						 BLOCK_SECTORS),
2020 				    payload->checksum[1]) < 0)
2021 				goto mismatch;
2022 		} else if (payload->header.type == R5LOG_PAYLOAD_FLUSH) {
2023 			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2024 		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2025 			goto mismatch;
2026 
2027 		if (payload->header.type == R5LOG_PAYLOAD_FLUSH) {
2028 			mb_offset += sizeof(struct r5l_payload_flush) +
2029 				le32_to_cpu(payload_flush->size);
2030 		} else {
2031 			/* DATA or PARITY payload */
2032 			log_offset = r5l_ring_add(log, log_offset,
2033 						  le32_to_cpu(payload->size));
2034 			mb_offset += sizeof(struct r5l_payload_data_parity) +
2035 				sizeof(__le32) *
2036 				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2037 		}
2038 
2039 	}
2040 
2041 	put_page(page);
2042 	return 0;
2043 
2044 mismatch:
2045 	put_page(page);
2046 	return -EINVAL;
2047 }
2048 
2049 /*
2050  * Analyze all data/parity pages in one meta block
2051  * Returns:
2052  * 0 for success
2053  * -EINVAL for unknown playload type
2054  * -EAGAIN for checksum mismatch of data page
2055  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2056  */
2057 static int
2058 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2059 				struct r5l_recovery_ctx *ctx,
2060 				struct list_head *cached_stripe_list)
2061 {
2062 	struct mddev *mddev = log->rdev->mddev;
2063 	struct r5conf *conf = mddev->private;
2064 	struct r5l_meta_block *mb;
2065 	struct r5l_payload_data_parity *payload;
2066 	struct r5l_payload_flush *payload_flush;
2067 	int mb_offset;
2068 	sector_t log_offset;
2069 	sector_t stripe_sect;
2070 	struct stripe_head *sh;
2071 	int ret;
2072 
2073 	/*
2074 	 * for mismatch in data blocks, we will drop all data in this mb, but
2075 	 * we will still read next mb for other data with FLUSH flag, as
2076 	 * io_unit could finish out of order.
2077 	 */
2078 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2079 	if (ret == -EINVAL)
2080 		return -EAGAIN;
2081 	else if (ret)
2082 		return ret;   /* -ENOMEM duo to alloc_page() failed */
2083 
2084 	mb = page_address(ctx->meta_page);
2085 	mb_offset = sizeof(struct r5l_meta_block);
2086 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2087 
2088 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2089 		int dd;
2090 
2091 		payload = (void *)mb + mb_offset;
2092 		payload_flush = (void *)mb + mb_offset;
2093 
2094 		if (payload->header.type == R5LOG_PAYLOAD_FLUSH) {
2095 			int i, count;
2096 
2097 			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2098 			for (i = 0; i < count; ++i) {
2099 				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2100 				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2101 								stripe_sect);
2102 				if (sh) {
2103 					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2104 					r5l_recovery_reset_stripe(sh);
2105 					list_del_init(&sh->lru);
2106 					raid5_release_stripe(sh);
2107 				}
2108 			}
2109 
2110 			mb_offset += sizeof(struct r5l_payload_flush) +
2111 				le32_to_cpu(payload_flush->size);
2112 			continue;
2113 		}
2114 
2115 		/* DATA or PARITY payload */
2116 		stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
2117 			raid5_compute_sector(
2118 				conf, le64_to_cpu(payload->location), 0, &dd,
2119 				NULL)
2120 			: le64_to_cpu(payload->location);
2121 
2122 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2123 						stripe_sect);
2124 
2125 		if (!sh) {
2126 			sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
2127 			/*
2128 			 * cannot get stripe from raid5_get_active_stripe
2129 			 * try replay some stripes
2130 			 */
2131 			if (!sh) {
2132 				r5c_recovery_replay_stripes(
2133 					cached_stripe_list, ctx);
2134 				sh = r5c_recovery_alloc_stripe(
2135 					conf, stripe_sect);
2136 			}
2137 			if (!sh) {
2138 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2139 					mdname(mddev),
2140 					conf->min_nr_stripes * 2);
2141 				raid5_set_cache_size(mddev,
2142 						     conf->min_nr_stripes * 2);
2143 				sh = r5c_recovery_alloc_stripe(conf,
2144 							       stripe_sect);
2145 			}
2146 			if (!sh) {
2147 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2148 				       mdname(mddev));
2149 				return -ENOMEM;
2150 			}
2151 			list_add_tail(&sh->lru, cached_stripe_list);
2152 		}
2153 
2154 		if (payload->header.type == R5LOG_PAYLOAD_DATA) {
2155 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2156 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2157 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2158 				list_move_tail(&sh->lru, cached_stripe_list);
2159 			}
2160 			r5l_recovery_load_data(log, sh, ctx, payload,
2161 					       log_offset);
2162 		} else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
2163 			r5l_recovery_load_parity(log, sh, ctx, payload,
2164 						 log_offset);
2165 		else
2166 			return -EINVAL;
2167 
2168 		log_offset = r5l_ring_add(log, log_offset,
2169 					  le32_to_cpu(payload->size));
2170 
2171 		mb_offset += sizeof(struct r5l_payload_data_parity) +
2172 			sizeof(__le32) *
2173 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2174 	}
2175 
2176 	return 0;
2177 }
2178 
2179 /*
2180  * Load the stripe into cache. The stripe will be written out later by
2181  * the stripe cache state machine.
