1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <trace/events/block.h> 29 #include "md.h" 30 #include "raid10.h" 31 #include "raid0.h" 32 #include "md-bitmap.h" 33 34 /* 35 * RAID10 provides a combination of RAID0 and RAID1 functionality. 36 * The layout of data is defined by 37 * chunk_size 38 * raid_disks 39 * near_copies (stored in low byte of layout) 40 * far_copies (stored in second byte of layout) 41 * far_offset (stored in bit 16 of layout ) 42 * use_far_sets (stored in bit 17 of layout ) 43 * use_far_sets_bugfixed (stored in bit 18 of layout ) 44 * 45 * The data to be stored is divided into chunks using chunksize. Each device 46 * is divided into far_copies sections. In each section, chunks are laid out 47 * in a style similar to raid0, but near_copies copies of each chunk is stored 48 * (each on a different drive). The starting device for each section is offset 49 * near_copies from the starting device of the previous section. Thus there 50 * are (near_copies * far_copies) of each chunk, and each is on a different 51 * drive. near_copies and far_copies must be at least one, and their product 52 * is at most raid_disks. 53 * 54 * If far_offset is true, then the far_copies are handled a bit differently. 55 * The copies are still in different stripes, but instead of being very far 56 * apart on disk, there are adjacent stripes. 57 * 58 * The far and offset algorithms are handled slightly differently if 59 * 'use_far_sets' is true. In this case, the array's devices are grouped into 60 * sets that are (near_copies * far_copies) in size. The far copied stripes 61 * are still shifted by 'near_copies' devices, but this shifting stays confined 62 * to the set rather than the entire array. This is done to improve the number 63 * of device combinations that can fail without causing the array to fail. 64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 65 * on a device): 66 * A B C D A B C D E 67 * ... ... 68 * D A B C E A B C D 69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 70 * [A B] [C D] [A B] [C D E] 71 * |...| |...| |...| | ... | 72 * [B A] [D C] [B A] [E C D] 73 */ 74 75 /* 76 * Number of guaranteed r10bios in case of extreme VM load: 77 */ 78 #define NR_RAID10_BIOS 256 79 80 /* when we get a read error on a read-only array, we redirect to another 81 * device without failing the first device, or trying to over-write to 82 * correct the read error. To keep track of bad blocks on a per-bio 83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 84 */ 85 #define IO_BLOCKED ((struct bio *)1) 86 /* When we successfully write to a known bad-block, we need to remove the 87 * bad-block marking which must be done from process context. So we record 88 * the success by setting devs[n].bio to IO_MADE_GOOD 89 */ 90 #define IO_MADE_GOOD ((struct bio *)2) 91 92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 93 94 /* When there are this many requests queued to be written by 95 * the raid10 thread, we become 'congested' to provide back-pressure 96 * for writeback. 97 */ 98 static int max_queued_requests = 1024; 99 100 static void allow_barrier(struct r10conf *conf); 101 static void lower_barrier(struct r10conf *conf); 102 static int _enough(struct r10conf *conf, int previous, int ignore); 103 static int enough(struct r10conf *conf, int ignore); 104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 105 int *skipped); 106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 107 static void end_reshape_write(struct bio *bio); 108 static void end_reshape(struct r10conf *conf); 109 110 #define raid10_log(md, fmt, args...) \ 111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 112 113 #include "raid1-10.c" 114 115 /* 116 * for resync bio, r10bio pointer can be retrieved from the per-bio 117 * 'struct resync_pages'. 118 */ 119 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 120 { 121 return get_resync_pages(bio)->raid_bio; 122 } 123 124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 125 { 126 struct r10conf *conf = data; 127 int size = offsetof(struct r10bio, devs[conf->copies]); 128 129 /* allocate a r10bio with room for raid_disks entries in the 130 * bios array */ 131 return kzalloc(size, gfp_flags); 132 } 133 134 static void r10bio_pool_free(void *r10_bio, void *data) 135 { 136 kfree(r10_bio); 137 } 138 139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 140 /* amount of memory to reserve for resync requests */ 141 #define RESYNC_WINDOW (1024*1024) 142 /* maximum number of concurrent requests, memory permitting */ 143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 144 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 146 147 /* 148 * When performing a resync, we need to read and compare, so 149 * we need as many pages are there are copies. 150 * When performing a recovery, we need 2 bios, one for read, 151 * one for write (we recover only one drive per r10buf) 152 * 153 */ 154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 155 { 156 struct r10conf *conf = data; 157 struct r10bio *r10_bio; 158 struct bio *bio; 159 int j; 160 int nalloc, nalloc_rp; 161 struct resync_pages *rps; 162 163 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 164 if (!r10_bio) 165 return NULL; 166 167 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 168 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 169 nalloc = conf->copies; /* resync */ 170 else 171 nalloc = 2; /* recovery */ 172 173 /* allocate once for all bios */ 174 if (!conf->have_replacement) 175 nalloc_rp = nalloc; 176 else 177 nalloc_rp = nalloc * 2; 178 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags); 179 if (!rps) 180 goto out_free_r10bio; 181 182 /* 183 * Allocate bios. 184 */ 185 for (j = nalloc ; j-- ; ) { 186 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 187 if (!bio) 188 goto out_free_bio; 189 r10_bio->devs[j].bio = bio; 190 if (!conf->have_replacement) 191 continue; 192 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 193 if (!bio) 194 goto out_free_bio; 195 r10_bio->devs[j].repl_bio = bio; 196 } 197 /* 198 * Allocate RESYNC_PAGES data pages and attach them 199 * where needed. 200 */ 201 for (j = 0; j < nalloc; j++) { 202 struct bio *rbio = r10_bio->devs[j].repl_bio; 203 struct resync_pages *rp, *rp_repl; 204 205 rp = &rps[j]; 206 if (rbio) 207 rp_repl = &rps[nalloc + j]; 208 209 bio = r10_bio->devs[j].bio; 210 211 if (!j || test_bit(MD_RECOVERY_SYNC, 212 &conf->mddev->recovery)) { 213 if (resync_alloc_pages(rp, gfp_flags)) 214 goto out_free_pages; 215 } else { 216 memcpy(rp, &rps[0], sizeof(*rp)); 217 resync_get_all_pages(rp); 218 } 219 220 rp->raid_bio = r10_bio; 221 bio->bi_private = rp; 222 if (rbio) { 223 memcpy(rp_repl, rp, sizeof(*rp)); 224 rbio->bi_private = rp_repl; 225 } 226 } 227 228 return r10_bio; 229 230 out_free_pages: 231 while (--j >= 0) 232 resync_free_pages(&rps[j * 2]); 233 234 j = 0; 235 out_free_bio: 236 for ( ; j < nalloc; j++) { 237 if (r10_bio->devs[j].bio) 238 bio_put(r10_bio->devs[j].bio); 239 if (r10_bio->devs[j].repl_bio) 240 bio_put(r10_bio->devs[j].repl_bio); 241 } 242 kfree(rps); 243 out_free_r10bio: 244 r10bio_pool_free(r10_bio, conf); 245 return NULL; 246 } 247 248 static void r10buf_pool_free(void *__r10_bio, void *data) 249 { 250 struct r10conf *conf = data; 251 struct r10bio *r10bio = __r10_bio; 252 int j; 253 struct resync_pages *rp = NULL; 254 255 for (j = conf->copies; j--; ) { 256 struct bio *bio = r10bio->devs[j].bio; 257 258 rp = get_resync_pages(bio); 259 resync_free_pages(rp); 260 bio_put(bio); 261 262 bio = r10bio->devs[j].repl_bio; 263 if (bio) 264 bio_put(bio); 265 } 266 267 /* resync pages array stored in the 1st bio's .bi_private */ 268 kfree(rp); 269 270 r10bio_pool_free(r10bio, conf); 271 } 272 273 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 274 { 275 int i; 276 277 for (i = 0; i < conf->copies; i++) { 278 struct bio **bio = & r10_bio->devs[i].bio; 279 if (!BIO_SPECIAL(*bio)) 280 bio_put(*bio); 281 *bio = NULL; 282 bio = &r10_bio->devs[i].repl_bio; 283 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 284 bio_put(*bio); 285 *bio = NULL; 286 } 287 } 288 289 static void free_r10bio(struct r10bio *r10_bio) 290 { 291 struct r10conf *conf = r10_bio->mddev->private; 292 293 put_all_bios(conf, r10_bio); 294 mempool_free(r10_bio, conf->r10bio_pool); 295 } 296 297 static void put_buf(struct r10bio *r10_bio) 298 { 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 mempool_free(r10_bio, conf->r10buf_pool); 302 303 lower_barrier(conf); 304 } 305 306 static void reschedule_retry(struct r10bio *r10_bio) 307 { 308 unsigned long flags; 309 struct mddev *mddev = r10_bio->mddev; 310 struct r10conf *conf = mddev->private; 311 312 spin_lock_irqsave(&conf->device_lock, flags); 313 list_add(&r10_bio->retry_list, &conf->retry_list); 314 conf->nr_queued ++; 315 spin_unlock_irqrestore(&conf->device_lock, flags); 316 317 /* wake up frozen array... */ 318 wake_up(&conf->wait_barrier); 319 320 md_wakeup_thread(mddev->thread); 321 } 322 323 /* 324 * raid_end_bio_io() is called when we have finished servicing a mirrored 325 * operation and are ready to return a success/failure code to the buffer 326 * cache layer. 327 */ 328 static void raid_end_bio_io(struct r10bio *r10_bio) 329 { 330 struct bio *bio = r10_bio->master_bio; 331 struct r10conf *conf = r10_bio->mddev->private; 332 333 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 334 bio->bi_status = BLK_STS_IOERR; 335 336 bio_endio(bio); 337 /* 338 * Wake up any possible resync thread that waits for the device 339 * to go idle. 340 */ 341 allow_barrier(conf); 342 343 free_r10bio(r10_bio); 344 } 345 346 /* 347 * Update disk head position estimator based on IRQ completion info. 348 */ 349 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 350 { 351 struct r10conf *conf = r10_bio->mddev->private; 352 353 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 354 r10_bio->devs[slot].addr + (r10_bio->sectors); 355 } 356 357 /* 358 * Find the disk number which triggered given bio 359 */ 360 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 361 struct bio *bio, int *slotp, int *replp) 362 { 363 int slot; 364 int repl = 0; 365 366 for (slot = 0; slot < conf->copies; slot++) { 367 if (r10_bio->devs[slot].bio == bio) 368 break; 369 if (r10_bio->devs[slot].repl_bio == bio) { 370 repl = 1; 371 break; 372 } 373 } 374 375 BUG_ON(slot == conf->copies); 376 update_head_pos(slot, r10_bio); 377 378 if (slotp) 379 *slotp = slot; 380 if (replp) 381 *replp = repl; 382 return r10_bio->devs[slot].devnum; 383 } 384 385 static void raid10_end_read_request(struct bio *bio) 386 { 387 int uptodate = !bio->bi_status; 388 struct r10bio *r10_bio = bio->bi_private; 389 int slot; 390 struct md_rdev *rdev; 391 struct r10conf *conf = r10_bio->mddev->private; 392 393 slot = r10_bio->read_slot; 394 rdev = r10_bio->devs[slot].rdev; 395 /* 396 * this branch is our 'one mirror IO has finished' event handler: 397 */ 398 update_head_pos(slot, r10_bio); 399 400 if (uptodate) { 401 /* 402 * Set R10BIO_Uptodate in our master bio, so that 403 * we will return a good error code to the higher 404 * levels even if IO on some other mirrored buffer fails. 405 * 406 * The 'master' represents the composite IO operation to 407 * user-side. So if something waits for IO, then it will 408 * wait for the 'master' bio. 409 */ 410 set_bit(R10BIO_Uptodate, &r10_bio->state); 411 } else { 412 /* If all other devices that store this block have 413 * failed, we want to return the error upwards rather 414 * than fail the last device. Here we redefine 415 * "uptodate" to mean "Don't want to retry" 416 */ 417 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 418 rdev->raid_disk)) 419 uptodate = 1; 420 } 421 if (uptodate) { 422 raid_end_bio_io(r10_bio); 423 rdev_dec_pending(rdev, conf->mddev); 424 } else { 425 /* 426 * oops, read error - keep the refcount on the rdev 427 */ 428 char b[BDEVNAME_SIZE]; 429 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 430 mdname(conf->mddev), 431 bdevname(rdev->bdev, b), 432 (unsigned long long)r10_bio->sector); 433 set_bit(R10BIO_ReadError, &r10_bio->state); 434 reschedule_retry(r10_bio); 435 } 436 } 437 438 static void close_write(struct r10bio *r10_bio) 439 { 440 /* clear the bitmap if all writes complete successfully */ 441 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 442 r10_bio->sectors, 443 !test_bit(R10BIO_Degraded, &r10_bio->state), 444 0); 445 md_write_end(r10_bio->mddev); 446 } 447 448 static void one_write_done(struct r10bio *r10_bio) 449 { 450 if (atomic_dec_and_test(&r10_bio->remaining)) { 451 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 452 reschedule_retry(r10_bio); 453 else { 454 close_write(r10_bio); 455 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 456 reschedule_retry(r10_bio); 457 else 458 raid_end_bio_io(r10_bio); 459 } 460 } 461 } 462 463 static void raid10_end_write_request(struct bio *bio) 464 { 465 struct r10bio *r10_bio = bio->bi_private; 466 int dev; 467 int dec_rdev = 1; 468 struct r10conf *conf = r10_bio->mddev->private; 469 int slot, repl; 470 struct md_rdev *rdev = NULL; 471 struct bio *to_put = NULL; 472 bool discard_error; 473 474 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 475 476 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 477 478 if (repl) 479 rdev = conf->mirrors[dev].replacement; 480 if (!rdev) { 481 smp_rmb(); 482 repl = 0; 483 rdev = conf->mirrors[dev].rdev; 484 } 485 /* 486 * this branch is our 'one mirror IO has finished' event handler: 487 */ 488 if (bio->bi_status && !discard_error) { 489 if (repl) 490 /* Never record new bad blocks to replacement, 491 * just fail it. 492 */ 493 md_error(rdev->mddev, rdev); 494 else { 495 set_bit(WriteErrorSeen, &rdev->flags); 496 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 497 set_bit(MD_RECOVERY_NEEDED, 498 &rdev->mddev->recovery); 499 500 dec_rdev = 0; 501 if (test_bit(FailFast, &rdev->flags) && 502 (bio->bi_opf & MD_FAILFAST)) { 503 md_error(rdev->mddev, rdev); 504 if (!test_bit(Faulty, &rdev->flags)) 505 /* This is the only remaining device, 506 * We need to retry the write without 507 * FailFast 508 */ 509 set_bit(R10BIO_WriteError, &r10_bio->state); 510 else { 511 r10_bio->devs[slot].bio = NULL; 512 to_put = bio; 513 dec_rdev = 1; 514 } 515 } else 516 set_bit(R10BIO_WriteError, &r10_bio->state); 517 } 518 } else { 519 /* 520 * Set R10BIO_Uptodate in our master bio, so that 521 * we will return a good error code for to the higher 522 * levels even if IO on some other mirrored buffer fails. 523 * 524 * The 'master' represents the composite IO operation to 525 * user-side. So if something waits for IO, then it will 526 * wait for the 'master' bio. 527 */ 528 sector_t first_bad; 529 int bad_sectors; 530 531 /* 532 * Do not set R10BIO_Uptodate if the current device is 533 * rebuilding or Faulty. This is because we cannot use 534 * such device for properly reading the data back (we could 535 * potentially use it, if the current write would have felt 536 * before rdev->recovery_offset, but for simplicity we don't 537 * check this here. 538 */ 539 if (test_bit(In_sync, &rdev->flags) && 540 !test_bit(Faulty, &rdev->flags)) 541 set_bit(R10BIO_Uptodate, &r10_bio->state); 542 543 /* Maybe we can clear some bad blocks. */ 544 if (is_badblock(rdev, 545 r10_bio->devs[slot].addr, 546 r10_bio->sectors, 547 &first_bad, &bad_sectors) && !discard_error) { 548 bio_put(bio); 549 if (repl) 550 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 551 else 552 r10_bio->devs[slot].bio = IO_MADE_GOOD; 553 dec_rdev = 0; 554 set_bit(R10BIO_MadeGood, &r10_bio->state); 555 } 556 } 557 558 /* 559 * 560 * Let's see if all mirrored write operations have finished 561 * already. 562 */ 563 one_write_done(r10_bio); 564 if (dec_rdev) 565 rdev_dec_pending(rdev, conf->mddev); 566 if (to_put) 567 bio_put(to_put); 568 } 569 570 /* 571 * RAID10 layout manager 572 * As well as the chunksize and raid_disks count, there are two 573 * parameters: near_copies and far_copies. 574 * near_copies * far_copies must be <= raid_disks. 575 * Normally one of these will be 1. 576 * If both are 1, we get raid0. 577 * If near_copies == raid_disks, we get raid1. 578 * 579 * Chunks are laid out in raid0 style with near_copies copies of the 580 * first chunk, followed by near_copies copies of the next chunk and 581 * so on. 582 * If far_copies > 1, then after 1/far_copies of the array has been assigned 583 * as described above, we start again with a device offset of near_copies. 584 * So we effectively have another copy of the whole array further down all 585 * the drives, but with blocks on different drives. 586 * With this layout, and block is never stored twice on the one device. 