xref: /linux/drivers/md/raid10.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33 
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74 
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define	NR_RAID10_BIOS 256
79 
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91 
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99 
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 				int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109 
110 #define raid10_log(md, fmt, args...)				\
111 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112 
113 #include "raid1-10.c"
114 
115 /*
116  * for resync bio, r10bio pointer can be retrieved from the per-bio
117  * 'struct resync_pages'.
118  */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121 	return get_resync_pages(bio)->raid_bio;
122 }
123 
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126 	struct r10conf *conf = data;
127 	int size = offsetof(struct r10bio, devs[conf->copies]);
128 
129 	/* allocate a r10bio with room for raid_disks entries in the
130 	 * bios array */
131 	return kzalloc(size, gfp_flags);
132 }
133 
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136 	kfree(r10_bio);
137 }
138 
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146 
147 /*
148  * When performing a resync, we need to read and compare, so
149  * we need as many pages are there are copies.
150  * When performing a recovery, we need 2 bios, one for read,
151  * one for write (we recover only one drive per r10buf)
152  *
153  */
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156 	struct r10conf *conf = data;
157 	struct r10bio *r10_bio;
158 	struct bio *bio;
159 	int j;
160 	int nalloc, nalloc_rp;
161 	struct resync_pages *rps;
162 
163 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164 	if (!r10_bio)
165 		return NULL;
166 
167 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169 		nalloc = conf->copies; /* resync */
170 	else
171 		nalloc = 2; /* recovery */
172 
173 	/* allocate once for all bios */
174 	if (!conf->have_replacement)
175 		nalloc_rp = nalloc;
176 	else
177 		nalloc_rp = nalloc * 2;
178 	rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
179 	if (!rps)
180 		goto out_free_r10bio;
181 
182 	/*
183 	 * Allocate bios.
184 	 */
185 	for (j = nalloc ; j-- ; ) {
186 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187 		if (!bio)
188 			goto out_free_bio;
189 		r10_bio->devs[j].bio = bio;
190 		if (!conf->have_replacement)
191 			continue;
192 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193 		if (!bio)
194 			goto out_free_bio;
195 		r10_bio->devs[j].repl_bio = bio;
196 	}
197 	/*
198 	 * Allocate RESYNC_PAGES data pages and attach them
199 	 * where needed.
200 	 */
201 	for (j = 0; j < nalloc; j++) {
202 		struct bio *rbio = r10_bio->devs[j].repl_bio;
203 		struct resync_pages *rp, *rp_repl;
204 
205 		rp = &rps[j];
206 		if (rbio)
207 			rp_repl = &rps[nalloc + j];
208 
209 		bio = r10_bio->devs[j].bio;
210 
211 		if (!j || test_bit(MD_RECOVERY_SYNC,
212 				   &conf->mddev->recovery)) {
213 			if (resync_alloc_pages(rp, gfp_flags))
214 				goto out_free_pages;
215 		} else {
216 			memcpy(rp, &rps[0], sizeof(*rp));
217 			resync_get_all_pages(rp);
218 		}
219 
220 		rp->raid_bio = r10_bio;
221 		bio->bi_private = rp;
222 		if (rbio) {
223 			memcpy(rp_repl, rp, sizeof(*rp));
224 			rbio->bi_private = rp_repl;
225 		}
226 	}
227 
228 	return r10_bio;
229 
230 out_free_pages:
231 	while (--j >= 0)
232 		resync_free_pages(&rps[j * 2]);
233 
234 	j = 0;
235 out_free_bio:
236 	for ( ; j < nalloc; j++) {
237 		if (r10_bio->devs[j].bio)
238 			bio_put(r10_bio->devs[j].bio);
239 		if (r10_bio->devs[j].repl_bio)
240 			bio_put(r10_bio->devs[j].repl_bio);
241 	}
242 	kfree(rps);
243 out_free_r10bio:
244 	r10bio_pool_free(r10_bio, conf);
245 	return NULL;
246 }
247 
248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250 	struct r10conf *conf = data;
251 	struct r10bio *r10bio = __r10_bio;
252 	int j;
253 	struct resync_pages *rp = NULL;
254 
255 	for (j = conf->copies; j--; ) {
256 		struct bio *bio = r10bio->devs[j].bio;
257 
258 		rp = get_resync_pages(bio);
259 		resync_free_pages(rp);
260 		bio_put(bio);
261 
262 		bio = r10bio->devs[j].repl_bio;
263 		if (bio)
264 			bio_put(bio);
265 	}
266 
267 	/* resync pages array stored in the 1st bio's .bi_private */
268 	kfree(rp);
269 
270 	r10bio_pool_free(r10bio, conf);
271 }
272 
273 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
274 {
275 	int i;
276 
277 	for (i = 0; i < conf->copies; i++) {
278 		struct bio **bio = & r10_bio->devs[i].bio;
279 		if (!BIO_SPECIAL(*bio))
280 			bio_put(*bio);
281 		*bio = NULL;
282 		bio = &r10_bio->devs[i].repl_bio;
283 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
284 			bio_put(*bio);
285 		*bio = NULL;
286 	}
287 }
288 
289 static void free_r10bio(struct r10bio *r10_bio)
290 {
291 	struct r10conf *conf = r10_bio->mddev->private;
292 
293 	put_all_bios(conf, r10_bio);
294 	mempool_free(r10_bio, conf->r10bio_pool);
295 }
296 
297 static void put_buf(struct r10bio *r10_bio)
298 {
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	mempool_free(r10_bio, conf->r10buf_pool);
302 
303 	lower_barrier(conf);
304 }
305 
306 static void reschedule_retry(struct r10bio *r10_bio)
307 {
308 	unsigned long flags;
309 	struct mddev *mddev = r10_bio->mddev;
310 	struct r10conf *conf = mddev->private;
311 
312 	spin_lock_irqsave(&conf->device_lock, flags);
313 	list_add(&r10_bio->retry_list, &conf->retry_list);
314 	conf->nr_queued ++;
315 	spin_unlock_irqrestore(&conf->device_lock, flags);
316 
317 	/* wake up frozen array... */
318 	wake_up(&conf->wait_barrier);
319 
320 	md_wakeup_thread(mddev->thread);
321 }
322 
323 /*
324  * raid_end_bio_io() is called when we have finished servicing a mirrored
325  * operation and are ready to return a success/failure code to the buffer
326  * cache layer.
327  */
328 static void raid_end_bio_io(struct r10bio *r10_bio)
329 {
330 	struct bio *bio = r10_bio->master_bio;
331 	struct r10conf *conf = r10_bio->mddev->private;
332 
333 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
334 		bio->bi_status = BLK_STS_IOERR;
335 
336 	bio_endio(bio);
337 	/*
338 	 * Wake up any possible resync thread that waits for the device
339 	 * to go idle.
340 	 */
341 	allow_barrier(conf);
342 
343 	free_r10bio(r10_bio);
344 }
345 
346 /*
347  * Update disk head position estimator based on IRQ completion info.
348  */
349 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
350 {
351 	struct r10conf *conf = r10_bio->mddev->private;
352 
353 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
354 		r10_bio->devs[slot].addr + (r10_bio->sectors);
355 }
356 
357 /*
358  * Find the disk number which triggered given bio
359  */
360 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
361 			 struct bio *bio, int *slotp, int *replp)
362 {
363 	int slot;
364 	int repl = 0;
365 
366 	for (slot = 0; slot < conf->copies; slot++) {
367 		if (r10_bio->devs[slot].bio == bio)
368 			break;
369 		if (r10_bio->devs[slot].repl_bio == bio) {
370 			repl = 1;
371 			break;
372 		}
373 	}
374 
375 	BUG_ON(slot == conf->copies);
376 	update_head_pos(slot, r10_bio);
377 
378 	if (slotp)
379 		*slotp = slot;
380 	if (replp)
381 		*replp = repl;
382 	return r10_bio->devs[slot].devnum;
383 }
384 
385 static void raid10_end_read_request(struct bio *bio)
386 {
387 	int uptodate = !bio->bi_status;
388 	struct r10bio *r10_bio = bio->bi_private;
389 	int slot;
390 	struct md_rdev *rdev;
391 	struct r10conf *conf = r10_bio->mddev->private;
392 
393 	slot = r10_bio->read_slot;
394 	rdev = r10_bio->devs[slot].rdev;
395 	/*
396 	 * this branch is our 'one mirror IO has finished' event handler:
397 	 */
398 	update_head_pos(slot, r10_bio);
399 
400 	if (uptodate) {
401 		/*
402 		 * Set R10BIO_Uptodate in our master bio, so that
403 		 * we will return a good error code to the higher
404 		 * levels even if IO on some other mirrored buffer fails.
405 		 *
406 		 * The 'master' represents the composite IO operation to
407 		 * user-side. So if something waits for IO, then it will
408 		 * wait for the 'master' bio.
409 		 */
410 		set_bit(R10BIO_Uptodate, &r10_bio->state);
411 	} else {
412 		/* If all other devices that store this block have
413 		 * failed, we want to return the error upwards rather
414 		 * than fail the last device.  Here we redefine
415 		 * "uptodate" to mean "Don't want to retry"
416 		 */
417 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
418 			     rdev->raid_disk))
419 			uptodate = 1;
420 	}
421 	if (uptodate) {
422 		raid_end_bio_io(r10_bio);
423 		rdev_dec_pending(rdev, conf->mddev);
424 	} else {
425 		/*
426 		 * oops, read error - keep the refcount on the rdev
427 		 */
428 		char b[BDEVNAME_SIZE];
429 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
430 				   mdname(conf->mddev),
431 				   bdevname(rdev->bdev, b),
432 				   (unsigned long long)r10_bio->sector);
433 		set_bit(R10BIO_ReadError, &r10_bio->state);
434 		reschedule_retry(r10_bio);
435 	}
436 }
437 
438 static void close_write(struct r10bio *r10_bio)
439 {
440 	/* clear the bitmap if all writes complete successfully */
441 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
442 			r10_bio->sectors,
443 			!test_bit(R10BIO_Degraded, &r10_bio->state),
444 			0);
445 	md_write_end(r10_bio->mddev);
446 }
447 
448 static void one_write_done(struct r10bio *r10_bio)
449 {
450 	if (atomic_dec_and_test(&r10_bio->remaining)) {
451 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
452 			reschedule_retry(r10_bio);
453 		else {
454 			close_write(r10_bio);
455 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
456 				reschedule_retry(r10_bio);
457 			else
458 				raid_end_bio_io(r10_bio);
459 		}
460 	}
461 }
462 
463 static void raid10_end_write_request(struct bio *bio)
464 {
465 	struct r10bio *r10_bio = bio->bi_private;
466 	int dev;
467 	int dec_rdev = 1;
468 	struct r10conf *conf = r10_bio->mddev->private;
469 	int slot, repl;
470 	struct md_rdev *rdev = NULL;
471 	struct bio *to_put = NULL;
472 	bool discard_error;
473 
474 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
475 
476 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
477 
478 	if (repl)
479 		rdev = conf->mirrors[dev].replacement;
480 	if (!rdev) {
481 		smp_rmb();
482 		repl = 0;
483 		rdev = conf->mirrors[dev].rdev;
484 	}
485 	/*
486 	 * this branch is our 'one mirror IO has finished' event handler:
487 	 */
488 	if (bio->bi_status && !discard_error) {
489 		if (repl)
490 			/* Never record new bad blocks to replacement,
491 			 * just fail it.
492 			 */
493 			md_error(rdev->mddev, rdev);
494 		else {
495 			set_bit(WriteErrorSeen,	&rdev->flags);
496 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
497 				set_bit(MD_RECOVERY_NEEDED,
498 					&rdev->mddev->recovery);
499 
500 			dec_rdev = 0;
501 			if (test_bit(FailFast, &rdev->flags) &&
502 			    (bio->bi_opf & MD_FAILFAST)) {
503 				md_error(rdev->mddev, rdev);
504 				if (!test_bit(Faulty, &rdev->flags))
505 					/* This is the only remaining device,
506 					 * We need to retry the write without
507 					 * FailFast
508 					 */
509 					set_bit(R10BIO_WriteError, &r10_bio->state);
510 				else {
511 					r10_bio->devs[slot].bio = NULL;
512 					to_put = bio;
513 					dec_rdev = 1;
514 				}
515 			} else
516 				set_bit(R10BIO_WriteError, &r10_bio->state);
517 		}
518 	} else {
519 		/*
520 		 * Set R10BIO_Uptodate in our master bio, so that
521 		 * we will return a good error code for to the higher
522 		 * levels even if IO on some other mirrored buffer fails.
523 		 *
524 		 * The 'master' represents the composite IO operation to
525 		 * user-side. So if something waits for IO, then it will
526 		 * wait for the 'master' bio.
527 		 */
528 		sector_t first_bad;
529 		int bad_sectors;
530 
531 		/*
532 		 * Do not set R10BIO_Uptodate if the current device is
533 		 * rebuilding or Faulty. This is because we cannot use
534 		 * such device for properly reading the data back (we could
535 		 * potentially use it, if the current write would have felt
536 		 * before rdev->recovery_offset, but for simplicity we don't
537 		 * check this here.
538 		 */
539 		if (test_bit(In_sync, &rdev->flags) &&
540 		    !test_bit(Faulty, &rdev->flags))
541 			set_bit(R10BIO_Uptodate, &r10_bio->state);
542 
543 		/* Maybe we can clear some bad blocks. */
544 		if (is_badblock(rdev,
545 				r10_bio->devs[slot].addr,
546 				r10_bio->sectors,
547 				&first_bad, &bad_sectors) && !discard_error) {
548 			bio_put(bio);
549 			if (repl)
550 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
551 			else
552 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
553 			dec_rdev = 0;
554 			set_bit(R10BIO_MadeGood, &r10_bio->state);
555 		}
556 	}
557 
558 	/*
559 	 *
560 	 * Let's see if all mirrored write operations have finished
561 	 * already.
562 	 */
563 	one_write_done(r10_bio);
564 	if (dec_rdev)
565 		rdev_dec_pending(rdev, conf->mddev);
566 	if (to_put)
567 		bio_put(to_put);
568 }
569 
570 /*
571  * RAID10 layout manager
572  * As well as the chunksize and raid_disks count, there are two
573  * parameters: near_copies and far_copies.
574  * near_copies * far_copies must be <= raid_disks.
575  * Normally one of these will be 1.
576  * If both are 1, we get raid0.
577  * If near_copies == raid_disks, we get raid1.
578  *
579  * Chunks are laid out in raid0 style with near_copies copies of the
580  * first chunk, followed by near_copies copies of the next chunk and
581  * so on.
582  * If far_copies > 1, then after 1/far_copies of the array has been assigned
583  * as described above, we start again with a device offset of near_copies.
584  * So we effectively have another copy of the whole array further down all
585  * the drives, but with blocks on different drives.
586  * With this layout, and block is never stored twice on the one device.
587  *
588  * raid10_find_phys finds the sector offset of a given virtual sector
589  * on each device that it is on.
590  *
591  * raid10_find_virt does the reverse mapping, from a device and a
592  * sector offset to a virtual address
593  */
594 
595 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
596 {
597 	int n,f;
598 	sector_t sector;
599 	sector_t chunk;
600 	sector_t stripe;
601 	int dev;
602 	int slot = 0;
603 	int last_far_set_start, last_far_set_size;
604 
605 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
606 	last_far_set_start *= geo->far_set_size;
607 
608 	last_far_set_size = geo->far_set_size;
609 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
610 
611 	/* now calculate first sector/dev */
612 	chunk = r10bio->sector >> geo->chunk_shift;
613 	sector = r10bio->sector & geo->chunk_mask;
614 
615 	chunk *= geo->near_copies;
616 	stripe = chunk;
617 	dev = sector_div(stripe, geo->raid_disks);
618 	if (geo->far_offset)
619 		stripe *= geo->far_copies;
620 
621 	sector += stripe << geo->chunk_shift;
622 
623 	/* and calculate all the others */
624 	for (n = 0; n < geo->near_copies; n++) {
625 		int d = dev;
626 		int set;
627 		sector_t s = sector;
628 		r10bio->devs[slot].devnum = d;
629 		r10bio->devs[slot].addr = s;
630 		slot++;
631 
632 		for (f = 1; f < geo->far_copies; f++) {
633 			set = d / geo->far_set_size;
634 			d += geo->near_copies;
635 
636 			if ((geo->raid_disks % geo->far_set_size) &&
637 			    (d > last_far_set_start)) {
638 				d -= last_far_set_start;
639 				d %= last_far_set_size;
640 				d += last_far_set_start;
641 			} else {
642 				d %= geo->far_set_size;
643 				d += geo->far_set_size * set;
644 			}
645 			s += geo->stride;
646 			r10bio->devs[slot].devnum = d;
647 			r10bio->devs[slot].addr = s;
648 			slot++;
649 		}
650 		dev++;
651 		if (dev >= geo->raid_disks) {
652 			dev = 0;
653 			sector += (geo->chunk_mask + 1);
654 		}
655 	}
656 }
657 
658 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
659 {
660 	struct geom *geo = &conf->geo;
661 
662 	if (conf->reshape_progress != MaxSector &&
663 	    ((r10bio->sector >= conf->reshape_progress) !=
664 	     conf->mddev->reshape_backwards)) {
665 		set_bit(R10BIO_Previous, &r10bio->state);
666 		geo = &conf->prev;
667 	} else
668 		clear_bit(R10BIO_Previous, &r10bio->state);
669 
670 	__raid10_find_phys(geo, r10bio);
671 }
672 
673 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
674 {
675 	sector_t offset, chunk, vchunk;
676 	/* Never use conf->prev as this is only called during resync
677 	 * or recovery, so reshape isn't happening
678 	 */
679 	struct geom *geo = &conf->geo;
680 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
681 	int far_set_size = geo->far_set_size;
682 	int last_far_set_start;
683 
684 	if (geo->raid_disks % geo->far_set_size) {
685 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
686 		last_far_set_start *= geo->far_set_size;
687 
688 		if (dev >= last_far_set_start) {
689 			far_set_size = geo->far_set_size;
690 			far_set_size += (geo->raid_disks % geo->far_set_size);
691 			far_set_start = last_far_set_start;
692 		}
693 	}
694 
695 	offset = sector & geo->chunk_mask;
696 	if (geo->far_offset) {
697 		int fc;
698 		chunk = sector >> geo->chunk_shift;
699 		fc = sector_div(chunk, geo->far_copies);
700 		dev -= fc * geo->near_copies;
701 		if (dev < far_set_start)
702 			dev += far_set_size;
703 	} else {
704 		while (sector >= geo->stride) {
705 			sector -= geo->stride;
706 			if (dev < (geo->near_copies + far_set_start))
707 				dev += far_set_size - geo->near_copies;
708 			else
709 				dev -= geo->near_copies;
710 		}
711 		chunk = sector >> geo->chunk_shift;
712 	}
713 	vchunk = chunk * geo->raid_disks + dev;
714 	sector_div(vchunk, geo->near_copies);
715 	return (vchunk << geo->chunk_shift) + offset;
716 }
717 
718 /*
719  * This routine returns the disk from which the requested read should
720  * be done. There is a per-array 'next expected sequential IO' sector
721  * number - if this matches on the next IO then we use the last disk.
722  * There is also a per-disk 'last know head position' sector that is
723  * maintained from IRQ contexts, both the normal and the resync IO
724  * completion handlers update this position correctly. If there is no
725  * perfect sequential match then we pick the disk whose head is closest.
726  *
727  * If there are 2 mirrors in the same 2 devices, performance degrades
728  * because position is mirror, not device based.
729  *
730  * The rdev for the device selected will have nr_pending incremented.
731  */
732 
733 /*
734  * FIXME: possibly should rethink readbalancing and do it differently
735  * depending on near_copies / far_copies geometry.
736  */
737 static struct md_rdev *read_balance(struct r10conf *conf,
738 				    struct r10bio *r10_bio,
739 				    int *max_sectors)
740 {
741 	const sector_t this_sector = r10_bio->sector;
742 	int disk, slot;
743 	int sectors = r10_bio->sectors;
744 	int best_good_sectors;
745 	sector_t new_distance, best_dist;
746 	struct md_rdev *best_rdev, *rdev = NULL;
747 	int do_balance;
748 	int best_slot;
749 	struct geom *geo = &conf->geo;
750 
751 	raid10_find_phys(conf, r10_bio);
752 	rcu_read_lock();
753 	best_slot = -1;
754 	best_rdev = NULL;
755 	best_dist = MaxSector;
756 	best_good_sectors = 0;
757 	do_balance = 1;
758 	clear_bit(R10BIO_FailFast, &r10_bio->state);
759 	/*
760 	 * Check if we can balance. We can balance on the whole
761 	 * device if no resync is going on (recovery is ok), or below
762 	 * the resync window. We take the first readable disk when
763 	 * above the resync window.
