1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 #define NULL_CMD 83 #define cmd_before(conf, cmd) \ 84 do { \ 85 write_sequnlock_irq(&(conf)->resync_lock); \ 86 cmd; \ 87 } while (0) 88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) 89 90 #define wait_event_barrier_cmd(conf, cond, cmd) \ 91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ 92 cmd_after(conf)) 93 94 #define wait_event_barrier(conf, cond) \ 95 wait_event_barrier_cmd(conf, cond, NULL_CMD) 96 97 /* 98 * for resync bio, r10bio pointer can be retrieved from the per-bio 99 * 'struct resync_pages'. 100 */ 101 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 102 { 103 return get_resync_pages(bio)->raid_bio; 104 } 105 106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 107 { 108 struct r10conf *conf = data; 109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 110 111 /* allocate a r10bio with room for raid_disks entries in the 112 * bios array */ 113 return kzalloc(size, gfp_flags); 114 } 115 116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 117 /* amount of memory to reserve for resync requests */ 118 #define RESYNC_WINDOW (1024*1024) 119 /* maximum number of concurrent requests, memory permitting */ 120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 123 124 /* 125 * When performing a resync, we need to read and compare, so 126 * we need as many pages are there are copies. 127 * When performing a recovery, we need 2 bios, one for read, 128 * one for write (we recover only one drive per r10buf) 129 * 130 */ 131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 132 { 133 struct r10conf *conf = data; 134 struct r10bio *r10_bio; 135 struct bio *bio; 136 int j; 137 int nalloc, nalloc_rp; 138 struct resync_pages *rps; 139 140 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 141 if (!r10_bio) 142 return NULL; 143 144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 146 nalloc = conf->copies; /* resync */ 147 else 148 nalloc = 2; /* recovery */ 149 150 /* allocate once for all bios */ 151 if (!conf->have_replacement) 152 nalloc_rp = nalloc; 153 else 154 nalloc_rp = nalloc * 2; 155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 156 if (!rps) 157 goto out_free_r10bio; 158 159 /* 160 * Allocate bios. 161 */ 162 for (j = nalloc ; j-- ; ) { 163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 164 if (!bio) 165 goto out_free_bio; 166 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 167 r10_bio->devs[j].bio = bio; 168 if (!conf->have_replacement) 169 continue; 170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 171 if (!bio) 172 goto out_free_bio; 173 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 174 r10_bio->devs[j].repl_bio = bio; 175 } 176 /* 177 * Allocate RESYNC_PAGES data pages and attach them 178 * where needed. 179 */ 180 for (j = 0; j < nalloc; j++) { 181 struct bio *rbio = r10_bio->devs[j].repl_bio; 182 struct resync_pages *rp, *rp_repl; 183 184 rp = &rps[j]; 185 if (rbio) 186 rp_repl = &rps[nalloc + j]; 187 188 bio = r10_bio->devs[j].bio; 189 190 if (!j || test_bit(MD_RECOVERY_SYNC, 191 &conf->mddev->recovery)) { 192 if (resync_alloc_pages(rp, gfp_flags)) 193 goto out_free_pages; 194 } else { 195 memcpy(rp, &rps[0], sizeof(*rp)); 196 resync_get_all_pages(rp); 197 } 198 199 rp->raid_bio = r10_bio; 200 bio->bi_private = rp; 201 if (rbio) { 202 memcpy(rp_repl, rp, sizeof(*rp)); 203 rbio->bi_private = rp_repl; 204 } 205 } 206 207 return r10_bio; 208 209 out_free_pages: 210 while (--j >= 0) 211 resync_free_pages(&rps[j]); 212 213 j = 0; 214 out_free_bio: 215 for ( ; j < nalloc; j++) { 216 if (r10_bio->devs[j].bio) 217 bio_uninit(r10_bio->devs[j].bio); 218 kfree(r10_bio->devs[j].bio); 219 if (r10_bio->devs[j].repl_bio) 220 bio_uninit(r10_bio->devs[j].repl_bio); 221 kfree(r10_bio->devs[j].repl_bio); 222 } 223 kfree(rps); 224 out_free_r10bio: 225 rbio_pool_free(r10_bio, conf); 226 return NULL; 227 } 228 229 static void r10buf_pool_free(void *__r10_bio, void *data) 230 { 231 struct r10conf *conf = data; 232 struct r10bio *r10bio = __r10_bio; 233 int j; 234 struct resync_pages *rp = NULL; 235 236 for (j = conf->copies; j--; ) { 237 struct bio *bio = r10bio->devs[j].bio; 238 239 if (bio) { 240 rp = get_resync_pages(bio); 241 resync_free_pages(rp); 242 bio_uninit(bio); 243 kfree(bio); 244 } 245 246 bio = r10bio->devs[j].repl_bio; 247 if (bio) { 248 bio_uninit(bio); 249 kfree(bio); 250 } 251 } 252 253 /* resync pages array stored in the 1st bio's .bi_private */ 254 kfree(rp); 255 256 rbio_pool_free(r10bio, conf); 257 } 258 259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 260 { 261 int i; 262 263 for (i = 0; i < conf->geo.raid_disks; i++) { 264 struct bio **bio = & r10_bio->devs[i].bio; 265 if (!BIO_SPECIAL(*bio)) 266 bio_put(*bio); 267 *bio = NULL; 268 bio = &r10_bio->devs[i].repl_bio; 269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 270 bio_put(*bio); 271 *bio = NULL; 272 } 273 } 274 275 static void free_r10bio(struct r10bio *r10_bio) 276 { 277 struct r10conf *conf = r10_bio->mddev->private; 278 279 put_all_bios(conf, r10_bio); 280 mempool_free(r10_bio, &conf->r10bio_pool); 281 } 282 283 static void put_buf(struct r10bio *r10_bio) 284 { 285 struct r10conf *conf = r10_bio->mddev->private; 286 287 mempool_free(r10_bio, &conf->r10buf_pool); 288 289 lower_barrier(conf); 290 } 291 292 static void wake_up_barrier(struct r10conf *conf) 293 { 294 if (wq_has_sleeper(&conf->wait_barrier)) 295 wake_up(&conf->wait_barrier); 296 } 297 298 static void reschedule_retry(struct r10bio *r10_bio) 299 { 300 unsigned long flags; 301 struct mddev *mddev = r10_bio->mddev; 302 struct r10conf *conf = mddev->private; 303 304 spin_lock_irqsave(&conf->device_lock, flags); 305 list_add(&r10_bio->retry_list, &conf->retry_list); 306 conf->nr_queued ++; 307 spin_unlock_irqrestore(&conf->device_lock, flags); 308 309 /* wake up frozen array... */ 310 wake_up(&conf->wait_barrier); 311 312 md_wakeup_thread(mddev->thread); 313 } 314 315 /* 316 * raid_end_bio_io() is called when we have finished servicing a mirrored 317 * operation and are ready to return a success/failure code to the buffer 318 * cache layer. 319 */ 320 static void raid_end_bio_io(struct r10bio *r10_bio) 321 { 322 struct bio *bio = r10_bio->master_bio; 323 struct r10conf *conf = r10_bio->mddev->private; 324 325 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 326 bio->bi_status = BLK_STS_IOERR; 327 328 if (r10_bio->start_time) 329 bio_end_io_acct(bio, r10_bio->start_time); 330 bio_endio(bio); 331 /* 332 * Wake up any possible resync thread that waits for the device 333 * to go idle. 334 */ 335 allow_barrier(conf); 336 337 free_r10bio(r10_bio); 338 } 339 340 /* 341 * Update disk head position estimator based on IRQ completion info. 342 */ 343 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 344 { 345 struct r10conf *conf = r10_bio->mddev->private; 346 347 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 348 r10_bio->devs[slot].addr + (r10_bio->sectors); 349 } 350 351 /* 352 * Find the disk number which triggered given bio 353 */ 354 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 355 struct bio *bio, int *slotp, int *replp) 356 { 357 int slot; 358 int repl = 0; 359 360 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 361 if (r10_bio->devs[slot].bio == bio) 362 break; 363 if (r10_bio->devs[slot].repl_bio == bio) { 364 repl = 1; 365 break; 366 } 367 } 368 369 update_head_pos(slot, r10_bio); 370 371 if (slotp) 372 *slotp = slot; 373 if (replp) 374 *replp = repl; 375 return r10_bio->devs[slot].devnum; 376 } 377 378 static void raid10_end_read_request(struct bio *bio) 379 { 380 int uptodate = !bio->bi_status; 381 struct r10bio *r10_bio = bio->bi_private; 382 int slot; 383 struct md_rdev *rdev; 384 struct r10conf *conf = r10_bio->mddev->private; 385 386 slot = r10_bio->read_slot; 387 rdev = r10_bio->devs[slot].rdev; 388 /* 389 * this branch is our 'one mirror IO has finished' event handler: 390 */ 391 update_head_pos(slot, r10_bio); 392 393 if (uptodate) { 394 /* 395 * Set R10BIO_Uptodate in our master bio, so that 396 * we will return a good error code to the higher 397 * levels even if IO on some other mirrored buffer fails. 398 * 399 * The 'master' represents the composite IO operation to 400 * user-side. So if something waits for IO, then it will 401 * wait for the 'master' bio. 402 */ 403 set_bit(R10BIO_Uptodate, &r10_bio->state); 404 } else { 405 /* If all other devices that store this block have 406 * failed, we want to return the error upwards rather 407 * than fail the last device. Here we redefine 408 * "uptodate" to mean "Don't want to retry" 409 */ 410 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 411 rdev->raid_disk)) 412 uptodate = 1; 413 } 414 if (uptodate) { 415 raid_end_bio_io(r10_bio); 416 rdev_dec_pending(rdev, conf->mddev); 417 } else { 418 /* 419 * oops, read error - keep the refcount on the rdev 420 */ 421 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", 422 mdname(conf->mddev), 423 rdev->bdev, 424 (unsigned long long)r10_bio->sector); 425 set_bit(R10BIO_ReadError, &r10_bio->state); 426 reschedule_retry(r10_bio); 427 } 428 } 429 430 static void close_write(struct r10bio *r10_bio) 431 { 432 /* clear the bitmap if all writes complete successfully */ 433 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 434 r10_bio->sectors, 435 !test_bit(R10BIO_Degraded, &r10_bio->state), 436 0); 437 md_write_end(r10_bio->mddev); 438 } 439 440 static void one_write_done(struct r10bio *r10_bio) 441 { 442 if (atomic_dec_and_test(&r10_bio->remaining)) { 443 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 444 reschedule_retry(r10_bio); 445 else { 446 close_write(r10_bio); 447 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 448 reschedule_retry(r10_bio); 449 else 450 raid_end_bio_io(r10_bio); 451 } 452 } 453 } 454 455 static void raid10_end_write_request(struct bio *bio) 456 { 457 struct r10bio *r10_bio = bio->bi_private; 458 int dev; 459 int dec_rdev = 1; 460 struct r10conf *conf = r10_bio->mddev->private; 461 int slot, repl; 462 struct md_rdev *rdev = NULL; 463 struct bio *to_put = NULL; 464 bool discard_error; 465 466 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 467 468 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 469 470 if (repl) 471 rdev = conf->mirrors[dev].replacement; 472 if (!rdev) { 473 smp_rmb(); 474 repl = 0; 475 rdev = conf->mirrors[dev].rdev; 476 } 477 /* 478 * this branch is our 'one mirror IO has finished' event handler: 479 */ 480 if (bio->bi_status && !discard_error) { 481 if (repl) 482 /* Never record new bad blocks to replacement, 483 * just fail it. 484 */ 485 md_error(rdev->mddev, rdev); 486 else { 487 set_bit(WriteErrorSeen, &rdev->flags); 488 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 489 set_bit(MD_RECOVERY_NEEDED, 490 &rdev->mddev->recovery); 491 492 dec_rdev = 0; 493 if (test_bit(FailFast, &rdev->flags) && 494 (bio->bi_opf & MD_FAILFAST)) { 495 md_error(rdev->mddev, rdev); 496 } 497 498 /* 499 * When the device is faulty, it is not necessary to 500 * handle write error. 501 */ 502 if (!test_bit(Faulty, &rdev->flags)) 503 set_bit(R10BIO_WriteError, &r10_bio->state); 504 else { 505 /* Fail the request */ 506 set_bit(R10BIO_Degraded, &r10_bio->state); 507 r10_bio->devs[slot].bio = NULL; 508 to_put = bio; 509 dec_rdev = 1; 510 } 511 } 512 } else { 513 /* 514 * Set R10BIO_Uptodate in our master bio, so that 515 * we will return a good error code for to the higher 516 * levels even if IO on some other mirrored buffer fails. 517 * 518 * The 'master' represents the composite IO operation to 519 * user-side. So if something waits for IO, then it will 520 * wait for the 'master' bio. 521 */ 522 sector_t first_bad; 523 int bad_sectors; 524 525 /* 526 * Do not set R10BIO_Uptodate if the current device is 527 * rebuilding or Faulty. This is because we cannot use 528 * such device for properly reading the data back (we could 529 * potentially use it, if the current write would have felt 530 * before rdev->recovery_offset, but for simplicity we don't 531 * check this here. 532 */ 533 if (test_bit(In_sync, &rdev->flags) && 534 !test_bit(Faulty, &rdev->flags)) 535 set_bit(R10BIO_Uptodate, &r10_bio->state); 536 537 /* Maybe we can clear some bad blocks. */ 538 if (is_badblock(rdev, 539 r10_bio->devs[slot].addr, 540 r10_bio->sectors, 541 &first_bad, &bad_sectors) && !discard_error) { 542 bio_put(bio); 543 if (repl) 544 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 545 else 546 r10_bio->devs[slot].bio = IO_MADE_GOOD; 547 dec_rdev = 0; 548 set_bit(R10BIO_MadeGood, &r10_bio->state); 549 } 550 } 551 552 /* 553 * 554 * Let's see if all mirrored write operations have finished 555 * already. 556 */ 557 one_write_done(r10_bio); 558 if (dec_rdev) 559 rdev_dec_pending(rdev, conf->mddev); 560 if (to_put) 561 bio_put(to_put); 562 } 563 564 /* 565 * RAID10 layout manager 566 * As well as the chunksize and raid_disks count, there are two 567 * parameters: near_copies and far_copies. 568 * near_copies * far_copies must be <= raid_disks. 569 * Normally one of these will be 1. 570 * If both are 1, we get raid0. 571 * If near_copies == raid_disks, we get raid1. 572 * 573 * Chunks are laid out in raid0 style with near_copies copies of the 574 * first chunk, followed by near_copies copies of the next chunk and 575 * so on. 576 * If far_copies > 1, then after 1/far_copies of the array has been assigned 577 * as described above, we start again with a device offset of near_copies. 578 * So we effectively have another copy of the whole array further down all 579 * the drives, but with blocks on different drives. 580 * With this layout, and block is never stored twice on the one device. 581 * 582 * raid10_find_phys finds the sector offset of a given virtual sector 583 * on each device that it is on. 584 * 585 * raid10_find_virt does the reverse mapping, from a device and a 586 * sector offset to a virtual address 587 */ 588 589 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 590 { 591 int n,f; 592 sector_t sector; 593 sector_t chunk; 594 sector_t stripe; 595 int dev; 596 int slot = 0; 597 int last_far_set_start, last_far_set_size; 598 599 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 600 last_far_set_start *= geo->far_set_size; 601 602 last_far_set_size = geo->far_set_size; 603 last_far_set_size += (geo->raid_disks % geo->far_set_size); 604 605 /* now calculate first sector/dev */ 606 chunk = r10bio->sector >> geo->chunk_shift; 607 sector = r10bio->sector & geo->chunk_mask; 608 609 chunk *= geo->near_copies; 610 stripe = chunk; 611 dev = sector_div(stripe, geo->raid_disks); 612 if (geo->far_offset) 613 stripe *= geo->far_copies; 614 615 sector += stripe << geo->chunk_shift; 616 617 /* and calculate all the others */ 618 for (n = 0; n < geo->near_copies; n++) { 619 int d = dev; 620 int set; 621 sector_t s = sector; 622 r10bio->devs[slot].devnum = d; 623 r10bio->devs[slot].addr = s; 624 slot++; 625 626 for (f = 1; f < geo->far_copies; f++) { 627 set = d / geo->far_set_size; 628 d += geo->near_copies; 629 630 if ((geo->raid_disks % geo->far_set_size) && 631 (d > last_far_set_start)) { 632 d -= last_far_set_start; 633 d %= last_far_set_size; 634 d += last_far_set_start; 635 } else { 636 d %= geo->far_set_size; 637 d += geo->far_set_size * set; 638 } 639 s += geo->stride; 640 r10bio->devs[slot].devnum = d; 641 r10bio->devs[slot].addr = s; 642 slot++; 643 } 644 dev++; 645 if (dev >= geo->raid_disks) { 646 dev = 0; 647 sector += (geo->chunk_mask + 1); 648 } 649 } 650 } 651 652 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 653 { 654 struct geom *geo = &conf->geo; 655 656 if (conf->reshape_progress != MaxSector && 657 ((r10bio->sector >= conf->reshape_progress) != 658 conf->mddev->reshape_backwards)) { 659 set_bit(R10BIO_Previous, &r10bio->state); 660 geo = &conf->prev; 661 } else 662 clear_bit(R10BIO_Previous, &r10bio->state); 663 664 __raid10_find_phys(geo, r10bio); 665 } 666 667 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 668 { 669 sector_t offset, chunk, vchunk; 670 /* Never use conf->prev as this is only called during resync 671 * or recovery, so reshape isn't happening 672 */ 673 struct geom *geo = &conf->geo; 674 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 675 int far_set_size = geo->far_set_size; 676 int last_far_set_start; 677 678 if (geo->raid_disks % geo->far_set_size) { 679 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 680 last_far_set_start *= geo->far_set_size; 681 682 if (dev >= last_far_set_start) { 683 far_set_size = geo->far_set_size; 684 far_set_size += (geo->raid_disks % geo->far_set_size); 685 far_set_start = last_far_set_start; 686 } 687 } 688 689 offset = sector & geo->chunk_mask; 690 if (geo->far_offset) { 691 int fc; 692 chunk = sector >> geo->chunk_shift; 693 fc = sector_div(chunk, geo->far_copies); 694 dev -= fc * geo->near_copies; 695 if (dev < far_set_start) 696 dev += far_set_size; 697 } else { 698 while (sector >= geo->stride) { 699 sector -= geo->stride; 700 if (dev < (geo->near_copies + far_set_start)) 701 dev += far_set_size - geo->near_copies; 702 else 703 dev -= geo->near_copies; 704 } 705 chunk = sector >> geo->chunk_shift; 706 } 707 vchunk = chunk * geo->raid_disks + dev; 708 sector_div(vchunk, geo->near_copies); 709 return (vchunk << geo->chunk_shift) + offset; 710 } 711 712 /* 713 * This routine returns the disk from which the requested read should 714 * be done. There is a per-array 'next expected sequential IO' sector 715 * number - if this matches on the next IO then we use the last disk. 716 * There is also a per-disk 'last know head position' sector that is 717 * maintained from IRQ contexts, both the normal and the resync IO 718 * completion handlers update this position correctly. If there is no 719 * perfect sequential match then we pick the disk whose head is closest. 720 * 721 * If there are 2 mirrors in the same 2 devices, performance degrades 722 * because position is mirror, not device based. 723 * 724 * The rdev for the device selected will have nr_pending incremented. 725 */ 726 727 /* 728 * FIXME: possibly should rethink readbalancing and do it differently 729 * depending on near_copies / far_copies geometry. 730 */ 731 static struct md_rdev *read_balance(struct r10conf *conf, 732 struct r10bio *r10_bio, 733 int *max_sectors) 734 { 735 const sector_t this_sector = r10_bio->sector; 736 int disk, slot; 737 int sectors = r10_bio->sectors; 738 int best_good_sectors; 739 sector_t new_distance, best_dist; 740 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 741 int do_balance; 742 int best_dist_slot, best_pending_slot; 743 bool has_nonrot_disk = false; 744 unsigned int min_pending; 745 struct geom *geo = &conf->geo; 746 747 raid10_find_phys(conf, r10_bio); 748 rcu_read_lock(); 749 best_dist_slot = -1; 750 min_pending = UINT_MAX; 751 best_dist_rdev = NULL; 752 best_pending_rdev = NULL; 753 best_dist = MaxSector; 754 best_good_sectors = 0; 755 do_balance = 1; 756 clear_bit(R10BIO_FailFast, &r10_bio->state); 757 /* 758 * Check if we can balance. We can balance on the whole 759 * device if no resync is going on (recovery is ok), or below 760 * the resync window. We take the first readable disk when 761 * above the resync window. 