1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/seq_file.h> 25 #include <linux/ratelimit.h> 26 #include "md.h" 27 #include "raid10.h" 28 #include "raid0.h" 29 #include "bitmap.h" 30 31 /* 32 * RAID10 provides a combination of RAID0 and RAID1 functionality. 33 * The layout of data is defined by 34 * chunk_size 35 * raid_disks 36 * near_copies (stored in low byte of layout) 37 * far_copies (stored in second byte of layout) 38 * far_offset (stored in bit 16 of layout ) 39 * 40 * The data to be stored is divided into chunks using chunksize. 41 * Each device is divided into far_copies sections. 42 * In each section, chunks are laid out in a style similar to raid0, but 43 * near_copies copies of each chunk is stored (each on a different drive). 44 * The starting device for each section is offset near_copies from the starting 45 * device of the previous section. 46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 47 * drive. 48 * near_copies and far_copies must be at least one, and their product is at most 49 * raid_disks. 50 * 51 * If far_offset is true, then the far_copies are handled a bit differently. 52 * The copies are still in different stripes, but instead of be very far apart 53 * on disk, there are adjacent stripes. 54 */ 55 56 /* 57 * Number of guaranteed r10bios in case of extreme VM load: 58 */ 59 #define NR_RAID10_BIOS 256 60 61 /* When there are this many requests queue to be written by 62 * the raid10 thread, we become 'congested' to provide back-pressure 63 * for writeback. 64 */ 65 static int max_queued_requests = 1024; 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 70 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 71 { 72 struct r10conf *conf = data; 73 int size = offsetof(struct r10bio, devs[conf->copies]); 74 75 /* allocate a r10bio with room for raid_disks entries in the bios array */ 76 return kzalloc(size, gfp_flags); 77 } 78 79 static void r10bio_pool_free(void *r10_bio, void *data) 80 { 81 kfree(r10_bio); 82 } 83 84 /* Maximum size of each resync request */ 85 #define RESYNC_BLOCK_SIZE (64*1024) 86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 87 /* amount of memory to reserve for resync requests */ 88 #define RESYNC_WINDOW (1024*1024) 89 /* maximum number of concurrent requests, memory permitting */ 90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 91 92 /* 93 * When performing a resync, we need to read and compare, so 94 * we need as many pages are there are copies. 95 * When performing a recovery, we need 2 bios, one for read, 96 * one for write (we recover only one drive per r10buf) 97 * 98 */ 99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 100 { 101 struct r10conf *conf = data; 102 struct page *page; 103 struct r10bio *r10_bio; 104 struct bio *bio; 105 int i, j; 106 int nalloc; 107 108 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 109 if (!r10_bio) 110 return NULL; 111 112 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 113 nalloc = conf->copies; /* resync */ 114 else 115 nalloc = 2; /* recovery */ 116 117 /* 118 * Allocate bios. 119 */ 120 for (j = nalloc ; j-- ; ) { 121 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 122 if (!bio) 123 goto out_free_bio; 124 r10_bio->devs[j].bio = bio; 125 } 126 /* 127 * Allocate RESYNC_PAGES data pages and attach them 128 * where needed. 129 */ 130 for (j = 0 ; j < nalloc; j++) { 131 bio = r10_bio->devs[j].bio; 132 for (i = 0; i < RESYNC_PAGES; i++) { 133 if (j == 1 && !test_bit(MD_RECOVERY_SYNC, 134 &conf->mddev->recovery)) { 135 /* we can share bv_page's during recovery */ 136 struct bio *rbio = r10_bio->devs[0].bio; 137 page = rbio->bi_io_vec[i].bv_page; 138 get_page(page); 139 } else 140 page = alloc_page(gfp_flags); 141 if (unlikely(!page)) 142 goto out_free_pages; 143 144 bio->bi_io_vec[i].bv_page = page; 145 } 146 } 147 148 return r10_bio; 149 150 out_free_pages: 151 for ( ; i > 0 ; i--) 152 safe_put_page(bio->bi_io_vec[i-1].bv_page); 153 while (j--) 154 for (i = 0; i < RESYNC_PAGES ; i++) 155 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 156 j = -1; 157 out_free_bio: 158 while ( ++j < nalloc ) 159 bio_put(r10_bio->devs[j].bio); 160 r10bio_pool_free(r10_bio, conf); 161 return NULL; 162 } 163 164 static void r10buf_pool_free(void *__r10_bio, void *data) 165 { 166 int i; 167 struct r10conf *conf = data; 168 struct r10bio *r10bio = __r10_bio; 169 int j; 170 171 for (j=0; j < conf->copies; j++) { 172 struct bio *bio = r10bio->devs[j].bio; 173 if (bio) { 174 for (i = 0; i < RESYNC_PAGES; i++) { 175 safe_put_page(bio->bi_io_vec[i].bv_page); 176 bio->bi_io_vec[i].bv_page = NULL; 177 } 178 bio_put(bio); 179 } 180 } 181 r10bio_pool_free(r10bio, conf); 182 } 183 184 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 185 { 186 int i; 187 188 for (i = 0; i < conf->copies; i++) { 189 struct bio **bio = & r10_bio->devs[i].bio; 190 if (!BIO_SPECIAL(*bio)) 191 bio_put(*bio); 192 *bio = NULL; 193 } 194 } 195 196 static void free_r10bio(struct r10bio *r10_bio) 197 { 198 struct r10conf *conf = r10_bio->mddev->private; 199 200 put_all_bios(conf, r10_bio); 201 mempool_free(r10_bio, conf->r10bio_pool); 202 } 203 204 static void put_buf(struct r10bio *r10_bio) 205 { 206 struct r10conf *conf = r10_bio->mddev->private; 207 208 mempool_free(r10_bio, conf->r10buf_pool); 209 210 lower_barrier(conf); 211 } 212 213 static void reschedule_retry(struct r10bio *r10_bio) 214 { 215 unsigned long flags; 216 struct mddev *mddev = r10_bio->mddev; 217 struct r10conf *conf = mddev->private; 218 219 spin_lock_irqsave(&conf->device_lock, flags); 220 list_add(&r10_bio->retry_list, &conf->retry_list); 221 conf->nr_queued ++; 222 spin_unlock_irqrestore(&conf->device_lock, flags); 223 224 /* wake up frozen array... */ 225 wake_up(&conf->wait_barrier); 226 227 md_wakeup_thread(mddev->thread); 228 } 229 230 /* 231 * raid_end_bio_io() is called when we have finished servicing a mirrored 232 * operation and are ready to return a success/failure code to the buffer 233 * cache layer. 234 */ 235 static void raid_end_bio_io(struct r10bio *r10_bio) 236 { 237 struct bio *bio = r10_bio->master_bio; 238 int done; 239 struct r10conf *conf = r10_bio->mddev->private; 240 241 if (bio->bi_phys_segments) { 242 unsigned long flags; 243 spin_lock_irqsave(&conf->device_lock, flags); 244 bio->bi_phys_segments--; 245 done = (bio->bi_phys_segments == 0); 246 spin_unlock_irqrestore(&conf->device_lock, flags); 247 } else 248 done = 1; 249 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 250 clear_bit(BIO_UPTODATE, &bio->bi_flags); 251 if (done) { 252 bio_endio(bio, 0); 253 /* 254 * Wake up any possible resync thread that waits for the device 255 * to go idle. 256 */ 257 allow_barrier(conf); 258 } 259 free_r10bio(r10_bio); 260 } 261 262 /* 263 * Update disk head position estimator based on IRQ completion info. 264 */ 265 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 266 { 267 struct r10conf *conf = r10_bio->mddev->private; 268 269 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 270 r10_bio->devs[slot].addr + (r10_bio->sectors); 271 } 272 273 /* 274 * Find the disk number which triggered given bio 275 */ 276 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 277 struct bio *bio, int *slotp) 278 { 279 int slot; 280 281 for (slot = 0; slot < conf->copies; slot++) 282 if (r10_bio->devs[slot].bio == bio) 283 break; 284 285 BUG_ON(slot == conf->copies); 286 update_head_pos(slot, r10_bio); 287 288 if (slotp) 289 *slotp = slot; 290 return r10_bio->devs[slot].devnum; 291 } 292 293 static void raid10_end_read_request(struct bio *bio, int error) 294 { 295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 296 struct r10bio *r10_bio = bio->bi_private; 297 int slot, dev; 298 struct r10conf *conf = r10_bio->mddev->private; 299 300 301 slot = r10_bio->read_slot; 302 dev = r10_bio->devs[slot].devnum; 303 /* 304 * this branch is our 'one mirror IO has finished' event handler: 305 */ 306 update_head_pos(slot, r10_bio); 307 308 if (uptodate) { 309 /* 310 * Set R10BIO_Uptodate in our master bio, so that 311 * we will return a good error code to the higher 312 * levels even if IO on some other mirrored buffer fails. 313 * 314 * The 'master' represents the composite IO operation to 315 * user-side. So if something waits for IO, then it will 316 * wait for the 'master' bio. 317 */ 318 set_bit(R10BIO_Uptodate, &r10_bio->state); 319 raid_end_bio_io(r10_bio); 320 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 321 } else { 322 /* 323 * oops, read error - keep the refcount on the rdev 324 */ 325 char b[BDEVNAME_SIZE]; 326 printk_ratelimited(KERN_ERR 327 "md/raid10:%s: %s: rescheduling sector %llu\n", 328 mdname(conf->mddev), 329 bdevname(conf->mirrors[dev].rdev->bdev, b), 330 (unsigned long long)r10_bio->sector); 331 set_bit(R10BIO_ReadError, &r10_bio->state); 332 reschedule_retry(r10_bio); 333 } 334 } 335 336 static void close_write(struct r10bio *r10_bio) 337 { 338 /* clear the bitmap if all writes complete successfully */ 339 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 340 r10_bio->sectors, 341 !test_bit(R10BIO_Degraded, &r10_bio->state), 342 0); 343 md_write_end(r10_bio->mddev); 344 } 345 346 static void one_write_done(struct r10bio *r10_bio) 347 { 348 if (atomic_dec_and_test(&r10_bio->remaining)) { 349 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 350 reschedule_retry(r10_bio); 351 else { 352 close_write(r10_bio); 353 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 354 reschedule_retry(r10_bio); 355 else 356 raid_end_bio_io(r10_bio); 357 } 358 } 359 } 360 361 static void raid10_end_write_request(struct bio *bio, int error) 362 { 363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 364 struct r10bio *r10_bio = bio->bi_private; 365 int dev; 366 int dec_rdev = 1; 367 struct r10conf *conf = r10_bio->mddev->private; 368 int slot; 369 370 dev = find_bio_disk(conf, r10_bio, bio, &slot); 371 372 /* 373 * this branch is our 'one mirror IO has finished' event handler: 374 */ 375 if (!uptodate) { 376 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags); 377 set_bit(R10BIO_WriteError, &r10_bio->state); 378 dec_rdev = 0; 379 } else { 380 /* 381 * Set R10BIO_Uptodate in our master bio, so that 382 * we will return a good error code for to the higher 383 * levels even if IO on some other mirrored buffer fails. 384 * 385 * The 'master' represents the composite IO operation to 386 * user-side. So if something waits for IO, then it will 387 * wait for the 'master' bio. 388 */ 389 sector_t first_bad; 390 int bad_sectors; 391 392 set_bit(R10BIO_Uptodate, &r10_bio->state); 393 394 /* Maybe we can clear some bad blocks. */ 395 if (is_badblock(conf->mirrors[dev].rdev, 396 r10_bio->devs[slot].addr, 397 r10_bio->sectors, 398 &first_bad, &bad_sectors)) { 399 bio_put(bio); 400 r10_bio->devs[slot].bio = IO_MADE_GOOD; 401 dec_rdev = 0; 402 set_bit(R10BIO_MadeGood, &r10_bio->state); 403 } 404 } 405 406 /* 407 * 408 * Let's see if all mirrored write operations have finished 409 * already. 410 */ 411 one_write_done(r10_bio); 412 if (dec_rdev) 413 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 414 } 415 416 417 /* 418 * RAID10 layout manager 419 * As well as the chunksize and raid_disks count, there are two 420 * parameters: near_copies and far_copies. 421 * near_copies * far_copies must be <= raid_disks. 422 * Normally one of these will be 1. 423 * If both are 1, we get raid0. 424 * If near_copies == raid_disks, we get raid1. 