1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * far_offset (stored in bit 16 of layout ) 33 * 34 * The data to be stored is divided into chunks using chunksize. 35 * Each device is divided into far_copies sections. 36 * In each section, chunks are laid out in a style similar to raid0, but 37 * near_copies copies of each chunk is stored (each on a different drive). 38 * The starting device for each section is offset near_copies from the starting 39 * device of the previous section. 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 41 * drive. 42 * near_copies and far_copies must be at least one, and their product is at most 43 * raid_disks. 44 * 45 * If far_offset is true, then the far_copies are handled a bit differently. 46 * The copies are still in different stripes, but instead of be very far apart 47 * on disk, there are adjacent stripes. 48 */ 49 50 /* 51 * Number of guaranteed r10bios in case of extreme VM load: 52 */ 53 #define NR_RAID10_BIOS 256 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 conf_t *conf = data; 63 r10bio_t *r10_bio; 64 int size = offsetof(struct r10bio_s, devs[conf->copies]); 65 66 /* allocate a r10bio with room for raid_disks entries in the bios array */ 67 r10_bio = kzalloc(size, gfp_flags); 68 if (!r10_bio) 69 unplug_slaves(conf->mddev); 70 71 return r10_bio; 72 } 73 74 static void r10bio_pool_free(void *r10_bio, void *data) 75 { 76 kfree(r10_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 /* 86 * When performing a resync, we need to read and compare, so 87 * we need as many pages are there are copies. 88 * When performing a recovery, we need 2 bios, one for read, 89 * one for write (we recover only one drive per r10buf) 90 * 91 */ 92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 conf_t *conf = data; 95 struct page *page; 96 r10bio_t *r10_bio; 97 struct bio *bio; 98 int i, j; 99 int nalloc; 100 101 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 102 if (!r10_bio) { 103 unplug_slaves(conf->mddev); 104 return NULL; 105 } 106 107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 108 nalloc = conf->copies; /* resync */ 109 else 110 nalloc = 2; /* recovery */ 111 112 /* 113 * Allocate bios. 114 */ 115 for (j = nalloc ; j-- ; ) { 116 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 117 if (!bio) 118 goto out_free_bio; 119 r10_bio->devs[j].bio = bio; 120 } 121 /* 122 * Allocate RESYNC_PAGES data pages and attach them 123 * where needed. 124 */ 125 for (j = 0 ; j < nalloc; j++) { 126 bio = r10_bio->devs[j].bio; 127 for (i = 0; i < RESYNC_PAGES; i++) { 128 page = alloc_page(gfp_flags); 129 if (unlikely(!page)) 130 goto out_free_pages; 131 132 bio->bi_io_vec[i].bv_page = page; 133 } 134 } 135 136 return r10_bio; 137 138 out_free_pages: 139 for ( ; i > 0 ; i--) 140 safe_put_page(bio->bi_io_vec[i-1].bv_page); 141 while (j--) 142 for (i = 0; i < RESYNC_PAGES ; i++) 143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < nalloc ) 147 bio_put(r10_bio->devs[j].bio); 148 r10bio_pool_free(r10_bio, conf); 149 return NULL; 150 } 151 152 static void r10buf_pool_free(void *__r10_bio, void *data) 153 { 154 int i; 155 conf_t *conf = data; 156 r10bio_t *r10bio = __r10_bio; 157 int j; 158 159 for (j=0; j < conf->copies; j++) { 160 struct bio *bio = r10bio->devs[j].bio; 161 if (bio) { 162 for (i = 0; i < RESYNC_PAGES; i++) { 163 safe_put_page(bio->bi_io_vec[i].bv_page); 164 bio->bi_io_vec[i].bv_page = NULL; 165 } 166 bio_put(bio); 167 } 168 } 169 r10bio_pool_free(r10bio, conf); 170 } 171 172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->copies; i++) { 177 struct bio **bio = & r10_bio->devs[i].bio; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r10bio(r10bio_t *r10_bio) 185 { 186 conf_t *conf = mddev_to_conf(r10_bio->mddev); 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r10_bio); 195 mempool_free(r10_bio, conf->r10bio_pool); 196 } 197 198 static void put_buf(r10bio_t *r10_bio) 199 { 200 conf_t *conf = mddev_to_conf(r10_bio->mddev); 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 lower_barrier(conf); 205 } 206 207 static void reschedule_retry(r10bio_t *r10_bio) 208 { 209 unsigned long flags; 210 mddev_t *mddev = r10_bio->mddev; 211 conf_t *conf = mddev_to_conf(mddev); 212 213 spin_lock_irqsave(&conf->device_lock, flags); 214 list_add(&r10_bio->retry_list, &conf->retry_list); 215 conf->nr_queued ++; 216 spin_unlock_irqrestore(&conf->device_lock, flags); 217 218 md_wakeup_thread(mddev->thread); 219 } 220 221 /* 222 * raid_end_bio_io() is called when we have finished servicing a mirrored 223 * operation and are ready to return a success/failure code to the buffer 224 * cache layer. 225 */ 226 static void raid_end_bio_io(r10bio_t *r10_bio) 227 { 228 struct bio *bio = r10_bio->master_bio; 229 230 bio_endio(bio, 231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 232 free_r10bio(r10_bio); 233 } 234 235 /* 236 * Update disk head position estimator based on IRQ completion info. 237 */ 238 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 239 { 240 conf_t *conf = mddev_to_conf(r10_bio->mddev); 241 242 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 243 r10_bio->devs[slot].addr + (r10_bio->sectors); 244 } 245 246 static void raid10_end_read_request(struct bio *bio, int error) 247 { 248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 250 int slot, dev; 251 conf_t *conf = mddev_to_conf(r10_bio->mddev); 252 253 254 slot = r10_bio->read_slot; 255 dev = r10_bio->devs[slot].devnum; 256 /* 257 * this branch is our 'one mirror IO has finished' event handler: 258 */ 259 update_head_pos(slot, r10_bio); 260 261 if (uptodate) { 262 /* 263 * Set R10BIO_Uptodate in our master bio, so that 264 * we will return a good error code to the higher 265 * levels even if IO on some other mirrored buffer fails. 266 * 267 * The 'master' represents the composite IO operation to 268 * user-side. So if something waits for IO, then it will 269 * wait for the 'master' bio. 270 */ 271 set_bit(R10BIO_Uptodate, &r10_bio->state); 272 raid_end_bio_io(r10_bio); 273 } else { 274 /* 275 * oops, read error: 276 */ 277 char b[BDEVNAME_SIZE]; 278 if (printk_ratelimit()) 279 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 280 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 281 reschedule_retry(r10_bio); 282 } 283 284 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 285 } 286 287 static void raid10_end_write_request(struct bio *bio, int error) 288 { 289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 291 int slot, dev; 292 conf_t *conf = mddev_to_conf(r10_bio->mddev); 293 294 for (slot = 0; slot < conf->copies; slot++) 295 if (r10_bio->devs[slot].bio == bio) 296 break; 297 dev = r10_bio->devs[slot].devnum; 298 299 /* 300 * this branch is our 'one mirror IO has finished' event handler: 301 */ 302 if (!uptodate) { 303 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 304 /* an I/O failed, we can't clear the bitmap */ 305 set_bit(R10BIO_Degraded, &r10_bio->state); 306 } else 307 /* 308 * Set R10BIO_Uptodate in our master bio, so that 309 * we will return a good error code for to the higher 310 * levels even if IO on some other mirrored buffer fails. 311 * 312 * The 'master' represents the composite IO operation to 313 * user-side. So if something waits for IO, then it will 314 * wait for the 'master' bio. 315 */ 316 set_bit(R10BIO_Uptodate, &r10_bio->state); 317 318 update_head_pos(slot, r10_bio); 319 320 /* 321 * 322 * Let's see if all mirrored write operations have finished 323 * already. 324 */ 325 if (atomic_dec_and_test(&r10_bio->remaining)) { 326 /* clear the bitmap if all writes complete successfully */ 327 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 328 r10_bio->sectors, 329 !test_bit(R10BIO_Degraded, &r10_bio->state), 330 0); 331 md_write_end(r10_bio->mddev); 332 raid_end_bio_io(r10_bio); 333 } 334 335 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 336 } 337 338 339 /* 340 * RAID10 layout manager 341 * Aswell as the chunksize and raid_disks count, there are two 342 * parameters: near_copies and far_copies. 343 * near_copies * far_copies must be <= raid_disks. 