1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <trace/events/block.h> 29 #include "md.h" 30 #include "raid10.h" 31 #include "raid0.h" 32 #include "bitmap.h" 33 34 /* 35 * RAID10 provides a combination of RAID0 and RAID1 functionality. 36 * The layout of data is defined by 37 * chunk_size 38 * raid_disks 39 * near_copies (stored in low byte of layout) 40 * far_copies (stored in second byte of layout) 41 * far_offset (stored in bit 16 of layout ) 42 * use_far_sets (stored in bit 17 of layout ) 43 * use_far_sets_bugfixed (stored in bit 18 of layout ) 44 * 45 * The data to be stored is divided into chunks using chunksize. Each device 46 * is divided into far_copies sections. In each section, chunks are laid out 47 * in a style similar to raid0, but near_copies copies of each chunk is stored 48 * (each on a different drive). The starting device for each section is offset 49 * near_copies from the starting device of the previous section. Thus there 50 * are (near_copies * far_copies) of each chunk, and each is on a different 51 * drive. near_copies and far_copies must be at least one, and their product 52 * is at most raid_disks. 53 * 54 * If far_offset is true, then the far_copies are handled a bit differently. 55 * The copies are still in different stripes, but instead of being very far 56 * apart on disk, there are adjacent stripes. 57 * 58 * The far and offset algorithms are handled slightly differently if 59 * 'use_far_sets' is true. In this case, the array's devices are grouped into 60 * sets that are (near_copies * far_copies) in size. The far copied stripes 61 * are still shifted by 'near_copies' devices, but this shifting stays confined 62 * to the set rather than the entire array. This is done to improve the number 63 * of device combinations that can fail without causing the array to fail. 64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 65 * on a device): 66 * A B C D A B C D E 67 * ... ... 68 * D A B C E A B C D 69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 70 * [A B] [C D] [A B] [C D E] 71 * |...| |...| |...| | ... | 72 * [B A] [D C] [B A] [E C D] 73 */ 74 75 /* 76 * Number of guaranteed r10bios in case of extreme VM load: 77 */ 78 #define NR_RAID10_BIOS 256 79 80 /* when we get a read error on a read-only array, we redirect to another 81 * device without failing the first device, or trying to over-write to 82 * correct the read error. To keep track of bad blocks on a per-bio 83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 84 */ 85 #define IO_BLOCKED ((struct bio *)1) 86 /* When we successfully write to a known bad-block, we need to remove the 87 * bad-block marking which must be done from process context. So we record 88 * the success by setting devs[n].bio to IO_MADE_GOOD 89 */ 90 #define IO_MADE_GOOD ((struct bio *)2) 91 92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 93 94 /* When there are this many requests queued to be written by 95 * the raid10 thread, we become 'congested' to provide back-pressure 96 * for writeback. 97 */ 98 static int max_queued_requests = 1024; 99 100 static void allow_barrier(struct r10conf *conf); 101 static void lower_barrier(struct r10conf *conf); 102 static int _enough(struct r10conf *conf, int previous, int ignore); 103 static int enough(struct r10conf *conf, int ignore); 104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 105 int *skipped); 106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 107 static void end_reshape_write(struct bio *bio); 108 static void end_reshape(struct r10conf *conf); 109 110 #define raid10_log(md, fmt, args...) \ 111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 112 113 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 114 { 115 struct r10conf *conf = data; 116 int size = offsetof(struct r10bio, devs[conf->copies]); 117 118 /* allocate a r10bio with room for raid_disks entries in the 119 * bios array */ 120 return kzalloc(size, gfp_flags); 121 } 122 123 static void r10bio_pool_free(void *r10_bio, void *data) 124 { 125 kfree(r10_bio); 126 } 127 128 /* Maximum size of each resync request */ 129 #define RESYNC_BLOCK_SIZE (64*1024) 130 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 131 /* amount of memory to reserve for resync requests */ 132 #define RESYNC_WINDOW (1024*1024) 133 /* maximum number of concurrent requests, memory permitting */ 134 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 135 136 /* 137 * When performing a resync, we need to read and compare, so 138 * we need as many pages are there are copies. 139 * When performing a recovery, we need 2 bios, one for read, 140 * one for write (we recover only one drive per r10buf) 141 * 142 */ 143 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 144 { 145 struct r10conf *conf = data; 146 struct page *page; 147 struct r10bio *r10_bio; 148 struct bio *bio; 149 int i, j; 150 int nalloc; 151 152 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 153 if (!r10_bio) 154 return NULL; 155 156 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 157 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 158 nalloc = conf->copies; /* resync */ 159 else 160 nalloc = 2; /* recovery */ 161 162 /* 163 * Allocate bios. 164 */ 165 for (j = nalloc ; j-- ; ) { 166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 167 if (!bio) 168 goto out_free_bio; 169 r10_bio->devs[j].bio = bio; 170 if (!conf->have_replacement) 171 continue; 172 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 173 if (!bio) 174 goto out_free_bio; 175 r10_bio->devs[j].repl_bio = bio; 176 } 177 /* 178 * Allocate RESYNC_PAGES data pages and attach them 179 * where needed. 180 */ 181 for (j = 0 ; j < nalloc; j++) { 182 struct bio *rbio = r10_bio->devs[j].repl_bio; 183 bio = r10_bio->devs[j].bio; 184 for (i = 0; i < RESYNC_PAGES; i++) { 185 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 186 &conf->mddev->recovery)) { 187 /* we can share bv_page's during recovery 188 * and reshape */ 189 struct bio *rbio = r10_bio->devs[0].bio; 190 page = rbio->bi_io_vec[i].bv_page; 191 get_page(page); 192 } else 193 page = alloc_page(gfp_flags); 194 if (unlikely(!page)) 195 goto out_free_pages; 196 197 bio->bi_io_vec[i].bv_page = page; 198 if (rbio) 199 rbio->bi_io_vec[i].bv_page = page; 200 } 201 } 202 203 return r10_bio; 204 205 out_free_pages: 206 for ( ; i > 0 ; i--) 207 safe_put_page(bio->bi_io_vec[i-1].bv_page); 208 while (j--) 209 for (i = 0; i < RESYNC_PAGES ; i++) 210 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 211 j = 0; 212 out_free_bio: 213 for ( ; j < nalloc; j++) { 214 if (r10_bio->devs[j].bio) 215 bio_put(r10_bio->devs[j].bio); 216 if (r10_bio->devs[j].repl_bio) 217 bio_put(r10_bio->devs[j].repl_bio); 218 } 219 r10bio_pool_free(r10_bio, conf); 220 return NULL; 221 } 222 223 static void r10buf_pool_free(void *__r10_bio, void *data) 224 { 225 int i; 226 struct r10conf *conf = data; 227 struct r10bio *r10bio = __r10_bio; 228 int j; 229 230 for (j=0; j < conf->copies; j++) { 231 struct bio *bio = r10bio->devs[j].bio; 232 if (bio) { 233 for (i = 0; i < RESYNC_PAGES; i++) { 234 safe_put_page(bio->bi_io_vec[i].bv_page); 235 bio->bi_io_vec[i].bv_page = NULL; 236 } 237 bio_put(bio); 238 } 239 bio = r10bio->devs[j].repl_bio; 240 if (bio) 241 bio_put(bio); 242 } 243 r10bio_pool_free(r10bio, conf); 244 } 245 246 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 247 { 248 int i; 249 250 for (i = 0; i < conf->copies; i++) { 251 struct bio **bio = & r10_bio->devs[i].bio; 252 if (!BIO_SPECIAL(*bio)) 253 bio_put(*bio); 254 *bio = NULL; 255 bio = &r10_bio->devs[i].repl_bio; 256 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 257 bio_put(*bio); 258 *bio = NULL; 259 } 260 } 261 262 static void free_r10bio(struct r10bio *r10_bio) 263 { 264 struct r10conf *conf = r10_bio->mddev->private; 265 266 put_all_bios(conf, r10_bio); 267 mempool_free(r10_bio, conf->r10bio_pool); 268 } 269 270 static void put_buf(struct r10bio *r10_bio) 271 { 272 struct r10conf *conf = r10_bio->mddev->private; 273 274 mempool_free(r10_bio, conf->r10buf_pool); 275 276 lower_barrier(conf); 277 } 278 279 static void reschedule_retry(struct r10bio *r10_bio) 280 { 281 unsigned long flags; 282 struct mddev *mddev = r10_bio->mddev; 283 struct r10conf *conf = mddev->private; 284 285 spin_lock_irqsave(&conf->device_lock, flags); 286 list_add(&r10_bio->retry_list, &conf->retry_list); 287 conf->nr_queued ++; 288 spin_unlock_irqrestore(&conf->device_lock, flags); 289 290 /* wake up frozen array... */ 291 wake_up(&conf->wait_barrier); 292 293 md_wakeup_thread(mddev->thread); 294 } 295 296 /* 297 * raid_end_bio_io() is called when we have finished servicing a mirrored 298 * operation and are ready to return a success/failure code to the buffer 299 * cache layer. 300 */ 301 static void raid_end_bio_io(struct r10bio *r10_bio) 302 { 303 struct bio *bio = r10_bio->master_bio; 304 int done; 305 struct r10conf *conf = r10_bio->mddev->private; 306 307 if (bio->bi_phys_segments) { 308 unsigned long flags; 309 spin_lock_irqsave(&conf->device_lock, flags); 310 bio->bi_phys_segments--; 311 done = (bio->bi_phys_segments == 0); 312 spin_unlock_irqrestore(&conf->device_lock, flags); 313 } else 314 done = 1; 315 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 316 bio->bi_error = -EIO; 317 if (done) { 318 bio_endio(bio); 319 /* 320 * Wake up any possible resync thread that waits for the device 321 * to go idle. 322 */ 323 allow_barrier(conf); 324 } 325 free_r10bio(r10_bio); 326 } 327 328 /* 329 * Update disk head position estimator based on IRQ completion info. 330 */ 331 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 332 { 333 struct r10conf *conf = r10_bio->mddev->private; 334 335 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 336 r10_bio->devs[slot].addr + (r10_bio->sectors); 337 } 338 339 /* 340 * Find the disk number which triggered given bio 341 */ 342 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 343 struct bio *bio, int *slotp, int *replp) 344 { 345 int slot; 346 int repl = 0; 347 348 for (slot = 0; slot < conf->copies; slot++) { 349 if (r10_bio->devs[slot].bio == bio) 350 break; 351 if (r10_bio->devs[slot].repl_bio == bio) { 352 repl = 1; 353 break; 354 } 355 } 356 357 BUG_ON(slot == conf->copies); 358 update_head_pos(slot, r10_bio); 359 360 if (slotp) 361 *slotp = slot; 362 if (replp) 363 *replp = repl; 364 return r10_bio->devs[slot].devnum; 365 } 366 367 static void raid10_end_read_request(struct bio *bio) 368 { 369 int uptodate = !bio->bi_error; 370 struct r10bio *r10_bio = bio->bi_private; 371 int slot, dev; 372 struct md_rdev *rdev; 373 struct r10conf *conf = r10_bio->mddev->private; 374 375 slot = r10_bio->read_slot; 376 dev = r10_bio->devs[slot].devnum; 377 rdev = r10_bio->devs[slot].rdev; 378 /* 379 * this branch is our 'one mirror IO has finished' event handler: 380 */ 381 update_head_pos(slot, r10_bio); 382 383 if (uptodate) { 384 /* 385 * Set R10BIO_Uptodate in our master bio, so that 386 * we will return a good error code to the higher 387 * levels even if IO on some other mirrored buffer fails. 388 * 389 * The 'master' represents the composite IO operation to 390 * user-side. So if something waits for IO, then it will 391 * wait for the 'master' bio. 392 */ 393 set_bit(R10BIO_Uptodate, &r10_bio->state); 394 } else { 395 /* If all other devices that store this block have 396 * failed, we want to return the error upwards rather 397 * than fail the last device. Here we redefine 398 * "uptodate" to mean "Don't want to retry" 399 */ 400 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 401 rdev->raid_disk)) 402 uptodate = 1; 403 } 404 if (uptodate) { 405 raid_end_bio_io(r10_bio); 406 rdev_dec_pending(rdev, conf->mddev); 407 } else { 408 /* 409 * oops, read error - keep the refcount on the rdev 410 */ 411 char b[BDEVNAME_SIZE]; 412 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 413 mdname(conf->mddev), 414 bdevname(rdev->bdev, b), 415 (unsigned long long)r10_bio->sector); 416 set_bit(R10BIO_ReadError, &r10_bio->state); 417 reschedule_retry(r10_bio); 418 } 419 } 420 421 static void close_write(struct r10bio *r10_bio) 422 { 423 /* clear the bitmap if all writes complete successfully */ 424 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 425 r10_bio->sectors, 426 !test_bit(R10BIO_Degraded, &r10_bio->state), 427 0); 428 md_write_end(r10_bio->mddev); 429 } 430 431 static void one_write_done(struct r10bio *r10_bio) 432 { 433 if (atomic_dec_and_test(&r10_bio->remaining)) { 434 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 435 reschedule_retry(r10_bio); 436 else { 437 close_write(r10_bio); 438 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 439 reschedule_retry(r10_bio); 440 else 441 raid_end_bio_io(r10_bio); 442 } 443 } 444 } 445 446 static void raid10_end_write_request(struct bio *bio) 447 { 448 struct r10bio *r10_bio = bio->bi_private; 449 int dev; 450 int dec_rdev = 1; 451 struct r10conf *conf = r10_bio->mddev->private; 452 int slot, repl; 453 struct md_rdev *rdev = NULL; 454 struct bio *to_put = NULL; 455 bool discard_error; 456 457 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD; 458 459 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 460 461 if (repl) 462 rdev = conf->mirrors[dev].replacement; 463 if (!rdev) { 464 smp_rmb(); 465 repl = 0; 466 rdev = conf->mirrors[dev].rdev; 467 } 468 /* 469 * this branch is our 'one mirror IO has finished' event handler: 470 */ 471 if (bio->bi_error && !discard_error) { 472 if (repl) 473 /* Never record new bad blocks to replacement, 474 * just fail it. 475 */ 476 md_error(rdev->mddev, rdev); 477 else { 478 set_bit(WriteErrorSeen, &rdev->flags); 479 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 480 set_bit(MD_RECOVERY_NEEDED, 481 &rdev->mddev->recovery); 482 483 dec_rdev = 0; 484 if (test_bit(FailFast, &rdev->flags) && 485 (bio->bi_opf & MD_FAILFAST)) { 486 md_error(rdev->mddev, rdev); 487 if (!test_bit(Faulty, &rdev->flags)) 488 /* This is the only remaining device, 489 * We need to retry the write without 490 * FailFast 491 */ 492 set_bit(R10BIO_WriteError, &r10_bio->state); 493 else { 494 r10_bio->devs[slot].bio = NULL; 495 to_put = bio; 496 dec_rdev = 1; 497 } 498 } else 499 set_bit(R10BIO_WriteError, &r10_bio->state); 500 } 501 } else { 502 /* 503 * Set R10BIO_Uptodate in our master bio, so that 504 * we will return a good error code for to the higher 505 * levels even if IO on some other mirrored buffer fails. 506 * 507 * The 'master' represents the composite IO operation to 508 * user-side. So if something waits for IO, then it will 509 * wait for the 'master' bio. 510 */ 511 sector_t first_bad; 512 int bad_sectors; 513 514 /* 515 * Do not set R10BIO_Uptodate if the current device is 516 * rebuilding or Faulty. This is because we cannot use 517 * such device for properly reading the data back (we could 518 * potentially use it, if the current write would have felt 519 * before rdev->recovery_offset, but for simplicity we don't 520 * check this here. 521 */ 522 if (test_bit(In_sync, &rdev->flags) && 523 !test_bit(Faulty, &rdev->flags)) 524 set_bit(R10BIO_Uptodate, &r10_bio->state); 525 526 /* Maybe we can clear some bad blocks. */ 527 if (is_badblock(rdev, 528 r10_bio->devs[slot].addr, 529 r10_bio->sectors, 530 &first_bad, &bad_sectors) && !discard_error) { 531 bio_put(bio); 532 if (repl) 533 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 534 else 535 r10_bio->devs[slot].bio = IO_MADE_GOOD; 536 dec_rdev = 0; 537 set_bit(R10BIO_MadeGood, &r10_bio->state); 538 } 539 } 540 541 /* 542 * 543 * Let's see if all mirrored write operations have finished 544 * already. 545 */ 546 one_write_done(r10_bio); 547 if (dec_rdev) 548 rdev_dec_pending(rdev, conf->mddev); 549 if (to_put) 550 bio_put(to_put); 551 } 552 553 /* 554 * RAID10 layout manager 555 * As well as the chunksize and raid_disks count, there are two 556 * parameters: near_copies and far_copies. 557 * near_copies * far_copies must be <= raid_disks. 558 * Normally one of these will be 1. 559 * If both are 1, we get raid0. 560 * If near_copies == raid_disks, we get raid1. 561 * 562 * Chunks are laid out in raid0 style with near_copies copies of the 563 * first chunk, followed by near_copies copies of the next chunk and 564 * so on. 565 * If far_copies > 1, then after 1/far_copies of the array has been assigned 566 * as described above, we start again with a device offset of near_copies. 567 * So we effectively have another copy of the whole array further down all 568 * the drives, but with blocks on different drives. 569 * With this layout, and block is never stored twice on the one device. 