2182  */
2183 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2184 					 struct stripe_head *sh)
2185 {
2186 	struct r5dev *dev;
2187 	int i;
2188 
2189 	for (i = sh->disks; i--; ) {
2190 		dev = sh->dev + i;
2191 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2192 			set_bit(R5_InJournal, &dev->flags);
2193 			set_bit(R5_UPTODATE, &dev->flags);
2194 		}
2195 	}
2196 }
2197 
2198 /*
2199  * Scan through the log for all to-be-flushed data
2200  *
2201  * For stripes with data and parity, namely Data-Parity stripe
2202  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2203  *
2204  * For stripes with only data, namely Data-Only stripe
2205  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2206  *
2207  * For a stripe, if we see data after parity, we should discard all previous
2208  * data and parity for this stripe, as these data are already flushed to
2209  * the array.
2210  *
2211  * At the end of the scan, we return the new journal_tail, which points to
2212  * first data-only stripe on the journal device, or next invalid meta block.
2213  */
2214 static int r5c_recovery_flush_log(struct r5l_log *log,
2215 				  struct r5l_recovery_ctx *ctx)
2216 {
2217 	struct stripe_head *sh;
2218 	int ret = 0;
2219 
2220 	/* scan through the log */
2221 	while (1) {
2222 		if (r5l_recovery_read_meta_block(log, ctx))
2223 			break;
2224 
2225 		ret = r5c_recovery_analyze_meta_block(log, ctx,
2226 						      &ctx->cached_list);
2227 		/*
2228 		 * -EAGAIN means mismatch in data block, in this case, we still
2229 		 * try scan the next metablock
2230 		 */
2231 		if (ret && ret != -EAGAIN)
2232 			break;   /* ret == -EINVAL or -ENOMEM */
2233 		ctx->seq++;
2234 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2235 	}
2236 
2237 	if (ret == -ENOMEM) {
2238 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2239 		return ret;
2240 	}
2241 
2242 	/* replay data-parity stripes */
2243 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2244 
2245 	/* load data-only stripes to stripe cache */
2246 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2247 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2248 		r5c_recovery_load_one_stripe(log, sh);
2249 		ctx->data_only_stripes++;
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 /*
2256  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2257  * log will start here. but we can't let superblock point to last valid
2258  * meta block. The log might looks like:
2259  * | meta 1| meta 2| meta 3|
2260  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2261  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2262  * happens again, new recovery will start from meta 1. Since meta 2n is
2263  * valid now, recovery will think meta 3 is valid, which is wrong.
2264  * The solution is we create a new meta in meta2 with its seq == meta
2265  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2266  * will not think meta 3 is a valid meta, because its seq doesn't match
2267  */
2268 
2269 /*
2270  * Before recovery, the log looks like the following
2271  *
2272  *   ---------------------------------------------
2273  *   |           valid log        | invalid log  |
2274  *   ---------------------------------------------
2275  *   ^
2276  *   |- log->last_checkpoint
2277  *   |- log->last_cp_seq
2278  *
2279  * Now we scan through the log until we see invalid entry
2280  *
2281  *   ---------------------------------------------
2282  *   |           valid log        | invalid log  |
2283  *   ---------------------------------------------
2284  *   ^                            ^
2285  *   |- log->last_checkpoint      |- ctx->pos
2286  *   |- log->last_cp_seq          |- ctx->seq
2287  *
2288  * From this point, we need to increase seq number by 10 to avoid
2289  * confusing next recovery.
