xref: /linux/drivers/md/raid10.c (revision d9996de40b121d976a17515aada54c54350e3f21)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27 
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *    use_far_sets (stored in bit 17 of layout )
37  *    use_far_sets_bugfixed (stored in bit 18 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.  Each device
40  * is divided into far_copies sections.   In each section, chunks are laid out
41  * in a style similar to raid0, but near_copies copies of each chunk is stored
42  * (each on a different drive).  The starting device for each section is offset
43  * near_copies from the starting device of the previous section.  Thus there
44  * are (near_copies * far_copies) of each chunk, and each is on a different
45  * drive.  near_copies and far_copies must be at least one, and their product
46  * is at most raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of being very far
50  * apart on disk, there are adjacent stripes.
51  *
52  * The far and offset algorithms are handled slightly differently if
53  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
54  * sets that are (near_copies * far_copies) in size.  The far copied stripes
55  * are still shifted by 'near_copies' devices, but this shifting stays confined
56  * to the set rather than the entire array.  This is done to improve the number
57  * of device combinations that can fail without causing the array to fail.
58  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59  * on a device):
60  *    A B C D    A B C D E
61  *      ...         ...
62  *    D A B C    E A B C D
63  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64  *    [A B] [C D]    [A B] [C D E]
65  *    |...| |...|    |...| | ... |
66  *    [B A] [D C]    [B A] [E C D]
67  */
68 
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int _enough(struct r10conf *conf, int previous, int ignore);
72 static int enough(struct r10conf *conf, int ignore);
73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74 				int *skipped);
75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76 static void end_reshape_write(struct bio *bio);
77 static void end_reshape(struct r10conf *conf);
78 
79 #include "raid1-10.c"
80 
81 #define NULL_CMD
82 #define cmd_before(conf, cmd) \
83 	do { \
84 		write_sequnlock_irq(&(conf)->resync_lock); \
85 		cmd; \
86 	} while (0)
87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
88 
89 #define wait_event_barrier_cmd(conf, cond, cmd) \
90 	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
91 		       cmd_after(conf))
92 
93 #define wait_event_barrier(conf, cond) \
94 	wait_event_barrier_cmd(conf, cond, NULL_CMD)
95 
96 /*
97  * for resync bio, r10bio pointer can be retrieved from the per-bio
98  * 'struct resync_pages'.
99  */
100 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
101 {
102 	return get_resync_pages(bio)->raid_bio;
103 }
104 
105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
106 {
107 	struct r10conf *conf = data;
108 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
109 
110 	/* allocate a r10bio with room for raid_disks entries in the
111 	 * bios array */
112 	return kzalloc(size, gfp_flags);
113 }
114 
115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
116 /* amount of memory to reserve for resync requests */
117 #define RESYNC_WINDOW (1024*1024)
118 /* maximum number of concurrent requests, memory permitting */
119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122 
123 /*
124  * When performing a resync, we need to read and compare, so
125  * we need as many pages are there are copies.
126  * When performing a recovery, we need 2 bios, one for read,
127  * one for write (we recover only one drive per r10buf)
128  *
129  */
130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct r10conf *conf = data;
133 	struct r10bio *r10_bio;
134 	struct bio *bio;
135 	int j;
136 	int nalloc, nalloc_rp;
137 	struct resync_pages *rps;
138 
139 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
140 	if (!r10_bio)
141 		return NULL;
142 
143 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
144 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
145 		nalloc = conf->copies; /* resync */
146 	else
147 		nalloc = 2; /* recovery */
148 
149 	/* allocate once for all bios */
150 	if (!conf->have_replacement)
151 		nalloc_rp = nalloc;
152 	else
153 		nalloc_rp = nalloc * 2;
154 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
155 	if (!rps)
156 		goto out_free_r10bio;
157 
158 	/*
159 	 * Allocate bios.
