xref: /linux/drivers/md/raid10.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
24 
25 /*
26  * RAID10 provides a combination of RAID0 and RAID1 functionality.
27  * The layout of data is defined by
28  *    chunk_size
29  *    raid_disks
30  *    near_copies (stored in low byte of layout)
31  *    far_copies (stored in second byte of layout)
32  *    far_offset (stored in bit 16 of layout )
33  *
34  * The data to be stored is divided into chunks using chunksize.
35  * Each device is divided into far_copies sections.
36  * In each section, chunks are laid out in a style similar to raid0, but
37  * near_copies copies of each chunk is stored (each on a different drive).
38  * The starting device for each section is offset near_copies from the starting
39  * device of the previous section.
40  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41  * drive.
42  * near_copies and far_copies must be at least one, and their product is at most
43  * raid_disks.
44  *
45  * If far_offset is true, then the far_copies are handled a bit differently.
46  * The copies are still in different stripes, but instead of be very far apart
47  * on disk, there are adjacent stripes.
48  */
49 
50 /*
51  * Number of guaranteed r10bios in case of extreme VM load:
52  */
53 #define	NR_RAID10_BIOS 256
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	conf_t *conf = data;
63 	r10bio_t *r10_bio;
64 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
65 
66 	/* allocate a r10bio with room for raid_disks entries in the bios array */
67 	r10_bio = kzalloc(size, gfp_flags);
68 	if (!r10_bio)
69 		unplug_slaves(conf->mddev);
70 
71 	return r10_bio;
72 }
73 
74 static void r10bio_pool_free(void *r10_bio, void *data)
75 {
76 	kfree(r10_bio);
77 }
78 
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84 
85 /*
86  * When performing a resync, we need to read and compare, so
87  * we need as many pages are there are copies.
88  * When performing a recovery, we need 2 bios, one for read,
89  * one for write (we recover only one drive per r10buf)
90  *
91  */
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	conf_t *conf = data;
95 	struct page *page;
96 	r10bio_t *r10_bio;
97 	struct bio *bio;
98 	int i, j;
99 	int nalloc;
100 
101 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 	if (!r10_bio) {
103 		unplug_slaves(conf->mddev);
104 		return NULL;
105 	}
106 
107 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108 		nalloc = conf->copies; /* resync */
109 	else
110 		nalloc = 2; /* recovery */
111 
112 	/*
113 	 * Allocate bios.
114 	 */
115 	for (j = nalloc ; j-- ; ) {
116 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
117 		if (!bio)
118 			goto out_free_bio;
119 		r10_bio->devs[j].bio = bio;
120 	}
121 	/*
122 	 * Allocate RESYNC_PAGES data pages and attach them
123 	 * where needed.
124 	 */
125 	for (j = 0 ; j < nalloc; j++) {
126 		bio = r10_bio->devs[j].bio;
127 		for (i = 0; i < RESYNC_PAGES; i++) {
128 			page = alloc_page(gfp_flags);
129 			if (unlikely(!page))
130 				goto out_free_pages;
131 
132 			bio->bi_io_vec[i].bv_page = page;
133 		}
134 	}
135 
136 	return r10_bio;
137 
138 out_free_pages:
139 	for ( ; i > 0 ; i--)
140 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
141 	while (j--)
142 		for (i = 0; i < RESYNC_PAGES ; i++)
143 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
144 	j = -1;
145 out_free_bio:
146 	while ( ++j < nalloc )
147 		bio_put(r10_bio->devs[j].bio);
148 	r10bio_pool_free(r10_bio, conf);
149 	return NULL;
150 }
151 
152 static void r10buf_pool_free(void *__r10_bio, void *data)
153 {
154 	int i;
155 	conf_t *conf = data;
156 	r10bio_t *r10bio = __r10_bio;
157 	int j;
158 
159 	for (j=0; j < conf->copies; j++) {
160 		struct bio *bio = r10bio->devs[j].bio;
161 		if (bio) {
162 			for (i = 0; i < RESYNC_PAGES; i++) {
163 				safe_put_page(bio->bi_io_vec[i].bv_page);
164 				bio->bi_io_vec[i].bv_page = NULL;
165 			}
166 			bio_put(bio);
167 		}
168 	}
169 	r10bio_pool_free(r10bio, conf);
170 }
171 
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
173 {
174 	int i;
175 
176 	for (i = 0; i < conf->copies; i++) {
177 		struct bio **bio = & r10_bio->devs[i].bio;
178 		if (*bio && *bio != IO_BLOCKED)
179 			bio_put(*bio);
180 		*bio = NULL;
181 	}
182 }
183 
184 static void free_r10bio(r10bio_t *r10_bio)
185 {
186 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
187 
188 	/*
189 	 * Wake up any possible resync thread that waits for the device
190 	 * to go idle.
191 	 */
192 	allow_barrier(conf);
193 
194 	put_all_bios(conf, r10_bio);
195 	mempool_free(r10_bio, conf->r10bio_pool);
196 }
197 
198 static void put_buf(r10bio_t *r10_bio)
199 {
200 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
201 
202 	mempool_free(r10_bio, conf->r10buf_pool);
203 
204 	lower_barrier(conf);
205 }
206 
207 static void reschedule_retry(r10bio_t *r10_bio)
208 {
209 	unsigned long flags;
210 	mddev_t *mddev = r10_bio->mddev;
211 	conf_t *conf = mddev_to_conf(mddev);
212 
213 	spin_lock_irqsave(&conf->device_lock, flags);
214 	list_add(&r10_bio->retry_list, &conf->retry_list);
215 	conf->nr_queued ++;
216 	spin_unlock_irqrestore(&conf->device_lock, flags);
217 
218 	md_wakeup_thread(mddev->thread);
219 }
220 
221 /*
222  * raid_end_bio_io() is called when we have finished servicing a mirrored
223  * operation and are ready to return a success/failure code to the buffer
224  * cache layer.
225  */
226 static void raid_end_bio_io(r10bio_t *r10_bio)
227 {
228 	struct bio *bio = r10_bio->master_bio;
229 
230 	bio_endio(bio,
231 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232 	free_r10bio(r10_bio);
233 }
234 
235 /*
236  * Update disk head position estimator based on IRQ completion info.
237  */
238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
239 {
240 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
241 
242 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243 		r10_bio->devs[slot].addr + (r10_bio->sectors);
244 }
245 
246 static void raid10_end_read_request(struct bio *bio, int error)
247 {
248 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
250 	int slot, dev;
251 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
252 
253 
254 	slot = r10_bio->read_slot;
255 	dev = r10_bio->devs[slot].devnum;
256 	/*
257 	 * this branch is our 'one mirror IO has finished' event handler:
258 	 */
259 	update_head_pos(slot, r10_bio);
260 
261 	if (uptodate) {
262 		/*
263 		 * Set R10BIO_Uptodate in our master bio, so that
264 		 * we will return a good error code to the higher
265 		 * levels even if IO on some other mirrored buffer fails.
266 		 *
267 		 * The 'master' represents the composite IO operation to
268 		 * user-side. So if something waits for IO, then it will
269 		 * wait for the 'master' bio.
270 		 */
271 		set_bit(R10BIO_Uptodate, &r10_bio->state);
272 		raid_end_bio_io(r10_bio);
273 	} else {
274 		/*
275 		 * oops, read error:
276 		 */
277 		char b[BDEVNAME_SIZE];
278 		if (printk_ratelimit())
279 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
280 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
281 		reschedule_retry(r10_bio);
282 	}
283 
284 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
285 }
286 
287 static void raid10_end_write_request(struct bio *bio, int error)
288 {
289 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
291 	int slot, dev;
292 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
293 
294 	for (slot = 0; slot < conf->copies; slot++)
295 		if (r10_bio->devs[slot].bio == bio)
296 			break;
297 	dev = r10_bio->devs[slot].devnum;
298 
299 	/*
300 	 * this branch is our 'one mirror IO has finished' event handler:
301 	 */
302 	if (!uptodate) {
303 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
304 		/* an I/O failed, we can't clear the bitmap */
305 		set_bit(R10BIO_Degraded, &r10_bio->state);
306 	} else
307 		/*
308 		 * Set R10BIO_Uptodate in our master bio, so that
309 		 * we will return a good error code for to the higher
310 		 * levels even if IO on some other mirrored buffer fails.
311 		 *
312 		 * The 'master' represents the composite IO operation to
313 		 * user-side. So if something waits for IO, then it will
314 		 * wait for the 'master' bio.
315 		 */
316 		set_bit(R10BIO_Uptodate, &r10_bio->state);
317 
318 	update_head_pos(slot, r10_bio);
319 
320 	/*
321 	 *
322 	 * Let's see if all mirrored write operations have finished
323 	 * already.
324 	 */
325 	if (atomic_dec_and_test(&r10_bio->remaining)) {
326 		/* clear the bitmap if all writes complete successfully */
327 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
328 				r10_bio->sectors,
329 				!test_bit(R10BIO_Degraded, &r10_bio->state),
330 				0);
331 		md_write_end(r10_bio->mddev);
332 		raid_end_bio_io(r10_bio);
333 	}
334 
335 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
336 }
337 
338 
339 /*
340  * RAID10 layout manager
341  * Aswell as the chunksize and raid_disks count, there are two
342  * parameters: near_copies and far_copies.