570 * 571 * raid10_find_phys finds the sector offset of a given virtual sector 572 * on each device that it is on. 573 * 574 * raid10_find_virt does the reverse mapping, from a device and a 575 * sector offset to a virtual address 576 */ 577 578 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 579 { 580 int n,f; 581 sector_t sector; 582 sector_t chunk; 583 sector_t stripe; 584 int dev; 585 int slot = 0; 586 int last_far_set_start, last_far_set_size; 587 588 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 589 last_far_set_start *= geo->far_set_size; 590 591 last_far_set_size = geo->far_set_size; 592 last_far_set_size += (geo->raid_disks % geo->far_set_size); 593 594 /* now calculate first sector/dev */ 595 chunk = r10bio->sector >> geo->chunk_shift; 596 sector = r10bio->sector & geo->chunk_mask; 597 598 chunk *= geo->near_copies; 599 stripe = chunk; 600 dev = sector_div(stripe, geo->raid_disks); 601 if (geo->far_offset) 602 stripe *= geo->far_copies; 603 604 sector += stripe << geo->chunk_shift; 605 606 /* and calculate all the others */ 607 for (n = 0; n < geo->near_copies; n++) { 608 int d = dev; 609 int set; 610 sector_t s = sector; 611 r10bio->devs[slot].devnum = d; 612 r10bio->devs[slot].addr = s; 613 slot++; 614 615 for (f = 1; f < geo->far_copies; f++) { 616 set = d / geo->far_set_size; 617 d += geo->near_copies; 618 619 if ((geo->raid_disks % geo->far_set_size) && 620 (d > last_far_set_start)) { 621 d -= last_far_set_start; 622 d %= last_far_set_size; 623 d += last_far_set_start; 624 } else { 625 d %= geo->far_set_size; 626 d += geo->far_set_size * set; 627 } 628 s += geo->stride; 629 r10bio->devs[slot].devnum = d; 630 r10bio->devs[slot].addr = s; 631 slot++; 632 } 633 dev++; 634 if (dev >= geo->raid_disks) { 635 dev = 0; 636 sector += (geo->chunk_mask + 1); 637 } 638 } 639 } 640 641 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 642 { 643 struct geom *geo = &conf->geo; 644 645 if (conf->reshape_progress != MaxSector && 646 ((r10bio->sector >= conf->reshape_progress) != 647 conf->mddev->reshape_backwards)) { 648 set_bit(R10BIO_Previous, &r10bio->state); 649 geo = &conf->prev; 650 } else 651 clear_bit(R10BIO_Previous, &r10bio->state); 652 653 __raid10_find_phys(geo, r10bio); 654 } 655 656 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 657 { 658 sector_t offset, chunk, vchunk; 659 /* Never use conf->prev as this is only called during resync 660 * or recovery, so reshape isn't happening 661 */ 662 struct geom *geo = &conf->geo; 663 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 664 int far_set_size = geo->far_set_size; 665 int last_far_set_start; 666 667 if (geo->raid_disks % geo->far_set_size) { 668 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 669 last_far_set_start *= geo->far_set_size; 670 671 if (dev >= last_far_set_start) { 672 far_set_size = geo->far_set_size; 673 far_set_size += (geo->raid_disks % geo->far_set_size); 674 far_set_start = last_far_set_start; 675 } 676 } 677 678 offset = sector & geo->chunk_mask; 679 if (geo->far_offset) { 680 int fc; 681 chunk = sector >> geo->chunk_shift; 682 fc = sector_div(chunk, geo->far_copies); 683 dev -= fc * geo->near_copies; 684 if (dev < far_set_start) 685 dev += far_set_size; 686 } else { 687 while (sector >= geo->stride) { 688 sector -= geo->stride; 689 if (dev < (geo->near_copies + far_set_start)) 690 dev += far_set_size - geo->near_copies; 691 else 692 dev -= geo->near_copies; 693 } 694 chunk = sector >> geo->chunk_shift; 695 } 696 vchunk = chunk * geo->raid_disks + dev; 697 sector_div(vchunk, geo->near_copies); 698 return (vchunk << geo->chunk_shift) + offset; 699 } 700 701 /* 702 * This routine returns the disk from which the requested read should 703 * be done. There is a per-array 'next expected sequential IO' sector 704 * number - if this matches on the next IO then we use the last disk. 705 * There is also a per-disk 'last know head position' sector that is 706 * maintained from IRQ contexts, both the normal and the resync IO 707 * completion handlers update this position correctly. If there is no 708 * perfect sequential match then we pick the disk whose head is closest. 709 * 710 * If there are 2 mirrors in the same 2 devices, performance degrades 711 * because position is mirror, not device based. 712 * 713 * The rdev for the device selected will have nr_pending incremented. 714 */ 715 716 /* 717 * FIXME: possibly should rethink readbalancing and do it differently 718 * depending on near_copies / far_copies geometry. 719 */ 720 static struct md_rdev *read_balance(struct r10conf *conf, 721 struct r10bio *r10_bio, 722 int *max_sectors) 723 { 724 const sector_t this_sector = r10_bio->sector; 725 int disk, slot; 726 int sectors = r10_bio->sectors; 727 int best_good_sectors; 728 sector_t new_distance, best_dist; 729 struct md_rdev *best_rdev, *rdev = NULL; 730 int do_balance; 731 int best_slot; 732 struct geom *geo = &conf->geo; 733 734 raid10_find_phys(conf, r10_bio); 735 rcu_read_lock(); 736 sectors = r10_bio->sectors; 737 best_slot = -1; 738 best_rdev = NULL; 739 best_dist = MaxSector; 740 best_good_sectors = 0; 741 do_balance = 1; 742 clear_bit(R10BIO_FailFast, &r10_bio->state); 743 /* 744 * Check if we can balance. We can balance on the whole 745 * device if no resync is going on (recovery is ok), or below 746 * the resync window. We take the first readable disk when 747 * above the resync window. 748 */ 749 if (conf->mddev->recovery_cp < MaxSector 750 && (this_sector + sectors >= conf->next_resync)) 751 do_balance = 0; 752 753 for (slot = 0; slot < conf->copies ; slot++) { 754 sector_t first_bad; 755 int bad_sectors; 756 sector_t dev_sector; 757 758 if (r10_bio->devs[slot].bio == IO_BLOCKED) 759 continue; 760 disk = r10_bio->devs[slot].devnum; 761 rdev = rcu_dereference(conf->mirrors[disk].replacement); 762 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 763 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 764 rdev = rcu_dereference(conf->mirrors[disk].rdev); 765 if (rdev == NULL || 766 test_bit(Faulty, &rdev->flags)) 767 continue; 768 if (!test_bit(In_sync, &rdev->flags) && 769 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 770 continue; 771 772 dev_sector = r10_bio->devs[slot].addr; 773 if (is_badblock(rdev, dev_sector, sectors, 774 &first_bad, &bad_sectors)) { 775 if (best_dist < MaxSector) 776 /* Already have a better slot */ 777 continue; 778 if (first_bad <= dev_sector) { 779 /* Cannot read here. If this is the 780 * 'primary' device, then we must not read 781 * beyond 'bad_sectors' from another device. 782 */ 783 bad_sectors -= (dev_sector - first_bad); 784 if (!do_balance && sectors > bad_sectors) 785 sectors = bad_sectors; 786 if (best_good_sectors > sectors) 787 best_good_sectors = sectors; 788 } else { 789 sector_t good_sectors = 790 first_bad - dev_sector; 791 if (good_sectors > best_good_sectors) { 792 best_good_sectors = good_sectors; 793 best_slot = slot; 794 best_rdev = rdev; 795 } 796 if (!do_balance) 797 /* Must read from here */ 798 break; 799 } 800 continue; 801 } else 802 best_good_sectors = sectors; 803 804 if (!do_balance) 805 break; 806 807 if (best_slot >= 0) 808 /* At least 2 disks to choose from so failfast is OK */ 809 set_bit(R10BIO_FailFast, &r10_bio->state); 810 /* This optimisation is debatable, and completely destroys 811 * sequential read speed for 'far copies' arrays. So only 812 * keep it for 'near' arrays, and review those later. 813 */ 814 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 815 new_distance = 0; 816 817 /* for far > 1 always use the lowest address */ 818 else if (geo->far_copies > 1) 819 new_distance = r10_bio->devs[slot].addr; 820 else 821 new_distance = abs(r10_bio->devs[slot].addr - 822 conf->mirrors[disk].head_position); 823 if (new_distance < best_dist) { 824 best_dist = new_distance; 825 best_slot = slot; 826 best_rdev = rdev; 827 } 828 } 829 if (slot >= conf->copies) { 830 slot = best_slot; 831 rdev = best_rdev; 832 } 833 834 if (slot >= 0) { 835 atomic_inc(&rdev->nr_pending); 836 r10_bio->read_slot = slot; 837 } else 838 rdev = NULL; 839 rcu_read_unlock(); 840 *max_sectors = best_good_sectors; 841 842 return rdev; 843 } 844 845 static int raid10_congested(struct mddev *mddev, int bits) 846 { 847 struct r10conf *conf = mddev->private; 848 int i, ret = 0; 849 850 if ((bits & (1 << WB_async_congested)) && 851 conf->pending_count >= max_queued_requests) 852 return 1; 853 854 rcu_read_lock(); 855 for (i = 0; 856 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 857 && ret == 0; 858 i++) { 859 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 860 if (rdev && !test_bit(Faulty, &rdev->flags)) { 861 struct request_queue *q = bdev_get_queue(rdev->bdev); 862 863 ret |= bdi_congested(q->backing_dev_info, bits); 864 } 865 } 866 rcu_read_unlock(); 867 return ret; 868 } 869 870 static void flush_pending_writes(struct r10conf *conf) 871 { 872 /* Any writes that have been queued but are awaiting 873 * bitmap updates get flushed here. 874 */ 875 spin_lock_irq(&conf->device_lock); 876 877 if (conf->pending_bio_list.head) { 878 struct bio *bio; 879 bio = bio_list_get(&conf->pending_bio_list); 880 conf->pending_count = 0; 881 spin_unlock_irq(&conf->device_lock); 882 /* flush any pending bitmap writes to disk 883 * before proceeding w/ I/O */ 884 bitmap_unplug(conf->mddev->bitmap); 885 wake_up(&conf->wait_barrier); 886 887 while (bio) { /* submit pending writes */ 888 struct bio *next = bio->bi_next; 889 struct md_rdev *rdev = (void*)bio->bi_bdev; 890 bio->bi_next = NULL; 891 bio->bi_bdev = rdev->bdev; 892 if (test_bit(Faulty, &rdev->flags)) { 893 bio->bi_error = -EIO; 894 bio_endio(bio); 895 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 896 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 897 /* Just ignore it */ 898 bio_endio(bio); 899 else 900 generic_make_request(bio); 901 bio = next; 902 } 903 } else 904 spin_unlock_irq(&conf->device_lock); 905 } 906 907 /* Barriers.... 908 * Sometimes we need to suspend IO while we do something else, 909 * either some resync/recovery, or reconfigure the array. 910 * To do this we raise a 'barrier'. 911 * The 'barrier' is a counter that can be raised multiple times 912 * to count how many activities are happening which preclude 913 * normal IO. 914 * We can only raise the barrier if there is no pending IO. 915 * i.e. if nr_pending == 0. 916 * We choose only to raise the barrier if no-one is waiting for the 917 * barrier to go down. This means that as soon as an IO request 918 * is ready, no other operations which require a barrier will start 919 * until the IO request has had a chance. 920 * 921 * So: regular IO calls 'wait_barrier'. When that returns there 922 * is no backgroup IO happening, It must arrange to call 923 * allow_barrier when it has finished its IO. 924 * backgroup IO calls must call raise_barrier. Once that returns 925 * there is no normal IO happeing. It must arrange to call 926 * lower_barrier when the particular background IO completes. 927 */ 928 929 static void raise_barrier(struct r10conf *conf, int force) 930 { 931 BUG_ON(force && !conf->barrier); 932 spin_lock_irq(&conf->resync_lock); 933 934 /* Wait until no block IO is waiting (unless 'force') */ 935 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 936 conf->resync_lock); 937 938 /* block any new IO from starting */ 939 conf->barrier++; 940 941 /* Now wait for all pending IO to complete */ 942 wait_event_lock_irq(conf->wait_barrier, 943 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 944 conf->resync_lock); 945 946 spin_unlock_irq(&conf->resync_lock); 947 } 948 949 static void lower_barrier(struct r10conf *conf) 950 { 951 unsigned long flags; 952 spin_lock_irqsave(&conf->resync_lock, flags); 953 conf->barrier--; 954 spin_unlock_irqrestore(&conf->resync_lock, flags); 955 wake_up(&conf->wait_barrier); 956 } 957 958 static void wait_barrier(struct r10conf *conf) 959 { 960 spin_lock_irq(&conf->resync_lock); 961 if (conf->barrier) { 962 conf->nr_waiting++; 963 /* Wait for the barrier to drop. 964 * However if there are already pending 965 * requests (preventing the barrier from 966 * rising completely), and the 967 * pre-process bio queue isn't empty, 968 * then don't wait, as we need to empty 969 * that queue to get the nr_pending 970 * count down. 971 */ 972 raid10_log(conf->mddev, "wait barrier"); 973 wait_event_lock_irq(conf->wait_barrier, 974 !conf->barrier || 975 (atomic_read(&conf->nr_pending) && 976 current->bio_list && 977 (!bio_list_empty(¤t->bio_list[0]) || 978 !bio_list_empty(¤t->bio_list[1]))), 979 conf->resync_lock); 980 conf->nr_waiting--; 981 if (!conf->nr_waiting) 982 wake_up(&conf->wait_barrier); 983 } 984 atomic_inc(&conf->nr_pending); 985 spin_unlock_irq(&conf->resync_lock); 986 } 987 988 static void allow_barrier(struct r10conf *conf) 989 { 990 if ((atomic_dec_and_test(&conf->nr_pending)) || 991 (conf->array_freeze_pending)) 992 wake_up(&conf->wait_barrier); 993 } 994 995 static void freeze_array(struct r10conf *conf, int extra) 996 { 997 /* stop syncio and normal IO and wait for everything to 998 * go quiet. 999 * We increment barrier and nr_waiting, and then 1000 * wait until nr_pending match nr_queued+extra 1001 * This is called in the context of one normal IO request 1002 * that has failed. Thus any sync request that might be pending 1003 * will be blocked by nr_pending, and we need to wait for 1004 * pending IO requests to complete or be queued for re-try. 1005 * Thus the number queued (nr_queued) plus this request (extra) 1006 * must match the number of pending IOs (nr_pending) before 1007 * we continue. 1008 */ 1009 spin_lock_irq(&conf->resync_lock); 1010 conf->array_freeze_pending++; 1011 conf->barrier++; 1012 conf->nr_waiting++; 1013 wait_event_lock_irq_cmd(conf->wait_barrier, 1014 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1015 conf->resync_lock, 1016 flush_pending_writes(conf)); 1017 1018 conf->array_freeze_pending--; 1019 spin_unlock_irq(&conf->resync_lock); 1020 } 1021 1022 static void unfreeze_array(struct r10conf *conf) 1023 { 1024 /* reverse the effect of the freeze */ 1025 spin_lock_irq(&conf->resync_lock); 1026 conf->barrier--; 1027 conf->nr_waiting--; 1028 wake_up(&conf->wait_barrier); 1029 spin_unlock_irq(&conf->resync_lock); 1030 } 1031 1032 static sector_t choose_data_offset(struct r10bio *r10_bio, 1033 struct md_rdev *rdev) 1034 { 1035 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1036 test_bit(R10BIO_Previous, &r10_bio->state)) 1037 return rdev->data_offset; 1038 else 1039 return rdev->new_data_offset; 1040 } 1041 1042 struct raid10_plug_cb { 1043 struct blk_plug_cb cb; 1044 struct bio_list pending; 1045 int pending_cnt; 1046 }; 1047 1048 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1049 { 1050 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1051 cb); 1052 struct mddev *mddev = plug->cb.data; 1053 struct r10conf *conf = mddev->private; 1054 struct bio *bio; 1055 1056 if (from_schedule || current->bio_list) { 1057 spin_lock_irq(&conf->device_lock); 1058 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1059 conf->pending_count += plug->pending_cnt; 1060 spin_unlock_irq(&conf->device_lock); 1061 wake_up(&conf->wait_barrier); 1062 md_wakeup_thread(mddev->thread); 1063 kfree(plug); 1064 return; 1065 } 1066 1067 /* we aren't scheduling, so we can do the write-out directly. */ 1068 bio = bio_list_get(&plug->pending); 1069 bitmap_unplug(mddev->bitmap); 1070 wake_up(&conf->wait_barrier); 1071 1072 while (bio) { /* submit pending writes */ 1073 struct bio *next = bio->bi_next; 1074 struct md_rdev *rdev = (void*)bio->bi_bdev; 1075 bio->bi_next = NULL; 1076 bio->bi_bdev = rdev->bdev; 1077 if (test_bit(Faulty, &rdev->flags)) { 1078 bio->bi_error = -EIO; 1079 bio_endio(bio); 1080 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1081 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1082 /* Just ignore it */ 1083 bio_endio(bio); 1084 else 1085 generic_make_request(bio); 1086 bio = next; 1087 } 1088 kfree(plug); 1089 } 1090 1091 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1092 struct r10bio *r10_bio) 1093 { 1094 struct r10conf *conf = mddev->private; 1095 struct bio *read_bio; 1096 const int op = bio_op(bio); 1097 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1098 int sectors_handled; 1099 int max_sectors; 1100 sector_t sectors; 1101 struct md_rdev *rdev; 1102 int slot; 1103 1104 /* 1105 * Register the new request and wait if the reconstruction 1106 * thread has put up a bar for new requests. 1107 * Continue immediately if no resync is active currently. 1108 */ 1109 wait_barrier(conf); 1110 1111 sectors = bio_sectors(bio); 1112 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1113 bio->bi_iter.bi_sector < conf->reshape_progress && 1114 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1115 /* 1116 * IO spans the reshape position. Need to wait for reshape to 1117 * pass 1118 */ 1119 raid10_log(conf->mddev, "wait reshape"); 1120 allow_barrier(conf); 1121 wait_event(conf->wait_barrier, 1122 conf->reshape_progress <= bio->bi_iter.bi_sector || 1123 conf->reshape_progress >= bio->bi_iter.bi_sector + 1124 sectors); 1125 wait_barrier(conf); 1126 } 1127 1128 read_again: 1129 rdev = read_balance(conf, r10_bio, &max_sectors); 1130 if (!rdev) { 1131 raid_end_bio_io(r10_bio); 1132 return; 1133 } 1134 slot = r10_bio->read_slot; 1135 1136 read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1137 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector, 1138 max_sectors); 1139 1140 r10_bio->devs[slot].bio = read_bio; 1141 r10_bio->devs[slot].rdev = rdev; 1142 1143 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1144 choose_data_offset(r10_bio, rdev); 1145 read_bio->bi_bdev = rdev->bdev; 1146 read_bio->bi_end_io = raid10_end_read_request; 1147 bio_set_op_attrs(read_bio, op, do_sync); 1148 if (test_bit(FailFast, &rdev->flags) && 1149 test_bit(R10BIO_FailFast, &r10_bio->state)) 1150 read_bio->bi_opf |= MD_FAILFAST; 1151 read_bio->bi_private = r10_bio; 1152 1153 if (mddev->gendisk) 1154 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev), 1155 read_bio, disk_devt(mddev->gendisk), 1156 r10_bio->sector); 1157 if (max_sectors < r10_bio->sectors) { 1158 /* 1159 * Could not read all from this device, so we will need another 1160 * r10_bio. 1161 */ 1162 sectors_handled = (r10_bio->sector + max_sectors 1163 - bio->bi_iter.bi_sector); 1164 r10_bio->sectors = max_sectors; 1165 spin_lock_irq(&conf->device_lock); 1166 if (bio->bi_phys_segments == 0) 1167 bio->bi_phys_segments = 2; 1168 else 1169 bio->bi_phys_segments++; 1170 spin_unlock_irq(&conf->device_lock); 1171 /* 1172 * Cannot call generic_make_request directly as that will be 1173 * queued in __generic_make_request and subsequent 1174 * mempool_alloc might block waiting for it. so hand bio over 1175 * to raid10d. 1176 */ 1177 reschedule_retry(r10_bio); 1178 1179 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1180 1181 r10_bio->master_bio = bio; 1182 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1183 r10_bio->state = 0; 1184 r10_bio->mddev = mddev; 1185 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1186 goto read_again; 1187 } else 1188 generic_make_request(read_bio); 1189 return; 1190 } 1191 1192 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1193 struct r10bio *r10_bio) 1194 { 1195 struct r10conf *conf = mddev->private; 1196 int i; 1197 const int op = bio_op(bio); 1198 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1199 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1200 unsigned long flags; 1201 struct md_rdev *blocked_rdev; 1202 struct blk_plug_cb *cb; 1203 struct raid10_plug_cb *plug = NULL; 1204 sector_t sectors; 1205 int sectors_handled; 1206 int max_sectors; 1207 1208 md_write_start(mddev, bio); 1209 1210 /* 1211 * Register the new request and wait if the reconstruction 1212 * thread has put up a bar for new requests. 1213 * Continue immediately if no resync is active currently. 