762 */ 763 if ((conf->mddev->recovery_cp < MaxSector 764 && (this_sector + sectors >= conf->next_resync)) || 765 (mddev_is_clustered(conf->mddev) && 766 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 767 this_sector + sectors))) 768 do_balance = 0; 769 770 for (slot = 0; slot < conf->copies ; slot++) { 771 sector_t first_bad; 772 int bad_sectors; 773 sector_t dev_sector; 774 unsigned int pending; 775 bool nonrot; 776 777 if (r10_bio->devs[slot].bio == IO_BLOCKED) 778 continue; 779 disk = r10_bio->devs[slot].devnum; 780 rdev = rcu_dereference(conf->mirrors[disk].replacement); 781 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 782 r10_bio->devs[slot].addr + sectors > 783 rdev->recovery_offset) { 784 /* 785 * Read replacement first to prevent reading both rdev 786 * and replacement as NULL during replacement replace 787 * rdev. 788 */ 789 smp_mb(); 790 rdev = rcu_dereference(conf->mirrors[disk].rdev); 791 } 792 if (rdev == NULL || 793 test_bit(Faulty, &rdev->flags)) 794 continue; 795 if (!test_bit(In_sync, &rdev->flags) && 796 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 797 continue; 798 799 dev_sector = r10_bio->devs[slot].addr; 800 if (is_badblock(rdev, dev_sector, sectors, 801 &first_bad, &bad_sectors)) { 802 if (best_dist < MaxSector) 803 /* Already have a better slot */ 804 continue; 805 if (first_bad <= dev_sector) { 806 /* Cannot read here. If this is the 807 * 'primary' device, then we must not read 808 * beyond 'bad_sectors' from another device. 809 */ 810 bad_sectors -= (dev_sector - first_bad); 811 if (!do_balance && sectors > bad_sectors) 812 sectors = bad_sectors; 813 if (best_good_sectors > sectors) 814 best_good_sectors = sectors; 815 } else { 816 sector_t good_sectors = 817 first_bad - dev_sector; 818 if (good_sectors > best_good_sectors) { 819 best_good_sectors = good_sectors; 820 best_dist_slot = slot; 821 best_dist_rdev = rdev; 822 } 823 if (!do_balance) 824 /* Must read from here */ 825 break; 826 } 827 continue; 828 } else 829 best_good_sectors = sectors; 830 831 if (!do_balance) 832 break; 833 834 nonrot = bdev_nonrot(rdev->bdev); 835 has_nonrot_disk |= nonrot; 836 pending = atomic_read(&rdev->nr_pending); 837 if (min_pending > pending && nonrot) { 838 min_pending = pending; 839 best_pending_slot = slot; 840 best_pending_rdev = rdev; 841 } 842 843 if (best_dist_slot >= 0) 844 /* At least 2 disks to choose from so failfast is OK */ 845 set_bit(R10BIO_FailFast, &r10_bio->state); 846 /* This optimisation is debatable, and completely destroys 847 * sequential read speed for 'far copies' arrays. So only 848 * keep it for 'near' arrays, and review those later. 849 */ 850 if (geo->near_copies > 1 && !pending) 851 new_distance = 0; 852 853 /* for far > 1 always use the lowest address */ 854 else if (geo->far_copies > 1) 855 new_distance = r10_bio->devs[slot].addr; 856 else 857 new_distance = abs(r10_bio->devs[slot].addr - 858 conf->mirrors[disk].head_position); 859 860 if (new_distance < best_dist) { 861 best_dist = new_distance; 862 best_dist_slot = slot; 863 best_dist_rdev = rdev; 864 } 865 } 866 if (slot >= conf->copies) { 867 if (has_nonrot_disk) { 868 slot = best_pending_slot; 869 rdev = best_pending_rdev; 870 } else { 871 slot = best_dist_slot; 872 rdev = best_dist_rdev; 873 } 874 } 875 876 if (slot >= 0) { 877 atomic_inc(&rdev->nr_pending); 878 r10_bio->read_slot = slot; 879 } else 880 rdev = NULL; 881 rcu_read_unlock(); 882 *max_sectors = best_good_sectors; 883 884 return rdev; 885 } 886 887 static void flush_pending_writes(struct r10conf *conf) 888 { 889 /* Any writes that have been queued but are awaiting 890 * bitmap updates get flushed here. 891 */ 892 spin_lock_irq(&conf->device_lock); 893 894 if (conf->pending_bio_list.head) { 895 struct blk_plug plug; 896 struct bio *bio; 897 898 bio = bio_list_get(&conf->pending_bio_list); 899 spin_unlock_irq(&conf->device_lock); 900 901 /* 902 * As this is called in a wait_event() loop (see freeze_array), 903 * current->state might be TASK_UNINTERRUPTIBLE which will 904 * cause a warning when we prepare to wait again. As it is 905 * rare that this path is taken, it is perfectly safe to force 906 * us to go around the wait_event() loop again, so the warning 907 * is a false-positive. Silence the warning by resetting 908 * thread state 909 */ 910 __set_current_state(TASK_RUNNING); 911 912 blk_start_plug(&plug); 913 raid1_prepare_flush_writes(conf->mddev->bitmap); 914 wake_up(&conf->wait_barrier); 915 916 while (bio) { /* submit pending writes */ 917 struct bio *next = bio->bi_next; 918 919 raid1_submit_write(bio); 920 bio = next; 921 cond_resched(); 922 } 923 blk_finish_plug(&plug); 924 } else 925 spin_unlock_irq(&conf->device_lock); 926 } 927 928 /* Barriers.... 929 * Sometimes we need to suspend IO while we do something else, 930 * either some resync/recovery, or reconfigure the array. 931 * To do this we raise a 'barrier'. 932 * The 'barrier' is a counter that can be raised multiple times 933 * to count how many activities are happening which preclude 934 * normal IO. 935 * We can only raise the barrier if there is no pending IO. 936 * i.e. if nr_pending == 0. 937 * We choose only to raise the barrier if no-one is waiting for the 938 * barrier to go down. This means that as soon as an IO request 939 * is ready, no other operations which require a barrier will start 940 * until the IO request has had a chance. 941 * 942 * So: regular IO calls 'wait_barrier'. When that returns there 943 * is no backgroup IO happening, It must arrange to call 944 * allow_barrier when it has finished its IO. 945 * backgroup IO calls must call raise_barrier. Once that returns 946 * there is no normal IO happeing. It must arrange to call 947 * lower_barrier when the particular background IO completes. 948 */ 949 950 static void raise_barrier(struct r10conf *conf, int force) 951 { 952 write_seqlock_irq(&conf->resync_lock); 953 954 if (WARN_ON_ONCE(force && !conf->barrier)) 955 force = false; 956 957 /* Wait until no block IO is waiting (unless 'force') */ 958 wait_event_barrier(conf, force || !conf->nr_waiting); 959 960 /* block any new IO from starting */ 961 WRITE_ONCE(conf->barrier, conf->barrier + 1); 962 963 /* Now wait for all pending IO to complete */ 964 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && 965 conf->barrier < RESYNC_DEPTH); 966 967 write_sequnlock_irq(&conf->resync_lock); 968 } 969 970 static void lower_barrier(struct r10conf *conf) 971 { 972 unsigned long flags; 973 974 write_seqlock_irqsave(&conf->resync_lock, flags); 975 WRITE_ONCE(conf->barrier, conf->barrier - 1); 976 write_sequnlock_irqrestore(&conf->resync_lock, flags); 977 wake_up(&conf->wait_barrier); 978 } 979 980 static bool stop_waiting_barrier(struct r10conf *conf) 981 { 982 struct bio_list *bio_list = current->bio_list; 983 struct md_thread *thread; 984 985 /* barrier is dropped */ 986 if (!conf->barrier) 987 return true; 988 989 /* 990 * If there are already pending requests (preventing the barrier from 991 * rising completely), and the pre-process bio queue isn't empty, then 992 * don't wait, as we need to empty that queue to get the nr_pending 993 * count down. 994 */ 995 if (atomic_read(&conf->nr_pending) && bio_list && 996 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) 997 return true; 998 999 /* daemon thread must exist while handling io */ 1000 thread = rcu_dereference_protected(conf->mddev->thread, true); 1001 /* 1002 * move on if io is issued from raid10d(), nr_pending is not released 1003 * from original io(see handle_read_error()). All raise barrier is 1004 * blocked until this io is done. 1005 */ 1006 if (thread->tsk == current) { 1007 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); 1008 return true; 1009 } 1010 1011 return false; 1012 } 1013 1014 static bool wait_barrier_nolock(struct r10conf *conf) 1015 { 1016 unsigned int seq = read_seqbegin(&conf->resync_lock); 1017 1018 if (READ_ONCE(conf->barrier)) 1019 return false; 1020 1021 atomic_inc(&conf->nr_pending); 1022 if (!read_seqretry(&conf->resync_lock, seq)) 1023 return true; 1024 1025 if (atomic_dec_and_test(&conf->nr_pending)) 1026 wake_up_barrier(conf); 1027 1028 return false; 1029 } 1030 1031 static bool wait_barrier(struct r10conf *conf, bool nowait) 1032 { 1033 bool ret = true; 1034 1035 if (wait_barrier_nolock(conf)) 1036 return true; 1037 1038 write_seqlock_irq(&conf->resync_lock); 1039 if (conf->barrier) { 1040 /* Return false when nowait flag is set */ 1041 if (nowait) { 1042 ret = false; 1043 } else { 1044 conf->nr_waiting++; 1045 raid10_log(conf->mddev, "wait barrier"); 1046 wait_event_barrier(conf, stop_waiting_barrier(conf)); 1047 conf->nr_waiting--; 1048 } 1049 if (!conf->nr_waiting) 1050 wake_up(&conf->wait_barrier); 1051 } 1052 /* Only increment nr_pending when we wait */ 1053 if (ret) 1054 atomic_inc(&conf->nr_pending); 1055 write_sequnlock_irq(&conf->resync_lock); 1056 return ret; 1057 } 1058 1059 static void allow_barrier(struct r10conf *conf) 1060 { 1061 if ((atomic_dec_and_test(&conf->nr_pending)) || 1062 (conf->array_freeze_pending)) 1063 wake_up_barrier(conf); 1064 } 1065 1066 static void freeze_array(struct r10conf *conf, int extra) 1067 { 1068 /* stop syncio and normal IO and wait for everything to 1069 * go quiet. 1070 * We increment barrier and nr_waiting, and then 1071 * wait until nr_pending match nr_queued+extra 1072 * This is called in the context of one normal IO request 1073 * that has failed. Thus any sync request that might be pending 1074 * will be blocked by nr_pending, and we need to wait for 1075 * pending IO requests to complete or be queued for re-try. 1076 * Thus the number queued (nr_queued) plus this request (extra) 1077 * must match the number of pending IOs (nr_pending) before 1078 * we continue. 1079 */ 1080 write_seqlock_irq(&conf->resync_lock); 1081 conf->array_freeze_pending++; 1082 WRITE_ONCE(conf->barrier, conf->barrier + 1); 1083 conf->nr_waiting++; 1084 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == 1085 conf->nr_queued + extra, flush_pending_writes(conf)); 1086 conf->array_freeze_pending--; 1087 write_sequnlock_irq(&conf->resync_lock); 1088 } 1089 1090 static void unfreeze_array(struct r10conf *conf) 1091 { 1092 /* reverse the effect of the freeze */ 1093 write_seqlock_irq(&conf->resync_lock); 1094 WRITE_ONCE(conf->barrier, conf->barrier - 1); 1095 conf->nr_waiting--; 1096 wake_up(&conf->wait_barrier); 1097 write_sequnlock_irq(&conf->resync_lock); 1098 } 1099 1100 static sector_t choose_data_offset(struct r10bio *r10_bio, 1101 struct md_rdev *rdev) 1102 { 1103 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1104 test_bit(R10BIO_Previous, &r10_bio->state)) 1105 return rdev->data_offset; 1106 else 1107 return rdev->new_data_offset; 1108 } 1109 1110 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1111 { 1112 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1113 struct mddev *mddev = plug->cb.data; 1114 struct r10conf *conf = mddev->private; 1115 struct bio *bio; 1116 1117 if (from_schedule) { 1118 spin_lock_irq(&conf->device_lock); 1119 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1120 spin_unlock_irq(&conf->device_lock); 1121 wake_up_barrier(conf); 1122 md_wakeup_thread(mddev->thread); 1123 kfree(plug); 1124 return; 1125 } 1126 1127 /* we aren't scheduling, so we can do the write-out directly. */ 1128 bio = bio_list_get(&plug->pending); 1129 raid1_prepare_flush_writes(mddev->bitmap); 1130 wake_up_barrier(conf); 1131 1132 while (bio) { /* submit pending writes */ 1133 struct bio *next = bio->bi_next; 1134 1135 raid1_submit_write(bio); 1136 bio = next; 1137 cond_resched(); 1138 } 1139 kfree(plug); 1140 } 1141 1142 /* 1143 * 1. Register the new request and wait if the reconstruction thread has put 1144 * up a bar for new requests. Continue immediately if no resync is active 1145 * currently. 1146 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1147 */ 1148 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1149 struct bio *bio, sector_t sectors) 1150 { 1151 /* Bail out if REQ_NOWAIT is set for the bio */ 1152 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1153 bio_wouldblock_error(bio); 1154 return false; 1155 } 1156 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1157 bio->bi_iter.bi_sector < conf->reshape_progress && 1158 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1159 allow_barrier(conf); 1160 if (bio->bi_opf & REQ_NOWAIT) { 1161 bio_wouldblock_error(bio); 1162 return false; 1163 } 1164 raid10_log(conf->mddev, "wait reshape"); 1165 wait_event(conf->wait_barrier, 1166 conf->reshape_progress <= bio->bi_iter.bi_sector || 1167 conf->reshape_progress >= bio->bi_iter.bi_sector + 1168 sectors); 1169 wait_barrier(conf, false); 1170 } 1171 return true; 1172 } 1173 1174 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1175 struct r10bio *r10_bio) 1176 { 1177 struct r10conf *conf = mddev->private; 1178 struct bio *read_bio; 1179 const enum req_op op = bio_op(bio); 1180 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1181 int max_sectors; 1182 struct md_rdev *rdev; 1183 char b[BDEVNAME_SIZE]; 1184 int slot = r10_bio->read_slot; 1185 struct md_rdev *err_rdev = NULL; 1186 gfp_t gfp = GFP_NOIO; 1187 1188 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1189 /* 1190 * This is an error retry, but we cannot 1191 * safely dereference the rdev in the r10_bio, 1192 * we must use the one in conf. 1193 * If it has already been disconnected (unlikely) 1194 * we lose the device name in error messages. 1195 */ 1196 int disk; 1197 /* 1198 * As we are blocking raid10, it is a little safer to 1199 * use __GFP_HIGH. 1200 */ 1201 gfp = GFP_NOIO | __GFP_HIGH; 1202 1203 rcu_read_lock(); 1204 disk = r10_bio->devs[slot].devnum; 1205 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1206 if (err_rdev) 1207 snprintf(b, sizeof(b), "%pg", err_rdev->bdev); 1208 else { 1209 strcpy(b, "???"); 1210 /* This never gets dereferenced */ 1211 err_rdev = r10_bio->devs[slot].rdev; 1212 } 1213 rcu_read_unlock(); 1214 } 1215 1216 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) 1217 return; 1218 rdev = read_balance(conf, r10_bio, &max_sectors); 1219 if (!rdev) { 1220 if (err_rdev) { 1221 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1222 mdname(mddev), b, 1223 (unsigned long long)r10_bio->sector); 1224 } 1225 raid_end_bio_io(r10_bio); 1226 return; 1227 } 1228 if (err_rdev) 1229 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", 1230 mdname(mddev), 1231 rdev->bdev, 1232 (unsigned long long)r10_bio->sector); 1233 if (max_sectors < bio_sectors(bio)) { 1234 struct bio *split = bio_split(bio, max_sectors, 1235 gfp, &conf->bio_split); 1236 bio_chain(split, bio); 1237 allow_barrier(conf); 1238 submit_bio_noacct(bio); 1239 wait_barrier(conf, false); 1240 bio = split; 1241 r10_bio->master_bio = bio; 1242 r10_bio->sectors = max_sectors; 1243 } 1244 slot = r10_bio->read_slot; 1245 1246 if (!r10_bio->start_time && 1247 blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1248 r10_bio->start_time = bio_start_io_acct(bio); 1249 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1250 1251 r10_bio->devs[slot].bio = read_bio; 1252 r10_bio->devs[slot].rdev = rdev; 1253 1254 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1255 choose_data_offset(r10_bio, rdev); 1256 read_bio->bi_end_io = raid10_end_read_request; 1257 read_bio->bi_opf = op | do_sync; 1258 if (test_bit(FailFast, &rdev->flags) && 1259 test_bit(R10BIO_FailFast, &r10_bio->state)) 1260 read_bio->bi_opf |= MD_FAILFAST; 1261 read_bio->bi_private = r10_bio; 1262 1263 if (mddev->gendisk) 1264 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1265 r10_bio->sector); 1266 submit_bio_noacct(read_bio); 1267 return; 1268 } 1269 1270 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1271 struct bio *bio, bool replacement, 1272 int n_copy) 1273 { 1274 const enum req_op op = bio_op(bio); 1275 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1276 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA; 1277 unsigned long flags; 1278 struct r10conf *conf = mddev->private; 1279 struct md_rdev *rdev; 1280 int devnum = r10_bio->devs[n_copy].devnum; 1281 struct bio *mbio; 1282 1283 if (replacement) { 1284 rdev = conf->mirrors[devnum].replacement; 1285 if (rdev == NULL) { 1286 /* Replacement just got moved to main 'rdev' */ 1287 smp_mb(); 1288 rdev = conf->mirrors[devnum].rdev; 1289 } 1290 } else 1291 rdev = conf->mirrors[devnum].rdev; 1292 1293 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1294 if (replacement) 1295 r10_bio->devs[n_copy].repl_bio = mbio; 1296 else 1297 r10_bio->devs[n_copy].bio = mbio; 1298 1299 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1300 choose_data_offset(r10_bio, rdev)); 1301 mbio->bi_end_io = raid10_end_write_request; 1302 mbio->bi_opf = op | do_sync | do_fua; 1303 if (!replacement && test_bit(FailFast, 1304 &conf->mirrors[devnum].rdev->flags) 1305 && enough(conf, devnum)) 1306 mbio->bi_opf |= MD_FAILFAST; 1307 mbio->bi_private = r10_bio; 1308 1309 if (conf->mddev->gendisk) 1310 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk), 1311 r10_bio->sector); 1312 /* flush_pending_writes() needs access to the rdev so...*/ 1313 mbio->bi_bdev = (void *)rdev; 1314 1315 atomic_inc(&r10_bio->remaining); 1316 1317 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) { 1318 spin_lock_irqsave(&conf->device_lock, flags); 1319 bio_list_add(&conf->pending_bio_list, mbio); 1320 spin_unlock_irqrestore(&conf->device_lock, flags); 1321 md_wakeup_thread(mddev->thread); 1322 } 1323 } 1324 1325 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1326 { 1327 int i; 1328 struct r10conf *conf = mddev->private; 1329 struct md_rdev *blocked_rdev; 1330 1331 retry_wait: 1332 blocked_rdev = NULL; 1333 rcu_read_lock(); 1334 for (i = 0; i < conf->copies; i++) { 1335 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1336 struct md_rdev *rrdev = rcu_dereference( 1337 conf->mirrors[i].replacement); 1338 if (rdev == rrdev) 1339 rrdev = NULL; 1340 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1341 atomic_inc(&rdev->nr_pending); 1342 blocked_rdev = rdev; 1343 break; 1344 } 1345 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1346 atomic_inc(&rrdev->nr_pending); 1347 blocked_rdev = rrdev; 1348 break; 1349 } 1350 1351 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1352 sector_t first_bad; 1353 sector_t dev_sector = r10_bio->devs[i].addr; 1354 int bad_sectors; 1355 int is_bad; 1356 1357 /* 1358 * Discard request doesn't care the write result 1359 * so it doesn't need to wait blocked disk here. 1360 */ 1361 if (!r10_bio->sectors) 1362 continue; 1363 1364 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors, 1365 &first_bad, &bad_sectors); 1366 if (is_bad < 0) { 1367 /* 1368 * Mustn't write here until the bad block 1369 * is acknowledged 1370 */ 1371 atomic_inc(&rdev->nr_pending); 1372 set_bit(BlockedBadBlocks, &rdev->flags); 1373 blocked_rdev = rdev; 1374 break; 1375 } 1376 } 1377 } 1378 rcu_read_unlock(); 1379 1380 if (unlikely(blocked_rdev)) { 1381 /* Have to wait for this device to get unblocked, then retry */ 1382 allow_barrier(conf); 1383 raid10_log(conf->mddev, "%s wait rdev %d blocked", 1384 __func__, blocked_rdev->raid_disk); 1385 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1386 wait_barrier(conf, false); 1387 goto retry_wait; 1388 } 1389 } 1390 1391 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1392 struct r10bio *r10_bio) 1393 { 1394 struct r10conf *conf = mddev->private; 1395 int i; 1396 sector_t sectors; 1397 int max_sectors; 1398 1399 if ((mddev_is_clustered(mddev) && 1400 md_cluster_ops->area_resyncing(mddev, WRITE, 1401 bio->bi_iter.bi_sector, 1402 bio_end_sector(bio)))) { 1403 DEFINE_WAIT(w); 1404 /* Bail out if REQ_NOWAIT is set for the bio */ 1405 if (bio->bi_opf & REQ_NOWAIT) { 1406 bio_wouldblock_error(bio); 1407 return; 1408 } 1409 for (;;) { 1410 prepare_to_wait(&conf->wait_barrier, 1411 &w, TASK_IDLE); 1412 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1413 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1414 break; 1415 schedule(); 1416 } 1417 finish_wait(&conf->wait_barrier, &w); 1418 } 1419 1420 sectors = r10_bio->sectors; 1421 if (!regular_request_wait(mddev, conf, bio, sectors)) 1422 return; 1423 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1424 (mddev->reshape_backwards 1425 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1426 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1427 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1428 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1429 /* Need to update reshape_position in metadata */ 1430 mddev->reshape_position = conf->reshape_progress; 1431 set_mask_bits(&mddev->sb_flags, 0, 1432 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1433 md_wakeup_thread(mddev->thread); 1434 if (bio->bi_opf & REQ_NOWAIT) { 1435 allow_barrier(conf); 1436 bio_wouldblock_error(bio); 1437 return; 1438 } 1439 raid10_log(conf->mddev, "wait reshape metadata"); 1440 wait_event(mddev->sb_wait, 1441 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1442 1443 conf->reshape_safe = mddev->reshape_position; 1444 } 1445 1446 /* first select target devices under rcu_lock and 1447 * inc refcount on their rdev. Record them by setting 1448 * bios[x] to bio 1449 * If there are known/acknowledged bad blocks on any device 1450 * on which we have seen a write error, we want to avoid 1451 * writing to those blocks. This potentially requires several 1452 * writes to write around the bad blocks. Each set of writes 1453 * gets its own r10_bio with a set of bios attached. 