425 * 426 * Chunks are laid out in raid0 style with near_copies copies of the 427 * first chunk, followed by near_copies copies of the next chunk and 428 * so on. 429 * If far_copies > 1, then after 1/far_copies of the array has been assigned 430 * as described above, we start again with a device offset of near_copies. 431 * So we effectively have another copy of the whole array further down all 432 * the drives, but with blocks on different drives. 433 * With this layout, and block is never stored twice on the one device. 434 * 435 * raid10_find_phys finds the sector offset of a given virtual sector 436 * on each device that it is on. 437 * 438 * raid10_find_virt does the reverse mapping, from a device and a 439 * sector offset to a virtual address 440 */ 441 442 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 443 { 444 int n,f; 445 sector_t sector; 446 sector_t chunk; 447 sector_t stripe; 448 int dev; 449 450 int slot = 0; 451 452 /* now calculate first sector/dev */ 453 chunk = r10bio->sector >> conf->chunk_shift; 454 sector = r10bio->sector & conf->chunk_mask; 455 456 chunk *= conf->near_copies; 457 stripe = chunk; 458 dev = sector_div(stripe, conf->raid_disks); 459 if (conf->far_offset) 460 stripe *= conf->far_copies; 461 462 sector += stripe << conf->chunk_shift; 463 464 /* and calculate all the others */ 465 for (n=0; n < conf->near_copies; n++) { 466 int d = dev; 467 sector_t s = sector; 468 r10bio->devs[slot].addr = sector; 469 r10bio->devs[slot].devnum = d; 470 slot++; 471 472 for (f = 1; f < conf->far_copies; f++) { 473 d += conf->near_copies; 474 if (d >= conf->raid_disks) 475 d -= conf->raid_disks; 476 s += conf->stride; 477 r10bio->devs[slot].devnum = d; 478 r10bio->devs[slot].addr = s; 479 slot++; 480 } 481 dev++; 482 if (dev >= conf->raid_disks) { 483 dev = 0; 484 sector += (conf->chunk_mask + 1); 485 } 486 } 487 BUG_ON(slot != conf->copies); 488 } 489 490 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 491 { 492 sector_t offset, chunk, vchunk; 493 494 offset = sector & conf->chunk_mask; 495 if (conf->far_offset) { 496 int fc; 497 chunk = sector >> conf->chunk_shift; 498 fc = sector_div(chunk, conf->far_copies); 499 dev -= fc * conf->near_copies; 500 if (dev < 0) 501 dev += conf->raid_disks; 502 } else { 503 while (sector >= conf->stride) { 504 sector -= conf->stride; 505 if (dev < conf->near_copies) 506 dev += conf->raid_disks - conf->near_copies; 507 else 508 dev -= conf->near_copies; 509 } 510 chunk = sector >> conf->chunk_shift; 511 } 512 vchunk = chunk * conf->raid_disks + dev; 513 sector_div(vchunk, conf->near_copies); 514 return (vchunk << conf->chunk_shift) + offset; 515 } 516 517 /** 518 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 519 * @q: request queue 520 * @bvm: properties of new bio 521 * @biovec: the request that could be merged to it. 522 * 523 * Return amount of bytes we can accept at this offset 524 * If near_copies == raid_disk, there are no striping issues, 525 * but in that case, the function isn't called at all. 526 */ 527 static int raid10_mergeable_bvec(struct request_queue *q, 528 struct bvec_merge_data *bvm, 529 struct bio_vec *biovec) 530 { 531 struct mddev *mddev = q->queuedata; 532 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 533 int max; 534 unsigned int chunk_sectors = mddev->chunk_sectors; 535 unsigned int bio_sectors = bvm->bi_size >> 9; 536 537 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 538 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 539 if (max <= biovec->bv_len && bio_sectors == 0) 540 return biovec->bv_len; 541 else 542 return max; 543 } 544 545 /* 546 * This routine returns the disk from which the requested read should 547 * be done. There is a per-array 'next expected sequential IO' sector 548 * number - if this matches on the next IO then we use the last disk. 549 * There is also a per-disk 'last know head position' sector that is 550 * maintained from IRQ contexts, both the normal and the resync IO 551 * completion handlers update this position correctly. If there is no 552 * perfect sequential match then we pick the disk whose head is closest. 553 * 554 * If there are 2 mirrors in the same 2 devices, performance degrades 555 * because position is mirror, not device based. 556 * 557 * The rdev for the device selected will have nr_pending incremented. 558 */ 559 560 /* 561 * FIXME: possibly should rethink readbalancing and do it differently 562 * depending on near_copies / far_copies geometry. 563 */ 564 static int read_balance(struct r10conf *conf, struct r10bio *r10_bio, int *max_sectors) 565 { 566 const sector_t this_sector = r10_bio->sector; 567 int disk, slot; 568 int sectors = r10_bio->sectors; 569 int best_good_sectors; 570 sector_t new_distance, best_dist; 571 struct md_rdev *rdev; 572 int do_balance; 573 int best_slot; 574 575 raid10_find_phys(conf, r10_bio); 576 rcu_read_lock(); 577 retry: 578 sectors = r10_bio->sectors; 579 best_slot = -1; 580 best_dist = MaxSector; 581 best_good_sectors = 0; 582 do_balance = 1; 583 /* 584 * Check if we can balance. We can balance on the whole 585 * device if no resync is going on (recovery is ok), or below 586 * the resync window. We take the first readable disk when 587 * above the resync window. 588 */ 589 if (conf->mddev->recovery_cp < MaxSector 590 && (this_sector + sectors >= conf->next_resync)) 591 do_balance = 0; 592 593 for (slot = 0; slot < conf->copies ; slot++) { 594 sector_t first_bad; 595 int bad_sectors; 596 sector_t dev_sector; 597 598 if (r10_bio->devs[slot].bio == IO_BLOCKED) 599 continue; 600 disk = r10_bio->devs[slot].devnum; 601 rdev = rcu_dereference(conf->mirrors[disk].rdev); 602 if (rdev == NULL) 603 continue; 604 if (!test_bit(In_sync, &rdev->flags)) 605 continue; 606 607 dev_sector = r10_bio->devs[slot].addr; 608 if (is_badblock(rdev, dev_sector, sectors, 609 &first_bad, &bad_sectors)) { 610 if (best_dist < MaxSector) 611 /* Already have a better slot */ 612 continue; 613 if (first_bad <= dev_sector) { 614 /* Cannot read here. If this is the 615 * 'primary' device, then we must not read 616 * beyond 'bad_sectors' from another device. 617 */ 618 bad_sectors -= (dev_sector - first_bad); 619 if (!do_balance && sectors > bad_sectors) 620 sectors = bad_sectors; 621 if (best_good_sectors > sectors) 622 best_good_sectors = sectors; 623 } else { 624 sector_t good_sectors = 625 first_bad - dev_sector; 626 if (good_sectors > best_good_sectors) { 627 best_good_sectors = good_sectors; 628 best_slot = slot; 629 } 630 if (!do_balance) 631 /* Must read from here */ 632 break; 633 } 634 continue; 635 } else 636 best_good_sectors = sectors; 637 638 if (!do_balance) 639 break; 640 641 /* This optimisation is debatable, and completely destroys 642 * sequential read speed for 'far copies' arrays. So only 643 * keep it for 'near' arrays, and review those later. 644 */ 645 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 646 break; 647 648 /* for far > 1 always use the lowest address */ 649 if (conf->far_copies > 1) 650 new_distance = r10_bio->devs[slot].addr; 651 else 652 new_distance = abs(r10_bio->devs[slot].addr - 653 conf->mirrors[disk].head_position); 654 if (new_distance < best_dist) { 655 best_dist = new_distance; 656 best_slot = slot; 657 } 658 } 659 if (slot == conf->copies) 660 slot = best_slot; 661 662 if (slot >= 0) { 663 disk = r10_bio->devs[slot].devnum; 664 rdev = rcu_dereference(conf->mirrors[disk].rdev); 665 if (!rdev) 666 goto retry; 667 atomic_inc(&rdev->nr_pending); 668 if (test_bit(Faulty, &rdev->flags)) { 669 /* Cannot risk returning a device that failed 670 * before we inc'ed nr_pending 671 */ 672 rdev_dec_pending(rdev, conf->mddev); 673 goto retry; 674 } 675 r10_bio->read_slot = slot; 676 } else 677 disk = -1; 678 rcu_read_unlock(); 679 *max_sectors = best_good_sectors; 680 681 return disk; 682 } 683 684 static int raid10_congested(void *data, int bits) 685 { 686 struct mddev *mddev = data; 687 struct r10conf *conf = mddev->private; 688 int i, ret = 0; 689 690 if ((bits & (1 << BDI_async_congested)) && 691 conf->pending_count >= max_queued_requests) 692 return 1; 693 694 if (mddev_congested(mddev, bits)) 695 return 1; 696 rcu_read_lock(); 697 for (i = 0; i < conf->raid_disks && ret == 0; i++) { 698 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 699 if (rdev && !test_bit(Faulty, &rdev->flags)) { 700 struct request_queue *q = bdev_get_queue(rdev->bdev); 701 702 ret |= bdi_congested(&q->backing_dev_info, bits); 703 } 704 } 705 rcu_read_unlock(); 706 return ret; 707 } 708 709 static void flush_pending_writes(struct r10conf *conf) 710 { 711 /* Any writes that have been queued but are awaiting 712 * bitmap updates get flushed here. 713 */ 714 spin_lock_irq(&conf->device_lock); 715 716 if (conf->pending_bio_list.head) { 717 struct bio *bio; 718 bio = bio_list_get(&conf->pending_bio_list); 719 conf->pending_count = 0; 720 spin_unlock_irq(&conf->device_lock); 721 /* flush any pending bitmap writes to disk 722 * before proceeding w/ I/O */ 723 bitmap_unplug(conf->mddev->bitmap); 724 wake_up(&conf->wait_barrier); 725 726 while (bio) { /* submit pending writes */ 727 struct bio *next = bio->bi_next; 728 bio->bi_next = NULL; 729 generic_make_request(bio); 730 bio = next; 731 } 732 } else 733 spin_unlock_irq(&conf->device_lock); 734 } 735 736 /* Barriers.... 737 * Sometimes we need to suspend IO while we do something else, 738 * either some resync/recovery, or reconfigure the array. 739 * To do this we raise a 'barrier'. 740 * The 'barrier' is a counter that can be raised multiple times 741 * to count how many activities are happening which preclude 742 * normal IO. 743 * We can only raise the barrier if there is no pending IO. 744 * i.e. if nr_pending == 0. 745 * We choose only to raise the barrier if no-one is waiting for the 746 * barrier to go down. This means that as soon as an IO request 747 * is ready, no other operations which require a barrier will start 748 * until the IO request has had a chance. 749 * 750 * So: regular IO calls 'wait_barrier'. When that returns there 751 * is no backgroup IO happening, It must arrange to call 752 * allow_barrier when it has finished its IO. 753 * backgroup IO calls must call raise_barrier. Once that returns 754 * there is no normal IO happeing. It must arrange to call 755 * lower_barrier when the particular background IO completes. 756 */ 757 758 static void raise_barrier(struct r10conf *conf, int force) 759 { 760 BUG_ON(force && !conf->barrier); 761 spin_lock_irq(&conf->resync_lock); 762 763 /* Wait until no block IO is waiting (unless 'force') */ 764 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 765 conf->resync_lock, ); 766 767 /* block any new IO from starting */ 768 conf->barrier++; 769 770 /* Now wait for all pending IO to complete */ 771 wait_event_lock_irq(conf->wait_barrier, 772 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 773 conf->resync_lock, ); 774 775 spin_unlock_irq(&conf->resync_lock); 776 } 777 778 static void lower_barrier(struct r10conf *conf) 779 { 780 unsigned long flags; 781 spin_lock_irqsave(&conf->resync_lock, flags); 782 conf->barrier--; 783 spin_unlock_irqrestore(&conf->resync_lock, flags); 784 wake_up(&conf->wait_barrier); 785 } 786 787 static void wait_barrier(struct r10conf *conf) 788 { 789 spin_lock_irq(&conf->resync_lock); 790 if (conf->barrier) { 791 conf->nr_waiting++; 792 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 793 conf->resync_lock, 794 ); 795 conf->nr_waiting--; 796 } 797 conf->nr_pending++; 798 spin_unlock_irq(&conf->resync_lock); 799 } 800 801 static void allow_barrier(struct r10conf *conf) 802 { 803 unsigned long flags; 804 spin_lock_irqsave(&conf->resync_lock, flags); 805 conf->nr_pending--; 806 spin_unlock_irqrestore(&conf->resync_lock, flags); 807 wake_up(&conf->wait_barrier); 808 } 809 810 static void freeze_array(struct r10conf *conf) 811 { 812 /* stop syncio and normal IO and wait for everything to 813 * go quiet. 