1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 23 #define RAID_1_10_NAME "raid10" 24 #include "raid10.h" 25 #include "raid0.h" 26 #include "md-bitmap.h" 27 28 /* 29 * RAID10 provides a combination of RAID0 and RAID1 functionality. 30 * The layout of data is defined by 31 * chunk_size 32 * raid_disks 33 * near_copies (stored in low byte of layout) 34 * far_copies (stored in second byte of layout) 35 * far_offset (stored in bit 16 of layout ) 36 * use_far_sets (stored in bit 17 of layout ) 37 * use_far_sets_bugfixed (stored in bit 18 of layout ) 38 * 39 * The data to be stored is divided into chunks using chunksize. Each device 40 * is divided into far_copies sections. In each section, chunks are laid out 41 * in a style similar to raid0, but near_copies copies of each chunk is stored 42 * (each on a different drive). The starting device for each section is offset 43 * near_copies from the starting device of the previous section. Thus there 44 * are (near_copies * far_copies) of each chunk, and each is on a different 45 * drive. near_copies and far_copies must be at least one, and their product 46 * is at most raid_disks. 47 * 48 * If far_offset is true, then the far_copies are handled a bit differently. 49 * The copies are still in different stripes, but instead of being very far 50 * apart on disk, there are adjacent stripes. 51 * 52 * The far and offset algorithms are handled slightly differently if 53 * 'use_far_sets' is true. In this case, the array's devices are grouped into 54 * sets that are (near_copies * far_copies) in size. The far copied stripes 55 * are still shifted by 'near_copies' devices, but this shifting stays confined 56 * to the set rather than the entire array. This is done to improve the number 57 * of device combinations that can fail without causing the array to fail. 58 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 59 * on a device): 60 * A B C D A B C D E 61 * ... ... 62 * D A B C E A B C D 63 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 64 * [A B] [C D] [A B] [C D E] 65 * |...| |...| |...| | ... | 66 * [B A] [D C] [B A] [E C D] 67 */ 68 69 static void allow_barrier(struct r10conf *conf); 70 static void lower_barrier(struct r10conf *conf); 71 static int _enough(struct r10conf *conf, int previous, int ignore); 72 static int enough(struct r10conf *conf, int ignore); 73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 74 int *skipped); 75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 76 static void end_reshape_write(struct bio *bio); 77 static void end_reshape(struct r10conf *conf); 78 79 #include "raid1-10.c" 80 81 #define NULL_CMD 82 #define cmd_before(conf, cmd) \ 83 do { \ 84 write_sequnlock_irq(&(conf)->resync_lock); \ 85 cmd; \ 86 } while (0) 87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) 88 89 #define wait_event_barrier_cmd(conf, cond, cmd) \ 90 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ 91 cmd_after(conf)) 92 93 #define wait_event_barrier(conf, cond) \ 94 wait_event_barrier_cmd(conf, cond, NULL_CMD) 95 96 /* 97 * for resync bio, r10bio pointer can be retrieved from the per-bio 98 * 'struct resync_pages'. 99 */ 100 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 101 { 102 return get_resync_pages(bio)->raid_bio; 103 } 104 105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 106 { 107 struct r10conf *conf = data; 108 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 109 110 /* allocate a r10bio with room for raid_disks entries in the 111 * bios array */ 112 return kzalloc(size, gfp_flags); 113 } 114 115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 116 /* amount of memory to reserve for resync requests */ 117 #define RESYNC_WINDOW (1024*1024) 118 /* maximum number of concurrent requests, memory permitting */ 119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 122 123 /* 124 * When performing a resync, we need to read and compare, so 125 * we need as many pages are there are copies. 126 * When performing a recovery, we need 2 bios, one for read, 127 * one for write (we recover only one drive per r10buf) 128 * 129 */ 130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct r10conf *conf = data; 133 struct r10bio *r10_bio; 134 struct bio *bio; 135 int j; 136 int nalloc, nalloc_rp; 137 struct resync_pages *rps; 138 139 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 140 if (!r10_bio) 141 return NULL; 142 143 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 144 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 145 nalloc = conf->copies; /* resync */ 146 else 147 nalloc = 2; /* recovery */ 148 149 /* allocate once for all bios */ 150 if (!conf->have_replacement) 151 nalloc_rp = nalloc; 152 else 153 nalloc_rp = nalloc * 2; 154 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 155 if (!rps) 156 goto out_free_r10bio; 157 158 /* 159 * Allocate bios. 160 */ 161 for (j = nalloc ; j-- ; ) { 162 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 163 if (!bio) 164 goto out_free_bio; 165 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 166 r10_bio->devs[j].bio = bio; 167 if (!conf->have_replacement) 168 continue; 169 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 170 if (!bio) 171 goto out_free_bio; 172 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 173 r10_bio->devs[j].repl_bio = bio; 174 } 175 /* 176 * Allocate RESYNC_PAGES data pages and attach them 177 * where needed. 178 */ 179 for (j = 0; j < nalloc; j++) { 180 struct bio *rbio = r10_bio->devs[j].repl_bio; 181 struct resync_pages *rp, *rp_repl; 182 183 rp = &rps[j]; 184 if (rbio) 185 rp_repl = &rps[nalloc + j]; 186 187 bio = r10_bio->devs[j].bio; 188 189 if (!j || test_bit(MD_RECOVERY_SYNC, 190 &conf->mddev->recovery)) { 191 if (resync_alloc_pages(rp, gfp_flags)) 192 goto out_free_pages; 193 } else { 194 memcpy(rp, &rps[0], sizeof(*rp)); 195 resync_get_all_pages(rp); 196 } 197 198 rp->raid_bio = r10_bio; 199 bio->bi_private = rp; 200 if (rbio) { 201 memcpy(rp_repl, rp, sizeof(*rp)); 202 rbio->bi_private = rp_repl; 203 } 204 } 205 206 return r10_bio; 207 208 out_free_pages: 209 while (--j >= 0) 210 resync_free_pages(&rps[j]); 211 212 j = 0; 213 out_free_bio: 214 for ( ; j < nalloc; j++) { 215 if (r10_bio->devs[j].bio) 216 bio_uninit(r10_bio->devs[j].bio); 217 kfree(r10_bio->devs[j].bio); 218 if (r10_bio->devs[j].repl_bio) 219 bio_uninit(r10_bio->devs[j].repl_bio); 220 kfree(r10_bio->devs[j].repl_bio); 221 } 222 kfree(rps); 223 out_free_r10bio: 224 rbio_pool_free(r10_bio, conf); 225 return NULL; 226 } 227 228 static void r10buf_pool_free(void *__r10_bio, void *data) 229 { 230 struct r10conf *conf = data; 231 struct r10bio *r10bio = __r10_bio; 232 int j; 233 struct resync_pages *rp = NULL; 234 235 for (j = conf->copies; j--; ) { 236 struct bio *bio = r10bio->devs[j].bio; 237 238 if (bio) { 239 rp = get_resync_pages(bio); 240 resync_free_pages(rp); 241 bio_uninit(bio); 242 kfree(bio); 243 } 244 245 bio = r10bio->devs[j].repl_bio; 246 if (bio) { 247 bio_uninit(bio); 248 kfree(bio); 249 } 250 } 251 252 /* resync pages array stored in the 1st bio's .bi_private */ 253 kfree(rp); 254 255 rbio_pool_free(r10bio, conf); 256 } 257 258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 259 { 260 int i; 261 262 for (i = 0; i < conf->geo.raid_disks; i++) { 263 struct bio **bio = & r10_bio->devs[i].bio; 264 if (!BIO_SPECIAL(*bio)) 265 bio_put(*bio); 266 *bio = NULL; 267 bio = &r10_bio->devs[i].repl_bio; 268 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 269 bio_put(*bio); 270 *bio = NULL; 271 } 272 } 273 274 static void free_r10bio(struct r10bio *r10_bio) 275 { 276 struct r10conf *conf = r10_bio->mddev->private; 277 278 put_all_bios(conf, r10_bio); 279 mempool_free(r10_bio, &conf->r10bio_pool); 280 } 281 282 static void put_buf(struct r10bio *r10_bio) 283 { 284 struct r10conf *conf = r10_bio->mddev->private; 285 286 mempool_free(r10_bio, &conf->r10buf_pool); 287 288 lower_barrier(conf); 289 } 290 291 static void wake_up_barrier(struct r10conf *conf) 292 { 293 if (wq_has_sleeper(&conf->wait_barrier)) 294 wake_up(&conf->wait_barrier); 295 } 296 297 static void reschedule_retry(struct r10bio *r10_bio) 298 { 299 unsigned long flags; 300 struct mddev *mddev = r10_bio->mddev; 301 struct r10conf *conf = mddev->private; 302 303 spin_lock_irqsave(&conf->device_lock, flags); 304 list_add(&r10_bio->retry_list, &conf->retry_list); 305 conf->nr_queued ++; 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 308 /* wake up frozen array... */ 309 wake_up(&conf->wait_barrier); 310 311 md_wakeup_thread(mddev->thread); 312 } 313 314 /* 315 * raid_end_bio_io() is called when we have finished servicing a mirrored 316 * operation and are ready to return a success/failure code to the buffer 317 * cache layer. 318 */ 319 static void raid_end_bio_io(struct r10bio *r10_bio) 320 { 321 struct bio *bio = r10_bio->master_bio; 322 struct r10conf *conf = r10_bio->mddev->private; 323 324 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 325 bio->bi_status = BLK_STS_IOERR; 326 327 bio_endio(bio); 328 /* 329 * Wake up any possible resync thread that waits for the device 330 * to go idle. 331 */ 332 allow_barrier(conf); 333 334 free_r10bio(r10_bio); 335 } 336 337 /* 338 * Update disk head position estimator based on IRQ completion info. 339 */ 340 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 341 { 342 struct r10conf *conf = r10_bio->mddev->private; 343 344 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 345 r10_bio->devs[slot].addr + (r10_bio->sectors); 346 } 347 348 /* 349 * Find the disk number which triggered given bio 350 */ 351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 352 struct bio *bio, int *slotp, int *replp) 353 { 354 int slot; 355 int repl = 0; 356 357 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 358 if (r10_bio->devs[slot].bio == bio) 359 break; 360 if (r10_bio->devs[slot].repl_bio == bio) { 361 repl = 1; 362 break; 363 } 364 } 365 366 update_head_pos(slot, r10_bio); 367 368 if (slotp) 369 *slotp = slot; 370 if (replp) 371 *replp = repl; 372 return r10_bio->devs[slot].devnum; 373 } 374 375 static void raid10_end_read_request(struct bio *bio) 376 { 377 int uptodate = !bio->bi_status; 378 struct r10bio *r10_bio = bio->bi_private; 379 int slot; 380 struct md_rdev *rdev; 381 struct r10conf *conf = r10_bio->mddev->private; 382 383 slot = r10_bio->read_slot; 384 rdev = r10_bio->devs[slot].rdev; 385 /* 386 * this branch is our 'one mirror IO has finished' event handler: 387 */ 388 update_head_pos(slot, r10_bio); 389 390 if (uptodate) { 391 /* 392 * Set R10BIO_Uptodate in our master bio, so that 393 * we will return a good error code to the higher 394 * levels even if IO on some other mirrored buffer fails. 395 * 396 * The 'master' represents the composite IO operation to 397 * user-side. So if something waits for IO, then it will 398 * wait for the 'master' bio. 399 */ 400 set_bit(R10BIO_Uptodate, &r10_bio->state); 401 } else { 402 /* If all other devices that store this block have 403 * failed, we want to return the error upwards rather 404 * than fail the last device. Here we redefine 405 * "uptodate" to mean "Don't want to retry" 406 */ 407 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 408 rdev->raid_disk)) 409 uptodate = 1; 410 } 411 if (uptodate) { 412 raid_end_bio_io(r10_bio); 413 rdev_dec_pending(rdev, conf->mddev); 414 } else { 415 /* 416 * oops, read error - keep the refcount on the rdev 417 */ 418 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", 419 mdname(conf->mddev), 420 rdev->bdev, 421 (unsigned long long)r10_bio->sector); 422 set_bit(R10BIO_ReadError, &r10_bio->state); 423 reschedule_retry(r10_bio); 424 } 425 } 426 427 static void close_write(struct r10bio *r10_bio) 428 { 429 struct mddev *mddev = r10_bio->mddev; 430 431 /* clear the bitmap if all writes complete successfully */ 432 mddev->bitmap_ops->endwrite(mddev, r10_bio->sector, r10_bio->sectors, 433 !test_bit(R10BIO_Degraded, &r10_bio->state), 434 false); 435 md_write_end(mddev); 436 } 437 438 static void one_write_done(struct r10bio *r10_bio) 439 { 440 if (atomic_dec_and_test(&r10_bio->remaining)) { 441 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 442 reschedule_retry(r10_bio); 443 else { 444 close_write(r10_bio); 445 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 446 reschedule_retry(r10_bio); 447 else 448 raid_end_bio_io(r10_bio); 449 } 450 } 451 } 452 453 static void raid10_end_write_request(struct bio *bio) 454 { 455 struct r10bio *r10_bio = bio->bi_private; 456 int dev; 457 int dec_rdev = 1; 458 struct r10conf *conf = r10_bio->mddev->private; 459 int slot, repl; 460 struct md_rdev *rdev = NULL; 461 struct bio *to_put = NULL; 462 bool discard_error; 463 464 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 465 466 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 467 468 if (repl) 469 rdev = conf->mirrors[dev].replacement; 470 if (!rdev) { 471 smp_rmb(); 472 repl = 0; 473 rdev = conf->mirrors[dev].rdev; 474 } 475 /* 476 * this branch is our 'one mirror IO has finished' event handler: 477 */ 478 if (bio->bi_status && !discard_error) { 479 if (repl) 480 /* Never record new bad blocks to replacement, 481 * just fail it. 482 */ 483 md_error(rdev->mddev, rdev); 484 else { 485 set_bit(WriteErrorSeen, &rdev->flags); 486 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 487 set_bit(MD_RECOVERY_NEEDED, 488 &rdev->mddev->recovery); 489 490 dec_rdev = 0; 491 if (test_bit(FailFast, &rdev->flags) && 492 (bio->bi_opf & MD_FAILFAST)) { 493 md_error(rdev->mddev, rdev); 494 } 495 496 /* 497 * When the device is faulty, it is not necessary to 498 * handle write error. 499 */ 500 if (!test_bit(Faulty, &rdev->flags)) 501 set_bit(R10BIO_WriteError, &r10_bio->state); 502 else { 503 /* Fail the request */ 504 set_bit(R10BIO_Degraded, &r10_bio->state); 505 r10_bio->devs[slot].bio = NULL; 506 to_put = bio; 507 dec_rdev = 1; 508 } 509 } 510 } else { 511 /* 512 * Set R10BIO_Uptodate in our master bio, so that 513 * we will return a good error code for to the higher 514 * levels even if IO on some other mirrored buffer fails. 515 * 516 * The 'master' represents the composite IO operation to 517 * user-side. So if something waits for IO, then it will 518 * wait for the 'master' bio. 519 * 520 * Do not set R10BIO_Uptodate if the current device is 521 * rebuilding or Faulty. This is because we cannot use 522 * such device for properly reading the data back (we could 523 * potentially use it, if the current write would have felt 524 * before rdev->recovery_offset, but for simplicity we don't 525 * check this here. 526 */ 527 if (test_bit(In_sync, &rdev->flags) && 528 !test_bit(Faulty, &rdev->flags)) 529 set_bit(R10BIO_Uptodate, &r10_bio->state); 530 531 /* Maybe we can clear some bad blocks. */ 532 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 533 r10_bio->sectors) && 534 !discard_error) { 535 bio_put(bio); 536 if (repl) 537 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 538 else 539 r10_bio->devs[slot].bio = IO_MADE_GOOD; 540 dec_rdev = 0; 541 set_bit(R10BIO_MadeGood, &r10_bio->state); 542 } 543 } 544 545 /* 546 * 547 * Let's see if all mirrored write operations have finished 548 * already. 549 */ 550 one_write_done(r10_bio); 551 if (dec_rdev) 552 rdev_dec_pending(rdev, conf->mddev); 553 if (to_put) 554 bio_put(to_put); 555 } 556 557 /* 558 * RAID10 layout manager 559 * As well as the chunksize and raid_disks count, there are two 560 * parameters: near_copies and far_copies. 561 * near_copies * far_copies must be <= raid_disks. 562 * Normally one of these will be 1. 563 * If both are 1, we get raid0. 564 * If near_copies == raid_disks, we get raid1. 565 * 566 * Chunks are laid out in raid0 style with near_copies copies of the 567 * first chunk, followed by near_copies copies of the next chunk and 568 * so on. 569 * If far_copies > 1, then after 1/far_copies of the array has been assigned 570 * as described above, we start again with a device offset of near_copies. 571 * So we effectively have another copy of the whole array further down all 572 * the drives, but with blocks on different drives. 573 * With this layout, and block is never stored twice on the one device. 574 * 575 * raid10_find_phys finds the sector offset of a given virtual sector 576 * on each device that it is on. 577 * 578 * raid10_find_virt does the reverse mapping, from a device and a 579 * sector offset to a virtual address 580 */ 581 582 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 583 { 584 int n,f; 585 sector_t sector; 586 sector_t chunk; 587 sector_t stripe; 588 int dev; 589 int slot = 0; 590 int last_far_set_start, last_far_set_size; 591 592 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 593 last_far_set_start *= geo->far_set_size; 594 595 last_far_set_size = geo->far_set_size; 596 last_far_set_size += (geo->raid_disks % geo->far_set_size); 597 598 /* now calculate first sector/dev */ 599 chunk = r10bio->sector >> geo->chunk_shift; 600 sector = r10bio->sector & geo->chunk_mask; 601 602 chunk *= geo->near_copies; 603 stripe = chunk; 604 dev = sector_div(stripe, geo->raid_disks); 605 if (geo->far_offset) 606 stripe *= geo->far_copies; 607 608 sector += stripe << geo->chunk_shift; 609 610 /* and calculate all the others */ 611 for (n = 0; n < geo->near_copies; n++) { 612 int d = dev; 613 int set; 614 sector_t s = sector; 615 r10bio->devs[slot].devnum = d; 616 r10bio->devs[slot].addr = s; 617 slot++; 618 619 for (f = 1; f < geo->far_copies; f++) { 620 set = d / geo->far_set_size; 621 d += geo->near_copies; 622 623 if ((geo->raid_disks % geo->far_set_size) && 624 (d > last_far_set_start)) { 625 d -= last_far_set_start; 626 d %= last_far_set_size; 627 d += last_far_set_start; 628 } else { 629 d %= geo->far_set_size; 630 d += geo->far_set_size * set; 631 } 632 s += geo->stride; 633 r10bio->devs[slot].devnum = d; 634 r10bio->devs[slot].addr = s; 635 slot++; 636 } 637 dev++; 638 if (dev >= geo->raid_disks) { 639 dev = 0; 640 sector += (geo->chunk_mask + 1); 641 } 642 } 643 } 644 645 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 646 { 647 struct geom *geo = &conf->geo; 648 649 if (conf->reshape_progress != MaxSector && 650 ((r10bio->sector >= conf->reshape_progress) != 651 conf->mddev->reshape_backwards)) { 652 set_bit(R10BIO_Previous, &r10bio->state); 653 geo = &conf->prev; 654 } else 655 clear_bit(R10BIO_Previous, &r10bio->state); 656 657 __raid10_find_phys(geo, r10bio); 658 } 659 660 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 661 { 662 sector_t offset, chunk, vchunk; 663 /* Never use conf->prev as this is only called during resync 664 * or recovery, so reshape isn't happening 665 */ 666 struct geom *geo = &conf->geo; 667 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 668 int far_set_size = geo->far_set_size; 669 int last_far_set_start; 670 671 if (geo->raid_disks % geo->far_set_size) { 672 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 673 last_far_set_start *= geo->far_set_size; 674 675 if (dev >= last_far_set_start) { 676 far_set_size = geo->far_set_size; 677 far_set_size += (geo->raid_disks % geo->far_set_size); 678 far_set_start = last_far_set_start; 679 } 680 } 681 682 offset = sector & geo->chunk_mask; 683 if (geo->far_offset) { 684 int fc; 685 chunk = sector >> geo->chunk_shift; 686 fc = sector_div(chunk, geo->far_copies); 687 dev -= fc * geo->near_copies; 688 if (dev < far_set_start) 689 dev += far_set_size; 690 } else { 691 while (sector >= geo->stride) { 692 sector -= geo->stride; 693 if (dev < (geo->near_copies + far_set_start)) 694 dev += far_set_size - geo->near_copies; 695 else 696 dev -= geo->near_copies; 697 } 698 chunk = sector >> geo->chunk_shift; 699 } 700 vchunk = chunk * geo->raid_disks + dev; 701 sector_div(vchunk, geo->near_copies); 702 return (vchunk << geo->chunk_shift) + offset; 703 } 704 705 /* 706 * This routine returns the disk from which the requested read should 707 * be done. There is a per-array 'next expected sequential IO' sector 708 * number - if this matches on the next IO then we use the last disk. 709 * There is also a per-disk 'last know head position' sector that is 710 * maintained from IRQ contexts, both the normal and the resync IO 711 * completion handlers update this position correctly. If there is no 712 * perfect sequential match then we pick the disk whose head is closest. 