xref: /linux/drivers/md/raid10.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33 
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74 
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define	NR_RAID10_BIOS 256
79 
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91 
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99 
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 				int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109 
110 #define raid10_log(md, fmt, args...)				\
111 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112 
113 /*
114  * 'strct resync_pages' stores actual pages used for doing the resync
115  *  IO, and it is per-bio, so make .bi_private points to it.
116  */
117 static inline struct resync_pages *get_resync_pages(struct bio *bio)
118 {
119 	return bio->bi_private;
120 }
121 
122 /*
123  * for resync bio, r10bio pointer can be retrieved from the per-bio
124  * 'struct resync_pages'.
125  */
126 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
127 {
128 	return get_resync_pages(bio)->raid_bio;
129 }
130 
131 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 	struct r10conf *conf = data;
134 	int size = offsetof(struct r10bio, devs[conf->copies]);
135 
136 	/* allocate a r10bio with room for raid_disks entries in the
137 	 * bios array */
138 	return kzalloc(size, gfp_flags);
139 }
140 
141 static void r10bio_pool_free(void *r10_bio, void *data)
142 {
143 	kfree(r10_bio);
144 }
145 
146 /* amount of memory to reserve for resync requests */
147 #define RESYNC_WINDOW (1024*1024)
148 /* maximum number of concurrent requests, memory permitting */
149 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
150 
151 /*
152  * When performing a resync, we need to read and compare, so
153  * we need as many pages are there are copies.
154  * When performing a recovery, we need 2 bios, one for read,
155  * one for write (we recover only one drive per r10buf)
156  *
157  */
158 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
159 {
160 	struct r10conf *conf = data;
161 	struct r10bio *r10_bio;
162 	struct bio *bio;
163 	int j;
164 	int nalloc, nalloc_rp;
165 	struct resync_pages *rps;
166 
167 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
168 	if (!r10_bio)
169 		return NULL;
170 
171 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
172 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
173 		nalloc = conf->copies; /* resync */
174 	else
175 		nalloc = 2; /* recovery */
176 
177 	/* allocate once for all bios */
178 	if (!conf->have_replacement)
179 		nalloc_rp = nalloc;
180 	else
181 		nalloc_rp = nalloc * 2;
182 	rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
183 	if (!rps)
184 		goto out_free_r10bio;
185 
186 	/*
187 	 * Allocate bios.
188 	 */
189 	for (j = nalloc ; j-- ; ) {
190 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
191 		if (!bio)
192 			goto out_free_bio;
193 		r10_bio->devs[j].bio = bio;
194 		if (!conf->have_replacement)
195 			continue;
196 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
197 		if (!bio)
198 			goto out_free_bio;
199 		r10_bio->devs[j].repl_bio = bio;
200 	}
201 	/*
202 	 * Allocate RESYNC_PAGES data pages and attach them
203 	 * where needed.
204 	 */
205 	for (j = 0; j < nalloc; j++) {
206 		struct bio *rbio = r10_bio->devs[j].repl_bio;
207 		struct resync_pages *rp, *rp_repl;
208 
209 		rp = &rps[j];
210 		if (rbio)
211 			rp_repl = &rps[nalloc + j];
212 
213 		bio = r10_bio->devs[j].bio;
214 
215 		if (!j || test_bit(MD_RECOVERY_SYNC,
216 				   &conf->mddev->recovery)) {
217 			if (resync_alloc_pages(rp, gfp_flags))
218 				goto out_free_pages;
219 		} else {
220 			memcpy(rp, &rps[0], sizeof(*rp));
221 			resync_get_all_pages(rp);
222 		}
223 
224 		rp->idx = 0;
225 		rp->raid_bio = r10_bio;
226 		bio->bi_private = rp;
227 		if (rbio) {
228 			memcpy(rp_repl, rp, sizeof(*rp));
229 			rbio->bi_private = rp_repl;
230 		}
231 	}
232 
233 	return r10_bio;
234 
235 out_free_pages:
236 	while (--j >= 0)
237 		resync_free_pages(&rps[j * 2]);
238 
239 	j = 0;
240 out_free_bio:
241 	for ( ; j < nalloc; j++) {
242 		if (r10_bio->devs[j].bio)
243 			bio_put(r10_bio->devs[j].bio);
244 		if (r10_bio->devs[j].repl_bio)
245 			bio_put(r10_bio->devs[j].repl_bio);
246 	}
247 	kfree(rps);
248 out_free_r10bio:
249 	r10bio_pool_free(r10_bio, conf);
250 	return NULL;
251 }
252 
253 static void r10buf_pool_free(void *__r10_bio, void *data)
254 {
255 	struct r10conf *conf = data;
256 	struct r10bio *r10bio = __r10_bio;
257 	int j;
258 	struct resync_pages *rp = NULL;
259 
260 	for (j = conf->copies; j--; ) {
261 		struct bio *bio = r10bio->devs[j].bio;
262 
263 		rp = get_resync_pages(bio);
264 		resync_free_pages(rp);
265 		bio_put(bio);
266 
267 		bio = r10bio->devs[j].repl_bio;
268 		if (bio)
269 			bio_put(bio);
270 	}
271 
272 	/* resync pages array stored in the 1st bio's .bi_private */
273 	kfree(rp);
274 
275 	r10bio_pool_free(r10bio, conf);
276 }
277 
278 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
279 {
280 	int i;
281 
282 	for (i = 0; i < conf->copies; i++) {
283 		struct bio **bio = & r10_bio->devs[i].bio;
284 		if (!BIO_SPECIAL(*bio))
285 			bio_put(*bio);
286 		*bio = NULL;
287 		bio = &r10_bio->devs[i].repl_bio;
288 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
289 			bio_put(*bio);
290 		*bio = NULL;
291 	}
292 }
293 
294 static void free_r10bio(struct r10bio *r10_bio)
295 {
296 	struct r10conf *conf = r10_bio->mddev->private;
297 
298 	put_all_bios(conf, r10_bio);
299 	mempool_free(r10_bio, conf->r10bio_pool);
300 }
301 
302 static void put_buf(struct r10bio *r10_bio)
303 {
304 	struct r10conf *conf = r10_bio->mddev->private;
305 
306 	mempool_free(r10_bio, conf->r10buf_pool);
307 
308 	lower_barrier(conf);
309 }
310 
311 static void reschedule_retry(struct r10bio *r10_bio)
312 {
313 	unsigned long flags;
314 	struct mddev *mddev = r10_bio->mddev;
315 	struct r10conf *conf = mddev->private;
316 
317 	spin_lock_irqsave(&conf->device_lock, flags);
318 	list_add(&r10_bio->retry_list, &conf->retry_list);
319 	conf->nr_queued ++;
320 	spin_unlock_irqrestore(&conf->device_lock, flags);
321 
322 	/* wake up frozen array... */
323 	wake_up(&conf->wait_barrier);
324 
325 	md_wakeup_thread(mddev->thread);
326 }
327 
328 /*
329  * raid_end_bio_io() is called when we have finished servicing a mirrored
330  * operation and are ready to return a success/failure code to the buffer
331  * cache layer.
332  */
333 static void raid_end_bio_io(struct r10bio *r10_bio)
334 {
335 	struct bio *bio = r10_bio->master_bio;
336 	struct r10conf *conf = r10_bio->mddev->private;
337 
338 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
339 		bio->bi_error = -EIO;
340 
341 	bio_endio(bio);
342 	/*
343 	 * Wake up any possible resync thread that waits for the device
344 	 * to go idle.
345 	 */
346 	allow_barrier(conf);
347 
348 	free_r10bio(r10_bio);
349 }
350 
351 /*
352  * Update disk head position estimator based on IRQ completion info.
353  */
354 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
355 {
356 	struct r10conf *conf = r10_bio->mddev->private;
357 
358 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
359 		r10_bio->devs[slot].addr + (r10_bio->sectors);
360 }
361 
362 /*
363  * Find the disk number which triggered given bio
364  */
365 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
366 			 struct bio *bio, int *slotp, int *replp)
367 {
368 	int slot;
369 	int repl = 0;
370 
371 	for (slot = 0; slot < conf->copies; slot++) {
372 		if (r10_bio->devs[slot].bio == bio)
373 			break;
374 		if (r10_bio->devs[slot].repl_bio == bio) {
375 			repl = 1;
376 			break;
377 		}
378 	}
379 
380 	BUG_ON(slot == conf->copies);
381 	update_head_pos(slot, r10_bio);
382 
383 	if (slotp)
384 		*slotp = slot;
385 	if (replp)
386 		*replp = repl;
387 	return r10_bio->devs[slot].devnum;
388 }
389 
390 static void raid10_end_read_request(struct bio *bio)
391 {
392 	int uptodate = !bio->bi_error;
393 	struct r10bio *r10_bio = bio->bi_private;
394 	int slot, dev;
395 	struct md_rdev *rdev;
396 	struct r10conf *conf = r10_bio->mddev->private;
397 
398 	slot = r10_bio->read_slot;
399 	dev = r10_bio->devs[slot].devnum;
400 	rdev = r10_bio->devs[slot].rdev;
401 	/*
402 	 * this branch is our 'one mirror IO has finished' event handler:
403 	 */
404 	update_head_pos(slot, r10_bio);
405 
406 	if (uptodate) {
407 		/*
408 		 * Set R10BIO_Uptodate in our master bio, so that
409 		 * we will return a good error code to the higher
410 		 * levels even if IO on some other mirrored buffer fails.
411 		 *
412 		 * The 'master' represents the composite IO operation to
413 		 * user-side. So if something waits for IO, then it will
414 		 * wait for the 'master' bio.
415 		 */
416 		set_bit(R10BIO_Uptodate, &r10_bio->state);
417 	} else {
418 		/* If all other devices that store this block have
419 		 * failed, we want to return the error upwards rather
420 		 * than fail the last device.  Here we redefine
421 		 * "uptodate" to mean "Don't want to retry"
422 		 */
423 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
424 			     rdev->raid_disk))
425 			uptodate = 1;
426 	}
427 	if (uptodate) {
428 		raid_end_bio_io(r10_bio);
429 		rdev_dec_pending(rdev, conf->mddev);
430 	} else {
431 		/*
432 		 * oops, read error - keep the refcount on the rdev
433 		 */
434 		char b[BDEVNAME_SIZE];
435 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
436 				   mdname(conf->mddev),
437 				   bdevname(rdev->bdev, b),
438 				   (unsigned long long)r10_bio->sector);
439 		set_bit(R10BIO_ReadError, &r10_bio->state);
440 		reschedule_retry(r10_bio);
441 	}
442 }
443 
444 static void close_write(struct r10bio *r10_bio)
445 {
446 	/* clear the bitmap if all writes complete successfully */
447 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
448 			r10_bio->sectors,
449 			!test_bit(R10BIO_Degraded, &r10_bio->state),
450 			0);
451 	md_write_end(r10_bio->mddev);
452 }
453 
454 static void one_write_done(struct r10bio *r10_bio)
455 {
456 	if (atomic_dec_and_test(&r10_bio->remaining)) {
457 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
458 			reschedule_retry(r10_bio);
459 		else {
460 			close_write(r10_bio);
461 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
462 				reschedule_retry(r10_bio);
463 			else
464 				raid_end_bio_io(r10_bio);
465 		}
466 	}
467 }
468 
469 static void raid10_end_write_request(struct bio *bio)
470 {
471 	struct r10bio *r10_bio = bio->bi_private;
472 	int dev;
473 	int dec_rdev = 1;
474 	struct r10conf *conf = r10_bio->mddev->private;
475 	int slot, repl;
476 	struct md_rdev *rdev = NULL;
477 	struct bio *to_put = NULL;
478 	bool discard_error;
479 
480 	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
481 
482 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
483 
484 	if (repl)
485 		rdev = conf->mirrors[dev].replacement;
486 	if (!rdev) {
487 		smp_rmb();
488 		repl = 0;
489 		rdev = conf->mirrors[dev].rdev;
490 	}
491 	/*
492 	 * this branch is our 'one mirror IO has finished' event handler:
493 	 */
494 	if (bio->bi_error && !discard_error) {
495 		if (repl)
496 			/* Never record new bad blocks to replacement,
497 			 * just fail it.
498 			 */
499 			md_error(rdev->mddev, rdev);
500 		else {
501 			set_bit(WriteErrorSeen,	&rdev->flags);
502 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
503 				set_bit(MD_RECOVERY_NEEDED,
504 					&rdev->mddev->recovery);
505 
506 			dec_rdev = 0;
507 			if (test_bit(FailFast, &rdev->flags) &&
508 			    (bio->bi_opf & MD_FAILFAST)) {
509 				md_error(rdev->mddev, rdev);
510 				if (!test_bit(Faulty, &rdev->flags))
511 					/* This is the only remaining device,
512 					 * We need to retry the write without
513 					 * FailFast
514 					 */
515 					set_bit(R10BIO_WriteError, &r10_bio->state);
516 				else {
517 					r10_bio->devs[slot].bio = NULL;
518 					to_put = bio;
519 					dec_rdev = 1;
520 				}
521 			} else
522 				set_bit(R10BIO_WriteError, &r10_bio->state);
523 		}
524 	} else {
525 		/*
526 		 * Set R10BIO_Uptodate in our master bio, so that
527 		 * we will return a good error code for to the higher
528 		 * levels even if IO on some other mirrored buffer fails.
529 		 *
530 		 * The 'master' represents the composite IO operation to
531 		 * user-side. So if something waits for IO, then it will
532 		 * wait for the 'master' bio.
533 		 */
534 		sector_t first_bad;
535 		int bad_sectors;
536 
537 		/*
538 		 * Do not set R10BIO_Uptodate if the current device is
539 		 * rebuilding or Faulty. This is because we cannot use
540 		 * such device for properly reading the data back (we could
541 		 * potentially use it, if the current write would have felt
542 		 * before rdev->recovery_offset, but for simplicity we don't
543 		 * check this here.
544 		 */
545 		if (test_bit(In_sync, &rdev->flags) &&
546 		    !test_bit(Faulty, &rdev->flags))
547 			set_bit(R10BIO_Uptodate, &r10_bio->state);
548 
549 		/* Maybe we can clear some bad blocks. */
550 		if (is_badblock(rdev,
551 				r10_bio->devs[slot].addr,
552 				r10_bio->sectors,
553 				&first_bad, &bad_sectors) && !discard_error) {
554 			bio_put(bio);
555 			if (repl)
556 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
557 			else
558 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
559 			dec_rdev = 0;
560 			set_bit(R10BIO_MadeGood, &r10_bio->state);
561 		}
562 	}
563 
564 	/*
565 	 *
566 	 * Let's see if all mirrored write operations have finished
567 	 * already.
568 	 */
569 	one_write_done(r10_bio);
570 	if (dec_rdev)
571 		rdev_dec_pending(rdev, conf->mddev);
572 	if (to_put)
573 		bio_put(to_put);
574 }
575 
576 /*
577  * RAID10 layout manager
578  * As well as the chunksize and raid_disks count, there are two
579  * parameters: near_copies and far_copies.
580  * near_copies * far_copies must be <= raid_disks.
581  * Normally one of these will be 1.
582  * If both are 1, we get raid0.
583  * If near_copies == raid_disks, we get raid1.
584  *
585  * Chunks are laid out in raid0 style with near_copies copies of the
586  * first chunk, followed by near_copies copies of the next chunk and
587  * so on.
588  * If far_copies > 1, then after 1/far_copies of the array has been assigned
589  * as described above, we start again with a device offset of near_copies.
590  * So we effectively have another copy of the whole array further down all
591  * the drives, but with blocks on different drives.
592  * With this layout, and block is never stored twice on the one device.
593  *
594  * raid10_find_phys finds the sector offset of a given virtual sector
595  * on each device that it is on.
596  *
597  * raid10_find_virt does the reverse mapping, from a device and a
598  * sector offset to a virtual address
599  */
600 
601 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
602 {
603 	int n,f;
604 	sector_t sector;
605 	sector_t chunk;
606 	sector_t stripe;
607 	int dev;
608 	int slot = 0;
609 	int last_far_set_start, last_far_set_size;
610 
611 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
612 	last_far_set_start *= geo->far_set_size;
613 
614 	last_far_set_size = geo->far_set_size;
615 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
616 
617 	/* now calculate first sector/dev */
618 	chunk = r10bio->sector >> geo->chunk_shift;
619 	sector = r10bio->sector & geo->chunk_mask;
620 
621 	chunk *= geo->near_copies;
622 	stripe = chunk;
623 	dev = sector_div(stripe, geo->raid_disks);
624 	if (geo->far_offset)
625 		stripe *= geo->far_copies;
626 
627 	sector += stripe << geo->chunk_shift;
628 
629 	/* and calculate all the others */
630 	for (n = 0; n < geo->near_copies; n++) {
631 		int d = dev;
632 		int set;
633 		sector_t s = sector;
634 		r10bio->devs[slot].devnum = d;
635 		r10bio->devs[slot].addr = s;
636 		slot++;
637 
638 		for (f = 1; f < geo->far_copies; f++) {
639 			set = d / geo->far_set_size;
640 			d += geo->near_copies;
641 
642 			if ((geo->raid_disks % geo->far_set_size) &&
643 			    (d > last_far_set_start)) {
644 				d -= last_far_set_start;
645 				d %= last_far_set_size;
646 				d += last_far_set_start;
647 			} else {
648 				d %= geo->far_set_size;
649 				d += geo->far_set_size * set;
650 			}
651 			s += geo->stride;
652 			r10bio->devs[slot].devnum = d;
653 			r10bio->devs[slot].addr = s;
654 			slot++;
655 		}
656 		dev++;
657 		if (dev >= geo->raid_disks) {
658 			dev = 0;
659 			sector += (geo->chunk_mask + 1);
660 		}
661 	}
662 }
663 
664 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
665 {
666 	struct geom *geo = &conf->geo;
667 
668 	if (conf->reshape_progress != MaxSector &&
669 	    ((r10bio->sector >= conf->reshape_progress) !=
670 	     conf->mddev->reshape_backwards)) {
671 		set_bit(R10BIO_Previous, &r10bio->state);
672 		geo = &conf->prev;
673 	} else
674 		clear_bit(R10BIO_Previous, &r10bio->state);
675 
676 	__raid10_find_phys(geo, r10bio);
677 }
678 
679 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
680 {
681 	sector_t offset, chunk, vchunk;
682 	/* Never use conf->prev as this is only called during resync
683 	 * or recovery, so reshape isn't happening
684 	 */
685 	struct geom *geo = &conf->geo;
686 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
687 	int far_set_size = geo->far_set_size;
688 	int last_far_set_start;
689 
690 	if (geo->raid_disks % geo->far_set_size) {
691 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
692 		last_far_set_start *= geo->far_set_size;
693 
694 		if (dev >= last_far_set_start) {
695 			far_set_size = geo->far_set_size;
696 			far_set_size += (geo->raid_disks % geo->far_set_size);
697 			far_set_start = last_far_set_start;
698 		}
699 	}
700 
701 	offset = sector & geo->chunk_mask;
702 	if (geo->far_offset) {
703 		int fc;
704 		chunk = sector >> geo->chunk_shift;
705 		fc = sector_div(chunk, geo->far_copies);
706 		dev -= fc * geo->near_copies;
707 		if (dev < far_set_start)
708 			dev += far_set_size;
709 	} else {
710 		while (sector >= geo->stride) {
711 			sector -= geo->stride;
712 			if (dev < (geo->near_copies + far_set_start))
713 				dev += far_set_size - geo->near_copies;
714 			else
715 				dev -= geo->near_copies;
716 		}
717 		chunk = sector >> geo->chunk_shift;
718 	}
719 	vchunk = chunk * geo->raid_disks + dev;
720 	sector_div(vchunk, geo->near_copies);
721 	return (vchunk << geo->chunk_shift) + offset;
722 }
723 
724 /*
725  * This routine returns the disk from which the requested read should
726  * be done. There is a per-array 'next expected sequential IO' sector
727  * number - if this matches on the next IO then we use the last disk.