764 	 */
765 	if ((conf->mddev->recovery_cp < MaxSector
766 	     && (this_sector + sectors >= conf->next_resync)) ||
767 	    (mddev_is_clustered(conf->mddev) &&
768 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
769 					    this_sector + sectors)))
770 		do_balance = 0;
771 
772 	for (slot = 0; slot < conf->copies ; slot++) {
773 		sector_t first_bad;
774 		int bad_sectors;
775 		sector_t dev_sector;
776 
777 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
778 			continue;
779 		disk = r10_bio->devs[slot].devnum;
780 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
781 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
784 		if (rdev == NULL ||
785 		    test_bit(Faulty, &rdev->flags))
786 			continue;
787 		if (!test_bit(In_sync, &rdev->flags) &&
788 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789 			continue;
790 
791 		dev_sector = r10_bio->devs[slot].addr;
792 		if (is_badblock(rdev, dev_sector, sectors,
793 				&first_bad, &bad_sectors)) {
794 			if (best_dist < MaxSector)
795 				/* Already have a better slot */
796 				continue;
797 			if (first_bad <= dev_sector) {
798 				/* Cannot read here.  If this is the
799 				 * 'primary' device, then we must not read
800 				 * beyond 'bad_sectors' from another device.
801 				 */
802 				bad_sectors -= (dev_sector - first_bad);
803 				if (!do_balance && sectors > bad_sectors)
804 					sectors = bad_sectors;
805 				if (best_good_sectors > sectors)
806 					best_good_sectors = sectors;
807 			} else {
808 				sector_t good_sectors =
809 					first_bad - dev_sector;
810 				if (good_sectors > best_good_sectors) {
811 					best_good_sectors = good_sectors;
812 					best_slot = slot;
813 					best_rdev = rdev;
814 				}
815 				if (!do_balance)
816 					/* Must read from here */
817 					break;
818 			}
819 			continue;
820 		} else
821 			best_good_sectors = sectors;
822 
823 		if (!do_balance)
824 			break;
825 
826 		if (best_slot >= 0)
827 			/* At least 2 disks to choose from so failfast is OK */
828 			set_bit(R10BIO_FailFast, &r10_bio->state);
829 		/* This optimisation is debatable, and completely destroys
830 		 * sequential read speed for 'far copies' arrays.  So only
831 		 * keep it for 'near' arrays, and review those later.
832 		 */
833 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
834 			new_distance = 0;
835 
836 		/* for far > 1 always use the lowest address */
837 		else if (geo->far_copies > 1)
838 			new_distance = r10_bio->devs[slot].addr;
839 		else
840 			new_distance = abs(r10_bio->devs[slot].addr -
841 					   conf->mirrors[disk].head_position);
842 		if (new_distance < best_dist) {
843 			best_dist = new_distance;
844 			best_slot = slot;
845 			best_rdev = rdev;
846 		}
847 	}
848 	if (slot >= conf->copies) {
849 		slot = best_slot;
850 		rdev = best_rdev;
851 	}
852 
853 	if (slot >= 0) {
854 		atomic_inc(&rdev->nr_pending);
855 		r10_bio->read_slot = slot;
856 	} else
857 		rdev = NULL;
858 	rcu_read_unlock();
859 	*max_sectors = best_good_sectors;
860 
861 	return rdev;
862 }
863 
864 static int raid10_congested(struct mddev *mddev, int bits)
865 {
866 	struct r10conf *conf = mddev->private;
867 	int i, ret = 0;
868 
869 	if ((bits & (1 << WB_async_congested)) &&
870 	    conf->pending_count >= max_queued_requests)
871 		return 1;
872 
873 	rcu_read_lock();
874 	for (i = 0;
875 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
876 		     && ret == 0;
877 	     i++) {
878 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
879 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
880 			struct request_queue *q = bdev_get_queue(rdev->bdev);
881 
882 			ret |= bdi_congested(q->backing_dev_info, bits);
883 		}
884 	}
885 	rcu_read_unlock();
886 	return ret;
887 }
888 
889 static void flush_pending_writes(struct r10conf *conf)
890 {
891 	/* Any writes that have been queued but are awaiting
892 	 * bitmap updates get flushed here.
893 	 */
894 	spin_lock_irq(&conf->device_lock);
895 
896 	if (conf->pending_bio_list.head) {
897 		struct blk_plug plug;
898 		struct bio *bio;
899 
900 		bio = bio_list_get(&conf->pending_bio_list);
901 		conf->pending_count = 0;
902 		spin_unlock_irq(&conf->device_lock);
903 		blk_start_plug(&plug);
904 		/* flush any pending bitmap writes to disk
905 		 * before proceeding w/ I/O */
906 		bitmap_unplug(conf->mddev->bitmap);
907 		wake_up(&conf->wait_barrier);
908 
909 		while (bio) { /* submit pending writes */
910 			struct bio *next = bio->bi_next;
911 			struct md_rdev *rdev = (void*)bio->bi_disk;
912 			bio->bi_next = NULL;
913 			bio_set_dev(bio, rdev->bdev);
914 			if (test_bit(Faulty, &rdev->flags)) {
915 				bio_io_error(bio);
916 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
917 					    !blk_queue_discard(bio->bi_disk->queue)))
918 				/* Just ignore it */
919 				bio_endio(bio);
920 			else
921 				generic_make_request(bio);
922 			bio = next;
923 		}
924 		blk_finish_plug(&plug);
925 	} else
926 		spin_unlock_irq(&conf->device_lock);
927 }
928 
929 /* Barriers....
930  * Sometimes we need to suspend IO while we do something else,
931  * either some resync/recovery, or reconfigure the array.
932  * To do this we raise a 'barrier'.
933  * The 'barrier' is a counter that can be raised multiple times
934  * to count how many activities are happening which preclude
935  * normal IO.
936  * We can only raise the barrier if there is no pending IO.
937  * i.e. if nr_pending == 0.
938  * We choose only to raise the barrier if no-one is waiting for the
939  * barrier to go down.  This means that as soon as an IO request
940  * is ready, no other operations which require a barrier will start
941  * until the IO request has had a chance.
942  *
943  * So: regular IO calls 'wait_barrier'.  When that returns there
944  *    is no backgroup IO happening,  It must arrange to call
945  *    allow_barrier when it has finished its IO.
946  * backgroup IO calls must call raise_barrier.  Once that returns
947  *    there is no normal IO happeing.  It must arrange to call
948  *    lower_barrier when the particular background IO completes.
949  */
950 
951 static void raise_barrier(struct r10conf *conf, int force)
952 {
953 	BUG_ON(force && !conf->barrier);
954 	spin_lock_irq(&conf->resync_lock);
955 
956 	/* Wait until no block IO is waiting (unless 'force') */
957 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
958 			    conf->resync_lock);
959 
960 	/* block any new IO from starting */
961 	conf->barrier++;
962 
963 	/* Now wait for all pending IO to complete */
964 	wait_event_lock_irq(conf->wait_barrier,
965 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
966 			    conf->resync_lock);
967 
968 	spin_unlock_irq(&conf->resync_lock);
969 }
970 
971 static void lower_barrier(struct r10conf *conf)
972 {
973 	unsigned long flags;
974 	spin_lock_irqsave(&conf->resync_lock, flags);
975 	conf->barrier--;
976 	spin_unlock_irqrestore(&conf->resync_lock, flags);
977 	wake_up(&conf->wait_barrier);
978 }
979 
980 static void wait_barrier(struct r10conf *conf)
981 {
982 	spin_lock_irq(&conf->resync_lock);
983 	if (conf->barrier) {
984 		conf->nr_waiting++;
985 		/* Wait for the barrier to drop.
986 		 * However if there are already pending
987 		 * requests (preventing the barrier from
988 		 * rising completely), and the
989 		 * pre-process bio queue isn't empty,
990 		 * then don't wait, as we need to empty
991 		 * that queue to get the nr_pending
992 		 * count down.
993 		 */
994 		raid10_log(conf->mddev, "wait barrier");
995 		wait_event_lock_irq(conf->wait_barrier,
996 				    !conf->barrier ||
997 				    (atomic_read(&conf->nr_pending) &&
998 				     current->bio_list &&
999 				     (!bio_list_empty(&current->bio_list[0]) ||
1000 				      !bio_list_empty(&current->bio_list[1]))),
1001 				    conf->resync_lock);
1002 		conf->nr_waiting--;
1003 		if (!conf->nr_waiting)
1004 			wake_up(&conf->wait_barrier);
1005 	}
1006 	atomic_inc(&conf->nr_pending);
1007 	spin_unlock_irq(&conf->resync_lock);
1008 }
1009 
1010 static void allow_barrier(struct r10conf *conf)
1011 {
1012 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1013 			(conf->array_freeze_pending))
1014 		wake_up(&conf->wait_barrier);
1015 }
1016 
1017 static void freeze_array(struct r10conf *conf, int extra)
1018 {
1019 	/* stop syncio and normal IO and wait for everything to
1020 	 * go quiet.
1021 	 * We increment barrier and nr_waiting, and then
1022 	 * wait until nr_pending match nr_queued+extra
1023 	 * This is called in the context of one normal IO request
1024 	 * that has failed. Thus any sync request that might be pending
1025 	 * will be blocked by nr_pending, and we need to wait for
1026 	 * pending IO requests to complete or be queued for re-try.
1027 	 * Thus the number queued (nr_queued) plus this request (extra)
1028 	 * must match the number of pending IOs (nr_pending) before
1029 	 * we continue.
1030 	 */
1031 	spin_lock_irq(&conf->resync_lock);
1032 	conf->array_freeze_pending++;
1033 	conf->barrier++;
1034 	conf->nr_waiting++;
1035 	wait_event_lock_irq_cmd(conf->wait_barrier,
1036 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1037 				conf->resync_lock,
1038 				flush_pending_writes(conf));
1039 
1040 	conf->array_freeze_pending--;
1041 	spin_unlock_irq(&conf->resync_lock);
1042 }
1043 
1044 static void unfreeze_array(struct r10conf *conf)
1045 {
1046 	/* reverse the effect of the freeze */
1047 	spin_lock_irq(&conf->resync_lock);
1048 	conf->barrier--;
1049 	conf->nr_waiting--;
1050 	wake_up(&conf->wait_barrier);
1051 	spin_unlock_irq(&conf->resync_lock);
1052 }
1053 
1054 static sector_t choose_data_offset(struct r10bio *r10_bio,
1055 				   struct md_rdev *rdev)
1056 {
1057 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1058 	    test_bit(R10BIO_Previous, &r10_bio->state))
1059 		return rdev->data_offset;
1060 	else
1061 		return rdev->new_data_offset;
1062 }
1063 
1064 struct raid10_plug_cb {
1065 	struct blk_plug_cb	cb;
1066 	struct bio_list		pending;
1067 	int			pending_cnt;
1068 };
1069 
1070 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1071 {
1072 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1073 						   cb);
1074 	struct mddev *mddev = plug->cb.data;
1075 	struct r10conf *conf = mddev->private;
1076 	struct bio *bio;
1077 
1078 	if (from_schedule || current->bio_list) {
1079 		spin_lock_irq(&conf->device_lock);
1080 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1081 		conf->pending_count += plug->pending_cnt;
1082 		spin_unlock_irq(&conf->device_lock);
1083 		wake_up(&conf->wait_barrier);
1084 		md_wakeup_thread(mddev->thread);
1085 		kfree(plug);
1086 		return;
1087 	}
1088 
1089 	/* we aren't scheduling, so we can do the write-out directly. */
1090 	bio = bio_list_get(&plug->pending);
1091 	bitmap_unplug(mddev->bitmap);
1092 	wake_up(&conf->wait_barrier);
1093 
1094 	while (bio) { /* submit pending writes */
1095 		struct bio *next = bio->bi_next;
1096 		struct md_rdev *rdev = (void*)bio->bi_disk;
1097 		bio->bi_next = NULL;
1098 		bio_set_dev(bio, rdev->bdev);
1099 		if (test_bit(Faulty, &rdev->flags)) {
1100 			bio_io_error(bio);
1101 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1102 				    !blk_queue_discard(bio->bi_disk->queue)))
1103 			/* Just ignore it */
1104 			bio_endio(bio);
1105 		else
1106 			generic_make_request(bio);
1107 		bio = next;
1108 	}
1109 	kfree(plug);
1110 }
1111 
1112 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1113 				struct r10bio *r10_bio)
1114 {
1115 	struct r10conf *conf = mddev->private;
1116 	struct bio *read_bio;
1117 	const int op = bio_op(bio);
1118 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1119 	int max_sectors;
1120 	sector_t sectors;
1121 	struct md_rdev *rdev;
1122 	char b[BDEVNAME_SIZE];
1123 	int slot = r10_bio->read_slot;
1124 	struct md_rdev *err_rdev = NULL;
1125 	gfp_t gfp = GFP_NOIO;
1126 
1127 	if (r10_bio->devs[slot].rdev) {
1128 		/*
1129 		 * This is an error retry, but we cannot
1130 		 * safely dereference the rdev in the r10_bio,
1131 		 * we must use the one in conf.
1132 		 * If it has already been disconnected (unlikely)
1133 		 * we lose the device name in error messages.
1134 		 */
1135 		int disk;
1136 		/*
1137 		 * As we are blocking raid10, it is a little safer to
1138 		 * use __GFP_HIGH.
1139 		 */
1140 		gfp = GFP_NOIO | __GFP_HIGH;
1141 
1142 		rcu_read_lock();
1143 		disk = r10_bio->devs[slot].devnum;
1144 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1145 		if (err_rdev)
1146 			bdevname(err_rdev->bdev, b);
1147 		else {
1148 			strcpy(b, "???");
1149 			/* This never gets dereferenced */
1150 			err_rdev = r10_bio->devs[slot].rdev;
1151 		}
1152 		rcu_read_unlock();
1153 	}
1154 	/*
1155 	 * Register the new request and wait if the reconstruction
1156 	 * thread has put up a bar for new requests.
1157 	 * Continue immediately if no resync is active currently.
1158 	 */
1159 	wait_barrier(conf);
1160 
1161 	sectors = r10_bio->sectors;
1162 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1163 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1164 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1165 		/*
1166 		 * IO spans the reshape position.  Need to wait for reshape to
1167 		 * pass
1168 		 */
1169 		raid10_log(conf->mddev, "wait reshape");
1170 		allow_barrier(conf);
1171 		wait_event(conf->wait_barrier,
1172 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1173 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1174 			   sectors);
1175 		wait_barrier(conf);
1176 	}
1177 
1178 	rdev = read_balance(conf, r10_bio, &max_sectors);
1179 	if (!rdev) {
1180 		if (err_rdev) {
1181 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1182 					    mdname(mddev), b,
1183 					    (unsigned long long)r10_bio->sector);
1184 		}
1185 		raid_end_bio_io(r10_bio);
1186 		return;
1187 	}
1188 	if (err_rdev)
1189 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1190 				   mdname(mddev),
1191 				   bdevname(rdev->bdev, b),
1192 				   (unsigned long long)r10_bio->sector);
1193 	if (max_sectors < bio_sectors(bio)) {
1194 		struct bio *split = bio_split(bio, max_sectors,
1195 					      gfp, conf->bio_split);
1196 		bio_chain(split, bio);
1197 		generic_make_request(bio);
1198 		bio = split;
1199 		r10_bio->master_bio = bio;
1200 		r10_bio->sectors = max_sectors;
1201 	}
1202 	slot = r10_bio->read_slot;
1203 
1204 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1205 
1206 	r10_bio->devs[slot].bio = read_bio;
1207 	r10_bio->devs[slot].rdev = rdev;
1208 
1209 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1210 		choose_data_offset(r10_bio, rdev);
1211 	bio_set_dev(read_bio, rdev->bdev);
1212 	read_bio->bi_end_io = raid10_end_read_request;
1213 	bio_set_op_attrs(read_bio, op, do_sync);
1214 	if (test_bit(FailFast, &rdev->flags) &&
1215 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1216 	        read_bio->bi_opf |= MD_FAILFAST;
1217 	read_bio->bi_private = r10_bio;
1218 
1219 	if (mddev->gendisk)
1220 	        trace_block_bio_remap(read_bio->bi_disk->queue,
1221 	                              read_bio, disk_devt(mddev->gendisk),
1222 	                              r10_bio->sector);
1223 	generic_make_request(read_bio);
1224 	return;
1225 }
1226 
1227 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1228 				  struct bio *bio, bool replacement,
1229 				  int n_copy)
1230 {
1231 	const int op = bio_op(bio);
1232 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1233 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1234 	unsigned long flags;
1235 	struct blk_plug_cb *cb;
1236 	struct raid10_plug_cb *plug = NULL;
1237 	struct r10conf *conf = mddev->private;
1238 	struct md_rdev *rdev;
1239 	int devnum = r10_bio->devs[n_copy].devnum;
1240 	struct bio *mbio;
1241 
1242 	if (replacement) {
1243 		rdev = conf->mirrors[devnum].replacement;
1244 		if (rdev == NULL) {
1245 			/* Replacement just got moved to main 'rdev' */
1246 			smp_mb();
1247 			rdev = conf->mirrors[devnum].rdev;
1248 		}
1249 	} else
1250 		rdev = conf->mirrors[devnum].rdev;
1251 
1252 	mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1253 	if (replacement)
1254 		r10_bio->devs[n_copy].repl_bio = mbio;
1255 	else
1256 		r10_bio->devs[n_copy].bio = mbio;
1257 
1258 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1259 				   choose_data_offset(r10_bio, rdev));
1260 	bio_set_dev(mbio, rdev->bdev);
1261 	mbio->bi_end_io	= raid10_end_write_request;
1262 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1263 	if (!replacement && test_bit(FailFast,
1264 				     &conf->mirrors[devnum].rdev->flags)
1265 			 && enough(conf, devnum))
1266 		mbio->bi_opf |= MD_FAILFAST;
1267 	mbio->bi_private = r10_bio;
1268 
1269 	if (conf->mddev->gendisk)
1270 		trace_block_bio_remap(mbio->bi_disk->queue,
1271 				      mbio, disk_devt(conf->mddev->gendisk),
1272 				      r10_bio->sector);
1273 	/* flush_pending_writes() needs access to the rdev so...*/
1274 	mbio->bi_disk = (void *)rdev;
1275 
1276 	atomic_inc(&r10_bio->remaining);
1277 
1278 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1279 	if (cb)
1280 		plug = container_of(cb, struct raid10_plug_cb, cb);
1281 	else
1282 		plug = NULL;
1283 	if (plug) {
1284 		bio_list_add(&plug->pending, mbio);
1285 		plug->pending_cnt++;
1286 	} else {
1287 		spin_lock_irqsave(&conf->device_lock, flags);
1288 		bio_list_add(&conf->pending_bio_list, mbio);
1289 		conf->pending_count++;
1290 		spin_unlock_irqrestore(&conf->device_lock, flags);
1291 		md_wakeup_thread(mddev->thread);
1292 	}
1293 }
1294 
1295 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1296 				 struct r10bio *r10_bio)
1297 {
1298 	struct r10conf *conf = mddev->private;
1299 	int i;
1300 	struct md_rdev *blocked_rdev;
1301 	sector_t sectors;
1302 	int max_sectors;
1303 
1304 	if ((mddev_is_clustered(mddev) &&
1305 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1306 					    bio->bi_iter.bi_sector,
1307 					    bio_end_sector(bio)))) {
1308 		DEFINE_WAIT(w);
1309 		for (;;) {
1310 			prepare_to_wait(&conf->wait_barrier,
1311 					&w, TASK_IDLE);
1312 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1313 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1314 				break;
1315 			schedule();
1316 		}
1317 		finish_wait(&conf->wait_barrier, &w);
1318 	}
1319 
1320 	/*
1321 	 * Register the new request and wait if the reconstruction
1322 	 * thread has put up a bar for new requests.
1323 	 * Continue immediately if no resync is active currently.
