xref: /linux/drivers/md/raid10.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33 
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74 
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define	NR_RAID10_BIOS 256
79 
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91 
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99 
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 				int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109 
110 #define raid10_log(md, fmt, args...)				\
111 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112 
113 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
114 {
115 	struct r10conf *conf = data;
116 	int size = offsetof(struct r10bio, devs[conf->copies]);
117 
118 	/* allocate a r10bio with room for raid_disks entries in the
119 	 * bios array */
120 	return kzalloc(size, gfp_flags);
121 }
122 
123 static void r10bio_pool_free(void *r10_bio, void *data)
124 {
125 	kfree(r10_bio);
126 }
127 
128 /* Maximum size of each resync request */
129 #define RESYNC_BLOCK_SIZE (64*1024)
130 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
131 /* amount of memory to reserve for resync requests */
132 #define RESYNC_WINDOW (1024*1024)
133 /* maximum number of concurrent requests, memory permitting */
134 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
135 
136 /*
137  * When performing a resync, we need to read and compare, so
138  * we need as many pages are there are copies.
139  * When performing a recovery, we need 2 bios, one for read,
140  * one for write (we recover only one drive per r10buf)
141  *
142  */
143 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
144 {
145 	struct r10conf *conf = data;
146 	struct page *page;
147 	struct r10bio *r10_bio;
148 	struct bio *bio;
149 	int i, j;
150 	int nalloc;
151 
152 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
153 	if (!r10_bio)
154 		return NULL;
155 
156 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
157 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
158 		nalloc = conf->copies; /* resync */
159 	else
160 		nalloc = 2; /* recovery */
161 
162 	/*
163 	 * Allocate bios.
164 	 */
165 	for (j = nalloc ; j-- ; ) {
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].bio = bio;
170 		if (!conf->have_replacement)
171 			continue;
172 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
173 		if (!bio)
174 			goto out_free_bio;
175 		r10_bio->devs[j].repl_bio = bio;
176 	}
177 	/*
178 	 * Allocate RESYNC_PAGES data pages and attach them
179 	 * where needed.
180 	 */
181 	for (j = 0 ; j < nalloc; j++) {
182 		struct bio *rbio = r10_bio->devs[j].repl_bio;
183 		bio = r10_bio->devs[j].bio;
184 		for (i = 0; i < RESYNC_PAGES; i++) {
185 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
186 					       &conf->mddev->recovery)) {
187 				/* we can share bv_page's during recovery
188 				 * and reshape */
189 				struct bio *rbio = r10_bio->devs[0].bio;
190 				page = rbio->bi_io_vec[i].bv_page;
191 				get_page(page);
192 			} else
193 				page = alloc_page(gfp_flags);
194 			if (unlikely(!page))
195 				goto out_free_pages;
196 
197 			bio->bi_io_vec[i].bv_page = page;
198 			if (rbio)
199 				rbio->bi_io_vec[i].bv_page = page;
200 		}
201 	}
202 
203 	return r10_bio;
204 
205 out_free_pages:
206 	for ( ; i > 0 ; i--)
207 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
208 	while (j--)
209 		for (i = 0; i < RESYNC_PAGES ; i++)
210 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
211 	j = 0;
212 out_free_bio:
213 	for ( ; j < nalloc; j++) {
214 		if (r10_bio->devs[j].bio)
215 			bio_put(r10_bio->devs[j].bio);
216 		if (r10_bio->devs[j].repl_bio)
217 			bio_put(r10_bio->devs[j].repl_bio);
218 	}
219 	r10bio_pool_free(r10_bio, conf);
220 	return NULL;
221 }
222 
223 static void r10buf_pool_free(void *__r10_bio, void *data)
224 {
225 	int i;
226 	struct r10conf *conf = data;
227 	struct r10bio *r10bio = __r10_bio;
228 	int j;
229 
230 	for (j=0; j < conf->copies; j++) {
231 		struct bio *bio = r10bio->devs[j].bio;
232 		if (bio) {
233 			for (i = 0; i < RESYNC_PAGES; i++) {
234 				safe_put_page(bio->bi_io_vec[i].bv_page);
235 				bio->bi_io_vec[i].bv_page = NULL;
236 			}
237 			bio_put(bio);
238 		}
239 		bio = r10bio->devs[j].repl_bio;
240 		if (bio)
241 			bio_put(bio);
242 	}
243 	r10bio_pool_free(r10bio, conf);
244 }
245 
246 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
247 {
248 	int i;
249 
250 	for (i = 0; i < conf->copies; i++) {
251 		struct bio **bio = & r10_bio->devs[i].bio;
252 		if (!BIO_SPECIAL(*bio))
253 			bio_put(*bio);
254 		*bio = NULL;
255 		bio = &r10_bio->devs[i].repl_bio;
256 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
257 			bio_put(*bio);
258 		*bio = NULL;
259 	}
260 }
261 
262 static void free_r10bio(struct r10bio *r10_bio)
263 {
264 	struct r10conf *conf = r10_bio->mddev->private;
265 
266 	put_all_bios(conf, r10_bio);
267 	mempool_free(r10_bio, conf->r10bio_pool);
268 }
269 
270 static void put_buf(struct r10bio *r10_bio)
271 {
272 	struct r10conf *conf = r10_bio->mddev->private;
273 
274 	mempool_free(r10_bio, conf->r10buf_pool);
275 
276 	lower_barrier(conf);
277 }
278 
279 static void reschedule_retry(struct r10bio *r10_bio)
280 {
281 	unsigned long flags;
282 	struct mddev *mddev = r10_bio->mddev;
283 	struct r10conf *conf = mddev->private;
284 
285 	spin_lock_irqsave(&conf->device_lock, flags);
286 	list_add(&r10_bio->retry_list, &conf->retry_list);
287 	conf->nr_queued ++;
288 	spin_unlock_irqrestore(&conf->device_lock, flags);
289 
290 	/* wake up frozen array... */
291 	wake_up(&conf->wait_barrier);
292 
293 	md_wakeup_thread(mddev->thread);
294 }
295 
296 /*
297  * raid_end_bio_io() is called when we have finished servicing a mirrored
298  * operation and are ready to return a success/failure code to the buffer
299  * cache layer.
300  */
301 static void raid_end_bio_io(struct r10bio *r10_bio)
302 {
303 	struct bio *bio = r10_bio->master_bio;
304 	int done;
305 	struct r10conf *conf = r10_bio->mddev->private;
306 
307 	if (bio->bi_phys_segments) {
308 		unsigned long flags;
309 		spin_lock_irqsave(&conf->device_lock, flags);
310 		bio->bi_phys_segments--;
311 		done = (bio->bi_phys_segments == 0);
312 		spin_unlock_irqrestore(&conf->device_lock, flags);
313 	} else
314 		done = 1;
315 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
316 		bio->bi_error = -EIO;
317 	if (done) {
318 		bio_endio(bio);
319 		/*
320 		 * Wake up any possible resync thread that waits for the device
321 		 * to go idle.
322 		 */
323 		allow_barrier(conf);
324 	}
325 	free_r10bio(r10_bio);
326 }
327 
328 /*
329  * Update disk head position estimator based on IRQ completion info.
330  */
331 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
332 {
333 	struct r10conf *conf = r10_bio->mddev->private;
334 
335 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
336 		r10_bio->devs[slot].addr + (r10_bio->sectors);
337 }
338 
339 /*
340  * Find the disk number which triggered given bio
341  */
342 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
343 			 struct bio *bio, int *slotp, int *replp)
344 {
345 	int slot;
346 	int repl = 0;
347 
348 	for (slot = 0; slot < conf->copies; slot++) {
349 		if (r10_bio->devs[slot].bio == bio)
350 			break;
351 		if (r10_bio->devs[slot].repl_bio == bio) {
352 			repl = 1;
353 			break;
354 		}
355 	}
356 
357 	BUG_ON(slot == conf->copies);
358 	update_head_pos(slot, r10_bio);
359 
360 	if (slotp)
361 		*slotp = slot;
362 	if (replp)
363 		*replp = repl;
364 	return r10_bio->devs[slot].devnum;
365 }
366 
367 static void raid10_end_read_request(struct bio *bio)
368 {
369 	int uptodate = !bio->bi_error;
370 	struct r10bio *r10_bio = bio->bi_private;
371 	int slot, dev;
372 	struct md_rdev *rdev;
373 	struct r10conf *conf = r10_bio->mddev->private;
374 
375 	slot = r10_bio->read_slot;
376 	dev = r10_bio->devs[slot].devnum;
377 	rdev = r10_bio->devs[slot].rdev;
378 	/*
379 	 * this branch is our 'one mirror IO has finished' event handler:
380 	 */
381 	update_head_pos(slot, r10_bio);
382 
383 	if (uptodate) {
384 		/*
385 		 * Set R10BIO_Uptodate in our master bio, so that
386 		 * we will return a good error code to the higher
387 		 * levels even if IO on some other mirrored buffer fails.
388 		 *
389 		 * The 'master' represents the composite IO operation to
390 		 * user-side. So if something waits for IO, then it will
391 		 * wait for the 'master' bio.
392 		 */
393 		set_bit(R10BIO_Uptodate, &r10_bio->state);
394 	} else {
395 		/* If all other devices that store this block have
396 		 * failed, we want to return the error upwards rather
397 		 * than fail the last device.  Here we redefine
398 		 * "uptodate" to mean "Don't want to retry"
399 		 */
400 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
401 			     rdev->raid_disk))
402 			uptodate = 1;
403 	}
404 	if (uptodate) {
405 		raid_end_bio_io(r10_bio);
406 		rdev_dec_pending(rdev, conf->mddev);
407 	} else {
408 		/*
409 		 * oops, read error - keep the refcount on the rdev
410 		 */
411 		char b[BDEVNAME_SIZE];
412 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
413 				   mdname(conf->mddev),
414 				   bdevname(rdev->bdev, b),
415 				   (unsigned long long)r10_bio->sector);
416 		set_bit(R10BIO_ReadError, &r10_bio->state);
417 		reschedule_retry(r10_bio);
418 	}
419 }
420 
421 static void close_write(struct r10bio *r10_bio)
422 {
423 	/* clear the bitmap if all writes complete successfully */
424 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
425 			r10_bio->sectors,
426 			!test_bit(R10BIO_Degraded, &r10_bio->state),
427 			0);
428 	md_write_end(r10_bio->mddev);
429 }
430 
431 static void one_write_done(struct r10bio *r10_bio)
432 {
433 	if (atomic_dec_and_test(&r10_bio->remaining)) {
434 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
435 			reschedule_retry(r10_bio);
436 		else {
437 			close_write(r10_bio);
438 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
439 				reschedule_retry(r10_bio);
440 			else
441 				raid_end_bio_io(r10_bio);
442 		}
443 	}
444 }
445 
446 static void raid10_end_write_request(struct bio *bio)
447 {
448 	struct r10bio *r10_bio = bio->bi_private;
449 	int dev;
450 	int dec_rdev = 1;
451 	struct r10conf *conf = r10_bio->mddev->private;
452 	int slot, repl;
453 	struct md_rdev *rdev = NULL;
454 	struct bio *to_put = NULL;
455 	bool discard_error;
456 
457 	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
458 
459 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
460 
461 	if (repl)
462 		rdev = conf->mirrors[dev].replacement;
463 	if (!rdev) {
464 		smp_rmb();
465 		repl = 0;
466 		rdev = conf->mirrors[dev].rdev;
467 	}
468 	/*
469 	 * this branch is our 'one mirror IO has finished' event handler:
470 	 */
471 	if (bio->bi_error && !discard_error) {
472 		if (repl)
473 			/* Never record new bad blocks to replacement,
474 			 * just fail it.
475 			 */
476 			md_error(rdev->mddev, rdev);
477 		else {
478 			set_bit(WriteErrorSeen,	&rdev->flags);
479 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
480 				set_bit(MD_RECOVERY_NEEDED,
481 					&rdev->mddev->recovery);
482 
483 			dec_rdev = 0;
484 			if (test_bit(FailFast, &rdev->flags) &&
485 			    (bio->bi_opf & MD_FAILFAST)) {
486 				md_error(rdev->mddev, rdev);
487 				if (!test_bit(Faulty, &rdev->flags))
488 					/* This is the only remaining device,
489 					 * We need to retry the write without
490 					 * FailFast
491 					 */
492 					set_bit(R10BIO_WriteError, &r10_bio->state);
493 				else {
494 					r10_bio->devs[slot].bio = NULL;
495 					to_put = bio;
496 					dec_rdev = 1;
497 				}
498 			} else
499 				set_bit(R10BIO_WriteError, &r10_bio->state);
500 		}
501 	} else {
502 		/*
503 		 * Set R10BIO_Uptodate in our master bio, so that
504 		 * we will return a good error code for to the higher
505 		 * levels even if IO on some other mirrored buffer fails.
506 		 *
507 		 * The 'master' represents the composite IO operation to
508 		 * user-side. So if something waits for IO, then it will
509 		 * wait for the 'master' bio.
510 		 */
511 		sector_t first_bad;
512 		int bad_sectors;
513 
514 		/*
515 		 * Do not set R10BIO_Uptodate if the current device is
516 		 * rebuilding or Faulty. This is because we cannot use
517 		 * such device for properly reading the data back (we could
518 		 * potentially use it, if the current write would have felt
519 		 * before rdev->recovery_offset, but for simplicity we don't
520 		 * check this here.
521 		 */
522 		if (test_bit(In_sync, &rdev->flags) &&
523 		    !test_bit(Faulty, &rdev->flags))
524 			set_bit(R10BIO_Uptodate, &r10_bio->state);
525 
526 		/* Maybe we can clear some bad blocks. */
527 		if (is_badblock(rdev,
528 				r10_bio->devs[slot].addr,
529 				r10_bio->sectors,
530 				&first_bad, &bad_sectors) && !discard_error) {
531 			bio_put(bio);
532 			if (repl)
533 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
534 			else
535 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
536 			dec_rdev = 0;
537 			set_bit(R10BIO_MadeGood, &r10_bio->state);
538 		}
539 	}
540 
541 	/*
542 	 *
543 	 * Let's see if all mirrored write operations have finished
544 	 * already.
545 	 */
546 	one_write_done(r10_bio);
547 	if (dec_rdev)
548 		rdev_dec_pending(rdev, conf->mddev);
549 	if (to_put)
550 		bio_put(to_put);
551 }
552 
553 /*
554  * RAID10 layout manager
555  * As well as the chunksize and raid_disks count, there are two
556  * parameters: near_copies and far_copies.
557  * near_copies * far_copies must be <= raid_disks.
558  * Normally one of these will be 1.
559  * If both are 1, we get raid0.
560  * If near_copies == raid_disks, we get raid1.
561  *
562  * Chunks are laid out in raid0 style with near_copies copies of the
563  * first chunk, followed by near_copies copies of the next chunk and
564  * so on.
565  * If far_copies > 1, then after 1/far_copies of the array has been assigned
566  * as described above, we start again with a device offset of near_copies.
567  * So we effectively have another copy of the whole array further down all
568  * the drives, but with blocks on different drives.
569  * With this layout, and block is never stored twice on the one device.
570  *
571  * raid10_find_phys finds the sector offset of a given virtual sector
572  * on each device that it is on.
573  *
574  * raid10_find_virt does the reverse mapping, from a device and a
575  * sector offset to a virtual address
576  */
577 
578 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
579 {
580 	int n,f;
581 	sector_t sector;
582 	sector_t chunk;
583 	sector_t stripe;
584 	int dev;
585 	int slot = 0;
586 	int last_far_set_start, last_far_set_size;
587 
588 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
589 	last_far_set_start *= geo->far_set_size;
590 
591 	last_far_set_size = geo->far_set_size;
592 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
593 
594 	/* now calculate first sector/dev */
595 	chunk = r10bio->sector >> geo->chunk_shift;
596 	sector = r10bio->sector & geo->chunk_mask;
597 
598 	chunk *= geo->near_copies;
599 	stripe = chunk;
600 	dev = sector_div(stripe, geo->raid_disks);
601 	if (geo->far_offset)
602 		stripe *= geo->far_copies;
603 
604 	sector += stripe << geo->chunk_shift;
605 
606 	/* and calculate all the others */
607 	for (n = 0; n < geo->near_copies; n++) {
608 		int d = dev;
609 		int set;
610 		sector_t s = sector;
611 		r10bio->devs[slot].devnum = d;
612 		r10bio->devs[slot].addr = s;
613 		slot++;
614 
615 		for (f = 1; f < geo->far_copies; f++) {
616 			set = d / geo->far_set_size;
617 			d += geo->near_copies;
618 
619 			if ((geo->raid_disks % geo->far_set_size) &&
620 			    (d > last_far_set_start)) {
621 				d -= last_far_set_start;
622 				d %= last_far_set_size;
623 				d += last_far_set_start;
624 			} else {
625 				d %= geo->far_set_size;
626 				d += geo->far_set_size * set;
627 			}
628 			s += geo->stride;
629 			r10bio->devs[slot].devnum = d;
630 			r10bio->devs[slot].addr = s;
631 			slot++;
632 		}
633 		dev++;
634 		if (dev >= geo->raid_disks) {
635 			dev = 0;
636 			sector += (geo->chunk_mask + 1);
637 		}
638 	}
639 }
640 
641 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
642 {
643 	struct geom *geo = &conf->geo;
644 
645 	if (conf->reshape_progress != MaxSector &&
646 	    ((r10bio->sector >= conf->reshape_progress) !=
647 	     conf->mddev->reshape_backwards)) {
648 		set_bit(R10BIO_Previous, &r10bio->state);
649 		geo = &conf->prev;
650 	} else
651 		clear_bit(R10BIO_Previous, &r10bio->state);
652 
653 	__raid10_find_phys(geo, r10bio);
654 }
655 
656 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
657 {
658 	sector_t offset, chunk, vchunk;
659 	/* Never use conf->prev as this is only called during resync
660 	 * or recovery, so reshape isn't happening
661 	 */
662 	struct geom *geo = &conf->geo;
663 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
664 	int far_set_size = geo->far_set_size;
665 	int last_far_set_start;
666 
667 	if (geo->raid_disks % geo->far_set_size) {
668 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
669 		last_far_set_start *= geo->far_set_size;
670 
671 		if (dev >= last_far_set_start) {
672 			far_set_size = geo->far_set_size;
673 			far_set_size += (geo->raid_disks % geo->far_set_size);
674 			far_set_start = last_far_set_start;
675 		}
676 	}
677 
678 	offset = sector & geo->chunk_mask;
679 	if (geo->far_offset) {
680 		int fc;
681 		chunk = sector >> geo->chunk_shift;
682 		fc = sector_div(chunk, geo->far_copies);
683 		dev -= fc * geo->near_copies;
684 		if (dev < far_set_start)
685 			dev += far_set_size;
686 	} else {
687 		while (sector >= geo->stride) {
688 			sector -= geo->stride;
689 			if (dev < (geo->near_copies + far_set_start))
690 				dev += far_set_size - geo->near_copies;
691 			else
692 				dev -= geo->near_copies;
693 		}
694 		chunk = sector >> geo->chunk_shift;
695 	}
696 	vchunk = chunk * geo->raid_disks + dev;
697 	sector_div(vchunk, geo->near_copies);
698 	return (vchunk << geo->chunk_shift) + offset;
699 }
700 
701 /*
702  * This routine returns the disk from which the requested read should
703  * be done. There is a per-array 'next expected sequential IO' sector
704  * number - if this matches on the next IO then we use the last disk.
705  * There is also a per-disk 'last know head position' sector that is
706  * maintained from IRQ contexts, both the normal and the resync IO
707  * completion handlers update this position correctly. If there is no
708  * perfect sequential match then we pick the disk whose head is closest.
709  *
710  * If there are 2 mirrors in the same 2 devices, performance degrades
711  * because position is mirror, not device based.
712  *
713  * The rdev for the device selected will have nr_pending incremented.
714  */
715 
716 /*
717  * FIXME: possibly should rethink readbalancing and do it differently
718  * depending on near_copies / far_copies geometry.