713 * 714 * If there are 2 mirrors in the same 2 devices, performance degrades 715 * because position is mirror, not device based. 716 * 717 * The rdev for the device selected will have nr_pending incremented. 718 */ 719 720 /* 721 * FIXME: possibly should rethink readbalancing and do it differently 722 * depending on near_copies / far_copies geometry. 723 */ 724 static struct md_rdev *read_balance(struct r10conf *conf, 725 struct r10bio *r10_bio, 726 int *max_sectors) 727 { 728 const sector_t this_sector = r10_bio->sector; 729 int disk, slot; 730 int sectors = r10_bio->sectors; 731 int best_good_sectors; 732 sector_t new_distance, best_dist; 733 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 734 int do_balance; 735 int best_dist_slot, best_pending_slot; 736 bool has_nonrot_disk = false; 737 unsigned int min_pending; 738 struct geom *geo = &conf->geo; 739 740 raid10_find_phys(conf, r10_bio); 741 best_dist_slot = -1; 742 min_pending = UINT_MAX; 743 best_dist_rdev = NULL; 744 best_pending_rdev = NULL; 745 best_dist = MaxSector; 746 best_good_sectors = 0; 747 do_balance = 1; 748 clear_bit(R10BIO_FailFast, &r10_bio->state); 749 750 if (raid1_should_read_first(conf->mddev, this_sector, sectors)) 751 do_balance = 0; 752 753 for (slot = 0; slot < conf->copies ; slot++) { 754 sector_t first_bad; 755 int bad_sectors; 756 sector_t dev_sector; 757 unsigned int pending; 758 bool nonrot; 759 760 if (r10_bio->devs[slot].bio == IO_BLOCKED) 761 continue; 762 disk = r10_bio->devs[slot].devnum; 763 rdev = conf->mirrors[disk].replacement; 764 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 765 r10_bio->devs[slot].addr + sectors > 766 rdev->recovery_offset) 767 rdev = conf->mirrors[disk].rdev; 768 if (rdev == NULL || 769 test_bit(Faulty, &rdev->flags)) 770 continue; 771 if (!test_bit(In_sync, &rdev->flags) && 772 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 773 continue; 774 775 dev_sector = r10_bio->devs[slot].addr; 776 if (is_badblock(rdev, dev_sector, sectors, 777 &first_bad, &bad_sectors)) { 778 if (best_dist < MaxSector) 779 /* Already have a better slot */ 780 continue; 781 if (first_bad <= dev_sector) { 782 /* Cannot read here. If this is the 783 * 'primary' device, then we must not read 784 * beyond 'bad_sectors' from another device. 785 */ 786 bad_sectors -= (dev_sector - first_bad); 787 if (!do_balance && sectors > bad_sectors) 788 sectors = bad_sectors; 789 if (best_good_sectors > sectors) 790 best_good_sectors = sectors; 791 } else { 792 sector_t good_sectors = 793 first_bad - dev_sector; 794 if (good_sectors > best_good_sectors) { 795 best_good_sectors = good_sectors; 796 best_dist_slot = slot; 797 best_dist_rdev = rdev; 798 } 799 if (!do_balance) 800 /* Must read from here */ 801 break; 802 } 803 continue; 804 } else 805 best_good_sectors = sectors; 806 807 if (!do_balance) 808 break; 809 810 nonrot = bdev_nonrot(rdev->bdev); 811 has_nonrot_disk |= nonrot; 812 pending = atomic_read(&rdev->nr_pending); 813 if (min_pending > pending && nonrot) { 814 min_pending = pending; 815 best_pending_slot = slot; 816 best_pending_rdev = rdev; 817 } 818 819 if (best_dist_slot >= 0) 820 /* At least 2 disks to choose from so failfast is OK */ 821 set_bit(R10BIO_FailFast, &r10_bio->state); 822 /* This optimisation is debatable, and completely destroys 823 * sequential read speed for 'far copies' arrays. So only 824 * keep it for 'near' arrays, and review those later. 825 */ 826 if (geo->near_copies > 1 && !pending) 827 new_distance = 0; 828 829 /* for far > 1 always use the lowest address */ 830 else if (geo->far_copies > 1) 831 new_distance = r10_bio->devs[slot].addr; 832 else 833 new_distance = abs(r10_bio->devs[slot].addr - 834 conf->mirrors[disk].head_position); 835 836 if (new_distance < best_dist) { 837 best_dist = new_distance; 838 best_dist_slot = slot; 839 best_dist_rdev = rdev; 840 } 841 } 842 if (slot >= conf->copies) { 843 if (has_nonrot_disk) { 844 slot = best_pending_slot; 845 rdev = best_pending_rdev; 846 } else { 847 slot = best_dist_slot; 848 rdev = best_dist_rdev; 849 } 850 } 851 852 if (slot >= 0) { 853 atomic_inc(&rdev->nr_pending); 854 r10_bio->read_slot = slot; 855 } else 856 rdev = NULL; 857 *max_sectors = best_good_sectors; 858 859 return rdev; 860 } 861 862 static void flush_pending_writes(struct r10conf *conf) 863 { 864 /* Any writes that have been queued but are awaiting 865 * bitmap updates get flushed here. 866 */ 867 spin_lock_irq(&conf->device_lock); 868 869 if (conf->pending_bio_list.head) { 870 struct blk_plug plug; 871 struct bio *bio; 872 873 bio = bio_list_get(&conf->pending_bio_list); 874 spin_unlock_irq(&conf->device_lock); 875 876 /* 877 * As this is called in a wait_event() loop (see freeze_array), 878 * current->state might be TASK_UNINTERRUPTIBLE which will 879 * cause a warning when we prepare to wait again. As it is 880 * rare that this path is taken, it is perfectly safe to force 881 * us to go around the wait_event() loop again, so the warning 882 * is a false-positive. Silence the warning by resetting 883 * thread state 884 */ 885 __set_current_state(TASK_RUNNING); 886 887 blk_start_plug(&plug); 888 raid1_prepare_flush_writes(conf->mddev); 889 wake_up(&conf->wait_barrier); 890 891 while (bio) { /* submit pending writes */ 892 struct bio *next = bio->bi_next; 893 894 raid1_submit_write(bio); 895 bio = next; 896 cond_resched(); 897 } 898 blk_finish_plug(&plug); 899 } else 900 spin_unlock_irq(&conf->device_lock); 901 } 902 903 /* Barriers.... 904 * Sometimes we need to suspend IO while we do something else, 905 * either some resync/recovery, or reconfigure the array. 906 * To do this we raise a 'barrier'. 907 * The 'barrier' is a counter that can be raised multiple times 908 * to count how many activities are happening which preclude 909 * normal IO. 910 * We can only raise the barrier if there is no pending IO. 911 * i.e. if nr_pending == 0. 912 * We choose only to raise the barrier if no-one is waiting for the 913 * barrier to go down. This means that as soon as an IO request 914 * is ready, no other operations which require a barrier will start 915 * until the IO request has had a chance. 916 * 917 * So: regular IO calls 'wait_barrier'. When that returns there 918 * is no backgroup IO happening, It must arrange to call 919 * allow_barrier when it has finished its IO. 920 * backgroup IO calls must call raise_barrier. Once that returns 921 * there is no normal IO happeing. It must arrange to call 922 * lower_barrier when the particular background IO completes. 923 */ 924 925 static void raise_barrier(struct r10conf *conf, int force) 926 { 927 write_seqlock_irq(&conf->resync_lock); 928 929 if (WARN_ON_ONCE(force && !conf->barrier)) 930 force = false; 931 932 /* Wait until no block IO is waiting (unless 'force') */ 933 wait_event_barrier(conf, force || !conf->nr_waiting); 934 935 /* block any new IO from starting */ 936 WRITE_ONCE(conf->barrier, conf->barrier + 1); 937 938 /* Now wait for all pending IO to complete */ 939 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && 940 conf->barrier < RESYNC_DEPTH); 941 942 write_sequnlock_irq(&conf->resync_lock); 943 } 944 945 static void lower_barrier(struct r10conf *conf) 946 { 947 unsigned long flags; 948 949 write_seqlock_irqsave(&conf->resync_lock, flags); 950 WRITE_ONCE(conf->barrier, conf->barrier - 1); 951 write_sequnlock_irqrestore(&conf->resync_lock, flags); 952 wake_up(&conf->wait_barrier); 953 } 954 955 static bool stop_waiting_barrier(struct r10conf *conf) 956 { 957 struct bio_list *bio_list = current->bio_list; 958 struct md_thread *thread; 959 960 /* barrier is dropped */ 961 if (!conf->barrier) 962 return true; 963 964 /* 965 * If there are already pending requests (preventing the barrier from 966 * rising completely), and the pre-process bio queue isn't empty, then 967 * don't wait, as we need to empty that queue to get the nr_pending 968 * count down. 969 */ 970 if (atomic_read(&conf->nr_pending) && bio_list && 971 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) 972 return true; 973 974 /* daemon thread must exist while handling io */ 975 thread = rcu_dereference_protected(conf->mddev->thread, true); 976 /* 977 * move on if io is issued from raid10d(), nr_pending is not released 978 * from original io(see handle_read_error()). All raise barrier is 979 * blocked until this io is done. 980 */ 981 if (thread->tsk == current) { 982 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); 983 return true; 984 } 985 986 return false; 987 } 988 989 static bool wait_barrier_nolock(struct r10conf *conf) 990 { 991 unsigned int seq = read_seqbegin(&conf->resync_lock); 992 993 if (READ_ONCE(conf->barrier)) 994 return false; 995 996 atomic_inc(&conf->nr_pending); 997 if (!read_seqretry(&conf->resync_lock, seq)) 998 return true; 999 1000 if (atomic_dec_and_test(&conf->nr_pending)) 1001 wake_up_barrier(conf); 1002 1003 return false; 1004 } 1005 1006 static bool wait_barrier(struct r10conf *conf, bool nowait) 1007 { 1008 bool ret = true; 1009 1010 if (wait_barrier_nolock(conf)) 1011 return true; 1012 1013 write_seqlock_irq(&conf->resync_lock); 1014 if (conf->barrier) { 1015 /* Return false when nowait flag is set */ 1016 if (nowait) { 1017 ret = false; 1018 } else { 1019 conf->nr_waiting++; 1020 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier"); 1021 wait_event_barrier(conf, stop_waiting_barrier(conf)); 1022 conf->nr_waiting--; 1023 } 1024 if (!conf->nr_waiting) 1025 wake_up(&conf->wait_barrier); 1026 } 1027 /* Only increment nr_pending when we wait */ 1028 if (ret) 1029 atomic_inc(&conf->nr_pending); 1030 write_sequnlock_irq(&conf->resync_lock); 1031 return ret; 1032 } 1033 1034 static void allow_barrier(struct r10conf *conf) 1035 { 1036 if ((atomic_dec_and_test(&conf->nr_pending)) || 1037 (conf->array_freeze_pending)) 1038 wake_up_barrier(conf); 1039 } 1040 1041 static void freeze_array(struct r10conf *conf, int extra) 1042 { 1043 /* stop syncio and normal IO and wait for everything to 1044 * go quiet. 1045 * We increment barrier and nr_waiting, and then 1046 * wait until nr_pending match nr_queued+extra 1047 * This is called in the context of one normal IO request 1048 * that has failed. Thus any sync request that might be pending 1049 * will be blocked by nr_pending, and we need to wait for 1050 * pending IO requests to complete or be queued for re-try. 1051 * Thus the number queued (nr_queued) plus this request (extra) 1052 * must match the number of pending IOs (nr_pending) before 1053 * we continue. 1054 */ 1055 write_seqlock_irq(&conf->resync_lock); 1056 conf->array_freeze_pending++; 1057 WRITE_ONCE(conf->barrier, conf->barrier + 1); 1058 conf->nr_waiting++; 1059 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == 1060 conf->nr_queued + extra, flush_pending_writes(conf)); 1061 conf->array_freeze_pending--; 1062 write_sequnlock_irq(&conf->resync_lock); 1063 } 1064 1065 static void unfreeze_array(struct r10conf *conf) 1066 { 1067 /* reverse the effect of the freeze */ 1068 write_seqlock_irq(&conf->resync_lock); 1069 WRITE_ONCE(conf->barrier, conf->barrier - 1); 1070 conf->nr_waiting--; 1071 wake_up(&conf->wait_barrier); 1072 write_sequnlock_irq(&conf->resync_lock); 1073 } 1074 1075 static sector_t choose_data_offset(struct r10bio *r10_bio, 1076 struct md_rdev *rdev) 1077 { 1078 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1079 test_bit(R10BIO_Previous, &r10_bio->state)) 1080 return rdev->data_offset; 1081 else 1082 return rdev->new_data_offset; 1083 } 1084 1085 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1086 { 1087 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1088 struct mddev *mddev = plug->cb.data; 1089 struct r10conf *conf = mddev->private; 1090 struct bio *bio; 1091 1092 if (from_schedule) { 1093 spin_lock_irq(&conf->device_lock); 1094 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1095 spin_unlock_irq(&conf->device_lock); 1096 wake_up_barrier(conf); 1097 md_wakeup_thread(mddev->thread); 1098 kfree(plug); 1099 return; 1100 } 1101 1102 /* we aren't scheduling, so we can do the write-out directly. */ 1103 bio = bio_list_get(&plug->pending); 1104 raid1_prepare_flush_writes(mddev); 1105 wake_up_barrier(conf); 1106 1107 while (bio) { /* submit pending writes */ 1108 struct bio *next = bio->bi_next; 1109 1110 raid1_submit_write(bio); 1111 bio = next; 1112 cond_resched(); 1113 } 1114 kfree(plug); 1115 } 1116 1117 /* 1118 * 1. Register the new request and wait if the reconstruction thread has put 1119 * up a bar for new requests. Continue immediately if no resync is active 1120 * currently. 1121 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1122 */ 1123 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1124 struct bio *bio, sector_t sectors) 1125 { 1126 /* Bail out if REQ_NOWAIT is set for the bio */ 1127 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1128 bio_wouldblock_error(bio); 1129 return false; 1130 } 1131 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1132 bio->bi_iter.bi_sector < conf->reshape_progress && 1133 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1134 allow_barrier(conf); 1135 if (bio->bi_opf & REQ_NOWAIT) { 1136 bio_wouldblock_error(bio); 1137 return false; 1138 } 1139 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape"); 1140 wait_event(conf->wait_barrier, 1141 conf->reshape_progress <= bio->bi_iter.bi_sector || 1142 conf->reshape_progress >= bio->bi_iter.bi_sector + 1143 sectors); 1144 wait_barrier(conf, false); 1145 } 1146 return true; 1147 } 1148 1149 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1150 struct r10bio *r10_bio, bool io_accounting) 1151 { 1152 struct r10conf *conf = mddev->private; 1153 struct bio *read_bio; 1154 const enum req_op op = bio_op(bio); 1155 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1156 int max_sectors; 1157 struct md_rdev *rdev; 1158 char b[BDEVNAME_SIZE]; 1159 int slot = r10_bio->read_slot; 1160 struct md_rdev *err_rdev = NULL; 1161 gfp_t gfp = GFP_NOIO; 1162 1163 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1164 /* 1165 * This is an error retry, but we cannot 1166 * safely dereference the rdev in the r10_bio, 1167 * we must use the one in conf. 1168 * If it has already been disconnected (unlikely) 1169 * we lose the device name in error messages. 1170 */ 1171 int disk; 1172 /* 1173 * As we are blocking raid10, it is a little safer to 1174 * use __GFP_HIGH. 1175 */ 1176 gfp = GFP_NOIO | __GFP_HIGH; 1177 1178 disk = r10_bio->devs[slot].devnum; 1179 err_rdev = conf->mirrors[disk].rdev; 1180 if (err_rdev) 1181 snprintf(b, sizeof(b), "%pg", err_rdev->bdev); 1182 else { 1183 strcpy(b, "???"); 1184 /* This never gets dereferenced */ 1185 err_rdev = r10_bio->devs[slot].rdev; 1186 } 1187 } 1188 1189 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) 1190 return; 1191 rdev = read_balance(conf, r10_bio, &max_sectors); 1192 if (!rdev) { 1193 if (err_rdev) { 1194 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1195 mdname(mddev), b, 1196 (unsigned long long)r10_bio->sector); 1197 } 1198 raid_end_bio_io(r10_bio); 1199 return; 1200 } 1201 if (err_rdev) 1202 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", 1203 mdname(mddev), 1204 rdev->bdev, 1205 (unsigned long long)r10_bio->sector); 1206 if (max_sectors < bio_sectors(bio)) { 1207 struct bio *split = bio_split(bio, max_sectors, 1208 gfp, &conf->bio_split); 1209 bio_chain(split, bio); 1210 allow_barrier(conf); 1211 submit_bio_noacct(bio); 1212 wait_barrier(conf, false); 1213 bio = split; 1214 r10_bio->master_bio = bio; 1215 r10_bio->sectors = max_sectors; 1216 } 1217 slot = r10_bio->read_slot; 1218 1219 if (io_accounting) { 1220 md_account_bio(mddev, &bio); 1221 r10_bio->master_bio = bio; 1222 } 1223 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1224 1225 r10_bio->devs[slot].bio = read_bio; 1226 r10_bio->devs[slot].rdev = rdev; 1227 1228 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1229 choose_data_offset(r10_bio, rdev); 1230 read_bio->bi_end_io = raid10_end_read_request; 1231 read_bio->bi_opf = op | do_sync; 1232 if (test_bit(FailFast, &rdev->flags) && 1233 test_bit(R10BIO_FailFast, &r10_bio->state)) 1234 read_bio->bi_opf |= MD_FAILFAST; 1235 read_bio->bi_private = r10_bio; 1236 mddev_trace_remap(mddev, read_bio, r10_bio->sector); 1237 submit_bio_noacct(read_bio); 1238 return; 1239 } 1240 1241 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1242 struct bio *bio, bool replacement, 1243 int n_copy) 1244 { 1245 const enum req_op op = bio_op(bio); 1246 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1247 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA; 1248 unsigned long flags; 1249 struct r10conf *conf = mddev->private; 1250 struct md_rdev *rdev; 1251 int devnum = r10_bio->devs[n_copy].devnum; 1252 struct bio *mbio; 1253 1254 rdev = replacement ? conf->mirrors[devnum].replacement : 1255 conf->mirrors[devnum].rdev; 1256 1257 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1258 if (replacement) 1259 r10_bio->devs[n_copy].repl_bio = mbio; 1260 else 1261 r10_bio->devs[n_copy].bio = mbio; 1262 1263 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1264 choose_data_offset(r10_bio, rdev)); 1265 mbio->bi_end_io = raid10_end_write_request; 1266 mbio->bi_opf = op | do_sync | do_fua; 1267 if (!replacement && test_bit(FailFast, 1268 &conf->mirrors[devnum].rdev->flags) 1269 && enough(conf, devnum)) 1270 mbio->bi_opf |= MD_FAILFAST; 1271 mbio->bi_private = r10_bio; 1272 mddev_trace_remap(mddev, mbio, r10_bio->sector); 1273 /* flush_pending_writes() needs access to the rdev so...