587 * 588 * raid10_find_phys finds the sector offset of a given virtual sector 589 * on each device that it is on. 590 * 591 * raid10_find_virt does the reverse mapping, from a device and a 592 * sector offset to a virtual address 593 */ 594 595 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 596 { 597 int n,f; 598 sector_t sector; 599 sector_t chunk; 600 sector_t stripe; 601 int dev; 602 int slot = 0; 603 int last_far_set_start, last_far_set_size; 604 605 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 606 last_far_set_start *= geo->far_set_size; 607 608 last_far_set_size = geo->far_set_size; 609 last_far_set_size += (geo->raid_disks % geo->far_set_size); 610 611 /* now calculate first sector/dev */ 612 chunk = r10bio->sector >> geo->chunk_shift; 613 sector = r10bio->sector & geo->chunk_mask; 614 615 chunk *= geo->near_copies; 616 stripe = chunk; 617 dev = sector_div(stripe, geo->raid_disks); 618 if (geo->far_offset) 619 stripe *= geo->far_copies; 620 621 sector += stripe << geo->chunk_shift; 622 623 /* and calculate all the others */ 624 for (n = 0; n < geo->near_copies; n++) { 625 int d = dev; 626 int set; 627 sector_t s = sector; 628 r10bio->devs[slot].devnum = d; 629 r10bio->devs[slot].addr = s; 630 slot++; 631 632 for (f = 1; f < geo->far_copies; f++) { 633 set = d / geo->far_set_size; 634 d += geo->near_copies; 635 636 if ((geo->raid_disks % geo->far_set_size) && 637 (d > last_far_set_start)) { 638 d -= last_far_set_start; 639 d %= last_far_set_size; 640 d += last_far_set_start; 641 } else { 642 d %= geo->far_set_size; 643 d += geo->far_set_size * set; 644 } 645 s += geo->stride; 646 r10bio->devs[slot].devnum = d; 647 r10bio->devs[slot].addr = s; 648 slot++; 649 } 650 dev++; 651 if (dev >= geo->raid_disks) { 652 dev = 0; 653 sector += (geo->chunk_mask + 1); 654 } 655 } 656 } 657 658 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 659 { 660 struct geom *geo = &conf->geo; 661 662 if (conf->reshape_progress != MaxSector && 663 ((r10bio->sector >= conf->reshape_progress) != 664 conf->mddev->reshape_backwards)) { 665 set_bit(R10BIO_Previous, &r10bio->state); 666 geo = &conf->prev; 667 } else 668 clear_bit(R10BIO_Previous, &r10bio->state); 669 670 __raid10_find_phys(geo, r10bio); 671 } 672 673 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 674 { 675 sector_t offset, chunk, vchunk; 676 /* Never use conf->prev as this is only called during resync 677 * or recovery, so reshape isn't happening 678 */ 679 struct geom *geo = &conf->geo; 680 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 681 int far_set_size = geo->far_set_size; 682 int last_far_set_start; 683 684 if (geo->raid_disks % geo->far_set_size) { 685 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 686 last_far_set_start *= geo->far_set_size; 687 688 if (dev >= last_far_set_start) { 689 far_set_size = geo->far_set_size; 690 far_set_size += (geo->raid_disks % geo->far_set_size); 691 far_set_start = last_far_set_start; 692 } 693 } 694 695 offset = sector & geo->chunk_mask; 696 if (geo->far_offset) { 697 int fc; 698 chunk = sector >> geo->chunk_shift; 699 fc = sector_div(chunk, geo->far_copies); 700 dev -= fc * geo->near_copies; 701 if (dev < far_set_start) 702 dev += far_set_size; 703 } else { 704 while (sector >= geo->stride) { 705 sector -= geo->stride; 706 if (dev < (geo->near_copies + far_set_start)) 707 dev += far_set_size - geo->near_copies; 708 else 709 dev -= geo->near_copies; 710 } 711 chunk = sector >> geo->chunk_shift; 712 } 713 vchunk = chunk * geo->raid_disks + dev; 714 sector_div(vchunk, geo->near_copies); 715 return (vchunk << geo->chunk_shift) + offset; 716 } 717 718 /* 719 * This routine returns the disk from which the requested read should 720 * be done. There is a per-array 'next expected sequential IO' sector 721 * number - if this matches on the next IO then we use the last disk. 722 * There is also a per-disk 'last know head position' sector that is 723 * maintained from IRQ contexts, both the normal and the resync IO 724 * completion handlers update this position correctly. If there is no 725 * perfect sequential match then we pick the disk whose head is closest. 726 * 727 * If there are 2 mirrors in the same 2 devices, performance degrades 728 * because position is mirror, not device based. 729 * 730 * The rdev for the device selected will have nr_pending incremented. 731 */ 732 733 /* 734 * FIXME: possibly should rethink readbalancing and do it differently 735 * depending on near_copies / far_copies geometry. 736 */ 737 static struct md_rdev *read_balance(struct r10conf *conf, 738 struct r10bio *r10_bio, 739 int *max_sectors) 740 { 741 const sector_t this_sector = r10_bio->sector; 742 int disk, slot; 743 int sectors = r10_bio->sectors; 744 int best_good_sectors; 745 sector_t new_distance, best_dist; 746 struct md_rdev *best_rdev, *rdev = NULL; 747 int do_balance; 748 int best_slot; 749 struct geom *geo = &conf->geo; 750 751 raid10_find_phys(conf, r10_bio); 752 rcu_read_lock(); 753 best_slot = -1; 754 best_rdev = NULL; 755 best_dist = MaxSector; 756 best_good_sectors = 0; 757 do_balance = 1; 758 clear_bit(R10BIO_FailFast, &r10_bio->state); 759 /* 760 * Check if we can balance. We can balance on the whole 761 * device if no resync is going on (recovery is ok), or below 762 * the resync window. We take the first readable disk when 763 * above the resync window. 764 */ 765 if ((conf->mddev->recovery_cp < MaxSector 766 && (this_sector + sectors >= conf->next_resync)) || 767 (mddev_is_clustered(conf->mddev) && 768 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 769 this_sector + sectors))) 770 do_balance = 0; 771 772 for (slot = 0; slot < conf->copies ; slot++) { 773 sector_t first_bad; 774 int bad_sectors; 775 sector_t dev_sector; 776 777 if (r10_bio->devs[slot].bio == IO_BLOCKED) 778 continue; 779 disk = r10_bio->devs[slot].devnum; 780 rdev = rcu_dereference(conf->mirrors[disk].replacement); 781 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 782 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 783 rdev = rcu_dereference(conf->mirrors[disk].rdev); 784 if (rdev == NULL || 785 test_bit(Faulty, &rdev->flags)) 786 continue; 787 if (!test_bit(In_sync, &rdev->flags) && 788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 789 continue; 790 791 dev_sector = r10_bio->devs[slot].addr; 792 if (is_badblock(rdev, dev_sector, sectors, 793 &first_bad, &bad_sectors)) { 794 if (best_dist < MaxSector) 795 /* Already have a better slot */ 796 continue; 797 if (first_bad <= dev_sector) { 798 /* Cannot read here. If this is the 799 * 'primary' device, then we must not read 800 * beyond 'bad_sectors' from another device. 801 */ 802 bad_sectors -= (dev_sector - first_bad); 803 if (!do_balance && sectors > bad_sectors) 804 sectors = bad_sectors; 805 if (best_good_sectors > sectors) 806 best_good_sectors = sectors; 807 } else { 808 sector_t good_sectors = 809 first_bad - dev_sector; 810 if (good_sectors > best_good_sectors) { 811 best_good_sectors = good_sectors; 812 best_slot = slot; 813 best_rdev = rdev; 814 } 815 if (!do_balance) 816 /* Must read from here */ 817 break; 818 } 819 continue; 820 } else 821 best_good_sectors = sectors; 822 823 if (!do_balance) 824 break; 825 826 if (best_slot >= 0) 827 /* At least 2 disks to choose from so failfast is OK */ 828 set_bit(R10BIO_FailFast, &r10_bio->state); 829 /* This optimisation is debatable, and completely destroys 830 * sequential read speed for 'far copies' arrays. So only 831 * keep it for 'near' arrays, and review those later. 832 */ 833 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 834 new_distance = 0; 835 836 /* for far > 1 always use the lowest address */ 837 else if (geo->far_copies > 1) 838 new_distance = r10_bio->devs[slot].addr; 839 else 840 new_distance = abs(r10_bio->devs[slot].addr - 841 conf->mirrors[disk].head_position); 842 if (new_distance < best_dist) { 843 best_dist = new_distance; 844 best_slot = slot; 845 best_rdev = rdev; 846 } 847 } 848 if (slot >= conf->copies) { 849 slot = best_slot; 850 rdev = best_rdev; 851 } 852 853 if (slot >= 0) { 854 atomic_inc(&rdev->nr_pending); 855 r10_bio->read_slot = slot; 856 } else 857 rdev = NULL; 858 rcu_read_unlock(); 859 *max_sectors = best_good_sectors; 860 861 return rdev; 862 } 863 864 static int raid10_congested(struct mddev *mddev, int bits) 865 { 866 struct r10conf *conf = mddev->private; 867 int i, ret = 0; 868 869 if ((bits & (1 << WB_async_congested)) && 870 conf->pending_count >= max_queued_requests) 871 return 1; 872 873 rcu_read_lock(); 874 for (i = 0; 875 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 876 && ret == 0; 877 i++) { 878 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 879 if (rdev && !test_bit(Faulty, &rdev->flags)) { 880 struct request_queue *q = bdev_get_queue(rdev->bdev); 881 882 ret |= bdi_congested(q->backing_dev_info, bits); 883 } 884 } 885 rcu_read_unlock(); 886 return ret; 887 } 888 889 static void flush_pending_writes(struct r10conf *conf) 890 { 891 /* Any writes that have been queued but are awaiting 892 * bitmap updates get flushed here. 893 */ 894 spin_lock_irq(&conf->device_lock); 895 896 if (conf->pending_bio_list.head) { 897 struct blk_plug plug; 898 struct bio *bio; 899 900 bio = bio_list_get(&conf->pending_bio_list); 901 conf->pending_count = 0; 902 spin_unlock_irq(&conf->device_lock); 903 blk_start_plug(&plug); 904 /* flush any pending bitmap writes to disk 905 * before proceeding w/ I/O */ 906 bitmap_unplug(conf->mddev->bitmap); 907 wake_up(&conf->wait_barrier); 908 909 while (bio) { /* submit pending writes */ 910 struct bio *next = bio->bi_next; 911 struct md_rdev *rdev = (void*)bio->bi_disk; 912 bio->bi_next = NULL; 913 bio_set_dev(bio, rdev->bdev); 914 if (test_bit(Faulty, &rdev->flags)) { 915 bio_io_error(bio); 916 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 917 !blk_queue_discard(bio->bi_disk->queue))) 918 /* Just ignore it */ 919 bio_endio(bio); 920 else 921 generic_make_request(bio); 922 bio = next; 923 } 924 blk_finish_plug(&plug); 925 } else 926 spin_unlock_irq(&conf->device_lock); 927 } 928 929 /* Barriers.... 930 * Sometimes we need to suspend IO while we do something else, 931 * either some resync/recovery, or reconfigure the array. 932 * To do this we raise a 'barrier'. 933 * The 'barrier' is a counter that can be raised multiple times 934 * to count how many activities are happening which preclude 935 * normal IO. 936 * We can only raise the barrier if there is no pending IO. 937 * i.e. if nr_pending == 0. 938 * We choose only to raise the barrier if no-one is waiting for the 939 * barrier to go down. This means that as soon as an IO request 940 * is ready, no other operations which require a barrier will start 941 * until the IO request has had a chance. 942 * 943 * So: regular IO calls 'wait_barrier'. When that returns there 944 * is no backgroup IO happening, It must arrange to call 945 * allow_barrier when it has finished its IO. 946 * backgroup IO calls must call raise_barrier. Once that returns 947 * there is no normal IO happeing. It must arrange to call 948 * lower_barrier when the particular background IO completes. 949 */ 950 951 static void raise_barrier(struct r10conf *conf, int force) 952 { 953 BUG_ON(force && !conf->barrier); 954 spin_lock_irq(&conf->resync_lock); 955 956 /* Wait until no block IO is waiting (unless 'force') */ 957 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 958 conf->resync_lock); 959 960 /* block any new IO from starting */ 961 conf->barrier++; 962 963 /* Now wait for all pending IO to complete */ 964 wait_event_lock_irq(conf->wait_barrier, 965 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 966 conf->resync_lock); 967 968 spin_unlock_irq(&conf->resync_lock); 969 } 970 971 static void lower_barrier(struct r10conf *conf) 972 { 973 unsigned long flags; 974 spin_lock_irqsave(&conf->resync_lock, flags); 975 conf->barrier--; 976 spin_unlock_irqrestore(&conf->resync_lock, flags); 977 wake_up(&conf->wait_barrier); 978 } 979 980 static void wait_barrier(struct r10conf *conf) 981 { 982 spin_lock_irq(&conf->resync_lock); 983 if (conf->barrier) { 984 conf->nr_waiting++; 985 /* Wait for the barrier to drop. 986 * However if there are already pending 987 * requests (preventing the barrier from 988 * rising completely), and the 989 * pre-process bio queue isn't empty, 990 * then don't wait, as we need to empty 991 * that queue to get the nr_pending 992 * count down. 993 */ 994 raid10_log(conf->mddev, "wait barrier"); 995 wait_event_lock_irq(conf->wait_barrier, 996 !conf->barrier || 997 (atomic_read(&conf->nr_pending) && 998 current->bio_list && 999 (!bio_list_empty(¤t->bio_list[0]) || 1000 !bio_list_empty(¤t->bio_list[1]))), 1001 conf->resync_lock); 1002 conf->nr_waiting--; 1003 if (!conf->nr_waiting) 1004 wake_up(&conf->wait_barrier); 1005 } 1006 atomic_inc(&conf->nr_pending); 1007 spin_unlock_irq(&conf->resync_lock); 1008 } 1009 1010 static void allow_barrier(struct r10conf *conf) 1011 { 1012 if ((atomic_dec_and_test(&conf->nr_pending)) || 1013 (conf->array_freeze_pending)) 1014 wake_up(&conf->wait_barrier); 1015 } 1016 1017 static void freeze_array(struct r10conf *conf, int extra) 1018 { 1019 /* stop syncio and normal IO and wait for everything to 1020 * go quiet. 1021 * We increment barrier and nr_waiting, and then 1022 * wait until nr_pending match nr_queued+extra 1023 * This is called in the context of one normal IO request 1024 * that has failed. Thus any sync request that might be pending 1025 * will be blocked by nr_pending, and we need to wait for 1026 * pending IO requests to complete or be queued for re-try. 1027 * Thus the number queued (nr_queued) plus this request (extra) 1028 * must match the number of pending IOs (nr_pending) before 1029 * we continue. 1030 */ 1031 spin_lock_irq(&conf->resync_lock); 1032 conf->array_freeze_pending++; 1033 conf->barrier++; 1034 conf->nr_waiting++; 1035 wait_event_lock_irq_cmd(conf->wait_barrier, 1036 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1037 conf->resync_lock, 1038 flush_pending_writes(conf)); 1039 1040 conf->array_freeze_pending--; 1041 spin_unlock_irq(&conf->resync_lock); 1042 } 1043 1044 static void unfreeze_array(struct r10conf *conf) 1045 { 1046 /* reverse the effect of the freeze */ 1047 spin_lock_irq(&conf->resync_lock); 1048 conf->barrier--; 1049 conf->nr_waiting--; 1050 wake_up(&conf->wait_barrier); 1051 spin_unlock_irq(&conf->resync_lock); 1052 } 1053 1054 static sector_t choose_data_offset(struct r10bio *r10_bio, 1055 struct md_rdev *rdev) 1056 { 1057 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1058 test_bit(R10BIO_Previous, &r10_bio->state)) 1059 return rdev->data_offset; 1060 else 1061 return rdev->new_data_offset; 1062 } 1063 1064 struct raid10_plug_cb { 1065 struct blk_plug_cb cb; 1066 struct bio_list pending; 1067 int pending_cnt; 1068 }; 1069 1070 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1071 { 1072 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1073 cb); 1074 struct mddev *mddev = plug->cb.data; 1075 struct r10conf *conf = mddev->private; 1076 struct bio *bio; 1077 1078 if (from_schedule || current->bio_list) { 1079 spin_lock_irq(&conf->device_lock); 1080 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1081 conf->pending_count += plug->pending_cnt; 1082 spin_unlock_irq(&conf->device_lock); 1083 wake_up(&conf->wait_barrier); 1084 md_wakeup_thread(mddev->thread); 1085 kfree(plug); 1086 return; 1087 } 1088 1089 /* we aren't scheduling, so we can do the write-out directly. */ 1090 bio = bio_list_get(&plug->pending); 1091 bitmap_unplug(mddev->bitmap); 1092 wake_up(&conf->wait_barrier); 1093 1094 while (bio) { /* submit pending writes */ 1095 struct bio *next = bio->bi_next; 1096 struct md_rdev *rdev = (void*)bio->bi_disk; 1097 bio->bi_next = NULL; 1098 bio_set_dev(bio, rdev->bdev); 1099 if (test_bit(Faulty, &rdev->flags)) { 1100 bio_io_error(bio); 1101 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1102 !blk_queue_discard(bio->bi_disk->queue))) 1103 /* Just ignore it */ 1104 bio_endio(bio); 1105 else 1106 generic_make_request(bio); 1107 bio = next; 1108 } 1109 kfree(plug); 1110 } 1111 1112 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1113 struct r10bio *r10_bio) 1114 { 1115 struct r10conf *conf = mddev->private; 1116 struct bio *read_bio; 1117 const int op = bio_op(bio); 1118 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1119 int max_sectors; 1120 sector_t sectors; 1121 struct md_rdev *rdev; 1122 char b[BDEVNAME_SIZE]; 1123 int slot = r10_bio->read_slot; 1124 struct md_rdev *err_rdev = NULL; 1125 gfp_t gfp = GFP_NOIO; 1126 1127 if (r10_bio->devs[slot].rdev) { 1128 /* 1129 * This is an error retry, but we cannot 1130 * safely dereference the rdev in the r10_bio, 1131 * we must use the one in conf. 1132 * If it has already been disconnected (unlikely) 1133 * we lose the device name in error messages. 1134 */ 1135 int disk; 1136 /* 1137 * As we are blocking raid10, it is a little safer to 1138 * use __GFP_HIGH. 1139 */ 1140 gfp = GFP_NOIO | __GFP_HIGH; 1141 1142 rcu_read_lock(); 1143 disk = r10_bio->devs[slot].devnum; 1144 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1145 if (err_rdev) 1146 bdevname(err_rdev->bdev, b); 1147 else { 1148 strcpy(b, "???"); 1149 /* This never gets dereferenced */ 1150 err_rdev = r10_bio->devs[slot].rdev; 1151 } 1152 rcu_read_unlock(); 1153 } 1154 /* 1155 * Register the new request and wait if the reconstruction 1156 * thread has put up a bar for new requests. 1157 * Continue immediately if no resync is active currently. 1158 */ 1159 wait_barrier(conf); 1160 1161 sectors = r10_bio->sectors; 1162 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1163 bio->bi_iter.bi_sector < conf->reshape_progress && 1164 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1165 /* 1166 * IO spans the reshape position. Need to wait for reshape to 1167 * pass 1168 */ 1169 raid10_log(conf->mddev, "wait reshape"); 1170 allow_barrier(conf); 1171 wait_event(conf->wait_barrier, 1172 conf->reshape_progress <= bio->bi_iter.bi_sector || 1173 conf->reshape_progress >= bio->bi_iter.bi_sector + 1174 sectors); 1175 wait_barrier(conf); 1176 } 1177 1178 rdev = read_balance(conf, r10_bio, &max_sectors); 1179 if (!rdev) { 1180 if (err_rdev) { 1181 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1182 mdname(mddev), b, 1183 (unsigned long long)r10_bio->sector); 1184 } 1185 raid_end_bio_io(r10_bio); 1186 return; 1187 } 1188 if (err_rdev) 1189 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1190 mdname(mddev), 1191 bdevname(rdev->bdev, b), 1192 (unsigned long long)r10_bio->sector); 1193 if (max_sectors < bio_sectors(bio)) { 1194 struct bio *split = bio_split(bio, max_sectors, 1195 gfp, conf->bio_split); 1196 bio_chain(split, bio); 1197 generic_make_request(bio); 1198 bio = split; 1199 r10_bio->master_bio = bio; 1200 r10_bio->sectors = max_sectors; 1201 } 1202 slot = r10_bio->read_slot; 1203 1204 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set); 1205 1206 r10_bio->devs[slot].bio = read_bio; 1207 r10_bio->devs[slot].rdev = rdev; 1208 1209 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1210 choose_data_offset(r10_bio, rdev); 1211 bio_set_dev(read_bio, rdev->bdev); 1212 read_bio->bi_end_io = raid10_end_read_request; 1213 bio_set_op_attrs(read_bio, op, do_sync); 1214 if (test_bit(FailFast, &rdev->flags) && 1215 test_bit(R10BIO_FailFast, &r10_bio->state)) 1216 read_bio->bi_opf |= MD_FAILFAST; 1217 read_bio->bi_private = r10_bio; 1218 1219 if (mddev->gendisk) 1220 trace_block_bio_remap(read_bio->bi_disk->queue, 1221 read_bio, disk_devt(mddev->gendisk), 1222 r10_bio->sector); 1223 generic_make_request(read_bio); 1224 return; 1225 } 1226 1227 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1228 struct bio *bio, bool replacement, 1229 int n_copy) 1230 { 1231 const int op = bio_op(bio); 1232 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1233 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1234 unsigned long flags; 1235 struct blk_plug_cb *cb; 1236 struct raid10_plug_cb *plug = NULL; 1237 struct r10conf *conf = mddev->private; 1238 struct md_rdev *rdev; 1239 int devnum = r10_bio->devs[n_copy].devnum; 1240 struct bio *mbio; 1241 1242 if (replacement) { 1243 rdev = conf->mirrors[devnum].replacement; 1244 if (rdev == NULL) { 1245 /* Replacement just got moved to main 'rdev' */ 1246 smp_mb(); 1247 rdev = conf->mirrors[devnum].rdev; 1248 } 1249 } else 1250 rdev = conf->mirrors[devnum].rdev; 1251 1252 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1253 if (replacement) 1254 r10_bio->devs[n_copy].repl_bio = mbio; 1255 else 1256 r10_bio->devs[n_copy].bio = mbio; 1257 1258 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1259 choose_data_offset(r10_bio, rdev)); 1260 bio_set_dev(mbio, rdev->bdev); 1261 mbio->bi_end_io = raid10_end_write_request; 1262 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1263 if (!replacement && test_bit(FailFast, 1264 &conf->mirrors[devnum].rdev->flags) 1265 && enough(conf, devnum)) 1266 mbio->bi_opf |= MD_FAILFAST; 1267 mbio->bi_private = r10_bio; 1268 1269 if (conf->mddev->gendisk) 1270 trace_block_bio_remap(mbio->bi_disk->queue, 1271 mbio, disk_devt(conf->mddev->gendisk), 1272 r10_bio->sector); 1273 /* flush_pending_writes() needs access to the rdev so...