719  */
720 static struct md_rdev *read_balance(struct r10conf *conf,
721 				    struct r10bio *r10_bio,
722 				    int *max_sectors)
723 {
724 	const sector_t this_sector = r10_bio->sector;
725 	int disk, slot;
726 	int sectors = r10_bio->sectors;
727 	int best_good_sectors;
728 	sector_t new_distance, best_dist;
729 	struct md_rdev *best_rdev, *rdev = NULL;
730 	int do_balance;
731 	int best_slot;
732 	struct geom *geo = &conf->geo;
733 
734 	raid10_find_phys(conf, r10_bio);
735 	rcu_read_lock();
736 	sectors = r10_bio->sectors;
737 	best_slot = -1;
738 	best_rdev = NULL;
739 	best_dist = MaxSector;
740 	best_good_sectors = 0;
741 	do_balance = 1;
742 	clear_bit(R10BIO_FailFast, &r10_bio->state);
743 	/*
744 	 * Check if we can balance. We can balance on the whole
745 	 * device if no resync is going on (recovery is ok), or below
746 	 * the resync window. We take the first readable disk when
747 	 * above the resync window.
748 	 */
749 	if (conf->mddev->recovery_cp < MaxSector
750 	    && (this_sector + sectors >= conf->next_resync))
751 		do_balance = 0;
752 
753 	for (slot = 0; slot < conf->copies ; slot++) {
754 		sector_t first_bad;
755 		int bad_sectors;
756 		sector_t dev_sector;
757 
758 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
759 			continue;
760 		disk = r10_bio->devs[slot].devnum;
761 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
762 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
763 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
764 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
765 		if (rdev == NULL ||
766 		    test_bit(Faulty, &rdev->flags))
767 			continue;
768 		if (!test_bit(In_sync, &rdev->flags) &&
769 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
770 			continue;
771 
772 		dev_sector = r10_bio->devs[slot].addr;
773 		if (is_badblock(rdev, dev_sector, sectors,
774 				&first_bad, &bad_sectors)) {
775 			if (best_dist < MaxSector)
776 				/* Already have a better slot */
777 				continue;
778 			if (first_bad <= dev_sector) {
779 				/* Cannot read here.  If this is the
780 				 * 'primary' device, then we must not read
781 				 * beyond 'bad_sectors' from another device.
782 				 */
783 				bad_sectors -= (dev_sector - first_bad);
784 				if (!do_balance && sectors > bad_sectors)
785 					sectors = bad_sectors;
786 				if (best_good_sectors > sectors)
787 					best_good_sectors = sectors;
788 			} else {
789 				sector_t good_sectors =
790 					first_bad - dev_sector;
791 				if (good_sectors > best_good_sectors) {
792 					best_good_sectors = good_sectors;
793 					best_slot = slot;
794 					best_rdev = rdev;
795 				}
796 				if (!do_balance)
797 					/* Must read from here */
798 					break;
799 			}
800 			continue;
801 		} else
802 			best_good_sectors = sectors;
803 
804 		if (!do_balance)
805 			break;
806 
807 		if (best_slot >= 0)
808 			/* At least 2 disks to choose from so failfast is OK */
809 			set_bit(R10BIO_FailFast, &r10_bio->state);
810 		/* This optimisation is debatable, and completely destroys
811 		 * sequential read speed for 'far copies' arrays.  So only
812 		 * keep it for 'near' arrays, and review those later.
813 		 */
814 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
815 			new_distance = 0;
816 
817 		/* for far > 1 always use the lowest address */
818 		else if (geo->far_copies > 1)
819 			new_distance = r10_bio->devs[slot].addr;
820 		else
821 			new_distance = abs(r10_bio->devs[slot].addr -
822 					   conf->mirrors[disk].head_position);
823 		if (new_distance < best_dist) {
824 			best_dist = new_distance;
825 			best_slot = slot;
826 			best_rdev = rdev;
827 		}
828 	}
829 	if (slot >= conf->copies) {
830 		slot = best_slot;
831 		rdev = best_rdev;
832 	}
833 
834 	if (slot >= 0) {
835 		atomic_inc(&rdev->nr_pending);
836 		r10_bio->read_slot = slot;
837 	} else
838 		rdev = NULL;
839 	rcu_read_unlock();
840 	*max_sectors = best_good_sectors;
841 
842 	return rdev;
843 }
844 
845 static int raid10_congested(struct mddev *mddev, int bits)
846 {
847 	struct r10conf *conf = mddev->private;
848 	int i, ret = 0;
849 
850 	if ((bits & (1 << WB_async_congested)) &&
851 	    conf->pending_count >= max_queued_requests)
852 		return 1;
853 
854 	rcu_read_lock();
855 	for (i = 0;
856 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
857 		     && ret == 0;
858 	     i++) {
859 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
860 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
861 			struct request_queue *q = bdev_get_queue(rdev->bdev);
862 
863 			ret |= bdi_congested(q->backing_dev_info, bits);
864 		}
865 	}
866 	rcu_read_unlock();
867 	return ret;
868 }
869 
870 static void flush_pending_writes(struct r10conf *conf)
871 {
872 	/* Any writes that have been queued but are awaiting
873 	 * bitmap updates get flushed here.
874 	 */
875 	spin_lock_irq(&conf->device_lock);
876 
877 	if (conf->pending_bio_list.head) {
878 		struct bio *bio;
879 		bio = bio_list_get(&conf->pending_bio_list);
880 		conf->pending_count = 0;
881 		spin_unlock_irq(&conf->device_lock);
882 		/* flush any pending bitmap writes to disk
883 		 * before proceeding w/ I/O */
884 		bitmap_unplug(conf->mddev->bitmap);
885 		wake_up(&conf->wait_barrier);
886 
887 		while (bio) { /* submit pending writes */
888 			struct bio *next = bio->bi_next;
889 			struct md_rdev *rdev = (void*)bio->bi_bdev;
890 			bio->bi_next = NULL;
891 			bio->bi_bdev = rdev->bdev;
892 			if (test_bit(Faulty, &rdev->flags)) {
893 				bio->bi_error = -EIO;
894 				bio_endio(bio);
895 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
896 					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
897 				/* Just ignore it */
898 				bio_endio(bio);
899 			else
900 				generic_make_request(bio);
901 			bio = next;
902 		}
903 	} else
904 		spin_unlock_irq(&conf->device_lock);
905 }
906 
907 /* Barriers....
908  * Sometimes we need to suspend IO while we do something else,
909  * either some resync/recovery, or reconfigure the array.
910  * To do this we raise a 'barrier'.
911  * The 'barrier' is a counter that can be raised multiple times
912  * to count how many activities are happening which preclude
913  * normal IO.
914  * We can only raise the barrier if there is no pending IO.
915  * i.e. if nr_pending == 0.
916  * We choose only to raise the barrier if no-one is waiting for the
917  * barrier to go down.  This means that as soon as an IO request
918  * is ready, no other operations which require a barrier will start
919  * until the IO request has had a chance.
920  *
921  * So: regular IO calls 'wait_barrier'.  When that returns there
922  *    is no backgroup IO happening,  It must arrange to call
923  *    allow_barrier when it has finished its IO.
924  * backgroup IO calls must call raise_barrier.  Once that returns
925  *    there is no normal IO happeing.  It must arrange to call
926  *    lower_barrier when the particular background IO completes.
927  */
928 
929 static void raise_barrier(struct r10conf *conf, int force)
930 {
931 	BUG_ON(force && !conf->barrier);
932 	spin_lock_irq(&conf->resync_lock);
933 
934 	/* Wait until no block IO is waiting (unless 'force') */
935 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
936 			    conf->resync_lock);
937 
938 	/* block any new IO from starting */
939 	conf->barrier++;
940 
941 	/* Now wait for all pending IO to complete */
942 	wait_event_lock_irq(conf->wait_barrier,
943 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
944 			    conf->resync_lock);
945 
946 	spin_unlock_irq(&conf->resync_lock);
947 }
948 
949 static void lower_barrier(struct r10conf *conf)
950 {
951 	unsigned long flags;
952 	spin_lock_irqsave(&conf->resync_lock, flags);
953 	conf->barrier--;
954 	spin_unlock_irqrestore(&conf->resync_lock, flags);
955 	wake_up(&conf->wait_barrier);
956 }
957 
958 static void wait_barrier(struct r10conf *conf)
959 {
960 	spin_lock_irq(&conf->resync_lock);
961 	if (conf->barrier) {
962 		conf->nr_waiting++;
963 		/* Wait for the barrier to drop.
964 		 * However if there are already pending
965 		 * requests (preventing the barrier from
966 		 * rising completely), and the
967 		 * pre-process bio queue isn't empty,
968 		 * then don't wait, as we need to empty
969 		 * that queue to get the nr_pending
970 		 * count down.
971 		 */
972 		raid10_log(conf->mddev, "wait barrier");
973 		wait_event_lock_irq(conf->wait_barrier,
974 				    !conf->barrier ||
975 				    (atomic_read(&conf->nr_pending) &&
976 				     current->bio_list &&
977 				     (!bio_list_empty(&current->bio_list[0]) ||
978 				      !bio_list_empty(&current->bio_list[1]))),
979 				    conf->resync_lock);
980 		conf->nr_waiting--;
981 		if (!conf->nr_waiting)
982 			wake_up(&conf->wait_barrier);
983 	}
984 	atomic_inc(&conf->nr_pending);
985 	spin_unlock_irq(&conf->resync_lock);
986 }
987 
988 static void allow_barrier(struct r10conf *conf)
989 {
990 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
991 			(conf->array_freeze_pending))
992 		wake_up(&conf->wait_barrier);
993 }
994 
995 static void freeze_array(struct r10conf *conf, int extra)
996 {
997 	/* stop syncio and normal IO and wait for everything to
998 	 * go quiet.
999 	 * We increment barrier and nr_waiting, and then
1000 	 * wait until nr_pending match nr_queued+extra
1001 	 * This is called in the context of one normal IO request
1002 	 * that has failed. Thus any sync request that might be pending
1003 	 * will be blocked by nr_pending, and we need to wait for
1004 	 * pending IO requests to complete or be queued for re-try.
1005 	 * Thus the number queued (nr_queued) plus this request (extra)
1006 	 * must match the number of pending IOs (nr_pending) before
1007 	 * we continue.
1008 	 */
1009 	spin_lock_irq(&conf->resync_lock);
1010 	conf->array_freeze_pending++;
1011 	conf->barrier++;
1012 	conf->nr_waiting++;
1013 	wait_event_lock_irq_cmd(conf->wait_barrier,
1014 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1015 				conf->resync_lock,
1016 				flush_pending_writes(conf));
1017 
1018 	conf->array_freeze_pending--;
1019 	spin_unlock_irq(&conf->resync_lock);
1020 }
1021 
1022 static void unfreeze_array(struct r10conf *conf)
1023 {
1024 	/* reverse the effect of the freeze */
1025 	spin_lock_irq(&conf->resync_lock);
1026 	conf->barrier--;
1027 	conf->nr_waiting--;
1028 	wake_up(&conf->wait_barrier);
1029 	spin_unlock_irq(&conf->resync_lock);
1030 }
1031 
1032 static sector_t choose_data_offset(struct r10bio *r10_bio,
1033 				   struct md_rdev *rdev)
1034 {
1035 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1036 	    test_bit(R10BIO_Previous, &r10_bio->state))
1037 		return rdev->data_offset;
1038 	else
1039 		return rdev->new_data_offset;
1040 }
1041 
1042 struct raid10_plug_cb {
1043 	struct blk_plug_cb	cb;
1044 	struct bio_list		pending;
1045 	int			pending_cnt;
1046 };
1047 
1048 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1049 {
1050 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1051 						   cb);
1052 	struct mddev *mddev = plug->cb.data;
1053 	struct r10conf *conf = mddev->private;
1054 	struct bio *bio;
1055 
1056 	if (from_schedule || current->bio_list) {
1057 		spin_lock_irq(&conf->device_lock);
1058 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1059 		conf->pending_count += plug->pending_cnt;
1060 		spin_unlock_irq(&conf->device_lock);
1061 		wake_up(&conf->wait_barrier);
1062 		md_wakeup_thread(mddev->thread);
1063 		kfree(plug);
1064 		return;
1065 	}
1066 
1067 	/* we aren't scheduling, so we can do the write-out directly. */
1068 	bio = bio_list_get(&plug->pending);
1069 	bitmap_unplug(mddev->bitmap);
1070 	wake_up(&conf->wait_barrier);
1071 
1072 	while (bio) { /* submit pending writes */
1073 		struct bio *next = bio->bi_next;
1074 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1075 		bio->bi_next = NULL;
1076 		bio->bi_bdev = rdev->bdev;
1077 		if (test_bit(Faulty, &rdev->flags)) {
1078 			bio->bi_error = -EIO;
1079 			bio_endio(bio);
1080 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1081 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1082 			/* Just ignore it */
1083 			bio_endio(bio);
1084 		else
1085 			generic_make_request(bio);
1086 		bio = next;
1087 	}
1088 	kfree(plug);
1089 }
1090 
1091 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1092 				struct r10bio *r10_bio)
1093 {
1094 	struct r10conf *conf = mddev->private;
1095 	struct bio *read_bio;
1096 	const int op = bio_op(bio);
1097 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1098 	int sectors_handled;
1099 	int max_sectors;
1100 	sector_t sectors;
1101 	struct md_rdev *rdev;
1102 	int slot;
1103 
1104 	/*
1105 	 * Register the new request and wait if the reconstruction
1106 	 * thread has put up a bar for new requests.
1107 	 * Continue immediately if no resync is active currently.
1108 	 */
1109 	wait_barrier(conf);
1110 
1111 	sectors = bio_sectors(bio);
1112 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1113 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1114 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1115 		/*
1116 		 * IO spans the reshape position.  Need to wait for reshape to
1117 		 * pass
1118 		 */
1119 		raid10_log(conf->mddev, "wait reshape");
1120 		allow_barrier(conf);
1121 		wait_event(conf->wait_barrier,
1122 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1123 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1124 			   sectors);
1125 		wait_barrier(conf);
1126 	}
1127 
1128 read_again:
1129 	rdev = read_balance(conf, r10_bio, &max_sectors);
1130 	if (!rdev) {
1131 		raid_end_bio_io(r10_bio);
1132 		return;
1133 	}
1134 	slot = r10_bio->read_slot;
1135 
1136 	read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1137 	bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1138 		 max_sectors);
1139 
1140 	r10_bio->devs[slot].bio = read_bio;
1141 	r10_bio->devs[slot].rdev = rdev;
1142 
1143 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1144 		choose_data_offset(r10_bio, rdev);
1145 	read_bio->bi_bdev = rdev->bdev;
1146 	read_bio->bi_end_io = raid10_end_read_request;
1147 	bio_set_op_attrs(read_bio, op, do_sync);
1148 	if (test_bit(FailFast, &rdev->flags) &&
1149 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1150 	        read_bio->bi_opf |= MD_FAILFAST;
1151 	read_bio->bi_private = r10_bio;
1152 
1153 	if (mddev->gendisk)
1154 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1155 	                              read_bio, disk_devt(mddev->gendisk),
1156 	                              r10_bio->sector);
1157 	if (max_sectors < r10_bio->sectors) {
1158 		/*
1159 		 * Could not read all from this device, so we will need another
1160 		 * r10_bio.
1161 		 */
1162 		sectors_handled = (r10_bio->sector + max_sectors
1163 				   - bio->bi_iter.bi_sector);
1164 		r10_bio->sectors = max_sectors;
1165 		spin_lock_irq(&conf->device_lock);
1166 		if (bio->bi_phys_segments == 0)
1167 			bio->bi_phys_segments = 2;
1168 		else
1169 			bio->bi_phys_segments++;
1170 		spin_unlock_irq(&conf->device_lock);
1171 		/*
1172 		 * Cannot call generic_make_request directly as that will be
1173 		 * queued in __generic_make_request and subsequent
1174 		 * mempool_alloc might block waiting for it.  so hand bio over
1175 		 * to raid10d.
1176 		 */
1177 		reschedule_retry(r10_bio);
1178 
1179 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1180 
1181 		r10_bio->master_bio = bio;
1182 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1183 		r10_bio->state = 0;
1184 		r10_bio->mddev = mddev;
1185 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1186 		goto read_again;
1187 	} else
1188 		generic_make_request(read_bio);
1189 	return;
1190 }
1191 
1192 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1193 				 struct r10bio *r10_bio)
1194 {
1195 	struct r10conf *conf = mddev->private;
1196 	int i;
1197 	const int op = bio_op(bio);
1198 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1199 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1200 	unsigned long flags;
1201 	struct md_rdev *blocked_rdev;
1202 	struct blk_plug_cb *cb;
1203 	struct raid10_plug_cb *plug = NULL;
1204 	sector_t sectors;
1205 	int sectors_handled;
1206 	int max_sectors;
1207 
1208 	md_write_start(mddev, bio);
1209 
1210 	/*
1211 	 * Register the new request and wait if the reconstruction
1212 	 * thread has put up a bar for new requests.
1213 	 * Continue immediately if no resync is active currently.
1214 	 */
1215 	wait_barrier(conf);
1216 
1217 	sectors = bio_sectors(bio);
1218 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1219 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1220 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1221 		/*
1222 		 * IO spans the reshape position.  Need to wait for reshape to
1223 		 * pass
1224 		 */
1225 		raid10_log(conf->mddev, "wait reshape");
1226 		allow_barrier(conf);
1227 		wait_event(conf->wait_barrier,
1228 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1229 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1230 			   sectors);
1231 		wait_barrier(conf);
1232 	}
1233 
1234 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1235 	    (mddev->reshape_backwards
1236 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1237 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1238 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1239 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1240 		/* Need to update reshape_position in metadata */
1241 		mddev->reshape_position = conf->reshape_progress;
1242 		set_mask_bits(&mddev->sb_flags, 0,
1243 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1244 		md_wakeup_thread(mddev->thread);
1245 		raid10_log(conf->mddev, "wait reshape metadata");
1246 		wait_event(mddev->sb_wait,
1247 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1248 
1249 		conf->reshape_safe = mddev->reshape_position;
1250 	}
1251 
1252 	if (conf->pending_count >= max_queued_requests) {
1253 		md_wakeup_thread(mddev->thread);
1254 		raid10_log(mddev, "wait queued");
1255 		wait_event(conf->wait_barrier,
1256 			   conf->pending_count < max_queued_requests);
1257 	}
1258 	/* first select target devices under rcu_lock and
1259 	 * inc refcount on their rdev.  Record them by setting
1260 	 * bios[x] to bio
1261 	 * If there are known/acknowledged bad blocks on any device
1262 	 * on which we have seen a write error, we want to avoid
1263 	 * writing to those blocks.  This potentially requires several
1264 	 * writes to write around the bad blocks.  Each set of writes
1265 	 * gets its own r10_bio with a set of bios attached.  The number
1266 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1267 	 * the read case.
1268 	 */
1269 
1270 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1271 	raid10_find_phys(conf, r10_bio);
1272 retry_write:
1273 	blocked_rdev = NULL;
1274 	rcu_read_lock();
1275 	max_sectors = r10_bio->sectors;
1276 
1277 	for (i = 0;  i < conf->copies; i++) {
1278 		int d = r10_bio->devs[i].devnum;
1279 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1280 		struct md_rdev *rrdev = rcu_dereference(
1281 			conf->mirrors[d].replacement);
1282 		if (rdev == rrdev)
1283 			rrdev = NULL;
1284 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1285 			atomic_inc(&rdev->nr_pending);
1286 			blocked_rdev = rdev;
1287 			break;
1288 		}
1289 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1290 			atomic_inc(&rrdev->nr_pending);
1291 			blocked_rdev = rrdev;
1292 			break;
1293 		}
1294 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1295 			rdev = NULL;
1296 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1297 			rrdev = NULL;
1298 
1299 		r10_bio->devs[i].bio = NULL;
1300 		r10_bio->devs[i].repl_bio = NULL;
1301 
1302 		if (!rdev && !rrdev) {
1303 			set_bit(R10BIO_Degraded, &r10_bio->state);
1304 			continue;
1305 		}
1306 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1307 			sector_t first_bad;
1308 			sector_t dev_sector = r10_bio->devs[i].addr;
1309 			int bad_sectors;
1310 			int is_bad;
1311 
1312 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1313 					     &first_bad, &bad_sectors);
1314 			if (is_bad < 0) {
1315 				/* Mustn't write here until the bad block
1316 				 * is acknowledged
1317 				 */
1318 				atomic_inc(&rdev->nr_pending);
1319 				set_bit(BlockedBadBlocks, &rdev->flags);
1320 				blocked_rdev = rdev;
1321 				break;
1322 			}
1323 			if (is_bad && first_bad <= dev_sector) {
1324 				/* Cannot write here at all */
1325 				bad_sectors -= (dev_sector - first_bad);
1326 				if (bad_sectors < max_sectors)
1327 					/* Mustn't write more than bad_sectors
1328 					 * to other devices yet
1329 					 */
1330 					max_sectors = bad_sectors;
1331 				/* We don't set R10BIO_Degraded as that
1332 				 * only applies if the disk is missing,
1333 				 * so it might be re-added, and we want to
1334 				 * know to recover this chunk.