728  * There is also a per-disk 'last know head position' sector that is
729  * maintained from IRQ contexts, both the normal and the resync IO
730  * completion handlers update this position correctly. If there is no
731  * perfect sequential match then we pick the disk whose head is closest.
732  *
733  * If there are 2 mirrors in the same 2 devices, performance degrades
734  * because position is mirror, not device based.
735  *
736  * The rdev for the device selected will have nr_pending incremented.
737  */
738 
739 /*
740  * FIXME: possibly should rethink readbalancing and do it differently
741  * depending on near_copies / far_copies geometry.
742  */
743 static struct md_rdev *read_balance(struct r10conf *conf,
744 				    struct r10bio *r10_bio,
745 				    int *max_sectors)
746 {
747 	const sector_t this_sector = r10_bio->sector;
748 	int disk, slot;
749 	int sectors = r10_bio->sectors;
750 	int best_good_sectors;
751 	sector_t new_distance, best_dist;
752 	struct md_rdev *best_rdev, *rdev = NULL;
753 	int do_balance;
754 	int best_slot;
755 	struct geom *geo = &conf->geo;
756 
757 	raid10_find_phys(conf, r10_bio);
758 	rcu_read_lock();
759 	sectors = r10_bio->sectors;
760 	best_slot = -1;
761 	best_rdev = NULL;
762 	best_dist = MaxSector;
763 	best_good_sectors = 0;
764 	do_balance = 1;
765 	clear_bit(R10BIO_FailFast, &r10_bio->state);
766 	/*
767 	 * Check if we can balance. We can balance on the whole
768 	 * device if no resync is going on (recovery is ok), or below
769 	 * the resync window. We take the first readable disk when
770 	 * above the resync window.
771 	 */
772 	if (conf->mddev->recovery_cp < MaxSector
773 	    && (this_sector + sectors >= conf->next_resync))
774 		do_balance = 0;
775 
776 	for (slot = 0; slot < conf->copies ; slot++) {
777 		sector_t first_bad;
778 		int bad_sectors;
779 		sector_t dev_sector;
780 
781 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
782 			continue;
783 		disk = r10_bio->devs[slot].devnum;
784 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
785 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
786 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
787 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
788 		if (rdev == NULL ||
789 		    test_bit(Faulty, &rdev->flags))
790 			continue;
791 		if (!test_bit(In_sync, &rdev->flags) &&
792 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
793 			continue;
794 
795 		dev_sector = r10_bio->devs[slot].addr;
796 		if (is_badblock(rdev, dev_sector, sectors,
797 				&first_bad, &bad_sectors)) {
798 			if (best_dist < MaxSector)
799 				/* Already have a better slot */
800 				continue;
801 			if (first_bad <= dev_sector) {
802 				/* Cannot read here.  If this is the
803 				 * 'primary' device, then we must not read
804 				 * beyond 'bad_sectors' from another device.
805 				 */
806 				bad_sectors -= (dev_sector - first_bad);
807 				if (!do_balance && sectors > bad_sectors)
808 					sectors = bad_sectors;
809 				if (best_good_sectors > sectors)
810 					best_good_sectors = sectors;
811 			} else {
812 				sector_t good_sectors =
813 					first_bad - dev_sector;
814 				if (good_sectors > best_good_sectors) {
815 					best_good_sectors = good_sectors;
816 					best_slot = slot;
817 					best_rdev = rdev;
818 				}
819 				if (!do_balance)
820 					/* Must read from here */
821 					break;
822 			}
823 			continue;
824 		} else
825 			best_good_sectors = sectors;
826 
827 		if (!do_balance)
828 			break;
829 
830 		if (best_slot >= 0)
831 			/* At least 2 disks to choose from so failfast is OK */
832 			set_bit(R10BIO_FailFast, &r10_bio->state);
833 		/* This optimisation is debatable, and completely destroys
834 		 * sequential read speed for 'far copies' arrays.  So only
835 		 * keep it for 'near' arrays, and review those later.
836 		 */
837 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
838 			new_distance = 0;
839 
840 		/* for far > 1 always use the lowest address */
841 		else if (geo->far_copies > 1)
842 			new_distance = r10_bio->devs[slot].addr;
843 		else
844 			new_distance = abs(r10_bio->devs[slot].addr -
845 					   conf->mirrors[disk].head_position);
846 		if (new_distance < best_dist) {
847 			best_dist = new_distance;
848 			best_slot = slot;
849 			best_rdev = rdev;
850 		}
851 	}
852 	if (slot >= conf->copies) {
853 		slot = best_slot;
854 		rdev = best_rdev;
855 	}
856 
857 	if (slot >= 0) {
858 		atomic_inc(&rdev->nr_pending);
859 		r10_bio->read_slot = slot;
860 	} else
861 		rdev = NULL;
862 	rcu_read_unlock();
863 	*max_sectors = best_good_sectors;
864 
865 	return rdev;
866 }
867 
868 static int raid10_congested(struct mddev *mddev, int bits)
869 {
870 	struct r10conf *conf = mddev->private;
871 	int i, ret = 0;
872 
873 	if ((bits & (1 << WB_async_congested)) &&
874 	    conf->pending_count >= max_queued_requests)
875 		return 1;
876 
877 	rcu_read_lock();
878 	for (i = 0;
879 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
880 		     && ret == 0;
881 	     i++) {
882 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
883 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
884 			struct request_queue *q = bdev_get_queue(rdev->bdev);
885 
886 			ret |= bdi_congested(q->backing_dev_info, bits);
887 		}
888 	}
889 	rcu_read_unlock();
890 	return ret;
891 }
892 
893 static void flush_pending_writes(struct r10conf *conf)
894 {
895 	/* Any writes that have been queued but are awaiting
896 	 * bitmap updates get flushed here.
897 	 */
898 	spin_lock_irq(&conf->device_lock);
899 
900 	if (conf->pending_bio_list.head) {
901 		struct bio *bio;
902 		bio = bio_list_get(&conf->pending_bio_list);
903 		conf->pending_count = 0;
904 		spin_unlock_irq(&conf->device_lock);
905 		/* flush any pending bitmap writes to disk
906 		 * before proceeding w/ I/O */
907 		bitmap_unplug(conf->mddev->bitmap);
908 		wake_up(&conf->wait_barrier);
909 
910 		while (bio) { /* submit pending writes */
911 			struct bio *next = bio->bi_next;
912 			struct md_rdev *rdev = (void*)bio->bi_bdev;
913 			bio->bi_next = NULL;
914 			bio->bi_bdev = rdev->bdev;
915 			if (test_bit(Faulty, &rdev->flags)) {
916 				bio->bi_error = -EIO;
917 				bio_endio(bio);
918 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
919 					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
920 				/* Just ignore it */
921 				bio_endio(bio);
922 			else
923 				generic_make_request(bio);
924 			bio = next;
925 		}
926 	} else
927 		spin_unlock_irq(&conf->device_lock);
928 }
929 
930 /* Barriers....
931  * Sometimes we need to suspend IO while we do something else,
932  * either some resync/recovery, or reconfigure the array.
933  * To do this we raise a 'barrier'.
934  * The 'barrier' is a counter that can be raised multiple times
935  * to count how many activities are happening which preclude
936  * normal IO.
937  * We can only raise the barrier if there is no pending IO.
938  * i.e. if nr_pending == 0.
939  * We choose only to raise the barrier if no-one is waiting for the
940  * barrier to go down.  This means that as soon as an IO request
941  * is ready, no other operations which require a barrier will start
942  * until the IO request has had a chance.
943  *
944  * So: regular IO calls 'wait_barrier'.  When that returns there
945  *    is no backgroup IO happening,  It must arrange to call
946  *    allow_barrier when it has finished its IO.
947  * backgroup IO calls must call raise_barrier.  Once that returns
948  *    there is no normal IO happeing.  It must arrange to call
949  *    lower_barrier when the particular background IO completes.
950  */
951 
952 static void raise_barrier(struct r10conf *conf, int force)
953 {
954 	BUG_ON(force && !conf->barrier);
955 	spin_lock_irq(&conf->resync_lock);
956 
957 	/* Wait until no block IO is waiting (unless 'force') */
958 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
959 			    conf->resync_lock);
960 
961 	/* block any new IO from starting */
962 	conf->barrier++;
963 
964 	/* Now wait for all pending IO to complete */
965 	wait_event_lock_irq(conf->wait_barrier,
966 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
967 			    conf->resync_lock);
968 
969 	spin_unlock_irq(&conf->resync_lock);
970 }
971 
972 static void lower_barrier(struct r10conf *conf)
973 {
974 	unsigned long flags;
975 	spin_lock_irqsave(&conf->resync_lock, flags);
976 	conf->barrier--;
977 	spin_unlock_irqrestore(&conf->resync_lock, flags);
978 	wake_up(&conf->wait_barrier);
979 }
980 
981 static void wait_barrier(struct r10conf *conf)
982 {
983 	spin_lock_irq(&conf->resync_lock);
984 	if (conf->barrier) {
985 		conf->nr_waiting++;
986 		/* Wait for the barrier to drop.
987 		 * However if there are already pending
988 		 * requests (preventing the barrier from
989 		 * rising completely), and the
990 		 * pre-process bio queue isn't empty,
991 		 * then don't wait, as we need to empty
992 		 * that queue to get the nr_pending
993 		 * count down.
994 		 */
995 		raid10_log(conf->mddev, "wait barrier");
996 		wait_event_lock_irq(conf->wait_barrier,
997 				    !conf->barrier ||
998 				    (atomic_read(&conf->nr_pending) &&
999 				     current->bio_list &&
1000 				     (!bio_list_empty(&current->bio_list[0]) ||
1001 				      !bio_list_empty(&current->bio_list[1]))),
1002 				    conf->resync_lock);
1003 		conf->nr_waiting--;
1004 		if (!conf->nr_waiting)
1005 			wake_up(&conf->wait_barrier);
1006 	}
1007 	atomic_inc(&conf->nr_pending);
1008 	spin_unlock_irq(&conf->resync_lock);
1009 }
1010 
1011 static void allow_barrier(struct r10conf *conf)
1012 {
1013 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1014 			(conf->array_freeze_pending))
1015 		wake_up(&conf->wait_barrier);
1016 }
1017 
1018 static void freeze_array(struct r10conf *conf, int extra)
1019 {
1020 	/* stop syncio and normal IO and wait for everything to
1021 	 * go quiet.
1022 	 * We increment barrier and nr_waiting, and then
1023 	 * wait until nr_pending match nr_queued+extra
1024 	 * This is called in the context of one normal IO request
1025 	 * that has failed. Thus any sync request that might be pending
1026 	 * will be blocked by nr_pending, and we need to wait for
1027 	 * pending IO requests to complete or be queued for re-try.
1028 	 * Thus the number queued (nr_queued) plus this request (extra)
1029 	 * must match the number of pending IOs (nr_pending) before
1030 	 * we continue.
1031 	 */
1032 	spin_lock_irq(&conf->resync_lock);
1033 	conf->array_freeze_pending++;
1034 	conf->barrier++;
1035 	conf->nr_waiting++;
1036 	wait_event_lock_irq_cmd(conf->wait_barrier,
1037 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1038 				conf->resync_lock,
1039 				flush_pending_writes(conf));
1040 
1041 	conf->array_freeze_pending--;
1042 	spin_unlock_irq(&conf->resync_lock);
1043 }
1044 
1045 static void unfreeze_array(struct r10conf *conf)
1046 {
1047 	/* reverse the effect of the freeze */
1048 	spin_lock_irq(&conf->resync_lock);
1049 	conf->barrier--;
1050 	conf->nr_waiting--;
1051 	wake_up(&conf->wait_barrier);
1052 	spin_unlock_irq(&conf->resync_lock);
1053 }
1054 
1055 static sector_t choose_data_offset(struct r10bio *r10_bio,
1056 				   struct md_rdev *rdev)
1057 {
1058 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1059 	    test_bit(R10BIO_Previous, &r10_bio->state))
1060 		return rdev->data_offset;
1061 	else
1062 		return rdev->new_data_offset;
1063 }
1064 
1065 struct raid10_plug_cb {
1066 	struct blk_plug_cb	cb;
1067 	struct bio_list		pending;
1068 	int			pending_cnt;
1069 };
1070 
1071 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1072 {
1073 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1074 						   cb);
1075 	struct mddev *mddev = plug->cb.data;
1076 	struct r10conf *conf = mddev->private;
1077 	struct bio *bio;
1078 
1079 	if (from_schedule || current->bio_list) {
1080 		spin_lock_irq(&conf->device_lock);
1081 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1082 		conf->pending_count += plug->pending_cnt;
1083 		spin_unlock_irq(&conf->device_lock);
1084 		wake_up(&conf->wait_barrier);
1085 		md_wakeup_thread(mddev->thread);
1086 		kfree(plug);
1087 		return;
1088 	}
1089 
1090 	/* we aren't scheduling, so we can do the write-out directly. */
1091 	bio = bio_list_get(&plug->pending);
1092 	bitmap_unplug(mddev->bitmap);
1093 	wake_up(&conf->wait_barrier);
1094 
1095 	while (bio) { /* submit pending writes */
1096 		struct bio *next = bio->bi_next;
1097 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1098 		bio->bi_next = NULL;
1099 		bio->bi_bdev = rdev->bdev;
1100 		if (test_bit(Faulty, &rdev->flags)) {
1101 			bio->bi_error = -EIO;
1102 			bio_endio(bio);
1103 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1104 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1105 			/* Just ignore it */
1106 			bio_endio(bio);
1107 		else
1108 			generic_make_request(bio);
1109 		bio = next;
1110 	}
1111 	kfree(plug);
1112 }
1113 
1114 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1115 				struct r10bio *r10_bio)
1116 {
1117 	struct r10conf *conf = mddev->private;
1118 	struct bio *read_bio;
1119 	const int op = bio_op(bio);
1120 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1121 	int max_sectors;
1122 	sector_t sectors;
1123 	struct md_rdev *rdev;
1124 	char b[BDEVNAME_SIZE];
1125 	int slot = r10_bio->read_slot;
1126 	struct md_rdev *err_rdev = NULL;
1127 	gfp_t gfp = GFP_NOIO;
1128 
1129 	if (r10_bio->devs[slot].rdev) {
1130 		/*
1131 		 * This is an error retry, but we cannot
1132 		 * safely dereference the rdev in the r10_bio,
1133 		 * we must use the one in conf.
1134 		 * If it has already been disconnected (unlikely)
1135 		 * we lose the device name in error messages.
1136 		 */
1137 		int disk;
1138 		/*
1139 		 * As we are blocking raid10, it is a little safer to
1140 		 * use __GFP_HIGH.
1141 		 */
1142 		gfp = GFP_NOIO | __GFP_HIGH;
1143 
1144 		rcu_read_lock();
1145 		disk = r10_bio->devs[slot].devnum;
1146 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1147 		if (err_rdev)
1148 			bdevname(err_rdev->bdev, b);
1149 		else {
1150 			strcpy(b, "???");
1151 			/* This never gets dereferenced */
1152 			err_rdev = r10_bio->devs[slot].rdev;
1153 		}
1154 		rcu_read_unlock();
1155 	}
1156 	/*
1157 	 * Register the new request and wait if the reconstruction
1158 	 * thread has put up a bar for new requests.
1159 	 * Continue immediately if no resync is active currently.
1160 	 */
1161 	wait_barrier(conf);
1162 
1163 	sectors = r10_bio->sectors;
1164 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1165 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1166 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1167 		/*
1168 		 * IO spans the reshape position.  Need to wait for reshape to
1169 		 * pass
1170 		 */
1171 		raid10_log(conf->mddev, "wait reshape");
1172 		allow_barrier(conf);
1173 		wait_event(conf->wait_barrier,
1174 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1175 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1176 			   sectors);
1177 		wait_barrier(conf);
1178 	}
1179 
1180 	rdev = read_balance(conf, r10_bio, &max_sectors);
1181 	if (!rdev) {
1182 		if (err_rdev) {
1183 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1184 					    mdname(mddev), b,
1185 					    (unsigned long long)r10_bio->sector);
1186 		}
1187 		raid_end_bio_io(r10_bio);
1188 		return;
1189 	}
1190 	if (err_rdev)
1191 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1192 				   mdname(mddev),
1193 				   bdevname(rdev->bdev, b),
1194 				   (unsigned long long)r10_bio->sector);
1195 	if (max_sectors < bio_sectors(bio)) {
1196 		struct bio *split = bio_split(bio, max_sectors,
1197 					      gfp, conf->bio_split);
1198 		bio_chain(split, bio);
1199 		generic_make_request(bio);
1200 		bio = split;
1201 		r10_bio->master_bio = bio;
1202 		r10_bio->sectors = max_sectors;
1203 	}
1204 	slot = r10_bio->read_slot;
1205 
1206 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1207 
1208 	r10_bio->devs[slot].bio = read_bio;
1209 	r10_bio->devs[slot].rdev = rdev;
1210 
1211 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1212 		choose_data_offset(r10_bio, rdev);
1213 	read_bio->bi_bdev = rdev->bdev;
1214 	read_bio->bi_end_io = raid10_end_read_request;
1215 	bio_set_op_attrs(read_bio, op, do_sync);
1216 	if (test_bit(FailFast, &rdev->flags) &&
1217 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1218 	        read_bio->bi_opf |= MD_FAILFAST;
1219 	read_bio->bi_private = r10_bio;
1220 
1221 	if (mddev->gendisk)
1222 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1223 	                              read_bio, disk_devt(mddev->gendisk),
1224 	                              r10_bio->sector);
1225 	generic_make_request(read_bio);
1226 	return;
1227 }
1228 
1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230 				  struct bio *bio, bool replacement,
1231 				  int n_copy)
1232 {
1233 	const int op = bio_op(bio);
1234 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1235 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1236 	unsigned long flags;
1237 	struct blk_plug_cb *cb;
1238 	struct raid10_plug_cb *plug = NULL;
1239 	struct r10conf *conf = mddev->private;
1240 	struct md_rdev *rdev;
1241 	int devnum = r10_bio->devs[n_copy].devnum;
1242 	struct bio *mbio;
1243 
1244 	if (replacement) {
1245 		rdev = conf->mirrors[devnum].replacement;
1246 		if (rdev == NULL) {
1247 			/* Replacement just got moved to main 'rdev' */
1248 			smp_mb();
1249 			rdev = conf->mirrors[devnum].rdev;
1250 		}
1251 	} else
1252 		rdev = conf->mirrors[devnum].rdev;
1253 
1254 	mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1255 	if (replacement)
1256 		r10_bio->devs[n_copy].repl_bio = mbio;
1257 	else
1258 		r10_bio->devs[n_copy].bio = mbio;
1259 
1260 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1261 				   choose_data_offset(r10_bio, rdev));
1262 	mbio->bi_bdev = rdev->bdev;
1263 	mbio->bi_end_io	= raid10_end_write_request;
1264 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1265 	if (!replacement && test_bit(FailFast,
1266 				     &conf->mirrors[devnum].rdev->flags)
1267 			 && enough(conf, devnum))
1268 		mbio->bi_opf |= MD_FAILFAST;
1269 	mbio->bi_private = r10_bio;
1270 
1271 	if (conf->mddev->gendisk)
1272 		trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1273 				      mbio, disk_devt(conf->mddev->gendisk),
1274 				      r10_bio->sector);
1275 	/* flush_pending_writes() needs access to the rdev so...*/
1276 	mbio->bi_bdev = (void *)rdev;
1277 
1278 	atomic_inc(&r10_bio->remaining);
1279 
1280 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1281 	if (cb)
1282 		plug = container_of(cb, struct raid10_plug_cb, cb);
1283 	else
1284 		plug = NULL;
1285 	if (plug) {
1286 		bio_list_add(&plug->pending, mbio);
1287 		plug->pending_cnt++;
1288 	} else {
1289 		spin_lock_irqsave(&conf->device_lock, flags);
1290 		bio_list_add(&conf->pending_bio_list, mbio);
1291 		conf->pending_count++;
1292 		spin_unlock_irqrestore(&conf->device_lock, flags);
1293 		md_wakeup_thread(mddev->thread);
1294 	}
1295 }
1296 
1297 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1298 				 struct r10bio *r10_bio)
1299 {
1300 	struct r10conf *conf = mddev->private;
1301 	int i;
1302 	struct md_rdev *blocked_rdev;
1303 	sector_t sectors;
1304 	int max_sectors;
1305 
1306 	md_write_start(mddev, bio);
1307 
1308 	/*
1309 	 * Register the new request and wait if the reconstruction
1310 	 * thread has put up a bar for new requests.