*/ 1274 mbio->bi_disk = (void *)rdev; 1275 1276 atomic_inc(&r10_bio->remaining); 1277 1278 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1279 if (cb) 1280 plug = container_of(cb, struct raid10_plug_cb, cb); 1281 else 1282 plug = NULL; 1283 if (plug) { 1284 bio_list_add(&plug->pending, mbio); 1285 plug->pending_cnt++; 1286 } else { 1287 spin_lock_irqsave(&conf->device_lock, flags); 1288 bio_list_add(&conf->pending_bio_list, mbio); 1289 conf->pending_count++; 1290 spin_unlock_irqrestore(&conf->device_lock, flags); 1291 md_wakeup_thread(mddev->thread); 1292 } 1293 } 1294 1295 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1296 struct r10bio *r10_bio) 1297 { 1298 struct r10conf *conf = mddev->private; 1299 int i; 1300 struct md_rdev *blocked_rdev; 1301 sector_t sectors; 1302 int max_sectors; 1303 1304 if ((mddev_is_clustered(mddev) && 1305 md_cluster_ops->area_resyncing(mddev, WRITE, 1306 bio->bi_iter.bi_sector, 1307 bio_end_sector(bio)))) { 1308 DEFINE_WAIT(w); 1309 for (;;) { 1310 prepare_to_wait(&conf->wait_barrier, 1311 &w, TASK_IDLE); 1312 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1313 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1314 break; 1315 schedule(); 1316 } 1317 finish_wait(&conf->wait_barrier, &w); 1318 } 1319 1320 /* 1321 * Register the new request and wait if the reconstruction 1322 * thread has put up a bar for new requests. 1323 * Continue immediately if no resync is active currently. 1324 */ 1325 wait_barrier(conf); 1326 1327 sectors = r10_bio->sectors; 1328 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1329 bio->bi_iter.bi_sector < conf->reshape_progress && 1330 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1331 /* 1332 * IO spans the reshape position. Need to wait for reshape to 1333 * pass 1334 */ 1335 raid10_log(conf->mddev, "wait reshape"); 1336 allow_barrier(conf); 1337 wait_event(conf->wait_barrier, 1338 conf->reshape_progress <= bio->bi_iter.bi_sector || 1339 conf->reshape_progress >= bio->bi_iter.bi_sector + 1340 sectors); 1341 wait_barrier(conf); 1342 } 1343 1344 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1345 (mddev->reshape_backwards 1346 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1347 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1348 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1349 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1350 /* Need to update reshape_position in metadata */ 1351 mddev->reshape_position = conf->reshape_progress; 1352 set_mask_bits(&mddev->sb_flags, 0, 1353 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1354 md_wakeup_thread(mddev->thread); 1355 raid10_log(conf->mddev, "wait reshape metadata"); 1356 wait_event(mddev->sb_wait, 1357 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1358 1359 conf->reshape_safe = mddev->reshape_position; 1360 } 1361 1362 if (conf->pending_count >= max_queued_requests) { 1363 md_wakeup_thread(mddev->thread); 1364 raid10_log(mddev, "wait queued"); 1365 wait_event(conf->wait_barrier, 1366 conf->pending_count < max_queued_requests); 1367 } 1368 /* first select target devices under rcu_lock and 1369 * inc refcount on their rdev. Record them by setting 1370 * bios[x] to bio 1371 * If there are known/acknowledged bad blocks on any device 1372 * on which we have seen a write error, we want to avoid 1373 * writing to those blocks. This potentially requires several 1374 * writes to write around the bad blocks. Each set of writes 1375 * gets its own r10_bio with a set of bios attached. 1376 */ 1377 1378 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1379 raid10_find_phys(conf, r10_bio); 1380 retry_write: 1381 blocked_rdev = NULL; 1382 rcu_read_lock(); 1383 max_sectors = r10_bio->sectors; 1384 1385 for (i = 0; i < conf->copies; i++) { 1386 int d = r10_bio->devs[i].devnum; 1387 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1388 struct md_rdev *rrdev = rcu_dereference( 1389 conf->mirrors[d].replacement); 1390 if (rdev == rrdev) 1391 rrdev = NULL; 1392 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1393 atomic_inc(&rdev->nr_pending); 1394 blocked_rdev = rdev; 1395 break; 1396 } 1397 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1398 atomic_inc(&rrdev->nr_pending); 1399 blocked_rdev = rrdev; 1400 break; 1401 } 1402 if (rdev && (test_bit(Faulty, &rdev->flags))) 1403 rdev = NULL; 1404 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1405 rrdev = NULL; 1406 1407 r10_bio->devs[i].bio = NULL; 1408 r10_bio->devs[i].repl_bio = NULL; 1409 1410 if (!rdev && !rrdev) { 1411 set_bit(R10BIO_Degraded, &r10_bio->state); 1412 continue; 1413 } 1414 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1415 sector_t first_bad; 1416 sector_t dev_sector = r10_bio->devs[i].addr; 1417 int bad_sectors; 1418 int is_bad; 1419 1420 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1421 &first_bad, &bad_sectors); 1422 if (is_bad < 0) { 1423 /* Mustn't write here until the bad block 1424 * is acknowledged 1425 */ 1426 atomic_inc(&rdev->nr_pending); 1427 set_bit(BlockedBadBlocks, &rdev->flags); 1428 blocked_rdev = rdev; 1429 break; 1430 } 1431 if (is_bad && first_bad <= dev_sector) { 1432 /* Cannot write here at all */ 1433 bad_sectors -= (dev_sector - first_bad); 1434 if (bad_sectors < max_sectors) 1435 /* Mustn't write more than bad_sectors 1436 * to other devices yet 1437 */ 1438 max_sectors = bad_sectors; 1439 /* We don't set R10BIO_Degraded as that 1440 * only applies if the disk is missing, 1441 * so it might be re-added, and we want to 1442 * know to recover this chunk. 1443 * In this case the device is here, and the 1444 * fact that this chunk is not in-sync is 1445 * recorded in the bad block log. 1446 */ 1447 continue; 1448 } 1449 if (is_bad) { 1450 int good_sectors = first_bad - dev_sector; 1451 if (good_sectors < max_sectors) 1452 max_sectors = good_sectors; 1453 } 1454 } 1455 if (rdev) { 1456 r10_bio->devs[i].bio = bio; 1457 atomic_inc(&rdev->nr_pending); 1458 } 1459 if (rrdev) { 1460 r10_bio->devs[i].repl_bio = bio; 1461 atomic_inc(&rrdev->nr_pending); 1462 } 1463 } 1464 rcu_read_unlock(); 1465 1466 if (unlikely(blocked_rdev)) { 1467 /* Have to wait for this device to get unblocked, then retry */ 1468 int j; 1469 int d; 1470 1471 for (j = 0; j < i; j++) { 1472 if (r10_bio->devs[j].bio) { 1473 d = r10_bio->devs[j].devnum; 1474 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1475 } 1476 if (r10_bio->devs[j].repl_bio) { 1477 struct md_rdev *rdev; 1478 d = r10_bio->devs[j].devnum; 1479 rdev = conf->mirrors[d].replacement; 1480 if (!rdev) { 1481 /* Race with remove_disk */ 1482 smp_mb(); 1483 rdev = conf->mirrors[d].rdev; 1484 } 1485 rdev_dec_pending(rdev, mddev); 1486 } 1487 } 1488 allow_barrier(conf); 1489 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1490 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1491 wait_barrier(conf); 1492 goto retry_write; 1493 } 1494 1495 if (max_sectors < r10_bio->sectors) 1496 r10_bio->sectors = max_sectors; 1497 1498 if (r10_bio->sectors < bio_sectors(bio)) { 1499 struct bio *split = bio_split(bio, r10_bio->sectors, 1500 GFP_NOIO, conf->bio_split); 1501 bio_chain(split, bio); 1502 generic_make_request(bio); 1503 bio = split; 1504 r10_bio->master_bio = bio; 1505 } 1506 1507 atomic_set(&r10_bio->remaining, 1); 1508 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1509 1510 for (i = 0; i < conf->copies; i++) { 1511 if (r10_bio->devs[i].bio) 1512 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1513 if (r10_bio->devs[i].repl_bio) 1514 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1515 } 1516 one_write_done(r10_bio); 1517 } 1518 1519 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1520 { 1521 struct r10conf *conf = mddev->private; 1522 struct r10bio *r10_bio; 1523 1524 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1525 1526 r10_bio->master_bio = bio; 1527 r10_bio->sectors = sectors; 1528 1529 r10_bio->mddev = mddev; 1530 r10_bio->sector = bio->bi_iter.bi_sector; 1531 r10_bio->state = 0; 1532 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1533 1534 if (bio_data_dir(bio) == READ) 1535 raid10_read_request(mddev, bio, r10_bio); 1536 else 1537 raid10_write_request(mddev, bio, r10_bio); 1538 } 1539 1540 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1541 { 1542 struct r10conf *conf = mddev->private; 1543 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1544 int chunk_sects = chunk_mask + 1; 1545 int sectors = bio_sectors(bio); 1546 1547 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1548 md_flush_request(mddev, bio); 1549 return true; 1550 } 1551 1552 if (!md_write_start(mddev, bio)) 1553 return false; 1554 1555 /* 1556 * If this request crosses a chunk boundary, we need to split 1557 * it. 1558 */ 1559 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1560 sectors > chunk_sects 1561 && (conf->geo.near_copies < conf->geo.raid_disks 1562 || conf->prev.near_copies < 1563 conf->prev.raid_disks))) 1564 sectors = chunk_sects - 1565 (bio->bi_iter.bi_sector & 1566 (chunk_sects - 1)); 1567 __make_request(mddev, bio, sectors); 1568 1569 /* In case raid10d snuck in to freeze_array */ 1570 wake_up(&conf->wait_barrier); 1571 return true; 1572 } 1573 1574 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1575 { 1576 struct r10conf *conf = mddev->private; 1577 int i; 1578 1579 if (conf->geo.near_copies < conf->geo.raid_disks) 1580 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1581 if (conf->geo.near_copies > 1) 1582 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1583 if (conf->geo.far_copies > 1) { 1584 if (conf->geo.far_offset) 1585 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1586 else 1587 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1588 if (conf->geo.far_set_size != conf->geo.raid_disks) 1589 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1590 } 1591 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1592 conf->geo.raid_disks - mddev->degraded); 1593 rcu_read_lock(); 1594 for (i = 0; i < conf->geo.raid_disks; i++) { 1595 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1596 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1597 } 1598 rcu_read_unlock(); 1599 seq_printf(seq, "]"); 1600 } 1601 1602 /* check if there are enough drives for 1603 * every block to appear on atleast one. 1604 * Don't consider the device numbered 'ignore' 1605 * as we might be about to remove it. 1606 */ 1607 static int _enough(struct r10conf *conf, int previous, int ignore) 1608 { 1609 int first = 0; 1610 int has_enough = 0; 1611 int disks, ncopies; 1612 if (previous) { 1613 disks = conf->prev.raid_disks; 1614 ncopies = conf->prev.near_copies; 1615 } else { 1616 disks = conf->geo.raid_disks; 1617 ncopies = conf->geo.near_copies; 1618 } 1619 1620 rcu_read_lock(); 1621 do { 1622 int n = conf->copies; 1623 int cnt = 0; 1624 int this = first; 1625 while (n--) { 1626 struct md_rdev *rdev; 1627 if (this != ignore && 1628 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1629 test_bit(In_sync, &rdev->flags)) 1630 cnt++; 1631 this = (this+1) % disks; 1632 } 1633 if (cnt == 0) 1634 goto out; 1635 first = (first + ncopies) % disks; 1636 } while (first != 0); 1637 has_enough = 1; 1638 out: 1639 rcu_read_unlock(); 1640 return has_enough; 1641 } 1642 1643 static int enough(struct r10conf *conf, int ignore) 1644 { 1645 /* when calling 'enough', both 'prev' and 'geo' must 1646 * be stable. 1647 * This is ensured if ->reconfig_mutex or ->device_lock 1648 * is held. 1649 */ 1650 return _enough(conf, 0, ignore) && 1651 _enough(conf, 1, ignore); 1652 } 1653 1654 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1655 { 1656 char b[BDEVNAME_SIZE]; 1657 struct r10conf *conf = mddev->private; 1658 unsigned long flags; 1659 1660 /* 1661 * If it is not operational, then we have already marked it as dead 1662 * else if it is the last working disks, ignore the error, let the 1663 * next level up know. 1664 * else mark the drive as failed 1665 */ 1666 spin_lock_irqsave(&conf->device_lock, flags); 1667 if (test_bit(In_sync, &rdev->flags) 1668 && !enough(conf, rdev->raid_disk)) { 1669 /* 1670 * Don't fail the drive, just return an IO error. 1671 */ 1672 spin_unlock_irqrestore(&conf->device_lock, flags); 1673 return; 1674 } 1675 if (test_and_clear_bit(In_sync, &rdev->flags)) 1676 mddev->degraded++; 1677 /* 1678 * If recovery is running, make sure it aborts. 1679 */ 1680 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1681 set_bit(Blocked, &rdev->flags); 1682 set_bit(Faulty, &rdev->flags); 1683 set_mask_bits(&mddev->sb_flags, 0, 1684 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1685 spin_unlock_irqrestore(&conf->device_lock, flags); 1686 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1687 "md/raid10:%s: Operation continuing on %d devices.\n", 1688 mdname(mddev), bdevname(rdev->bdev, b), 1689 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1690 } 1691 1692 static void print_conf(struct r10conf *conf) 1693 { 1694 int i; 1695 struct md_rdev *rdev; 1696 1697 pr_debug("RAID10 conf printout:\n"); 1698 if (!conf) { 1699 pr_debug("(!conf)\n"); 1700 return; 1701 } 1702 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1703 conf->geo.raid_disks); 1704 1705 /* This is only called with ->reconfix_mutex held, so 1706 * rcu protection of rdev is not needed */ 1707 for (i = 0; i < conf->geo.raid_disks; i++) { 1708 char b[BDEVNAME_SIZE]; 1709 rdev = conf->mirrors[i].rdev; 1710 if (rdev) 1711 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1712 i, !test_bit(In_sync, &rdev->flags), 1713 !test_bit(Faulty, &rdev->flags), 1714 bdevname(rdev->bdev,b)); 1715 } 1716 } 1717 1718 static void close_sync(struct r10conf *conf) 1719 { 1720 wait_barrier(conf); 1721 allow_barrier(conf); 1722 1723 mempool_destroy(conf->r10buf_pool); 1724 conf->r10buf_pool = NULL; 1725 } 1726 1727 static int raid10_spare_active(struct mddev *mddev) 1728 { 1729 int i; 1730 struct r10conf *conf = mddev->private; 1731 struct raid10_info *tmp; 1732 int count = 0; 1733 unsigned long flags; 1734 1735 /* 1736 * Find all non-in_sync disks within the RAID10 configuration 1737 * and mark them in_sync 1738 */ 1739 for (i = 0; i < conf->geo.raid_disks; i++) { 1740 tmp = conf->mirrors + i; 1741 if (tmp->replacement 1742 && tmp->replacement->recovery_offset == MaxSector 1743 && !test_bit(Faulty, &tmp->replacement->flags) 1744 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1745 /* Replacement has just become active */ 1746 if (!tmp->rdev 1747 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1748 count++; 1749 if (tmp->rdev) { 1750 /* Replaced device not technically faulty, 1751 * but we need to be sure it gets removed 1752 * and never re-added. 1753 */ 1754 set_bit(Faulty, &tmp->rdev->flags); 1755 sysfs_notify_dirent_safe( 1756 tmp->rdev->sysfs_state); 1757 } 1758 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1759 } else if (tmp->rdev 1760 && tmp->rdev->recovery_offset == MaxSector 1761 && !test_bit(Faulty, &tmp->rdev->flags) 1762 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1763 count++; 1764 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1765 } 1766 } 1767 spin_lock_irqsave(&conf->device_lock, flags); 1768 mddev->degraded -= count; 1769 spin_unlock_irqrestore(&conf->device_lock, flags); 1770 1771 print_conf(conf); 1772 return count; 1773 } 1774 1775 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1776 { 1777 struct r10conf *conf = mddev->private; 1778 int err = -EEXIST; 1779 int mirror; 1780 int first = 0; 1781 int last = conf->geo.raid_disks - 1; 1782 1783 if (mddev->recovery_cp < MaxSector) 1784 /* only hot-add to in-sync arrays, as recovery is 1785 * very different from resync 1786 */ 1787 return -EBUSY; 1788 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1789 return -EINVAL; 1790 1791 if (md_integrity_add_rdev(rdev, mddev)) 1792 return -ENXIO; 1793 1794 if (rdev->raid_disk >= 0) 1795 first = last = rdev->raid_disk; 1796 1797 if (rdev->saved_raid_disk >= first && 1798 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1799 mirror = rdev->saved_raid_disk; 1800 else 1801 mirror = first; 1802 for ( ; mirror <= last ; mirror++) { 1803 struct raid10_info *p = &conf->mirrors[mirror]; 1804 if (p->recovery_disabled == mddev->recovery_disabled) 1805 continue; 1806 if (p->rdev) { 1807 if (!test_bit(WantReplacement, &p->rdev->flags) || 1808 p->replacement != NULL) 1809 continue; 1810 clear_bit(In_sync, &rdev->flags); 1811 set_bit(Replacement, &rdev->flags); 1812 rdev->raid_disk = mirror; 1813 err = 0; 1814 if (mddev->gendisk) 1815 disk_stack_limits(mddev->gendisk, rdev->bdev, 1816 rdev->data_offset << 9); 1817 conf->fullsync = 1; 1818 rcu_assign_pointer(p->replacement, rdev); 1819 break; 1820 } 1821 1822 if (mddev->gendisk) 1823 disk_stack_limits(mddev->gendisk, rdev->bdev, 1824 rdev->data_offset << 9); 1825 1826 p->head_position = 0; 1827 p->recovery_disabled = mddev->recovery_disabled - 1; 1828 rdev->raid_disk = mirror; 1829 err = 0; 1830 if (rdev->saved_raid_disk != mirror) 1831 conf->fullsync = 1; 1832 rcu_assign_pointer(p->rdev, rdev); 1833 break; 1834 } 1835 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1836 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1837 1838 print_conf(conf); 1839 return err; 1840 } 1841 1842 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1843 { 1844 struct r10conf *conf = mddev->private; 1845 int err = 0; 1846 int number = rdev->raid_disk; 1847 struct md_rdev **rdevp; 1848 struct raid10_info *p = conf->mirrors + number; 1849 1850 print_conf(conf); 1851 if (rdev == p->rdev) 1852 rdevp = &p->rdev; 1853 else if (rdev == p->replacement) 1854 rdevp = &p->replacement; 1855 else 1856 return 0; 1857 1858 if (test_bit(In_sync, &rdev->flags) || 1859 atomic_read(&rdev->nr_pending)) { 1860 err = -EBUSY; 1861 goto abort; 1862 } 1863 /* Only remove non-faulty devices if recovery 1864 * is not possible. 