1335 				 * In this case the device is here, and the
1336 				 * fact that this chunk is not in-sync is
1337 				 * recorded in the bad block log.
1338 				 */
1339 				continue;
1340 			}
1341 			if (is_bad) {
1342 				int good_sectors = first_bad - dev_sector;
1343 				if (good_sectors < max_sectors)
1344 					max_sectors = good_sectors;
1345 			}
1346 		}
1347 		if (rdev) {
1348 			r10_bio->devs[i].bio = bio;
1349 			atomic_inc(&rdev->nr_pending);
1350 		}
1351 		if (rrdev) {
1352 			r10_bio->devs[i].repl_bio = bio;
1353 			atomic_inc(&rrdev->nr_pending);
1354 		}
1355 	}
1356 	rcu_read_unlock();
1357 
1358 	if (unlikely(blocked_rdev)) {
1359 		/* Have to wait for this device to get unblocked, then retry */
1360 		int j;
1361 		int d;
1362 
1363 		for (j = 0; j < i; j++) {
1364 			if (r10_bio->devs[j].bio) {
1365 				d = r10_bio->devs[j].devnum;
1366 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1367 			}
1368 			if (r10_bio->devs[j].repl_bio) {
1369 				struct md_rdev *rdev;
1370 				d = r10_bio->devs[j].devnum;
1371 				rdev = conf->mirrors[d].replacement;
1372 				if (!rdev) {
1373 					/* Race with remove_disk */
1374 					smp_mb();
1375 					rdev = conf->mirrors[d].rdev;
1376 				}
1377 				rdev_dec_pending(rdev, mddev);
1378 			}
1379 		}
1380 		allow_barrier(conf);
1381 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1382 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1383 		wait_barrier(conf);
1384 		goto retry_write;
1385 	}
1386 
1387 	if (max_sectors < r10_bio->sectors) {
1388 		/* We are splitting this into multiple parts, so
1389 		 * we need to prepare for allocating another r10_bio.
1390 		 */
1391 		r10_bio->sectors = max_sectors;
1392 		spin_lock_irq(&conf->device_lock);
1393 		if (bio->bi_phys_segments == 0)
1394 			bio->bi_phys_segments = 2;
1395 		else
1396 			bio->bi_phys_segments++;
1397 		spin_unlock_irq(&conf->device_lock);
1398 	}
1399 	sectors_handled = r10_bio->sector + max_sectors -
1400 		bio->bi_iter.bi_sector;
1401 
1402 	atomic_set(&r10_bio->remaining, 1);
1403 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1404 
1405 	for (i = 0; i < conf->copies; i++) {
1406 		struct bio *mbio;
1407 		int d = r10_bio->devs[i].devnum;
1408 		if (r10_bio->devs[i].bio) {
1409 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1410 			mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1411 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1412 				 max_sectors);
1413 			r10_bio->devs[i].bio = mbio;
1414 
1415 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1416 					   choose_data_offset(r10_bio, rdev));
1417 			mbio->bi_bdev = rdev->bdev;
1418 			mbio->bi_end_io	= raid10_end_write_request;
1419 			bio_set_op_attrs(mbio, op, do_sync | do_fua);
1420 			if (test_bit(FailFast, &conf->mirrors[d].rdev->flags) &&
1421 			    enough(conf, d))
1422 				mbio->bi_opf |= MD_FAILFAST;
1423 			mbio->bi_private = r10_bio;
1424 
1425 			if (conf->mddev->gendisk)
1426 				trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1427 						      mbio, disk_devt(conf->mddev->gendisk),
1428 						      r10_bio->sector);
1429 			/* flush_pending_writes() needs access to the rdev so...*/
1430 			mbio->bi_bdev = (void*)rdev;
1431 
1432 			atomic_inc(&r10_bio->remaining);
1433 
1434 			cb = blk_check_plugged(raid10_unplug, mddev,
1435 					       sizeof(*plug));
1436 			if (cb)
1437 				plug = container_of(cb, struct raid10_plug_cb,
1438 						    cb);
1439 			else
1440 				plug = NULL;
1441 			spin_lock_irqsave(&conf->device_lock, flags);
1442 			if (plug) {
1443 				bio_list_add(&plug->pending, mbio);
1444 				plug->pending_cnt++;
1445 			} else {
1446 				bio_list_add(&conf->pending_bio_list, mbio);
1447 				conf->pending_count++;
1448 			}
1449 			spin_unlock_irqrestore(&conf->device_lock, flags);
1450 			if (!plug)
1451 				md_wakeup_thread(mddev->thread);
1452 		}
1453 
1454 		if (r10_bio->devs[i].repl_bio) {
1455 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1456 			if (rdev == NULL) {
1457 				/* Replacement just got moved to main 'rdev' */
1458 				smp_mb();
1459 				rdev = conf->mirrors[d].rdev;
1460 			}
1461 			mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1462 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1463 				 max_sectors);
1464 			r10_bio->devs[i].repl_bio = mbio;
1465 
1466 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1467 					   choose_data_offset(r10_bio, rdev));
1468 			mbio->bi_bdev = rdev->bdev;
1469 			mbio->bi_end_io	= raid10_end_write_request;
1470 			bio_set_op_attrs(mbio, op, do_sync | do_fua);
1471 			mbio->bi_private = r10_bio;
1472 
1473 			if (conf->mddev->gendisk)
1474 				trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1475 						      mbio, disk_devt(conf->mddev->gendisk),
1476 						      r10_bio->sector);
1477 			/* flush_pending_writes() needs access to the rdev so...*/
1478 			mbio->bi_bdev = (void*)rdev;
1479 
1480 			atomic_inc(&r10_bio->remaining);
1481 
1482 			cb = blk_check_plugged(raid10_unplug, mddev,
1483 					       sizeof(*plug));
1484 			if (cb)
1485 				plug = container_of(cb, struct raid10_plug_cb,
1486 						    cb);
1487 			else
1488 				plug = NULL;
1489 			spin_lock_irqsave(&conf->device_lock, flags);
1490 			if (plug) {
1491 				bio_list_add(&plug->pending, mbio);
1492 				plug->pending_cnt++;
1493 			} else {
1494 				bio_list_add(&conf->pending_bio_list, mbio);
1495 				conf->pending_count++;
1496 			}
1497 			spin_unlock_irqrestore(&conf->device_lock, flags);
1498 			if (!plug)
1499 				md_wakeup_thread(mddev->thread);
1500 		}
1501 	}
1502 
1503 	/* Don't remove the bias on 'remaining' (one_write_done) until
1504 	 * after checking if we need to go around again.
1505 	 */
1506 
1507 	if (sectors_handled < bio_sectors(bio)) {
1508 		one_write_done(r10_bio);
1509 		/* We need another r10_bio.  It has already been counted
1510 		 * in bio->bi_phys_segments.
1511 		 */
1512 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1513 
1514 		r10_bio->master_bio = bio;
1515 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1516 
1517 		r10_bio->mddev = mddev;
1518 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1519 		r10_bio->state = 0;
1520 		goto retry_write;
1521 	}
1522 	one_write_done(r10_bio);
1523 }
1524 
1525 static void __make_request(struct mddev *mddev, struct bio *bio)
1526 {
1527 	struct r10conf *conf = mddev->private;
1528 	struct r10bio *r10_bio;
1529 
1530 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1531 
1532 	r10_bio->master_bio = bio;
1533 	r10_bio->sectors = bio_sectors(bio);
1534 
1535 	r10_bio->mddev = mddev;
1536 	r10_bio->sector = bio->bi_iter.bi_sector;
1537 	r10_bio->state = 0;
1538 
1539 	/*
1540 	 * We might need to issue multiple reads to different devices if there
1541 	 * are bad blocks around, so we keep track of the number of reads in
1542 	 * bio->bi_phys_segments.  If this is 0, there is only one r10_bio and
1543 	 * no locking will be needed when the request completes.  If it is
1544 	 * non-zero, then it is the number of not-completed requests.
1545 	 */
1546 	bio->bi_phys_segments = 0;
1547 	bio_clear_flag(bio, BIO_SEG_VALID);
1548 
1549 	if (bio_data_dir(bio) == READ)
1550 		raid10_read_request(mddev, bio, r10_bio);
1551 	else
1552 		raid10_write_request(mddev, bio, r10_bio);
1553 }
1554 
1555 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1556 {
1557 	struct r10conf *conf = mddev->private;
1558 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1559 	int chunk_sects = chunk_mask + 1;
1560 
1561 	struct bio *split;
1562 
1563 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1564 		md_flush_request(mddev, bio);
1565 		return;
1566 	}
1567 
1568 	do {
1569 
1570 		/*
1571 		 * If this request crosses a chunk boundary, we need to split
1572 		 * it.
1573 		 */
1574 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1575 			     bio_sectors(bio) > chunk_sects
1576 			     && (conf->geo.near_copies < conf->geo.raid_disks
1577 				 || conf->prev.near_copies <
1578 				 conf->prev.raid_disks))) {
1579 			split = bio_split(bio, chunk_sects -
1580 					  (bio->bi_iter.bi_sector &
1581 					   (chunk_sects - 1)),
1582 					  GFP_NOIO, fs_bio_set);
1583 			bio_chain(split, bio);
1584 		} else {
1585 			split = bio;
1586 		}
1587 
1588 		/*
1589 		 * If a bio is splitted, the first part of bio will pass
1590 		 * barrier but the bio is queued in current->bio_list (see
1591 		 * generic_make_request). If there is a raise_barrier() called
1592 		 * here, the second part of bio can't pass barrier. But since
1593 		 * the first part bio isn't dispatched to underlaying disks
1594 		 * yet, the barrier is never released, hence raise_barrier will
1595 		 * alays wait. We have a deadlock.
1596 		 * Note, this only happens in read path. For write path, the
1597 		 * first part of bio is dispatched in a schedule() call
1598 		 * (because of blk plug) or offloaded to raid10d.
1599 		 * Quitting from the function immediately can change the bio
1600 		 * order queued in bio_list and avoid the deadlock.
1601 		 */
1602 		__make_request(mddev, split);
1603 		if (split != bio && bio_data_dir(bio) == READ) {
1604 			generic_make_request(bio);
1605 			break;
1606 		}
1607 	} while (split != bio);
1608 
1609 	/* In case raid10d snuck in to freeze_array */
1610 	wake_up(&conf->wait_barrier);
1611 }
1612 
1613 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1614 {
1615 	struct r10conf *conf = mddev->private;
1616 	int i;
1617 
1618 	if (conf->geo.near_copies < conf->geo.raid_disks)
1619 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1620 	if (conf->geo.near_copies > 1)
1621 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1622 	if (conf->geo.far_copies > 1) {
1623 		if (conf->geo.far_offset)
1624 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1625 		else
1626 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1627 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1628 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1629 	}
1630 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1631 					conf->geo.raid_disks - mddev->degraded);
1632 	rcu_read_lock();
1633 	for (i = 0; i < conf->geo.raid_disks; i++) {
1634 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1635 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1636 	}
1637 	rcu_read_unlock();
1638 	seq_printf(seq, "]");
1639 }
1640 
1641 /* check if there are enough drives for
1642  * every block to appear on atleast one.
1643  * Don't consider the device numbered 'ignore'
1644  * as we might be about to remove it.
1645  */
1646 static int _enough(struct r10conf *conf, int previous, int ignore)
1647 {
1648 	int first = 0;
1649 	int has_enough = 0;
1650 	int disks, ncopies;
1651 	if (previous) {
1652 		disks = conf->prev.raid_disks;
1653 		ncopies = conf->prev.near_copies;
1654 	} else {
1655 		disks = conf->geo.raid_disks;
1656 		ncopies = conf->geo.near_copies;
1657 	}
1658 
1659 	rcu_read_lock();
1660 	do {
1661 		int n = conf->copies;
1662 		int cnt = 0;
1663 		int this = first;
1664 		while (n--) {
1665 			struct md_rdev *rdev;
1666 			if (this != ignore &&
1667 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1668 			    test_bit(In_sync, &rdev->flags))
1669 				cnt++;
1670 			this = (this+1) % disks;
1671 		}
1672 		if (cnt == 0)
1673 			goto out;
1674 		first = (first + ncopies) % disks;
1675 	} while (first != 0);
1676 	has_enough = 1;
1677 out:
1678 	rcu_read_unlock();
1679 	return has_enough;
1680 }
1681 
1682 static int enough(struct r10conf *conf, int ignore)
1683 {
1684 	/* when calling 'enough', both 'prev' and 'geo' must
1685 	 * be stable.
1686 	 * This is ensured if ->reconfig_mutex or ->device_lock
1687 	 * is held.
1688 	 */
1689 	return _enough(conf, 0, ignore) &&
1690 		_enough(conf, 1, ignore);
1691 }
1692 
1693 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1694 {
1695 	char b[BDEVNAME_SIZE];
1696 	struct r10conf *conf = mddev->private;
1697 	unsigned long flags;
1698 
1699 	/*
1700 	 * If it is not operational, then we have already marked it as dead
1701 	 * else if it is the last working disks, ignore the error, let the
1702 	 * next level up know.
1703 	 * else mark the drive as failed
1704 	 */
1705 	spin_lock_irqsave(&conf->device_lock, flags);
1706 	if (test_bit(In_sync, &rdev->flags)
1707 	    && !enough(conf, rdev->raid_disk)) {
1708 		/*
1709 		 * Don't fail the drive, just return an IO error.
1710 		 */
1711 		spin_unlock_irqrestore(&conf->device_lock, flags);
1712 		return;
1713 	}
1714 	if (test_and_clear_bit(In_sync, &rdev->flags))
1715 		mddev->degraded++;
1716 	/*
1717 	 * If recovery is running, make sure it aborts.
1718 	 */
1719 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1720 	set_bit(Blocked, &rdev->flags);
1721 	set_bit(Faulty, &rdev->flags);
1722 	set_mask_bits(&mddev->sb_flags, 0,
1723 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1724 	spin_unlock_irqrestore(&conf->device_lock, flags);
1725 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1726 		"md/raid10:%s: Operation continuing on %d devices.\n",
1727 		mdname(mddev), bdevname(rdev->bdev, b),
1728 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1729 }
1730 
1731 static void print_conf(struct r10conf *conf)
1732 {
1733 	int i;
1734 	struct md_rdev *rdev;
1735 
1736 	pr_debug("RAID10 conf printout:\n");
1737 	if (!conf) {
1738 		pr_debug("(!conf)\n");
1739 		return;
1740 	}
1741 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1742 		 conf->geo.raid_disks);
1743 
1744 	/* This is only called with ->reconfix_mutex held, so
1745 	 * rcu protection of rdev is not needed */
1746 	for (i = 0; i < conf->geo.raid_disks; i++) {
1747 		char b[BDEVNAME_SIZE];
1748 		rdev = conf->mirrors[i].rdev;
1749 		if (rdev)
1750 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1751 				 i, !test_bit(In_sync, &rdev->flags),
1752 				 !test_bit(Faulty, &rdev->flags),
1753 				 bdevname(rdev->bdev,b));
1754 	}
1755 }
1756 
1757 static void close_sync(struct r10conf *conf)
1758 {
1759 	wait_barrier(conf);
1760 	allow_barrier(conf);
1761 
1762 	mempool_destroy(conf->r10buf_pool);
1763 	conf->r10buf_pool = NULL;
1764 }
1765 
1766 static int raid10_spare_active(struct mddev *mddev)
1767 {
1768 	int i;
1769 	struct r10conf *conf = mddev->private;
1770 	struct raid10_info *tmp;
1771 	int count = 0;
1772 	unsigned long flags;
1773 
1774 	/*
1775 	 * Find all non-in_sync disks within the RAID10 configuration
1776 	 * and mark them in_sync
1777 	 */
1778 	for (i = 0; i < conf->geo.raid_disks; i++) {
1779 		tmp = conf->mirrors + i;
1780 		if (tmp->replacement
1781 		    && tmp->replacement->recovery_offset == MaxSector
1782 		    && !test_bit(Faulty, &tmp->replacement->flags)
1783 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1784 			/* Replacement has just become active */
1785 			if (!tmp->rdev
1786 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1787 				count++;
1788 			if (tmp->rdev) {
1789 				/* Replaced device not technically faulty,
1790 				 * but we need to be sure it gets removed
1791 				 * and never re-added.
1792 				 */
1793 				set_bit(Faulty, &tmp->rdev->flags);
1794 				sysfs_notify_dirent_safe(
1795 					tmp->rdev->sysfs_state);
1796 			}
1797 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1798 		} else if (tmp->rdev
1799 			   && tmp->rdev->recovery_offset == MaxSector
1800 			   && !test_bit(Faulty, &tmp->rdev->flags)
1801 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1802 			count++;
1803 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1804 		}
1805 	}
1806 	spin_lock_irqsave(&conf->device_lock, flags);
1807 	mddev->degraded -= count;
1808 	spin_unlock_irqrestore(&conf->device_lock, flags);
1809 
1810 	print_conf(conf);
1811 	return count;
1812 }
1813 
1814 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1815 {
1816 	struct r10conf *conf = mddev->private;
1817 	int err = -EEXIST;
1818 	int mirror;
1819 	int first = 0;
1820 	int last = conf->geo.raid_disks - 1;
1821 
1822 	if (mddev->recovery_cp < MaxSector)
1823 		/* only hot-add to in-sync arrays, as recovery is
1824 		 * very different from resync
1825 		 */
1826 		return -EBUSY;
1827 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1828 		return -EINVAL;
1829 
1830 	if (md_integrity_add_rdev(rdev, mddev))
1831 		return -ENXIO;
1832 
1833 	if (rdev->raid_disk >= 0)
1834 		first = last = rdev->raid_disk;
1835 
1836 	if (rdev->saved_raid_disk >= first &&
1837 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1838 		mirror = rdev->saved_raid_disk;
1839 	else
1840 		mirror = first;
1841 	for ( ; mirror <= last ; mirror++) {
1842 		struct raid10_info *p = &conf->mirrors[mirror];
1843 		if (p->recovery_disabled == mddev->recovery_disabled)
1844 			continue;
1845 		if (p->rdev) {
1846 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1847 			    p->replacement != NULL)
1848 				continue;
1849 			clear_bit(In_sync, &rdev->flags);
1850 			set_bit(Replacement, &rdev->flags);
1851 			rdev->raid_disk = mirror;
1852 			err = 0;
1853 			if (mddev->gendisk)
1854 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1855 						  rdev->data_offset << 9);
1856 			conf->fullsync = 1;
1857 			rcu_assign_pointer(p->replacement, rdev);
1858 			break;
1859 		}
1860 
1861 		if (mddev->gendisk)
1862 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1863 					  rdev->data_offset << 9);
1864 
1865 		p->head_position = 0;
1866 		p->recovery_disabled = mddev->recovery_disabled - 1;
1867 		rdev->raid_disk = mirror;
1868 		err = 0;
1869 		if (rdev->saved_raid_disk != mirror)
1870 			conf->fullsync = 1;
1871 		rcu_assign_pointer(p->rdev, rdev);
1872 		break;
1873 	}
1874 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1875 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1876 
1877 	print_conf(conf);
1878 	return err;
1879 }
1880 
1881 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1882 {
1883 	struct r10conf *conf = mddev->private;
1884 	int err = 0;
1885 	int number = rdev->raid_disk;
1886 	struct md_rdev **rdevp;
1887 	struct raid10_info *p = conf->mirrors + number;
1888 
1889 	print_conf(conf);
1890 	if (rdev == p->rdev)
1891 		rdevp = &p->rdev;
1892 	else if (rdev == p->replacement)
1893 		rdevp = &p->replacement;
1894 	else
1895 		return 0;
1896 
1897 	if (test_bit(In_sync, &rdev->flags) ||
1898 	    atomic_read(&rdev->nr_pending)) {
1899 		err = -EBUSY;
1900 		goto abort;
1901 	}
1902 	/* Only remove non-faulty devices if recovery
1903 	 * is not possible.