1324 	 */
1325 	wait_barrier(conf);
1326 
1327 	sectors = r10_bio->sectors;
1328 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1329 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1330 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1331 		/*
1332 		 * IO spans the reshape position.  Need to wait for reshape to
1333 		 * pass
1334 		 */
1335 		raid10_log(conf->mddev, "wait reshape");
1336 		allow_barrier(conf);
1337 		wait_event(conf->wait_barrier,
1338 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1339 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1340 			   sectors);
1341 		wait_barrier(conf);
1342 	}
1343 
1344 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1345 	    (mddev->reshape_backwards
1346 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1347 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1348 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1349 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1350 		/* Need to update reshape_position in metadata */
1351 		mddev->reshape_position = conf->reshape_progress;
1352 		set_mask_bits(&mddev->sb_flags, 0,
1353 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1354 		md_wakeup_thread(mddev->thread);
1355 		raid10_log(conf->mddev, "wait reshape metadata");
1356 		wait_event(mddev->sb_wait,
1357 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1358 
1359 		conf->reshape_safe = mddev->reshape_position;
1360 	}
1361 
1362 	if (conf->pending_count >= max_queued_requests) {
1363 		md_wakeup_thread(mddev->thread);
1364 		raid10_log(mddev, "wait queued");
1365 		wait_event(conf->wait_barrier,
1366 			   conf->pending_count < max_queued_requests);
1367 	}
1368 	/* first select target devices under rcu_lock and
1369 	 * inc refcount on their rdev.  Record them by setting
1370 	 * bios[x] to bio
1371 	 * If there are known/acknowledged bad blocks on any device
1372 	 * on which we have seen a write error, we want to avoid
1373 	 * writing to those blocks.  This potentially requires several
1374 	 * writes to write around the bad blocks.  Each set of writes
1375 	 * gets its own r10_bio with a set of bios attached.
1376 	 */
1377 
1378 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1379 	raid10_find_phys(conf, r10_bio);
1380 retry_write:
1381 	blocked_rdev = NULL;
1382 	rcu_read_lock();
1383 	max_sectors = r10_bio->sectors;
1384 
1385 	for (i = 0;  i < conf->copies; i++) {
1386 		int d = r10_bio->devs[i].devnum;
1387 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1388 		struct md_rdev *rrdev = rcu_dereference(
1389 			conf->mirrors[d].replacement);
1390 		if (rdev == rrdev)
1391 			rrdev = NULL;
1392 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1393 			atomic_inc(&rdev->nr_pending);
1394 			blocked_rdev = rdev;
1395 			break;
1396 		}
1397 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1398 			atomic_inc(&rrdev->nr_pending);
1399 			blocked_rdev = rrdev;
1400 			break;
1401 		}
1402 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1403 			rdev = NULL;
1404 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1405 			rrdev = NULL;
1406 
1407 		r10_bio->devs[i].bio = NULL;
1408 		r10_bio->devs[i].repl_bio = NULL;
1409 
1410 		if (!rdev && !rrdev) {
1411 			set_bit(R10BIO_Degraded, &r10_bio->state);
1412 			continue;
1413 		}
1414 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1415 			sector_t first_bad;
1416 			sector_t dev_sector = r10_bio->devs[i].addr;
1417 			int bad_sectors;
1418 			int is_bad;
1419 
1420 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1421 					     &first_bad, &bad_sectors);
1422 			if (is_bad < 0) {
1423 				/* Mustn't write here until the bad block
1424 				 * is acknowledged
1425 				 */
1426 				atomic_inc(&rdev->nr_pending);
1427 				set_bit(BlockedBadBlocks, &rdev->flags);
1428 				blocked_rdev = rdev;
1429 				break;
1430 			}
1431 			if (is_bad && first_bad <= dev_sector) {
1432 				/* Cannot write here at all */
1433 				bad_sectors -= (dev_sector - first_bad);
1434 				if (bad_sectors < max_sectors)
1435 					/* Mustn't write more than bad_sectors
1436 					 * to other devices yet
1437 					 */
1438 					max_sectors = bad_sectors;
1439 				/* We don't set R10BIO_Degraded as that
1440 				 * only applies if the disk is missing,
1441 				 * so it might be re-added, and we want to
1442 				 * know to recover this chunk.
1443 				 * In this case the device is here, and the
1444 				 * fact that this chunk is not in-sync is
1445 				 * recorded in the bad block log.
1446 				 */
1447 				continue;
1448 			}
1449 			if (is_bad) {
1450 				int good_sectors = first_bad - dev_sector;
1451 				if (good_sectors < max_sectors)
1452 					max_sectors = good_sectors;
1453 			}
1454 		}
1455 		if (rdev) {
1456 			r10_bio->devs[i].bio = bio;
1457 			atomic_inc(&rdev->nr_pending);
1458 		}
1459 		if (rrdev) {
1460 			r10_bio->devs[i].repl_bio = bio;
1461 			atomic_inc(&rrdev->nr_pending);
1462 		}
1463 	}
1464 	rcu_read_unlock();
1465 
1466 	if (unlikely(blocked_rdev)) {
1467 		/* Have to wait for this device to get unblocked, then retry */
1468 		int j;
1469 		int d;
1470 
1471 		for (j = 0; j < i; j++) {
1472 			if (r10_bio->devs[j].bio) {
1473 				d = r10_bio->devs[j].devnum;
1474 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1475 			}
1476 			if (r10_bio->devs[j].repl_bio) {
1477 				struct md_rdev *rdev;
1478 				d = r10_bio->devs[j].devnum;
1479 				rdev = conf->mirrors[d].replacement;
1480 				if (!rdev) {
1481 					/* Race with remove_disk */
1482 					smp_mb();
1483 					rdev = conf->mirrors[d].rdev;
1484 				}
1485 				rdev_dec_pending(rdev, mddev);
1486 			}
1487 		}
1488 		allow_barrier(conf);
1489 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1490 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1491 		wait_barrier(conf);
1492 		goto retry_write;
1493 	}
1494 
1495 	if (max_sectors < r10_bio->sectors)
1496 		r10_bio->sectors = max_sectors;
1497 
1498 	if (r10_bio->sectors < bio_sectors(bio)) {
1499 		struct bio *split = bio_split(bio, r10_bio->sectors,
1500 					      GFP_NOIO, conf->bio_split);
1501 		bio_chain(split, bio);
1502 		generic_make_request(bio);
1503 		bio = split;
1504 		r10_bio->master_bio = bio;
1505 	}
1506 
1507 	atomic_set(&r10_bio->remaining, 1);
1508 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1509 
1510 	for (i = 0; i < conf->copies; i++) {
1511 		if (r10_bio->devs[i].bio)
1512 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1513 		if (r10_bio->devs[i].repl_bio)
1514 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1515 	}
1516 	one_write_done(r10_bio);
1517 }
1518 
1519 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1520 {
1521 	struct r10conf *conf = mddev->private;
1522 	struct r10bio *r10_bio;
1523 
1524 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1525 
1526 	r10_bio->master_bio = bio;
1527 	r10_bio->sectors = sectors;
1528 
1529 	r10_bio->mddev = mddev;
1530 	r10_bio->sector = bio->bi_iter.bi_sector;
1531 	r10_bio->state = 0;
1532 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1533 
1534 	if (bio_data_dir(bio) == READ)
1535 		raid10_read_request(mddev, bio, r10_bio);
1536 	else
1537 		raid10_write_request(mddev, bio, r10_bio);
1538 }
1539 
1540 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1541 {
1542 	struct r10conf *conf = mddev->private;
1543 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1544 	int chunk_sects = chunk_mask + 1;
1545 	int sectors = bio_sectors(bio);
1546 
1547 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1548 		md_flush_request(mddev, bio);
1549 		return true;
1550 	}
1551 
1552 	if (!md_write_start(mddev, bio))
1553 		return false;
1554 
1555 	/*
1556 	 * If this request crosses a chunk boundary, we need to split
1557 	 * it.
1558 	 */
1559 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1560 		     sectors > chunk_sects
1561 		     && (conf->geo.near_copies < conf->geo.raid_disks
1562 			 || conf->prev.near_copies <
1563 			 conf->prev.raid_disks)))
1564 		sectors = chunk_sects -
1565 			(bio->bi_iter.bi_sector &
1566 			 (chunk_sects - 1));
1567 	__make_request(mddev, bio, sectors);
1568 
1569 	/* In case raid10d snuck in to freeze_array */
1570 	wake_up(&conf->wait_barrier);
1571 	return true;
1572 }
1573 
1574 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1575 {
1576 	struct r10conf *conf = mddev->private;
1577 	int i;
1578 
1579 	if (conf->geo.near_copies < conf->geo.raid_disks)
1580 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1581 	if (conf->geo.near_copies > 1)
1582 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1583 	if (conf->geo.far_copies > 1) {
1584 		if (conf->geo.far_offset)
1585 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1586 		else
1587 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1588 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1589 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1590 	}
1591 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1592 					conf->geo.raid_disks - mddev->degraded);
1593 	rcu_read_lock();
1594 	for (i = 0; i < conf->geo.raid_disks; i++) {
1595 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1596 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1597 	}
1598 	rcu_read_unlock();
1599 	seq_printf(seq, "]");
1600 }
1601 
1602 /* check if there are enough drives for
1603  * every block to appear on atleast one.
1604  * Don't consider the device numbered 'ignore'
1605  * as we might be about to remove it.
1606  */
1607 static int _enough(struct r10conf *conf, int previous, int ignore)
1608 {
1609 	int first = 0;
1610 	int has_enough = 0;
1611 	int disks, ncopies;
1612 	if (previous) {
1613 		disks = conf->prev.raid_disks;
1614 		ncopies = conf->prev.near_copies;
1615 	} else {
1616 		disks = conf->geo.raid_disks;
1617 		ncopies = conf->geo.near_copies;
1618 	}
1619 
1620 	rcu_read_lock();
1621 	do {
1622 		int n = conf->copies;
1623 		int cnt = 0;
1624 		int this = first;
1625 		while (n--) {
1626 			struct md_rdev *rdev;
1627 			if (this != ignore &&
1628 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1629 			    test_bit(In_sync, &rdev->flags))
1630 				cnt++;
1631 			this = (this+1) % disks;
1632 		}
1633 		if (cnt == 0)
1634 			goto out;
1635 		first = (first + ncopies) % disks;
1636 	} while (first != 0);
1637 	has_enough = 1;
1638 out:
1639 	rcu_read_unlock();
1640 	return has_enough;
1641 }
1642 
1643 static int enough(struct r10conf *conf, int ignore)
1644 {
1645 	/* when calling 'enough', both 'prev' and 'geo' must
1646 	 * be stable.
1647 	 * This is ensured if ->reconfig_mutex or ->device_lock
1648 	 * is held.
1649 	 */
1650 	return _enough(conf, 0, ignore) &&
1651 		_enough(conf, 1, ignore);
1652 }
1653 
1654 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1655 {
1656 	char b[BDEVNAME_SIZE];
1657 	struct r10conf *conf = mddev->private;
1658 	unsigned long flags;
1659 
1660 	/*
1661 	 * If it is not operational, then we have already marked it as dead
1662 	 * else if it is the last working disks, ignore the error, let the
1663 	 * next level up know.
1664 	 * else mark the drive as failed
1665 	 */
1666 	spin_lock_irqsave(&conf->device_lock, flags);
1667 	if (test_bit(In_sync, &rdev->flags)
1668 	    && !enough(conf, rdev->raid_disk)) {
1669 		/*
1670 		 * Don't fail the drive, just return an IO error.
1671 		 */
1672 		spin_unlock_irqrestore(&conf->device_lock, flags);
1673 		return;
1674 	}
1675 	if (test_and_clear_bit(In_sync, &rdev->flags))
1676 		mddev->degraded++;
1677 	/*
1678 	 * If recovery is running, make sure it aborts.
1679 	 */
1680 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1681 	set_bit(Blocked, &rdev->flags);
1682 	set_bit(Faulty, &rdev->flags);
1683 	set_mask_bits(&mddev->sb_flags, 0,
1684 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1685 	spin_unlock_irqrestore(&conf->device_lock, flags);
1686 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1687 		"md/raid10:%s: Operation continuing on %d devices.\n",
1688 		mdname(mddev), bdevname(rdev->bdev, b),
1689 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1690 }
1691 
1692 static void print_conf(struct r10conf *conf)
1693 {
1694 	int i;
1695 	struct md_rdev *rdev;
1696 
1697 	pr_debug("RAID10 conf printout:\n");
1698 	if (!conf) {
1699 		pr_debug("(!conf)\n");
1700 		return;
1701 	}
1702 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1703 		 conf->geo.raid_disks);
1704 
1705 	/* This is only called with ->reconfix_mutex held, so
1706 	 * rcu protection of rdev is not needed */
1707 	for (i = 0; i < conf->geo.raid_disks; i++) {
1708 		char b[BDEVNAME_SIZE];
1709 		rdev = conf->mirrors[i].rdev;
1710 		if (rdev)
1711 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1712 				 i, !test_bit(In_sync, &rdev->flags),
1713 				 !test_bit(Faulty, &rdev->flags),
1714 				 bdevname(rdev->bdev,b));
1715 	}
1716 }
1717 
1718 static void close_sync(struct r10conf *conf)
1719 {
1720 	wait_barrier(conf);
1721 	allow_barrier(conf);
1722 
1723 	mempool_destroy(conf->r10buf_pool);
1724 	conf->r10buf_pool = NULL;
1725 }
1726 
1727 static int raid10_spare_active(struct mddev *mddev)
1728 {
1729 	int i;
1730 	struct r10conf *conf = mddev->private;
1731 	struct raid10_info *tmp;
1732 	int count = 0;
1733 	unsigned long flags;
1734 
1735 	/*
1736 	 * Find all non-in_sync disks within the RAID10 configuration
1737 	 * and mark them in_sync
1738 	 */
1739 	for (i = 0; i < conf->geo.raid_disks; i++) {
1740 		tmp = conf->mirrors + i;
1741 		if (tmp->replacement
1742 		    && tmp->replacement->recovery_offset == MaxSector
1743 		    && !test_bit(Faulty, &tmp->replacement->flags)
1744 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1745 			/* Replacement has just become active */
1746 			if (!tmp->rdev
1747 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1748 				count++;
1749 			if (tmp->rdev) {
1750 				/* Replaced device not technically faulty,
1751 				 * but we need to be sure it gets removed
1752 				 * and never re-added.
1753 				 */
1754 				set_bit(Faulty, &tmp->rdev->flags);
1755 				sysfs_notify_dirent_safe(
1756 					tmp->rdev->sysfs_state);
1757 			}
1758 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1759 		} else if (tmp->rdev
1760 			   && tmp->rdev->recovery_offset == MaxSector
1761 			   && !test_bit(Faulty, &tmp->rdev->flags)
1762 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1763 			count++;
1764 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1765 		}
1766 	}
1767 	spin_lock_irqsave(&conf->device_lock, flags);
1768 	mddev->degraded -= count;
1769 	spin_unlock_irqrestore(&conf->device_lock, flags);
1770 
1771 	print_conf(conf);
1772 	return count;
1773 }
1774 
1775 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1776 {
1777 	struct r10conf *conf = mddev->private;
1778 	int err = -EEXIST;
1779 	int mirror;
1780 	int first = 0;
1781 	int last = conf->geo.raid_disks - 1;
1782 
1783 	if (mddev->recovery_cp < MaxSector)
1784 		/* only hot-add to in-sync arrays, as recovery is
1785 		 * very different from resync
1786 		 */
1787 		return -EBUSY;
1788 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1789 		return -EINVAL;
1790 
1791 	if (md_integrity_add_rdev(rdev, mddev))
1792 		return -ENXIO;
1793 
1794 	if (rdev->raid_disk >= 0)
1795 		first = last = rdev->raid_disk;
1796 
1797 	if (rdev->saved_raid_disk >= first &&
1798 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1799 		mirror = rdev->saved_raid_disk;
1800 	else
1801 		mirror = first;
1802 	for ( ; mirror <= last ; mirror++) {
1803 		struct raid10_info *p = &conf->mirrors[mirror];
1804 		if (p->recovery_disabled == mddev->recovery_disabled)
1805 			continue;
1806 		if (p->rdev) {
1807 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1808 			    p->replacement != NULL)
1809 				continue;
1810 			clear_bit(In_sync, &rdev->flags);
1811 			set_bit(Replacement, &rdev->flags);
1812 			rdev->raid_disk = mirror;
1813 			err = 0;
1814 			if (mddev->gendisk)
1815 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1816 						  rdev->data_offset << 9);
1817 			conf->fullsync = 1;
1818 			rcu_assign_pointer(p->replacement, rdev);
1819 			break;
1820 		}
1821 
1822 		if (mddev->gendisk)
1823 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1824 					  rdev->data_offset << 9);
1825 
1826 		p->head_position = 0;
1827 		p->recovery_disabled = mddev->recovery_disabled - 1;
1828 		rdev->raid_disk = mirror;
1829 		err = 0;
1830 		if (rdev->saved_raid_disk != mirror)
1831 			conf->fullsync = 1;
1832 		rcu_assign_pointer(p->rdev, rdev);
1833 		break;
1834 	}
1835 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1836 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1837 
1838 	print_conf(conf);
1839 	return err;
1840 }
1841 
1842 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1843 {
1844 	struct r10conf *conf = mddev->private;
1845 	int err = 0;
1846 	int number = rdev->raid_disk;
1847 	struct md_rdev **rdevp;
1848 	struct raid10_info *p = conf->mirrors + number;
1849 
1850 	print_conf(conf);
1851 	if (rdev == p->rdev)
1852 		rdevp = &p->rdev;
1853 	else if (rdev == p->replacement)
1854 		rdevp = &p->replacement;
1855 	else
1856 		return 0;
1857 
1858 	if (test_bit(In_sync, &rdev->flags) ||
1859 	    atomic_read(&rdev->nr_pending)) {
1860 		err = -EBUSY;
1861 		goto abort;
1862 	}
1863 	/* Only remove non-faulty devices if recovery
1864 	 * is not possible.
1865 	 */
1866 	if (!test_bit(Faulty, &rdev->flags) &&
1867 	    mddev->recovery_disabled != p->recovery_disabled &&
1868 	    (!p->replacement || p->replacement == rdev) &&
1869 	    number < conf->geo.raid_disks &&
1870 	    enough(conf, -1)) {
1871 		err = -EBUSY;
1872 		goto abort;
1873 	}
1874 	*rdevp = NULL;
1875 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1876 		synchronize_rcu();
1877 		if (atomic_read(&rdev->nr_pending)) {
1878 			/* lost the race, try later */
1879 			err = -EBUSY;
1880 			*rdevp = rdev;
1881 			goto abort;
1882 		}
1883 	}
1884 	if (p->replacement) {
1885 		/* We must have just cleared 'rdev' */
1886 		p->rdev = p->replacement;
1887 		clear_bit(Replacement, &p->replacement->flags);
1888 		smp_mb(); /* Make sure other CPUs may see both as identical
1889 			   * but will never see neither -- if they are careful.
1890 			   */
1891 		p->replacement = NULL;
1892 	}
1893 
1894 	clear_bit(WantReplacement, &rdev->flags);
1895 	err = md_integrity_register(mddev);
1896 
1897 abort:
1898 
1899 	print_conf(conf);
1900 	return err;
1901 }
1902 
1903 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1904 {
1905 	struct r10conf *conf = r10_bio->mddev->private;
1906 
1907 	if (!bio->bi_status)
1908 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1909 	else
1910 		/* The write handler will notice the lack of
1911 		 * R10BIO_Uptodate and record any errors etc
1912 		 */
1913 		atomic_add(r10_bio->sectors,
1914 			   &conf->mirrors[d].rdev->corrected_errors);
1915 
1916 	/* for reconstruct, we always reschedule after a read.