1865 */ 1866 if (!test_bit(Faulty, &rdev->flags) && 1867 mddev->recovery_disabled != p->recovery_disabled && 1868 (!p->replacement || p->replacement == rdev) && 1869 number < conf->geo.raid_disks && 1870 enough(conf, -1)) { 1871 err = -EBUSY; 1872 goto abort; 1873 } 1874 *rdevp = NULL; 1875 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1876 synchronize_rcu(); 1877 if (atomic_read(&rdev->nr_pending)) { 1878 /* lost the race, try later */ 1879 err = -EBUSY; 1880 *rdevp = rdev; 1881 goto abort; 1882 } 1883 } 1884 if (p->replacement) { 1885 /* We must have just cleared 'rdev' */ 1886 p->rdev = p->replacement; 1887 clear_bit(Replacement, &p->replacement->flags); 1888 smp_mb(); /* Make sure other CPUs may see both as identical 1889 * but will never see neither -- if they are careful. 1890 */ 1891 p->replacement = NULL; 1892 } 1893 1894 clear_bit(WantReplacement, &rdev->flags); 1895 err = md_integrity_register(mddev); 1896 1897 abort: 1898 1899 print_conf(conf); 1900 return err; 1901 } 1902 1903 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1904 { 1905 struct r10conf *conf = r10_bio->mddev->private; 1906 1907 if (!bio->bi_status) 1908 set_bit(R10BIO_Uptodate, &r10_bio->state); 1909 else 1910 /* The write handler will notice the lack of 1911 * R10BIO_Uptodate and record any errors etc 1912 */ 1913 atomic_add(r10_bio->sectors, 1914 &conf->mirrors[d].rdev->corrected_errors); 1915 1916 /* for reconstruct, we always reschedule after a read. 1917 * for resync, only after all reads 1918 */ 1919 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1920 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1921 atomic_dec_and_test(&r10_bio->remaining)) { 1922 /* we have read all the blocks, 1923 * do the comparison in process context in raid10d 1924 */ 1925 reschedule_retry(r10_bio); 1926 } 1927 } 1928 1929 static void end_sync_read(struct bio *bio) 1930 { 1931 struct r10bio *r10_bio = get_resync_r10bio(bio); 1932 struct r10conf *conf = r10_bio->mddev->private; 1933 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1934 1935 __end_sync_read(r10_bio, bio, d); 1936 } 1937 1938 static void end_reshape_read(struct bio *bio) 1939 { 1940 /* reshape read bio isn't allocated from r10buf_pool */ 1941 struct r10bio *r10_bio = bio->bi_private; 1942 1943 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1944 } 1945 1946 static void end_sync_request(struct r10bio *r10_bio) 1947 { 1948 struct mddev *mddev = r10_bio->mddev; 1949 1950 while (atomic_dec_and_test(&r10_bio->remaining)) { 1951 if (r10_bio->master_bio == NULL) { 1952 /* the primary of several recovery bios */ 1953 sector_t s = r10_bio->sectors; 1954 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1955 test_bit(R10BIO_WriteError, &r10_bio->state)) 1956 reschedule_retry(r10_bio); 1957 else 1958 put_buf(r10_bio); 1959 md_done_sync(mddev, s, 1); 1960 break; 1961 } else { 1962 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1963 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1964 test_bit(R10BIO_WriteError, &r10_bio->state)) 1965 reschedule_retry(r10_bio); 1966 else 1967 put_buf(r10_bio); 1968 r10_bio = r10_bio2; 1969 } 1970 } 1971 } 1972 1973 static void end_sync_write(struct bio *bio) 1974 { 1975 struct r10bio *r10_bio = get_resync_r10bio(bio); 1976 struct mddev *mddev = r10_bio->mddev; 1977 struct r10conf *conf = mddev->private; 1978 int d; 1979 sector_t first_bad; 1980 int bad_sectors; 1981 int slot; 1982 int repl; 1983 struct md_rdev *rdev = NULL; 1984 1985 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1986 if (repl) 1987 rdev = conf->mirrors[d].replacement; 1988 else 1989 rdev = conf->mirrors[d].rdev; 1990 1991 if (bio->bi_status) { 1992 if (repl) 1993 md_error(mddev, rdev); 1994 else { 1995 set_bit(WriteErrorSeen, &rdev->flags); 1996 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1997 set_bit(MD_RECOVERY_NEEDED, 1998 &rdev->mddev->recovery); 1999 set_bit(R10BIO_WriteError, &r10_bio->state); 2000 } 2001 } else if (is_badblock(rdev, 2002 r10_bio->devs[slot].addr, 2003 r10_bio->sectors, 2004 &first_bad, &bad_sectors)) 2005 set_bit(R10BIO_MadeGood, &r10_bio->state); 2006 2007 rdev_dec_pending(rdev, mddev); 2008 2009 end_sync_request(r10_bio); 2010 } 2011 2012 /* 2013 * Note: sync and recover and handled very differently for raid10 2014 * This code is for resync. 2015 * For resync, we read through virtual addresses and read all blocks. 2016 * If there is any error, we schedule a write. The lowest numbered 2017 * drive is authoritative. 2018 * However requests come for physical address, so we need to map. 2019 * For every physical address there are raid_disks/copies virtual addresses, 2020 * which is always are least one, but is not necessarly an integer. 2021 * This means that a physical address can span multiple chunks, so we may 2022 * have to submit multiple io requests for a single sync request. 2023 */ 2024 /* 2025 * We check if all blocks are in-sync and only write to blocks that 2026 * aren't in sync 2027 */ 2028 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2029 { 2030 struct r10conf *conf = mddev->private; 2031 int i, first; 2032 struct bio *tbio, *fbio; 2033 int vcnt; 2034 struct page **tpages, **fpages; 2035 2036 atomic_set(&r10_bio->remaining, 1); 2037 2038 /* find the first device with a block */ 2039 for (i=0; i<conf->copies; i++) 2040 if (!r10_bio->devs[i].bio->bi_status) 2041 break; 2042 2043 if (i == conf->copies) 2044 goto done; 2045 2046 first = i; 2047 fbio = r10_bio->devs[i].bio; 2048 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2049 fbio->bi_iter.bi_idx = 0; 2050 fpages = get_resync_pages(fbio)->pages; 2051 2052 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2053 /* now find blocks with errors */ 2054 for (i=0 ; i < conf->copies ; i++) { 2055 int j, d; 2056 struct md_rdev *rdev; 2057 struct resync_pages *rp; 2058 2059 tbio = r10_bio->devs[i].bio; 2060 2061 if (tbio->bi_end_io != end_sync_read) 2062 continue; 2063 if (i == first) 2064 continue; 2065 2066 tpages = get_resync_pages(tbio)->pages; 2067 d = r10_bio->devs[i].devnum; 2068 rdev = conf->mirrors[d].rdev; 2069 if (!r10_bio->devs[i].bio->bi_status) { 2070 /* We know that the bi_io_vec layout is the same for 2071 * both 'first' and 'i', so we just compare them. 2072 * All vec entries are PAGE_SIZE; 2073 */ 2074 int sectors = r10_bio->sectors; 2075 for (j = 0; j < vcnt; j++) { 2076 int len = PAGE_SIZE; 2077 if (sectors < (len / 512)) 2078 len = sectors * 512; 2079 if (memcmp(page_address(fpages[j]), 2080 page_address(tpages[j]), 2081 len)) 2082 break; 2083 sectors -= len/512; 2084 } 2085 if (j == vcnt) 2086 continue; 2087 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2088 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2089 /* Don't fix anything. */ 2090 continue; 2091 } else if (test_bit(FailFast, &rdev->flags)) { 2092 /* Just give up on this device */ 2093 md_error(rdev->mddev, rdev); 2094 continue; 2095 } 2096 /* Ok, we need to write this bio, either to correct an 2097 * inconsistency or to correct an unreadable block. 2098 * First we need to fixup bv_offset, bv_len and 2099 * bi_vecs, as the read request might have corrupted these 2100 */ 2101 rp = get_resync_pages(tbio); 2102 bio_reset(tbio); 2103 2104 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2105 2106 rp->raid_bio = r10_bio; 2107 tbio->bi_private = rp; 2108 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2109 tbio->bi_end_io = end_sync_write; 2110 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2111 2112 bio_copy_data(tbio, fbio); 2113 2114 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2115 atomic_inc(&r10_bio->remaining); 2116 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2117 2118 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2119 tbio->bi_opf |= MD_FAILFAST; 2120 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2121 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2122 generic_make_request(tbio); 2123 } 2124 2125 /* Now write out to any replacement devices 2126 * that are active 2127 */ 2128 for (i = 0; i < conf->copies; i++) { 2129 int d; 2130 2131 tbio = r10_bio->devs[i].repl_bio; 2132 if (!tbio || !tbio->bi_end_io) 2133 continue; 2134 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2135 && r10_bio->devs[i].bio != fbio) 2136 bio_copy_data(tbio, fbio); 2137 d = r10_bio->devs[i].devnum; 2138 atomic_inc(&r10_bio->remaining); 2139 md_sync_acct(conf->mirrors[d].replacement->bdev, 2140 bio_sectors(tbio)); 2141 generic_make_request(tbio); 2142 } 2143 2144 done: 2145 if (atomic_dec_and_test(&r10_bio->remaining)) { 2146 md_done_sync(mddev, r10_bio->sectors, 1); 2147 put_buf(r10_bio); 2148 } 2149 } 2150 2151 /* 2152 * Now for the recovery code. 2153 * Recovery happens across physical sectors. 2154 * We recover all non-is_sync drives by finding the virtual address of 2155 * each, and then choose a working drive that also has that virt address. 2156 * There is a separate r10_bio for each non-in_sync drive. 2157 * Only the first two slots are in use. The first for reading, 2158 * The second for writing. 2159 * 2160 */ 2161 static void fix_recovery_read_error(struct r10bio *r10_bio) 2162 { 2163 /* We got a read error during recovery. 2164 * We repeat the read in smaller page-sized sections. 2165 * If a read succeeds, write it to the new device or record 2166 * a bad block if we cannot. 2167 * If a read fails, record a bad block on both old and 2168 * new devices. 2169 */ 2170 struct mddev *mddev = r10_bio->mddev; 2171 struct r10conf *conf = mddev->private; 2172 struct bio *bio = r10_bio->devs[0].bio; 2173 sector_t sect = 0; 2174 int sectors = r10_bio->sectors; 2175 int idx = 0; 2176 int dr = r10_bio->devs[0].devnum; 2177 int dw = r10_bio->devs[1].devnum; 2178 struct page **pages = get_resync_pages(bio)->pages; 2179 2180 while (sectors) { 2181 int s = sectors; 2182 struct md_rdev *rdev; 2183 sector_t addr; 2184 int ok; 2185 2186 if (s > (PAGE_SIZE>>9)) 2187 s = PAGE_SIZE >> 9; 2188 2189 rdev = conf->mirrors[dr].rdev; 2190 addr = r10_bio->devs[0].addr + sect, 2191 ok = sync_page_io(rdev, 2192 addr, 2193 s << 9, 2194 pages[idx], 2195 REQ_OP_READ, 0, false); 2196 if (ok) { 2197 rdev = conf->mirrors[dw].rdev; 2198 addr = r10_bio->devs[1].addr + sect; 2199 ok = sync_page_io(rdev, 2200 addr, 2201 s << 9, 2202 pages[idx], 2203 REQ_OP_WRITE, 0, false); 2204 if (!ok) { 2205 set_bit(WriteErrorSeen, &rdev->flags); 2206 if (!test_and_set_bit(WantReplacement, 2207 &rdev->flags)) 2208 set_bit(MD_RECOVERY_NEEDED, 2209 &rdev->mddev->recovery); 2210 } 2211 } 2212 if (!ok) { 2213 /* We don't worry if we cannot set a bad block - 2214 * it really is bad so there is no loss in not 2215 * recording it yet 2216 */ 2217 rdev_set_badblocks(rdev, addr, s, 0); 2218 2219 if (rdev != conf->mirrors[dw].rdev) { 2220 /* need bad block on destination too */ 2221 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2222 addr = r10_bio->devs[1].addr + sect; 2223 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2224 if (!ok) { 2225 /* just abort the recovery */ 2226 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2227 mdname(mddev)); 2228 2229 conf->mirrors[dw].recovery_disabled 2230 = mddev->recovery_disabled; 2231 set_bit(MD_RECOVERY_INTR, 2232 &mddev->recovery); 2233 break; 2234 } 2235 } 2236 } 2237 2238 sectors -= s; 2239 sect += s; 2240 idx++; 2241 } 2242 } 2243 2244 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2245 { 2246 struct r10conf *conf = mddev->private; 2247 int d; 2248 struct bio *wbio, *wbio2; 2249 2250 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2251 fix_recovery_read_error(r10_bio); 2252 end_sync_request(r10_bio); 2253 return; 2254 } 2255 2256 /* 2257 * share the pages with the first bio 2258 * and submit the write request 2259 */ 2260 d = r10_bio->devs[1].devnum; 2261 wbio = r10_bio->devs[1].bio; 2262 wbio2 = r10_bio->devs[1].repl_bio; 2263 /* Need to test wbio2->bi_end_io before we call 2264 * generic_make_request as if the former is NULL, 2265 * the latter is free to free wbio2. 2266 */ 2267 if (wbio2 && !wbio2->bi_end_io) 2268 wbio2 = NULL; 2269 if (wbio->bi_end_io) { 2270 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2271 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2272 generic_make_request(wbio); 2273 } 2274 if (wbio2) { 2275 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2276 md_sync_acct(conf->mirrors[d].replacement->bdev, 2277 bio_sectors(wbio2)); 2278 generic_make_request(wbio2); 2279 } 2280 } 2281 2282 /* 2283 * Used by fix_read_error() to decay the per rdev read_errors. 2284 * We halve the read error count for every hour that has elapsed 2285 * since the last recorded read error. 2286 * 2287 */ 2288 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2289 { 2290 long cur_time_mon; 2291 unsigned long hours_since_last; 2292 unsigned int read_errors = atomic_read(&rdev->read_errors); 2293 2294 cur_time_mon = ktime_get_seconds(); 2295 2296 if (rdev->last_read_error == 0) { 2297 /* first time we've seen a read error */ 2298 rdev->last_read_error = cur_time_mon; 2299 return; 2300 } 2301 2302 hours_since_last = (long)(cur_time_mon - 2303 rdev->last_read_error) / 3600; 2304 2305 rdev->last_read_error = cur_time_mon; 2306 2307 /* 2308 * if hours_since_last is > the number of bits in read_errors 2309 * just set read errors to 0. We do this to avoid 2310 * overflowing the shift of read_errors by hours_since_last. 2311 */ 2312 if (hours_since_last >= 8 * sizeof(read_errors)) 2313 atomic_set(&rdev->read_errors, 0); 2314 else 2315 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2316 } 2317 2318 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2319 int sectors, struct page *page, int rw) 2320 { 2321 sector_t first_bad; 2322 int bad_sectors; 2323 2324 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2325 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2326 return -1; 2327 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2328 /* success */ 2329 return 1; 2330 if (rw == WRITE) { 2331 set_bit(WriteErrorSeen, &rdev->flags); 2332 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2333 set_bit(MD_RECOVERY_NEEDED, 2334 &rdev->mddev->recovery); 2335 } 2336 /* need to record an error - either for the block or the device */ 2337 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2338 md_error(rdev->mddev, rdev); 2339 return 0; 2340 } 2341 2342 /* 2343 * This is a kernel thread which: 2344 * 2345 * 1. Retries failed read operations on working mirrors. 2346 * 2. Updates the raid superblock when problems encounter. 2347 * 3. Performs writes following reads for array synchronising. 2348 */ 2349 2350 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2351 { 2352 int sect = 0; /* Offset from r10_bio->sector */ 2353 int sectors = r10_bio->sectors; 2354 struct md_rdev*rdev; 2355 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2356 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2357 2358 /* still own a reference to this rdev, so it cannot 2359 * have been cleared recently. 2360 */ 2361 rdev = conf->mirrors[d].rdev; 2362 2363 if (test_bit(Faulty, &rdev->flags)) 2364 /* drive has already been failed, just ignore any 2365 more fix_read_error() attempts */ 2366 return; 2367 2368 check_decay_read_errors(mddev, rdev); 2369 atomic_inc(&rdev->read_errors); 2370 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2371 char b[BDEVNAME_SIZE]; 2372 bdevname(rdev->bdev, b); 2373 2374 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2375 mdname(mddev), b, 2376 atomic_read(&rdev->read_errors), max_read_errors); 2377 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2378 mdname(mddev), b); 2379 md_error(mddev, rdev); 2380 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2381 return; 2382 } 2383 2384 while(sectors) { 2385 int s = sectors; 2386 int sl = r10_bio->read_slot; 2387 int success = 0; 2388 int start; 2389 2390 if (s > (PAGE_SIZE>>9)) 2391 s = PAGE_SIZE >> 9; 2392 2393 rcu_read_lock(); 2394 do { 2395 sector_t first_bad; 2396 int bad_sectors; 2397 2398 d = r10_bio->devs[sl].devnum; 2399 rdev = rcu_dereference(conf->mirrors[d].rdev); 2400 if (rdev && 2401 test_bit(In_sync, &rdev->flags) && 2402 !test_bit(Faulty, &rdev->flags) && 2403 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2404 &first_bad, &bad_sectors) == 0) { 2405 atomic_inc(&rdev->nr_pending); 2406 rcu_read_unlock(); 2407 success = sync_page_io(rdev, 2408 r10_bio->devs[sl].addr + 2409 sect, 2410 s<<9, 2411 conf->tmppage, 2412 REQ_OP_READ, 0, false); 2413 rdev_dec_pending(rdev, mddev); 2414 rcu_read_lock(); 2415 if (success) 2416 break; 2417 } 2418 sl++; 2419 if (sl == conf->copies) 2420 sl = 0; 2421 } while (!success && sl != r10_bio->read_slot); 2422 rcu_read_unlock(); 2423 2424 if (!success) { 2425 /* Cannot read from anywhere, just mark the block 2426 * as bad on the first device to discourage future 2427 * reads. 