1904 	 */
1905 	if (!test_bit(Faulty, &rdev->flags) &&
1906 	    mddev->recovery_disabled != p->recovery_disabled &&
1907 	    (!p->replacement || p->replacement == rdev) &&
1908 	    number < conf->geo.raid_disks &&
1909 	    enough(conf, -1)) {
1910 		err = -EBUSY;
1911 		goto abort;
1912 	}
1913 	*rdevp = NULL;
1914 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1915 		synchronize_rcu();
1916 		if (atomic_read(&rdev->nr_pending)) {
1917 			/* lost the race, try later */
1918 			err = -EBUSY;
1919 			*rdevp = rdev;
1920 			goto abort;
1921 		}
1922 	}
1923 	if (p->replacement) {
1924 		/* We must have just cleared 'rdev' */
1925 		p->rdev = p->replacement;
1926 		clear_bit(Replacement, &p->replacement->flags);
1927 		smp_mb(); /* Make sure other CPUs may see both as identical
1928 			   * but will never see neither -- if they are careful.
1929 			   */
1930 		p->replacement = NULL;
1931 		clear_bit(WantReplacement, &rdev->flags);
1932 	} else
1933 		/* We might have just remove the Replacement as faulty
1934 		 * Clear the flag just in case
1935 		 */
1936 		clear_bit(WantReplacement, &rdev->flags);
1937 
1938 	err = md_integrity_register(mddev);
1939 
1940 abort:
1941 
1942 	print_conf(conf);
1943 	return err;
1944 }
1945 
1946 static void end_sync_read(struct bio *bio)
1947 {
1948 	struct r10bio *r10_bio = bio->bi_private;
1949 	struct r10conf *conf = r10_bio->mddev->private;
1950 	int d;
1951 
1952 	if (bio == r10_bio->master_bio) {
1953 		/* this is a reshape read */
1954 		d = r10_bio->read_slot; /* really the read dev */
1955 	} else
1956 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1957 
1958 	if (!bio->bi_error)
1959 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1960 	else
1961 		/* The write handler will notice the lack of
1962 		 * R10BIO_Uptodate and record any errors etc
1963 		 */
1964 		atomic_add(r10_bio->sectors,
1965 			   &conf->mirrors[d].rdev->corrected_errors);
1966 
1967 	/* for reconstruct, we always reschedule after a read.
1968 	 * for resync, only after all reads
1969 	 */
1970 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1971 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1972 	    atomic_dec_and_test(&r10_bio->remaining)) {
1973 		/* we have read all the blocks,
1974 		 * do the comparison in process context in raid10d
1975 		 */
1976 		reschedule_retry(r10_bio);
1977 	}
1978 }
1979 
1980 static void end_sync_request(struct r10bio *r10_bio)
1981 {
1982 	struct mddev *mddev = r10_bio->mddev;
1983 
1984 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1985 		if (r10_bio->master_bio == NULL) {
1986 			/* the primary of several recovery bios */
1987 			sector_t s = r10_bio->sectors;
1988 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1989 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1990 				reschedule_retry(r10_bio);
1991 			else
1992 				put_buf(r10_bio);
1993 			md_done_sync(mddev, s, 1);
1994 			break;
1995 		} else {
1996 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1997 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1998 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1999 				reschedule_retry(r10_bio);
2000 			else
2001 				put_buf(r10_bio);
2002 			r10_bio = r10_bio2;
2003 		}
2004 	}
2005 }
2006 
2007 static void end_sync_write(struct bio *bio)
2008 {
2009 	struct r10bio *r10_bio = bio->bi_private;
2010 	struct mddev *mddev = r10_bio->mddev;
2011 	struct r10conf *conf = mddev->private;
2012 	int d;
2013 	sector_t first_bad;
2014 	int bad_sectors;
2015 	int slot;
2016 	int repl;
2017 	struct md_rdev *rdev = NULL;
2018 
2019 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2020 	if (repl)
2021 		rdev = conf->mirrors[d].replacement;
2022 	else
2023 		rdev = conf->mirrors[d].rdev;
2024 
2025 	if (bio->bi_error) {
2026 		if (repl)
2027 			md_error(mddev, rdev);
2028 		else {
2029 			set_bit(WriteErrorSeen, &rdev->flags);
2030 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2031 				set_bit(MD_RECOVERY_NEEDED,
2032 					&rdev->mddev->recovery);
2033 			set_bit(R10BIO_WriteError, &r10_bio->state);
2034 		}
2035 	} else if (is_badblock(rdev,
2036 			     r10_bio->devs[slot].addr,
2037 			     r10_bio->sectors,
2038 			     &first_bad, &bad_sectors))
2039 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2040 
2041 	rdev_dec_pending(rdev, mddev);
2042 
2043 	end_sync_request(r10_bio);
2044 }
2045 
2046 /*
2047  * Note: sync and recover and handled very differently for raid10
2048  * This code is for resync.
2049  * For resync, we read through virtual addresses and read all blocks.
2050  * If there is any error, we schedule a write.  The lowest numbered
2051  * drive is authoritative.
2052  * However requests come for physical address, so we need to map.
2053  * For every physical address there are raid_disks/copies virtual addresses,
2054  * which is always are least one, but is not necessarly an integer.
2055  * This means that a physical address can span multiple chunks, so we may
2056  * have to submit multiple io requests for a single sync request.
2057  */
2058 /*
2059  * We check if all blocks are in-sync and only write to blocks that
2060  * aren't in sync
2061  */
2062 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2063 {
2064 	struct r10conf *conf = mddev->private;
2065 	int i, first;
2066 	struct bio *tbio, *fbio;
2067 	int vcnt;
2068 
2069 	atomic_set(&r10_bio->remaining, 1);
2070 
2071 	/* find the first device with a block */
2072 	for (i=0; i<conf->copies; i++)
2073 		if (!r10_bio->devs[i].bio->bi_error)
2074 			break;
2075 
2076 	if (i == conf->copies)
2077 		goto done;
2078 
2079 	first = i;
2080 	fbio = r10_bio->devs[i].bio;
2081 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2082 	fbio->bi_iter.bi_idx = 0;
2083 
2084 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2085 	/* now find blocks with errors */
2086 	for (i=0 ; i < conf->copies ; i++) {
2087 		int  j, d;
2088 		struct md_rdev *rdev;
2089 
2090 		tbio = r10_bio->devs[i].bio;
2091 
2092 		if (tbio->bi_end_io != end_sync_read)
2093 			continue;
2094 		if (i == first)
2095 			continue;
2096 		d = r10_bio->devs[i].devnum;
2097 		rdev = conf->mirrors[d].rdev;
2098 		if (!r10_bio->devs[i].bio->bi_error) {
2099 			/* We know that the bi_io_vec layout is the same for
2100 			 * both 'first' and 'i', so we just compare them.
2101 			 * All vec entries are PAGE_SIZE;
2102 			 */
2103 			int sectors = r10_bio->sectors;
2104 			for (j = 0; j < vcnt; j++) {
2105 				int len = PAGE_SIZE;
2106 				if (sectors < (len / 512))
2107 					len = sectors * 512;
2108 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2109 					   page_address(tbio->bi_io_vec[j].bv_page),
2110 					   len))
2111 					break;
2112 				sectors -= len/512;
2113 			}
2114 			if (j == vcnt)
2115 				continue;
2116 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2117 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2118 				/* Don't fix anything. */
2119 				continue;
2120 		} else if (test_bit(FailFast, &rdev->flags)) {
2121 			/* Just give up on this device */
2122 			md_error(rdev->mddev, rdev);
2123 			continue;
2124 		}
2125 		/* Ok, we need to write this bio, either to correct an
2126 		 * inconsistency or to correct an unreadable block.
2127 		 * First we need to fixup bv_offset, bv_len and
2128 		 * bi_vecs, as the read request might have corrupted these
2129 		 */
2130 		bio_reset(tbio);
2131 
2132 		tbio->bi_vcnt = vcnt;
2133 		tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2134 		tbio->bi_private = r10_bio;
2135 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2136 		tbio->bi_end_io = end_sync_write;
2137 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2138 
2139 		bio_copy_data(tbio, fbio);
2140 
2141 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2142 		atomic_inc(&r10_bio->remaining);
2143 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2144 
2145 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2146 			tbio->bi_opf |= MD_FAILFAST;
2147 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2148 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2149 		generic_make_request(tbio);
2150 	}
2151 
2152 	/* Now write out to any replacement devices
2153 	 * that are active
2154 	 */
2155 	for (i = 0; i < conf->copies; i++) {
2156 		int d;
2157 
2158 		tbio = r10_bio->devs[i].repl_bio;
2159 		if (!tbio || !tbio->bi_end_io)
2160 			continue;
2161 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2162 		    && r10_bio->devs[i].bio != fbio)
2163 			bio_copy_data(tbio, fbio);
2164 		d = r10_bio->devs[i].devnum;
2165 		atomic_inc(&r10_bio->remaining);
2166 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2167 			     bio_sectors(tbio));
2168 		generic_make_request(tbio);
2169 	}
2170 
2171 done:
2172 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2173 		md_done_sync(mddev, r10_bio->sectors, 1);
2174 		put_buf(r10_bio);
2175 	}
2176 }
2177 
2178 /*
2179  * Now for the recovery code.
2180  * Recovery happens across physical sectors.
2181  * We recover all non-is_sync drives by finding the virtual address of
2182  * each, and then choose a working drive that also has that virt address.
2183  * There is a separate r10_bio for each non-in_sync drive.
2184  * Only the first two slots are in use. The first for reading,
2185  * The second for writing.
2186  *
2187  */
2188 static void fix_recovery_read_error(struct r10bio *r10_bio)
2189 {
2190 	/* We got a read error during recovery.
2191 	 * We repeat the read in smaller page-sized sections.
2192 	 * If a read succeeds, write it to the new device or record
2193 	 * a bad block if we cannot.
2194 	 * If a read fails, record a bad block on both old and
2195 	 * new devices.
2196 	 */
2197 	struct mddev *mddev = r10_bio->mddev;
2198 	struct r10conf *conf = mddev->private;
2199 	struct bio *bio = r10_bio->devs[0].bio;
2200 	sector_t sect = 0;
2201 	int sectors = r10_bio->sectors;
2202 	int idx = 0;
2203 	int dr = r10_bio->devs[0].devnum;
2204 	int dw = r10_bio->devs[1].devnum;
2205 
2206 	while (sectors) {
2207 		int s = sectors;
2208 		struct md_rdev *rdev;
2209 		sector_t addr;
2210 		int ok;
2211 
2212 		if (s > (PAGE_SIZE>>9))
2213 			s = PAGE_SIZE >> 9;
2214 
2215 		rdev = conf->mirrors[dr].rdev;
2216 		addr = r10_bio->devs[0].addr + sect,
2217 		ok = sync_page_io(rdev,
2218 				  addr,
2219 				  s << 9,
2220 				  bio->bi_io_vec[idx].bv_page,
2221 				  REQ_OP_READ, 0, false);
2222 		if (ok) {
2223 			rdev = conf->mirrors[dw].rdev;
2224 			addr = r10_bio->devs[1].addr + sect;
2225 			ok = sync_page_io(rdev,
2226 					  addr,
2227 					  s << 9,
2228 					  bio->bi_io_vec[idx].bv_page,
2229 					  REQ_OP_WRITE, 0, false);
2230 			if (!ok) {
2231 				set_bit(WriteErrorSeen, &rdev->flags);
2232 				if (!test_and_set_bit(WantReplacement,
2233 						      &rdev->flags))
2234 					set_bit(MD_RECOVERY_NEEDED,
2235 						&rdev->mddev->recovery);
2236 			}
2237 		}
2238 		if (!ok) {
2239 			/* We don't worry if we cannot set a bad block -
2240 			 * it really is bad so there is no loss in not
2241 			 * recording it yet
2242 			 */
2243 			rdev_set_badblocks(rdev, addr, s, 0);
2244 
2245 			if (rdev != conf->mirrors[dw].rdev) {
2246 				/* need bad block on destination too */
2247 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2248 				addr = r10_bio->devs[1].addr + sect;
2249 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2250 				if (!ok) {
2251 					/* just abort the recovery */
2252 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2253 						  mdname(mddev));
2254 
2255 					conf->mirrors[dw].recovery_disabled
2256 						= mddev->recovery_disabled;
2257 					set_bit(MD_RECOVERY_INTR,
2258 						&mddev->recovery);
2259 					break;
2260 				}
2261 			}
2262 		}
2263 
2264 		sectors -= s;
2265 		sect += s;
2266 		idx++;
2267 	}
2268 }
2269 
2270 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2271 {
2272 	struct r10conf *conf = mddev->private;
2273 	int d;
2274 	struct bio *wbio, *wbio2;
2275 
2276 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2277 		fix_recovery_read_error(r10_bio);
2278 		end_sync_request(r10_bio);
2279 		return;
2280 	}
2281 
2282 	/*
2283 	 * share the pages with the first bio
2284 	 * and submit the write request
2285 	 */
2286 	d = r10_bio->devs[1].devnum;
2287 	wbio = r10_bio->devs[1].bio;
2288 	wbio2 = r10_bio->devs[1].repl_bio;
2289 	/* Need to test wbio2->bi_end_io before we call
2290 	 * generic_make_request as if the former is NULL,
2291 	 * the latter is free to free wbio2.
2292 	 */
2293 	if (wbio2 && !wbio2->bi_end_io)
2294 		wbio2 = NULL;
2295 	if (wbio->bi_end_io) {
2296 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2297 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2298 		generic_make_request(wbio);
2299 	}
2300 	if (wbio2) {
2301 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2302 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2303 			     bio_sectors(wbio2));
2304 		generic_make_request(wbio2);
2305 	}
2306 }
2307 
2308 /*
2309  * Used by fix_read_error() to decay the per rdev read_errors.
2310  * We halve the read error count for every hour that has elapsed
2311  * since the last recorded read error.
2312  *
2313  */
2314 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2315 {
2316 	long cur_time_mon;
2317 	unsigned long hours_since_last;
2318 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2319 
2320 	cur_time_mon = ktime_get_seconds();
2321 
2322 	if (rdev->last_read_error == 0) {
2323 		/* first time we've seen a read error */
2324 		rdev->last_read_error = cur_time_mon;
2325 		return;
2326 	}
2327 
2328 	hours_since_last = (long)(cur_time_mon -
2329 			    rdev->last_read_error) / 3600;
2330 
2331 	rdev->last_read_error = cur_time_mon;
2332 
2333 	/*
2334 	 * if hours_since_last is > the number of bits in read_errors
2335 	 * just set read errors to 0. We do this to avoid
2336 	 * overflowing the shift of read_errors by hours_since_last.
2337 	 */
2338 	if (hours_since_last >= 8 * sizeof(read_errors))
2339 		atomic_set(&rdev->read_errors, 0);
2340 	else
2341 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2342 }
2343 
2344 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2345 			    int sectors, struct page *page, int rw)
2346 {
2347 	sector_t first_bad;
2348 	int bad_sectors;
2349 
2350 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2351 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2352 		return -1;
2353 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2354 		/* success */
2355 		return 1;
2356 	if (rw == WRITE) {
2357 		set_bit(WriteErrorSeen, &rdev->flags);
2358 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2359 			set_bit(MD_RECOVERY_NEEDED,
2360 				&rdev->mddev->recovery);
2361 	}
2362 	/* need to record an error - either for the block or the device */
2363 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2364 		md_error(rdev->mddev, rdev);
2365 	return 0;
2366 }
2367 
2368 /*
2369  * This is a kernel thread which:
2370  *
2371  *	1.	Retries failed read operations on working mirrors.
2372  *	2.	Updates the raid superblock when problems encounter.
2373  *	3.	Performs writes following reads for array synchronising.
2374  */
2375 
2376 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2377 {
2378 	int sect = 0; /* Offset from r10_bio->sector */
2379 	int sectors = r10_bio->sectors;
2380 	struct md_rdev*rdev;
2381 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2382 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2383 
2384 	/* still own a reference to this rdev, so it cannot
2385 	 * have been cleared recently.
2386 	 */
2387 	rdev = conf->mirrors[d].rdev;
2388 
2389 	if (test_bit(Faulty, &rdev->flags))
2390 		/* drive has already been failed, just ignore any
2391 		   more fix_read_error() attempts */
2392 		return;
2393 
2394 	check_decay_read_errors(mddev, rdev);
2395 	atomic_inc(&rdev->read_errors);
2396 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2397 		char b[BDEVNAME_SIZE];
2398 		bdevname(rdev->bdev, b);
2399 
2400 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2401 			  mdname(mddev), b,
2402 			  atomic_read(&rdev->read_errors), max_read_errors);
2403 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2404 			  mdname(mddev), b);
2405 		md_error(mddev, rdev);
2406 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2407 		return;
2408 	}
2409 
2410 	while(sectors) {
2411 		int s = sectors;
2412 		int sl = r10_bio->read_slot;
2413 		int success = 0;
2414 		int start;
2415 
2416 		if (s > (PAGE_SIZE>>9))
2417 			s = PAGE_SIZE >> 9;
2418 
2419 		rcu_read_lock();
2420 		do {
2421 			sector_t first_bad;
2422 			int bad_sectors;
2423 
2424 			d = r10_bio->devs[sl].devnum;
2425 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2426 			if (rdev &&
2427 			    test_bit(In_sync, &rdev->flags) &&
2428 			    !test_bit(Faulty, &rdev->flags) &&
2429 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2430 					&first_bad, &bad_sectors) == 0) {
2431 				atomic_inc(&rdev->nr_pending);
2432 				rcu_read_unlock();
2433 				success = sync_page_io(rdev,
2434 						       r10_bio->devs[sl].addr +
2435 						       sect,
2436 						       s<<9,
2437 						       conf->tmppage,
2438 						       REQ_OP_READ, 0, false);
2439 				rdev_dec_pending(rdev, mddev);
2440 				rcu_read_lock();
2441 				if (success)
2442 					break;
2443 			}
2444 			sl++;
2445 			if (sl == conf->copies)
2446 				sl = 0;
2447 		} while (!success && sl != r10_bio->read_slot);
2448 		rcu_read_unlock();
2449 
2450 		if (!success) {
2451 			/* Cannot read from anywhere, just mark the block
2452 			 * as bad on the first device to discourage future
2453 			 * reads.
2454 			 */
2455 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2456 			rdev = conf->mirrors[dn].rdev;
2457 
2458 			if (!rdev_set_badblocks(
2459 				    rdev,
2460 				    r10_bio->devs[r10_bio->read_slot].addr
2461 				    + sect,
2462 				    s, 0)) {
2463 				md_error(mddev, rdev);
2464 				r10_bio->devs[r10_bio->read_slot].bio
2465 					= IO_BLOCKED;
2466 			}
2467 			break;
2468 		}
2469 
2470 		start = sl;
2471 		/* write it back and re-read */
2472 		rcu_read_lock();
2473 		while (sl != r10_bio->read_slot) {
2474 			char b[BDEVNAME_SIZE];
2475 
2476 			if (sl==0)
2477 				sl = conf->copies;
2478 			sl--;
2479 			d = r10_bio->devs[sl].devnum;
2480 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2481 			if (!rdev ||
2482 			    test_bit(Faulty, &rdev->flags) ||
2483 			    !test_bit(In_sync, &rdev->flags))
2484 				continue;
2485 
2486 			atomic_inc(&rdev->nr_pending);
2487 			rcu_read_unlock();
2488 			if (r10_sync_page_io(rdev,
2489 					     r10_bio->devs[sl].addr +
2490 					     sect,
2491 					     s, conf->tmppage, WRITE)
2492 			    == 0) {
2493 				/* Well, this device is dead */
2494 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2495 					  mdname(mddev), s,
2496 					  (unsigned long long)(
2497 						  sect +
2498 						  choose_data_offset(r10_bio,
2499 								     rdev)),
2500 					  bdevname(rdev->bdev, b));
2501 				pr_notice("md/raid10:%s: %s: failing drive\n",
2502 					  mdname(mddev),
2503 					  bdevname(rdev->bdev, b));
2504 			}
2505 			rdev_dec_pending(rdev, mddev);
2506 			rcu_read_lock();
2507 		}
2508 		sl = start;
2509 		while (sl != r10_bio->read_slot) {
2510 			char b[BDEVNAME_SIZE];
2511 
2512 			if (sl==0)
2513 				sl = conf->copies;
2514 			sl--;
2515 			d = r10_bio->devs[sl].devnum;
2516 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2517 			if (!rdev ||
2518 			    test_bit(Faulty, &rdev->flags) ||
2519 			    !test_bit(In_sync, &rdev->flags))
2520 				continue;
2521 
2522 			atomic_inc(&rdev->nr_pending);
2523 			rcu_read_unlock();
2524 			switch (r10_sync_page_io(rdev,
2525 					     r10_bio->devs[sl].addr +
2526 					     sect,
2527 					     s, conf->tmppage,
2528 						 READ)) {
2529 			case 0:
2530 				/* Well, this device is dead */
2531 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2532 				       mdname(mddev), s,
2533 				       (unsigned long long)(
2534 					       sect +
2535 					       choose_data_offset(r10_bio, rdev)),
2536 				       bdevname(rdev->bdev, b));
2537 				pr_notice("md/raid10:%s: %s: failing drive\n",
2538 				       mdname(mddev),
2539 				       bdevname(rdev->bdev, b));
2540 				break;
2541 			case 1:
2542 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2543 				       mdname(mddev), s,
2544 				       (unsigned long long)(
2545 					       sect +
2546 					       choose_data_offset(r10_bio, rdev)),
2547 				       bdevname(rdev->bdev, b));
2548 				atomic_add(s, &rdev->corrected_errors);
2549 			}
2550 
2551 			rdev_dec_pending(rdev, mddev);
2552 			rcu_read_lock();
2553 		}
2554 		rcu_read_unlock();
2555 
2556 		sectors -= s;
2557 		sect += s;
2558 	}
2559 }
2560 
2561 static int narrow_write_error(struct r10bio *r10_bio, int i)
2562 {
2563 	struct bio *bio = r10_bio->master_bio;
2564 	struct mddev *mddev = r10_bio->mddev;
2565 	struct r10conf *conf = mddev->private;
2566 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2567 	/* bio has the data to be written to slot 'i' where
2568 	 * we just recently had a write error.