160 	 */
161 	for (j = nalloc ; j-- ; ) {
162 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
163 		if (!bio)
164 			goto out_free_bio;
165 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
166 		r10_bio->devs[j].bio = bio;
167 		if (!conf->have_replacement)
168 			continue;
169 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
170 		if (!bio)
171 			goto out_free_bio;
172 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
173 		r10_bio->devs[j].repl_bio = bio;
174 	}
175 	/*
176 	 * Allocate RESYNC_PAGES data pages and attach them
177 	 * where needed.
178 	 */
179 	for (j = 0; j < nalloc; j++) {
180 		struct bio *rbio = r10_bio->devs[j].repl_bio;
181 		struct resync_pages *rp, *rp_repl;
182 
183 		rp = &rps[j];
184 		if (rbio)
185 			rp_repl = &rps[nalloc + j];
186 
187 		bio = r10_bio->devs[j].bio;
188 
189 		if (!j || test_bit(MD_RECOVERY_SYNC,
190 				   &conf->mddev->recovery)) {
191 			if (resync_alloc_pages(rp, gfp_flags))
192 				goto out_free_pages;
193 		} else {
194 			memcpy(rp, &rps[0], sizeof(*rp));
195 			resync_get_all_pages(rp);
196 		}
197 
198 		rp->raid_bio = r10_bio;
199 		bio->bi_private = rp;
200 		if (rbio) {
201 			memcpy(rp_repl, rp, sizeof(*rp));
202 			rbio->bi_private = rp_repl;
203 		}
204 	}
205 
206 	return r10_bio;
207 
208 out_free_pages:
209 	while (--j >= 0)
210 		resync_free_pages(&rps[j]);
211 
212 	j = 0;
213 out_free_bio:
214 	for ( ; j < nalloc; j++) {
215 		if (r10_bio->devs[j].bio)
216 			bio_uninit(r10_bio->devs[j].bio);
217 		kfree(r10_bio->devs[j].bio);
218 		if (r10_bio->devs[j].repl_bio)
219 			bio_uninit(r10_bio->devs[j].repl_bio);
220 		kfree(r10_bio->devs[j].repl_bio);
221 	}
222 	kfree(rps);
223 out_free_r10bio:
224 	rbio_pool_free(r10_bio, conf);
225 	return NULL;
226 }
227 
228 static void r10buf_pool_free(void *__r10_bio, void *data)
229 {
230 	struct r10conf *conf = data;
231 	struct r10bio *r10bio = __r10_bio;
232 	int j;
233 	struct resync_pages *rp = NULL;
234 
235 	for (j = conf->copies; j--; ) {
236 		struct bio *bio = r10bio->devs[j].bio;
237 
238 		if (bio) {
239 			rp = get_resync_pages(bio);
240 			resync_free_pages(rp);
241 			bio_uninit(bio);
242 			kfree(bio);
243 		}
244 
245 		bio = r10bio->devs[j].repl_bio;
246 		if (bio) {
247 			bio_uninit(bio);
248 			kfree(bio);
249 		}
250 	}
251 
252 	/* resync pages array stored in the 1st bio's .bi_private */
253 	kfree(rp);
254 
255 	rbio_pool_free(r10bio, conf);
256 }
257 
258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
259 {
260 	int i;
261 
262 	for (i = 0; i < conf->geo.raid_disks; i++) {
263 		struct bio **bio = & r10_bio->devs[i].bio;
264 		if (!BIO_SPECIAL(*bio))
265 			bio_put(*bio);
266 		*bio = NULL;
267 		bio = &r10_bio->devs[i].repl_bio;
268 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
269 			bio_put(*bio);
270 		*bio = NULL;
271 	}
272 }
273 
274 static void free_r10bio(struct r10bio *r10_bio)
275 {
276 	struct r10conf *conf = r10_bio->mddev->private;
277 
278 	put_all_bios(conf, r10_bio);
279 	mempool_free(r10_bio, &conf->r10bio_pool);
280 }
281 
282 static void put_buf(struct r10bio *r10_bio)
283 {
284 	struct r10conf *conf = r10_bio->mddev->private;