2428 */ 2429 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2430 rdev = conf->mirrors[dn].rdev; 2431 2432 if (!rdev_set_badblocks( 2433 rdev, 2434 r10_bio->devs[r10_bio->read_slot].addr 2435 + sect, 2436 s, 0)) { 2437 md_error(mddev, rdev); 2438 r10_bio->devs[r10_bio->read_slot].bio 2439 = IO_BLOCKED; 2440 } 2441 break; 2442 } 2443 2444 start = sl; 2445 /* write it back and re-read */ 2446 rcu_read_lock(); 2447 while (sl != r10_bio->read_slot) { 2448 char b[BDEVNAME_SIZE]; 2449 2450 if (sl==0) 2451 sl = conf->copies; 2452 sl--; 2453 d = r10_bio->devs[sl].devnum; 2454 rdev = rcu_dereference(conf->mirrors[d].rdev); 2455 if (!rdev || 2456 test_bit(Faulty, &rdev->flags) || 2457 !test_bit(In_sync, &rdev->flags)) 2458 continue; 2459 2460 atomic_inc(&rdev->nr_pending); 2461 rcu_read_unlock(); 2462 if (r10_sync_page_io(rdev, 2463 r10_bio->devs[sl].addr + 2464 sect, 2465 s, conf->tmppage, WRITE) 2466 == 0) { 2467 /* Well, this device is dead */ 2468 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2469 mdname(mddev), s, 2470 (unsigned long long)( 2471 sect + 2472 choose_data_offset(r10_bio, 2473 rdev)), 2474 bdevname(rdev->bdev, b)); 2475 pr_notice("md/raid10:%s: %s: failing drive\n", 2476 mdname(mddev), 2477 bdevname(rdev->bdev, b)); 2478 } 2479 rdev_dec_pending(rdev, mddev); 2480 rcu_read_lock(); 2481 } 2482 sl = start; 2483 while (sl != r10_bio->read_slot) { 2484 char b[BDEVNAME_SIZE]; 2485 2486 if (sl==0) 2487 sl = conf->copies; 2488 sl--; 2489 d = r10_bio->devs[sl].devnum; 2490 rdev = rcu_dereference(conf->mirrors[d].rdev); 2491 if (!rdev || 2492 test_bit(Faulty, &rdev->flags) || 2493 !test_bit(In_sync, &rdev->flags)) 2494 continue; 2495 2496 atomic_inc(&rdev->nr_pending); 2497 rcu_read_unlock(); 2498 switch (r10_sync_page_io(rdev, 2499 r10_bio->devs[sl].addr + 2500 sect, 2501 s, conf->tmppage, 2502 READ)) { 2503 case 0: 2504 /* Well, this device is dead */ 2505 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2506 mdname(mddev), s, 2507 (unsigned long long)( 2508 sect + 2509 choose_data_offset(r10_bio, rdev)), 2510 bdevname(rdev->bdev, b)); 2511 pr_notice("md/raid10:%s: %s: failing drive\n", 2512 mdname(mddev), 2513 bdevname(rdev->bdev, b)); 2514 break; 2515 case 1: 2516 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2517 mdname(mddev), s, 2518 (unsigned long long)( 2519 sect + 2520 choose_data_offset(r10_bio, rdev)), 2521 bdevname(rdev->bdev, b)); 2522 atomic_add(s, &rdev->corrected_errors); 2523 } 2524 2525 rdev_dec_pending(rdev, mddev); 2526 rcu_read_lock(); 2527 } 2528 rcu_read_unlock(); 2529 2530 sectors -= s; 2531 sect += s; 2532 } 2533 } 2534 2535 static int narrow_write_error(struct r10bio *r10_bio, int i) 2536 { 2537 struct bio *bio = r10_bio->master_bio; 2538 struct mddev *mddev = r10_bio->mddev; 2539 struct r10conf *conf = mddev->private; 2540 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2541 /* bio has the data to be written to slot 'i' where 2542 * we just recently had a write error. 2543 * We repeatedly clone the bio and trim down to one block, 2544 * then try the write. Where the write fails we record 2545 * a bad block. 2546 * It is conceivable that the bio doesn't exactly align with 2547 * blocks. We must handle this. 2548 * 2549 * We currently own a reference to the rdev. 2550 */ 2551 2552 int block_sectors; 2553 sector_t sector; 2554 int sectors; 2555 int sect_to_write = r10_bio->sectors; 2556 int ok = 1; 2557 2558 if (rdev->badblocks.shift < 0) 2559 return 0; 2560 2561 block_sectors = roundup(1 << rdev->badblocks.shift, 2562 bdev_logical_block_size(rdev->bdev) >> 9); 2563 sector = r10_bio->sector; 2564 sectors = ((r10_bio->sector + block_sectors) 2565 & ~(sector_t)(block_sectors - 1)) 2566 - sector; 2567 2568 while (sect_to_write) { 2569 struct bio *wbio; 2570 sector_t wsector; 2571 if (sectors > sect_to_write) 2572 sectors = sect_to_write; 2573 /* Write at 'sector' for 'sectors' */ 2574 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 2575 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2576 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2577 wbio->bi_iter.bi_sector = wsector + 2578 choose_data_offset(r10_bio, rdev); 2579 bio_set_dev(wbio, rdev->bdev); 2580 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2581 2582 if (submit_bio_wait(wbio) < 0) 2583 /* Failure! */ 2584 ok = rdev_set_badblocks(rdev, wsector, 2585 sectors, 0) 2586 && ok; 2587 2588 bio_put(wbio); 2589 sect_to_write -= sectors; 2590 sector += sectors; 2591 sectors = block_sectors; 2592 } 2593 return ok; 2594 } 2595 2596 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2597 { 2598 int slot = r10_bio->read_slot; 2599 struct bio *bio; 2600 struct r10conf *conf = mddev->private; 2601 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2602 2603 /* we got a read error. Maybe the drive is bad. Maybe just 2604 * the block and we can fix it. 2605 * We freeze all other IO, and try reading the block from 2606 * other devices. When we find one, we re-write 2607 * and check it that fixes the read error. 2608 * This is all done synchronously while the array is 2609 * frozen. 2610 */ 2611 bio = r10_bio->devs[slot].bio; 2612 bio_put(bio); 2613 r10_bio->devs[slot].bio = NULL; 2614 2615 if (mddev->ro) 2616 r10_bio->devs[slot].bio = IO_BLOCKED; 2617 else if (!test_bit(FailFast, &rdev->flags)) { 2618 freeze_array(conf, 1); 2619 fix_read_error(conf, mddev, r10_bio); 2620 unfreeze_array(conf); 2621 } else 2622 md_error(mddev, rdev); 2623 2624 rdev_dec_pending(rdev, mddev); 2625 allow_barrier(conf); 2626 r10_bio->state = 0; 2627 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2628 } 2629 2630 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2631 { 2632 /* Some sort of write request has finished and it 2633 * succeeded in writing where we thought there was a 2634 * bad block. So forget the bad block. 2635 * Or possibly if failed and we need to record 2636 * a bad block. 2637 */ 2638 int m; 2639 struct md_rdev *rdev; 2640 2641 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2642 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2643 for (m = 0; m < conf->copies; m++) { 2644 int dev = r10_bio->devs[m].devnum; 2645 rdev = conf->mirrors[dev].rdev; 2646 if (r10_bio->devs[m].bio == NULL) 2647 continue; 2648 if (!r10_bio->devs[m].bio->bi_status) { 2649 rdev_clear_badblocks( 2650 rdev, 2651 r10_bio->devs[m].addr, 2652 r10_bio->sectors, 0); 2653 } else { 2654 if (!rdev_set_badblocks( 2655 rdev, 2656 r10_bio->devs[m].addr, 2657 r10_bio->sectors, 0)) 2658 md_error(conf->mddev, rdev); 2659 } 2660 rdev = conf->mirrors[dev].replacement; 2661 if (r10_bio->devs[m].repl_bio == NULL) 2662 continue; 2663 2664 if (!r10_bio->devs[m].repl_bio->bi_status) { 2665 rdev_clear_badblocks( 2666 rdev, 2667 r10_bio->devs[m].addr, 2668 r10_bio->sectors, 0); 2669 } else { 2670 if (!rdev_set_badblocks( 2671 rdev, 2672 r10_bio->devs[m].addr, 2673 r10_bio->sectors, 0)) 2674 md_error(conf->mddev, rdev); 2675 } 2676 } 2677 put_buf(r10_bio); 2678 } else { 2679 bool fail = false; 2680 for (m = 0; m < conf->copies; m++) { 2681 int dev = r10_bio->devs[m].devnum; 2682 struct bio *bio = r10_bio->devs[m].bio; 2683 rdev = conf->mirrors[dev].rdev; 2684 if (bio == IO_MADE_GOOD) { 2685 rdev_clear_badblocks( 2686 rdev, 2687 r10_bio->devs[m].addr, 2688 r10_bio->sectors, 0); 2689 rdev_dec_pending(rdev, conf->mddev); 2690 } else if (bio != NULL && bio->bi_status) { 2691 fail = true; 2692 if (!narrow_write_error(r10_bio, m)) { 2693 md_error(conf->mddev, rdev); 2694 set_bit(R10BIO_Degraded, 2695 &r10_bio->state); 2696 } 2697 rdev_dec_pending(rdev, conf->mddev); 2698 } 2699 bio = r10_bio->devs[m].repl_bio; 2700 rdev = conf->mirrors[dev].replacement; 2701 if (rdev && bio == IO_MADE_GOOD) { 2702 rdev_clear_badblocks( 2703 rdev, 2704 r10_bio->devs[m].addr, 2705 r10_bio->sectors, 0); 2706 rdev_dec_pending(rdev, conf->mddev); 2707 } 2708 } 2709 if (fail) { 2710 spin_lock_irq(&conf->device_lock); 2711 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2712 conf->nr_queued++; 2713 spin_unlock_irq(&conf->device_lock); 2714 /* 2715 * In case freeze_array() is waiting for condition 2716 * nr_pending == nr_queued + extra to be true. 2717 */ 2718 wake_up(&conf->wait_barrier); 2719 md_wakeup_thread(conf->mddev->thread); 2720 } else { 2721 if (test_bit(R10BIO_WriteError, 2722 &r10_bio->state)) 2723 close_write(r10_bio); 2724 raid_end_bio_io(r10_bio); 2725 } 2726 } 2727 } 2728 2729 static void raid10d(struct md_thread *thread) 2730 { 2731 struct mddev *mddev = thread->mddev; 2732 struct r10bio *r10_bio; 2733 unsigned long flags; 2734 struct r10conf *conf = mddev->private; 2735 struct list_head *head = &conf->retry_list; 2736 struct blk_plug plug; 2737 2738 md_check_recovery(mddev); 2739 2740 if (!list_empty_careful(&conf->bio_end_io_list) && 2741 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2742 LIST_HEAD(tmp); 2743 spin_lock_irqsave(&conf->device_lock, flags); 2744 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2745 while (!list_empty(&conf->bio_end_io_list)) { 2746 list_move(conf->bio_end_io_list.prev, &tmp); 2747 conf->nr_queued--; 2748 } 2749 } 2750 spin_unlock_irqrestore(&conf->device_lock, flags); 2751 while (!list_empty(&tmp)) { 2752 r10_bio = list_first_entry(&tmp, struct r10bio, 2753 retry_list); 2754 list_del(&r10_bio->retry_list); 2755 if (mddev->degraded) 2756 set_bit(R10BIO_Degraded, &r10_bio->state); 2757 2758 if (test_bit(R10BIO_WriteError, 2759 &r10_bio->state)) 2760 close_write(r10_bio); 2761 raid_end_bio_io(r10_bio); 2762 } 2763 } 2764 2765 blk_start_plug(&plug); 2766 for (;;) { 2767 2768 flush_pending_writes(conf); 2769 2770 spin_lock_irqsave(&conf->device_lock, flags); 2771 if (list_empty(head)) { 2772 spin_unlock_irqrestore(&conf->device_lock, flags); 2773 break; 2774 } 2775 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2776 list_del(head->prev); 2777 conf->nr_queued--; 2778 spin_unlock_irqrestore(&conf->device_lock, flags); 2779 2780 mddev = r10_bio->mddev; 2781 conf = mddev->private; 2782 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2783 test_bit(R10BIO_WriteError, &r10_bio->state)) 2784 handle_write_completed(conf, r10_bio); 2785 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2786 reshape_request_write(mddev, r10_bio); 2787 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2788 sync_request_write(mddev, r10_bio); 2789 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2790 recovery_request_write(mddev, r10_bio); 2791 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2792 handle_read_error(mddev, r10_bio); 2793 else 2794 WARN_ON_ONCE(1); 2795 2796 cond_resched(); 2797 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2798 md_check_recovery(mddev); 2799 } 2800 blk_finish_plug(&plug); 2801 } 2802 2803 static int init_resync(struct r10conf *conf) 2804 { 2805 int buffs; 2806 int i; 2807 2808 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2809 BUG_ON(conf->r10buf_pool); 2810 conf->have_replacement = 0; 2811 for (i = 0; i < conf->geo.raid_disks; i++) 2812 if (conf->mirrors[i].replacement) 2813 conf->have_replacement = 1; 2814 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2815 if (!conf->r10buf_pool) 2816 return -ENOMEM; 2817 conf->next_resync = 0; 2818 return 0; 2819 } 2820 2821 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 2822 { 2823 struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2824 struct rsync_pages *rp; 2825 struct bio *bio; 2826 int nalloc; 2827 int i; 2828 2829 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 2830 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 2831 nalloc = conf->copies; /* resync */ 2832 else 2833 nalloc = 2; /* recovery */ 2834 2835 for (i = 0; i < nalloc; i++) { 2836 bio = r10bio->devs[i].bio; 2837 rp = bio->bi_private; 2838 bio_reset(bio); 2839 bio->bi_private = rp; 2840 bio = r10bio->devs[i].repl_bio; 2841 if (bio) { 2842 rp = bio->bi_private; 2843 bio_reset(bio); 2844 bio->bi_private = rp; 2845 } 2846 } 2847 return r10bio; 2848 } 2849 2850 /* 2851 * Set cluster_sync_high since we need other nodes to add the 2852 * range [cluster_sync_low, cluster_sync_high] to suspend list. 2853 */ 2854 static void raid10_set_cluster_sync_high(struct r10conf *conf) 2855 { 2856 sector_t window_size; 2857 int extra_chunk, chunks; 2858 2859 /* 2860 * First, here we define "stripe" as a unit which across 2861 * all member devices one time, so we get chunks by use 2862 * raid_disks / near_copies. Otherwise, if near_copies is 2863 * close to raid_disks, then resync window could increases 2864 * linearly with the increase of raid_disks, which means 2865 * we will suspend a really large IO window while it is not 2866 * necessary. If raid_disks is not divisible by near_copies, 2867 * an extra chunk is needed to ensure the whole "stripe" is 2868 * covered. 2869 */ 2870 2871 chunks = conf->geo.raid_disks / conf->geo.near_copies; 2872 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 2873 extra_chunk = 0; 2874 else 2875 extra_chunk = 1; 2876 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 2877 2878 /* 2879 * At least use a 32M window to align with raid1's resync window 2880 */ 2881 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 2882 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 2883 2884 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 2885 } 2886 2887 /* 2888 * perform a "sync" on one "block" 2889 * 2890 * We need to make sure that no normal I/O request - particularly write 2891 * requests - conflict with active sync requests. 2892 * 2893 * This is achieved by tracking pending requests and a 'barrier' concept 2894 * that can be installed to exclude normal IO requests. 2895 * 2896 * Resync and recovery are handled very differently. 2897 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2898 * 2899 * For resync, we iterate over virtual addresses, read all copies, 2900 * and update if there are differences. If only one copy is live, 2901 * skip it. 2902 * For recovery, we iterate over physical addresses, read a good 2903 * value for each non-in_sync drive, and over-write. 2904 * 2905 * So, for recovery we may have several outstanding complex requests for a 2906 * given address, one for each out-of-sync device. We model this by allocating 2907 * a number of r10_bio structures, one for each out-of-sync device. 2908 * As we setup these structures, we collect all bio's together into a list 2909 * which we then process collectively to add pages, and then process again 2910 * to pass to generic_make_request. 2911 * 2912 * The r10_bio structures are linked using a borrowed master_bio pointer. 2913 * This link is counted in ->remaining. When the r10_bio that points to NULL 2914 * has its remaining count decremented to 0, the whole complex operation 2915 * is complete. 2916 * 2917 */ 2918 2919 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2920 int *skipped) 2921 { 2922 struct r10conf *conf = mddev->private; 2923 struct r10bio *r10_bio; 2924 struct bio *biolist = NULL, *bio; 2925 sector_t max_sector, nr_sectors; 2926 int i; 2927 int max_sync; 2928 sector_t sync_blocks; 2929 sector_t sectors_skipped = 0; 2930 int chunks_skipped = 0; 2931 sector_t chunk_mask = conf->geo.chunk_mask; 2932 int page_idx = 0; 2933 2934 if (!conf->r10buf_pool) 2935 if (init_resync(conf)) 2936 return 0; 2937 2938 /* 2939 * Allow skipping a full rebuild for incremental assembly 2940 * of a clean array, like RAID1 does. 2941 */ 2942 if (mddev->bitmap == NULL && 2943 mddev->recovery_cp == MaxSector && 2944 mddev->reshape_position == MaxSector && 2945 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2946 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2947 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2948 conf->fullsync == 0) { 2949 *skipped = 1; 2950 return mddev->dev_sectors - sector_nr; 2951 } 2952 2953 skipped: 2954 max_sector = mddev->dev_sectors; 2955 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2956 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2957 max_sector = mddev->resync_max_sectors; 2958 if (sector_nr >= max_sector) { 2959 conf->cluster_sync_low = 0; 2960 conf->cluster_sync_high = 0; 2961 2962 /* If we aborted, we need to abort the 2963 * sync on the 'current' bitmap chucks (there can 2964 * be several when recovering multiple devices). 2965 * as we may have started syncing it but not finished. 2966 * We can find the current address in 2967 * mddev->curr_resync, but for recovery, 2968 * we need to convert that to several 2969 * virtual addresses. 2970 */ 2971 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2972 end_reshape(conf); 2973 close_sync(conf); 2974 return 0; 2975 } 2976 2977 if (mddev->curr_resync < max_sector) { /* aborted */ 2978 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2979 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2980 &sync_blocks, 1); 2981 else for (i = 0; i < conf->geo.raid_disks; i++) { 2982 sector_t sect = 2983 raid10_find_virt(conf, mddev->curr_resync, i); 2984 bitmap_end_sync(mddev->bitmap, sect, 2985 &sync_blocks, 1); 2986 } 2987 } else { 2988 /* completed sync */ 2989 if ((!mddev->bitmap || conf->fullsync) 2990 && conf->have_replacement 2991 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2992 /* Completed a full sync so the replacements 2993 * are now fully recovered. 2994 */ 2995 rcu_read_lock(); 2996 for (i = 0; i < conf->geo.raid_disks; i++) { 2997 struct md_rdev *rdev = 2998 rcu_dereference(conf->mirrors[i].replacement); 2999 if (rdev) 3000 rdev->recovery_offset = MaxSector; 3001 } 3002 rcu_read_unlock(); 3003 } 3004 conf->fullsync = 0; 3005 } 3006 bitmap_close_sync(mddev->bitmap); 3007 close_sync(conf); 3008 *skipped = 1; 3009 return sectors_skipped; 3010 } 3011 3012 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3013 return reshape_request(mddev, sector_nr, skipped); 3014 3015 if (chunks_skipped >= conf->geo.raid_disks) { 3016 /* if there has been nothing to do on any drive, 3017 * then there is nothing to do at all.. 3018 */ 3019 *skipped = 1; 3020 return (max_sector - sector_nr) + sectors_skipped; 3021 } 3022 3023 if (max_sector > mddev->resync_max) 3024 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3025 3026 /* make sure whole request will fit in a chunk - if chunks 3027 * are meaningful 3028 */ 3029 if (conf->geo.near_copies < conf->geo.raid_disks && 3030 max_sector > (sector_nr | chunk_mask)) 3031 max_sector = (sector_nr | chunk_mask) + 1; 3032 3033 /* 3034 * If there is non-resync activity waiting for a turn, then let it 3035 * though before starting on this new sync request. 3036 */ 3037 if (conf->nr_waiting) 3038 schedule_timeout_uninterruptible(1); 3039 3040 /* Again, very different code for resync and recovery. 3041 * Both must result in an r10bio with a list of bios that 3042 * have bi_end_io, bi_sector, bi_disk set, 3043 * and bi_private set to the r10bio. 3044 * For recovery, we may actually create several r10bios 3045 * with 2 bios in each, that correspond to the bios in the main one. 3046 * In this case, the subordinate r10bios link back through a 3047 * borrowed master_bio pointer, and the counter in the master 3048 * includes a ref from each subordinate. 3049 */ 3050 /* First, we decide what to do and set ->bi_end_io 3051 * To end_sync_read if we want to read, and 3052 * end_sync_write if we will want to write. 