1311 	 * Continue immediately if no resync is active currently.
1312 	 */
1313 	wait_barrier(conf);
1314 
1315 	sectors = r10_bio->sectors;
1316 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1317 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1318 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1319 		/*
1320 		 * IO spans the reshape position.  Need to wait for reshape to
1321 		 * pass
1322 		 */
1323 		raid10_log(conf->mddev, "wait reshape");
1324 		allow_barrier(conf);
1325 		wait_event(conf->wait_barrier,
1326 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1327 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1328 			   sectors);
1329 		wait_barrier(conf);
1330 	}
1331 
1332 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1333 	    (mddev->reshape_backwards
1334 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1335 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1336 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1337 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1338 		/* Need to update reshape_position in metadata */
1339 		mddev->reshape_position = conf->reshape_progress;
1340 		set_mask_bits(&mddev->sb_flags, 0,
1341 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1342 		md_wakeup_thread(mddev->thread);
1343 		raid10_log(conf->mddev, "wait reshape metadata");
1344 		wait_event(mddev->sb_wait,
1345 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1346 
1347 		conf->reshape_safe = mddev->reshape_position;
1348 	}
1349 
1350 	if (conf->pending_count >= max_queued_requests) {
1351 		md_wakeup_thread(mddev->thread);
1352 		raid10_log(mddev, "wait queued");
1353 		wait_event(conf->wait_barrier,
1354 			   conf->pending_count < max_queued_requests);
1355 	}
1356 	/* first select target devices under rcu_lock and
1357 	 * inc refcount on their rdev.  Record them by setting
1358 	 * bios[x] to bio
1359 	 * If there are known/acknowledged bad blocks on any device
1360 	 * on which we have seen a write error, we want to avoid
1361 	 * writing to those blocks.  This potentially requires several
1362 	 * writes to write around the bad blocks.  Each set of writes
1363 	 * gets its own r10_bio with a set of bios attached.
1364 	 */
1365 
1366 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1367 	raid10_find_phys(conf, r10_bio);
1368 retry_write:
1369 	blocked_rdev = NULL;
1370 	rcu_read_lock();
1371 	max_sectors = r10_bio->sectors;
1372 
1373 	for (i = 0;  i < conf->copies; i++) {
1374 		int d = r10_bio->devs[i].devnum;
1375 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1376 		struct md_rdev *rrdev = rcu_dereference(
1377 			conf->mirrors[d].replacement);
1378 		if (rdev == rrdev)
1379 			rrdev = NULL;
1380 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1381 			atomic_inc(&rdev->nr_pending);
1382 			blocked_rdev = rdev;
1383 			break;
1384 		}
1385 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1386 			atomic_inc(&rrdev->nr_pending);
1387 			blocked_rdev = rrdev;
1388 			break;
1389 		}
1390 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1391 			rdev = NULL;
1392 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1393 			rrdev = NULL;
1394 
1395 		r10_bio->devs[i].bio = NULL;
1396 		r10_bio->devs[i].repl_bio = NULL;
1397 
1398 		if (!rdev && !rrdev) {
1399 			set_bit(R10BIO_Degraded, &r10_bio->state);
1400 			continue;
1401 		}
1402 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1403 			sector_t first_bad;
1404 			sector_t dev_sector = r10_bio->devs[i].addr;
1405 			int bad_sectors;
1406 			int is_bad;
1407 
1408 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1409 					     &first_bad, &bad_sectors);
1410 			if (is_bad < 0) {
1411 				/* Mustn't write here until the bad block
1412 				 * is acknowledged
1413 				 */
1414 				atomic_inc(&rdev->nr_pending);
1415 				set_bit(BlockedBadBlocks, &rdev->flags);
1416 				blocked_rdev = rdev;
1417 				break;
1418 			}
1419 			if (is_bad && first_bad <= dev_sector) {
1420 				/* Cannot write here at all */
1421 				bad_sectors -= (dev_sector - first_bad);
1422 				if (bad_sectors < max_sectors)
1423 					/* Mustn't write more than bad_sectors
1424 					 * to other devices yet
1425 					 */
1426 					max_sectors = bad_sectors;
1427 				/* We don't set R10BIO_Degraded as that
1428 				 * only applies if the disk is missing,
1429 				 * so it might be re-added, and we want to
1430 				 * know to recover this chunk.
1431 				 * In this case the device is here, and the
1432 				 * fact that this chunk is not in-sync is
1433 				 * recorded in the bad block log.
1434 				 */
1435 				continue;
1436 			}
1437 			if (is_bad) {
1438 				int good_sectors = first_bad - dev_sector;
1439 				if (good_sectors < max_sectors)
1440 					max_sectors = good_sectors;
1441 			}
1442 		}
1443 		if (rdev) {
1444 			r10_bio->devs[i].bio = bio;
1445 			atomic_inc(&rdev->nr_pending);
1446 		}
1447 		if (rrdev) {
1448 			r10_bio->devs[i].repl_bio = bio;
1449 			atomic_inc(&rrdev->nr_pending);
1450 		}
1451 	}
1452 	rcu_read_unlock();
1453 
1454 	if (unlikely(blocked_rdev)) {
1455 		/* Have to wait for this device to get unblocked, then retry */
1456 		int j;
1457 		int d;
1458 
1459 		for (j = 0; j < i; j++) {
1460 			if (r10_bio->devs[j].bio) {
1461 				d = r10_bio->devs[j].devnum;
1462 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1463 			}
1464 			if (r10_bio->devs[j].repl_bio) {
1465 				struct md_rdev *rdev;
1466 				d = r10_bio->devs[j].devnum;
1467 				rdev = conf->mirrors[d].replacement;
1468 				if (!rdev) {
1469 					/* Race with remove_disk */
1470 					smp_mb();
1471 					rdev = conf->mirrors[d].rdev;
1472 				}
1473 				rdev_dec_pending(rdev, mddev);
1474 			}
1475 		}
1476 		allow_barrier(conf);
1477 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1478 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1479 		wait_barrier(conf);
1480 		goto retry_write;
1481 	}
1482 
1483 	if (max_sectors < r10_bio->sectors)
1484 		r10_bio->sectors = max_sectors;
1485 
1486 	if (r10_bio->sectors < bio_sectors(bio)) {
1487 		struct bio *split = bio_split(bio, r10_bio->sectors,
1488 					      GFP_NOIO, conf->bio_split);
1489 		bio_chain(split, bio);
1490 		generic_make_request(bio);
1491 		bio = split;
1492 		r10_bio->master_bio = bio;
1493 	}
1494 
1495 	atomic_set(&r10_bio->remaining, 1);
1496 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1497 
1498 	for (i = 0; i < conf->copies; i++) {
1499 		if (r10_bio->devs[i].bio)
1500 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1501 		if (r10_bio->devs[i].repl_bio)
1502 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1503 	}
1504 	one_write_done(r10_bio);
1505 }
1506 
1507 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1508 {
1509 	struct r10conf *conf = mddev->private;
1510 	struct r10bio *r10_bio;
1511 
1512 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1513 
1514 	r10_bio->master_bio = bio;
1515 	r10_bio->sectors = sectors;
1516 
1517 	r10_bio->mddev = mddev;
1518 	r10_bio->sector = bio->bi_iter.bi_sector;
1519 	r10_bio->state = 0;
1520 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1521 
1522 	if (bio_data_dir(bio) == READ)
1523 		raid10_read_request(mddev, bio, r10_bio);
1524 	else
1525 		raid10_write_request(mddev, bio, r10_bio);
1526 }
1527 
1528 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1529 {
1530 	struct r10conf *conf = mddev->private;
1531 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1532 	int chunk_sects = chunk_mask + 1;
1533 	int sectors = bio_sectors(bio);
1534 
1535 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1536 		md_flush_request(mddev, bio);
1537 		return;
1538 	}
1539 
1540 	/*
1541 	 * If this request crosses a chunk boundary, we need to split
1542 	 * it.
1543 	 */
1544 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1545 		     sectors > chunk_sects
1546 		     && (conf->geo.near_copies < conf->geo.raid_disks
1547 			 || conf->prev.near_copies <
1548 			 conf->prev.raid_disks)))
1549 		sectors = chunk_sects -
1550 			(bio->bi_iter.bi_sector &
1551 			 (chunk_sects - 1));
1552 	__make_request(mddev, bio, sectors);
1553 
1554 	/* In case raid10d snuck in to freeze_array */
1555 	wake_up(&conf->wait_barrier);
1556 }
1557 
1558 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1559 {
1560 	struct r10conf *conf = mddev->private;
1561 	int i;
1562 
1563 	if (conf->geo.near_copies < conf->geo.raid_disks)
1564 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1565 	if (conf->geo.near_copies > 1)
1566 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1567 	if (conf->geo.far_copies > 1) {
1568 		if (conf->geo.far_offset)
1569 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1570 		else
1571 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1572 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1573 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1574 	}
1575 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1576 					conf->geo.raid_disks - mddev->degraded);
1577 	rcu_read_lock();
1578 	for (i = 0; i < conf->geo.raid_disks; i++) {
1579 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1580 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1581 	}
1582 	rcu_read_unlock();
1583 	seq_printf(seq, "]");
1584 }
1585 
1586 /* check if there are enough drives for
1587  * every block to appear on atleast one.
1588  * Don't consider the device numbered 'ignore'
1589  * as we might be about to remove it.
1590  */
1591 static int _enough(struct r10conf *conf, int previous, int ignore)
1592 {
1593 	int first = 0;
1594 	int has_enough = 0;
1595 	int disks, ncopies;
1596 	if (previous) {
1597 		disks = conf->prev.raid_disks;
1598 		ncopies = conf->prev.near_copies;
1599 	} else {
1600 		disks = conf->geo.raid_disks;
1601 		ncopies = conf->geo.near_copies;
1602 	}
1603 
1604 	rcu_read_lock();
1605 	do {
1606 		int n = conf->copies;
1607 		int cnt = 0;
1608 		int this = first;
1609 		while (n--) {
1610 			struct md_rdev *rdev;
1611 			if (this != ignore &&
1612 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1613 			    test_bit(In_sync, &rdev->flags))
1614 				cnt++;
1615 			this = (this+1) % disks;
1616 		}
1617 		if (cnt == 0)
1618 			goto out;
1619 		first = (first + ncopies) % disks;
1620 	} while (first != 0);
1621 	has_enough = 1;
1622 out:
1623 	rcu_read_unlock();
1624 	return has_enough;
1625 }
1626 
1627 static int enough(struct r10conf *conf, int ignore)
1628 {
1629 	/* when calling 'enough', both 'prev' and 'geo' must
1630 	 * be stable.
1631 	 * This is ensured if ->reconfig_mutex or ->device_lock
1632 	 * is held.
1633 	 */
1634 	return _enough(conf, 0, ignore) &&
1635 		_enough(conf, 1, ignore);
1636 }
1637 
1638 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1639 {
1640 	char b[BDEVNAME_SIZE];
1641 	struct r10conf *conf = mddev->private;
1642 	unsigned long flags;
1643 
1644 	/*
1645 	 * If it is not operational, then we have already marked it as dead
1646 	 * else if it is the last working disks, ignore the error, let the
1647 	 * next level up know.
1648 	 * else mark the drive as failed
1649 	 */
1650 	spin_lock_irqsave(&conf->device_lock, flags);
1651 	if (test_bit(In_sync, &rdev->flags)
1652 	    && !enough(conf, rdev->raid_disk)) {
1653 		/*
1654 		 * Don't fail the drive, just return an IO error.
1655 		 */
1656 		spin_unlock_irqrestore(&conf->device_lock, flags);
1657 		return;
1658 	}
1659 	if (test_and_clear_bit(In_sync, &rdev->flags))
1660 		mddev->degraded++;
1661 	/*
1662 	 * If recovery is running, make sure it aborts.
1663 	 */
1664 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1665 	set_bit(Blocked, &rdev->flags);
1666 	set_bit(Faulty, &rdev->flags);
1667 	set_mask_bits(&mddev->sb_flags, 0,
1668 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1669 	spin_unlock_irqrestore(&conf->device_lock, flags);
1670 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1671 		"md/raid10:%s: Operation continuing on %d devices.\n",
1672 		mdname(mddev), bdevname(rdev->bdev, b),
1673 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1674 }
1675 
1676 static void print_conf(struct r10conf *conf)
1677 {
1678 	int i;
1679 	struct md_rdev *rdev;
1680 
1681 	pr_debug("RAID10 conf printout:\n");
1682 	if (!conf) {
1683 		pr_debug("(!conf)\n");
1684 		return;
1685 	}
1686 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1687 		 conf->geo.raid_disks);
1688 
1689 	/* This is only called with ->reconfix_mutex held, so
1690 	 * rcu protection of rdev is not needed */
1691 	for (i = 0; i < conf->geo.raid_disks; i++) {
1692 		char b[BDEVNAME_SIZE];
1693 		rdev = conf->mirrors[i].rdev;
1694 		if (rdev)
1695 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1696 				 i, !test_bit(In_sync, &rdev->flags),
1697 				 !test_bit(Faulty, &rdev->flags),
1698 				 bdevname(rdev->bdev,b));
1699 	}
1700 }
1701 
1702 static void close_sync(struct r10conf *conf)
1703 {
1704 	wait_barrier(conf);
1705 	allow_barrier(conf);
1706 
1707 	mempool_destroy(conf->r10buf_pool);
1708 	conf->r10buf_pool = NULL;
1709 }
1710 
1711 static int raid10_spare_active(struct mddev *mddev)
1712 {
1713 	int i;
1714 	struct r10conf *conf = mddev->private;
1715 	struct raid10_info *tmp;
1716 	int count = 0;
1717 	unsigned long flags;
1718 
1719 	/*
1720 	 * Find all non-in_sync disks within the RAID10 configuration
1721 	 * and mark them in_sync
1722 	 */
1723 	for (i = 0; i < conf->geo.raid_disks; i++) {
1724 		tmp = conf->mirrors + i;
1725 		if (tmp->replacement
1726 		    && tmp->replacement->recovery_offset == MaxSector
1727 		    && !test_bit(Faulty, &tmp->replacement->flags)
1728 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1729 			/* Replacement has just become active */
1730 			if (!tmp->rdev
1731 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1732 				count++;
1733 			if (tmp->rdev) {
1734 				/* Replaced device not technically faulty,
1735 				 * but we need to be sure it gets removed
1736 				 * and never re-added.
1737 				 */
1738 				set_bit(Faulty, &tmp->rdev->flags);
1739 				sysfs_notify_dirent_safe(
1740 					tmp->rdev->sysfs_state);
1741 			}
1742 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1743 		} else if (tmp->rdev
1744 			   && tmp->rdev->recovery_offset == MaxSector
1745 			   && !test_bit(Faulty, &tmp->rdev->flags)
1746 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1747 			count++;
1748 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1749 		}
1750 	}
1751 	spin_lock_irqsave(&conf->device_lock, flags);
1752 	mddev->degraded -= count;
1753 	spin_unlock_irqrestore(&conf->device_lock, flags);
1754 
1755 	print_conf(conf);
1756 	return count;
1757 }
1758 
1759 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1760 {
1761 	struct r10conf *conf = mddev->private;
1762 	int err = -EEXIST;
1763 	int mirror;
1764 	int first = 0;
1765 	int last = conf->geo.raid_disks - 1;
1766 
1767 	if (mddev->recovery_cp < MaxSector)
1768 		/* only hot-add to in-sync arrays, as recovery is
1769 		 * very different from resync
1770 		 */
1771 		return -EBUSY;
1772 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1773 		return -EINVAL;
1774 
1775 	if (md_integrity_add_rdev(rdev, mddev))
1776 		return -ENXIO;
1777 
1778 	if (rdev->raid_disk >= 0)
1779 		first = last = rdev->raid_disk;
1780 
1781 	if (rdev->saved_raid_disk >= first &&
1782 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1783 		mirror = rdev->saved_raid_disk;
1784 	else
1785 		mirror = first;
1786 	for ( ; mirror <= last ; mirror++) {
1787 		struct raid10_info *p = &conf->mirrors[mirror];
1788 		if (p->recovery_disabled == mddev->recovery_disabled)
1789 			continue;
1790 		if (p->rdev) {
1791 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1792 			    p->replacement != NULL)
1793 				continue;
1794 			clear_bit(In_sync, &rdev->flags);
1795 			set_bit(Replacement, &rdev->flags);
1796 			rdev->raid_disk = mirror;
1797 			err = 0;
1798 			if (mddev->gendisk)
1799 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1800 						  rdev->data_offset << 9);
1801 			conf->fullsync = 1;
1802 			rcu_assign_pointer(p->replacement, rdev);
1803 			break;
1804 		}
1805 
1806 		if (mddev->gendisk)
1807 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1808 					  rdev->data_offset << 9);
1809 
1810 		p->head_position = 0;
1811 		p->recovery_disabled = mddev->recovery_disabled - 1;
1812 		rdev->raid_disk = mirror;
1813 		err = 0;
1814 		if (rdev->saved_raid_disk != mirror)
1815 			conf->fullsync = 1;
1816 		rcu_assign_pointer(p->rdev, rdev);
1817 		break;
1818 	}
1819 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1820 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1821 
1822 	print_conf(conf);
1823 	return err;
1824 }
1825 
1826 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1827 {
1828 	struct r10conf *conf = mddev->private;
1829 	int err = 0;
1830 	int number = rdev->raid_disk;
1831 	struct md_rdev **rdevp;
1832 	struct raid10_info *p = conf->mirrors + number;
1833 
1834 	print_conf(conf);
1835 	if (rdev == p->rdev)
1836 		rdevp = &p->rdev;
1837 	else if (rdev == p->replacement)
1838 		rdevp = &p->replacement;
1839 	else
1840 		return 0;
1841 
1842 	if (test_bit(In_sync, &rdev->flags) ||
1843 	    atomic_read(&rdev->nr_pending)) {
1844 		err = -EBUSY;
1845 		goto abort;
1846 	}
1847 	/* Only remove non-faulty devices if recovery
1848 	 * is not possible.
1849 	 */
1850 	if (!test_bit(Faulty, &rdev->flags) &&
1851 	    mddev->recovery_disabled != p->recovery_disabled &&
1852 	    (!p->replacement || p->replacement == rdev) &&
1853 	    number < conf->geo.raid_disks &&
1854 	    enough(conf, -1)) {
1855 		err = -EBUSY;
1856 		goto abort;
1857 	}
1858 	*rdevp = NULL;
1859 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1860 		synchronize_rcu();
1861 		if (atomic_read(&rdev->nr_pending)) {
1862 			/* lost the race, try later */
1863 			err = -EBUSY;
1864 			*rdevp = rdev;
1865 			goto abort;
1866 		}
1867 	}
1868 	if (p->replacement) {
1869 		/* We must have just cleared 'rdev' */
1870 		p->rdev = p->replacement;
1871 		clear_bit(Replacement, &p->replacement->flags);
1872 		smp_mb(); /* Make sure other CPUs may see both as identical
1873 			   * but will never see neither -- if they are careful.