285 
286 	mempool_free(r10_bio, &conf->r10buf_pool);
287 
288 	lower_barrier(conf);
289 }
290 
291 static void wake_up_barrier(struct r10conf *conf)
292 {
293 	if (wq_has_sleeper(&conf->wait_barrier))
294 		wake_up(&conf->wait_barrier);
295 }
296 
297 static void reschedule_retry(struct r10bio *r10_bio)
298 {
299 	unsigned long flags;
300 	struct mddev *mddev = r10_bio->mddev;
301 	struct r10conf *conf = mddev->private;
302 
303 	spin_lock_irqsave(&conf->device_lock, flags);
304 	list_add(&r10_bio->retry_list, &conf->retry_list);
305 	conf->nr_queued ++;
306 	spin_unlock_irqrestore(&conf->device_lock, flags);
307 
308 	/* wake up frozen array... */
309 	wake_up(&conf->wait_barrier);
310 
311 	md_wakeup_thread(mddev->thread);
312 }
313 
314 /*
315  * raid_end_bio_io() is called when we have finished servicing a mirrored
316  * operation and are ready to return a success/failure code to the buffer
317  * cache layer.
318  */
319 static void raid_end_bio_io(struct r10bio *r10_bio)
320 {
321 	struct bio *bio = r10_bio->master_bio;
322 	struct r10conf *conf = r10_bio->mddev->private;
323 
324 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
325 		bio->bi_status = BLK_STS_IOERR;
326 
327 	bio_endio(bio);
328 	/*
329 	 * Wake up any possible resync thread that waits for the device
330 	 * to go idle.
331 	 */
332 	allow_barrier(conf);
333 
334 	free_r10bio(r10_bio);
335 }
336 
337 /*
338  * Update disk head position estimator based on IRQ completion info.
339  */
340 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
341 {
342 	struct r10conf *conf = r10_bio->mddev->private;
343 
344 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
345 		r10_bio->devs[slot].addr + (r10_bio->sectors);
346 }
347 
348 /*
349  * Find the disk number which triggered given bio
350  */
351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
352 			 struct bio *bio, int *slotp, int *replp)
353 {
354 	int slot;
355 	int repl = 0;
356 
357 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
358 		if (r10_bio->devs[slot].bio == bio)
359 			break;
360 		if (r10_bio->devs[slot].repl_bio == bio) {
361 			repl = 1;
362 			break;
363 		}
364 	}
365 
366 	update_head_pos(slot, r10_bio);
367 
368 	if (slotp)
369 		*slotp = slot;
370 	if (replp)
371 		*replp = repl;
372 	return r10_bio->devs[slot].devnum;
373 }
374 
375 static void raid10_end_read_request(struct bio *bio)
376 {
377 	int uptodate = !bio->bi_status;
378 	struct r10bio *r10_bio = bio->bi_private;
379 	int slot;
380 	struct md_rdev *rdev;
381 	struct r10conf *conf = r10_bio->mddev->private;
382 
383 	slot = r10_bio->read_slot;
384 	rdev = r10_bio->devs[slot].rdev;
385 	/*
386 	 * this branch is our 'one mirror IO has finished' event handler:
387 	 */
388 	update_head_pos(slot, r10_bio);
389 
390 	if (uptodate) {
391 		/*
392 		 * Set R10BIO_Uptodate in our master bio, so that
393 		 * we will return a good error code to the higher
394 		 * levels even if IO on some other mirrored buffer fails.
395 		 *
396 		 * The 'master' represents the composite IO operation to
397 		 * user-side. So if something waits for IO, then it will
398 		 * wait for the 'master' bio.