814 * We increment barrier and nr_waiting, and then 815 * wait until nr_pending match nr_queued+1 816 * This is called in the context of one normal IO request 817 * that has failed. Thus any sync request that might be pending 818 * will be blocked by nr_pending, and we need to wait for 819 * pending IO requests to complete or be queued for re-try. 820 * Thus the number queued (nr_queued) plus this request (1) 821 * must match the number of pending IOs (nr_pending) before 822 * we continue. 823 */ 824 spin_lock_irq(&conf->resync_lock); 825 conf->barrier++; 826 conf->nr_waiting++; 827 wait_event_lock_irq(conf->wait_barrier, 828 conf->nr_pending == conf->nr_queued+1, 829 conf->resync_lock, 830 flush_pending_writes(conf)); 831 832 spin_unlock_irq(&conf->resync_lock); 833 } 834 835 static void unfreeze_array(struct r10conf *conf) 836 { 837 /* reverse the effect of the freeze */ 838 spin_lock_irq(&conf->resync_lock); 839 conf->barrier--; 840 conf->nr_waiting--; 841 wake_up(&conf->wait_barrier); 842 spin_unlock_irq(&conf->resync_lock); 843 } 844 845 static int make_request(struct mddev *mddev, struct bio * bio) 846 { 847 struct r10conf *conf = mddev->private; 848 struct mirror_info *mirror; 849 struct r10bio *r10_bio; 850 struct bio *read_bio; 851 int i; 852 int chunk_sects = conf->chunk_mask + 1; 853 const int rw = bio_data_dir(bio); 854 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 855 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 856 unsigned long flags; 857 struct md_rdev *blocked_rdev; 858 int plugged; 859 int sectors_handled; 860 int max_sectors; 861 862 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 863 md_flush_request(mddev, bio); 864 return 0; 865 } 866 867 /* If this request crosses a chunk boundary, we need to 868 * split it. This will only happen for 1 PAGE (or less) requests. 869 */ 870 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 871 > chunk_sects && 872 conf->near_copies < conf->raid_disks)) { 873 struct bio_pair *bp; 874 /* Sanity check -- queue functions should prevent this happening */ 875 if (bio->bi_vcnt != 1 || 876 bio->bi_idx != 0) 877 goto bad_map; 878 /* This is a one page bio that upper layers 879 * refuse to split for us, so we need to split it. 880 */ 881 bp = bio_split(bio, 882 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 883 884 /* Each of these 'make_request' calls will call 'wait_barrier'. 885 * If the first succeeds but the second blocks due to the resync 886 * thread raising the barrier, we will deadlock because the 887 * IO to the underlying device will be queued in generic_make_request 888 * and will never complete, so will never reduce nr_pending. 889 * So increment nr_waiting here so no new raise_barriers will 890 * succeed, and so the second wait_barrier cannot block. 891 */ 892 spin_lock_irq(&conf->resync_lock); 893 conf->nr_waiting++; 894 spin_unlock_irq(&conf->resync_lock); 895 896 if (make_request(mddev, &bp->bio1)) 897 generic_make_request(&bp->bio1); 898 if (make_request(mddev, &bp->bio2)) 899 generic_make_request(&bp->bio2); 900 901 spin_lock_irq(&conf->resync_lock); 902 conf->nr_waiting--; 903 wake_up(&conf->wait_barrier); 904 spin_unlock_irq(&conf->resync_lock); 905 906 bio_pair_release(bp); 907 return 0; 908 bad_map: 909 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 910 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 911 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 912 913 bio_io_error(bio); 914 return 0; 915 } 916 917 md_write_start(mddev, bio); 918 919 /* 920 * Register the new request and wait if the reconstruction 921 * thread has put up a bar for new requests. 922 * Continue immediately if no resync is active currently. 923 */ 924 wait_barrier(conf); 925 926 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 927 928 r10_bio->master_bio = bio; 929 r10_bio->sectors = bio->bi_size >> 9; 930 931 r10_bio->mddev = mddev; 932 r10_bio->sector = bio->bi_sector; 933 r10_bio->state = 0; 934 935 /* We might need to issue multiple reads to different 936 * devices if there are bad blocks around, so we keep 937 * track of the number of reads in bio->bi_phys_segments. 938 * If this is 0, there is only one r10_bio and no locking 939 * will be needed when the request completes. If it is 940 * non-zero, then it is the number of not-completed requests. 941 */ 942 bio->bi_phys_segments = 0; 943 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 944 945 if (rw == READ) { 946 /* 947 * read balancing logic: 948 */ 949 int disk; 950 int slot; 951 952 read_again: 953 disk = read_balance(conf, r10_bio, &max_sectors); 954 slot = r10_bio->read_slot; 955 if (disk < 0) { 956 raid_end_bio_io(r10_bio); 957 return 0; 958 } 959 mirror = conf->mirrors + disk; 960 961 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 962 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 963 max_sectors); 964 965 r10_bio->devs[slot].bio = read_bio; 966 967 read_bio->bi_sector = r10_bio->devs[slot].addr + 968 mirror->rdev->data_offset; 969 read_bio->bi_bdev = mirror->rdev->bdev; 970 read_bio->bi_end_io = raid10_end_read_request; 971 read_bio->bi_rw = READ | do_sync; 972 read_bio->bi_private = r10_bio; 973 974 if (max_sectors < r10_bio->sectors) { 975 /* Could not read all from this device, so we will 976 * need another r10_bio. 977 */ 978 sectors_handled = (r10_bio->sectors + max_sectors 979 - bio->bi_sector); 980 r10_bio->sectors = max_sectors; 981 spin_lock_irq(&conf->device_lock); 982 if (bio->bi_phys_segments == 0) 983 bio->bi_phys_segments = 2; 984 else 985 bio->bi_phys_segments++; 986 spin_unlock(&conf->device_lock); 987 /* Cannot call generic_make_request directly 988 * as that will be queued in __generic_make_request 989 * and subsequent mempool_alloc might block 990 * waiting for it. so hand bio over to raid10d. 991 */ 992 reschedule_retry(r10_bio); 993 994 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 995 996 r10_bio->master_bio = bio; 997 r10_bio->sectors = ((bio->bi_size >> 9) 998 - sectors_handled); 999 r10_bio->state = 0; 1000 r10_bio->mddev = mddev; 1001 r10_bio->sector = bio->bi_sector + sectors_handled; 1002 goto read_again; 1003 } else 1004 generic_make_request(read_bio); 1005 return 0; 1006 } 1007 1008 /* 1009 * WRITE: 1010 */ 1011 if (conf->pending_count >= max_queued_requests) { 1012 md_wakeup_thread(mddev->thread); 1013 wait_event(conf->wait_barrier, 1014 conf->pending_count < max_queued_requests); 1015 } 1016 /* first select target devices under rcu_lock and 1017 * inc refcount on their rdev. Record them by setting 1018 * bios[x] to bio 1019 * If there are known/acknowledged bad blocks on any device 1020 * on which we have seen a write error, we want to avoid 1021 * writing to those blocks. This potentially requires several 1022 * writes to write around the bad blocks. Each set of writes 1023 * gets its own r10_bio with a set of bios attached. The number 1024 * of r10_bios is recored in bio->bi_phys_segments just as with 1025 * the read case. 1026 */ 1027 plugged = mddev_check_plugged(mddev); 1028 1029 raid10_find_phys(conf, r10_bio); 1030 retry_write: 1031 blocked_rdev = NULL; 1032 rcu_read_lock(); 1033 max_sectors = r10_bio->sectors; 1034 1035 for (i = 0; i < conf->copies; i++) { 1036 int d = r10_bio->devs[i].devnum; 1037 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1038 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1039 atomic_inc(&rdev->nr_pending); 1040 blocked_rdev = rdev; 1041 break; 1042 } 1043 r10_bio->devs[i].bio = NULL; 1044 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1045 set_bit(R10BIO_Degraded, &r10_bio->state); 1046 continue; 1047 } 1048 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1049 sector_t first_bad; 1050 sector_t dev_sector = r10_bio->devs[i].addr; 1051 int bad_sectors; 1052 int is_bad; 1053 1054 is_bad = is_badblock(rdev, dev_sector, 1055 max_sectors, 1056 &first_bad, &bad_sectors); 1057 if (is_bad < 0) { 1058 /* Mustn't write here until the bad block 1059 * is acknowledged 1060 */ 1061 atomic_inc(&rdev->nr_pending); 1062 set_bit(BlockedBadBlocks, &rdev->flags); 1063 blocked_rdev = rdev; 1064 break; 1065 } 1066 if (is_bad && first_bad <= dev_sector) { 1067 /* Cannot write here at all */ 1068 bad_sectors -= (dev_sector - first_bad); 1069 if (bad_sectors < max_sectors) 1070 /* Mustn't write more than bad_sectors 1071 * to other devices yet 1072 */ 1073 max_sectors = bad_sectors; 1074 /* We don't set R10BIO_Degraded as that 1075 * only applies if the disk is missing, 1076 * so it might be re-added, and we want to 1077 * know to recover this chunk. 1078 * In this case the device is here, and the 1079 * fact that this chunk is not in-sync is 1080 * recorded in the bad block log. 1081 */ 1082 continue; 1083 } 1084 if (is_bad) { 1085 int good_sectors = first_bad - dev_sector; 1086 if (good_sectors < max_sectors) 1087 max_sectors = good_sectors; 1088 } 1089 } 1090 r10_bio->devs[i].bio = bio; 1091 atomic_inc(&rdev->nr_pending); 1092 } 1093 rcu_read_unlock(); 1094 1095 if (unlikely(blocked_rdev)) { 1096 /* Have to wait for this device to get unblocked, then retry */ 1097 int j; 1098 int d; 1099 1100 for (j = 0; j < i; j++) 1101 if (r10_bio->devs[j].bio) { 1102 d = r10_bio->devs[j].devnum; 1103 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1104 } 1105 allow_barrier(conf); 1106 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1107 wait_barrier(conf); 1108 goto retry_write; 1109 } 1110 1111 if (max_sectors < r10_bio->sectors) { 1112 /* We are splitting this into multiple parts, so 1113 * we need to prepare for allocating another r10_bio. 1114 */ 1115 r10_bio->sectors = max_sectors; 1116 spin_lock_irq(&conf->device_lock); 1117 if (bio->bi_phys_segments == 0) 1118 bio->bi_phys_segments = 2; 1119 else 1120 bio->bi_phys_segments++; 1121 spin_unlock_irq(&conf->device_lock); 1122 } 1123 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1124 1125 atomic_set(&r10_bio->remaining, 1); 1126 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1127 1128 for (i = 0; i < conf->copies; i++) { 1129 struct bio *mbio; 1130 int d = r10_bio->devs[i].devnum; 1131 if (!r10_bio->devs[i].bio) 1132 continue; 1133 1134 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1135 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1136 max_sectors); 1137 r10_bio->devs[i].bio = mbio; 1138 1139 mbio->bi_sector = (r10_bio->devs[i].addr+ 1140 conf->mirrors[d].rdev->data_offset); 1141 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1142 mbio->bi_end_io = raid10_end_write_request; 1143 mbio->bi_rw = WRITE | do_sync | do_fua; 1144 mbio->bi_private = r10_bio; 1145 1146 atomic_inc(&r10_bio->remaining); 1147 spin_lock_irqsave(&conf->device_lock, flags); 1148 bio_list_add(&conf->pending_bio_list, mbio); 1149 conf->pending_count++; 1150 spin_unlock_irqrestore(&conf->device_lock, flags); 1151 } 1152 1153 /* Don't remove the bias on 'remaining' (one_write_done) until 1154 * after checking if we need to go around again. 