344 * Normally one of these will be 1. 345 * If both are 1, we get raid0. 346 * If near_copies == raid_disks, we get raid1. 347 * 348 * Chunks are layed out in raid0 style with near_copies copies of the 349 * first chunk, followed by near_copies copies of the next chunk and 350 * so on. 351 * If far_copies > 1, then after 1/far_copies of the array has been assigned 352 * as described above, we start again with a device offset of near_copies. 353 * So we effectively have another copy of the whole array further down all 354 * the drives, but with blocks on different drives. 355 * With this layout, and block is never stored twice on the one device. 356 * 357 * raid10_find_phys finds the sector offset of a given virtual sector 358 * on each device that it is on. 359 * 360 * raid10_find_virt does the reverse mapping, from a device and a 361 * sector offset to a virtual address 362 */ 363 364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 365 { 366 int n,f; 367 sector_t sector; 368 sector_t chunk; 369 sector_t stripe; 370 int dev; 371 372 int slot = 0; 373 374 /* now calculate first sector/dev */ 375 chunk = r10bio->sector >> conf->chunk_shift; 376 sector = r10bio->sector & conf->chunk_mask; 377 378 chunk *= conf->near_copies; 379 stripe = chunk; 380 dev = sector_div(stripe, conf->raid_disks); 381 if (conf->far_offset) 382 stripe *= conf->far_copies; 383 384 sector += stripe << conf->chunk_shift; 385 386 /* and calculate all the others */ 387 for (n=0; n < conf->near_copies; n++) { 388 int d = dev; 389 sector_t s = sector; 390 r10bio->devs[slot].addr = sector; 391 r10bio->devs[slot].devnum = d; 392 slot++; 393 394 for (f = 1; f < conf->far_copies; f++) { 395 d += conf->near_copies; 396 if (d >= conf->raid_disks) 397 d -= conf->raid_disks; 398 s += conf->stride; 399 r10bio->devs[slot].devnum = d; 400 r10bio->devs[slot].addr = s; 401 slot++; 402 } 403 dev++; 404 if (dev >= conf->raid_disks) { 405 dev = 0; 406 sector += (conf->chunk_mask + 1); 407 } 408 } 409 BUG_ON(slot != conf->copies); 410 } 411 412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 413 { 414 sector_t offset, chunk, vchunk; 415 416 offset = sector & conf->chunk_mask; 417 if (conf->far_offset) { 418 int fc; 419 chunk = sector >> conf->chunk_shift; 420 fc = sector_div(chunk, conf->far_copies); 421 dev -= fc * conf->near_copies; 422 if (dev < 0) 423 dev += conf->raid_disks; 424 } else { 425 while (sector >= conf->stride) { 426 sector -= conf->stride; 427 if (dev < conf->near_copies) 428 dev += conf->raid_disks - conf->near_copies; 429 else 430 dev -= conf->near_copies; 431 } 432 chunk = sector >> conf->chunk_shift; 433 } 434 vchunk = chunk * conf->raid_disks + dev; 435 sector_div(vchunk, conf->near_copies); 436 return (vchunk << conf->chunk_shift) + offset; 437 } 438 439 /** 440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 441 * @q: request queue 442 * @bio: the buffer head that's been built up so far 443 * @biovec: the request that could be merged to it. 444 * 445 * Return amount of bytes we can accept at this offset 446 * If near_copies == raid_disk, there are no striping issues, 447 * but in that case, the function isn't called at all. 448 */ 449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio, 450 struct bio_vec *bio_vec) 451 { 452 mddev_t *mddev = q->queuedata; 453 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 454 int max; 455 unsigned int chunk_sectors = mddev->chunk_size >> 9; 456 unsigned int bio_sectors = bio->bi_size >> 9; 457 458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 459 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 460 if (max <= bio_vec->bv_len && bio_sectors == 0) 461 return bio_vec->bv_len; 462 else 463 return max; 464 } 465 466 /* 467 * This routine returns the disk from which the requested read should 468 * be done. There is a per-array 'next expected sequential IO' sector 469 * number - if this matches on the next IO then we use the last disk. 470 * There is also a per-disk 'last know head position' sector that is 471 * maintained from IRQ contexts, both the normal and the resync IO 472 * completion handlers update this position correctly. If there is no 473 * perfect sequential match then we pick the disk whose head is closest. 474 * 475 * If there are 2 mirrors in the same 2 devices, performance degrades 476 * because position is mirror, not device based. 477 * 478 * The rdev for the device selected will have nr_pending incremented. 479 */ 480 481 /* 482 * FIXME: possibly should rethink readbalancing and do it differently 483 * depending on near_copies / far_copies geometry. 484 */ 485 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 486 { 487 const unsigned long this_sector = r10_bio->sector; 488 int disk, slot, nslot; 489 const int sectors = r10_bio->sectors; 490 sector_t new_distance, current_distance; 491 mdk_rdev_t *rdev; 492 493 raid10_find_phys(conf, r10_bio); 494 rcu_read_lock(); 495 /* 496 * Check if we can balance. We can balance on the whole 497 * device if no resync is going on (recovery is ok), or below 498 * the resync window. We take the first readable disk when 499 * above the resync window. 500 */ 501 if (conf->mddev->recovery_cp < MaxSector 502 && (this_sector + sectors >= conf->next_resync)) { 503 /* make sure that disk is operational */ 504 slot = 0; 505 disk = r10_bio->devs[slot].devnum; 506 507 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 508 r10_bio->devs[slot].bio == IO_BLOCKED || 509 !test_bit(In_sync, &rdev->flags)) { 510 slot++; 511 if (slot == conf->copies) { 512 slot = 0; 513 disk = -1; 514 break; 515 } 516 disk = r10_bio->devs[slot].devnum; 517 } 518 goto rb_out; 519 } 520 521 522 /* make sure the disk is operational */ 523 slot = 0; 524 disk = r10_bio->devs[slot].devnum; 525 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 526 r10_bio->devs[slot].bio == IO_BLOCKED || 527 !test_bit(In_sync, &rdev->flags)) { 528 slot ++; 529 if (slot == conf->copies) { 530 disk = -1; 531 goto rb_out; 532 } 533 disk = r10_bio->devs[slot].devnum; 534 } 535 536 537 current_distance = abs(r10_bio->devs[slot].addr - 538 conf->mirrors[disk].head_position); 539 540 /* Find the disk whose head is closest, 541 * or - for far > 1 - find the closest to partition beginning */ 542 543 for (nslot = slot; nslot < conf->copies; nslot++) { 544 int ndisk = r10_bio->devs[nslot].devnum; 545 546 547 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 548 r10_bio->devs[nslot].bio == IO_BLOCKED || 549 !test_bit(In_sync, &rdev->flags)) 550 continue; 551 552 /* This optimisation is debatable, and completely destroys 553 * sequential read speed for 'far copies' arrays. So only 554 * keep it for 'near' arrays, and review those later. 555 */ 556 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 557 disk = ndisk; 558 slot = nslot; 559 break; 560 } 561 562 /* for far > 1 always use the lowest address */ 563 if (conf->far_copies > 1) 564 new_distance = r10_bio->devs[nslot].addr; 565 else 566 new_distance = abs(r10_bio->devs[nslot].addr - 567 conf->mirrors[ndisk].head_position); 568 if (new_distance < current_distance) { 569 current_distance = new_distance; 570 disk = ndisk; 571 slot = nslot; 572 } 573 } 574 575 rb_out: 576 r10_bio->read_slot = slot; 577 /* conf->next_seq_sect = this_sector + sectors;*/ 578 579 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 580 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 581 else 582 disk = -1; 583 rcu_read_unlock(); 584 585 return disk; 586 } 587 588 static void unplug_slaves(mddev_t *mddev) 589 { 590 conf_t *conf = mddev_to_conf(mddev); 591 int i; 592 593 rcu_read_lock(); 594 for (i=0; i<mddev->raid_disks; i++) { 595 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 596 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 597 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 598 599 atomic_inc(&rdev->nr_pending); 600 rcu_read_unlock(); 601 602 blk_unplug(r_queue); 603 604 rdev_dec_pending(rdev, mddev); 605 rcu_read_lock(); 606 } 607 } 608 rcu_read_unlock(); 609 } 610 611 static void raid10_unplug(struct request_queue *q) 612 { 613 mddev_t *mddev = q->queuedata; 614 615 unplug_slaves(q->queuedata); 616 md_wakeup_thread(mddev->thread); 617 } 618 619 static int raid10_congested(void *data, int bits) 620 { 621 mddev_t *mddev = data; 622 conf_t *conf = mddev_to_conf(mddev); 623 int i, ret = 0; 624 625 rcu_read_lock(); 626 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 627 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 628 if (rdev && !test_bit(Faulty, &rdev->flags)) { 629 struct request_queue *q = bdev_get_queue(rdev->bdev); 630 631 ret |= bdi_congested(&q->backing_dev_info, bits); 632 } 633 } 634 rcu_read_unlock(); 635 return ret; 636 } 637 638 static int flush_pending_writes(conf_t *conf) 639 { 640 /* Any writes that have been queued but are awaiting 641 * bitmap updates get flushed here. 642 * We return 1 if any requests were actually submitted. 