343  * near_copies * far_copies must be <= raid_disks.
344  * Normally one of these will be 1.
345  * If both are 1, we get raid0.
346  * If near_copies == raid_disks, we get raid1.
347  *
348  * Chunks are layed out in raid0 style with near_copies copies of the
349  * first chunk, followed by near_copies copies of the next chunk and
350  * so on.
351  * If far_copies > 1, then after 1/far_copies of the array has been assigned
352  * as described above, we start again with a device offset of near_copies.
353  * So we effectively have another copy of the whole array further down all
354  * the drives, but with blocks on different drives.
355  * With this layout, and block is never stored twice on the one device.
356  *
357  * raid10_find_phys finds the sector offset of a given virtual sector
358  * on each device that it is on.
359  *
360  * raid10_find_virt does the reverse mapping, from a device and a
361  * sector offset to a virtual address
362  */
363 
364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
365 {
366 	int n,f;
367 	sector_t sector;
368 	sector_t chunk;
369 	sector_t stripe;
370 	int dev;
371 
372 	int slot = 0;
373 
374 	/* now calculate first sector/dev */
375 	chunk = r10bio->sector >> conf->chunk_shift;
376 	sector = r10bio->sector & conf->chunk_mask;
377 
378 	chunk *= conf->near_copies;
379 	stripe = chunk;
380 	dev = sector_div(stripe, conf->raid_disks);
381 	if (conf->far_offset)
382 		stripe *= conf->far_copies;
383 
384 	sector += stripe << conf->chunk_shift;
385 
386 	/* and calculate all the others */
387 	for (n=0; n < conf->near_copies; n++) {
388 		int d = dev;
389 		sector_t s = sector;
390 		r10bio->devs[slot].addr = sector;
391 		r10bio->devs[slot].devnum = d;
392 		slot++;
393 
394 		for (f = 1; f < conf->far_copies; f++) {
395 			d += conf->near_copies;
396 			if (d >= conf->raid_disks)
397 				d -= conf->raid_disks;
398 			s += conf->stride;
399 			r10bio->devs[slot].devnum = d;
400 			r10bio->devs[slot].addr = s;
401 			slot++;
402 		}
403 		dev++;
404 		if (dev >= conf->raid_disks) {
405 			dev = 0;
406 			sector += (conf->chunk_mask + 1);
407 		}
408 	}
409 	BUG_ON(slot != conf->copies);
410 }
411 
412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
413 {
414 	sector_t offset, chunk, vchunk;
415 
416 	offset = sector & conf->chunk_mask;
417 	if (conf->far_offset) {
418 		int fc;
419 		chunk = sector >> conf->chunk_shift;
420 		fc = sector_div(chunk, conf->far_copies);
421 		dev -= fc * conf->near_copies;
422 		if (dev < 0)
423 			dev += conf->raid_disks;
424 	} else {
425 		while (sector >= conf->stride) {
426 			sector -= conf->stride;
427 			if (dev < conf->near_copies)
428 				dev += conf->raid_disks - conf->near_copies;
429 			else
430 				dev -= conf->near_copies;
431 		}
432 		chunk = sector >> conf->chunk_shift;
433 	}
434 	vchunk = chunk * conf->raid_disks + dev;
435 	sector_div(vchunk, conf->near_copies);
436 	return (vchunk << conf->chunk_shift) + offset;
437 }
438 
439 /**
440  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
441  *	@q: request queue
442  *	@bio: the buffer head that's been built up so far
443  *	@biovec: the request that could be merged to it.
444  *
445  *	Return amount of bytes we can accept at this offset
446  *      If near_copies == raid_disk, there are no striping issues,
447  *      but in that case, the function isn't called at all.
448  */
449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio,
450 				struct bio_vec *bio_vec)
451 {
452 	mddev_t *mddev = q->queuedata;
453 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
454 	int max;
455 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
456 	unsigned int bio_sectors = bio->bi_size >> 9;
457 
458 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
459 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
460 	if (max <= bio_vec->bv_len && bio_sectors == 0)
461 		return bio_vec->bv_len;
462 	else
463 		return max;
464 }
465 
466 /*
467  * This routine returns the disk from which the requested read should
468  * be done. There is a per-array 'next expected sequential IO' sector
469  * number - if this matches on the next IO then we use the last disk.
470  * There is also a per-disk 'last know head position' sector that is
471  * maintained from IRQ contexts, both the normal and the resync IO
472  * completion handlers update this position correctly. If there is no
473  * perfect sequential match then we pick the disk whose head is closest.
474  *
475  * If there are 2 mirrors in the same 2 devices, performance degrades
476  * because position is mirror, not device based.
477  *
478  * The rdev for the device selected will have nr_pending incremented.
479  */
480 
481 /*
482  * FIXME: possibly should rethink readbalancing and do it differently
483  * depending on near_copies / far_copies geometry.
484  */
485 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
486 {
487 	const unsigned long this_sector = r10_bio->sector;
488 	int disk, slot, nslot;
489 	const int sectors = r10_bio->sectors;
490 	sector_t new_distance, current_distance;
491 	mdk_rdev_t *rdev;
492 
493 	raid10_find_phys(conf, r10_bio);
494 	rcu_read_lock();
495 	/*
496 	 * Check if we can balance. We can balance on the whole
497 	 * device if no resync is going on (recovery is ok), or below
498 	 * the resync window. We take the first readable disk when
499 	 * above the resync window.
500 	 */
501 	if (conf->mddev->recovery_cp < MaxSector
502 	    && (this_sector + sectors >= conf->next_resync)) {
503 		/* make sure that disk is operational */
504 		slot = 0;
505 		disk = r10_bio->devs[slot].devnum;
506 
507 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
508 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
509 		       !test_bit(In_sync, &rdev->flags)) {
510 			slot++;
511 			if (slot == conf->copies) {
512 				slot = 0;
513 				disk = -1;
514 				break;
515 			}
516 			disk = r10_bio->devs[slot].devnum;
517 		}
518 		goto rb_out;
519 	}
520 
521 
522 	/* make sure the disk is operational */
523 	slot = 0;
524 	disk = r10_bio->devs[slot].devnum;
525 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
526 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
527 	       !test_bit(In_sync, &rdev->flags)) {
528 		slot ++;
529 		if (slot == conf->copies) {
530 			disk = -1;
531 			goto rb_out;
532 		}
533 		disk = r10_bio->devs[slot].devnum;
534 	}
535 
536 
537 	current_distance = abs(r10_bio->devs[slot].addr -
538 			       conf->mirrors[disk].head_position);
539 
540 	/* Find the disk whose head is closest,
541 	 * or - for far > 1 - find the closest to partition beginning */
542 
543 	for (nslot = slot; nslot < conf->copies; nslot++) {
544 		int ndisk = r10_bio->devs[nslot].devnum;
545 
546 
547 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
548 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
549 		    !test_bit(In_sync, &rdev->flags))
550 			continue;
551 
552 		/* This optimisation is debatable, and completely destroys
553 		 * sequential read speed for 'far copies' arrays.  So only
554 		 * keep it for 'near' arrays, and review those later.
555 		 */
556 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
557 			disk = ndisk;
558 			slot = nslot;
559 			break;
560 		}
561 
562 		/* for far > 1 always use the lowest address */
563 		if (conf->far_copies > 1)
564 			new_distance = r10_bio->devs[nslot].addr;
565 		else
566 			new_distance = abs(r10_bio->devs[nslot].addr -
567 					   conf->mirrors[ndisk].head_position);
568 		if (new_distance < current_distance) {
569 			current_distance = new_distance;
570 			disk = ndisk;
571 			slot = nslot;
572 		}
573 	}
574 
575 rb_out:
576 	r10_bio->read_slot = slot;
577 /*	conf->next_seq_sect = this_sector + sectors;*/
578 
579 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
580 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
581 	else
582 		disk = -1;
583 	rcu_read_unlock();
584 
585 	return disk;
586 }
587 
588 static void unplug_slaves(mddev_t *mddev)
589 {
590 	conf_t *conf = mddev_to_conf(mddev);
591 	int i;
592 
593 	rcu_read_lock();
594 	for (i=0; i<mddev->raid_disks; i++) {
595 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
596 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
597 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
598 
599 			atomic_inc(&rdev->nr_pending);
600 			rcu_read_unlock();
601 
602 			blk_unplug(r_queue);
603 
604 			rdev_dec_pending(rdev, mddev);
605 			rcu_read_lock();
606 		}
607 	}
608 	rcu_read_unlock();
609 }
610 
611 static void raid10_unplug(struct request_queue *q)
612 {
613 	mddev_t *mddev = q->queuedata;
614 
615 	unplug_slaves(q->queuedata);
616 	md_wakeup_thread(mddev->thread);
617 }
618 
619 static int raid10_congested(void *data, int bits)
620 {
621 	mddev_t *mddev = data;
622 	conf_t *conf = mddev_to_conf(mddev);
623 	int i, ret = 0;
624 
625 	rcu_read_lock();
626 	for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
627 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
628 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
629 			struct request_queue *q = bdev_get_queue(rdev->bdev);
630 
631 			ret |= bdi_congested(&q->backing_dev_info, bits);
632 		}
633 	}
634 	rcu_read_unlock();
635 	return ret;
636 }
637 
638 static int flush_pending_writes(conf_t *conf)
639 {
640 	/* Any writes that have been queued but are awaiting
641 	 * bitmap updates get flushed here.