*/ 1274 mbio->bi_bdev = (void *)rdev; 1275 1276 atomic_inc(&r10_bio->remaining); 1277 1278 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) { 1279 spin_lock_irqsave(&conf->device_lock, flags); 1280 bio_list_add(&conf->pending_bio_list, mbio); 1281 spin_unlock_irqrestore(&conf->device_lock, flags); 1282 md_wakeup_thread(mddev->thread); 1283 } 1284 } 1285 1286 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1287 { 1288 int i; 1289 struct r10conf *conf = mddev->private; 1290 struct md_rdev *blocked_rdev; 1291 1292 retry_wait: 1293 blocked_rdev = NULL; 1294 for (i = 0; i < conf->copies; i++) { 1295 struct md_rdev *rdev, *rrdev; 1296 1297 rdev = conf->mirrors[i].rdev; 1298 rrdev = conf->mirrors[i].replacement; 1299 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1300 atomic_inc(&rdev->nr_pending); 1301 blocked_rdev = rdev; 1302 break; 1303 } 1304 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1305 atomic_inc(&rrdev->nr_pending); 1306 blocked_rdev = rrdev; 1307 break; 1308 } 1309 1310 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1311 sector_t dev_sector = r10_bio->devs[i].addr; 1312 1313 /* 1314 * Discard request doesn't care the write result 1315 * so it doesn't need to wait blocked disk here. 1316 */ 1317 if (!r10_bio->sectors) 1318 continue; 1319 1320 if (rdev_has_badblock(rdev, dev_sector, 1321 r10_bio->sectors) < 0) { 1322 /* 1323 * Mustn't write here until the bad block 1324 * is acknowledged 1325 */ 1326 atomic_inc(&rdev->nr_pending); 1327 set_bit(BlockedBadBlocks, &rdev->flags); 1328 blocked_rdev = rdev; 1329 break; 1330 } 1331 } 1332 } 1333 1334 if (unlikely(blocked_rdev)) { 1335 /* Have to wait for this device to get unblocked, then retry */ 1336 allow_barrier(conf); 1337 mddev_add_trace_msg(conf->mddev, 1338 "raid10 %s wait rdev %d blocked", 1339 __func__, blocked_rdev->raid_disk); 1340 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1341 wait_barrier(conf, false); 1342 goto retry_wait; 1343 } 1344 } 1345 1346 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1347 struct r10bio *r10_bio) 1348 { 1349 struct r10conf *conf = mddev->private; 1350 int i; 1351 sector_t sectors; 1352 int max_sectors; 1353 1354 if ((mddev_is_clustered(mddev) && 1355 md_cluster_ops->area_resyncing(mddev, WRITE, 1356 bio->bi_iter.bi_sector, 1357 bio_end_sector(bio)))) { 1358 DEFINE_WAIT(w); 1359 /* Bail out if REQ_NOWAIT is set for the bio */ 1360 if (bio->bi_opf & REQ_NOWAIT) { 1361 bio_wouldblock_error(bio); 1362 return; 1363 } 1364 for (;;) { 1365 prepare_to_wait(&conf->wait_barrier, 1366 &w, TASK_IDLE); 1367 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1368 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1369 break; 1370 schedule(); 1371 } 1372 finish_wait(&conf->wait_barrier, &w); 1373 } 1374 1375 sectors = r10_bio->sectors; 1376 if (!regular_request_wait(mddev, conf, bio, sectors)) 1377 return; 1378 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1379 (mddev->reshape_backwards 1380 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1381 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1382 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1383 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1384 /* Need to update reshape_position in metadata */ 1385 mddev->reshape_position = conf->reshape_progress; 1386 set_mask_bits(&mddev->sb_flags, 0, 1387 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1388 md_wakeup_thread(mddev->thread); 1389 if (bio->bi_opf & REQ_NOWAIT) { 1390 allow_barrier(conf); 1391 bio_wouldblock_error(bio); 1392 return; 1393 } 1394 mddev_add_trace_msg(conf->mddev, 1395 "raid10 wait reshape metadata"); 1396 wait_event(mddev->sb_wait, 1397 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1398 1399 conf->reshape_safe = mddev->reshape_position; 1400 } 1401 1402 /* first select target devices under rcu_lock and 1403 * inc refcount on their rdev. Record them by setting 1404 * bios[x] to bio 1405 * If there are known/acknowledged bad blocks on any device 1406 * on which we have seen a write error, we want to avoid 1407 * writing to those blocks. This potentially requires several 1408 * writes to write around the bad blocks. Each set of writes 1409 * gets its own r10_bio with a set of bios attached. 1410 */ 1411 1412 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1413 raid10_find_phys(conf, r10_bio); 1414 1415 wait_blocked_dev(mddev, r10_bio); 1416 1417 max_sectors = r10_bio->sectors; 1418 1419 for (i = 0; i < conf->copies; i++) { 1420 int d = r10_bio->devs[i].devnum; 1421 struct md_rdev *rdev, *rrdev; 1422 1423 rdev = conf->mirrors[d].rdev; 1424 rrdev = conf->mirrors[d].replacement; 1425 if (rdev && (test_bit(Faulty, &rdev->flags))) 1426 rdev = NULL; 1427 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1428 rrdev = NULL; 1429 1430 r10_bio->devs[i].bio = NULL; 1431 r10_bio->devs[i].repl_bio = NULL; 1432 1433 if (!rdev && !rrdev) { 1434 set_bit(R10BIO_Degraded, &r10_bio->state); 1435 continue; 1436 } 1437 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1438 sector_t first_bad; 1439 sector_t dev_sector = r10_bio->devs[i].addr; 1440 int bad_sectors; 1441 int is_bad; 1442 1443 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1444 &first_bad, &bad_sectors); 1445 if (is_bad && first_bad <= dev_sector) { 1446 /* Cannot write here at all */ 1447 bad_sectors -= (dev_sector - first_bad); 1448 if (bad_sectors < max_sectors) 1449 /* Mustn't write more than bad_sectors 1450 * to other devices yet 1451 */ 1452 max_sectors = bad_sectors; 1453 /* We don't set R10BIO_Degraded as that 1454 * only applies if the disk is missing, 1455 * so it might be re-added, and we want to 1456 * know to recover this chunk. 1457 * In this case the device is here, and the 1458 * fact that this chunk is not in-sync is 1459 * recorded in the bad block log. 1460 */ 1461 continue; 1462 } 1463 if (is_bad) { 1464 int good_sectors = first_bad - dev_sector; 1465 if (good_sectors < max_sectors) 1466 max_sectors = good_sectors; 1467 } 1468 } 1469 if (rdev) { 1470 r10_bio->devs[i].bio = bio; 1471 atomic_inc(&rdev->nr_pending); 1472 } 1473 if (rrdev) { 1474 r10_bio->devs[i].repl_bio = bio; 1475 atomic_inc(&rrdev->nr_pending); 1476 } 1477 } 1478 1479 if (max_sectors < r10_bio->sectors) 1480 r10_bio->sectors = max_sectors; 1481 1482 if (r10_bio->sectors < bio_sectors(bio)) { 1483 struct bio *split = bio_split(bio, r10_bio->sectors, 1484 GFP_NOIO, &conf->bio_split); 1485 bio_chain(split, bio); 1486 allow_barrier(conf); 1487 submit_bio_noacct(bio); 1488 wait_barrier(conf, false); 1489 bio = split; 1490 r10_bio->master_bio = bio; 1491 } 1492 1493 md_account_bio(mddev, &bio); 1494 r10_bio->master_bio = bio; 1495 atomic_set(&r10_bio->remaining, 1); 1496 mddev->bitmap_ops->startwrite(mddev, r10_bio->sector, r10_bio->sectors, 1497 false); 1498 1499 for (i = 0; i < conf->copies; i++) { 1500 if (r10_bio->devs[i].bio) 1501 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1502 if (r10_bio->devs[i].repl_bio) 1503 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1504 } 1505 one_write_done(r10_bio); 1506 } 1507 1508 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1509 { 1510 struct r10conf *conf = mddev->private; 1511 struct r10bio *r10_bio; 1512 1513 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1514 1515 r10_bio->master_bio = bio; 1516 r10_bio->sectors = sectors; 1517 1518 r10_bio->mddev = mddev; 1519 r10_bio->sector = bio->bi_iter.bi_sector; 1520 r10_bio->state = 0; 1521 r10_bio->read_slot = -1; 1522 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1523 conf->geo.raid_disks); 1524 1525 if (bio_data_dir(bio) == READ) 1526 raid10_read_request(mddev, bio, r10_bio, true); 1527 else 1528 raid10_write_request(mddev, bio, r10_bio); 1529 } 1530 1531 static void raid_end_discard_bio(struct r10bio *r10bio) 1532 { 1533 struct r10conf *conf = r10bio->mddev->private; 1534 struct r10bio *first_r10bio; 1535 1536 while (atomic_dec_and_test(&r10bio->remaining)) { 1537 1538 allow_barrier(conf); 1539 1540 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1541 first_r10bio = (struct r10bio *)r10bio->master_bio; 1542 free_r10bio(r10bio); 1543 r10bio = first_r10bio; 1544 } else { 1545 md_write_end(r10bio->mddev); 1546 bio_endio(r10bio->master_bio); 1547 free_r10bio(r10bio); 1548 break; 1549 } 1550 } 1551 } 1552 1553 static void raid10_end_discard_request(struct bio *bio) 1554 { 1555 struct r10bio *r10_bio = bio->bi_private; 1556 struct r10conf *conf = r10_bio->mddev->private; 1557 struct md_rdev *rdev = NULL; 1558 int dev; 1559 int slot, repl; 1560 1561 /* 1562 * We don't care the return value of discard bio 1563 */ 1564 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1565 set_bit(R10BIO_Uptodate, &r10_bio->state); 1566 1567 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1568 rdev = repl ? conf->mirrors[dev].replacement : 1569 conf->mirrors[dev].rdev; 1570 1571 raid_end_discard_bio(r10_bio); 1572 rdev_dec_pending(rdev, conf->mddev); 1573 } 1574 1575 /* 1576 * There are some limitations to handle discard bio 1577 * 1st, the discard size is bigger than stripe_size*2. 1578 * 2st, if the discard bio spans reshape progress, we use the old way to 1579 * handle discard bio 1580 */ 1581 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1582 { 1583 struct r10conf *conf = mddev->private; 1584 struct geom *geo = &conf->geo; 1585 int far_copies = geo->far_copies; 1586 bool first_copy = true; 1587 struct r10bio *r10_bio, *first_r10bio; 1588 struct bio *split; 1589 int disk; 1590 sector_t chunk; 1591 unsigned int stripe_size; 1592 unsigned int stripe_data_disks; 1593 sector_t split_size; 1594 sector_t bio_start, bio_end; 1595 sector_t first_stripe_index, last_stripe_index; 1596 sector_t start_disk_offset; 1597 unsigned int start_disk_index; 1598 sector_t end_disk_offset; 1599 unsigned int end_disk_index; 1600 unsigned int remainder; 1601 1602 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1603 return -EAGAIN; 1604 1605 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) { 1606 bio_wouldblock_error(bio); 1607 return 0; 1608 } 1609 wait_barrier(conf, false); 1610 1611 /* 1612 * Check reshape again to avoid reshape happens after checking 1613 * MD_RECOVERY_RESHAPE and before wait_barrier 1614 */ 1615 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1616 goto out; 1617 1618 if (geo->near_copies) 1619 stripe_data_disks = geo->raid_disks / geo->near_copies + 1620 geo->raid_disks % geo->near_copies; 1621 else 1622 stripe_data_disks = geo->raid_disks; 1623 1624 stripe_size = stripe_data_disks << geo->chunk_shift; 1625 1626 bio_start = bio->bi_iter.bi_sector; 1627 bio_end = bio_end_sector(bio); 1628 1629 /* 1630 * Maybe one discard bio is smaller than strip size or across one 1631 * stripe and discard region is larger than one stripe size. For far 1632 * offset layout, if the discard region is not aligned with stripe 1633 * size, there is hole when we submit discard bio to member disk. 1634 * For simplicity, we only handle discard bio which discard region 1635 * is bigger than stripe_size * 2 1636 */ 1637 if (bio_sectors(bio) < stripe_size*2) 1638 goto out; 1639 1640 /* 1641 * Keep bio aligned with strip size. 1642 */ 1643 div_u64_rem(bio_start, stripe_size, &remainder); 1644 if (remainder) { 1645 split_size = stripe_size - remainder; 1646 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1647 bio_chain(split, bio); 1648 allow_barrier(conf); 1649 /* Resend the fist split part */ 1650 submit_bio_noacct(split); 1651 wait_barrier(conf, false); 1652 } 1653 div_u64_rem(bio_end, stripe_size, &remainder); 1654 if (remainder) { 1655 split_size = bio_sectors(bio) - remainder; 1656 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1657 bio_chain(split, bio); 1658 allow_barrier(conf); 1659 /* Resend the second split part */ 1660 submit_bio_noacct(bio); 1661 bio = split; 1662 wait_barrier(conf, false); 1663 } 1664 1665 bio_start = bio->bi_iter.bi_sector; 1666 bio_end = bio_end_sector(bio); 1667 1668 /* 1669 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1670 * One stripe contains the chunks from all member disk (one chunk from 1671 * one disk at the same HBA address). For layout detail, see 'man md 4' 1672 */ 1673 chunk = bio_start >> geo->chunk_shift; 1674 chunk *= geo->near_copies; 1675 first_stripe_index = chunk; 1676 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1677 if (geo->far_offset) 1678 first_stripe_index *= geo->far_copies; 1679 start_disk_offset = (bio_start & geo->chunk_mask) + 1680 (first_stripe_index << geo->chunk_shift); 1681 1682 chunk = bio_end >> geo->chunk_shift; 1683 chunk *= geo->near_copies; 1684 last_stripe_index = chunk; 1685 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1686 if (geo->far_offset) 1687 last_stripe_index *= geo->far_copies; 1688 end_disk_offset = (bio_end & geo->chunk_mask) + 1689 (last_stripe_index << geo->chunk_shift); 1690 1691 retry_discard: 1692 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1693 r10_bio->mddev = mddev; 1694 r10_bio->state = 0; 1695 r10_bio->sectors = 0; 1696 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1697 wait_blocked_dev(mddev, r10_bio); 1698 1699 /* 1700 * For far layout it needs more than one r10bio to cover all regions. 1701 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1702 * to record the discard bio. Other r10bio->master_bio record the first 1703 * r10bio. The first r10bio only release after all other r10bios finish. 1704 * The discard bio returns only first r10bio finishes 1705 */ 1706 if (first_copy) { 1707 r10_bio->master_bio = bio; 1708 set_bit(R10BIO_Discard, &r10_bio->state); 1709 first_copy = false; 1710 first_r10bio = r10_bio; 1711 } else 1712 r10_bio->master_bio = (struct bio *)first_r10bio; 1713 1714 /* 1715 * first select target devices under rcu_lock and 1716 * inc refcount on their rdev. Record them by setting 1717 * bios[x] to bio 1718 */ 1719 for (disk = 0; disk < geo->raid_disks; disk++) { 1720 struct md_rdev *rdev, *rrdev; 1721 1722 rdev = conf->mirrors[disk].rdev; 1723 rrdev = conf->mirrors[disk].replacement; 1724 r10_bio->devs[disk].bio = NULL; 1725 r10_bio->devs[disk].repl_bio = NULL; 1726 1727 if (rdev && (test_bit(Faulty, &rdev->flags))) 1728 rdev = NULL; 1729 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1730 rrdev = NULL; 1731 if (!rdev && !rrdev) 1732 continue; 1733 1734 if (rdev) { 1735 r10_bio->devs[disk].bio = bio; 1736 atomic_inc(&rdev->nr_pending); 1737 } 1738 if (rrdev) { 1739 r10_bio->devs[disk].repl_bio = bio; 1740 atomic_inc(&rrdev->nr_pending); 1741 } 1742 } 1743 1744 atomic_set(&r10_bio->remaining, 1); 1745 for (disk = 0; disk < geo->raid_disks; disk++) { 1746 sector_t dev_start, dev_end; 1747 struct bio *mbio, *rbio = NULL; 1748 1749 /* 1750 * Now start to calculate the start and end address for each disk. 1751 * The space between dev_start and dev_end is the discard region. 1752 * 1753 * For dev_start, it needs to consider three conditions: 1754 * 1st, the disk is before start_disk, you can imagine the disk in 1755 * the next stripe. So the dev_start is the start address of next 1756 * stripe. 1757 * 2st, the disk is after start_disk, it means the disk is at the 1758 * same stripe of first disk 1759 * 3st, the first disk itself, we can use start_disk_offset directly 1760 */ 1761 if (disk < start_disk_index) 1762 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1763 else if (disk > start_disk_index) 1764 dev_start = first_stripe_index * mddev->chunk_sectors; 1765 else 1766 dev_start = start_disk_offset; 1767 1768 if (disk < end_disk_index) 1769 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1770 else if (disk > end_disk_index) 1771 dev_end = last_stripe_index * mddev->chunk_sectors; 1772 else 1773 dev_end = end_disk_offset; 1774 1775 /* 1776 * It only handles discard bio which size is >= stripe size, so 1777 * dev_end > dev_start all the time. 1778 * It doesn't need to use rcu lock to get rdev here. We already 1779 * add rdev->nr_pending in the first loop. 1780 */ 1781 if (r10_bio->devs[disk].bio) { 1782 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1783 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1784 &mddev->bio_set); 1785 mbio->bi_end_io = raid10_end_discard_request; 1786 mbio->bi_private = r10_bio; 1787 r10_bio->devs[disk].bio = mbio; 1788 r10_bio->devs[disk].devnum = disk; 1789 atomic_inc(&r10_bio->remaining); 1790 md_submit_discard_bio(mddev, rdev, mbio, 1791 dev_start + choose_data_offset(r10_bio, rdev), 1792 dev_end - dev_start); 1793 bio_endio(mbio); 1794 } 1795 if (r10_bio->devs[disk].repl_bio) { 1796 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1797 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1798 &mddev->bio_set); 1799 rbio->bi_end_io = raid10_end_discard_request; 1800 rbio->bi_private = r10_bio; 1801 r10_bio->devs[disk].repl_bio = rbio; 1802 r10_bio->devs[disk].devnum = disk; 1803 atomic_inc(&r10_bio->remaining); 1804 md_submit_discard_bio(mddev, rrdev, rbio, 1805 dev_start + choose_data_offset(r10_bio, rrdev), 1806 dev_end - dev_start); 1807 bio_endio(rbio); 1808 } 1809 } 1810 1811 if (!geo->far_offset && --far_copies) { 1812 first_stripe_index += geo->stride >> geo->chunk_shift; 1813 start_disk_offset += geo->stride; 1814 last_stripe_index += geo->stride >> geo->chunk_shift; 1815 end_disk_offset += geo->stride; 1816 atomic_inc(&first_r10bio->remaining); 1817 raid_end_discard_bio(r10_bio); 1818 wait_barrier(conf, false); 1819 goto retry_discard; 1820 } 1821 1822 raid_end_discard_bio(r10_bio); 1823 1824 return 0; 1825 out: 1826 allow_barrier(conf); 1827 return -EAGAIN; 1828 } 1829 1830 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1831 { 1832 struct r10conf *conf = mddev->private; 1833 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1834 int chunk_sects = chunk_mask + 1; 1835 int sectors = bio_sectors(bio); 1836 1837 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1838 && md_flush_request(mddev, bio)) 1839 return true; 1840 1841 md_write_start(mddev, bio); 1842 1843 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1844 if (!raid10_handle_discard(mddev, bio)) 1845 return true; 1846 1847 /* 1848 * If this request crosses a chunk boundary, we need to split 1849 * it. 1850 */ 1851 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1852 sectors > chunk_sects 1853 && (conf->geo.near_copies < conf->geo.raid_disks 1854 || conf->prev.near_copies < 1855 conf->prev.raid_disks))) 1856 sectors = chunk_sects - 1857 (bio->bi_iter.bi_sector & 1858 (chunk_sects - 1)); 1859 __make_request(mddev, bio, sectors); 1860 1861 /* In case raid10d snuck in to freeze_array */ 1862 wake_up_barrier(conf); 1863 return true; 1864 } 1865 1866 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1867 { 1868 struct r10conf *conf = mddev->private; 1869 int i; 1870 1871 lockdep_assert_held(&mddev->lock); 1872 1873 if (conf->geo.near_copies < conf->geo.raid_disks) 1874 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1875 if (conf->geo.near_copies > 1) 1876 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1877 if (conf->geo.far_copies > 1) { 1878 if (conf->geo.far_offset) 1879 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1880 else 1881 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1882 if (conf->geo.far_set_size != conf->geo.raid_disks) 1883 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1884 } 1885 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1886 conf->geo.raid_disks - mddev->degraded); 1887 for (i = 0; i < conf->geo.raid_disks; i++) { 1888 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1889 1890 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1891 } 1892 seq_printf(seq, "]"); 1893 } 1894 1895 /* check if there are enough drives for 1896 * every block to appear on atleast one. 1897 * Don't consider the device numbered 'ignore' 1898 * as we might be about to remove it. 1899 */ 1900 static int _enough(struct r10conf *conf, int previous, int ignore) 1901 { 1902 int first = 0; 1903 int has_enough = 0; 1904 int disks, ncopies; 1905 if (previous) { 1906 disks = conf->prev.raid_disks; 1907 ncopies = conf->prev.near_copies; 1908 } else { 1909 disks = conf->geo.raid_disks; 1910 ncopies = conf->geo.near_copies; 1911 } 1912 1913 do { 1914 int n = conf->copies; 1915 int cnt = 0; 1916 int this = first; 1917 while (n--) { 1918 struct md_rdev *rdev; 1919 if (this != ignore && 1920 (rdev = conf->mirrors[this].rdev) && 1921 test_bit(In_sync, &rdev->flags)) 1922 cnt++; 1923 this = (this+1) % disks; 1924 } 1925 if (cnt == 0) 1926 goto out; 1927 first = (first + ncopies) % disks; 1928 } while (first != 0); 1929 has_enough = 1; 1930 out: 1931 return has_enough; 1932 } 1933 1934 static int enough(struct r10conf *conf, int ignore) 1935 { 1936 /* when calling 'enough', both 'prev' and 'geo' must 1937 * be stable. 