643 */ 644 int rv = 0; 645 646 spin_lock_irq(&conf->device_lock); 647 648 if (conf->pending_bio_list.head) { 649 struct bio *bio; 650 bio = bio_list_get(&conf->pending_bio_list); 651 blk_remove_plug(conf->mddev->queue); 652 spin_unlock_irq(&conf->device_lock); 653 /* flush any pending bitmap writes to disk 654 * before proceeding w/ I/O */ 655 bitmap_unplug(conf->mddev->bitmap); 656 657 while (bio) { /* submit pending writes */ 658 struct bio *next = bio->bi_next; 659 bio->bi_next = NULL; 660 generic_make_request(bio); 661 bio = next; 662 } 663 rv = 1; 664 } else 665 spin_unlock_irq(&conf->device_lock); 666 return rv; 667 } 668 /* Barriers.... 669 * Sometimes we need to suspend IO while we do something else, 670 * either some resync/recovery, or reconfigure the array. 671 * To do this we raise a 'barrier'. 672 * The 'barrier' is a counter that can be raised multiple times 673 * to count how many activities are happening which preclude 674 * normal IO. 675 * We can only raise the barrier if there is no pending IO. 676 * i.e. if nr_pending == 0. 677 * We choose only to raise the barrier if no-one is waiting for the 678 * barrier to go down. This means that as soon as an IO request 679 * is ready, no other operations which require a barrier will start 680 * until the IO request has had a chance. 681 * 682 * So: regular IO calls 'wait_barrier'. When that returns there 683 * is no backgroup IO happening, It must arrange to call 684 * allow_barrier when it has finished its IO. 685 * backgroup IO calls must call raise_barrier. Once that returns 686 * there is no normal IO happeing. It must arrange to call 687 * lower_barrier when the particular background IO completes. 688 */ 689 #define RESYNC_DEPTH 32 690 691 static void raise_barrier(conf_t *conf, int force) 692 { 693 BUG_ON(force && !conf->barrier); 694 spin_lock_irq(&conf->resync_lock); 695 696 /* Wait until no block IO is waiting (unless 'force') */ 697 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 698 conf->resync_lock, 699 raid10_unplug(conf->mddev->queue)); 700 701 /* block any new IO from starting */ 702 conf->barrier++; 703 704 /* No wait for all pending IO to complete */ 705 wait_event_lock_irq(conf->wait_barrier, 706 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 707 conf->resync_lock, 708 raid10_unplug(conf->mddev->queue)); 709 710 spin_unlock_irq(&conf->resync_lock); 711 } 712 713 static void lower_barrier(conf_t *conf) 714 { 715 unsigned long flags; 716 spin_lock_irqsave(&conf->resync_lock, flags); 717 conf->barrier--; 718 spin_unlock_irqrestore(&conf->resync_lock, flags); 719 wake_up(&conf->wait_barrier); 720 } 721 722 static void wait_barrier(conf_t *conf) 723 { 724 spin_lock_irq(&conf->resync_lock); 725 if (conf->barrier) { 726 conf->nr_waiting++; 727 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 728 conf->resync_lock, 729 raid10_unplug(conf->mddev->queue)); 730 conf->nr_waiting--; 731 } 732 conf->nr_pending++; 733 spin_unlock_irq(&conf->resync_lock); 734 } 735 736 static void allow_barrier(conf_t *conf) 737 { 738 unsigned long flags; 739 spin_lock_irqsave(&conf->resync_lock, flags); 740 conf->nr_pending--; 741 spin_unlock_irqrestore(&conf->resync_lock, flags); 742 wake_up(&conf->wait_barrier); 743 } 744 745 static void freeze_array(conf_t *conf) 746 { 747 /* stop syncio and normal IO and wait for everything to 748 * go quiet. 749 * We increment barrier and nr_waiting, and then 750 * wait until nr_pending match nr_queued+1 751 * This is called in the context of one normal IO request 752 * that has failed. Thus any sync request that might be pending 753 * will be blocked by nr_pending, and we need to wait for 754 * pending IO requests to complete or be queued for re-try. 755 * Thus the number queued (nr_queued) plus this request (1) 756 * must match the number of pending IOs (nr_pending) before 757 * we continue. 758 */ 759 spin_lock_irq(&conf->resync_lock); 760 conf->barrier++; 761 conf->nr_waiting++; 762 wait_event_lock_irq(conf->wait_barrier, 763 conf->nr_pending == conf->nr_queued+1, 764 conf->resync_lock, 765 ({ flush_pending_writes(conf); 766 raid10_unplug(conf->mddev->queue); })); 767 spin_unlock_irq(&conf->resync_lock); 768 } 769 770 static void unfreeze_array(conf_t *conf) 771 { 772 /* reverse the effect of the freeze */ 773 spin_lock_irq(&conf->resync_lock); 774 conf->barrier--; 775 conf->nr_waiting--; 776 wake_up(&conf->wait_barrier); 777 spin_unlock_irq(&conf->resync_lock); 778 } 779 780 static int make_request(struct request_queue *q, struct bio * bio) 781 { 782 mddev_t *mddev = q->queuedata; 783 conf_t *conf = mddev_to_conf(mddev); 784 mirror_info_t *mirror; 785 r10bio_t *r10_bio; 786 struct bio *read_bio; 787 int i; 788 int chunk_sects = conf->chunk_mask + 1; 789 const int rw = bio_data_dir(bio); 790 const int do_sync = bio_sync(bio); 791 struct bio_list bl; 792 unsigned long flags; 793 mdk_rdev_t *blocked_rdev; 794 795 if (unlikely(bio_barrier(bio))) { 796 bio_endio(bio, -EOPNOTSUPP); 797 return 0; 798 } 799 800 /* If this request crosses a chunk boundary, we need to 801 * split it. This will only happen for 1 PAGE (or less) requests. 802 */ 803 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 804 > chunk_sects && 805 conf->near_copies < conf->raid_disks)) { 806 struct bio_pair *bp; 807 /* Sanity check -- queue functions should prevent this happening */ 808 if (bio->bi_vcnt != 1 || 809 bio->bi_idx != 0) 810 goto bad_map; 811 /* This is a one page bio that upper layers 812 * refuse to split for us, so we need to split it. 813 */ 814 bp = bio_split(bio, bio_split_pool, 815 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 816 if (make_request(q, &bp->bio1)) 817 generic_make_request(&bp->bio1); 818 if (make_request(q, &bp->bio2)) 819 generic_make_request(&bp->bio2); 820 821 bio_pair_release(bp); 822 return 0; 823 bad_map: 824 printk("raid10_make_request bug: can't convert block across chunks" 825 " or bigger than %dk %llu %d\n", chunk_sects/2, 826 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 827 828 bio_io_error(bio); 829 return 0; 830 } 831 832 md_write_start(mddev, bio); 833 834 /* 835 * Register the new request and wait if the reconstruction 836 * thread has put up a bar for new requests. 837 * Continue immediately if no resync is active currently. 