642 	 * We return 1 if any requests were actually submitted.
643 	 */
644 	int rv = 0;
645 
646 	spin_lock_irq(&conf->device_lock);
647 
648 	if (conf->pending_bio_list.head) {
649 		struct bio *bio;
650 		bio = bio_list_get(&conf->pending_bio_list);
651 		blk_remove_plug(conf->mddev->queue);
652 		spin_unlock_irq(&conf->device_lock);
653 		/* flush any pending bitmap writes to disk
654 		 * before proceeding w/ I/O */
655 		bitmap_unplug(conf->mddev->bitmap);
656 
657 		while (bio) { /* submit pending writes */
658 			struct bio *next = bio->bi_next;
659 			bio->bi_next = NULL;
660 			generic_make_request(bio);
661 			bio = next;
662 		}
663 		rv = 1;
664 	} else
665 		spin_unlock_irq(&conf->device_lock);
666 	return rv;
667 }
668 /* Barriers....
669  * Sometimes we need to suspend IO while we do something else,
670  * either some resync/recovery, or reconfigure the array.
671  * To do this we raise a 'barrier'.
672  * The 'barrier' is a counter that can be raised multiple times
673  * to count how many activities are happening which preclude
674  * normal IO.
675  * We can only raise the barrier if there is no pending IO.
676  * i.e. if nr_pending == 0.
677  * We choose only to raise the barrier if no-one is waiting for the
678  * barrier to go down.  This means that as soon as an IO request
679  * is ready, no other operations which require a barrier will start
680  * until the IO request has had a chance.
681  *
682  * So: regular IO calls 'wait_barrier'.  When that returns there
683  *    is no backgroup IO happening,  It must arrange to call
684  *    allow_barrier when it has finished its IO.
685  * backgroup IO calls must call raise_barrier.  Once that returns
686  *    there is no normal IO happeing.  It must arrange to call
687  *    lower_barrier when the particular background IO completes.
688  */
689 #define RESYNC_DEPTH 32
690 
691 static void raise_barrier(conf_t *conf, int force)
692 {
693 	BUG_ON(force && !conf->barrier);
694 	spin_lock_irq(&conf->resync_lock);
695 
696 	/* Wait until no block IO is waiting (unless 'force') */
697 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
698 			    conf->resync_lock,
699 			    raid10_unplug(conf->mddev->queue));
700 
701 	/* block any new IO from starting */
702 	conf->barrier++;
703 
704 	/* No wait for all pending IO to complete */
705 	wait_event_lock_irq(conf->wait_barrier,
706 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
707 			    conf->resync_lock,
708 			    raid10_unplug(conf->mddev->queue));
709 
710 	spin_unlock_irq(&conf->resync_lock);
711 }
712 
713 static void lower_barrier(conf_t *conf)
714 {
715 	unsigned long flags;
716 	spin_lock_irqsave(&conf->resync_lock, flags);
717 	conf->barrier--;
718 	spin_unlock_irqrestore(&conf->resync_lock, flags);
719 	wake_up(&conf->wait_barrier);
720 }
721 
722 static void wait_barrier(conf_t *conf)
723 {
724 	spin_lock_irq(&conf->resync_lock);
725 	if (conf->barrier) {
726 		conf->nr_waiting++;
727 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
728 				    conf->resync_lock,
729 				    raid10_unplug(conf->mddev->queue));
730 		conf->nr_waiting--;
731 	}
732 	conf->nr_pending++;
733 	spin_unlock_irq(&conf->resync_lock);
734 }
735 
736 static void allow_barrier(conf_t *conf)
737 {
738 	unsigned long flags;
739 	spin_lock_irqsave(&conf->resync_lock, flags);
740 	conf->nr_pending--;
741 	spin_unlock_irqrestore(&conf->resync_lock, flags);
742 	wake_up(&conf->wait_barrier);
743 }
744 
745 static void freeze_array(conf_t *conf)
746 {
747 	/* stop syncio and normal IO and wait for everything to
748 	 * go quiet.
749 	 * We increment barrier and nr_waiting, and then
750 	 * wait until nr_pending match nr_queued+1
751 	 * This is called in the context of one normal IO request
752 	 * that has failed. Thus any sync request that might be pending
753 	 * will be blocked by nr_pending, and we need to wait for
754 	 * pending IO requests to complete or be queued for re-try.
755 	 * Thus the number queued (nr_queued) plus this request (1)
756 	 * must match the number of pending IOs (nr_pending) before
757 	 * we continue.
758 	 */
759 	spin_lock_irq(&conf->resync_lock);
760 	conf->barrier++;
761 	conf->nr_waiting++;
762 	wait_event_lock_irq(conf->wait_barrier,
763 			    conf->nr_pending == conf->nr_queued+1,
764 			    conf->resync_lock,
765 			    ({ flush_pending_writes(conf);
766 			       raid10_unplug(conf->mddev->queue); }));
767 	spin_unlock_irq(&conf->resync_lock);
768 }
769 
770 static void unfreeze_array(conf_t *conf)
771 {
772 	/* reverse the effect of the freeze */
773 	spin_lock_irq(&conf->resync_lock);
774 	conf->barrier--;
775 	conf->nr_waiting--;
776 	wake_up(&conf->wait_barrier);
777 	spin_unlock_irq(&conf->resync_lock);
778 }
779 
780 static int make_request(struct request_queue *q, struct bio * bio)
781 {
782 	mddev_t *mddev = q->queuedata;
783 	conf_t *conf = mddev_to_conf(mddev);
784 	mirror_info_t *mirror;
785 	r10bio_t *r10_bio;
786 	struct bio *read_bio;
787 	int i;
788 	int chunk_sects = conf->chunk_mask + 1;
789 	const int rw = bio_data_dir(bio);
790 	const int do_sync = bio_sync(bio);
791 	struct bio_list bl;
792 	unsigned long flags;
793 	mdk_rdev_t *blocked_rdev;
794 
795 	if (unlikely(bio_barrier(bio))) {
796 		bio_endio(bio, -EOPNOTSUPP);
797 		return 0;
798 	}
799 
800 	/* If this request crosses a chunk boundary, we need to
801 	 * split it.  This will only happen for 1 PAGE (or less) requests.
802 	 */
803 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
804 		      > chunk_sects &&
805 		    conf->near_copies < conf->raid_disks)) {
806 		struct bio_pair *bp;
807 		/* Sanity check -- queue functions should prevent this happening */
808 		if (bio->bi_vcnt != 1 ||
809 		    bio->bi_idx != 0)
810 			goto bad_map;
811 		/* This is a one page bio that upper layers
812 		 * refuse to split for us, so we need to split it.
813 		 */
814 		bp = bio_split(bio, bio_split_pool,
815 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
816 		if (make_request(q, &bp->bio1))
817 			generic_make_request(&bp->bio1);
818 		if (make_request(q, &bp->bio2))
819 			generic_make_request(&bp->bio2);
820 
821 		bio_pair_release(bp);
822 		return 0;
823 	bad_map:
824 		printk("raid10_make_request bug: can't convert block across chunks"
825 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
826 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
827 
828 		bio_io_error(bio);
829 		return 0;
830 	}
831 
832 	md_write_start(mddev, bio);
833 
834 	/*
835 	 * Register the new request and wait if the reconstruction
836 	 * thread has put up a bar for new requests.
837 	 * Continue immediately if no resync is active currently.