1917 	 * for resync, only after all reads
1918 	 */
1919 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1920 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1921 	    atomic_dec_and_test(&r10_bio->remaining)) {
1922 		/* we have read all the blocks,
1923 		 * do the comparison in process context in raid10d
1924 		 */
1925 		reschedule_retry(r10_bio);
1926 	}
1927 }
1928 
1929 static void end_sync_read(struct bio *bio)
1930 {
1931 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1932 	struct r10conf *conf = r10_bio->mddev->private;
1933 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1934 
1935 	__end_sync_read(r10_bio, bio, d);
1936 }
1937 
1938 static void end_reshape_read(struct bio *bio)
1939 {
1940 	/* reshape read bio isn't allocated from r10buf_pool */
1941 	struct r10bio *r10_bio = bio->bi_private;
1942 
1943 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1944 }
1945 
1946 static void end_sync_request(struct r10bio *r10_bio)
1947 {
1948 	struct mddev *mddev = r10_bio->mddev;
1949 
1950 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1951 		if (r10_bio->master_bio == NULL) {
1952 			/* the primary of several recovery bios */
1953 			sector_t s = r10_bio->sectors;
1954 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1955 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1956 				reschedule_retry(r10_bio);
1957 			else
1958 				put_buf(r10_bio);
1959 			md_done_sync(mddev, s, 1);
1960 			break;
1961 		} else {
1962 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1963 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1964 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1965 				reschedule_retry(r10_bio);
1966 			else
1967 				put_buf(r10_bio);
1968 			r10_bio = r10_bio2;
1969 		}
1970 	}
1971 }
1972 
1973 static void end_sync_write(struct bio *bio)
1974 {
1975 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1976 	struct mddev *mddev = r10_bio->mddev;
1977 	struct r10conf *conf = mddev->private;
1978 	int d;
1979 	sector_t first_bad;
1980 	int bad_sectors;
1981 	int slot;
1982 	int repl;
1983 	struct md_rdev *rdev = NULL;
1984 
1985 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1986 	if (repl)
1987 		rdev = conf->mirrors[d].replacement;
1988 	else
1989 		rdev = conf->mirrors[d].rdev;
1990 
1991 	if (bio->bi_status) {
1992 		if (repl)
1993 			md_error(mddev, rdev);
1994 		else {
1995 			set_bit(WriteErrorSeen, &rdev->flags);
1996 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1997 				set_bit(MD_RECOVERY_NEEDED,
1998 					&rdev->mddev->recovery);
1999 			set_bit(R10BIO_WriteError, &r10_bio->state);
2000 		}
2001 	} else if (is_badblock(rdev,
2002 			     r10_bio->devs[slot].addr,
2003 			     r10_bio->sectors,
2004 			     &first_bad, &bad_sectors))
2005 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2006 
2007 	rdev_dec_pending(rdev, mddev);
2008 
2009 	end_sync_request(r10_bio);
2010 }
2011 
2012 /*
2013  * Note: sync and recover and handled very differently for raid10
2014  * This code is for resync.
2015  * For resync, we read through virtual addresses and read all blocks.
2016  * If there is any error, we schedule a write.  The lowest numbered
2017  * drive is authoritative.
2018  * However requests come for physical address, so we need to map.
2019  * For every physical address there are raid_disks/copies virtual addresses,
2020  * which is always are least one, but is not necessarly an integer.
2021  * This means that a physical address can span multiple chunks, so we may
2022  * have to submit multiple io requests for a single sync request.
2023  */
2024 /*
2025  * We check if all blocks are in-sync and only write to blocks that
2026  * aren't in sync
2027  */
2028 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2029 {
2030 	struct r10conf *conf = mddev->private;
2031 	int i, first;
2032 	struct bio *tbio, *fbio;
2033 	int vcnt;
2034 	struct page **tpages, **fpages;
2035 
2036 	atomic_set(&r10_bio->remaining, 1);
2037 
2038 	/* find the first device with a block */
2039 	for (i=0; i<conf->copies; i++)
2040 		if (!r10_bio->devs[i].bio->bi_status)
2041 			break;
2042 
2043 	if (i == conf->copies)
2044 		goto done;
2045 
2046 	first = i;
2047 	fbio = r10_bio->devs[i].bio;
2048 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2049 	fbio->bi_iter.bi_idx = 0;
2050 	fpages = get_resync_pages(fbio)->pages;
2051 
2052 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2053 	/* now find blocks with errors */
2054 	for (i=0 ; i < conf->copies ; i++) {
2055 		int  j, d;
2056 		struct md_rdev *rdev;
2057 		struct resync_pages *rp;
2058 
2059 		tbio = r10_bio->devs[i].bio;
2060 
2061 		if (tbio->bi_end_io != end_sync_read)
2062 			continue;
2063 		if (i == first)
2064 			continue;
2065 
2066 		tpages = get_resync_pages(tbio)->pages;
2067 		d = r10_bio->devs[i].devnum;
2068 		rdev = conf->mirrors[d].rdev;
2069 		if (!r10_bio->devs[i].bio->bi_status) {
2070 			/* We know that the bi_io_vec layout is the same for
2071 			 * both 'first' and 'i', so we just compare them.
2072 			 * All vec entries are PAGE_SIZE;
2073 			 */
2074 			int sectors = r10_bio->sectors;
2075 			for (j = 0; j < vcnt; j++) {
2076 				int len = PAGE_SIZE;
2077 				if (sectors < (len / 512))
2078 					len = sectors * 512;
2079 				if (memcmp(page_address(fpages[j]),
2080 					   page_address(tpages[j]),
2081 					   len))
2082 					break;
2083 				sectors -= len/512;
2084 			}
2085 			if (j == vcnt)
2086 				continue;
2087 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2088 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2089 				/* Don't fix anything. */
2090 				continue;
2091 		} else if (test_bit(FailFast, &rdev->flags)) {
2092 			/* Just give up on this device */
2093 			md_error(rdev->mddev, rdev);
2094 			continue;
2095 		}
2096 		/* Ok, we need to write this bio, either to correct an
2097 		 * inconsistency or to correct an unreadable block.
2098 		 * First we need to fixup bv_offset, bv_len and
2099 		 * bi_vecs, as the read request might have corrupted these
2100 		 */
2101 		rp = get_resync_pages(tbio);
2102 		bio_reset(tbio);
2103 
2104 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2105 
2106 		rp->raid_bio = r10_bio;
2107 		tbio->bi_private = rp;
2108 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2109 		tbio->bi_end_io = end_sync_write;
2110 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2111 
2112 		bio_copy_data(tbio, fbio);
2113 
2114 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2115 		atomic_inc(&r10_bio->remaining);
2116 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2117 
2118 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2119 			tbio->bi_opf |= MD_FAILFAST;
2120 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2121 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2122 		generic_make_request(tbio);
2123 	}
2124 
2125 	/* Now write out to any replacement devices
2126 	 * that are active
2127 	 */
2128 	for (i = 0; i < conf->copies; i++) {
2129 		int d;
2130 
2131 		tbio = r10_bio->devs[i].repl_bio;
2132 		if (!tbio || !tbio->bi_end_io)
2133 			continue;
2134 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2135 		    && r10_bio->devs[i].bio != fbio)
2136 			bio_copy_data(tbio, fbio);
2137 		d = r10_bio->devs[i].devnum;
2138 		atomic_inc(&r10_bio->remaining);
2139 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2140 			     bio_sectors(tbio));
2141 		generic_make_request(tbio);
2142 	}
2143 
2144 done:
2145 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2146 		md_done_sync(mddev, r10_bio->sectors, 1);
2147 		put_buf(r10_bio);
2148 	}
2149 }
2150 
2151 /*
2152  * Now for the recovery code.
2153  * Recovery happens across physical sectors.
2154  * We recover all non-is_sync drives by finding the virtual address of
2155  * each, and then choose a working drive that also has that virt address.
2156  * There is a separate r10_bio for each non-in_sync drive.
2157  * Only the first two slots are in use. The first for reading,
2158  * The second for writing.
2159  *
2160  */
2161 static void fix_recovery_read_error(struct r10bio *r10_bio)
2162 {
2163 	/* We got a read error during recovery.
2164 	 * We repeat the read in smaller page-sized sections.
2165 	 * If a read succeeds, write it to the new device or record
2166 	 * a bad block if we cannot.
2167 	 * If a read fails, record a bad block on both old and
2168 	 * new devices.
2169 	 */
2170 	struct mddev *mddev = r10_bio->mddev;
2171 	struct r10conf *conf = mddev->private;
2172 	struct bio *bio = r10_bio->devs[0].bio;
2173 	sector_t sect = 0;
2174 	int sectors = r10_bio->sectors;
2175 	int idx = 0;
2176 	int dr = r10_bio->devs[0].devnum;
2177 	int dw = r10_bio->devs[1].devnum;
2178 	struct page **pages = get_resync_pages(bio)->pages;
2179 
2180 	while (sectors) {
2181 		int s = sectors;
2182 		struct md_rdev *rdev;
2183 		sector_t addr;
2184 		int ok;
2185 
2186 		if (s > (PAGE_SIZE>>9))
2187 			s = PAGE_SIZE >> 9;
2188 
2189 		rdev = conf->mirrors[dr].rdev;
2190 		addr = r10_bio->devs[0].addr + sect,
2191 		ok = sync_page_io(rdev,
2192 				  addr,
2193 				  s << 9,
2194 				  pages[idx],
2195 				  REQ_OP_READ, 0, false);
2196 		if (ok) {
2197 			rdev = conf->mirrors[dw].rdev;
2198 			addr = r10_bio->devs[1].addr + sect;
2199 			ok = sync_page_io(rdev,
2200 					  addr,
2201 					  s << 9,
2202 					  pages[idx],
2203 					  REQ_OP_WRITE, 0, false);
2204 			if (!ok) {
2205 				set_bit(WriteErrorSeen, &rdev->flags);
2206 				if (!test_and_set_bit(WantReplacement,
2207 						      &rdev->flags))
2208 					set_bit(MD_RECOVERY_NEEDED,
2209 						&rdev->mddev->recovery);
2210 			}
2211 		}
2212 		if (!ok) {
2213 			/* We don't worry if we cannot set a bad block -
2214 			 * it really is bad so there is no loss in not
2215 			 * recording it yet
2216 			 */
2217 			rdev_set_badblocks(rdev, addr, s, 0);
2218 
2219 			if (rdev != conf->mirrors[dw].rdev) {
2220 				/* need bad block on destination too */
2221 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2222 				addr = r10_bio->devs[1].addr + sect;
2223 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2224 				if (!ok) {
2225 					/* just abort the recovery */
2226 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2227 						  mdname(mddev));
2228 
2229 					conf->mirrors[dw].recovery_disabled
2230 						= mddev->recovery_disabled;
2231 					set_bit(MD_RECOVERY_INTR,
2232 						&mddev->recovery);
2233 					break;
2234 				}
2235 			}
2236 		}
2237 
2238 		sectors -= s;
2239 		sect += s;
2240 		idx++;
2241 	}
2242 }
2243 
2244 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2245 {
2246 	struct r10conf *conf = mddev->private;
2247 	int d;
2248 	struct bio *wbio, *wbio2;
2249 
2250 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2251 		fix_recovery_read_error(r10_bio);
2252 		end_sync_request(r10_bio);
2253 		return;
2254 	}
2255 
2256 	/*
2257 	 * share the pages with the first bio
2258 	 * and submit the write request
2259 	 */
2260 	d = r10_bio->devs[1].devnum;
2261 	wbio = r10_bio->devs[1].bio;
2262 	wbio2 = r10_bio->devs[1].repl_bio;
2263 	/* Need to test wbio2->bi_end_io before we call
2264 	 * generic_make_request as if the former is NULL,
2265 	 * the latter is free to free wbio2.
2266 	 */
2267 	if (wbio2 && !wbio2->bi_end_io)
2268 		wbio2 = NULL;
2269 	if (wbio->bi_end_io) {
2270 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2271 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2272 		generic_make_request(wbio);
2273 	}
2274 	if (wbio2) {
2275 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2276 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2277 			     bio_sectors(wbio2));
2278 		generic_make_request(wbio2);
2279 	}
2280 }
2281 
2282 /*
2283  * Used by fix_read_error() to decay the per rdev read_errors.
2284  * We halve the read error count for every hour that has elapsed
2285  * since the last recorded read error.
2286  *
2287  */
2288 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2289 {
2290 	long cur_time_mon;
2291 	unsigned long hours_since_last;
2292 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2293 
2294 	cur_time_mon = ktime_get_seconds();
2295 
2296 	if (rdev->last_read_error == 0) {
2297 		/* first time we've seen a read error */
2298 		rdev->last_read_error = cur_time_mon;
2299 		return;
2300 	}
2301 
2302 	hours_since_last = (long)(cur_time_mon -
2303 			    rdev->last_read_error) / 3600;
2304 
2305 	rdev->last_read_error = cur_time_mon;
2306 
2307 	/*
2308 	 * if hours_since_last is > the number of bits in read_errors
2309 	 * just set read errors to 0. We do this to avoid
2310 	 * overflowing the shift of read_errors by hours_since_last.
2311 	 */
2312 	if (hours_since_last >= 8 * sizeof(read_errors))
2313 		atomic_set(&rdev->read_errors, 0);
2314 	else
2315 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2316 }
2317 
2318 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2319 			    int sectors, struct page *page, int rw)
2320 {
2321 	sector_t first_bad;
2322 	int bad_sectors;
2323 
2324 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2325 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2326 		return -1;
2327 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2328 		/* success */
2329 		return 1;
2330 	if (rw == WRITE) {
2331 		set_bit(WriteErrorSeen, &rdev->flags);
2332 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2333 			set_bit(MD_RECOVERY_NEEDED,
2334 				&rdev->mddev->recovery);
2335 	}
2336 	/* need to record an error - either for the block or the device */
2337 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2338 		md_error(rdev->mddev, rdev);
2339 	return 0;
2340 }
2341 
2342 /*
2343  * This is a kernel thread which:
2344  *
2345  *	1.	Retries failed read operations on working mirrors.
2346  *	2.	Updates the raid superblock when problems encounter.
2347  *	3.	Performs writes following reads for array synchronising.
2348  */
2349 
2350 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2351 {
2352 	int sect = 0; /* Offset from r10_bio->sector */
2353 	int sectors = r10_bio->sectors;
2354 	struct md_rdev*rdev;
2355 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2356 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2357 
2358 	/* still own a reference to this rdev, so it cannot
2359 	 * have been cleared recently.
2360 	 */
2361 	rdev = conf->mirrors[d].rdev;
2362 
2363 	if (test_bit(Faulty, &rdev->flags))
2364 		/* drive has already been failed, just ignore any
2365 		   more fix_read_error() attempts */
2366 		return;
2367 
2368 	check_decay_read_errors(mddev, rdev);
2369 	atomic_inc(&rdev->read_errors);
2370 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2371 		char b[BDEVNAME_SIZE];
2372 		bdevname(rdev->bdev, b);
2373 
2374 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2375 			  mdname(mddev), b,
2376 			  atomic_read(&rdev->read_errors), max_read_errors);
2377 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2378 			  mdname(mddev), b);
2379 		md_error(mddev, rdev);
2380 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2381 		return;
2382 	}
2383 
2384 	while(sectors) {
2385 		int s = sectors;
2386 		int sl = r10_bio->read_slot;
2387 		int success = 0;
2388 		int start;
2389 
2390 		if (s > (PAGE_SIZE>>9))
2391 			s = PAGE_SIZE >> 9;
2392 
2393 		rcu_read_lock();
2394 		do {
2395 			sector_t first_bad;
2396 			int bad_sectors;
2397 
2398 			d = r10_bio->devs[sl].devnum;
2399 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2400 			if (rdev &&
2401 			    test_bit(In_sync, &rdev->flags) &&
2402 			    !test_bit(Faulty, &rdev->flags) &&
2403 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2404 					&first_bad, &bad_sectors) == 0) {
2405 				atomic_inc(&rdev->nr_pending);
2406 				rcu_read_unlock();
2407 				success = sync_page_io(rdev,
2408 						       r10_bio->devs[sl].addr +
2409 						       sect,
2410 						       s<<9,
2411 						       conf->tmppage,
2412 						       REQ_OP_READ, 0, false);
2413 				rdev_dec_pending(rdev, mddev);
2414 				rcu_read_lock();
2415 				if (success)
2416 					break;
2417 			}
2418 			sl++;
2419 			if (sl == conf->copies)
2420 				sl = 0;
2421 		} while (!success && sl != r10_bio->read_slot);
2422 		rcu_read_unlock();
2423 
2424 		if (!success) {
2425 			/* Cannot read from anywhere, just mark the block
2426 			 * as bad on the first device to discourage future
2427 			 * reads.
2428 			 */
2429 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2430 			rdev = conf->mirrors[dn].rdev;
2431 
2432 			if (!rdev_set_badblocks(
2433 				    rdev,
2434 				    r10_bio->devs[r10_bio->read_slot].addr
2435 				    + sect,
2436 				    s, 0)) {
2437 				md_error(mddev, rdev);
2438 				r10_bio->devs[r10_bio->read_slot].bio
2439 					= IO_BLOCKED;
2440 			}
2441 			break;
2442 		}
2443 
2444 		start = sl;
2445 		/* write it back and re-read */
2446 		rcu_read_lock();
2447 		while (sl != r10_bio->read_slot) {
2448 			char b[BDEVNAME_SIZE];
2449 
2450 			if (sl==0)
2451 				sl = conf->copies;
2452 			sl--;
2453 			d = r10_bio->devs[sl].devnum;
2454 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2455 			if (!rdev ||
2456 			    test_bit(Faulty, &rdev->flags) ||
2457 			    !test_bit(In_sync, &rdev->flags))
2458 				continue;
2459 
2460 			atomic_inc(&rdev->nr_pending);
2461 			rcu_read_unlock();
2462 			if (r10_sync_page_io(rdev,
2463 					     r10_bio->devs[sl].addr +
2464 					     sect,
2465 					     s, conf->tmppage, WRITE)
2466 			    == 0) {
2467 				/* Well, this device is dead */
2468 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2469 					  mdname(mddev), s,
2470 					  (unsigned long long)(
2471 						  sect +
2472 						  choose_data_offset(r10_bio,
2473 								     rdev)),
2474 					  bdevname(rdev->bdev, b));
2475 				pr_notice("md/raid10:%s: %s: failing drive\n",
2476 					  mdname(mddev),
2477 					  bdevname(rdev->bdev, b));
2478 			}
2479 			rdev_dec_pending(rdev, mddev);
2480 			rcu_read_lock();
2481 		}
2482 		sl = start;
2483 		while (sl != r10_bio->read_slot) {
2484 			char b[BDEVNAME_SIZE];
2485 
2486 			if (sl==0)
2487 				sl = conf->copies;
2488 			sl--;
2489 			d = r10_bio->devs[sl].devnum;
2490 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2491 			if (!rdev ||
2492 			    test_bit(Faulty, &rdev->flags) ||
2493 			    !test_bit(In_sync, &rdev->flags))
2494 				continue;
2495 
2496 			atomic_inc(&rdev->nr_pending);
2497 			rcu_read_unlock();
2498 			switch (r10_sync_page_io(rdev,
2499 					     r10_bio->devs[sl].addr +
2500 					     sect,
2501 					     s, conf->tmppage,
2502 						 READ)) {
2503 			case 0:
2504 				/* Well, this device is dead */
2505 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2506 				       mdname(mddev), s,
2507 				       (unsigned long long)(
2508 					       sect +
2509 					       choose_data_offset(r10_bio, rdev)),
2510 				       bdevname(rdev->bdev, b));
2511 				pr_notice("md/raid10:%s: %s: failing drive\n",
2512 				       mdname(mddev),
2513 				       bdevname(rdev->bdev, b));
2514 				break;
2515 			case 1:
2516 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2517 				       mdname(mddev), s,
2518 				       (unsigned long long)(
2519 					       sect +
2520 					       choose_data_offset(r10_bio, rdev)),
2521 				       bdevname(rdev->bdev, b));
2522 				atomic_add(s, &rdev->corrected_errors);
2523 			}
2524 
2525 			rdev_dec_pending(rdev, mddev);
2526 			rcu_read_lock();
2527 		}
2528 		rcu_read_unlock();
2529 
2530 		sectors -= s;
2531 		sect += s;
2532 	}
2533 }
2534 
2535 static int narrow_write_error(struct r10bio *r10_bio, int i)
2536 {
2537 	struct bio *bio = r10_bio->master_bio;
2538 	struct mddev *mddev = r10_bio->mddev;
2539 	struct r10conf *conf = mddev->private;
2540 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2541 	/* bio has the data to be written to slot 'i' where
2542 	 * we just recently had a write error.
2543 	 * We repeatedly clone the bio and trim down to one block,
2544 	 * then try the write.  Where the write fails we record
2545 	 * a bad block.
2546 	 * It is conceivable that the bio doesn't exactly align with
2547 	 * blocks.  We must handle this.
2548 	 *
2549 	 * We currently own a reference to the rdev.