1874 			   */
1875 		p->replacement = NULL;
1876 	}
1877 
1878 	clear_bit(WantReplacement, &rdev->flags);
1879 	err = md_integrity_register(mddev);
1880 
1881 abort:
1882 
1883 	print_conf(conf);
1884 	return err;
1885 }
1886 
1887 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1888 {
1889 	struct r10conf *conf = r10_bio->mddev->private;
1890 
1891 	if (!bio->bi_error)
1892 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1893 	else
1894 		/* The write handler will notice the lack of
1895 		 * R10BIO_Uptodate and record any errors etc
1896 		 */
1897 		atomic_add(r10_bio->sectors,
1898 			   &conf->mirrors[d].rdev->corrected_errors);
1899 
1900 	/* for reconstruct, we always reschedule after a read.
1901 	 * for resync, only after all reads
1902 	 */
1903 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1904 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1905 	    atomic_dec_and_test(&r10_bio->remaining)) {
1906 		/* we have read all the blocks,
1907 		 * do the comparison in process context in raid10d
1908 		 */
1909 		reschedule_retry(r10_bio);
1910 	}
1911 }
1912 
1913 static void end_sync_read(struct bio *bio)
1914 {
1915 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1916 	struct r10conf *conf = r10_bio->mddev->private;
1917 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1918 
1919 	__end_sync_read(r10_bio, bio, d);
1920 }
1921 
1922 static void end_reshape_read(struct bio *bio)
1923 {
1924 	/* reshape read bio isn't allocated from r10buf_pool */
1925 	struct r10bio *r10_bio = bio->bi_private;
1926 
1927 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1928 }
1929 
1930 static void end_sync_request(struct r10bio *r10_bio)
1931 {
1932 	struct mddev *mddev = r10_bio->mddev;
1933 
1934 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1935 		if (r10_bio->master_bio == NULL) {
1936 			/* the primary of several recovery bios */
1937 			sector_t s = r10_bio->sectors;
1938 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1939 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1940 				reschedule_retry(r10_bio);
1941 			else
1942 				put_buf(r10_bio);
1943 			md_done_sync(mddev, s, 1);
1944 			break;
1945 		} else {
1946 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1947 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1948 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1949 				reschedule_retry(r10_bio);
1950 			else
1951 				put_buf(r10_bio);
1952 			r10_bio = r10_bio2;
1953 		}
1954 	}
1955 }
1956 
1957 static void end_sync_write(struct bio *bio)
1958 {
1959 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1960 	struct mddev *mddev = r10_bio->mddev;
1961 	struct r10conf *conf = mddev->private;
1962 	int d;
1963 	sector_t first_bad;
1964 	int bad_sectors;
1965 	int slot;
1966 	int repl;
1967 	struct md_rdev *rdev = NULL;
1968 
1969 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1970 	if (repl)
1971 		rdev = conf->mirrors[d].replacement;
1972 	else
1973 		rdev = conf->mirrors[d].rdev;
1974 
1975 	if (bio->bi_error) {
1976 		if (repl)
1977 			md_error(mddev, rdev);
1978 		else {
1979 			set_bit(WriteErrorSeen, &rdev->flags);
1980 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1981 				set_bit(MD_RECOVERY_NEEDED,
1982 					&rdev->mddev->recovery);
1983 			set_bit(R10BIO_WriteError, &r10_bio->state);
1984 		}
1985 	} else if (is_badblock(rdev,
1986 			     r10_bio->devs[slot].addr,
1987 			     r10_bio->sectors,
1988 			     &first_bad, &bad_sectors))
1989 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1990 
1991 	rdev_dec_pending(rdev, mddev);
1992 
1993 	end_sync_request(r10_bio);
1994 }
1995 
1996 /*
1997  * Note: sync and recover and handled very differently for raid10
1998  * This code is for resync.
1999  * For resync, we read through virtual addresses and read all blocks.
2000  * If there is any error, we schedule a write.  The lowest numbered
2001  * drive is authoritative.
2002  * However requests come for physical address, so we need to map.
2003  * For every physical address there are raid_disks/copies virtual addresses,
2004  * which is always are least one, but is not necessarly an integer.
2005  * This means that a physical address can span multiple chunks, so we may
2006  * have to submit multiple io requests for a single sync request.
2007  */
2008 /*
2009  * We check if all blocks are in-sync and only write to blocks that
2010  * aren't in sync
2011  */
2012 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2013 {
2014 	struct r10conf *conf = mddev->private;
2015 	int i, first;
2016 	struct bio *tbio, *fbio;
2017 	int vcnt;
2018 	struct page **tpages, **fpages;
2019 
2020 	atomic_set(&r10_bio->remaining, 1);
2021 
2022 	/* find the first device with a block */
2023 	for (i=0; i<conf->copies; i++)
2024 		if (!r10_bio->devs[i].bio->bi_error)
2025 			break;
2026 
2027 	if (i == conf->copies)
2028 		goto done;
2029 
2030 	first = i;
2031 	fbio = r10_bio->devs[i].bio;
2032 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2033 	fbio->bi_iter.bi_idx = 0;
2034 	fpages = get_resync_pages(fbio)->pages;
2035 
2036 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2037 	/* now find blocks with errors */
2038 	for (i=0 ; i < conf->copies ; i++) {
2039 		int  j, d;
2040 		struct md_rdev *rdev;
2041 		struct resync_pages *rp;
2042 
2043 		tbio = r10_bio->devs[i].bio;
2044 
2045 		if (tbio->bi_end_io != end_sync_read)
2046 			continue;
2047 		if (i == first)
2048 			continue;
2049 
2050 		tpages = get_resync_pages(tbio)->pages;
2051 		d = r10_bio->devs[i].devnum;
2052 		rdev = conf->mirrors[d].rdev;
2053 		if (!r10_bio->devs[i].bio->bi_error) {
2054 			/* We know that the bi_io_vec layout is the same for
2055 			 * both 'first' and 'i', so we just compare them.
2056 			 * All vec entries are PAGE_SIZE;
2057 			 */
2058 			int sectors = r10_bio->sectors;
2059 			for (j = 0; j < vcnt; j++) {
2060 				int len = PAGE_SIZE;
2061 				if (sectors < (len / 512))
2062 					len = sectors * 512;
2063 				if (memcmp(page_address(fpages[j]),
2064 					   page_address(tpages[j]),
2065 					   len))
2066 					break;
2067 				sectors -= len/512;
2068 			}
2069 			if (j == vcnt)
2070 				continue;
2071 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2072 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2073 				/* Don't fix anything. */
2074 				continue;
2075 		} else if (test_bit(FailFast, &rdev->flags)) {
2076 			/* Just give up on this device */
2077 			md_error(rdev->mddev, rdev);
2078 			continue;
2079 		}
2080 		/* Ok, we need to write this bio, either to correct an
2081 		 * inconsistency or to correct an unreadable block.
2082 		 * First we need to fixup bv_offset, bv_len and
2083 		 * bi_vecs, as the read request might have corrupted these
2084 		 */
2085 		rp = get_resync_pages(tbio);
2086 		bio_reset(tbio);
2087 
2088 		tbio->bi_vcnt = vcnt;
2089 		tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2090 		rp->raid_bio = r10_bio;
2091 		tbio->bi_private = rp;
2092 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2093 		tbio->bi_end_io = end_sync_write;
2094 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2095 
2096 		bio_copy_data(tbio, fbio);
2097 
2098 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2099 		atomic_inc(&r10_bio->remaining);
2100 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2101 
2102 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2103 			tbio->bi_opf |= MD_FAILFAST;
2104 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2105 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2106 		generic_make_request(tbio);
2107 	}
2108 
2109 	/* Now write out to any replacement devices
2110 	 * that are active
2111 	 */
2112 	for (i = 0; i < conf->copies; i++) {
2113 		int d;
2114 
2115 		tbio = r10_bio->devs[i].repl_bio;
2116 		if (!tbio || !tbio->bi_end_io)
2117 			continue;
2118 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2119 		    && r10_bio->devs[i].bio != fbio)
2120 			bio_copy_data(tbio, fbio);
2121 		d = r10_bio->devs[i].devnum;
2122 		atomic_inc(&r10_bio->remaining);
2123 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2124 			     bio_sectors(tbio));
2125 		generic_make_request(tbio);
2126 	}
2127 
2128 done:
2129 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2130 		md_done_sync(mddev, r10_bio->sectors, 1);
2131 		put_buf(r10_bio);
2132 	}
2133 }
2134 
2135 /*
2136  * Now for the recovery code.
2137  * Recovery happens across physical sectors.
2138  * We recover all non-is_sync drives by finding the virtual address of
2139  * each, and then choose a working drive that also has that virt address.
2140  * There is a separate r10_bio for each non-in_sync drive.
2141  * Only the first two slots are in use. The first for reading,
2142  * The second for writing.
2143  *
2144  */
2145 static void fix_recovery_read_error(struct r10bio *r10_bio)
2146 {
2147 	/* We got a read error during recovery.
2148 	 * We repeat the read in smaller page-sized sections.
2149 	 * If a read succeeds, write it to the new device or record
2150 	 * a bad block if we cannot.
2151 	 * If a read fails, record a bad block on both old and
2152 	 * new devices.
2153 	 */
2154 	struct mddev *mddev = r10_bio->mddev;
2155 	struct r10conf *conf = mddev->private;
2156 	struct bio *bio = r10_bio->devs[0].bio;
2157 	sector_t sect = 0;
2158 	int sectors = r10_bio->sectors;
2159 	int idx = 0;
2160 	int dr = r10_bio->devs[0].devnum;
2161 	int dw = r10_bio->devs[1].devnum;
2162 	struct page **pages = get_resync_pages(bio)->pages;
2163 
2164 	while (sectors) {
2165 		int s = sectors;
2166 		struct md_rdev *rdev;
2167 		sector_t addr;
2168 		int ok;
2169 
2170 		if (s > (PAGE_SIZE>>9))
2171 			s = PAGE_SIZE >> 9;
2172 
2173 		rdev = conf->mirrors[dr].rdev;
2174 		addr = r10_bio->devs[0].addr + sect,
2175 		ok = sync_page_io(rdev,
2176 				  addr,
2177 				  s << 9,
2178 				  pages[idx],
2179 				  REQ_OP_READ, 0, false);
2180 		if (ok) {
2181 			rdev = conf->mirrors[dw].rdev;
2182 			addr = r10_bio->devs[1].addr + sect;
2183 			ok = sync_page_io(rdev,
2184 					  addr,
2185 					  s << 9,
2186 					  pages[idx],
2187 					  REQ_OP_WRITE, 0, false);
2188 			if (!ok) {
2189 				set_bit(WriteErrorSeen, &rdev->flags);
2190 				if (!test_and_set_bit(WantReplacement,
2191 						      &rdev->flags))
2192 					set_bit(MD_RECOVERY_NEEDED,
2193 						&rdev->mddev->recovery);
2194 			}
2195 		}
2196 		if (!ok) {
2197 			/* We don't worry if we cannot set a bad block -
2198 			 * it really is bad so there is no loss in not
2199 			 * recording it yet
2200 			 */
2201 			rdev_set_badblocks(rdev, addr, s, 0);
2202 
2203 			if (rdev != conf->mirrors[dw].rdev) {
2204 				/* need bad block on destination too */
2205 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2206 				addr = r10_bio->devs[1].addr + sect;
2207 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2208 				if (!ok) {
2209 					/* just abort the recovery */
2210 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2211 						  mdname(mddev));
2212 
2213 					conf->mirrors[dw].recovery_disabled
2214 						= mddev->recovery_disabled;
2215 					set_bit(MD_RECOVERY_INTR,
2216 						&mddev->recovery);
2217 					break;
2218 				}
2219 			}
2220 		}
2221 
2222 		sectors -= s;
2223 		sect += s;
2224 		idx++;
2225 	}
2226 }
2227 
2228 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2229 {
2230 	struct r10conf *conf = mddev->private;
2231 	int d;
2232 	struct bio *wbio, *wbio2;
2233 
2234 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2235 		fix_recovery_read_error(r10_bio);
2236 		end_sync_request(r10_bio);
2237 		return;
2238 	}
2239 
2240 	/*
2241 	 * share the pages with the first bio
2242 	 * and submit the write request
2243 	 */
2244 	d = r10_bio->devs[1].devnum;
2245 	wbio = r10_bio->devs[1].bio;
2246 	wbio2 = r10_bio->devs[1].repl_bio;
2247 	/* Need to test wbio2->bi_end_io before we call
2248 	 * generic_make_request as if the former is NULL,
2249 	 * the latter is free to free wbio2.
2250 	 */
2251 	if (wbio2 && !wbio2->bi_end_io)
2252 		wbio2 = NULL;
2253 	if (wbio->bi_end_io) {
2254 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2255 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2256 		generic_make_request(wbio);
2257 	}
2258 	if (wbio2) {
2259 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2260 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2261 			     bio_sectors(wbio2));
2262 		generic_make_request(wbio2);
2263 	}
2264 }
2265 
2266 /*
2267  * Used by fix_read_error() to decay the per rdev read_errors.
2268  * We halve the read error count for every hour that has elapsed
2269  * since the last recorded read error.
2270  *
2271  */
2272 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2273 {
2274 	long cur_time_mon;
2275 	unsigned long hours_since_last;
2276 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2277 
2278 	cur_time_mon = ktime_get_seconds();
2279 
2280 	if (rdev->last_read_error == 0) {
2281 		/* first time we've seen a read error */
2282 		rdev->last_read_error = cur_time_mon;
2283 		return;
2284 	}
2285 
2286 	hours_since_last = (long)(cur_time_mon -
2287 			    rdev->last_read_error) / 3600;
2288 
2289 	rdev->last_read_error = cur_time_mon;
2290 
2291 	/*
2292 	 * if hours_since_last is > the number of bits in read_errors
2293 	 * just set read errors to 0. We do this to avoid
2294 	 * overflowing the shift of read_errors by hours_since_last.
2295 	 */
2296 	if (hours_since_last >= 8 * sizeof(read_errors))
2297 		atomic_set(&rdev->read_errors, 0);
2298 	else
2299 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2300 }
2301 
2302 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2303 			    int sectors, struct page *page, int rw)
2304 {
2305 	sector_t first_bad;
2306 	int bad_sectors;
2307 
2308 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2309 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2310 		return -1;
2311 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2312 		/* success */
2313 		return 1;
2314 	if (rw == WRITE) {
2315 		set_bit(WriteErrorSeen, &rdev->flags);
2316 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2317 			set_bit(MD_RECOVERY_NEEDED,
2318 				&rdev->mddev->recovery);
2319 	}
2320 	/* need to record an error - either for the block or the device */
2321 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2322 		md_error(rdev->mddev, rdev);
2323 	return 0;
2324 }
2325 
2326 /*
2327  * This is a kernel thread which:
2328  *
2329  *	1.	Retries failed read operations on working mirrors.
2330  *	2.	Updates the raid superblock when problems encounter.
2331  *	3.	Performs writes following reads for array synchronising.
2332  */
2333 
2334 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2335 {
2336 	int sect = 0; /* Offset from r10_bio->sector */
2337 	int sectors = r10_bio->sectors;
2338 	struct md_rdev*rdev;
2339 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2340 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2341 
2342 	/* still own a reference to this rdev, so it cannot
2343 	 * have been cleared recently.
2344 	 */
2345 	rdev = conf->mirrors[d].rdev;
2346 
2347 	if (test_bit(Faulty, &rdev->flags))
2348 		/* drive has already been failed, just ignore any
2349 		   more fix_read_error() attempts */
2350 		return;
2351 
2352 	check_decay_read_errors(mddev, rdev);
2353 	atomic_inc(&rdev->read_errors);
2354 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2355 		char b[BDEVNAME_SIZE];
2356 		bdevname(rdev->bdev, b);
2357 
2358 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2359 			  mdname(mddev), b,
2360 			  atomic_read(&rdev->read_errors), max_read_errors);
2361 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2362 			  mdname(mddev), b);
2363 		md_error(mddev, rdev);
2364 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2365 		return;
2366 	}
2367 
2368 	while(sectors) {
2369 		int s = sectors;
2370 		int sl = r10_bio->read_slot;
2371 		int success = 0;
2372 		int start;
2373 
2374 		if (s > (PAGE_SIZE>>9))
2375 			s = PAGE_SIZE >> 9;
2376 
2377 		rcu_read_lock();
2378 		do {
2379 			sector_t first_bad;
2380 			int bad_sectors;
2381 
2382 			d = r10_bio->devs[sl].devnum;
2383 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2384 			if (rdev &&
2385 			    test_bit(In_sync, &rdev->flags) &&
2386 			    !test_bit(Faulty, &rdev->flags) &&
2387 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2388 					&first_bad, &bad_sectors) == 0) {
2389 				atomic_inc(&rdev->nr_pending);
2390 				rcu_read_unlock();
2391 				success = sync_page_io(rdev,
2392 						       r10_bio->devs[sl].addr +
2393 						       sect,
2394 						       s<<9,
2395 						       conf->tmppage,
2396 						       REQ_OP_READ, 0, false);
2397 				rdev_dec_pending(rdev, mddev);
2398 				rcu_read_lock();
2399 				if (success)
2400 					break;
2401 			}
2402 			sl++;
2403 			if (sl == conf->copies)
2404 				sl = 0;
2405 		} while (!success && sl != r10_bio->read_slot);
2406 		rcu_read_unlock();
2407 
2408 		if (!success) {
2409 			/* Cannot read from anywhere, just mark the block
2410 			 * as bad on the first device to discourage future
2411 			 * reads.
2412 			 */
2413 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2414 			rdev = conf->mirrors[dn].rdev;
2415 
2416 			if (!rdev_set_badblocks(
2417 				    rdev,
2418 				    r10_bio->devs[r10_bio->read_slot].addr
2419 				    + sect,
2420 				    s, 0)) {
2421 				md_error(mddev, rdev);
2422 				r10_bio->devs[r10_bio->read_slot].bio
2423 					= IO_BLOCKED;
2424 			}
2425 			break;
2426 		}
2427 
2428 		start = sl;
2429 		/* write it back and re-read */
2430 		rcu_read_lock();
2431 		while (sl != r10_bio->read_slot) {
2432 			char b[BDEVNAME_SIZE];
2433 
2434 			if (sl==0)
2435 				sl = conf->copies;
2436 			sl--;
2437 			d = r10_bio->devs[sl].devnum;
2438 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2439 			if (!rdev ||
2440 			    test_bit(Faulty, &rdev->flags) ||
2441 			    !test_bit(In_sync, &rdev->flags))
2442 				continue;
2443 
2444 			atomic_inc(&rdev->nr_pending);
2445 			rcu_read_unlock();
2446 			if (r10_sync_page_io(rdev,
2447 					     r10_bio->devs[sl].addr +
2448 					     sect,
2449 					     s, conf->tmppage, WRITE)
2450 			    == 0) {
2451 				/* Well, this device is dead */
2452 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2453 					  mdname(mddev), s,
2454 					  (unsigned long long)(
2455 						  sect +
2456 						  choose_data_offset(r10_bio,
2457 								     rdev)),
2458 					  bdevname(rdev->bdev, b));
2459 				pr_notice("md/raid10:%s: %s: failing drive\n",
2460 					  mdname(mddev),
2461 					  bdevname(rdev->bdev, b));
2462 			}
2463 			rdev_dec_pending(rdev, mddev);
2464 			rcu_read_lock();
2465 		}
2466 		sl = start;
2467 		while (sl != r10_bio->read_slot) {
2468 			char b[BDEVNAME_SIZE];
2469 
2470 			if (sl==0)
2471 				sl = conf->copies;
2472 			sl--;
2473 			d = r10_bio->devs[sl].devnum;
2474 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2475 			if (!rdev ||
2476 			    test_bit(Faulty, &rdev->flags) ||
2477 			    !test_bit(In_sync, &rdev->flags))
2478 				continue;
2479 
2480 			atomic_inc(&rdev->nr_pending);
2481 			rcu_read_unlock();
2482 			switch (r10_sync_page_io(rdev,
2483 					     r10_bio->devs[sl].addr +
2484 					     sect,
2485 					     s, conf->tmppage,
2486 						 READ)) {
2487 			case 0:
2488 				/* Well, this device is dead */
2489 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2490 				       mdname(mddev), s,
2491 				       (unsigned long long)(
2492 					       sect +
2493 					       choose_data_offset(r10_bio, rdev)),
2494 				       bdevname(rdev->bdev, b));
2495 				pr_notice("md/raid10:%s: %s: failing drive\n",
2496 				       mdname(mddev),
2497 				       bdevname(rdev->bdev, b));
2498 				break;
2499 			case 1:
2500 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2501 				       mdname(mddev), s,
2502 				       (unsigned long long)(
2503 					       sect +
2504 					       choose_data_offset(r10_bio, rdev)),
2505 				       bdevname(rdev->bdev, b));
2506 				atomic_add(s, &rdev->corrected_errors);
2507 			}
2508 
2509 			rdev_dec_pending(rdev, mddev);
2510 			rcu_read_lock();
2511 		}
2512 		rcu_read_unlock();
2513 
2514 		sectors -= s;
2515 		sect += s;
2516 	}
2517 }
2518 
2519 static int narrow_write_error(struct r10bio *r10_bio, int i)
2520 {
2521 	struct bio *bio = r10_bio->master_bio;
2522 	struct mddev *mddev = r10_bio->mddev;
2523 	struct r10conf *conf = mddev->private;
2524 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2525 	/* bio has the data to be written to slot 'i' where
2526 	 * we just recently had a write error.