1155 */ 1156 1157 if (sectors_handled < (bio->bi_size >> 9)) { 1158 one_write_done(r10_bio); 1159 /* We need another r10_bio. It has already been counted 1160 * in bio->bi_phys_segments. 1161 */ 1162 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1163 1164 r10_bio->master_bio = bio; 1165 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1166 1167 r10_bio->mddev = mddev; 1168 r10_bio->sector = bio->bi_sector + sectors_handled; 1169 r10_bio->state = 0; 1170 goto retry_write; 1171 } 1172 one_write_done(r10_bio); 1173 1174 /* In case raid10d snuck in to freeze_array */ 1175 wake_up(&conf->wait_barrier); 1176 1177 if (do_sync || !mddev->bitmap || !plugged) 1178 md_wakeup_thread(mddev->thread); 1179 return 0; 1180 } 1181 1182 static void status(struct seq_file *seq, struct mddev *mddev) 1183 { 1184 struct r10conf *conf = mddev->private; 1185 int i; 1186 1187 if (conf->near_copies < conf->raid_disks) 1188 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1189 if (conf->near_copies > 1) 1190 seq_printf(seq, " %d near-copies", conf->near_copies); 1191 if (conf->far_copies > 1) { 1192 if (conf->far_offset) 1193 seq_printf(seq, " %d offset-copies", conf->far_copies); 1194 else 1195 seq_printf(seq, " %d far-copies", conf->far_copies); 1196 } 1197 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1198 conf->raid_disks - mddev->degraded); 1199 for (i = 0; i < conf->raid_disks; i++) 1200 seq_printf(seq, "%s", 1201 conf->mirrors[i].rdev && 1202 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1203 seq_printf(seq, "]"); 1204 } 1205 1206 /* check if there are enough drives for 1207 * every block to appear on atleast one. 1208 * Don't consider the device numbered 'ignore' 1209 * as we might be about to remove it. 1210 */ 1211 static int enough(struct r10conf *conf, int ignore) 1212 { 1213 int first = 0; 1214 1215 do { 1216 int n = conf->copies; 1217 int cnt = 0; 1218 while (n--) { 1219 if (conf->mirrors[first].rdev && 1220 first != ignore) 1221 cnt++; 1222 first = (first+1) % conf->raid_disks; 1223 } 1224 if (cnt == 0) 1225 return 0; 1226 } while (first != 0); 1227 return 1; 1228 } 1229 1230 static void error(struct mddev *mddev, struct md_rdev *rdev) 1231 { 1232 char b[BDEVNAME_SIZE]; 1233 struct r10conf *conf = mddev->private; 1234 1235 /* 1236 * If it is not operational, then we have already marked it as dead 1237 * else if it is the last working disks, ignore the error, let the 1238 * next level up know. 1239 * else mark the drive as failed 1240 */ 1241 if (test_bit(In_sync, &rdev->flags) 1242 && !enough(conf, rdev->raid_disk)) 1243 /* 1244 * Don't fail the drive, just return an IO error. 1245 */ 1246 return; 1247 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1248 unsigned long flags; 1249 spin_lock_irqsave(&conf->device_lock, flags); 1250 mddev->degraded++; 1251 spin_unlock_irqrestore(&conf->device_lock, flags); 1252 /* 1253 * if recovery is running, make sure it aborts. 1254 */ 1255 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1256 } 1257 set_bit(Blocked, &rdev->flags); 1258 set_bit(Faulty, &rdev->flags); 1259 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1260 printk(KERN_ALERT 1261 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1262 "md/raid10:%s: Operation continuing on %d devices.\n", 1263 mdname(mddev), bdevname(rdev->bdev, b), 1264 mdname(mddev), conf->raid_disks - mddev->degraded); 1265 } 1266 1267 static void print_conf(struct r10conf *conf) 1268 { 1269 int i; 1270 struct mirror_info *tmp; 1271 1272 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1273 if (!conf) { 1274 printk(KERN_DEBUG "(!conf)\n"); 1275 return; 1276 } 1277 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1278 conf->raid_disks); 1279 1280 for (i = 0; i < conf->raid_disks; i++) { 1281 char b[BDEVNAME_SIZE]; 1282 tmp = conf->mirrors + i; 1283 if (tmp->rdev) 1284 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1285 i, !test_bit(In_sync, &tmp->rdev->flags), 1286 !test_bit(Faulty, &tmp->rdev->flags), 1287 bdevname(tmp->rdev->bdev,b)); 1288 } 1289 } 1290 1291 static void close_sync(struct r10conf *conf) 1292 { 1293 wait_barrier(conf); 1294 allow_barrier(conf); 1295 1296 mempool_destroy(conf->r10buf_pool); 1297 conf->r10buf_pool = NULL; 1298 } 1299 1300 static int raid10_spare_active(struct mddev *mddev) 1301 { 1302 int i; 1303 struct r10conf *conf = mddev->private; 1304 struct mirror_info *tmp; 1305 int count = 0; 1306 unsigned long flags; 1307 1308 /* 1309 * Find all non-in_sync disks within the RAID10 configuration 1310 * and mark them in_sync 1311 */ 1312 for (i = 0; i < conf->raid_disks; i++) { 1313 tmp = conf->mirrors + i; 1314 if (tmp->rdev 1315 && !test_bit(Faulty, &tmp->rdev->flags) 1316 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1317 count++; 1318 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1319 } 1320 } 1321 spin_lock_irqsave(&conf->device_lock, flags); 1322 mddev->degraded -= count; 1323 spin_unlock_irqrestore(&conf->device_lock, flags); 1324 1325 print_conf(conf); 1326 return count; 1327 } 1328 1329 1330 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1331 { 1332 struct r10conf *conf = mddev->private; 1333 int err = -EEXIST; 1334 int mirror; 1335 int first = 0; 1336 int last = conf->raid_disks - 1; 1337 1338 if (mddev->recovery_cp < MaxSector) 1339 /* only hot-add to in-sync arrays, as recovery is 1340 * very different from resync 1341 */ 1342 return -EBUSY; 1343 if (!enough(conf, -1)) 1344 return -EINVAL; 1345 1346 if (rdev->raid_disk >= 0) 1347 first = last = rdev->raid_disk; 1348 1349 if (rdev->saved_raid_disk >= first && 1350 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1351 mirror = rdev->saved_raid_disk; 1352 else 1353 mirror = first; 1354 for ( ; mirror <= last ; mirror++) { 1355 struct mirror_info *p = &conf->mirrors[mirror]; 1356 if (p->recovery_disabled == mddev->recovery_disabled) 1357 continue; 1358 if (!p->rdev) 1359 continue; 1360 1361 disk_stack_limits(mddev->gendisk, rdev->bdev, 1362 rdev->data_offset << 9); 1363 /* as we don't honour merge_bvec_fn, we must 1364 * never risk violating it, so limit 1365 * ->max_segments to one lying with a single 1366 * page, as a one page request is never in 1367 * violation. 1368 */ 1369 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1370 blk_queue_max_segments(mddev->queue, 1); 1371 blk_queue_segment_boundary(mddev->queue, 1372 PAGE_CACHE_SIZE - 1); 1373 } 1374 1375 p->head_position = 0; 1376 p->recovery_disabled = mddev->recovery_disabled - 1; 1377 rdev->raid_disk = mirror; 1378 err = 0; 1379 if (rdev->saved_raid_disk != mirror) 1380 conf->fullsync = 1; 1381 rcu_assign_pointer(p->rdev, rdev); 1382 break; 1383 } 1384 1385 md_integrity_add_rdev(rdev, mddev); 1386 print_conf(conf); 1387 return err; 1388 } 1389 1390 static int raid10_remove_disk(struct mddev *mddev, int number) 1391 { 1392 struct r10conf *conf = mddev->private; 1393 int err = 0; 1394 struct md_rdev *rdev; 1395 struct mirror_info *p = conf->mirrors+ number; 1396 1397 print_conf(conf); 1398 rdev = p->rdev; 1399 if (rdev) { 1400 if (test_bit(In_sync, &rdev->flags) || 1401 atomic_read(&rdev->nr_pending)) { 1402 err = -EBUSY; 1403 goto abort; 1404 } 1405 /* Only remove faulty devices in recovery 1406 * is not possible. 1407 */ 1408 if (!test_bit(Faulty, &rdev->flags) && 1409 mddev->recovery_disabled != p->recovery_disabled && 1410 enough(conf, -1)) { 1411 err = -EBUSY; 1412 goto abort; 1413 } 1414 p->rdev = NULL; 1415 synchronize_rcu(); 1416 if (atomic_read(&rdev->nr_pending)) { 1417 /* lost the race, try later */ 1418 err = -EBUSY; 1419 p->rdev = rdev; 1420 goto abort; 1421 } 1422 err = md_integrity_register(mddev); 1423 } 1424 abort: 1425 1426 print_conf(conf); 1427 return err; 1428 } 1429 1430 1431 static void end_sync_read(struct bio *bio, int error) 1432 { 1433 struct r10bio *r10_bio = bio->bi_private; 1434 struct r10conf *conf = r10_bio->mddev->private; 1435 int d; 1436 1437 d = find_bio_disk(conf, r10_bio, bio, NULL); 1438 1439 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1440 set_bit(R10BIO_Uptodate, &r10_bio->state); 1441 else 1442 /* The write handler will notice the lack of 1443 * R10BIO_Uptodate and record any errors etc 1444 */ 1445 atomic_add(r10_bio->sectors, 1446 &conf->mirrors[d].rdev->corrected_errors); 1447 1448 /* for reconstruct, we always reschedule after a read. 1449 * for resync, only after all reads 1450 */ 1451 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1452 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1453 atomic_dec_and_test(&r10_bio->remaining)) { 1454 /* we have read all the blocks, 1455 * do the comparison in process context in raid10d 1456 */ 1457 reschedule_retry(r10_bio); 1458 } 1459 } 1460 1461 static void end_sync_request(struct r10bio *r10_bio) 1462 { 1463 struct mddev *mddev = r10_bio->mddev; 1464 1465 while (atomic_dec_and_test(&r10_bio->remaining)) { 1466 if (r10_bio->master_bio == NULL) { 1467 /* the primary of several recovery bios */ 1468 sector_t s = r10_bio->sectors; 1469 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1470 test_bit(R10BIO_WriteError, &r10_bio->state)) 1471 reschedule_retry(r10_bio); 1472 else 1473 put_buf(r10_bio); 1474 md_done_sync(mddev, s, 1); 1475 break; 1476 } else { 1477 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1478 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1479 test_bit(R10BIO_WriteError, &r10_bio->state)) 1480 reschedule_retry(r10_bio); 1481 else 1482 put_buf(r10_bio); 1483 r10_bio = r10_bio2; 1484 } 1485 } 1486 } 1487 1488 static void end_sync_write(struct bio *bio, int error) 1489 { 1490 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1491 struct r10bio *r10_bio = bio->bi_private; 1492 struct mddev *mddev = r10_bio->mddev; 1493 struct r10conf *conf = mddev->private; 1494 int d; 1495 sector_t first_bad; 1496 int bad_sectors; 1497 int slot; 1498 1499 d = find_bio_disk(conf, r10_bio, bio, &slot); 1500 1501 if (!uptodate) { 1502 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags); 1503 set_bit(R10BIO_WriteError, &r10_bio->state); 1504 } else if (is_badblock(conf->mirrors[d].rdev, 1505 r10_bio->devs[slot].addr, 1506 r10_bio->sectors, 1507 &first_bad, &bad_sectors)) 1508 set_bit(R10BIO_MadeGood, &r10_bio->state); 1509 1510 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1511 1512 end_sync_request(r10_bio); 1513 } 1514 1515 /* 1516 * Note: sync and recover and handled very differently for raid10 1517 * This code is for resync. 1518 * For resync, we read through virtual addresses and read all blocks. 1519 * If there is any error, we schedule a write. The lowest numbered 1520 * drive is authoritative. 1521 * However requests come for physical address, so we need to map. 1522 * For every physical address there are raid_disks/copies virtual addresses, 1523 * which is always are least one, but is not necessarly an integer. 1524 * This means that a physical address can span multiple chunks, so we may 1525 * have to submit multiple io requests for a single sync request. 