1214 */ 1215 wait_barrier(conf); 1216 1217 sectors = bio_sectors(bio); 1218 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1219 bio->bi_iter.bi_sector < conf->reshape_progress && 1220 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1221 /* 1222 * IO spans the reshape position. Need to wait for reshape to 1223 * pass 1224 */ 1225 raid10_log(conf->mddev, "wait reshape"); 1226 allow_barrier(conf); 1227 wait_event(conf->wait_barrier, 1228 conf->reshape_progress <= bio->bi_iter.bi_sector || 1229 conf->reshape_progress >= bio->bi_iter.bi_sector + 1230 sectors); 1231 wait_barrier(conf); 1232 } 1233 1234 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1235 (mddev->reshape_backwards 1236 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1237 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1238 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1239 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1240 /* Need to update reshape_position in metadata */ 1241 mddev->reshape_position = conf->reshape_progress; 1242 set_mask_bits(&mddev->sb_flags, 0, 1243 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1244 md_wakeup_thread(mddev->thread); 1245 raid10_log(conf->mddev, "wait reshape metadata"); 1246 wait_event(mddev->sb_wait, 1247 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1248 1249 conf->reshape_safe = mddev->reshape_position; 1250 } 1251 1252 if (conf->pending_count >= max_queued_requests) { 1253 md_wakeup_thread(mddev->thread); 1254 raid10_log(mddev, "wait queued"); 1255 wait_event(conf->wait_barrier, 1256 conf->pending_count < max_queued_requests); 1257 } 1258 /* first select target devices under rcu_lock and 1259 * inc refcount on their rdev. Record them by setting 1260 * bios[x] to bio 1261 * If there are known/acknowledged bad blocks on any device 1262 * on which we have seen a write error, we want to avoid 1263 * writing to those blocks. This potentially requires several 1264 * writes to write around the bad blocks. Each set of writes 1265 * gets its own r10_bio with a set of bios attached. The number 1266 * of r10_bios is recored in bio->bi_phys_segments just as with 1267 * the read case. 1268 */ 1269 1270 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1271 raid10_find_phys(conf, r10_bio); 1272 retry_write: 1273 blocked_rdev = NULL; 1274 rcu_read_lock(); 1275 max_sectors = r10_bio->sectors; 1276 1277 for (i = 0; i < conf->copies; i++) { 1278 int d = r10_bio->devs[i].devnum; 1279 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1280 struct md_rdev *rrdev = rcu_dereference( 1281 conf->mirrors[d].replacement); 1282 if (rdev == rrdev) 1283 rrdev = NULL; 1284 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1285 atomic_inc(&rdev->nr_pending); 1286 blocked_rdev = rdev; 1287 break; 1288 } 1289 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1290 atomic_inc(&rrdev->nr_pending); 1291 blocked_rdev = rrdev; 1292 break; 1293 } 1294 if (rdev && (test_bit(Faulty, &rdev->flags))) 1295 rdev = NULL; 1296 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1297 rrdev = NULL; 1298 1299 r10_bio->devs[i].bio = NULL; 1300 r10_bio->devs[i].repl_bio = NULL; 1301 1302 if (!rdev && !rrdev) { 1303 set_bit(R10BIO_Degraded, &r10_bio->state); 1304 continue; 1305 } 1306 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1307 sector_t first_bad; 1308 sector_t dev_sector = r10_bio->devs[i].addr; 1309 int bad_sectors; 1310 int is_bad; 1311 1312 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1313 &first_bad, &bad_sectors); 1314 if (is_bad < 0) { 1315 /* Mustn't write here until the bad block 1316 * is acknowledged 1317 */ 1318 atomic_inc(&rdev->nr_pending); 1319 set_bit(BlockedBadBlocks, &rdev->flags); 1320 blocked_rdev = rdev; 1321 break; 1322 } 1323 if (is_bad && first_bad <= dev_sector) { 1324 /* Cannot write here at all */ 1325 bad_sectors -= (dev_sector - first_bad); 1326 if (bad_sectors < max_sectors) 1327 /* Mustn't write more than bad_sectors 1328 * to other devices yet 1329 */ 1330 max_sectors = bad_sectors; 1331 /* We don't set R10BIO_Degraded as that 1332 * only applies if the disk is missing, 1333 * so it might be re-added, and we want to 1334 * know to recover this chunk. 1335 * In this case the device is here, and the 1336 * fact that this chunk is not in-sync is 1337 * recorded in the bad block log. 1338 */ 1339 continue; 1340 } 1341 if (is_bad) { 1342 int good_sectors = first_bad - dev_sector; 1343 if (good_sectors < max_sectors) 1344 max_sectors = good_sectors; 1345 } 1346 } 1347 if (rdev) { 1348 r10_bio->devs[i].bio = bio; 1349 atomic_inc(&rdev->nr_pending); 1350 } 1351 if (rrdev) { 1352 r10_bio->devs[i].repl_bio = bio; 1353 atomic_inc(&rrdev->nr_pending); 1354 } 1355 } 1356 rcu_read_unlock(); 1357 1358 if (unlikely(blocked_rdev)) { 1359 /* Have to wait for this device to get unblocked, then retry */ 1360 int j; 1361 int d; 1362 1363 for (j = 0; j < i; j++) { 1364 if (r10_bio->devs[j].bio) { 1365 d = r10_bio->devs[j].devnum; 1366 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1367 } 1368 if (r10_bio->devs[j].repl_bio) { 1369 struct md_rdev *rdev; 1370 d = r10_bio->devs[j].devnum; 1371 rdev = conf->mirrors[d].replacement; 1372 if (!rdev) { 1373 /* Race with remove_disk */ 1374 smp_mb(); 1375 rdev = conf->mirrors[d].rdev; 1376 } 1377 rdev_dec_pending(rdev, mddev); 1378 } 1379 } 1380 allow_barrier(conf); 1381 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1382 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1383 wait_barrier(conf); 1384 goto retry_write; 1385 } 1386 1387 if (max_sectors < r10_bio->sectors) { 1388 /* We are splitting this into multiple parts, so 1389 * we need to prepare for allocating another r10_bio. 1390 */ 1391 r10_bio->sectors = max_sectors; 1392 spin_lock_irq(&conf->device_lock); 1393 if (bio->bi_phys_segments == 0) 1394 bio->bi_phys_segments = 2; 1395 else 1396 bio->bi_phys_segments++; 1397 spin_unlock_irq(&conf->device_lock); 1398 } 1399 sectors_handled = r10_bio->sector + max_sectors - 1400 bio->bi_iter.bi_sector; 1401 1402 atomic_set(&r10_bio->remaining, 1); 1403 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1404 1405 for (i = 0; i < conf->copies; i++) { 1406 struct bio *mbio; 1407 int d = r10_bio->devs[i].devnum; 1408 if (r10_bio->devs[i].bio) { 1409 struct md_rdev *rdev = conf->mirrors[d].rdev; 1410 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1411 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1412 max_sectors); 1413 r10_bio->devs[i].bio = mbio; 1414 1415 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 1416 choose_data_offset(r10_bio, rdev)); 1417 mbio->bi_bdev = rdev->bdev; 1418 mbio->bi_end_io = raid10_end_write_request; 1419 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1420 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags) && 1421 enough(conf, d)) 1422 mbio->bi_opf |= MD_FAILFAST; 1423 mbio->bi_private = r10_bio; 1424 1425 if (conf->mddev->gendisk) 1426 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev), 1427 mbio, disk_devt(conf->mddev->gendisk), 1428 r10_bio->sector); 1429 /* flush_pending_writes() needs access to the rdev so...*/ 1430 mbio->bi_bdev = (void*)rdev; 1431 1432 atomic_inc(&r10_bio->remaining); 1433 1434 cb = blk_check_plugged(raid10_unplug, mddev, 1435 sizeof(*plug)); 1436 if (cb) 1437 plug = container_of(cb, struct raid10_plug_cb, 1438 cb); 1439 else 1440 plug = NULL; 1441 spin_lock_irqsave(&conf->device_lock, flags); 1442 if (plug) { 1443 bio_list_add(&plug->pending, mbio); 1444 plug->pending_cnt++; 1445 } else { 1446 bio_list_add(&conf->pending_bio_list, mbio); 1447 conf->pending_count++; 1448 } 1449 spin_unlock_irqrestore(&conf->device_lock, flags); 1450 if (!plug) 1451 md_wakeup_thread(mddev->thread); 1452 } 1453 1454 if (r10_bio->devs[i].repl_bio) { 1455 struct md_rdev *rdev = conf->mirrors[d].replacement; 1456 if (rdev == NULL) { 1457 /* Replacement just got moved to main 'rdev' */ 1458 smp_mb(); 1459 rdev = conf->mirrors[d].rdev; 1460 } 1461 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1462 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1463 max_sectors); 1464 r10_bio->devs[i].repl_bio = mbio; 1465 1466 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr + 1467 choose_data_offset(r10_bio, rdev)); 1468 mbio->bi_bdev = rdev->bdev; 1469 mbio->bi_end_io = raid10_end_write_request; 1470 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1471 mbio->bi_private = r10_bio; 1472 1473 if (conf->mddev->gendisk) 1474 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev), 1475 mbio, disk_devt(conf->mddev->gendisk), 1476 r10_bio->sector); 1477 /* flush_pending_writes() needs access to the rdev so...*/ 1478 mbio->bi_bdev = (void*)rdev; 1479 1480 atomic_inc(&r10_bio->remaining); 1481 1482 cb = blk_check_plugged(raid10_unplug, mddev, 1483 sizeof(*plug)); 1484 if (cb) 1485 plug = container_of(cb, struct raid10_plug_cb, 1486 cb); 1487 else 1488 plug = NULL; 1489 spin_lock_irqsave(&conf->device_lock, flags); 1490 if (plug) { 1491 bio_list_add(&plug->pending, mbio); 1492 plug->pending_cnt++; 1493 } else { 1494 bio_list_add(&conf->pending_bio_list, mbio); 1495 conf->pending_count++; 1496 } 1497 spin_unlock_irqrestore(&conf->device_lock, flags); 1498 if (!plug) 1499 md_wakeup_thread(mddev->thread); 1500 } 1501 } 1502 1503 /* Don't remove the bias on 'remaining' (one_write_done) until 1504 * after checking if we need to go around again. 1505 */ 1506 1507 if (sectors_handled < bio_sectors(bio)) { 1508 one_write_done(r10_bio); 1509 /* We need another r10_bio. It has already been counted 1510 * in bio->bi_phys_segments. 1511 */ 1512 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1513 1514 r10_bio->master_bio = bio; 1515 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1516 1517 r10_bio->mddev = mddev; 1518 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1519 r10_bio->state = 0; 1520 goto retry_write; 1521 } 1522 one_write_done(r10_bio); 1523 } 1524 1525 static void __make_request(struct mddev *mddev, struct bio *bio) 1526 { 1527 struct r10conf *conf = mddev->private; 1528 struct r10bio *r10_bio; 1529 1530 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1531 1532 r10_bio->master_bio = bio; 1533 r10_bio->sectors = bio_sectors(bio); 1534 1535 r10_bio->mddev = mddev; 1536 r10_bio->sector = bio->bi_iter.bi_sector; 1537 r10_bio->state = 0; 1538 1539 /* 1540 * We might need to issue multiple reads to different devices if there 1541 * are bad blocks around, so we keep track of the number of reads in 1542 * bio->bi_phys_segments. If this is 0, there is only one r10_bio and 1543 * no locking will be needed when the request completes. If it is 1544 * non-zero, then it is the number of not-completed requests. 1545 */ 1546 bio->bi_phys_segments = 0; 1547 bio_clear_flag(bio, BIO_SEG_VALID); 1548 1549 if (bio_data_dir(bio) == READ) 1550 raid10_read_request(mddev, bio, r10_bio); 1551 else 1552 raid10_write_request(mddev, bio, r10_bio); 1553 } 1554 1555 static void raid10_make_request(struct mddev *mddev, struct bio *bio) 1556 { 1557 struct r10conf *conf = mddev->private; 1558 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1559 int chunk_sects = chunk_mask + 1; 1560 1561 struct bio *split; 1562 1563 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1564 md_flush_request(mddev, bio); 1565 return; 1566 } 1567 1568 do { 1569 1570 /* 1571 * If this request crosses a chunk boundary, we need to split 1572 * it. 1573 */ 1574 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1575 bio_sectors(bio) > chunk_sects 1576 && (conf->geo.near_copies < conf->geo.raid_disks 1577 || conf->prev.near_copies < 1578 conf->prev.raid_disks))) { 1579 split = bio_split(bio, chunk_sects - 1580 (bio->bi_iter.bi_sector & 1581 (chunk_sects - 1)), 1582 GFP_NOIO, fs_bio_set); 1583 bio_chain(split, bio); 1584 } else { 1585 split = bio; 1586 } 1587 1588 /* 1589 * If a bio is splitted, the first part of bio will pass 1590 * barrier but the bio is queued in current->bio_list (see 1591 * generic_make_request). If there is a raise_barrier() called 1592 * here, the second part of bio can't pass barrier. But since 1593 * the first part bio isn't dispatched to underlaying disks 1594 * yet, the barrier is never released, hence raise_barrier will 1595 * alays wait. We have a deadlock. 1596 * Note, this only happens in read path. For write path, the 1597 * first part of bio is dispatched in a schedule() call 1598 * (because of blk plug) or offloaded to raid10d. 1599 * Quitting from the function immediately can change the bio 1600 * order queued in bio_list and avoid the deadlock. 1601 */ 1602 __make_request(mddev, split); 1603 if (split != bio && bio_data_dir(bio) == READ) { 1604 generic_make_request(bio); 1605 break; 1606 } 1607 } while (split != bio); 1608 1609 /* In case raid10d snuck in to freeze_array */ 1610 wake_up(&conf->wait_barrier); 1611 } 1612 1613 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1614 { 1615 struct r10conf *conf = mddev->private; 1616 int i; 1617 1618 if (conf->geo.near_copies < conf->geo.raid_disks) 1619 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1620 if (conf->geo.near_copies > 1) 1621 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1622 if (conf->geo.far_copies > 1) { 1623 if (conf->geo.far_offset) 1624 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1625 else 1626 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1627 if (conf->geo.far_set_size != conf->geo.raid_disks) 1628 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1629 } 1630 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1631 conf->geo.raid_disks - mddev->degraded); 1632 rcu_read_lock(); 1633 for (i = 0; i < conf->geo.raid_disks; i++) { 1634 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1635 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1636 } 1637 rcu_read_unlock(); 1638 seq_printf(seq, "]"); 1639 } 1640 1641 /* check if there are enough drives for 1642 * every block to appear on atleast one. 1643 * Don't consider the device numbered 'ignore' 1644 * as we might be about to remove it. 1645 */ 1646 static int _enough(struct r10conf *conf, int previous, int ignore) 1647 { 1648 int first = 0; 1649 int has_enough = 0; 1650 int disks, ncopies; 1651 if (previous) { 1652 disks = conf->prev.raid_disks; 1653 ncopies = conf->prev.near_copies; 1654 } else { 1655 disks = conf->geo.raid_disks; 1656 ncopies = conf->geo.near_copies; 1657 } 1658 1659 rcu_read_lock(); 1660 do { 1661 int n = conf->copies; 1662 int cnt = 0; 1663 int this = first; 1664 while (n--) { 1665 struct md_rdev *rdev; 1666 if (this != ignore && 1667 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1668 test_bit(In_sync, &rdev->flags)) 1669 cnt++; 1670 this = (this+1) % disks; 1671 } 1672 if (cnt == 0) 1673 goto out; 1674 first = (first + ncopies) % disks; 1675 } while (first != 0); 1676 has_enough = 1; 1677 out: 1678 rcu_read_unlock(); 1679 return has_enough; 1680 } 1681 1682 static int enough(struct r10conf *conf, int ignore) 1683 { 1684 /* when calling 'enough', both 'prev' and 'geo' must 1685 * be stable. 1686 * This is ensured if ->reconfig_mutex or ->device_lock 1687 * is held. 1688 */ 1689 return _enough(conf, 0, ignore) && 1690 _enough(conf, 1, ignore); 1691 } 1692 1693 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1694 { 1695 char b[BDEVNAME_SIZE]; 1696 struct r10conf *conf = mddev->private; 1697 unsigned long flags; 1698 1699 /* 1700 * If it is not operational, then we have already marked it as dead 1701 * else if it is the last working disks, ignore the error, let the 1702 * next level up know. 1703 * else mark the drive as failed 1704 */ 1705 spin_lock_irqsave(&conf->device_lock, flags); 1706 if (test_bit(In_sync, &rdev->flags) 1707 && !enough(conf, rdev->raid_disk)) { 1708 /* 1709 * Don't fail the drive, just return an IO error. 1710 */ 1711 spin_unlock_irqrestore(&conf->device_lock, flags); 1712 return; 1713 } 1714 if (test_and_clear_bit(In_sync, &rdev->flags)) 1715 mddev->degraded++; 1716 /* 1717 * If recovery is running, make sure it aborts. 1718 */ 1719 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1720 set_bit(Blocked, &rdev->flags); 1721 set_bit(Faulty, &rdev->flags); 1722 set_mask_bits(&mddev->sb_flags, 0, 1723 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1724 spin_unlock_irqrestore(&conf->device_lock, flags); 1725 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1726 "md/raid10:%s: Operation continuing on %d devices.\n", 1727 mdname(mddev), bdevname(rdev->bdev, b), 1728 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1729 } 1730 1731 static void print_conf(struct r10conf *conf) 1732 { 1733 int i; 1734 struct md_rdev *rdev; 1735 1736 pr_debug("RAID10 conf printout:\n"); 1737 if (!conf) { 1738 pr_debug("(!conf)\n"); 1739 return; 1740 } 1741 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1742 conf->geo.raid_disks); 1743 1744 /* This is only called with ->reconfix_mutex held, so 1745 * rcu protection of rdev is not needed */ 1746 for (i = 0; i < conf->geo.raid_disks; i++) { 1747 char b[BDEVNAME_SIZE]; 1748 rdev = conf->mirrors[i].rdev; 1749 if (rdev) 1750 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1751 i, !test_bit(In_sync, &rdev->flags), 1752 !test_bit(Faulty, &rdev->flags), 1753 bdevname(rdev->bdev,b)); 1754 } 1755 } 1756 1757 static void close_sync(struct r10conf *conf) 1758 { 1759 wait_barrier(conf); 1760 allow_barrier(conf); 1761 1762 mempool_destroy(conf->r10buf_pool); 1763 conf->r10buf_pool = NULL; 1764 } 1765 1766 static int raid10_spare_active(struct mddev *mddev) 1767 { 1768 int i; 1769 struct r10conf *conf = mddev->private; 1770 struct raid10_info *tmp; 1771 int count = 0; 1772 unsigned long flags; 1773 1774 /* 1775 * Find all non-in_sync disks within the RAID10 configuration 1776 * and mark them in_sync 1777 */ 1778 for (i = 0; i < conf->geo.raid_disks; i++) { 1779 tmp = conf->mirrors + i; 1780 if (tmp->replacement 1781 && tmp->replacement->recovery_offset == MaxSector 1782 && !test_bit(Faulty, &tmp->replacement->flags) 1783 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1784 /* Replacement has just become active */ 1785 if (!tmp->rdev 1786 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1787 count++; 1788 if (tmp->rdev) { 1789 /* Replaced device not technically faulty, 1790 * but we need to be sure it gets removed 1791 * and never re-added. 