399 		 */
400 		set_bit(R10BIO_Uptodate, &r10_bio->state);
401 	} else {
402 		/* If all other devices that store this block have
403 		 * failed, we want to return the error upwards rather
404 		 * than fail the last device.  Here we redefine
405 		 * "uptodate" to mean "Don't want to retry"
406 		 */
407 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
408 			     rdev->raid_disk))
409 			uptodate = 1;
410 	}
411 	if (uptodate) {
412 		raid_end_bio_io(r10_bio);
413 		rdev_dec_pending(rdev, conf->mddev);
414 	} else {
415 		/*
416 		 * oops, read error - keep the refcount on the rdev
417 		 */
418 		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
419 				   mdname(conf->mddev),
420 				   rdev->bdev,
421 				   (unsigned long long)r10_bio->sector);
422 		set_bit(R10BIO_ReadError, &r10_bio->state);
423 		reschedule_retry(r10_bio);
424 	}
425 }
426 
427 static void close_write(struct r10bio *r10_bio)
428 {
429 	struct mddev *mddev = r10_bio->mddev;
430 
431 	/* clear the bitmap if all writes complete successfully */
432 	mddev->bitmap_ops->endwrite(mddev, r10_bio->sector, r10_bio->sectors,
433 				    !test_bit(R10BIO_Degraded, &r10_bio->state),
434 				    false);
435 	md_write_end(mddev);
436 }
437 
438 static void one_write_done(struct r10bio *r10_bio)
439 {
440 	if (atomic_dec_and_test(&r10_bio->remaining)) {
441 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
442 			reschedule_retry(r10_bio);
443 		else {
444 			close_write(r10_bio);
445 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
446 				reschedule_retry(r10_bio);
447 			else
448 				raid_end_bio_io(r10_bio);
449 		}
450 	}
451 }
452 
453 static void raid10_end_write_request(struct bio *bio)
454 {
455 	struct r10bio *r10_bio = bio->bi_private;
456 	int dev;
457 	int dec_rdev = 1;
458 	struct r10conf *conf = r10_bio->mddev->private;
459 	int slot, repl;
460 	struct md_rdev *rdev = NULL;
461 	struct bio *to_put = NULL;
462 	bool discard_error;
463 
464 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
465 
466 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
467 
468 	if (repl)
469 		rdev = conf->mirrors[dev].replacement;
470 	if (!rdev) {
471 		smp_rmb();
472 		repl = 0;
473 		rdev = conf->mirrors[dev].rdev;
474 	}
475 	/*
476 	 * this branch is our 'one mirror IO has finished' event handler:
477 	 */
478 	if (bio->bi_status && !discard_error) {
479 		if (repl)
480 			/* Never record new bad blocks to replacement,
481 			 * just fail it.
482 			 */
483 			md_error(rdev->mddev, rdev);
484 		else {
485 			set_bit(WriteErrorSeen,	&rdev->flags);
486 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
487 				set_bit(MD_RECOVERY_NEEDED,
488 					&rdev->mddev->recovery);
489 
490 			dec_rdev = 0;
491 			if (test_bit(FailFast, &rdev->flags) &&
492 			    (bio->bi_opf & MD_FAILFAST)) {
493 				md_error(rdev->mddev, rdev);
494 			}
495 
496 			/*
497 			 * When the device is faulty, it is not necessary to
498 			 * handle write error.
499 			 */
500 			if (!test_bit(Faulty, &rdev->flags))
501 				set_bit(R10BIO_WriteError, &r10_bio->state);
502 			else {
503 				/* Fail the request */
504 				set_bit(R10BIO_Degraded, &r10_bio->state);
505 				r10_bio->devs[slot].bio = NULL;
506 				to_put = bio;
507 				dec_rdev = 1;
508 			}
509 		}
510 	} else {
511 		/*
512 		 * Set R10BIO_Uptodate in our master bio, so that
513 		 * we will return a good error code for to the higher
514 		 * levels even if IO on some other mirrored buffer fails.
515 		 *
516 		 * The 'master' represents the composite IO operation to
517 		 * user-side. So if something waits for IO, then it will
518 		 * wait for the 'master' bio.