1526 */ 1527 /* 1528 * We check if all blocks are in-sync and only write to blocks that 1529 * aren't in sync 1530 */ 1531 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1532 { 1533 struct r10conf *conf = mddev->private; 1534 int i, first; 1535 struct bio *tbio, *fbio; 1536 1537 atomic_set(&r10_bio->remaining, 1); 1538 1539 /* find the first device with a block */ 1540 for (i=0; i<conf->copies; i++) 1541 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1542 break; 1543 1544 if (i == conf->copies) 1545 goto done; 1546 1547 first = i; 1548 fbio = r10_bio->devs[i].bio; 1549 1550 /* now find blocks with errors */ 1551 for (i=0 ; i < conf->copies ; i++) { 1552 int j, d; 1553 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1554 1555 tbio = r10_bio->devs[i].bio; 1556 1557 if (tbio->bi_end_io != end_sync_read) 1558 continue; 1559 if (i == first) 1560 continue; 1561 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1562 /* We know that the bi_io_vec layout is the same for 1563 * both 'first' and 'i', so we just compare them. 1564 * All vec entries are PAGE_SIZE; 1565 */ 1566 for (j = 0; j < vcnt; j++) 1567 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1568 page_address(tbio->bi_io_vec[j].bv_page), 1569 PAGE_SIZE)) 1570 break; 1571 if (j == vcnt) 1572 continue; 1573 mddev->resync_mismatches += r10_bio->sectors; 1574 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1575 /* Don't fix anything. */ 1576 continue; 1577 } 1578 /* Ok, we need to write this bio, either to correct an 1579 * inconsistency or to correct an unreadable block. 1580 * First we need to fixup bv_offset, bv_len and 1581 * bi_vecs, as the read request might have corrupted these 1582 */ 1583 tbio->bi_vcnt = vcnt; 1584 tbio->bi_size = r10_bio->sectors << 9; 1585 tbio->bi_idx = 0; 1586 tbio->bi_phys_segments = 0; 1587 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1588 tbio->bi_flags |= 1 << BIO_UPTODATE; 1589 tbio->bi_next = NULL; 1590 tbio->bi_rw = WRITE; 1591 tbio->bi_private = r10_bio; 1592 tbio->bi_sector = r10_bio->devs[i].addr; 1593 1594 for (j=0; j < vcnt ; j++) { 1595 tbio->bi_io_vec[j].bv_offset = 0; 1596 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1597 1598 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1599 page_address(fbio->bi_io_vec[j].bv_page), 1600 PAGE_SIZE); 1601 } 1602 tbio->bi_end_io = end_sync_write; 1603 1604 d = r10_bio->devs[i].devnum; 1605 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1606 atomic_inc(&r10_bio->remaining); 1607 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1608 1609 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1610 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1611 generic_make_request(tbio); 1612 } 1613 1614 done: 1615 if (atomic_dec_and_test(&r10_bio->remaining)) { 1616 md_done_sync(mddev, r10_bio->sectors, 1); 1617 put_buf(r10_bio); 1618 } 1619 } 1620 1621 /* 1622 * Now for the recovery code. 1623 * Recovery happens across physical sectors. 1624 * We recover all non-is_sync drives by finding the virtual address of 1625 * each, and then choose a working drive that also has that virt address. 1626 * There is a separate r10_bio for each non-in_sync drive. 1627 * Only the first two slots are in use. The first for reading, 1628 * The second for writing. 1629 * 1630 */ 1631 static void fix_recovery_read_error(struct r10bio *r10_bio) 1632 { 1633 /* We got a read error during recovery. 1634 * We repeat the read in smaller page-sized sections. 1635 * If a read succeeds, write it to the new device or record 1636 * a bad block if we cannot. 1637 * If a read fails, record a bad block on both old and 1638 * new devices. 1639 */ 1640 struct mddev *mddev = r10_bio->mddev; 1641 struct r10conf *conf = mddev->private; 1642 struct bio *bio = r10_bio->devs[0].bio; 1643 sector_t sect = 0; 1644 int sectors = r10_bio->sectors; 1645 int idx = 0; 1646 int dr = r10_bio->devs[0].devnum; 1647 int dw = r10_bio->devs[1].devnum; 1648 1649 while (sectors) { 1650 int s = sectors; 1651 struct md_rdev *rdev; 1652 sector_t addr; 1653 int ok; 1654 1655 if (s > (PAGE_SIZE>>9)) 1656 s = PAGE_SIZE >> 9; 1657 1658 rdev = conf->mirrors[dr].rdev; 1659 addr = r10_bio->devs[0].addr + sect, 1660 ok = sync_page_io(rdev, 1661 addr, 1662 s << 9, 1663 bio->bi_io_vec[idx].bv_page, 1664 READ, false); 1665 if (ok) { 1666 rdev = conf->mirrors[dw].rdev; 1667 addr = r10_bio->devs[1].addr + sect; 1668 ok = sync_page_io(rdev, 1669 addr, 1670 s << 9, 1671 bio->bi_io_vec[idx].bv_page, 1672 WRITE, false); 1673 if (!ok) 1674 set_bit(WriteErrorSeen, &rdev->flags); 1675 } 1676 if (!ok) { 1677 /* We don't worry if we cannot set a bad block - 1678 * it really is bad so there is no loss in not 1679 * recording it yet 1680 */ 1681 rdev_set_badblocks(rdev, addr, s, 0); 1682 1683 if (rdev != conf->mirrors[dw].rdev) { 1684 /* need bad block on destination too */ 1685 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 1686 addr = r10_bio->devs[1].addr + sect; 1687 ok = rdev_set_badblocks(rdev2, addr, s, 0); 1688 if (!ok) { 1689 /* just abort the recovery */ 1690 printk(KERN_NOTICE 1691 "md/raid10:%s: recovery aborted" 1692 " due to read error\n", 1693 mdname(mddev)); 1694 1695 conf->mirrors[dw].recovery_disabled 1696 = mddev->recovery_disabled; 1697 set_bit(MD_RECOVERY_INTR, 1698 &mddev->recovery); 1699 break; 1700 } 1701 } 1702 } 1703 1704 sectors -= s; 1705 sect += s; 1706 idx++; 1707 } 1708 } 1709 1710 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1711 { 1712 struct r10conf *conf = mddev->private; 1713 int d; 1714 struct bio *wbio; 1715 1716 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 1717 fix_recovery_read_error(r10_bio); 1718 end_sync_request(r10_bio); 1719 return; 1720 } 1721 1722 /* 1723 * share the pages with the first bio 1724 * and submit the write request 1725 */ 1726 wbio = r10_bio->devs[1].bio; 1727 d = r10_bio->devs[1].devnum; 1728 1729 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1730 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1731 generic_make_request(wbio); 1732 } 1733 1734 1735 /* 1736 * Used by fix_read_error() to decay the per rdev read_errors. 1737 * We halve the read error count for every hour that has elapsed 1738 * since the last recorded read error. 1739 * 1740 */ 1741 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 1742 { 1743 struct timespec cur_time_mon; 1744 unsigned long hours_since_last; 1745 unsigned int read_errors = atomic_read(&rdev->read_errors); 1746 1747 ktime_get_ts(&cur_time_mon); 1748 1749 if (rdev->last_read_error.tv_sec == 0 && 1750 rdev->last_read_error.tv_nsec == 0) { 1751 /* first time we've seen a read error */ 1752 rdev->last_read_error = cur_time_mon; 1753 return; 1754 } 1755 1756 hours_since_last = (cur_time_mon.tv_sec - 1757 rdev->last_read_error.tv_sec) / 3600; 1758 1759 rdev->last_read_error = cur_time_mon; 1760 1761 /* 1762 * if hours_since_last is > the number of bits in read_errors 1763 * just set read errors to 0. We do this to avoid 1764 * overflowing the shift of read_errors by hours_since_last. 1765 */ 1766 if (hours_since_last >= 8 * sizeof(read_errors)) 1767 atomic_set(&rdev->read_errors, 0); 1768 else 1769 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 1770 } 1771 1772 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 1773 int sectors, struct page *page, int rw) 1774 { 1775 sector_t first_bad; 1776 int bad_sectors; 1777 1778 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 1779 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 1780 return -1; 1781 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1782 /* success */ 1783 return 1; 1784 if (rw == WRITE) 1785 set_bit(WriteErrorSeen, &rdev->flags); 1786 /* need to record an error - either for the block or the device */ 1787 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1788 md_error(rdev->mddev, rdev); 1789 return 0; 1790 } 1791 1792 /* 1793 * This is a kernel thread which: 1794 * 1795 * 1. Retries failed read operations on working mirrors. 1796 * 2. Updates the raid superblock when problems encounter. 1797 * 3. Performs writes following reads for array synchronising. 1798 */ 1799 1800 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 1801 { 1802 int sect = 0; /* Offset from r10_bio->sector */ 1803 int sectors = r10_bio->sectors; 1804 struct md_rdev*rdev; 1805 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 1806 int d = r10_bio->devs[r10_bio->read_slot].devnum; 1807 1808 /* still own a reference to this rdev, so it cannot 1809 * have been cleared recently. 1810 */ 1811 rdev = conf->mirrors[d].rdev; 1812 1813 if (test_bit(Faulty, &rdev->flags)) 1814 /* drive has already been failed, just ignore any 1815 more fix_read_error() attempts */ 1816 return; 1817 1818 check_decay_read_errors(mddev, rdev); 1819 atomic_inc(&rdev->read_errors); 1820 if (atomic_read(&rdev->read_errors) > max_read_errors) { 1821 char b[BDEVNAME_SIZE]; 1822 bdevname(rdev->bdev, b); 1823 1824 printk(KERN_NOTICE 1825 "md/raid10:%s: %s: Raid device exceeded " 1826 "read_error threshold [cur %d:max %d]\n", 1827 mdname(mddev), b, 1828 atomic_read(&rdev->read_errors), max_read_errors); 1829 printk(KERN_NOTICE 1830 "md/raid10:%s: %s: Failing raid device\n", 1831 mdname(mddev), b); 1832 md_error(mddev, conf->mirrors[d].rdev); 1833 return; 1834 } 1835 1836 while(sectors) { 1837 int s = sectors; 1838 int sl = r10_bio->read_slot; 1839 int success = 0; 1840 int start; 1841 1842 if (s > (PAGE_SIZE>>9)) 1843 s = PAGE_SIZE >> 9; 1844 1845 rcu_read_lock(); 1846 do { 1847 sector_t first_bad; 1848 int bad_sectors; 1849 1850 d = r10_bio->devs[sl].devnum; 1851 rdev = rcu_dereference(conf->mirrors[d].rdev); 1852 if (rdev && 1853 test_bit(In_sync, &rdev->flags) && 1854 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 1855 &first_bad, &bad_sectors) == 0) { 1856 atomic_inc(&rdev->nr_pending); 1857 rcu_read_unlock(); 1858 success = sync_page_io(rdev, 1859 r10_bio->devs[sl].addr + 1860 sect, 1861 s<<9, 1862 conf->tmppage, READ, false); 1863 rdev_dec_pending(rdev, mddev); 1864 rcu_read_lock(); 1865 if (success) 1866 break; 1867 } 1868 sl++; 1869 if (sl == conf->copies) 1870 sl = 0; 1871 } while (!success && sl != r10_bio->read_slot); 1872 rcu_read_unlock(); 1873 1874 if (!success) { 1875 /* Cannot read from anywhere, just mark the block 1876 * as bad on the first device to discourage future 1877 * reads. 