1792 */ 1793 set_bit(Faulty, &tmp->rdev->flags); 1794 sysfs_notify_dirent_safe( 1795 tmp->rdev->sysfs_state); 1796 } 1797 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1798 } else if (tmp->rdev 1799 && tmp->rdev->recovery_offset == MaxSector 1800 && !test_bit(Faulty, &tmp->rdev->flags) 1801 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1802 count++; 1803 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1804 } 1805 } 1806 spin_lock_irqsave(&conf->device_lock, flags); 1807 mddev->degraded -= count; 1808 spin_unlock_irqrestore(&conf->device_lock, flags); 1809 1810 print_conf(conf); 1811 return count; 1812 } 1813 1814 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1815 { 1816 struct r10conf *conf = mddev->private; 1817 int err = -EEXIST; 1818 int mirror; 1819 int first = 0; 1820 int last = conf->geo.raid_disks - 1; 1821 1822 if (mddev->recovery_cp < MaxSector) 1823 /* only hot-add to in-sync arrays, as recovery is 1824 * very different from resync 1825 */ 1826 return -EBUSY; 1827 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1828 return -EINVAL; 1829 1830 if (md_integrity_add_rdev(rdev, mddev)) 1831 return -ENXIO; 1832 1833 if (rdev->raid_disk >= 0) 1834 first = last = rdev->raid_disk; 1835 1836 if (rdev->saved_raid_disk >= first && 1837 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1838 mirror = rdev->saved_raid_disk; 1839 else 1840 mirror = first; 1841 for ( ; mirror <= last ; mirror++) { 1842 struct raid10_info *p = &conf->mirrors[mirror]; 1843 if (p->recovery_disabled == mddev->recovery_disabled) 1844 continue; 1845 if (p->rdev) { 1846 if (!test_bit(WantReplacement, &p->rdev->flags) || 1847 p->replacement != NULL) 1848 continue; 1849 clear_bit(In_sync, &rdev->flags); 1850 set_bit(Replacement, &rdev->flags); 1851 rdev->raid_disk = mirror; 1852 err = 0; 1853 if (mddev->gendisk) 1854 disk_stack_limits(mddev->gendisk, rdev->bdev, 1855 rdev->data_offset << 9); 1856 conf->fullsync = 1; 1857 rcu_assign_pointer(p->replacement, rdev); 1858 break; 1859 } 1860 1861 if (mddev->gendisk) 1862 disk_stack_limits(mddev->gendisk, rdev->bdev, 1863 rdev->data_offset << 9); 1864 1865 p->head_position = 0; 1866 p->recovery_disabled = mddev->recovery_disabled - 1; 1867 rdev->raid_disk = mirror; 1868 err = 0; 1869 if (rdev->saved_raid_disk != mirror) 1870 conf->fullsync = 1; 1871 rcu_assign_pointer(p->rdev, rdev); 1872 break; 1873 } 1874 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1875 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1876 1877 print_conf(conf); 1878 return err; 1879 } 1880 1881 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1882 { 1883 struct r10conf *conf = mddev->private; 1884 int err = 0; 1885 int number = rdev->raid_disk; 1886 struct md_rdev **rdevp; 1887 struct raid10_info *p = conf->mirrors + number; 1888 1889 print_conf(conf); 1890 if (rdev == p->rdev) 1891 rdevp = &p->rdev; 1892 else if (rdev == p->replacement) 1893 rdevp = &p->replacement; 1894 else 1895 return 0; 1896 1897 if (test_bit(In_sync, &rdev->flags) || 1898 atomic_read(&rdev->nr_pending)) { 1899 err = -EBUSY; 1900 goto abort; 1901 } 1902 /* Only remove non-faulty devices if recovery 1903 * is not possible. 1904 */ 1905 if (!test_bit(Faulty, &rdev->flags) && 1906 mddev->recovery_disabled != p->recovery_disabled && 1907 (!p->replacement || p->replacement == rdev) && 1908 number < conf->geo.raid_disks && 1909 enough(conf, -1)) { 1910 err = -EBUSY; 1911 goto abort; 1912 } 1913 *rdevp = NULL; 1914 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1915 synchronize_rcu(); 1916 if (atomic_read(&rdev->nr_pending)) { 1917 /* lost the race, try later */ 1918 err = -EBUSY; 1919 *rdevp = rdev; 1920 goto abort; 1921 } 1922 } 1923 if (p->replacement) { 1924 /* We must have just cleared 'rdev' */ 1925 p->rdev = p->replacement; 1926 clear_bit(Replacement, &p->replacement->flags); 1927 smp_mb(); /* Make sure other CPUs may see both as identical 1928 * but will never see neither -- if they are careful. 1929 */ 1930 p->replacement = NULL; 1931 clear_bit(WantReplacement, &rdev->flags); 1932 } else 1933 /* We might have just remove the Replacement as faulty 1934 * Clear the flag just in case 1935 */ 1936 clear_bit(WantReplacement, &rdev->flags); 1937 1938 err = md_integrity_register(mddev); 1939 1940 abort: 1941 1942 print_conf(conf); 1943 return err; 1944 } 1945 1946 static void end_sync_read(struct bio *bio) 1947 { 1948 struct r10bio *r10_bio = bio->bi_private; 1949 struct r10conf *conf = r10_bio->mddev->private; 1950 int d; 1951 1952 if (bio == r10_bio->master_bio) { 1953 /* this is a reshape read */ 1954 d = r10_bio->read_slot; /* really the read dev */ 1955 } else 1956 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1957 1958 if (!bio->bi_error) 1959 set_bit(R10BIO_Uptodate, &r10_bio->state); 1960 else 1961 /* The write handler will notice the lack of 1962 * R10BIO_Uptodate and record any errors etc 1963 */ 1964 atomic_add(r10_bio->sectors, 1965 &conf->mirrors[d].rdev->corrected_errors); 1966 1967 /* for reconstruct, we always reschedule after a read. 1968 * for resync, only after all reads 1969 */ 1970 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1971 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1972 atomic_dec_and_test(&r10_bio->remaining)) { 1973 /* we have read all the blocks, 1974 * do the comparison in process context in raid10d 1975 */ 1976 reschedule_retry(r10_bio); 1977 } 1978 } 1979 1980 static void end_sync_request(struct r10bio *r10_bio) 1981 { 1982 struct mddev *mddev = r10_bio->mddev; 1983 1984 while (atomic_dec_and_test(&r10_bio->remaining)) { 1985 if (r10_bio->master_bio == NULL) { 1986 /* the primary of several recovery bios */ 1987 sector_t s = r10_bio->sectors; 1988 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1989 test_bit(R10BIO_WriteError, &r10_bio->state)) 1990 reschedule_retry(r10_bio); 1991 else 1992 put_buf(r10_bio); 1993 md_done_sync(mddev, s, 1); 1994 break; 1995 } else { 1996 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1997 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1998 test_bit(R10BIO_WriteError, &r10_bio->state)) 1999 reschedule_retry(r10_bio); 2000 else 2001 put_buf(r10_bio); 2002 r10_bio = r10_bio2; 2003 } 2004 } 2005 } 2006 2007 static void end_sync_write(struct bio *bio) 2008 { 2009 struct r10bio *r10_bio = bio->bi_private; 2010 struct mddev *mddev = r10_bio->mddev; 2011 struct r10conf *conf = mddev->private; 2012 int d; 2013 sector_t first_bad; 2014 int bad_sectors; 2015 int slot; 2016 int repl; 2017 struct md_rdev *rdev = NULL; 2018 2019 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2020 if (repl) 2021 rdev = conf->mirrors[d].replacement; 2022 else 2023 rdev = conf->mirrors[d].rdev; 2024 2025 if (bio->bi_error) { 2026 if (repl) 2027 md_error(mddev, rdev); 2028 else { 2029 set_bit(WriteErrorSeen, &rdev->flags); 2030 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2031 set_bit(MD_RECOVERY_NEEDED, 2032 &rdev->mddev->recovery); 2033 set_bit(R10BIO_WriteError, &r10_bio->state); 2034 } 2035 } else if (is_badblock(rdev, 2036 r10_bio->devs[slot].addr, 2037 r10_bio->sectors, 2038 &first_bad, &bad_sectors)) 2039 set_bit(R10BIO_MadeGood, &r10_bio->state); 2040 2041 rdev_dec_pending(rdev, mddev); 2042 2043 end_sync_request(r10_bio); 2044 } 2045 2046 /* 2047 * Note: sync and recover and handled very differently for raid10 2048 * This code is for resync. 2049 * For resync, we read through virtual addresses and read all blocks. 2050 * If there is any error, we schedule a write. The lowest numbered 2051 * drive is authoritative. 2052 * However requests come for physical address, so we need to map. 2053 * For every physical address there are raid_disks/copies virtual addresses, 2054 * which is always are least one, but is not necessarly an integer. 2055 * This means that a physical address can span multiple chunks, so we may 2056 * have to submit multiple io requests for a single sync request. 2057 */ 2058 /* 2059 * We check if all blocks are in-sync and only write to blocks that 2060 * aren't in sync 2061 */ 2062 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2063 { 2064 struct r10conf *conf = mddev->private; 2065 int i, first; 2066 struct bio *tbio, *fbio; 2067 int vcnt; 2068 2069 atomic_set(&r10_bio->remaining, 1); 2070 2071 /* find the first device with a block */ 2072 for (i=0; i<conf->copies; i++) 2073 if (!r10_bio->devs[i].bio->bi_error) 2074 break; 2075 2076 if (i == conf->copies) 2077 goto done; 2078 2079 first = i; 2080 fbio = r10_bio->devs[i].bio; 2081 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2082 fbio->bi_iter.bi_idx = 0; 2083 2084 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2085 /* now find blocks with errors */ 2086 for (i=0 ; i < conf->copies ; i++) { 2087 int j, d; 2088 struct md_rdev *rdev; 2089 2090 tbio = r10_bio->devs[i].bio; 2091 2092 if (tbio->bi_end_io != end_sync_read) 2093 continue; 2094 if (i == first) 2095 continue; 2096 d = r10_bio->devs[i].devnum; 2097 rdev = conf->mirrors[d].rdev; 2098 if (!r10_bio->devs[i].bio->bi_error) { 2099 /* We know that the bi_io_vec layout is the same for 2100 * both 'first' and 'i', so we just compare them. 2101 * All vec entries are PAGE_SIZE; 2102 */ 2103 int sectors = r10_bio->sectors; 2104 for (j = 0; j < vcnt; j++) { 2105 int len = PAGE_SIZE; 2106 if (sectors < (len / 512)) 2107 len = sectors * 512; 2108 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2109 page_address(tbio->bi_io_vec[j].bv_page), 2110 len)) 2111 break; 2112 sectors -= len/512; 2113 } 2114 if (j == vcnt) 2115 continue; 2116 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2117 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2118 /* Don't fix anything. */ 2119 continue; 2120 } else if (test_bit(FailFast, &rdev->flags)) { 2121 /* Just give up on this device */ 2122 md_error(rdev->mddev, rdev); 2123 continue; 2124 } 2125 /* Ok, we need to write this bio, either to correct an 2126 * inconsistency or to correct an unreadable block. 2127 * First we need to fixup bv_offset, bv_len and 2128 * bi_vecs, as the read request might have corrupted these 2129 */ 2130 bio_reset(tbio); 2131 2132 tbio->bi_vcnt = vcnt; 2133 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size; 2134 tbio->bi_private = r10_bio; 2135 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2136 tbio->bi_end_io = end_sync_write; 2137 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2138 2139 bio_copy_data(tbio, fbio); 2140 2141 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2142 atomic_inc(&r10_bio->remaining); 2143 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2144 2145 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2146 tbio->bi_opf |= MD_FAILFAST; 2147 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2148 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2149 generic_make_request(tbio); 2150 } 2151 2152 /* Now write out to any replacement devices 2153 * that are active 2154 */ 2155 for (i = 0; i < conf->copies; i++) { 2156 int d; 2157 2158 tbio = r10_bio->devs[i].repl_bio; 2159 if (!tbio || !tbio->bi_end_io) 2160 continue; 2161 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2162 && r10_bio->devs[i].bio != fbio) 2163 bio_copy_data(tbio, fbio); 2164 d = r10_bio->devs[i].devnum; 2165 atomic_inc(&r10_bio->remaining); 2166 md_sync_acct(conf->mirrors[d].replacement->bdev, 2167 bio_sectors(tbio)); 2168 generic_make_request(tbio); 2169 } 2170 2171 done: 2172 if (atomic_dec_and_test(&r10_bio->remaining)) { 2173 md_done_sync(mddev, r10_bio->sectors, 1); 2174 put_buf(r10_bio); 2175 } 2176 } 2177 2178 /* 2179 * Now for the recovery code. 2180 * Recovery happens across physical sectors. 2181 * We recover all non-is_sync drives by finding the virtual address of 2182 * each, and then choose a working drive that also has that virt address. 2183 * There is a separate r10_bio for each non-in_sync drive. 2184 * Only the first two slots are in use. The first for reading, 2185 * The second for writing. 2186 * 2187 */ 2188 static void fix_recovery_read_error(struct r10bio *r10_bio) 2189 { 2190 /* We got a read error during recovery. 2191 * We repeat the read in smaller page-sized sections. 2192 * If a read succeeds, write it to the new device or record 2193 * a bad block if we cannot. 2194 * If a read fails, record a bad block on both old and 2195 * new devices. 2196 */ 2197 struct mddev *mddev = r10_bio->mddev; 2198 struct r10conf *conf = mddev->private; 2199 struct bio *bio = r10_bio->devs[0].bio; 2200 sector_t sect = 0; 2201 int sectors = r10_bio->sectors; 2202 int idx = 0; 2203 int dr = r10_bio->devs[0].devnum; 2204 int dw = r10_bio->devs[1].devnum; 2205 2206 while (sectors) { 2207 int s = sectors; 2208 struct md_rdev *rdev; 2209 sector_t addr; 2210 int ok; 2211 2212 if (s > (PAGE_SIZE>>9)) 2213 s = PAGE_SIZE >> 9; 2214 2215 rdev = conf->mirrors[dr].rdev; 2216 addr = r10_bio->devs[0].addr + sect, 2217 ok = sync_page_io(rdev, 2218 addr, 2219 s << 9, 2220 bio->bi_io_vec[idx].bv_page, 2221 REQ_OP_READ, 0, false); 2222 if (ok) { 2223 rdev = conf->mirrors[dw].rdev; 2224 addr = r10_bio->devs[1].addr + sect; 2225 ok = sync_page_io(rdev, 2226 addr, 2227 s << 9, 2228 bio->bi_io_vec[idx].bv_page, 2229 REQ_OP_WRITE, 0, false); 2230 if (!ok) { 2231 set_bit(WriteErrorSeen, &rdev->flags); 2232 if (!test_and_set_bit(WantReplacement, 2233 &rdev->flags)) 2234 set_bit(MD_RECOVERY_NEEDED, 2235 &rdev->mddev->recovery); 2236 } 2237 } 2238 if (!ok) { 2239 /* We don't worry if we cannot set a bad block - 2240 * it really is bad so there is no loss in not 2241 * recording it yet 2242 */ 2243 rdev_set_badblocks(rdev, addr, s, 0); 2244 2245 if (rdev != conf->mirrors[dw].rdev) { 2246 /* need bad block on destination too */ 2247 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2248 addr = r10_bio->devs[1].addr + sect; 2249 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2250 if (!ok) { 2251 /* just abort the recovery */ 2252 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2253 mdname(mddev)); 2254 2255 conf->mirrors[dw].recovery_disabled 2256 = mddev->recovery_disabled; 2257 set_bit(MD_RECOVERY_INTR, 2258 &mddev->recovery); 2259 break; 2260 } 2261 } 2262 } 2263 2264 sectors -= s; 2265 sect += s; 2266 idx++; 2267 } 2268 } 2269 2270 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2271 { 2272 struct r10conf *conf = mddev->private; 2273 int d; 2274 struct bio *wbio, *wbio2; 2275 2276 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2277 fix_recovery_read_error(r10_bio); 2278 end_sync_request(r10_bio); 2279 return; 2280 } 2281 2282 /* 2283 * share the pages with the first bio 2284 * and submit the write request 2285 */ 2286 d = r10_bio->devs[1].devnum; 2287 wbio = r10_bio->devs[1].bio; 2288 wbio2 = r10_bio->devs[1].repl_bio; 2289 /* Need to test wbio2->bi_end_io before we call 2290 * generic_make_request as if the former is NULL, 2291 * the latter is free to free wbio2. 2292 */ 2293 if (wbio2 && !wbio2->bi_end_io) 2294 wbio2 = NULL; 2295 if (wbio->bi_end_io) { 2296 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2297 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2298 generic_make_request(wbio); 2299 } 2300 if (wbio2) { 2301 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2302 md_sync_acct(conf->mirrors[d].replacement->bdev, 2303 bio_sectors(wbio2)); 2304 generic_make_request(wbio2); 2305 } 2306 } 2307 2308 /* 2309 * Used by fix_read_error() to decay the per rdev read_errors. 2310 * We halve the read error count for every hour that has elapsed 2311 * since the last recorded read error. 2312 * 2313 */ 2314 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2315 { 2316 long cur_time_mon; 2317 unsigned long hours_since_last; 2318 unsigned int read_errors = atomic_read(&rdev->read_errors); 2319 2320 cur_time_mon = ktime_get_seconds(); 2321 2322 if (rdev->last_read_error == 0) { 2323 /* first time we've seen a read error */ 2324 rdev->last_read_error = cur_time_mon; 2325 return; 2326 } 2327 2328 hours_since_last = (long)(cur_time_mon - 2329 rdev->last_read_error) / 3600; 2330 2331 rdev->last_read_error = cur_time_mon; 2332 2333 /* 2334 * if hours_since_last is > the number of bits in read_errors 2335 * just set read errors to 0. We do this to avoid 2336 * overflowing the shift of read_errors by hours_since_last. 2337 */ 2338 if (hours_since_last >= 8 * sizeof(read_errors)) 2339 atomic_set(&rdev->read_errors, 0); 2340 else 2341 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2342 } 2343 2344 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2345 int sectors, struct page *page, int rw) 2346 { 2347 sector_t first_bad; 2348 int bad_sectors; 2349 2350 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2351 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2352 return -1; 2353 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2354 /* success */ 2355 return 1; 2356 if (rw == WRITE) { 2357 set_bit(WriteErrorSeen, &rdev->flags); 2358 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2359 set_bit(MD_RECOVERY_NEEDED, 2360 &rdev->mddev->recovery); 2361 } 2362 /* need to record an error - either for the block or the device */ 2363 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2364 md_error(rdev->mddev, rdev); 2365 return 0; 2366 } 2367 2368 /* 2369 * This is a kernel thread which: 2370 * 2371 * 1. Retries failed read operations on working mirrors. 2372 * 2. Updates the raid superblock when problems encounter. 2373 * 3. Performs writes following reads for array synchronising. 2374 */ 2375 2376 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2377 { 2378 int sect = 0; /* Offset from r10_bio->sector */ 2379 int sectors = r10_bio->sectors; 2380 struct md_rdev*rdev; 2381 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2382 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2383 2384 /* still own a reference to this rdev, so it cannot 2385 * have been cleared recently. 2386 */ 2387 rdev = conf->mirrors[d].rdev; 2388 2389 if (test_bit(Faulty, &rdev->flags)) 2390 /* drive has already been failed, just ignore any 2391 more fix_read_error() attempts */ 2392 return; 2393 2394 check_decay_read_errors(mddev, rdev); 2395 atomic_inc(&rdev->read_errors); 2396 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2397 char b[BDEVNAME_SIZE]; 2398 bdevname(rdev->bdev, b); 2399 2400 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2401 mdname(mddev), b, 2402 atomic_read(&rdev->read_errors), max_read_errors); 2403 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2404 mdname(mddev), b); 2405 md_error(mddev, rdev); 2406 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2407 return; 2408 } 2409 2410 while(sectors) { 2411 int s = sectors; 2412 int sl = r10_bio->read_slot; 2413 int success = 0; 2414 int start; 2415 2416 if (s > (PAGE_SIZE>>9)) 2417 s = PAGE_SIZE >> 9; 2418 2419 rcu_read_lock(); 2420 do { 2421 sector_t first_bad; 2422 int bad_sectors; 2423 2424 d = r10_bio->devs[sl].devnum; 2425 rdev = rcu_dereference(conf->mirrors[d].rdev); 2426 if (rdev && 2427 test_bit(In_sync, &rdev->flags) && 2428 !test_bit(Faulty, &rdev->flags) && 2429 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2430 &first_bad, &bad_sectors) == 0) { 2431 atomic_inc(&rdev->nr_pending); 2432 rcu_read_unlock(); 2433 success = sync_page_io(rdev, 2434 r10_bio->devs[sl].addr + 2435 sect, 2436 s<<9, 2437 conf->tmppage, 2438 REQ_OP_READ, 0, false); 2439 rdev_dec_pending(rdev, mddev); 2440 rcu_read_lock(); 2441 if (success) 2442 break; 2443 } 2444 sl++; 2445 if (sl == conf->copies) 2446 sl = 0; 2447 } while (!success && sl != r10_bio->read_slot); 2448 rcu_read_unlock(); 2449 2450 if (!success) { 2451 /* Cannot read from anywhere, just mark the block 2452 * as bad on the first device to discourage future 2453 * reads. 