519 		 *
520 		 * Do not set R10BIO_Uptodate if the current device is
521 		 * rebuilding or Faulty. This is because we cannot use
522 		 * such device for properly reading the data back (we could
523 		 * potentially use it, if the current write would have felt
524 		 * before rdev->recovery_offset, but for simplicity we don't
525 		 * check this here.
526 		 */
527 		if (test_bit(In_sync, &rdev->flags) &&
528 		    !test_bit(Faulty, &rdev->flags))
529 			set_bit(R10BIO_Uptodate, &r10_bio->state);
530 
531 		/* Maybe we can clear some bad blocks. */
532 		if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
533 				      r10_bio->sectors) &&
534 		    !discard_error) {
535 			bio_put(bio);
536 			if (repl)
537 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
538 			else
539 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
540 			dec_rdev = 0;
541 			set_bit(R10BIO_MadeGood, &r10_bio->state);
542 		}
543 	}
544 
545 	/*
546 	 *
547 	 * Let's see if all mirrored write operations have finished
548 	 * already.
549 	 */
550 	one_write_done(r10_bio);
551 	if (dec_rdev)
552 		rdev_dec_pending(rdev, conf->mddev);
553 	if (to_put)
554 		bio_put(to_put);
555 }
556 
557 /*
558  * RAID10 layout manager
559  * As well as the chunksize and raid_disks count, there are two
560  * parameters: near_copies and far_copies.
561  * near_copies * far_copies must be <= raid_disks.
562  * Normally one of these will be 1.
563  * If both are 1, we get raid0.
564  * If near_copies == raid_disks, we get raid1.
565  *
566  * Chunks are laid out in raid0 style with near_copies copies of the
567  * first chunk, followed by near_copies copies of the next chunk and
568  * so on.
569  * If far_copies > 1, then after 1/far_copies of the array has been assigned
570  * as described above, we start again with a device offset of near_copies.
571  * So we effectively have another copy of the whole array further down all
572  * the drives, but with blocks on different drives.
573  * With this layout, and block is never stored twice on the one device.
574  *
575  * raid10_find_phys finds the sector offset of a given virtual sector
576  * on each device that it is on.
577  *
578  * raid10_find_virt does the reverse mapping, from a device and a
579  * sector offset to a virtual address
580  */
581 
582 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
583 {
584 	int n,f;
585 	sector_t sector;
586 	sector_t chunk;
587 	sector_t stripe;
588 	int dev;
589 	int slot = 0;
590 	int last_far_set_start, last_far_set_size;
591 
592 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
593 	last_far_set_start *= geo->far_set_size;
594 
595 	last_far_set_size = geo->far_set_size;
596 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
597 
598 	/* now calculate first sector/dev */
599 	chunk = r10bio->sector >> geo->chunk_shift;
600 	sector = r10bio->sector & geo->chunk_mask;
601 
602 	chunk *= geo->near_copies;
603 	stripe = chunk;
604 	dev = sector_div(stripe, geo->raid_disks);
605 	if (geo->far_offset)
606 		stripe *= geo->far_copies;
607 
608 	sector += stripe << geo->chunk_shift;
609 
610 	/* and calculate all the others */
611 	for (n = 0; n < geo->near_copies; n++) {
612 		int d = dev;
613 		int set;
614 		sector_t s = sector;
615 		r10bio->devs[slot].devnum = d;
616 		r10bio->devs[slot].addr = s;
617 		slot++;
618 
619 		for (f = 1; f < geo->far_copies; f++) {