838 */ 839 wait_barrier(conf); 840 841 disk_stat_inc(mddev->gendisk, ios[rw]); 842 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 843 844 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 845 846 r10_bio->master_bio = bio; 847 r10_bio->sectors = bio->bi_size >> 9; 848 849 r10_bio->mddev = mddev; 850 r10_bio->sector = bio->bi_sector; 851 r10_bio->state = 0; 852 853 if (rw == READ) { 854 /* 855 * read balancing logic: 856 */ 857 int disk = read_balance(conf, r10_bio); 858 int slot = r10_bio->read_slot; 859 if (disk < 0) { 860 raid_end_bio_io(r10_bio); 861 return 0; 862 } 863 mirror = conf->mirrors + disk; 864 865 read_bio = bio_clone(bio, GFP_NOIO); 866 867 r10_bio->devs[slot].bio = read_bio; 868 869 read_bio->bi_sector = r10_bio->devs[slot].addr + 870 mirror->rdev->data_offset; 871 read_bio->bi_bdev = mirror->rdev->bdev; 872 read_bio->bi_end_io = raid10_end_read_request; 873 read_bio->bi_rw = READ | do_sync; 874 read_bio->bi_private = r10_bio; 875 876 generic_make_request(read_bio); 877 return 0; 878 } 879 880 /* 881 * WRITE: 882 */ 883 /* first select target devices under rcu_lock and 884 * inc refcount on their rdev. Record them by setting 885 * bios[x] to bio 886 */ 887 raid10_find_phys(conf, r10_bio); 888 retry_write: 889 blocked_rdev = 0; 890 rcu_read_lock(); 891 for (i = 0; i < conf->copies; i++) { 892 int d = r10_bio->devs[i].devnum; 893 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 894 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 895 atomic_inc(&rdev->nr_pending); 896 blocked_rdev = rdev; 897 break; 898 } 899 if (rdev && !test_bit(Faulty, &rdev->flags)) { 900 atomic_inc(&rdev->nr_pending); 901 r10_bio->devs[i].bio = bio; 902 } else { 903 r10_bio->devs[i].bio = NULL; 904 set_bit(R10BIO_Degraded, &r10_bio->state); 905 } 906 } 907 rcu_read_unlock(); 908 909 if (unlikely(blocked_rdev)) { 910 /* Have to wait for this device to get unblocked, then retry */ 911 int j; 912 int d; 913 914 for (j = 0; j < i; j++) 915 if (r10_bio->devs[j].bio) { 916 d = r10_bio->devs[j].devnum; 917 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 918 } 919 allow_barrier(conf); 920 md_wait_for_blocked_rdev(blocked_rdev, mddev); 921 wait_barrier(conf); 922 goto retry_write; 923 } 924 925 atomic_set(&r10_bio->remaining, 0); 926 927 bio_list_init(&bl); 928 for (i = 0; i < conf->copies; i++) { 929 struct bio *mbio; 930 int d = r10_bio->devs[i].devnum; 931 if (!r10_bio->devs[i].bio) 932 continue; 933 934 mbio = bio_clone(bio, GFP_NOIO); 935 r10_bio->devs[i].bio = mbio; 936 937 mbio->bi_sector = r10_bio->devs[i].addr+ 938 conf->mirrors[d].rdev->data_offset; 939 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 940 mbio->bi_end_io = raid10_end_write_request; 941 mbio->bi_rw = WRITE | do_sync; 942 mbio->bi_private = r10_bio; 943 944 atomic_inc(&r10_bio->remaining); 945 bio_list_add(&bl, mbio); 946 } 947 948 if (unlikely(!atomic_read(&r10_bio->remaining))) { 949 /* the array is dead */ 950 md_write_end(mddev); 951 raid_end_bio_io(r10_bio); 952 return 0; 953 } 954 955 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 956 spin_lock_irqsave(&conf->device_lock, flags); 957 bio_list_merge(&conf->pending_bio_list, &bl); 958 blk_plug_device(mddev->queue); 959 spin_unlock_irqrestore(&conf->device_lock, flags); 960 961 /* In case raid10d snuck in to freeze_array */ 962 wake_up(&conf->wait_barrier); 963 964 if (do_sync) 965 md_wakeup_thread(mddev->thread); 966 967 return 0; 968 } 969 970 static void status(struct seq_file *seq, mddev_t *mddev) 971 { 972 conf_t *conf = mddev_to_conf(mddev); 973 int i; 974 975 if (conf->near_copies < conf->raid_disks) 976 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 977 if (conf->near_copies > 1) 978 seq_printf(seq, " %d near-copies", conf->near_copies); 979 if (conf->far_copies > 1) { 980 if (conf->far_offset) 981 seq_printf(seq, " %d offset-copies", conf->far_copies); 982 else 983 seq_printf(seq, " %d far-copies", conf->far_copies); 984 } 985 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 986 conf->raid_disks - mddev->degraded); 987 for (i = 0; i < conf->raid_disks; i++) 988 seq_printf(seq, "%s", 989 conf->mirrors[i].rdev && 990 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 991 seq_printf(seq, "]"); 992 } 993 994 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 995 { 996 char b[BDEVNAME_SIZE]; 997 conf_t *conf = mddev_to_conf(mddev); 998 999 /* 1000 * If it is not operational, then we have already marked it as dead 1001 * else if it is the last working disks, ignore the error, let the 1002 * next level up know. 1003 * else mark the drive as failed 1004 */ 1005 if (test_bit(In_sync, &rdev->flags) 1006 && conf->raid_disks-mddev->degraded == 1) 1007 /* 1008 * Don't fail the drive, just return an IO error. 1009 * The test should really be more sophisticated than 1010 * "working_disks == 1", but it isn't critical, and 1011 * can wait until we do more sophisticated "is the drive 1012 * really dead" tests... 1013 */ 1014 return; 1015 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1016 unsigned long flags; 1017 spin_lock_irqsave(&conf->device_lock, flags); 1018 mddev->degraded++; 1019 spin_unlock_irqrestore(&conf->device_lock, flags); 1020 /* 1021 * if recovery is running, make sure it aborts. 1022 */ 1023 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 1024 } 1025 set_bit(Faulty, &rdev->flags); 1026 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1027 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n" 1028 "raid10: Operation continuing on %d devices.\n", 1029 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1030 } 1031 1032 static void print_conf(conf_t *conf) 1033 { 1034 int i; 1035 mirror_info_t *tmp; 1036 1037 printk("RAID10 conf printout:\n"); 1038 if (!conf) { 1039 printk("(!conf)\n"); 1040 return; 1041 } 1042 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1043 conf->raid_disks); 1044 1045 for (i = 0; i < conf->raid_disks; i++) { 1046 char b[BDEVNAME_SIZE]; 1047 tmp = conf->mirrors + i; 1048 if (tmp->rdev) 1049 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1050 i, !test_bit(In_sync, &tmp->rdev->flags), 1051 !test_bit(Faulty, &tmp->rdev->flags), 1052 bdevname(tmp->rdev->bdev,b)); 1053 } 1054 } 1055 1056 static void close_sync(conf_t *conf) 1057 { 1058 wait_barrier(conf); 1059 allow_barrier(conf); 1060 1061 mempool_destroy(conf->r10buf_pool); 1062 conf->r10buf_pool = NULL; 1063 } 1064 1065 /* check if there are enough drives for 1066 * every block to appear on atleast one 1067 */ 1068 static int enough(conf_t *conf) 1069 { 1070 int first = 0; 1071 1072 do { 1073 int n = conf->copies; 1074 int cnt = 0; 1075 while (n--) { 1076 if (conf->mirrors[first].rdev) 1077 cnt++; 1078 first = (first+1) % conf->raid_disks; 1079 } 1080 if (cnt == 0) 1081 return 0; 1082 } while (first != 0); 1083 return 1; 1084 } 1085 1086 static int raid10_spare_active(mddev_t *mddev) 1087 { 1088 int i; 1089 conf_t *conf = mddev->private; 1090 mirror_info_t *tmp; 1091 1092 /* 1093 * Find all non-in_sync disks within the RAID10 configuration 1094 * and mark them in_sync 1095 */ 1096 for (i = 0; i < conf->raid_disks; i++) { 1097 tmp = conf->mirrors + i; 1098 if (tmp->rdev 1099 && !test_bit(Faulty, &tmp->rdev->flags) 1100 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1101 unsigned long flags; 1102 spin_lock_irqsave(&conf->device_lock, flags); 1103 mddev->degraded--; 1104 spin_unlock_irqrestore(&conf->device_lock, flags); 1105 } 1106 } 1107 1108 print_conf(conf); 1109 return 0; 1110 } 1111 1112 1113 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1114 { 1115 conf_t *conf = mddev->private; 1116 int found = 0; 1117 int mirror; 1118 mirror_info_t *p; 1119 1120 if (mddev->recovery_cp < MaxSector) 1121 /* only hot-add to in-sync arrays, as recovery is 1122 * very different from resync 1123 */ 1124 return 0; 1125 if (!enough(conf)) 1126 return 0; 1127 1128 if (rdev->saved_raid_disk >= 0 && 1129 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1130 mirror = rdev->saved_raid_disk; 1131 else 1132 mirror = 0; 1133 for ( ; mirror < mddev->raid_disks; mirror++) 1134 if ( !(p=conf->mirrors+mirror)->rdev) { 1135 1136 blk_queue_stack_limits(mddev->queue, 1137 rdev->bdev->bd_disk->queue); 1138 /* as we don't honour merge_bvec_fn, we must never risk 1139 * violating it, so limit ->max_sector to one PAGE, as 1140 * a one page request is never in violation. 