2290  *
2291  *   ---------------------------------------------
2292  *   |           valid log        | invalid log  |
2293  *   ---------------------------------------------
2294  *   ^                              ^
2295  *   |- log->last_checkpoint        |- ctx->pos+1
2296  *   |- log->last_cp_seq            |- ctx->seq+10001
2297  *
2298  * However, it is not safe to start the state machine yet, because data only
2299  * parities are not yet secured in RAID. To save these data only parities, we
2300  * rewrite them from seq+11.
2301  *
2302  *   -----------------------------------------------------------------
2303  *   |           valid log        | data only stripes | invalid log  |
2304  *   -----------------------------------------------------------------
2305  *   ^                                                ^
2306  *   |- log->last_checkpoint                          |- ctx->pos+n
2307  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2308  *
2309  * If failure happens again during this process, the recovery can safe start
2310  * again from log->last_checkpoint.
2311  *
2312  * Once data only stripes are rewritten to journal, we move log_tail
2313  *
2314  *   -----------------------------------------------------------------
2315  *   |     old log        |    data only stripes    | invalid log  |
2316  *   -----------------------------------------------------------------
2317  *                        ^                         ^
2318  *                        |- log->last_checkpoint   |- ctx->pos+n
2319  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2320  *
2321  * Then we can safely start the state machine. If failure happens from this
2322  * point on, the recovery will start from new log->last_checkpoint.
2323  */
2324 static int
2325 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2326 				       struct r5l_recovery_ctx *ctx)
2327 {
2328 	struct stripe_head *sh;
2329 	struct mddev *mddev = log->rdev->mddev;
2330 	struct page *page;
2331 	sector_t next_checkpoint = MaxSector;
2332 
2333 	page = alloc_page(GFP_KERNEL);
2334 	if (!page) {
2335 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2336 		       mdname(mddev));
2337 		return -ENOMEM;
2338 	}
2339 
2340 	WARN_ON(list_empty(&ctx->cached_list));
2341 
2342 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2343 		struct r5l_meta_block *mb;
2344 		int i;
2345 		int offset;
2346 		sector_t write_pos;
2347 
2348 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2349 		r5l_recovery_create_empty_meta_block(log, page,
2350 						     ctx->pos, ctx->seq);
2351 		mb = page_address(page);
2352 		offset = le32_to_cpu(mb->meta_size);
2353 		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2354 
2355 		for (i = sh->disks; i--; ) {
2356 			struct r5dev *dev = &sh->dev[i];
2357 			struct r5l_payload_data_parity *payload;
2358 			void *addr;
2359 
2360 			if (test_bit(R5_InJournal, &dev->flags)) {
2361 				payload = (void *)mb + offset;
2362 				payload->header.type = cpu_to_le16(
2363 					R5LOG_PAYLOAD_DATA);
2364 				payload->size = BLOCK_SECTORS;
2365 				payload->location = cpu_to_le64(
2366 					raid5_compute_blocknr(sh, i, 0));
2367 				addr = kmap_atomic(dev->page);
2368 				payload->checksum[0] = cpu_to_le32(
2369 					crc32c_le(log->uuid_checksum, addr,
2370 						  PAGE_SIZE));
2371 				kunmap_atomic(addr);
2372 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2373 					     dev->page, REQ_OP_WRITE, 0, false);
2374 				write_pos = r5l_ring_add(log, write_pos,
2375 							 BLOCK_SECTORS);
2376 				offset += sizeof(__le32) +
2377 					sizeof(struct r5l_payload_data_parity);
2378 
2379 			}
2380 		}
2381 		mb->meta_size = cpu_to_le32(offset);
2382 		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2383 						     mb, PAGE_SIZE));
2384 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2385 			     REQ_OP_WRITE, REQ_FUA, false);
2386 		sh->log_start = ctx->pos;
2387 		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2388 		atomic_inc(&log->stripe_in_journal_count);
2389 		ctx->pos = write_pos;
2390 		ctx->seq += 1;
2391 		next_checkpoint = sh->log_start;
2392 	}
2393 	log->next_checkpoint = next_checkpoint;
2394 	__free_page(page);
2395 	return 0;
2396 }
2397 
2398 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2399 						 struct r5l_recovery_ctx *ctx)
2400 {
2401 	struct mddev *mddev = log->rdev->mddev;
2402 	struct r5conf *conf = mddev->private;
2403 	struct stripe_head *sh, *next;
2404 
2405 	if (ctx->data_only_stripes == 0)
2406 		return;
2407 
2408 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2409 
2410 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2411 		r5c_make_stripe_write_out(sh);