1938 * This is ensured if ->reconfig_mutex or ->device_lock 1939 * is held. 1940 */ 1941 return _enough(conf, 0, ignore) && 1942 _enough(conf, 1, ignore); 1943 } 1944 1945 /** 1946 * raid10_error() - RAID10 error handler. 1947 * @mddev: affected md device. 1948 * @rdev: member device to fail. 1949 * 1950 * The routine acknowledges &rdev failure and determines new @mddev state. 1951 * If it failed, then: 1952 * - &MD_BROKEN flag is set in &mddev->flags. 1953 * Otherwise, it must be degraded: 1954 * - recovery is interrupted. 1955 * - &mddev->degraded is bumped. 1956 * 1957 * @rdev is marked as &Faulty excluding case when array is failed and 1958 * &mddev->fail_last_dev is off. 1959 */ 1960 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1961 { 1962 struct r10conf *conf = mddev->private; 1963 unsigned long flags; 1964 1965 spin_lock_irqsave(&conf->device_lock, flags); 1966 1967 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { 1968 set_bit(MD_BROKEN, &mddev->flags); 1969 1970 if (!mddev->fail_last_dev) { 1971 spin_unlock_irqrestore(&conf->device_lock, flags); 1972 return; 1973 } 1974 } 1975 if (test_and_clear_bit(In_sync, &rdev->flags)) 1976 mddev->degraded++; 1977 1978 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1979 set_bit(Blocked, &rdev->flags); 1980 set_bit(Faulty, &rdev->flags); 1981 set_mask_bits(&mddev->sb_flags, 0, 1982 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1983 spin_unlock_irqrestore(&conf->device_lock, flags); 1984 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" 1985 "md/raid10:%s: Operation continuing on %d devices.\n", 1986 mdname(mddev), rdev->bdev, 1987 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1988 } 1989 1990 static void print_conf(struct r10conf *conf) 1991 { 1992 int i; 1993 struct md_rdev *rdev; 1994 1995 pr_debug("RAID10 conf printout:\n"); 1996 if (!conf) { 1997 pr_debug("(!conf)\n"); 1998 return; 1999 } 2000 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2001 conf->geo.raid_disks); 2002 2003 lockdep_assert_held(&conf->mddev->reconfig_mutex); 2004 for (i = 0; i < conf->geo.raid_disks; i++) { 2005 rdev = conf->mirrors[i].rdev; 2006 if (rdev) 2007 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 2008 i, !test_bit(In_sync, &rdev->flags), 2009 !test_bit(Faulty, &rdev->flags), 2010 rdev->bdev); 2011 } 2012 } 2013 2014 static void close_sync(struct r10conf *conf) 2015 { 2016 wait_barrier(conf, false); 2017 allow_barrier(conf); 2018 2019 mempool_exit(&conf->r10buf_pool); 2020 } 2021 2022 static int raid10_spare_active(struct mddev *mddev) 2023 { 2024 int i; 2025 struct r10conf *conf = mddev->private; 2026 struct raid10_info *tmp; 2027 int count = 0; 2028 unsigned long flags; 2029 2030 /* 2031 * Find all non-in_sync disks within the RAID10 configuration 2032 * and mark them in_sync 2033 */ 2034 for (i = 0; i < conf->geo.raid_disks; i++) { 2035 tmp = conf->mirrors + i; 2036 if (tmp->replacement 2037 && tmp->replacement->recovery_offset == MaxSector 2038 && !test_bit(Faulty, &tmp->replacement->flags) 2039 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2040 /* Replacement has just become active */ 2041 if (!tmp->rdev 2042 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2043 count++; 2044 if (tmp->rdev) { 2045 /* Replaced device not technically faulty, 2046 * but we need to be sure it gets removed 2047 * and never re-added. 2048 */ 2049 set_bit(Faulty, &tmp->rdev->flags); 2050 sysfs_notify_dirent_safe( 2051 tmp->rdev->sysfs_state); 2052 } 2053 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2054 } else if (tmp->rdev 2055 && tmp->rdev->recovery_offset == MaxSector 2056 && !test_bit(Faulty, &tmp->rdev->flags) 2057 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2058 count++; 2059 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2060 } 2061 } 2062 spin_lock_irqsave(&conf->device_lock, flags); 2063 mddev->degraded -= count; 2064 spin_unlock_irqrestore(&conf->device_lock, flags); 2065 2066 print_conf(conf); 2067 return count; 2068 } 2069 2070 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2071 { 2072 struct r10conf *conf = mddev->private; 2073 int err = -EEXIST; 2074 int mirror, repl_slot = -1; 2075 int first = 0; 2076 int last = conf->geo.raid_disks - 1; 2077 struct raid10_info *p; 2078 2079 if (mddev->recovery_cp < MaxSector) 2080 /* only hot-add to in-sync arrays, as recovery is 2081 * very different from resync 2082 */ 2083 return -EBUSY; 2084 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2085 return -EINVAL; 2086 2087 if (rdev->raid_disk >= 0) 2088 first = last = rdev->raid_disk; 2089 2090 if (rdev->saved_raid_disk >= first && 2091 rdev->saved_raid_disk < conf->geo.raid_disks && 2092 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2093 mirror = rdev->saved_raid_disk; 2094 else 2095 mirror = first; 2096 for ( ; mirror <= last ; mirror++) { 2097 p = &conf->mirrors[mirror]; 2098 if (p->recovery_disabled == mddev->recovery_disabled) 2099 continue; 2100 if (p->rdev) { 2101 if (test_bit(WantReplacement, &p->rdev->flags) && 2102 p->replacement == NULL && repl_slot < 0) 2103 repl_slot = mirror; 2104 continue; 2105 } 2106 2107 err = mddev_stack_new_rdev(mddev, rdev); 2108 if (err) 2109 return err; 2110 p->head_position = 0; 2111 p->recovery_disabled = mddev->recovery_disabled - 1; 2112 rdev->raid_disk = mirror; 2113 err = 0; 2114 if (rdev->saved_raid_disk != mirror) 2115 conf->fullsync = 1; 2116 WRITE_ONCE(p->rdev, rdev); 2117 break; 2118 } 2119 2120 if (err && repl_slot >= 0) { 2121 p = &conf->mirrors[repl_slot]; 2122 clear_bit(In_sync, &rdev->flags); 2123 set_bit(Replacement, &rdev->flags); 2124 rdev->raid_disk = repl_slot; 2125 err = mddev_stack_new_rdev(mddev, rdev); 2126 if (err) 2127 return err; 2128 conf->fullsync = 1; 2129 WRITE_ONCE(p->replacement, rdev); 2130 } 2131 2132 print_conf(conf); 2133 return err; 2134 } 2135 2136 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2137 { 2138 struct r10conf *conf = mddev->private; 2139 int err = 0; 2140 int number = rdev->raid_disk; 2141 struct md_rdev **rdevp; 2142 struct raid10_info *p; 2143 2144 print_conf(conf); 2145 if (unlikely(number >= mddev->raid_disks)) 2146 return 0; 2147 p = conf->mirrors + number; 2148 if (rdev == p->rdev) 2149 rdevp = &p->rdev; 2150 else if (rdev == p->replacement) 2151 rdevp = &p->replacement; 2152 else 2153 return 0; 2154 2155 if (test_bit(In_sync, &rdev->flags) || 2156 atomic_read(&rdev->nr_pending)) { 2157 err = -EBUSY; 2158 goto abort; 2159 } 2160 /* Only remove non-faulty devices if recovery 2161 * is not possible. 2162 */ 2163 if (!test_bit(Faulty, &rdev->flags) && 2164 mddev->recovery_disabled != p->recovery_disabled && 2165 (!p->replacement || p->replacement == rdev) && 2166 number < conf->geo.raid_disks && 2167 enough(conf, -1)) { 2168 err = -EBUSY; 2169 goto abort; 2170 } 2171 WRITE_ONCE(*rdevp, NULL); 2172 if (p->replacement) { 2173 /* We must have just cleared 'rdev' */ 2174 WRITE_ONCE(p->rdev, p->replacement); 2175 clear_bit(Replacement, &p->replacement->flags); 2176 WRITE_ONCE(p->replacement, NULL); 2177 } 2178 2179 clear_bit(WantReplacement, &rdev->flags); 2180 err = md_integrity_register(mddev); 2181 2182 abort: 2183 2184 print_conf(conf); 2185 return err; 2186 } 2187 2188 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2189 { 2190 struct r10conf *conf = r10_bio->mddev->private; 2191 2192 if (!bio->bi_status) 2193 set_bit(R10BIO_Uptodate, &r10_bio->state); 2194 else 2195 /* The write handler will notice the lack of 2196 * R10BIO_Uptodate and record any errors etc 2197 */ 2198 atomic_add(r10_bio->sectors, 2199 &conf->mirrors[d].rdev->corrected_errors); 2200 2201 /* for reconstruct, we always reschedule after a read. 2202 * for resync, only after all reads 2203 */ 2204 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2205 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2206 atomic_dec_and_test(&r10_bio->remaining)) { 2207 /* we have read all the blocks, 2208 * do the comparison in process context in raid10d 2209 */ 2210 reschedule_retry(r10_bio); 2211 } 2212 } 2213 2214 static void end_sync_read(struct bio *bio) 2215 { 2216 struct r10bio *r10_bio = get_resync_r10bio(bio); 2217 struct r10conf *conf = r10_bio->mddev->private; 2218 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2219 2220 __end_sync_read(r10_bio, bio, d); 2221 } 2222 2223 static void end_reshape_read(struct bio *bio) 2224 { 2225 /* reshape read bio isn't allocated from r10buf_pool */ 2226 struct r10bio *r10_bio = bio->bi_private; 2227 2228 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2229 } 2230 2231 static void end_sync_request(struct r10bio *r10_bio) 2232 { 2233 struct mddev *mddev = r10_bio->mddev; 2234 2235 while (atomic_dec_and_test(&r10_bio->remaining)) { 2236 if (r10_bio->master_bio == NULL) { 2237 /* the primary of several recovery bios */ 2238 sector_t s = r10_bio->sectors; 2239 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2240 test_bit(R10BIO_WriteError, &r10_bio->state)) 2241 reschedule_retry(r10_bio); 2242 else 2243 put_buf(r10_bio); 2244 md_done_sync(mddev, s, 1); 2245 break; 2246 } else { 2247 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2248 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2249 test_bit(R10BIO_WriteError, &r10_bio->state)) 2250 reschedule_retry(r10_bio); 2251 else 2252 put_buf(r10_bio); 2253 r10_bio = r10_bio2; 2254 } 2255 } 2256 } 2257 2258 static void end_sync_write(struct bio *bio) 2259 { 2260 struct r10bio *r10_bio = get_resync_r10bio(bio); 2261 struct mddev *mddev = r10_bio->mddev; 2262 struct r10conf *conf = mddev->private; 2263 int d; 2264 int slot; 2265 int repl; 2266 struct md_rdev *rdev = NULL; 2267 2268 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2269 if (repl) 2270 rdev = conf->mirrors[d].replacement; 2271 else 2272 rdev = conf->mirrors[d].rdev; 2273 2274 if (bio->bi_status) { 2275 if (repl) 2276 md_error(mddev, rdev); 2277 else { 2278 set_bit(WriteErrorSeen, &rdev->flags); 2279 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2280 set_bit(MD_RECOVERY_NEEDED, 2281 &rdev->mddev->recovery); 2282 set_bit(R10BIO_WriteError, &r10_bio->state); 2283 } 2284 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 2285 r10_bio->sectors)) { 2286 set_bit(R10BIO_MadeGood, &r10_bio->state); 2287 } 2288 2289 rdev_dec_pending(rdev, mddev); 2290 2291 end_sync_request(r10_bio); 2292 } 2293 2294 /* 2295 * Note: sync and recover and handled very differently for raid10 2296 * This code is for resync. 2297 * For resync, we read through virtual addresses and read all blocks. 2298 * If there is any error, we schedule a write. The lowest numbered 2299 * drive is authoritative. 2300 * However requests come for physical address, so we need to map. 2301 * For every physical address there are raid_disks/copies virtual addresses, 2302 * which is always are least one, but is not necessarly an integer. 2303 * This means that a physical address can span multiple chunks, so we may 2304 * have to submit multiple io requests for a single sync request. 2305 */ 2306 /* 2307 * We check if all blocks are in-sync and only write to blocks that 2308 * aren't in sync 2309 */ 2310 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2311 { 2312 struct r10conf *conf = mddev->private; 2313 int i, first; 2314 struct bio *tbio, *fbio; 2315 int vcnt; 2316 struct page **tpages, **fpages; 2317 2318 atomic_set(&r10_bio->remaining, 1); 2319 2320 /* find the first device with a block */ 2321 for (i=0; i<conf->copies; i++) 2322 if (!r10_bio->devs[i].bio->bi_status) 2323 break; 2324 2325 if (i == conf->copies) 2326 goto done; 2327 2328 first = i; 2329 fbio = r10_bio->devs[i].bio; 2330 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2331 fbio->bi_iter.bi_idx = 0; 2332 fpages = get_resync_pages(fbio)->pages; 2333 2334 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2335 /* now find blocks with errors */ 2336 for (i=0 ; i < conf->copies ; i++) { 2337 int j, d; 2338 struct md_rdev *rdev; 2339 struct resync_pages *rp; 2340 2341 tbio = r10_bio->devs[i].bio; 2342 2343 if (tbio->bi_end_io != end_sync_read) 2344 continue; 2345 if (i == first) 2346 continue; 2347 2348 tpages = get_resync_pages(tbio)->pages; 2349 d = r10_bio->devs[i].devnum; 2350 rdev = conf->mirrors[d].rdev; 2351 if (!r10_bio->devs[i].bio->bi_status) { 2352 /* We know that the bi_io_vec layout is the same for 2353 * both 'first' and 'i', so we just compare them. 2354 * All vec entries are PAGE_SIZE; 2355 */ 2356 int sectors = r10_bio->sectors; 2357 for (j = 0; j < vcnt; j++) { 2358 int len = PAGE_SIZE; 2359 if (sectors < (len / 512)) 2360 len = sectors * 512; 2361 if (memcmp(page_address(fpages[j]), 2362 page_address(tpages[j]), 2363 len)) 2364 break; 2365 sectors -= len/512; 2366 } 2367 if (j == vcnt) 2368 continue; 2369 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2370 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2371 /* Don't fix anything. */ 2372 continue; 2373 } else if (test_bit(FailFast, &rdev->flags)) { 2374 /* Just give up on this device */ 2375 md_error(rdev->mddev, rdev); 2376 continue; 2377 } 2378 /* Ok, we need to write this bio, either to correct an 2379 * inconsistency or to correct an unreadable block. 2380 * First we need to fixup bv_offset, bv_len and 2381 * bi_vecs, as the read request might have corrupted these 2382 */ 2383 rp = get_resync_pages(tbio); 2384 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2385 2386 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2387 2388 rp->raid_bio = r10_bio; 2389 tbio->bi_private = rp; 2390 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2391 tbio->bi_end_io = end_sync_write; 2392 2393 bio_copy_data(tbio, fbio); 2394 2395 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2396 atomic_inc(&r10_bio->remaining); 2397 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2398 2399 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2400 tbio->bi_opf |= MD_FAILFAST; 2401 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2402 submit_bio_noacct(tbio); 2403 } 2404 2405 /* Now write out to any replacement devices 2406 * that are active 2407 */ 2408 for (i = 0; i < conf->copies; i++) { 2409 int d; 2410 2411 tbio = r10_bio->devs[i].repl_bio; 2412 if (!tbio || !tbio->bi_end_io) 2413 continue; 2414 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2415 && r10_bio->devs[i].bio != fbio) 2416 bio_copy_data(tbio, fbio); 2417 d = r10_bio->devs[i].devnum; 2418 atomic_inc(&r10_bio->remaining); 2419 md_sync_acct(conf->mirrors[d].replacement->bdev, 2420 bio_sectors(tbio)); 2421 submit_bio_noacct(tbio); 2422 } 2423 2424 done: 2425 if (atomic_dec_and_test(&r10_bio->remaining)) { 2426 md_done_sync(mddev, r10_bio->sectors, 1); 2427 put_buf(r10_bio); 2428 } 2429 } 2430 2431 /* 2432 * Now for the recovery code. 2433 * Recovery happens across physical sectors. 2434 * We recover all non-is_sync drives by finding the virtual address of 2435 * each, and then choose a working drive that also has that virt address. 2436 * There is a separate r10_bio for each non-in_sync drive. 2437 * Only the first two slots are in use. The first for reading, 2438 * The second for writing. 2439 * 2440 */ 2441 static void fix_recovery_read_error(struct r10bio *r10_bio) 2442 { 2443 /* We got a read error during recovery. 2444 * We repeat the read in smaller page-sized sections. 2445 * If a read succeeds, write it to the new device or record 2446 * a bad block if we cannot. 2447 * If a read fails, record a bad block on both old and 2448 * new devices. 2449 */ 2450 struct mddev *mddev = r10_bio->mddev; 2451 struct r10conf *conf = mddev->private; 2452 struct bio *bio = r10_bio->devs[0].bio; 2453 sector_t sect = 0; 2454 int sectors = r10_bio->sectors; 2455 int idx = 0; 2456 int dr = r10_bio->devs[0].devnum; 2457 int dw = r10_bio->devs[1].devnum; 2458 struct page **pages = get_resync_pages(bio)->pages; 2459 2460 while (sectors) { 2461 int s = sectors; 2462 struct md_rdev *rdev; 2463 sector_t addr; 2464 int ok; 2465 2466 if (s > (PAGE_SIZE>>9)) 2467 s = PAGE_SIZE >> 9; 2468 2469 rdev = conf->mirrors[dr].rdev; 2470 addr = r10_bio->devs[0].addr + sect; 2471 ok = sync_page_io(rdev, 2472 addr, 2473 s << 9, 2474 pages[idx], 2475 REQ_OP_READ, false); 2476 if (ok) { 2477 rdev = conf->mirrors[dw].rdev; 2478 addr = r10_bio->devs[1].addr + sect; 2479 ok = sync_page_io(rdev, 2480 addr, 2481 s << 9, 2482 pages[idx], 2483 REQ_OP_WRITE, false); 2484 if (!ok) { 2485 set_bit(WriteErrorSeen, &rdev->flags); 2486 if (!test_and_set_bit(WantReplacement, 2487 &rdev->flags)) 2488 set_bit(MD_RECOVERY_NEEDED, 2489 &rdev->mddev->recovery); 2490 } 2491 } 2492 if (!ok) { 2493 /* We don't worry if we cannot set a bad block - 2494 * it really is bad so there is no loss in not 2495 * recording it yet 2496 */ 2497 rdev_set_badblocks(rdev, addr, s, 0); 2498 2499 if (rdev != conf->mirrors[dw].rdev) { 2500 /* need bad block on destination too */ 2501 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2502 addr = r10_bio->devs[1].addr + sect; 2503 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2504 if (!ok) { 2505 /* just abort the recovery */ 2506 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2507 mdname(mddev)); 2508 2509 conf->mirrors[dw].recovery_disabled 2510 = mddev->recovery_disabled; 2511 set_bit(MD_RECOVERY_INTR, 2512 &mddev->recovery); 2513 break; 2514 } 2515 } 2516 } 2517 2518 sectors -= s; 2519 sect += s; 2520 idx++; 2521 } 2522 } 2523 2524 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2525 { 2526 struct r10conf *conf = mddev->private; 2527 int d; 2528 struct bio *wbio = r10_bio->devs[1].bio; 2529 struct bio *wbio2 = r10_bio->devs[1].repl_bio; 2530 2531 /* Need to test wbio2->bi_end_io before we call 2532 * submit_bio_noacct as if the former is NULL, 2533 * the latter is free to free wbio2. 