2550 	 */
2551 
2552 	int block_sectors;
2553 	sector_t sector;
2554 	int sectors;
2555 	int sect_to_write = r10_bio->sectors;
2556 	int ok = 1;
2557 
2558 	if (rdev->badblocks.shift < 0)
2559 		return 0;
2560 
2561 	block_sectors = roundup(1 << rdev->badblocks.shift,
2562 				bdev_logical_block_size(rdev->bdev) >> 9);
2563 	sector = r10_bio->sector;
2564 	sectors = ((r10_bio->sector + block_sectors)
2565 		   & ~(sector_t)(block_sectors - 1))
2566 		- sector;
2567 
2568 	while (sect_to_write) {
2569 		struct bio *wbio;
2570 		sector_t wsector;
2571 		if (sectors > sect_to_write)
2572 			sectors = sect_to_write;
2573 		/* Write at 'sector' for 'sectors' */
2574 		wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2575 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2576 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2577 		wbio->bi_iter.bi_sector = wsector +
2578 				   choose_data_offset(r10_bio, rdev);
2579 		bio_set_dev(wbio, rdev->bdev);
2580 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2581 
2582 		if (submit_bio_wait(wbio) < 0)
2583 			/* Failure! */
2584 			ok = rdev_set_badblocks(rdev, wsector,
2585 						sectors, 0)
2586 				&& ok;
2587 
2588 		bio_put(wbio);
2589 		sect_to_write -= sectors;
2590 		sector += sectors;
2591 		sectors = block_sectors;
2592 	}
2593 	return ok;
2594 }
2595 
2596 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2597 {
2598 	int slot = r10_bio->read_slot;
2599 	struct bio *bio;
2600 	struct r10conf *conf = mddev->private;
2601 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2602 
2603 	/* we got a read error. Maybe the drive is bad.  Maybe just
2604 	 * the block and we can fix it.
2605 	 * We freeze all other IO, and try reading the block from
2606 	 * other devices.  When we find one, we re-write
2607 	 * and check it that fixes the read error.
2608 	 * This is all done synchronously while the array is
2609 	 * frozen.
2610 	 */
2611 	bio = r10_bio->devs[slot].bio;
2612 	bio_put(bio);
2613 	r10_bio->devs[slot].bio = NULL;
2614 
2615 	if (mddev->ro)
2616 		r10_bio->devs[slot].bio = IO_BLOCKED;
2617 	else if (!test_bit(FailFast, &rdev->flags)) {
2618 		freeze_array(conf, 1);
2619 		fix_read_error(conf, mddev, r10_bio);
2620 		unfreeze_array(conf);
2621 	} else
2622 		md_error(mddev, rdev);
2623 
2624 	rdev_dec_pending(rdev, mddev);
2625 	allow_barrier(conf);
2626 	r10_bio->state = 0;
2627 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2628 }
2629 
2630 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2631 {
2632 	/* Some sort of write request has finished and it
2633 	 * succeeded in writing where we thought there was a
2634 	 * bad block.  So forget the bad block.
2635 	 * Or possibly if failed and we need to record
2636 	 * a bad block.
2637 	 */
2638 	int m;
2639 	struct md_rdev *rdev;
2640 
2641 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2642 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2643 		for (m = 0; m < conf->copies; m++) {
2644 			int dev = r10_bio->devs[m].devnum;
2645 			rdev = conf->mirrors[dev].rdev;
2646 			if (r10_bio->devs[m].bio == NULL)
2647 				continue;
2648 			if (!r10_bio->devs[m].bio->bi_status) {
2649 				rdev_clear_badblocks(
2650 					rdev,
2651 					r10_bio->devs[m].addr,
2652 					r10_bio->sectors, 0);
2653 			} else {
2654 				if (!rdev_set_badblocks(
2655 					    rdev,
2656 					    r10_bio->devs[m].addr,
2657 					    r10_bio->sectors, 0))
2658 					md_error(conf->mddev, rdev);
2659 			}
2660 			rdev = conf->mirrors[dev].replacement;
2661 			if (r10_bio->devs[m].repl_bio == NULL)
2662 				continue;
2663 
2664 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2665 				rdev_clear_badblocks(
2666 					rdev,
2667 					r10_bio->devs[m].addr,
2668 					r10_bio->sectors, 0);
2669 			} else {
2670 				if (!rdev_set_badblocks(
2671 					    rdev,
2672 					    r10_bio->devs[m].addr,
2673 					    r10_bio->sectors, 0))
2674 					md_error(conf->mddev, rdev);
2675 			}
2676 		}
2677 		put_buf(r10_bio);
2678 	} else {
2679 		bool fail = false;
2680 		for (m = 0; m < conf->copies; m++) {
2681 			int dev = r10_bio->devs[m].devnum;
2682 			struct bio *bio = r10_bio->devs[m].bio;
2683 			rdev = conf->mirrors[dev].rdev;
2684 			if (bio == IO_MADE_GOOD) {
2685 				rdev_clear_badblocks(
2686 					rdev,
2687 					r10_bio->devs[m].addr,
2688 					r10_bio->sectors, 0);
2689 				rdev_dec_pending(rdev, conf->mddev);
2690 			} else if (bio != NULL && bio->bi_status) {
2691 				fail = true;
2692 				if (!narrow_write_error(r10_bio, m)) {
2693 					md_error(conf->mddev, rdev);
2694 					set_bit(R10BIO_Degraded,
2695 						&r10_bio->state);
2696 				}
2697 				rdev_dec_pending(rdev, conf->mddev);
2698 			}
2699 			bio = r10_bio->devs[m].repl_bio;
2700 			rdev = conf->mirrors[dev].replacement;
2701 			if (rdev && bio == IO_MADE_GOOD) {
2702 				rdev_clear_badblocks(
2703 					rdev,
2704 					r10_bio->devs[m].addr,
2705 					r10_bio->sectors, 0);
2706 				rdev_dec_pending(rdev, conf->mddev);
2707 			}
2708 		}
2709 		if (fail) {
2710 			spin_lock_irq(&conf->device_lock);
2711 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2712 			conf->nr_queued++;
2713 			spin_unlock_irq(&conf->device_lock);
2714 			/*
2715 			 * In case freeze_array() is waiting for condition
2716 			 * nr_pending == nr_queued + extra to be true.
2717 			 */
2718 			wake_up(&conf->wait_barrier);
2719 			md_wakeup_thread(conf->mddev->thread);
2720 		} else {
2721 			if (test_bit(R10BIO_WriteError,
2722 				     &r10_bio->state))
2723 				close_write(r10_bio);
2724 			raid_end_bio_io(r10_bio);
2725 		}
2726 	}
2727 }
2728 
2729 static void raid10d(struct md_thread *thread)
2730 {
2731 	struct mddev *mddev = thread->mddev;
2732 	struct r10bio *r10_bio;
2733 	unsigned long flags;
2734 	struct r10conf *conf = mddev->private;
2735 	struct list_head *head = &conf->retry_list;
2736 	struct blk_plug plug;
2737 
2738 	md_check_recovery(mddev);
2739 
2740 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2741 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2742 		LIST_HEAD(tmp);
2743 		spin_lock_irqsave(&conf->device_lock, flags);
2744 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2745 			while (!list_empty(&conf->bio_end_io_list)) {
2746 				list_move(conf->bio_end_io_list.prev, &tmp);
2747 				conf->nr_queued--;
2748 			}
2749 		}
2750 		spin_unlock_irqrestore(&conf->device_lock, flags);
2751 		while (!list_empty(&tmp)) {
2752 			r10_bio = list_first_entry(&tmp, struct r10bio,
2753 						   retry_list);
2754 			list_del(&r10_bio->retry_list);
2755 			if (mddev->degraded)
2756 				set_bit(R10BIO_Degraded, &r10_bio->state);
2757 
2758 			if (test_bit(R10BIO_WriteError,
2759 				     &r10_bio->state))
2760 				close_write(r10_bio);
2761 			raid_end_bio_io(r10_bio);
2762 		}
2763 	}
2764 
2765 	blk_start_plug(&plug);
2766 	for (;;) {
2767 
2768 		flush_pending_writes(conf);
2769 
2770 		spin_lock_irqsave(&conf->device_lock, flags);
2771 		if (list_empty(head)) {
2772 			spin_unlock_irqrestore(&conf->device_lock, flags);
2773 			break;
2774 		}
2775 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2776 		list_del(head->prev);
2777 		conf->nr_queued--;
2778 		spin_unlock_irqrestore(&conf->device_lock, flags);
2779 
2780 		mddev = r10_bio->mddev;
2781 		conf = mddev->private;
2782 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2783 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2784 			handle_write_completed(conf, r10_bio);
2785 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2786 			reshape_request_write(mddev, r10_bio);
2787 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2788 			sync_request_write(mddev, r10_bio);
2789 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2790 			recovery_request_write(mddev, r10_bio);
2791 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2792 			handle_read_error(mddev, r10_bio);
2793 		else
2794 			WARN_ON_ONCE(1);
2795 
2796 		cond_resched();
2797 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2798 			md_check_recovery(mddev);
2799 	}
2800 	blk_finish_plug(&plug);
2801 }
2802 
2803 static int init_resync(struct r10conf *conf)
2804 {
2805 	int buffs;
2806 	int i;
2807 
2808 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2809 	BUG_ON(conf->r10buf_pool);
2810 	conf->have_replacement = 0;
2811 	for (i = 0; i < conf->geo.raid_disks; i++)
2812 		if (conf->mirrors[i].replacement)
2813 			conf->have_replacement = 1;
2814 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2815 	if (!conf->r10buf_pool)
2816 		return -ENOMEM;
2817 	conf->next_resync = 0;
2818 	return 0;
2819 }
2820 
2821 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2822 {
2823 	struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2824 	struct rsync_pages *rp;
2825 	struct bio *bio;
2826 	int nalloc;
2827 	int i;
2828 
2829 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2830 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2831 		nalloc = conf->copies; /* resync */
2832 	else
2833 		nalloc = 2; /* recovery */
2834 
2835 	for (i = 0; i < nalloc; i++) {
2836 		bio = r10bio->devs[i].bio;
2837 		rp = bio->bi_private;
2838 		bio_reset(bio);
2839 		bio->bi_private = rp;
2840 		bio = r10bio->devs[i].repl_bio;
2841 		if (bio) {
2842 			rp = bio->bi_private;
2843 			bio_reset(bio);
2844 			bio->bi_private = rp;
2845 		}
2846 	}
2847 	return r10bio;
2848 }
2849 
2850 /*
2851  * Set cluster_sync_high since we need other nodes to add the
2852  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2853  */
2854 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2855 {
2856 	sector_t window_size;
2857 	int extra_chunk, chunks;
2858 
2859 	/*
2860 	 * First, here we define "stripe" as a unit which across
2861 	 * all member devices one time, so we get chunks by use
2862 	 * raid_disks / near_copies. Otherwise, if near_copies is
2863 	 * close to raid_disks, then resync window could increases
2864 	 * linearly with the increase of raid_disks, which means
2865 	 * we will suspend a really large IO window while it is not
2866 	 * necessary. If raid_disks is not divisible by near_copies,
2867 	 * an extra chunk is needed to ensure the whole "stripe" is
2868 	 * covered.
2869 	 */
2870 
2871 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2872 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2873 		extra_chunk = 0;
2874 	else
2875 		extra_chunk = 1;
2876 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2877 
2878 	/*
2879 	 * At least use a 32M window to align with raid1's resync window
2880 	 */
2881 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2882 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2883 
2884 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2885 }
2886 
2887 /*
2888  * perform a "sync" on one "block"
2889  *
2890  * We need to make sure that no normal I/O request - particularly write
2891  * requests - conflict with active sync requests.
2892  *
2893  * This is achieved by tracking pending requests and a 'barrier' concept
2894  * that can be installed to exclude normal IO requests.
2895  *
2896  * Resync and recovery are handled very differently.
2897  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2898  *
2899  * For resync, we iterate over virtual addresses, read all copies,
2900  * and update if there are differences.  If only one copy is live,
2901  * skip it.
2902  * For recovery, we iterate over physical addresses, read a good
2903  * value for each non-in_sync drive, and over-write.
2904  *
2905  * So, for recovery we may have several outstanding complex requests for a
2906  * given address, one for each out-of-sync device.  We model this by allocating
2907  * a number of r10_bio structures, one for each out-of-sync device.
2908  * As we setup these structures, we collect all bio's together into a list
2909  * which we then process collectively to add pages, and then process again
2910  * to pass to generic_make_request.
2911  *
2912  * The r10_bio structures are linked using a borrowed master_bio pointer.
2913  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2914  * has its remaining count decremented to 0, the whole complex operation
2915  * is complete.
2916  *
2917  */
2918 
2919 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2920 			     int *skipped)
2921 {
2922 	struct r10conf *conf = mddev->private;
2923 	struct r10bio *r10_bio;
2924 	struct bio *biolist = NULL, *bio;
2925 	sector_t max_sector, nr_sectors;
2926 	int i;
2927 	int max_sync;
2928 	sector_t sync_blocks;
2929 	sector_t sectors_skipped = 0;
2930 	int chunks_skipped = 0;
2931 	sector_t chunk_mask = conf->geo.chunk_mask;
2932 	int page_idx = 0;
2933 
2934 	if (!conf->r10buf_pool)
2935 		if (init_resync(conf))
2936 			return 0;
2937 
2938 	/*
2939 	 * Allow skipping a full rebuild for incremental assembly
2940 	 * of a clean array, like RAID1 does.
2941 	 */
2942 	if (mddev->bitmap == NULL &&
2943 	    mddev->recovery_cp == MaxSector &&
2944 	    mddev->reshape_position == MaxSector &&
2945 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2946 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2947 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2948 	    conf->fullsync == 0) {
2949 		*skipped = 1;
2950 		return mddev->dev_sectors - sector_nr;
2951 	}
2952 
2953  skipped:
2954 	max_sector = mddev->dev_sectors;
2955 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2956 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2957 		max_sector = mddev->resync_max_sectors;
2958 	if (sector_nr >= max_sector) {
2959 		conf->cluster_sync_low = 0;
2960 		conf->cluster_sync_high = 0;
2961 
2962 		/* If we aborted, we need to abort the
2963 		 * sync on the 'current' bitmap chucks (there can
2964 		 * be several when recovering multiple devices).
2965 		 * as we may have started syncing it but not finished.
2966 		 * We can find the current address in
2967 		 * mddev->curr_resync, but for recovery,
2968 		 * we need to convert that to several
2969 		 * virtual addresses.
2970 		 */
2971 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2972 			end_reshape(conf);
2973 			close_sync(conf);
2974 			return 0;
2975 		}
2976 
2977 		if (mddev->curr_resync < max_sector) { /* aborted */
2978 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2979 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2980 						&sync_blocks, 1);
2981 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2982 				sector_t sect =
2983 					raid10_find_virt(conf, mddev->curr_resync, i);
2984 				bitmap_end_sync(mddev->bitmap, sect,
2985 						&sync_blocks, 1);
2986 			}
2987 		} else {
2988 			/* completed sync */
2989 			if ((!mddev->bitmap || conf->fullsync)
2990 			    && conf->have_replacement
2991 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2992 				/* Completed a full sync so the replacements
2993 				 * are now fully recovered.
2994 				 */
2995 				rcu_read_lock();
2996 				for (i = 0; i < conf->geo.raid_disks; i++) {
2997 					struct md_rdev *rdev =
2998 						rcu_dereference(conf->mirrors[i].replacement);
2999 					if (rdev)
3000 						rdev->recovery_offset = MaxSector;
3001 				}
3002 				rcu_read_unlock();
3003 			}
3004 			conf->fullsync = 0;
3005 		}
3006 		bitmap_close_sync(mddev->bitmap);
3007 		close_sync(conf);
3008 		*skipped = 1;
3009 		return sectors_skipped;
3010 	}
3011 
3012 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3013 		return reshape_request(mddev, sector_nr, skipped);
3014 
3015 	if (chunks_skipped >= conf->geo.raid_disks) {
3016 		/* if there has been nothing to do on any drive,
3017 		 * then there is nothing to do at all..
3018 		 */
3019 		*skipped = 1;
3020 		return (max_sector - sector_nr) + sectors_skipped;
3021 	}
3022 
3023 	if (max_sector > mddev->resync_max)
3024 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3025 
3026 	/* make sure whole request will fit in a chunk - if chunks
3027 	 * are meaningful
3028 	 */
3029 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3030 	    max_sector > (sector_nr | chunk_mask))
3031 		max_sector = (sector_nr | chunk_mask) + 1;
3032 
3033 	/*
3034 	 * If there is non-resync activity waiting for a turn, then let it
3035 	 * though before starting on this new sync request.
3036 	 */
3037 	if (conf->nr_waiting)
3038 		schedule_timeout_uninterruptible(1);
3039 
3040 	/* Again, very different code for resync and recovery.
3041 	 * Both must result in an r10bio with a list of bios that
3042 	 * have bi_end_io, bi_sector, bi_disk set,
3043 	 * and bi_private set to the r10bio.
3044 	 * For recovery, we may actually create several r10bios
3045 	 * with 2 bios in each, that correspond to the bios in the main one.
3046 	 * In this case, the subordinate r10bios link back through a
3047 	 * borrowed master_bio pointer, and the counter in the master
3048 	 * includes a ref from each subordinate.
3049 	 */
3050 	/* First, we decide what to do and set ->bi_end_io
3051 	 * To end_sync_read if we want to read, and
3052 	 * end_sync_write if we will want to write.
3053 	 */
3054 
3055 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3056 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3057 		/* recovery... the complicated one */
3058 		int j;
3059 		r10_bio = NULL;
3060 
3061 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3062 			int still_degraded;
3063 			struct r10bio *rb2;
3064 			sector_t sect;
3065 			int must_sync;
3066 			int any_working;
3067 			struct raid10_info *mirror = &conf->mirrors[i];
3068 			struct md_rdev *mrdev, *mreplace;
3069 
3070 			rcu_read_lock();
3071 			mrdev = rcu_dereference(mirror->rdev);
3072 			mreplace = rcu_dereference(mirror->replacement);
3073 
3074 			if ((mrdev == NULL ||
3075 			     test_bit(Faulty, &mrdev->flags) ||
3076 			     test_bit(In_sync, &mrdev->flags)) &&
3077 			    (mreplace == NULL ||
3078 			     test_bit(Faulty, &mreplace->flags))) {
3079 				rcu_read_unlock();
3080 				continue;
3081 			}
3082 
3083 			still_degraded = 0;
3084 			/* want to reconstruct this device */
3085 			rb2 = r10_bio;
3086 			sect = raid10_find_virt(conf, sector_nr, i);
3087 			if (sect >= mddev->resync_max_sectors) {
3088 				/* last stripe is not complete - don't
3089 				 * try to recover this sector.