1454 */ 1455 1456 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1457 raid10_find_phys(conf, r10_bio); 1458 1459 wait_blocked_dev(mddev, r10_bio); 1460 1461 rcu_read_lock(); 1462 max_sectors = r10_bio->sectors; 1463 1464 for (i = 0; i < conf->copies; i++) { 1465 int d = r10_bio->devs[i].devnum; 1466 struct md_rdev *rdev, *rrdev; 1467 1468 rrdev = rcu_dereference(conf->mirrors[d].replacement); 1469 /* 1470 * Read replacement first to prevent reading both rdev and 1471 * replacement as NULL during replacement replace rdev. 1472 */ 1473 smp_mb(); 1474 rdev = rcu_dereference(conf->mirrors[d].rdev); 1475 if (rdev == rrdev) 1476 rrdev = NULL; 1477 if (rdev && (test_bit(Faulty, &rdev->flags))) 1478 rdev = NULL; 1479 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1480 rrdev = NULL; 1481 1482 r10_bio->devs[i].bio = NULL; 1483 r10_bio->devs[i].repl_bio = NULL; 1484 1485 if (!rdev && !rrdev) { 1486 set_bit(R10BIO_Degraded, &r10_bio->state); 1487 continue; 1488 } 1489 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1490 sector_t first_bad; 1491 sector_t dev_sector = r10_bio->devs[i].addr; 1492 int bad_sectors; 1493 int is_bad; 1494 1495 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1496 &first_bad, &bad_sectors); 1497 if (is_bad && first_bad <= dev_sector) { 1498 /* Cannot write here at all */ 1499 bad_sectors -= (dev_sector - first_bad); 1500 if (bad_sectors < max_sectors) 1501 /* Mustn't write more than bad_sectors 1502 * to other devices yet 1503 */ 1504 max_sectors = bad_sectors; 1505 /* We don't set R10BIO_Degraded as that 1506 * only applies if the disk is missing, 1507 * so it might be re-added, and we want to 1508 * know to recover this chunk. 1509 * In this case the device is here, and the 1510 * fact that this chunk is not in-sync is 1511 * recorded in the bad block log. 1512 */ 1513 continue; 1514 } 1515 if (is_bad) { 1516 int good_sectors = first_bad - dev_sector; 1517 if (good_sectors < max_sectors) 1518 max_sectors = good_sectors; 1519 } 1520 } 1521 if (rdev) { 1522 r10_bio->devs[i].bio = bio; 1523 atomic_inc(&rdev->nr_pending); 1524 } 1525 if (rrdev) { 1526 r10_bio->devs[i].repl_bio = bio; 1527 atomic_inc(&rrdev->nr_pending); 1528 } 1529 } 1530 rcu_read_unlock(); 1531 1532 if (max_sectors < r10_bio->sectors) 1533 r10_bio->sectors = max_sectors; 1534 1535 if (r10_bio->sectors < bio_sectors(bio)) { 1536 struct bio *split = bio_split(bio, r10_bio->sectors, 1537 GFP_NOIO, &conf->bio_split); 1538 bio_chain(split, bio); 1539 allow_barrier(conf); 1540 submit_bio_noacct(bio); 1541 wait_barrier(conf, false); 1542 bio = split; 1543 r10_bio->master_bio = bio; 1544 } 1545 1546 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1547 r10_bio->start_time = bio_start_io_acct(bio); 1548 atomic_set(&r10_bio->remaining, 1); 1549 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1550 1551 for (i = 0; i < conf->copies; i++) { 1552 if (r10_bio->devs[i].bio) 1553 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1554 if (r10_bio->devs[i].repl_bio) 1555 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1556 } 1557 one_write_done(r10_bio); 1558 } 1559 1560 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1561 { 1562 struct r10conf *conf = mddev->private; 1563 struct r10bio *r10_bio; 1564 1565 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1566 1567 r10_bio->master_bio = bio; 1568 r10_bio->sectors = sectors; 1569 1570 r10_bio->mddev = mddev; 1571 r10_bio->sector = bio->bi_iter.bi_sector; 1572 r10_bio->state = 0; 1573 r10_bio->read_slot = -1; 1574 r10_bio->start_time = 0; 1575 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1576 conf->geo.raid_disks); 1577 1578 if (bio_data_dir(bio) == READ) 1579 raid10_read_request(mddev, bio, r10_bio); 1580 else 1581 raid10_write_request(mddev, bio, r10_bio); 1582 } 1583 1584 static void raid_end_discard_bio(struct r10bio *r10bio) 1585 { 1586 struct r10conf *conf = r10bio->mddev->private; 1587 struct r10bio *first_r10bio; 1588 1589 while (atomic_dec_and_test(&r10bio->remaining)) { 1590 1591 allow_barrier(conf); 1592 1593 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1594 first_r10bio = (struct r10bio *)r10bio->master_bio; 1595 free_r10bio(r10bio); 1596 r10bio = first_r10bio; 1597 } else { 1598 md_write_end(r10bio->mddev); 1599 bio_endio(r10bio->master_bio); 1600 free_r10bio(r10bio); 1601 break; 1602 } 1603 } 1604 } 1605 1606 static void raid10_end_discard_request(struct bio *bio) 1607 { 1608 struct r10bio *r10_bio = bio->bi_private; 1609 struct r10conf *conf = r10_bio->mddev->private; 1610 struct md_rdev *rdev = NULL; 1611 int dev; 1612 int slot, repl; 1613 1614 /* 1615 * We don't care the return value of discard bio 1616 */ 1617 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1618 set_bit(R10BIO_Uptodate, &r10_bio->state); 1619 1620 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1621 if (repl) 1622 rdev = conf->mirrors[dev].replacement; 1623 if (!rdev) { 1624 /* 1625 * raid10_remove_disk uses smp_mb to make sure rdev is set to 1626 * replacement before setting replacement to NULL. It can read 1627 * rdev first without barrier protect even replacement is NULL 1628 */ 1629 smp_rmb(); 1630 rdev = conf->mirrors[dev].rdev; 1631 } 1632 1633 raid_end_discard_bio(r10_bio); 1634 rdev_dec_pending(rdev, conf->mddev); 1635 } 1636 1637 /* 1638 * There are some limitations to handle discard bio 1639 * 1st, the discard size is bigger than stripe_size*2. 1640 * 2st, if the discard bio spans reshape progress, we use the old way to 1641 * handle discard bio 1642 */ 1643 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1644 { 1645 struct r10conf *conf = mddev->private; 1646 struct geom *geo = &conf->geo; 1647 int far_copies = geo->far_copies; 1648 bool first_copy = true; 1649 struct r10bio *r10_bio, *first_r10bio; 1650 struct bio *split; 1651 int disk; 1652 sector_t chunk; 1653 unsigned int stripe_size; 1654 unsigned int stripe_data_disks; 1655 sector_t split_size; 1656 sector_t bio_start, bio_end; 1657 sector_t first_stripe_index, last_stripe_index; 1658 sector_t start_disk_offset; 1659 unsigned int start_disk_index; 1660 sector_t end_disk_offset; 1661 unsigned int end_disk_index; 1662 unsigned int remainder; 1663 1664 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1665 return -EAGAIN; 1666 1667 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) { 1668 bio_wouldblock_error(bio); 1669 return 0; 1670 } 1671 wait_barrier(conf, false); 1672 1673 /* 1674 * Check reshape again to avoid reshape happens after checking 1675 * MD_RECOVERY_RESHAPE and before wait_barrier 1676 */ 1677 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1678 goto out; 1679 1680 if (geo->near_copies) 1681 stripe_data_disks = geo->raid_disks / geo->near_copies + 1682 geo->raid_disks % geo->near_copies; 1683 else 1684 stripe_data_disks = geo->raid_disks; 1685 1686 stripe_size = stripe_data_disks << geo->chunk_shift; 1687 1688 bio_start = bio->bi_iter.bi_sector; 1689 bio_end = bio_end_sector(bio); 1690 1691 /* 1692 * Maybe one discard bio is smaller than strip size or across one 1693 * stripe and discard region is larger than one stripe size. For far 1694 * offset layout, if the discard region is not aligned with stripe 1695 * size, there is hole when we submit discard bio to member disk. 1696 * For simplicity, we only handle discard bio which discard region 1697 * is bigger than stripe_size * 2 1698 */ 1699 if (bio_sectors(bio) < stripe_size*2) 1700 goto out; 1701 1702 /* 1703 * Keep bio aligned with strip size. 1704 */ 1705 div_u64_rem(bio_start, stripe_size, &remainder); 1706 if (remainder) { 1707 split_size = stripe_size - remainder; 1708 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1709 bio_chain(split, bio); 1710 allow_barrier(conf); 1711 /* Resend the fist split part */ 1712 submit_bio_noacct(split); 1713 wait_barrier(conf, false); 1714 } 1715 div_u64_rem(bio_end, stripe_size, &remainder); 1716 if (remainder) { 1717 split_size = bio_sectors(bio) - remainder; 1718 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1719 bio_chain(split, bio); 1720 allow_barrier(conf); 1721 /* Resend the second split part */ 1722 submit_bio_noacct(bio); 1723 bio = split; 1724 wait_barrier(conf, false); 1725 } 1726 1727 bio_start = bio->bi_iter.bi_sector; 1728 bio_end = bio_end_sector(bio); 1729 1730 /* 1731 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1732 * One stripe contains the chunks from all member disk (one chunk from 1733 * one disk at the same HBA address). For layout detail, see 'man md 4' 1734 */ 1735 chunk = bio_start >> geo->chunk_shift; 1736 chunk *= geo->near_copies; 1737 first_stripe_index = chunk; 1738 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1739 if (geo->far_offset) 1740 first_stripe_index *= geo->far_copies; 1741 start_disk_offset = (bio_start & geo->chunk_mask) + 1742 (first_stripe_index << geo->chunk_shift); 1743 1744 chunk = bio_end >> geo->chunk_shift; 1745 chunk *= geo->near_copies; 1746 last_stripe_index = chunk; 1747 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1748 if (geo->far_offset) 1749 last_stripe_index *= geo->far_copies; 1750 end_disk_offset = (bio_end & geo->chunk_mask) + 1751 (last_stripe_index << geo->chunk_shift); 1752 1753 retry_discard: 1754 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1755 r10_bio->mddev = mddev; 1756 r10_bio->state = 0; 1757 r10_bio->sectors = 0; 1758 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1759 wait_blocked_dev(mddev, r10_bio); 1760 1761 /* 1762 * For far layout it needs more than one r10bio to cover all regions. 1763 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1764 * to record the discard bio. Other r10bio->master_bio record the first 1765 * r10bio. The first r10bio only release after all other r10bios finish. 1766 * The discard bio returns only first r10bio finishes 1767 */ 1768 if (first_copy) { 1769 r10_bio->master_bio = bio; 1770 set_bit(R10BIO_Discard, &r10_bio->state); 1771 first_copy = false; 1772 first_r10bio = r10_bio; 1773 } else 1774 r10_bio->master_bio = (struct bio *)first_r10bio; 1775 1776 /* 1777 * first select target devices under rcu_lock and 1778 * inc refcount on their rdev. Record them by setting 1779 * bios[x] to bio 1780 */ 1781 rcu_read_lock(); 1782 for (disk = 0; disk < geo->raid_disks; disk++) { 1783 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev); 1784 struct md_rdev *rrdev = rcu_dereference( 1785 conf->mirrors[disk].replacement); 1786 1787 r10_bio->devs[disk].bio = NULL; 1788 r10_bio->devs[disk].repl_bio = NULL; 1789 1790 if (rdev && (test_bit(Faulty, &rdev->flags))) 1791 rdev = NULL; 1792 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1793 rrdev = NULL; 1794 if (!rdev && !rrdev) 1795 continue; 1796 1797 if (rdev) { 1798 r10_bio->devs[disk].bio = bio; 1799 atomic_inc(&rdev->nr_pending); 1800 } 1801 if (rrdev) { 1802 r10_bio->devs[disk].repl_bio = bio; 1803 atomic_inc(&rrdev->nr_pending); 1804 } 1805 } 1806 rcu_read_unlock(); 1807 1808 atomic_set(&r10_bio->remaining, 1); 1809 for (disk = 0; disk < geo->raid_disks; disk++) { 1810 sector_t dev_start, dev_end; 1811 struct bio *mbio, *rbio = NULL; 1812 1813 /* 1814 * Now start to calculate the start and end address for each disk. 1815 * The space between dev_start and dev_end is the discard region. 1816 * 1817 * For dev_start, it needs to consider three conditions: 1818 * 1st, the disk is before start_disk, you can imagine the disk in 1819 * the next stripe. So the dev_start is the start address of next 1820 * stripe. 1821 * 2st, the disk is after start_disk, it means the disk is at the 1822 * same stripe of first disk 1823 * 3st, the first disk itself, we can use start_disk_offset directly 1824 */ 1825 if (disk < start_disk_index) 1826 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1827 else if (disk > start_disk_index) 1828 dev_start = first_stripe_index * mddev->chunk_sectors; 1829 else 1830 dev_start = start_disk_offset; 1831 1832 if (disk < end_disk_index) 1833 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1834 else if (disk > end_disk_index) 1835 dev_end = last_stripe_index * mddev->chunk_sectors; 1836 else 1837 dev_end = end_disk_offset; 1838 1839 /* 1840 * It only handles discard bio which size is >= stripe size, so 1841 * dev_end > dev_start all the time. 1842 * It doesn't need to use rcu lock to get rdev here. We already 1843 * add rdev->nr_pending in the first loop. 1844 */ 1845 if (r10_bio->devs[disk].bio) { 1846 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1847 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1848 &mddev->bio_set); 1849 mbio->bi_end_io = raid10_end_discard_request; 1850 mbio->bi_private = r10_bio; 1851 r10_bio->devs[disk].bio = mbio; 1852 r10_bio->devs[disk].devnum = disk; 1853 atomic_inc(&r10_bio->remaining); 1854 md_submit_discard_bio(mddev, rdev, mbio, 1855 dev_start + choose_data_offset(r10_bio, rdev), 1856 dev_end - dev_start); 1857 bio_endio(mbio); 1858 } 1859 if (r10_bio->devs[disk].repl_bio) { 1860 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1861 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1862 &mddev->bio_set); 1863 rbio->bi_end_io = raid10_end_discard_request; 1864 rbio->bi_private = r10_bio; 1865 r10_bio->devs[disk].repl_bio = rbio; 1866 r10_bio->devs[disk].devnum = disk; 1867 atomic_inc(&r10_bio->remaining); 1868 md_submit_discard_bio(mddev, rrdev, rbio, 1869 dev_start + choose_data_offset(r10_bio, rrdev), 1870 dev_end - dev_start); 1871 bio_endio(rbio); 1872 } 1873 } 1874 1875 if (!geo->far_offset && --far_copies) { 1876 first_stripe_index += geo->stride >> geo->chunk_shift; 1877 start_disk_offset += geo->stride; 1878 last_stripe_index += geo->stride >> geo->chunk_shift; 1879 end_disk_offset += geo->stride; 1880 atomic_inc(&first_r10bio->remaining); 1881 raid_end_discard_bio(r10_bio); 1882 wait_barrier(conf, false); 1883 goto retry_discard; 1884 } 1885 1886 raid_end_discard_bio(r10_bio); 1887 1888 return 0; 1889 out: 1890 allow_barrier(conf); 1891 return -EAGAIN; 1892 } 1893 1894 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1895 { 1896 struct r10conf *conf = mddev->private; 1897 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1898 int chunk_sects = chunk_mask + 1; 1899 int sectors = bio_sectors(bio); 1900 1901 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1902 && md_flush_request(mddev, bio)) 1903 return true; 1904 1905 if (!md_write_start(mddev, bio)) 1906 return false; 1907 1908 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1909 if (!raid10_handle_discard(mddev, bio)) 1910 return true; 1911 1912 /* 1913 * If this request crosses a chunk boundary, we need to split 1914 * it. 1915 */ 1916 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1917 sectors > chunk_sects 1918 && (conf->geo.near_copies < conf->geo.raid_disks 1919 || conf->prev.near_copies < 1920 conf->prev.raid_disks))) 1921 sectors = chunk_sects - 1922 (bio->bi_iter.bi_sector & 1923 (chunk_sects - 1)); 1924 __make_request(mddev, bio, sectors); 1925 1926 /* In case raid10d snuck in to freeze_array */ 1927 wake_up_barrier(conf); 1928 return true; 1929 } 1930 1931 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1932 { 1933 struct r10conf *conf = mddev->private; 1934 int i; 1935 1936 if (conf->geo.near_copies < conf->geo.raid_disks) 1937 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1938 if (conf->geo.near_copies > 1) 1939 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1940 if (conf->geo.far_copies > 1) { 1941 if (conf->geo.far_offset) 1942 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1943 else 1944 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1945 if (conf->geo.far_set_size != conf->geo.raid_disks) 1946 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1947 } 1948 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1949 conf->geo.raid_disks - mddev->degraded); 1950 rcu_read_lock(); 1951 for (i = 0; i < conf->geo.raid_disks; i++) { 1952 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1953 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1954 } 1955 rcu_read_unlock(); 1956 seq_printf(seq, "]"); 1957 } 1958 1959 /* check if there are enough drives for 1960 * every block to appear on atleast one. 1961 * Don't consider the device numbered 'ignore' 1962 * as we might be about to remove it. 1963 */ 1964 static int _enough(struct r10conf *conf, int previous, int ignore) 1965 { 1966 int first = 0; 1967 int has_enough = 0; 1968 int disks, ncopies; 1969 if (previous) { 1970 disks = conf->prev.raid_disks; 1971 ncopies = conf->prev.near_copies; 1972 } else { 1973 disks = conf->geo.raid_disks; 1974 ncopies = conf->geo.near_copies; 1975 } 1976 1977 rcu_read_lock(); 1978 do { 1979 int n = conf->copies; 1980 int cnt = 0; 1981 int this = first; 1982 while (n--) { 1983 struct md_rdev *rdev; 1984 if (this != ignore && 1985 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1986 test_bit(In_sync, &rdev->flags)) 1987 cnt++; 1988 this = (this+1) % disks; 1989 } 1990 if (cnt == 0) 1991 goto out; 1992 first = (first + ncopies) % disks; 1993 } while (first != 0); 1994 has_enough = 1; 1995 out: 1996 rcu_read_unlock(); 1997 return has_enough; 1998 } 1999 2000 static int enough(struct r10conf *conf, int ignore) 2001 { 2002 /* when calling 'enough', both 'prev' and 'geo' must 2003 * be stable. 2004 * This is ensured if ->reconfig_mutex or ->device_lock 2005 * is held. 2006 */ 2007 return _enough(conf, 0, ignore) && 2008 _enough(conf, 1, ignore); 2009 } 2010 2011 /** 2012 * raid10_error() - RAID10 error handler. 2013 * @mddev: affected md device. 2014 * @rdev: member device to fail. 2015 * 2016 * The routine acknowledges &rdev failure and determines new @mddev state. 2017 * If it failed, then: 2018 * - &MD_BROKEN flag is set in &mddev->flags. 2019 * Otherwise, it must be degraded: 2020 * - recovery is interrupted. 2021 * - &mddev->degraded is bumped. 