838 	 */
839 	wait_barrier(conf);
840 
841 	disk_stat_inc(mddev->gendisk, ios[rw]);
842 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
843 
844 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
845 
846 	r10_bio->master_bio = bio;
847 	r10_bio->sectors = bio->bi_size >> 9;
848 
849 	r10_bio->mddev = mddev;
850 	r10_bio->sector = bio->bi_sector;
851 	r10_bio->state = 0;
852 
853 	if (rw == READ) {
854 		/*
855 		 * read balancing logic:
856 		 */
857 		int disk = read_balance(conf, r10_bio);
858 		int slot = r10_bio->read_slot;
859 		if (disk < 0) {
860 			raid_end_bio_io(r10_bio);
861 			return 0;
862 		}
863 		mirror = conf->mirrors + disk;
864 
865 		read_bio = bio_clone(bio, GFP_NOIO);
866 
867 		r10_bio->devs[slot].bio = read_bio;
868 
869 		read_bio->bi_sector = r10_bio->devs[slot].addr +
870 			mirror->rdev->data_offset;
871 		read_bio->bi_bdev = mirror->rdev->bdev;
872 		read_bio->bi_end_io = raid10_end_read_request;
873 		read_bio->bi_rw = READ | do_sync;
874 		read_bio->bi_private = r10_bio;
875 
876 		generic_make_request(read_bio);
877 		return 0;
878 	}
879 
880 	/*
881 	 * WRITE:
882 	 */
883 	/* first select target devices under rcu_lock and
884 	 * inc refcount on their rdev.  Record them by setting
885 	 * bios[x] to bio
886 	 */
887 	raid10_find_phys(conf, r10_bio);
888  retry_write:
889 	blocked_rdev = 0;
890 	rcu_read_lock();
891 	for (i = 0;  i < conf->copies; i++) {
892 		int d = r10_bio->devs[i].devnum;
893 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
894 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
895 			atomic_inc(&rdev->nr_pending);
896 			blocked_rdev = rdev;
897 			break;
898 		}
899 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
900 			atomic_inc(&rdev->nr_pending);
901 			r10_bio->devs[i].bio = bio;
902 		} else {
903 			r10_bio->devs[i].bio = NULL;
904 			set_bit(R10BIO_Degraded, &r10_bio->state);
905 		}
906 	}
907 	rcu_read_unlock();
908 
909 	if (unlikely(blocked_rdev)) {
910 		/* Have to wait for this device to get unblocked, then retry */
911 		int j;
912 		int d;
913 
914 		for (j = 0; j < i; j++)
915 			if (r10_bio->devs[j].bio) {
916 				d = r10_bio->devs[j].devnum;
917 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
918 			}
919 		allow_barrier(conf);
920 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
921 		wait_barrier(conf);
922 		goto retry_write;
923 	}
924 
925 	atomic_set(&r10_bio->remaining, 0);
926 
927 	bio_list_init(&bl);
928 	for (i = 0; i < conf->copies; i++) {
929 		struct bio *mbio;
930 		int d = r10_bio->devs[i].devnum;
931 		if (!r10_bio->devs[i].bio)
932 			continue;
933 
934 		mbio = bio_clone(bio, GFP_NOIO);
935 		r10_bio->devs[i].bio = mbio;
936 
937 		mbio->bi_sector	= r10_bio->devs[i].addr+
938 			conf->mirrors[d].rdev->data_offset;
939 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
940 		mbio->bi_end_io	= raid10_end_write_request;
941 		mbio->bi_rw = WRITE | do_sync;
942 		mbio->bi_private = r10_bio;
943 
944 		atomic_inc(&r10_bio->remaining);
945 		bio_list_add(&bl, mbio);
946 	}
947 
948 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
949 		/* the array is dead */
950 		md_write_end(mddev);
951 		raid_end_bio_io(r10_bio);
952 		return 0;
953 	}
954 
955 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
956 	spin_lock_irqsave(&conf->device_lock, flags);
957 	bio_list_merge(&conf->pending_bio_list, &bl);
958 	blk_plug_device(mddev->queue);
959 	spin_unlock_irqrestore(&conf->device_lock, flags);
960 
961 	/* In case raid10d snuck in to freeze_array */
962 	wake_up(&conf->wait_barrier);
963 
964 	if (do_sync)
965 		md_wakeup_thread(mddev->thread);
966 
967 	return 0;
968 }
969 
970 static void status(struct seq_file *seq, mddev_t *mddev)
971 {
972 	conf_t *conf = mddev_to_conf(mddev);
973 	int i;
974 
975 	if (conf->near_copies < conf->raid_disks)
976 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
977 	if (conf->near_copies > 1)
978 		seq_printf(seq, " %d near-copies", conf->near_copies);
979 	if (conf->far_copies > 1) {
980 		if (conf->far_offset)
981 			seq_printf(seq, " %d offset-copies", conf->far_copies);
982 		else
983 			seq_printf(seq, " %d far-copies", conf->far_copies);
984 	}
985 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
986 					conf->raid_disks - mddev->degraded);
987 	for (i = 0; i < conf->raid_disks; i++)
988 		seq_printf(seq, "%s",
989 			      conf->mirrors[i].rdev &&
990 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
991 	seq_printf(seq, "]");
992 }
993 
994 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
995 {
996 	char b[BDEVNAME_SIZE];
997 	conf_t *conf = mddev_to_conf(mddev);
998 
999 	/*
1000 	 * If it is not operational, then we have already marked it as dead
1001 	 * else if it is the last working disks, ignore the error, let the
1002 	 * next level up know.
1003 	 * else mark the drive as failed
1004 	 */
1005 	if (test_bit(In_sync, &rdev->flags)
1006 	    && conf->raid_disks-mddev->degraded == 1)
1007 		/*
1008 		 * Don't fail the drive, just return an IO error.
1009 		 * The test should really be more sophisticated than
1010 		 * "working_disks == 1", but it isn't critical, and
1011 		 * can wait until we do more sophisticated "is the drive
1012 		 * really dead" tests...
1013 		 */
1014 		return;
1015 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1016 		unsigned long flags;
1017 		spin_lock_irqsave(&conf->device_lock, flags);
1018 		mddev->degraded++;
1019 		spin_unlock_irqrestore(&conf->device_lock, flags);
1020 		/*
1021 		 * if recovery is running, make sure it aborts.
1022 		 */
1023 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1024 	}
1025 	set_bit(Faulty, &rdev->flags);
1026 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1027 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1028 		"raid10: Operation continuing on %d devices.\n",
1029 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1030 }
1031 
1032 static void print_conf(conf_t *conf)
1033 {
1034 	int i;
1035 	mirror_info_t *tmp;
1036 
1037 	printk("RAID10 conf printout:\n");
1038 	if (!conf) {
1039 		printk("(!conf)\n");
1040 		return;
1041 	}
1042 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1043 		conf->raid_disks);
1044 
1045 	for (i = 0; i < conf->raid_disks; i++) {
1046 		char b[BDEVNAME_SIZE];
1047 		tmp = conf->mirrors + i;
1048 		if (tmp->rdev)
1049 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1050 				i, !test_bit(In_sync, &tmp->rdev->flags),
1051 			        !test_bit(Faulty, &tmp->rdev->flags),
1052 				bdevname(tmp->rdev->bdev,b));
1053 	}
1054 }
1055 
1056 static void close_sync(conf_t *conf)
1057 {
1058 	wait_barrier(conf);
1059 	allow_barrier(conf);
1060 
1061 	mempool_destroy(conf->r10buf_pool);
1062 	conf->r10buf_pool = NULL;
1063 }
1064 
1065 /* check if there are enough drives for
1066  * every block to appear on atleast one
1067  */
1068 static int enough(conf_t *conf)
1069 {
1070 	int first = 0;
1071 
1072 	do {
1073 		int n = conf->copies;
1074 		int cnt = 0;
1075 		while (n--) {
1076 			if (conf->mirrors[first].rdev)
1077 				cnt++;
1078 			first = (first+1) % conf->raid_disks;
1079 		}
1080 		if (cnt == 0)
1081 			return 0;
1082 	} while (first != 0);
1083 	return 1;
1084 }
1085 
1086 static int raid10_spare_active(mddev_t *mddev)
1087 {
1088 	int i;
1089 	conf_t *conf = mddev->private;
1090 	mirror_info_t *tmp;
1091 
1092 	/*
1093 	 * Find all non-in_sync disks within the RAID10 configuration
1094 	 * and mark them in_sync
1095 	 */
1096 	for (i = 0; i < conf->raid_disks; i++) {
1097 		tmp = conf->mirrors + i;
1098 		if (tmp->rdev
1099 		    && !test_bit(Faulty, &tmp->rdev->flags)
1100 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1101 			unsigned long flags;
1102 			spin_lock_irqsave(&conf->device_lock, flags);
1103 			mddev->degraded--;
1104 			spin_unlock_irqrestore(&conf->device_lock, flags);
1105 		}
1106 	}
1107 
1108 	print_conf(conf);
1109 	return 0;
1110 }
1111 
1112 
1113 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1114 {
1115 	conf_t *conf = mddev->private;
1116 	int found = 0;
1117 	int mirror;
1118 	mirror_info_t *p;
1119 
1120 	if (mddev->recovery_cp < MaxSector)
1121 		/* only hot-add to in-sync arrays, as recovery is
1122 		 * very different from resync
1123 		 */
1124 		return 0;
1125 	if (!enough(conf))
1126 		return 0;
1127 
1128 	if (rdev->saved_raid_disk >= 0 &&
1129 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1130 		mirror = rdev->saved_raid_disk;
1131 	else
1132 		mirror = 0;
1133 	for ( ; mirror < mddev->raid_disks; mirror++)
1134 		if ( !(p=conf->mirrors+mirror)->rdev) {
1135 
1136 			blk_queue_stack_limits(mddev->queue,
1137 					       rdev->bdev->bd_disk->queue);
1138 			/* as we don't honour merge_bvec_fn, we must never risk
1139 			 * violating it, so limit ->max_sector to one PAGE, as
1140 			 * a one page request is never in violation.