2412 		set_bit(STRIPE_HANDLE, &sh->state);
2413 		list_del_init(&sh->lru);
2414 		raid5_release_stripe(sh);
2415 	}
2416 
2417 	md_wakeup_thread(conf->mddev->thread);
2418 	/* reuse conf->wait_for_quiescent in recovery */
2419 	wait_event(conf->wait_for_quiescent,
2420 		   atomic_read(&conf->active_stripes) == 0);
2421 
2422 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2423 }
2424 
2425 static int r5l_recovery_log(struct r5l_log *log)
2426 {
2427 	struct mddev *mddev = log->rdev->mddev;
2428 	struct r5l_recovery_ctx *ctx;
2429 	int ret;
2430 	sector_t pos;
2431 
2432 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2433 	if (!ctx)
2434 		return -ENOMEM;
2435 
2436 	ctx->pos = log->last_checkpoint;
2437 	ctx->seq = log->last_cp_seq;
2438 	INIT_LIST_HEAD(&ctx->cached_list);
2439 	ctx->meta_page = alloc_page(GFP_KERNEL);
2440 
2441 	if (!ctx->meta_page) {
2442 		ret =  -ENOMEM;
2443 		goto meta_page;
2444 	}
2445 
2446 	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2447 		ret = -ENOMEM;
2448 		goto ra_pool;
2449 	}
2450 
2451 	ret = r5c_recovery_flush_log(log, ctx);
2452 
2453 	if (ret)
2454 		goto error;
2455 
2456 	pos = ctx->pos;
2457 	ctx->seq += 10000;
2458 
2459 	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2460 		pr_debug("md/raid:%s: starting from clean shutdown\n",
2461 			 mdname(mddev));
2462 	else
2463 		pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2464 			 mdname(mddev), ctx->data_only_stripes,
2465 			 ctx->data_parity_stripes);
2466 
2467 	if (ctx->data_only_stripes == 0) {
2468 		log->next_checkpoint = ctx->pos;
2469 		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2470 		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2471 	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2472 		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2473 		       mdname(mddev));
2474 		ret =  -EIO;
2475 		goto error;
2476 	}
2477 
2478 	log->log_start = ctx->pos;
2479 	log->seq = ctx->seq;
2480 	log->last_checkpoint = pos;
2481 	r5l_write_super(log, pos);
2482 
2483 	r5c_recovery_flush_data_only_stripes(log, ctx);
2484 	ret = 0;
2485 error:
2486 	r5l_recovery_free_ra_pool(log, ctx);
2487 ra_pool:
2488 	__free_page(ctx->meta_page);
2489 meta_page:
2490 	kfree(ctx);
2491 	return ret;
2492 }
2493 
2494 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2495 {
2496 	struct mddev *mddev = log->rdev->mddev;
2497 
2498 	log->rdev->journal_tail = cp;
2499 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2500 }
2501 
2502 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2503 {
2504 	struct r5conf *conf = mddev->private;
2505 	int ret;
2506 
2507 	if (!conf->log)
2508 		return 0;
2509 
2510 	switch (conf->log->r5c_journal_mode) {
2511 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2512 		ret = snprintf(
2513 			page, PAGE_SIZE, "[%s] %s\n",
2514 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2515 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2516 		break;
2517 	case R5C_JOURNAL_MODE_WRITE_BACK:
2518 		ret = snprintf(
2519 			page, PAGE_SIZE, "%s [%s]\n",
2520 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2521 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2522 		break;
2523 	default:
2524 		ret = 0;
2525 	}
2526 	return ret;
2527 }
2528 
2529 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2530 				      const char *page, size_t length)
2531 {
2532 	struct r5conf *conf = mddev->private;
2533 	struct r5l_log *log = conf->log;
2534 	int val = -1, i;
2535 	int len = length;
2536 
2537 	if (!log)
2538 		return -ENODEV;
2539 
2540 	if (len && page[len - 1] == '\n')
2541 		len -= 1;
2542 	for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2543 		if (strlen(r5c_journal_mode_str[i]) == len &&
2544 		    strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2545 			val = i;
2546 			break;
2547 		}
2548 	if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2549 	    val > R5C_JOURNAL_MODE_WRITE_BACK)
2550 		return -EINVAL;
2551 
2552 	if (raid5_calc_degraded(conf) > 0 &&
2553 	    val == R5C_JOURNAL_MODE_WRITE_BACK)
2554 		return -EINVAL;
2555 
2556 	mddev_suspend(mddev);
2557 	conf->log->r5c_journal_mode = val;
2558 	mddev_resume(mddev);
2559 
2560 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2561 		 mdname(mddev), val, r5c_journal_mode_str[val]);
2562 	return length;
2563 }
2564 
2565 struct md_sysfs_entry
2566 r5c_journal_mode = __ATTR(journal_mode, 0644,
2567 			  r5c_journal_mode_show, r5c_journal_mode_store);
2568 
2569 /*
2570  * Try handle write operation in caching phase. This function should only
2571  * be called in write-back mode.