2022 * 2023 * @rdev is marked as &Faulty excluding case when array is failed and 2024 * &mddev->fail_last_dev is off. 2025 */ 2026 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 2027 { 2028 struct r10conf *conf = mddev->private; 2029 unsigned long flags; 2030 2031 spin_lock_irqsave(&conf->device_lock, flags); 2032 2033 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { 2034 set_bit(MD_BROKEN, &mddev->flags); 2035 2036 if (!mddev->fail_last_dev) { 2037 spin_unlock_irqrestore(&conf->device_lock, flags); 2038 return; 2039 } 2040 } 2041 if (test_and_clear_bit(In_sync, &rdev->flags)) 2042 mddev->degraded++; 2043 2044 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2045 set_bit(Blocked, &rdev->flags); 2046 set_bit(Faulty, &rdev->flags); 2047 set_mask_bits(&mddev->sb_flags, 0, 2048 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2049 spin_unlock_irqrestore(&conf->device_lock, flags); 2050 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" 2051 "md/raid10:%s: Operation continuing on %d devices.\n", 2052 mdname(mddev), rdev->bdev, 2053 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 2054 } 2055 2056 static void print_conf(struct r10conf *conf) 2057 { 2058 int i; 2059 struct md_rdev *rdev; 2060 2061 pr_debug("RAID10 conf printout:\n"); 2062 if (!conf) { 2063 pr_debug("(!conf)\n"); 2064 return; 2065 } 2066 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2067 conf->geo.raid_disks); 2068 2069 /* This is only called with ->reconfix_mutex held, so 2070 * rcu protection of rdev is not needed */ 2071 for (i = 0; i < conf->geo.raid_disks; i++) { 2072 rdev = conf->mirrors[i].rdev; 2073 if (rdev) 2074 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 2075 i, !test_bit(In_sync, &rdev->flags), 2076 !test_bit(Faulty, &rdev->flags), 2077 rdev->bdev); 2078 } 2079 } 2080 2081 static void close_sync(struct r10conf *conf) 2082 { 2083 wait_barrier(conf, false); 2084 allow_barrier(conf); 2085 2086 mempool_exit(&conf->r10buf_pool); 2087 } 2088 2089 static int raid10_spare_active(struct mddev *mddev) 2090 { 2091 int i; 2092 struct r10conf *conf = mddev->private; 2093 struct raid10_info *tmp; 2094 int count = 0; 2095 unsigned long flags; 2096 2097 /* 2098 * Find all non-in_sync disks within the RAID10 configuration 2099 * and mark them in_sync 2100 */ 2101 for (i = 0; i < conf->geo.raid_disks; i++) { 2102 tmp = conf->mirrors + i; 2103 if (tmp->replacement 2104 && tmp->replacement->recovery_offset == MaxSector 2105 && !test_bit(Faulty, &tmp->replacement->flags) 2106 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2107 /* Replacement has just become active */ 2108 if (!tmp->rdev 2109 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2110 count++; 2111 if (tmp->rdev) { 2112 /* Replaced device not technically faulty, 2113 * but we need to be sure it gets removed 2114 * and never re-added. 2115 */ 2116 set_bit(Faulty, &tmp->rdev->flags); 2117 sysfs_notify_dirent_safe( 2118 tmp->rdev->sysfs_state); 2119 } 2120 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2121 } else if (tmp->rdev 2122 && tmp->rdev->recovery_offset == MaxSector 2123 && !test_bit(Faulty, &tmp->rdev->flags) 2124 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2125 count++; 2126 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2127 } 2128 } 2129 spin_lock_irqsave(&conf->device_lock, flags); 2130 mddev->degraded -= count; 2131 spin_unlock_irqrestore(&conf->device_lock, flags); 2132 2133 print_conf(conf); 2134 return count; 2135 } 2136 2137 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2138 { 2139 struct r10conf *conf = mddev->private; 2140 int err = -EEXIST; 2141 int mirror, repl_slot = -1; 2142 int first = 0; 2143 int last = conf->geo.raid_disks - 1; 2144 struct raid10_info *p; 2145 2146 if (mddev->recovery_cp < MaxSector) 2147 /* only hot-add to in-sync arrays, as recovery is 2148 * very different from resync 2149 */ 2150 return -EBUSY; 2151 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2152 return -EINVAL; 2153 2154 if (md_integrity_add_rdev(rdev, mddev)) 2155 return -ENXIO; 2156 2157 if (rdev->raid_disk >= 0) 2158 first = last = rdev->raid_disk; 2159 2160 if (rdev->saved_raid_disk >= first && 2161 rdev->saved_raid_disk < conf->geo.raid_disks && 2162 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2163 mirror = rdev->saved_raid_disk; 2164 else 2165 mirror = first; 2166 for ( ; mirror <= last ; mirror++) { 2167 p = &conf->mirrors[mirror]; 2168 if (p->recovery_disabled == mddev->recovery_disabled) 2169 continue; 2170 if (p->rdev) { 2171 if (test_bit(WantReplacement, &p->rdev->flags) && 2172 p->replacement == NULL && repl_slot < 0) 2173 repl_slot = mirror; 2174 continue; 2175 } 2176 2177 if (mddev->gendisk) 2178 disk_stack_limits(mddev->gendisk, rdev->bdev, 2179 rdev->data_offset << 9); 2180 2181 p->head_position = 0; 2182 p->recovery_disabled = mddev->recovery_disabled - 1; 2183 rdev->raid_disk = mirror; 2184 err = 0; 2185 if (rdev->saved_raid_disk != mirror) 2186 conf->fullsync = 1; 2187 rcu_assign_pointer(p->rdev, rdev); 2188 break; 2189 } 2190 2191 if (err && repl_slot >= 0) { 2192 p = &conf->mirrors[repl_slot]; 2193 clear_bit(In_sync, &rdev->flags); 2194 set_bit(Replacement, &rdev->flags); 2195 rdev->raid_disk = repl_slot; 2196 err = 0; 2197 if (mddev->gendisk) 2198 disk_stack_limits(mddev->gendisk, rdev->bdev, 2199 rdev->data_offset << 9); 2200 conf->fullsync = 1; 2201 rcu_assign_pointer(p->replacement, rdev); 2202 } 2203 2204 print_conf(conf); 2205 return err; 2206 } 2207 2208 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2209 { 2210 struct r10conf *conf = mddev->private; 2211 int err = 0; 2212 int number = rdev->raid_disk; 2213 struct md_rdev **rdevp; 2214 struct raid10_info *p; 2215 2216 print_conf(conf); 2217 if (unlikely(number >= mddev->raid_disks)) 2218 return 0; 2219 p = conf->mirrors + number; 2220 if (rdev == p->rdev) 2221 rdevp = &p->rdev; 2222 else if (rdev == p->replacement) 2223 rdevp = &p->replacement; 2224 else 2225 return 0; 2226 2227 if (test_bit(In_sync, &rdev->flags) || 2228 atomic_read(&rdev->nr_pending)) { 2229 err = -EBUSY; 2230 goto abort; 2231 } 2232 /* Only remove non-faulty devices if recovery 2233 * is not possible. 2234 */ 2235 if (!test_bit(Faulty, &rdev->flags) && 2236 mddev->recovery_disabled != p->recovery_disabled && 2237 (!p->replacement || p->replacement == rdev) && 2238 number < conf->geo.raid_disks && 2239 enough(conf, -1)) { 2240 err = -EBUSY; 2241 goto abort; 2242 } 2243 *rdevp = NULL; 2244 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 2245 synchronize_rcu(); 2246 if (atomic_read(&rdev->nr_pending)) { 2247 /* lost the race, try later */ 2248 err = -EBUSY; 2249 *rdevp = rdev; 2250 goto abort; 2251 } 2252 } 2253 if (p->replacement) { 2254 /* We must have just cleared 'rdev' */ 2255 p->rdev = p->replacement; 2256 clear_bit(Replacement, &p->replacement->flags); 2257 smp_mb(); /* Make sure other CPUs may see both as identical 2258 * but will never see neither -- if they are careful. 2259 */ 2260 p->replacement = NULL; 2261 } 2262 2263 clear_bit(WantReplacement, &rdev->flags); 2264 err = md_integrity_register(mddev); 2265 2266 abort: 2267 2268 print_conf(conf); 2269 return err; 2270 } 2271 2272 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2273 { 2274 struct r10conf *conf = r10_bio->mddev->private; 2275 2276 if (!bio->bi_status) 2277 set_bit(R10BIO_Uptodate, &r10_bio->state); 2278 else 2279 /* The write handler will notice the lack of 2280 * R10BIO_Uptodate and record any errors etc 2281 */ 2282 atomic_add(r10_bio->sectors, 2283 &conf->mirrors[d].rdev->corrected_errors); 2284 2285 /* for reconstruct, we always reschedule after a read. 2286 * for resync, only after all reads 2287 */ 2288 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2289 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2290 atomic_dec_and_test(&r10_bio->remaining)) { 2291 /* we have read all the blocks, 2292 * do the comparison in process context in raid10d 2293 */ 2294 reschedule_retry(r10_bio); 2295 } 2296 } 2297 2298 static void end_sync_read(struct bio *bio) 2299 { 2300 struct r10bio *r10_bio = get_resync_r10bio(bio); 2301 struct r10conf *conf = r10_bio->mddev->private; 2302 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2303 2304 __end_sync_read(r10_bio, bio, d); 2305 } 2306 2307 static void end_reshape_read(struct bio *bio) 2308 { 2309 /* reshape read bio isn't allocated from r10buf_pool */ 2310 struct r10bio *r10_bio = bio->bi_private; 2311 2312 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2313 } 2314 2315 static void end_sync_request(struct r10bio *r10_bio) 2316 { 2317 struct mddev *mddev = r10_bio->mddev; 2318 2319 while (atomic_dec_and_test(&r10_bio->remaining)) { 2320 if (r10_bio->master_bio == NULL) { 2321 /* the primary of several recovery bios */ 2322 sector_t s = r10_bio->sectors; 2323 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2324 test_bit(R10BIO_WriteError, &r10_bio->state)) 2325 reschedule_retry(r10_bio); 2326 else 2327 put_buf(r10_bio); 2328 md_done_sync(mddev, s, 1); 2329 break; 2330 } else { 2331 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2332 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2333 test_bit(R10BIO_WriteError, &r10_bio->state)) 2334 reschedule_retry(r10_bio); 2335 else 2336 put_buf(r10_bio); 2337 r10_bio = r10_bio2; 2338 } 2339 } 2340 } 2341 2342 static void end_sync_write(struct bio *bio) 2343 { 2344 struct r10bio *r10_bio = get_resync_r10bio(bio); 2345 struct mddev *mddev = r10_bio->mddev; 2346 struct r10conf *conf = mddev->private; 2347 int d; 2348 sector_t first_bad; 2349 int bad_sectors; 2350 int slot; 2351 int repl; 2352 struct md_rdev *rdev = NULL; 2353 2354 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2355 if (repl) 2356 rdev = conf->mirrors[d].replacement; 2357 else 2358 rdev = conf->mirrors[d].rdev; 2359 2360 if (bio->bi_status) { 2361 if (repl) 2362 md_error(mddev, rdev); 2363 else { 2364 set_bit(WriteErrorSeen, &rdev->flags); 2365 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2366 set_bit(MD_RECOVERY_NEEDED, 2367 &rdev->mddev->recovery); 2368 set_bit(R10BIO_WriteError, &r10_bio->state); 2369 } 2370 } else if (is_badblock(rdev, 2371 r10_bio->devs[slot].addr, 2372 r10_bio->sectors, 2373 &first_bad, &bad_sectors)) 2374 set_bit(R10BIO_MadeGood, &r10_bio->state); 2375 2376 rdev_dec_pending(rdev, mddev); 2377 2378 end_sync_request(r10_bio); 2379 } 2380 2381 /* 2382 * Note: sync and recover and handled very differently for raid10 2383 * This code is for resync. 2384 * For resync, we read through virtual addresses and read all blocks. 2385 * If there is any error, we schedule a write. The lowest numbered 2386 * drive is authoritative. 2387 * However requests come for physical address, so we need to map. 2388 * For every physical address there are raid_disks/copies virtual addresses, 2389 * which is always are least one, but is not necessarly an integer. 2390 * This means that a physical address can span multiple chunks, so we may 2391 * have to submit multiple io requests for a single sync request. 2392 */ 2393 /* 2394 * We check if all blocks are in-sync and only write to blocks that 2395 * aren't in sync 2396 */ 2397 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2398 { 2399 struct r10conf *conf = mddev->private; 2400 int i, first; 2401 struct bio *tbio, *fbio; 2402 int vcnt; 2403 struct page **tpages, **fpages; 2404 2405 atomic_set(&r10_bio->remaining, 1); 2406 2407 /* find the first device with a block */ 2408 for (i=0; i<conf->copies; i++) 2409 if (!r10_bio->devs[i].bio->bi_status) 2410 break; 2411 2412 if (i == conf->copies) 2413 goto done; 2414 2415 first = i; 2416 fbio = r10_bio->devs[i].bio; 2417 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2418 fbio->bi_iter.bi_idx = 0; 2419 fpages = get_resync_pages(fbio)->pages; 2420 2421 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2422 /* now find blocks with errors */ 2423 for (i=0 ; i < conf->copies ; i++) { 2424 int j, d; 2425 struct md_rdev *rdev; 2426 struct resync_pages *rp; 2427 2428 tbio = r10_bio->devs[i].bio; 2429 2430 if (tbio->bi_end_io != end_sync_read) 2431 continue; 2432 if (i == first) 2433 continue; 2434 2435 tpages = get_resync_pages(tbio)->pages; 2436 d = r10_bio->devs[i].devnum; 2437 rdev = conf->mirrors[d].rdev; 2438 if (!r10_bio->devs[i].bio->bi_status) { 2439 /* We know that the bi_io_vec layout is the same for 2440 * both 'first' and 'i', so we just compare them. 2441 * All vec entries are PAGE_SIZE; 2442 */ 2443 int sectors = r10_bio->sectors; 2444 for (j = 0; j < vcnt; j++) { 2445 int len = PAGE_SIZE; 2446 if (sectors < (len / 512)) 2447 len = sectors * 512; 2448 if (memcmp(page_address(fpages[j]), 2449 page_address(tpages[j]), 2450 len)) 2451 break; 2452 sectors -= len/512; 2453 } 2454 if (j == vcnt) 2455 continue; 2456 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2457 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2458 /* Don't fix anything. */ 2459 continue; 2460 } else if (test_bit(FailFast, &rdev->flags)) { 2461 /* Just give up on this device */ 2462 md_error(rdev->mddev, rdev); 2463 continue; 2464 } 2465 /* Ok, we need to write this bio, either to correct an 2466 * inconsistency or to correct an unreadable block. 2467 * First we need to fixup bv_offset, bv_len and 2468 * bi_vecs, as the read request might have corrupted these 2469 */ 2470 rp = get_resync_pages(tbio); 2471 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2472 2473 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2474 2475 rp->raid_bio = r10_bio; 2476 tbio->bi_private = rp; 2477 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2478 tbio->bi_end_io = end_sync_write; 2479 2480 bio_copy_data(tbio, fbio); 2481 2482 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2483 atomic_inc(&r10_bio->remaining); 2484 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2485 2486 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2487 tbio->bi_opf |= MD_FAILFAST; 2488 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2489 submit_bio_noacct(tbio); 2490 } 2491 2492 /* Now write out to any replacement devices 2493 * that are active 2494 */ 2495 for (i = 0; i < conf->copies; i++) { 2496 int d; 2497 2498 tbio = r10_bio->devs[i].repl_bio; 2499 if (!tbio || !tbio->bi_end_io) 2500 continue; 2501 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2502 && r10_bio->devs[i].bio != fbio) 2503 bio_copy_data(tbio, fbio); 2504 d = r10_bio->devs[i].devnum; 2505 atomic_inc(&r10_bio->remaining); 2506 md_sync_acct(conf->mirrors[d].replacement->bdev, 2507 bio_sectors(tbio)); 2508 submit_bio_noacct(tbio); 2509 } 2510 2511 done: 2512 if (atomic_dec_and_test(&r10_bio->remaining)) { 2513 md_done_sync(mddev, r10_bio->sectors, 1); 2514 put_buf(r10_bio); 2515 } 2516 } 2517 2518 /* 2519 * Now for the recovery code. 2520 * Recovery happens across physical sectors. 2521 * We recover all non-is_sync drives by finding the virtual address of 2522 * each, and then choose a working drive that also has that virt address. 2523 * There is a separate r10_bio for each non-in_sync drive. 2524 * Only the first two slots are in use. The first for reading, 2525 * The second for writing. 2526 * 2527 */ 2528 static void fix_recovery_read_error(struct r10bio *r10_bio) 2529 { 2530 /* We got a read error during recovery. 2531 * We repeat the read in smaller page-sized sections. 2532 * If a read succeeds, write it to the new device or record 2533 * a bad block if we cannot. 2534 * If a read fails, record a bad block on both old and 2535 * new devices. 2536 */ 2537 struct mddev *mddev = r10_bio->mddev; 2538 struct r10conf *conf = mddev->private; 2539 struct bio *bio = r10_bio->devs[0].bio; 2540 sector_t sect = 0; 2541 int sectors = r10_bio->sectors; 2542 int idx = 0; 2543 int dr = r10_bio->devs[0].devnum; 2544 int dw = r10_bio->devs[1].devnum; 2545 struct page **pages = get_resync_pages(bio)->pages; 2546 2547 while (sectors) { 2548 int s = sectors; 2549 struct md_rdev *rdev; 2550 sector_t addr; 2551 int ok; 2552 2553 if (s > (PAGE_SIZE>>9)) 2554 s = PAGE_SIZE >> 9; 2555 2556 rdev = conf->mirrors[dr].rdev; 2557 addr = r10_bio->devs[0].addr + sect, 2558 ok = sync_page_io(rdev, 2559 addr, 2560 s << 9, 2561 pages[idx], 2562 REQ_OP_READ, false); 2563 if (ok) { 2564 rdev = conf->mirrors[dw].rdev; 2565 addr = r10_bio->devs[1].addr + sect; 2566 ok = sync_page_io(rdev, 2567 addr, 2568 s << 9, 2569 pages[idx], 2570 REQ_OP_WRITE, false); 2571 if (!ok) { 2572 set_bit(WriteErrorSeen, &rdev->flags); 2573 if (!test_and_set_bit(WantReplacement, 2574 &rdev->flags)) 2575 set_bit(MD_RECOVERY_NEEDED, 2576 &rdev->mddev->recovery); 2577 } 2578 } 2579 if (!ok) { 2580 /* We don't worry if we cannot set a bad block - 2581 * it really is bad so there is no loss in not 2582 * recording it yet 2583 */ 2584 rdev_set_badblocks(rdev, addr, s, 0); 2585 2586 if (rdev != conf->mirrors[dw].rdev) { 2587 /* need bad block on destination too */ 2588 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2589 addr = r10_bio->devs[1].addr + sect; 2590 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2591 if (!ok) { 2592 /* just abort the recovery */ 2593 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2594 mdname(mddev)); 2595 2596 conf->mirrors[dw].recovery_disabled 2597 = mddev->recovery_disabled; 2598 set_bit(MD_RECOVERY_INTR, 2599 &mddev->recovery); 2600 break; 2601 } 2602 } 2603 } 2604 2605 sectors -= s; 2606 sect += s; 2607 idx++; 2608 } 2609 } 2610 2611 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2612 { 2613 struct r10conf *conf = mddev->private; 2614 int d; 2615 struct bio *wbio = r10_bio->devs[1].bio; 2616 struct bio *wbio2 = r10_bio->devs[1].repl_bio; 2617 2618 /* Need to test wbio2->bi_end_io before we call 2619 * submit_bio_noacct as if the former is NULL, 2620 * the latter is free to free wbio2. 2621 */ 2622 if (wbio2 && !wbio2->bi_end_io) 2623 wbio2 = NULL; 2624 2625 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2626 fix_recovery_read_error(r10_bio); 2627 if (wbio->bi_end_io) 2628 end_sync_request(r10_bio); 2629 if (wbio2) 2630 end_sync_request(r10_bio); 2631 return; 2632 } 2633 2634 /* 2635 * share the pages with the first bio 2636 * and submit the write request 2637 */ 2638 d = r10_bio->devs[1].devnum; 2639 if (wbio->bi_end_io) { 2640 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2641 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2642 submit_bio_noacct(wbio); 2643 } 2644 if (wbio2) { 2645 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2646 md_sync_acct(conf->mirrors[d].replacement->bdev, 2647 bio_sectors(wbio2)); 2648 submit_bio_noacct(wbio2); 2649 } 2650 } 2651 2652 /* 2653 * Used by fix_read_error() to decay the per rdev read_errors. 2654 * We halve the read error count for every hour that has elapsed 2655 * since the last recorded read error. 2656 * 2657 */ 2658 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2659 { 2660 long cur_time_mon; 2661 unsigned long hours_since_last; 2662 unsigned int read_errors = atomic_read(&rdev->read_errors); 2663 2664 cur_time_mon = ktime_get_seconds(); 2665 2666 if (rdev->last_read_error == 0) { 2667 /* first time we've seen a read error */ 2668 rdev->last_read_error = cur_time_mon; 2669 return; 2670 } 2671 2672 hours_since_last = (long)(cur_time_mon - 2673 rdev->last_read_error) / 3600; 2674 2675 rdev->last_read_error = cur_time_mon; 2676 2677 /* 2678 * if hours_since_last is > the number of bits in read_errors 2679 * just set read errors to 0. We do this to avoid 2680 * overflowing the shift of read_errors by hours_since_last. 2681 */ 2682 if (hours_since_last >= 8 * sizeof(read_errors)) 2683 atomic_set(&rdev->read_errors, 0); 2684 else 2685 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2686 } 2687 2688 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2689 int sectors, struct page *page, enum req_op op) 2690 { 2691 sector_t first_bad; 2692 int bad_sectors; 2693 2694 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2695 && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) 2696 return -1; 2697 if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) 2698 /* success */ 2699 return 1; 2700 if (op == REQ_OP_WRITE) { 2701 set_bit(WriteErrorSeen, &rdev->flags); 2702 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2703 set_bit(MD_RECOVERY_NEEDED, 2704 &rdev->mddev->recovery); 2705 } 2706 /* need to record an error - either for the block or the device */ 2707 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2708 md_error(rdev->mddev, rdev); 2709 return 0; 2710 } 2711 2712 /* 2713 * This is a kernel thread which: 2714 * 2715 * 1. Retries failed read operations on working mirrors. 