1141 			 */
1142 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1143 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1144 				mddev->queue->max_sectors = (PAGE_SIZE>>9);
1145 
1146 			p->head_position = 0;
1147 			rdev->raid_disk = mirror;
1148 			found = 1;
1149 			if (rdev->saved_raid_disk != mirror)
1150 				conf->fullsync = 1;
1151 			rcu_assign_pointer(p->rdev, rdev);
1152 			break;
1153 		}
1154 
1155 	print_conf(conf);
1156 	return found;
1157 }
1158 
1159 static int raid10_remove_disk(mddev_t *mddev, int number)
1160 {
1161 	conf_t *conf = mddev->private;
1162 	int err = 0;
1163 	mdk_rdev_t *rdev;
1164 	mirror_info_t *p = conf->mirrors+ number;
1165 
1166 	print_conf(conf);
1167 	rdev = p->rdev;
1168 	if (rdev) {
1169 		if (test_bit(In_sync, &rdev->flags) ||
1170 		    atomic_read(&rdev->nr_pending)) {
1171 			err = -EBUSY;
1172 			goto abort;
1173 		}
1174 		p->rdev = NULL;
1175 		synchronize_rcu();
1176 		if (atomic_read(&rdev->nr_pending)) {
1177 			/* lost the race, try later */
1178 			err = -EBUSY;
1179 			p->rdev = rdev;
1180 		}
1181 	}
1182 abort:
1183 
1184 	print_conf(conf);
1185 	return err;
1186 }
1187 
1188 
1189 static void end_sync_read(struct bio *bio, int error)
1190 {
1191 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1192 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
1193 	int i,d;
1194 
1195 	for (i=0; i<conf->copies; i++)
1196 		if (r10_bio->devs[i].bio == bio)
1197 			break;
1198 	BUG_ON(i == conf->copies);
1199 	update_head_pos(i, r10_bio);
1200 	d = r10_bio->devs[i].devnum;
1201 
1202 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1203 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1204 	else {
1205 		atomic_add(r10_bio->sectors,
1206 			   &conf->mirrors[d].rdev->corrected_errors);
1207 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1208 			md_error(r10_bio->mddev,
1209 				 conf->mirrors[d].rdev);
1210 	}
1211 
1212 	/* for reconstruct, we always reschedule after a read.
1213 	 * for resync, only after all reads
1214 	 */
1215 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1216 	    atomic_dec_and_test(&r10_bio->remaining)) {
1217 		/* we have read all the blocks,
1218 		 * do the comparison in process context in raid10d
1219 		 */
1220 		reschedule_retry(r10_bio);
1221 	}
1222 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1223 }
1224 
1225 static void end_sync_write(struct bio *bio, int error)
1226 {
1227 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1228 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1229 	mddev_t *mddev = r10_bio->mddev;
1230 	conf_t *conf = mddev_to_conf(mddev);
1231 	int i,d;
1232 
1233 	for (i = 0; i < conf->copies; i++)
1234 		if (r10_bio->devs[i].bio == bio)
1235 			break;
1236 	d = r10_bio->devs[i].devnum;
1237 
1238 	if (!uptodate)
1239 		md_error(mddev, conf->mirrors[d].rdev);
1240 	update_head_pos(i, r10_bio);
1241 
1242 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1243 		if (r10_bio->master_bio == NULL) {
1244 			/* the primary of several recovery bios */
1245 			md_done_sync(mddev, r10_bio->sectors, 1);
1246 			put_buf(r10_bio);
1247 			break;
1248 		} else {
1249 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1250 			put_buf(r10_bio);
1251 			r10_bio = r10_bio2;
1252 		}
1253 	}
1254 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1255 }
1256 
1257 /*
1258  * Note: sync and recover and handled very differently for raid10
1259  * This code is for resync.
1260  * For resync, we read through virtual addresses and read all blocks.
1261  * If there is any error, we schedule a write.  The lowest numbered
1262  * drive is authoritative.
1263  * However requests come for physical address, so we need to map.
1264  * For every physical address there are raid_disks/copies virtual addresses,
1265  * which is always are least one, but is not necessarly an integer.
1266  * This means that a physical address can span multiple chunks, so we may
1267  * have to submit multiple io requests for a single sync request.
1268  */
1269 /*
1270  * We check if all blocks are in-sync and only write to blocks that
1271  * aren't in sync
1272  */
1273 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1274 {
1275 	conf_t *conf = mddev_to_conf(mddev);
1276 	int i, first;
1277 	struct bio *tbio, *fbio;
1278 
1279 	atomic_set(&r10_bio->remaining, 1);
1280 
1281 	/* find the first device with a block */
1282 	for (i=0; i<conf->copies; i++)
1283 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1284 			break;
1285 
1286 	if (i == conf->copies)
1287 		goto done;
1288 
1289 	first = i;
1290 	fbio = r10_bio->devs[i].bio;
1291 
1292 	/* now find blocks with errors */
1293 	for (i=0 ; i < conf->copies ; i++) {
1294 		int  j, d;
1295 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1296 
1297 		tbio = r10_bio->devs[i].bio;
1298 
1299 		if (tbio->bi_end_io != end_sync_read)
1300 			continue;
1301 		if (i == first)
1302 			continue;
1303 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1304 			/* We know that the bi_io_vec layout is the same for
1305 			 * both 'first' and 'i', so we just compare them.
1306 			 * All vec entries are PAGE_SIZE;
1307 			 */
1308 			for (j = 0; j < vcnt; j++)
1309 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1310 					   page_address(tbio->bi_io_vec[j].bv_page),
1311 					   PAGE_SIZE))
1312 					break;
1313 			if (j == vcnt)
1314 				continue;
1315 			mddev->resync_mismatches += r10_bio->sectors;
1316 		}
1317 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1318 			/* Don't fix anything. */
1319 			continue;
1320 		/* Ok, we need to write this bio
1321 		 * First we need to fixup bv_offset, bv_len and
1322 		 * bi_vecs, as the read request might have corrupted these
1323 		 */
1324 		tbio->bi_vcnt = vcnt;
1325 		tbio->bi_size = r10_bio->sectors << 9;
1326 		tbio->bi_idx = 0;
1327 		tbio->bi_phys_segments = 0;
1328 		tbio->bi_hw_segments = 0;
1329 		tbio->bi_hw_front_size = 0;
1330 		tbio->bi_hw_back_size = 0;
1331 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1332 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1333 		tbio->bi_next = NULL;
1334 		tbio->bi_rw = WRITE;
1335 		tbio->bi_private = r10_bio;
1336 		tbio->bi_sector = r10_bio->devs[i].addr;
1337 
1338 		for (j=0; j < vcnt ; j++) {
1339 			tbio->bi_io_vec[j].bv_offset = 0;
1340 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1341 
1342 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1343 			       page_address(fbio->bi_io_vec[j].bv_page),
1344 			       PAGE_SIZE);
1345 		}
1346 		tbio->bi_end_io = end_sync_write;
1347 
1348 		d = r10_bio->devs[i].devnum;
1349 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1350 		atomic_inc(&r10_bio->remaining);
1351 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1352 
1353 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1354 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1355 		generic_make_request(tbio);
1356 	}
1357 
1358 done:
1359 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1360 		md_done_sync(mddev, r10_bio->sectors, 1);
1361 		put_buf(r10_bio);
1362 	}
1363 }
1364 
1365 /*
1366  * Now for the recovery code.
1367  * Recovery happens across physical sectors.
1368  * We recover all non-is_sync drives by finding the virtual address of
1369  * each, and then choose a working drive that also has that virt address.
1370  * There is a separate r10_bio for each non-in_sync drive.
1371  * Only the first two slots are in use. The first for reading,
1372  * The second for writing.
1373  *
1374  */
1375 
1376 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1377 {
1378 	conf_t *conf = mddev_to_conf(mddev);
1379 	int i, d;
1380 	struct bio *bio, *wbio;
1381 
1382 
1383 	/* move the pages across to the second bio
1384 	 * and submit the write request
1385 	 */
1386 	bio = r10_bio->devs[0].bio;
1387 	wbio = r10_bio->devs[1].bio;
1388 	for (i=0; i < wbio->bi_vcnt; i++) {
1389 		struct page *p = bio->bi_io_vec[i].bv_page;
1390 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1391 		wbio->bi_io_vec[i].bv_page = p;
1392 	}
1393 	d = r10_bio->devs[1].devnum;
1394 
1395 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1396 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1397 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1398 		generic_make_request(wbio);
1399 	else
1400 		bio_endio(wbio, -EIO);
1401 }
1402 
1403 
1404 /*
1405  * This is a kernel thread which:
1406  *
1407  *	1.	Retries failed read operations on working mirrors.
1408  *	2.	Updates the raid superblock when problems encounter.
1409  *	3.	Performs writes following reads for array synchronising.