2569 	 * We repeatedly clone the bio and trim down to one block,
2570 	 * then try the write.  Where the write fails we record
2571 	 * a bad block.
2572 	 * It is conceivable that the bio doesn't exactly align with
2573 	 * blocks.  We must handle this.
2574 	 *
2575 	 * We currently own a reference to the rdev.
2576 	 */
2577 
2578 	int block_sectors;
2579 	sector_t sector;
2580 	int sectors;
2581 	int sect_to_write = r10_bio->sectors;
2582 	int ok = 1;
2583 
2584 	if (rdev->badblocks.shift < 0)
2585 		return 0;
2586 
2587 	block_sectors = roundup(1 << rdev->badblocks.shift,
2588 				bdev_logical_block_size(rdev->bdev) >> 9);
2589 	sector = r10_bio->sector;
2590 	sectors = ((r10_bio->sector + block_sectors)
2591 		   & ~(sector_t)(block_sectors - 1))
2592 		- sector;
2593 
2594 	while (sect_to_write) {
2595 		struct bio *wbio;
2596 		sector_t wsector;
2597 		if (sectors > sect_to_write)
2598 			sectors = sect_to_write;
2599 		/* Write at 'sector' for 'sectors' */
2600 		wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2601 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2602 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2603 		wbio->bi_iter.bi_sector = wsector +
2604 				   choose_data_offset(r10_bio, rdev);
2605 		wbio->bi_bdev = rdev->bdev;
2606 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2607 
2608 		if (submit_bio_wait(wbio) < 0)
2609 			/* Failure! */
2610 			ok = rdev_set_badblocks(rdev, wsector,
2611 						sectors, 0)
2612 				&& ok;
2613 
2614 		bio_put(wbio);
2615 		sect_to_write -= sectors;
2616 		sector += sectors;
2617 		sectors = block_sectors;
2618 	}
2619 	return ok;
2620 }
2621 
2622 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2623 {
2624 	int slot = r10_bio->read_slot;
2625 	struct bio *bio;
2626 	struct r10conf *conf = mddev->private;
2627 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2628 	char b[BDEVNAME_SIZE];
2629 	unsigned long do_sync;
2630 	int max_sectors;
2631 	dev_t bio_dev;
2632 	sector_t bio_last_sector;
2633 
2634 	/* we got a read error. Maybe the drive is bad.  Maybe just
2635 	 * the block and we can fix it.
2636 	 * We freeze all other IO, and try reading the block from
2637 	 * other devices.  When we find one, we re-write
2638 	 * and check it that fixes the read error.
2639 	 * This is all done synchronously while the array is
2640 	 * frozen.
2641 	 */
2642 	bio = r10_bio->devs[slot].bio;
2643 	bdevname(bio->bi_bdev, b);
2644 	bio_dev = bio->bi_bdev->bd_dev;
2645 	bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2646 	bio_put(bio);
2647 	r10_bio->devs[slot].bio = NULL;
2648 
2649 	if (mddev->ro)
2650 		r10_bio->devs[slot].bio = IO_BLOCKED;
2651 	else if (!test_bit(FailFast, &rdev->flags)) {
2652 		freeze_array(conf, 1);
2653 		fix_read_error(conf, mddev, r10_bio);
2654 		unfreeze_array(conf);
2655 	} else
2656 		md_error(mddev, rdev);
2657 
2658 	rdev_dec_pending(rdev, mddev);
2659 
2660 read_more:
2661 	rdev = read_balance(conf, r10_bio, &max_sectors);
2662 	if (rdev == NULL) {
2663 		pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
2664 				    mdname(mddev), b,
2665 				    (unsigned long long)r10_bio->sector);
2666 		raid_end_bio_io(r10_bio);
2667 		return;
2668 	}
2669 
2670 	do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2671 	slot = r10_bio->read_slot;
2672 	pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
2673 			   mdname(mddev),
2674 			   bdevname(rdev->bdev, b),
2675 			   (unsigned long long)r10_bio->sector);
2676 	bio = bio_clone_fast(r10_bio->master_bio, GFP_NOIO, mddev->bio_set);
2677 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2678 	r10_bio->devs[slot].bio = bio;
2679 	r10_bio->devs[slot].rdev = rdev;
2680 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2681 		+ choose_data_offset(r10_bio, rdev);
2682 	bio->bi_bdev = rdev->bdev;
2683 	bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2684 	if (test_bit(FailFast, &rdev->flags) &&
2685 	    test_bit(R10BIO_FailFast, &r10_bio->state))
2686 		bio->bi_opf |= MD_FAILFAST;
2687 	bio->bi_private = r10_bio;
2688 	bio->bi_end_io = raid10_end_read_request;
2689 	trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2690 			      bio, bio_dev,
2691 			      bio_last_sector - r10_bio->sectors);
2692 
2693 	if (max_sectors < r10_bio->sectors) {
2694 		/* Drat - have to split this up more */
2695 		struct bio *mbio = r10_bio->master_bio;
2696 		int sectors_handled =
2697 			r10_bio->sector + max_sectors
2698 			- mbio->bi_iter.bi_sector;
2699 		r10_bio->sectors = max_sectors;
2700 		spin_lock_irq(&conf->device_lock);
2701 		if (mbio->bi_phys_segments == 0)
2702 			mbio->bi_phys_segments = 2;
2703 		else
2704 			mbio->bi_phys_segments++;
2705 		spin_unlock_irq(&conf->device_lock);
2706 		generic_make_request(bio);
2707 
2708 		r10_bio = mempool_alloc(conf->r10bio_pool,
2709 					GFP_NOIO);
2710 		r10_bio->master_bio = mbio;
2711 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2712 		r10_bio->state = 0;
2713 		set_bit(R10BIO_ReadError,
2714 			&r10_bio->state);
2715 		r10_bio->mddev = mddev;
2716 		r10_bio->sector = mbio->bi_iter.bi_sector
2717 			+ sectors_handled;
2718 
2719 		goto read_more;
2720 	} else
2721 		generic_make_request(bio);
2722 }
2723 
2724 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2725 {
2726 	/* Some sort of write request has finished and it
2727 	 * succeeded in writing where we thought there was a
2728 	 * bad block.  So forget the bad block.
2729 	 * Or possibly if failed and we need to record
2730 	 * a bad block.
2731 	 */
2732 	int m;
2733 	struct md_rdev *rdev;
2734 
2735 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2736 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2737 		for (m = 0; m < conf->copies; m++) {
2738 			int dev = r10_bio->devs[m].devnum;
2739 			rdev = conf->mirrors[dev].rdev;
2740 			if (r10_bio->devs[m].bio == NULL)
2741 				continue;
2742 			if (!r10_bio->devs[m].bio->bi_error) {
2743 				rdev_clear_badblocks(
2744 					rdev,
2745 					r10_bio->devs[m].addr,
2746 					r10_bio->sectors, 0);
2747 			} else {
2748 				if (!rdev_set_badblocks(
2749 					    rdev,
2750 					    r10_bio->devs[m].addr,
2751 					    r10_bio->sectors, 0))
2752 					md_error(conf->mddev, rdev);
2753 			}
2754 			rdev = conf->mirrors[dev].replacement;
2755 			if (r10_bio->devs[m].repl_bio == NULL)
2756 				continue;
2757 
2758 			if (!r10_bio->devs[m].repl_bio->bi_error) {
2759 				rdev_clear_badblocks(
2760 					rdev,
2761 					r10_bio->devs[m].addr,
2762 					r10_bio->sectors, 0);
2763 			} else {
2764 				if (!rdev_set_badblocks(
2765 					    rdev,
2766 					    r10_bio->devs[m].addr,
2767 					    r10_bio->sectors, 0))
2768 					md_error(conf->mddev, rdev);
2769 			}
2770 		}
2771 		put_buf(r10_bio);
2772 	} else {
2773 		bool fail = false;
2774 		for (m = 0; m < conf->copies; m++) {
2775 			int dev = r10_bio->devs[m].devnum;
2776 			struct bio *bio = r10_bio->devs[m].bio;
2777 			rdev = conf->mirrors[dev].rdev;
2778 			if (bio == IO_MADE_GOOD) {
2779 				rdev_clear_badblocks(
2780 					rdev,
2781 					r10_bio->devs[m].addr,
2782 					r10_bio->sectors, 0);
2783 				rdev_dec_pending(rdev, conf->mddev);
2784 			} else if (bio != NULL && bio->bi_error) {
2785 				fail = true;
2786 				if (!narrow_write_error(r10_bio, m)) {
2787 					md_error(conf->mddev, rdev);
2788 					set_bit(R10BIO_Degraded,
2789 						&r10_bio->state);
2790 				}
2791 				rdev_dec_pending(rdev, conf->mddev);
2792 			}
2793 			bio = r10_bio->devs[m].repl_bio;
2794 			rdev = conf->mirrors[dev].replacement;
2795 			if (rdev && bio == IO_MADE_GOOD) {
2796 				rdev_clear_badblocks(
2797 					rdev,
2798 					r10_bio->devs[m].addr,
2799 					r10_bio->sectors, 0);
2800 				rdev_dec_pending(rdev, conf->mddev);
2801 			}
2802 		}
2803 		if (fail) {
2804 			spin_lock_irq(&conf->device_lock);
2805 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2806 			conf->nr_queued++;
2807 			spin_unlock_irq(&conf->device_lock);
2808 			md_wakeup_thread(conf->mddev->thread);
2809 		} else {
2810 			if (test_bit(R10BIO_WriteError,
2811 				     &r10_bio->state))
2812 				close_write(r10_bio);
2813 			raid_end_bio_io(r10_bio);
2814 		}
2815 	}
2816 }
2817 
2818 static void raid10d(struct md_thread *thread)
2819 {
2820 	struct mddev *mddev = thread->mddev;
2821 	struct r10bio *r10_bio;
2822 	unsigned long flags;
2823 	struct r10conf *conf = mddev->private;
2824 	struct list_head *head = &conf->retry_list;
2825 	struct blk_plug plug;
2826 
2827 	md_check_recovery(mddev);
2828 
2829 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2830 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2831 		LIST_HEAD(tmp);
2832 		spin_lock_irqsave(&conf->device_lock, flags);
2833 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2834 			while (!list_empty(&conf->bio_end_io_list)) {
2835 				list_move(conf->bio_end_io_list.prev, &tmp);
2836 				conf->nr_queued--;
2837 			}
2838 		}
2839 		spin_unlock_irqrestore(&conf->device_lock, flags);
2840 		while (!list_empty(&tmp)) {
2841 			r10_bio = list_first_entry(&tmp, struct r10bio,
2842 						   retry_list);
2843 			list_del(&r10_bio->retry_list);
2844 			if (mddev->degraded)
2845 				set_bit(R10BIO_Degraded, &r10_bio->state);
2846 
2847 			if (test_bit(R10BIO_WriteError,
2848 				     &r10_bio->state))
2849 				close_write(r10_bio);
2850 			raid_end_bio_io(r10_bio);
2851 		}
2852 	}
2853 
2854 	blk_start_plug(&plug);
2855 	for (;;) {
2856 
2857 		flush_pending_writes(conf);
2858 
2859 		spin_lock_irqsave(&conf->device_lock, flags);
2860 		if (list_empty(head)) {
2861 			spin_unlock_irqrestore(&conf->device_lock, flags);
2862 			break;
2863 		}
2864 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2865 		list_del(head->prev);
2866 		conf->nr_queued--;
2867 		spin_unlock_irqrestore(&conf->device_lock, flags);
2868 
2869 		mddev = r10_bio->mddev;
2870 		conf = mddev->private;
2871 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2872 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2873 			handle_write_completed(conf, r10_bio);
2874 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2875 			reshape_request_write(mddev, r10_bio);
2876 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2877 			sync_request_write(mddev, r10_bio);
2878 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2879 			recovery_request_write(mddev, r10_bio);
2880 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2881 			handle_read_error(mddev, r10_bio);
2882 		else {
2883 			/* just a partial read to be scheduled from a
2884 			 * separate context
2885 			 */
2886 			int slot = r10_bio->read_slot;
2887 			generic_make_request(r10_bio->devs[slot].bio);
2888 		}
2889 
2890 		cond_resched();
2891 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2892 			md_check_recovery(mddev);
2893 	}
2894 	blk_finish_plug(&plug);
2895 }
2896 
2897 static int init_resync(struct r10conf *conf)
2898 {
2899 	int buffs;
2900 	int i;
2901 
2902 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2903 	BUG_ON(conf->r10buf_pool);
2904 	conf->have_replacement = 0;
2905 	for (i = 0; i < conf->geo.raid_disks; i++)
2906 		if (conf->mirrors[i].replacement)
2907 			conf->have_replacement = 1;
2908 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2909 	if (!conf->r10buf_pool)
2910 		return -ENOMEM;
2911 	conf->next_resync = 0;
2912 	return 0;
2913 }
2914 
2915 /*
2916  * perform a "sync" on one "block"
2917  *
2918  * We need to make sure that no normal I/O request - particularly write
2919  * requests - conflict with active sync requests.
2920  *
2921  * This is achieved by tracking pending requests and a 'barrier' concept
2922  * that can be installed to exclude normal IO requests.
2923  *
2924  * Resync and recovery are handled very differently.
2925  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2926  *
2927  * For resync, we iterate over virtual addresses, read all copies,
2928  * and update if there are differences.  If only one copy is live,
2929  * skip it.
2930  * For recovery, we iterate over physical addresses, read a good
2931  * value for each non-in_sync drive, and over-write.
2932  *
2933  * So, for recovery we may have several outstanding complex requests for a
2934  * given address, one for each out-of-sync device.  We model this by allocating
2935  * a number of r10_bio structures, one for each out-of-sync device.
2936  * As we setup these structures, we collect all bio's together into a list
2937  * which we then process collectively to add pages, and then process again
2938  * to pass to generic_make_request.
2939  *
2940  * The r10_bio structures are linked using a borrowed master_bio pointer.
2941  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2942  * has its remaining count decremented to 0, the whole complex operation
2943  * is complete.
2944  *
2945  */
2946 
2947 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2948 			     int *skipped)
2949 {
2950 	struct r10conf *conf = mddev->private;
2951 	struct r10bio *r10_bio;
2952 	struct bio *biolist = NULL, *bio;
2953 	sector_t max_sector, nr_sectors;
2954 	int i;
2955 	int max_sync;
2956 	sector_t sync_blocks;
2957 	sector_t sectors_skipped = 0;
2958 	int chunks_skipped = 0;
2959 	sector_t chunk_mask = conf->geo.chunk_mask;
2960 
2961 	if (!conf->r10buf_pool)
2962 		if (init_resync(conf))
2963 			return 0;
2964 
2965 	/*
2966 	 * Allow skipping a full rebuild for incremental assembly
2967 	 * of a clean array, like RAID1 does.
2968 	 */
2969 	if (mddev->bitmap == NULL &&
2970 	    mddev->recovery_cp == MaxSector &&
2971 	    mddev->reshape_position == MaxSector &&
2972 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2973 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2974 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2975 	    conf->fullsync == 0) {
2976 		*skipped = 1;
2977 		return mddev->dev_sectors - sector_nr;
2978 	}
2979 
2980  skipped:
2981 	max_sector = mddev->dev_sectors;
2982 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2983 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2984 		max_sector = mddev->resync_max_sectors;
2985 	if (sector_nr >= max_sector) {
2986 		/* If we aborted, we need to abort the
2987 		 * sync on the 'current' bitmap chucks (there can
2988 		 * be several when recovering multiple devices).
2989 		 * as we may have started syncing it but not finished.
2990 		 * We can find the current address in
2991 		 * mddev->curr_resync, but for recovery,
2992 		 * we need to convert that to several
2993 		 * virtual addresses.
2994 		 */
2995 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2996 			end_reshape(conf);
2997 			close_sync(conf);
2998 			return 0;
2999 		}
3000 
3001 		if (mddev->curr_resync < max_sector) { /* aborted */
3002 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3003 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3004 						&sync_blocks, 1);
3005 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3006 				sector_t sect =
3007 					raid10_find_virt(conf, mddev->curr_resync, i);
3008 				bitmap_end_sync(mddev->bitmap, sect,
3009 						&sync_blocks, 1);
3010 			}
3011 		} else {
3012 			/* completed sync */
3013 			if ((!mddev->bitmap || conf->fullsync)
3014 			    && conf->have_replacement
3015 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3016 				/* Completed a full sync so the replacements
3017 				 * are now fully recovered.
3018 				 */
3019 				rcu_read_lock();
3020 				for (i = 0; i < conf->geo.raid_disks; i++) {
3021 					struct md_rdev *rdev =
3022 						rcu_dereference(conf->mirrors[i].replacement);
3023 					if (rdev)
3024 						rdev->recovery_offset = MaxSector;
3025 				}
3026 				rcu_read_unlock();
3027 			}
3028 			conf->fullsync = 0;
3029 		}
3030 		bitmap_close_sync(mddev->bitmap);
3031 		close_sync(conf);
3032 		*skipped = 1;
3033 		return sectors_skipped;
3034 	}
3035 
3036 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3037 		return reshape_request(mddev, sector_nr, skipped);
3038 
3039 	if (chunks_skipped >= conf->geo.raid_disks) {
3040 		/* if there has been nothing to do on any drive,
3041 		 * then there is nothing to do at all..
3042 		 */
3043 		*skipped = 1;
3044 		return (max_sector - sector_nr) + sectors_skipped;
3045 	}
3046 
3047 	if (max_sector > mddev->resync_max)
3048 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3049 
3050 	/* make sure whole request will fit in a chunk - if chunks
3051 	 * are meaningful
3052 	 */
3053 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3054 	    max_sector > (sector_nr | chunk_mask))
3055 		max_sector = (sector_nr | chunk_mask) + 1;
3056 
3057 	/*
3058 	 * If there is non-resync activity waiting for a turn, then let it
3059 	 * though before starting on this new sync request.
3060 	 */
3061 	if (conf->nr_waiting)
3062 		schedule_timeout_uninterruptible(1);
3063 
3064 	/* Again, very different code for resync and recovery.
3065 	 * Both must result in an r10bio with a list of bios that
3066 	 * have bi_end_io, bi_sector, bi_bdev set,
3067 	 * and bi_private set to the r10bio.
3068 	 * For recovery, we may actually create several r10bios
3069 	 * with 2 bios in each, that correspond to the bios in the main one.
3070 	 * In this case, the subordinate r10bios link back through a
3071 	 * borrowed master_bio pointer, and the counter in the master
3072 	 * includes a ref from each subordinate.
3073 	 */
3074 	/* First, we decide what to do and set ->bi_end_io
3075 	 * To end_sync_read if we want to read, and
3076 	 * end_sync_write if we will want to write.