2454 */ 2455 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2456 rdev = conf->mirrors[dn].rdev; 2457 2458 if (!rdev_set_badblocks( 2459 rdev, 2460 r10_bio->devs[r10_bio->read_slot].addr 2461 + sect, 2462 s, 0)) { 2463 md_error(mddev, rdev); 2464 r10_bio->devs[r10_bio->read_slot].bio 2465 = IO_BLOCKED; 2466 } 2467 break; 2468 } 2469 2470 start = sl; 2471 /* write it back and re-read */ 2472 rcu_read_lock(); 2473 while (sl != r10_bio->read_slot) { 2474 char b[BDEVNAME_SIZE]; 2475 2476 if (sl==0) 2477 sl = conf->copies; 2478 sl--; 2479 d = r10_bio->devs[sl].devnum; 2480 rdev = rcu_dereference(conf->mirrors[d].rdev); 2481 if (!rdev || 2482 test_bit(Faulty, &rdev->flags) || 2483 !test_bit(In_sync, &rdev->flags)) 2484 continue; 2485 2486 atomic_inc(&rdev->nr_pending); 2487 rcu_read_unlock(); 2488 if (r10_sync_page_io(rdev, 2489 r10_bio->devs[sl].addr + 2490 sect, 2491 s, conf->tmppage, WRITE) 2492 == 0) { 2493 /* Well, this device is dead */ 2494 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2495 mdname(mddev), s, 2496 (unsigned long long)( 2497 sect + 2498 choose_data_offset(r10_bio, 2499 rdev)), 2500 bdevname(rdev->bdev, b)); 2501 pr_notice("md/raid10:%s: %s: failing drive\n", 2502 mdname(mddev), 2503 bdevname(rdev->bdev, b)); 2504 } 2505 rdev_dec_pending(rdev, mddev); 2506 rcu_read_lock(); 2507 } 2508 sl = start; 2509 while (sl != r10_bio->read_slot) { 2510 char b[BDEVNAME_SIZE]; 2511 2512 if (sl==0) 2513 sl = conf->copies; 2514 sl--; 2515 d = r10_bio->devs[sl].devnum; 2516 rdev = rcu_dereference(conf->mirrors[d].rdev); 2517 if (!rdev || 2518 test_bit(Faulty, &rdev->flags) || 2519 !test_bit(In_sync, &rdev->flags)) 2520 continue; 2521 2522 atomic_inc(&rdev->nr_pending); 2523 rcu_read_unlock(); 2524 switch (r10_sync_page_io(rdev, 2525 r10_bio->devs[sl].addr + 2526 sect, 2527 s, conf->tmppage, 2528 READ)) { 2529 case 0: 2530 /* Well, this device is dead */ 2531 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2532 mdname(mddev), s, 2533 (unsigned long long)( 2534 sect + 2535 choose_data_offset(r10_bio, rdev)), 2536 bdevname(rdev->bdev, b)); 2537 pr_notice("md/raid10:%s: %s: failing drive\n", 2538 mdname(mddev), 2539 bdevname(rdev->bdev, b)); 2540 break; 2541 case 1: 2542 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2543 mdname(mddev), s, 2544 (unsigned long long)( 2545 sect + 2546 choose_data_offset(r10_bio, rdev)), 2547 bdevname(rdev->bdev, b)); 2548 atomic_add(s, &rdev->corrected_errors); 2549 } 2550 2551 rdev_dec_pending(rdev, mddev); 2552 rcu_read_lock(); 2553 } 2554 rcu_read_unlock(); 2555 2556 sectors -= s; 2557 sect += s; 2558 } 2559 } 2560 2561 static int narrow_write_error(struct r10bio *r10_bio, int i) 2562 { 2563 struct bio *bio = r10_bio->master_bio; 2564 struct mddev *mddev = r10_bio->mddev; 2565 struct r10conf *conf = mddev->private; 2566 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2567 /* bio has the data to be written to slot 'i' where 2568 * we just recently had a write error. 2569 * We repeatedly clone the bio and trim down to one block, 2570 * then try the write. Where the write fails we record 2571 * a bad block. 2572 * It is conceivable that the bio doesn't exactly align with 2573 * blocks. We must handle this. 2574 * 2575 * We currently own a reference to the rdev. 2576 */ 2577 2578 int block_sectors; 2579 sector_t sector; 2580 int sectors; 2581 int sect_to_write = r10_bio->sectors; 2582 int ok = 1; 2583 2584 if (rdev->badblocks.shift < 0) 2585 return 0; 2586 2587 block_sectors = roundup(1 << rdev->badblocks.shift, 2588 bdev_logical_block_size(rdev->bdev) >> 9); 2589 sector = r10_bio->sector; 2590 sectors = ((r10_bio->sector + block_sectors) 2591 & ~(sector_t)(block_sectors - 1)) 2592 - sector; 2593 2594 while (sect_to_write) { 2595 struct bio *wbio; 2596 sector_t wsector; 2597 if (sectors > sect_to_write) 2598 sectors = sect_to_write; 2599 /* Write at 'sector' for 'sectors' */ 2600 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 2601 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2602 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2603 wbio->bi_iter.bi_sector = wsector + 2604 choose_data_offset(r10_bio, rdev); 2605 wbio->bi_bdev = rdev->bdev; 2606 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2607 2608 if (submit_bio_wait(wbio) < 0) 2609 /* Failure! */ 2610 ok = rdev_set_badblocks(rdev, wsector, 2611 sectors, 0) 2612 && ok; 2613 2614 bio_put(wbio); 2615 sect_to_write -= sectors; 2616 sector += sectors; 2617 sectors = block_sectors; 2618 } 2619 return ok; 2620 } 2621 2622 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2623 { 2624 int slot = r10_bio->read_slot; 2625 struct bio *bio; 2626 struct r10conf *conf = mddev->private; 2627 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2628 char b[BDEVNAME_SIZE]; 2629 unsigned long do_sync; 2630 int max_sectors; 2631 dev_t bio_dev; 2632 sector_t bio_last_sector; 2633 2634 /* we got a read error. Maybe the drive is bad. Maybe just 2635 * the block and we can fix it. 2636 * We freeze all other IO, and try reading the block from 2637 * other devices. When we find one, we re-write 2638 * and check it that fixes the read error. 2639 * This is all done synchronously while the array is 2640 * frozen. 2641 */ 2642 bio = r10_bio->devs[slot].bio; 2643 bdevname(bio->bi_bdev, b); 2644 bio_dev = bio->bi_bdev->bd_dev; 2645 bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors; 2646 bio_put(bio); 2647 r10_bio->devs[slot].bio = NULL; 2648 2649 if (mddev->ro) 2650 r10_bio->devs[slot].bio = IO_BLOCKED; 2651 else if (!test_bit(FailFast, &rdev->flags)) { 2652 freeze_array(conf, 1); 2653 fix_read_error(conf, mddev, r10_bio); 2654 unfreeze_array(conf); 2655 } else 2656 md_error(mddev, rdev); 2657 2658 rdev_dec_pending(rdev, mddev); 2659 2660 read_more: 2661 rdev = read_balance(conf, r10_bio, &max_sectors); 2662 if (rdev == NULL) { 2663 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 2664 mdname(mddev), b, 2665 (unsigned long long)r10_bio->sector); 2666 raid_end_bio_io(r10_bio); 2667 return; 2668 } 2669 2670 do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC); 2671 slot = r10_bio->read_slot; 2672 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 2673 mdname(mddev), 2674 bdevname(rdev->bdev, b), 2675 (unsigned long long)r10_bio->sector); 2676 bio = bio_clone_fast(r10_bio->master_bio, GFP_NOIO, mddev->bio_set); 2677 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors); 2678 r10_bio->devs[slot].bio = bio; 2679 r10_bio->devs[slot].rdev = rdev; 2680 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr 2681 + choose_data_offset(r10_bio, rdev); 2682 bio->bi_bdev = rdev->bdev; 2683 bio_set_op_attrs(bio, REQ_OP_READ, do_sync); 2684 if (test_bit(FailFast, &rdev->flags) && 2685 test_bit(R10BIO_FailFast, &r10_bio->state)) 2686 bio->bi_opf |= MD_FAILFAST; 2687 bio->bi_private = r10_bio; 2688 bio->bi_end_io = raid10_end_read_request; 2689 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), 2690 bio, bio_dev, 2691 bio_last_sector - r10_bio->sectors); 2692 2693 if (max_sectors < r10_bio->sectors) { 2694 /* Drat - have to split this up more */ 2695 struct bio *mbio = r10_bio->master_bio; 2696 int sectors_handled = 2697 r10_bio->sector + max_sectors 2698 - mbio->bi_iter.bi_sector; 2699 r10_bio->sectors = max_sectors; 2700 spin_lock_irq(&conf->device_lock); 2701 if (mbio->bi_phys_segments == 0) 2702 mbio->bi_phys_segments = 2; 2703 else 2704 mbio->bi_phys_segments++; 2705 spin_unlock_irq(&conf->device_lock); 2706 generic_make_request(bio); 2707 2708 r10_bio = mempool_alloc(conf->r10bio_pool, 2709 GFP_NOIO); 2710 r10_bio->master_bio = mbio; 2711 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2712 r10_bio->state = 0; 2713 set_bit(R10BIO_ReadError, 2714 &r10_bio->state); 2715 r10_bio->mddev = mddev; 2716 r10_bio->sector = mbio->bi_iter.bi_sector 2717 + sectors_handled; 2718 2719 goto read_more; 2720 } else 2721 generic_make_request(bio); 2722 } 2723 2724 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2725 { 2726 /* Some sort of write request has finished and it 2727 * succeeded in writing where we thought there was a 2728 * bad block. So forget the bad block. 2729 * Or possibly if failed and we need to record 2730 * a bad block. 2731 */ 2732 int m; 2733 struct md_rdev *rdev; 2734 2735 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2736 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2737 for (m = 0; m < conf->copies; m++) { 2738 int dev = r10_bio->devs[m].devnum; 2739 rdev = conf->mirrors[dev].rdev; 2740 if (r10_bio->devs[m].bio == NULL) 2741 continue; 2742 if (!r10_bio->devs[m].bio->bi_error) { 2743 rdev_clear_badblocks( 2744 rdev, 2745 r10_bio->devs[m].addr, 2746 r10_bio->sectors, 0); 2747 } else { 2748 if (!rdev_set_badblocks( 2749 rdev, 2750 r10_bio->devs[m].addr, 2751 r10_bio->sectors, 0)) 2752 md_error(conf->mddev, rdev); 2753 } 2754 rdev = conf->mirrors[dev].replacement; 2755 if (r10_bio->devs[m].repl_bio == NULL) 2756 continue; 2757 2758 if (!r10_bio->devs[m].repl_bio->bi_error) { 2759 rdev_clear_badblocks( 2760 rdev, 2761 r10_bio->devs[m].addr, 2762 r10_bio->sectors, 0); 2763 } else { 2764 if (!rdev_set_badblocks( 2765 rdev, 2766 r10_bio->devs[m].addr, 2767 r10_bio->sectors, 0)) 2768 md_error(conf->mddev, rdev); 2769 } 2770 } 2771 put_buf(r10_bio); 2772 } else { 2773 bool fail = false; 2774 for (m = 0; m < conf->copies; m++) { 2775 int dev = r10_bio->devs[m].devnum; 2776 struct bio *bio = r10_bio->devs[m].bio; 2777 rdev = conf->mirrors[dev].rdev; 2778 if (bio == IO_MADE_GOOD) { 2779 rdev_clear_badblocks( 2780 rdev, 2781 r10_bio->devs[m].addr, 2782 r10_bio->sectors, 0); 2783 rdev_dec_pending(rdev, conf->mddev); 2784 } else if (bio != NULL && bio->bi_error) { 2785 fail = true; 2786 if (!narrow_write_error(r10_bio, m)) { 2787 md_error(conf->mddev, rdev); 2788 set_bit(R10BIO_Degraded, 2789 &r10_bio->state); 2790 } 2791 rdev_dec_pending(rdev, conf->mddev); 2792 } 2793 bio = r10_bio->devs[m].repl_bio; 2794 rdev = conf->mirrors[dev].replacement; 2795 if (rdev && bio == IO_MADE_GOOD) { 2796 rdev_clear_badblocks( 2797 rdev, 2798 r10_bio->devs[m].addr, 2799 r10_bio->sectors, 0); 2800 rdev_dec_pending(rdev, conf->mddev); 2801 } 2802 } 2803 if (fail) { 2804 spin_lock_irq(&conf->device_lock); 2805 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2806 conf->nr_queued++; 2807 spin_unlock_irq(&conf->device_lock); 2808 md_wakeup_thread(conf->mddev->thread); 2809 } else { 2810 if (test_bit(R10BIO_WriteError, 2811 &r10_bio->state)) 2812 close_write(r10_bio); 2813 raid_end_bio_io(r10_bio); 2814 } 2815 } 2816 } 2817 2818 static void raid10d(struct md_thread *thread) 2819 { 2820 struct mddev *mddev = thread->mddev; 2821 struct r10bio *r10_bio; 2822 unsigned long flags; 2823 struct r10conf *conf = mddev->private; 2824 struct list_head *head = &conf->retry_list; 2825 struct blk_plug plug; 2826 2827 md_check_recovery(mddev); 2828 2829 if (!list_empty_careful(&conf->bio_end_io_list) && 2830 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2831 LIST_HEAD(tmp); 2832 spin_lock_irqsave(&conf->device_lock, flags); 2833 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2834 while (!list_empty(&conf->bio_end_io_list)) { 2835 list_move(conf->bio_end_io_list.prev, &tmp); 2836 conf->nr_queued--; 2837 } 2838 } 2839 spin_unlock_irqrestore(&conf->device_lock, flags); 2840 while (!list_empty(&tmp)) { 2841 r10_bio = list_first_entry(&tmp, struct r10bio, 2842 retry_list); 2843 list_del(&r10_bio->retry_list); 2844 if (mddev->degraded) 2845 set_bit(R10BIO_Degraded, &r10_bio->state); 2846 2847 if (test_bit(R10BIO_WriteError, 2848 &r10_bio->state)) 2849 close_write(r10_bio); 2850 raid_end_bio_io(r10_bio); 2851 } 2852 } 2853 2854 blk_start_plug(&plug); 2855 for (;;) { 2856 2857 flush_pending_writes(conf); 2858 2859 spin_lock_irqsave(&conf->device_lock, flags); 2860 if (list_empty(head)) { 2861 spin_unlock_irqrestore(&conf->device_lock, flags); 2862 break; 2863 } 2864 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2865 list_del(head->prev); 2866 conf->nr_queued--; 2867 spin_unlock_irqrestore(&conf->device_lock, flags); 2868 2869 mddev = r10_bio->mddev; 2870 conf = mddev->private; 2871 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2872 test_bit(R10BIO_WriteError, &r10_bio->state)) 2873 handle_write_completed(conf, r10_bio); 2874 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2875 reshape_request_write(mddev, r10_bio); 2876 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2877 sync_request_write(mddev, r10_bio); 2878 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2879 recovery_request_write(mddev, r10_bio); 2880 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2881 handle_read_error(mddev, r10_bio); 2882 else { 2883 /* just a partial read to be scheduled from a 2884 * separate context 2885 */ 2886 int slot = r10_bio->read_slot; 2887 generic_make_request(r10_bio->devs[slot].bio); 2888 } 2889 2890 cond_resched(); 2891 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2892 md_check_recovery(mddev); 2893 } 2894 blk_finish_plug(&plug); 2895 } 2896 2897 static int init_resync(struct r10conf *conf) 2898 { 2899 int buffs; 2900 int i; 2901 2902 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2903 BUG_ON(conf->r10buf_pool); 2904 conf->have_replacement = 0; 2905 for (i = 0; i < conf->geo.raid_disks; i++) 2906 if (conf->mirrors[i].replacement) 2907 conf->have_replacement = 1; 2908 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2909 if (!conf->r10buf_pool) 2910 return -ENOMEM; 2911 conf->next_resync = 0; 2912 return 0; 2913 } 2914 2915 /* 2916 * perform a "sync" on one "block" 2917 * 2918 * We need to make sure that no normal I/O request - particularly write 2919 * requests - conflict with active sync requests. 2920 * 2921 * This is achieved by tracking pending requests and a 'barrier' concept 2922 * that can be installed to exclude normal IO requests. 2923 * 2924 * Resync and recovery are handled very differently. 2925 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2926 * 2927 * For resync, we iterate over virtual addresses, read all copies, 2928 * and update if there are differences. If only one copy is live, 2929 * skip it. 2930 * For recovery, we iterate over physical addresses, read a good 2931 * value for each non-in_sync drive, and over-write. 2932 * 2933 * So, for recovery we may have several outstanding complex requests for a 2934 * given address, one for each out-of-sync device. We model this by allocating 2935 * a number of r10_bio structures, one for each out-of-sync device. 2936 * As we setup these structures, we collect all bio's together into a list 2937 * which we then process collectively to add pages, and then process again 2938 * to pass to generic_make_request. 2939 * 2940 * The r10_bio structures are linked using a borrowed master_bio pointer. 2941 * This link is counted in ->remaining. When the r10_bio that points to NULL 2942 * has its remaining count decremented to 0, the whole complex operation 2943 * is complete. 2944 * 2945 */ 2946 2947 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2948 int *skipped) 2949 { 2950 struct r10conf *conf = mddev->private; 2951 struct r10bio *r10_bio; 2952 struct bio *biolist = NULL, *bio; 2953 sector_t max_sector, nr_sectors; 2954 int i; 2955 int max_sync; 2956 sector_t sync_blocks; 2957 sector_t sectors_skipped = 0; 2958 int chunks_skipped = 0; 2959 sector_t chunk_mask = conf->geo.chunk_mask; 2960 2961 if (!conf->r10buf_pool) 2962 if (init_resync(conf)) 2963 return 0; 2964 2965 /* 2966 * Allow skipping a full rebuild for incremental assembly 2967 * of a clean array, like RAID1 does. 2968 */ 2969 if (mddev->bitmap == NULL && 2970 mddev->recovery_cp == MaxSector && 2971 mddev->reshape_position == MaxSector && 2972 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2973 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2974 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2975 conf->fullsync == 0) { 2976 *skipped = 1; 2977 return mddev->dev_sectors - sector_nr; 2978 } 2979 2980 skipped: 2981 max_sector = mddev->dev_sectors; 2982 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2983 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2984 max_sector = mddev->resync_max_sectors; 2985 if (sector_nr >= max_sector) { 2986 /* If we aborted, we need to abort the 2987 * sync on the 'current' bitmap chucks (there can 2988 * be several when recovering multiple devices). 2989 * as we may have started syncing it but not finished. 2990 * We can find the current address in 2991 * mddev->curr_resync, but for recovery, 2992 * we need to convert that to several 2993 * virtual addresses. 2994 */ 2995 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2996 end_reshape(conf); 2997 close_sync(conf); 2998 return 0; 2999 } 3000 3001 if (mddev->curr_resync < max_sector) { /* aborted */ 3002 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3003 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3004 &sync_blocks, 1); 3005 else for (i = 0; i < conf->geo.raid_disks; i++) { 3006 sector_t sect = 3007 raid10_find_virt(conf, mddev->curr_resync, i); 3008 bitmap_end_sync(mddev->bitmap, sect, 3009 &sync_blocks, 1); 3010 } 3011 } else { 3012 /* completed sync */ 3013 if ((!mddev->bitmap || conf->fullsync) 3014 && conf->have_replacement 3015 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3016 /* Completed a full sync so the replacements 3017 * are now fully recovered. 