1410  */
1411 
1412 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1413 {
1414 	int sect = 0; /* Offset from r10_bio->sector */
1415 	int sectors = r10_bio->sectors;
1416 	mdk_rdev_t*rdev;
1417 	while(sectors) {
1418 		int s = sectors;
1419 		int sl = r10_bio->read_slot;
1420 		int success = 0;
1421 		int start;
1422 
1423 		if (s > (PAGE_SIZE>>9))
1424 			s = PAGE_SIZE >> 9;
1425 
1426 		rcu_read_lock();
1427 		do {
1428 			int d = r10_bio->devs[sl].devnum;
1429 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1430 			if (rdev &&
1431 			    test_bit(In_sync, &rdev->flags)) {
1432 				atomic_inc(&rdev->nr_pending);
1433 				rcu_read_unlock();
1434 				success = sync_page_io(rdev->bdev,
1435 						       r10_bio->devs[sl].addr +
1436 						       sect + rdev->data_offset,
1437 						       s<<9,
1438 						       conf->tmppage, READ);
1439 				rdev_dec_pending(rdev, mddev);
1440 				rcu_read_lock();
1441 				if (success)
1442 					break;
1443 			}
1444 			sl++;
1445 			if (sl == conf->copies)
1446 				sl = 0;
1447 		} while (!success && sl != r10_bio->read_slot);
1448 		rcu_read_unlock();
1449 
1450 		if (!success) {
1451 			/* Cannot read from anywhere -- bye bye array */
1452 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1453 			md_error(mddev, conf->mirrors[dn].rdev);
1454 			break;
1455 		}
1456 
1457 		start = sl;
1458 		/* write it back and re-read */
1459 		rcu_read_lock();
1460 		while (sl != r10_bio->read_slot) {
1461 			int d;
1462 			if (sl==0)
1463 				sl = conf->copies;
1464 			sl--;
1465 			d = r10_bio->devs[sl].devnum;
1466 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1467 			if (rdev &&
1468 			    test_bit(In_sync, &rdev->flags)) {
1469 				atomic_inc(&rdev->nr_pending);
1470 				rcu_read_unlock();
1471 				atomic_add(s, &rdev->corrected_errors);
1472 				if (sync_page_io(rdev->bdev,
1473 						 r10_bio->devs[sl].addr +
1474 						 sect + rdev->data_offset,
1475 						 s<<9, conf->tmppage, WRITE)
1476 				    == 0)
1477 					/* Well, this device is dead */
1478 					md_error(mddev, rdev);
1479 				rdev_dec_pending(rdev, mddev);
1480 				rcu_read_lock();
1481 			}
1482 		}
1483 		sl = start;
1484 		while (sl != r10_bio->read_slot) {
1485 			int d;
1486 			if (sl==0)
1487 				sl = conf->copies;
1488 			sl--;
1489 			d = r10_bio->devs[sl].devnum;
1490 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1491 			if (rdev &&
1492 			    test_bit(In_sync, &rdev->flags)) {
1493 				char b[BDEVNAME_SIZE];
1494 				atomic_inc(&rdev->nr_pending);
1495 				rcu_read_unlock();
1496 				if (sync_page_io(rdev->bdev,
1497 						 r10_bio->devs[sl].addr +
1498 						 sect + rdev->data_offset,
1499 						 s<<9, conf->tmppage, READ) == 0)
1500 					/* Well, this device is dead */
1501 					md_error(mddev, rdev);
1502 				else
1503 					printk(KERN_INFO
1504 					       "raid10:%s: read error corrected"
1505 					       " (%d sectors at %llu on %s)\n",
1506 					       mdname(mddev), s,
1507 					       (unsigned long long)(sect+
1508 					            rdev->data_offset),
1509 					       bdevname(rdev->bdev, b));
1510 
1511 				rdev_dec_pending(rdev, mddev);
1512 				rcu_read_lock();
1513 			}
1514 		}
1515 		rcu_read_unlock();
1516 
1517 		sectors -= s;
1518 		sect += s;
1519 	}
1520 }
1521 
1522 static void raid10d(mddev_t *mddev)
1523 {
1524 	r10bio_t *r10_bio;
1525 	struct bio *bio;
1526 	unsigned long flags;
1527 	conf_t *conf = mddev_to_conf(mddev);
1528 	struct list_head *head = &conf->retry_list;
1529 	int unplug=0;
1530 	mdk_rdev_t *rdev;
1531 
1532 	md_check_recovery(mddev);
1533 
1534 	for (;;) {
1535 		char b[BDEVNAME_SIZE];
1536 
1537 		unplug += flush_pending_writes(conf);
1538 
1539 		spin_lock_irqsave(&conf->device_lock, flags);
1540 		if (list_empty(head)) {
1541 			spin_unlock_irqrestore(&conf->device_lock, flags);
1542 			break;
1543 		}
1544 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1545 		list_del(head->prev);
1546 		conf->nr_queued--;
1547 		spin_unlock_irqrestore(&conf->device_lock, flags);
1548 
1549 		mddev = r10_bio->mddev;
1550 		conf = mddev_to_conf(mddev);
1551 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1552 			sync_request_write(mddev, r10_bio);
1553 			unplug = 1;
1554 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1555 			recovery_request_write(mddev, r10_bio);
1556 			unplug = 1;
1557 		} else {
1558 			int mirror;
1559 			/* we got a read error. Maybe the drive is bad.  Maybe just
1560 			 * the block and we can fix it.
1561 			 * We freeze all other IO, and try reading the block from
1562 			 * other devices.  When we find one, we re-write
1563 			 * and check it that fixes the read error.
1564 			 * This is all done synchronously while the array is
1565 			 * frozen.
1566 			 */
1567 			if (mddev->ro == 0) {
1568 				freeze_array(conf);
1569 				fix_read_error(conf, mddev, r10_bio);
1570 				unfreeze_array(conf);
1571 			}
1572 
1573 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1574 			r10_bio->devs[r10_bio->read_slot].bio =
1575 				mddev->ro ? IO_BLOCKED : NULL;
1576 			mirror = read_balance(conf, r10_bio);
1577 			if (mirror == -1) {
1578 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1579 				       " read error for block %llu\n",
1580 				       bdevname(bio->bi_bdev,b),
1581 				       (unsigned long long)r10_bio->sector);
1582 				raid_end_bio_io(r10_bio);
1583 				bio_put(bio);
1584 			} else {
1585 				const int do_sync = bio_sync(r10_bio->master_bio);
1586 				bio_put(bio);
1587 				rdev = conf->mirrors[mirror].rdev;
1588 				if (printk_ratelimit())
1589 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1590 					       " another mirror\n",
1591 					       bdevname(rdev->bdev,b),
1592 					       (unsigned long long)r10_bio->sector);
1593 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1594 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1595 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1596 					+ rdev->data_offset;
1597 				bio->bi_bdev = rdev->bdev;
1598 				bio->bi_rw = READ | do_sync;
1599 				bio->bi_private = r10_bio;
1600 				bio->bi_end_io = raid10_end_read_request;
1601 				unplug = 1;
1602 				generic_make_request(bio);
1603 			}
1604 		}
1605 	}
1606 	if (unplug)
1607 		unplug_slaves(mddev);
1608 }
1609 
1610 
1611 static int init_resync(conf_t *conf)
1612 {
1613 	int buffs;
1614 
1615 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1616 	BUG_ON(conf->r10buf_pool);
1617 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1618 	if (!conf->r10buf_pool)
1619 		return -ENOMEM;
1620 	conf->next_resync = 0;
1621 	return 0;
1622 }
1623 
1624 /*
1625  * perform a "sync" on one "block"
1626  *
1627  * We need to make sure that no normal I/O request - particularly write
1628  * requests - conflict with active sync requests.
1629  *
1630  * This is achieved by tracking pending requests and a 'barrier' concept
1631  * that can be installed to exclude normal IO requests.
1632  *
1633  * Resync and recovery are handled very differently.
1634  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1635  *
1636  * For resync, we iterate over virtual addresses, read all copies,
1637  * and update if there are differences.  If only one copy is live,
1638  * skip it.
1639  * For recovery, we iterate over physical addresses, read a good
1640  * value for each non-in_sync drive, and over-write.
1641  *
1642  * So, for recovery we may have several outstanding complex requests for a
1643  * given address, one for each out-of-sync device.  We model this by allocating
1644  * a number of r10_bio structures, one for each out-of-sync device.
1645  * As we setup these structures, we collect all bio's together into a list
1646  * which we then process collectively to add pages, and then process again
1647  * to pass to generic_make_request.
1648  *
1649  * The r10_bio structures are linked using a borrowed master_bio pointer.
1650  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1651  * has its remaining count decremented to 0, the whole complex operation
1652  * is complete.
1653  *
1654  */
1655 
1656 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1657 {
1658 	conf_t *conf = mddev_to_conf(mddev);
1659 	r10bio_t *r10_bio;
1660 	struct bio *biolist = NULL, *bio;
1661 	sector_t max_sector, nr_sectors;
1662 	int disk;
1663 	int i;
1664 	int max_sync;
1665 	int sync_blocks;
1666 
1667 	sector_t sectors_skipped = 0;
1668 	int chunks_skipped = 0;
1669 
1670 	if (!conf->r10buf_pool)
1671 		if (init_resync(conf))
1672 			return 0;
1673 
1674  skipped:
1675 	max_sector = mddev->size << 1;
1676 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1677 		max_sector = mddev->resync_max_sectors;
1678 	if (sector_nr >= max_sector) {
1679 		/* If we aborted, we need to abort the
1680 		 * sync on the 'current' bitmap chucks (there can
1681 		 * be several when recovering multiple devices).
1682 		 * as we may have started syncing it but not finished.
1683 		 * We can find the current address in
1684 		 * mddev->curr_resync, but for recovery,
1685 		 * we need to convert that to several
1686 		 * virtual addresses.
1687 		 */
1688 		if (mddev->curr_resync < max_sector) { /* aborted */
1689 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1690 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1691 						&sync_blocks, 1);
1692 			else for (i=0; i<conf->raid_disks; i++) {
1693 				sector_t sect =
1694 					raid10_find_virt(conf, mddev->curr_resync, i);
1695 				bitmap_end_sync(mddev->bitmap, sect,
1696 						&sync_blocks, 1);
1697 			}
1698 		} else /* completed sync */
1699 			conf->fullsync = 0;
1700 
1701 		bitmap_close_sync(mddev->bitmap);
1702 		close_sync(conf);
1703 		*skipped = 1;
1704 		return sectors_skipped;
1705 	}
1706 	if (chunks_skipped >= conf->raid_disks) {
1707 		/* if there has been nothing to do on any drive,
1708 		 * then there is nothing to do at all..