2572  *
2573  * If all outstanding writes can be handled in caching phase, returns 0
2574  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2575  * and returns -EAGAIN
2576  */
2577 int r5c_try_caching_write(struct r5conf *conf,
2578 			  struct stripe_head *sh,
2579 			  struct stripe_head_state *s,
2580 			  int disks)
2581 {
2582 	struct r5l_log *log = conf->log;
2583 	int i;
2584 	struct r5dev *dev;
2585 	int to_cache = 0;
2586 	void **pslot;
2587 	sector_t tree_index;
2588 	int ret;
2589 	uintptr_t refcount;
2590 
2591 	BUG_ON(!r5c_is_writeback(log));
2592 
2593 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2594 		/*
2595 		 * There are two different scenarios here:
2596 		 *  1. The stripe has some data cached, and it is sent to
2597 		 *     write-out phase for reclaim
2598 		 *  2. The stripe is clean, and this is the first write
2599 		 *
2600 		 * For 1, return -EAGAIN, so we continue with
2601 		 * handle_stripe_dirtying().
2602 		 *
2603 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2604 		 * write.
2605 		 */
2606 
2607 		/* case 1: anything injournal or anything in written */
2608 		if (s->injournal > 0 || s->written > 0)
2609 			return -EAGAIN;
2610 		/* case 2 */
2611 		set_bit(STRIPE_R5C_CACHING, &sh->state);
2612 	}
2613 
2614 	/*
2615 	 * When run in degraded mode, array is set to write-through mode.
2616 	 * This check helps drain pending write safely in the transition to
2617 	 * write-through mode.
2618 	 */
2619 	if (s->failed) {
2620 		r5c_make_stripe_write_out(sh);
2621 		return -EAGAIN;
2622 	}
2623 
2624 	for (i = disks; i--; ) {
2625 		dev = &sh->dev[i];
2626 		/* if non-overwrite, use writing-out phase */
2627 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2628 		    !test_bit(R5_InJournal, &dev->flags)) {
2629 			r5c_make_stripe_write_out(sh);
2630 			return -EAGAIN;
2631 		}
2632 	}
2633 
2634 	/* if the stripe is not counted in big_stripe_tree, add it now */
2635 	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2636 	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2637 		tree_index = r5c_tree_index(conf, sh->sector);
2638 		spin_lock(&log->tree_lock);
2639 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2640 					       tree_index);
2641 		if (pslot) {
2642 			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2643 				pslot, &log->tree_lock) >>
2644 				R5C_RADIX_COUNT_SHIFT;
2645 			radix_tree_replace_slot(
2646 				&log->big_stripe_tree, pslot,
2647 				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2648 		} else {
2649 			/*
2650 			 * this radix_tree_insert can fail safely, so no
2651 			 * need to call radix_tree_preload()
2652 			 */
2653 			ret = radix_tree_insert(
2654 				&log->big_stripe_tree, tree_index,
2655 				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2656 			if (ret) {
2657 				spin_unlock(&log->tree_lock);
2658 				r5c_make_stripe_write_out(sh);
2659 				return -EAGAIN;
2660 			}
2661 		}
2662 		spin_unlock(&log->tree_lock);
2663 
2664 		/*
2665 		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2666 		 * counted in the radix tree
2667 		 */
2668 		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2669 		atomic_inc(&conf->r5c_cached_partial_stripes);
2670 	}
2671 
2672 	for (i = disks; i--; ) {
2673 		dev = &sh->dev[i];
2674 		if (dev->towrite) {
2675 			set_bit(R5_Wantwrite, &dev->flags);
2676 			set_bit(R5_Wantdrain, &dev->flags);
2677 			set_bit(R5_LOCKED, &dev->flags);
2678 			to_cache++;
2679 		}
2680 	}
2681 
2682 	if (to_cache) {
2683 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2684 		/*
2685 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2686 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2687 		 * r5c_handle_data_cached()
2688 		 */
2689 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 /*
2696  * free extra pages (orig_page) we allocated for prexor
2697  */
2698 void r5c_release_extra_page(struct stripe_head *sh)
2699 {
2700 	struct r5conf *conf = sh->raid_conf;
2701 	int i;
2702 	bool using_disk_info_extra_page;
2703 
2704 	using_disk_info_extra_page =
2705 		sh->dev[0].orig_page == conf->disks[0].extra_page;
2706 
2707 	for (i = sh->disks; i--; )
2708 		if (sh->dev[i].page != sh->dev[i].orig_page) {
2709 			struct page *p = sh->dev[i].orig_page;