3090 				 */
3091 				rcu_read_unlock();
3092 				continue;
3093 			}
3094 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3095 				mreplace = NULL;
3096 			/* Unless we are doing a full sync, or a replacement
3097 			 * we only need to recover the block if it is set in
3098 			 * the bitmap
3099 			 */
3100 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3101 						      &sync_blocks, 1);
3102 			if (sync_blocks < max_sync)
3103 				max_sync = sync_blocks;
3104 			if (!must_sync &&
3105 			    mreplace == NULL &&
3106 			    !conf->fullsync) {
3107 				/* yep, skip the sync_blocks here, but don't assume
3108 				 * that there will never be anything to do here
3109 				 */
3110 				chunks_skipped = -1;
3111 				rcu_read_unlock();
3112 				continue;
3113 			}
3114 			atomic_inc(&mrdev->nr_pending);
3115 			if (mreplace)
3116 				atomic_inc(&mreplace->nr_pending);
3117 			rcu_read_unlock();
3118 
3119 			r10_bio = raid10_alloc_init_r10buf(conf);
3120 			r10_bio->state = 0;
3121 			raise_barrier(conf, rb2 != NULL);
3122 			atomic_set(&r10_bio->remaining, 0);
3123 
3124 			r10_bio->master_bio = (struct bio*)rb2;
3125 			if (rb2)
3126 				atomic_inc(&rb2->remaining);
3127 			r10_bio->mddev = mddev;
3128 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3129 			r10_bio->sector = sect;
3130 
3131 			raid10_find_phys(conf, r10_bio);
3132 
3133 			/* Need to check if the array will still be
3134 			 * degraded
3135 			 */
3136 			rcu_read_lock();
3137 			for (j = 0; j < conf->geo.raid_disks; j++) {
3138 				struct md_rdev *rdev = rcu_dereference(
3139 					conf->mirrors[j].rdev);
3140 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3141 					still_degraded = 1;
3142 					break;
3143 				}
3144 			}
3145 
3146 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3147 						      &sync_blocks, still_degraded);
3148 
3149 			any_working = 0;
3150 			for (j=0; j<conf->copies;j++) {
3151 				int k;
3152 				int d = r10_bio->devs[j].devnum;
3153 				sector_t from_addr, to_addr;
3154 				struct md_rdev *rdev =
3155 					rcu_dereference(conf->mirrors[d].rdev);
3156 				sector_t sector, first_bad;
3157 				int bad_sectors;
3158 				if (!rdev ||
3159 				    !test_bit(In_sync, &rdev->flags))
3160 					continue;
3161 				/* This is where we read from */
3162 				any_working = 1;
3163 				sector = r10_bio->devs[j].addr;
3164 
3165 				if (is_badblock(rdev, sector, max_sync,
3166 						&first_bad, &bad_sectors)) {
3167 					if (first_bad > sector)
3168 						max_sync = first_bad - sector;
3169 					else {
3170 						bad_sectors -= (sector
3171 								- first_bad);
3172 						if (max_sync > bad_sectors)
3173 							max_sync = bad_sectors;
3174 						continue;
3175 					}
3176 				}
3177 				bio = r10_bio->devs[0].bio;
3178 				bio->bi_next = biolist;
3179 				biolist = bio;
3180 				bio->bi_end_io = end_sync_read;
3181 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3182 				if (test_bit(FailFast, &rdev->flags))
3183 					bio->bi_opf |= MD_FAILFAST;
3184 				from_addr = r10_bio->devs[j].addr;
3185 				bio->bi_iter.bi_sector = from_addr +
3186 					rdev->data_offset;
3187 				bio_set_dev(bio, rdev->bdev);
3188 				atomic_inc(&rdev->nr_pending);
3189 				/* and we write to 'i' (if not in_sync) */
3190 
3191 				for (k=0; k<conf->copies; k++)
3192 					if (r10_bio->devs[k].devnum == i)
3193 						break;
3194 				BUG_ON(k == conf->copies);
3195 				to_addr = r10_bio->devs[k].addr;
3196 				r10_bio->devs[0].devnum = d;
3197 				r10_bio->devs[0].addr = from_addr;
3198 				r10_bio->devs[1].devnum = i;
3199 				r10_bio->devs[1].addr = to_addr;
3200 
3201 				if (!test_bit(In_sync, &mrdev->flags)) {
3202 					bio = r10_bio->devs[1].bio;
3203 					bio->bi_next = biolist;
3204 					biolist = bio;
3205 					bio->bi_end_io = end_sync_write;
3206 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3207 					bio->bi_iter.bi_sector = to_addr
3208 						+ mrdev->data_offset;
3209 					bio_set_dev(bio, mrdev->bdev);
3210 					atomic_inc(&r10_bio->remaining);
3211 				} else
3212 					r10_bio->devs[1].bio->bi_end_io = NULL;
3213 
3214 				/* and maybe write to replacement */
3215 				bio = r10_bio->devs[1].repl_bio;
3216 				if (bio)
3217 					bio->bi_end_io = NULL;
3218 				/* Note: if mreplace != NULL, then bio
3219 				 * cannot be NULL as r10buf_pool_alloc will
3220 				 * have allocated it.
3221 				 * So the second test here is pointless.
3222 				 * But it keeps semantic-checkers happy, and
3223 				 * this comment keeps human reviewers
3224 				 * happy.
3225 				 */
3226 				if (mreplace == NULL || bio == NULL ||
3227 				    test_bit(Faulty, &mreplace->flags))
3228 					break;
3229 				bio->bi_next = biolist;
3230 				biolist = bio;
3231 				bio->bi_end_io = end_sync_write;
3232 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3233 				bio->bi_iter.bi_sector = to_addr +
3234 					mreplace->data_offset;
3235 				bio_set_dev(bio, mreplace->bdev);
3236 				atomic_inc(&r10_bio->remaining);
3237 				break;
3238 			}
3239 			rcu_read_unlock();
3240 			if (j == conf->copies) {
3241 				/* Cannot recover, so abort the recovery or
3242 				 * record a bad block */
3243 				if (any_working) {
3244 					/* problem is that there are bad blocks
3245 					 * on other device(s)
3246 					 */
3247 					int k;
3248 					for (k = 0; k < conf->copies; k++)
3249 						if (r10_bio->devs[k].devnum == i)
3250 							break;
3251 					if (!test_bit(In_sync,
3252 						      &mrdev->flags)
3253 					    && !rdev_set_badblocks(
3254 						    mrdev,
3255 						    r10_bio->devs[k].addr,
3256 						    max_sync, 0))
3257 						any_working = 0;
3258 					if (mreplace &&
3259 					    !rdev_set_badblocks(
3260 						    mreplace,
3261 						    r10_bio->devs[k].addr,
3262 						    max_sync, 0))
3263 						any_working = 0;
3264 				}
3265 				if (!any_working)  {
3266 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3267 							      &mddev->recovery))
3268 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3269 						       mdname(mddev));
3270 					mirror->recovery_disabled
3271 						= mddev->recovery_disabled;
3272 				}
3273 				put_buf(r10_bio);
3274 				if (rb2)
3275 					atomic_dec(&rb2->remaining);
3276 				r10_bio = rb2;
3277 				rdev_dec_pending(mrdev, mddev);
3278 				if (mreplace)
3279 					rdev_dec_pending(mreplace, mddev);
3280 				break;
3281 			}
3282 			rdev_dec_pending(mrdev, mddev);
3283 			if (mreplace)
3284 				rdev_dec_pending(mreplace, mddev);
3285 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3286 				/* Only want this if there is elsewhere to
3287 				 * read from. 'j' is currently the first
3288 				 * readable copy.
3289 				 */
3290 				int targets = 1;
3291 				for (; j < conf->copies; j++) {
3292 					int d = r10_bio->devs[j].devnum;
3293 					if (conf->mirrors[d].rdev &&
3294 					    test_bit(In_sync,
3295 						      &conf->mirrors[d].rdev->flags))
3296 						targets++;
3297 				}
3298 				if (targets == 1)
3299 					r10_bio->devs[0].bio->bi_opf
3300 						&= ~MD_FAILFAST;
3301 			}
3302 		}
3303 		if (biolist == NULL) {
3304 			while (r10_bio) {
3305 				struct r10bio *rb2 = r10_bio;
3306 				r10_bio = (struct r10bio*) rb2->master_bio;
3307 				rb2->master_bio = NULL;
3308 				put_buf(rb2);
3309 			}
3310 			goto giveup;
3311 		}
3312 	} else {
3313 		/* resync. Schedule a read for every block at this virt offset */
3314 		int count = 0;
3315 
3316 		/*
3317 		 * Since curr_resync_completed could probably not update in
3318 		 * time, and we will set cluster_sync_low based on it.
3319 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3320 		 * safety reason, which ensures curr_resync_completed is
3321 		 * updated in bitmap_cond_end_sync.
3322 		 */
3323 		bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3324 				     mddev_is_clustered(mddev) &&
3325 				     (sector_nr + 2 * RESYNC_SECTORS >
3326 				      conf->cluster_sync_high));
3327 
3328 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3329 				       &sync_blocks, mddev->degraded) &&
3330 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3331 						 &mddev->recovery)) {
3332 			/* We can skip this block */
3333 			*skipped = 1;
3334 			return sync_blocks + sectors_skipped;
3335 		}
3336 		if (sync_blocks < max_sync)
3337 			max_sync = sync_blocks;
3338 		r10_bio = raid10_alloc_init_r10buf(conf);
3339 		r10_bio->state = 0;
3340 
3341 		r10_bio->mddev = mddev;
3342 		atomic_set(&r10_bio->remaining, 0);
3343 		raise_barrier(conf, 0);
3344 		conf->next_resync = sector_nr;
3345 
3346 		r10_bio->master_bio = NULL;
3347 		r10_bio->sector = sector_nr;
3348 		set_bit(R10BIO_IsSync, &r10_bio->state);
3349 		raid10_find_phys(conf, r10_bio);
3350 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3351 
3352 		for (i = 0; i < conf->copies; i++) {
3353 			int d = r10_bio->devs[i].devnum;
3354 			sector_t first_bad, sector;
3355 			int bad_sectors;
3356 			struct md_rdev *rdev;
3357 
3358 			if (r10_bio->devs[i].repl_bio)
3359 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3360 
3361 			bio = r10_bio->devs[i].bio;
3362 			bio->bi_status = BLK_STS_IOERR;
3363 			rcu_read_lock();
3364 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3365 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3366 				rcu_read_unlock();
3367 				continue;
3368 			}
3369 			sector = r10_bio->devs[i].addr;
3370 			if (is_badblock(rdev, sector, max_sync,
3371 					&first_bad, &bad_sectors)) {
3372 				if (first_bad > sector)
3373 					max_sync = first_bad - sector;
3374 				else {
3375 					bad_sectors -= (sector - first_bad);
3376 					if (max_sync > bad_sectors)
3377 						max_sync = bad_sectors;
3378 					rcu_read_unlock();
3379 					continue;
3380 				}
3381 			}
3382 			atomic_inc(&rdev->nr_pending);
3383 			atomic_inc(&r10_bio->remaining);
3384 			bio->bi_next = biolist;
3385 			biolist = bio;
3386 			bio->bi_end_io = end_sync_read;
3387 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3388 			if (test_bit(FailFast, &rdev->flags))
3389 				bio->bi_opf |= MD_FAILFAST;
3390 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3391 			bio_set_dev(bio, rdev->bdev);
3392 			count++;
3393 
3394 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3395 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3396 				rcu_read_unlock();
3397 				continue;
3398 			}
3399 			atomic_inc(&rdev->nr_pending);
3400 
3401 			/* Need to set up for writing to the replacement */
3402 			bio = r10_bio->devs[i].repl_bio;
3403 			bio->bi_status = BLK_STS_IOERR;
3404 
3405 			sector = r10_bio->devs[i].addr;
3406 			bio->bi_next = biolist;
3407 			biolist = bio;
3408 			bio->bi_end_io = end_sync_write;
3409 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3410 			if (test_bit(FailFast, &rdev->flags))
3411 				bio->bi_opf |= MD_FAILFAST;
3412 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3413 			bio_set_dev(bio, rdev->bdev);
3414 			count++;
3415 			rcu_read_unlock();
3416 		}
3417 
3418 		if (count < 2) {
3419 			for (i=0; i<conf->copies; i++) {
3420 				int d = r10_bio->devs[i].devnum;
3421 				if (r10_bio->devs[i].bio->bi_end_io)
3422 					rdev_dec_pending(conf->mirrors[d].rdev,
3423 							 mddev);
3424 				if (r10_bio->devs[i].repl_bio &&
3425 				    r10_bio->devs[i].repl_bio->bi_end_io)
3426 					rdev_dec_pending(
3427 						conf->mirrors[d].replacement,
3428 						mddev);
3429 			}
3430 			put_buf(r10_bio);
3431 			biolist = NULL;
3432 			goto giveup;
3433 		}
3434 	}
3435 
3436 	nr_sectors = 0;
3437 	if (sector_nr + max_sync < max_sector)
3438 		max_sector = sector_nr + max_sync;
3439 	do {
3440 		struct page *page;
3441 		int len = PAGE_SIZE;
3442 		if (sector_nr + (len>>9) > max_sector)
3443 			len = (max_sector - sector_nr) << 9;
3444 		if (len == 0)
3445 			break;
3446 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3447 			struct resync_pages *rp = get_resync_pages(bio);
3448 			page = resync_fetch_page(rp, page_idx);
3449 			/*
3450 			 * won't fail because the vec table is big enough
3451 			 * to hold all these pages
3452 			 */
3453 			bio_add_page(bio, page, len, 0);
3454 		}
3455 		nr_sectors += len>>9;
3456 		sector_nr += len>>9;
3457 	} while (++page_idx < RESYNC_PAGES);
3458 	r10_bio->sectors = nr_sectors;
3459 
3460 	if (mddev_is_clustered(mddev) &&
3461 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3462 		/* It is resync not recovery */
3463 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3464 			conf->cluster_sync_low = mddev->curr_resync_completed;
3465 			raid10_set_cluster_sync_high(conf);
3466 			/* Send resync message */
3467 			md_cluster_ops->resync_info_update(mddev,
3468 						conf->cluster_sync_low,
3469 						conf->cluster_sync_high);
3470 		}
3471 	} else if (mddev_is_clustered(mddev)) {
3472 		/* This is recovery not resync */
3473 		sector_t sect_va1, sect_va2;
3474 		bool broadcast_msg = false;
3475 
3476 		for (i = 0; i < conf->geo.raid_disks; i++) {
3477 			/*
3478 			 * sector_nr is a device address for recovery, so we
3479 			 * need translate it to array address before compare
3480 			 * with cluster_sync_high.
3481 			 */
3482 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3483 
3484 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3485 				broadcast_msg = true;
3486 				/*
3487 				 * curr_resync_completed is similar as
3488 				 * sector_nr, so make the translation too.
3489 				 */
3490 				sect_va2 = raid10_find_virt(conf,
3491 					mddev->curr_resync_completed, i);
3492 
3493 				if (conf->cluster_sync_low == 0 ||
3494 				    conf->cluster_sync_low > sect_va2)
3495 					conf->cluster_sync_low = sect_va2;
3496 			}
3497 		}
3498 		if (broadcast_msg) {
3499 			raid10_set_cluster_sync_high(conf);
3500 			md_cluster_ops->resync_info_update(mddev,
3501 						conf->cluster_sync_low,
3502 						conf->cluster_sync_high);
3503 		}
3504 	}
3505 
3506 	while (biolist) {
3507 		bio = biolist;
3508 		biolist = biolist->bi_next;
3509 
3510 		bio->bi_next = NULL;
3511 		r10_bio = get_resync_r10bio(bio);
3512 		r10_bio->sectors = nr_sectors;
3513 
3514 		if (bio->bi_end_io == end_sync_read) {
3515 			md_sync_acct_bio(bio, nr_sectors);
3516 			bio->bi_status = 0;
3517 			generic_make_request(bio);
3518 		}
3519 	}
3520 
3521 	if (sectors_skipped)
3522 		/* pretend they weren't skipped, it makes
3523 		 * no important difference in this case
3524 		 */
3525 		md_done_sync(mddev, sectors_skipped, 1);
3526 
3527 	return sectors_skipped + nr_sectors;
3528  giveup:
3529 	/* There is nowhere to write, so all non-sync
3530 	 * drives must be failed or in resync, all drives
3531 	 * have a bad block, so try the next chunk...
3532 	 */
3533 	if (sector_nr + max_sync < max_sector)
3534 		max_sector = sector_nr + max_sync;
3535 
3536 	sectors_skipped += (max_sector - sector_nr);
3537 	chunks_skipped ++;
3538 	sector_nr = max_sector;
3539 	goto skipped;
3540 }
3541 
3542 static sector_t
3543 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3544 {
3545 	sector_t size;
3546 	struct r10conf *conf = mddev->private;
3547 
3548 	if (!raid_disks)
3549 		raid_disks = min(conf->geo.raid_disks,
3550 				 conf->prev.raid_disks);
3551 	if (!sectors)
3552 		sectors = conf->dev_sectors;
3553 
3554 	size = sectors >> conf->geo.chunk_shift;
3555 	sector_div(size, conf->geo.far_copies);
3556 	size = size * raid_disks;
3557 	sector_div(size, conf->geo.near_copies);
3558 
3559 	return size << conf->geo.chunk_shift;
3560 }
3561 
3562 static void calc_sectors(struct r10conf *conf, sector_t size)
3563 {
3564 	/* Calculate the number of sectors-per-device that will
3565 	 * actually be used, and set conf->dev_sectors and
3566 	 * conf->stride
3567 	 */
3568 
3569 	size = size >> conf->geo.chunk_shift;
3570 	sector_div(size, conf->geo.far_copies);
3571 	size = size * conf->geo.raid_disks;
3572 	sector_div(size, conf->geo.near_copies);
3573 	/* 'size' is now the number of chunks in the array */
3574 	/* calculate "used chunks per device" */
3575 	size = size * conf->copies;
3576 
3577 	/* We need to round up when dividing by raid_disks to
3578 	 * get the stride size.