2534 */ 2535 if (wbio2 && !wbio2->bi_end_io) 2536 wbio2 = NULL; 2537 2538 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2539 fix_recovery_read_error(r10_bio); 2540 if (wbio->bi_end_io) 2541 end_sync_request(r10_bio); 2542 if (wbio2) 2543 end_sync_request(r10_bio); 2544 return; 2545 } 2546 2547 /* 2548 * share the pages with the first bio 2549 * and submit the write request 2550 */ 2551 d = r10_bio->devs[1].devnum; 2552 if (wbio->bi_end_io) { 2553 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2554 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2555 submit_bio_noacct(wbio); 2556 } 2557 if (wbio2) { 2558 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2559 md_sync_acct(conf->mirrors[d].replacement->bdev, 2560 bio_sectors(wbio2)); 2561 submit_bio_noacct(wbio2); 2562 } 2563 } 2564 2565 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2566 int sectors, struct page *page, enum req_op op) 2567 { 2568 if (rdev_has_badblock(rdev, sector, sectors) && 2569 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) 2570 return -1; 2571 if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) 2572 /* success */ 2573 return 1; 2574 if (op == REQ_OP_WRITE) { 2575 set_bit(WriteErrorSeen, &rdev->flags); 2576 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2577 set_bit(MD_RECOVERY_NEEDED, 2578 &rdev->mddev->recovery); 2579 } 2580 /* need to record an error - either for the block or the device */ 2581 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2582 md_error(rdev->mddev, rdev); 2583 return 0; 2584 } 2585 2586 /* 2587 * This is a kernel thread which: 2588 * 2589 * 1. Retries failed read operations on working mirrors. 2590 * 2. Updates the raid superblock when problems encounter. 2591 * 3. Performs writes following reads for array synchronising. 2592 */ 2593 2594 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2595 { 2596 int sect = 0; /* Offset from r10_bio->sector */ 2597 int sectors = r10_bio->sectors, slot = r10_bio->read_slot; 2598 struct md_rdev *rdev; 2599 int d = r10_bio->devs[slot].devnum; 2600 2601 /* still own a reference to this rdev, so it cannot 2602 * have been cleared recently. 2603 */ 2604 rdev = conf->mirrors[d].rdev; 2605 2606 if (test_bit(Faulty, &rdev->flags)) 2607 /* drive has already been failed, just ignore any 2608 more fix_read_error() attempts */ 2609 return; 2610 2611 if (exceed_read_errors(mddev, rdev)) { 2612 r10_bio->devs[slot].bio = IO_BLOCKED; 2613 return; 2614 } 2615 2616 while(sectors) { 2617 int s = sectors; 2618 int sl = slot; 2619 int success = 0; 2620 int start; 2621 2622 if (s > (PAGE_SIZE>>9)) 2623 s = PAGE_SIZE >> 9; 2624 2625 do { 2626 d = r10_bio->devs[sl].devnum; 2627 rdev = conf->mirrors[d].rdev; 2628 if (rdev && 2629 test_bit(In_sync, &rdev->flags) && 2630 !test_bit(Faulty, &rdev->flags) && 2631 rdev_has_badblock(rdev, 2632 r10_bio->devs[sl].addr + sect, 2633 s) == 0) { 2634 atomic_inc(&rdev->nr_pending); 2635 success = sync_page_io(rdev, 2636 r10_bio->devs[sl].addr + 2637 sect, 2638 s<<9, 2639 conf->tmppage, 2640 REQ_OP_READ, false); 2641 rdev_dec_pending(rdev, mddev); 2642 if (success) 2643 break; 2644 } 2645 sl++; 2646 if (sl == conf->copies) 2647 sl = 0; 2648 } while (sl != slot); 2649 2650 if (!success) { 2651 /* Cannot read from anywhere, just mark the block 2652 * as bad on the first device to discourage future 2653 * reads. 2654 */ 2655 int dn = r10_bio->devs[slot].devnum; 2656 rdev = conf->mirrors[dn].rdev; 2657 2658 if (!rdev_set_badblocks( 2659 rdev, 2660 r10_bio->devs[slot].addr 2661 + sect, 2662 s, 0)) { 2663 md_error(mddev, rdev); 2664 r10_bio->devs[slot].bio 2665 = IO_BLOCKED; 2666 } 2667 break; 2668 } 2669 2670 start = sl; 2671 /* write it back and re-read */ 2672 while (sl != slot) { 2673 if (sl==0) 2674 sl = conf->copies; 2675 sl--; 2676 d = r10_bio->devs[sl].devnum; 2677 rdev = conf->mirrors[d].rdev; 2678 if (!rdev || 2679 test_bit(Faulty, &rdev->flags) || 2680 !test_bit(In_sync, &rdev->flags)) 2681 continue; 2682 2683 atomic_inc(&rdev->nr_pending); 2684 if (r10_sync_page_io(rdev, 2685 r10_bio->devs[sl].addr + 2686 sect, 2687 s, conf->tmppage, REQ_OP_WRITE) 2688 == 0) { 2689 /* Well, this device is dead */ 2690 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", 2691 mdname(mddev), s, 2692 (unsigned long long)( 2693 sect + 2694 choose_data_offset(r10_bio, 2695 rdev)), 2696 rdev->bdev); 2697 pr_notice("md/raid10:%s: %pg: failing drive\n", 2698 mdname(mddev), 2699 rdev->bdev); 2700 } 2701 rdev_dec_pending(rdev, mddev); 2702 } 2703 sl = start; 2704 while (sl != slot) { 2705 if (sl==0) 2706 sl = conf->copies; 2707 sl--; 2708 d = r10_bio->devs[sl].devnum; 2709 rdev = conf->mirrors[d].rdev; 2710 if (!rdev || 2711 test_bit(Faulty, &rdev->flags) || 2712 !test_bit(In_sync, &rdev->flags)) 2713 continue; 2714 2715 atomic_inc(&rdev->nr_pending); 2716 switch (r10_sync_page_io(rdev, 2717 r10_bio->devs[sl].addr + 2718 sect, 2719 s, conf->tmppage, REQ_OP_READ)) { 2720 case 0: 2721 /* Well, this device is dead */ 2722 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", 2723 mdname(mddev), s, 2724 (unsigned long long)( 2725 sect + 2726 choose_data_offset(r10_bio, rdev)), 2727 rdev->bdev); 2728 pr_notice("md/raid10:%s: %pg: failing drive\n", 2729 mdname(mddev), 2730 rdev->bdev); 2731 break; 2732 case 1: 2733 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", 2734 mdname(mddev), s, 2735 (unsigned long long)( 2736 sect + 2737 choose_data_offset(r10_bio, rdev)), 2738 rdev->bdev); 2739 atomic_add(s, &rdev->corrected_errors); 2740 } 2741 2742 rdev_dec_pending(rdev, mddev); 2743 } 2744 2745 sectors -= s; 2746 sect += s; 2747 } 2748 } 2749 2750 static int narrow_write_error(struct r10bio *r10_bio, int i) 2751 { 2752 struct bio *bio = r10_bio->master_bio; 2753 struct mddev *mddev = r10_bio->mddev; 2754 struct r10conf *conf = mddev->private; 2755 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2756 /* bio has the data to be written to slot 'i' where 2757 * we just recently had a write error. 2758 * We repeatedly clone the bio and trim down to one block, 2759 * then try the write. Where the write fails we record 2760 * a bad block. 2761 * It is conceivable that the bio doesn't exactly align with 2762 * blocks. We must handle this. 2763 * 2764 * We currently own a reference to the rdev. 2765 */ 2766 2767 int block_sectors; 2768 sector_t sector; 2769 int sectors; 2770 int sect_to_write = r10_bio->sectors; 2771 int ok = 1; 2772 2773 if (rdev->badblocks.shift < 0) 2774 return 0; 2775 2776 block_sectors = roundup(1 << rdev->badblocks.shift, 2777 bdev_logical_block_size(rdev->bdev) >> 9); 2778 sector = r10_bio->sector; 2779 sectors = ((r10_bio->sector + block_sectors) 2780 & ~(sector_t)(block_sectors - 1)) 2781 - sector; 2782 2783 while (sect_to_write) { 2784 struct bio *wbio; 2785 sector_t wsector; 2786 if (sectors > sect_to_write) 2787 sectors = sect_to_write; 2788 /* Write at 'sector' for 'sectors' */ 2789 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2790 &mddev->bio_set); 2791 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2792 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2793 wbio->bi_iter.bi_sector = wsector + 2794 choose_data_offset(r10_bio, rdev); 2795 wbio->bi_opf = REQ_OP_WRITE; 2796 2797 if (submit_bio_wait(wbio) < 0) 2798 /* Failure! */ 2799 ok = rdev_set_badblocks(rdev, wsector, 2800 sectors, 0) 2801 && ok; 2802 2803 bio_put(wbio); 2804 sect_to_write -= sectors; 2805 sector += sectors; 2806 sectors = block_sectors; 2807 } 2808 return ok; 2809 } 2810 2811 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2812 { 2813 int slot = r10_bio->read_slot; 2814 struct bio *bio; 2815 struct r10conf *conf = mddev->private; 2816 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2817 2818 /* we got a read error. Maybe the drive is bad. Maybe just 2819 * the block and we can fix it. 2820 * We freeze all other IO, and try reading the block from 2821 * other devices. When we find one, we re-write 2822 * and check it that fixes the read error. 2823 * This is all done synchronously while the array is 2824 * frozen. 2825 */ 2826 bio = r10_bio->devs[slot].bio; 2827 bio_put(bio); 2828 r10_bio->devs[slot].bio = NULL; 2829 2830 if (mddev->ro) 2831 r10_bio->devs[slot].bio = IO_BLOCKED; 2832 else if (!test_bit(FailFast, &rdev->flags)) { 2833 freeze_array(conf, 1); 2834 fix_read_error(conf, mddev, r10_bio); 2835 unfreeze_array(conf); 2836 } else 2837 md_error(mddev, rdev); 2838 2839 rdev_dec_pending(rdev, mddev); 2840 r10_bio->state = 0; 2841 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false); 2842 /* 2843 * allow_barrier after re-submit to ensure no sync io 2844 * can be issued while regular io pending. 2845 */ 2846 allow_barrier(conf); 2847 } 2848 2849 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2850 { 2851 /* Some sort of write request has finished and it 2852 * succeeded in writing where we thought there was a 2853 * bad block. So forget the bad block. 2854 * Or possibly if failed and we need to record 2855 * a bad block. 2856 */ 2857 int m; 2858 struct md_rdev *rdev; 2859 2860 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2861 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2862 for (m = 0; m < conf->copies; m++) { 2863 int dev = r10_bio->devs[m].devnum; 2864 rdev = conf->mirrors[dev].rdev; 2865 if (r10_bio->devs[m].bio == NULL || 2866 r10_bio->devs[m].bio->bi_end_io == NULL) 2867 continue; 2868 if (!r10_bio->devs[m].bio->bi_status) { 2869 rdev_clear_badblocks( 2870 rdev, 2871 r10_bio->devs[m].addr, 2872 r10_bio->sectors, 0); 2873 } else { 2874 if (!rdev_set_badblocks( 2875 rdev, 2876 r10_bio->devs[m].addr, 2877 r10_bio->sectors, 0)) 2878 md_error(conf->mddev, rdev); 2879 } 2880 rdev = conf->mirrors[dev].replacement; 2881 if (r10_bio->devs[m].repl_bio == NULL || 2882 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2883 continue; 2884 2885 if (!r10_bio->devs[m].repl_bio->bi_status) { 2886 rdev_clear_badblocks( 2887 rdev, 2888 r10_bio->devs[m].addr, 2889 r10_bio->sectors, 0); 2890 } else { 2891 if (!rdev_set_badblocks( 2892 rdev, 2893 r10_bio->devs[m].addr, 2894 r10_bio->sectors, 0)) 2895 md_error(conf->mddev, rdev); 2896 } 2897 } 2898 put_buf(r10_bio); 2899 } else { 2900 bool fail = false; 2901 for (m = 0; m < conf->copies; m++) { 2902 int dev = r10_bio->devs[m].devnum; 2903 struct bio *bio = r10_bio->devs[m].bio; 2904 rdev = conf->mirrors[dev].rdev; 2905 if (bio == IO_MADE_GOOD) { 2906 rdev_clear_badblocks( 2907 rdev, 2908 r10_bio->devs[m].addr, 2909 r10_bio->sectors, 0); 2910 rdev_dec_pending(rdev, conf->mddev); 2911 } else if (bio != NULL && bio->bi_status) { 2912 fail = true; 2913 if (!narrow_write_error(r10_bio, m)) { 2914 md_error(conf->mddev, rdev); 2915 set_bit(R10BIO_Degraded, 2916 &r10_bio->state); 2917 } 2918 rdev_dec_pending(rdev, conf->mddev); 2919 } 2920 bio = r10_bio->devs[m].repl_bio; 2921 rdev = conf->mirrors[dev].replacement; 2922 if (rdev && bio == IO_MADE_GOOD) { 2923 rdev_clear_badblocks( 2924 rdev, 2925 r10_bio->devs[m].addr, 2926 r10_bio->sectors, 0); 2927 rdev_dec_pending(rdev, conf->mddev); 2928 } 2929 } 2930 if (fail) { 2931 spin_lock_irq(&conf->device_lock); 2932 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2933 conf->nr_queued++; 2934 spin_unlock_irq(&conf->device_lock); 2935 /* 2936 * In case freeze_array() is waiting for condition 2937 * nr_pending == nr_queued + extra to be true. 2938 */ 2939 wake_up(&conf->wait_barrier); 2940 md_wakeup_thread(conf->mddev->thread); 2941 } else { 2942 if (test_bit(R10BIO_WriteError, 2943 &r10_bio->state)) 2944 close_write(r10_bio); 2945 raid_end_bio_io(r10_bio); 2946 } 2947 } 2948 } 2949 2950 static void raid10d(struct md_thread *thread) 2951 { 2952 struct mddev *mddev = thread->mddev; 2953 struct r10bio *r10_bio; 2954 unsigned long flags; 2955 struct r10conf *conf = mddev->private; 2956 struct list_head *head = &conf->retry_list; 2957 struct blk_plug plug; 2958 2959 md_check_recovery(mddev); 2960 2961 if (!list_empty_careful(&conf->bio_end_io_list) && 2962 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2963 LIST_HEAD(tmp); 2964 spin_lock_irqsave(&conf->device_lock, flags); 2965 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2966 while (!list_empty(&conf->bio_end_io_list)) { 2967 list_move(conf->bio_end_io_list.prev, &tmp); 2968 conf->nr_queued--; 2969 } 2970 } 2971 spin_unlock_irqrestore(&conf->device_lock, flags); 2972 while (!list_empty(&tmp)) { 2973 r10_bio = list_first_entry(&tmp, struct r10bio, 2974 retry_list); 2975 list_del(&r10_bio->retry_list); 2976 if (mddev->degraded) 2977 set_bit(R10BIO_Degraded, &r10_bio->state); 2978 2979 if (test_bit(R10BIO_WriteError, 2980 &r10_bio->state)) 2981 close_write(r10_bio); 2982 raid_end_bio_io(r10_bio); 2983 } 2984 } 2985 2986 blk_start_plug(&plug); 2987 for (;;) { 2988 2989 flush_pending_writes(conf); 2990 2991 spin_lock_irqsave(&conf->device_lock, flags); 2992 if (list_empty(head)) { 2993 spin_unlock_irqrestore(&conf->device_lock, flags); 2994 break; 2995 } 2996 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2997 list_del(head->prev); 2998 conf->nr_queued--; 2999 spin_unlock_irqrestore(&conf->device_lock, flags); 3000 3001 mddev = r10_bio->mddev; 3002 conf = mddev->private; 3003 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3004 test_bit(R10BIO_WriteError, &r10_bio->state)) 3005 handle_write_completed(conf, r10_bio); 3006 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3007 reshape_request_write(mddev, r10_bio); 3008 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3009 sync_request_write(mddev, r10_bio); 3010 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3011 recovery_request_write(mddev, r10_bio); 3012 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3013 handle_read_error(mddev, r10_bio); 3014 else 3015 WARN_ON_ONCE(1); 3016 3017 cond_resched(); 3018 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3019 md_check_recovery(mddev); 3020 } 3021 blk_finish_plug(&plug); 3022 } 3023 3024 static int init_resync(struct r10conf *conf) 3025 { 3026 int ret, buffs, i; 3027 3028 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3029 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3030 conf->have_replacement = 0; 3031 for (i = 0; i < conf->geo.raid_disks; i++) 3032 if (conf->mirrors[i].replacement) 3033 conf->have_replacement = 1; 3034 ret = mempool_init(&conf->r10buf_pool, buffs, 3035 r10buf_pool_alloc, r10buf_pool_free, conf); 3036 if (ret) 3037 return ret; 3038 conf->next_resync = 0; 3039 return 0; 3040 } 3041 3042 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3043 { 3044 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3045 struct rsync_pages *rp; 3046 struct bio *bio; 3047 int nalloc; 3048 int i; 3049 3050 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3051 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3052 nalloc = conf->copies; /* resync */ 3053 else 3054 nalloc = 2; /* recovery */ 3055 3056 for (i = 0; i < nalloc; i++) { 3057 bio = r10bio->devs[i].bio; 3058 rp = bio->bi_private; 3059 bio_reset(bio, NULL, 0); 3060 bio->bi_private = rp; 3061 bio = r10bio->devs[i].repl_bio; 3062 if (bio) { 3063 rp = bio->bi_private; 3064 bio_reset(bio, NULL, 0); 3065 bio->bi_private = rp; 3066 } 3067 } 3068 return r10bio; 3069 } 3070 3071 /* 3072 * Set cluster_sync_high since we need other nodes to add the 3073 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3074 */ 3075 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3076 { 3077 sector_t window_size; 3078 int extra_chunk, chunks; 3079 3080 /* 3081 * First, here we define "stripe" as a unit which across 3082 * all member devices one time, so we get chunks by use 3083 * raid_disks / near_copies. Otherwise, if near_copies is 3084 * close to raid_disks, then resync window could increases 3085 * linearly with the increase of raid_disks, which means 3086 * we will suspend a really large IO window while it is not 3087 * necessary. If raid_disks is not divisible by near_copies, 3088 * an extra chunk is needed to ensure the whole "stripe" is 3089 * covered. 3090 */ 3091 3092 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3093 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3094 extra_chunk = 0; 3095 else 3096 extra_chunk = 1; 3097 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3098 3099 /* 3100 * At least use a 32M window to align with raid1's resync window 3101 */ 3102 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3103 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3104 3105 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3106 } 3107 3108 /* 3109 * perform a "sync" on one "block" 3110 * 3111 * We need to make sure that no normal I/O request - particularly write 3112 * requests - conflict with active sync requests. 3113 * 3114 * This is achieved by tracking pending requests and a 'barrier' concept 3115 * that can be installed to exclude normal IO requests. 3116 * 3117 * Resync and recovery are handled very differently. 3118 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3119 * 3120 * For resync, we iterate over virtual addresses, read all copies, 3121 * and update if there are differences. If only one copy is live, 3122 * skip it. 3123 * For recovery, we iterate over physical addresses, read a good 3124 * value for each non-in_sync drive, and over-write. 3125 * 3126 * So, for recovery we may have several outstanding complex requests for a 3127 * given address, one for each out-of-sync device. We model this by allocating 3128 * a number of r10_bio structures, one for each out-of-sync device. 3129 * As we setup these structures, we collect all bio's together into a list 3130 * which we then process collectively to add pages, and then process again 3131 * to pass to submit_bio_noacct. 3132 * 3133 * The r10_bio structures are linked using a borrowed master_bio pointer. 3134 * This link is counted in ->remaining. When the r10_bio that points to NULL 3135 * has its remaining count decremented to 0, the whole complex operation 3136 * is complete. 3137 * 3138 */ 3139 3140 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3141 sector_t max_sector, int *skipped) 3142 { 3143 struct r10conf *conf = mddev->private; 3144 struct r10bio *r10_bio; 3145 struct bio *biolist = NULL, *bio; 3146 sector_t nr_sectors; 3147 int i; 3148 int max_sync; 3149 sector_t sync_blocks; 3150 sector_t sectors_skipped = 0; 3151 int chunks_skipped = 0; 3152 sector_t chunk_mask = conf->geo.chunk_mask; 3153 int page_idx = 0; 3154 int error_disk = -1; 3155 3156 /* 3157 * Allow skipping a full rebuild for incremental assembly 3158 * of a clean array, like RAID1 does. 3159 */ 3160 if (mddev->bitmap == NULL && 3161 mddev->recovery_cp == MaxSector && 3162 mddev->reshape_position == MaxSector && 3163 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3164 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3165 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3166 conf->fullsync == 0) { 3167 *skipped = 1; 3168 return mddev->dev_sectors - sector_nr; 3169 } 3170 3171 if (!mempool_initialized(&conf->r10buf_pool)) 3172 if (init_resync(conf)) 3173 return 0; 3174 3175 skipped: 3176 if (sector_nr >= max_sector) { 3177 conf->cluster_sync_low = 0; 3178 conf->cluster_sync_high = 0; 3179 3180 /* If we aborted, we need to abort the 3181 * sync on the 'current' bitmap chucks (there can 3182 * be several when recovering multiple devices). 3183 * as we may have started syncing it but not finished. 3184 * We can find the current address in 3185 * mddev->curr_resync, but for recovery, 3186 * we need to convert that to several 3187 * virtual addresses. 3188 */ 3189 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3190 end_reshape(conf); 3191 close_sync(conf); 3192 return 0; 3193 } 3194 3195 if (mddev->curr_resync < max_sector) { /* aborted */ 3196 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3197 mddev->bitmap_ops->end_sync(mddev, 3198 mddev->curr_resync, 3199 &sync_blocks); 3200 else for (i = 0; i < conf->geo.raid_disks; i++) { 3201 sector_t sect = 3202 raid10_find_virt(conf, mddev->curr_resync, i); 3203 3204 mddev->bitmap_ops->end_sync(mddev, sect, 3205 &sync_blocks); 3206 } 3207 } else { 3208 /* completed sync */ 3209 if ((!mddev->bitmap || conf->fullsync) 3210 && conf->have_replacement 3211 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3212 /* Completed a full sync so the replacements 3213 * are now fully recovered. 