2716 * 2. Updates the raid superblock when problems encounter. 2717 * 3. Performs writes following reads for array synchronising. 2718 */ 2719 2720 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2721 { 2722 int sect = 0; /* Offset from r10_bio->sector */ 2723 int sectors = r10_bio->sectors; 2724 struct md_rdev *rdev; 2725 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2726 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2727 2728 /* still own a reference to this rdev, so it cannot 2729 * have been cleared recently. 2730 */ 2731 rdev = conf->mirrors[d].rdev; 2732 2733 if (test_bit(Faulty, &rdev->flags)) 2734 /* drive has already been failed, just ignore any 2735 more fix_read_error() attempts */ 2736 return; 2737 2738 check_decay_read_errors(mddev, rdev); 2739 atomic_inc(&rdev->read_errors); 2740 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2741 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2742 mdname(mddev), rdev->bdev, 2743 atomic_read(&rdev->read_errors), max_read_errors); 2744 pr_notice("md/raid10:%s: %pg: Failing raid device\n", 2745 mdname(mddev), rdev->bdev); 2746 md_error(mddev, rdev); 2747 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2748 return; 2749 } 2750 2751 while(sectors) { 2752 int s = sectors; 2753 int sl = r10_bio->read_slot; 2754 int success = 0; 2755 int start; 2756 2757 if (s > (PAGE_SIZE>>9)) 2758 s = PAGE_SIZE >> 9; 2759 2760 rcu_read_lock(); 2761 do { 2762 sector_t first_bad; 2763 int bad_sectors; 2764 2765 d = r10_bio->devs[sl].devnum; 2766 rdev = rcu_dereference(conf->mirrors[d].rdev); 2767 if (rdev && 2768 test_bit(In_sync, &rdev->flags) && 2769 !test_bit(Faulty, &rdev->flags) && 2770 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2771 &first_bad, &bad_sectors) == 0) { 2772 atomic_inc(&rdev->nr_pending); 2773 rcu_read_unlock(); 2774 success = sync_page_io(rdev, 2775 r10_bio->devs[sl].addr + 2776 sect, 2777 s<<9, 2778 conf->tmppage, 2779 REQ_OP_READ, false); 2780 rdev_dec_pending(rdev, mddev); 2781 rcu_read_lock(); 2782 if (success) 2783 break; 2784 } 2785 sl++; 2786 if (sl == conf->copies) 2787 sl = 0; 2788 } while (!success && sl != r10_bio->read_slot); 2789 rcu_read_unlock(); 2790 2791 if (!success) { 2792 /* Cannot read from anywhere, just mark the block 2793 * as bad on the first device to discourage future 2794 * reads. 2795 */ 2796 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2797 rdev = conf->mirrors[dn].rdev; 2798 2799 if (!rdev_set_badblocks( 2800 rdev, 2801 r10_bio->devs[r10_bio->read_slot].addr 2802 + sect, 2803 s, 0)) { 2804 md_error(mddev, rdev); 2805 r10_bio->devs[r10_bio->read_slot].bio 2806 = IO_BLOCKED; 2807 } 2808 break; 2809 } 2810 2811 start = sl; 2812 /* write it back and re-read */ 2813 rcu_read_lock(); 2814 while (sl != r10_bio->read_slot) { 2815 if (sl==0) 2816 sl = conf->copies; 2817 sl--; 2818 d = r10_bio->devs[sl].devnum; 2819 rdev = rcu_dereference(conf->mirrors[d].rdev); 2820 if (!rdev || 2821 test_bit(Faulty, &rdev->flags) || 2822 !test_bit(In_sync, &rdev->flags)) 2823 continue; 2824 2825 atomic_inc(&rdev->nr_pending); 2826 rcu_read_unlock(); 2827 if (r10_sync_page_io(rdev, 2828 r10_bio->devs[sl].addr + 2829 sect, 2830 s, conf->tmppage, REQ_OP_WRITE) 2831 == 0) { 2832 /* Well, this device is dead */ 2833 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", 2834 mdname(mddev), s, 2835 (unsigned long long)( 2836 sect + 2837 choose_data_offset(r10_bio, 2838 rdev)), 2839 rdev->bdev); 2840 pr_notice("md/raid10:%s: %pg: failing drive\n", 2841 mdname(mddev), 2842 rdev->bdev); 2843 } 2844 rdev_dec_pending(rdev, mddev); 2845 rcu_read_lock(); 2846 } 2847 sl = start; 2848 while (sl != r10_bio->read_slot) { 2849 if (sl==0) 2850 sl = conf->copies; 2851 sl--; 2852 d = r10_bio->devs[sl].devnum; 2853 rdev = rcu_dereference(conf->mirrors[d].rdev); 2854 if (!rdev || 2855 test_bit(Faulty, &rdev->flags) || 2856 !test_bit(In_sync, &rdev->flags)) 2857 continue; 2858 2859 atomic_inc(&rdev->nr_pending); 2860 rcu_read_unlock(); 2861 switch (r10_sync_page_io(rdev, 2862 r10_bio->devs[sl].addr + 2863 sect, 2864 s, conf->tmppage, REQ_OP_READ)) { 2865 case 0: 2866 /* Well, this device is dead */ 2867 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", 2868 mdname(mddev), s, 2869 (unsigned long long)( 2870 sect + 2871 choose_data_offset(r10_bio, rdev)), 2872 rdev->bdev); 2873 pr_notice("md/raid10:%s: %pg: failing drive\n", 2874 mdname(mddev), 2875 rdev->bdev); 2876 break; 2877 case 1: 2878 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", 2879 mdname(mddev), s, 2880 (unsigned long long)( 2881 sect + 2882 choose_data_offset(r10_bio, rdev)), 2883 rdev->bdev); 2884 atomic_add(s, &rdev->corrected_errors); 2885 } 2886 2887 rdev_dec_pending(rdev, mddev); 2888 rcu_read_lock(); 2889 } 2890 rcu_read_unlock(); 2891 2892 sectors -= s; 2893 sect += s; 2894 } 2895 } 2896 2897 static int narrow_write_error(struct r10bio *r10_bio, int i) 2898 { 2899 struct bio *bio = r10_bio->master_bio; 2900 struct mddev *mddev = r10_bio->mddev; 2901 struct r10conf *conf = mddev->private; 2902 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2903 /* bio has the data to be written to slot 'i' where 2904 * we just recently had a write error. 2905 * We repeatedly clone the bio and trim down to one block, 2906 * then try the write. Where the write fails we record 2907 * a bad block. 2908 * It is conceivable that the bio doesn't exactly align with 2909 * blocks. We must handle this. 2910 * 2911 * We currently own a reference to the rdev. 2912 */ 2913 2914 int block_sectors; 2915 sector_t sector; 2916 int sectors; 2917 int sect_to_write = r10_bio->sectors; 2918 int ok = 1; 2919 2920 if (rdev->badblocks.shift < 0) 2921 return 0; 2922 2923 block_sectors = roundup(1 << rdev->badblocks.shift, 2924 bdev_logical_block_size(rdev->bdev) >> 9); 2925 sector = r10_bio->sector; 2926 sectors = ((r10_bio->sector + block_sectors) 2927 & ~(sector_t)(block_sectors - 1)) 2928 - sector; 2929 2930 while (sect_to_write) { 2931 struct bio *wbio; 2932 sector_t wsector; 2933 if (sectors > sect_to_write) 2934 sectors = sect_to_write; 2935 /* Write at 'sector' for 'sectors' */ 2936 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2937 &mddev->bio_set); 2938 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2939 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2940 wbio->bi_iter.bi_sector = wsector + 2941 choose_data_offset(r10_bio, rdev); 2942 wbio->bi_opf = REQ_OP_WRITE; 2943 2944 if (submit_bio_wait(wbio) < 0) 2945 /* Failure! */ 2946 ok = rdev_set_badblocks(rdev, wsector, 2947 sectors, 0) 2948 && ok; 2949 2950 bio_put(wbio); 2951 sect_to_write -= sectors; 2952 sector += sectors; 2953 sectors = block_sectors; 2954 } 2955 return ok; 2956 } 2957 2958 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2959 { 2960 int slot = r10_bio->read_slot; 2961 struct bio *bio; 2962 struct r10conf *conf = mddev->private; 2963 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2964 2965 /* we got a read error. Maybe the drive is bad. Maybe just 2966 * the block and we can fix it. 2967 * We freeze all other IO, and try reading the block from 2968 * other devices. When we find one, we re-write 2969 * and check it that fixes the read error. 2970 * This is all done synchronously while the array is 2971 * frozen. 2972 */ 2973 bio = r10_bio->devs[slot].bio; 2974 bio_put(bio); 2975 r10_bio->devs[slot].bio = NULL; 2976 2977 if (mddev->ro) 2978 r10_bio->devs[slot].bio = IO_BLOCKED; 2979 else if (!test_bit(FailFast, &rdev->flags)) { 2980 freeze_array(conf, 1); 2981 fix_read_error(conf, mddev, r10_bio); 2982 unfreeze_array(conf); 2983 } else 2984 md_error(mddev, rdev); 2985 2986 rdev_dec_pending(rdev, mddev); 2987 r10_bio->state = 0; 2988 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2989 /* 2990 * allow_barrier after re-submit to ensure no sync io 2991 * can be issued while regular io pending. 2992 */ 2993 allow_barrier(conf); 2994 } 2995 2996 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2997 { 2998 /* Some sort of write request has finished and it 2999 * succeeded in writing where we thought there was a 3000 * bad block. So forget the bad block. 3001 * Or possibly if failed and we need to record 3002 * a bad block. 3003 */ 3004 int m; 3005 struct md_rdev *rdev; 3006 3007 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 3008 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 3009 for (m = 0; m < conf->copies; m++) { 3010 int dev = r10_bio->devs[m].devnum; 3011 rdev = conf->mirrors[dev].rdev; 3012 if (r10_bio->devs[m].bio == NULL || 3013 r10_bio->devs[m].bio->bi_end_io == NULL) 3014 continue; 3015 if (!r10_bio->devs[m].bio->bi_status) { 3016 rdev_clear_badblocks( 3017 rdev, 3018 r10_bio->devs[m].addr, 3019 r10_bio->sectors, 0); 3020 } else { 3021 if (!rdev_set_badblocks( 3022 rdev, 3023 r10_bio->devs[m].addr, 3024 r10_bio->sectors, 0)) 3025 md_error(conf->mddev, rdev); 3026 } 3027 rdev = conf->mirrors[dev].replacement; 3028 if (r10_bio->devs[m].repl_bio == NULL || 3029 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 3030 continue; 3031 3032 if (!r10_bio->devs[m].repl_bio->bi_status) { 3033 rdev_clear_badblocks( 3034 rdev, 3035 r10_bio->devs[m].addr, 3036 r10_bio->sectors, 0); 3037 } else { 3038 if (!rdev_set_badblocks( 3039 rdev, 3040 r10_bio->devs[m].addr, 3041 r10_bio->sectors, 0)) 3042 md_error(conf->mddev, rdev); 3043 } 3044 } 3045 put_buf(r10_bio); 3046 } else { 3047 bool fail = false; 3048 for (m = 0; m < conf->copies; m++) { 3049 int dev = r10_bio->devs[m].devnum; 3050 struct bio *bio = r10_bio->devs[m].bio; 3051 rdev = conf->mirrors[dev].rdev; 3052 if (bio == IO_MADE_GOOD) { 3053 rdev_clear_badblocks( 3054 rdev, 3055 r10_bio->devs[m].addr, 3056 r10_bio->sectors, 0); 3057 rdev_dec_pending(rdev, conf->mddev); 3058 } else if (bio != NULL && bio->bi_status) { 3059 fail = true; 3060 if (!narrow_write_error(r10_bio, m)) { 3061 md_error(conf->mddev, rdev); 3062 set_bit(R10BIO_Degraded, 3063 &r10_bio->state); 3064 } 3065 rdev_dec_pending(rdev, conf->mddev); 3066 } 3067 bio = r10_bio->devs[m].repl_bio; 3068 rdev = conf->mirrors[dev].replacement; 3069 if (rdev && bio == IO_MADE_GOOD) { 3070 rdev_clear_badblocks( 3071 rdev, 3072 r10_bio->devs[m].addr, 3073 r10_bio->sectors, 0); 3074 rdev_dec_pending(rdev, conf->mddev); 3075 } 3076 } 3077 if (fail) { 3078 spin_lock_irq(&conf->device_lock); 3079 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 3080 conf->nr_queued++; 3081 spin_unlock_irq(&conf->device_lock); 3082 /* 3083 * In case freeze_array() is waiting for condition 3084 * nr_pending == nr_queued + extra to be true. 3085 */ 3086 wake_up(&conf->wait_barrier); 3087 md_wakeup_thread(conf->mddev->thread); 3088 } else { 3089 if (test_bit(R10BIO_WriteError, 3090 &r10_bio->state)) 3091 close_write(r10_bio); 3092 raid_end_bio_io(r10_bio); 3093 } 3094 } 3095 } 3096 3097 static void raid10d(struct md_thread *thread) 3098 { 3099 struct mddev *mddev = thread->mddev; 3100 struct r10bio *r10_bio; 3101 unsigned long flags; 3102 struct r10conf *conf = mddev->private; 3103 struct list_head *head = &conf->retry_list; 3104 struct blk_plug plug; 3105 3106 md_check_recovery(mddev); 3107 3108 if (!list_empty_careful(&conf->bio_end_io_list) && 3109 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3110 LIST_HEAD(tmp); 3111 spin_lock_irqsave(&conf->device_lock, flags); 3112 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3113 while (!list_empty(&conf->bio_end_io_list)) { 3114 list_move(conf->bio_end_io_list.prev, &tmp); 3115 conf->nr_queued--; 3116 } 3117 } 3118 spin_unlock_irqrestore(&conf->device_lock, flags); 3119 while (!list_empty(&tmp)) { 3120 r10_bio = list_first_entry(&tmp, struct r10bio, 3121 retry_list); 3122 list_del(&r10_bio->retry_list); 3123 if (mddev->degraded) 3124 set_bit(R10BIO_Degraded, &r10_bio->state); 3125 3126 if (test_bit(R10BIO_WriteError, 3127 &r10_bio->state)) 3128 close_write(r10_bio); 3129 raid_end_bio_io(r10_bio); 3130 } 3131 } 3132 3133 blk_start_plug(&plug); 3134 for (;;) { 3135 3136 flush_pending_writes(conf); 3137 3138 spin_lock_irqsave(&conf->device_lock, flags); 3139 if (list_empty(head)) { 3140 spin_unlock_irqrestore(&conf->device_lock, flags); 3141 break; 3142 } 3143 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3144 list_del(head->prev); 3145 conf->nr_queued--; 3146 spin_unlock_irqrestore(&conf->device_lock, flags); 3147 3148 mddev = r10_bio->mddev; 3149 conf = mddev->private; 3150 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3151 test_bit(R10BIO_WriteError, &r10_bio->state)) 3152 handle_write_completed(conf, r10_bio); 3153 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3154 reshape_request_write(mddev, r10_bio); 3155 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3156 sync_request_write(mddev, r10_bio); 3157 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3158 recovery_request_write(mddev, r10_bio); 3159 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3160 handle_read_error(mddev, r10_bio); 3161 else 3162 WARN_ON_ONCE(1); 3163 3164 cond_resched(); 3165 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3166 md_check_recovery(mddev); 3167 } 3168 blk_finish_plug(&plug); 3169 } 3170 3171 static int init_resync(struct r10conf *conf) 3172 { 3173 int ret, buffs, i; 3174 3175 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3176 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3177 conf->have_replacement = 0; 3178 for (i = 0; i < conf->geo.raid_disks; i++) 3179 if (conf->mirrors[i].replacement) 3180 conf->have_replacement = 1; 3181 ret = mempool_init(&conf->r10buf_pool, buffs, 3182 r10buf_pool_alloc, r10buf_pool_free, conf); 3183 if (ret) 3184 return ret; 3185 conf->next_resync = 0; 3186 return 0; 3187 } 3188 3189 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3190 { 3191 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3192 struct rsync_pages *rp; 3193 struct bio *bio; 3194 int nalloc; 3195 int i; 3196 3197 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3198 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3199 nalloc = conf->copies; /* resync */ 3200 else 3201 nalloc = 2; /* recovery */ 3202 3203 for (i = 0; i < nalloc; i++) { 3204 bio = r10bio->devs[i].bio; 3205 rp = bio->bi_private; 3206 bio_reset(bio, NULL, 0); 3207 bio->bi_private = rp; 3208 bio = r10bio->devs[i].repl_bio; 3209 if (bio) { 3210 rp = bio->bi_private; 3211 bio_reset(bio, NULL, 0); 3212 bio->bi_private = rp; 3213 } 3214 } 3215 return r10bio; 3216 } 3217 3218 /* 3219 * Set cluster_sync_high since we need other nodes to add the 3220 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3221 */ 3222 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3223 { 3224 sector_t window_size; 3225 int extra_chunk, chunks; 3226 3227 /* 3228 * First, here we define "stripe" as a unit which across 3229 * all member devices one time, so we get chunks by use 3230 * raid_disks / near_copies. Otherwise, if near_copies is 3231 * close to raid_disks, then resync window could increases 3232 * linearly with the increase of raid_disks, which means 3233 * we will suspend a really large IO window while it is not 3234 * necessary. If raid_disks is not divisible by near_copies, 3235 * an extra chunk is needed to ensure the whole "stripe" is 3236 * covered. 3237 */ 3238 3239 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3240 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3241 extra_chunk = 0; 3242 else 3243 extra_chunk = 1; 3244 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3245 3246 /* 3247 * At least use a 32M window to align with raid1's resync window 3248 */ 3249 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3250 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3251 3252 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3253 } 3254 3255 /* 3256 * perform a "sync" on one "block" 3257 * 3258 * We need to make sure that no normal I/O request - particularly write 3259 * requests - conflict with active sync requests. 3260 * 3261 * This is achieved by tracking pending requests and a 'barrier' concept 3262 * that can be installed to exclude normal IO requests. 3263 * 3264 * Resync and recovery are handled very differently. 3265 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3266 * 3267 * For resync, we iterate over virtual addresses, read all copies, 3268 * and update if there are differences. If only one copy is live, 3269 * skip it. 3270 * For recovery, we iterate over physical addresses, read a good 3271 * value for each non-in_sync drive, and over-write. 3272 * 3273 * So, for recovery we may have several outstanding complex requests for a 3274 * given address, one for each out-of-sync device. We model this by allocating 3275 * a number of r10_bio structures, one for each out-of-sync device. 3276 * As we setup these structures, we collect all bio's together into a list 3277 * which we then process collectively to add pages, and then process again 3278 * to pass to submit_bio_noacct. 3279 * 3280 * The r10_bio structures are linked using a borrowed master_bio pointer. 3281 * This link is counted in ->remaining. When the r10_bio that points to NULL 3282 * has its remaining count decremented to 0, the whole complex operation 3283 * is complete. 3284 * 3285 */ 3286 3287 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3288 int *skipped) 3289 { 3290 struct r10conf *conf = mddev->private; 3291 struct r10bio *r10_bio; 3292 struct bio *biolist = NULL, *bio; 3293 sector_t max_sector, nr_sectors; 3294 int i; 3295 int max_sync; 3296 sector_t sync_blocks; 3297 sector_t sectors_skipped = 0; 3298 int chunks_skipped = 0; 3299 sector_t chunk_mask = conf->geo.chunk_mask; 3300 int page_idx = 0; 3301 int error_disk = -1; 3302 3303 /* 3304 * Allow skipping a full rebuild for incremental assembly 3305 * of a clean array, like RAID1 does. 3306 */ 3307 if (mddev->bitmap == NULL && 3308 mddev->recovery_cp == MaxSector && 3309 mddev->reshape_position == MaxSector && 3310 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3311 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3312 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3313 conf->fullsync == 0) { 3314 *skipped = 1; 3315 return mddev->dev_sectors - sector_nr; 3316 } 3317 3318 if (!mempool_initialized(&conf->r10buf_pool)) 3319 if (init_resync(conf)) 3320 return 0; 3321 3322 skipped: 3323 max_sector = mddev->dev_sectors; 3324 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 3325 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3326 max_sector = mddev->resync_max_sectors; 3327 if (sector_nr >= max_sector) { 3328 conf->cluster_sync_low = 0; 3329 conf->cluster_sync_high = 0; 3330 3331 /* If we aborted, we need to abort the 3332 * sync on the 'current' bitmap chucks (there can 3333 * be several when recovering multiple devices). 3334 * as we may have started syncing it but not finished. 3335 * We can find the current address in 3336 * mddev->curr_resync, but for recovery, 3337 * we need to convert that to several 3338 * virtual addresses. 