3579 	 */
3580 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3581 
3582 	conf->dev_sectors = size << conf->geo.chunk_shift;
3583 
3584 	if (conf->geo.far_offset)
3585 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3586 	else {
3587 		sector_div(size, conf->geo.far_copies);
3588 		conf->geo.stride = size << conf->geo.chunk_shift;
3589 	}
3590 }
3591 
3592 enum geo_type {geo_new, geo_old, geo_start};
3593 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3594 {
3595 	int nc, fc, fo;
3596 	int layout, chunk, disks;
3597 	switch (new) {
3598 	case geo_old:
3599 		layout = mddev->layout;
3600 		chunk = mddev->chunk_sectors;
3601 		disks = mddev->raid_disks - mddev->delta_disks;
3602 		break;
3603 	case geo_new:
3604 		layout = mddev->new_layout;
3605 		chunk = mddev->new_chunk_sectors;
3606 		disks = mddev->raid_disks;
3607 		break;
3608 	default: /* avoid 'may be unused' warnings */
3609 	case geo_start: /* new when starting reshape - raid_disks not
3610 			 * updated yet. */
3611 		layout = mddev->new_layout;
3612 		chunk = mddev->new_chunk_sectors;
3613 		disks = mddev->raid_disks + mddev->delta_disks;
3614 		break;
3615 	}
3616 	if (layout >> 19)
3617 		return -1;
3618 	if (chunk < (PAGE_SIZE >> 9) ||
3619 	    !is_power_of_2(chunk))
3620 		return -2;
3621 	nc = layout & 255;
3622 	fc = (layout >> 8) & 255;
3623 	fo = layout & (1<<16);
3624 	geo->raid_disks = disks;
3625 	geo->near_copies = nc;
3626 	geo->far_copies = fc;
3627 	geo->far_offset = fo;
3628 	switch (layout >> 17) {
3629 	case 0:	/* original layout.  simple but not always optimal */
3630 		geo->far_set_size = disks;
3631 		break;
3632 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3633 		 * actually using this, but leave code here just in case.*/
3634 		geo->far_set_size = disks/fc;
3635 		WARN(geo->far_set_size < fc,
3636 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3637 		break;
3638 	case 2: /* "improved" layout fixed to match documentation */
3639 		geo->far_set_size = fc * nc;
3640 		break;
3641 	default: /* Not a valid layout */
3642 		return -1;
3643 	}
3644 	geo->chunk_mask = chunk - 1;
3645 	geo->chunk_shift = ffz(~chunk);
3646 	return nc*fc;
3647 }
3648 
3649 static struct r10conf *setup_conf(struct mddev *mddev)
3650 {
3651 	struct r10conf *conf = NULL;
3652 	int err = -EINVAL;
3653 	struct geom geo;
3654 	int copies;
3655 
3656 	copies = setup_geo(&geo, mddev, geo_new);
3657 
3658 	if (copies == -2) {
3659 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3660 			mdname(mddev), PAGE_SIZE);
3661 		goto out;
3662 	}
3663 
3664 	if (copies < 2 || copies > mddev->raid_disks) {
3665 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3666 			mdname(mddev), mddev->new_layout);
3667 		goto out;
3668 	}
3669 
3670 	err = -ENOMEM;
3671 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3672 	if (!conf)
3673 		goto out;
3674 
3675 	/* FIXME calc properly */
3676 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3677 							    max(0,-mddev->delta_disks)),
3678 				GFP_KERNEL);
3679 	if (!conf->mirrors)
3680 		goto out;
3681 
3682 	conf->tmppage = alloc_page(GFP_KERNEL);
3683 	if (!conf->tmppage)
3684 		goto out;
3685 
3686 	conf->geo = geo;
3687 	conf->copies = copies;
3688 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3689 					   r10bio_pool_free, conf);
3690 	if (!conf->r10bio_pool)
3691 		goto out;
3692 
3693 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3694 	if (!conf->bio_split)
3695 		goto out;
3696 
3697 	calc_sectors(conf, mddev->dev_sectors);
3698 	if (mddev->reshape_position == MaxSector) {
3699 		conf->prev = conf->geo;
3700 		conf->reshape_progress = MaxSector;
3701 	} else {
3702 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3703 			err = -EINVAL;
3704 			goto out;
3705 		}
3706 		conf->reshape_progress = mddev->reshape_position;
3707 		if (conf->prev.far_offset)
3708 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3709 		else
3710 			/* far_copies must be 1 */
3711 			conf->prev.stride = conf->dev_sectors;
3712 	}
3713 	conf->reshape_safe = conf->reshape_progress;
3714 	spin_lock_init(&conf->device_lock);
3715 	INIT_LIST_HEAD(&conf->retry_list);
3716 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3717 
3718 	spin_lock_init(&conf->resync_lock);
3719 	init_waitqueue_head(&conf->wait_barrier);
3720 	atomic_set(&conf->nr_pending, 0);
3721 
3722 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3723 	if (!conf->thread)
3724 		goto out;
3725 
3726 	conf->mddev = mddev;
3727 	return conf;
3728 
3729  out:
3730 	if (conf) {
3731 		mempool_destroy(conf->r10bio_pool);
3732 		kfree(conf->mirrors);
3733 		safe_put_page(conf->tmppage);
3734 		if (conf->bio_split)
3735 			bioset_free(conf->bio_split);
3736 		kfree(conf);
3737 	}
3738 	return ERR_PTR(err);
3739 }
3740 
3741 static int raid10_run(struct mddev *mddev)
3742 {
3743 	struct r10conf *conf;
3744 	int i, disk_idx, chunk_size;
3745 	struct raid10_info *disk;
3746 	struct md_rdev *rdev;
3747 	sector_t size;
3748 	sector_t min_offset_diff = 0;
3749 	int first = 1;
3750 	bool discard_supported = false;
3751 
3752 	if (mddev_init_writes_pending(mddev) < 0)
3753 		return -ENOMEM;
3754 
3755 	if (mddev->private == NULL) {
3756 		conf = setup_conf(mddev);
3757 		if (IS_ERR(conf))
3758 			return PTR_ERR(conf);
3759 		mddev->private = conf;
3760 	}
3761 	conf = mddev->private;
3762 	if (!conf)
3763 		goto out;
3764 
3765 	if (mddev_is_clustered(conf->mddev)) {
3766 		int fc, fo;
3767 
3768 		fc = (mddev->layout >> 8) & 255;
3769 		fo = mddev->layout & (1<<16);
3770 		if (fc > 1 || fo > 0) {
3771 			pr_err("only near layout is supported by clustered"
3772 				" raid10\n");
3773 			goto out;
3774 		}
3775 	}
3776 
3777 	mddev->thread = conf->thread;
3778 	conf->thread = NULL;
3779 
3780 	chunk_size = mddev->chunk_sectors << 9;
3781 	if (mddev->queue) {
3782 		blk_queue_max_discard_sectors(mddev->queue,
3783 					      mddev->chunk_sectors);
3784 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3785 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3786 		blk_queue_io_min(mddev->queue, chunk_size);
3787 		if (conf->geo.raid_disks % conf->geo.near_copies)
3788 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3789 		else
3790 			blk_queue_io_opt(mddev->queue, chunk_size *
3791 					 (conf->geo.raid_disks / conf->geo.near_copies));
3792 	}
3793 
3794 	rdev_for_each(rdev, mddev) {
3795 		long long diff;
3796 
3797 		disk_idx = rdev->raid_disk;
3798 		if (disk_idx < 0)
3799 			continue;
3800 		if (disk_idx >= conf->geo.raid_disks &&
3801 		    disk_idx >= conf->prev.raid_disks)
3802 			continue;
3803 		disk = conf->mirrors + disk_idx;
3804 
3805 		if (test_bit(Replacement, &rdev->flags)) {
3806 			if (disk->replacement)
3807 				goto out_free_conf;
3808 			disk->replacement = rdev;
3809 		} else {
3810 			if (disk->rdev)
3811 				goto out_free_conf;
3812 			disk->rdev = rdev;
3813 		}
3814 		diff = (rdev->new_data_offset - rdev->data_offset);
3815 		if (!mddev->reshape_backwards)
3816 			diff = -diff;
3817 		if (diff < 0)
3818 			diff = 0;
3819 		if (first || diff < min_offset_diff)
3820 			min_offset_diff = diff;
3821 
3822 		if (mddev->gendisk)
3823 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3824 					  rdev->data_offset << 9);
3825 
3826 		disk->head_position = 0;
3827 
3828 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3829 			discard_supported = true;
3830 		first = 0;
3831 	}
3832 
3833 	if (mddev->queue) {
3834 		if (discard_supported)
3835 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3836 						mddev->queue);
3837 		else
3838 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3839 						  mddev->queue);
3840 	}
3841 	/* need to check that every block has at least one working mirror */
3842 	if (!enough(conf, -1)) {
3843 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3844 		       mdname(mddev));
3845 		goto out_free_conf;
3846 	}
3847 
3848 	if (conf->reshape_progress != MaxSector) {
3849 		/* must ensure that shape change is supported */
3850 		if (conf->geo.far_copies != 1 &&
3851 		    conf->geo.far_offset == 0)
3852 			goto out_free_conf;
3853 		if (conf->prev.far_copies != 1 &&
3854 		    conf->prev.far_offset == 0)
3855 			goto out_free_conf;
3856 	}
3857 
3858 	mddev->degraded = 0;
3859 	for (i = 0;
3860 	     i < conf->geo.raid_disks
3861 		     || i < conf->prev.raid_disks;
3862 	     i++) {
3863 
3864 		disk = conf->mirrors + i;
3865 
3866 		if (!disk->rdev && disk->replacement) {
3867 			/* The replacement is all we have - use it */
3868 			disk->rdev = disk->replacement;
3869 			disk->replacement = NULL;
3870 			clear_bit(Replacement, &disk->rdev->flags);
3871 		}
3872 
3873 		if (!disk->rdev ||
3874 		    !test_bit(In_sync, &disk->rdev->flags)) {
3875 			disk->head_position = 0;
3876 			mddev->degraded++;
3877 			if (disk->rdev &&
3878 			    disk->rdev->saved_raid_disk < 0)
3879 				conf->fullsync = 1;
3880 		}
3881 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3882 	}
3883 
3884 	if (mddev->recovery_cp != MaxSector)
3885 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3886 			  mdname(mddev));
3887 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3888 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3889 		conf->geo.raid_disks);
3890 	/*
3891 	 * Ok, everything is just fine now
3892 	 */
3893 	mddev->dev_sectors = conf->dev_sectors;
3894 	size = raid10_size(mddev, 0, 0);
3895 	md_set_array_sectors(mddev, size);
3896 	mddev->resync_max_sectors = size;
3897 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3898 
3899 	if (mddev->queue) {
3900 		int stripe = conf->geo.raid_disks *
3901 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3902 
3903 		/* Calculate max read-ahead size.
3904 		 * We need to readahead at least twice a whole stripe....
3905 		 * maybe...
3906 		 */
3907 		stripe /= conf->geo.near_copies;
3908 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3909 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3910 	}
3911 
3912 	if (md_integrity_register(mddev))
3913 		goto out_free_conf;
3914 
3915 	if (conf->reshape_progress != MaxSector) {
3916 		unsigned long before_length, after_length;
3917 
3918 		before_length = ((1 << conf->prev.chunk_shift) *
3919 				 conf->prev.far_copies);
3920 		after_length = ((1 << conf->geo.chunk_shift) *
3921 				conf->geo.far_copies);
3922 
3923 		if (max(before_length, after_length) > min_offset_diff) {
3924 			/* This cannot work */
3925 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3926 			goto out_free_conf;
3927 		}
3928 		conf->offset_diff = min_offset_diff;
3929 
3930 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3931 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3932 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3933 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3934 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3935 							"reshape");
3936 	}
3937 
3938 	return 0;
3939 
3940 out_free_conf:
3941 	md_unregister_thread(&mddev->thread);
3942 	mempool_destroy(conf->r10bio_pool);
3943 	safe_put_page(conf->tmppage);
3944 	kfree(conf->mirrors);
3945 	kfree(conf);
3946 	mddev->private = NULL;
3947 out:
3948 	return -EIO;
3949 }
3950 
3951 static void raid10_free(struct mddev *mddev, void *priv)
3952 {
3953 	struct r10conf *conf = priv;
3954 
3955 	mempool_destroy(conf->r10bio_pool);
3956 	safe_put_page(conf->tmppage);
3957 	kfree(conf->mirrors);
3958 	kfree(conf->mirrors_old);
3959 	kfree(conf->mirrors_new);
3960 	if (conf->bio_split)
3961 		bioset_free(conf->bio_split);
3962 	kfree(conf);
3963 }
3964 
3965 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3966 {
3967 	struct r10conf *conf = mddev->private;
3968 
3969 	if (quiesce)
3970 		raise_barrier(conf, 0);
3971 	else
3972 		lower_barrier(conf);
3973 }
3974 
3975 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3976 {
3977 	/* Resize of 'far' arrays is not supported.
3978 	 * For 'near' and 'offset' arrays we can set the
3979 	 * number of sectors used to be an appropriate multiple
3980 	 * of the chunk size.
3981 	 * For 'offset', this is far_copies*chunksize.
3982 	 * For 'near' the multiplier is the LCM of
3983 	 * near_copies and raid_disks.
3984 	 * So if far_copies > 1 && !far_offset, fail.
3985 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3986 	 * multiply by chunk_size.  Then round to this number.
3987 	 * This is mostly done by raid10_size()
3988 	 */
3989 	struct r10conf *conf = mddev->private;
3990 	sector_t oldsize, size;
3991 
3992 	if (mddev->reshape_position != MaxSector)
3993 		return -EBUSY;
3994 
3995 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3996 		return -EINVAL;
3997 
3998 	oldsize = raid10_size(mddev, 0, 0);
3999 	size = raid10_size(mddev, sectors, 0);
4000 	if (mddev->external_size &&
4001 	    mddev->array_sectors > size)
4002 		return -EINVAL;
4003 	if (mddev->bitmap) {
4004 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4005 		if (ret)
4006 			return ret;
4007 	}
4008 	md_set_array_sectors(mddev, size);
4009 	if (sectors > mddev->dev_sectors &&
4010 	    mddev->recovery_cp > oldsize) {
4011 		mddev->recovery_cp = oldsize;
4012 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4013 	}
4014 	calc_sectors(conf, sectors);
4015 	mddev->dev_sectors = conf->dev_sectors;
4016 	mddev->resync_max_sectors = size;
4017 	return 0;
4018 }
4019 
4020 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4021 {
4022 	struct md_rdev *rdev;
4023 	struct r10conf *conf;
4024 
4025 	if (mddev->degraded > 0) {
4026 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4027 			mdname(mddev));
4028 		return ERR_PTR(-EINVAL);
4029 	}
4030 	sector_div(size, devs);
4031 
4032 	/* Set new parameters */
4033 	mddev->new_level = 10;
4034 	/* new layout: far_copies = 1, near_copies = 2 */
4035 	mddev->new_layout = (1<<8) + 2;
4036 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4037 	mddev->delta_disks = mddev->raid_disks;
4038 	mddev->raid_disks *= 2;
4039 	/* make sure it will be not marked as dirty */
4040 	mddev->recovery_cp = MaxSector;
4041 	mddev->dev_sectors = size;
4042 
4043 	conf = setup_conf(mddev);
4044 	if (!IS_ERR(conf)) {
4045 		rdev_for_each(rdev, mddev)
4046 			if (rdev->raid_disk >= 0) {
4047 				rdev->new_raid_disk = rdev->raid_disk * 2;
4048 				rdev->sectors = size;
4049 			}
4050 		conf->barrier = 1;
4051 	}
4052 
4053 	return conf;
4054 }
4055 
4056 static void *raid10_takeover(struct mddev *mddev)
4057 {
4058 	struct r0conf *raid0_conf;
4059 
4060 	/* raid10 can take over:
4061 	 *  raid0 - providing it has only two drives
4062 	 */
4063 	if (mddev->level == 0) {
4064 		/* for raid0 takeover only one zone is supported */
4065 		raid0_conf = mddev->private;
4066 		if (raid0_conf->nr_strip_zones > 1) {
4067 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4068 				mdname(mddev));
4069 			return ERR_PTR(-EINVAL);
4070 		}
4071 		return raid10_takeover_raid0(mddev,
4072 			raid0_conf->strip_zone->zone_end,
4073 			raid0_conf->strip_zone->nb_dev);
4074 	}
4075 	return ERR_PTR(-EINVAL);
4076 }
4077 
4078 static int raid10_check_reshape(struct mddev *mddev)
4079 {
4080 	/* Called when there is a request to change
4081 	 * - layout (to ->new_layout)
4082 	 * - chunk size (to ->new_chunk_sectors)
4083 	 * - raid_disks (by delta_disks)
4084 	 * or when trying to restart a reshape that was ongoing.
4085 	 *
4086 	 * We need to validate the request and possibly allocate
4087 	 * space if that might be an issue later.
4088 	 *
4089 	 * Currently we reject any reshape of a 'far' mode array,
4090 	 * allow chunk size to change if new is generally acceptable,
4091 	 * allow raid_disks to increase, and allow
4092 	 * a switch between 'near' mode and 'offset' mode.
4093 	 */
4094 	struct r10conf *conf = mddev->private;
4095 	struct geom geo;
4096 
4097 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4098 		return -EINVAL;
4099 
4100 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4101 		/* mustn't change number of copies */
4102 		return -EINVAL;
4103 	if (geo.far_copies > 1 && !geo.far_offset)
4104 		/* Cannot switch to 'far' mode */
4105 		return -EINVAL;
4106 
4107 	if (mddev->array_sectors & geo.chunk_mask)
4108 			/* not factor of array size */
4109 			return -EINVAL;
4110 
4111 	if (!enough(conf, -1))
4112 		return -EINVAL;
4113 
4114 	kfree(conf->mirrors_new);
4115 	conf->mirrors_new = NULL;
4116 	if (mddev->delta_disks > 0) {
4117 		/* allocate new 'mirrors' list */
4118 		conf->mirrors_new = kzalloc(
4119 			sizeof(struct raid10_info)
4120 			*(mddev->raid_disks +
4121 			  mddev->delta_disks),
4122 			GFP_KERNEL);
4123 		if (!conf->mirrors_new)
4124 			return -ENOMEM;
4125 	}
4126 	return 0;
4127 }
4128 
4129 /*
4130  * Need to check if array has failed when deciding whether to:
4131  *  - start an array
4132  *  - remove non-faulty devices
4133  *  - add a spare
4134  *  - allow a reshape
4135  * This determination is simple when no reshape is happening.
4136  * However if there is a reshape, we need to carefully check
4137  * both the before and after sections.
4138  * This is because some failed devices may only affect one
4139  * of the two sections, and some non-in_sync devices may
4140  * be insync in the section most affected by failed devices.
4141  */
4142 static int calc_degraded(struct r10conf *conf)
4143 {
4144 	int degraded, degraded2;
4145 	int i;
4146 
4147 	rcu_read_lock();
4148 	degraded = 0;
4149 	/* 'prev' section first */
4150 	for (i = 0; i < conf->prev.raid_disks; i++) {
4151 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4152 		if (!rdev || test_bit(Faulty, &rdev->flags))
4153 			degraded++;
4154 		else if (!test_bit(In_sync, &rdev->flags))
4155 			/* When we can reduce the number of devices in
4156 			 * an array, this might not contribute to
4157 			 * 'degraded'.  It does now.
4158 			 */
4159 			degraded++;
4160 	}
4161 	rcu_read_unlock();
4162 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4163 		return degraded;
4164 	rcu_read_lock();
4165 	degraded2 = 0;
4166 	for (i = 0; i < conf->geo.raid_disks; i++) {
4167 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4168 		if (!rdev || test_bit(Faulty, &rdev->flags))
4169 			degraded2++;
4170 		else if (!test_bit(In_sync, &rdev->flags)) {
4171 			/* If reshape is increasing the number of devices,
4172 			 * this section has already been recovered, so
4173 			 * it doesn't contribute to degraded.
4174 			 * else it does.
4175 			 */
4176 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4177 				degraded2++;
4178 		}
4179 	}
4180 	rcu_read_unlock();
4181 	if (degraded2 > degraded)
4182 		return degraded2;
4183 	return degraded;
4184 }
4185 
4186 static int raid10_start_reshape(struct mddev *mddev)
4187 {
4188 	/* A 'reshape' has been requested. This commits
4189 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4190 	 * This also checks if there are enough spares and adds them
4191 	 * to the array.
4192 	 * We currently require enough spares to make the final
4193 	 * array non-degraded.  We also require that the difference
4194 	 * between old and new data_offset - on each device - is
4195 	 * enough that we never risk over-writing.
4196 	 */
4197 
4198 	unsigned long before_length, after_length;
4199 	sector_t min_offset_diff = 0;
4200 	int first = 1;
4201 	struct geom new;
4202 	struct r10conf *conf = mddev->private;
4203 	struct md_rdev *rdev;
4204 	int spares = 0;
4205 	int ret;
4206 
4207 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4208 		return -EBUSY;
4209 
4210 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4211 		return -EINVAL;
4212 
4213 	before_length = ((1 << conf->prev.chunk_shift) *
4214 			 conf->prev.far_copies);
4215 	after_length = ((1 << conf->geo.chunk_shift) *
4216 			conf->geo.far_copies);
4217 
4218 	rdev_for_each(rdev, mddev) {
4219 		if (!test_bit(In_sync, &rdev->flags)
4220 		    && !test_bit(Faulty, &rdev->flags))
4221 			spares++;
4222 		if (rdev->raid_disk >= 0) {
4223 			long long diff = (rdev->new_data_offset
4224 					  - rdev->data_offset);
4225 			if (!mddev->reshape_backwards)
4226 				diff = -diff;
4227 			if (diff < 0)
4228 				diff = 0;
4229 			if (first || diff < min_offset_diff)
4230 				min_offset_diff = diff;
4231 			first = 0;
4232 		}
4233 	}
4234 
4235 	if (max(before_length, after_length) > min_offset_diff)
4236 		return -EINVAL;
4237 
4238 	if (spares < mddev->delta_disks)
4239 		return -EINVAL;
4240 
4241 	conf->offset_diff = min_offset_diff;
4242 	spin_lock_irq(&conf->device_lock);
4243 	if (conf->mirrors_new) {
4244 		memcpy(conf->mirrors_new, conf->mirrors,
4245 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4246 		smp_mb();
4247 		kfree(conf->mirrors_old);
4248 		conf->mirrors_old = conf->mirrors;
4249 		conf->mirrors = conf->mirrors_new;
4250 		conf->mirrors_new = NULL;
4251 	}
4252 	setup_geo(&conf->geo, mddev, geo_start);
4253 	smp_mb();
4254 	if (mddev->reshape_backwards) {
4255 		sector_t size = raid10_size(mddev, 0, 0);
4256 		if (size < mddev->array_sectors) {
4257 			spin_unlock_irq(&conf->device_lock);
4258 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4259 				mdname(mddev));
4260 			return -EINVAL;
4261 		}
4262 		mddev->resync_max_sectors = size;
4263 		conf->reshape_progress = size;
4264 	} else
4265 		conf->reshape_progress = 0;
4266 	conf->reshape_safe = conf->reshape_progress;
4267 	spin_unlock_irq(&conf->device_lock);
4268 
4269 	if (mddev->delta_disks && mddev->bitmap) {
4270 		ret = bitmap_resize(mddev->bitmap,
4271 				    raid10_size(mddev, 0,
4272 						conf->geo.raid_disks),
4273 				    0, 0);
4274 		if (ret)
4275 			goto abort;
4276 	}
4277 	if (mddev->delta_disks > 0) {
4278 		rdev_for_each(rdev, mddev)
4279 			if (rdev->raid_disk < 0 &&
4280 			    !test_bit(Faulty, &rdev->flags)) {
4281 				if (raid10_add_disk(mddev, rdev) == 0) {
4282 					if (rdev->raid_disk >=
4283 					    conf->prev.raid_disks)
4284 						set_bit(In_sync, &rdev->flags);
4285 					else
4286 						rdev->recovery_offset = 0;
4287 
4288 					if (sysfs_link_rdev(mddev, rdev))
4289 						/* Failure here  is OK */;
4290 				}
4291 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4292 				   && !test_bit(Faulty, &rdev->flags)) {
4293 				/* This is a spare that was manually added */
4294 				set_bit(In_sync, &rdev->flags);
4295 			}
4296 	}
4297 	/* When a reshape changes the number of devices,
4298 	 * ->degraded is measured against the larger of the
4299 	 * pre and  post numbers.