1709 		 */
1710 		*skipped = 1;
1711 		return (max_sector - sector_nr) + sectors_skipped;
1712 	}
1713 
1714 	if (max_sector > mddev->resync_max)
1715 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1716 
1717 	/* make sure whole request will fit in a chunk - if chunks
1718 	 * are meaningful
1719 	 */
1720 	if (conf->near_copies < conf->raid_disks &&
1721 	    max_sector > (sector_nr | conf->chunk_mask))
1722 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1723 	/*
1724 	 * If there is non-resync activity waiting for us then
1725 	 * put in a delay to throttle resync.
1726 	 */
1727 	if (!go_faster && conf->nr_waiting)
1728 		msleep_interruptible(1000);
1729 
1730 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1731 
1732 	/* Again, very different code for resync and recovery.
1733 	 * Both must result in an r10bio with a list of bios that
1734 	 * have bi_end_io, bi_sector, bi_bdev set,
1735 	 * and bi_private set to the r10bio.
1736 	 * For recovery, we may actually create several r10bios
1737 	 * with 2 bios in each, that correspond to the bios in the main one.
1738 	 * In this case, the subordinate r10bios link back through a
1739 	 * borrowed master_bio pointer, and the counter in the master
1740 	 * includes a ref from each subordinate.
1741 	 */
1742 	/* First, we decide what to do and set ->bi_end_io
1743 	 * To end_sync_read if we want to read, and
1744 	 * end_sync_write if we will want to write.
1745 	 */
1746 
1747 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1748 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1749 		/* recovery... the complicated one */
1750 		int i, j, k;
1751 		r10_bio = NULL;
1752 
1753 		for (i=0 ; i<conf->raid_disks; i++)
1754 			if (conf->mirrors[i].rdev &&
1755 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1756 				int still_degraded = 0;
1757 				/* want to reconstruct this device */
1758 				r10bio_t *rb2 = r10_bio;
1759 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1760 				int must_sync;
1761 				/* Unless we are doing a full sync, we only need
1762 				 * to recover the block if it is set in the bitmap
1763 				 */
1764 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1765 							      &sync_blocks, 1);
1766 				if (sync_blocks < max_sync)
1767 					max_sync = sync_blocks;
1768 				if (!must_sync &&
1769 				    !conf->fullsync) {
1770 					/* yep, skip the sync_blocks here, but don't assume
1771 					 * that there will never be anything to do here
1772 					 */
1773 					chunks_skipped = -1;
1774 					continue;
1775 				}
1776 
1777 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1778 				raise_barrier(conf, rb2 != NULL);
1779 				atomic_set(&r10_bio->remaining, 0);
1780 
1781 				r10_bio->master_bio = (struct bio*)rb2;
1782 				if (rb2)
1783 					atomic_inc(&rb2->remaining);
1784 				r10_bio->mddev = mddev;
1785 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1786 				r10_bio->sector = sect;
1787 
1788 				raid10_find_phys(conf, r10_bio);
1789 				/* Need to check if this section will still be
1790 				 * degraded
1791 				 */
1792 				for (j=0; j<conf->copies;j++) {
1793 					int d = r10_bio->devs[j].devnum;
1794 					if (conf->mirrors[d].rdev == NULL ||
1795 					    test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1796 						still_degraded = 1;
1797 						break;
1798 					}
1799 				}
1800 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1801 							      &sync_blocks, still_degraded);
1802 
1803 				for (j=0; j<conf->copies;j++) {
1804 					int d = r10_bio->devs[j].devnum;
1805 					if (conf->mirrors[d].rdev &&
1806 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1807 						/* This is where we read from */
1808 						bio = r10_bio->devs[0].bio;
1809 						bio->bi_next = biolist;
1810 						biolist = bio;
1811 						bio->bi_private = r10_bio;
1812 						bio->bi_end_io = end_sync_read;
1813 						bio->bi_rw = READ;
1814 						bio->bi_sector = r10_bio->devs[j].addr +
1815 							conf->mirrors[d].rdev->data_offset;
1816 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1817 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1818 						atomic_inc(&r10_bio->remaining);
1819 						/* and we write to 'i' */
1820 
1821 						for (k=0; k<conf->copies; k++)
1822 							if (r10_bio->devs[k].devnum == i)
1823 								break;
1824 						BUG_ON(k == conf->copies);
1825 						bio = r10_bio->devs[1].bio;
1826 						bio->bi_next = biolist;
1827 						biolist = bio;
1828 						bio->bi_private = r10_bio;
1829 						bio->bi_end_io = end_sync_write;
1830 						bio->bi_rw = WRITE;
1831 						bio->bi_sector = r10_bio->devs[k].addr +
1832 							conf->mirrors[i].rdev->data_offset;
1833 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1834 
1835 						r10_bio->devs[0].devnum = d;
1836 						r10_bio->devs[1].devnum = i;
1837 
1838 						break;
1839 					}
1840 				}
1841 				if (j == conf->copies) {
1842 					/* Cannot recover, so abort the recovery */
1843 					put_buf(r10_bio);
1844 					if (rb2)
1845 						atomic_dec(&rb2->remaining);
1846 					r10_bio = rb2;
1847 					if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1848 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1849 						       mdname(mddev));
1850 					break;
1851 				}
1852 			}
1853 		if (biolist == NULL) {
1854 			while (r10_bio) {
1855 				r10bio_t *rb2 = r10_bio;
1856 				r10_bio = (r10bio_t*) rb2->master_bio;
1857 				rb2->master_bio = NULL;
1858 				put_buf(rb2);
1859 			}
1860 			goto giveup;
1861 		}
1862 	} else {
1863 		/* resync. Schedule a read for every block at this virt offset */
1864 		int count = 0;
1865 
1866 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1867 				       &sync_blocks, mddev->degraded) &&
1868 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1869 			/* We can skip this block */
1870 			*skipped = 1;
1871 			return sync_blocks + sectors_skipped;
1872 		}
1873 		if (sync_blocks < max_sync)
1874 			max_sync = sync_blocks;
1875 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1876 
1877 		r10_bio->mddev = mddev;
1878 		atomic_set(&r10_bio->remaining, 0);
1879 		raise_barrier(conf, 0);
1880 		conf->next_resync = sector_nr;
1881 
1882 		r10_bio->master_bio = NULL;
1883 		r10_bio->sector = sector_nr;
1884 		set_bit(R10BIO_IsSync, &r10_bio->state);
1885 		raid10_find_phys(conf, r10_bio);
1886 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1887 
1888 		for (i=0; i<conf->copies; i++) {
1889 			int d = r10_bio->devs[i].devnum;
1890 			bio = r10_bio->devs[i].bio;
1891 			bio->bi_end_io = NULL;
1892 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1893 			if (conf->mirrors[d].rdev == NULL ||
1894 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1895 				continue;
1896 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1897 			atomic_inc(&r10_bio->remaining);
1898 			bio->bi_next = biolist;
1899 			biolist = bio;
1900 			bio->bi_private = r10_bio;
1901 			bio->bi_end_io = end_sync_read;
1902 			bio->bi_rw = READ;
1903 			bio->bi_sector = r10_bio->devs[i].addr +
1904 				conf->mirrors[d].rdev->data_offset;
1905 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1906 			count++;
1907 		}
1908 
1909 		if (count < 2) {
1910 			for (i=0; i<conf->copies; i++) {
1911 				int d = r10_bio->devs[i].devnum;
1912 				if (r10_bio->devs[i].bio->bi_end_io)
1913 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1914 			}
1915 			put_buf(r10_bio);
1916 			biolist = NULL;
1917 			goto giveup;
1918 		}
1919 	}
1920 
1921 	for (bio = biolist; bio ; bio=bio->bi_next) {
1922 
1923 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1924 		if (bio->bi_end_io)
1925 			bio->bi_flags |= 1 << BIO_UPTODATE;
1926 		bio->bi_vcnt = 0;
1927 		bio->bi_idx = 0;
1928 		bio->bi_phys_segments = 0;
1929 		bio->bi_hw_segments = 0;
1930 		bio->bi_size = 0;
1931 	}
1932 
1933 	nr_sectors = 0;
1934 	if (sector_nr + max_sync < max_sector)
1935 		max_sector = sector_nr + max_sync;
1936 	do {
1937 		struct page *page;
1938 		int len = PAGE_SIZE;
1939 		disk = 0;
1940 		if (sector_nr + (len>>9) > max_sector)
1941 			len = (max_sector - sector_nr) << 9;
1942 		if (len == 0)
1943 			break;
1944 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1945 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1946 			if (bio_add_page(bio, page, len, 0) == 0) {
1947 				/* stop here */
1948 				struct bio *bio2;
1949 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1950 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1951 					/* remove last page from this bio */
1952 					bio2->bi_vcnt--;
1953 					bio2->bi_size -= len;
1954 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1955 				}
1956 				goto bio_full;
1957 			}
1958 			disk = i;
1959 		}
1960 		nr_sectors += len>>9;
1961 		sector_nr += len>>9;
1962 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1963  bio_full:
1964 	r10_bio->sectors = nr_sectors;
1965 
1966 	while (biolist) {
1967 		bio = biolist;
1968 		biolist = biolist->bi_next;
1969 
1970 		bio->bi_next = NULL;
1971 		r10_bio = bio->bi_private;
1972 		r10_bio->sectors = nr_sectors;
1973 
1974 		if (bio->bi_end_io == end_sync_read) {
1975 			md_sync_acct(bio->bi_bdev, nr_sectors);
1976 			generic_make_request(bio);
1977 		}
1978 	}
1979 
1980 	if (sectors_skipped)
1981 		/* pretend they weren't skipped, it makes
1982 		 * no important difference in this case
1983 		 */
1984 		md_done_sync(mddev, sectors_skipped, 1);
1985 
1986 	return sectors_skipped + nr_sectors;
1987  giveup:
1988 	/* There is nowhere to write, so all non-sync
1989 	 * drives must be failed, so try the next chunk...