2527 	 * We repeatedly clone the bio and trim down to one block,
2528 	 * then try the write.  Where the write fails we record
2529 	 * a bad block.
2530 	 * It is conceivable that the bio doesn't exactly align with
2531 	 * blocks.  We must handle this.
2532 	 *
2533 	 * We currently own a reference to the rdev.
2534 	 */
2535 
2536 	int block_sectors;
2537 	sector_t sector;
2538 	int sectors;
2539 	int sect_to_write = r10_bio->sectors;
2540 	int ok = 1;
2541 
2542 	if (rdev->badblocks.shift < 0)
2543 		return 0;
2544 
2545 	block_sectors = roundup(1 << rdev->badblocks.shift,
2546 				bdev_logical_block_size(rdev->bdev) >> 9);
2547 	sector = r10_bio->sector;
2548 	sectors = ((r10_bio->sector + block_sectors)
2549 		   & ~(sector_t)(block_sectors - 1))
2550 		- sector;
2551 
2552 	while (sect_to_write) {
2553 		struct bio *wbio;
2554 		sector_t wsector;
2555 		if (sectors > sect_to_write)
2556 			sectors = sect_to_write;
2557 		/* Write at 'sector' for 'sectors' */
2558 		wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2559 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2560 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2561 		wbio->bi_iter.bi_sector = wsector +
2562 				   choose_data_offset(r10_bio, rdev);
2563 		wbio->bi_bdev = rdev->bdev;
2564 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2565 
2566 		if (submit_bio_wait(wbio) < 0)
2567 			/* Failure! */
2568 			ok = rdev_set_badblocks(rdev, wsector,
2569 						sectors, 0)
2570 				&& ok;
2571 
2572 		bio_put(wbio);
2573 		sect_to_write -= sectors;
2574 		sector += sectors;
2575 		sectors = block_sectors;
2576 	}
2577 	return ok;
2578 }
2579 
2580 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2581 {
2582 	int slot = r10_bio->read_slot;
2583 	struct bio *bio;
2584 	struct r10conf *conf = mddev->private;
2585 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2586 	dev_t bio_dev;
2587 	sector_t bio_last_sector;
2588 
2589 	/* we got a read error. Maybe the drive is bad.  Maybe just
2590 	 * the block and we can fix it.
2591 	 * We freeze all other IO, and try reading the block from
2592 	 * other devices.  When we find one, we re-write
2593 	 * and check it that fixes the read error.
2594 	 * This is all done synchronously while the array is
2595 	 * frozen.
2596 	 */
2597 	bio = r10_bio->devs[slot].bio;
2598 	bio_dev = bio->bi_bdev->bd_dev;
2599 	bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2600 	bio_put(bio);
2601 	r10_bio->devs[slot].bio = NULL;
2602 
2603 	if (mddev->ro)
2604 		r10_bio->devs[slot].bio = IO_BLOCKED;
2605 	else if (!test_bit(FailFast, &rdev->flags)) {
2606 		freeze_array(conf, 1);
2607 		fix_read_error(conf, mddev, r10_bio);
2608 		unfreeze_array(conf);
2609 	} else
2610 		md_error(mddev, rdev);
2611 
2612 	rdev_dec_pending(rdev, mddev);
2613 	allow_barrier(conf);
2614 	r10_bio->state = 0;
2615 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2616 }
2617 
2618 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2619 {
2620 	/* Some sort of write request has finished and it
2621 	 * succeeded in writing where we thought there was a
2622 	 * bad block.  So forget the bad block.
2623 	 * Or possibly if failed and we need to record
2624 	 * a bad block.
2625 	 */
2626 	int m;
2627 	struct md_rdev *rdev;
2628 
2629 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2630 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2631 		for (m = 0; m < conf->copies; m++) {
2632 			int dev = r10_bio->devs[m].devnum;
2633 			rdev = conf->mirrors[dev].rdev;
2634 			if (r10_bio->devs[m].bio == NULL)
2635 				continue;
2636 			if (!r10_bio->devs[m].bio->bi_error) {
2637 				rdev_clear_badblocks(
2638 					rdev,
2639 					r10_bio->devs[m].addr,
2640 					r10_bio->sectors, 0);
2641 			} else {
2642 				if (!rdev_set_badblocks(
2643 					    rdev,
2644 					    r10_bio->devs[m].addr,
2645 					    r10_bio->sectors, 0))
2646 					md_error(conf->mddev, rdev);
2647 			}
2648 			rdev = conf->mirrors[dev].replacement;
2649 			if (r10_bio->devs[m].repl_bio == NULL)
2650 				continue;
2651 
2652 			if (!r10_bio->devs[m].repl_bio->bi_error) {
2653 				rdev_clear_badblocks(
2654 					rdev,
2655 					r10_bio->devs[m].addr,
2656 					r10_bio->sectors, 0);
2657 			} else {
2658 				if (!rdev_set_badblocks(
2659 					    rdev,
2660 					    r10_bio->devs[m].addr,
2661 					    r10_bio->sectors, 0))
2662 					md_error(conf->mddev, rdev);
2663 			}
2664 		}
2665 		put_buf(r10_bio);
2666 	} else {
2667 		bool fail = false;
2668 		for (m = 0; m < conf->copies; m++) {
2669 			int dev = r10_bio->devs[m].devnum;
2670 			struct bio *bio = r10_bio->devs[m].bio;
2671 			rdev = conf->mirrors[dev].rdev;
2672 			if (bio == IO_MADE_GOOD) {
2673 				rdev_clear_badblocks(
2674 					rdev,
2675 					r10_bio->devs[m].addr,
2676 					r10_bio->sectors, 0);
2677 				rdev_dec_pending(rdev, conf->mddev);
2678 			} else if (bio != NULL && bio->bi_error) {
2679 				fail = true;
2680 				if (!narrow_write_error(r10_bio, m)) {
2681 					md_error(conf->mddev, rdev);
2682 					set_bit(R10BIO_Degraded,
2683 						&r10_bio->state);
2684 				}
2685 				rdev_dec_pending(rdev, conf->mddev);
2686 			}
2687 			bio = r10_bio->devs[m].repl_bio;
2688 			rdev = conf->mirrors[dev].replacement;
2689 			if (rdev && bio == IO_MADE_GOOD) {
2690 				rdev_clear_badblocks(
2691 					rdev,
2692 					r10_bio->devs[m].addr,
2693 					r10_bio->sectors, 0);
2694 				rdev_dec_pending(rdev, conf->mddev);
2695 			}
2696 		}
2697 		if (fail) {
2698 			spin_lock_irq(&conf->device_lock);
2699 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2700 			conf->nr_queued++;
2701 			spin_unlock_irq(&conf->device_lock);
2702 			/*
2703 			 * In case freeze_array() is waiting for condition
2704 			 * nr_pending == nr_queued + extra to be true.
2705 			 */
2706 			wake_up(&conf->wait_barrier);
2707 			md_wakeup_thread(conf->mddev->thread);
2708 		} else {
2709 			if (test_bit(R10BIO_WriteError,
2710 				     &r10_bio->state))
2711 				close_write(r10_bio);
2712 			raid_end_bio_io(r10_bio);
2713 		}
2714 	}
2715 }
2716 
2717 static void raid10d(struct md_thread *thread)
2718 {
2719 	struct mddev *mddev = thread->mddev;
2720 	struct r10bio *r10_bio;
2721 	unsigned long flags;
2722 	struct r10conf *conf = mddev->private;
2723 	struct list_head *head = &conf->retry_list;
2724 	struct blk_plug plug;
2725 
2726 	md_check_recovery(mddev);
2727 
2728 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2729 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2730 		LIST_HEAD(tmp);
2731 		spin_lock_irqsave(&conf->device_lock, flags);
2732 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2733 			while (!list_empty(&conf->bio_end_io_list)) {
2734 				list_move(conf->bio_end_io_list.prev, &tmp);
2735 				conf->nr_queued--;
2736 			}
2737 		}
2738 		spin_unlock_irqrestore(&conf->device_lock, flags);
2739 		while (!list_empty(&tmp)) {
2740 			r10_bio = list_first_entry(&tmp, struct r10bio,
2741 						   retry_list);
2742 			list_del(&r10_bio->retry_list);
2743 			if (mddev->degraded)
2744 				set_bit(R10BIO_Degraded, &r10_bio->state);
2745 
2746 			if (test_bit(R10BIO_WriteError,
2747 				     &r10_bio->state))
2748 				close_write(r10_bio);
2749 			raid_end_bio_io(r10_bio);
2750 		}
2751 	}
2752 
2753 	blk_start_plug(&plug);
2754 	for (;;) {
2755 
2756 		flush_pending_writes(conf);
2757 
2758 		spin_lock_irqsave(&conf->device_lock, flags);
2759 		if (list_empty(head)) {
2760 			spin_unlock_irqrestore(&conf->device_lock, flags);
2761 			break;
2762 		}
2763 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2764 		list_del(head->prev);
2765 		conf->nr_queued--;
2766 		spin_unlock_irqrestore(&conf->device_lock, flags);
2767 
2768 		mddev = r10_bio->mddev;
2769 		conf = mddev->private;
2770 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2771 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2772 			handle_write_completed(conf, r10_bio);
2773 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2774 			reshape_request_write(mddev, r10_bio);
2775 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2776 			sync_request_write(mddev, r10_bio);
2777 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2778 			recovery_request_write(mddev, r10_bio);
2779 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2780 			handle_read_error(mddev, r10_bio);
2781 		else
2782 			WARN_ON_ONCE(1);
2783 
2784 		cond_resched();
2785 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2786 			md_check_recovery(mddev);
2787 	}
2788 	blk_finish_plug(&plug);
2789 }
2790 
2791 static int init_resync(struct r10conf *conf)
2792 {
2793 	int buffs;
2794 	int i;
2795 
2796 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2797 	BUG_ON(conf->r10buf_pool);
2798 	conf->have_replacement = 0;
2799 	for (i = 0; i < conf->geo.raid_disks; i++)
2800 		if (conf->mirrors[i].replacement)
2801 			conf->have_replacement = 1;
2802 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2803 	if (!conf->r10buf_pool)
2804 		return -ENOMEM;
2805 	conf->next_resync = 0;
2806 	return 0;
2807 }
2808 
2809 /*
2810  * perform a "sync" on one "block"
2811  *
2812  * We need to make sure that no normal I/O request - particularly write
2813  * requests - conflict with active sync requests.
2814  *
2815  * This is achieved by tracking pending requests and a 'barrier' concept
2816  * that can be installed to exclude normal IO requests.
2817  *
2818  * Resync and recovery are handled very differently.
2819  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2820  *
2821  * For resync, we iterate over virtual addresses, read all copies,
2822  * and update if there are differences.  If only one copy is live,
2823  * skip it.
2824  * For recovery, we iterate over physical addresses, read a good
2825  * value for each non-in_sync drive, and over-write.
2826  *
2827  * So, for recovery we may have several outstanding complex requests for a
2828  * given address, one for each out-of-sync device.  We model this by allocating
2829  * a number of r10_bio structures, one for each out-of-sync device.
2830  * As we setup these structures, we collect all bio's together into a list
2831  * which we then process collectively to add pages, and then process again
2832  * to pass to generic_make_request.
2833  *
2834  * The r10_bio structures are linked using a borrowed master_bio pointer.
2835  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2836  * has its remaining count decremented to 0, the whole complex operation
2837  * is complete.
2838  *
2839  */
2840 
2841 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2842 			     int *skipped)
2843 {
2844 	struct r10conf *conf = mddev->private;
2845 	struct r10bio *r10_bio;
2846 	struct bio *biolist = NULL, *bio;
2847 	sector_t max_sector, nr_sectors;
2848 	int i;
2849 	int max_sync;
2850 	sector_t sync_blocks;
2851 	sector_t sectors_skipped = 0;
2852 	int chunks_skipped = 0;
2853 	sector_t chunk_mask = conf->geo.chunk_mask;
2854 
2855 	if (!conf->r10buf_pool)
2856 		if (init_resync(conf))
2857 			return 0;
2858 
2859 	/*
2860 	 * Allow skipping a full rebuild for incremental assembly
2861 	 * of a clean array, like RAID1 does.
2862 	 */
2863 	if (mddev->bitmap == NULL &&
2864 	    mddev->recovery_cp == MaxSector &&
2865 	    mddev->reshape_position == MaxSector &&
2866 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2867 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2868 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2869 	    conf->fullsync == 0) {
2870 		*skipped = 1;
2871 		return mddev->dev_sectors - sector_nr;
2872 	}
2873 
2874  skipped:
2875 	max_sector = mddev->dev_sectors;
2876 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2877 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2878 		max_sector = mddev->resync_max_sectors;
2879 	if (sector_nr >= max_sector) {
2880 		/* If we aborted, we need to abort the
2881 		 * sync on the 'current' bitmap chucks (there can
2882 		 * be several when recovering multiple devices).
2883 		 * as we may have started syncing it but not finished.
2884 		 * We can find the current address in
2885 		 * mddev->curr_resync, but for recovery,
2886 		 * we need to convert that to several
2887 		 * virtual addresses.
2888 		 */
2889 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2890 			end_reshape(conf);
2891 			close_sync(conf);
2892 			return 0;
2893 		}
2894 
2895 		if (mddev->curr_resync < max_sector) { /* aborted */
2896 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2897 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2898 						&sync_blocks, 1);
2899 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2900 				sector_t sect =
2901 					raid10_find_virt(conf, mddev->curr_resync, i);
2902 				bitmap_end_sync(mddev->bitmap, sect,
2903 						&sync_blocks, 1);
2904 			}
2905 		} else {
2906 			/* completed sync */
2907 			if ((!mddev->bitmap || conf->fullsync)
2908 			    && conf->have_replacement
2909 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2910 				/* Completed a full sync so the replacements
2911 				 * are now fully recovered.
2912 				 */
2913 				rcu_read_lock();
2914 				for (i = 0; i < conf->geo.raid_disks; i++) {
2915 					struct md_rdev *rdev =
2916 						rcu_dereference(conf->mirrors[i].replacement);
2917 					if (rdev)
2918 						rdev->recovery_offset = MaxSector;
2919 				}
2920 				rcu_read_unlock();
2921 			}
2922 			conf->fullsync = 0;
2923 		}
2924 		bitmap_close_sync(mddev->bitmap);
2925 		close_sync(conf);
2926 		*skipped = 1;
2927 		return sectors_skipped;
2928 	}
2929 
2930 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2931 		return reshape_request(mddev, sector_nr, skipped);
2932 
2933 	if (chunks_skipped >= conf->geo.raid_disks) {
2934 		/* if there has been nothing to do on any drive,
2935 		 * then there is nothing to do at all..
2936 		 */
2937 		*skipped = 1;
2938 		return (max_sector - sector_nr) + sectors_skipped;
2939 	}
2940 
2941 	if (max_sector > mddev->resync_max)
2942 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2943 
2944 	/* make sure whole request will fit in a chunk - if chunks
2945 	 * are meaningful
2946 	 */
2947 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2948 	    max_sector > (sector_nr | chunk_mask))
2949 		max_sector = (sector_nr | chunk_mask) + 1;
2950 
2951 	/*
2952 	 * If there is non-resync activity waiting for a turn, then let it
2953 	 * though before starting on this new sync request.
2954 	 */
2955 	if (conf->nr_waiting)
2956 		schedule_timeout_uninterruptible(1);
2957 
2958 	/* Again, very different code for resync and recovery.
2959 	 * Both must result in an r10bio with a list of bios that
2960 	 * have bi_end_io, bi_sector, bi_bdev set,
2961 	 * and bi_private set to the r10bio.
2962 	 * For recovery, we may actually create several r10bios
2963 	 * with 2 bios in each, that correspond to the bios in the main one.
2964 	 * In this case, the subordinate r10bios link back through a
2965 	 * borrowed master_bio pointer, and the counter in the master
2966 	 * includes a ref from each subordinate.
2967 	 */
2968 	/* First, we decide what to do and set ->bi_end_io
2969 	 * To end_sync_read if we want to read, and
2970 	 * end_sync_write if we will want to write.
2971 	 */
2972 
2973 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2974 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975 		/* recovery... the complicated one */
2976 		int j;
2977 		r10_bio = NULL;
2978 
2979 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2980 			int still_degraded;
2981 			struct r10bio *rb2;
2982 			sector_t sect;
2983 			int must_sync;
2984 			int any_working;
2985 			struct raid10_info *mirror = &conf->mirrors[i];
2986 			struct md_rdev *mrdev, *mreplace;
2987 
2988 			rcu_read_lock();
2989 			mrdev = rcu_dereference(mirror->rdev);
2990 			mreplace = rcu_dereference(mirror->replacement);
2991 
2992 			if ((mrdev == NULL ||
2993 			     test_bit(Faulty, &mrdev->flags) ||
2994 			     test_bit(In_sync, &mrdev->flags)) &&
2995 			    (mreplace == NULL ||
2996 			     test_bit(Faulty, &mreplace->flags))) {
2997 				rcu_read_unlock();
2998 				continue;
2999 			}
3000 
3001 			still_degraded = 0;
3002 			/* want to reconstruct this device */
3003 			rb2 = r10_bio;
3004 			sect = raid10_find_virt(conf, sector_nr, i);
3005 			if (sect >= mddev->resync_max_sectors) {
3006 				/* last stripe is not complete - don't
3007 				 * try to recover this sector.