1141 */ 1142 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1143 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1144 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1145 1146 p->head_position = 0; 1147 rdev->raid_disk = mirror; 1148 found = 1; 1149 if (rdev->saved_raid_disk != mirror) 1150 conf->fullsync = 1; 1151 rcu_assign_pointer(p->rdev, rdev); 1152 break; 1153 } 1154 1155 print_conf(conf); 1156 return found; 1157 } 1158 1159 static int raid10_remove_disk(mddev_t *mddev, int number) 1160 { 1161 conf_t *conf = mddev->private; 1162 int err = 0; 1163 mdk_rdev_t *rdev; 1164 mirror_info_t *p = conf->mirrors+ number; 1165 1166 print_conf(conf); 1167 rdev = p->rdev; 1168 if (rdev) { 1169 if (test_bit(In_sync, &rdev->flags) || 1170 atomic_read(&rdev->nr_pending)) { 1171 err = -EBUSY; 1172 goto abort; 1173 } 1174 p->rdev = NULL; 1175 synchronize_rcu(); 1176 if (atomic_read(&rdev->nr_pending)) { 1177 /* lost the race, try later */ 1178 err = -EBUSY; 1179 p->rdev = rdev; 1180 } 1181 } 1182 abort: 1183 1184 print_conf(conf); 1185 return err; 1186 } 1187 1188 1189 static void end_sync_read(struct bio *bio, int error) 1190 { 1191 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1192 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1193 int i,d; 1194 1195 for (i=0; i<conf->copies; i++) 1196 if (r10_bio->devs[i].bio == bio) 1197 break; 1198 BUG_ON(i == conf->copies); 1199 update_head_pos(i, r10_bio); 1200 d = r10_bio->devs[i].devnum; 1201 1202 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1203 set_bit(R10BIO_Uptodate, &r10_bio->state); 1204 else { 1205 atomic_add(r10_bio->sectors, 1206 &conf->mirrors[d].rdev->corrected_errors); 1207 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1208 md_error(r10_bio->mddev, 1209 conf->mirrors[d].rdev); 1210 } 1211 1212 /* for reconstruct, we always reschedule after a read. 1213 * for resync, only after all reads 1214 */ 1215 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1216 atomic_dec_and_test(&r10_bio->remaining)) { 1217 /* we have read all the blocks, 1218 * do the comparison in process context in raid10d 1219 */ 1220 reschedule_retry(r10_bio); 1221 } 1222 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1223 } 1224 1225 static void end_sync_write(struct bio *bio, int error) 1226 { 1227 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1228 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1229 mddev_t *mddev = r10_bio->mddev; 1230 conf_t *conf = mddev_to_conf(mddev); 1231 int i,d; 1232 1233 for (i = 0; i < conf->copies; i++) 1234 if (r10_bio->devs[i].bio == bio) 1235 break; 1236 d = r10_bio->devs[i].devnum; 1237 1238 if (!uptodate) 1239 md_error(mddev, conf->mirrors[d].rdev); 1240 update_head_pos(i, r10_bio); 1241 1242 while (atomic_dec_and_test(&r10_bio->remaining)) { 1243 if (r10_bio->master_bio == NULL) { 1244 /* the primary of several recovery bios */ 1245 md_done_sync(mddev, r10_bio->sectors, 1); 1246 put_buf(r10_bio); 1247 break; 1248 } else { 1249 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1250 put_buf(r10_bio); 1251 r10_bio = r10_bio2; 1252 } 1253 } 1254 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1255 } 1256 1257 /* 1258 * Note: sync and recover and handled very differently for raid10 1259 * This code is for resync. 1260 * For resync, we read through virtual addresses and read all blocks. 1261 * If there is any error, we schedule a write. The lowest numbered 1262 * drive is authoritative. 1263 * However requests come for physical address, so we need to map. 1264 * For every physical address there are raid_disks/copies virtual addresses, 1265 * which is always are least one, but is not necessarly an integer. 1266 * This means that a physical address can span multiple chunks, so we may 1267 * have to submit multiple io requests for a single sync request. 1268 */ 1269 /* 1270 * We check if all blocks are in-sync and only write to blocks that 1271 * aren't in sync 1272 */ 1273 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1274 { 1275 conf_t *conf = mddev_to_conf(mddev); 1276 int i, first; 1277 struct bio *tbio, *fbio; 1278 1279 atomic_set(&r10_bio->remaining, 1); 1280 1281 /* find the first device with a block */ 1282 for (i=0; i<conf->copies; i++) 1283 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1284 break; 1285 1286 if (i == conf->copies) 1287 goto done; 1288 1289 first = i; 1290 fbio = r10_bio->devs[i].bio; 1291 1292 /* now find blocks with errors */ 1293 for (i=0 ; i < conf->copies ; i++) { 1294 int j, d; 1295 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1296 1297 tbio = r10_bio->devs[i].bio; 1298 1299 if (tbio->bi_end_io != end_sync_read) 1300 continue; 1301 if (i == first) 1302 continue; 1303 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1304 /* We know that the bi_io_vec layout is the same for 1305 * both 'first' and 'i', so we just compare them. 1306 * All vec entries are PAGE_SIZE; 1307 */ 1308 for (j = 0; j < vcnt; j++) 1309 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1310 page_address(tbio->bi_io_vec[j].bv_page), 1311 PAGE_SIZE)) 1312 break; 1313 if (j == vcnt) 1314 continue; 1315 mddev->resync_mismatches += r10_bio->sectors; 1316 } 1317 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1318 /* Don't fix anything. */ 1319 continue; 1320 /* Ok, we need to write this bio 1321 * First we need to fixup bv_offset, bv_len and 1322 * bi_vecs, as the read request might have corrupted these 1323 */ 1324 tbio->bi_vcnt = vcnt; 1325 tbio->bi_size = r10_bio->sectors << 9; 1326 tbio->bi_idx = 0; 1327 tbio->bi_phys_segments = 0; 1328 tbio->bi_hw_segments = 0; 1329 tbio->bi_hw_front_size = 0; 1330 tbio->bi_hw_back_size = 0; 1331 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1332 tbio->bi_flags |= 1 << BIO_UPTODATE; 1333 tbio->bi_next = NULL; 1334 tbio->bi_rw = WRITE; 1335 tbio->bi_private = r10_bio; 1336 tbio->bi_sector = r10_bio->devs[i].addr; 1337 1338 for (j=0; j < vcnt ; j++) { 1339 tbio->bi_io_vec[j].bv_offset = 0; 1340 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1341 1342 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1343 page_address(fbio->bi_io_vec[j].bv_page), 1344 PAGE_SIZE); 1345 } 1346 tbio->bi_end_io = end_sync_write; 1347 1348 d = r10_bio->devs[i].devnum; 1349 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1350 atomic_inc(&r10_bio->remaining); 1351 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1352 1353 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1354 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1355 generic_make_request(tbio); 1356 } 1357 1358 done: 1359 if (atomic_dec_and_test(&r10_bio->remaining)) { 1360 md_done_sync(mddev, r10_bio->sectors, 1); 1361 put_buf(r10_bio); 1362 } 1363 } 1364 1365 /* 1366 * Now for the recovery code. 1367 * Recovery happens across physical sectors. 1368 * We recover all non-is_sync drives by finding the virtual address of 1369 * each, and then choose a working drive that also has that virt address. 1370 * There is a separate r10_bio for each non-in_sync drive. 1371 * Only the first two slots are in use. The first for reading, 1372 * The second for writing. 1373 * 1374 */ 1375 1376 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1377 { 1378 conf_t *conf = mddev_to_conf(mddev); 1379 int i, d; 1380 struct bio *bio, *wbio; 1381 1382 1383 /* move the pages across to the second bio 1384 * and submit the write request 1385 */ 1386 bio = r10_bio->devs[0].bio; 1387 wbio = r10_bio->devs[1].bio; 1388 for (i=0; i < wbio->bi_vcnt; i++) { 1389 struct page *p = bio->bi_io_vec[i].bv_page; 1390 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1391 wbio->bi_io_vec[i].bv_page = p; 1392 } 1393 d = r10_bio->devs[1].devnum; 1394 1395 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1396 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1397 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1398 generic_make_request(wbio); 1399 else 1400 bio_endio(wbio, -EIO); 1401 } 1402 1403 1404 /* 1405 * This is a kernel thread which: 1406 * 1407 * 1. Retries failed read operations on working mirrors. 1408 * 2. Updates the raid superblock when problems encounter. 1409 * 3. Performs writes following reads for array synchronising. 