620 			set = d / geo->far_set_size;
621 			d += geo->near_copies;
622 
623 			if ((geo->raid_disks % geo->far_set_size) &&
624 			    (d > last_far_set_start)) {
625 				d -= last_far_set_start;
626 				d %= last_far_set_size;
627 				d += last_far_set_start;
628 			} else {
629 				d %= geo->far_set_size;
630 				d += geo->far_set_size * set;
631 			}
632 			s += geo->stride;
633 			r10bio->devs[slot].devnum = d;
634 			r10bio->devs[slot].addr = s;
635 			slot++;
636 		}
637 		dev++;
638 		if (dev >= geo->raid_disks) {
639 			dev = 0;
640 			sector += (geo->chunk_mask + 1);
641 		}
642 	}
643 }
644 
645 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
646 {
647 	struct geom *geo = &conf->geo;
648 
649 	if (conf->reshape_progress != MaxSector &&
650 	    ((r10bio->sector >= conf->reshape_progress) !=
651 	     conf->mddev->reshape_backwards)) {
652 		set_bit(R10BIO_Previous, &r10bio->state);
653 		geo = &conf->prev;
654 	} else
655 		clear_bit(R10BIO_Previous, &r10bio->state);
656 
657 	__raid10_find_phys(geo, r10bio);
658 }
659 
660 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
661 {
662 	sector_t offset, chunk, vchunk;
663 	/* Never use conf->prev as this is only called during resync
664 	 * or recovery, so reshape isn't happening
665 	 */
666 	struct geom *geo = &conf->geo;
667 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
668 	int far_set_size = geo->far_set_size;
669 	int last_far_set_start;
670 
671 	if (geo->raid_disks % geo->far_set_size) {
672 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
673 		last_far_set_start *= geo->far_set_size;
674 
675 		if (dev >= last_far_set_start) {
676 			far_set_size = geo->far_set_size;
677 			far_set_size += (geo->raid_disks % geo->far_set_size);
678 			far_set_start = last_far_set_start;
679 		}
680 	}
681 
682 	offset = sector & geo->chunk_mask;
683 	if (geo->far_offset) {
684 		int fc;
685 		chunk = sector >> geo->chunk_shift;
686 		fc = sector_div(chunk, geo->far_copies);
687 		dev -= fc * geo->near_copies;
688 		if (dev < far_set_start)
689 			dev += far_set_size;
690 	} else {
691 		while (sector >= geo->stride) {
692 			sector -= geo->stride;
693 			if (dev < (geo->near_copies + far_set_start))
694 				dev += far_set_size - geo->near_copies;
695 			else
696 				dev -= geo->near_copies;
697 		}
698 		chunk = sector >> geo->chunk_shift;
699 	}
700 	vchunk = chunk * geo->raid_disks + dev;
701 	sector_div(vchunk, geo->near_copies);
702 	return (vchunk << geo->chunk_shift) + offset;
703 }
704 
705 /*
706  * This routine returns the disk from which the requested read should
707  * be done. There is a per-array 'next expected sequential IO' sector
708  * number - if this matches on the next IO then we use the last disk.
709  * There is also a per-disk 'last know head position' sector that is
710  * maintained from IRQ contexts, both the normal and the resync IO
711  * completion handlers update this position correctly. If there is no
712  * perfect sequential match then we pick the disk whose head is closest.
713  *
714  * If there are 2 mirrors in the same 2 devices, performance degrades
715  * because position is mirror, not device based.
716  *
717  * The rdev for the device selected will have nr_pending incremented.
718  */
719 
720 /*
721  * FIXME: possibly should rethink readbalancing and do it differently
722  * depending on near_copies / far_copies geometry.