3339 */ 3340 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3341 end_reshape(conf); 3342 close_sync(conf); 3343 return 0; 3344 } 3345 3346 if (mddev->curr_resync < max_sector) { /* aborted */ 3347 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3348 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3349 &sync_blocks, 1); 3350 else for (i = 0; i < conf->geo.raid_disks; i++) { 3351 sector_t sect = 3352 raid10_find_virt(conf, mddev->curr_resync, i); 3353 md_bitmap_end_sync(mddev->bitmap, sect, 3354 &sync_blocks, 1); 3355 } 3356 } else { 3357 /* completed sync */ 3358 if ((!mddev->bitmap || conf->fullsync) 3359 && conf->have_replacement 3360 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3361 /* Completed a full sync so the replacements 3362 * are now fully recovered. 3363 */ 3364 rcu_read_lock(); 3365 for (i = 0; i < conf->geo.raid_disks; i++) { 3366 struct md_rdev *rdev = 3367 rcu_dereference(conf->mirrors[i].replacement); 3368 if (rdev) 3369 rdev->recovery_offset = MaxSector; 3370 } 3371 rcu_read_unlock(); 3372 } 3373 conf->fullsync = 0; 3374 } 3375 md_bitmap_close_sync(mddev->bitmap); 3376 close_sync(conf); 3377 *skipped = 1; 3378 return sectors_skipped; 3379 } 3380 3381 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3382 return reshape_request(mddev, sector_nr, skipped); 3383 3384 if (chunks_skipped >= conf->geo.raid_disks) { 3385 pr_err("md/raid10:%s: %s fails\n", mdname(mddev), 3386 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"); 3387 if (error_disk >= 0 && 3388 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3389 /* 3390 * recovery fails, set mirrors.recovery_disabled, 3391 * device shouldn't be added to there. 3392 */ 3393 conf->mirrors[error_disk].recovery_disabled = 3394 mddev->recovery_disabled; 3395 return 0; 3396 } 3397 /* 3398 * if there has been nothing to do on any drive, 3399 * then there is nothing to do at all. 3400 */ 3401 *skipped = 1; 3402 return (max_sector - sector_nr) + sectors_skipped; 3403 } 3404 3405 if (max_sector > mddev->resync_max) 3406 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3407 3408 /* make sure whole request will fit in a chunk - if chunks 3409 * are meaningful 3410 */ 3411 if (conf->geo.near_copies < conf->geo.raid_disks && 3412 max_sector > (sector_nr | chunk_mask)) 3413 max_sector = (sector_nr | chunk_mask) + 1; 3414 3415 /* 3416 * If there is non-resync activity waiting for a turn, then let it 3417 * though before starting on this new sync request. 3418 */ 3419 if (conf->nr_waiting) 3420 schedule_timeout_uninterruptible(1); 3421 3422 /* Again, very different code for resync and recovery. 3423 * Both must result in an r10bio with a list of bios that 3424 * have bi_end_io, bi_sector, bi_bdev set, 3425 * and bi_private set to the r10bio. 3426 * For recovery, we may actually create several r10bios 3427 * with 2 bios in each, that correspond to the bios in the main one. 3428 * In this case, the subordinate r10bios link back through a 3429 * borrowed master_bio pointer, and the counter in the master 3430 * includes a ref from each subordinate. 3431 */ 3432 /* First, we decide what to do and set ->bi_end_io 3433 * To end_sync_read if we want to read, and 3434 * end_sync_write if we will want to write. 3435 */ 3436 3437 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3438 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3439 /* recovery... the complicated one */ 3440 int j; 3441 r10_bio = NULL; 3442 3443 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3444 int still_degraded; 3445 struct r10bio *rb2; 3446 sector_t sect; 3447 int must_sync; 3448 int any_working; 3449 struct raid10_info *mirror = &conf->mirrors[i]; 3450 struct md_rdev *mrdev, *mreplace; 3451 3452 rcu_read_lock(); 3453 mrdev = rcu_dereference(mirror->rdev); 3454 mreplace = rcu_dereference(mirror->replacement); 3455 3456 if (mrdev && (test_bit(Faulty, &mrdev->flags) || 3457 test_bit(In_sync, &mrdev->flags))) 3458 mrdev = NULL; 3459 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3460 mreplace = NULL; 3461 3462 if (!mrdev && !mreplace) { 3463 rcu_read_unlock(); 3464 continue; 3465 } 3466 3467 still_degraded = 0; 3468 /* want to reconstruct this device */ 3469 rb2 = r10_bio; 3470 sect = raid10_find_virt(conf, sector_nr, i); 3471 if (sect >= mddev->resync_max_sectors) { 3472 /* last stripe is not complete - don't 3473 * try to recover this sector. 3474 */ 3475 rcu_read_unlock(); 3476 continue; 3477 } 3478 /* Unless we are doing a full sync, or a replacement 3479 * we only need to recover the block if it is set in 3480 * the bitmap 3481 */ 3482 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3483 &sync_blocks, 1); 3484 if (sync_blocks < max_sync) 3485 max_sync = sync_blocks; 3486 if (!must_sync && 3487 mreplace == NULL && 3488 !conf->fullsync) { 3489 /* yep, skip the sync_blocks here, but don't assume 3490 * that there will never be anything to do here 3491 */ 3492 chunks_skipped = -1; 3493 rcu_read_unlock(); 3494 continue; 3495 } 3496 if (mrdev) 3497 atomic_inc(&mrdev->nr_pending); 3498 if (mreplace) 3499 atomic_inc(&mreplace->nr_pending); 3500 rcu_read_unlock(); 3501 3502 r10_bio = raid10_alloc_init_r10buf(conf); 3503 r10_bio->state = 0; 3504 raise_barrier(conf, rb2 != NULL); 3505 atomic_set(&r10_bio->remaining, 0); 3506 3507 r10_bio->master_bio = (struct bio*)rb2; 3508 if (rb2) 3509 atomic_inc(&rb2->remaining); 3510 r10_bio->mddev = mddev; 3511 set_bit(R10BIO_IsRecover, &r10_bio->state); 3512 r10_bio->sector = sect; 3513 3514 raid10_find_phys(conf, r10_bio); 3515 3516 /* Need to check if the array will still be 3517 * degraded 3518 */ 3519 rcu_read_lock(); 3520 for (j = 0; j < conf->geo.raid_disks; j++) { 3521 struct md_rdev *rdev = rcu_dereference( 3522 conf->mirrors[j].rdev); 3523 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3524 still_degraded = 1; 3525 break; 3526 } 3527 } 3528 3529 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3530 &sync_blocks, still_degraded); 3531 3532 any_working = 0; 3533 for (j=0; j<conf->copies;j++) { 3534 int k; 3535 int d = r10_bio->devs[j].devnum; 3536 sector_t from_addr, to_addr; 3537 struct md_rdev *rdev = 3538 rcu_dereference(conf->mirrors[d].rdev); 3539 sector_t sector, first_bad; 3540 int bad_sectors; 3541 if (!rdev || 3542 !test_bit(In_sync, &rdev->flags)) 3543 continue; 3544 /* This is where we read from */ 3545 any_working = 1; 3546 sector = r10_bio->devs[j].addr; 3547 3548 if (is_badblock(rdev, sector, max_sync, 3549 &first_bad, &bad_sectors)) { 3550 if (first_bad > sector) 3551 max_sync = first_bad - sector; 3552 else { 3553 bad_sectors -= (sector 3554 - first_bad); 3555 if (max_sync > bad_sectors) 3556 max_sync = bad_sectors; 3557 continue; 3558 } 3559 } 3560 bio = r10_bio->devs[0].bio; 3561 bio->bi_next = biolist; 3562 biolist = bio; 3563 bio->bi_end_io = end_sync_read; 3564 bio->bi_opf = REQ_OP_READ; 3565 if (test_bit(FailFast, &rdev->flags)) 3566 bio->bi_opf |= MD_FAILFAST; 3567 from_addr = r10_bio->devs[j].addr; 3568 bio->bi_iter.bi_sector = from_addr + 3569 rdev->data_offset; 3570 bio_set_dev(bio, rdev->bdev); 3571 atomic_inc(&rdev->nr_pending); 3572 /* and we write to 'i' (if not in_sync) */ 3573 3574 for (k=0; k<conf->copies; k++) 3575 if (r10_bio->devs[k].devnum == i) 3576 break; 3577 BUG_ON(k == conf->copies); 3578 to_addr = r10_bio->devs[k].addr; 3579 r10_bio->devs[0].devnum = d; 3580 r10_bio->devs[0].addr = from_addr; 3581 r10_bio->devs[1].devnum = i; 3582 r10_bio->devs[1].addr = to_addr; 3583 3584 if (mrdev) { 3585 bio = r10_bio->devs[1].bio; 3586 bio->bi_next = biolist; 3587 biolist = bio; 3588 bio->bi_end_io = end_sync_write; 3589 bio->bi_opf = REQ_OP_WRITE; 3590 bio->bi_iter.bi_sector = to_addr 3591 + mrdev->data_offset; 3592 bio_set_dev(bio, mrdev->bdev); 3593 atomic_inc(&r10_bio->remaining); 3594 } else 3595 r10_bio->devs[1].bio->bi_end_io = NULL; 3596 3597 /* and maybe write to replacement */ 3598 bio = r10_bio->devs[1].repl_bio; 3599 if (bio) 3600 bio->bi_end_io = NULL; 3601 /* Note: if replace is not NULL, then bio 3602 * cannot be NULL as r10buf_pool_alloc will 3603 * have allocated it. 3604 */ 3605 if (!mreplace) 3606 break; 3607 bio->bi_next = biolist; 3608 biolist = bio; 3609 bio->bi_end_io = end_sync_write; 3610 bio->bi_opf = REQ_OP_WRITE; 3611 bio->bi_iter.bi_sector = to_addr + 3612 mreplace->data_offset; 3613 bio_set_dev(bio, mreplace->bdev); 3614 atomic_inc(&r10_bio->remaining); 3615 break; 3616 } 3617 rcu_read_unlock(); 3618 if (j == conf->copies) { 3619 /* Cannot recover, so abort the recovery or 3620 * record a bad block */ 3621 if (any_working) { 3622 /* problem is that there are bad blocks 3623 * on other device(s) 3624 */ 3625 int k; 3626 for (k = 0; k < conf->copies; k++) 3627 if (r10_bio->devs[k].devnum == i) 3628 break; 3629 if (mrdev && !test_bit(In_sync, 3630 &mrdev->flags) 3631 && !rdev_set_badblocks( 3632 mrdev, 3633 r10_bio->devs[k].addr, 3634 max_sync, 0)) 3635 any_working = 0; 3636 if (mreplace && 3637 !rdev_set_badblocks( 3638 mreplace, 3639 r10_bio->devs[k].addr, 3640 max_sync, 0)) 3641 any_working = 0; 3642 } 3643 if (!any_working) { 3644 if (!test_and_set_bit(MD_RECOVERY_INTR, 3645 &mddev->recovery)) 3646 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3647 mdname(mddev)); 3648 mirror->recovery_disabled 3649 = mddev->recovery_disabled; 3650 } else { 3651 error_disk = i; 3652 } 3653 put_buf(r10_bio); 3654 if (rb2) 3655 atomic_dec(&rb2->remaining); 3656 r10_bio = rb2; 3657 if (mrdev) 3658 rdev_dec_pending(mrdev, mddev); 3659 if (mreplace) 3660 rdev_dec_pending(mreplace, mddev); 3661 break; 3662 } 3663 if (mrdev) 3664 rdev_dec_pending(mrdev, mddev); 3665 if (mreplace) 3666 rdev_dec_pending(mreplace, mddev); 3667 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3668 /* Only want this if there is elsewhere to 3669 * read from. 'j' is currently the first 3670 * readable copy. 3671 */ 3672 int targets = 1; 3673 for (; j < conf->copies; j++) { 3674 int d = r10_bio->devs[j].devnum; 3675 if (conf->mirrors[d].rdev && 3676 test_bit(In_sync, 3677 &conf->mirrors[d].rdev->flags)) 3678 targets++; 3679 } 3680 if (targets == 1) 3681 r10_bio->devs[0].bio->bi_opf 3682 &= ~MD_FAILFAST; 3683 } 3684 } 3685 if (biolist == NULL) { 3686 while (r10_bio) { 3687 struct r10bio *rb2 = r10_bio; 3688 r10_bio = (struct r10bio*) rb2->master_bio; 3689 rb2->master_bio = NULL; 3690 put_buf(rb2); 3691 } 3692 goto giveup; 3693 } 3694 } else { 3695 /* resync. Schedule a read for every block at this virt offset */ 3696 int count = 0; 3697 3698 /* 3699 * Since curr_resync_completed could probably not update in 3700 * time, and we will set cluster_sync_low based on it. 3701 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3702 * safety reason, which ensures curr_resync_completed is 3703 * updated in bitmap_cond_end_sync. 3704 */ 3705 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3706 mddev_is_clustered(mddev) && 3707 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3708 3709 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3710 &sync_blocks, mddev->degraded) && 3711 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3712 &mddev->recovery)) { 3713 /* We can skip this block */ 3714 *skipped = 1; 3715 return sync_blocks + sectors_skipped; 3716 } 3717 if (sync_blocks < max_sync) 3718 max_sync = sync_blocks; 3719 r10_bio = raid10_alloc_init_r10buf(conf); 3720 r10_bio->state = 0; 3721 3722 r10_bio->mddev = mddev; 3723 atomic_set(&r10_bio->remaining, 0); 3724 raise_barrier(conf, 0); 3725 conf->next_resync = sector_nr; 3726 3727 r10_bio->master_bio = NULL; 3728 r10_bio->sector = sector_nr; 3729 set_bit(R10BIO_IsSync, &r10_bio->state); 3730 raid10_find_phys(conf, r10_bio); 3731 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3732 3733 for (i = 0; i < conf->copies; i++) { 3734 int d = r10_bio->devs[i].devnum; 3735 sector_t first_bad, sector; 3736 int bad_sectors; 3737 struct md_rdev *rdev; 3738 3739 if (r10_bio->devs[i].repl_bio) 3740 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3741 3742 bio = r10_bio->devs[i].bio; 3743 bio->bi_status = BLK_STS_IOERR; 3744 rcu_read_lock(); 3745 rdev = rcu_dereference(conf->mirrors[d].rdev); 3746 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3747 rcu_read_unlock(); 3748 continue; 3749 } 3750 sector = r10_bio->devs[i].addr; 3751 if (is_badblock(rdev, sector, max_sync, 3752 &first_bad, &bad_sectors)) { 3753 if (first_bad > sector) 3754 max_sync = first_bad - sector; 3755 else { 3756 bad_sectors -= (sector - first_bad); 3757 if (max_sync > bad_sectors) 3758 max_sync = bad_sectors; 3759 rcu_read_unlock(); 3760 continue; 3761 } 3762 } 3763 atomic_inc(&rdev->nr_pending); 3764 atomic_inc(&r10_bio->remaining); 3765 bio->bi_next = biolist; 3766 biolist = bio; 3767 bio->bi_end_io = end_sync_read; 3768 bio->bi_opf = REQ_OP_READ; 3769 if (test_bit(FailFast, &rdev->flags)) 3770 bio->bi_opf |= MD_FAILFAST; 3771 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3772 bio_set_dev(bio, rdev->bdev); 3773 count++; 3774 3775 rdev = rcu_dereference(conf->mirrors[d].replacement); 3776 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3777 rcu_read_unlock(); 3778 continue; 3779 } 3780 atomic_inc(&rdev->nr_pending); 3781 3782 /* Need to set up for writing to the replacement */ 3783 bio = r10_bio->devs[i].repl_bio; 3784 bio->bi_status = BLK_STS_IOERR; 3785 3786 sector = r10_bio->devs[i].addr; 3787 bio->bi_next = biolist; 3788 biolist = bio; 3789 bio->bi_end_io = end_sync_write; 3790 bio->bi_opf = REQ_OP_WRITE; 3791 if (test_bit(FailFast, &rdev->flags)) 3792 bio->bi_opf |= MD_FAILFAST; 3793 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3794 bio_set_dev(bio, rdev->bdev); 3795 count++; 3796 rcu_read_unlock(); 3797 } 3798 3799 if (count < 2) { 3800 for (i=0; i<conf->copies; i++) { 3801 int d = r10_bio->devs[i].devnum; 3802 if (r10_bio->devs[i].bio->bi_end_io) 3803 rdev_dec_pending(conf->mirrors[d].rdev, 3804 mddev); 3805 if (r10_bio->devs[i].repl_bio && 3806 r10_bio->devs[i].repl_bio->bi_end_io) 3807 rdev_dec_pending( 3808 conf->mirrors[d].replacement, 3809 mddev); 3810 } 3811 put_buf(r10_bio); 3812 biolist = NULL; 3813 goto giveup; 3814 } 3815 } 3816 3817 nr_sectors = 0; 3818 if (sector_nr + max_sync < max_sector) 3819 max_sector = sector_nr + max_sync; 3820 do { 3821 struct page *page; 3822 int len = PAGE_SIZE; 3823 if (sector_nr + (len>>9) > max_sector) 3824 len = (max_sector - sector_nr) << 9; 3825 if (len == 0) 3826 break; 3827 for (bio= biolist ; bio ; bio=bio->bi_next) { 3828 struct resync_pages *rp = get_resync_pages(bio); 3829 page = resync_fetch_page(rp, page_idx); 3830 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 3831 bio->bi_status = BLK_STS_RESOURCE; 3832 bio_endio(bio); 3833 goto giveup; 3834 } 3835 } 3836 nr_sectors += len>>9; 3837 sector_nr += len>>9; 3838 } while (++page_idx < RESYNC_PAGES); 3839 r10_bio->sectors = nr_sectors; 3840 3841 if (mddev_is_clustered(mddev) && 3842 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3843 /* It is resync not recovery */ 3844 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3845 conf->cluster_sync_low = mddev->curr_resync_completed; 3846 raid10_set_cluster_sync_high(conf); 3847 /* Send resync message */ 3848 md_cluster_ops->resync_info_update(mddev, 3849 conf->cluster_sync_low, 3850 conf->cluster_sync_high); 3851 } 3852 } else if (mddev_is_clustered(mddev)) { 3853 /* This is recovery not resync */ 3854 sector_t sect_va1, sect_va2; 3855 bool broadcast_msg = false; 3856 3857 for (i = 0; i < conf->geo.raid_disks; i++) { 3858 /* 3859 * sector_nr is a device address for recovery, so we 3860 * need translate it to array address before compare 3861 * with cluster_sync_high. 3862 */ 3863 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3864 3865 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3866 broadcast_msg = true; 3867 /* 3868 * curr_resync_completed is similar as 3869 * sector_nr, so make the translation too. 3870 */ 3871 sect_va2 = raid10_find_virt(conf, 3872 mddev->curr_resync_completed, i); 3873 3874 if (conf->cluster_sync_low == 0 || 3875 conf->cluster_sync_low > sect_va2) 3876 conf->cluster_sync_low = sect_va2; 3877 } 3878 } 3879 if (broadcast_msg) { 3880 raid10_set_cluster_sync_high(conf); 3881 md_cluster_ops->resync_info_update(mddev, 3882 conf->cluster_sync_low, 3883 conf->cluster_sync_high); 3884 } 3885 } 3886 3887 while (biolist) { 3888 bio = biolist; 3889 biolist = biolist->bi_next; 3890 3891 bio->bi_next = NULL; 3892 r10_bio = get_resync_r10bio(bio); 3893 r10_bio->sectors = nr_sectors; 3894 3895 if (bio->bi_end_io == end_sync_read) { 3896 md_sync_acct_bio(bio, nr_sectors); 3897 bio->bi_status = 0; 3898 submit_bio_noacct(bio); 3899 } 3900 } 3901 3902 if (sectors_skipped) 3903 /* pretend they weren't skipped, it makes 3904 * no important difference in this case 3905 */ 3906 md_done_sync(mddev, sectors_skipped, 1); 3907 3908 return sectors_skipped + nr_sectors; 3909 giveup: 3910 /* There is nowhere to write, so all non-sync 3911 * drives must be failed or in resync, all drives 3912 * have a bad block, so try the next chunk... 3913 */ 3914 if (sector_nr + max_sync < max_sector) 3915 max_sector = sector_nr + max_sync; 3916 3917 sectors_skipped += (max_sector - sector_nr); 3918 chunks_skipped ++; 3919 sector_nr = max_sector; 3920 goto skipped; 3921 } 3922 3923 static sector_t 3924 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3925 { 3926 sector_t size; 3927 struct r10conf *conf = mddev->private; 3928 3929 if (!raid_disks) 3930 raid_disks = min(conf->geo.raid_disks, 3931 conf->prev.raid_disks); 3932 if (!sectors) 3933 sectors = conf->dev_sectors; 3934 3935 size = sectors >> conf->geo.chunk_shift; 3936 sector_div(size, conf->geo.far_copies); 3937 size = size * raid_disks; 3938 sector_div(size, conf->geo.near_copies); 3939 3940 return size << conf->geo.chunk_shift; 3941 } 3942 3943 static void calc_sectors(struct r10conf *conf, sector_t size) 3944 { 3945 /* Calculate the number of sectors-per-device that will 3946 * actually be used, and set conf->dev_sectors and 3947 * conf->stride 3948 */ 3949 3950 size = size >> conf->geo.chunk_shift; 3951 sector_div(size, conf->geo.far_copies); 3952 size = size * conf->geo.raid_disks; 3953 sector_div(size, conf->geo.near_copies); 3954 /* 'size' is now the number of chunks in the array */ 3955 /* calculate "used chunks per device" */ 3956 size = size * conf->copies; 3957 3958 /* We need to round up when dividing by raid_disks to 3959 * get the stride size. 3960 */ 3961 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3962 3963 conf->dev_sectors = size << conf->geo.chunk_shift; 3964 3965 if (conf->geo.far_offset) 3966 conf->geo.stride = 1 << conf->geo.chunk_shift; 3967 else { 3968 sector_div(size, conf->geo.far_copies); 3969 conf->geo.stride = size << conf->geo.chunk_shift; 3970 } 3971 } 3972 3973 enum geo_type {geo_new, geo_old, geo_start}; 3974 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3975 { 3976 int nc, fc, fo; 3977 int layout, chunk, disks; 3978 switch (new) { 3979 case geo_old: 3980 layout = mddev->layout; 3981 chunk = mddev->chunk_sectors; 3982 disks = mddev->raid_disks - mddev->delta_disks; 3983 break; 3984 case geo_new: 3985 layout = mddev->new_layout; 3986 chunk = mddev->new_chunk_sectors; 3987 disks = mddev->raid_disks; 3988 break; 3989 default: /* avoid 'may be unused' warnings */ 3990 case geo_start: /* new when starting reshape - raid_disks not 3991 * updated yet. */ 3992 layout = mddev->new_layout; 3993 chunk = mddev->new_chunk_sectors; 3994 disks = mddev->raid_disks + mddev->delta_disks; 3995 break; 3996 } 3997 if (layout >> 19) 3998 return -1; 3999 if (chunk < (PAGE_SIZE >> 9) || 4000 !is_power_of_2(chunk)) 4001 return -2; 4002 nc = layout & 255; 4003 fc = (layout >> 8) & 255; 4004 fo = layout & (1<<16); 4005 geo->raid_disks = disks; 4006 geo->near_copies = nc; 4007 geo->far_copies = fc; 4008 geo->far_offset = fo; 4009 switch (layout >> 17) { 4010 case 0: /* original layout. simple but not always optimal */ 4011 geo->far_set_size = disks; 4012 break; 4013 case 1: /* "improved" layout which was buggy. Hopefully no-one is 4014 * actually using this, but leave code here just in case.