3008 				 */
3009 				rcu_read_unlock();
3010 				continue;
3011 			}
3012 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3013 				mreplace = NULL;
3014 			/* Unless we are doing a full sync, or a replacement
3015 			 * we only need to recover the block if it is set in
3016 			 * the bitmap
3017 			 */
3018 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3019 						      &sync_blocks, 1);
3020 			if (sync_blocks < max_sync)
3021 				max_sync = sync_blocks;
3022 			if (!must_sync &&
3023 			    mreplace == NULL &&
3024 			    !conf->fullsync) {
3025 				/* yep, skip the sync_blocks here, but don't assume
3026 				 * that there will never be anything to do here
3027 				 */
3028 				chunks_skipped = -1;
3029 				rcu_read_unlock();
3030 				continue;
3031 			}
3032 			atomic_inc(&mrdev->nr_pending);
3033 			if (mreplace)
3034 				atomic_inc(&mreplace->nr_pending);
3035 			rcu_read_unlock();
3036 
3037 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3038 			r10_bio->state = 0;
3039 			raise_barrier(conf, rb2 != NULL);
3040 			atomic_set(&r10_bio->remaining, 0);
3041 
3042 			r10_bio->master_bio = (struct bio*)rb2;
3043 			if (rb2)
3044 				atomic_inc(&rb2->remaining);
3045 			r10_bio->mddev = mddev;
3046 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3047 			r10_bio->sector = sect;
3048 
3049 			raid10_find_phys(conf, r10_bio);
3050 
3051 			/* Need to check if the array will still be
3052 			 * degraded
3053 			 */
3054 			rcu_read_lock();
3055 			for (j = 0; j < conf->geo.raid_disks; j++) {
3056 				struct md_rdev *rdev = rcu_dereference(
3057 					conf->mirrors[j].rdev);
3058 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3059 					still_degraded = 1;
3060 					break;
3061 				}
3062 			}
3063 
3064 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3065 						      &sync_blocks, still_degraded);
3066 
3067 			any_working = 0;
3068 			for (j=0; j<conf->copies;j++) {
3069 				int k;
3070 				int d = r10_bio->devs[j].devnum;
3071 				sector_t from_addr, to_addr;
3072 				struct md_rdev *rdev =
3073 					rcu_dereference(conf->mirrors[d].rdev);
3074 				sector_t sector, first_bad;
3075 				int bad_sectors;
3076 				if (!rdev ||
3077 				    !test_bit(In_sync, &rdev->flags))
3078 					continue;
3079 				/* This is where we read from */
3080 				any_working = 1;
3081 				sector = r10_bio->devs[j].addr;
3082 
3083 				if (is_badblock(rdev, sector, max_sync,
3084 						&first_bad, &bad_sectors)) {
3085 					if (first_bad > sector)
3086 						max_sync = first_bad - sector;
3087 					else {
3088 						bad_sectors -= (sector
3089 								- first_bad);
3090 						if (max_sync > bad_sectors)
3091 							max_sync = bad_sectors;
3092 						continue;
3093 					}
3094 				}
3095 				bio = r10_bio->devs[0].bio;
3096 				bio->bi_next = biolist;
3097 				biolist = bio;
3098 				bio->bi_end_io = end_sync_read;
3099 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3100 				if (test_bit(FailFast, &rdev->flags))
3101 					bio->bi_opf |= MD_FAILFAST;
3102 				from_addr = r10_bio->devs[j].addr;
3103 				bio->bi_iter.bi_sector = from_addr +
3104 					rdev->data_offset;
3105 				bio->bi_bdev = rdev->bdev;
3106 				atomic_inc(&rdev->nr_pending);
3107 				/* and we write to 'i' (if not in_sync) */
3108 
3109 				for (k=0; k<conf->copies; k++)
3110 					if (r10_bio->devs[k].devnum == i)
3111 						break;
3112 				BUG_ON(k == conf->copies);
3113 				to_addr = r10_bio->devs[k].addr;
3114 				r10_bio->devs[0].devnum = d;
3115 				r10_bio->devs[0].addr = from_addr;
3116 				r10_bio->devs[1].devnum = i;
3117 				r10_bio->devs[1].addr = to_addr;
3118 
3119 				if (!test_bit(In_sync, &mrdev->flags)) {
3120 					bio = r10_bio->devs[1].bio;
3121 					bio->bi_next = biolist;
3122 					biolist = bio;
3123 					bio->bi_end_io = end_sync_write;
3124 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3125 					bio->bi_iter.bi_sector = to_addr
3126 						+ mrdev->data_offset;
3127 					bio->bi_bdev = mrdev->bdev;
3128 					atomic_inc(&r10_bio->remaining);
3129 				} else
3130 					r10_bio->devs[1].bio->bi_end_io = NULL;
3131 
3132 				/* and maybe write to replacement */
3133 				bio = r10_bio->devs[1].repl_bio;
3134 				if (bio)
3135 					bio->bi_end_io = NULL;
3136 				/* Note: if mreplace != NULL, then bio
3137 				 * cannot be NULL as r10buf_pool_alloc will
3138 				 * have allocated it.
3139 				 * So the second test here is pointless.
3140 				 * But it keeps semantic-checkers happy, and
3141 				 * this comment keeps human reviewers
3142 				 * happy.
3143 				 */
3144 				if (mreplace == NULL || bio == NULL ||
3145 				    test_bit(Faulty, &mreplace->flags))
3146 					break;
3147 				bio->bi_next = biolist;
3148 				biolist = bio;
3149 				bio->bi_end_io = end_sync_write;
3150 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3151 				bio->bi_iter.bi_sector = to_addr +
3152 					mreplace->data_offset;
3153 				bio->bi_bdev = mreplace->bdev;
3154 				atomic_inc(&r10_bio->remaining);
3155 				break;
3156 			}
3157 			rcu_read_unlock();
3158 			if (j == conf->copies) {
3159 				/* Cannot recover, so abort the recovery or
3160 				 * record a bad block */
3161 				if (any_working) {
3162 					/* problem is that there are bad blocks
3163 					 * on other device(s)
3164 					 */
3165 					int k;
3166 					for (k = 0; k < conf->copies; k++)
3167 						if (r10_bio->devs[k].devnum == i)
3168 							break;
3169 					if (!test_bit(In_sync,
3170 						      &mrdev->flags)
3171 					    && !rdev_set_badblocks(
3172 						    mrdev,
3173 						    r10_bio->devs[k].addr,
3174 						    max_sync, 0))
3175 						any_working = 0;
3176 					if (mreplace &&
3177 					    !rdev_set_badblocks(
3178 						    mreplace,
3179 						    r10_bio->devs[k].addr,
3180 						    max_sync, 0))
3181 						any_working = 0;
3182 				}
3183 				if (!any_working)  {
3184 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3185 							      &mddev->recovery))
3186 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3187 						       mdname(mddev));
3188 					mirror->recovery_disabled
3189 						= mddev->recovery_disabled;
3190 				}
3191 				put_buf(r10_bio);
3192 				if (rb2)
3193 					atomic_dec(&rb2->remaining);
3194 				r10_bio = rb2;
3195 				rdev_dec_pending(mrdev, mddev);
3196 				if (mreplace)
3197 					rdev_dec_pending(mreplace, mddev);
3198 				break;
3199 			}
3200 			rdev_dec_pending(mrdev, mddev);
3201 			if (mreplace)
3202 				rdev_dec_pending(mreplace, mddev);
3203 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3204 				/* Only want this if there is elsewhere to
3205 				 * read from. 'j' is currently the first
3206 				 * readable copy.
3207 				 */
3208 				int targets = 1;
3209 				for (; j < conf->copies; j++) {
3210 					int d = r10_bio->devs[j].devnum;
3211 					if (conf->mirrors[d].rdev &&
3212 					    test_bit(In_sync,
3213 						      &conf->mirrors[d].rdev->flags))
3214 						targets++;
3215 				}
3216 				if (targets == 1)
3217 					r10_bio->devs[0].bio->bi_opf
3218 						&= ~MD_FAILFAST;
3219 			}
3220 		}
3221 		if (biolist == NULL) {
3222 			while (r10_bio) {
3223 				struct r10bio *rb2 = r10_bio;
3224 				r10_bio = (struct r10bio*) rb2->master_bio;
3225 				rb2->master_bio = NULL;
3226 				put_buf(rb2);
3227 			}
3228 			goto giveup;
3229 		}
3230 	} else {
3231 		/* resync. Schedule a read for every block at this virt offset */
3232 		int count = 0;
3233 
3234 		bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3235 
3236 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3237 				       &sync_blocks, mddev->degraded) &&
3238 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3239 						 &mddev->recovery)) {
3240 			/* We can skip this block */
3241 			*skipped = 1;
3242 			return sync_blocks + sectors_skipped;
3243 		}
3244 		if (sync_blocks < max_sync)
3245 			max_sync = sync_blocks;
3246 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3247 		r10_bio->state = 0;
3248 
3249 		r10_bio->mddev = mddev;
3250 		atomic_set(&r10_bio->remaining, 0);
3251 		raise_barrier(conf, 0);
3252 		conf->next_resync = sector_nr;
3253 
3254 		r10_bio->master_bio = NULL;
3255 		r10_bio->sector = sector_nr;
3256 		set_bit(R10BIO_IsSync, &r10_bio->state);
3257 		raid10_find_phys(conf, r10_bio);
3258 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3259 
3260 		for (i = 0; i < conf->copies; i++) {
3261 			int d = r10_bio->devs[i].devnum;
3262 			sector_t first_bad, sector;
3263 			int bad_sectors;
3264 			struct md_rdev *rdev;
3265 
3266 			if (r10_bio->devs[i].repl_bio)
3267 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3268 
3269 			bio = r10_bio->devs[i].bio;
3270 			bio->bi_error = -EIO;
3271 			rcu_read_lock();
3272 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3273 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3274 				rcu_read_unlock();
3275 				continue;
3276 			}
3277 			sector = r10_bio->devs[i].addr;
3278 			if (is_badblock(rdev, sector, max_sync,
3279 					&first_bad, &bad_sectors)) {
3280 				if (first_bad > sector)
3281 					max_sync = first_bad - sector;
3282 				else {
3283 					bad_sectors -= (sector - first_bad);
3284 					if (max_sync > bad_sectors)
3285 						max_sync = bad_sectors;
3286 					rcu_read_unlock();
3287 					continue;
3288 				}
3289 			}
3290 			atomic_inc(&rdev->nr_pending);
3291 			atomic_inc(&r10_bio->remaining);
3292 			bio->bi_next = biolist;
3293 			biolist = bio;
3294 			bio->bi_end_io = end_sync_read;
3295 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3296 			if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3297 				bio->bi_opf |= MD_FAILFAST;
3298 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3299 			bio->bi_bdev = rdev->bdev;
3300 			count++;
3301 
3302 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3303 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3304 				rcu_read_unlock();
3305 				continue;
3306 			}
3307 			atomic_inc(&rdev->nr_pending);
3308 			rcu_read_unlock();
3309 
3310 			/* Need to set up for writing to the replacement */
3311 			bio = r10_bio->devs[i].repl_bio;
3312 			bio->bi_error = -EIO;
3313 
3314 			sector = r10_bio->devs[i].addr;
3315 			bio->bi_next = biolist;
3316 			biolist = bio;
3317 			bio->bi_end_io = end_sync_write;
3318 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3319 			if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3320 				bio->bi_opf |= MD_FAILFAST;
3321 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3322 			bio->bi_bdev = rdev->bdev;
3323 			count++;
3324 		}
3325 
3326 		if (count < 2) {
3327 			for (i=0; i<conf->copies; i++) {
3328 				int d = r10_bio->devs[i].devnum;
3329 				if (r10_bio->devs[i].bio->bi_end_io)
3330 					rdev_dec_pending(conf->mirrors[d].rdev,
3331 							 mddev);
3332 				if (r10_bio->devs[i].repl_bio &&
3333 				    r10_bio->devs[i].repl_bio->bi_end_io)
3334 					rdev_dec_pending(
3335 						conf->mirrors[d].replacement,
3336 						mddev);
3337 			}
3338 			put_buf(r10_bio);
3339 			biolist = NULL;
3340 			goto giveup;
3341 		}
3342 	}
3343 
3344 	nr_sectors = 0;
3345 	if (sector_nr + max_sync < max_sector)
3346 		max_sector = sector_nr + max_sync;
3347 	do {
3348 		struct page *page;
3349 		int len = PAGE_SIZE;
3350 		if (sector_nr + (len>>9) > max_sector)
3351 			len = (max_sector - sector_nr) << 9;
3352 		if (len == 0)
3353 			break;
3354 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3355 			struct resync_pages *rp = get_resync_pages(bio);
3356 			page = resync_fetch_page(rp, rp->idx++);
3357 			/*
3358 			 * won't fail because the vec table is big enough
3359 			 * to hold all these pages
3360 			 */
3361 			bio_add_page(bio, page, len, 0);
3362 		}
3363 		nr_sectors += len>>9;
3364 		sector_nr += len>>9;
3365 	} while (get_resync_pages(biolist)->idx < RESYNC_PAGES);
3366 	r10_bio->sectors = nr_sectors;
3367 
3368 	while (biolist) {
3369 		bio = biolist;
3370 		biolist = biolist->bi_next;
3371 
3372 		bio->bi_next = NULL;
3373 		r10_bio = get_resync_r10bio(bio);
3374 		r10_bio->sectors = nr_sectors;
3375 
3376 		if (bio->bi_end_io == end_sync_read) {
3377 			md_sync_acct(bio->bi_bdev, nr_sectors);
3378 			bio->bi_error = 0;
3379 			generic_make_request(bio);
3380 		}
3381 	}
3382 
3383 	if (sectors_skipped)
3384 		/* pretend they weren't skipped, it makes
3385 		 * no important difference in this case
3386 		 */
3387 		md_done_sync(mddev, sectors_skipped, 1);
3388 
3389 	return sectors_skipped + nr_sectors;
3390  giveup:
3391 	/* There is nowhere to write, so all non-sync
3392 	 * drives must be failed or in resync, all drives
3393 	 * have a bad block, so try the next chunk...
3394 	 */
3395 	if (sector_nr + max_sync < max_sector)
3396 		max_sector = sector_nr + max_sync;
3397 
3398 	sectors_skipped += (max_sector - sector_nr);
3399 	chunks_skipped ++;
3400 	sector_nr = max_sector;
3401 	goto skipped;
3402 }
3403 
3404 static sector_t
3405 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3406 {
3407 	sector_t size;
3408 	struct r10conf *conf = mddev->private;
3409 
3410 	if (!raid_disks)
3411 		raid_disks = min(conf->geo.raid_disks,
3412 				 conf->prev.raid_disks);
3413 	if (!sectors)
3414 		sectors = conf->dev_sectors;
3415 
3416 	size = sectors >> conf->geo.chunk_shift;
3417 	sector_div(size, conf->geo.far_copies);
3418 	size = size * raid_disks;
3419 	sector_div(size, conf->geo.near_copies);
3420 
3421 	return size << conf->geo.chunk_shift;
3422 }
3423 
3424 static void calc_sectors(struct r10conf *conf, sector_t size)
3425 {
3426 	/* Calculate the number of sectors-per-device that will
3427 	 * actually be used, and set conf->dev_sectors and
3428 	 * conf->stride
3429 	 */
3430 
3431 	size = size >> conf->geo.chunk_shift;
3432 	sector_div(size, conf->geo.far_copies);
3433 	size = size * conf->geo.raid_disks;
3434 	sector_div(size, conf->geo.near_copies);
3435 	/* 'size' is now the number of chunks in the array */
3436 	/* calculate "used chunks per device" */
3437 	size = size * conf->copies;
3438 
3439 	/* We need to round up when dividing by raid_disks to
3440 	 * get the stride size.