3053 */ 3054 3055 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3056 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3057 /* recovery... the complicated one */ 3058 int j; 3059 r10_bio = NULL; 3060 3061 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3062 int still_degraded; 3063 struct r10bio *rb2; 3064 sector_t sect; 3065 int must_sync; 3066 int any_working; 3067 struct raid10_info *mirror = &conf->mirrors[i]; 3068 struct md_rdev *mrdev, *mreplace; 3069 3070 rcu_read_lock(); 3071 mrdev = rcu_dereference(mirror->rdev); 3072 mreplace = rcu_dereference(mirror->replacement); 3073 3074 if ((mrdev == NULL || 3075 test_bit(Faulty, &mrdev->flags) || 3076 test_bit(In_sync, &mrdev->flags)) && 3077 (mreplace == NULL || 3078 test_bit(Faulty, &mreplace->flags))) { 3079 rcu_read_unlock(); 3080 continue; 3081 } 3082 3083 still_degraded = 0; 3084 /* want to reconstruct this device */ 3085 rb2 = r10_bio; 3086 sect = raid10_find_virt(conf, sector_nr, i); 3087 if (sect >= mddev->resync_max_sectors) { 3088 /* last stripe is not complete - don't 3089 * try to recover this sector. 3090 */ 3091 rcu_read_unlock(); 3092 continue; 3093 } 3094 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3095 mreplace = NULL; 3096 /* Unless we are doing a full sync, or a replacement 3097 * we only need to recover the block if it is set in 3098 * the bitmap 3099 */ 3100 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3101 &sync_blocks, 1); 3102 if (sync_blocks < max_sync) 3103 max_sync = sync_blocks; 3104 if (!must_sync && 3105 mreplace == NULL && 3106 !conf->fullsync) { 3107 /* yep, skip the sync_blocks here, but don't assume 3108 * that there will never be anything to do here 3109 */ 3110 chunks_skipped = -1; 3111 rcu_read_unlock(); 3112 continue; 3113 } 3114 atomic_inc(&mrdev->nr_pending); 3115 if (mreplace) 3116 atomic_inc(&mreplace->nr_pending); 3117 rcu_read_unlock(); 3118 3119 r10_bio = raid10_alloc_init_r10buf(conf); 3120 r10_bio->state = 0; 3121 raise_barrier(conf, rb2 != NULL); 3122 atomic_set(&r10_bio->remaining, 0); 3123 3124 r10_bio->master_bio = (struct bio*)rb2; 3125 if (rb2) 3126 atomic_inc(&rb2->remaining); 3127 r10_bio->mddev = mddev; 3128 set_bit(R10BIO_IsRecover, &r10_bio->state); 3129 r10_bio->sector = sect; 3130 3131 raid10_find_phys(conf, r10_bio); 3132 3133 /* Need to check if the array will still be 3134 * degraded 3135 */ 3136 rcu_read_lock(); 3137 for (j = 0; j < conf->geo.raid_disks; j++) { 3138 struct md_rdev *rdev = rcu_dereference( 3139 conf->mirrors[j].rdev); 3140 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3141 still_degraded = 1; 3142 break; 3143 } 3144 } 3145 3146 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3147 &sync_blocks, still_degraded); 3148 3149 any_working = 0; 3150 for (j=0; j<conf->copies;j++) { 3151 int k; 3152 int d = r10_bio->devs[j].devnum; 3153 sector_t from_addr, to_addr; 3154 struct md_rdev *rdev = 3155 rcu_dereference(conf->mirrors[d].rdev); 3156 sector_t sector, first_bad; 3157 int bad_sectors; 3158 if (!rdev || 3159 !test_bit(In_sync, &rdev->flags)) 3160 continue; 3161 /* This is where we read from */ 3162 any_working = 1; 3163 sector = r10_bio->devs[j].addr; 3164 3165 if (is_badblock(rdev, sector, max_sync, 3166 &first_bad, &bad_sectors)) { 3167 if (first_bad > sector) 3168 max_sync = first_bad - sector; 3169 else { 3170 bad_sectors -= (sector 3171 - first_bad); 3172 if (max_sync > bad_sectors) 3173 max_sync = bad_sectors; 3174 continue; 3175 } 3176 } 3177 bio = r10_bio->devs[0].bio; 3178 bio->bi_next = biolist; 3179 biolist = bio; 3180 bio->bi_end_io = end_sync_read; 3181 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3182 if (test_bit(FailFast, &rdev->flags)) 3183 bio->bi_opf |= MD_FAILFAST; 3184 from_addr = r10_bio->devs[j].addr; 3185 bio->bi_iter.bi_sector = from_addr + 3186 rdev->data_offset; 3187 bio_set_dev(bio, rdev->bdev); 3188 atomic_inc(&rdev->nr_pending); 3189 /* and we write to 'i' (if not in_sync) */ 3190 3191 for (k=0; k<conf->copies; k++) 3192 if (r10_bio->devs[k].devnum == i) 3193 break; 3194 BUG_ON(k == conf->copies); 3195 to_addr = r10_bio->devs[k].addr; 3196 r10_bio->devs[0].devnum = d; 3197 r10_bio->devs[0].addr = from_addr; 3198 r10_bio->devs[1].devnum = i; 3199 r10_bio->devs[1].addr = to_addr; 3200 3201 if (!test_bit(In_sync, &mrdev->flags)) { 3202 bio = r10_bio->devs[1].bio; 3203 bio->bi_next = biolist; 3204 biolist = bio; 3205 bio->bi_end_io = end_sync_write; 3206 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3207 bio->bi_iter.bi_sector = to_addr 3208 + mrdev->data_offset; 3209 bio_set_dev(bio, mrdev->bdev); 3210 atomic_inc(&r10_bio->remaining); 3211 } else 3212 r10_bio->devs[1].bio->bi_end_io = NULL; 3213 3214 /* and maybe write to replacement */ 3215 bio = r10_bio->devs[1].repl_bio; 3216 if (bio) 3217 bio->bi_end_io = NULL; 3218 /* Note: if mreplace != NULL, then bio 3219 * cannot be NULL as r10buf_pool_alloc will 3220 * have allocated it. 3221 * So the second test here is pointless. 3222 * But it keeps semantic-checkers happy, and 3223 * this comment keeps human reviewers 3224 * happy. 3225 */ 3226 if (mreplace == NULL || bio == NULL || 3227 test_bit(Faulty, &mreplace->flags)) 3228 break; 3229 bio->bi_next = biolist; 3230 biolist = bio; 3231 bio->bi_end_io = end_sync_write; 3232 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3233 bio->bi_iter.bi_sector = to_addr + 3234 mreplace->data_offset; 3235 bio_set_dev(bio, mreplace->bdev); 3236 atomic_inc(&r10_bio->remaining); 3237 break; 3238 } 3239 rcu_read_unlock(); 3240 if (j == conf->copies) { 3241 /* Cannot recover, so abort the recovery or 3242 * record a bad block */ 3243 if (any_working) { 3244 /* problem is that there are bad blocks 3245 * on other device(s) 3246 */ 3247 int k; 3248 for (k = 0; k < conf->copies; k++) 3249 if (r10_bio->devs[k].devnum == i) 3250 break; 3251 if (!test_bit(In_sync, 3252 &mrdev->flags) 3253 && !rdev_set_badblocks( 3254 mrdev, 3255 r10_bio->devs[k].addr, 3256 max_sync, 0)) 3257 any_working = 0; 3258 if (mreplace && 3259 !rdev_set_badblocks( 3260 mreplace, 3261 r10_bio->devs[k].addr, 3262 max_sync, 0)) 3263 any_working = 0; 3264 } 3265 if (!any_working) { 3266 if (!test_and_set_bit(MD_RECOVERY_INTR, 3267 &mddev->recovery)) 3268 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3269 mdname(mddev)); 3270 mirror->recovery_disabled 3271 = mddev->recovery_disabled; 3272 } 3273 put_buf(r10_bio); 3274 if (rb2) 3275 atomic_dec(&rb2->remaining); 3276 r10_bio = rb2; 3277 rdev_dec_pending(mrdev, mddev); 3278 if (mreplace) 3279 rdev_dec_pending(mreplace, mddev); 3280 break; 3281 } 3282 rdev_dec_pending(mrdev, mddev); 3283 if (mreplace) 3284 rdev_dec_pending(mreplace, mddev); 3285 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3286 /* Only want this if there is elsewhere to 3287 * read from. 'j' is currently the first 3288 * readable copy. 3289 */ 3290 int targets = 1; 3291 for (; j < conf->copies; j++) { 3292 int d = r10_bio->devs[j].devnum; 3293 if (conf->mirrors[d].rdev && 3294 test_bit(In_sync, 3295 &conf->mirrors[d].rdev->flags)) 3296 targets++; 3297 } 3298 if (targets == 1) 3299 r10_bio->devs[0].bio->bi_opf 3300 &= ~MD_FAILFAST; 3301 } 3302 } 3303 if (biolist == NULL) { 3304 while (r10_bio) { 3305 struct r10bio *rb2 = r10_bio; 3306 r10_bio = (struct r10bio*) rb2->master_bio; 3307 rb2->master_bio = NULL; 3308 put_buf(rb2); 3309 } 3310 goto giveup; 3311 } 3312 } else { 3313 /* resync. Schedule a read for every block at this virt offset */ 3314 int count = 0; 3315 3316 /* 3317 * Since curr_resync_completed could probably not update in 3318 * time, and we will set cluster_sync_low based on it. 3319 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3320 * safety reason, which ensures curr_resync_completed is 3321 * updated in bitmap_cond_end_sync. 3322 */ 3323 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3324 mddev_is_clustered(mddev) && 3325 (sector_nr + 2 * RESYNC_SECTORS > 3326 conf->cluster_sync_high)); 3327 3328 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3329 &sync_blocks, mddev->degraded) && 3330 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3331 &mddev->recovery)) { 3332 /* We can skip this block */ 3333 *skipped = 1; 3334 return sync_blocks + sectors_skipped; 3335 } 3336 if (sync_blocks < max_sync) 3337 max_sync = sync_blocks; 3338 r10_bio = raid10_alloc_init_r10buf(conf); 3339 r10_bio->state = 0; 3340 3341 r10_bio->mddev = mddev; 3342 atomic_set(&r10_bio->remaining, 0); 3343 raise_barrier(conf, 0); 3344 conf->next_resync = sector_nr; 3345 3346 r10_bio->master_bio = NULL; 3347 r10_bio->sector = sector_nr; 3348 set_bit(R10BIO_IsSync, &r10_bio->state); 3349 raid10_find_phys(conf, r10_bio); 3350 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3351 3352 for (i = 0; i < conf->copies; i++) { 3353 int d = r10_bio->devs[i].devnum; 3354 sector_t first_bad, sector; 3355 int bad_sectors; 3356 struct md_rdev *rdev; 3357 3358 if (r10_bio->devs[i].repl_bio) 3359 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3360 3361 bio = r10_bio->devs[i].bio; 3362 bio->bi_status = BLK_STS_IOERR; 3363 rcu_read_lock(); 3364 rdev = rcu_dereference(conf->mirrors[d].rdev); 3365 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3366 rcu_read_unlock(); 3367 continue; 3368 } 3369 sector = r10_bio->devs[i].addr; 3370 if (is_badblock(rdev, sector, max_sync, 3371 &first_bad, &bad_sectors)) { 3372 if (first_bad > sector) 3373 max_sync = first_bad - sector; 3374 else { 3375 bad_sectors -= (sector - first_bad); 3376 if (max_sync > bad_sectors) 3377 max_sync = bad_sectors; 3378 rcu_read_unlock(); 3379 continue; 3380 } 3381 } 3382 atomic_inc(&rdev->nr_pending); 3383 atomic_inc(&r10_bio->remaining); 3384 bio->bi_next = biolist; 3385 biolist = bio; 3386 bio->bi_end_io = end_sync_read; 3387 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3388 if (test_bit(FailFast, &rdev->flags)) 3389 bio->bi_opf |= MD_FAILFAST; 3390 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3391 bio_set_dev(bio, rdev->bdev); 3392 count++; 3393 3394 rdev = rcu_dereference(conf->mirrors[d].replacement); 3395 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3396 rcu_read_unlock(); 3397 continue; 3398 } 3399 atomic_inc(&rdev->nr_pending); 3400 3401 /* Need to set up for writing to the replacement */ 3402 bio = r10_bio->devs[i].repl_bio; 3403 bio->bi_status = BLK_STS_IOERR; 3404 3405 sector = r10_bio->devs[i].addr; 3406 bio->bi_next = biolist; 3407 biolist = bio; 3408 bio->bi_end_io = end_sync_write; 3409 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3410 if (test_bit(FailFast, &rdev->flags)) 3411 bio->bi_opf |= MD_FAILFAST; 3412 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3413 bio_set_dev(bio, rdev->bdev); 3414 count++; 3415 rcu_read_unlock(); 3416 } 3417 3418 if (count < 2) { 3419 for (i=0; i<conf->copies; i++) { 3420 int d = r10_bio->devs[i].devnum; 3421 if (r10_bio->devs[i].bio->bi_end_io) 3422 rdev_dec_pending(conf->mirrors[d].rdev, 3423 mddev); 3424 if (r10_bio->devs[i].repl_bio && 3425 r10_bio->devs[i].repl_bio->bi_end_io) 3426 rdev_dec_pending( 3427 conf->mirrors[d].replacement, 3428 mddev); 3429 } 3430 put_buf(r10_bio); 3431 biolist = NULL; 3432 goto giveup; 3433 } 3434 } 3435 3436 nr_sectors = 0; 3437 if (sector_nr + max_sync < max_sector) 3438 max_sector = sector_nr + max_sync; 3439 do { 3440 struct page *page; 3441 int len = PAGE_SIZE; 3442 if (sector_nr + (len>>9) > max_sector) 3443 len = (max_sector - sector_nr) << 9; 3444 if (len == 0) 3445 break; 3446 for (bio= biolist ; bio ; bio=bio->bi_next) { 3447 struct resync_pages *rp = get_resync_pages(bio); 3448 page = resync_fetch_page(rp, page_idx); 3449 /* 3450 * won't fail because the vec table is big enough 3451 * to hold all these pages 3452 */ 3453 bio_add_page(bio, page, len, 0); 3454 } 3455 nr_sectors += len>>9; 3456 sector_nr += len>>9; 3457 } while (++page_idx < RESYNC_PAGES); 3458 r10_bio->sectors = nr_sectors; 3459 3460 if (mddev_is_clustered(mddev) && 3461 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3462 /* It is resync not recovery */ 3463 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3464 conf->cluster_sync_low = mddev->curr_resync_completed; 3465 raid10_set_cluster_sync_high(conf); 3466 /* Send resync message */ 3467 md_cluster_ops->resync_info_update(mddev, 3468 conf->cluster_sync_low, 3469 conf->cluster_sync_high); 3470 } 3471 } else if (mddev_is_clustered(mddev)) { 3472 /* This is recovery not resync */ 3473 sector_t sect_va1, sect_va2; 3474 bool broadcast_msg = false; 3475 3476 for (i = 0; i < conf->geo.raid_disks; i++) { 3477 /* 3478 * sector_nr is a device address for recovery, so we 3479 * need translate it to array address before compare 3480 * with cluster_sync_high. 3481 */ 3482 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3483 3484 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3485 broadcast_msg = true; 3486 /* 3487 * curr_resync_completed is similar as 3488 * sector_nr, so make the translation too. 3489 */ 3490 sect_va2 = raid10_find_virt(conf, 3491 mddev->curr_resync_completed, i); 3492 3493 if (conf->cluster_sync_low == 0 || 3494 conf->cluster_sync_low > sect_va2) 3495 conf->cluster_sync_low = sect_va2; 3496 } 3497 } 3498 if (broadcast_msg) { 3499 raid10_set_cluster_sync_high(conf); 3500 md_cluster_ops->resync_info_update(mddev, 3501 conf->cluster_sync_low, 3502 conf->cluster_sync_high); 3503 } 3504 } 3505 3506 while (biolist) { 3507 bio = biolist; 3508 biolist = biolist->bi_next; 3509 3510 bio->bi_next = NULL; 3511 r10_bio = get_resync_r10bio(bio); 3512 r10_bio->sectors = nr_sectors; 3513 3514 if (bio->bi_end_io == end_sync_read) { 3515 md_sync_acct_bio(bio, nr_sectors); 3516 bio->bi_status = 0; 3517 generic_make_request(bio); 3518 } 3519 } 3520 3521 if (sectors_skipped) 3522 /* pretend they weren't skipped, it makes 3523 * no important difference in this case 3524 */ 3525 md_done_sync(mddev, sectors_skipped, 1); 3526 3527 return sectors_skipped + nr_sectors; 3528 giveup: 3529 /* There is nowhere to write, so all non-sync 3530 * drives must be failed or in resync, all drives 3531 * have a bad block, so try the next chunk... 3532 */ 3533 if (sector_nr + max_sync < max_sector) 3534 max_sector = sector_nr + max_sync; 3535 3536 sectors_skipped += (max_sector - sector_nr); 3537 chunks_skipped ++; 3538 sector_nr = max_sector; 3539 goto skipped; 3540 } 3541 3542 static sector_t 3543 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3544 { 3545 sector_t size; 3546 struct r10conf *conf = mddev->private; 3547 3548 if (!raid_disks) 3549 raid_disks = min(conf->geo.raid_disks, 3550 conf->prev.raid_disks); 3551 if (!sectors) 3552 sectors = conf->dev_sectors; 3553 3554 size = sectors >> conf->geo.chunk_shift; 3555 sector_div(size, conf->geo.far_copies); 3556 size = size * raid_disks; 3557 sector_div(size, conf->geo.near_copies); 3558 3559 return size << conf->geo.chunk_shift; 3560 } 3561 3562 static void calc_sectors(struct r10conf *conf, sector_t size) 3563 { 3564 /* Calculate the number of sectors-per-device that will 3565 * actually be used, and set conf->dev_sectors and 3566 * conf->stride 3567 */ 3568 3569 size = size >> conf->geo.chunk_shift; 3570 sector_div(size, conf->geo.far_copies); 3571 size = size * conf->geo.raid_disks; 3572 sector_div(size, conf->geo.near_copies); 3573 /* 'size' is now the number of chunks in the array */ 3574 /* calculate "used chunks per device" */ 3575 size = size * conf->copies; 3576 3577 /* We need to round up when dividing by raid_disks to 3578 * get the stride size. 3579 */ 3580 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3581 3582 conf->dev_sectors = size << conf->geo.chunk_shift; 3583 3584 if (conf->geo.far_offset) 3585 conf->geo.stride = 1 << conf->geo.chunk_shift; 3586 else { 3587 sector_div(size, conf->geo.far_copies); 3588 conf->geo.stride = size << conf->geo.chunk_shift; 3589 } 3590 } 3591 3592 enum geo_type {geo_new, geo_old, geo_start}; 3593 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3594 { 3595 int nc, fc, fo; 3596 int layout, chunk, disks; 3597 switch (new) { 3598 case geo_old: 3599 layout = mddev->layout; 3600 chunk = mddev->chunk_sectors; 3601 disks = mddev->raid_disks - mddev->delta_disks; 3602 break; 3603 case geo_new: 3604 layout = mddev->new_layout; 3605 chunk = mddev->new_chunk_sectors; 3606 disks = mddev->raid_disks; 3607 break; 3608 default: /* avoid 'may be unused' warnings */ 3609 case geo_start: /* new when starting reshape - raid_disks not 3610 * updated yet. */ 3611 layout = mddev->new_layout; 3612 chunk = mddev->new_chunk_sectors; 3613 disks = mddev->raid_disks + mddev->delta_disks; 3614 break; 3615 } 3616 if (layout >> 19) 3617 return -1; 3618 if (chunk < (PAGE_SIZE >> 9) || 3619 !is_power_of_2(chunk)) 3620 return -2; 3621 nc = layout & 255; 3622 fc = (layout >> 8) & 255; 3623 fo = layout & (1<<16); 3624 geo->raid_disks = disks; 3625 geo->near_copies = nc; 3626 geo->far_copies = fc; 3627 geo->far_offset = fo; 3628 switch (layout >> 17) { 3629 case 0: /* original layout. simple but not always optimal */ 3630 geo->far_set_size = disks; 3631 break; 3632 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3633 * actually using this, but leave code here just in case.