1410 */ 1411 1412 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1413 { 1414 int sect = 0; /* Offset from r10_bio->sector */ 1415 int sectors = r10_bio->sectors; 1416 mdk_rdev_t*rdev; 1417 while(sectors) { 1418 int s = sectors; 1419 int sl = r10_bio->read_slot; 1420 int success = 0; 1421 int start; 1422 1423 if (s > (PAGE_SIZE>>9)) 1424 s = PAGE_SIZE >> 9; 1425 1426 rcu_read_lock(); 1427 do { 1428 int d = r10_bio->devs[sl].devnum; 1429 rdev = rcu_dereference(conf->mirrors[d].rdev); 1430 if (rdev && 1431 test_bit(In_sync, &rdev->flags)) { 1432 atomic_inc(&rdev->nr_pending); 1433 rcu_read_unlock(); 1434 success = sync_page_io(rdev->bdev, 1435 r10_bio->devs[sl].addr + 1436 sect + rdev->data_offset, 1437 s<<9, 1438 conf->tmppage, READ); 1439 rdev_dec_pending(rdev, mddev); 1440 rcu_read_lock(); 1441 if (success) 1442 break; 1443 } 1444 sl++; 1445 if (sl == conf->copies) 1446 sl = 0; 1447 } while (!success && sl != r10_bio->read_slot); 1448 rcu_read_unlock(); 1449 1450 if (!success) { 1451 /* Cannot read from anywhere -- bye bye array */ 1452 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1453 md_error(mddev, conf->mirrors[dn].rdev); 1454 break; 1455 } 1456 1457 start = sl; 1458 /* write it back and re-read */ 1459 rcu_read_lock(); 1460 while (sl != r10_bio->read_slot) { 1461 int d; 1462 if (sl==0) 1463 sl = conf->copies; 1464 sl--; 1465 d = r10_bio->devs[sl].devnum; 1466 rdev = rcu_dereference(conf->mirrors[d].rdev); 1467 if (rdev && 1468 test_bit(In_sync, &rdev->flags)) { 1469 atomic_inc(&rdev->nr_pending); 1470 rcu_read_unlock(); 1471 atomic_add(s, &rdev->corrected_errors); 1472 if (sync_page_io(rdev->bdev, 1473 r10_bio->devs[sl].addr + 1474 sect + rdev->data_offset, 1475 s<<9, conf->tmppage, WRITE) 1476 == 0) 1477 /* Well, this device is dead */ 1478 md_error(mddev, rdev); 1479 rdev_dec_pending(rdev, mddev); 1480 rcu_read_lock(); 1481 } 1482 } 1483 sl = start; 1484 while (sl != r10_bio->read_slot) { 1485 int d; 1486 if (sl==0) 1487 sl = conf->copies; 1488 sl--; 1489 d = r10_bio->devs[sl].devnum; 1490 rdev = rcu_dereference(conf->mirrors[d].rdev); 1491 if (rdev && 1492 test_bit(In_sync, &rdev->flags)) { 1493 char b[BDEVNAME_SIZE]; 1494 atomic_inc(&rdev->nr_pending); 1495 rcu_read_unlock(); 1496 if (sync_page_io(rdev->bdev, 1497 r10_bio->devs[sl].addr + 1498 sect + rdev->data_offset, 1499 s<<9, conf->tmppage, READ) == 0) 1500 /* Well, this device is dead */ 1501 md_error(mddev, rdev); 1502 else 1503 printk(KERN_INFO 1504 "raid10:%s: read error corrected" 1505 " (%d sectors at %llu on %s)\n", 1506 mdname(mddev), s, 1507 (unsigned long long)(sect+ 1508 rdev->data_offset), 1509 bdevname(rdev->bdev, b)); 1510 1511 rdev_dec_pending(rdev, mddev); 1512 rcu_read_lock(); 1513 } 1514 } 1515 rcu_read_unlock(); 1516 1517 sectors -= s; 1518 sect += s; 1519 } 1520 } 1521 1522 static void raid10d(mddev_t *mddev) 1523 { 1524 r10bio_t *r10_bio; 1525 struct bio *bio; 1526 unsigned long flags; 1527 conf_t *conf = mddev_to_conf(mddev); 1528 struct list_head *head = &conf->retry_list; 1529 int unplug=0; 1530 mdk_rdev_t *rdev; 1531 1532 md_check_recovery(mddev); 1533 1534 for (;;) { 1535 char b[BDEVNAME_SIZE]; 1536 1537 unplug += flush_pending_writes(conf); 1538 1539 spin_lock_irqsave(&conf->device_lock, flags); 1540 if (list_empty(head)) { 1541 spin_unlock_irqrestore(&conf->device_lock, flags); 1542 break; 1543 } 1544 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1545 list_del(head->prev); 1546 conf->nr_queued--; 1547 spin_unlock_irqrestore(&conf->device_lock, flags); 1548 1549 mddev = r10_bio->mddev; 1550 conf = mddev_to_conf(mddev); 1551 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1552 sync_request_write(mddev, r10_bio); 1553 unplug = 1; 1554 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1555 recovery_request_write(mddev, r10_bio); 1556 unplug = 1; 1557 } else { 1558 int mirror; 1559 /* we got a read error. Maybe the drive is bad. Maybe just 1560 * the block and we can fix it. 1561 * We freeze all other IO, and try reading the block from 1562 * other devices. When we find one, we re-write 1563 * and check it that fixes the read error. 1564 * This is all done synchronously while the array is 1565 * frozen. 1566 */ 1567 if (mddev->ro == 0) { 1568 freeze_array(conf); 1569 fix_read_error(conf, mddev, r10_bio); 1570 unfreeze_array(conf); 1571 } 1572 1573 bio = r10_bio->devs[r10_bio->read_slot].bio; 1574 r10_bio->devs[r10_bio->read_slot].bio = 1575 mddev->ro ? IO_BLOCKED : NULL; 1576 mirror = read_balance(conf, r10_bio); 1577 if (mirror == -1) { 1578 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1579 " read error for block %llu\n", 1580 bdevname(bio->bi_bdev,b), 1581 (unsigned long long)r10_bio->sector); 1582 raid_end_bio_io(r10_bio); 1583 bio_put(bio); 1584 } else { 1585 const int do_sync = bio_sync(r10_bio->master_bio); 1586 bio_put(bio); 1587 rdev = conf->mirrors[mirror].rdev; 1588 if (printk_ratelimit()) 1589 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1590 " another mirror\n", 1591 bdevname(rdev->bdev,b), 1592 (unsigned long long)r10_bio->sector); 1593 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1594 r10_bio->devs[r10_bio->read_slot].bio = bio; 1595 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1596 + rdev->data_offset; 1597 bio->bi_bdev = rdev->bdev; 1598 bio->bi_rw = READ | do_sync; 1599 bio->bi_private = r10_bio; 1600 bio->bi_end_io = raid10_end_read_request; 1601 unplug = 1; 1602 generic_make_request(bio); 1603 } 1604 } 1605 } 1606 if (unplug) 1607 unplug_slaves(mddev); 1608 } 1609 1610 1611 static int init_resync(conf_t *conf) 1612 { 1613 int buffs; 1614 1615 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1616 BUG_ON(conf->r10buf_pool); 1617 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1618 if (!conf->r10buf_pool) 1619 return -ENOMEM; 1620 conf->next_resync = 0; 1621 return 0; 1622 } 1623 1624 /* 1625 * perform a "sync" on one "block" 1626 * 1627 * We need to make sure that no normal I/O request - particularly write 1628 * requests - conflict with active sync requests. 1629 * 1630 * This is achieved by tracking pending requests and a 'barrier' concept 1631 * that can be installed to exclude normal IO requests. 1632 * 1633 * Resync and recovery are handled very differently. 1634 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1635 * 1636 * For resync, we iterate over virtual addresses, read all copies, 1637 * and update if there are differences. If only one copy is live, 1638 * skip it. 1639 * For recovery, we iterate over physical addresses, read a good 1640 * value for each non-in_sync drive, and over-write. 1641 * 1642 * So, for recovery we may have several outstanding complex requests for a 1643 * given address, one for each out-of-sync device. We model this by allocating 1644 * a number of r10_bio structures, one for each out-of-sync device. 1645 * As we setup these structures, we collect all bio's together into a list 1646 * which we then process collectively to add pages, and then process again 1647 * to pass to generic_make_request. 1648 * 1649 * The r10_bio structures are linked using a borrowed master_bio pointer. 1650 * This link is counted in ->remaining. When the r10_bio that points to NULL 1651 * has its remaining count decremented to 0, the whole complex operation 1652 * is complete. 1653 * 1654 */ 1655 1656 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1657 { 1658 conf_t *conf = mddev_to_conf(mddev); 1659 r10bio_t *r10_bio; 1660 struct bio *biolist = NULL, *bio; 1661 sector_t max_sector, nr_sectors; 1662 int disk; 1663 int i; 1664 int max_sync; 1665 int sync_blocks; 1666 1667 sector_t sectors_skipped = 0; 1668 int chunks_skipped = 0; 1669 1670 if (!conf->r10buf_pool) 1671 if (init_resync(conf)) 1672 return 0; 1673 1674 skipped: 1675 max_sector = mddev->size << 1; 1676 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1677 max_sector = mddev->resync_max_sectors; 1678 if (sector_nr >= max_sector) { 1679 /* If we aborted, we need to abort the 1680 * sync on the 'current' bitmap chucks (there can 1681 * be several when recovering multiple devices). 1682 * as we may have started syncing it but not finished. 1683 * We can find the current address in 1684 * mddev->curr_resync, but for recovery, 1685 * we need to convert that to several 1686 * virtual addresses. 