3018 */ 3019 rcu_read_lock(); 3020 for (i = 0; i < conf->geo.raid_disks; i++) { 3021 struct md_rdev *rdev = 3022 rcu_dereference(conf->mirrors[i].replacement); 3023 if (rdev) 3024 rdev->recovery_offset = MaxSector; 3025 } 3026 rcu_read_unlock(); 3027 } 3028 conf->fullsync = 0; 3029 } 3030 bitmap_close_sync(mddev->bitmap); 3031 close_sync(conf); 3032 *skipped = 1; 3033 return sectors_skipped; 3034 } 3035 3036 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3037 return reshape_request(mddev, sector_nr, skipped); 3038 3039 if (chunks_skipped >= conf->geo.raid_disks) { 3040 /* if there has been nothing to do on any drive, 3041 * then there is nothing to do at all.. 3042 */ 3043 *skipped = 1; 3044 return (max_sector - sector_nr) + sectors_skipped; 3045 } 3046 3047 if (max_sector > mddev->resync_max) 3048 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3049 3050 /* make sure whole request will fit in a chunk - if chunks 3051 * are meaningful 3052 */ 3053 if (conf->geo.near_copies < conf->geo.raid_disks && 3054 max_sector > (sector_nr | chunk_mask)) 3055 max_sector = (sector_nr | chunk_mask) + 1; 3056 3057 /* 3058 * If there is non-resync activity waiting for a turn, then let it 3059 * though before starting on this new sync request. 3060 */ 3061 if (conf->nr_waiting) 3062 schedule_timeout_uninterruptible(1); 3063 3064 /* Again, very different code for resync and recovery. 3065 * Both must result in an r10bio with a list of bios that 3066 * have bi_end_io, bi_sector, bi_bdev set, 3067 * and bi_private set to the r10bio. 3068 * For recovery, we may actually create several r10bios 3069 * with 2 bios in each, that correspond to the bios in the main one. 3070 * In this case, the subordinate r10bios link back through a 3071 * borrowed master_bio pointer, and the counter in the master 3072 * includes a ref from each subordinate. 3073 */ 3074 /* First, we decide what to do and set ->bi_end_io 3075 * To end_sync_read if we want to read, and 3076 * end_sync_write if we will want to write. 3077 */ 3078 3079 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3080 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3081 /* recovery... the complicated one */ 3082 int j; 3083 r10_bio = NULL; 3084 3085 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3086 int still_degraded; 3087 struct r10bio *rb2; 3088 sector_t sect; 3089 int must_sync; 3090 int any_working; 3091 struct raid10_info *mirror = &conf->mirrors[i]; 3092 struct md_rdev *mrdev, *mreplace; 3093 3094 rcu_read_lock(); 3095 mrdev = rcu_dereference(mirror->rdev); 3096 mreplace = rcu_dereference(mirror->replacement); 3097 3098 if ((mrdev == NULL || 3099 test_bit(Faulty, &mrdev->flags) || 3100 test_bit(In_sync, &mrdev->flags)) && 3101 (mreplace == NULL || 3102 test_bit(Faulty, &mreplace->flags))) { 3103 rcu_read_unlock(); 3104 continue; 3105 } 3106 3107 still_degraded = 0; 3108 /* want to reconstruct this device */ 3109 rb2 = r10_bio; 3110 sect = raid10_find_virt(conf, sector_nr, i); 3111 if (sect >= mddev->resync_max_sectors) { 3112 /* last stripe is not complete - don't 3113 * try to recover this sector. 3114 */ 3115 rcu_read_unlock(); 3116 continue; 3117 } 3118 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3119 mreplace = NULL; 3120 /* Unless we are doing a full sync, or a replacement 3121 * we only need to recover the block if it is set in 3122 * the bitmap 3123 */ 3124 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3125 &sync_blocks, 1); 3126 if (sync_blocks < max_sync) 3127 max_sync = sync_blocks; 3128 if (!must_sync && 3129 mreplace == NULL && 3130 !conf->fullsync) { 3131 /* yep, skip the sync_blocks here, but don't assume 3132 * that there will never be anything to do here 3133 */ 3134 chunks_skipped = -1; 3135 rcu_read_unlock(); 3136 continue; 3137 } 3138 atomic_inc(&mrdev->nr_pending); 3139 if (mreplace) 3140 atomic_inc(&mreplace->nr_pending); 3141 rcu_read_unlock(); 3142 3143 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3144 r10_bio->state = 0; 3145 raise_barrier(conf, rb2 != NULL); 3146 atomic_set(&r10_bio->remaining, 0); 3147 3148 r10_bio->master_bio = (struct bio*)rb2; 3149 if (rb2) 3150 atomic_inc(&rb2->remaining); 3151 r10_bio->mddev = mddev; 3152 set_bit(R10BIO_IsRecover, &r10_bio->state); 3153 r10_bio->sector = sect; 3154 3155 raid10_find_phys(conf, r10_bio); 3156 3157 /* Need to check if the array will still be 3158 * degraded 3159 */ 3160 rcu_read_lock(); 3161 for (j = 0; j < conf->geo.raid_disks; j++) { 3162 struct md_rdev *rdev = rcu_dereference( 3163 conf->mirrors[j].rdev); 3164 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3165 still_degraded = 1; 3166 break; 3167 } 3168 } 3169 3170 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3171 &sync_blocks, still_degraded); 3172 3173 any_working = 0; 3174 for (j=0; j<conf->copies;j++) { 3175 int k; 3176 int d = r10_bio->devs[j].devnum; 3177 sector_t from_addr, to_addr; 3178 struct md_rdev *rdev = 3179 rcu_dereference(conf->mirrors[d].rdev); 3180 sector_t sector, first_bad; 3181 int bad_sectors; 3182 if (!rdev || 3183 !test_bit(In_sync, &rdev->flags)) 3184 continue; 3185 /* This is where we read from */ 3186 any_working = 1; 3187 sector = r10_bio->devs[j].addr; 3188 3189 if (is_badblock(rdev, sector, max_sync, 3190 &first_bad, &bad_sectors)) { 3191 if (first_bad > sector) 3192 max_sync = first_bad - sector; 3193 else { 3194 bad_sectors -= (sector 3195 - first_bad); 3196 if (max_sync > bad_sectors) 3197 max_sync = bad_sectors; 3198 continue; 3199 } 3200 } 3201 bio = r10_bio->devs[0].bio; 3202 bio_reset(bio); 3203 bio->bi_next = biolist; 3204 biolist = bio; 3205 bio->bi_private = r10_bio; 3206 bio->bi_end_io = end_sync_read; 3207 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3208 if (test_bit(FailFast, &rdev->flags)) 3209 bio->bi_opf |= MD_FAILFAST; 3210 from_addr = r10_bio->devs[j].addr; 3211 bio->bi_iter.bi_sector = from_addr + 3212 rdev->data_offset; 3213 bio->bi_bdev = rdev->bdev; 3214 atomic_inc(&rdev->nr_pending); 3215 /* and we write to 'i' (if not in_sync) */ 3216 3217 for (k=0; k<conf->copies; k++) 3218 if (r10_bio->devs[k].devnum == i) 3219 break; 3220 BUG_ON(k == conf->copies); 3221 to_addr = r10_bio->devs[k].addr; 3222 r10_bio->devs[0].devnum = d; 3223 r10_bio->devs[0].addr = from_addr; 3224 r10_bio->devs[1].devnum = i; 3225 r10_bio->devs[1].addr = to_addr; 3226 3227 if (!test_bit(In_sync, &mrdev->flags)) { 3228 bio = r10_bio->devs[1].bio; 3229 bio_reset(bio); 3230 bio->bi_next = biolist; 3231 biolist = bio; 3232 bio->bi_private = r10_bio; 3233 bio->bi_end_io = end_sync_write; 3234 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3235 bio->bi_iter.bi_sector = to_addr 3236 + mrdev->data_offset; 3237 bio->bi_bdev = mrdev->bdev; 3238 atomic_inc(&r10_bio->remaining); 3239 } else 3240 r10_bio->devs[1].bio->bi_end_io = NULL; 3241 3242 /* and maybe write to replacement */ 3243 bio = r10_bio->devs[1].repl_bio; 3244 if (bio) 3245 bio->bi_end_io = NULL; 3246 /* Note: if mreplace != NULL, then bio 3247 * cannot be NULL as r10buf_pool_alloc will 3248 * have allocated it. 3249 * So the second test here is pointless. 3250 * But it keeps semantic-checkers happy, and 3251 * this comment keeps human reviewers 3252 * happy. 3253 */ 3254 if (mreplace == NULL || bio == NULL || 3255 test_bit(Faulty, &mreplace->flags)) 3256 break; 3257 bio_reset(bio); 3258 bio->bi_next = biolist; 3259 biolist = bio; 3260 bio->bi_private = r10_bio; 3261 bio->bi_end_io = end_sync_write; 3262 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3263 bio->bi_iter.bi_sector = to_addr + 3264 mreplace->data_offset; 3265 bio->bi_bdev = mreplace->bdev; 3266 atomic_inc(&r10_bio->remaining); 3267 break; 3268 } 3269 rcu_read_unlock(); 3270 if (j == conf->copies) { 3271 /* Cannot recover, so abort the recovery or 3272 * record a bad block */ 3273 if (any_working) { 3274 /* problem is that there are bad blocks 3275 * on other device(s) 3276 */ 3277 int k; 3278 for (k = 0; k < conf->copies; k++) 3279 if (r10_bio->devs[k].devnum == i) 3280 break; 3281 if (!test_bit(In_sync, 3282 &mrdev->flags) 3283 && !rdev_set_badblocks( 3284 mrdev, 3285 r10_bio->devs[k].addr, 3286 max_sync, 0)) 3287 any_working = 0; 3288 if (mreplace && 3289 !rdev_set_badblocks( 3290 mreplace, 3291 r10_bio->devs[k].addr, 3292 max_sync, 0)) 3293 any_working = 0; 3294 } 3295 if (!any_working) { 3296 if (!test_and_set_bit(MD_RECOVERY_INTR, 3297 &mddev->recovery)) 3298 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3299 mdname(mddev)); 3300 mirror->recovery_disabled 3301 = mddev->recovery_disabled; 3302 } 3303 put_buf(r10_bio); 3304 if (rb2) 3305 atomic_dec(&rb2->remaining); 3306 r10_bio = rb2; 3307 rdev_dec_pending(mrdev, mddev); 3308 if (mreplace) 3309 rdev_dec_pending(mreplace, mddev); 3310 break; 3311 } 3312 rdev_dec_pending(mrdev, mddev); 3313 if (mreplace) 3314 rdev_dec_pending(mreplace, mddev); 3315 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3316 /* Only want this if there is elsewhere to 3317 * read from. 'j' is currently the first 3318 * readable copy. 3319 */ 3320 int targets = 1; 3321 for (; j < conf->copies; j++) { 3322 int d = r10_bio->devs[j].devnum; 3323 if (conf->mirrors[d].rdev && 3324 test_bit(In_sync, 3325 &conf->mirrors[d].rdev->flags)) 3326 targets++; 3327 } 3328 if (targets == 1) 3329 r10_bio->devs[0].bio->bi_opf 3330 &= ~MD_FAILFAST; 3331 } 3332 } 3333 if (biolist == NULL) { 3334 while (r10_bio) { 3335 struct r10bio *rb2 = r10_bio; 3336 r10_bio = (struct r10bio*) rb2->master_bio; 3337 rb2->master_bio = NULL; 3338 put_buf(rb2); 3339 } 3340 goto giveup; 3341 } 3342 } else { 3343 /* resync. Schedule a read for every block at this virt offset */ 3344 int count = 0; 3345 3346 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0); 3347 3348 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3349 &sync_blocks, mddev->degraded) && 3350 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3351 &mddev->recovery)) { 3352 /* We can skip this block */ 3353 *skipped = 1; 3354 return sync_blocks + sectors_skipped; 3355 } 3356 if (sync_blocks < max_sync) 3357 max_sync = sync_blocks; 3358 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3359 r10_bio->state = 0; 3360 3361 r10_bio->mddev = mddev; 3362 atomic_set(&r10_bio->remaining, 0); 3363 raise_barrier(conf, 0); 3364 conf->next_resync = sector_nr; 3365 3366 r10_bio->master_bio = NULL; 3367 r10_bio->sector = sector_nr; 3368 set_bit(R10BIO_IsSync, &r10_bio->state); 3369 raid10_find_phys(conf, r10_bio); 3370 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3371 3372 for (i = 0; i < conf->copies; i++) { 3373 int d = r10_bio->devs[i].devnum; 3374 sector_t first_bad, sector; 3375 int bad_sectors; 3376 struct md_rdev *rdev; 3377 3378 if (r10_bio->devs[i].repl_bio) 3379 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3380 3381 bio = r10_bio->devs[i].bio; 3382 bio_reset(bio); 3383 bio->bi_error = -EIO; 3384 rcu_read_lock(); 3385 rdev = rcu_dereference(conf->mirrors[d].rdev); 3386 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3387 rcu_read_unlock(); 3388 continue; 3389 } 3390 sector = r10_bio->devs[i].addr; 3391 if (is_badblock(rdev, sector, max_sync, 3392 &first_bad, &bad_sectors)) { 3393 if (first_bad > sector) 3394 max_sync = first_bad - sector; 3395 else { 3396 bad_sectors -= (sector - first_bad); 3397 if (max_sync > bad_sectors) 3398 max_sync = bad_sectors; 3399 rcu_read_unlock(); 3400 continue; 3401 } 3402 } 3403 atomic_inc(&rdev->nr_pending); 3404 atomic_inc(&r10_bio->remaining); 3405 bio->bi_next = biolist; 3406 biolist = bio; 3407 bio->bi_private = r10_bio; 3408 bio->bi_end_io = end_sync_read; 3409 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3410 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 3411 bio->bi_opf |= MD_FAILFAST; 3412 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3413 bio->bi_bdev = rdev->bdev; 3414 count++; 3415 3416 rdev = rcu_dereference(conf->mirrors[d].replacement); 3417 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3418 rcu_read_unlock(); 3419 continue; 3420 } 3421 atomic_inc(&rdev->nr_pending); 3422 rcu_read_unlock(); 3423 3424 /* Need to set up for writing to the replacement */ 3425 bio = r10_bio->devs[i].repl_bio; 3426 bio_reset(bio); 3427 bio->bi_error = -EIO; 3428 3429 sector = r10_bio->devs[i].addr; 3430 bio->bi_next = biolist; 3431 biolist = bio; 3432 bio->bi_private = r10_bio; 3433 bio->bi_end_io = end_sync_write; 3434 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3435 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 3436 bio->bi_opf |= MD_FAILFAST; 3437 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3438 bio->bi_bdev = rdev->bdev; 3439 count++; 3440 } 3441 3442 if (count < 2) { 3443 for (i=0; i<conf->copies; i++) { 3444 int d = r10_bio->devs[i].devnum; 3445 if (r10_bio->devs[i].bio->bi_end_io) 3446 rdev_dec_pending(conf->mirrors[d].rdev, 3447 mddev); 3448 if (r10_bio->devs[i].repl_bio && 3449 r10_bio->devs[i].repl_bio->bi_end_io) 3450 rdev_dec_pending( 3451 conf->mirrors[d].replacement, 3452 mddev); 3453 } 3454 put_buf(r10_bio); 3455 biolist = NULL; 3456 goto giveup; 3457 } 3458 } 3459 3460 nr_sectors = 0; 3461 if (sector_nr + max_sync < max_sector) 3462 max_sector = sector_nr + max_sync; 3463 do { 3464 struct page *page; 3465 int len = PAGE_SIZE; 3466 if (sector_nr + (len>>9) > max_sector) 3467 len = (max_sector - sector_nr) << 9; 3468 if (len == 0) 3469 break; 3470 for (bio= biolist ; bio ; bio=bio->bi_next) { 3471 struct bio *bio2; 3472 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3473 if (bio_add_page(bio, page, len, 0)) 3474 continue; 3475 3476 /* stop here */ 3477 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3478 for (bio2 = biolist; 3479 bio2 && bio2 != bio; 3480 bio2 = bio2->bi_next) { 3481 /* remove last page from this bio */ 3482 bio2->bi_vcnt--; 3483 bio2->bi_iter.bi_size -= len; 3484 bio_clear_flag(bio2, BIO_SEG_VALID); 3485 } 3486 goto bio_full; 3487 } 3488 nr_sectors += len>>9; 3489 sector_nr += len>>9; 3490 } while (biolist->bi_vcnt < RESYNC_PAGES); 3491 bio_full: 3492 r10_bio->sectors = nr_sectors; 3493 3494 while (biolist) { 3495 bio = biolist; 3496 biolist = biolist->bi_next; 3497 3498 bio->bi_next = NULL; 3499 r10_bio = bio->bi_private; 3500 r10_bio->sectors = nr_sectors; 3501 3502 if (bio->bi_end_io == end_sync_read) { 3503 md_sync_acct(bio->bi_bdev, nr_sectors); 3504 bio->bi_error = 0; 3505 generic_make_request(bio); 3506 } 3507 } 3508 3509 if (sectors_skipped) 3510 /* pretend they weren't skipped, it makes 3511 * no important difference in this case 3512 */ 3513 md_done_sync(mddev, sectors_skipped, 1); 3514 3515 return sectors_skipped + nr_sectors; 3516 giveup: 3517 /* There is nowhere to write, so all non-sync 3518 * drives must be failed or in resync, all drives 3519 * have a bad block, so try the next chunk... 3520 */ 3521 if (sector_nr + max_sync < max_sector) 3522 max_sector = sector_nr + max_sync; 3523 3524 sectors_skipped += (max_sector - sector_nr); 3525 chunks_skipped ++; 3526 sector_nr = max_sector; 3527 goto skipped; 3528 } 3529 3530 static sector_t 3531 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3532 { 3533 sector_t size; 3534 struct r10conf *conf = mddev->private; 3535 3536 if (!raid_disks) 3537 raid_disks = min(conf->geo.raid_disks, 3538 conf->prev.raid_disks); 3539 if (!sectors) 3540 sectors = conf->dev_sectors; 3541 3542 size = sectors >> conf->geo.chunk_shift; 3543 sector_div(size, conf->geo.far_copies); 3544 size = size * raid_disks; 3545 sector_div(size, conf->geo.near_copies); 3546 3547 return size << conf->geo.chunk_shift; 3548 } 3549 3550 static void calc_sectors(struct r10conf *conf, sector_t size) 3551 { 3552 /* Calculate the number of sectors-per-device that will 3553 * actually be used, and set conf->dev_sectors and 3554 * conf->stride 3555 */ 3556 3557 size = size >> conf->geo.chunk_shift; 3558 sector_div(size, conf->geo.far_copies); 3559 size = size * conf->geo.raid_disks; 3560 sector_div(size, conf->geo.near_copies); 3561 /* 'size' is now the number of chunks in the array */ 3562 /* calculate "used chunks per device" */ 3563 size = size * conf->copies; 3564 3565 /* We need to round up when dividing by raid_disks to 3566 * get the stride size. 3567 */ 3568 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3569 3570 conf->dev_sectors = size << conf->geo.chunk_shift; 3571 3572 if (conf->geo.far_offset) 3573 conf->geo.stride = 1 << conf->geo.chunk_shift; 3574 else { 3575 sector_div(size, conf->geo.far_copies); 3576 conf->geo.stride = size << conf->geo.chunk_shift; 3577 } 3578 } 3579 3580 enum geo_type {geo_new, geo_old, geo_start}; 3581 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3582 { 3583 int nc, fc, fo; 3584 int layout, chunk, disks; 3585 switch (new) { 3586 case geo_old: 3587 layout = mddev->layout; 3588 chunk = mddev->chunk_sectors; 3589 disks = mddev->raid_disks - mddev->delta_disks; 3590 break; 3591 case geo_new: 3592 layout = mddev->new_layout; 3593 chunk = mddev->new_chunk_sectors; 3594 disks = mddev->raid_disks; 3595 break; 3596 default: /* avoid 'may be unused' warnings */ 3597 case geo_start: /* new when starting reshape - raid_disks not 3598 * updated yet. */ 3599 layout = mddev->new_layout; 3600 chunk = mddev->new_chunk_sectors; 3601 disks = mddev->raid_disks + mddev->delta_disks; 3602 break; 3603 } 3604 if (layout >> 19) 3605 return -1; 3606 if (chunk < (PAGE_SIZE >> 9) || 3607 !is_power_of_2(chunk)) 3608 return -2; 3609 nc = layout & 255; 3610 fc = (layout >> 8) & 255; 3611 fo = layout & (1<<16); 3612 geo->raid_disks = disks; 3613 geo->near_copies = nc; 3614 geo->far_copies = fc; 3615 geo->far_offset = fo; 3616 switch (layout >> 17) { 3617 case 0: /* original layout. simple but not always optimal */ 3618 geo->far_set_size = disks; 3619 break; 3620 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3621 * actually using this, but leave code here just in case.