*/ 3634 geo->far_set_size = disks/fc; 3635 WARN(geo->far_set_size < fc, 3636 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3637 break; 3638 case 2: /* "improved" layout fixed to match documentation */ 3639 geo->far_set_size = fc * nc; 3640 break; 3641 default: /* Not a valid layout */ 3642 return -1; 3643 } 3644 geo->chunk_mask = chunk - 1; 3645 geo->chunk_shift = ffz(~chunk); 3646 return nc*fc; 3647 } 3648 3649 static struct r10conf *setup_conf(struct mddev *mddev) 3650 { 3651 struct r10conf *conf = NULL; 3652 int err = -EINVAL; 3653 struct geom geo; 3654 int copies; 3655 3656 copies = setup_geo(&geo, mddev, geo_new); 3657 3658 if (copies == -2) { 3659 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3660 mdname(mddev), PAGE_SIZE); 3661 goto out; 3662 } 3663 3664 if (copies < 2 || copies > mddev->raid_disks) { 3665 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3666 mdname(mddev), mddev->new_layout); 3667 goto out; 3668 } 3669 3670 err = -ENOMEM; 3671 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3672 if (!conf) 3673 goto out; 3674 3675 /* FIXME calc properly */ 3676 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3677 max(0,-mddev->delta_disks)), 3678 GFP_KERNEL); 3679 if (!conf->mirrors) 3680 goto out; 3681 3682 conf->tmppage = alloc_page(GFP_KERNEL); 3683 if (!conf->tmppage) 3684 goto out; 3685 3686 conf->geo = geo; 3687 conf->copies = copies; 3688 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3689 r10bio_pool_free, conf); 3690 if (!conf->r10bio_pool) 3691 goto out; 3692 3693 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0); 3694 if (!conf->bio_split) 3695 goto out; 3696 3697 calc_sectors(conf, mddev->dev_sectors); 3698 if (mddev->reshape_position == MaxSector) { 3699 conf->prev = conf->geo; 3700 conf->reshape_progress = MaxSector; 3701 } else { 3702 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3703 err = -EINVAL; 3704 goto out; 3705 } 3706 conf->reshape_progress = mddev->reshape_position; 3707 if (conf->prev.far_offset) 3708 conf->prev.stride = 1 << conf->prev.chunk_shift; 3709 else 3710 /* far_copies must be 1 */ 3711 conf->prev.stride = conf->dev_sectors; 3712 } 3713 conf->reshape_safe = conf->reshape_progress; 3714 spin_lock_init(&conf->device_lock); 3715 INIT_LIST_HEAD(&conf->retry_list); 3716 INIT_LIST_HEAD(&conf->bio_end_io_list); 3717 3718 spin_lock_init(&conf->resync_lock); 3719 init_waitqueue_head(&conf->wait_barrier); 3720 atomic_set(&conf->nr_pending, 0); 3721 3722 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3723 if (!conf->thread) 3724 goto out; 3725 3726 conf->mddev = mddev; 3727 return conf; 3728 3729 out: 3730 if (conf) { 3731 mempool_destroy(conf->r10bio_pool); 3732 kfree(conf->mirrors); 3733 safe_put_page(conf->tmppage); 3734 if (conf->bio_split) 3735 bioset_free(conf->bio_split); 3736 kfree(conf); 3737 } 3738 return ERR_PTR(err); 3739 } 3740 3741 static int raid10_run(struct mddev *mddev) 3742 { 3743 struct r10conf *conf; 3744 int i, disk_idx, chunk_size; 3745 struct raid10_info *disk; 3746 struct md_rdev *rdev; 3747 sector_t size; 3748 sector_t min_offset_diff = 0; 3749 int first = 1; 3750 bool discard_supported = false; 3751 3752 if (mddev_init_writes_pending(mddev) < 0) 3753 return -ENOMEM; 3754 3755 if (mddev->private == NULL) { 3756 conf = setup_conf(mddev); 3757 if (IS_ERR(conf)) 3758 return PTR_ERR(conf); 3759 mddev->private = conf; 3760 } 3761 conf = mddev->private; 3762 if (!conf) 3763 goto out; 3764 3765 if (mddev_is_clustered(conf->mddev)) { 3766 int fc, fo; 3767 3768 fc = (mddev->layout >> 8) & 255; 3769 fo = mddev->layout & (1<<16); 3770 if (fc > 1 || fo > 0) { 3771 pr_err("only near layout is supported by clustered" 3772 " raid10\n"); 3773 goto out; 3774 } 3775 } 3776 3777 mddev->thread = conf->thread; 3778 conf->thread = NULL; 3779 3780 chunk_size = mddev->chunk_sectors << 9; 3781 if (mddev->queue) { 3782 blk_queue_max_discard_sectors(mddev->queue, 3783 mddev->chunk_sectors); 3784 blk_queue_max_write_same_sectors(mddev->queue, 0); 3785 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3786 blk_queue_io_min(mddev->queue, chunk_size); 3787 if (conf->geo.raid_disks % conf->geo.near_copies) 3788 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3789 else 3790 blk_queue_io_opt(mddev->queue, chunk_size * 3791 (conf->geo.raid_disks / conf->geo.near_copies)); 3792 } 3793 3794 rdev_for_each(rdev, mddev) { 3795 long long diff; 3796 3797 disk_idx = rdev->raid_disk; 3798 if (disk_idx < 0) 3799 continue; 3800 if (disk_idx >= conf->geo.raid_disks && 3801 disk_idx >= conf->prev.raid_disks) 3802 continue; 3803 disk = conf->mirrors + disk_idx; 3804 3805 if (test_bit(Replacement, &rdev->flags)) { 3806 if (disk->replacement) 3807 goto out_free_conf; 3808 disk->replacement = rdev; 3809 } else { 3810 if (disk->rdev) 3811 goto out_free_conf; 3812 disk->rdev = rdev; 3813 } 3814 diff = (rdev->new_data_offset - rdev->data_offset); 3815 if (!mddev->reshape_backwards) 3816 diff = -diff; 3817 if (diff < 0) 3818 diff = 0; 3819 if (first || diff < min_offset_diff) 3820 min_offset_diff = diff; 3821 3822 if (mddev->gendisk) 3823 disk_stack_limits(mddev->gendisk, rdev->bdev, 3824 rdev->data_offset << 9); 3825 3826 disk->head_position = 0; 3827 3828 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3829 discard_supported = true; 3830 first = 0; 3831 } 3832 3833 if (mddev->queue) { 3834 if (discard_supported) 3835 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3836 mddev->queue); 3837 else 3838 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3839 mddev->queue); 3840 } 3841 /* need to check that every block has at least one working mirror */ 3842 if (!enough(conf, -1)) { 3843 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3844 mdname(mddev)); 3845 goto out_free_conf; 3846 } 3847 3848 if (conf->reshape_progress != MaxSector) { 3849 /* must ensure that shape change is supported */ 3850 if (conf->geo.far_copies != 1 && 3851 conf->geo.far_offset == 0) 3852 goto out_free_conf; 3853 if (conf->prev.far_copies != 1 && 3854 conf->prev.far_offset == 0) 3855 goto out_free_conf; 3856 } 3857 3858 mddev->degraded = 0; 3859 for (i = 0; 3860 i < conf->geo.raid_disks 3861 || i < conf->prev.raid_disks; 3862 i++) { 3863 3864 disk = conf->mirrors + i; 3865 3866 if (!disk->rdev && disk->replacement) { 3867 /* The replacement is all we have - use it */ 3868 disk->rdev = disk->replacement; 3869 disk->replacement = NULL; 3870 clear_bit(Replacement, &disk->rdev->flags); 3871 } 3872 3873 if (!disk->rdev || 3874 !test_bit(In_sync, &disk->rdev->flags)) { 3875 disk->head_position = 0; 3876 mddev->degraded++; 3877 if (disk->rdev && 3878 disk->rdev->saved_raid_disk < 0) 3879 conf->fullsync = 1; 3880 } 3881 disk->recovery_disabled = mddev->recovery_disabled - 1; 3882 } 3883 3884 if (mddev->recovery_cp != MaxSector) 3885 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3886 mdname(mddev)); 3887 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3888 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3889 conf->geo.raid_disks); 3890 /* 3891 * Ok, everything is just fine now 3892 */ 3893 mddev->dev_sectors = conf->dev_sectors; 3894 size = raid10_size(mddev, 0, 0); 3895 md_set_array_sectors(mddev, size); 3896 mddev->resync_max_sectors = size; 3897 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3898 3899 if (mddev->queue) { 3900 int stripe = conf->geo.raid_disks * 3901 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3902 3903 /* Calculate max read-ahead size. 3904 * We need to readahead at least twice a whole stripe.... 3905 * maybe... 3906 */ 3907 stripe /= conf->geo.near_copies; 3908 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3909 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3910 } 3911 3912 if (md_integrity_register(mddev)) 3913 goto out_free_conf; 3914 3915 if (conf->reshape_progress != MaxSector) { 3916 unsigned long before_length, after_length; 3917 3918 before_length = ((1 << conf->prev.chunk_shift) * 3919 conf->prev.far_copies); 3920 after_length = ((1 << conf->geo.chunk_shift) * 3921 conf->geo.far_copies); 3922 3923 if (max(before_length, after_length) > min_offset_diff) { 3924 /* This cannot work */ 3925 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3926 goto out_free_conf; 3927 } 3928 conf->offset_diff = min_offset_diff; 3929 3930 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3931 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3932 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3933 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3934 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3935 "reshape"); 3936 } 3937 3938 return 0; 3939 3940 out_free_conf: 3941 md_unregister_thread(&mddev->thread); 3942 mempool_destroy(conf->r10bio_pool); 3943 safe_put_page(conf->tmppage); 3944 kfree(conf->mirrors); 3945 kfree(conf); 3946 mddev->private = NULL; 3947 out: 3948 return -EIO; 3949 } 3950 3951 static void raid10_free(struct mddev *mddev, void *priv) 3952 { 3953 struct r10conf *conf = priv; 3954 3955 mempool_destroy(conf->r10bio_pool); 3956 safe_put_page(conf->tmppage); 3957 kfree(conf->mirrors); 3958 kfree(conf->mirrors_old); 3959 kfree(conf->mirrors_new); 3960 if (conf->bio_split) 3961 bioset_free(conf->bio_split); 3962 kfree(conf); 3963 } 3964 3965 static void raid10_quiesce(struct mddev *mddev, int quiesce) 3966 { 3967 struct r10conf *conf = mddev->private; 3968 3969 if (quiesce) 3970 raise_barrier(conf, 0); 3971 else 3972 lower_barrier(conf); 3973 } 3974 3975 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3976 { 3977 /* Resize of 'far' arrays is not supported. 3978 * For 'near' and 'offset' arrays we can set the 3979 * number of sectors used to be an appropriate multiple 3980 * of the chunk size. 3981 * For 'offset', this is far_copies*chunksize. 3982 * For 'near' the multiplier is the LCM of 3983 * near_copies and raid_disks. 3984 * So if far_copies > 1 && !far_offset, fail. 3985 * Else find LCM(raid_disks, near_copy)*far_copies and 3986 * multiply by chunk_size. Then round to this number. 3987 * This is mostly done by raid10_size() 3988 */ 3989 struct r10conf *conf = mddev->private; 3990 sector_t oldsize, size; 3991 3992 if (mddev->reshape_position != MaxSector) 3993 return -EBUSY; 3994 3995 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3996 return -EINVAL; 3997 3998 oldsize = raid10_size(mddev, 0, 0); 3999 size = raid10_size(mddev, sectors, 0); 4000 if (mddev->external_size && 4001 mddev->array_sectors > size) 4002 return -EINVAL; 4003 if (mddev->bitmap) { 4004 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 4005 if (ret) 4006 return ret; 4007 } 4008 md_set_array_sectors(mddev, size); 4009 if (sectors > mddev->dev_sectors && 4010 mddev->recovery_cp > oldsize) { 4011 mddev->recovery_cp = oldsize; 4012 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4013 } 4014 calc_sectors(conf, sectors); 4015 mddev->dev_sectors = conf->dev_sectors; 4016 mddev->resync_max_sectors = size; 4017 return 0; 4018 } 4019 4020 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4021 { 4022 struct md_rdev *rdev; 4023 struct r10conf *conf; 4024 4025 if (mddev->degraded > 0) { 4026 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4027 mdname(mddev)); 4028 return ERR_PTR(-EINVAL); 4029 } 4030 sector_div(size, devs); 4031 4032 /* Set new parameters */ 4033 mddev->new_level = 10; 4034 /* new layout: far_copies = 1, near_copies = 2 */ 4035 mddev->new_layout = (1<<8) + 2; 4036 mddev->new_chunk_sectors = mddev->chunk_sectors; 4037 mddev->delta_disks = mddev->raid_disks; 4038 mddev->raid_disks *= 2; 4039 /* make sure it will be not marked as dirty */ 4040 mddev->recovery_cp = MaxSector; 4041 mddev->dev_sectors = size; 4042 4043 conf = setup_conf(mddev); 4044 if (!IS_ERR(conf)) { 4045 rdev_for_each(rdev, mddev) 4046 if (rdev->raid_disk >= 0) { 4047 rdev->new_raid_disk = rdev->raid_disk * 2; 4048 rdev->sectors = size; 4049 } 4050 conf->barrier = 1; 4051 } 4052 4053 return conf; 4054 } 4055 4056 static void *raid10_takeover(struct mddev *mddev) 4057 { 4058 struct r0conf *raid0_conf; 4059 4060 /* raid10 can take over: 4061 * raid0 - providing it has only two drives 4062 */ 4063 if (mddev->level == 0) { 4064 /* for raid0 takeover only one zone is supported */ 4065 raid0_conf = mddev->private; 4066 if (raid0_conf->nr_strip_zones > 1) { 4067 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4068 mdname(mddev)); 4069 return ERR_PTR(-EINVAL); 4070 } 4071 return raid10_takeover_raid0(mddev, 4072 raid0_conf->strip_zone->zone_end, 4073 raid0_conf->strip_zone->nb_dev); 4074 } 4075 return ERR_PTR(-EINVAL); 4076 } 4077 4078 static int raid10_check_reshape(struct mddev *mddev) 4079 { 4080 /* Called when there is a request to change 4081 * - layout (to ->new_layout) 4082 * - chunk size (to ->new_chunk_sectors) 4083 * - raid_disks (by delta_disks) 4084 * or when trying to restart a reshape that was ongoing. 4085 * 4086 * We need to validate the request and possibly allocate 4087 * space if that might be an issue later. 4088 * 4089 * Currently we reject any reshape of a 'far' mode array, 4090 * allow chunk size to change if new is generally acceptable, 4091 * allow raid_disks to increase, and allow 4092 * a switch between 'near' mode and 'offset' mode. 4093 */ 4094 struct r10conf *conf = mddev->private; 4095 struct geom geo; 4096 4097 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4098 return -EINVAL; 4099 4100 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4101 /* mustn't change number of copies */ 4102 return -EINVAL; 4103 if (geo.far_copies > 1 && !geo.far_offset) 4104 /* Cannot switch to 'far' mode */ 4105 return -EINVAL; 4106 4107 if (mddev->array_sectors & geo.chunk_mask) 4108 /* not factor of array size */ 4109 return -EINVAL; 4110 4111 if (!enough(conf, -1)) 4112 return -EINVAL; 4113 4114 kfree(conf->mirrors_new); 4115 conf->mirrors_new = NULL; 4116 if (mddev->delta_disks > 0) { 4117 /* allocate new 'mirrors' list */ 4118 conf->mirrors_new = kzalloc( 4119 sizeof(struct raid10_info) 4120 *(mddev->raid_disks + 4121 mddev->delta_disks), 4122 GFP_KERNEL); 4123 if (!conf->mirrors_new) 4124 return -ENOMEM; 4125 } 4126 return 0; 4127 } 4128 4129 /* 4130 * Need to check if array has failed when deciding whether to: 4131 * - start an array 4132 * - remove non-faulty devices 4133 * - add a spare 4134 * - allow a reshape 4135 * This determination is simple when no reshape is happening. 4136 * However if there is a reshape, we need to carefully check 4137 * both the before and after sections. 4138 * This is because some failed devices may only affect one 4139 * of the two sections, and some non-in_sync devices may 4140 * be insync in the section most affected by failed devices. 4141 */ 4142 static int calc_degraded(struct r10conf *conf) 4143 { 4144 int degraded, degraded2; 4145 int i; 4146 4147 rcu_read_lock(); 4148 degraded = 0; 4149 /* 'prev' section first */ 4150 for (i = 0; i < conf->prev.raid_disks; i++) { 4151 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4152 if (!rdev || test_bit(Faulty, &rdev->flags)) 4153 degraded++; 4154 else if (!test_bit(In_sync, &rdev->flags)) 4155 /* When we can reduce the number of devices in 4156 * an array, this might not contribute to 4157 * 'degraded'. It does now. 4158 */ 4159 degraded++; 4160 } 4161 rcu_read_unlock(); 4162 if (conf->geo.raid_disks == conf->prev.raid_disks) 4163 return degraded; 4164 rcu_read_lock(); 4165 degraded2 = 0; 4166 for (i = 0; i < conf->geo.raid_disks; i++) { 4167 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4168 if (!rdev || test_bit(Faulty, &rdev->flags)) 4169 degraded2++; 4170 else if (!test_bit(In_sync, &rdev->flags)) { 4171 /* If reshape is increasing the number of devices, 4172 * this section has already been recovered, so 4173 * it doesn't contribute to degraded. 4174 * else it does. 4175 */ 4176 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4177 degraded2++; 4178 } 4179 } 4180 rcu_read_unlock(); 4181 if (degraded2 > degraded) 4182 return degraded2; 4183 return degraded; 4184 } 4185 4186 static int raid10_start_reshape(struct mddev *mddev) 4187 { 4188 /* A 'reshape' has been requested. This commits 4189 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4190 * This also checks if there are enough spares and adds them 4191 * to the array. 4192 * We currently require enough spares to make the final 4193 * array non-degraded. We also require that the difference 4194 * between old and new data_offset - on each device - is 4195 * enough that we never risk over-writing. 4196 */ 4197 4198 unsigned long before_length, after_length; 4199 sector_t min_offset_diff = 0; 4200 int first = 1; 4201 struct geom new; 4202 struct r10conf *conf = mddev->private; 4203 struct md_rdev *rdev; 4204 int spares = 0; 4205 int ret; 4206 4207 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4208 return -EBUSY; 4209 4210 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4211 return -EINVAL; 4212 4213 before_length = ((1 << conf->prev.chunk_shift) * 4214 conf->prev.far_copies); 4215 after_length = ((1 << conf->geo.chunk_shift) * 4216 conf->geo.far_copies); 4217 4218 rdev_for_each(rdev, mddev) { 4219 if (!test_bit(In_sync, &rdev->flags) 4220 && !test_bit(Faulty, &rdev->flags)) 4221 spares++; 4222 if (rdev->raid_disk >= 0) { 4223 long long diff = (rdev->new_data_offset 4224 - rdev->data_offset); 4225 if (!mddev->reshape_backwards) 4226 diff = -diff; 4227 if (diff < 0) 4228 diff = 0; 4229 if (first || diff < min_offset_diff) 4230 min_offset_diff = diff; 4231 first = 0; 4232 } 4233 } 4234 4235 if (max(before_length, after_length) > min_offset_diff) 4236 return -EINVAL; 4237 4238 if (spares < mddev->delta_disks) 4239 return -EINVAL; 4240 4241 conf->offset_diff = min_offset_diff; 4242 spin_lock_irq(&conf->device_lock); 4243 if (conf->mirrors_new) { 4244 memcpy(conf->mirrors_new, conf->mirrors, 4245 sizeof(struct raid10_info)*conf->prev.raid_disks); 4246 smp_mb(); 4247 kfree(conf->mirrors_old); 4248 conf->mirrors_old = conf->mirrors; 4249 conf->mirrors = conf->mirrors_new; 4250 conf->mirrors_new = NULL; 4251 } 4252 setup_geo(&conf->geo, mddev, geo_start); 4253 smp_mb(); 4254 if (mddev->reshape_backwards) { 4255 sector_t size = raid10_size(mddev, 0, 0); 4256 if (size < mddev->array_sectors) { 4257 spin_unlock_irq(&conf->device_lock); 4258 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4259 mdname(mddev)); 4260 return -EINVAL; 4261 } 4262 mddev->resync_max_sectors = size; 4263 conf->reshape_progress = size; 4264 } else 4265 conf->reshape_progress = 0; 4266 conf->reshape_safe = conf->reshape_progress; 4267 spin_unlock_irq(&conf->device_lock); 4268 4269 if (mddev->delta_disks && mddev->bitmap) { 4270 ret = bitmap_resize(mddev->bitmap, 4271 raid10_size(mddev, 0, 4272 conf->geo.raid_disks), 4273 0, 0); 4274 if (ret) 4275 goto abort; 4276 } 4277 if (mddev->delta_disks > 0) { 4278 rdev_for_each(rdev, mddev) 4279 if (rdev->raid_disk < 0 && 4280 !test_bit(Faulty, &rdev->flags)) { 4281 if (raid10_add_disk(mddev, rdev) == 0) { 4282 if (rdev->raid_disk >= 4283 conf->prev.raid_disks) 4284 set_bit(In_sync, &rdev->flags); 4285 else 4286 rdev->recovery_offset = 0; 4287 4288 if (sysfs_link_rdev(mddev, rdev)) 4289 /* Failure here is OK */; 4290 } 4291 } else if (rdev->raid_disk >= conf->prev.raid_disks 4292 && !test_bit(Faulty, &rdev->flags)) { 4293 /* This is a spare that was manually added */ 4294 set_bit(In_sync, &rdev->flags); 4295 } 4296 } 4297 /* When a reshape changes the number of devices, 4298 * ->degraded is measured against the larger of the 4299 * pre and post numbers. 