1878 */ 1879 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1880 rdev = conf->mirrors[dn].rdev; 1881 1882 if (!rdev_set_badblocks( 1883 rdev, 1884 r10_bio->devs[r10_bio->read_slot].addr 1885 + sect, 1886 s, 0)) 1887 md_error(mddev, rdev); 1888 break; 1889 } 1890 1891 start = sl; 1892 /* write it back and re-read */ 1893 rcu_read_lock(); 1894 while (sl != r10_bio->read_slot) { 1895 char b[BDEVNAME_SIZE]; 1896 1897 if (sl==0) 1898 sl = conf->copies; 1899 sl--; 1900 d = r10_bio->devs[sl].devnum; 1901 rdev = rcu_dereference(conf->mirrors[d].rdev); 1902 if (!rdev || 1903 !test_bit(In_sync, &rdev->flags)) 1904 continue; 1905 1906 atomic_inc(&rdev->nr_pending); 1907 rcu_read_unlock(); 1908 if (r10_sync_page_io(rdev, 1909 r10_bio->devs[sl].addr + 1910 sect, 1911 s<<9, conf->tmppage, WRITE) 1912 == 0) { 1913 /* Well, this device is dead */ 1914 printk(KERN_NOTICE 1915 "md/raid10:%s: read correction " 1916 "write failed" 1917 " (%d sectors at %llu on %s)\n", 1918 mdname(mddev), s, 1919 (unsigned long long)( 1920 sect + rdev->data_offset), 1921 bdevname(rdev->bdev, b)); 1922 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 1923 "drive\n", 1924 mdname(mddev), 1925 bdevname(rdev->bdev, b)); 1926 } 1927 rdev_dec_pending(rdev, mddev); 1928 rcu_read_lock(); 1929 } 1930 sl = start; 1931 while (sl != r10_bio->read_slot) { 1932 char b[BDEVNAME_SIZE]; 1933 1934 if (sl==0) 1935 sl = conf->copies; 1936 sl--; 1937 d = r10_bio->devs[sl].devnum; 1938 rdev = rcu_dereference(conf->mirrors[d].rdev); 1939 if (!rdev || 1940 !test_bit(In_sync, &rdev->flags)) 1941 continue; 1942 1943 atomic_inc(&rdev->nr_pending); 1944 rcu_read_unlock(); 1945 switch (r10_sync_page_io(rdev, 1946 r10_bio->devs[sl].addr + 1947 sect, 1948 s<<9, conf->tmppage, 1949 READ)) { 1950 case 0: 1951 /* Well, this device is dead */ 1952 printk(KERN_NOTICE 1953 "md/raid10:%s: unable to read back " 1954 "corrected sectors" 1955 " (%d sectors at %llu on %s)\n", 1956 mdname(mddev), s, 1957 (unsigned long long)( 1958 sect + rdev->data_offset), 1959 bdevname(rdev->bdev, b)); 1960 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 1961 "drive\n", 1962 mdname(mddev), 1963 bdevname(rdev->bdev, b)); 1964 break; 1965 case 1: 1966 printk(KERN_INFO 1967 "md/raid10:%s: read error corrected" 1968 " (%d sectors at %llu on %s)\n", 1969 mdname(mddev), s, 1970 (unsigned long long)( 1971 sect + rdev->data_offset), 1972 bdevname(rdev->bdev, b)); 1973 atomic_add(s, &rdev->corrected_errors); 1974 } 1975 1976 rdev_dec_pending(rdev, mddev); 1977 rcu_read_lock(); 1978 } 1979 rcu_read_unlock(); 1980 1981 sectors -= s; 1982 sect += s; 1983 } 1984 } 1985 1986 static void bi_complete(struct bio *bio, int error) 1987 { 1988 complete((struct completion *)bio->bi_private); 1989 } 1990 1991 static int submit_bio_wait(int rw, struct bio *bio) 1992 { 1993 struct completion event; 1994 rw |= REQ_SYNC; 1995 1996 init_completion(&event); 1997 bio->bi_private = &event; 1998 bio->bi_end_io = bi_complete; 1999 submit_bio(rw, bio); 2000 wait_for_completion(&event); 2001 2002 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2003 } 2004 2005 static int narrow_write_error(struct r10bio *r10_bio, int i) 2006 { 2007 struct bio *bio = r10_bio->master_bio; 2008 struct mddev *mddev = r10_bio->mddev; 2009 struct r10conf *conf = mddev->private; 2010 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2011 /* bio has the data to be written to slot 'i' where 2012 * we just recently had a write error. 2013 * We repeatedly clone the bio and trim down to one block, 2014 * then try the write. Where the write fails we record 2015 * a bad block. 2016 * It is conceivable that the bio doesn't exactly align with 2017 * blocks. We must handle this. 2018 * 2019 * We currently own a reference to the rdev. 2020 */ 2021 2022 int block_sectors; 2023 sector_t sector; 2024 int sectors; 2025 int sect_to_write = r10_bio->sectors; 2026 int ok = 1; 2027 2028 if (rdev->badblocks.shift < 0) 2029 return 0; 2030 2031 block_sectors = 1 << rdev->badblocks.shift; 2032 sector = r10_bio->sector; 2033 sectors = ((r10_bio->sector + block_sectors) 2034 & ~(sector_t)(block_sectors - 1)) 2035 - sector; 2036 2037 while (sect_to_write) { 2038 struct bio *wbio; 2039 if (sectors > sect_to_write) 2040 sectors = sect_to_write; 2041 /* Write at 'sector' for 'sectors' */ 2042 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2043 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2044 wbio->bi_sector = (r10_bio->devs[i].addr+ 2045 rdev->data_offset+ 2046 (sector - r10_bio->sector)); 2047 wbio->bi_bdev = rdev->bdev; 2048 if (submit_bio_wait(WRITE, wbio) == 0) 2049 /* Failure! */ 2050 ok = rdev_set_badblocks(rdev, sector, 2051 sectors, 0) 2052 && ok; 2053 2054 bio_put(wbio); 2055 sect_to_write -= sectors; 2056 sector += sectors; 2057 sectors = block_sectors; 2058 } 2059 return ok; 2060 } 2061 2062 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2063 { 2064 int slot = r10_bio->read_slot; 2065 int mirror = r10_bio->devs[slot].devnum; 2066 struct bio *bio; 2067 struct r10conf *conf = mddev->private; 2068 struct md_rdev *rdev; 2069 char b[BDEVNAME_SIZE]; 2070 unsigned long do_sync; 2071 int max_sectors; 2072 2073 /* we got a read error. Maybe the drive is bad. Maybe just 2074 * the block and we can fix it. 2075 * We freeze all other IO, and try reading the block from 2076 * other devices. When we find one, we re-write 2077 * and check it that fixes the read error. 2078 * This is all done synchronously while the array is 2079 * frozen. 2080 */ 2081 if (mddev->ro == 0) { 2082 freeze_array(conf); 2083 fix_read_error(conf, mddev, r10_bio); 2084 unfreeze_array(conf); 2085 } 2086 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev); 2087 2088 bio = r10_bio->devs[slot].bio; 2089 bdevname(bio->bi_bdev, b); 2090 r10_bio->devs[slot].bio = 2091 mddev->ro ? IO_BLOCKED : NULL; 2092 read_more: 2093 mirror = read_balance(conf, r10_bio, &max_sectors); 2094 if (mirror == -1) { 2095 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2096 " read error for block %llu\n", 2097 mdname(mddev), b, 2098 (unsigned long long)r10_bio->sector); 2099 raid_end_bio_io(r10_bio); 2100 bio_put(bio); 2101 return; 2102 } 2103 2104 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2105 if (bio) 2106 bio_put(bio); 2107 slot = r10_bio->read_slot; 2108 rdev = conf->mirrors[mirror].rdev; 2109 printk_ratelimited( 2110 KERN_ERR 2111 "md/raid10:%s: %s: redirecting" 2112 "sector %llu to another mirror\n", 2113 mdname(mddev), 2114 bdevname(rdev->bdev, b), 2115 (unsigned long long)r10_bio->sector); 2116 bio = bio_clone_mddev(r10_bio->master_bio, 2117 GFP_NOIO, mddev); 2118 md_trim_bio(bio, 2119 r10_bio->sector - bio->bi_sector, 2120 max_sectors); 2121 r10_bio->devs[slot].bio = bio; 2122 bio->bi_sector = r10_bio->devs[slot].addr 2123 + rdev->data_offset; 2124 bio->bi_bdev = rdev->bdev; 2125 bio->bi_rw = READ | do_sync; 2126 bio->bi_private = r10_bio; 2127 bio->bi_end_io = raid10_end_read_request; 2128 if (max_sectors < r10_bio->sectors) { 2129 /* Drat - have to split this up more */ 2130 struct bio *mbio = r10_bio->master_bio; 2131 int sectors_handled = 2132 r10_bio->sector + max_sectors 2133 - mbio->bi_sector; 2134 r10_bio->sectors = max_sectors; 2135 spin_lock_irq(&conf->device_lock); 2136 if (mbio->bi_phys_segments == 0) 2137 mbio->bi_phys_segments = 2; 2138 else 2139 mbio->bi_phys_segments++; 2140 spin_unlock_irq(&conf->device_lock); 2141 generic_make_request(bio); 2142 bio = NULL; 2143 2144 r10_bio = mempool_alloc(conf->r10bio_pool, 2145 GFP_NOIO); 2146 r10_bio->master_bio = mbio; 2147 r10_bio->sectors = (mbio->bi_size >> 9) 2148 - sectors_handled; 2149 r10_bio->state = 0; 2150 set_bit(R10BIO_ReadError, 2151 &r10_bio->state); 2152 r10_bio->mddev = mddev; 2153 r10_bio->sector = mbio->bi_sector 2154 + sectors_handled; 2155 2156 goto read_more; 2157 } else 2158 generic_make_request(bio); 2159 } 2160 2161 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2162 { 2163 /* Some sort of write request has finished and it 2164 * succeeded in writing where we thought there was a 2165 * bad block. So forget the bad block. 2166 * Or possibly if failed and we need to record 2167 * a bad block. 2168 */ 2169 int m; 2170 struct md_rdev *rdev; 2171 2172 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2173 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2174 for (m = 0; m < conf->copies; m++) { 2175 int dev = r10_bio->devs[m].devnum; 2176 rdev = conf->mirrors[dev].rdev; 2177 if (r10_bio->devs[m].bio == NULL) 2178 continue; 2179 if (test_bit(BIO_UPTODATE, 2180 &r10_bio->devs[m].bio->bi_flags)) { 2181 rdev_clear_badblocks( 2182 rdev, 2183 r10_bio->devs[m].addr, 2184 r10_bio->sectors); 2185 } else { 2186 if (!rdev_set_badblocks( 2187 rdev, 2188 r10_bio->devs[m].addr, 2189 r10_bio->sectors, 0)) 2190 md_error(conf->mddev, rdev); 2191 } 2192 } 2193 put_buf(r10_bio); 2194 } else { 2195 for (m = 0; m < conf->copies; m++) { 2196 int dev = r10_bio->devs[m].devnum; 2197 struct bio *bio = r10_bio->devs[m].bio; 2198 rdev = conf->mirrors[dev].rdev; 2199 if (bio == IO_MADE_GOOD) { 2200 rdev_clear_badblocks( 2201 rdev, 2202 r10_bio->devs[m].addr, 2203 r10_bio->sectors); 2204 rdev_dec_pending(rdev, conf->mddev); 2205 } else if (bio != NULL && 2206 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2207 if (!narrow_write_error(r10_bio, m)) { 2208 md_error(conf->mddev, rdev); 2209 set_bit(R10BIO_Degraded, 2210 &r10_bio->state); 2211 } 2212 rdev_dec_pending(rdev, conf->mddev); 2213 } 2214 } 2215 if (test_bit(R10BIO_WriteError, 2216 &r10_bio->state)) 2217 close_write(r10_bio); 2218 raid_end_bio_io(r10_bio); 2219 } 2220 } 2221 2222 static void raid10d(struct mddev *mddev) 2223 { 2224 struct r10bio *r10_bio; 2225 unsigned long flags; 2226 struct r10conf *conf = mddev->private; 2227 struct list_head *head = &conf->retry_list; 2228 struct blk_plug plug; 2229 2230 md_check_recovery(mddev); 2231 2232 blk_start_plug(&plug); 2233 for (;;) { 2234 2235 flush_pending_writes(conf); 2236 2237 spin_lock_irqsave(&conf->device_lock, flags); 2238 if (list_empty(head)) { 2239 spin_unlock_irqrestore(&conf->device_lock, flags); 2240 break; 2241 } 2242 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2243 list_del(head->prev); 2244 conf->nr_queued--; 2245 spin_unlock_irqrestore(&conf->device_lock, flags); 2246 2247 mddev = r10_bio->mddev; 2248 conf = mddev->private; 2249 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2250 test_bit(R10BIO_WriteError, &r10_bio->state)) 2251 handle_write_completed(conf, r10_bio); 2252 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2253 sync_request_write(mddev, r10_bio); 2254 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2255 recovery_request_write(mddev, r10_bio); 2256 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2257 handle_read_error(mddev, r10_bio); 2258 else { 2259 /* just a partial read to be scheduled from a 2260 * separate context 2261 */ 2262 int slot = r10_bio->read_slot; 2263 generic_make_request(r10_bio->devs[slot].bio); 2264 } 2265 2266 cond_resched(); 2267 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2268 md_check_recovery(mddev); 2269 } 2270 blk_finish_plug(&plug); 2271 } 2272 2273 2274 static int init_resync(struct r10conf *conf) 2275 { 2276 int buffs; 2277 2278 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2279 BUG_ON(conf->r10buf_pool); 2280 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2281 if (!conf->r10buf_pool) 2282 return -ENOMEM; 2283 conf->next_resync = 0; 2284 return 0; 2285 } 2286 2287 /* 2288 * perform a "sync" on one "block" 2289 * 2290 * We need to make sure that no normal I/O request - particularly write 2291 * requests - conflict with active sync requests. 2292 * 2293 * This is achieved by tracking pending requests and a 'barrier' concept 2294 * that can be installed to exclude normal IO requests. 2295 * 2296 * Resync and recovery are handled very differently. 2297 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2298 * 2299 * For resync, we iterate over virtual addresses, read all copies, 2300 * and update if there are differences. If only one copy is live, 2301 * skip it. 2302 * For recovery, we iterate over physical addresses, read a good 2303 * value for each non-in_sync drive, and over-write. 2304 * 2305 * So, for recovery we may have several outstanding complex requests for a 2306 * given address, one for each out-of-sync device. We model this by allocating 2307 * a number of r10_bio structures, one for each out-of-sync device. 2308 * As we setup these structures, we collect all bio's together into a list 2309 * which we then process collectively to add pages, and then process again 2310 * to pass to generic_make_request. 2311 * 2312 * The r10_bio structures are linked using a borrowed master_bio pointer. 2313 * This link is counted in ->remaining. When the r10_bio that points to NULL 2314 * has its remaining count decremented to 0, the whole complex operation 2315 * is complete. 