*/ 3622 geo->far_set_size = disks/fc; 3623 WARN(geo->far_set_size < fc, 3624 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3625 break; 3626 case 2: /* "improved" layout fixed to match documentation */ 3627 geo->far_set_size = fc * nc; 3628 break; 3629 default: /* Not a valid layout */ 3630 return -1; 3631 } 3632 geo->chunk_mask = chunk - 1; 3633 geo->chunk_shift = ffz(~chunk); 3634 return nc*fc; 3635 } 3636 3637 static struct r10conf *setup_conf(struct mddev *mddev) 3638 { 3639 struct r10conf *conf = NULL; 3640 int err = -EINVAL; 3641 struct geom geo; 3642 int copies; 3643 3644 copies = setup_geo(&geo, mddev, geo_new); 3645 3646 if (copies == -2) { 3647 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3648 mdname(mddev), PAGE_SIZE); 3649 goto out; 3650 } 3651 3652 if (copies < 2 || copies > mddev->raid_disks) { 3653 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3654 mdname(mddev), mddev->new_layout); 3655 goto out; 3656 } 3657 3658 err = -ENOMEM; 3659 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3660 if (!conf) 3661 goto out; 3662 3663 /* FIXME calc properly */ 3664 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3665 max(0,-mddev->delta_disks)), 3666 GFP_KERNEL); 3667 if (!conf->mirrors) 3668 goto out; 3669 3670 conf->tmppage = alloc_page(GFP_KERNEL); 3671 if (!conf->tmppage) 3672 goto out; 3673 3674 conf->geo = geo; 3675 conf->copies = copies; 3676 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3677 r10bio_pool_free, conf); 3678 if (!conf->r10bio_pool) 3679 goto out; 3680 3681 calc_sectors(conf, mddev->dev_sectors); 3682 if (mddev->reshape_position == MaxSector) { 3683 conf->prev = conf->geo; 3684 conf->reshape_progress = MaxSector; 3685 } else { 3686 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3687 err = -EINVAL; 3688 goto out; 3689 } 3690 conf->reshape_progress = mddev->reshape_position; 3691 if (conf->prev.far_offset) 3692 conf->prev.stride = 1 << conf->prev.chunk_shift; 3693 else 3694 /* far_copies must be 1 */ 3695 conf->prev.stride = conf->dev_sectors; 3696 } 3697 conf->reshape_safe = conf->reshape_progress; 3698 spin_lock_init(&conf->device_lock); 3699 INIT_LIST_HEAD(&conf->retry_list); 3700 INIT_LIST_HEAD(&conf->bio_end_io_list); 3701 3702 spin_lock_init(&conf->resync_lock); 3703 init_waitqueue_head(&conf->wait_barrier); 3704 atomic_set(&conf->nr_pending, 0); 3705 3706 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3707 if (!conf->thread) 3708 goto out; 3709 3710 conf->mddev = mddev; 3711 return conf; 3712 3713 out: 3714 if (conf) { 3715 mempool_destroy(conf->r10bio_pool); 3716 kfree(conf->mirrors); 3717 safe_put_page(conf->tmppage); 3718 kfree(conf); 3719 } 3720 return ERR_PTR(err); 3721 } 3722 3723 static int raid10_run(struct mddev *mddev) 3724 { 3725 struct r10conf *conf; 3726 int i, disk_idx, chunk_size; 3727 struct raid10_info *disk; 3728 struct md_rdev *rdev; 3729 sector_t size; 3730 sector_t min_offset_diff = 0; 3731 int first = 1; 3732 bool discard_supported = false; 3733 3734 if (mddev->private == NULL) { 3735 conf = setup_conf(mddev); 3736 if (IS_ERR(conf)) 3737 return PTR_ERR(conf); 3738 mddev->private = conf; 3739 } 3740 conf = mddev->private; 3741 if (!conf) 3742 goto out; 3743 3744 mddev->thread = conf->thread; 3745 conf->thread = NULL; 3746 3747 chunk_size = mddev->chunk_sectors << 9; 3748 if (mddev->queue) { 3749 blk_queue_max_discard_sectors(mddev->queue, 3750 mddev->chunk_sectors); 3751 blk_queue_max_write_same_sectors(mddev->queue, 0); 3752 blk_queue_io_min(mddev->queue, chunk_size); 3753 if (conf->geo.raid_disks % conf->geo.near_copies) 3754 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3755 else 3756 blk_queue_io_opt(mddev->queue, chunk_size * 3757 (conf->geo.raid_disks / conf->geo.near_copies)); 3758 } 3759 3760 rdev_for_each(rdev, mddev) { 3761 long long diff; 3762 struct request_queue *q; 3763 3764 disk_idx = rdev->raid_disk; 3765 if (disk_idx < 0) 3766 continue; 3767 if (disk_idx >= conf->geo.raid_disks && 3768 disk_idx >= conf->prev.raid_disks) 3769 continue; 3770 disk = conf->mirrors + disk_idx; 3771 3772 if (test_bit(Replacement, &rdev->flags)) { 3773 if (disk->replacement) 3774 goto out_free_conf; 3775 disk->replacement = rdev; 3776 } else { 3777 if (disk->rdev) 3778 goto out_free_conf; 3779 disk->rdev = rdev; 3780 } 3781 q = bdev_get_queue(rdev->bdev); 3782 diff = (rdev->new_data_offset - rdev->data_offset); 3783 if (!mddev->reshape_backwards) 3784 diff = -diff; 3785 if (diff < 0) 3786 diff = 0; 3787 if (first || diff < min_offset_diff) 3788 min_offset_diff = diff; 3789 3790 if (mddev->gendisk) 3791 disk_stack_limits(mddev->gendisk, rdev->bdev, 3792 rdev->data_offset << 9); 3793 3794 disk->head_position = 0; 3795 3796 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3797 discard_supported = true; 3798 } 3799 3800 if (mddev->queue) { 3801 if (discard_supported) 3802 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3803 mddev->queue); 3804 else 3805 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3806 mddev->queue); 3807 } 3808 /* need to check that every block has at least one working mirror */ 3809 if (!enough(conf, -1)) { 3810 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3811 mdname(mddev)); 3812 goto out_free_conf; 3813 } 3814 3815 if (conf->reshape_progress != MaxSector) { 3816 /* must ensure that shape change is supported */ 3817 if (conf->geo.far_copies != 1 && 3818 conf->geo.far_offset == 0) 3819 goto out_free_conf; 3820 if (conf->prev.far_copies != 1 && 3821 conf->prev.far_offset == 0) 3822 goto out_free_conf; 3823 } 3824 3825 mddev->degraded = 0; 3826 for (i = 0; 3827 i < conf->geo.raid_disks 3828 || i < conf->prev.raid_disks; 3829 i++) { 3830 3831 disk = conf->mirrors + i; 3832 3833 if (!disk->rdev && disk->replacement) { 3834 /* The replacement is all we have - use it */ 3835 disk->rdev = disk->replacement; 3836 disk->replacement = NULL; 3837 clear_bit(Replacement, &disk->rdev->flags); 3838 } 3839 3840 if (!disk->rdev || 3841 !test_bit(In_sync, &disk->rdev->flags)) { 3842 disk->head_position = 0; 3843 mddev->degraded++; 3844 if (disk->rdev && 3845 disk->rdev->saved_raid_disk < 0) 3846 conf->fullsync = 1; 3847 } 3848 disk->recovery_disabled = mddev->recovery_disabled - 1; 3849 } 3850 3851 if (mddev->recovery_cp != MaxSector) 3852 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3853 mdname(mddev)); 3854 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3855 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3856 conf->geo.raid_disks); 3857 /* 3858 * Ok, everything is just fine now 3859 */ 3860 mddev->dev_sectors = conf->dev_sectors; 3861 size = raid10_size(mddev, 0, 0); 3862 md_set_array_sectors(mddev, size); 3863 mddev->resync_max_sectors = size; 3864 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3865 3866 if (mddev->queue) { 3867 int stripe = conf->geo.raid_disks * 3868 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3869 3870 /* Calculate max read-ahead size. 3871 * We need to readahead at least twice a whole stripe.... 3872 * maybe... 3873 */ 3874 stripe /= conf->geo.near_copies; 3875 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3876 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3877 } 3878 3879 if (md_integrity_register(mddev)) 3880 goto out_free_conf; 3881 3882 if (conf->reshape_progress != MaxSector) { 3883 unsigned long before_length, after_length; 3884 3885 before_length = ((1 << conf->prev.chunk_shift) * 3886 conf->prev.far_copies); 3887 after_length = ((1 << conf->geo.chunk_shift) * 3888 conf->geo.far_copies); 3889 3890 if (max(before_length, after_length) > min_offset_diff) { 3891 /* This cannot work */ 3892 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3893 goto out_free_conf; 3894 } 3895 conf->offset_diff = min_offset_diff; 3896 3897 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3898 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3899 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3900 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3901 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3902 "reshape"); 3903 } 3904 3905 return 0; 3906 3907 out_free_conf: 3908 md_unregister_thread(&mddev->thread); 3909 mempool_destroy(conf->r10bio_pool); 3910 safe_put_page(conf->tmppage); 3911 kfree(conf->mirrors); 3912 kfree(conf); 3913 mddev->private = NULL; 3914 out: 3915 return -EIO; 3916 } 3917 3918 static void raid10_free(struct mddev *mddev, void *priv) 3919 { 3920 struct r10conf *conf = priv; 3921 3922 mempool_destroy(conf->r10bio_pool); 3923 safe_put_page(conf->tmppage); 3924 kfree(conf->mirrors); 3925 kfree(conf->mirrors_old); 3926 kfree(conf->mirrors_new); 3927 kfree(conf); 3928 } 3929 3930 static void raid10_quiesce(struct mddev *mddev, int state) 3931 { 3932 struct r10conf *conf = mddev->private; 3933 3934 switch(state) { 3935 case 1: 3936 raise_barrier(conf, 0); 3937 break; 3938 case 0: 3939 lower_barrier(conf); 3940 break; 3941 } 3942 } 3943 3944 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3945 { 3946 /* Resize of 'far' arrays is not supported. 3947 * For 'near' and 'offset' arrays we can set the 3948 * number of sectors used to be an appropriate multiple 3949 * of the chunk size. 3950 * For 'offset', this is far_copies*chunksize. 3951 * For 'near' the multiplier is the LCM of 3952 * near_copies and raid_disks. 3953 * So if far_copies > 1 && !far_offset, fail. 3954 * Else find LCM(raid_disks, near_copy)*far_copies and 3955 * multiply by chunk_size. Then round to this number. 3956 * This is mostly done by raid10_size() 3957 */ 3958 struct r10conf *conf = mddev->private; 3959 sector_t oldsize, size; 3960 3961 if (mddev->reshape_position != MaxSector) 3962 return -EBUSY; 3963 3964 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3965 return -EINVAL; 3966 3967 oldsize = raid10_size(mddev, 0, 0); 3968 size = raid10_size(mddev, sectors, 0); 3969 if (mddev->external_size && 3970 mddev->array_sectors > size) 3971 return -EINVAL; 3972 if (mddev->bitmap) { 3973 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3974 if (ret) 3975 return ret; 3976 } 3977 md_set_array_sectors(mddev, size); 3978 if (sectors > mddev->dev_sectors && 3979 mddev->recovery_cp > oldsize) { 3980 mddev->recovery_cp = oldsize; 3981 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3982 } 3983 calc_sectors(conf, sectors); 3984 mddev->dev_sectors = conf->dev_sectors; 3985 mddev->resync_max_sectors = size; 3986 return 0; 3987 } 3988 3989 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3990 { 3991 struct md_rdev *rdev; 3992 struct r10conf *conf; 3993 3994 if (mddev->degraded > 0) { 3995 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 3996 mdname(mddev)); 3997 return ERR_PTR(-EINVAL); 3998 } 3999 sector_div(size, devs); 4000 4001 /* Set new parameters */ 4002 mddev->new_level = 10; 4003 /* new layout: far_copies = 1, near_copies = 2 */ 4004 mddev->new_layout = (1<<8) + 2; 4005 mddev->new_chunk_sectors = mddev->chunk_sectors; 4006 mddev->delta_disks = mddev->raid_disks; 4007 mddev->raid_disks *= 2; 4008 /* make sure it will be not marked as dirty */ 4009 mddev->recovery_cp = MaxSector; 4010 mddev->dev_sectors = size; 4011 4012 conf = setup_conf(mddev); 4013 if (!IS_ERR(conf)) { 4014 rdev_for_each(rdev, mddev) 4015 if (rdev->raid_disk >= 0) { 4016 rdev->new_raid_disk = rdev->raid_disk * 2; 4017 rdev->sectors = size; 4018 } 4019 conf->barrier = 1; 4020 } 4021 4022 return conf; 4023 } 4024 4025 static void *raid10_takeover(struct mddev *mddev) 4026 { 4027 struct r0conf *raid0_conf; 4028 4029 /* raid10 can take over: 4030 * raid0 - providing it has only two drives 4031 */ 4032 if (mddev->level == 0) { 4033 /* for raid0 takeover only one zone is supported */ 4034 raid0_conf = mddev->private; 4035 if (raid0_conf->nr_strip_zones > 1) { 4036 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4037 mdname(mddev)); 4038 return ERR_PTR(-EINVAL); 4039 } 4040 return raid10_takeover_raid0(mddev, 4041 raid0_conf->strip_zone->zone_end, 4042 raid0_conf->strip_zone->nb_dev); 4043 } 4044 return ERR_PTR(-EINVAL); 4045 } 4046 4047 static int raid10_check_reshape(struct mddev *mddev) 4048 { 4049 /* Called when there is a request to change 4050 * - layout (to ->new_layout) 4051 * - chunk size (to ->new_chunk_sectors) 4052 * - raid_disks (by delta_disks) 4053 * or when trying to restart a reshape that was ongoing. 4054 * 4055 * We need to validate the request and possibly allocate 4056 * space if that might be an issue later. 4057 * 4058 * Currently we reject any reshape of a 'far' mode array, 4059 * allow chunk size to change if new is generally acceptable, 4060 * allow raid_disks to increase, and allow 4061 * a switch between 'near' mode and 'offset' mode. 4062 */ 4063 struct r10conf *conf = mddev->private; 4064 struct geom geo; 4065 4066 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4067 return -EINVAL; 4068 4069 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4070 /* mustn't change number of copies */ 4071 return -EINVAL; 4072 if (geo.far_copies > 1 && !geo.far_offset) 4073 /* Cannot switch to 'far' mode */ 4074 return -EINVAL; 4075 4076 if (mddev->array_sectors & geo.chunk_mask) 4077 /* not factor of array size */ 4078 return -EINVAL; 4079 4080 if (!enough(conf, -1)) 4081 return -EINVAL; 4082 4083 kfree(conf->mirrors_new); 4084 conf->mirrors_new = NULL; 4085 if (mddev->delta_disks > 0) { 4086 /* allocate new 'mirrors' list */ 4087 conf->mirrors_new = kzalloc( 4088 sizeof(struct raid10_info) 4089 *(mddev->raid_disks + 4090 mddev->delta_disks), 4091 GFP_KERNEL); 4092 if (!conf->mirrors_new) 4093 return -ENOMEM; 4094 } 4095 return 0; 4096 } 4097 4098 /* 4099 * Need to check if array has failed when deciding whether to: 4100 * - start an array 4101 * - remove non-faulty devices 4102 * - add a spare 4103 * - allow a reshape 4104 * This determination is simple when no reshape is happening. 4105 * However if there is a reshape, we need to carefully check 4106 * both the before and after sections. 4107 * This is because some failed devices may only affect one 4108 * of the two sections, and some non-in_sync devices may 4109 * be insync in the section most affected by failed devices. 4110 */ 4111 static int calc_degraded(struct r10conf *conf) 4112 { 4113 int degraded, degraded2; 4114 int i; 4115 4116 rcu_read_lock(); 4117 degraded = 0; 4118 /* 'prev' section first */ 4119 for (i = 0; i < conf->prev.raid_disks; i++) { 4120 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4121 if (!rdev || test_bit(Faulty, &rdev->flags)) 4122 degraded++; 4123 else if (!test_bit(In_sync, &rdev->flags)) 4124 /* When we can reduce the number of devices in 4125 * an array, this might not contribute to 4126 * 'degraded'. It does now. 4127 */ 4128 degraded++; 4129 } 4130 rcu_read_unlock(); 4131 if (conf->geo.raid_disks == conf->prev.raid_disks) 4132 return degraded; 4133 rcu_read_lock(); 4134 degraded2 = 0; 4135 for (i = 0; i < conf->geo.raid_disks; i++) { 4136 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4137 if (!rdev || test_bit(Faulty, &rdev->flags)) 4138 degraded2++; 4139 else if (!test_bit(In_sync, &rdev->flags)) { 4140 /* If reshape is increasing the number of devices, 4141 * this section has already been recovered, so 4142 * it doesn't contribute to degraded. 4143 * else it does. 4144 */ 4145 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4146 degraded2++; 4147 } 4148 } 4149 rcu_read_unlock(); 4150 if (degraded2 > degraded) 4151 return degraded2; 4152 return degraded; 4153 } 4154 4155 static int raid10_start_reshape(struct mddev *mddev) 4156 { 4157 /* A 'reshape' has been requested. This commits 4158 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4159 * This also checks if there are enough spares and adds them 4160 * to the array. 4161 * We currently require enough spares to make the final 4162 * array non-degraded. We also require that the difference 4163 * between old and new data_offset - on each device - is 4164 * enough that we never risk over-writing. 4165 */ 4166 4167 unsigned long before_length, after_length; 4168 sector_t min_offset_diff = 0; 4169 int first = 1; 4170 struct geom new; 4171 struct r10conf *conf = mddev->private; 4172 struct md_rdev *rdev; 4173 int spares = 0; 4174 int ret; 4175 4176 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4177 return -EBUSY; 4178 4179 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4180 return -EINVAL; 4181 4182 before_length = ((1 << conf->prev.chunk_shift) * 4183 conf->prev.far_copies); 4184 after_length = ((1 << conf->geo.chunk_shift) * 4185 conf->geo.far_copies); 4186 4187 rdev_for_each(rdev, mddev) { 4188 if (!test_bit(In_sync, &rdev->flags) 4189 && !test_bit(Faulty, &rdev->flags)) 4190 spares++; 4191 if (rdev->raid_disk >= 0) { 4192 long long diff = (rdev->new_data_offset 4193 - rdev->data_offset); 4194 if (!mddev->reshape_backwards) 4195 diff = -diff; 4196 if (diff < 0) 4197 diff = 0; 4198 if (first || diff < min_offset_diff) 4199 min_offset_diff = diff; 4200 } 4201 } 4202 4203 if (max(before_length, after_length) > min_offset_diff) 4204 return -EINVAL; 4205 4206 if (spares < mddev->delta_disks) 4207 return -EINVAL; 4208 4209 conf->offset_diff = min_offset_diff; 4210 spin_lock_irq(&conf->device_lock); 4211 if (conf->mirrors_new) { 4212 memcpy(conf->mirrors_new, conf->mirrors, 4213 sizeof(struct raid10_info)*conf->prev.raid_disks); 4214 smp_mb(); 4215 kfree(conf->mirrors_old); 4216 conf->mirrors_old = conf->mirrors; 4217 conf->mirrors = conf->mirrors_new; 4218 conf->mirrors_new = NULL; 4219 } 4220 setup_geo(&conf->geo, mddev, geo_start); 4221 smp_mb(); 4222 if (mddev->reshape_backwards) { 4223 sector_t size = raid10_size(mddev, 0, 0); 4224 if (size < mddev->array_sectors) { 4225 spin_unlock_irq(&conf->device_lock); 4226 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4227 mdname(mddev)); 4228 return -EINVAL; 4229 } 4230 mddev->resync_max_sectors = size; 4231 conf->reshape_progress = size; 4232 } else 4233 conf->reshape_progress = 0; 4234 conf->reshape_safe = conf->reshape_progress; 4235 spin_unlock_irq(&conf->device_lock); 4236 4237 if (mddev->delta_disks && mddev->bitmap) { 4238 ret = bitmap_resize(mddev->bitmap, 4239 raid10_size(mddev, 0, 4240 conf->geo.raid_disks), 4241 0, 0); 4242 if (ret) 4243 goto abort; 4244 } 4245 if (mddev->delta_disks > 0) { 4246 rdev_for_each(rdev, mddev) 4247 if (rdev->raid_disk < 0 && 4248 !test_bit(Faulty, &rdev->flags)) { 4249 if (raid10_add_disk(mddev, rdev) == 0) { 4250 if (rdev->raid_disk >= 4251 conf->prev.raid_disks) 4252 set_bit(In_sync, &rdev->flags); 4253 else 4254 rdev->recovery_offset = 0; 4255 4256 if (sysfs_link_rdev(mddev, rdev)) 4257 /* Failure here is OK */; 4258 } 4259 } else if (rdev->raid_disk >= conf->prev.raid_disks 4260 && !test_bit(Faulty, &rdev->flags)) { 4261 /* This is a spare that was manually added */ 4262 set_bit(In_sync, &rdev->flags); 4263 } 4264 } 4265 /* When a reshape changes the number of devices, 4266 * ->degraded is measured against the larger of the 4267 * pre and post numbers. 