3214 */ 3215 for (i = 0; i < conf->geo.raid_disks; i++) { 3216 struct md_rdev *rdev = 3217 conf->mirrors[i].replacement; 3218 3219 if (rdev) 3220 rdev->recovery_offset = MaxSector; 3221 } 3222 } 3223 conf->fullsync = 0; 3224 } 3225 mddev->bitmap_ops->close_sync(mddev); 3226 close_sync(conf); 3227 *skipped = 1; 3228 return sectors_skipped; 3229 } 3230 3231 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3232 return reshape_request(mddev, sector_nr, skipped); 3233 3234 if (chunks_skipped >= conf->geo.raid_disks) { 3235 pr_err("md/raid10:%s: %s fails\n", mdname(mddev), 3236 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"); 3237 if (error_disk >= 0 && 3238 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3239 /* 3240 * recovery fails, set mirrors.recovery_disabled, 3241 * device shouldn't be added to there. 3242 */ 3243 conf->mirrors[error_disk].recovery_disabled = 3244 mddev->recovery_disabled; 3245 return 0; 3246 } 3247 /* 3248 * if there has been nothing to do on any drive, 3249 * then there is nothing to do at all. 3250 */ 3251 *skipped = 1; 3252 return (max_sector - sector_nr) + sectors_skipped; 3253 } 3254 3255 if (max_sector > mddev->resync_max) 3256 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3257 3258 /* make sure whole request will fit in a chunk - if chunks 3259 * are meaningful 3260 */ 3261 if (conf->geo.near_copies < conf->geo.raid_disks && 3262 max_sector > (sector_nr | chunk_mask)) 3263 max_sector = (sector_nr | chunk_mask) + 1; 3264 3265 /* 3266 * If there is non-resync activity waiting for a turn, then let it 3267 * though before starting on this new sync request. 3268 */ 3269 if (conf->nr_waiting) 3270 schedule_timeout_uninterruptible(1); 3271 3272 /* Again, very different code for resync and recovery. 3273 * Both must result in an r10bio with a list of bios that 3274 * have bi_end_io, bi_sector, bi_bdev set, 3275 * and bi_private set to the r10bio. 3276 * For recovery, we may actually create several r10bios 3277 * with 2 bios in each, that correspond to the bios in the main one. 3278 * In this case, the subordinate r10bios link back through a 3279 * borrowed master_bio pointer, and the counter in the master 3280 * includes a ref from each subordinate. 3281 */ 3282 /* First, we decide what to do and set ->bi_end_io 3283 * To end_sync_read if we want to read, and 3284 * end_sync_write if we will want to write. 3285 */ 3286 3287 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3288 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3289 /* recovery... the complicated one */ 3290 int j; 3291 r10_bio = NULL; 3292 3293 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3294 bool still_degraded; 3295 struct r10bio *rb2; 3296 sector_t sect; 3297 bool must_sync; 3298 int any_working; 3299 struct raid10_info *mirror = &conf->mirrors[i]; 3300 struct md_rdev *mrdev, *mreplace; 3301 3302 mrdev = mirror->rdev; 3303 mreplace = mirror->replacement; 3304 3305 if (mrdev && (test_bit(Faulty, &mrdev->flags) || 3306 test_bit(In_sync, &mrdev->flags))) 3307 mrdev = NULL; 3308 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3309 mreplace = NULL; 3310 3311 if (!mrdev && !mreplace) 3312 continue; 3313 3314 still_degraded = false; 3315 /* want to reconstruct this device */ 3316 rb2 = r10_bio; 3317 sect = raid10_find_virt(conf, sector_nr, i); 3318 if (sect >= mddev->resync_max_sectors) 3319 /* last stripe is not complete - don't 3320 * try to recover this sector. 3321 */ 3322 continue; 3323 /* Unless we are doing a full sync, or a replacement 3324 * we only need to recover the block if it is set in 3325 * the bitmap 3326 */ 3327 must_sync = mddev->bitmap_ops->start_sync(mddev, sect, 3328 &sync_blocks, 3329 true); 3330 if (sync_blocks < max_sync) 3331 max_sync = sync_blocks; 3332 if (!must_sync && 3333 mreplace == NULL && 3334 !conf->fullsync) { 3335 /* yep, skip the sync_blocks here, but don't assume 3336 * that there will never be anything to do here 3337 */ 3338 chunks_skipped = -1; 3339 continue; 3340 } 3341 if (mrdev) 3342 atomic_inc(&mrdev->nr_pending); 3343 if (mreplace) 3344 atomic_inc(&mreplace->nr_pending); 3345 3346 r10_bio = raid10_alloc_init_r10buf(conf); 3347 r10_bio->state = 0; 3348 raise_barrier(conf, rb2 != NULL); 3349 atomic_set(&r10_bio->remaining, 0); 3350 3351 r10_bio->master_bio = (struct bio*)rb2; 3352 if (rb2) 3353 atomic_inc(&rb2->remaining); 3354 r10_bio->mddev = mddev; 3355 set_bit(R10BIO_IsRecover, &r10_bio->state); 3356 r10_bio->sector = sect; 3357 3358 raid10_find_phys(conf, r10_bio); 3359 3360 /* Need to check if the array will still be 3361 * degraded 3362 */ 3363 for (j = 0; j < conf->geo.raid_disks; j++) { 3364 struct md_rdev *rdev = conf->mirrors[j].rdev; 3365 3366 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3367 still_degraded = false; 3368 break; 3369 } 3370 } 3371 3372 must_sync = mddev->bitmap_ops->start_sync(mddev, sect, 3373 &sync_blocks, still_degraded); 3374 3375 any_working = 0; 3376 for (j=0; j<conf->copies;j++) { 3377 int k; 3378 int d = r10_bio->devs[j].devnum; 3379 sector_t from_addr, to_addr; 3380 struct md_rdev *rdev = conf->mirrors[d].rdev; 3381 sector_t sector, first_bad; 3382 int bad_sectors; 3383 if (!rdev || 3384 !test_bit(In_sync, &rdev->flags)) 3385 continue; 3386 /* This is where we read from */ 3387 any_working = 1; 3388 sector = r10_bio->devs[j].addr; 3389 3390 if (is_badblock(rdev, sector, max_sync, 3391 &first_bad, &bad_sectors)) { 3392 if (first_bad > sector) 3393 max_sync = first_bad - sector; 3394 else { 3395 bad_sectors -= (sector 3396 - first_bad); 3397 if (max_sync > bad_sectors) 3398 max_sync = bad_sectors; 3399 continue; 3400 } 3401 } 3402 bio = r10_bio->devs[0].bio; 3403 bio->bi_next = biolist; 3404 biolist = bio; 3405 bio->bi_end_io = end_sync_read; 3406 bio->bi_opf = REQ_OP_READ; 3407 if (test_bit(FailFast, &rdev->flags)) 3408 bio->bi_opf |= MD_FAILFAST; 3409 from_addr = r10_bio->devs[j].addr; 3410 bio->bi_iter.bi_sector = from_addr + 3411 rdev->data_offset; 3412 bio_set_dev(bio, rdev->bdev); 3413 atomic_inc(&rdev->nr_pending); 3414 /* and we write to 'i' (if not in_sync) */ 3415 3416 for (k=0; k<conf->copies; k++) 3417 if (r10_bio->devs[k].devnum == i) 3418 break; 3419 BUG_ON(k == conf->copies); 3420 to_addr = r10_bio->devs[k].addr; 3421 r10_bio->devs[0].devnum = d; 3422 r10_bio->devs[0].addr = from_addr; 3423 r10_bio->devs[1].devnum = i; 3424 r10_bio->devs[1].addr = to_addr; 3425 3426 if (mrdev) { 3427 bio = r10_bio->devs[1].bio; 3428 bio->bi_next = biolist; 3429 biolist = bio; 3430 bio->bi_end_io = end_sync_write; 3431 bio->bi_opf = REQ_OP_WRITE; 3432 bio->bi_iter.bi_sector = to_addr 3433 + mrdev->data_offset; 3434 bio_set_dev(bio, mrdev->bdev); 3435 atomic_inc(&r10_bio->remaining); 3436 } else 3437 r10_bio->devs[1].bio->bi_end_io = NULL; 3438 3439 /* and maybe write to replacement */ 3440 bio = r10_bio->devs[1].repl_bio; 3441 if (bio) 3442 bio->bi_end_io = NULL; 3443 /* Note: if replace is not NULL, then bio 3444 * cannot be NULL as r10buf_pool_alloc will 3445 * have allocated it. 3446 */ 3447 if (!mreplace) 3448 break; 3449 bio->bi_next = biolist; 3450 biolist = bio; 3451 bio->bi_end_io = end_sync_write; 3452 bio->bi_opf = REQ_OP_WRITE; 3453 bio->bi_iter.bi_sector = to_addr + 3454 mreplace->data_offset; 3455 bio_set_dev(bio, mreplace->bdev); 3456 atomic_inc(&r10_bio->remaining); 3457 break; 3458 } 3459 if (j == conf->copies) { 3460 /* Cannot recover, so abort the recovery or 3461 * record a bad block */ 3462 if (any_working) { 3463 /* problem is that there are bad blocks 3464 * on other device(s) 3465 */ 3466 int k; 3467 for (k = 0; k < conf->copies; k++) 3468 if (r10_bio->devs[k].devnum == i) 3469 break; 3470 if (mrdev && !test_bit(In_sync, 3471 &mrdev->flags) 3472 && !rdev_set_badblocks( 3473 mrdev, 3474 r10_bio->devs[k].addr, 3475 max_sync, 0)) 3476 any_working = 0; 3477 if (mreplace && 3478 !rdev_set_badblocks( 3479 mreplace, 3480 r10_bio->devs[k].addr, 3481 max_sync, 0)) 3482 any_working = 0; 3483 } 3484 if (!any_working) { 3485 if (!test_and_set_bit(MD_RECOVERY_INTR, 3486 &mddev->recovery)) 3487 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3488 mdname(mddev)); 3489 mirror->recovery_disabled 3490 = mddev->recovery_disabled; 3491 } else { 3492 error_disk = i; 3493 } 3494 put_buf(r10_bio); 3495 if (rb2) 3496 atomic_dec(&rb2->remaining); 3497 r10_bio = rb2; 3498 if (mrdev) 3499 rdev_dec_pending(mrdev, mddev); 3500 if (mreplace) 3501 rdev_dec_pending(mreplace, mddev); 3502 break; 3503 } 3504 if (mrdev) 3505 rdev_dec_pending(mrdev, mddev); 3506 if (mreplace) 3507 rdev_dec_pending(mreplace, mddev); 3508 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3509 /* Only want this if there is elsewhere to 3510 * read from. 'j' is currently the first 3511 * readable copy. 3512 */ 3513 int targets = 1; 3514 for (; j < conf->copies; j++) { 3515 int d = r10_bio->devs[j].devnum; 3516 if (conf->mirrors[d].rdev && 3517 test_bit(In_sync, 3518 &conf->mirrors[d].rdev->flags)) 3519 targets++; 3520 } 3521 if (targets == 1) 3522 r10_bio->devs[0].bio->bi_opf 3523 &= ~MD_FAILFAST; 3524 } 3525 } 3526 if (biolist == NULL) { 3527 while (r10_bio) { 3528 struct r10bio *rb2 = r10_bio; 3529 r10_bio = (struct r10bio*) rb2->master_bio; 3530 rb2->master_bio = NULL; 3531 put_buf(rb2); 3532 } 3533 goto giveup; 3534 } 3535 } else { 3536 /* resync. Schedule a read for every block at this virt offset */ 3537 int count = 0; 3538 3539 /* 3540 * Since curr_resync_completed could probably not update in 3541 * time, and we will set cluster_sync_low based on it. 3542 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3543 * safety reason, which ensures curr_resync_completed is 3544 * updated in bitmap_cond_end_sync. 3545 */ 3546 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, 3547 mddev_is_clustered(mddev) && 3548 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3549 3550 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, 3551 &sync_blocks, 3552 mddev->degraded) && 3553 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3554 &mddev->recovery)) { 3555 /* We can skip this block */ 3556 *skipped = 1; 3557 return sync_blocks + sectors_skipped; 3558 } 3559 if (sync_blocks < max_sync) 3560 max_sync = sync_blocks; 3561 r10_bio = raid10_alloc_init_r10buf(conf); 3562 r10_bio->state = 0; 3563 3564 r10_bio->mddev = mddev; 3565 atomic_set(&r10_bio->remaining, 0); 3566 raise_barrier(conf, 0); 3567 conf->next_resync = sector_nr; 3568 3569 r10_bio->master_bio = NULL; 3570 r10_bio->sector = sector_nr; 3571 set_bit(R10BIO_IsSync, &r10_bio->state); 3572 raid10_find_phys(conf, r10_bio); 3573 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3574 3575 for (i = 0; i < conf->copies; i++) { 3576 int d = r10_bio->devs[i].devnum; 3577 sector_t first_bad, sector; 3578 int bad_sectors; 3579 struct md_rdev *rdev; 3580 3581 if (r10_bio->devs[i].repl_bio) 3582 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3583 3584 bio = r10_bio->devs[i].bio; 3585 bio->bi_status = BLK_STS_IOERR; 3586 rdev = conf->mirrors[d].rdev; 3587 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3588 continue; 3589 3590 sector = r10_bio->devs[i].addr; 3591 if (is_badblock(rdev, sector, max_sync, 3592 &first_bad, &bad_sectors)) { 3593 if (first_bad > sector) 3594 max_sync = first_bad - sector; 3595 else { 3596 bad_sectors -= (sector - first_bad); 3597 if (max_sync > bad_sectors) 3598 max_sync = bad_sectors; 3599 continue; 3600 } 3601 } 3602 atomic_inc(&rdev->nr_pending); 3603 atomic_inc(&r10_bio->remaining); 3604 bio->bi_next = biolist; 3605 biolist = bio; 3606 bio->bi_end_io = end_sync_read; 3607 bio->bi_opf = REQ_OP_READ; 3608 if (test_bit(FailFast, &rdev->flags)) 3609 bio->bi_opf |= MD_FAILFAST; 3610 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3611 bio_set_dev(bio, rdev->bdev); 3612 count++; 3613 3614 rdev = conf->mirrors[d].replacement; 3615 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3616 continue; 3617 3618 atomic_inc(&rdev->nr_pending); 3619 3620 /* Need to set up for writing to the replacement */ 3621 bio = r10_bio->devs[i].repl_bio; 3622 bio->bi_status = BLK_STS_IOERR; 3623 3624 sector = r10_bio->devs[i].addr; 3625 bio->bi_next = biolist; 3626 biolist = bio; 3627 bio->bi_end_io = end_sync_write; 3628 bio->bi_opf = REQ_OP_WRITE; 3629 if (test_bit(FailFast, &rdev->flags)) 3630 bio->bi_opf |= MD_FAILFAST; 3631 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3632 bio_set_dev(bio, rdev->bdev); 3633 count++; 3634 } 3635 3636 if (count < 2) { 3637 for (i=0; i<conf->copies; i++) { 3638 int d = r10_bio->devs[i].devnum; 3639 if (r10_bio->devs[i].bio->bi_end_io) 3640 rdev_dec_pending(conf->mirrors[d].rdev, 3641 mddev); 3642 if (r10_bio->devs[i].repl_bio && 3643 r10_bio->devs[i].repl_bio->bi_end_io) 3644 rdev_dec_pending( 3645 conf->mirrors[d].replacement, 3646 mddev); 3647 } 3648 put_buf(r10_bio); 3649 biolist = NULL; 3650 goto giveup; 3651 } 3652 } 3653 3654 nr_sectors = 0; 3655 if (sector_nr + max_sync < max_sector) 3656 max_sector = sector_nr + max_sync; 3657 do { 3658 struct page *page; 3659 int len = PAGE_SIZE; 3660 if (sector_nr + (len>>9) > max_sector) 3661 len = (max_sector - sector_nr) << 9; 3662 if (len == 0) 3663 break; 3664 for (bio= biolist ; bio ; bio=bio->bi_next) { 3665 struct resync_pages *rp = get_resync_pages(bio); 3666 page = resync_fetch_page(rp, page_idx); 3667 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 3668 bio->bi_status = BLK_STS_RESOURCE; 3669 bio_endio(bio); 3670 goto giveup; 3671 } 3672 } 3673 nr_sectors += len>>9; 3674 sector_nr += len>>9; 3675 } while (++page_idx < RESYNC_PAGES); 3676 r10_bio->sectors = nr_sectors; 3677 3678 if (mddev_is_clustered(mddev) && 3679 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3680 /* It is resync not recovery */ 3681 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3682 conf->cluster_sync_low = mddev->curr_resync_completed; 3683 raid10_set_cluster_sync_high(conf); 3684 /* Send resync message */ 3685 md_cluster_ops->resync_info_update(mddev, 3686 conf->cluster_sync_low, 3687 conf->cluster_sync_high); 3688 } 3689 } else if (mddev_is_clustered(mddev)) { 3690 /* This is recovery not resync */ 3691 sector_t sect_va1, sect_va2; 3692 bool broadcast_msg = false; 3693 3694 for (i = 0; i < conf->geo.raid_disks; i++) { 3695 /* 3696 * sector_nr is a device address for recovery, so we 3697 * need translate it to array address before compare 3698 * with cluster_sync_high. 3699 */ 3700 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3701 3702 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3703 broadcast_msg = true; 3704 /* 3705 * curr_resync_completed is similar as 3706 * sector_nr, so make the translation too. 3707 */ 3708 sect_va2 = raid10_find_virt(conf, 3709 mddev->curr_resync_completed, i); 3710 3711 if (conf->cluster_sync_low == 0 || 3712 conf->cluster_sync_low > sect_va2) 3713 conf->cluster_sync_low = sect_va2; 3714 } 3715 } 3716 if (broadcast_msg) { 3717 raid10_set_cluster_sync_high(conf); 3718 md_cluster_ops->resync_info_update(mddev, 3719 conf->cluster_sync_low, 3720 conf->cluster_sync_high); 3721 } 3722 } 3723 3724 while (biolist) { 3725 bio = biolist; 3726 biolist = biolist->bi_next; 3727 3728 bio->bi_next = NULL; 3729 r10_bio = get_resync_r10bio(bio); 3730 r10_bio->sectors = nr_sectors; 3731 3732 if (bio->bi_end_io == end_sync_read) { 3733 md_sync_acct_bio(bio, nr_sectors); 3734 bio->bi_status = 0; 3735 submit_bio_noacct(bio); 3736 } 3737 } 3738 3739 if (sectors_skipped) 3740 /* pretend they weren't skipped, it makes 3741 * no important difference in this case 3742 */ 3743 md_done_sync(mddev, sectors_skipped, 1); 3744 3745 return sectors_skipped + nr_sectors; 3746 giveup: 3747 /* There is nowhere to write, so all non-sync 3748 * drives must be failed or in resync, all drives 3749 * have a bad block, so try the next chunk... 3750 */ 3751 if (sector_nr + max_sync < max_sector) 3752 max_sector = sector_nr + max_sync; 3753 3754 sectors_skipped += (max_sector - sector_nr); 3755 chunks_skipped ++; 3756 sector_nr = max_sector; 3757 goto skipped; 3758 } 3759 3760 static sector_t 3761 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3762 { 3763 sector_t size; 3764 struct r10conf *conf = mddev->private; 3765 3766 if (!raid_disks) 3767 raid_disks = min(conf->geo.raid_disks, 3768 conf->prev.raid_disks); 3769 if (!sectors) 3770 sectors = conf->dev_sectors; 3771 3772 size = sectors >> conf->geo.chunk_shift; 3773 sector_div(size, conf->geo.far_copies); 3774 size = size * raid_disks; 3775 sector_div(size, conf->geo.near_copies); 3776 3777 return size << conf->geo.chunk_shift; 3778 } 3779 3780 static void calc_sectors(struct r10conf *conf, sector_t size) 3781 { 3782 /* Calculate the number of sectors-per-device that will 3783 * actually be used, and set conf->dev_sectors and 3784 * conf->stride 3785 */ 3786 3787 size = size >> conf->geo.chunk_shift; 3788 sector_div(size, conf->geo.far_copies); 3789 size = size * conf->geo.raid_disks; 3790 sector_div(size, conf->geo.near_copies); 3791 /* 'size' is now the number of chunks in the array */ 3792 /* calculate "used chunks per device" */ 3793 size = size * conf->copies; 3794 3795 /* We need to round up when dividing by raid_disks to 3796 * get the stride size. 3797 */ 3798 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3799 3800 conf->dev_sectors = size << conf->geo.chunk_shift; 3801 3802 if (conf->geo.far_offset) 3803 conf->geo.stride = 1 << conf->geo.chunk_shift; 3804 else { 3805 sector_div(size, conf->geo.far_copies); 3806 conf->geo.stride = size << conf->geo.chunk_shift; 3807 } 3808 } 3809 3810 enum geo_type {geo_new, geo_old, geo_start}; 3811 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3812 { 3813 int nc, fc, fo; 3814 int layout, chunk, disks; 3815 switch (new) { 3816 case geo_old: 3817 layout = mddev->layout; 3818 chunk = mddev->chunk_sectors; 3819 disks = mddev->raid_disks - mddev->delta_disks; 3820 break; 3821 case geo_new: 3822 layout = mddev->new_layout; 3823 chunk = mddev->new_chunk_sectors; 3824 disks = mddev->raid_disks; 3825 break; 3826 default: /* avoid 'may be unused' warnings */ 3827 case geo_start: /* new when starting reshape - raid_disks not 3828 * updated yet. */ 3829 layout = mddev->new_layout; 3830 chunk = mddev->new_chunk_sectors; 3831 disks = mddev->raid_disks + mddev->delta_disks; 3832 break; 3833 } 3834 if (layout >> 19) 3835 return -1; 3836 if (chunk < (PAGE_SIZE >> 9) || 3837 !is_power_of_2(chunk)) 3838 return -2; 3839 nc = layout & 255; 3840 fc = (layout >> 8) & 255; 3841 fo = layout & (1<<16); 3842 geo->raid_disks = disks; 3843 geo->near_copies = nc; 3844 geo->far_copies = fc; 3845 geo->far_offset = fo; 3846 switch (layout >> 17) { 3847 case 0: /* original layout. simple but not always optimal */ 3848 geo->far_set_size = disks; 3849 break; 3850 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3851 * actually using this, but leave code here just in case.