4300 	 */
4301 	spin_lock_irq(&conf->device_lock);
4302 	mddev->degraded = calc_degraded(conf);
4303 	spin_unlock_irq(&conf->device_lock);
4304 	mddev->raid_disks = conf->geo.raid_disks;
4305 	mddev->reshape_position = conf->reshape_progress;
4306 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4307 
4308 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4309 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4310 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4311 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4312 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4313 
4314 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4315 						"reshape");
4316 	if (!mddev->sync_thread) {
4317 		ret = -EAGAIN;
4318 		goto abort;
4319 	}
4320 	conf->reshape_checkpoint = jiffies;
4321 	md_wakeup_thread(mddev->sync_thread);
4322 	md_new_event(mddev);
4323 	return 0;
4324 
4325 abort:
4326 	mddev->recovery = 0;
4327 	spin_lock_irq(&conf->device_lock);
4328 	conf->geo = conf->prev;
4329 	mddev->raid_disks = conf->geo.raid_disks;
4330 	rdev_for_each(rdev, mddev)
4331 		rdev->new_data_offset = rdev->data_offset;
4332 	smp_wmb();
4333 	conf->reshape_progress = MaxSector;
4334 	conf->reshape_safe = MaxSector;
4335 	mddev->reshape_position = MaxSector;
4336 	spin_unlock_irq(&conf->device_lock);
4337 	return ret;
4338 }
4339 
4340 /* Calculate the last device-address that could contain
4341  * any block from the chunk that includes the array-address 's'
4342  * and report the next address.
4343  * i.e. the address returned will be chunk-aligned and after
4344  * any data that is in the chunk containing 's'.
4345  */
4346 static sector_t last_dev_address(sector_t s, struct geom *geo)
4347 {
4348 	s = (s | geo->chunk_mask) + 1;
4349 	s >>= geo->chunk_shift;
4350 	s *= geo->near_copies;
4351 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4352 	s *= geo->far_copies;
4353 	s <<= geo->chunk_shift;
4354 	return s;
4355 }
4356 
4357 /* Calculate the first device-address that could contain
4358  * any block from the chunk that includes the array-address 's'.
4359  * This too will be the start of a chunk
4360  */
4361 static sector_t first_dev_address(sector_t s, struct geom *geo)
4362 {
4363 	s >>= geo->chunk_shift;
4364 	s *= geo->near_copies;
4365 	sector_div(s, geo->raid_disks);
4366 	s *= geo->far_copies;
4367 	s <<= geo->chunk_shift;
4368 	return s;
4369 }
4370 
4371 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4372 				int *skipped)
4373 {
4374 	/* We simply copy at most one chunk (smallest of old and new)
4375 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4376 	 * or we hit a bad block or something.
4377 	 * This might mean we pause for normal IO in the middle of
4378 	 * a chunk, but that is not a problem as mddev->reshape_position
4379 	 * can record any location.
4380 	 *
4381 	 * If we will want to write to a location that isn't
4382 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4383 	 * we need to flush all reshape requests and update the metadata.
4384 	 *
4385 	 * When reshaping forwards (e.g. to more devices), we interpret
4386 	 * 'safe' as the earliest block which might not have been copied
4387 	 * down yet.  We divide this by previous stripe size and multiply
4388 	 * by previous stripe length to get lowest device offset that we
4389 	 * cannot write to yet.
4390 	 * We interpret 'sector_nr' as an address that we want to write to.
4391 	 * From this we use last_device_address() to find where we might
4392 	 * write to, and first_device_address on the  'safe' position.
4393 	 * If this 'next' write position is after the 'safe' position,
4394 	 * we must update the metadata to increase the 'safe' position.
4395 	 *
4396 	 * When reshaping backwards, we round in the opposite direction
4397 	 * and perform the reverse test:  next write position must not be
4398 	 * less than current safe position.
4399 	 *
4400 	 * In all this the minimum difference in data offsets
4401 	 * (conf->offset_diff - always positive) allows a bit of slack,
4402 	 * so next can be after 'safe', but not by more than offset_diff
4403 	 *
4404 	 * We need to prepare all the bios here before we start any IO
4405 	 * to ensure the size we choose is acceptable to all devices.
4406 	 * The means one for each copy for write-out and an extra one for
4407 	 * read-in.
4408 	 * We store the read-in bio in ->master_bio and the others in
4409 	 * ->devs[x].bio and ->devs[x].repl_bio.
4410 	 */
4411 	struct r10conf *conf = mddev->private;
4412 	struct r10bio *r10_bio;
4413 	sector_t next, safe, last;
4414 	int max_sectors;
4415 	int nr_sectors;
4416 	int s;
4417 	struct md_rdev *rdev;
4418 	int need_flush = 0;
4419 	struct bio *blist;
4420 	struct bio *bio, *read_bio;
4421 	int sectors_done = 0;
4422 	struct page **pages;
4423 
4424 	if (sector_nr == 0) {
4425 		/* If restarting in the middle, skip the initial sectors */
4426 		if (mddev->reshape_backwards &&
4427 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4428 			sector_nr = (raid10_size(mddev, 0, 0)
4429 				     - conf->reshape_progress);
4430 		} else if (!mddev->reshape_backwards &&
4431 			   conf->reshape_progress > 0)
4432 			sector_nr = conf->reshape_progress;
4433 		if (sector_nr) {
4434 			mddev->curr_resync_completed = sector_nr;
4435 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4436 			*skipped = 1;
4437 			return sector_nr;
4438 		}
4439 	}
4440 
4441 	/* We don't use sector_nr to track where we are up to
4442 	 * as that doesn't work well for ->reshape_backwards.
4443 	 * So just use ->reshape_progress.
4444 	 */
4445 	if (mddev->reshape_backwards) {
4446 		/* 'next' is the earliest device address that we might
4447 		 * write to for this chunk in the new layout
4448 		 */
4449 		next = first_dev_address(conf->reshape_progress - 1,
4450 					 &conf->geo);
4451 
4452 		/* 'safe' is the last device address that we might read from
4453 		 * in the old layout after a restart
4454 		 */
4455 		safe = last_dev_address(conf->reshape_safe - 1,
4456 					&conf->prev);
4457 
4458 		if (next + conf->offset_diff < safe)
4459 			need_flush = 1;
4460 
4461 		last = conf->reshape_progress - 1;
4462 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4463 					       & conf->prev.chunk_mask);
4464 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4465 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4466 	} else {
4467 		/* 'next' is after the last device address that we
4468 		 * might write to for this chunk in the new layout
4469 		 */
4470 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4471 
4472 		/* 'safe' is the earliest device address that we might
4473 		 * read from in the old layout after a restart
4474 		 */
4475 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4476 
4477 		/* Need to update metadata if 'next' might be beyond 'safe'
4478 		 * as that would possibly corrupt data
4479 		 */
4480 		if (next > safe + conf->offset_diff)
4481 			need_flush = 1;
4482 
4483 		sector_nr = conf->reshape_progress;
4484 		last  = sector_nr | (conf->geo.chunk_mask
4485 				     & conf->prev.chunk_mask);
4486 
4487 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4488 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4489 	}
4490 
4491 	if (need_flush ||
4492 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4493 		/* Need to update reshape_position in metadata */
4494 		wait_barrier(conf);
4495 		mddev->reshape_position = conf->reshape_progress;
4496 		if (mddev->reshape_backwards)
4497 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4498 				- conf->reshape_progress;
4499 		else
4500 			mddev->curr_resync_completed = conf->reshape_progress;
4501 		conf->reshape_checkpoint = jiffies;
4502 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4503 		md_wakeup_thread(mddev->thread);
4504 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4505 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4506 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4507 			allow_barrier(conf);
4508 			return sectors_done;
4509 		}
4510 		conf->reshape_safe = mddev->reshape_position;
4511 		allow_barrier(conf);
4512 	}
4513 
4514 read_more:
4515 	/* Now schedule reads for blocks from sector_nr to last */
4516 	r10_bio = raid10_alloc_init_r10buf(conf);
4517 	r10_bio->state = 0;
4518 	raise_barrier(conf, sectors_done != 0);
4519 	atomic_set(&r10_bio->remaining, 0);
4520 	r10_bio->mddev = mddev;
4521 	r10_bio->sector = sector_nr;
4522 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4523 	r10_bio->sectors = last - sector_nr + 1;
4524 	rdev = read_balance(conf, r10_bio, &max_sectors);
4525 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4526 
4527 	if (!rdev) {
4528 		/* Cannot read from here, so need to record bad blocks
4529 		 * on all the target devices.
4530 		 */
4531 		// FIXME
4532 		mempool_free(r10_bio, conf->r10buf_pool);
4533 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4534 		return sectors_done;
4535 	}
4536 
4537 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4538 
4539 	bio_set_dev(read_bio, rdev->bdev);
4540 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4541 			       + rdev->data_offset);
4542 	read_bio->bi_private = r10_bio;
4543 	read_bio->bi_end_io = end_reshape_read;
4544 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4545 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4546 	read_bio->bi_status = 0;
4547 	read_bio->bi_vcnt = 0;
4548 	read_bio->bi_iter.bi_size = 0;
4549 	r10_bio->master_bio = read_bio;
4550 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4551 
4552 	/* Now find the locations in the new layout */
4553 	__raid10_find_phys(&conf->geo, r10_bio);
4554 
4555 	blist = read_bio;
4556 	read_bio->bi_next = NULL;
4557 
4558 	rcu_read_lock();
4559 	for (s = 0; s < conf->copies*2; s++) {
4560 		struct bio *b;
4561 		int d = r10_bio->devs[s/2].devnum;
4562 		struct md_rdev *rdev2;
4563 		if (s&1) {
4564 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4565 			b = r10_bio->devs[s/2].repl_bio;
4566 		} else {
4567 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4568 			b = r10_bio->devs[s/2].bio;
4569 		}
4570 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4571 			continue;
4572 
4573 		bio_set_dev(b, rdev2->bdev);
4574 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4575 			rdev2->new_data_offset;
4576 		b->bi_end_io = end_reshape_write;
4577 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4578 		b->bi_next = blist;
4579 		blist = b;
4580 	}
4581 
4582 	/* Now add as many pages as possible to all of these bios. */
4583 
4584 	nr_sectors = 0;
4585 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4586 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4587 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4588 		int len = (max_sectors - s) << 9;
4589 		if (len > PAGE_SIZE)
4590 			len = PAGE_SIZE;
4591 		for (bio = blist; bio ; bio = bio->bi_next) {
4592 			/*
4593 			 * won't fail because the vec table is big enough
4594 			 * to hold all these pages
4595 			 */
4596 			bio_add_page(bio, page, len, 0);
4597 		}
4598 		sector_nr += len >> 9;
4599 		nr_sectors += len >> 9;
4600 	}
4601 	rcu_read_unlock();
4602 	r10_bio->sectors = nr_sectors;
4603 
4604 	/* Now submit the read */
4605 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4606 	atomic_inc(&r10_bio->remaining);
4607 	read_bio->bi_next = NULL;
4608 	generic_make_request(read_bio);
4609 	sector_nr += nr_sectors;
4610 	sectors_done += nr_sectors;
4611 	if (sector_nr <= last)
4612 		goto read_more;
4613 
4614 	/* Now that we have done the whole section we can
4615 	 * update reshape_progress
4616 	 */
4617 	if (mddev->reshape_backwards)
4618 		conf->reshape_progress -= sectors_done;
4619 	else
4620 		conf->reshape_progress += sectors_done;
4621 
4622 	return sectors_done;
4623 }
4624 
4625 static void end_reshape_request(struct r10bio *r10_bio);
4626 static int handle_reshape_read_error(struct mddev *mddev,
4627 				     struct r10bio *r10_bio);
4628 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4629 {
4630 	/* Reshape read completed.  Hopefully we have a block
4631 	 * to write out.
4632 	 * If we got a read error then we do sync 1-page reads from
4633 	 * elsewhere until we find the data - or give up.
4634 	 */
4635 	struct r10conf *conf = mddev->private;
4636 	int s;
4637 
4638 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4639 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4640 			/* Reshape has been aborted */
4641 			md_done_sync(mddev, r10_bio->sectors, 0);
4642 			return;
4643 		}
4644 
4645 	/* We definitely have the data in the pages, schedule the
4646 	 * writes.
4647 	 */
4648 	atomic_set(&r10_bio->remaining, 1);
4649 	for (s = 0; s < conf->copies*2; s++) {
4650 		struct bio *b;
4651 		int d = r10_bio->devs[s/2].devnum;
4652 		struct md_rdev *rdev;
4653 		rcu_read_lock();
4654 		if (s&1) {
4655 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4656 			b = r10_bio->devs[s/2].repl_bio;
4657 		} else {
4658 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4659 			b = r10_bio->devs[s/2].bio;
4660 		}
4661 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4662 			rcu_read_unlock();
4663 			continue;
4664 		}
4665 		atomic_inc(&rdev->nr_pending);
4666 		rcu_read_unlock();
4667 		md_sync_acct_bio(b, r10_bio->sectors);
4668 		atomic_inc(&r10_bio->remaining);
4669 		b->bi_next = NULL;
4670 		generic_make_request(b);
4671 	}
4672 	end_reshape_request(r10_bio);
4673 }
4674 
4675 static void end_reshape(struct r10conf *conf)
4676 {
4677 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4678 		return;
4679 
4680 	spin_lock_irq(&conf->device_lock);
4681 	conf->prev = conf->geo;
4682 	md_finish_reshape(conf->mddev);
4683 	smp_wmb();
4684 	conf->reshape_progress = MaxSector;
4685 	conf->reshape_safe = MaxSector;
4686 	spin_unlock_irq(&conf->device_lock);
4687 
4688 	/* read-ahead size must cover two whole stripes, which is
4689 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4690 	 */
4691 	if (conf->mddev->queue) {
4692 		int stripe = conf->geo.raid_disks *
4693 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4694 		stripe /= conf->geo.near_copies;
4695 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4696 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4697 	}
4698 	conf->fullsync = 0;
4699 }
4700 
4701 static int handle_reshape_read_error(struct mddev *mddev,
4702 				     struct r10bio *r10_bio)
4703 {
4704 	/* Use sync reads to get the blocks from somewhere else */
4705 	int sectors = r10_bio->sectors;
4706 	struct r10conf *conf = mddev->private;
4707 	struct r10bio *r10b;
4708 	int slot = 0;
4709 	int idx = 0;
4710 	struct page **pages;
4711 
4712 	r10b = kmalloc(sizeof(*r10b) +
4713 	       sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4714 	if (!r10b) {
4715 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4716 		return -ENOMEM;
4717 	}
4718 
4719 	/* reshape IOs share pages from .devs[0].bio */
4720 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4721 
4722 	r10b->sector = r10_bio->sector;
4723 	__raid10_find_phys(&conf->prev, r10b);
4724 
4725 	while (sectors) {
4726 		int s = sectors;
4727 		int success = 0;
4728 		int first_slot = slot;
4729 
4730 		if (s > (PAGE_SIZE >> 9))
4731 			s = PAGE_SIZE >> 9;
4732 
4733 		rcu_read_lock();
4734 		while (!success) {
4735 			int d = r10b->devs[slot].devnum;
4736 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4737 			sector_t addr;
4738 			if (rdev == NULL ||
4739 			    test_bit(Faulty, &rdev->flags) ||
4740 			    !test_bit(In_sync, &rdev->flags))
4741 				goto failed;
4742 
4743 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4744 			atomic_inc(&rdev->nr_pending);
4745 			rcu_read_unlock();
4746 			success = sync_page_io(rdev,
4747 					       addr,
4748 					       s << 9,
4749 					       pages[idx],
4750 					       REQ_OP_READ, 0, false);
4751 			rdev_dec_pending(rdev, mddev);
4752 			rcu_read_lock();
4753 			if (success)
4754 				break;
4755 		failed:
4756 			slot++;
4757 			if (slot >= conf->copies)
4758 				slot = 0;
4759 			if (slot == first_slot)
4760 				break;
4761 		}
4762 		rcu_read_unlock();
4763 		if (!success) {
4764 			/* couldn't read this block, must give up */
4765 			set_bit(MD_RECOVERY_INTR,
4766 				&mddev->recovery);
4767 			kfree(r10b);
4768 			return -EIO;
4769 		}
4770 		sectors -= s;
4771 		idx++;
4772 	}
4773 	kfree(r10b);
4774 	return 0;
4775 }
4776 
4777 static void end_reshape_write(struct bio *bio)
4778 {
4779 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4780 	struct mddev *mddev = r10_bio->mddev;
4781 	struct r10conf *conf = mddev->private;
4782 	int d;
4783 	int slot;
4784 	int repl;
4785 	struct md_rdev *rdev = NULL;
4786 
4787 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4788 	if (repl)
4789 		rdev = conf->mirrors[d].replacement;
4790 	if (!rdev) {
4791 		smp_mb();
4792 		rdev = conf->mirrors[d].rdev;
4793 	}
4794 
4795 	if (bio->bi_status) {
4796 		/* FIXME should record badblock */
4797 		md_error(mddev, rdev);
4798 	}
4799 
4800 	rdev_dec_pending(rdev, mddev);
4801 	end_reshape_request(r10_bio);
4802 }
4803 
4804 static void end_reshape_request(struct r10bio *r10_bio)
4805 {
4806 	if (!atomic_dec_and_test(&r10_bio->remaining))
4807 		return;
4808 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4809 	bio_put(r10_bio->master_bio);
4810 	put_buf(r10_bio);
4811 }
4812 
4813 static void raid10_finish_reshape(struct mddev *mddev)
4814 {
4815 	struct r10conf *conf = mddev->private;
4816 
4817 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4818 		return;
4819 
4820 	if (mddev->delta_disks > 0) {
4821 		sector_t size = raid10_size(mddev, 0, 0);
4822 		md_set_array_sectors(mddev, size);
4823 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4824 			mddev->recovery_cp = mddev->resync_max_sectors;
4825 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4826 		}
4827 		mddev->resync_max_sectors = size;
4828 		if (mddev->queue) {
4829 			set_capacity(mddev->gendisk, mddev->array_sectors);
4830 			revalidate_disk(mddev->gendisk);
4831 		}
4832 	} else {
4833 		int d;
4834 		rcu_read_lock();
4835 		for (d = conf->geo.raid_disks ;
4836 		     d < conf->geo.raid_disks - mddev->delta_disks;
4837 		     d++) {
4838 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4839 			if (rdev)
4840 				clear_bit(In_sync, &rdev->flags);
4841 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4842 			if (rdev)
4843 				clear_bit(In_sync, &rdev->flags);
4844 		}
4845 		rcu_read_unlock();
4846 	}
4847 	mddev->layout = mddev->new_layout;
4848 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4849 	mddev->reshape_position = MaxSector;
4850 	mddev->delta_disks = 0;
4851 	mddev->reshape_backwards = 0;
4852 }
4853 
4854 static struct md_personality raid10_personality =
4855 {
4856 	.name		= "raid10",
4857 	.level		= 10,
4858 	.owner		= THIS_MODULE,
4859 	.make_request	= raid10_make_request,
4860 	.run		= raid10_run,
4861 	.free		= raid10_free,
4862 	.status		= raid10_status,
4863 	.error_handler	= raid10_error,
4864 	.hot_add_disk	= raid10_add_disk,
4865 	.hot_remove_disk= raid10_remove_disk,
4866 	.spare_active	= raid10_spare_active,
4867 	.sync_request	= raid10_sync_request,
4868 	.quiesce	= raid10_quiesce,
4869 	.size		= raid10_size,
4870 	.resize		= raid10_resize,
4871 	.takeover	= raid10_takeover,
4872 	.check_reshape	= raid10_check_reshape,
4873 	.start_reshape	= raid10_start_reshape,
4874 	.finish_reshape	= raid10_finish_reshape,
4875 	.congested	= raid10_congested,
4876 };
4877 
4878 static int __init raid_init(void)
4879 {
4880 	return register_md_personality(&raid10_personality);
4881 }
4882 
4883 static void raid_exit(void)
4884 {
4885 	unregister_md_personality(&raid10_personality);
4886 }
4887 
4888 module_init(raid_init);
4889 module_exit(raid_exit);
4890 MODULE_LICENSE("GPL");
4891 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4892 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4893 MODULE_ALIAS("md-raid10");
4894 MODULE_ALIAS("md-level-10");
4895 
4896 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4897