1687 */ 1688 if (mddev->curr_resync < max_sector) { /* aborted */ 1689 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1690 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1691 &sync_blocks, 1); 1692 else for (i=0; i<conf->raid_disks; i++) { 1693 sector_t sect = 1694 raid10_find_virt(conf, mddev->curr_resync, i); 1695 bitmap_end_sync(mddev->bitmap, sect, 1696 &sync_blocks, 1); 1697 } 1698 } else /* completed sync */ 1699 conf->fullsync = 0; 1700 1701 bitmap_close_sync(mddev->bitmap); 1702 close_sync(conf); 1703 *skipped = 1; 1704 return sectors_skipped; 1705 } 1706 if (chunks_skipped >= conf->raid_disks) { 1707 /* if there has been nothing to do on any drive, 1708 * then there is nothing to do at all.. 1709 */ 1710 *skipped = 1; 1711 return (max_sector - sector_nr) + sectors_skipped; 1712 } 1713 1714 if (max_sector > mddev->resync_max) 1715 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1716 1717 /* make sure whole request will fit in a chunk - if chunks 1718 * are meaningful 1719 */ 1720 if (conf->near_copies < conf->raid_disks && 1721 max_sector > (sector_nr | conf->chunk_mask)) 1722 max_sector = (sector_nr | conf->chunk_mask) + 1; 1723 /* 1724 * If there is non-resync activity waiting for us then 1725 * put in a delay to throttle resync. 1726 */ 1727 if (!go_faster && conf->nr_waiting) 1728 msleep_interruptible(1000); 1729 1730 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1731 1732 /* Again, very different code for resync and recovery. 1733 * Both must result in an r10bio with a list of bios that 1734 * have bi_end_io, bi_sector, bi_bdev set, 1735 * and bi_private set to the r10bio. 1736 * For recovery, we may actually create several r10bios 1737 * with 2 bios in each, that correspond to the bios in the main one. 1738 * In this case, the subordinate r10bios link back through a 1739 * borrowed master_bio pointer, and the counter in the master 1740 * includes a ref from each subordinate. 1741 */ 1742 /* First, we decide what to do and set ->bi_end_io 1743 * To end_sync_read if we want to read, and 1744 * end_sync_write if we will want to write. 1745 */ 1746 1747 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1748 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1749 /* recovery... the complicated one */ 1750 int i, j, k; 1751 r10_bio = NULL; 1752 1753 for (i=0 ; i<conf->raid_disks; i++) 1754 if (conf->mirrors[i].rdev && 1755 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1756 int still_degraded = 0; 1757 /* want to reconstruct this device */ 1758 r10bio_t *rb2 = r10_bio; 1759 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1760 int must_sync; 1761 /* Unless we are doing a full sync, we only need 1762 * to recover the block if it is set in the bitmap 1763 */ 1764 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1765 &sync_blocks, 1); 1766 if (sync_blocks < max_sync) 1767 max_sync = sync_blocks; 1768 if (!must_sync && 1769 !conf->fullsync) { 1770 /* yep, skip the sync_blocks here, but don't assume 1771 * that there will never be anything to do here 1772 */ 1773 chunks_skipped = -1; 1774 continue; 1775 } 1776 1777 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1778 raise_barrier(conf, rb2 != NULL); 1779 atomic_set(&r10_bio->remaining, 0); 1780 1781 r10_bio->master_bio = (struct bio*)rb2; 1782 if (rb2) 1783 atomic_inc(&rb2->remaining); 1784 r10_bio->mddev = mddev; 1785 set_bit(R10BIO_IsRecover, &r10_bio->state); 1786 r10_bio->sector = sect; 1787 1788 raid10_find_phys(conf, r10_bio); 1789 /* Need to check if this section will still be 1790 * degraded 1791 */ 1792 for (j=0; j<conf->copies;j++) { 1793 int d = r10_bio->devs[j].devnum; 1794 if (conf->mirrors[d].rdev == NULL || 1795 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1796 still_degraded = 1; 1797 break; 1798 } 1799 } 1800 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1801 &sync_blocks, still_degraded); 1802 1803 for (j=0; j<conf->copies;j++) { 1804 int d = r10_bio->devs[j].devnum; 1805 if (conf->mirrors[d].rdev && 1806 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1807 /* This is where we read from */ 1808 bio = r10_bio->devs[0].bio; 1809 bio->bi_next = biolist; 1810 biolist = bio; 1811 bio->bi_private = r10_bio; 1812 bio->bi_end_io = end_sync_read; 1813 bio->bi_rw = READ; 1814 bio->bi_sector = r10_bio->devs[j].addr + 1815 conf->mirrors[d].rdev->data_offset; 1816 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1817 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1818 atomic_inc(&r10_bio->remaining); 1819 /* and we write to 'i' */ 1820 1821 for (k=0; k<conf->copies; k++) 1822 if (r10_bio->devs[k].devnum == i) 1823 break; 1824 BUG_ON(k == conf->copies); 1825 bio = r10_bio->devs[1].bio; 1826 bio->bi_next = biolist; 1827 biolist = bio; 1828 bio->bi_private = r10_bio; 1829 bio->bi_end_io = end_sync_write; 1830 bio->bi_rw = WRITE; 1831 bio->bi_sector = r10_bio->devs[k].addr + 1832 conf->mirrors[i].rdev->data_offset; 1833 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1834 1835 r10_bio->devs[0].devnum = d; 1836 r10_bio->devs[1].devnum = i; 1837 1838 break; 1839 } 1840 } 1841 if (j == conf->copies) { 1842 /* Cannot recover, so abort the recovery */ 1843 put_buf(r10_bio); 1844 if (rb2) 1845 atomic_dec(&rb2->remaining); 1846 r10_bio = rb2; 1847 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery)) 1848 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1849 mdname(mddev)); 1850 break; 1851 } 1852 } 1853 if (biolist == NULL) { 1854 while (r10_bio) { 1855 r10bio_t *rb2 = r10_bio; 1856 r10_bio = (r10bio_t*) rb2->master_bio; 1857 rb2->master_bio = NULL; 1858 put_buf(rb2); 1859 } 1860 goto giveup; 1861 } 1862 } else { 1863 /* resync. Schedule a read for every block at this virt offset */ 1864 int count = 0; 1865 1866 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1867 &sync_blocks, mddev->degraded) && 1868 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1869 /* We can skip this block */ 1870 *skipped = 1; 1871 return sync_blocks + sectors_skipped; 1872 } 1873 if (sync_blocks < max_sync) 1874 max_sync = sync_blocks; 1875 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1876 1877 r10_bio->mddev = mddev; 1878 atomic_set(&r10_bio->remaining, 0); 1879 raise_barrier(conf, 0); 1880 conf->next_resync = sector_nr; 1881 1882 r10_bio->master_bio = NULL; 1883 r10_bio->sector = sector_nr; 1884 set_bit(R10BIO_IsSync, &r10_bio->state); 1885 raid10_find_phys(conf, r10_bio); 1886 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1887 1888 for (i=0; i<conf->copies; i++) { 1889 int d = r10_bio->devs[i].devnum; 1890 bio = r10_bio->devs[i].bio; 1891 bio->bi_end_io = NULL; 1892 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1893 if (conf->mirrors[d].rdev == NULL || 1894 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1895 continue; 1896 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1897 atomic_inc(&r10_bio->remaining); 1898 bio->bi_next = biolist; 1899 biolist = bio; 1900 bio->bi_private = r10_bio; 1901 bio->bi_end_io = end_sync_read; 1902 bio->bi_rw = READ; 1903 bio->bi_sector = r10_bio->devs[i].addr + 1904 conf->mirrors[d].rdev->data_offset; 1905 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1906 count++; 1907 } 1908 1909 if (count < 2) { 1910 for (i=0; i<conf->copies; i++) { 1911 int d = r10_bio->devs[i].devnum; 1912 if (r10_bio->devs[i].bio->bi_end_io) 1913 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1914 } 1915 put_buf(r10_bio); 1916 biolist = NULL; 1917 goto giveup; 1918 } 1919 } 1920 1921 for (bio = biolist; bio ; bio=bio->bi_next) { 1922 1923 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1924 if (bio->bi_end_io) 1925 bio->bi_flags |= 1 << BIO_UPTODATE; 1926 bio->bi_vcnt = 0; 1927 bio->bi_idx = 0; 1928 bio->bi_phys_segments = 0; 1929 bio->bi_hw_segments = 0; 1930 bio->bi_size = 0; 1931 } 1932 1933 nr_sectors = 0; 1934 if (sector_nr + max_sync < max_sector) 1935 max_sector = sector_nr + max_sync; 1936 do { 1937 struct page *page; 1938 int len = PAGE_SIZE; 1939 disk = 0; 1940 if (sector_nr + (len>>9) > max_sector) 1941 len = (max_sector - sector_nr) << 9; 1942 if (len == 0) 1943 break; 1944 for (bio= biolist ; bio ; bio=bio->bi_next) { 1945 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1946 if (bio_add_page(bio, page, len, 0) == 0) { 1947 /* stop here */ 1948 struct bio *bio2; 1949 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1950 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1951 /* remove last page from this bio */ 1952 bio2->bi_vcnt--; 1953 bio2->bi_size -= len; 1954 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1955 } 1956 goto bio_full; 1957 } 1958 disk = i; 1959 } 1960 nr_sectors += len>>9; 1961 sector_nr += len>>9; 1962 } while (biolist->bi_vcnt < RESYNC_PAGES); 1963 bio_full: 1964 r10_bio->sectors = nr_sectors; 1965 1966 while (biolist) { 1967 bio = biolist; 1968 biolist = biolist->bi_next; 1969 1970 bio->bi_next = NULL; 1971 r10_bio = bio->bi_private; 1972 r10_bio->sectors = nr_sectors; 1973 1974 if (bio->bi_end_io == end_sync_read) { 1975 md_sync_acct(bio->bi_bdev, nr_sectors); 1976 generic_make_request(bio); 1977 } 1978 } 1979 1980 if (sectors_skipped) 1981 /* pretend they weren't skipped, it makes 1982 * no important difference in this case 1983 */ 1984 md_done_sync(mddev, sectors_skipped, 1); 1985 1986 return sectors_skipped + nr_sectors; 1987 giveup: 1988 /* There is nowhere to write, so all non-sync 1989 * drives must be failed, so try the next chunk... 