*/ 3852 geo->far_set_size = disks/fc; 3853 WARN(geo->far_set_size < fc, 3854 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3855 break; 3856 case 2: /* "improved" layout fixed to match documentation */ 3857 geo->far_set_size = fc * nc; 3858 break; 3859 default: /* Not a valid layout */ 3860 return -1; 3861 } 3862 geo->chunk_mask = chunk - 1; 3863 geo->chunk_shift = ffz(~chunk); 3864 return nc*fc; 3865 } 3866 3867 static void raid10_free_conf(struct r10conf *conf) 3868 { 3869 if (!conf) 3870 return; 3871 3872 mempool_exit(&conf->r10bio_pool); 3873 kfree(conf->mirrors); 3874 kfree(conf->mirrors_old); 3875 kfree(conf->mirrors_new); 3876 safe_put_page(conf->tmppage); 3877 bioset_exit(&conf->bio_split); 3878 kfree(conf); 3879 } 3880 3881 static struct r10conf *setup_conf(struct mddev *mddev) 3882 { 3883 struct r10conf *conf = NULL; 3884 int err = -EINVAL; 3885 struct geom geo; 3886 int copies; 3887 3888 copies = setup_geo(&geo, mddev, geo_new); 3889 3890 if (copies == -2) { 3891 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3892 mdname(mddev), PAGE_SIZE); 3893 goto out; 3894 } 3895 3896 if (copies < 2 || copies > mddev->raid_disks) { 3897 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3898 mdname(mddev), mddev->new_layout); 3899 goto out; 3900 } 3901 3902 err = -ENOMEM; 3903 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3904 if (!conf) 3905 goto out; 3906 3907 /* FIXME calc properly */ 3908 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3909 sizeof(struct raid10_info), 3910 GFP_KERNEL); 3911 if (!conf->mirrors) 3912 goto out; 3913 3914 conf->tmppage = alloc_page(GFP_KERNEL); 3915 if (!conf->tmppage) 3916 goto out; 3917 3918 conf->geo = geo; 3919 conf->copies = copies; 3920 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3921 rbio_pool_free, conf); 3922 if (err) 3923 goto out; 3924 3925 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3926 if (err) 3927 goto out; 3928 3929 calc_sectors(conf, mddev->dev_sectors); 3930 if (mddev->reshape_position == MaxSector) { 3931 conf->prev = conf->geo; 3932 conf->reshape_progress = MaxSector; 3933 } else { 3934 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3935 err = -EINVAL; 3936 goto out; 3937 } 3938 conf->reshape_progress = mddev->reshape_position; 3939 if (conf->prev.far_offset) 3940 conf->prev.stride = 1 << conf->prev.chunk_shift; 3941 else 3942 /* far_copies must be 1 */ 3943 conf->prev.stride = conf->dev_sectors; 3944 } 3945 conf->reshape_safe = conf->reshape_progress; 3946 spin_lock_init(&conf->device_lock); 3947 INIT_LIST_HEAD(&conf->retry_list); 3948 INIT_LIST_HEAD(&conf->bio_end_io_list); 3949 3950 seqlock_init(&conf->resync_lock); 3951 init_waitqueue_head(&conf->wait_barrier); 3952 atomic_set(&conf->nr_pending, 0); 3953 3954 err = -ENOMEM; 3955 rcu_assign_pointer(conf->thread, 3956 md_register_thread(raid10d, mddev, "raid10")); 3957 if (!conf->thread) 3958 goto out; 3959 3960 conf->mddev = mddev; 3961 return conf; 3962 3963 out: 3964 raid10_free_conf(conf); 3965 return ERR_PTR(err); 3966 } 3967 3968 static unsigned int raid10_nr_stripes(struct r10conf *conf) 3969 { 3970 unsigned int raid_disks = conf->geo.raid_disks; 3971 3972 if (conf->geo.raid_disks % conf->geo.near_copies) 3973 return raid_disks; 3974 return raid_disks / conf->geo.near_copies; 3975 } 3976 3977 static int raid10_set_queue_limits(struct mddev *mddev) 3978 { 3979 struct r10conf *conf = mddev->private; 3980 struct queue_limits lim; 3981 int err; 3982 3983 md_init_stacking_limits(&lim); 3984 lim.max_write_zeroes_sectors = 0; 3985 lim.io_min = mddev->chunk_sectors << 9; 3986 lim.io_opt = lim.io_min * raid10_nr_stripes(conf); 3987 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 3988 if (err) { 3989 queue_limits_cancel_update(mddev->gendisk->queue); 3990 return err; 3991 } 3992 return queue_limits_set(mddev->gendisk->queue, &lim); 3993 } 3994 3995 static int raid10_run(struct mddev *mddev) 3996 { 3997 struct r10conf *conf; 3998 int i, disk_idx; 3999 struct raid10_info *disk; 4000 struct md_rdev *rdev; 4001 sector_t size; 4002 sector_t min_offset_diff = 0; 4003 int first = 1; 4004 int ret = -EIO; 4005 4006 if (mddev->private == NULL) { 4007 conf = setup_conf(mddev); 4008 if (IS_ERR(conf)) 4009 return PTR_ERR(conf); 4010 mddev->private = conf; 4011 } 4012 conf = mddev->private; 4013 if (!conf) 4014 goto out; 4015 4016 rcu_assign_pointer(mddev->thread, conf->thread); 4017 rcu_assign_pointer(conf->thread, NULL); 4018 4019 if (mddev_is_clustered(conf->mddev)) { 4020 int fc, fo; 4021 4022 fc = (mddev->layout >> 8) & 255; 4023 fo = mddev->layout & (1<<16); 4024 if (fc > 1 || fo > 0) { 4025 pr_err("only near layout is supported by clustered" 4026 " raid10\n"); 4027 goto out_free_conf; 4028 } 4029 } 4030 4031 rdev_for_each(rdev, mddev) { 4032 long long diff; 4033 4034 disk_idx = rdev->raid_disk; 4035 if (disk_idx < 0) 4036 continue; 4037 if (disk_idx >= conf->geo.raid_disks && 4038 disk_idx >= conf->prev.raid_disks) 4039 continue; 4040 disk = conf->mirrors + disk_idx; 4041 4042 if (test_bit(Replacement, &rdev->flags)) { 4043 if (disk->replacement) 4044 goto out_free_conf; 4045 disk->replacement = rdev; 4046 } else { 4047 if (disk->rdev) 4048 goto out_free_conf; 4049 disk->rdev = rdev; 4050 } 4051 diff = (rdev->new_data_offset - rdev->data_offset); 4052 if (!mddev->reshape_backwards) 4053 diff = -diff; 4054 if (diff < 0) 4055 diff = 0; 4056 if (first || diff < min_offset_diff) 4057 min_offset_diff = diff; 4058 4059 disk->head_position = 0; 4060 first = 0; 4061 } 4062 4063 if (!mddev_is_dm(conf->mddev)) { 4064 ret = raid10_set_queue_limits(mddev); 4065 if (ret) 4066 goto out_free_conf; 4067 } 4068 4069 /* need to check that every block has at least one working mirror */ 4070 if (!enough(conf, -1)) { 4071 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4072 mdname(mddev)); 4073 goto out_free_conf; 4074 } 4075 4076 if (conf->reshape_progress != MaxSector) { 4077 /* must ensure that shape change is supported */ 4078 if (conf->geo.far_copies != 1 && 4079 conf->geo.far_offset == 0) 4080 goto out_free_conf; 4081 if (conf->prev.far_copies != 1 && 4082 conf->prev.far_offset == 0) 4083 goto out_free_conf; 4084 } 4085 4086 mddev->degraded = 0; 4087 for (i = 0; 4088 i < conf->geo.raid_disks 4089 || i < conf->prev.raid_disks; 4090 i++) { 4091 4092 disk = conf->mirrors + i; 4093 4094 if (!disk->rdev && disk->replacement) { 4095 /* The replacement is all we have - use it */ 4096 disk->rdev = disk->replacement; 4097 disk->replacement = NULL; 4098 clear_bit(Replacement, &disk->rdev->flags); 4099 } 4100 4101 if (!disk->rdev || 4102 !test_bit(In_sync, &disk->rdev->flags)) { 4103 disk->head_position = 0; 4104 mddev->degraded++; 4105 if (disk->rdev && 4106 disk->rdev->saved_raid_disk < 0) 4107 conf->fullsync = 1; 4108 } 4109 4110 if (disk->replacement && 4111 !test_bit(In_sync, &disk->replacement->flags) && 4112 disk->replacement->saved_raid_disk < 0) { 4113 conf->fullsync = 1; 4114 } 4115 4116 disk->recovery_disabled = mddev->recovery_disabled - 1; 4117 } 4118 4119 if (mddev->recovery_cp != MaxSector) 4120 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4121 mdname(mddev)); 4122 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4123 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4124 conf->geo.raid_disks); 4125 /* 4126 * Ok, everything is just fine now 4127 */ 4128 mddev->dev_sectors = conf->dev_sectors; 4129 size = raid10_size(mddev, 0, 0); 4130 md_set_array_sectors(mddev, size); 4131 mddev->resync_max_sectors = size; 4132 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4133 4134 if (md_integrity_register(mddev)) 4135 goto out_free_conf; 4136 4137 if (conf->reshape_progress != MaxSector) { 4138 unsigned long before_length, after_length; 4139 4140 before_length = ((1 << conf->prev.chunk_shift) * 4141 conf->prev.far_copies); 4142 after_length = ((1 << conf->geo.chunk_shift) * 4143 conf->geo.far_copies); 4144 4145 if (max(before_length, after_length) > min_offset_diff) { 4146 /* This cannot work */ 4147 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4148 goto out_free_conf; 4149 } 4150 conf->offset_diff = min_offset_diff; 4151 4152 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4153 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4154 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4155 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4156 } 4157 4158 return 0; 4159 4160 out_free_conf: 4161 md_unregister_thread(mddev, &mddev->thread); 4162 raid10_free_conf(conf); 4163 mddev->private = NULL; 4164 out: 4165 return ret; 4166 } 4167 4168 static void raid10_free(struct mddev *mddev, void *priv) 4169 { 4170 raid10_free_conf(priv); 4171 } 4172 4173 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4174 { 4175 struct r10conf *conf = mddev->private; 4176 4177 if (quiesce) 4178 raise_barrier(conf, 0); 4179 else 4180 lower_barrier(conf); 4181 } 4182 4183 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4184 { 4185 /* Resize of 'far' arrays is not supported. 4186 * For 'near' and 'offset' arrays we can set the 4187 * number of sectors used to be an appropriate multiple 4188 * of the chunk size. 4189 * For 'offset', this is far_copies*chunksize. 4190 * For 'near' the multiplier is the LCM of 4191 * near_copies and raid_disks. 4192 * So if far_copies > 1 && !far_offset, fail. 4193 * Else find LCM(raid_disks, near_copy)*far_copies and 4194 * multiply by chunk_size. Then round to this number. 4195 * This is mostly done by raid10_size() 4196 */ 4197 struct r10conf *conf = mddev->private; 4198 sector_t oldsize, size; 4199 int ret; 4200 4201 if (mddev->reshape_position != MaxSector) 4202 return -EBUSY; 4203 4204 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4205 return -EINVAL; 4206 4207 oldsize = raid10_size(mddev, 0, 0); 4208 size = raid10_size(mddev, sectors, 0); 4209 if (mddev->external_size && 4210 mddev->array_sectors > size) 4211 return -EINVAL; 4212 4213 ret = mddev->bitmap_ops->resize(mddev, size, 0, false); 4214 if (ret) 4215 return ret; 4216 4217 md_set_array_sectors(mddev, size); 4218 if (sectors > mddev->dev_sectors && 4219 mddev->recovery_cp > oldsize) { 4220 mddev->recovery_cp = oldsize; 4221 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4222 } 4223 calc_sectors(conf, sectors); 4224 mddev->dev_sectors = conf->dev_sectors; 4225 mddev->resync_max_sectors = size; 4226 return 0; 4227 } 4228 4229 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4230 { 4231 struct md_rdev *rdev; 4232 struct r10conf *conf; 4233 4234 if (mddev->degraded > 0) { 4235 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4236 mdname(mddev)); 4237 return ERR_PTR(-EINVAL); 4238 } 4239 sector_div(size, devs); 4240 4241 /* Set new parameters */ 4242 mddev->new_level = 10; 4243 /* new layout: far_copies = 1, near_copies = 2 */ 4244 mddev->new_layout = (1<<8) + 2; 4245 mddev->new_chunk_sectors = mddev->chunk_sectors; 4246 mddev->delta_disks = mddev->raid_disks; 4247 mddev->raid_disks *= 2; 4248 /* make sure it will be not marked as dirty */ 4249 mddev->recovery_cp = MaxSector; 4250 mddev->dev_sectors = size; 4251 4252 conf = setup_conf(mddev); 4253 if (!IS_ERR(conf)) { 4254 rdev_for_each(rdev, mddev) 4255 if (rdev->raid_disk >= 0) { 4256 rdev->new_raid_disk = rdev->raid_disk * 2; 4257 rdev->sectors = size; 4258 } 4259 } 4260 4261 return conf; 4262 } 4263 4264 static void *raid10_takeover(struct mddev *mddev) 4265 { 4266 struct r0conf *raid0_conf; 4267 4268 /* raid10 can take over: 4269 * raid0 - providing it has only two drives 4270 */ 4271 if (mddev->level == 0) { 4272 /* for raid0 takeover only one zone is supported */ 4273 raid0_conf = mddev->private; 4274 if (raid0_conf->nr_strip_zones > 1) { 4275 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4276 mdname(mddev)); 4277 return ERR_PTR(-EINVAL); 4278 } 4279 return raid10_takeover_raid0(mddev, 4280 raid0_conf->strip_zone->zone_end, 4281 raid0_conf->strip_zone->nb_dev); 4282 } 4283 return ERR_PTR(-EINVAL); 4284 } 4285 4286 static int raid10_check_reshape(struct mddev *mddev) 4287 { 4288 /* Called when there is a request to change 4289 * - layout (to ->new_layout) 4290 * - chunk size (to ->new_chunk_sectors) 4291 * - raid_disks (by delta_disks) 4292 * or when trying to restart a reshape that was ongoing. 4293 * 4294 * We need to validate the request and possibly allocate 4295 * space if that might be an issue later. 4296 * 4297 * Currently we reject any reshape of a 'far' mode array, 4298 * allow chunk size to change if new is generally acceptable, 4299 * allow raid_disks to increase, and allow 4300 * a switch between 'near' mode and 'offset' mode. 4301 */ 4302 struct r10conf *conf = mddev->private; 4303 struct geom geo; 4304 4305 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4306 return -EINVAL; 4307 4308 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4309 /* mustn't change number of copies */ 4310 return -EINVAL; 4311 if (geo.far_copies > 1 && !geo.far_offset) 4312 /* Cannot switch to 'far' mode */ 4313 return -EINVAL; 4314 4315 if (mddev->array_sectors & geo.chunk_mask) 4316 /* not factor of array size */ 4317 return -EINVAL; 4318 4319 if (!enough(conf, -1)) 4320 return -EINVAL; 4321 4322 kfree(conf->mirrors_new); 4323 conf->mirrors_new = NULL; 4324 if (mddev->delta_disks > 0) { 4325 /* allocate new 'mirrors' list */ 4326 conf->mirrors_new = 4327 kcalloc(mddev->raid_disks + mddev->delta_disks, 4328 sizeof(struct raid10_info), 4329 GFP_KERNEL); 4330 if (!conf->mirrors_new) 4331 return -ENOMEM; 4332 } 4333 return 0; 4334 } 4335 4336 /* 4337 * Need to check if array has failed when deciding whether to: 4338 * - start an array 4339 * - remove non-faulty devices 4340 * - add a spare 4341 * - allow a reshape 4342 * This determination is simple when no reshape is happening. 4343 * However if there is a reshape, we need to carefully check 4344 * both the before and after sections. 4345 * This is because some failed devices may only affect one 4346 * of the two sections, and some non-in_sync devices may 4347 * be insync in the section most affected by failed devices. 4348 */ 4349 static int calc_degraded(struct r10conf *conf) 4350 { 4351 int degraded, degraded2; 4352 int i; 4353 4354 degraded = 0; 4355 /* 'prev' section first */ 4356 for (i = 0; i < conf->prev.raid_disks; i++) { 4357 struct md_rdev *rdev = conf->mirrors[i].rdev; 4358 4359 if (!rdev || test_bit(Faulty, &rdev->flags)) 4360 degraded++; 4361 else if (!test_bit(In_sync, &rdev->flags)) 4362 /* When we can reduce the number of devices in 4363 * an array, this might not contribute to 4364 * 'degraded'. It does now. 4365 */ 4366 degraded++; 4367 } 4368 if (conf->geo.raid_disks == conf->prev.raid_disks) 4369 return degraded; 4370 degraded2 = 0; 4371 for (i = 0; i < conf->geo.raid_disks; i++) { 4372 struct md_rdev *rdev = conf->mirrors[i].rdev; 4373 4374 if (!rdev || test_bit(Faulty, &rdev->flags)) 4375 degraded2++; 4376 else if (!test_bit(In_sync, &rdev->flags)) { 4377 /* If reshape is increasing the number of devices, 4378 * this section has already been recovered, so 4379 * it doesn't contribute to degraded. 4380 * else it does. 4381 */ 4382 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4383 degraded2++; 4384 } 4385 } 4386 if (degraded2 > degraded) 4387 return degraded2; 4388 return degraded; 4389 } 4390 4391 static int raid10_start_reshape(struct mddev *mddev) 4392 { 4393 /* A 'reshape' has been requested. This commits 4394 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4395 * This also checks if there are enough spares and adds them 4396 * to the array. 4397 * We currently require enough spares to make the final 4398 * array non-degraded. We also require that the difference 4399 * between old and new data_offset - on each device - is 4400 * enough that we never risk over-writing. 4401 */ 4402 4403 unsigned long before_length, after_length; 4404 sector_t min_offset_diff = 0; 4405 int first = 1; 4406 struct geom new; 4407 struct r10conf *conf = mddev->private; 4408 struct md_rdev *rdev; 4409 int spares = 0; 4410 int ret; 4411 4412 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4413 return -EBUSY; 4414 4415 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4416 return -EINVAL; 4417 4418 before_length = ((1 << conf->prev.chunk_shift) * 4419 conf->prev.far_copies); 4420 after_length = ((1 << conf->geo.chunk_shift) * 4421 conf->geo.far_copies); 4422 4423 rdev_for_each(rdev, mddev) { 4424 if (!test_bit(In_sync, &rdev->flags) 4425 && !test_bit(Faulty, &rdev->flags)) 4426 spares++; 4427 if (rdev->raid_disk >= 0) { 4428 long long diff = (rdev->new_data_offset 4429 - rdev->data_offset); 4430 if (!mddev->reshape_backwards) 4431 diff = -diff; 4432 if (diff < 0) 4433 diff = 0; 4434 if (first || diff < min_offset_diff) 4435 min_offset_diff = diff; 4436 first = 0; 4437 } 4438 } 4439 4440 if (max(before_length, after_length) > min_offset_diff) 4441 return -EINVAL; 4442 4443 if (spares < mddev->delta_disks) 4444 return -EINVAL; 4445 4446 conf->offset_diff = min_offset_diff; 4447 spin_lock_irq(&conf->device_lock); 4448 if (conf->mirrors_new) { 4449 memcpy(conf->mirrors_new, conf->mirrors, 4450 sizeof(struct raid10_info)*conf->prev.raid_disks); 4451 smp_mb(); 4452 kfree(conf->mirrors_old); 4453 conf->mirrors_old = conf->mirrors; 4454 conf->mirrors = conf->mirrors_new; 4455 conf->mirrors_new = NULL; 4456 } 4457 setup_geo(&conf->geo, mddev, geo_start); 4458 smp_mb(); 4459 if (mddev->reshape_backwards) { 4460 sector_t size = raid10_size(mddev, 0, 0); 4461 if (size < mddev->array_sectors) { 4462 spin_unlock_irq(&conf->device_lock); 4463 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4464 mdname(mddev)); 4465 return -EINVAL; 4466 } 4467 mddev->resync_max_sectors = size; 4468 conf->reshape_progress = size; 4469 } else 4470 conf->reshape_progress = 0; 4471 conf->reshape_safe = conf->reshape_progress; 4472 spin_unlock_irq(&conf->device_lock); 4473 4474 if (mddev->delta_disks && mddev->bitmap) { 4475 struct mdp_superblock_1 *sb = NULL; 4476 sector_t oldsize, newsize; 4477 4478 oldsize = raid10_size(mddev, 0, 0); 4479 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4480 4481 if (!mddev_is_clustered(mddev)) { 4482 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 4483 if (ret) 4484 goto abort; 4485 else 4486 goto out; 4487 } 4488 4489 rdev_for_each(rdev, mddev) { 4490 if (rdev->raid_disk > -1 && 4491 !test_bit(Faulty, &rdev->flags)) 4492 sb = page_address(rdev->sb_page); 4493 } 4494 4495 /* 4496 * some node is already performing reshape, and no need to 4497 * call bitmap_ops->resize again since it should be called when 4498 * receiving BITMAP_RESIZE msg 4499 */ 4500 if ((sb && (le32_to_cpu(sb->feature_map) & 4501 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4502 goto out; 4503 4504 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 4505 if (ret) 4506 goto abort; 4507 4508 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4509 if (ret) { 4510 mddev->bitmap_ops->resize(mddev, oldsize, 0, false); 4511 goto abort; 4512 } 4513 } 4514 out: 4515 if (mddev->delta_disks > 0) { 4516 rdev_for_each(rdev, mddev) 4517 if (rdev->raid_disk < 0 && 4518 !test_bit(Faulty, &rdev->flags)) { 4519 if (raid10_add_disk(mddev, rdev) == 0) { 4520 if (rdev->raid_disk >= 4521 conf->prev.raid_disks) 4522 set_bit(In_sync, &rdev->flags); 4523 else 4524 rdev->recovery_offset = 0; 4525 4526 /* Failure here is OK */ 4527 sysfs_link_rdev(mddev, rdev); 4528 } 4529 } else if (rdev->raid_disk >= conf->prev.raid_disks 4530 && !test_bit(Faulty, &rdev->flags)) { 4531 /* This is a spare that was manually added */ 4532 set_bit(In_sync, &rdev->flags); 4533 } 4534 } 4535 /* When a reshape changes the number of devices, 4536 * ->degraded is measured against the larger of the 4537 * pre and post numbers. 