2316 * 2317 */ 2318 2319 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2320 int *skipped, int go_faster) 2321 { 2322 struct r10conf *conf = mddev->private; 2323 struct r10bio *r10_bio; 2324 struct bio *biolist = NULL, *bio; 2325 sector_t max_sector, nr_sectors; 2326 int i; 2327 int max_sync; 2328 sector_t sync_blocks; 2329 sector_t sectors_skipped = 0; 2330 int chunks_skipped = 0; 2331 2332 if (!conf->r10buf_pool) 2333 if (init_resync(conf)) 2334 return 0; 2335 2336 skipped: 2337 max_sector = mddev->dev_sectors; 2338 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2339 max_sector = mddev->resync_max_sectors; 2340 if (sector_nr >= max_sector) { 2341 /* If we aborted, we need to abort the 2342 * sync on the 'current' bitmap chucks (there can 2343 * be several when recovering multiple devices). 2344 * as we may have started syncing it but not finished. 2345 * We can find the current address in 2346 * mddev->curr_resync, but for recovery, 2347 * we need to convert that to several 2348 * virtual addresses. 2349 */ 2350 if (mddev->curr_resync < max_sector) { /* aborted */ 2351 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2352 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2353 &sync_blocks, 1); 2354 else for (i=0; i<conf->raid_disks; i++) { 2355 sector_t sect = 2356 raid10_find_virt(conf, mddev->curr_resync, i); 2357 bitmap_end_sync(mddev->bitmap, sect, 2358 &sync_blocks, 1); 2359 } 2360 } else /* completed sync */ 2361 conf->fullsync = 0; 2362 2363 bitmap_close_sync(mddev->bitmap); 2364 close_sync(conf); 2365 *skipped = 1; 2366 return sectors_skipped; 2367 } 2368 if (chunks_skipped >= conf->raid_disks) { 2369 /* if there has been nothing to do on any drive, 2370 * then there is nothing to do at all.. 2371 */ 2372 *skipped = 1; 2373 return (max_sector - sector_nr) + sectors_skipped; 2374 } 2375 2376 if (max_sector > mddev->resync_max) 2377 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2378 2379 /* make sure whole request will fit in a chunk - if chunks 2380 * are meaningful 2381 */ 2382 if (conf->near_copies < conf->raid_disks && 2383 max_sector > (sector_nr | conf->chunk_mask)) 2384 max_sector = (sector_nr | conf->chunk_mask) + 1; 2385 /* 2386 * If there is non-resync activity waiting for us then 2387 * put in a delay to throttle resync. 2388 */ 2389 if (!go_faster && conf->nr_waiting) 2390 msleep_interruptible(1000); 2391 2392 /* Again, very different code for resync and recovery. 2393 * Both must result in an r10bio with a list of bios that 2394 * have bi_end_io, bi_sector, bi_bdev set, 2395 * and bi_private set to the r10bio. 2396 * For recovery, we may actually create several r10bios 2397 * with 2 bios in each, that correspond to the bios in the main one. 2398 * In this case, the subordinate r10bios link back through a 2399 * borrowed master_bio pointer, and the counter in the master 2400 * includes a ref from each subordinate. 2401 */ 2402 /* First, we decide what to do and set ->bi_end_io 2403 * To end_sync_read if we want to read, and 2404 * end_sync_write if we will want to write. 2405 */ 2406 2407 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2408 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2409 /* recovery... the complicated one */ 2410 int j; 2411 r10_bio = NULL; 2412 2413 for (i=0 ; i<conf->raid_disks; i++) { 2414 int still_degraded; 2415 struct r10bio *rb2; 2416 sector_t sect; 2417 int must_sync; 2418 int any_working; 2419 2420 if (conf->mirrors[i].rdev == NULL || 2421 test_bit(In_sync, &conf->mirrors[i].rdev->flags)) 2422 continue; 2423 2424 still_degraded = 0; 2425 /* want to reconstruct this device */ 2426 rb2 = r10_bio; 2427 sect = raid10_find_virt(conf, sector_nr, i); 2428 /* Unless we are doing a full sync, we only need 2429 * to recover the block if it is set in the bitmap 2430 */ 2431 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2432 &sync_blocks, 1); 2433 if (sync_blocks < max_sync) 2434 max_sync = sync_blocks; 2435 if (!must_sync && 2436 !conf->fullsync) { 2437 /* yep, skip the sync_blocks here, but don't assume 2438 * that there will never be anything to do here 2439 */ 2440 chunks_skipped = -1; 2441 continue; 2442 } 2443 2444 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2445 raise_barrier(conf, rb2 != NULL); 2446 atomic_set(&r10_bio->remaining, 0); 2447 2448 r10_bio->master_bio = (struct bio*)rb2; 2449 if (rb2) 2450 atomic_inc(&rb2->remaining); 2451 r10_bio->mddev = mddev; 2452 set_bit(R10BIO_IsRecover, &r10_bio->state); 2453 r10_bio->sector = sect; 2454 2455 raid10_find_phys(conf, r10_bio); 2456 2457 /* Need to check if the array will still be 2458 * degraded 2459 */ 2460 for (j=0; j<conf->raid_disks; j++) 2461 if (conf->mirrors[j].rdev == NULL || 2462 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 2463 still_degraded = 1; 2464 break; 2465 } 2466 2467 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2468 &sync_blocks, still_degraded); 2469 2470 any_working = 0; 2471 for (j=0; j<conf->copies;j++) { 2472 int k; 2473 int d = r10_bio->devs[j].devnum; 2474 sector_t from_addr, to_addr; 2475 struct md_rdev *rdev; 2476 sector_t sector, first_bad; 2477 int bad_sectors; 2478 if (!conf->mirrors[d].rdev || 2479 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 2480 continue; 2481 /* This is where we read from */ 2482 any_working = 1; 2483 rdev = conf->mirrors[d].rdev; 2484 sector = r10_bio->devs[j].addr; 2485 2486 if (is_badblock(rdev, sector, max_sync, 2487 &first_bad, &bad_sectors)) { 2488 if (first_bad > sector) 2489 max_sync = first_bad - sector; 2490 else { 2491 bad_sectors -= (sector 2492 - first_bad); 2493 if (max_sync > bad_sectors) 2494 max_sync = bad_sectors; 2495 continue; 2496 } 2497 } 2498 bio = r10_bio->devs[0].bio; 2499 bio->bi_next = biolist; 2500 biolist = bio; 2501 bio->bi_private = r10_bio; 2502 bio->bi_end_io = end_sync_read; 2503 bio->bi_rw = READ; 2504 from_addr = r10_bio->devs[j].addr; 2505 bio->bi_sector = from_addr + 2506 conf->mirrors[d].rdev->data_offset; 2507 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2508 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2509 atomic_inc(&r10_bio->remaining); 2510 /* and we write to 'i' */ 2511 2512 for (k=0; k<conf->copies; k++) 2513 if (r10_bio->devs[k].devnum == i) 2514 break; 2515 BUG_ON(k == conf->copies); 2516 bio = r10_bio->devs[1].bio; 2517 bio->bi_next = biolist; 2518 biolist = bio; 2519 bio->bi_private = r10_bio; 2520 bio->bi_end_io = end_sync_write; 2521 bio->bi_rw = WRITE; 2522 to_addr = r10_bio->devs[k].addr; 2523 bio->bi_sector = to_addr + 2524 conf->mirrors[i].rdev->data_offset; 2525 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 2526 2527 r10_bio->devs[0].devnum = d; 2528 r10_bio->devs[0].addr = from_addr; 2529 r10_bio->devs[1].devnum = i; 2530 r10_bio->devs[1].addr = to_addr; 2531 2532 break; 2533 } 2534 if (j == conf->copies) { 2535 /* Cannot recover, so abort the recovery or 2536 * record a bad block */ 2537 put_buf(r10_bio); 2538 if (rb2) 2539 atomic_dec(&rb2->remaining); 2540 r10_bio = rb2; 2541 if (any_working) { 2542 /* problem is that there are bad blocks 2543 * on other device(s) 2544 */ 2545 int k; 2546 for (k = 0; k < conf->copies; k++) 2547 if (r10_bio->devs[k].devnum == i) 2548 break; 2549 if (!rdev_set_badblocks( 2550 conf->mirrors[i].rdev, 2551 r10_bio->devs[k].addr, 2552 max_sync, 0)) 2553 any_working = 0; 2554 } 2555 if (!any_working) { 2556 if (!test_and_set_bit(MD_RECOVERY_INTR, 2557 &mddev->recovery)) 2558 printk(KERN_INFO "md/raid10:%s: insufficient " 2559 "working devices for recovery.\n", 2560 mdname(mddev)); 2561 conf->mirrors[i].recovery_disabled 2562 = mddev->recovery_disabled; 2563 } 2564 break; 2565 } 2566 } 2567 if (biolist == NULL) { 2568 while (r10_bio) { 2569 struct r10bio *rb2 = r10_bio; 2570 r10_bio = (struct r10bio*) rb2->master_bio; 2571 rb2->master_bio = NULL; 2572 put_buf(rb2); 2573 } 2574 goto giveup; 2575 } 2576 } else { 2577 /* resync. Schedule a read for every block at this virt offset */ 2578 int count = 0; 2579 2580 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2581 2582 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2583 &sync_blocks, mddev->degraded) && 2584 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 2585 &mddev->recovery)) { 2586 /* We can skip this block */ 2587 *skipped = 1; 2588 return sync_blocks + sectors_skipped; 2589 } 2590 if (sync_blocks < max_sync) 2591 max_sync = sync_blocks; 2592 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2593 2594 r10_bio->mddev = mddev; 2595 atomic_set(&r10_bio->remaining, 0); 2596 raise_barrier(conf, 0); 2597 conf->next_resync = sector_nr; 2598 2599 r10_bio->master_bio = NULL; 2600 r10_bio->sector = sector_nr; 2601 set_bit(R10BIO_IsSync, &r10_bio->state); 2602 raid10_find_phys(conf, r10_bio); 2603 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 2604 2605 for (i=0; i<conf->copies; i++) { 2606 int d = r10_bio->devs[i].devnum; 2607 sector_t first_bad, sector; 2608 int bad_sectors; 2609 2610 bio = r10_bio->devs[i].bio; 2611 bio->bi_end_io = NULL; 2612 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2613 if (conf->mirrors[d].rdev == NULL || 2614 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 2615 continue; 2616 sector = r10_bio->devs[i].addr; 2617 if (is_badblock(conf->mirrors[d].rdev, 2618 sector, max_sync, 2619 &first_bad, &bad_sectors)) { 2620 if (first_bad > sector) 2621 max_sync = first_bad - sector; 2622 else { 2623 bad_sectors -= (sector - first_bad); 2624 if (max_sync > bad_sectors) 2625 max_sync = max_sync; 2626 continue; 2627 } 2628 } 2629 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2630 atomic_inc(&r10_bio->remaining); 2631 bio->bi_next = biolist; 2632 biolist = bio; 2633 bio->bi_private = r10_bio; 2634 bio->bi_end_io = end_sync_read; 2635 bio->bi_rw = READ; 2636 bio->bi_sector = sector + 2637 conf->mirrors[d].rdev->data_offset; 2638 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2639 count++; 2640 } 2641 2642 if (count < 2) { 2643 for (i=0; i<conf->copies; i++) { 2644 int d = r10_bio->devs[i].devnum; 2645 if (r10_bio->devs[i].bio->bi_end_io) 2646 rdev_dec_pending(conf->mirrors[d].rdev, 2647 mddev); 2648 } 2649 put_buf(r10_bio); 2650 biolist = NULL; 2651 goto giveup; 2652 } 2653 } 2654 2655 for (bio = biolist; bio ; bio=bio->bi_next) { 2656 2657 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 2658 if (bio->bi_end_io) 2659 bio->bi_flags |= 1 << BIO_UPTODATE; 2660 bio->bi_vcnt = 0; 2661 bio->bi_idx = 0; 2662 bio->bi_phys_segments = 0; 2663 bio->bi_size = 0; 2664 } 2665 2666 nr_sectors = 0; 2667 if (sector_nr + max_sync < max_sector) 2668 max_sector = sector_nr + max_sync; 2669 do { 2670 struct page *page; 2671 int len = PAGE_SIZE; 2672 if (sector_nr + (len>>9) > max_sector) 2673 len = (max_sector - sector_nr) << 9; 2674 if (len == 0) 2675 break; 2676 for (bio= biolist ; bio ; bio=bio->bi_next) { 2677 struct bio *bio2; 2678 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2679 if (bio_add_page(bio, page, len, 0)) 2680 continue; 2681 2682 /* stop here */ 2683 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2684 for (bio2 = biolist; 2685 bio2 && bio2 != bio; 2686 bio2 = bio2->bi_next) { 2687 /* remove last page from this bio */ 2688 bio2->bi_vcnt--; 2689 bio2->bi_size -= len; 2690 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 2691 } 2692 goto bio_full; 2693 } 2694 nr_sectors += len>>9; 2695 sector_nr += len>>9; 2696 } while (biolist->bi_vcnt < RESYNC_PAGES); 2697 bio_full: 2698 r10_bio->sectors = nr_sectors; 2699 2700 while (biolist) { 2701 bio = biolist; 2702 biolist = biolist->bi_next; 2703 2704 bio->bi_next = NULL; 2705 r10_bio = bio->bi_private; 2706 r10_bio->sectors = nr_sectors; 2707 2708 if (bio->bi_end_io == end_sync_read) { 2709 md_sync_acct(bio->bi_bdev, nr_sectors); 2710 generic_make_request(bio); 2711 } 2712 } 2713 2714 if (sectors_skipped) 2715 /* pretend they weren't skipped, it makes 2716 * no important difference in this case 2717 */ 2718 md_done_sync(mddev, sectors_skipped, 1); 2719 2720 return sectors_skipped + nr_sectors; 2721 giveup: 2722 /* There is nowhere to write, so all non-sync 2723 * drives must be failed or in resync, all drives 2724 * have a bad block, so try the next chunk... 