2710 
2711 			sh->dev[i].orig_page = sh->dev[i].page;
2712 			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2713 
2714 			if (!using_disk_info_extra_page)
2715 				put_page(p);
2716 		}
2717 
2718 	if (using_disk_info_extra_page) {
2719 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2720 		md_wakeup_thread(conf->mddev->thread);
2721 	}
2722 }
2723 
2724 void r5c_use_extra_page(struct stripe_head *sh)
2725 {
2726 	struct r5conf *conf = sh->raid_conf;
2727 	int i;
2728 	struct r5dev *dev;
2729 
2730 	for (i = sh->disks; i--; ) {
2731 		dev = &sh->dev[i];
2732 		if (dev->orig_page != dev->page)
2733 			put_page(dev->orig_page);
2734 		dev->orig_page = conf->disks[i].extra_page;
2735 	}
2736 }
2737 
2738 /*
2739  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2740  * stripe is committed to RAID disks.
2741  */
2742 void r5c_finish_stripe_write_out(struct r5conf *conf,
2743 				 struct stripe_head *sh,
2744 				 struct stripe_head_state *s)
2745 {
2746 	struct r5l_log *log = conf->log;
2747 	int i;
2748 	int do_wakeup = 0;
2749 	sector_t tree_index;
2750 	void **pslot;
2751 	uintptr_t refcount;
2752 
2753 	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2754 		return;
2755 
2756 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2757 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2758 
2759 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2760 		return;
2761 
2762 	for (i = sh->disks; i--; ) {
2763 		clear_bit(R5_InJournal, &sh->dev[i].flags);
2764 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2765 			do_wakeup = 1;
2766 	}
2767 
2768 	/*
2769 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2770 	 * We updated R5_InJournal, so we also update s->injournal.
2771 	 */
2772 	s->injournal = 0;
2773 
2774 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2775 		if (atomic_dec_and_test(&conf->pending_full_writes))
2776 			md_wakeup_thread(conf->mddev->thread);
2777 
2778 	if (do_wakeup)
2779 		wake_up(&conf->wait_for_overlap);
2780 
2781 	spin_lock_irq(&log->stripe_in_journal_lock);
2782 	list_del_init(&sh->r5c);
2783 	spin_unlock_irq(&log->stripe_in_journal_lock);
2784 	sh->log_start = MaxSector;
2785 
2786 	atomic_dec(&log->stripe_in_journal_count);
2787 	r5c_update_log_state(log);
2788 
2789 	/* stop counting this stripe in big_stripe_tree */
2790 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2791 	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2792 		tree_index = r5c_tree_index(conf, sh->sector);
2793 		spin_lock(&log->tree_lock);
2794 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2795 					       tree_index);
2796 		BUG_ON(pslot == NULL);
2797 		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2798 			pslot, &log->tree_lock) >>
2799 			R5C_RADIX_COUNT_SHIFT;
2800 		if (refcount == 1)
2801 			radix_tree_delete(&log->big_stripe_tree, tree_index);
2802 		else
2803 			radix_tree_replace_slot(
2804 				&log->big_stripe_tree, pslot,
2805 				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2806 		spin_unlock(&log->tree_lock);
2807 	}
2808 
2809 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2810 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2811 		atomic_dec(&conf->r5c_flushing_partial_stripes);
2812 		atomic_dec(&conf->r5c_cached_partial_stripes);
2813 	}
2814 
2815 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2816 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2817 		atomic_dec(&conf->r5c_flushing_full_stripes);
2818 		atomic_dec(&conf->r5c_cached_full_stripes);
2819 	}
2820 
2821 	r5l_append_flush_payload(log, sh->sector);
2822 }
2823 
2824 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2825 {
2826 	struct r5conf *conf = sh->raid_conf;
2827 	int pages = 0;
2828 	int reserve;
2829 	int i;
2830 	int ret = 0;
2831 
2832 	BUG_ON(!log);
2833 
2834 	for (i = 0; i < sh->disks; i++) {
2835 		void *addr;
2836 
2837 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2838 			continue;
2839 		addr = kmap_atomic(sh->dev[i].page);
2840 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2841 						    addr, PAGE_SIZE);
2842 		kunmap_atomic(addr);
2843 		pages++;
2844 	}
2845 	WARN_ON(pages == 0);
2846 
2847 	/*
2848 	 * The stripe must enter state machine again to call endio, so
2849 	 * don't delay.