4268 */ 4269 spin_lock_irq(&conf->device_lock); 4270 mddev->degraded = calc_degraded(conf); 4271 spin_unlock_irq(&conf->device_lock); 4272 mddev->raid_disks = conf->geo.raid_disks; 4273 mddev->reshape_position = conf->reshape_progress; 4274 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4275 4276 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4277 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4278 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4279 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4280 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4281 4282 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4283 "reshape"); 4284 if (!mddev->sync_thread) { 4285 ret = -EAGAIN; 4286 goto abort; 4287 } 4288 conf->reshape_checkpoint = jiffies; 4289 md_wakeup_thread(mddev->sync_thread); 4290 md_new_event(mddev); 4291 return 0; 4292 4293 abort: 4294 mddev->recovery = 0; 4295 spin_lock_irq(&conf->device_lock); 4296 conf->geo = conf->prev; 4297 mddev->raid_disks = conf->geo.raid_disks; 4298 rdev_for_each(rdev, mddev) 4299 rdev->new_data_offset = rdev->data_offset; 4300 smp_wmb(); 4301 conf->reshape_progress = MaxSector; 4302 conf->reshape_safe = MaxSector; 4303 mddev->reshape_position = MaxSector; 4304 spin_unlock_irq(&conf->device_lock); 4305 return ret; 4306 } 4307 4308 /* Calculate the last device-address that could contain 4309 * any block from the chunk that includes the array-address 's' 4310 * and report the next address. 4311 * i.e. the address returned will be chunk-aligned and after 4312 * any data that is in the chunk containing 's'. 4313 */ 4314 static sector_t last_dev_address(sector_t s, struct geom *geo) 4315 { 4316 s = (s | geo->chunk_mask) + 1; 4317 s >>= geo->chunk_shift; 4318 s *= geo->near_copies; 4319 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4320 s *= geo->far_copies; 4321 s <<= geo->chunk_shift; 4322 return s; 4323 } 4324 4325 /* Calculate the first device-address that could contain 4326 * any block from the chunk that includes the array-address 's'. 4327 * This too will be the start of a chunk 4328 */ 4329 static sector_t first_dev_address(sector_t s, struct geom *geo) 4330 { 4331 s >>= geo->chunk_shift; 4332 s *= geo->near_copies; 4333 sector_div(s, geo->raid_disks); 4334 s *= geo->far_copies; 4335 s <<= geo->chunk_shift; 4336 return s; 4337 } 4338 4339 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4340 int *skipped) 4341 { 4342 /* We simply copy at most one chunk (smallest of old and new) 4343 * at a time, possibly less if that exceeds RESYNC_PAGES, 4344 * or we hit a bad block or something. 4345 * This might mean we pause for normal IO in the middle of 4346 * a chunk, but that is not a problem as mddev->reshape_position 4347 * can record any location. 4348 * 4349 * If we will want to write to a location that isn't 4350 * yet recorded as 'safe' (i.e. in metadata on disk) then 4351 * we need to flush all reshape requests and update the metadata. 4352 * 4353 * When reshaping forwards (e.g. to more devices), we interpret 4354 * 'safe' as the earliest block which might not have been copied 4355 * down yet. We divide this by previous stripe size and multiply 4356 * by previous stripe length to get lowest device offset that we 4357 * cannot write to yet. 4358 * We interpret 'sector_nr' as an address that we want to write to. 4359 * From this we use last_device_address() to find where we might 4360 * write to, and first_device_address on the 'safe' position. 4361 * If this 'next' write position is after the 'safe' position, 4362 * we must update the metadata to increase the 'safe' position. 4363 * 4364 * When reshaping backwards, we round in the opposite direction 4365 * and perform the reverse test: next write position must not be 4366 * less than current safe position. 4367 * 4368 * In all this the minimum difference in data offsets 4369 * (conf->offset_diff - always positive) allows a bit of slack, 4370 * so next can be after 'safe', but not by more than offset_diff 4371 * 4372 * We need to prepare all the bios here before we start any IO 4373 * to ensure the size we choose is acceptable to all devices. 4374 * The means one for each copy for write-out and an extra one for 4375 * read-in. 4376 * We store the read-in bio in ->master_bio and the others in 4377 * ->devs[x].bio and ->devs[x].repl_bio. 4378 */ 4379 struct r10conf *conf = mddev->private; 4380 struct r10bio *r10_bio; 4381 sector_t next, safe, last; 4382 int max_sectors; 4383 int nr_sectors; 4384 int s; 4385 struct md_rdev *rdev; 4386 int need_flush = 0; 4387 struct bio *blist; 4388 struct bio *bio, *read_bio; 4389 int sectors_done = 0; 4390 4391 if (sector_nr == 0) { 4392 /* If restarting in the middle, skip the initial sectors */ 4393 if (mddev->reshape_backwards && 4394 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4395 sector_nr = (raid10_size(mddev, 0, 0) 4396 - conf->reshape_progress); 4397 } else if (!mddev->reshape_backwards && 4398 conf->reshape_progress > 0) 4399 sector_nr = conf->reshape_progress; 4400 if (sector_nr) { 4401 mddev->curr_resync_completed = sector_nr; 4402 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4403 *skipped = 1; 4404 return sector_nr; 4405 } 4406 } 4407 4408 /* We don't use sector_nr to track where we are up to 4409 * as that doesn't work well for ->reshape_backwards. 4410 * So just use ->reshape_progress. 4411 */ 4412 if (mddev->reshape_backwards) { 4413 /* 'next' is the earliest device address that we might 4414 * write to for this chunk in the new layout 4415 */ 4416 next = first_dev_address(conf->reshape_progress - 1, 4417 &conf->geo); 4418 4419 /* 'safe' is the last device address that we might read from 4420 * in the old layout after a restart 4421 */ 4422 safe = last_dev_address(conf->reshape_safe - 1, 4423 &conf->prev); 4424 4425 if (next + conf->offset_diff < safe) 4426 need_flush = 1; 4427 4428 last = conf->reshape_progress - 1; 4429 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4430 & conf->prev.chunk_mask); 4431 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4432 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4433 } else { 4434 /* 'next' is after the last device address that we 4435 * might write to for this chunk in the new layout 4436 */ 4437 next = last_dev_address(conf->reshape_progress, &conf->geo); 4438 4439 /* 'safe' is the earliest device address that we might 4440 * read from in the old layout after a restart 4441 */ 4442 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4443 4444 /* Need to update metadata if 'next' might be beyond 'safe' 4445 * as that would possibly corrupt data 4446 */ 4447 if (next > safe + conf->offset_diff) 4448 need_flush = 1; 4449 4450 sector_nr = conf->reshape_progress; 4451 last = sector_nr | (conf->geo.chunk_mask 4452 & conf->prev.chunk_mask); 4453 4454 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4455 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4456 } 4457 4458 if (need_flush || 4459 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4460 /* Need to update reshape_position in metadata */ 4461 wait_barrier(conf); 4462 mddev->reshape_position = conf->reshape_progress; 4463 if (mddev->reshape_backwards) 4464 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4465 - conf->reshape_progress; 4466 else 4467 mddev->curr_resync_completed = conf->reshape_progress; 4468 conf->reshape_checkpoint = jiffies; 4469 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4470 md_wakeup_thread(mddev->thread); 4471 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4472 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4473 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4474 allow_barrier(conf); 4475 return sectors_done; 4476 } 4477 conf->reshape_safe = mddev->reshape_position; 4478 allow_barrier(conf); 4479 } 4480 4481 read_more: 4482 /* Now schedule reads for blocks from sector_nr to last */ 4483 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4484 r10_bio->state = 0; 4485 raise_barrier(conf, sectors_done != 0); 4486 atomic_set(&r10_bio->remaining, 0); 4487 r10_bio->mddev = mddev; 4488 r10_bio->sector = sector_nr; 4489 set_bit(R10BIO_IsReshape, &r10_bio->state); 4490 r10_bio->sectors = last - sector_nr + 1; 4491 rdev = read_balance(conf, r10_bio, &max_sectors); 4492 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4493 4494 if (!rdev) { 4495 /* Cannot read from here, so need to record bad blocks 4496 * on all the target devices. 4497 */ 4498 // FIXME 4499 mempool_free(r10_bio, conf->r10buf_pool); 4500 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4501 return sectors_done; 4502 } 4503 4504 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4505 4506 read_bio->bi_bdev = rdev->bdev; 4507 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4508 + rdev->data_offset); 4509 read_bio->bi_private = r10_bio; 4510 read_bio->bi_end_io = end_sync_read; 4511 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4512 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4513 read_bio->bi_error = 0; 4514 read_bio->bi_vcnt = 0; 4515 read_bio->bi_iter.bi_size = 0; 4516 r10_bio->master_bio = read_bio; 4517 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4518 4519 /* Now find the locations in the new layout */ 4520 __raid10_find_phys(&conf->geo, r10_bio); 4521 4522 blist = read_bio; 4523 read_bio->bi_next = NULL; 4524 4525 rcu_read_lock(); 4526 for (s = 0; s < conf->copies*2; s++) { 4527 struct bio *b; 4528 int d = r10_bio->devs[s/2].devnum; 4529 struct md_rdev *rdev2; 4530 if (s&1) { 4531 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4532 b = r10_bio->devs[s/2].repl_bio; 4533 } else { 4534 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4535 b = r10_bio->devs[s/2].bio; 4536 } 4537 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4538 continue; 4539 4540 bio_reset(b); 4541 b->bi_bdev = rdev2->bdev; 4542 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4543 rdev2->new_data_offset; 4544 b->bi_private = r10_bio; 4545 b->bi_end_io = end_reshape_write; 4546 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4547 b->bi_next = blist; 4548 blist = b; 4549 } 4550 4551 /* Now add as many pages as possible to all of these bios. */ 4552 4553 nr_sectors = 0; 4554 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4555 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4556 int len = (max_sectors - s) << 9; 4557 if (len > PAGE_SIZE) 4558 len = PAGE_SIZE; 4559 for (bio = blist; bio ; bio = bio->bi_next) { 4560 struct bio *bio2; 4561 if (bio_add_page(bio, page, len, 0)) 4562 continue; 4563 4564 /* Didn't fit, must stop */ 4565 for (bio2 = blist; 4566 bio2 && bio2 != bio; 4567 bio2 = bio2->bi_next) { 4568 /* Remove last page from this bio */ 4569 bio2->bi_vcnt--; 4570 bio2->bi_iter.bi_size -= len; 4571 bio_clear_flag(bio2, BIO_SEG_VALID); 4572 } 4573 goto bio_full; 4574 } 4575 sector_nr += len >> 9; 4576 nr_sectors += len >> 9; 4577 } 4578 bio_full: 4579 rcu_read_unlock(); 4580 r10_bio->sectors = nr_sectors; 4581 4582 /* Now submit the read */ 4583 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4584 atomic_inc(&r10_bio->remaining); 4585 read_bio->bi_next = NULL; 4586 generic_make_request(read_bio); 4587 sector_nr += nr_sectors; 4588 sectors_done += nr_sectors; 4589 if (sector_nr <= last) 4590 goto read_more; 4591 4592 /* Now that we have done the whole section we can 4593 * update reshape_progress 4594 */ 4595 if (mddev->reshape_backwards) 4596 conf->reshape_progress -= sectors_done; 4597 else 4598 conf->reshape_progress += sectors_done; 4599 4600 return sectors_done; 4601 } 4602 4603 static void end_reshape_request(struct r10bio *r10_bio); 4604 static int handle_reshape_read_error(struct mddev *mddev, 4605 struct r10bio *r10_bio); 4606 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4607 { 4608 /* Reshape read completed. Hopefully we have a block 4609 * to write out. 4610 * If we got a read error then we do sync 1-page reads from 4611 * elsewhere until we find the data - or give up. 4612 */ 4613 struct r10conf *conf = mddev->private; 4614 int s; 4615 4616 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4617 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4618 /* Reshape has been aborted */ 4619 md_done_sync(mddev, r10_bio->sectors, 0); 4620 return; 4621 } 4622 4623 /* We definitely have the data in the pages, schedule the 4624 * writes. 4625 */ 4626 atomic_set(&r10_bio->remaining, 1); 4627 for (s = 0; s < conf->copies*2; s++) { 4628 struct bio *b; 4629 int d = r10_bio->devs[s/2].devnum; 4630 struct md_rdev *rdev; 4631 rcu_read_lock(); 4632 if (s&1) { 4633 rdev = rcu_dereference(conf->mirrors[d].replacement); 4634 b = r10_bio->devs[s/2].repl_bio; 4635 } else { 4636 rdev = rcu_dereference(conf->mirrors[d].rdev); 4637 b = r10_bio->devs[s/2].bio; 4638 } 4639 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4640 rcu_read_unlock(); 4641 continue; 4642 } 4643 atomic_inc(&rdev->nr_pending); 4644 rcu_read_unlock(); 4645 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4646 atomic_inc(&r10_bio->remaining); 4647 b->bi_next = NULL; 4648 generic_make_request(b); 4649 } 4650 end_reshape_request(r10_bio); 4651 } 4652 4653 static void end_reshape(struct r10conf *conf) 4654 { 4655 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4656 return; 4657 4658 spin_lock_irq(&conf->device_lock); 4659 conf->prev = conf->geo; 4660 md_finish_reshape(conf->mddev); 4661 smp_wmb(); 4662 conf->reshape_progress = MaxSector; 4663 conf->reshape_safe = MaxSector; 4664 spin_unlock_irq(&conf->device_lock); 4665 4666 /* read-ahead size must cover two whole stripes, which is 4667 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4668 */ 4669 if (conf->mddev->queue) { 4670 int stripe = conf->geo.raid_disks * 4671 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4672 stripe /= conf->geo.near_copies; 4673 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4674 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4675 } 4676 conf->fullsync = 0; 4677 } 4678 4679 static int handle_reshape_read_error(struct mddev *mddev, 4680 struct r10bio *r10_bio) 4681 { 4682 /* Use sync reads to get the blocks from somewhere else */ 4683 int sectors = r10_bio->sectors; 4684 struct r10conf *conf = mddev->private; 4685 struct { 4686 struct r10bio r10_bio; 4687 struct r10dev devs[conf->copies]; 4688 } on_stack; 4689 struct r10bio *r10b = &on_stack.r10_bio; 4690 int slot = 0; 4691 int idx = 0; 4692 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4693 4694 r10b->sector = r10_bio->sector; 4695 __raid10_find_phys(&conf->prev, r10b); 4696 4697 while (sectors) { 4698 int s = sectors; 4699 int success = 0; 4700 int first_slot = slot; 4701 4702 if (s > (PAGE_SIZE >> 9)) 4703 s = PAGE_SIZE >> 9; 4704 4705 rcu_read_lock(); 4706 while (!success) { 4707 int d = r10b->devs[slot].devnum; 4708 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4709 sector_t addr; 4710 if (rdev == NULL || 4711 test_bit(Faulty, &rdev->flags) || 4712 !test_bit(In_sync, &rdev->flags)) 4713 goto failed; 4714 4715 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4716 atomic_inc(&rdev->nr_pending); 4717 rcu_read_unlock(); 4718 success = sync_page_io(rdev, 4719 addr, 4720 s << 9, 4721 bvec[idx].bv_page, 4722 REQ_OP_READ, 0, false); 4723 rdev_dec_pending(rdev, mddev); 4724 rcu_read_lock(); 4725 if (success) 4726 break; 4727 failed: 4728 slot++; 4729 if (slot >= conf->copies) 4730 slot = 0; 4731 if (slot == first_slot) 4732 break; 4733 } 4734 rcu_read_unlock(); 4735 if (!success) { 4736 /* couldn't read this block, must give up */ 4737 set_bit(MD_RECOVERY_INTR, 4738 &mddev->recovery); 4739 return -EIO; 4740 } 4741 sectors -= s; 4742 idx++; 4743 } 4744 return 0; 4745 } 4746 4747 static void end_reshape_write(struct bio *bio) 4748 { 4749 struct r10bio *r10_bio = bio->bi_private; 4750 struct mddev *mddev = r10_bio->mddev; 4751 struct r10conf *conf = mddev->private; 4752 int d; 4753 int slot; 4754 int repl; 4755 struct md_rdev *rdev = NULL; 4756 4757 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4758 if (repl) 4759 rdev = conf->mirrors[d].replacement; 4760 if (!rdev) { 4761 smp_mb(); 4762 rdev = conf->mirrors[d].rdev; 4763 } 4764 4765 if (bio->bi_error) { 4766 /* FIXME should record badblock */ 4767 md_error(mddev, rdev); 4768 } 4769 4770 rdev_dec_pending(rdev, mddev); 4771 end_reshape_request(r10_bio); 4772 } 4773 4774 static void end_reshape_request(struct r10bio *r10_bio) 4775 { 4776 if (!atomic_dec_and_test(&r10_bio->remaining)) 4777 return; 4778 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4779 bio_put(r10_bio->master_bio); 4780 put_buf(r10_bio); 4781 } 4782 4783 static void raid10_finish_reshape(struct mddev *mddev) 4784 { 4785 struct r10conf *conf = mddev->private; 4786 4787 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4788 return; 4789 4790 if (mddev->delta_disks > 0) { 4791 sector_t size = raid10_size(mddev, 0, 0); 4792 md_set_array_sectors(mddev, size); 4793 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4794 mddev->recovery_cp = mddev->resync_max_sectors; 4795 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4796 } 4797 mddev->resync_max_sectors = size; 4798 if (mddev->queue) { 4799 set_capacity(mddev->gendisk, mddev->array_sectors); 4800 revalidate_disk(mddev->gendisk); 4801 } 4802 } else { 4803 int d; 4804 rcu_read_lock(); 4805 for (d = conf->geo.raid_disks ; 4806 d < conf->geo.raid_disks - mddev->delta_disks; 4807 d++) { 4808 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4809 if (rdev) 4810 clear_bit(In_sync, &rdev->flags); 4811 rdev = rcu_dereference(conf->mirrors[d].replacement); 4812 if (rdev) 4813 clear_bit(In_sync, &rdev->flags); 4814 } 4815 rcu_read_unlock(); 4816 } 4817 mddev->layout = mddev->new_layout; 4818 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4819 mddev->reshape_position = MaxSector; 4820 mddev->delta_disks = 0; 4821 mddev->reshape_backwards = 0; 4822 } 4823 4824 static struct md_personality raid10_personality = 4825 { 4826 .name = "raid10", 4827 .level = 10, 4828 .owner = THIS_MODULE, 4829 .make_request = raid10_make_request, 4830 .run = raid10_run, 4831 .free = raid10_free, 4832 .status = raid10_status, 4833 .error_handler = raid10_error, 4834 .hot_add_disk = raid10_add_disk, 4835 .hot_remove_disk= raid10_remove_disk, 4836 .spare_active = raid10_spare_active, 4837 .sync_request = raid10_sync_request, 4838 .quiesce = raid10_quiesce, 4839 .size = raid10_size, 4840 .resize = raid10_resize, 4841 .takeover = raid10_takeover, 4842 .check_reshape = raid10_check_reshape, 4843 .start_reshape = raid10_start_reshape, 4844 .finish_reshape = raid10_finish_reshape, 4845 .congested = raid10_congested, 4846 }; 4847 4848 static int __init raid_init(void) 4849 { 4850 return register_md_personality(&raid10_personality); 4851 } 4852 4853 static void raid_exit(void) 4854 { 4855 unregister_md_personality(&raid10_personality); 4856 } 4857 4858 module_init(raid_init); 4859 module_exit(raid_exit); 4860 MODULE_LICENSE("GPL"); 4861 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4862 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4863 MODULE_ALIAS("md-raid10"); 4864 MODULE_ALIAS("md-level-10"); 4865 4866 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4867