3077 	 */
3078 
3079 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3080 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3081 		/* recovery... the complicated one */
3082 		int j;
3083 		r10_bio = NULL;
3084 
3085 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3086 			int still_degraded;
3087 			struct r10bio *rb2;
3088 			sector_t sect;
3089 			int must_sync;
3090 			int any_working;
3091 			struct raid10_info *mirror = &conf->mirrors[i];
3092 			struct md_rdev *mrdev, *mreplace;
3093 
3094 			rcu_read_lock();
3095 			mrdev = rcu_dereference(mirror->rdev);
3096 			mreplace = rcu_dereference(mirror->replacement);
3097 
3098 			if ((mrdev == NULL ||
3099 			     test_bit(Faulty, &mrdev->flags) ||
3100 			     test_bit(In_sync, &mrdev->flags)) &&
3101 			    (mreplace == NULL ||
3102 			     test_bit(Faulty, &mreplace->flags))) {
3103 				rcu_read_unlock();
3104 				continue;
3105 			}
3106 
3107 			still_degraded = 0;
3108 			/* want to reconstruct this device */
3109 			rb2 = r10_bio;
3110 			sect = raid10_find_virt(conf, sector_nr, i);
3111 			if (sect >= mddev->resync_max_sectors) {
3112 				/* last stripe is not complete - don't
3113 				 * try to recover this sector.
3114 				 */
3115 				rcu_read_unlock();
3116 				continue;
3117 			}
3118 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3119 				mreplace = NULL;
3120 			/* Unless we are doing a full sync, or a replacement
3121 			 * we only need to recover the block if it is set in
3122 			 * the bitmap
3123 			 */
3124 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3125 						      &sync_blocks, 1);
3126 			if (sync_blocks < max_sync)
3127 				max_sync = sync_blocks;
3128 			if (!must_sync &&
3129 			    mreplace == NULL &&
3130 			    !conf->fullsync) {
3131 				/* yep, skip the sync_blocks here, but don't assume
3132 				 * that there will never be anything to do here
3133 				 */
3134 				chunks_skipped = -1;
3135 				rcu_read_unlock();
3136 				continue;
3137 			}
3138 			atomic_inc(&mrdev->nr_pending);
3139 			if (mreplace)
3140 				atomic_inc(&mreplace->nr_pending);
3141 			rcu_read_unlock();
3142 
3143 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3144 			r10_bio->state = 0;
3145 			raise_barrier(conf, rb2 != NULL);
3146 			atomic_set(&r10_bio->remaining, 0);
3147 
3148 			r10_bio->master_bio = (struct bio*)rb2;
3149 			if (rb2)
3150 				atomic_inc(&rb2->remaining);
3151 			r10_bio->mddev = mddev;
3152 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3153 			r10_bio->sector = sect;
3154 
3155 			raid10_find_phys(conf, r10_bio);
3156 
3157 			/* Need to check if the array will still be
3158 			 * degraded
3159 			 */
3160 			rcu_read_lock();
3161 			for (j = 0; j < conf->geo.raid_disks; j++) {
3162 				struct md_rdev *rdev = rcu_dereference(
3163 					conf->mirrors[j].rdev);
3164 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3165 					still_degraded = 1;
3166 					break;
3167 				}
3168 			}
3169 
3170 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3171 						      &sync_blocks, still_degraded);
3172 
3173 			any_working = 0;
3174 			for (j=0; j<conf->copies;j++) {
3175 				int k;
3176 				int d = r10_bio->devs[j].devnum;
3177 				sector_t from_addr, to_addr;
3178 				struct md_rdev *rdev =
3179 					rcu_dereference(conf->mirrors[d].rdev);
3180 				sector_t sector, first_bad;
3181 				int bad_sectors;
3182 				if (!rdev ||
3183 				    !test_bit(In_sync, &rdev->flags))
3184 					continue;
3185 				/* This is where we read from */
3186 				any_working = 1;
3187 				sector = r10_bio->devs[j].addr;
3188 
3189 				if (is_badblock(rdev, sector, max_sync,
3190 						&first_bad, &bad_sectors)) {
3191 					if (first_bad > sector)
3192 						max_sync = first_bad - sector;
3193 					else {
3194 						bad_sectors -= (sector
3195 								- first_bad);
3196 						if (max_sync > bad_sectors)
3197 							max_sync = bad_sectors;
3198 						continue;
3199 					}
3200 				}
3201 				bio = r10_bio->devs[0].bio;
3202 				bio_reset(bio);
3203 				bio->bi_next = biolist;
3204 				biolist = bio;
3205 				bio->bi_private = r10_bio;
3206 				bio->bi_end_io = end_sync_read;
3207 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3208 				if (test_bit(FailFast, &rdev->flags))
3209 					bio->bi_opf |= MD_FAILFAST;
3210 				from_addr = r10_bio->devs[j].addr;
3211 				bio->bi_iter.bi_sector = from_addr +
3212 					rdev->data_offset;
3213 				bio->bi_bdev = rdev->bdev;
3214 				atomic_inc(&rdev->nr_pending);
3215 				/* and we write to 'i' (if not in_sync) */
3216 
3217 				for (k=0; k<conf->copies; k++)
3218 					if (r10_bio->devs[k].devnum == i)
3219 						break;
3220 				BUG_ON(k == conf->copies);
3221 				to_addr = r10_bio->devs[k].addr;
3222 				r10_bio->devs[0].devnum = d;
3223 				r10_bio->devs[0].addr = from_addr;
3224 				r10_bio->devs[1].devnum = i;
3225 				r10_bio->devs[1].addr = to_addr;
3226 
3227 				if (!test_bit(In_sync, &mrdev->flags)) {
3228 					bio = r10_bio->devs[1].bio;
3229 					bio_reset(bio);
3230 					bio->bi_next = biolist;
3231 					biolist = bio;
3232 					bio->bi_private = r10_bio;
3233 					bio->bi_end_io = end_sync_write;
3234 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3235 					bio->bi_iter.bi_sector = to_addr
3236 						+ mrdev->data_offset;
3237 					bio->bi_bdev = mrdev->bdev;
3238 					atomic_inc(&r10_bio->remaining);
3239 				} else
3240 					r10_bio->devs[1].bio->bi_end_io = NULL;
3241 
3242 				/* and maybe write to replacement */
3243 				bio = r10_bio->devs[1].repl_bio;
3244 				if (bio)
3245 					bio->bi_end_io = NULL;
3246 				/* Note: if mreplace != NULL, then bio
3247 				 * cannot be NULL as r10buf_pool_alloc will
3248 				 * have allocated it.
3249 				 * So the second test here is pointless.
3250 				 * But it keeps semantic-checkers happy, and
3251 				 * this comment keeps human reviewers
3252 				 * happy.
3253 				 */
3254 				if (mreplace == NULL || bio == NULL ||
3255 				    test_bit(Faulty, &mreplace->flags))
3256 					break;
3257 				bio_reset(bio);
3258 				bio->bi_next = biolist;
3259 				biolist = bio;
3260 				bio->bi_private = r10_bio;
3261 				bio->bi_end_io = end_sync_write;
3262 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3263 				bio->bi_iter.bi_sector = to_addr +
3264 					mreplace->data_offset;
3265 				bio->bi_bdev = mreplace->bdev;
3266 				atomic_inc(&r10_bio->remaining);
3267 				break;
3268 			}
3269 			rcu_read_unlock();
3270 			if (j == conf->copies) {
3271 				/* Cannot recover, so abort the recovery or
3272 				 * record a bad block */
3273 				if (any_working) {
3274 					/* problem is that there are bad blocks
3275 					 * on other device(s)
3276 					 */
3277 					int k;
3278 					for (k = 0; k < conf->copies; k++)
3279 						if (r10_bio->devs[k].devnum == i)
3280 							break;
3281 					if (!test_bit(In_sync,
3282 						      &mrdev->flags)
3283 					    && !rdev_set_badblocks(
3284 						    mrdev,
3285 						    r10_bio->devs[k].addr,
3286 						    max_sync, 0))
3287 						any_working = 0;
3288 					if (mreplace &&
3289 					    !rdev_set_badblocks(
3290 						    mreplace,
3291 						    r10_bio->devs[k].addr,
3292 						    max_sync, 0))
3293 						any_working = 0;
3294 				}
3295 				if (!any_working)  {
3296 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3297 							      &mddev->recovery))
3298 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3299 						       mdname(mddev));
3300 					mirror->recovery_disabled
3301 						= mddev->recovery_disabled;
3302 				}
3303 				put_buf(r10_bio);
3304 				if (rb2)
3305 					atomic_dec(&rb2->remaining);
3306 				r10_bio = rb2;
3307 				rdev_dec_pending(mrdev, mddev);
3308 				if (mreplace)
3309 					rdev_dec_pending(mreplace, mddev);
3310 				break;
3311 			}
3312 			rdev_dec_pending(mrdev, mddev);
3313 			if (mreplace)
3314 				rdev_dec_pending(mreplace, mddev);
3315 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3316 				/* Only want this if there is elsewhere to
3317 				 * read from. 'j' is currently the first
3318 				 * readable copy.
3319 				 */
3320 				int targets = 1;
3321 				for (; j < conf->copies; j++) {
3322 					int d = r10_bio->devs[j].devnum;
3323 					if (conf->mirrors[d].rdev &&
3324 					    test_bit(In_sync,
3325 						      &conf->mirrors[d].rdev->flags))
3326 						targets++;
3327 				}
3328 				if (targets == 1)
3329 					r10_bio->devs[0].bio->bi_opf
3330 						&= ~MD_FAILFAST;
3331 			}
3332 		}
3333 		if (biolist == NULL) {
3334 			while (r10_bio) {
3335 				struct r10bio *rb2 = r10_bio;
3336 				r10_bio = (struct r10bio*) rb2->master_bio;
3337 				rb2->master_bio = NULL;
3338 				put_buf(rb2);
3339 			}
3340 			goto giveup;
3341 		}
3342 	} else {
3343 		/* resync. Schedule a read for every block at this virt offset */
3344 		int count = 0;
3345 
3346 		bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3347 
3348 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3349 				       &sync_blocks, mddev->degraded) &&
3350 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3351 						 &mddev->recovery)) {
3352 			/* We can skip this block */
3353 			*skipped = 1;
3354 			return sync_blocks + sectors_skipped;
3355 		}
3356 		if (sync_blocks < max_sync)
3357 			max_sync = sync_blocks;
3358 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3359 		r10_bio->state = 0;
3360 
3361 		r10_bio->mddev = mddev;
3362 		atomic_set(&r10_bio->remaining, 0);
3363 		raise_barrier(conf, 0);
3364 		conf->next_resync = sector_nr;
3365 
3366 		r10_bio->master_bio = NULL;
3367 		r10_bio->sector = sector_nr;
3368 		set_bit(R10BIO_IsSync, &r10_bio->state);
3369 		raid10_find_phys(conf, r10_bio);
3370 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3371 
3372 		for (i = 0; i < conf->copies; i++) {
3373 			int d = r10_bio->devs[i].devnum;
3374 			sector_t first_bad, sector;
3375 			int bad_sectors;
3376 			struct md_rdev *rdev;
3377 
3378 			if (r10_bio->devs[i].repl_bio)
3379 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3380 
3381 			bio = r10_bio->devs[i].bio;
3382 			bio_reset(bio);
3383 			bio->bi_error = -EIO;
3384 			rcu_read_lock();
3385 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3386 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3387 				rcu_read_unlock();
3388 				continue;
3389 			}
3390 			sector = r10_bio->devs[i].addr;
3391 			if (is_badblock(rdev, sector, max_sync,
3392 					&first_bad, &bad_sectors)) {
3393 				if (first_bad > sector)
3394 					max_sync = first_bad - sector;
3395 				else {
3396 					bad_sectors -= (sector - first_bad);
3397 					if (max_sync > bad_sectors)
3398 						max_sync = bad_sectors;
3399 					rcu_read_unlock();
3400 					continue;
3401 				}
3402 			}
3403 			atomic_inc(&rdev->nr_pending);
3404 			atomic_inc(&r10_bio->remaining);
3405 			bio->bi_next = biolist;
3406 			biolist = bio;
3407 			bio->bi_private = r10_bio;
3408 			bio->bi_end_io = end_sync_read;
3409 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3410 			if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3411 				bio->bi_opf |= MD_FAILFAST;
3412 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3413 			bio->bi_bdev = rdev->bdev;
3414 			count++;
3415 
3416 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3417 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3418 				rcu_read_unlock();
3419 				continue;
3420 			}
3421 			atomic_inc(&rdev->nr_pending);
3422 			rcu_read_unlock();
3423 
3424 			/* Need to set up for writing to the replacement */
3425 			bio = r10_bio->devs[i].repl_bio;
3426 			bio_reset(bio);
3427 			bio->bi_error = -EIO;
3428 
3429 			sector = r10_bio->devs[i].addr;
3430 			bio->bi_next = biolist;
3431 			biolist = bio;
3432 			bio->bi_private = r10_bio;
3433 			bio->bi_end_io = end_sync_write;
3434 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3435 			if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3436 				bio->bi_opf |= MD_FAILFAST;
3437 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3438 			bio->bi_bdev = rdev->bdev;
3439 			count++;
3440 		}
3441 
3442 		if (count < 2) {
3443 			for (i=0; i<conf->copies; i++) {
3444 				int d = r10_bio->devs[i].devnum;
3445 				if (r10_bio->devs[i].bio->bi_end_io)
3446 					rdev_dec_pending(conf->mirrors[d].rdev,
3447 							 mddev);
3448 				if (r10_bio->devs[i].repl_bio &&
3449 				    r10_bio->devs[i].repl_bio->bi_end_io)
3450 					rdev_dec_pending(
3451 						conf->mirrors[d].replacement,
3452 						mddev);
3453 			}
3454 			put_buf(r10_bio);
3455 			biolist = NULL;
3456 			goto giveup;
3457 		}
3458 	}
3459 
3460 	nr_sectors = 0;
3461 	if (sector_nr + max_sync < max_sector)
3462 		max_sector = sector_nr + max_sync;
3463 	do {
3464 		struct page *page;
3465 		int len = PAGE_SIZE;
3466 		if (sector_nr + (len>>9) > max_sector)
3467 			len = (max_sector - sector_nr) << 9;
3468 		if (len == 0)
3469 			break;
3470 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3471 			struct bio *bio2;
3472 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3473 			if (bio_add_page(bio, page, len, 0))
3474 				continue;
3475 
3476 			/* stop here */
3477 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3478 			for (bio2 = biolist;
3479 			     bio2 && bio2 != bio;
3480 			     bio2 = bio2->bi_next) {
3481 				/* remove last page from this bio */
3482 				bio2->bi_vcnt--;
3483 				bio2->bi_iter.bi_size -= len;
3484 				bio_clear_flag(bio2, BIO_SEG_VALID);
3485 			}
3486 			goto bio_full;
3487 		}
3488 		nr_sectors += len>>9;
3489 		sector_nr += len>>9;
3490 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3491  bio_full:
3492 	r10_bio->sectors = nr_sectors;
3493 
3494 	while (biolist) {
3495 		bio = biolist;
3496 		biolist = biolist->bi_next;
3497 
3498 		bio->bi_next = NULL;
3499 		r10_bio = bio->bi_private;
3500 		r10_bio->sectors = nr_sectors;
3501 
3502 		if (bio->bi_end_io == end_sync_read) {
3503 			md_sync_acct(bio->bi_bdev, nr_sectors);
3504 			bio->bi_error = 0;
3505 			generic_make_request(bio);
3506 		}
3507 	}
3508 
3509 	if (sectors_skipped)
3510 		/* pretend they weren't skipped, it makes
3511 		 * no important difference in this case
3512 		 */
3513 		md_done_sync(mddev, sectors_skipped, 1);
3514 
3515 	return sectors_skipped + nr_sectors;
3516  giveup:
3517 	/* There is nowhere to write, so all non-sync
3518 	 * drives must be failed or in resync, all drives
3519 	 * have a bad block, so try the next chunk...
3520 	 */
3521 	if (sector_nr + max_sync < max_sector)
3522 		max_sector = sector_nr + max_sync;
3523 
3524 	sectors_skipped += (max_sector - sector_nr);
3525 	chunks_skipped ++;
3526 	sector_nr = max_sector;
3527 	goto skipped;
3528 }
3529 
3530 static sector_t
3531 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3532 {
3533 	sector_t size;
3534 	struct r10conf *conf = mddev->private;
3535 
3536 	if (!raid_disks)
3537 		raid_disks = min(conf->geo.raid_disks,
3538 				 conf->prev.raid_disks);
3539 	if (!sectors)
3540 		sectors = conf->dev_sectors;
3541 
3542 	size = sectors >> conf->geo.chunk_shift;
3543 	sector_div(size, conf->geo.far_copies);
3544 	size = size * raid_disks;
3545 	sector_div(size, conf->geo.near_copies);
3546 
3547 	return size << conf->geo.chunk_shift;
3548 }
3549 
3550 static void calc_sectors(struct r10conf *conf, sector_t size)
3551 {
3552 	/* Calculate the number of sectors-per-device that will
3553 	 * actually be used, and set conf->dev_sectors and
3554 	 * conf->stride
3555 	 */
3556 
3557 	size = size >> conf->geo.chunk_shift;
3558 	sector_div(size, conf->geo.far_copies);
3559 	size = size * conf->geo.raid_disks;
3560 	sector_div(size, conf->geo.near_copies);
3561 	/* 'size' is now the number of chunks in the array */
3562 	/* calculate "used chunks per device" */
3563 	size = size * conf->copies;
3564 
3565 	/* We need to round up when dividing by raid_disks to
3566 	 * get the stride size.