*/ 4015 geo->far_set_size = disks/fc; 4016 WARN(geo->far_set_size < fc, 4017 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 4018 break; 4019 case 2: /* "improved" layout fixed to match documentation */ 4020 geo->far_set_size = fc * nc; 4021 break; 4022 default: /* Not a valid layout */ 4023 return -1; 4024 } 4025 geo->chunk_mask = chunk - 1; 4026 geo->chunk_shift = ffz(~chunk); 4027 return nc*fc; 4028 } 4029 4030 static void raid10_free_conf(struct r10conf *conf) 4031 { 4032 if (!conf) 4033 return; 4034 4035 mempool_exit(&conf->r10bio_pool); 4036 kfree(conf->mirrors); 4037 kfree(conf->mirrors_old); 4038 kfree(conf->mirrors_new); 4039 safe_put_page(conf->tmppage); 4040 bioset_exit(&conf->bio_split); 4041 kfree(conf); 4042 } 4043 4044 static struct r10conf *setup_conf(struct mddev *mddev) 4045 { 4046 struct r10conf *conf = NULL; 4047 int err = -EINVAL; 4048 struct geom geo; 4049 int copies; 4050 4051 copies = setup_geo(&geo, mddev, geo_new); 4052 4053 if (copies == -2) { 4054 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 4055 mdname(mddev), PAGE_SIZE); 4056 goto out; 4057 } 4058 4059 if (copies < 2 || copies > mddev->raid_disks) { 4060 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 4061 mdname(mddev), mddev->new_layout); 4062 goto out; 4063 } 4064 4065 err = -ENOMEM; 4066 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 4067 if (!conf) 4068 goto out; 4069 4070 /* FIXME calc properly */ 4071 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 4072 sizeof(struct raid10_info), 4073 GFP_KERNEL); 4074 if (!conf->mirrors) 4075 goto out; 4076 4077 conf->tmppage = alloc_page(GFP_KERNEL); 4078 if (!conf->tmppage) 4079 goto out; 4080 4081 conf->geo = geo; 4082 conf->copies = copies; 4083 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 4084 rbio_pool_free, conf); 4085 if (err) 4086 goto out; 4087 4088 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 4089 if (err) 4090 goto out; 4091 4092 calc_sectors(conf, mddev->dev_sectors); 4093 if (mddev->reshape_position == MaxSector) { 4094 conf->prev = conf->geo; 4095 conf->reshape_progress = MaxSector; 4096 } else { 4097 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 4098 err = -EINVAL; 4099 goto out; 4100 } 4101 conf->reshape_progress = mddev->reshape_position; 4102 if (conf->prev.far_offset) 4103 conf->prev.stride = 1 << conf->prev.chunk_shift; 4104 else 4105 /* far_copies must be 1 */ 4106 conf->prev.stride = conf->dev_sectors; 4107 } 4108 conf->reshape_safe = conf->reshape_progress; 4109 spin_lock_init(&conf->device_lock); 4110 INIT_LIST_HEAD(&conf->retry_list); 4111 INIT_LIST_HEAD(&conf->bio_end_io_list); 4112 4113 seqlock_init(&conf->resync_lock); 4114 init_waitqueue_head(&conf->wait_barrier); 4115 atomic_set(&conf->nr_pending, 0); 4116 4117 err = -ENOMEM; 4118 rcu_assign_pointer(conf->thread, 4119 md_register_thread(raid10d, mddev, "raid10")); 4120 if (!conf->thread) 4121 goto out; 4122 4123 conf->mddev = mddev; 4124 return conf; 4125 4126 out: 4127 raid10_free_conf(conf); 4128 return ERR_PTR(err); 4129 } 4130 4131 static void raid10_set_io_opt(struct r10conf *conf) 4132 { 4133 int raid_disks = conf->geo.raid_disks; 4134 4135 if (!(conf->geo.raid_disks % conf->geo.near_copies)) 4136 raid_disks /= conf->geo.near_copies; 4137 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) * 4138 raid_disks); 4139 } 4140 4141 static int raid10_run(struct mddev *mddev) 4142 { 4143 struct r10conf *conf; 4144 int i, disk_idx; 4145 struct raid10_info *disk; 4146 struct md_rdev *rdev; 4147 sector_t size; 4148 sector_t min_offset_diff = 0; 4149 int first = 1; 4150 4151 if (mddev_init_writes_pending(mddev) < 0) 4152 return -ENOMEM; 4153 4154 if (mddev->private == NULL) { 4155 conf = setup_conf(mddev); 4156 if (IS_ERR(conf)) 4157 return PTR_ERR(conf); 4158 mddev->private = conf; 4159 } 4160 conf = mddev->private; 4161 if (!conf) 4162 goto out; 4163 4164 rcu_assign_pointer(mddev->thread, conf->thread); 4165 rcu_assign_pointer(conf->thread, NULL); 4166 4167 if (mddev_is_clustered(conf->mddev)) { 4168 int fc, fo; 4169 4170 fc = (mddev->layout >> 8) & 255; 4171 fo = mddev->layout & (1<<16); 4172 if (fc > 1 || fo > 0) { 4173 pr_err("only near layout is supported by clustered" 4174 " raid10\n"); 4175 goto out_free_conf; 4176 } 4177 } 4178 4179 if (mddev->queue) { 4180 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 4181 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9); 4182 raid10_set_io_opt(conf); 4183 } 4184 4185 rdev_for_each(rdev, mddev) { 4186 long long diff; 4187 4188 disk_idx = rdev->raid_disk; 4189 if (disk_idx < 0) 4190 continue; 4191 if (disk_idx >= conf->geo.raid_disks && 4192 disk_idx >= conf->prev.raid_disks) 4193 continue; 4194 disk = conf->mirrors + disk_idx; 4195 4196 if (test_bit(Replacement, &rdev->flags)) { 4197 if (disk->replacement) 4198 goto out_free_conf; 4199 disk->replacement = rdev; 4200 } else { 4201 if (disk->rdev) 4202 goto out_free_conf; 4203 disk->rdev = rdev; 4204 } 4205 diff = (rdev->new_data_offset - rdev->data_offset); 4206 if (!mddev->reshape_backwards) 4207 diff = -diff; 4208 if (diff < 0) 4209 diff = 0; 4210 if (first || diff < min_offset_diff) 4211 min_offset_diff = diff; 4212 4213 if (mddev->gendisk) 4214 disk_stack_limits(mddev->gendisk, rdev->bdev, 4215 rdev->data_offset << 9); 4216 4217 disk->head_position = 0; 4218 first = 0; 4219 } 4220 4221 /* need to check that every block has at least one working mirror */ 4222 if (!enough(conf, -1)) { 4223 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4224 mdname(mddev)); 4225 goto out_free_conf; 4226 } 4227 4228 if (conf->reshape_progress != MaxSector) { 4229 /* must ensure that shape change is supported */ 4230 if (conf->geo.far_copies != 1 && 4231 conf->geo.far_offset == 0) 4232 goto out_free_conf; 4233 if (conf->prev.far_copies != 1 && 4234 conf->prev.far_offset == 0) 4235 goto out_free_conf; 4236 } 4237 4238 mddev->degraded = 0; 4239 for (i = 0; 4240 i < conf->geo.raid_disks 4241 || i < conf->prev.raid_disks; 4242 i++) { 4243 4244 disk = conf->mirrors + i; 4245 4246 if (!disk->rdev && disk->replacement) { 4247 /* The replacement is all we have - use it */ 4248 disk->rdev = disk->replacement; 4249 disk->replacement = NULL; 4250 clear_bit(Replacement, &disk->rdev->flags); 4251 } 4252 4253 if (!disk->rdev || 4254 !test_bit(In_sync, &disk->rdev->flags)) { 4255 disk->head_position = 0; 4256 mddev->degraded++; 4257 if (disk->rdev && 4258 disk->rdev->saved_raid_disk < 0) 4259 conf->fullsync = 1; 4260 } 4261 4262 if (disk->replacement && 4263 !test_bit(In_sync, &disk->replacement->flags) && 4264 disk->replacement->saved_raid_disk < 0) { 4265 conf->fullsync = 1; 4266 } 4267 4268 disk->recovery_disabled = mddev->recovery_disabled - 1; 4269 } 4270 4271 if (mddev->recovery_cp != MaxSector) 4272 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4273 mdname(mddev)); 4274 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4275 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4276 conf->geo.raid_disks); 4277 /* 4278 * Ok, everything is just fine now 4279 */ 4280 mddev->dev_sectors = conf->dev_sectors; 4281 size = raid10_size(mddev, 0, 0); 4282 md_set_array_sectors(mddev, size); 4283 mddev->resync_max_sectors = size; 4284 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4285 4286 if (md_integrity_register(mddev)) 4287 goto out_free_conf; 4288 4289 if (conf->reshape_progress != MaxSector) { 4290 unsigned long before_length, after_length; 4291 4292 before_length = ((1 << conf->prev.chunk_shift) * 4293 conf->prev.far_copies); 4294 after_length = ((1 << conf->geo.chunk_shift) * 4295 conf->geo.far_copies); 4296 4297 if (max(before_length, after_length) > min_offset_diff) { 4298 /* This cannot work */ 4299 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4300 goto out_free_conf; 4301 } 4302 conf->offset_diff = min_offset_diff; 4303 4304 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4305 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4306 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4307 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4308 rcu_assign_pointer(mddev->sync_thread, 4309 md_register_thread(md_do_sync, mddev, "reshape")); 4310 if (!mddev->sync_thread) 4311 goto out_free_conf; 4312 } 4313 4314 return 0; 4315 4316 out_free_conf: 4317 md_unregister_thread(&mddev->thread); 4318 raid10_free_conf(conf); 4319 mddev->private = NULL; 4320 out: 4321 return -EIO; 4322 } 4323 4324 static void raid10_free(struct mddev *mddev, void *priv) 4325 { 4326 raid10_free_conf(priv); 4327 } 4328 4329 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4330 { 4331 struct r10conf *conf = mddev->private; 4332 4333 if (quiesce) 4334 raise_barrier(conf, 0); 4335 else 4336 lower_barrier(conf); 4337 } 4338 4339 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4340 { 4341 /* Resize of 'far' arrays is not supported. 4342 * For 'near' and 'offset' arrays we can set the 4343 * number of sectors used to be an appropriate multiple 4344 * of the chunk size. 4345 * For 'offset', this is far_copies*chunksize. 4346 * For 'near' the multiplier is the LCM of 4347 * near_copies and raid_disks. 4348 * So if far_copies > 1 && !far_offset, fail. 4349 * Else find LCM(raid_disks, near_copy)*far_copies and 4350 * multiply by chunk_size. Then round to this number. 4351 * This is mostly done by raid10_size() 4352 */ 4353 struct r10conf *conf = mddev->private; 4354 sector_t oldsize, size; 4355 4356 if (mddev->reshape_position != MaxSector) 4357 return -EBUSY; 4358 4359 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4360 return -EINVAL; 4361 4362 oldsize = raid10_size(mddev, 0, 0); 4363 size = raid10_size(mddev, sectors, 0); 4364 if (mddev->external_size && 4365 mddev->array_sectors > size) 4366 return -EINVAL; 4367 if (mddev->bitmap) { 4368 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4369 if (ret) 4370 return ret; 4371 } 4372 md_set_array_sectors(mddev, size); 4373 if (sectors > mddev->dev_sectors && 4374 mddev->recovery_cp > oldsize) { 4375 mddev->recovery_cp = oldsize; 4376 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4377 } 4378 calc_sectors(conf, sectors); 4379 mddev->dev_sectors = conf->dev_sectors; 4380 mddev->resync_max_sectors = size; 4381 return 0; 4382 } 4383 4384 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4385 { 4386 struct md_rdev *rdev; 4387 struct r10conf *conf; 4388 4389 if (mddev->degraded > 0) { 4390 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4391 mdname(mddev)); 4392 return ERR_PTR(-EINVAL); 4393 } 4394 sector_div(size, devs); 4395 4396 /* Set new parameters */ 4397 mddev->new_level = 10; 4398 /* new layout: far_copies = 1, near_copies = 2 */ 4399 mddev->new_layout = (1<<8) + 2; 4400 mddev->new_chunk_sectors = mddev->chunk_sectors; 4401 mddev->delta_disks = mddev->raid_disks; 4402 mddev->raid_disks *= 2; 4403 /* make sure it will be not marked as dirty */ 4404 mddev->recovery_cp = MaxSector; 4405 mddev->dev_sectors = size; 4406 4407 conf = setup_conf(mddev); 4408 if (!IS_ERR(conf)) { 4409 rdev_for_each(rdev, mddev) 4410 if (rdev->raid_disk >= 0) { 4411 rdev->new_raid_disk = rdev->raid_disk * 2; 4412 rdev->sectors = size; 4413 } 4414 WRITE_ONCE(conf->barrier, 1); 4415 } 4416 4417 return conf; 4418 } 4419 4420 static void *raid10_takeover(struct mddev *mddev) 4421 { 4422 struct r0conf *raid0_conf; 4423 4424 /* raid10 can take over: 4425 * raid0 - providing it has only two drives 4426 */ 4427 if (mddev->level == 0) { 4428 /* for raid0 takeover only one zone is supported */ 4429 raid0_conf = mddev->private; 4430 if (raid0_conf->nr_strip_zones > 1) { 4431 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4432 mdname(mddev)); 4433 return ERR_PTR(-EINVAL); 4434 } 4435 return raid10_takeover_raid0(mddev, 4436 raid0_conf->strip_zone->zone_end, 4437 raid0_conf->strip_zone->nb_dev); 4438 } 4439 return ERR_PTR(-EINVAL); 4440 } 4441 4442 static int raid10_check_reshape(struct mddev *mddev) 4443 { 4444 /* Called when there is a request to change 4445 * - layout (to ->new_layout) 4446 * - chunk size (to ->new_chunk_sectors) 4447 * - raid_disks (by delta_disks) 4448 * or when trying to restart a reshape that was ongoing. 4449 * 4450 * We need to validate the request and possibly allocate 4451 * space if that might be an issue later. 4452 * 4453 * Currently we reject any reshape of a 'far' mode array, 4454 * allow chunk size to change if new is generally acceptable, 4455 * allow raid_disks to increase, and allow 4456 * a switch between 'near' mode and 'offset' mode. 4457 */ 4458 struct r10conf *conf = mddev->private; 4459 struct geom geo; 4460 4461 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4462 return -EINVAL; 4463 4464 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4465 /* mustn't change number of copies */ 4466 return -EINVAL; 4467 if (geo.far_copies > 1 && !geo.far_offset) 4468 /* Cannot switch to 'far' mode */ 4469 return -EINVAL; 4470 4471 if (mddev->array_sectors & geo.chunk_mask) 4472 /* not factor of array size */ 4473 return -EINVAL; 4474 4475 if (!enough(conf, -1)) 4476 return -EINVAL; 4477 4478 kfree(conf->mirrors_new); 4479 conf->mirrors_new = NULL; 4480 if (mddev->delta_disks > 0) { 4481 /* allocate new 'mirrors' list */ 4482 conf->mirrors_new = 4483 kcalloc(mddev->raid_disks + mddev->delta_disks, 4484 sizeof(struct raid10_info), 4485 GFP_KERNEL); 4486 if (!conf->mirrors_new) 4487 return -ENOMEM; 4488 } 4489 return 0; 4490 } 4491 4492 /* 4493 * Need to check if array has failed when deciding whether to: 4494 * - start an array 4495 * - remove non-faulty devices 4496 * - add a spare 4497 * - allow a reshape 4498 * This determination is simple when no reshape is happening. 4499 * However if there is a reshape, we need to carefully check 4500 * both the before and after sections. 4501 * This is because some failed devices may only affect one 4502 * of the two sections, and some non-in_sync devices may 4503 * be insync in the section most affected by failed devices. 4504 */ 4505 static int calc_degraded(struct r10conf *conf) 4506 { 4507 int degraded, degraded2; 4508 int i; 4509 4510 rcu_read_lock(); 4511 degraded = 0; 4512 /* 'prev' section first */ 4513 for (i = 0; i < conf->prev.raid_disks; i++) { 4514 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4515 if (!rdev || test_bit(Faulty, &rdev->flags)) 4516 degraded++; 4517 else if (!test_bit(In_sync, &rdev->flags)) 4518 /* When we can reduce the number of devices in 4519 * an array, this might not contribute to 4520 * 'degraded'. It does now. 4521 */ 4522 degraded++; 4523 } 4524 rcu_read_unlock(); 4525 if (conf->geo.raid_disks == conf->prev.raid_disks) 4526 return degraded; 4527 rcu_read_lock(); 4528 degraded2 = 0; 4529 for (i = 0; i < conf->geo.raid_disks; i++) { 4530 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4531 if (!rdev || test_bit(Faulty, &rdev->flags)) 4532 degraded2++; 4533 else if (!test_bit(In_sync, &rdev->flags)) { 4534 /* If reshape is increasing the number of devices, 4535 * this section has already been recovered, so 4536 * it doesn't contribute to degraded. 4537 * else it does. 4538 */ 4539 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4540 degraded2++; 4541 } 4542 } 4543 rcu_read_unlock(); 4544 if (degraded2 > degraded) 4545 return degraded2; 4546 return degraded; 4547 } 4548 4549 static int raid10_start_reshape(struct mddev *mddev) 4550 { 4551 /* A 'reshape' has been requested. This commits 4552 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4553 * This also checks if there are enough spares and adds them 4554 * to the array. 4555 * We currently require enough spares to make the final 4556 * array non-degraded. We also require that the difference 4557 * between old and new data_offset - on each device - is 4558 * enough that we never risk over-writing. 4559 */ 4560 4561 unsigned long before_length, after_length; 4562 sector_t min_offset_diff = 0; 4563 int first = 1; 4564 struct geom new; 4565 struct r10conf *conf = mddev->private; 4566 struct md_rdev *rdev; 4567 int spares = 0; 4568 int ret; 4569 4570 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4571 return -EBUSY; 4572 4573 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4574 return -EINVAL; 4575 4576 before_length = ((1 << conf->prev.chunk_shift) * 4577 conf->prev.far_copies); 4578 after_length = ((1 << conf->geo.chunk_shift) * 4579 conf->geo.far_copies); 4580 4581 rdev_for_each(rdev, mddev) { 4582 if (!test_bit(In_sync, &rdev->flags) 4583 && !test_bit(Faulty, &rdev->flags)) 4584 spares++; 4585 if (rdev->raid_disk >= 0) { 4586 long long diff = (rdev->new_data_offset 4587 - rdev->data_offset); 4588 if (!mddev->reshape_backwards) 4589 diff = -diff; 4590 if (diff < 0) 4591 diff = 0; 4592 if (first || diff < min_offset_diff) 4593 min_offset_diff = diff; 4594 first = 0; 4595 } 4596 } 4597 4598 if (max(before_length, after_length) > min_offset_diff) 4599 return -EINVAL; 4600 4601 if (spares < mddev->delta_disks) 4602 return -EINVAL; 4603 4604 conf->offset_diff = min_offset_diff; 4605 spin_lock_irq(&conf->device_lock); 4606 if (conf->mirrors_new) { 4607 memcpy(conf->mirrors_new, conf->mirrors, 4608 sizeof(struct raid10_info)*conf->prev.raid_disks); 4609 smp_mb(); 4610 kfree(conf->mirrors_old); 4611 conf->mirrors_old = conf->mirrors; 4612 conf->mirrors = conf->mirrors_new; 4613 conf->mirrors_new = NULL; 4614 } 4615 setup_geo(&conf->geo, mddev, geo_start); 4616 smp_mb(); 4617 if (mddev->reshape_backwards) { 4618 sector_t size = raid10_size(mddev, 0, 0); 4619 if (size < mddev->array_sectors) { 4620 spin_unlock_irq(&conf->device_lock); 4621 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4622 mdname(mddev)); 4623 return -EINVAL; 4624 } 4625 mddev->resync_max_sectors = size; 4626 conf->reshape_progress = size; 4627 } else 4628 conf->reshape_progress = 0; 4629 conf->reshape_safe = conf->reshape_progress; 4630 spin_unlock_irq(&conf->device_lock); 4631 4632 if (mddev->delta_disks && mddev->bitmap) { 4633 struct mdp_superblock_1 *sb = NULL; 4634 sector_t oldsize, newsize; 4635 4636 oldsize = raid10_size(mddev, 0, 0); 4637 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4638 4639 if (!mddev_is_clustered(mddev)) { 4640 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4641 if (ret) 4642 goto abort; 4643 else 4644 goto out; 4645 } 4646 4647 rdev_for_each(rdev, mddev) { 4648 if (rdev->raid_disk > -1 && 4649 !test_bit(Faulty, &rdev->flags)) 4650 sb = page_address(rdev->sb_page); 4651 } 4652 4653 /* 4654 * some node is already performing reshape, and no need to 4655 * call md_bitmap_resize again since it should be called when 4656 * receiving BITMAP_RESIZE msg 4657 */ 4658 if ((sb && (le32_to_cpu(sb->feature_map) & 4659 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4660 goto out; 4661 4662 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4663 if (ret) 4664 goto abort; 4665 4666 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4667 if (ret) { 4668 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4669 goto abort; 4670 } 4671 } 4672 out: 4673 if (mddev->delta_disks > 0) { 4674 rdev_for_each(rdev, mddev) 4675 if (rdev->raid_disk < 0 && 4676 !test_bit(Faulty, &rdev->flags)) { 4677 if (raid10_add_disk(mddev, rdev) == 0) { 4678 if (rdev->raid_disk >= 4679 conf->prev.raid_disks) 4680 set_bit(In_sync, &rdev->flags); 4681 else 4682 rdev->recovery_offset = 0; 4683 4684 /* Failure here is OK */ 4685 sysfs_link_rdev(mddev, rdev); 4686 } 4687 } else if (rdev->raid_disk >= conf->prev.raid_disks 4688 && !test_bit(Faulty, &rdev->flags)) { 4689 /* This is a spare that was manually added */ 4690 set_bit(In_sync, &rdev->flags); 4691 } 4692 } 4693 /* When a reshape changes the number of devices, 4694 * ->degraded is measured against the larger of the 4695 * pre and post numbers. 