1990 */ 1991 { 1992 sector_t sec = max_sector - sector_nr; 1993 sectors_skipped += sec; 1994 chunks_skipped ++; 1995 sector_nr = max_sector; 1996 goto skipped; 1997 } 1998 } 1999 2000 static int run(mddev_t *mddev) 2001 { 2002 conf_t *conf; 2003 int i, disk_idx; 2004 mirror_info_t *disk; 2005 mdk_rdev_t *rdev; 2006 struct list_head *tmp; 2007 int nc, fc, fo; 2008 sector_t stride, size; 2009 2010 if (mddev->chunk_size == 0) { 2011 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 2012 return -EINVAL; 2013 } 2014 2015 nc = mddev->layout & 255; 2016 fc = (mddev->layout >> 8) & 255; 2017 fo = mddev->layout & (1<<16); 2018 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2019 (mddev->layout >> 17)) { 2020 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 2021 mdname(mddev), mddev->layout); 2022 goto out; 2023 } 2024 /* 2025 * copy the already verified devices into our private RAID10 2026 * bookkeeping area. [whatever we allocate in run(), 2027 * should be freed in stop()] 2028 */ 2029 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2030 mddev->private = conf; 2031 if (!conf) { 2032 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2033 mdname(mddev)); 2034 goto out; 2035 } 2036 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2037 GFP_KERNEL); 2038 if (!conf->mirrors) { 2039 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2040 mdname(mddev)); 2041 goto out_free_conf; 2042 } 2043 2044 conf->tmppage = alloc_page(GFP_KERNEL); 2045 if (!conf->tmppage) 2046 goto out_free_conf; 2047 2048 conf->mddev = mddev; 2049 conf->raid_disks = mddev->raid_disks; 2050 conf->near_copies = nc; 2051 conf->far_copies = fc; 2052 conf->copies = nc*fc; 2053 conf->far_offset = fo; 2054 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 2055 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 2056 size = mddev->size >> (conf->chunk_shift-1); 2057 sector_div(size, fc); 2058 size = size * conf->raid_disks; 2059 sector_div(size, nc); 2060 /* 'size' is now the number of chunks in the array */ 2061 /* calculate "used chunks per device" in 'stride' */ 2062 stride = size * conf->copies; 2063 2064 /* We need to round up when dividing by raid_disks to 2065 * get the stride size. 2066 */ 2067 stride += conf->raid_disks - 1; 2068 sector_div(stride, conf->raid_disks); 2069 mddev->size = stride << (conf->chunk_shift-1); 2070 2071 if (fo) 2072 stride = 1; 2073 else 2074 sector_div(stride, fc); 2075 conf->stride = stride << conf->chunk_shift; 2076 2077 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2078 r10bio_pool_free, conf); 2079 if (!conf->r10bio_pool) { 2080 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2081 mdname(mddev)); 2082 goto out_free_conf; 2083 } 2084 2085 rdev_for_each(rdev, tmp, mddev) { 2086 disk_idx = rdev->raid_disk; 2087 if (disk_idx >= mddev->raid_disks 2088 || disk_idx < 0) 2089 continue; 2090 disk = conf->mirrors + disk_idx; 2091 2092 disk->rdev = rdev; 2093 2094 blk_queue_stack_limits(mddev->queue, 2095 rdev->bdev->bd_disk->queue); 2096 /* as we don't honour merge_bvec_fn, we must never risk 2097 * violating it, so limit ->max_sector to one PAGE, as 2098 * a one page request is never in violation. 2099 */ 2100 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2101 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2102 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2103 2104 disk->head_position = 0; 2105 } 2106 spin_lock_init(&conf->device_lock); 2107 INIT_LIST_HEAD(&conf->retry_list); 2108 2109 spin_lock_init(&conf->resync_lock); 2110 init_waitqueue_head(&conf->wait_barrier); 2111 2112 /* need to check that every block has at least one working mirror */ 2113 if (!enough(conf)) { 2114 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2115 mdname(mddev)); 2116 goto out_free_conf; 2117 } 2118 2119 mddev->degraded = 0; 2120 for (i = 0; i < conf->raid_disks; i++) { 2121 2122 disk = conf->mirrors + i; 2123 2124 if (!disk->rdev || 2125 !test_bit(In_sync, &disk->rdev->flags)) { 2126 disk->head_position = 0; 2127 mddev->degraded++; 2128 } 2129 } 2130 2131 2132 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2133 if (!mddev->thread) { 2134 printk(KERN_ERR 2135 "raid10: couldn't allocate thread for %s\n", 2136 mdname(mddev)); 2137 goto out_free_conf; 2138 } 2139 2140 printk(KERN_INFO 2141 "raid10: raid set %s active with %d out of %d devices\n", 2142 mdname(mddev), mddev->raid_disks - mddev->degraded, 2143 mddev->raid_disks); 2144 /* 2145 * Ok, everything is just fine now 2146 */ 2147 mddev->array_size = size << (conf->chunk_shift-1); 2148 mddev->resync_max_sectors = size << conf->chunk_shift; 2149 2150 mddev->queue->unplug_fn = raid10_unplug; 2151 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2152 mddev->queue->backing_dev_info.congested_data = mddev; 2153 2154 /* Calculate max read-ahead size. 2155 * We need to readahead at least twice a whole stripe.... 2156 * maybe... 2157 */ 2158 { 2159 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2160 stripe /= conf->near_copies; 2161 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2162 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2163 } 2164 2165 if (conf->near_copies < mddev->raid_disks) 2166 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2167 return 0; 2168 2169 out_free_conf: 2170 if (conf->r10bio_pool) 2171 mempool_destroy(conf->r10bio_pool); 2172 safe_put_page(conf->tmppage); 2173 kfree(conf->mirrors); 2174 kfree(conf); 2175 mddev->private = NULL; 2176 out: 2177 return -EIO; 2178 } 2179 2180 static int stop(mddev_t *mddev) 2181 { 2182 conf_t *conf = mddev_to_conf(mddev); 2183 2184 md_unregister_thread(mddev->thread); 2185 mddev->thread = NULL; 2186 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2187 if (conf->r10bio_pool) 2188 mempool_destroy(conf->r10bio_pool); 2189 kfree(conf->mirrors); 2190 kfree(conf); 2191 mddev->private = NULL; 2192 return 0; 2193 } 2194 2195 static void raid10_quiesce(mddev_t *mddev, int state) 2196 { 2197 conf_t *conf = mddev_to_conf(mddev); 2198 2199 switch(state) { 2200 case 1: 2201 raise_barrier(conf, 0); 2202 break; 2203 case 0: 2204 lower_barrier(conf); 2205 break; 2206 } 2207 if (mddev->thread) { 2208 if (mddev->bitmap) 2209 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2210 else 2211 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2212 md_wakeup_thread(mddev->thread); 2213 } 2214 } 2215 2216 static struct mdk_personality raid10_personality = 2217 { 2218 .name = "raid10", 2219 .level = 10, 2220 .owner = THIS_MODULE, 2221 .make_request = make_request, 2222 .run = run, 2223 .stop = stop, 2224 .status = status, 2225 .error_handler = error, 2226 .hot_add_disk = raid10_add_disk, 2227 .hot_remove_disk= raid10_remove_disk, 2228 .spare_active = raid10_spare_active, 2229 .sync_request = sync_request, 2230 .quiesce = raid10_quiesce, 2231 }; 2232 2233 static int __init raid_init(void) 2234 { 2235 return register_md_personality(&raid10_personality); 2236 } 2237 2238 static void raid_exit(void) 2239 { 2240 unregister_md_personality(&raid10_personality); 2241 } 2242 2243 module_init(raid_init); 2244 module_exit(raid_exit); 2245 MODULE_LICENSE("GPL"); 2246 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2247 MODULE_ALIAS("md-raid10"); 2248 MODULE_ALIAS("md-level-10"); 2249