2850 	 */
2851 	clear_bit(STRIPE_DELAYED, &sh->state);
2852 	atomic_inc(&sh->count);
2853 
2854 	mutex_lock(&log->io_mutex);
2855 	/* meta + data */
2856 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2857 
2858 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2859 	    sh->log_start == MaxSector)
2860 		r5l_add_no_space_stripe(log, sh);
2861 	else if (!r5l_has_free_space(log, reserve)) {
2862 		if (sh->log_start == log->last_checkpoint)
2863 			BUG();
2864 		else
2865 			r5l_add_no_space_stripe(log, sh);
2866 	} else {
2867 		ret = r5l_log_stripe(log, sh, pages, 0);
2868 		if (ret) {
2869 			spin_lock_irq(&log->io_list_lock);
2870 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2871 			spin_unlock_irq(&log->io_list_lock);
2872 		}
2873 	}
2874 
2875 	mutex_unlock(&log->io_mutex);
2876 	return 0;
2877 }
2878 
2879 /* check whether this big stripe is in write back cache. */
2880 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2881 {
2882 	struct r5l_log *log = conf->log;
2883 	sector_t tree_index;
2884 	void *slot;
2885 
2886 	if (!log)
2887 		return false;
2888 
2889 	WARN_ON_ONCE(!rcu_read_lock_held());
2890 	tree_index = r5c_tree_index(conf, sect);
2891 	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2892 	return slot != NULL;
2893 }
2894 
2895 static int r5l_load_log(struct r5l_log *log)
2896 {
2897 	struct md_rdev *rdev = log->rdev;
2898 	struct page *page;
2899 	struct r5l_meta_block *mb;
2900 	sector_t cp = log->rdev->journal_tail;
2901 	u32 stored_crc, expected_crc;
2902 	bool create_super = false;
2903 	int ret = 0;
2904 
2905 	/* Make sure it's valid */
2906 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2907 		cp = 0;
2908 	page = alloc_page(GFP_KERNEL);
2909 	if (!page)
2910 		return -ENOMEM;
2911 
2912 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2913 		ret = -EIO;
2914 		goto ioerr;
2915 	}
2916 	mb = page_address(page);
2917 
2918 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2919 	    mb->version != R5LOG_VERSION) {
2920 		create_super = true;
2921 		goto create;
2922 	}
2923 	stored_crc = le32_to_cpu(mb->checksum);
2924 	mb->checksum = 0;
2925 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2926 	if (stored_crc != expected_crc) {
2927 		create_super = true;
2928 		goto create;
2929 	}
2930 	if (le64_to_cpu(mb->position) != cp) {
2931 		create_super = true;
2932 		goto create;
2933 	}
2934 create:
2935 	if (create_super) {
2936 		log->last_cp_seq = prandom_u32();
2937 		cp = 0;
2938 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2939 		/*
2940 		 * Make sure super points to correct address. Log might have
2941 		 * data very soon. If super hasn't correct log tail address,
2942 		 * recovery can't find the log
2943 		 */
2944 		r5l_write_super(log, cp);
2945 	} else
2946 		log->last_cp_seq = le64_to_cpu(mb->seq);
2947 
2948 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2949 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2950 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2951 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2952 	log->last_checkpoint = cp;
2953 
2954 	__free_page(page);
2955 
2956 	if (create_super) {
2957 		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2958 		log->seq = log->last_cp_seq + 1;
2959 		log->next_checkpoint = cp;
2960 	} else
2961 		ret = r5l_recovery_log(log);
2962 
2963 	r5c_update_log_state(log);
2964 	return ret;
2965 ioerr:
2966 	__free_page(page);
2967 	return ret;
2968 }
2969 
2970 void r5c_update_on_rdev_error(struct mddev *mddev)
2971 {
2972 	struct r5conf *conf = mddev->private;
2973 	struct r5l_log *log = conf->log;
2974 
2975 	if (!log)
2976 		return;
2977 
2978 	if (raid5_calc_degraded(conf) > 0 &&
2979 	    conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
2980 		schedule_work(&log->disable_writeback_work);
2981 }
2982 
2983 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2984 {
2985 	struct request_queue *q = bdev_get_queue(rdev->bdev);
2986 	struct r5l_log *log;
2987 	char b[BDEVNAME_SIZE];
2988 
2989 	pr_debug("md/raid:%s: using device %s as journal\n",
2990 		 mdname(conf->mddev), bdevname(rdev->bdev, b));
2991 
2992 	if (PAGE_SIZE != 4096)
2993 		return -EINVAL;
2994 
2995 	/*
2996 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2997 	 * raid_disks r5l_payload_data_parity.