4538 */ 4539 spin_lock_irq(&conf->device_lock); 4540 mddev->degraded = calc_degraded(conf); 4541 spin_unlock_irq(&conf->device_lock); 4542 mddev->raid_disks = conf->geo.raid_disks; 4543 mddev->reshape_position = conf->reshape_progress; 4544 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4545 4546 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4547 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4548 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4549 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4550 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4551 conf->reshape_checkpoint = jiffies; 4552 md_new_event(); 4553 return 0; 4554 4555 abort: 4556 mddev->recovery = 0; 4557 spin_lock_irq(&conf->device_lock); 4558 conf->geo = conf->prev; 4559 mddev->raid_disks = conf->geo.raid_disks; 4560 rdev_for_each(rdev, mddev) 4561 rdev->new_data_offset = rdev->data_offset; 4562 smp_wmb(); 4563 conf->reshape_progress = MaxSector; 4564 conf->reshape_safe = MaxSector; 4565 mddev->reshape_position = MaxSector; 4566 spin_unlock_irq(&conf->device_lock); 4567 return ret; 4568 } 4569 4570 /* Calculate the last device-address that could contain 4571 * any block from the chunk that includes the array-address 's' 4572 * and report the next address. 4573 * i.e. the address returned will be chunk-aligned and after 4574 * any data that is in the chunk containing 's'. 4575 */ 4576 static sector_t last_dev_address(sector_t s, struct geom *geo) 4577 { 4578 s = (s | geo->chunk_mask) + 1; 4579 s >>= geo->chunk_shift; 4580 s *= geo->near_copies; 4581 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4582 s *= geo->far_copies; 4583 s <<= geo->chunk_shift; 4584 return s; 4585 } 4586 4587 /* Calculate the first device-address that could contain 4588 * any block from the chunk that includes the array-address 's'. 4589 * This too will be the start of a chunk 4590 */ 4591 static sector_t first_dev_address(sector_t s, struct geom *geo) 4592 { 4593 s >>= geo->chunk_shift; 4594 s *= geo->near_copies; 4595 sector_div(s, geo->raid_disks); 4596 s *= geo->far_copies; 4597 s <<= geo->chunk_shift; 4598 return s; 4599 } 4600 4601 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4602 int *skipped) 4603 { 4604 /* We simply copy at most one chunk (smallest of old and new) 4605 * at a time, possibly less if that exceeds RESYNC_PAGES, 4606 * or we hit a bad block or something. 4607 * This might mean we pause for normal IO in the middle of 4608 * a chunk, but that is not a problem as mddev->reshape_position 4609 * can record any location. 4610 * 4611 * If we will want to write to a location that isn't 4612 * yet recorded as 'safe' (i.e. in metadata on disk) then 4613 * we need to flush all reshape requests and update the metadata. 4614 * 4615 * When reshaping forwards (e.g. to more devices), we interpret 4616 * 'safe' as the earliest block which might not have been copied 4617 * down yet. We divide this by previous stripe size and multiply 4618 * by previous stripe length to get lowest device offset that we 4619 * cannot write to yet. 4620 * We interpret 'sector_nr' as an address that we want to write to. 4621 * From this we use last_device_address() to find where we might 4622 * write to, and first_device_address on the 'safe' position. 4623 * If this 'next' write position is after the 'safe' position, 4624 * we must update the metadata to increase the 'safe' position. 4625 * 4626 * When reshaping backwards, we round in the opposite direction 4627 * and perform the reverse test: next write position must not be 4628 * less than current safe position. 4629 * 4630 * In all this the minimum difference in data offsets 4631 * (conf->offset_diff - always positive) allows a bit of slack, 4632 * so next can be after 'safe', but not by more than offset_diff 4633 * 4634 * We need to prepare all the bios here before we start any IO 4635 * to ensure the size we choose is acceptable to all devices. 4636 * The means one for each copy for write-out and an extra one for 4637 * read-in. 4638 * We store the read-in bio in ->master_bio and the others in 4639 * ->devs[x].bio and ->devs[x].repl_bio. 4640 */ 4641 struct r10conf *conf = mddev->private; 4642 struct r10bio *r10_bio; 4643 sector_t next, safe, last; 4644 int max_sectors; 4645 int nr_sectors; 4646 int s; 4647 struct md_rdev *rdev; 4648 int need_flush = 0; 4649 struct bio *blist; 4650 struct bio *bio, *read_bio; 4651 int sectors_done = 0; 4652 struct page **pages; 4653 4654 if (sector_nr == 0) { 4655 /* If restarting in the middle, skip the initial sectors */ 4656 if (mddev->reshape_backwards && 4657 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4658 sector_nr = (raid10_size(mddev, 0, 0) 4659 - conf->reshape_progress); 4660 } else if (!mddev->reshape_backwards && 4661 conf->reshape_progress > 0) 4662 sector_nr = conf->reshape_progress; 4663 if (sector_nr) { 4664 mddev->curr_resync_completed = sector_nr; 4665 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4666 *skipped = 1; 4667 return sector_nr; 4668 } 4669 } 4670 4671 /* We don't use sector_nr to track where we are up to 4672 * as that doesn't work well for ->reshape_backwards. 4673 * So just use ->reshape_progress. 4674 */ 4675 if (mddev->reshape_backwards) { 4676 /* 'next' is the earliest device address that we might 4677 * write to for this chunk in the new layout 4678 */ 4679 next = first_dev_address(conf->reshape_progress - 1, 4680 &conf->geo); 4681 4682 /* 'safe' is the last device address that we might read from 4683 * in the old layout after a restart 4684 */ 4685 safe = last_dev_address(conf->reshape_safe - 1, 4686 &conf->prev); 4687 4688 if (next + conf->offset_diff < safe) 4689 need_flush = 1; 4690 4691 last = conf->reshape_progress - 1; 4692 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4693 & conf->prev.chunk_mask); 4694 if (sector_nr + RESYNC_SECTORS < last) 4695 sector_nr = last + 1 - RESYNC_SECTORS; 4696 } else { 4697 /* 'next' is after the last device address that we 4698 * might write to for this chunk in the new layout 4699 */ 4700 next = last_dev_address(conf->reshape_progress, &conf->geo); 4701 4702 /* 'safe' is the earliest device address that we might 4703 * read from in the old layout after a restart 4704 */ 4705 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4706 4707 /* Need to update metadata if 'next' might be beyond 'safe' 4708 * as that would possibly corrupt data 4709 */ 4710 if (next > safe + conf->offset_diff) 4711 need_flush = 1; 4712 4713 sector_nr = conf->reshape_progress; 4714 last = sector_nr | (conf->geo.chunk_mask 4715 & conf->prev.chunk_mask); 4716 4717 if (sector_nr + RESYNC_SECTORS <= last) 4718 last = sector_nr + RESYNC_SECTORS - 1; 4719 } 4720 4721 if (need_flush || 4722 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4723 /* Need to update reshape_position in metadata */ 4724 wait_barrier(conf, false); 4725 mddev->reshape_position = conf->reshape_progress; 4726 if (mddev->reshape_backwards) 4727 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4728 - conf->reshape_progress; 4729 else 4730 mddev->curr_resync_completed = conf->reshape_progress; 4731 conf->reshape_checkpoint = jiffies; 4732 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4733 md_wakeup_thread(mddev->thread); 4734 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4735 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4736 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4737 allow_barrier(conf); 4738 return sectors_done; 4739 } 4740 conf->reshape_safe = mddev->reshape_position; 4741 allow_barrier(conf); 4742 } 4743 4744 raise_barrier(conf, 0); 4745 read_more: 4746 /* Now schedule reads for blocks from sector_nr to last */ 4747 r10_bio = raid10_alloc_init_r10buf(conf); 4748 r10_bio->state = 0; 4749 raise_barrier(conf, 1); 4750 atomic_set(&r10_bio->remaining, 0); 4751 r10_bio->mddev = mddev; 4752 r10_bio->sector = sector_nr; 4753 set_bit(R10BIO_IsReshape, &r10_bio->state); 4754 r10_bio->sectors = last - sector_nr + 1; 4755 rdev = read_balance(conf, r10_bio, &max_sectors); 4756 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4757 4758 if (!rdev) { 4759 /* Cannot read from here, so need to record bad blocks 4760 * on all the target devices. 4761 */ 4762 // FIXME 4763 mempool_free(r10_bio, &conf->r10buf_pool); 4764 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4765 return sectors_done; 4766 } 4767 4768 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4769 GFP_KERNEL, &mddev->bio_set); 4770 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4771 + rdev->data_offset); 4772 read_bio->bi_private = r10_bio; 4773 read_bio->bi_end_io = end_reshape_read; 4774 r10_bio->master_bio = read_bio; 4775 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4776 4777 /* 4778 * Broadcast RESYNC message to other nodes, so all nodes would not 4779 * write to the region to avoid conflict. 4780 */ 4781 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4782 struct mdp_superblock_1 *sb = NULL; 4783 int sb_reshape_pos = 0; 4784 4785 conf->cluster_sync_low = sector_nr; 4786 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4787 sb = page_address(rdev->sb_page); 4788 if (sb) { 4789 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4790 /* 4791 * Set cluster_sync_low again if next address for array 4792 * reshape is less than cluster_sync_low. Since we can't 4793 * update cluster_sync_low until it has finished reshape. 4794 */ 4795 if (sb_reshape_pos < conf->cluster_sync_low) 4796 conf->cluster_sync_low = sb_reshape_pos; 4797 } 4798 4799 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4800 conf->cluster_sync_high); 4801 } 4802 4803 /* Now find the locations in the new layout */ 4804 __raid10_find_phys(&conf->geo, r10_bio); 4805 4806 blist = read_bio; 4807 read_bio->bi_next = NULL; 4808 4809 for (s = 0; s < conf->copies*2; s++) { 4810 struct bio *b; 4811 int d = r10_bio->devs[s/2].devnum; 4812 struct md_rdev *rdev2; 4813 if (s&1) { 4814 rdev2 = conf->mirrors[d].replacement; 4815 b = r10_bio->devs[s/2].repl_bio; 4816 } else { 4817 rdev2 = conf->mirrors[d].rdev; 4818 b = r10_bio->devs[s/2].bio; 4819 } 4820 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4821 continue; 4822 4823 bio_set_dev(b, rdev2->bdev); 4824 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4825 rdev2->new_data_offset; 4826 b->bi_end_io = end_reshape_write; 4827 b->bi_opf = REQ_OP_WRITE; 4828 b->bi_next = blist; 4829 blist = b; 4830 } 4831 4832 /* Now add as many pages as possible to all of these bios. */ 4833 4834 nr_sectors = 0; 4835 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4836 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4837 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4838 int len = (max_sectors - s) << 9; 4839 if (len > PAGE_SIZE) 4840 len = PAGE_SIZE; 4841 for (bio = blist; bio ; bio = bio->bi_next) { 4842 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 4843 bio->bi_status = BLK_STS_RESOURCE; 4844 bio_endio(bio); 4845 return sectors_done; 4846 } 4847 } 4848 sector_nr += len >> 9; 4849 nr_sectors += len >> 9; 4850 } 4851 r10_bio->sectors = nr_sectors; 4852 4853 /* Now submit the read */ 4854 md_sync_acct_bio(read_bio, r10_bio->sectors); 4855 atomic_inc(&r10_bio->remaining); 4856 read_bio->bi_next = NULL; 4857 submit_bio_noacct(read_bio); 4858 sectors_done += nr_sectors; 4859 if (sector_nr <= last) 4860 goto read_more; 4861 4862 lower_barrier(conf); 4863 4864 /* Now that we have done the whole section we can 4865 * update reshape_progress 4866 */ 4867 if (mddev->reshape_backwards) 4868 conf->reshape_progress -= sectors_done; 4869 else 4870 conf->reshape_progress += sectors_done; 4871 4872 return sectors_done; 4873 } 4874 4875 static void end_reshape_request(struct r10bio *r10_bio); 4876 static int handle_reshape_read_error(struct mddev *mddev, 4877 struct r10bio *r10_bio); 4878 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4879 { 4880 /* Reshape read completed. Hopefully we have a block 4881 * to write out. 4882 * If we got a read error then we do sync 1-page reads from 4883 * elsewhere until we find the data - or give up. 4884 */ 4885 struct r10conf *conf = mddev->private; 4886 int s; 4887 4888 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4889 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4890 /* Reshape has been aborted */ 4891 md_done_sync(mddev, r10_bio->sectors, 0); 4892 return; 4893 } 4894 4895 /* We definitely have the data in the pages, schedule the 4896 * writes. 4897 */ 4898 atomic_set(&r10_bio->remaining, 1); 4899 for (s = 0; s < conf->copies*2; s++) { 4900 struct bio *b; 4901 int d = r10_bio->devs[s/2].devnum; 4902 struct md_rdev *rdev; 4903 if (s&1) { 4904 rdev = conf->mirrors[d].replacement; 4905 b = r10_bio->devs[s/2].repl_bio; 4906 } else { 4907 rdev = conf->mirrors[d].rdev; 4908 b = r10_bio->devs[s/2].bio; 4909 } 4910 if (!rdev || test_bit(Faulty, &rdev->flags)) 4911 continue; 4912 4913 atomic_inc(&rdev->nr_pending); 4914 md_sync_acct_bio(b, r10_bio->sectors); 4915 atomic_inc(&r10_bio->remaining); 4916 b->bi_next = NULL; 4917 submit_bio_noacct(b); 4918 } 4919 end_reshape_request(r10_bio); 4920 } 4921 4922 static void end_reshape(struct r10conf *conf) 4923 { 4924 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4925 return; 4926 4927 spin_lock_irq(&conf->device_lock); 4928 conf->prev = conf->geo; 4929 md_finish_reshape(conf->mddev); 4930 smp_wmb(); 4931 conf->reshape_progress = MaxSector; 4932 conf->reshape_safe = MaxSector; 4933 spin_unlock_irq(&conf->device_lock); 4934 4935 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf)); 4936 conf->fullsync = 0; 4937 } 4938 4939 static void raid10_update_reshape_pos(struct mddev *mddev) 4940 { 4941 struct r10conf *conf = mddev->private; 4942 sector_t lo, hi; 4943 4944 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4945 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4946 || mddev->reshape_position == MaxSector) 4947 conf->reshape_progress = mddev->reshape_position; 4948 else 4949 WARN_ON_ONCE(1); 4950 } 4951 4952 static int handle_reshape_read_error(struct mddev *mddev, 4953 struct r10bio *r10_bio) 4954 { 4955 /* Use sync reads to get the blocks from somewhere else */ 4956 int sectors = r10_bio->sectors; 4957 struct r10conf *conf = mddev->private; 4958 struct r10bio *r10b; 4959 int slot = 0; 4960 int idx = 0; 4961 struct page **pages; 4962 4963 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4964 if (!r10b) { 4965 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4966 return -ENOMEM; 4967 } 4968 4969 /* reshape IOs share pages from .devs[0].bio */ 4970 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4971 4972 r10b->sector = r10_bio->sector; 4973 __raid10_find_phys(&conf->prev, r10b); 4974 4975 while (sectors) { 4976 int s = sectors; 4977 int success = 0; 4978 int first_slot = slot; 4979 4980 if (s > (PAGE_SIZE >> 9)) 4981 s = PAGE_SIZE >> 9; 4982 4983 while (!success) { 4984 int d = r10b->devs[slot].devnum; 4985 struct md_rdev *rdev = conf->mirrors[d].rdev; 4986 sector_t addr; 4987 if (rdev == NULL || 4988 test_bit(Faulty, &rdev->flags) || 4989 !test_bit(In_sync, &rdev->flags)) 4990 goto failed; 4991 4992 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4993 atomic_inc(&rdev->nr_pending); 4994 success = sync_page_io(rdev, 4995 addr, 4996 s << 9, 4997 pages[idx], 4998 REQ_OP_READ, false); 4999 rdev_dec_pending(rdev, mddev); 5000 if (success) 5001 break; 5002 failed: 5003 slot++; 5004 if (slot >= conf->copies) 5005 slot = 0; 5006 if (slot == first_slot) 5007 break; 5008 } 5009 if (!success) { 5010 /* couldn't read this block, must give up */ 5011 set_bit(MD_RECOVERY_INTR, 5012 &mddev->recovery); 5013 kfree(r10b); 5014 return -EIO; 5015 } 5016 sectors -= s; 5017 idx++; 5018 } 5019 kfree(r10b); 5020 return 0; 5021 } 5022 5023 static void end_reshape_write(struct bio *bio) 5024 { 5025 struct r10bio *r10_bio = get_resync_r10bio(bio); 5026 struct mddev *mddev = r10_bio->mddev; 5027 struct r10conf *conf = mddev->private; 5028 int d; 5029 int slot; 5030 int repl; 5031 struct md_rdev *rdev = NULL; 5032 5033 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5034 rdev = repl ? conf->mirrors[d].replacement : 5035 conf->mirrors[d].rdev; 5036 5037 if (bio->bi_status) { 5038 /* FIXME should record badblock */ 5039 md_error(mddev, rdev); 5040 } 5041 5042 rdev_dec_pending(rdev, mddev); 5043 end_reshape_request(r10_bio); 5044 } 5045 5046 static void end_reshape_request(struct r10bio *r10_bio) 5047 { 5048 if (!atomic_dec_and_test(&r10_bio->remaining)) 5049 return; 5050 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5051 bio_put(r10_bio->master_bio); 5052 put_buf(r10_bio); 5053 } 5054 5055 static void raid10_finish_reshape(struct mddev *mddev) 5056 { 5057 struct r10conf *conf = mddev->private; 5058 5059 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5060 return; 5061 5062 if (mddev->delta_disks > 0) { 5063 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5064 mddev->recovery_cp = mddev->resync_max_sectors; 5065 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5066 } 5067 mddev->resync_max_sectors = mddev->array_sectors; 5068 } else { 5069 int d; 5070 for (d = conf->geo.raid_disks ; 5071 d < conf->geo.raid_disks - mddev->delta_disks; 5072 d++) { 5073 struct md_rdev *rdev = conf->mirrors[d].rdev; 5074 if (rdev) 5075 clear_bit(In_sync, &rdev->flags); 5076 rdev = conf->mirrors[d].replacement; 5077 if (rdev) 5078 clear_bit(In_sync, &rdev->flags); 5079 } 5080 } 5081 mddev->layout = mddev->new_layout; 5082 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5083 mddev->reshape_position = MaxSector; 5084 mddev->delta_disks = 0; 5085 mddev->reshape_backwards = 0; 5086 } 5087 5088 static struct md_personality raid10_personality = 5089 { 5090 .name = "raid10", 5091 .level = 10, 5092 .owner = THIS_MODULE, 5093 .make_request = raid10_make_request, 5094 .run = raid10_run, 5095 .free = raid10_free, 5096 .status = raid10_status, 5097 .error_handler = raid10_error, 5098 .hot_add_disk = raid10_add_disk, 5099 .hot_remove_disk= raid10_remove_disk, 5100 .spare_active = raid10_spare_active, 5101 .sync_request = raid10_sync_request, 5102 .quiesce = raid10_quiesce, 5103 .size = raid10_size, 5104 .resize = raid10_resize, 5105 .takeover = raid10_takeover, 5106 .check_reshape = raid10_check_reshape, 5107 .start_reshape = raid10_start_reshape, 5108 .finish_reshape = raid10_finish_reshape, 5109 .update_reshape_pos = raid10_update_reshape_pos, 5110 }; 5111 5112 static int __init raid_init(void) 5113 { 5114 return register_md_personality(&raid10_personality); 5115 } 5116 5117 static void raid_exit(void) 5118 { 5119 unregister_md_personality(&raid10_personality); 5120 } 5121 5122 module_init(raid_init); 5123 module_exit(raid_exit); 5124 MODULE_LICENSE("GPL"); 5125 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5126 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5127 MODULE_ALIAS("md-raid10"); 5128 MODULE_ALIAS("md-level-10"); 5129