1990 	 */
1991 	{
1992 	sector_t sec = max_sector - sector_nr;
1993 	sectors_skipped += sec;
1994 	chunks_skipped ++;
1995 	sector_nr = max_sector;
1996 	goto skipped;
1997 	}
1998 }
1999 
2000 static int run(mddev_t *mddev)
2001 {
2002 	conf_t *conf;
2003 	int i, disk_idx;
2004 	mirror_info_t *disk;
2005 	mdk_rdev_t *rdev;
2006 	struct list_head *tmp;
2007 	int nc, fc, fo;
2008 	sector_t stride, size;
2009 
2010 	if (mddev->chunk_size == 0) {
2011 		printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
2012 		return -EINVAL;
2013 	}
2014 
2015 	nc = mddev->layout & 255;
2016 	fc = (mddev->layout >> 8) & 255;
2017 	fo = mddev->layout & (1<<16);
2018 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2019 	    (mddev->layout >> 17)) {
2020 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2021 		       mdname(mddev), mddev->layout);
2022 		goto out;
2023 	}
2024 	/*
2025 	 * copy the already verified devices into our private RAID10
2026 	 * bookkeeping area. [whatever we allocate in run(),
2027 	 * should be freed in stop()]
2028 	 */
2029 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2030 	mddev->private = conf;
2031 	if (!conf) {
2032 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2033 			mdname(mddev));
2034 		goto out;
2035 	}
2036 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2037 				 GFP_KERNEL);
2038 	if (!conf->mirrors) {
2039 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2040 		       mdname(mddev));
2041 		goto out_free_conf;
2042 	}
2043 
2044 	conf->tmppage = alloc_page(GFP_KERNEL);
2045 	if (!conf->tmppage)
2046 		goto out_free_conf;
2047 
2048 	conf->mddev = mddev;
2049 	conf->raid_disks = mddev->raid_disks;
2050 	conf->near_copies = nc;
2051 	conf->far_copies = fc;
2052 	conf->copies = nc*fc;
2053 	conf->far_offset = fo;
2054 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2055 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2056 	size = mddev->size >> (conf->chunk_shift-1);
2057 	sector_div(size, fc);
2058 	size = size * conf->raid_disks;
2059 	sector_div(size, nc);
2060 	/* 'size' is now the number of chunks in the array */
2061 	/* calculate "used chunks per device" in 'stride' */
2062 	stride = size * conf->copies;
2063 
2064 	/* We need to round up when dividing by raid_disks to
2065 	 * get the stride size.
2066 	 */
2067 	stride += conf->raid_disks - 1;
2068 	sector_div(stride, conf->raid_disks);
2069 	mddev->size = stride  << (conf->chunk_shift-1);
2070 
2071 	if (fo)
2072 		stride = 1;
2073 	else
2074 		sector_div(stride, fc);
2075 	conf->stride = stride << conf->chunk_shift;
2076 
2077 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2078 						r10bio_pool_free, conf);
2079 	if (!conf->r10bio_pool) {
2080 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2081 			mdname(mddev));
2082 		goto out_free_conf;
2083 	}
2084 
2085 	rdev_for_each(rdev, tmp, mddev) {
2086 		disk_idx = rdev->raid_disk;
2087 		if (disk_idx >= mddev->raid_disks
2088 		    || disk_idx < 0)
2089 			continue;
2090 		disk = conf->mirrors + disk_idx;
2091 
2092 		disk->rdev = rdev;
2093 
2094 		blk_queue_stack_limits(mddev->queue,
2095 				       rdev->bdev->bd_disk->queue);
2096 		/* as we don't honour merge_bvec_fn, we must never risk
2097 		 * violating it, so limit ->max_sector to one PAGE, as
2098 		 * a one page request is never in violation.
2099 		 */
2100 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2101 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
2102 			mddev->queue->max_sectors = (PAGE_SIZE>>9);
2103 
2104 		disk->head_position = 0;
2105 	}
2106 	spin_lock_init(&conf->device_lock);
2107 	INIT_LIST_HEAD(&conf->retry_list);
2108 
2109 	spin_lock_init(&conf->resync_lock);
2110 	init_waitqueue_head(&conf->wait_barrier);
2111 
2112 	/* need to check that every block has at least one working mirror */
2113 	if (!enough(conf)) {
2114 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2115 		       mdname(mddev));
2116 		goto out_free_conf;
2117 	}
2118 
2119 	mddev->degraded = 0;
2120 	for (i = 0; i < conf->raid_disks; i++) {
2121 
2122 		disk = conf->mirrors + i;
2123 
2124 		if (!disk->rdev ||
2125 		    !test_bit(In_sync, &disk->rdev->flags)) {
2126 			disk->head_position = 0;
2127 			mddev->degraded++;
2128 		}
2129 	}
2130 
2131 
2132 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2133 	if (!mddev->thread) {
2134 		printk(KERN_ERR
2135 		       "raid10: couldn't allocate thread for %s\n",
2136 		       mdname(mddev));
2137 		goto out_free_conf;
2138 	}
2139 
2140 	printk(KERN_INFO
2141 		"raid10: raid set %s active with %d out of %d devices\n",
2142 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2143 		mddev->raid_disks);
2144 	/*
2145 	 * Ok, everything is just fine now
2146 	 */
2147 	mddev->array_size = size << (conf->chunk_shift-1);
2148 	mddev->resync_max_sectors = size << conf->chunk_shift;
2149 
2150 	mddev->queue->unplug_fn = raid10_unplug;
2151 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2152 	mddev->queue->backing_dev_info.congested_data = mddev;
2153 
2154 	/* Calculate max read-ahead size.
2155 	 * We need to readahead at least twice a whole stripe....
2156 	 * maybe...
2157 	 */
2158 	{
2159 		int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2160 		stripe /= conf->near_copies;
2161 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2162 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2163 	}
2164 
2165 	if (conf->near_copies < mddev->raid_disks)
2166 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2167 	return 0;
2168 
2169 out_free_conf:
2170 	if (conf->r10bio_pool)
2171 		mempool_destroy(conf->r10bio_pool);
2172 	safe_put_page(conf->tmppage);
2173 	kfree(conf->mirrors);
2174 	kfree(conf);
2175 	mddev->private = NULL;
2176 out:
2177 	return -EIO;
2178 }
2179 
2180 static int stop(mddev_t *mddev)
2181 {
2182 	conf_t *conf = mddev_to_conf(mddev);
2183 
2184 	md_unregister_thread(mddev->thread);
2185 	mddev->thread = NULL;
2186 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2187 	if (conf->r10bio_pool)
2188 		mempool_destroy(conf->r10bio_pool);
2189 	kfree(conf->mirrors);
2190 	kfree(conf);
2191 	mddev->private = NULL;
2192 	return 0;
2193 }
2194 
2195 static void raid10_quiesce(mddev_t *mddev, int state)
2196 {
2197 	conf_t *conf = mddev_to_conf(mddev);
2198 
2199 	switch(state) {
2200 	case 1:
2201 		raise_barrier(conf, 0);
2202 		break;
2203 	case 0:
2204 		lower_barrier(conf);
2205 		break;
2206 	}
2207 	if (mddev->thread) {
2208 		if (mddev->bitmap)
2209 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2210 		else
2211 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2212 		md_wakeup_thread(mddev->thread);
2213 	}
2214 }
2215 
2216 static struct mdk_personality raid10_personality =
2217 {
2218 	.name		= "raid10",
2219 	.level		= 10,
2220 	.owner		= THIS_MODULE,
2221 	.make_request	= make_request,
2222 	.run		= run,
2223 	.stop		= stop,
2224 	.status		= status,
2225 	.error_handler	= error,
2226 	.hot_add_disk	= raid10_add_disk,
2227 	.hot_remove_disk= raid10_remove_disk,
2228 	.spare_active	= raid10_spare_active,
2229 	.sync_request	= sync_request,
2230 	.quiesce	= raid10_quiesce,
2231 };
2232 
2233 static int __init raid_init(void)
2234 {
2235 	return register_md_personality(&raid10_personality);
2236 }
2237 
2238 static void raid_exit(void)
2239 {
2240 	unregister_md_personality(&raid10_personality);
2241 }
2242 
2243 module_init(raid_init);
2244 module_exit(raid_exit);
2245 MODULE_LICENSE("GPL");
2246 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2247 MODULE_ALIAS("md-raid10");
2248 MODULE_ALIAS("md-level-10");
2249