3441 	 */
3442 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3443 
3444 	conf->dev_sectors = size << conf->geo.chunk_shift;
3445 
3446 	if (conf->geo.far_offset)
3447 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3448 	else {
3449 		sector_div(size, conf->geo.far_copies);
3450 		conf->geo.stride = size << conf->geo.chunk_shift;
3451 	}
3452 }
3453 
3454 enum geo_type {geo_new, geo_old, geo_start};
3455 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3456 {
3457 	int nc, fc, fo;
3458 	int layout, chunk, disks;
3459 	switch (new) {
3460 	case geo_old:
3461 		layout = mddev->layout;
3462 		chunk = mddev->chunk_sectors;
3463 		disks = mddev->raid_disks - mddev->delta_disks;
3464 		break;
3465 	case geo_new:
3466 		layout = mddev->new_layout;
3467 		chunk = mddev->new_chunk_sectors;
3468 		disks = mddev->raid_disks;
3469 		break;
3470 	default: /* avoid 'may be unused' warnings */
3471 	case geo_start: /* new when starting reshape - raid_disks not
3472 			 * updated yet. */
3473 		layout = mddev->new_layout;
3474 		chunk = mddev->new_chunk_sectors;
3475 		disks = mddev->raid_disks + mddev->delta_disks;
3476 		break;
3477 	}
3478 	if (layout >> 19)
3479 		return -1;
3480 	if (chunk < (PAGE_SIZE >> 9) ||
3481 	    !is_power_of_2(chunk))
3482 		return -2;
3483 	nc = layout & 255;
3484 	fc = (layout >> 8) & 255;
3485 	fo = layout & (1<<16);
3486 	geo->raid_disks = disks;
3487 	geo->near_copies = nc;
3488 	geo->far_copies = fc;
3489 	geo->far_offset = fo;
3490 	switch (layout >> 17) {
3491 	case 0:	/* original layout.  simple but not always optimal */
3492 		geo->far_set_size = disks;
3493 		break;
3494 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3495 		 * actually using this, but leave code here just in case.*/
3496 		geo->far_set_size = disks/fc;
3497 		WARN(geo->far_set_size < fc,
3498 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3499 		break;
3500 	case 2: /* "improved" layout fixed to match documentation */
3501 		geo->far_set_size = fc * nc;
3502 		break;
3503 	default: /* Not a valid layout */
3504 		return -1;
3505 	}
3506 	geo->chunk_mask = chunk - 1;
3507 	geo->chunk_shift = ffz(~chunk);
3508 	return nc*fc;
3509 }
3510 
3511 static struct r10conf *setup_conf(struct mddev *mddev)
3512 {
3513 	struct r10conf *conf = NULL;
3514 	int err = -EINVAL;
3515 	struct geom geo;
3516 	int copies;
3517 
3518 	copies = setup_geo(&geo, mddev, geo_new);
3519 
3520 	if (copies == -2) {
3521 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3522 			mdname(mddev), PAGE_SIZE);
3523 		goto out;
3524 	}
3525 
3526 	if (copies < 2 || copies > mddev->raid_disks) {
3527 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3528 			mdname(mddev), mddev->new_layout);
3529 		goto out;
3530 	}
3531 
3532 	err = -ENOMEM;
3533 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3534 	if (!conf)
3535 		goto out;
3536 
3537 	/* FIXME calc properly */
3538 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3539 							    max(0,-mddev->delta_disks)),
3540 				GFP_KERNEL);
3541 	if (!conf->mirrors)
3542 		goto out;
3543 
3544 	conf->tmppage = alloc_page(GFP_KERNEL);
3545 	if (!conf->tmppage)
3546 		goto out;
3547 
3548 	conf->geo = geo;
3549 	conf->copies = copies;
3550 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3551 					   r10bio_pool_free, conf);
3552 	if (!conf->r10bio_pool)
3553 		goto out;
3554 
3555 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
3556 	if (!conf->bio_split)
3557 		goto out;
3558 
3559 	calc_sectors(conf, mddev->dev_sectors);
3560 	if (mddev->reshape_position == MaxSector) {
3561 		conf->prev = conf->geo;
3562 		conf->reshape_progress = MaxSector;
3563 	} else {
3564 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3565 			err = -EINVAL;
3566 			goto out;
3567 		}
3568 		conf->reshape_progress = mddev->reshape_position;
3569 		if (conf->prev.far_offset)
3570 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3571 		else
3572 			/* far_copies must be 1 */
3573 			conf->prev.stride = conf->dev_sectors;
3574 	}
3575 	conf->reshape_safe = conf->reshape_progress;
3576 	spin_lock_init(&conf->device_lock);
3577 	INIT_LIST_HEAD(&conf->retry_list);
3578 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3579 
3580 	spin_lock_init(&conf->resync_lock);
3581 	init_waitqueue_head(&conf->wait_barrier);
3582 	atomic_set(&conf->nr_pending, 0);
3583 
3584 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3585 	if (!conf->thread)
3586 		goto out;
3587 
3588 	conf->mddev = mddev;
3589 	return conf;
3590 
3591  out:
3592 	if (conf) {
3593 		mempool_destroy(conf->r10bio_pool);
3594 		kfree(conf->mirrors);
3595 		safe_put_page(conf->tmppage);
3596 		if (conf->bio_split)
3597 			bioset_free(conf->bio_split);
3598 		kfree(conf);
3599 	}
3600 	return ERR_PTR(err);
3601 }
3602 
3603 static int raid10_run(struct mddev *mddev)
3604 {
3605 	struct r10conf *conf;
3606 	int i, disk_idx, chunk_size;
3607 	struct raid10_info *disk;
3608 	struct md_rdev *rdev;
3609 	sector_t size;
3610 	sector_t min_offset_diff = 0;
3611 	int first = 1;
3612 	bool discard_supported = false;
3613 
3614 	if (mddev->private == NULL) {
3615 		conf = setup_conf(mddev);
3616 		if (IS_ERR(conf))
3617 			return PTR_ERR(conf);
3618 		mddev->private = conf;
3619 	}
3620 	conf = mddev->private;
3621 	if (!conf)
3622 		goto out;
3623 
3624 	mddev->thread = conf->thread;
3625 	conf->thread = NULL;
3626 
3627 	chunk_size = mddev->chunk_sectors << 9;
3628 	if (mddev->queue) {
3629 		blk_queue_max_discard_sectors(mddev->queue,
3630 					      mddev->chunk_sectors);
3631 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3632 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3633 		blk_queue_io_min(mddev->queue, chunk_size);
3634 		if (conf->geo.raid_disks % conf->geo.near_copies)
3635 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3636 		else
3637 			blk_queue_io_opt(mddev->queue, chunk_size *
3638 					 (conf->geo.raid_disks / conf->geo.near_copies));
3639 	}
3640 
3641 	rdev_for_each(rdev, mddev) {
3642 		long long diff;
3643 
3644 		disk_idx = rdev->raid_disk;
3645 		if (disk_idx < 0)
3646 			continue;
3647 		if (disk_idx >= conf->geo.raid_disks &&
3648 		    disk_idx >= conf->prev.raid_disks)
3649 			continue;
3650 		disk = conf->mirrors + disk_idx;
3651 
3652 		if (test_bit(Replacement, &rdev->flags)) {
3653 			if (disk->replacement)
3654 				goto out_free_conf;
3655 			disk->replacement = rdev;
3656 		} else {
3657 			if (disk->rdev)
3658 				goto out_free_conf;
3659 			disk->rdev = rdev;
3660 		}
3661 		diff = (rdev->new_data_offset - rdev->data_offset);
3662 		if (!mddev->reshape_backwards)
3663 			diff = -diff;
3664 		if (diff < 0)
3665 			diff = 0;
3666 		if (first || diff < min_offset_diff)
3667 			min_offset_diff = diff;
3668 
3669 		if (mddev->gendisk)
3670 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3671 					  rdev->data_offset << 9);
3672 
3673 		disk->head_position = 0;
3674 
3675 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3676 			discard_supported = true;
3677 		first = 0;
3678 	}
3679 
3680 	if (mddev->queue) {
3681 		if (discard_supported)
3682 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3683 						mddev->queue);
3684 		else
3685 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3686 						  mddev->queue);
3687 	}
3688 	/* need to check that every block has at least one working mirror */
3689 	if (!enough(conf, -1)) {
3690 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3691 		       mdname(mddev));
3692 		goto out_free_conf;
3693 	}
3694 
3695 	if (conf->reshape_progress != MaxSector) {
3696 		/* must ensure that shape change is supported */
3697 		if (conf->geo.far_copies != 1 &&
3698 		    conf->geo.far_offset == 0)
3699 			goto out_free_conf;
3700 		if (conf->prev.far_copies != 1 &&
3701 		    conf->prev.far_offset == 0)
3702 			goto out_free_conf;
3703 	}
3704 
3705 	mddev->degraded = 0;
3706 	for (i = 0;
3707 	     i < conf->geo.raid_disks
3708 		     || i < conf->prev.raid_disks;
3709 	     i++) {
3710 
3711 		disk = conf->mirrors + i;
3712 
3713 		if (!disk->rdev && disk->replacement) {
3714 			/* The replacement is all we have - use it */
3715 			disk->rdev = disk->replacement;
3716 			disk->replacement = NULL;
3717 			clear_bit(Replacement, &disk->rdev->flags);
3718 		}
3719 
3720 		if (!disk->rdev ||
3721 		    !test_bit(In_sync, &disk->rdev->flags)) {
3722 			disk->head_position = 0;
3723 			mddev->degraded++;
3724 			if (disk->rdev &&
3725 			    disk->rdev->saved_raid_disk < 0)
3726 				conf->fullsync = 1;
3727 		}
3728 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3729 	}
3730 
3731 	if (mddev->recovery_cp != MaxSector)
3732 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3733 			  mdname(mddev));
3734 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3735 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3736 		conf->geo.raid_disks);
3737 	/*
3738 	 * Ok, everything is just fine now
3739 	 */
3740 	mddev->dev_sectors = conf->dev_sectors;
3741 	size = raid10_size(mddev, 0, 0);
3742 	md_set_array_sectors(mddev, size);
3743 	mddev->resync_max_sectors = size;
3744 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3745 
3746 	if (mddev->queue) {
3747 		int stripe = conf->geo.raid_disks *
3748 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3749 
3750 		/* Calculate max read-ahead size.
3751 		 * We need to readahead at least twice a whole stripe....
3752 		 * maybe...
3753 		 */
3754 		stripe /= conf->geo.near_copies;
3755 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3756 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3757 	}
3758 
3759 	if (md_integrity_register(mddev))
3760 		goto out_free_conf;
3761 
3762 	if (conf->reshape_progress != MaxSector) {
3763 		unsigned long before_length, after_length;
3764 
3765 		before_length = ((1 << conf->prev.chunk_shift) *
3766 				 conf->prev.far_copies);
3767 		after_length = ((1 << conf->geo.chunk_shift) *
3768 				conf->geo.far_copies);
3769 
3770 		if (max(before_length, after_length) > min_offset_diff) {
3771 			/* This cannot work */
3772 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3773 			goto out_free_conf;
3774 		}
3775 		conf->offset_diff = min_offset_diff;
3776 
3777 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3778 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3779 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3780 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3781 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3782 							"reshape");
3783 	}
3784 
3785 	return 0;
3786 
3787 out_free_conf:
3788 	md_unregister_thread(&mddev->thread);
3789 	mempool_destroy(conf->r10bio_pool);
3790 	safe_put_page(conf->tmppage);
3791 	kfree(conf->mirrors);
3792 	kfree(conf);
3793 	mddev->private = NULL;
3794 out:
3795 	return -EIO;
3796 }
3797 
3798 static void raid10_free(struct mddev *mddev, void *priv)
3799 {
3800 	struct r10conf *conf = priv;
3801 
3802 	mempool_destroy(conf->r10bio_pool);
3803 	safe_put_page(conf->tmppage);
3804 	kfree(conf->mirrors);
3805 	kfree(conf->mirrors_old);
3806 	kfree(conf->mirrors_new);
3807 	if (conf->bio_split)
3808 		bioset_free(conf->bio_split);
3809 	kfree(conf);
3810 }
3811 
3812 static void raid10_quiesce(struct mddev *mddev, int state)
3813 {
3814 	struct r10conf *conf = mddev->private;
3815 
3816 	switch(state) {
3817 	case 1:
3818 		raise_barrier(conf, 0);
3819 		break;
3820 	case 0:
3821 		lower_barrier(conf);
3822 		break;
3823 	}
3824 }
3825 
3826 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3827 {
3828 	/* Resize of 'far' arrays is not supported.
3829 	 * For 'near' and 'offset' arrays we can set the
3830 	 * number of sectors used to be an appropriate multiple
3831 	 * of the chunk size.
3832 	 * For 'offset', this is far_copies*chunksize.
3833 	 * For 'near' the multiplier is the LCM of
3834 	 * near_copies and raid_disks.
3835 	 * So if far_copies > 1 && !far_offset, fail.
3836 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3837 	 * multiply by chunk_size.  Then round to this number.
3838 	 * This is mostly done by raid10_size()
3839 	 */
3840 	struct r10conf *conf = mddev->private;
3841 	sector_t oldsize, size;
3842 
3843 	if (mddev->reshape_position != MaxSector)
3844 		return -EBUSY;
3845 
3846 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3847 		return -EINVAL;
3848 
3849 	oldsize = raid10_size(mddev, 0, 0);
3850 	size = raid10_size(mddev, sectors, 0);
3851 	if (mddev->external_size &&
3852 	    mddev->array_sectors > size)
3853 		return -EINVAL;
3854 	if (mddev->bitmap) {
3855 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3856 		if (ret)
3857 			return ret;
3858 	}
3859 	md_set_array_sectors(mddev, size);
3860 	if (sectors > mddev->dev_sectors &&
3861 	    mddev->recovery_cp > oldsize) {
3862 		mddev->recovery_cp = oldsize;
3863 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3864 	}
3865 	calc_sectors(conf, sectors);
3866 	mddev->dev_sectors = conf->dev_sectors;
3867 	mddev->resync_max_sectors = size;
3868 	return 0;
3869 }
3870 
3871 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3872 {
3873 	struct md_rdev *rdev;
3874 	struct r10conf *conf;
3875 
3876 	if (mddev->degraded > 0) {
3877 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3878 			mdname(mddev));
3879 		return ERR_PTR(-EINVAL);
3880 	}
3881 	sector_div(size, devs);
3882 
3883 	/* Set new parameters */
3884 	mddev->new_level = 10;
3885 	/* new layout: far_copies = 1, near_copies = 2 */
3886 	mddev->new_layout = (1<<8) + 2;
3887 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3888 	mddev->delta_disks = mddev->raid_disks;
3889 	mddev->raid_disks *= 2;
3890 	/* make sure it will be not marked as dirty */
3891 	mddev->recovery_cp = MaxSector;
3892 	mddev->dev_sectors = size;
3893 
3894 	conf = setup_conf(mddev);
3895 	if (!IS_ERR(conf)) {
3896 		rdev_for_each(rdev, mddev)
3897 			if (rdev->raid_disk >= 0) {
3898 				rdev->new_raid_disk = rdev->raid_disk * 2;
3899 				rdev->sectors = size;
3900 			}
3901 		conf->barrier = 1;
3902 	}
3903 
3904 	return conf;
3905 }
3906 
3907 static void *raid10_takeover(struct mddev *mddev)
3908 {
3909 	struct r0conf *raid0_conf;
3910 
3911 	/* raid10 can take over:
3912 	 *  raid0 - providing it has only two drives
3913 	 */
3914 	if (mddev->level == 0) {
3915 		/* for raid0 takeover only one zone is supported */
3916 		raid0_conf = mddev->private;
3917 		if (raid0_conf->nr_strip_zones > 1) {
3918 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3919 				mdname(mddev));
3920 			return ERR_PTR(-EINVAL);
3921 		}
3922 		return raid10_takeover_raid0(mddev,
3923 			raid0_conf->strip_zone->zone_end,
3924 			raid0_conf->strip_zone->nb_dev);
3925 	}
3926 	return ERR_PTR(-EINVAL);
3927 }
3928 
3929 static int raid10_check_reshape(struct mddev *mddev)
3930 {
3931 	/* Called when there is a request to change
3932 	 * - layout (to ->new_layout)
3933 	 * - chunk size (to ->new_chunk_sectors)
3934 	 * - raid_disks (by delta_disks)
3935 	 * or when trying to restart a reshape that was ongoing.
3936 	 *
3937 	 * We need to validate the request and possibly allocate
3938 	 * space if that might be an issue later.
3939 	 *
3940 	 * Currently we reject any reshape of a 'far' mode array,
3941 	 * allow chunk size to change if new is generally acceptable,
3942 	 * allow raid_disks to increase, and allow
3943 	 * a switch between 'near' mode and 'offset' mode.
3944 	 */
3945 	struct r10conf *conf = mddev->private;
3946 	struct geom geo;
3947 
3948 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3949 		return -EINVAL;
3950 
3951 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3952 		/* mustn't change number of copies */
3953 		return -EINVAL;
3954 	if (geo.far_copies > 1 && !geo.far_offset)
3955 		/* Cannot switch to 'far' mode */
3956 		return -EINVAL;
3957 
3958 	if (mddev->array_sectors & geo.chunk_mask)
3959 			/* not factor of array size */
3960 			return -EINVAL;
3961 
3962 	if (!enough(conf, -1))
3963 		return -EINVAL;
3964 
3965 	kfree(conf->mirrors_new);
3966 	conf->mirrors_new = NULL;
3967 	if (mddev->delta_disks > 0) {
3968 		/* allocate new 'mirrors' list */
3969 		conf->mirrors_new = kzalloc(
3970 			sizeof(struct raid10_info)
3971 			*(mddev->raid_disks +
3972 			  mddev->delta_disks),
3973 			GFP_KERNEL);
3974 		if (!conf->mirrors_new)
3975 			return -ENOMEM;
3976 	}
3977 	return 0;
3978 }
3979 
3980 /*
3981  * Need to check if array has failed when deciding whether to:
3982  *  - start an array
3983  *  - remove non-faulty devices
3984  *  - add a spare
3985  *  - allow a reshape
3986  * This determination is simple when no reshape is happening.
3987  * However if there is a reshape, we need to carefully check
3988  * both the before and after sections.
3989  * This is because some failed devices may only affect one
3990  * of the two sections, and some non-in_sync devices may
3991  * be insync in the section most affected by failed devices.
3992  */
3993 static int calc_degraded(struct r10conf *conf)
3994 {
3995 	int degraded, degraded2;
3996 	int i;
3997 
3998 	rcu_read_lock();
3999 	degraded = 0;
4000 	/* 'prev' section first */
4001 	for (i = 0; i < conf->prev.raid_disks; i++) {
4002 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4003 		if (!rdev || test_bit(Faulty, &rdev->flags))
4004 			degraded++;
4005 		else if (!test_bit(In_sync, &rdev->flags))
4006 			/* When we can reduce the number of devices in
4007 			 * an array, this might not contribute to
4008 			 * 'degraded'.  It does now.
4009 			 */
4010 			degraded++;
4011 	}
4012 	rcu_read_unlock();
4013 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4014 		return degraded;
4015 	rcu_read_lock();
4016 	degraded2 = 0;
4017 	for (i = 0; i < conf->geo.raid_disks; i++) {
4018 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4019 		if (!rdev || test_bit(Faulty, &rdev->flags))
4020 			degraded2++;
4021 		else if (!test_bit(In_sync, &rdev->flags)) {
4022 			/* If reshape is increasing the number of devices,
4023 			 * this section has already been recovered, so
4024 			 * it doesn't contribute to degraded.
4025 			 * else it does.
4026 			 */
4027 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4028 				degraded2++;
4029 		}
4030 	}
4031 	rcu_read_unlock();
4032 	if (degraded2 > degraded)
4033 		return degraded2;
4034 	return degraded;
4035 }
4036 
4037 static int raid10_start_reshape(struct mddev *mddev)
4038 {
4039 	/* A 'reshape' has been requested. This commits
4040 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4041 	 * This also checks if there are enough spares and adds them
4042 	 * to the array.
4043 	 * We currently require enough spares to make the final
4044 	 * array non-degraded.  We also require that the difference
4045 	 * between old and new data_offset - on each device - is
4046 	 * enough that we never risk over-writing.
4047 	 */
4048 
4049 	unsigned long before_length, after_length;
4050 	sector_t min_offset_diff = 0;
4051 	int first = 1;
4052 	struct geom new;
4053 	struct r10conf *conf = mddev->private;
4054 	struct md_rdev *rdev;
4055 	int spares = 0;
4056 	int ret;
4057 
4058 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4059 		return -EBUSY;
4060 
4061 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4062 		return -EINVAL;
4063 
4064 	before_length = ((1 << conf->prev.chunk_shift) *
4065 			 conf->prev.far_copies);
4066 	after_length = ((1 << conf->geo.chunk_shift) *
4067 			conf->geo.far_copies);
4068 
4069 	rdev_for_each(rdev, mddev) {
4070 		if (!test_bit(In_sync, &rdev->flags)
4071 		    && !test_bit(Faulty, &rdev->flags))
4072 			spares++;
4073 		if (rdev->raid_disk >= 0) {
4074 			long long diff = (rdev->new_data_offset
4075 					  - rdev->data_offset);
4076 			if (!mddev->reshape_backwards)
4077 				diff = -diff;
4078 			if (diff < 0)
4079 				diff = 0;
4080 			if (first || diff < min_offset_diff)
4081 				min_offset_diff = diff;
4082 			first = 0;
4083 		}
4084 	}
4085 
4086 	if (max(before_length, after_length) > min_offset_diff)
4087 		return -EINVAL;
4088 
4089 	if (spares < mddev->delta_disks)
4090 		return -EINVAL;
4091 
4092 	conf->offset_diff = min_offset_diff;
4093 	spin_lock_irq(&conf->device_lock);
4094 	if (conf->mirrors_new) {
4095 		memcpy(conf->mirrors_new, conf->mirrors,
4096 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4097 		smp_mb();
4098 		kfree(conf->mirrors_old);
4099 		conf->mirrors_old = conf->mirrors;
4100 		conf->mirrors = conf->mirrors_new;
4101 		conf->mirrors_new = NULL;
4102 	}
4103 	setup_geo(&conf->geo, mddev, geo_start);
4104 	smp_mb();
4105 	if (mddev->reshape_backwards) {
4106 		sector_t size = raid10_size(mddev, 0, 0);
4107 		if (size < mddev->array_sectors) {
4108 			spin_unlock_irq(&conf->device_lock);
4109 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4110 				mdname(mddev));
4111 			return -EINVAL;
4112 		}
4113 		mddev->resync_max_sectors = size;
4114 		conf->reshape_progress = size;
4115 	} else
4116 		conf->reshape_progress = 0;
4117 	conf->reshape_safe = conf->reshape_progress;
4118 	spin_unlock_irq(&conf->device_lock);
4119 
4120 	if (mddev->delta_disks && mddev->bitmap) {
4121 		ret = bitmap_resize(mddev->bitmap,
4122 				    raid10_size(mddev, 0,
4123 						conf->geo.raid_disks),
4124 				    0, 0);
4125 		if (ret)
4126 			goto abort;
4127 	}
4128 	if (mddev->delta_disks > 0) {
4129 		rdev_for_each(rdev, mddev)
4130 			if (rdev->raid_disk < 0 &&
4131 			    !test_bit(Faulty, &rdev->flags)) {
4132 				if (raid10_add_disk(mddev, rdev) == 0) {
4133 					if (rdev->raid_disk >=
4134 					    conf->prev.raid_disks)
4135 						set_bit(In_sync, &rdev->flags);
4136 					else
4137 						rdev->recovery_offset = 0;
4138 
4139 					if (sysfs_link_rdev(mddev, rdev))
4140 						/* Failure here  is OK */;
4141 				}
4142 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4143 				   && !test_bit(Faulty, &rdev->flags)) {
4144 				/* This is a spare that was manually added */
4145 				set_bit(In_sync, &rdev->flags);
4146 			}
4147 	}
4148 	/* When a reshape changes the number of devices,
4149 	 * ->degraded is measured against the larger of the
4150 	 * pre and  post numbers.