3567 	 */
3568 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3569 
3570 	conf->dev_sectors = size << conf->geo.chunk_shift;
3571 
3572 	if (conf->geo.far_offset)
3573 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3574 	else {
3575 		sector_div(size, conf->geo.far_copies);
3576 		conf->geo.stride = size << conf->geo.chunk_shift;
3577 	}
3578 }
3579 
3580 enum geo_type {geo_new, geo_old, geo_start};
3581 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3582 {
3583 	int nc, fc, fo;
3584 	int layout, chunk, disks;
3585 	switch (new) {
3586 	case geo_old:
3587 		layout = mddev->layout;
3588 		chunk = mddev->chunk_sectors;
3589 		disks = mddev->raid_disks - mddev->delta_disks;
3590 		break;
3591 	case geo_new:
3592 		layout = mddev->new_layout;
3593 		chunk = mddev->new_chunk_sectors;
3594 		disks = mddev->raid_disks;
3595 		break;
3596 	default: /* avoid 'may be unused' warnings */
3597 	case geo_start: /* new when starting reshape - raid_disks not
3598 			 * updated yet. */
3599 		layout = mddev->new_layout;
3600 		chunk = mddev->new_chunk_sectors;
3601 		disks = mddev->raid_disks + mddev->delta_disks;
3602 		break;
3603 	}
3604 	if (layout >> 19)
3605 		return -1;
3606 	if (chunk < (PAGE_SIZE >> 9) ||
3607 	    !is_power_of_2(chunk))
3608 		return -2;
3609 	nc = layout & 255;
3610 	fc = (layout >> 8) & 255;
3611 	fo = layout & (1<<16);
3612 	geo->raid_disks = disks;
3613 	geo->near_copies = nc;
3614 	geo->far_copies = fc;
3615 	geo->far_offset = fo;
3616 	switch (layout >> 17) {
3617 	case 0:	/* original layout.  simple but not always optimal */
3618 		geo->far_set_size = disks;
3619 		break;
3620 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3621 		 * actually using this, but leave code here just in case.*/
3622 		geo->far_set_size = disks/fc;
3623 		WARN(geo->far_set_size < fc,
3624 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3625 		break;
3626 	case 2: /* "improved" layout fixed to match documentation */
3627 		geo->far_set_size = fc * nc;
3628 		break;
3629 	default: /* Not a valid layout */
3630 		return -1;
3631 	}
3632 	geo->chunk_mask = chunk - 1;
3633 	geo->chunk_shift = ffz(~chunk);
3634 	return nc*fc;
3635 }
3636 
3637 static struct r10conf *setup_conf(struct mddev *mddev)
3638 {
3639 	struct r10conf *conf = NULL;
3640 	int err = -EINVAL;
3641 	struct geom geo;
3642 	int copies;
3643 
3644 	copies = setup_geo(&geo, mddev, geo_new);
3645 
3646 	if (copies == -2) {
3647 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3648 			mdname(mddev), PAGE_SIZE);
3649 		goto out;
3650 	}
3651 
3652 	if (copies < 2 || copies > mddev->raid_disks) {
3653 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3654 			mdname(mddev), mddev->new_layout);
3655 		goto out;
3656 	}
3657 
3658 	err = -ENOMEM;
3659 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3660 	if (!conf)
3661 		goto out;
3662 
3663 	/* FIXME calc properly */
3664 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3665 							    max(0,-mddev->delta_disks)),
3666 				GFP_KERNEL);
3667 	if (!conf->mirrors)
3668 		goto out;
3669 
3670 	conf->tmppage = alloc_page(GFP_KERNEL);
3671 	if (!conf->tmppage)
3672 		goto out;
3673 
3674 	conf->geo = geo;
3675 	conf->copies = copies;
3676 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3677 					   r10bio_pool_free, conf);
3678 	if (!conf->r10bio_pool)
3679 		goto out;
3680 
3681 	calc_sectors(conf, mddev->dev_sectors);
3682 	if (mddev->reshape_position == MaxSector) {
3683 		conf->prev = conf->geo;
3684 		conf->reshape_progress = MaxSector;
3685 	} else {
3686 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3687 			err = -EINVAL;
3688 			goto out;
3689 		}
3690 		conf->reshape_progress = mddev->reshape_position;
3691 		if (conf->prev.far_offset)
3692 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3693 		else
3694 			/* far_copies must be 1 */
3695 			conf->prev.stride = conf->dev_sectors;
3696 	}
3697 	conf->reshape_safe = conf->reshape_progress;
3698 	spin_lock_init(&conf->device_lock);
3699 	INIT_LIST_HEAD(&conf->retry_list);
3700 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3701 
3702 	spin_lock_init(&conf->resync_lock);
3703 	init_waitqueue_head(&conf->wait_barrier);
3704 	atomic_set(&conf->nr_pending, 0);
3705 
3706 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3707 	if (!conf->thread)
3708 		goto out;
3709 
3710 	conf->mddev = mddev;
3711 	return conf;
3712 
3713  out:
3714 	if (conf) {
3715 		mempool_destroy(conf->r10bio_pool);
3716 		kfree(conf->mirrors);
3717 		safe_put_page(conf->tmppage);
3718 		kfree(conf);
3719 	}
3720 	return ERR_PTR(err);
3721 }
3722 
3723 static int raid10_run(struct mddev *mddev)
3724 {
3725 	struct r10conf *conf;
3726 	int i, disk_idx, chunk_size;
3727 	struct raid10_info *disk;
3728 	struct md_rdev *rdev;
3729 	sector_t size;
3730 	sector_t min_offset_diff = 0;
3731 	int first = 1;
3732 	bool discard_supported = false;
3733 
3734 	if (mddev->private == NULL) {
3735 		conf = setup_conf(mddev);
3736 		if (IS_ERR(conf))
3737 			return PTR_ERR(conf);
3738 		mddev->private = conf;
3739 	}
3740 	conf = mddev->private;
3741 	if (!conf)
3742 		goto out;
3743 
3744 	mddev->thread = conf->thread;
3745 	conf->thread = NULL;
3746 
3747 	chunk_size = mddev->chunk_sectors << 9;
3748 	if (mddev->queue) {
3749 		blk_queue_max_discard_sectors(mddev->queue,
3750 					      mddev->chunk_sectors);
3751 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3752 		blk_queue_io_min(mddev->queue, chunk_size);
3753 		if (conf->geo.raid_disks % conf->geo.near_copies)
3754 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3755 		else
3756 			blk_queue_io_opt(mddev->queue, chunk_size *
3757 					 (conf->geo.raid_disks / conf->geo.near_copies));
3758 	}
3759 
3760 	rdev_for_each(rdev, mddev) {
3761 		long long diff;
3762 		struct request_queue *q;
3763 
3764 		disk_idx = rdev->raid_disk;
3765 		if (disk_idx < 0)
3766 			continue;
3767 		if (disk_idx >= conf->geo.raid_disks &&
3768 		    disk_idx >= conf->prev.raid_disks)
3769 			continue;
3770 		disk = conf->mirrors + disk_idx;
3771 
3772 		if (test_bit(Replacement, &rdev->flags)) {
3773 			if (disk->replacement)
3774 				goto out_free_conf;
3775 			disk->replacement = rdev;
3776 		} else {
3777 			if (disk->rdev)
3778 				goto out_free_conf;
3779 			disk->rdev = rdev;
3780 		}
3781 		q = bdev_get_queue(rdev->bdev);
3782 		diff = (rdev->new_data_offset - rdev->data_offset);
3783 		if (!mddev->reshape_backwards)
3784 			diff = -diff;
3785 		if (diff < 0)
3786 			diff = 0;
3787 		if (first || diff < min_offset_diff)
3788 			min_offset_diff = diff;
3789 
3790 		if (mddev->gendisk)
3791 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3792 					  rdev->data_offset << 9);
3793 
3794 		disk->head_position = 0;
3795 
3796 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3797 			discard_supported = true;
3798 	}
3799 
3800 	if (mddev->queue) {
3801 		if (discard_supported)
3802 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3803 						mddev->queue);
3804 		else
3805 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3806 						  mddev->queue);
3807 	}
3808 	/* need to check that every block has at least one working mirror */
3809 	if (!enough(conf, -1)) {
3810 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3811 		       mdname(mddev));
3812 		goto out_free_conf;
3813 	}
3814 
3815 	if (conf->reshape_progress != MaxSector) {
3816 		/* must ensure that shape change is supported */
3817 		if (conf->geo.far_copies != 1 &&
3818 		    conf->geo.far_offset == 0)
3819 			goto out_free_conf;
3820 		if (conf->prev.far_copies != 1 &&
3821 		    conf->prev.far_offset == 0)
3822 			goto out_free_conf;
3823 	}
3824 
3825 	mddev->degraded = 0;
3826 	for (i = 0;
3827 	     i < conf->geo.raid_disks
3828 		     || i < conf->prev.raid_disks;
3829 	     i++) {
3830 
3831 		disk = conf->mirrors + i;
3832 
3833 		if (!disk->rdev && disk->replacement) {
3834 			/* The replacement is all we have - use it */
3835 			disk->rdev = disk->replacement;
3836 			disk->replacement = NULL;
3837 			clear_bit(Replacement, &disk->rdev->flags);
3838 		}
3839 
3840 		if (!disk->rdev ||
3841 		    !test_bit(In_sync, &disk->rdev->flags)) {
3842 			disk->head_position = 0;
3843 			mddev->degraded++;
3844 			if (disk->rdev &&
3845 			    disk->rdev->saved_raid_disk < 0)
3846 				conf->fullsync = 1;
3847 		}
3848 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3849 	}
3850 
3851 	if (mddev->recovery_cp != MaxSector)
3852 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3853 			  mdname(mddev));
3854 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3855 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3856 		conf->geo.raid_disks);
3857 	/*
3858 	 * Ok, everything is just fine now
3859 	 */
3860 	mddev->dev_sectors = conf->dev_sectors;
3861 	size = raid10_size(mddev, 0, 0);
3862 	md_set_array_sectors(mddev, size);
3863 	mddev->resync_max_sectors = size;
3864 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3865 
3866 	if (mddev->queue) {
3867 		int stripe = conf->geo.raid_disks *
3868 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3869 
3870 		/* Calculate max read-ahead size.
3871 		 * We need to readahead at least twice a whole stripe....
3872 		 * maybe...
3873 		 */
3874 		stripe /= conf->geo.near_copies;
3875 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3876 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3877 	}
3878 
3879 	if (md_integrity_register(mddev))
3880 		goto out_free_conf;
3881 
3882 	if (conf->reshape_progress != MaxSector) {
3883 		unsigned long before_length, after_length;
3884 
3885 		before_length = ((1 << conf->prev.chunk_shift) *
3886 				 conf->prev.far_copies);
3887 		after_length = ((1 << conf->geo.chunk_shift) *
3888 				conf->geo.far_copies);
3889 
3890 		if (max(before_length, after_length) > min_offset_diff) {
3891 			/* This cannot work */
3892 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3893 			goto out_free_conf;
3894 		}
3895 		conf->offset_diff = min_offset_diff;
3896 
3897 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3898 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3899 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3900 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3901 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3902 							"reshape");
3903 	}
3904 
3905 	return 0;
3906 
3907 out_free_conf:
3908 	md_unregister_thread(&mddev->thread);
3909 	mempool_destroy(conf->r10bio_pool);
3910 	safe_put_page(conf->tmppage);
3911 	kfree(conf->mirrors);
3912 	kfree(conf);
3913 	mddev->private = NULL;
3914 out:
3915 	return -EIO;
3916 }
3917 
3918 static void raid10_free(struct mddev *mddev, void *priv)
3919 {
3920 	struct r10conf *conf = priv;
3921 
3922 	mempool_destroy(conf->r10bio_pool);
3923 	safe_put_page(conf->tmppage);
3924 	kfree(conf->mirrors);
3925 	kfree(conf->mirrors_old);
3926 	kfree(conf->mirrors_new);
3927 	kfree(conf);
3928 }
3929 
3930 static void raid10_quiesce(struct mddev *mddev, int state)
3931 {
3932 	struct r10conf *conf = mddev->private;
3933 
3934 	switch(state) {
3935 	case 1:
3936 		raise_barrier(conf, 0);
3937 		break;
3938 	case 0:
3939 		lower_barrier(conf);
3940 		break;
3941 	}
3942 }
3943 
3944 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3945 {
3946 	/* Resize of 'far' arrays is not supported.
3947 	 * For 'near' and 'offset' arrays we can set the
3948 	 * number of sectors used to be an appropriate multiple
3949 	 * of the chunk size.
3950 	 * For 'offset', this is far_copies*chunksize.
3951 	 * For 'near' the multiplier is the LCM of
3952 	 * near_copies and raid_disks.
3953 	 * So if far_copies > 1 && !far_offset, fail.
3954 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3955 	 * multiply by chunk_size.  Then round to this number.
3956 	 * This is mostly done by raid10_size()
3957 	 */
3958 	struct r10conf *conf = mddev->private;
3959 	sector_t oldsize, size;
3960 
3961 	if (mddev->reshape_position != MaxSector)
3962 		return -EBUSY;
3963 
3964 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3965 		return -EINVAL;
3966 
3967 	oldsize = raid10_size(mddev, 0, 0);
3968 	size = raid10_size(mddev, sectors, 0);
3969 	if (mddev->external_size &&
3970 	    mddev->array_sectors > size)
3971 		return -EINVAL;
3972 	if (mddev->bitmap) {
3973 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3974 		if (ret)
3975 			return ret;
3976 	}
3977 	md_set_array_sectors(mddev, size);
3978 	if (sectors > mddev->dev_sectors &&
3979 	    mddev->recovery_cp > oldsize) {
3980 		mddev->recovery_cp = oldsize;
3981 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3982 	}
3983 	calc_sectors(conf, sectors);
3984 	mddev->dev_sectors = conf->dev_sectors;
3985 	mddev->resync_max_sectors = size;
3986 	return 0;
3987 }
3988 
3989 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3990 {
3991 	struct md_rdev *rdev;
3992 	struct r10conf *conf;
3993 
3994 	if (mddev->degraded > 0) {
3995 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3996 			mdname(mddev));
3997 		return ERR_PTR(-EINVAL);
3998 	}
3999 	sector_div(size, devs);
4000 
4001 	/* Set new parameters */
4002 	mddev->new_level = 10;
4003 	/* new layout: far_copies = 1, near_copies = 2 */
4004 	mddev->new_layout = (1<<8) + 2;
4005 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4006 	mddev->delta_disks = mddev->raid_disks;
4007 	mddev->raid_disks *= 2;
4008 	/* make sure it will be not marked as dirty */
4009 	mddev->recovery_cp = MaxSector;
4010 	mddev->dev_sectors = size;
4011 
4012 	conf = setup_conf(mddev);
4013 	if (!IS_ERR(conf)) {
4014 		rdev_for_each(rdev, mddev)
4015 			if (rdev->raid_disk >= 0) {
4016 				rdev->new_raid_disk = rdev->raid_disk * 2;
4017 				rdev->sectors = size;
4018 			}
4019 		conf->barrier = 1;
4020 	}
4021 
4022 	return conf;
4023 }
4024 
4025 static void *raid10_takeover(struct mddev *mddev)
4026 {
4027 	struct r0conf *raid0_conf;
4028 
4029 	/* raid10 can take over:
4030 	 *  raid0 - providing it has only two drives
4031 	 */
4032 	if (mddev->level == 0) {
4033 		/* for raid0 takeover only one zone is supported */
4034 		raid0_conf = mddev->private;
4035 		if (raid0_conf->nr_strip_zones > 1) {
4036 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4037 				mdname(mddev));
4038 			return ERR_PTR(-EINVAL);
4039 		}
4040 		return raid10_takeover_raid0(mddev,
4041 			raid0_conf->strip_zone->zone_end,
4042 			raid0_conf->strip_zone->nb_dev);
4043 	}
4044 	return ERR_PTR(-EINVAL);
4045 }
4046 
4047 static int raid10_check_reshape(struct mddev *mddev)
4048 {
4049 	/* Called when there is a request to change
4050 	 * - layout (to ->new_layout)
4051 	 * - chunk size (to ->new_chunk_sectors)
4052 	 * - raid_disks (by delta_disks)
4053 	 * or when trying to restart a reshape that was ongoing.
4054 	 *
4055 	 * We need to validate the request and possibly allocate
4056 	 * space if that might be an issue later.
4057 	 *
4058 	 * Currently we reject any reshape of a 'far' mode array,
4059 	 * allow chunk size to change if new is generally acceptable,
4060 	 * allow raid_disks to increase, and allow
4061 	 * a switch between 'near' mode and 'offset' mode.
4062 	 */
4063 	struct r10conf *conf = mddev->private;
4064 	struct geom geo;
4065 
4066 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4067 		return -EINVAL;
4068 
4069 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4070 		/* mustn't change number of copies */
4071 		return -EINVAL;
4072 	if (geo.far_copies > 1 && !geo.far_offset)
4073 		/* Cannot switch to 'far' mode */
4074 		return -EINVAL;
4075 
4076 	if (mddev->array_sectors & geo.chunk_mask)
4077 			/* not factor of array size */
4078 			return -EINVAL;
4079 
4080 	if (!enough(conf, -1))
4081 		return -EINVAL;
4082 
4083 	kfree(conf->mirrors_new);
4084 	conf->mirrors_new = NULL;
4085 	if (mddev->delta_disks > 0) {
4086 		/* allocate new 'mirrors' list */
4087 		conf->mirrors_new = kzalloc(
4088 			sizeof(struct raid10_info)
4089 			*(mddev->raid_disks +
4090 			  mddev->delta_disks),
4091 			GFP_KERNEL);
4092 		if (!conf->mirrors_new)
4093 			return -ENOMEM;
4094 	}
4095 	return 0;
4096 }
4097 
4098 /*
4099  * Need to check if array has failed when deciding whether to:
4100  *  - start an array
4101  *  - remove non-faulty devices
4102  *  - add a spare
4103  *  - allow a reshape
4104  * This determination is simple when no reshape is happening.
4105  * However if there is a reshape, we need to carefully check
4106  * both the before and after sections.
4107  * This is because some failed devices may only affect one
4108  * of the two sections, and some non-in_sync devices may
4109  * be insync in the section most affected by failed devices.
4110  */
4111 static int calc_degraded(struct r10conf *conf)
4112 {
4113 	int degraded, degraded2;
4114 	int i;
4115 
4116 	rcu_read_lock();
4117 	degraded = 0;
4118 	/* 'prev' section first */
4119 	for (i = 0; i < conf->prev.raid_disks; i++) {
4120 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4121 		if (!rdev || test_bit(Faulty, &rdev->flags))
4122 			degraded++;
4123 		else if (!test_bit(In_sync, &rdev->flags))
4124 			/* When we can reduce the number of devices in
4125 			 * an array, this might not contribute to
4126 			 * 'degraded'.  It does now.
4127 			 */
4128 			degraded++;
4129 	}
4130 	rcu_read_unlock();
4131 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4132 		return degraded;
4133 	rcu_read_lock();
4134 	degraded2 = 0;
4135 	for (i = 0; i < conf->geo.raid_disks; i++) {
4136 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4137 		if (!rdev || test_bit(Faulty, &rdev->flags))
4138 			degraded2++;
4139 		else if (!test_bit(In_sync, &rdev->flags)) {
4140 			/* If reshape is increasing the number of devices,
4141 			 * this section has already been recovered, so
4142 			 * it doesn't contribute to degraded.
4143 			 * else it does.
4144 			 */
4145 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4146 				degraded2++;
4147 		}
4148 	}
4149 	rcu_read_unlock();
4150 	if (degraded2 > degraded)
4151 		return degraded2;
4152 	return degraded;
4153 }
4154 
4155 static int raid10_start_reshape(struct mddev *mddev)
4156 {
4157 	/* A 'reshape' has been requested. This commits
4158 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4159 	 * This also checks if there are enough spares and adds them
4160 	 * to the array.
4161 	 * We currently require enough spares to make the final
4162 	 * array non-degraded.  We also require that the difference
4163 	 * between old and new data_offset - on each device - is
4164 	 * enough that we never risk over-writing.
4165 	 */
4166 
4167 	unsigned long before_length, after_length;
4168 	sector_t min_offset_diff = 0;
4169 	int first = 1;
4170 	struct geom new;
4171 	struct r10conf *conf = mddev->private;
4172 	struct md_rdev *rdev;
4173 	int spares = 0;
4174 	int ret;
4175 
4176 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4177 		return -EBUSY;
4178 
4179 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4180 		return -EINVAL;
4181 
4182 	before_length = ((1 << conf->prev.chunk_shift) *
4183 			 conf->prev.far_copies);
4184 	after_length = ((1 << conf->geo.chunk_shift) *
4185 			conf->geo.far_copies);
4186 
4187 	rdev_for_each(rdev, mddev) {
4188 		if (!test_bit(In_sync, &rdev->flags)
4189 		    && !test_bit(Faulty, &rdev->flags))
4190 			spares++;
4191 		if (rdev->raid_disk >= 0) {
4192 			long long diff = (rdev->new_data_offset
4193 					  - rdev->data_offset);
4194 			if (!mddev->reshape_backwards)
4195 				diff = -diff;
4196 			if (diff < 0)
4197 				diff = 0;
4198 			if (first || diff < min_offset_diff)
4199 				min_offset_diff = diff;
4200 		}
4201 	}
4202 
4203 	if (max(before_length, after_length) > min_offset_diff)
4204 		return -EINVAL;
4205 
4206 	if (spares < mddev->delta_disks)
4207 		return -EINVAL;
4208 
4209 	conf->offset_diff = min_offset_diff;
4210 	spin_lock_irq(&conf->device_lock);
4211 	if (conf->mirrors_new) {
4212 		memcpy(conf->mirrors_new, conf->mirrors,
4213 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4214 		smp_mb();
4215 		kfree(conf->mirrors_old);
4216 		conf->mirrors_old = conf->mirrors;
4217 		conf->mirrors = conf->mirrors_new;
4218 		conf->mirrors_new = NULL;
4219 	}
4220 	setup_geo(&conf->geo, mddev, geo_start);
4221 	smp_mb();
4222 	if (mddev->reshape_backwards) {
4223 		sector_t size = raid10_size(mddev, 0, 0);
4224 		if (size < mddev->array_sectors) {
4225 			spin_unlock_irq(&conf->device_lock);
4226 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4227 				mdname(mddev));
4228 			return -EINVAL;
4229 		}
4230 		mddev->resync_max_sectors = size;
4231 		conf->reshape_progress = size;
4232 	} else
4233 		conf->reshape_progress = 0;
4234 	conf->reshape_safe = conf->reshape_progress;
4235 	spin_unlock_irq(&conf->device_lock);
4236 
4237 	if (mddev->delta_disks && mddev->bitmap) {
4238 		ret = bitmap_resize(mddev->bitmap,
4239 				    raid10_size(mddev, 0,
4240 						conf->geo.raid_disks),
4241 				    0, 0);
4242 		if (ret)
4243 			goto abort;
4244 	}
4245 	if (mddev->delta_disks > 0) {
4246 		rdev_for_each(rdev, mddev)
4247 			if (rdev->raid_disk < 0 &&
4248 			    !test_bit(Faulty, &rdev->flags)) {
4249 				if (raid10_add_disk(mddev, rdev) == 0) {
4250 					if (rdev->raid_disk >=
4251 					    conf->prev.raid_disks)
4252 						set_bit(In_sync, &rdev->flags);
4253 					else
4254 						rdev->recovery_offset = 0;
4255 
4256 					if (sysfs_link_rdev(mddev, rdev))
4257 						/* Failure here  is OK */;
4258 				}
4259 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4260 				   && !test_bit(Faulty, &rdev->flags)) {
4261 				/* This is a spare that was manually added */
4262 				set_bit(In_sync, &rdev->flags);
4263 			}
4264 	}
4265 	/* When a reshape changes the number of devices,
4266 	 * ->degraded is measured against the larger of the
4267 	 * pre and  post numbers.