2725 */ 2726 if (sector_nr + max_sync < max_sector) 2727 max_sector = sector_nr + max_sync; 2728 2729 sectors_skipped += (max_sector - sector_nr); 2730 chunks_skipped ++; 2731 sector_nr = max_sector; 2732 goto skipped; 2733 } 2734 2735 static sector_t 2736 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2737 { 2738 sector_t size; 2739 struct r10conf *conf = mddev->private; 2740 2741 if (!raid_disks) 2742 raid_disks = conf->raid_disks; 2743 if (!sectors) 2744 sectors = conf->dev_sectors; 2745 2746 size = sectors >> conf->chunk_shift; 2747 sector_div(size, conf->far_copies); 2748 size = size * raid_disks; 2749 sector_div(size, conf->near_copies); 2750 2751 return size << conf->chunk_shift; 2752 } 2753 2754 2755 static struct r10conf *setup_conf(struct mddev *mddev) 2756 { 2757 struct r10conf *conf = NULL; 2758 int nc, fc, fo; 2759 sector_t stride, size; 2760 int err = -EINVAL; 2761 2762 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) || 2763 !is_power_of_2(mddev->new_chunk_sectors)) { 2764 printk(KERN_ERR "md/raid10:%s: chunk size must be " 2765 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 2766 mdname(mddev), PAGE_SIZE); 2767 goto out; 2768 } 2769 2770 nc = mddev->new_layout & 255; 2771 fc = (mddev->new_layout >> 8) & 255; 2772 fo = mddev->new_layout & (1<<16); 2773 2774 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2775 (mddev->new_layout >> 17)) { 2776 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 2777 mdname(mddev), mddev->new_layout); 2778 goto out; 2779 } 2780 2781 err = -ENOMEM; 2782 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 2783 if (!conf) 2784 goto out; 2785 2786 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2787 GFP_KERNEL); 2788 if (!conf->mirrors) 2789 goto out; 2790 2791 conf->tmppage = alloc_page(GFP_KERNEL); 2792 if (!conf->tmppage) 2793 goto out; 2794 2795 2796 conf->raid_disks = mddev->raid_disks; 2797 conf->near_copies = nc; 2798 conf->far_copies = fc; 2799 conf->copies = nc*fc; 2800 conf->far_offset = fo; 2801 conf->chunk_mask = mddev->new_chunk_sectors - 1; 2802 conf->chunk_shift = ffz(~mddev->new_chunk_sectors); 2803 2804 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2805 r10bio_pool_free, conf); 2806 if (!conf->r10bio_pool) 2807 goto out; 2808 2809 size = mddev->dev_sectors >> conf->chunk_shift; 2810 sector_div(size, fc); 2811 size = size * conf->raid_disks; 2812 sector_div(size, nc); 2813 /* 'size' is now the number of chunks in the array */ 2814 /* calculate "used chunks per device" in 'stride' */ 2815 stride = size * conf->copies; 2816 2817 /* We need to round up when dividing by raid_disks to 2818 * get the stride size. 2819 */ 2820 stride += conf->raid_disks - 1; 2821 sector_div(stride, conf->raid_disks); 2822 2823 conf->dev_sectors = stride << conf->chunk_shift; 2824 2825 if (fo) 2826 stride = 1; 2827 else 2828 sector_div(stride, fc); 2829 conf->stride = stride << conf->chunk_shift; 2830 2831 2832 spin_lock_init(&conf->device_lock); 2833 INIT_LIST_HEAD(&conf->retry_list); 2834 2835 spin_lock_init(&conf->resync_lock); 2836 init_waitqueue_head(&conf->wait_barrier); 2837 2838 conf->thread = md_register_thread(raid10d, mddev, NULL); 2839 if (!conf->thread) 2840 goto out; 2841 2842 conf->mddev = mddev; 2843 return conf; 2844 2845 out: 2846 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 2847 mdname(mddev)); 2848 if (conf) { 2849 if (conf->r10bio_pool) 2850 mempool_destroy(conf->r10bio_pool); 2851 kfree(conf->mirrors); 2852 safe_put_page(conf->tmppage); 2853 kfree(conf); 2854 } 2855 return ERR_PTR(err); 2856 } 2857 2858 static int run(struct mddev *mddev) 2859 { 2860 struct r10conf *conf; 2861 int i, disk_idx, chunk_size; 2862 struct mirror_info *disk; 2863 struct md_rdev *rdev; 2864 sector_t size; 2865 2866 /* 2867 * copy the already verified devices into our private RAID10 2868 * bookkeeping area. [whatever we allocate in run(), 2869 * should be freed in stop()] 2870 */ 2871 2872 if (mddev->private == NULL) { 2873 conf = setup_conf(mddev); 2874 if (IS_ERR(conf)) 2875 return PTR_ERR(conf); 2876 mddev->private = conf; 2877 } 2878 conf = mddev->private; 2879 if (!conf) 2880 goto out; 2881 2882 mddev->thread = conf->thread; 2883 conf->thread = NULL; 2884 2885 chunk_size = mddev->chunk_sectors << 9; 2886 blk_queue_io_min(mddev->queue, chunk_size); 2887 if (conf->raid_disks % conf->near_copies) 2888 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 2889 else 2890 blk_queue_io_opt(mddev->queue, chunk_size * 2891 (conf->raid_disks / conf->near_copies)); 2892 2893 list_for_each_entry(rdev, &mddev->disks, same_set) { 2894 2895 disk_idx = rdev->raid_disk; 2896 if (disk_idx >= conf->raid_disks 2897 || disk_idx < 0) 2898 continue; 2899 disk = conf->mirrors + disk_idx; 2900 2901 disk->rdev = rdev; 2902 disk_stack_limits(mddev->gendisk, rdev->bdev, 2903 rdev->data_offset << 9); 2904 /* as we don't honour merge_bvec_fn, we must never risk 2905 * violating it, so limit max_segments to 1 lying 2906 * within a single page. 2907 */ 2908 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2909 blk_queue_max_segments(mddev->queue, 1); 2910 blk_queue_segment_boundary(mddev->queue, 2911 PAGE_CACHE_SIZE - 1); 2912 } 2913 2914 disk->head_position = 0; 2915 } 2916 /* need to check that every block has at least one working mirror */ 2917 if (!enough(conf, -1)) { 2918 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 2919 mdname(mddev)); 2920 goto out_free_conf; 2921 } 2922 2923 mddev->degraded = 0; 2924 for (i = 0; i < conf->raid_disks; i++) { 2925 2926 disk = conf->mirrors + i; 2927 2928 if (!disk->rdev || 2929 !test_bit(In_sync, &disk->rdev->flags)) { 2930 disk->head_position = 0; 2931 mddev->degraded++; 2932 if (disk->rdev) 2933 conf->fullsync = 1; 2934 } 2935 disk->recovery_disabled = mddev->recovery_disabled - 1; 2936 } 2937 2938 if (mddev->recovery_cp != MaxSector) 2939 printk(KERN_NOTICE "md/raid10:%s: not clean" 2940 " -- starting background reconstruction\n", 2941 mdname(mddev)); 2942 printk(KERN_INFO 2943 "md/raid10:%s: active with %d out of %d devices\n", 2944 mdname(mddev), conf->raid_disks - mddev->degraded, 2945 conf->raid_disks); 2946 /* 2947 * Ok, everything is just fine now 2948 */ 2949 mddev->dev_sectors = conf->dev_sectors; 2950 size = raid10_size(mddev, 0, 0); 2951 md_set_array_sectors(mddev, size); 2952 mddev->resync_max_sectors = size; 2953 2954 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2955 mddev->queue->backing_dev_info.congested_data = mddev; 2956 2957 /* Calculate max read-ahead size. 2958 * We need to readahead at least twice a whole stripe.... 2959 * maybe... 2960 */ 2961 { 2962 int stripe = conf->raid_disks * 2963 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 2964 stripe /= conf->near_copies; 2965 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2966 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2967 } 2968 2969 if (conf->near_copies < conf->raid_disks) 2970 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2971 2972 if (md_integrity_register(mddev)) 2973 goto out_free_conf; 2974 2975 return 0; 2976 2977 out_free_conf: 2978 md_unregister_thread(&mddev->thread); 2979 if (conf->r10bio_pool) 2980 mempool_destroy(conf->r10bio_pool); 2981 safe_put_page(conf->tmppage); 2982 kfree(conf->mirrors); 2983 kfree(conf); 2984 mddev->private = NULL; 2985 out: 2986 return -EIO; 2987 } 2988 2989 static int stop(struct mddev *mddev) 2990 { 2991 struct r10conf *conf = mddev->private; 2992 2993 raise_barrier(conf, 0); 2994 lower_barrier(conf); 2995 2996 md_unregister_thread(&mddev->thread); 2997 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2998 if (conf->r10bio_pool) 2999 mempool_destroy(conf->r10bio_pool); 3000 kfree(conf->mirrors); 3001 kfree(conf); 3002 mddev->private = NULL; 3003 return 0; 3004 } 3005 3006 static void raid10_quiesce(struct mddev *mddev, int state) 3007 { 3008 struct r10conf *conf = mddev->private; 3009 3010 switch(state) { 3011 case 1: 3012 raise_barrier(conf, 0); 3013 break; 3014 case 0: 3015 lower_barrier(conf); 3016 break; 3017 } 3018 } 3019 3020 static void *raid10_takeover_raid0(struct mddev *mddev) 3021 { 3022 struct md_rdev *rdev; 3023 struct r10conf *conf; 3024 3025 if (mddev->degraded > 0) { 3026 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3027 mdname(mddev)); 3028 return ERR_PTR(-EINVAL); 3029 } 3030 3031 /* Set new parameters */ 3032 mddev->new_level = 10; 3033 /* new layout: far_copies = 1, near_copies = 2 */ 3034 mddev->new_layout = (1<<8) + 2; 3035 mddev->new_chunk_sectors = mddev->chunk_sectors; 3036 mddev->delta_disks = mddev->raid_disks; 3037 mddev->raid_disks *= 2; 3038 /* make sure it will be not marked as dirty */ 3039 mddev->recovery_cp = MaxSector; 3040 3041 conf = setup_conf(mddev); 3042 if (!IS_ERR(conf)) { 3043 list_for_each_entry(rdev, &mddev->disks, same_set) 3044 if (rdev->raid_disk >= 0) 3045 rdev->new_raid_disk = rdev->raid_disk * 2; 3046 conf->barrier = 1; 3047 } 3048 3049 return conf; 3050 } 3051 3052 static void *raid10_takeover(struct mddev *mddev) 3053 { 3054 struct r0conf *raid0_conf; 3055 3056 /* raid10 can take over: 3057 * raid0 - providing it has only two drives 3058 */ 3059 if (mddev->level == 0) { 3060 /* for raid0 takeover only one zone is supported */ 3061 raid0_conf = mddev->private; 3062 if (raid0_conf->nr_strip_zones > 1) { 3063 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3064 " with more than one zone.\n", 3065 mdname(mddev)); 3066 return ERR_PTR(-EINVAL); 3067 } 3068 return raid10_takeover_raid0(mddev); 3069 } 3070 return ERR_PTR(-EINVAL); 3071 } 3072 3073 static struct md_personality raid10_personality = 3074 { 3075 .name = "raid10", 3076 .level = 10, 3077 .owner = THIS_MODULE, 3078 .make_request = make_request, 3079 .run = run, 3080 .stop = stop, 3081 .status = status, 3082 .error_handler = error, 3083 .hot_add_disk = raid10_add_disk, 3084 .hot_remove_disk= raid10_remove_disk, 3085 .spare_active = raid10_spare_active, 3086 .sync_request = sync_request, 3087 .quiesce = raid10_quiesce, 3088 .size = raid10_size, 3089 .takeover = raid10_takeover, 3090 }; 3091 3092 static int __init raid_init(void) 3093 { 3094 return register_md_personality(&raid10_personality); 3095 } 3096 3097 static void raid_exit(void) 3098 { 3099 unregister_md_personality(&raid10_personality); 3100 } 3101 3102 module_init(raid_init); 3103 module_exit(raid_exit); 3104 MODULE_LICENSE("GPL"); 3105 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 3106 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 3107 MODULE_ALIAS("md-raid10"); 3108 MODULE_ALIAS("md-level-10"); 3109 3110 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3111