4151 	 */
4152 	spin_lock_irq(&conf->device_lock);
4153 	mddev->degraded = calc_degraded(conf);
4154 	spin_unlock_irq(&conf->device_lock);
4155 	mddev->raid_disks = conf->geo.raid_disks;
4156 	mddev->reshape_position = conf->reshape_progress;
4157 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4158 
4159 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4160 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4161 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4162 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4163 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4164 
4165 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4166 						"reshape");
4167 	if (!mddev->sync_thread) {
4168 		ret = -EAGAIN;
4169 		goto abort;
4170 	}
4171 	conf->reshape_checkpoint = jiffies;
4172 	md_wakeup_thread(mddev->sync_thread);
4173 	md_new_event(mddev);
4174 	return 0;
4175 
4176 abort:
4177 	mddev->recovery = 0;
4178 	spin_lock_irq(&conf->device_lock);
4179 	conf->geo = conf->prev;
4180 	mddev->raid_disks = conf->geo.raid_disks;
4181 	rdev_for_each(rdev, mddev)
4182 		rdev->new_data_offset = rdev->data_offset;
4183 	smp_wmb();
4184 	conf->reshape_progress = MaxSector;
4185 	conf->reshape_safe = MaxSector;
4186 	mddev->reshape_position = MaxSector;
4187 	spin_unlock_irq(&conf->device_lock);
4188 	return ret;
4189 }
4190 
4191 /* Calculate the last device-address that could contain
4192  * any block from the chunk that includes the array-address 's'
4193  * and report the next address.
4194  * i.e. the address returned will be chunk-aligned and after
4195  * any data that is in the chunk containing 's'.
4196  */
4197 static sector_t last_dev_address(sector_t s, struct geom *geo)
4198 {
4199 	s = (s | geo->chunk_mask) + 1;
4200 	s >>= geo->chunk_shift;
4201 	s *= geo->near_copies;
4202 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4203 	s *= geo->far_copies;
4204 	s <<= geo->chunk_shift;
4205 	return s;
4206 }
4207 
4208 /* Calculate the first device-address that could contain
4209  * any block from the chunk that includes the array-address 's'.
4210  * This too will be the start of a chunk
4211  */
4212 static sector_t first_dev_address(sector_t s, struct geom *geo)
4213 {
4214 	s >>= geo->chunk_shift;
4215 	s *= geo->near_copies;
4216 	sector_div(s, geo->raid_disks);
4217 	s *= geo->far_copies;
4218 	s <<= geo->chunk_shift;
4219 	return s;
4220 }
4221 
4222 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4223 				int *skipped)
4224 {
4225 	/* We simply copy at most one chunk (smallest of old and new)
4226 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4227 	 * or we hit a bad block or something.
4228 	 * This might mean we pause for normal IO in the middle of
4229 	 * a chunk, but that is not a problem as mddev->reshape_position
4230 	 * can record any location.
4231 	 *
4232 	 * If we will want to write to a location that isn't
4233 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4234 	 * we need to flush all reshape requests and update the metadata.
4235 	 *
4236 	 * When reshaping forwards (e.g. to more devices), we interpret
4237 	 * 'safe' as the earliest block which might not have been copied
4238 	 * down yet.  We divide this by previous stripe size and multiply
4239 	 * by previous stripe length to get lowest device offset that we
4240 	 * cannot write to yet.
4241 	 * We interpret 'sector_nr' as an address that we want to write to.
4242 	 * From this we use last_device_address() to find where we might
4243 	 * write to, and first_device_address on the  'safe' position.
4244 	 * If this 'next' write position is after the 'safe' position,
4245 	 * we must update the metadata to increase the 'safe' position.
4246 	 *
4247 	 * When reshaping backwards, we round in the opposite direction
4248 	 * and perform the reverse test:  next write position must not be
4249 	 * less than current safe position.
4250 	 *
4251 	 * In all this the minimum difference in data offsets
4252 	 * (conf->offset_diff - always positive) allows a bit of slack,
4253 	 * so next can be after 'safe', but not by more than offset_diff
4254 	 *
4255 	 * We need to prepare all the bios here before we start any IO
4256 	 * to ensure the size we choose is acceptable to all devices.
4257 	 * The means one for each copy for write-out and an extra one for
4258 	 * read-in.
4259 	 * We store the read-in bio in ->master_bio and the others in
4260 	 * ->devs[x].bio and ->devs[x].repl_bio.
4261 	 */
4262 	struct r10conf *conf = mddev->private;
4263 	struct r10bio *r10_bio;
4264 	sector_t next, safe, last;
4265 	int max_sectors;
4266 	int nr_sectors;
4267 	int s;
4268 	struct md_rdev *rdev;
4269 	int need_flush = 0;
4270 	struct bio *blist;
4271 	struct bio *bio, *read_bio;
4272 	int sectors_done = 0;
4273 	struct page **pages;
4274 
4275 	if (sector_nr == 0) {
4276 		/* If restarting in the middle, skip the initial sectors */
4277 		if (mddev->reshape_backwards &&
4278 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4279 			sector_nr = (raid10_size(mddev, 0, 0)
4280 				     - conf->reshape_progress);
4281 		} else if (!mddev->reshape_backwards &&
4282 			   conf->reshape_progress > 0)
4283 			sector_nr = conf->reshape_progress;
4284 		if (sector_nr) {
4285 			mddev->curr_resync_completed = sector_nr;
4286 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4287 			*skipped = 1;
4288 			return sector_nr;
4289 		}
4290 	}
4291 
4292 	/* We don't use sector_nr to track where we are up to
4293 	 * as that doesn't work well for ->reshape_backwards.
4294 	 * So just use ->reshape_progress.
4295 	 */
4296 	if (mddev->reshape_backwards) {
4297 		/* 'next' is the earliest device address that we might
4298 		 * write to for this chunk in the new layout
4299 		 */
4300 		next = first_dev_address(conf->reshape_progress - 1,
4301 					 &conf->geo);
4302 
4303 		/* 'safe' is the last device address that we might read from
4304 		 * in the old layout after a restart
4305 		 */
4306 		safe = last_dev_address(conf->reshape_safe - 1,
4307 					&conf->prev);
4308 
4309 		if (next + conf->offset_diff < safe)
4310 			need_flush = 1;
4311 
4312 		last = conf->reshape_progress - 1;
4313 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4314 					       & conf->prev.chunk_mask);
4315 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4316 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4317 	} else {
4318 		/* 'next' is after the last device address that we
4319 		 * might write to for this chunk in the new layout
4320 		 */
4321 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4322 
4323 		/* 'safe' is the earliest device address that we might
4324 		 * read from in the old layout after a restart
4325 		 */
4326 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4327 
4328 		/* Need to update metadata if 'next' might be beyond 'safe'
4329 		 * as that would possibly corrupt data
4330 		 */
4331 		if (next > safe + conf->offset_diff)
4332 			need_flush = 1;
4333 
4334 		sector_nr = conf->reshape_progress;
4335 		last  = sector_nr | (conf->geo.chunk_mask
4336 				     & conf->prev.chunk_mask);
4337 
4338 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4339 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4340 	}
4341 
4342 	if (need_flush ||
4343 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4344 		/* Need to update reshape_position in metadata */
4345 		wait_barrier(conf);
4346 		mddev->reshape_position = conf->reshape_progress;
4347 		if (mddev->reshape_backwards)
4348 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4349 				- conf->reshape_progress;
4350 		else
4351 			mddev->curr_resync_completed = conf->reshape_progress;
4352 		conf->reshape_checkpoint = jiffies;
4353 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4354 		md_wakeup_thread(mddev->thread);
4355 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4356 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4357 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4358 			allow_barrier(conf);
4359 			return sectors_done;
4360 		}
4361 		conf->reshape_safe = mddev->reshape_position;
4362 		allow_barrier(conf);
4363 	}
4364 
4365 read_more:
4366 	/* Now schedule reads for blocks from sector_nr to last */
4367 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4368 	r10_bio->state = 0;
4369 	raise_barrier(conf, sectors_done != 0);
4370 	atomic_set(&r10_bio->remaining, 0);
4371 	r10_bio->mddev = mddev;
4372 	r10_bio->sector = sector_nr;
4373 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4374 	r10_bio->sectors = last - sector_nr + 1;
4375 	rdev = read_balance(conf, r10_bio, &max_sectors);
4376 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4377 
4378 	if (!rdev) {
4379 		/* Cannot read from here, so need to record bad blocks
4380 		 * on all the target devices.
4381 		 */
4382 		// FIXME
4383 		mempool_free(r10_bio, conf->r10buf_pool);
4384 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4385 		return sectors_done;
4386 	}
4387 
4388 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4389 
4390 	read_bio->bi_bdev = rdev->bdev;
4391 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4392 			       + rdev->data_offset);
4393 	read_bio->bi_private = r10_bio;
4394 	read_bio->bi_end_io = end_reshape_read;
4395 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4396 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4397 	read_bio->bi_error = 0;
4398 	read_bio->bi_vcnt = 0;
4399 	read_bio->bi_iter.bi_size = 0;
4400 	r10_bio->master_bio = read_bio;
4401 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4402 
4403 	/* Now find the locations in the new layout */
4404 	__raid10_find_phys(&conf->geo, r10_bio);
4405 
4406 	blist = read_bio;
4407 	read_bio->bi_next = NULL;
4408 
4409 	rcu_read_lock();
4410 	for (s = 0; s < conf->copies*2; s++) {
4411 		struct bio *b;
4412 		int d = r10_bio->devs[s/2].devnum;
4413 		struct md_rdev *rdev2;
4414 		if (s&1) {
4415 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4416 			b = r10_bio->devs[s/2].repl_bio;
4417 		} else {
4418 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4419 			b = r10_bio->devs[s/2].bio;
4420 		}
4421 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4422 			continue;
4423 
4424 		b->bi_bdev = rdev2->bdev;
4425 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4426 			rdev2->new_data_offset;
4427 		b->bi_end_io = end_reshape_write;
4428 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4429 		b->bi_next = blist;
4430 		blist = b;
4431 	}
4432 
4433 	/* Now add as many pages as possible to all of these bios. */
4434 
4435 	nr_sectors = 0;
4436 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4437 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4438 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4439 		int len = (max_sectors - s) << 9;
4440 		if (len > PAGE_SIZE)
4441 			len = PAGE_SIZE;
4442 		for (bio = blist; bio ; bio = bio->bi_next) {
4443 			/*
4444 			 * won't fail because the vec table is big enough
4445 			 * to hold all these pages
4446 			 */
4447 			bio_add_page(bio, page, len, 0);
4448 		}
4449 		sector_nr += len >> 9;
4450 		nr_sectors += len >> 9;
4451 	}
4452 	rcu_read_unlock();
4453 	r10_bio->sectors = nr_sectors;
4454 
4455 	/* Now submit the read */
4456 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4457 	atomic_inc(&r10_bio->remaining);
4458 	read_bio->bi_next = NULL;
4459 	generic_make_request(read_bio);
4460 	sector_nr += nr_sectors;
4461 	sectors_done += nr_sectors;
4462 	if (sector_nr <= last)
4463 		goto read_more;
4464 
4465 	/* Now that we have done the whole section we can
4466 	 * update reshape_progress
4467 	 */
4468 	if (mddev->reshape_backwards)
4469 		conf->reshape_progress -= sectors_done;
4470 	else
4471 		conf->reshape_progress += sectors_done;
4472 
4473 	return sectors_done;
4474 }
4475 
4476 static void end_reshape_request(struct r10bio *r10_bio);
4477 static int handle_reshape_read_error(struct mddev *mddev,
4478 				     struct r10bio *r10_bio);
4479 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4480 {
4481 	/* Reshape read completed.  Hopefully we have a block
4482 	 * to write out.
4483 	 * If we got a read error then we do sync 1-page reads from
4484 	 * elsewhere until we find the data - or give up.
4485 	 */
4486 	struct r10conf *conf = mddev->private;
4487 	int s;
4488 
4489 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4490 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4491 			/* Reshape has been aborted */
4492 			md_done_sync(mddev, r10_bio->sectors, 0);
4493 			return;
4494 		}
4495 
4496 	/* We definitely have the data in the pages, schedule the
4497 	 * writes.
4498 	 */
4499 	atomic_set(&r10_bio->remaining, 1);
4500 	for (s = 0; s < conf->copies*2; s++) {
4501 		struct bio *b;
4502 		int d = r10_bio->devs[s/2].devnum;
4503 		struct md_rdev *rdev;
4504 		rcu_read_lock();
4505 		if (s&1) {
4506 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4507 			b = r10_bio->devs[s/2].repl_bio;
4508 		} else {
4509 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4510 			b = r10_bio->devs[s/2].bio;
4511 		}
4512 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4513 			rcu_read_unlock();
4514 			continue;
4515 		}
4516 		atomic_inc(&rdev->nr_pending);
4517 		rcu_read_unlock();
4518 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4519 		atomic_inc(&r10_bio->remaining);
4520 		b->bi_next = NULL;
4521 		generic_make_request(b);
4522 	}
4523 	end_reshape_request(r10_bio);
4524 }
4525 
4526 static void end_reshape(struct r10conf *conf)
4527 {
4528 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4529 		return;
4530 
4531 	spin_lock_irq(&conf->device_lock);
4532 	conf->prev = conf->geo;
4533 	md_finish_reshape(conf->mddev);
4534 	smp_wmb();
4535 	conf->reshape_progress = MaxSector;
4536 	conf->reshape_safe = MaxSector;
4537 	spin_unlock_irq(&conf->device_lock);
4538 
4539 	/* read-ahead size must cover two whole stripes, which is
4540 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4541 	 */
4542 	if (conf->mddev->queue) {
4543 		int stripe = conf->geo.raid_disks *
4544 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4545 		stripe /= conf->geo.near_copies;
4546 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4547 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4548 	}
4549 	conf->fullsync = 0;
4550 }
4551 
4552 static int handle_reshape_read_error(struct mddev *mddev,
4553 				     struct r10bio *r10_bio)
4554 {
4555 	/* Use sync reads to get the blocks from somewhere else */
4556 	int sectors = r10_bio->sectors;
4557 	struct r10conf *conf = mddev->private;
4558 	struct {
4559 		struct r10bio r10_bio;
4560 		struct r10dev devs[conf->copies];
4561 	} on_stack;
4562 	struct r10bio *r10b = &on_stack.r10_bio;
4563 	int slot = 0;
4564 	int idx = 0;
4565 	struct page **pages;
4566 
4567 	/* reshape IOs share pages from .devs[0].bio */
4568 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4569 
4570 	r10b->sector = r10_bio->sector;
4571 	__raid10_find_phys(&conf->prev, r10b);
4572 
4573 	while (sectors) {
4574 		int s = sectors;
4575 		int success = 0;
4576 		int first_slot = slot;
4577 
4578 		if (s > (PAGE_SIZE >> 9))
4579 			s = PAGE_SIZE >> 9;
4580 
4581 		rcu_read_lock();
4582 		while (!success) {
4583 			int d = r10b->devs[slot].devnum;
4584 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4585 			sector_t addr;
4586 			if (rdev == NULL ||
4587 			    test_bit(Faulty, &rdev->flags) ||
4588 			    !test_bit(In_sync, &rdev->flags))
4589 				goto failed;
4590 
4591 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4592 			atomic_inc(&rdev->nr_pending);
4593 			rcu_read_unlock();
4594 			success = sync_page_io(rdev,
4595 					       addr,
4596 					       s << 9,
4597 					       pages[idx],
4598 					       REQ_OP_READ, 0, false);
4599 			rdev_dec_pending(rdev, mddev);
4600 			rcu_read_lock();
4601 			if (success)
4602 				break;
4603 		failed:
4604 			slot++;
4605 			if (slot >= conf->copies)
4606 				slot = 0;
4607 			if (slot == first_slot)
4608 				break;
4609 		}
4610 		rcu_read_unlock();
4611 		if (!success) {
4612 			/* couldn't read this block, must give up */
4613 			set_bit(MD_RECOVERY_INTR,
4614 				&mddev->recovery);
4615 			return -EIO;
4616 		}
4617 		sectors -= s;
4618 		idx++;
4619 	}
4620 	return 0;
4621 }
4622 
4623 static void end_reshape_write(struct bio *bio)
4624 {
4625 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4626 	struct mddev *mddev = r10_bio->mddev;
4627 	struct r10conf *conf = mddev->private;
4628 	int d;
4629 	int slot;
4630 	int repl;
4631 	struct md_rdev *rdev = NULL;
4632 
4633 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4634 	if (repl)
4635 		rdev = conf->mirrors[d].replacement;
4636 	if (!rdev) {
4637 		smp_mb();
4638 		rdev = conf->mirrors[d].rdev;
4639 	}
4640 
4641 	if (bio->bi_error) {
4642 		/* FIXME should record badblock */
4643 		md_error(mddev, rdev);
4644 	}
4645 
4646 	rdev_dec_pending(rdev, mddev);
4647 	end_reshape_request(r10_bio);
4648 }
4649 
4650 static void end_reshape_request(struct r10bio *r10_bio)
4651 {
4652 	if (!atomic_dec_and_test(&r10_bio->remaining))
4653 		return;
4654 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4655 	bio_put(r10_bio->master_bio);
4656 	put_buf(r10_bio);
4657 }
4658 
4659 static void raid10_finish_reshape(struct mddev *mddev)
4660 {
4661 	struct r10conf *conf = mddev->private;
4662 
4663 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4664 		return;
4665 
4666 	if (mddev->delta_disks > 0) {
4667 		sector_t size = raid10_size(mddev, 0, 0);
4668 		md_set_array_sectors(mddev, size);
4669 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4670 			mddev->recovery_cp = mddev->resync_max_sectors;
4671 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4672 		}
4673 		mddev->resync_max_sectors = size;
4674 		if (mddev->queue) {
4675 			set_capacity(mddev->gendisk, mddev->array_sectors);
4676 			revalidate_disk(mddev->gendisk);
4677 		}
4678 	} else {
4679 		int d;
4680 		rcu_read_lock();
4681 		for (d = conf->geo.raid_disks ;
4682 		     d < conf->geo.raid_disks - mddev->delta_disks;
4683 		     d++) {
4684 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4685 			if (rdev)
4686 				clear_bit(In_sync, &rdev->flags);
4687 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4688 			if (rdev)
4689 				clear_bit(In_sync, &rdev->flags);
4690 		}
4691 		rcu_read_unlock();
4692 	}
4693 	mddev->layout = mddev->new_layout;
4694 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4695 	mddev->reshape_position = MaxSector;
4696 	mddev->delta_disks = 0;
4697 	mddev->reshape_backwards = 0;
4698 }
4699 
4700 static struct md_personality raid10_personality =
4701 {
4702 	.name		= "raid10",
4703 	.level		= 10,
4704 	.owner		= THIS_MODULE,
4705 	.make_request	= raid10_make_request,
4706 	.run		= raid10_run,
4707 	.free		= raid10_free,
4708 	.status		= raid10_status,
4709 	.error_handler	= raid10_error,
4710 	.hot_add_disk	= raid10_add_disk,
4711 	.hot_remove_disk= raid10_remove_disk,
4712 	.spare_active	= raid10_spare_active,
4713 	.sync_request	= raid10_sync_request,
4714 	.quiesce	= raid10_quiesce,
4715 	.size		= raid10_size,
4716 	.resize		= raid10_resize,
4717 	.takeover	= raid10_takeover,
4718 	.check_reshape	= raid10_check_reshape,
4719 	.start_reshape	= raid10_start_reshape,
4720 	.finish_reshape	= raid10_finish_reshape,
4721 	.congested	= raid10_congested,
4722 };
4723 
4724 static int __init raid_init(void)
4725 {
4726 	return register_md_personality(&raid10_personality);
4727 }
4728 
4729 static void raid_exit(void)
4730 {
4731 	unregister_md_personality(&raid10_personality);
4732 }
4733 
4734 module_init(raid_init);
4735 module_exit(raid_exit);
4736 MODULE_LICENSE("GPL");
4737 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4738 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4739 MODULE_ALIAS("md-raid10");
4740 MODULE_ALIAS("md-level-10");
4741 
4742 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4743