2998 	 *
2999 	 * Write journal and cache does not work for very big array
3000 	 * (raid_disks > 203)
3001 	 */
3002 	if (sizeof(struct r5l_meta_block) +
3003 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3004 	     conf->raid_disks) > PAGE_SIZE) {
3005 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3006 		       mdname(conf->mddev), conf->raid_disks);
3007 		return -EINVAL;
3008 	}
3009 
3010 	log = kzalloc(sizeof(*log), GFP_KERNEL);
3011 	if (!log)
3012 		return -ENOMEM;
3013 	log->rdev = rdev;
3014 
3015 	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3016 
3017 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3018 				       sizeof(rdev->mddev->uuid));
3019 
3020 	mutex_init(&log->io_mutex);
3021 
3022 	spin_lock_init(&log->io_list_lock);
3023 	INIT_LIST_HEAD(&log->running_ios);
3024 	INIT_LIST_HEAD(&log->io_end_ios);
3025 	INIT_LIST_HEAD(&log->flushing_ios);
3026 	INIT_LIST_HEAD(&log->finished_ios);
3027 	bio_init(&log->flush_bio, NULL, 0);
3028 
3029 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3030 	if (!log->io_kc)
3031 		goto io_kc;
3032 
3033 	log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3034 	if (!log->io_pool)
3035 		goto io_pool;
3036 
3037 	log->bs = bioset_create(R5L_POOL_SIZE, 0);
3038 	if (!log->bs)
3039 		goto io_bs;
3040 
3041 	log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3042 	if (!log->meta_pool)
3043 		goto out_mempool;
3044 
3045 	spin_lock_init(&log->tree_lock);
3046 	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3047 
3048 	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3049 						 log->rdev->mddev, "reclaim");
3050 	if (!log->reclaim_thread)
3051 		goto reclaim_thread;
3052 	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3053 
3054 	init_waitqueue_head(&log->iounit_wait);
3055 
3056 	INIT_LIST_HEAD(&log->no_mem_stripes);
3057 
3058 	INIT_LIST_HEAD(&log->no_space_stripes);
3059 	spin_lock_init(&log->no_space_stripes_lock);
3060 
3061 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3062 	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3063 
3064 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3065 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3066 	spin_lock_init(&log->stripe_in_journal_lock);
3067 	atomic_set(&log->stripe_in_journal_count, 0);
3068 
3069 	rcu_assign_pointer(conf->log, log);
3070 
3071 	if (r5l_load_log(log))
3072 		goto error;
3073 
3074 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3075 	return 0;
3076 
3077 error:
3078 	rcu_assign_pointer(conf->log, NULL);
3079 	md_unregister_thread(&log->reclaim_thread);
3080 reclaim_thread:
3081 	mempool_destroy(log->meta_pool);
3082 out_mempool:
3083 	bioset_free(log->bs);
3084 io_bs:
3085 	mempool_destroy(log->io_pool);
3086 io_pool:
3087 	kmem_cache_destroy(log->io_kc);
3088 io_kc:
3089 	kfree(log);
3090 	return -EINVAL;
3091 }
3092 
3093 void r5l_exit_log(struct r5conf *conf)
3094 {
3095 	struct r5l_log *log = conf->log;
3096 
3097 	conf->log = NULL;
3098 	synchronize_rcu();
3099 
3100 	flush_work(&log->disable_writeback_work);
3101 	md_unregister_thread(&log->reclaim_thread);
3102 	mempool_destroy(log->meta_pool);
3103 	bioset_free(log->bs);
3104 	mempool_destroy(log->io_pool);
3105 	kmem_cache_destroy(log->io_kc);
3106 	kfree(log);
3107 }
3108