4268 	 */
4269 	spin_lock_irq(&conf->device_lock);
4270 	mddev->degraded = calc_degraded(conf);
4271 	spin_unlock_irq(&conf->device_lock);
4272 	mddev->raid_disks = conf->geo.raid_disks;
4273 	mddev->reshape_position = conf->reshape_progress;
4274 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4275 
4276 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4277 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4278 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4279 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4280 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4281 
4282 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4283 						"reshape");
4284 	if (!mddev->sync_thread) {
4285 		ret = -EAGAIN;
4286 		goto abort;
4287 	}
4288 	conf->reshape_checkpoint = jiffies;
4289 	md_wakeup_thread(mddev->sync_thread);
4290 	md_new_event(mddev);
4291 	return 0;
4292 
4293 abort:
4294 	mddev->recovery = 0;
4295 	spin_lock_irq(&conf->device_lock);
4296 	conf->geo = conf->prev;
4297 	mddev->raid_disks = conf->geo.raid_disks;
4298 	rdev_for_each(rdev, mddev)
4299 		rdev->new_data_offset = rdev->data_offset;
4300 	smp_wmb();
4301 	conf->reshape_progress = MaxSector;
4302 	conf->reshape_safe = MaxSector;
4303 	mddev->reshape_position = MaxSector;
4304 	spin_unlock_irq(&conf->device_lock);
4305 	return ret;
4306 }
4307 
4308 /* Calculate the last device-address that could contain
4309  * any block from the chunk that includes the array-address 's'
4310  * and report the next address.
4311  * i.e. the address returned will be chunk-aligned and after
4312  * any data that is in the chunk containing 's'.
4313  */
4314 static sector_t last_dev_address(sector_t s, struct geom *geo)
4315 {
4316 	s = (s | geo->chunk_mask) + 1;
4317 	s >>= geo->chunk_shift;
4318 	s *= geo->near_copies;
4319 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4320 	s *= geo->far_copies;
4321 	s <<= geo->chunk_shift;
4322 	return s;
4323 }
4324 
4325 /* Calculate the first device-address that could contain
4326  * any block from the chunk that includes the array-address 's'.
4327  * This too will be the start of a chunk
4328  */
4329 static sector_t first_dev_address(sector_t s, struct geom *geo)
4330 {
4331 	s >>= geo->chunk_shift;
4332 	s *= geo->near_copies;
4333 	sector_div(s, geo->raid_disks);
4334 	s *= geo->far_copies;
4335 	s <<= geo->chunk_shift;
4336 	return s;
4337 }
4338 
4339 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4340 				int *skipped)
4341 {
4342 	/* We simply copy at most one chunk (smallest of old and new)
4343 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4344 	 * or we hit a bad block or something.
4345 	 * This might mean we pause for normal IO in the middle of
4346 	 * a chunk, but that is not a problem as mddev->reshape_position
4347 	 * can record any location.
4348 	 *
4349 	 * If we will want to write to a location that isn't
4350 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4351 	 * we need to flush all reshape requests and update the metadata.
4352 	 *
4353 	 * When reshaping forwards (e.g. to more devices), we interpret
4354 	 * 'safe' as the earliest block which might not have been copied
4355 	 * down yet.  We divide this by previous stripe size and multiply
4356 	 * by previous stripe length to get lowest device offset that we
4357 	 * cannot write to yet.
4358 	 * We interpret 'sector_nr' as an address that we want to write to.
4359 	 * From this we use last_device_address() to find where we might
4360 	 * write to, and first_device_address on the  'safe' position.
4361 	 * If this 'next' write position is after the 'safe' position,
4362 	 * we must update the metadata to increase the 'safe' position.
4363 	 *
4364 	 * When reshaping backwards, we round in the opposite direction
4365 	 * and perform the reverse test:  next write position must not be
4366 	 * less than current safe position.
4367 	 *
4368 	 * In all this the minimum difference in data offsets
4369 	 * (conf->offset_diff - always positive) allows a bit of slack,
4370 	 * so next can be after 'safe', but not by more than offset_diff
4371 	 *
4372 	 * We need to prepare all the bios here before we start any IO
4373 	 * to ensure the size we choose is acceptable to all devices.
4374 	 * The means one for each copy for write-out and an extra one for
4375 	 * read-in.
4376 	 * We store the read-in bio in ->master_bio and the others in
4377 	 * ->devs[x].bio and ->devs[x].repl_bio.
4378 	 */
4379 	struct r10conf *conf = mddev->private;
4380 	struct r10bio *r10_bio;
4381 	sector_t next, safe, last;
4382 	int max_sectors;
4383 	int nr_sectors;
4384 	int s;
4385 	struct md_rdev *rdev;
4386 	int need_flush = 0;
4387 	struct bio *blist;
4388 	struct bio *bio, *read_bio;
4389 	int sectors_done = 0;
4390 
4391 	if (sector_nr == 0) {
4392 		/* If restarting in the middle, skip the initial sectors */
4393 		if (mddev->reshape_backwards &&
4394 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4395 			sector_nr = (raid10_size(mddev, 0, 0)
4396 				     - conf->reshape_progress);
4397 		} else if (!mddev->reshape_backwards &&
4398 			   conf->reshape_progress > 0)
4399 			sector_nr = conf->reshape_progress;
4400 		if (sector_nr) {
4401 			mddev->curr_resync_completed = sector_nr;
4402 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4403 			*skipped = 1;
4404 			return sector_nr;
4405 		}
4406 	}
4407 
4408 	/* We don't use sector_nr to track where we are up to
4409 	 * as that doesn't work well for ->reshape_backwards.
4410 	 * So just use ->reshape_progress.
4411 	 */
4412 	if (mddev->reshape_backwards) {
4413 		/* 'next' is the earliest device address that we might
4414 		 * write to for this chunk in the new layout
4415 		 */
4416 		next = first_dev_address(conf->reshape_progress - 1,
4417 					 &conf->geo);
4418 
4419 		/* 'safe' is the last device address that we might read from
4420 		 * in the old layout after a restart
4421 		 */
4422 		safe = last_dev_address(conf->reshape_safe - 1,
4423 					&conf->prev);
4424 
4425 		if (next + conf->offset_diff < safe)
4426 			need_flush = 1;
4427 
4428 		last = conf->reshape_progress - 1;
4429 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4430 					       & conf->prev.chunk_mask);
4431 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4432 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4433 	} else {
4434 		/* 'next' is after the last device address that we
4435 		 * might write to for this chunk in the new layout
4436 		 */
4437 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4438 
4439 		/* 'safe' is the earliest device address that we might
4440 		 * read from in the old layout after a restart
4441 		 */
4442 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4443 
4444 		/* Need to update metadata if 'next' might be beyond 'safe'
4445 		 * as that would possibly corrupt data
4446 		 */
4447 		if (next > safe + conf->offset_diff)
4448 			need_flush = 1;
4449 
4450 		sector_nr = conf->reshape_progress;
4451 		last  = sector_nr | (conf->geo.chunk_mask
4452 				     & conf->prev.chunk_mask);
4453 
4454 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4455 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4456 	}
4457 
4458 	if (need_flush ||
4459 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4460 		/* Need to update reshape_position in metadata */
4461 		wait_barrier(conf);
4462 		mddev->reshape_position = conf->reshape_progress;
4463 		if (mddev->reshape_backwards)
4464 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4465 				- conf->reshape_progress;
4466 		else
4467 			mddev->curr_resync_completed = conf->reshape_progress;
4468 		conf->reshape_checkpoint = jiffies;
4469 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4470 		md_wakeup_thread(mddev->thread);
4471 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4472 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4473 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4474 			allow_barrier(conf);
4475 			return sectors_done;
4476 		}
4477 		conf->reshape_safe = mddev->reshape_position;
4478 		allow_barrier(conf);
4479 	}
4480 
4481 read_more:
4482 	/* Now schedule reads for blocks from sector_nr to last */
4483 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4484 	r10_bio->state = 0;
4485 	raise_barrier(conf, sectors_done != 0);
4486 	atomic_set(&r10_bio->remaining, 0);
4487 	r10_bio->mddev = mddev;
4488 	r10_bio->sector = sector_nr;
4489 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4490 	r10_bio->sectors = last - sector_nr + 1;
4491 	rdev = read_balance(conf, r10_bio, &max_sectors);
4492 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4493 
4494 	if (!rdev) {
4495 		/* Cannot read from here, so need to record bad blocks
4496 		 * on all the target devices.
4497 		 */
4498 		// FIXME
4499 		mempool_free(r10_bio, conf->r10buf_pool);
4500 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4501 		return sectors_done;
4502 	}
4503 
4504 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4505 
4506 	read_bio->bi_bdev = rdev->bdev;
4507 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4508 			       + rdev->data_offset);
4509 	read_bio->bi_private = r10_bio;
4510 	read_bio->bi_end_io = end_sync_read;
4511 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4512 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4513 	read_bio->bi_error = 0;
4514 	read_bio->bi_vcnt = 0;
4515 	read_bio->bi_iter.bi_size = 0;
4516 	r10_bio->master_bio = read_bio;
4517 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4518 
4519 	/* Now find the locations in the new layout */
4520 	__raid10_find_phys(&conf->geo, r10_bio);
4521 
4522 	blist = read_bio;
4523 	read_bio->bi_next = NULL;
4524 
4525 	rcu_read_lock();
4526 	for (s = 0; s < conf->copies*2; s++) {
4527 		struct bio *b;
4528 		int d = r10_bio->devs[s/2].devnum;
4529 		struct md_rdev *rdev2;
4530 		if (s&1) {
4531 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4532 			b = r10_bio->devs[s/2].repl_bio;
4533 		} else {
4534 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4535 			b = r10_bio->devs[s/2].bio;
4536 		}
4537 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4538 			continue;
4539 
4540 		bio_reset(b);
4541 		b->bi_bdev = rdev2->bdev;
4542 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4543 			rdev2->new_data_offset;
4544 		b->bi_private = r10_bio;
4545 		b->bi_end_io = end_reshape_write;
4546 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4547 		b->bi_next = blist;
4548 		blist = b;
4549 	}
4550 
4551 	/* Now add as many pages as possible to all of these bios. */
4552 
4553 	nr_sectors = 0;
4554 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4555 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4556 		int len = (max_sectors - s) << 9;
4557 		if (len > PAGE_SIZE)
4558 			len = PAGE_SIZE;
4559 		for (bio = blist; bio ; bio = bio->bi_next) {
4560 			struct bio *bio2;
4561 			if (bio_add_page(bio, page, len, 0))
4562 				continue;
4563 
4564 			/* Didn't fit, must stop */
4565 			for (bio2 = blist;
4566 			     bio2 && bio2 != bio;
4567 			     bio2 = bio2->bi_next) {
4568 				/* Remove last page from this bio */
4569 				bio2->bi_vcnt--;
4570 				bio2->bi_iter.bi_size -= len;
4571 				bio_clear_flag(bio2, BIO_SEG_VALID);
4572 			}
4573 			goto bio_full;
4574 		}
4575 		sector_nr += len >> 9;
4576 		nr_sectors += len >> 9;
4577 	}
4578 bio_full:
4579 	rcu_read_unlock();
4580 	r10_bio->sectors = nr_sectors;
4581 
4582 	/* Now submit the read */
4583 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4584 	atomic_inc(&r10_bio->remaining);
4585 	read_bio->bi_next = NULL;
4586 	generic_make_request(read_bio);
4587 	sector_nr += nr_sectors;
4588 	sectors_done += nr_sectors;
4589 	if (sector_nr <= last)
4590 		goto read_more;
4591 
4592 	/* Now that we have done the whole section we can
4593 	 * update reshape_progress
4594 	 */
4595 	if (mddev->reshape_backwards)
4596 		conf->reshape_progress -= sectors_done;
4597 	else
4598 		conf->reshape_progress += sectors_done;
4599 
4600 	return sectors_done;
4601 }
4602 
4603 static void end_reshape_request(struct r10bio *r10_bio);
4604 static int handle_reshape_read_error(struct mddev *mddev,
4605 				     struct r10bio *r10_bio);
4606 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4607 {
4608 	/* Reshape read completed.  Hopefully we have a block
4609 	 * to write out.
4610 	 * If we got a read error then we do sync 1-page reads from
4611 	 * elsewhere until we find the data - or give up.
4612 	 */
4613 	struct r10conf *conf = mddev->private;
4614 	int s;
4615 
4616 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4617 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4618 			/* Reshape has been aborted */
4619 			md_done_sync(mddev, r10_bio->sectors, 0);
4620 			return;
4621 		}
4622 
4623 	/* We definitely have the data in the pages, schedule the
4624 	 * writes.
4625 	 */
4626 	atomic_set(&r10_bio->remaining, 1);
4627 	for (s = 0; s < conf->copies*2; s++) {
4628 		struct bio *b;
4629 		int d = r10_bio->devs[s/2].devnum;
4630 		struct md_rdev *rdev;
4631 		rcu_read_lock();
4632 		if (s&1) {
4633 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4634 			b = r10_bio->devs[s/2].repl_bio;
4635 		} else {
4636 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4637 			b = r10_bio->devs[s/2].bio;
4638 		}
4639 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4640 			rcu_read_unlock();
4641 			continue;
4642 		}
4643 		atomic_inc(&rdev->nr_pending);
4644 		rcu_read_unlock();
4645 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4646 		atomic_inc(&r10_bio->remaining);
4647 		b->bi_next = NULL;
4648 		generic_make_request(b);
4649 	}
4650 	end_reshape_request(r10_bio);
4651 }
4652 
4653 static void end_reshape(struct r10conf *conf)
4654 {
4655 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4656 		return;
4657 
4658 	spin_lock_irq(&conf->device_lock);
4659 	conf->prev = conf->geo;
4660 	md_finish_reshape(conf->mddev);
4661 	smp_wmb();
4662 	conf->reshape_progress = MaxSector;
4663 	conf->reshape_safe = MaxSector;
4664 	spin_unlock_irq(&conf->device_lock);
4665 
4666 	/* read-ahead size must cover two whole stripes, which is
4667 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4668 	 */
4669 	if (conf->mddev->queue) {
4670 		int stripe = conf->geo.raid_disks *
4671 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4672 		stripe /= conf->geo.near_copies;
4673 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4674 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4675 	}
4676 	conf->fullsync = 0;
4677 }
4678 
4679 static int handle_reshape_read_error(struct mddev *mddev,
4680 				     struct r10bio *r10_bio)
4681 {
4682 	/* Use sync reads to get the blocks from somewhere else */
4683 	int sectors = r10_bio->sectors;
4684 	struct r10conf *conf = mddev->private;
4685 	struct {
4686 		struct r10bio r10_bio;
4687 		struct r10dev devs[conf->copies];
4688 	} on_stack;
4689 	struct r10bio *r10b = &on_stack.r10_bio;
4690 	int slot = 0;
4691 	int idx = 0;
4692 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4693 
4694 	r10b->sector = r10_bio->sector;
4695 	__raid10_find_phys(&conf->prev, r10b);
4696 
4697 	while (sectors) {
4698 		int s = sectors;
4699 		int success = 0;
4700 		int first_slot = slot;
4701 
4702 		if (s > (PAGE_SIZE >> 9))
4703 			s = PAGE_SIZE >> 9;
4704 
4705 		rcu_read_lock();
4706 		while (!success) {
4707 			int d = r10b->devs[slot].devnum;
4708 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4709 			sector_t addr;
4710 			if (rdev == NULL ||
4711 			    test_bit(Faulty, &rdev->flags) ||
4712 			    !test_bit(In_sync, &rdev->flags))
4713 				goto failed;
4714 
4715 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4716 			atomic_inc(&rdev->nr_pending);
4717 			rcu_read_unlock();
4718 			success = sync_page_io(rdev,
4719 					       addr,
4720 					       s << 9,
4721 					       bvec[idx].bv_page,
4722 					       REQ_OP_READ, 0, false);
4723 			rdev_dec_pending(rdev, mddev);
4724 			rcu_read_lock();
4725 			if (success)
4726 				break;
4727 		failed:
4728 			slot++;
4729 			if (slot >= conf->copies)
4730 				slot = 0;
4731 			if (slot == first_slot)
4732 				break;
4733 		}
4734 		rcu_read_unlock();
4735 		if (!success) {
4736 			/* couldn't read this block, must give up */
4737 			set_bit(MD_RECOVERY_INTR,
4738 				&mddev->recovery);
4739 			return -EIO;
4740 		}
4741 		sectors -= s;
4742 		idx++;
4743 	}
4744 	return 0;
4745 }
4746 
4747 static void end_reshape_write(struct bio *bio)
4748 {
4749 	struct r10bio *r10_bio = bio->bi_private;
4750 	struct mddev *mddev = r10_bio->mddev;
4751 	struct r10conf *conf = mddev->private;
4752 	int d;
4753 	int slot;
4754 	int repl;
4755 	struct md_rdev *rdev = NULL;
4756 
4757 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4758 	if (repl)
4759 		rdev = conf->mirrors[d].replacement;
4760 	if (!rdev) {
4761 		smp_mb();
4762 		rdev = conf->mirrors[d].rdev;
4763 	}
4764 
4765 	if (bio->bi_error) {
4766 		/* FIXME should record badblock */
4767 		md_error(mddev, rdev);
4768 	}
4769 
4770 	rdev_dec_pending(rdev, mddev);
4771 	end_reshape_request(r10_bio);
4772 }
4773 
4774 static void end_reshape_request(struct r10bio *r10_bio)
4775 {
4776 	if (!atomic_dec_and_test(&r10_bio->remaining))
4777 		return;
4778 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4779 	bio_put(r10_bio->master_bio);
4780 	put_buf(r10_bio);
4781 }
4782 
4783 static void raid10_finish_reshape(struct mddev *mddev)
4784 {
4785 	struct r10conf *conf = mddev->private;
4786 
4787 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4788 		return;
4789 
4790 	if (mddev->delta_disks > 0) {
4791 		sector_t size = raid10_size(mddev, 0, 0);
4792 		md_set_array_sectors(mddev, size);
4793 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4794 			mddev->recovery_cp = mddev->resync_max_sectors;
4795 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4796 		}
4797 		mddev->resync_max_sectors = size;
4798 		if (mddev->queue) {
4799 			set_capacity(mddev->gendisk, mddev->array_sectors);
4800 			revalidate_disk(mddev->gendisk);
4801 		}
4802 	} else {
4803 		int d;
4804 		rcu_read_lock();
4805 		for (d = conf->geo.raid_disks ;
4806 		     d < conf->geo.raid_disks - mddev->delta_disks;
4807 		     d++) {
4808 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4809 			if (rdev)
4810 				clear_bit(In_sync, &rdev->flags);
4811 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4812 			if (rdev)
4813 				clear_bit(In_sync, &rdev->flags);
4814 		}
4815 		rcu_read_unlock();
4816 	}
4817 	mddev->layout = mddev->new_layout;
4818 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4819 	mddev->reshape_position = MaxSector;
4820 	mddev->delta_disks = 0;
4821 	mddev->reshape_backwards = 0;
4822 }
4823 
4824 static struct md_personality raid10_personality =
4825 {
4826 	.name		= "raid10",
4827 	.level		= 10,
4828 	.owner		= THIS_MODULE,
4829 	.make_request	= raid10_make_request,
4830 	.run		= raid10_run,
4831 	.free		= raid10_free,
4832 	.status		= raid10_status,
4833 	.error_handler	= raid10_error,
4834 	.hot_add_disk	= raid10_add_disk,
4835 	.hot_remove_disk= raid10_remove_disk,
4836 	.spare_active	= raid10_spare_active,
4837 	.sync_request	= raid10_sync_request,
4838 	.quiesce	= raid10_quiesce,
4839 	.size		= raid10_size,
4840 	.resize		= raid10_resize,
4841 	.takeover	= raid10_takeover,
4842 	.check_reshape	= raid10_check_reshape,
4843 	.start_reshape	= raid10_start_reshape,
4844 	.finish_reshape	= raid10_finish_reshape,
4845 	.congested	= raid10_congested,
4846 };
4847 
4848 static int __init raid_init(void)
4849 {
4850 	return register_md_personality(&raid10_personality);
4851 }
4852 
4853 static void raid_exit(void)
4854 {
4855 	unregister_md_personality(&raid10_personality);
4856 }
4857 
4858 module_init(raid_init);
4859 module_exit(raid_exit);
4860 MODULE_LICENSE("GPL");
4861 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4862 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4863 MODULE_ALIAS("md-raid10");
4864 MODULE_ALIAS("md-level-10");
4865 
4866 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4867