4300 */ 4301 spin_lock_irq(&conf->device_lock); 4302 mddev->degraded = calc_degraded(conf); 4303 spin_unlock_irq(&conf->device_lock); 4304 mddev->raid_disks = conf->geo.raid_disks; 4305 mddev->reshape_position = conf->reshape_progress; 4306 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4307 4308 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4309 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4310 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4311 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4312 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4313 4314 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4315 "reshape"); 4316 if (!mddev->sync_thread) { 4317 ret = -EAGAIN; 4318 goto abort; 4319 } 4320 conf->reshape_checkpoint = jiffies; 4321 md_wakeup_thread(mddev->sync_thread); 4322 md_new_event(mddev); 4323 return 0; 4324 4325 abort: 4326 mddev->recovery = 0; 4327 spin_lock_irq(&conf->device_lock); 4328 conf->geo = conf->prev; 4329 mddev->raid_disks = conf->geo.raid_disks; 4330 rdev_for_each(rdev, mddev) 4331 rdev->new_data_offset = rdev->data_offset; 4332 smp_wmb(); 4333 conf->reshape_progress = MaxSector; 4334 conf->reshape_safe = MaxSector; 4335 mddev->reshape_position = MaxSector; 4336 spin_unlock_irq(&conf->device_lock); 4337 return ret; 4338 } 4339 4340 /* Calculate the last device-address that could contain 4341 * any block from the chunk that includes the array-address 's' 4342 * and report the next address. 4343 * i.e. the address returned will be chunk-aligned and after 4344 * any data that is in the chunk containing 's'. 4345 */ 4346 static sector_t last_dev_address(sector_t s, struct geom *geo) 4347 { 4348 s = (s | geo->chunk_mask) + 1; 4349 s >>= geo->chunk_shift; 4350 s *= geo->near_copies; 4351 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4352 s *= geo->far_copies; 4353 s <<= geo->chunk_shift; 4354 return s; 4355 } 4356 4357 /* Calculate the first device-address that could contain 4358 * any block from the chunk that includes the array-address 's'. 4359 * This too will be the start of a chunk 4360 */ 4361 static sector_t first_dev_address(sector_t s, struct geom *geo) 4362 { 4363 s >>= geo->chunk_shift; 4364 s *= geo->near_copies; 4365 sector_div(s, geo->raid_disks); 4366 s *= geo->far_copies; 4367 s <<= geo->chunk_shift; 4368 return s; 4369 } 4370 4371 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4372 int *skipped) 4373 { 4374 /* We simply copy at most one chunk (smallest of old and new) 4375 * at a time, possibly less if that exceeds RESYNC_PAGES, 4376 * or we hit a bad block or something. 4377 * This might mean we pause for normal IO in the middle of 4378 * a chunk, but that is not a problem as mddev->reshape_position 4379 * can record any location. 4380 * 4381 * If we will want to write to a location that isn't 4382 * yet recorded as 'safe' (i.e. in metadata on disk) then 4383 * we need to flush all reshape requests and update the metadata. 4384 * 4385 * When reshaping forwards (e.g. to more devices), we interpret 4386 * 'safe' as the earliest block which might not have been copied 4387 * down yet. We divide this by previous stripe size and multiply 4388 * by previous stripe length to get lowest device offset that we 4389 * cannot write to yet. 4390 * We interpret 'sector_nr' as an address that we want to write to. 4391 * From this we use last_device_address() to find where we might 4392 * write to, and first_device_address on the 'safe' position. 4393 * If this 'next' write position is after the 'safe' position, 4394 * we must update the metadata to increase the 'safe' position. 4395 * 4396 * When reshaping backwards, we round in the opposite direction 4397 * and perform the reverse test: next write position must not be 4398 * less than current safe position. 4399 * 4400 * In all this the minimum difference in data offsets 4401 * (conf->offset_diff - always positive) allows a bit of slack, 4402 * so next can be after 'safe', but not by more than offset_diff 4403 * 4404 * We need to prepare all the bios here before we start any IO 4405 * to ensure the size we choose is acceptable to all devices. 4406 * The means one for each copy for write-out and an extra one for 4407 * read-in. 4408 * We store the read-in bio in ->master_bio and the others in 4409 * ->devs[x].bio and ->devs[x].repl_bio. 4410 */ 4411 struct r10conf *conf = mddev->private; 4412 struct r10bio *r10_bio; 4413 sector_t next, safe, last; 4414 int max_sectors; 4415 int nr_sectors; 4416 int s; 4417 struct md_rdev *rdev; 4418 int need_flush = 0; 4419 struct bio *blist; 4420 struct bio *bio, *read_bio; 4421 int sectors_done = 0; 4422 struct page **pages; 4423 4424 if (sector_nr == 0) { 4425 /* If restarting in the middle, skip the initial sectors */ 4426 if (mddev->reshape_backwards && 4427 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4428 sector_nr = (raid10_size(mddev, 0, 0) 4429 - conf->reshape_progress); 4430 } else if (!mddev->reshape_backwards && 4431 conf->reshape_progress > 0) 4432 sector_nr = conf->reshape_progress; 4433 if (sector_nr) { 4434 mddev->curr_resync_completed = sector_nr; 4435 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4436 *skipped = 1; 4437 return sector_nr; 4438 } 4439 } 4440 4441 /* We don't use sector_nr to track where we are up to 4442 * as that doesn't work well for ->reshape_backwards. 4443 * So just use ->reshape_progress. 4444 */ 4445 if (mddev->reshape_backwards) { 4446 /* 'next' is the earliest device address that we might 4447 * write to for this chunk in the new layout 4448 */ 4449 next = first_dev_address(conf->reshape_progress - 1, 4450 &conf->geo); 4451 4452 /* 'safe' is the last device address that we might read from 4453 * in the old layout after a restart 4454 */ 4455 safe = last_dev_address(conf->reshape_safe - 1, 4456 &conf->prev); 4457 4458 if (next + conf->offset_diff < safe) 4459 need_flush = 1; 4460 4461 last = conf->reshape_progress - 1; 4462 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4463 & conf->prev.chunk_mask); 4464 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4465 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4466 } else { 4467 /* 'next' is after the last device address that we 4468 * might write to for this chunk in the new layout 4469 */ 4470 next = last_dev_address(conf->reshape_progress, &conf->geo); 4471 4472 /* 'safe' is the earliest device address that we might 4473 * read from in the old layout after a restart 4474 */ 4475 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4476 4477 /* Need to update metadata if 'next' might be beyond 'safe' 4478 * as that would possibly corrupt data 4479 */ 4480 if (next > safe + conf->offset_diff) 4481 need_flush = 1; 4482 4483 sector_nr = conf->reshape_progress; 4484 last = sector_nr | (conf->geo.chunk_mask 4485 & conf->prev.chunk_mask); 4486 4487 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4488 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4489 } 4490 4491 if (need_flush || 4492 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4493 /* Need to update reshape_position in metadata */ 4494 wait_barrier(conf); 4495 mddev->reshape_position = conf->reshape_progress; 4496 if (mddev->reshape_backwards) 4497 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4498 - conf->reshape_progress; 4499 else 4500 mddev->curr_resync_completed = conf->reshape_progress; 4501 conf->reshape_checkpoint = jiffies; 4502 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4503 md_wakeup_thread(mddev->thread); 4504 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4505 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4506 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4507 allow_barrier(conf); 4508 return sectors_done; 4509 } 4510 conf->reshape_safe = mddev->reshape_position; 4511 allow_barrier(conf); 4512 } 4513 4514 read_more: 4515 /* Now schedule reads for blocks from sector_nr to last */ 4516 r10_bio = raid10_alloc_init_r10buf(conf); 4517 r10_bio->state = 0; 4518 raise_barrier(conf, sectors_done != 0); 4519 atomic_set(&r10_bio->remaining, 0); 4520 r10_bio->mddev = mddev; 4521 r10_bio->sector = sector_nr; 4522 set_bit(R10BIO_IsReshape, &r10_bio->state); 4523 r10_bio->sectors = last - sector_nr + 1; 4524 rdev = read_balance(conf, r10_bio, &max_sectors); 4525 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4526 4527 if (!rdev) { 4528 /* Cannot read from here, so need to record bad blocks 4529 * on all the target devices. 4530 */ 4531 // FIXME 4532 mempool_free(r10_bio, conf->r10buf_pool); 4533 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4534 return sectors_done; 4535 } 4536 4537 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4538 4539 bio_set_dev(read_bio, rdev->bdev); 4540 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4541 + rdev->data_offset); 4542 read_bio->bi_private = r10_bio; 4543 read_bio->bi_end_io = end_reshape_read; 4544 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4545 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4546 read_bio->bi_status = 0; 4547 read_bio->bi_vcnt = 0; 4548 read_bio->bi_iter.bi_size = 0; 4549 r10_bio->master_bio = read_bio; 4550 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4551 4552 /* Now find the locations in the new layout */ 4553 __raid10_find_phys(&conf->geo, r10_bio); 4554 4555 blist = read_bio; 4556 read_bio->bi_next = NULL; 4557 4558 rcu_read_lock(); 4559 for (s = 0; s < conf->copies*2; s++) { 4560 struct bio *b; 4561 int d = r10_bio->devs[s/2].devnum; 4562 struct md_rdev *rdev2; 4563 if (s&1) { 4564 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4565 b = r10_bio->devs[s/2].repl_bio; 4566 } else { 4567 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4568 b = r10_bio->devs[s/2].bio; 4569 } 4570 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4571 continue; 4572 4573 bio_set_dev(b, rdev2->bdev); 4574 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4575 rdev2->new_data_offset; 4576 b->bi_end_io = end_reshape_write; 4577 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4578 b->bi_next = blist; 4579 blist = b; 4580 } 4581 4582 /* Now add as many pages as possible to all of these bios. */ 4583 4584 nr_sectors = 0; 4585 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4586 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4587 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4588 int len = (max_sectors - s) << 9; 4589 if (len > PAGE_SIZE) 4590 len = PAGE_SIZE; 4591 for (bio = blist; bio ; bio = bio->bi_next) { 4592 /* 4593 * won't fail because the vec table is big enough 4594 * to hold all these pages 4595 */ 4596 bio_add_page(bio, page, len, 0); 4597 } 4598 sector_nr += len >> 9; 4599 nr_sectors += len >> 9; 4600 } 4601 rcu_read_unlock(); 4602 r10_bio->sectors = nr_sectors; 4603 4604 /* Now submit the read */ 4605 md_sync_acct_bio(read_bio, r10_bio->sectors); 4606 atomic_inc(&r10_bio->remaining); 4607 read_bio->bi_next = NULL; 4608 generic_make_request(read_bio); 4609 sector_nr += nr_sectors; 4610 sectors_done += nr_sectors; 4611 if (sector_nr <= last) 4612 goto read_more; 4613 4614 /* Now that we have done the whole section we can 4615 * update reshape_progress 4616 */ 4617 if (mddev->reshape_backwards) 4618 conf->reshape_progress -= sectors_done; 4619 else 4620 conf->reshape_progress += sectors_done; 4621 4622 return sectors_done; 4623 } 4624 4625 static void end_reshape_request(struct r10bio *r10_bio); 4626 static int handle_reshape_read_error(struct mddev *mddev, 4627 struct r10bio *r10_bio); 4628 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4629 { 4630 /* Reshape read completed. Hopefully we have a block 4631 * to write out. 4632 * If we got a read error then we do sync 1-page reads from 4633 * elsewhere until we find the data - or give up. 4634 */ 4635 struct r10conf *conf = mddev->private; 4636 int s; 4637 4638 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4639 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4640 /* Reshape has been aborted */ 4641 md_done_sync(mddev, r10_bio->sectors, 0); 4642 return; 4643 } 4644 4645 /* We definitely have the data in the pages, schedule the 4646 * writes. 4647 */ 4648 atomic_set(&r10_bio->remaining, 1); 4649 for (s = 0; s < conf->copies*2; s++) { 4650 struct bio *b; 4651 int d = r10_bio->devs[s/2].devnum; 4652 struct md_rdev *rdev; 4653 rcu_read_lock(); 4654 if (s&1) { 4655 rdev = rcu_dereference(conf->mirrors[d].replacement); 4656 b = r10_bio->devs[s/2].repl_bio; 4657 } else { 4658 rdev = rcu_dereference(conf->mirrors[d].rdev); 4659 b = r10_bio->devs[s/2].bio; 4660 } 4661 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4662 rcu_read_unlock(); 4663 continue; 4664 } 4665 atomic_inc(&rdev->nr_pending); 4666 rcu_read_unlock(); 4667 md_sync_acct_bio(b, r10_bio->sectors); 4668 atomic_inc(&r10_bio->remaining); 4669 b->bi_next = NULL; 4670 generic_make_request(b); 4671 } 4672 end_reshape_request(r10_bio); 4673 } 4674 4675 static void end_reshape(struct r10conf *conf) 4676 { 4677 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4678 return; 4679 4680 spin_lock_irq(&conf->device_lock); 4681 conf->prev = conf->geo; 4682 md_finish_reshape(conf->mddev); 4683 smp_wmb(); 4684 conf->reshape_progress = MaxSector; 4685 conf->reshape_safe = MaxSector; 4686 spin_unlock_irq(&conf->device_lock); 4687 4688 /* read-ahead size must cover two whole stripes, which is 4689 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4690 */ 4691 if (conf->mddev->queue) { 4692 int stripe = conf->geo.raid_disks * 4693 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4694 stripe /= conf->geo.near_copies; 4695 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4696 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4697 } 4698 conf->fullsync = 0; 4699 } 4700 4701 static int handle_reshape_read_error(struct mddev *mddev, 4702 struct r10bio *r10_bio) 4703 { 4704 /* Use sync reads to get the blocks from somewhere else */ 4705 int sectors = r10_bio->sectors; 4706 struct r10conf *conf = mddev->private; 4707 struct r10bio *r10b; 4708 int slot = 0; 4709 int idx = 0; 4710 struct page **pages; 4711 4712 r10b = kmalloc(sizeof(*r10b) + 4713 sizeof(struct r10dev) * conf->copies, GFP_NOIO); 4714 if (!r10b) { 4715 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4716 return -ENOMEM; 4717 } 4718 4719 /* reshape IOs share pages from .devs[0].bio */ 4720 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4721 4722 r10b->sector = r10_bio->sector; 4723 __raid10_find_phys(&conf->prev, r10b); 4724 4725 while (sectors) { 4726 int s = sectors; 4727 int success = 0; 4728 int first_slot = slot; 4729 4730 if (s > (PAGE_SIZE >> 9)) 4731 s = PAGE_SIZE >> 9; 4732 4733 rcu_read_lock(); 4734 while (!success) { 4735 int d = r10b->devs[slot].devnum; 4736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4737 sector_t addr; 4738 if (rdev == NULL || 4739 test_bit(Faulty, &rdev->flags) || 4740 !test_bit(In_sync, &rdev->flags)) 4741 goto failed; 4742 4743 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4744 atomic_inc(&rdev->nr_pending); 4745 rcu_read_unlock(); 4746 success = sync_page_io(rdev, 4747 addr, 4748 s << 9, 4749 pages[idx], 4750 REQ_OP_READ, 0, false); 4751 rdev_dec_pending(rdev, mddev); 4752 rcu_read_lock(); 4753 if (success) 4754 break; 4755 failed: 4756 slot++; 4757 if (slot >= conf->copies) 4758 slot = 0; 4759 if (slot == first_slot) 4760 break; 4761 } 4762 rcu_read_unlock(); 4763 if (!success) { 4764 /* couldn't read this block, must give up */ 4765 set_bit(MD_RECOVERY_INTR, 4766 &mddev->recovery); 4767 kfree(r10b); 4768 return -EIO; 4769 } 4770 sectors -= s; 4771 idx++; 4772 } 4773 kfree(r10b); 4774 return 0; 4775 } 4776 4777 static void end_reshape_write(struct bio *bio) 4778 { 4779 struct r10bio *r10_bio = get_resync_r10bio(bio); 4780 struct mddev *mddev = r10_bio->mddev; 4781 struct r10conf *conf = mddev->private; 4782 int d; 4783 int slot; 4784 int repl; 4785 struct md_rdev *rdev = NULL; 4786 4787 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4788 if (repl) 4789 rdev = conf->mirrors[d].replacement; 4790 if (!rdev) { 4791 smp_mb(); 4792 rdev = conf->mirrors[d].rdev; 4793 } 4794 4795 if (bio->bi_status) { 4796 /* FIXME should record badblock */ 4797 md_error(mddev, rdev); 4798 } 4799 4800 rdev_dec_pending(rdev, mddev); 4801 end_reshape_request(r10_bio); 4802 } 4803 4804 static void end_reshape_request(struct r10bio *r10_bio) 4805 { 4806 if (!atomic_dec_and_test(&r10_bio->remaining)) 4807 return; 4808 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4809 bio_put(r10_bio->master_bio); 4810 put_buf(r10_bio); 4811 } 4812 4813 static void raid10_finish_reshape(struct mddev *mddev) 4814 { 4815 struct r10conf *conf = mddev->private; 4816 4817 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4818 return; 4819 4820 if (mddev->delta_disks > 0) { 4821 sector_t size = raid10_size(mddev, 0, 0); 4822 md_set_array_sectors(mddev, size); 4823 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4824 mddev->recovery_cp = mddev->resync_max_sectors; 4825 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4826 } 4827 mddev->resync_max_sectors = size; 4828 if (mddev->queue) { 4829 set_capacity(mddev->gendisk, mddev->array_sectors); 4830 revalidate_disk(mddev->gendisk); 4831 } 4832 } else { 4833 int d; 4834 rcu_read_lock(); 4835 for (d = conf->geo.raid_disks ; 4836 d < conf->geo.raid_disks - mddev->delta_disks; 4837 d++) { 4838 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4839 if (rdev) 4840 clear_bit(In_sync, &rdev->flags); 4841 rdev = rcu_dereference(conf->mirrors[d].replacement); 4842 if (rdev) 4843 clear_bit(In_sync, &rdev->flags); 4844 } 4845 rcu_read_unlock(); 4846 } 4847 mddev->layout = mddev->new_layout; 4848 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4849 mddev->reshape_position = MaxSector; 4850 mddev->delta_disks = 0; 4851 mddev->reshape_backwards = 0; 4852 } 4853 4854 static struct md_personality raid10_personality = 4855 { 4856 .name = "raid10", 4857 .level = 10, 4858 .owner = THIS_MODULE, 4859 .make_request = raid10_make_request, 4860 .run = raid10_run, 4861 .free = raid10_free, 4862 .status = raid10_status, 4863 .error_handler = raid10_error, 4864 .hot_add_disk = raid10_add_disk, 4865 .hot_remove_disk= raid10_remove_disk, 4866 .spare_active = raid10_spare_active, 4867 .sync_request = raid10_sync_request, 4868 .quiesce = raid10_quiesce, 4869 .size = raid10_size, 4870 .resize = raid10_resize, 4871 .takeover = raid10_takeover, 4872 .check_reshape = raid10_check_reshape, 4873 .start_reshape = raid10_start_reshape, 4874 .finish_reshape = raid10_finish_reshape, 4875 .congested = raid10_congested, 4876 }; 4877 4878 static int __init raid_init(void) 4879 { 4880 return register_md_personality(&raid10_personality); 4881 } 4882 4883 static void raid_exit(void) 4884 { 4885 unregister_md_personality(&raid10_personality); 4886 } 4887 4888 module_init(raid_init); 4889 module_exit(raid_exit); 4890 MODULE_LICENSE("GPL"); 4891 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4892 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4893 MODULE_ALIAS("md-raid10"); 4894 MODULE_ALIAS("md-level-10"); 4895 4896 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4897