4696 */ 4697 spin_lock_irq(&conf->device_lock); 4698 mddev->degraded = calc_degraded(conf); 4699 spin_unlock_irq(&conf->device_lock); 4700 mddev->raid_disks = conf->geo.raid_disks; 4701 mddev->reshape_position = conf->reshape_progress; 4702 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4703 4704 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4705 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4706 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4707 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4708 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4709 4710 rcu_assign_pointer(mddev->sync_thread, 4711 md_register_thread(md_do_sync, mddev, "reshape")); 4712 if (!mddev->sync_thread) { 4713 ret = -EAGAIN; 4714 goto abort; 4715 } 4716 conf->reshape_checkpoint = jiffies; 4717 md_wakeup_thread(mddev->sync_thread); 4718 md_new_event(); 4719 return 0; 4720 4721 abort: 4722 mddev->recovery = 0; 4723 spin_lock_irq(&conf->device_lock); 4724 conf->geo = conf->prev; 4725 mddev->raid_disks = conf->geo.raid_disks; 4726 rdev_for_each(rdev, mddev) 4727 rdev->new_data_offset = rdev->data_offset; 4728 smp_wmb(); 4729 conf->reshape_progress = MaxSector; 4730 conf->reshape_safe = MaxSector; 4731 mddev->reshape_position = MaxSector; 4732 spin_unlock_irq(&conf->device_lock); 4733 return ret; 4734 } 4735 4736 /* Calculate the last device-address that could contain 4737 * any block from the chunk that includes the array-address 's' 4738 * and report the next address. 4739 * i.e. the address returned will be chunk-aligned and after 4740 * any data that is in the chunk containing 's'. 4741 */ 4742 static sector_t last_dev_address(sector_t s, struct geom *geo) 4743 { 4744 s = (s | geo->chunk_mask) + 1; 4745 s >>= geo->chunk_shift; 4746 s *= geo->near_copies; 4747 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4748 s *= geo->far_copies; 4749 s <<= geo->chunk_shift; 4750 return s; 4751 } 4752 4753 /* Calculate the first device-address that could contain 4754 * any block from the chunk that includes the array-address 's'. 4755 * This too will be the start of a chunk 4756 */ 4757 static sector_t first_dev_address(sector_t s, struct geom *geo) 4758 { 4759 s >>= geo->chunk_shift; 4760 s *= geo->near_copies; 4761 sector_div(s, geo->raid_disks); 4762 s *= geo->far_copies; 4763 s <<= geo->chunk_shift; 4764 return s; 4765 } 4766 4767 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4768 int *skipped) 4769 { 4770 /* We simply copy at most one chunk (smallest of old and new) 4771 * at a time, possibly less if that exceeds RESYNC_PAGES, 4772 * or we hit a bad block or something. 4773 * This might mean we pause for normal IO in the middle of 4774 * a chunk, but that is not a problem as mddev->reshape_position 4775 * can record any location. 4776 * 4777 * If we will want to write to a location that isn't 4778 * yet recorded as 'safe' (i.e. in metadata on disk) then 4779 * we need to flush all reshape requests and update the metadata. 4780 * 4781 * When reshaping forwards (e.g. to more devices), we interpret 4782 * 'safe' as the earliest block which might not have been copied 4783 * down yet. We divide this by previous stripe size and multiply 4784 * by previous stripe length to get lowest device offset that we 4785 * cannot write to yet. 4786 * We interpret 'sector_nr' as an address that we want to write to. 4787 * From this we use last_device_address() to find where we might 4788 * write to, and first_device_address on the 'safe' position. 4789 * If this 'next' write position is after the 'safe' position, 4790 * we must update the metadata to increase the 'safe' position. 4791 * 4792 * When reshaping backwards, we round in the opposite direction 4793 * and perform the reverse test: next write position must not be 4794 * less than current safe position. 4795 * 4796 * In all this the minimum difference in data offsets 4797 * (conf->offset_diff - always positive) allows a bit of slack, 4798 * so next can be after 'safe', but not by more than offset_diff 4799 * 4800 * We need to prepare all the bios here before we start any IO 4801 * to ensure the size we choose is acceptable to all devices. 4802 * The means one for each copy for write-out and an extra one for 4803 * read-in. 4804 * We store the read-in bio in ->master_bio and the others in 4805 * ->devs[x].bio and ->devs[x].repl_bio. 4806 */ 4807 struct r10conf *conf = mddev->private; 4808 struct r10bio *r10_bio; 4809 sector_t next, safe, last; 4810 int max_sectors; 4811 int nr_sectors; 4812 int s; 4813 struct md_rdev *rdev; 4814 int need_flush = 0; 4815 struct bio *blist; 4816 struct bio *bio, *read_bio; 4817 int sectors_done = 0; 4818 struct page **pages; 4819 4820 if (sector_nr == 0) { 4821 /* If restarting in the middle, skip the initial sectors */ 4822 if (mddev->reshape_backwards && 4823 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4824 sector_nr = (raid10_size(mddev, 0, 0) 4825 - conf->reshape_progress); 4826 } else if (!mddev->reshape_backwards && 4827 conf->reshape_progress > 0) 4828 sector_nr = conf->reshape_progress; 4829 if (sector_nr) { 4830 mddev->curr_resync_completed = sector_nr; 4831 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4832 *skipped = 1; 4833 return sector_nr; 4834 } 4835 } 4836 4837 /* We don't use sector_nr to track where we are up to 4838 * as that doesn't work well for ->reshape_backwards. 4839 * So just use ->reshape_progress. 4840 */ 4841 if (mddev->reshape_backwards) { 4842 /* 'next' is the earliest device address that we might 4843 * write to for this chunk in the new layout 4844 */ 4845 next = first_dev_address(conf->reshape_progress - 1, 4846 &conf->geo); 4847 4848 /* 'safe' is the last device address that we might read from 4849 * in the old layout after a restart 4850 */ 4851 safe = last_dev_address(conf->reshape_safe - 1, 4852 &conf->prev); 4853 4854 if (next + conf->offset_diff < safe) 4855 need_flush = 1; 4856 4857 last = conf->reshape_progress - 1; 4858 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4859 & conf->prev.chunk_mask); 4860 if (sector_nr + RESYNC_SECTORS < last) 4861 sector_nr = last + 1 - RESYNC_SECTORS; 4862 } else { 4863 /* 'next' is after the last device address that we 4864 * might write to for this chunk in the new layout 4865 */ 4866 next = last_dev_address(conf->reshape_progress, &conf->geo); 4867 4868 /* 'safe' is the earliest device address that we might 4869 * read from in the old layout after a restart 4870 */ 4871 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4872 4873 /* Need to update metadata if 'next' might be beyond 'safe' 4874 * as that would possibly corrupt data 4875 */ 4876 if (next > safe + conf->offset_diff) 4877 need_flush = 1; 4878 4879 sector_nr = conf->reshape_progress; 4880 last = sector_nr | (conf->geo.chunk_mask 4881 & conf->prev.chunk_mask); 4882 4883 if (sector_nr + RESYNC_SECTORS <= last) 4884 last = sector_nr + RESYNC_SECTORS - 1; 4885 } 4886 4887 if (need_flush || 4888 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4889 /* Need to update reshape_position in metadata */ 4890 wait_barrier(conf, false); 4891 mddev->reshape_position = conf->reshape_progress; 4892 if (mddev->reshape_backwards) 4893 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4894 - conf->reshape_progress; 4895 else 4896 mddev->curr_resync_completed = conf->reshape_progress; 4897 conf->reshape_checkpoint = jiffies; 4898 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4899 md_wakeup_thread(mddev->thread); 4900 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4901 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4902 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4903 allow_barrier(conf); 4904 return sectors_done; 4905 } 4906 conf->reshape_safe = mddev->reshape_position; 4907 allow_barrier(conf); 4908 } 4909 4910 raise_barrier(conf, 0); 4911 read_more: 4912 /* Now schedule reads for blocks from sector_nr to last */ 4913 r10_bio = raid10_alloc_init_r10buf(conf); 4914 r10_bio->state = 0; 4915 raise_barrier(conf, 1); 4916 atomic_set(&r10_bio->remaining, 0); 4917 r10_bio->mddev = mddev; 4918 r10_bio->sector = sector_nr; 4919 set_bit(R10BIO_IsReshape, &r10_bio->state); 4920 r10_bio->sectors = last - sector_nr + 1; 4921 rdev = read_balance(conf, r10_bio, &max_sectors); 4922 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4923 4924 if (!rdev) { 4925 /* Cannot read from here, so need to record bad blocks 4926 * on all the target devices. 4927 */ 4928 // FIXME 4929 mempool_free(r10_bio, &conf->r10buf_pool); 4930 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4931 return sectors_done; 4932 } 4933 4934 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4935 GFP_KERNEL, &mddev->bio_set); 4936 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4937 + rdev->data_offset); 4938 read_bio->bi_private = r10_bio; 4939 read_bio->bi_end_io = end_reshape_read; 4940 r10_bio->master_bio = read_bio; 4941 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4942 4943 /* 4944 * Broadcast RESYNC message to other nodes, so all nodes would not 4945 * write to the region to avoid conflict. 4946 */ 4947 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4948 struct mdp_superblock_1 *sb = NULL; 4949 int sb_reshape_pos = 0; 4950 4951 conf->cluster_sync_low = sector_nr; 4952 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4953 sb = page_address(rdev->sb_page); 4954 if (sb) { 4955 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4956 /* 4957 * Set cluster_sync_low again if next address for array 4958 * reshape is less than cluster_sync_low. Since we can't 4959 * update cluster_sync_low until it has finished reshape. 4960 */ 4961 if (sb_reshape_pos < conf->cluster_sync_low) 4962 conf->cluster_sync_low = sb_reshape_pos; 4963 } 4964 4965 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4966 conf->cluster_sync_high); 4967 } 4968 4969 /* Now find the locations in the new layout */ 4970 __raid10_find_phys(&conf->geo, r10_bio); 4971 4972 blist = read_bio; 4973 read_bio->bi_next = NULL; 4974 4975 rcu_read_lock(); 4976 for (s = 0; s < conf->copies*2; s++) { 4977 struct bio *b; 4978 int d = r10_bio->devs[s/2].devnum; 4979 struct md_rdev *rdev2; 4980 if (s&1) { 4981 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4982 b = r10_bio->devs[s/2].repl_bio; 4983 } else { 4984 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4985 b = r10_bio->devs[s/2].bio; 4986 } 4987 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4988 continue; 4989 4990 bio_set_dev(b, rdev2->bdev); 4991 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4992 rdev2->new_data_offset; 4993 b->bi_end_io = end_reshape_write; 4994 b->bi_opf = REQ_OP_WRITE; 4995 b->bi_next = blist; 4996 blist = b; 4997 } 4998 4999 /* Now add as many pages as possible to all of these bios. */ 5000 5001 nr_sectors = 0; 5002 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 5003 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 5004 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 5005 int len = (max_sectors - s) << 9; 5006 if (len > PAGE_SIZE) 5007 len = PAGE_SIZE; 5008 for (bio = blist; bio ; bio = bio->bi_next) { 5009 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 5010 bio->bi_status = BLK_STS_RESOURCE; 5011 bio_endio(bio); 5012 return sectors_done; 5013 } 5014 } 5015 sector_nr += len >> 9; 5016 nr_sectors += len >> 9; 5017 } 5018 rcu_read_unlock(); 5019 r10_bio->sectors = nr_sectors; 5020 5021 /* Now submit the read */ 5022 md_sync_acct_bio(read_bio, r10_bio->sectors); 5023 atomic_inc(&r10_bio->remaining); 5024 read_bio->bi_next = NULL; 5025 submit_bio_noacct(read_bio); 5026 sectors_done += nr_sectors; 5027 if (sector_nr <= last) 5028 goto read_more; 5029 5030 lower_barrier(conf); 5031 5032 /* Now that we have done the whole section we can 5033 * update reshape_progress 5034 */ 5035 if (mddev->reshape_backwards) 5036 conf->reshape_progress -= sectors_done; 5037 else 5038 conf->reshape_progress += sectors_done; 5039 5040 return sectors_done; 5041 } 5042 5043 static void end_reshape_request(struct r10bio *r10_bio); 5044 static int handle_reshape_read_error(struct mddev *mddev, 5045 struct r10bio *r10_bio); 5046 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 5047 { 5048 /* Reshape read completed. Hopefully we have a block 5049 * to write out. 5050 * If we got a read error then we do sync 1-page reads from 5051 * elsewhere until we find the data - or give up. 5052 */ 5053 struct r10conf *conf = mddev->private; 5054 int s; 5055 5056 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 5057 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 5058 /* Reshape has been aborted */ 5059 md_done_sync(mddev, r10_bio->sectors, 0); 5060 return; 5061 } 5062 5063 /* We definitely have the data in the pages, schedule the 5064 * writes. 5065 */ 5066 atomic_set(&r10_bio->remaining, 1); 5067 for (s = 0; s < conf->copies*2; s++) { 5068 struct bio *b; 5069 int d = r10_bio->devs[s/2].devnum; 5070 struct md_rdev *rdev; 5071 rcu_read_lock(); 5072 if (s&1) { 5073 rdev = rcu_dereference(conf->mirrors[d].replacement); 5074 b = r10_bio->devs[s/2].repl_bio; 5075 } else { 5076 rdev = rcu_dereference(conf->mirrors[d].rdev); 5077 b = r10_bio->devs[s/2].bio; 5078 } 5079 if (!rdev || test_bit(Faulty, &rdev->flags)) { 5080 rcu_read_unlock(); 5081 continue; 5082 } 5083 atomic_inc(&rdev->nr_pending); 5084 rcu_read_unlock(); 5085 md_sync_acct_bio(b, r10_bio->sectors); 5086 atomic_inc(&r10_bio->remaining); 5087 b->bi_next = NULL; 5088 submit_bio_noacct(b); 5089 } 5090 end_reshape_request(r10_bio); 5091 } 5092 5093 static void end_reshape(struct r10conf *conf) 5094 { 5095 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 5096 return; 5097 5098 spin_lock_irq(&conf->device_lock); 5099 conf->prev = conf->geo; 5100 md_finish_reshape(conf->mddev); 5101 smp_wmb(); 5102 conf->reshape_progress = MaxSector; 5103 conf->reshape_safe = MaxSector; 5104 spin_unlock_irq(&conf->device_lock); 5105 5106 if (conf->mddev->queue) 5107 raid10_set_io_opt(conf); 5108 conf->fullsync = 0; 5109 } 5110 5111 static void raid10_update_reshape_pos(struct mddev *mddev) 5112 { 5113 struct r10conf *conf = mddev->private; 5114 sector_t lo, hi; 5115 5116 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 5117 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 5118 || mddev->reshape_position == MaxSector) 5119 conf->reshape_progress = mddev->reshape_position; 5120 else 5121 WARN_ON_ONCE(1); 5122 } 5123 5124 static int handle_reshape_read_error(struct mddev *mddev, 5125 struct r10bio *r10_bio) 5126 { 5127 /* Use sync reads to get the blocks from somewhere else */ 5128 int sectors = r10_bio->sectors; 5129 struct r10conf *conf = mddev->private; 5130 struct r10bio *r10b; 5131 int slot = 0; 5132 int idx = 0; 5133 struct page **pages; 5134 5135 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 5136 if (!r10b) { 5137 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5138 return -ENOMEM; 5139 } 5140 5141 /* reshape IOs share pages from .devs[0].bio */ 5142 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 5143 5144 r10b->sector = r10_bio->sector; 5145 __raid10_find_phys(&conf->prev, r10b); 5146 5147 while (sectors) { 5148 int s = sectors; 5149 int success = 0; 5150 int first_slot = slot; 5151 5152 if (s > (PAGE_SIZE >> 9)) 5153 s = PAGE_SIZE >> 9; 5154 5155 rcu_read_lock(); 5156 while (!success) { 5157 int d = r10b->devs[slot].devnum; 5158 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5159 sector_t addr; 5160 if (rdev == NULL || 5161 test_bit(Faulty, &rdev->flags) || 5162 !test_bit(In_sync, &rdev->flags)) 5163 goto failed; 5164 5165 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5166 atomic_inc(&rdev->nr_pending); 5167 rcu_read_unlock(); 5168 success = sync_page_io(rdev, 5169 addr, 5170 s << 9, 5171 pages[idx], 5172 REQ_OP_READ, false); 5173 rdev_dec_pending(rdev, mddev); 5174 rcu_read_lock(); 5175 if (success) 5176 break; 5177 failed: 5178 slot++; 5179 if (slot >= conf->copies) 5180 slot = 0; 5181 if (slot == first_slot) 5182 break; 5183 } 5184 rcu_read_unlock(); 5185 if (!success) { 5186 /* couldn't read this block, must give up */ 5187 set_bit(MD_RECOVERY_INTR, 5188 &mddev->recovery); 5189 kfree(r10b); 5190 return -EIO; 5191 } 5192 sectors -= s; 5193 idx++; 5194 } 5195 kfree(r10b); 5196 return 0; 5197 } 5198 5199 static void end_reshape_write(struct bio *bio) 5200 { 5201 struct r10bio *r10_bio = get_resync_r10bio(bio); 5202 struct mddev *mddev = r10_bio->mddev; 5203 struct r10conf *conf = mddev->private; 5204 int d; 5205 int slot; 5206 int repl; 5207 struct md_rdev *rdev = NULL; 5208 5209 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5210 if (repl) 5211 rdev = conf->mirrors[d].replacement; 5212 if (!rdev) { 5213 smp_mb(); 5214 rdev = conf->mirrors[d].rdev; 5215 } 5216 5217 if (bio->bi_status) { 5218 /* FIXME should record badblock */ 5219 md_error(mddev, rdev); 5220 } 5221 5222 rdev_dec_pending(rdev, mddev); 5223 end_reshape_request(r10_bio); 5224 } 5225 5226 static void end_reshape_request(struct r10bio *r10_bio) 5227 { 5228 if (!atomic_dec_and_test(&r10_bio->remaining)) 5229 return; 5230 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5231 bio_put(r10_bio->master_bio); 5232 put_buf(r10_bio); 5233 } 5234 5235 static void raid10_finish_reshape(struct mddev *mddev) 5236 { 5237 struct r10conf *conf = mddev->private; 5238 5239 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5240 return; 5241 5242 if (mddev->delta_disks > 0) { 5243 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5244 mddev->recovery_cp = mddev->resync_max_sectors; 5245 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5246 } 5247 mddev->resync_max_sectors = mddev->array_sectors; 5248 } else { 5249 int d; 5250 rcu_read_lock(); 5251 for (d = conf->geo.raid_disks ; 5252 d < conf->geo.raid_disks - mddev->delta_disks; 5253 d++) { 5254 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5255 if (rdev) 5256 clear_bit(In_sync, &rdev->flags); 5257 rdev = rcu_dereference(conf->mirrors[d].replacement); 5258 if (rdev) 5259 clear_bit(In_sync, &rdev->flags); 5260 } 5261 rcu_read_unlock(); 5262 } 5263 mddev->layout = mddev->new_layout; 5264 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5265 mddev->reshape_position = MaxSector; 5266 mddev->delta_disks = 0; 5267 mddev->reshape_backwards = 0; 5268 } 5269 5270 static struct md_personality raid10_personality = 5271 { 5272 .name = "raid10", 5273 .level = 10, 5274 .owner = THIS_MODULE, 5275 .make_request = raid10_make_request, 5276 .run = raid10_run, 5277 .free = raid10_free, 5278 .status = raid10_status, 5279 .error_handler = raid10_error, 5280 .hot_add_disk = raid10_add_disk, 5281 .hot_remove_disk= raid10_remove_disk, 5282 .spare_active = raid10_spare_active, 5283 .sync_request = raid10_sync_request, 5284 .quiesce = raid10_quiesce, 5285 .size = raid10_size, 5286 .resize = raid10_resize, 5287 .takeover = raid10_takeover, 5288 .check_reshape = raid10_check_reshape, 5289 .start_reshape = raid10_start_reshape, 5290 .finish_reshape = raid10_finish_reshape, 5291 .update_reshape_pos = raid10_update_reshape_pos, 5292 }; 5293 5294 static int __init raid_init(void) 5295 { 5296 return register_md_personality(&raid10_personality); 5297 } 5298 5299 static void raid_exit(void) 5300 { 5301 unregister_md_personality(&raid10_personality); 5302 } 5303 5304 module_init(raid_init); 5305 module_exit(raid_exit); 5306 MODULE_LICENSE("GPL"); 5307 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5308 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5309 MODULE_ALIAS("md-raid10"); 5310 MODULE_ALIAS("md-level-10"); 5311