723  */
724 static struct md_rdev *read_balance(struct r10conf *conf,
725 				    struct r10bio *r10_bio,
726 				    int *max_sectors)
727 {
728 	const sector_t this_sector = r10_bio->sector;
729 	int disk, slot;
730 	int sectors = r10_bio->sectors;
731 	int best_good_sectors;
732 	sector_t new_distance, best_dist;
733 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
734 	int do_balance;
735 	int best_dist_slot, best_pending_slot;
736 	bool has_nonrot_disk = false;
737 	unsigned int min_pending;
738 	struct geom *geo = &conf->geo;
739 
740 	raid10_find_phys(conf, r10_bio);
741 	best_dist_slot = -1;
742 	min_pending = UINT_MAX;
743 	best_dist_rdev = NULL;
744 	best_pending_rdev = NULL;
745 	best_dist = MaxSector;
746 	best_good_sectors = 0;
747 	do_balance = 1;
748 	clear_bit(R10BIO_FailFast, &r10_bio->state);
749 
750 	if (raid1_should_read_first(conf->mddev, this_sector, sectors))
751 		do_balance = 0;
752 
753 	for (slot = 0; slot < conf->copies ; slot++) {
754 		sector_t first_bad;
755 		int bad_sectors;
756 		sector_t dev_sector;
757 		unsigned int pending;
758 		bool nonrot;
759 
760 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
761 			continue;
762 		disk = r10_bio->devs[slot].devnum;
763 		rdev = conf->mirrors[disk].replacement;
764 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
765 		    r10_bio->devs[slot].addr + sectors >
766 		    rdev->recovery_offset)
767 			rdev = conf->mirrors[disk].rdev;
768 		if (rdev == NULL ||
769 		    test_bit(Faulty, &rdev->flags))
770 			continue;
771 		if (!test_bit(In_sync, &rdev->flags) &&
772 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
773 			continue;
774 
775 		dev_sector = r10_bio->devs[slot].addr;
776 		if (is_badblock(rdev, dev_sector, sectors,
777 				&first_bad, &bad_sectors)) {
778 			if (best_dist < MaxSector)
779 				/* Already have a better slot */
780 				continue;
781 			if (first_bad <= dev_sector) {
782 				/* Cannot read here.  If this is the
783 				 * 'primary' device, then we must not read
784 				 * beyond 'bad_sectors' from another device.
785 				 */
786 				bad_sectors -= (dev_sector - first_bad);
787 				if (!do_balance && sectors > bad_sectors)
788 					sectors = bad_sectors;
789 				if (best_good_sectors > sectors)
790 					best_good_sectors = sectors;
791 			} else {
792 				sector_t good_sectors =
793 					first_bad - dev_sector;
794 				if (good_sectors > best_good_sectors) {
795 					best_good_sectors = good_sectors;
796 					best_dist_slot = slot;
797 					best_dist_rdev = rdev;
798 				}
799 				if (!do_balance)
800 					/* Must read from here */
801 					break;
802 			}
803 			continue;
804 		} else
805 			best_good_sectors = sectors;
806 
807 		if (!do_balance)
808 			break;
809 
810 		nonrot = bdev_nonrot(rdev->bdev);
811 		has_nonrot_disk |= nonrot;
812 		pending = atomic_read(&rdev->nr_pending);
813 		if (min_pending > pending && nonrot) {
814 			min_pending = pending;
815 			best_pending_slot = slot;
816 			best_pending_rdev = rdev;
817 		}
818 
819 		if (best_dist_slot >= 0)
820 			/* At least 2 disks to choose from so failfast is OK */
821 			set_bit(R10BIO_FailFast, &r10_bio->state);
822 		/* This optimisation is debatable, and completely destroys
823 		 * sequential read speed for 'far copies' arrays.  So only
824 		 * keep it for 'near' arrays, and review those later.
825 		 */
826 		if (geo->near_copies > 1 && !pending)
827 			new_distance = 0;
828 
829 		/* for far > 1 always use the lowest address */
830 		else if (geo->far_copies > 1)
831 			new_distance = r10_bio->devs[slot].addr;
832 		else
833 			new_distance = abs(r10_bio->devs[slot].addr -
834 					   conf->mirrors[disk].head_position);
835 
836 		if (new_distance < best_dist) {
837 			best_dist = new_distance;
838 			best_dist_slot = slot;
839 			best_dist_rdev = rdev;
840 		}
841 	}
842 	if (slot >= conf->copies) {
843 		if (has_nonrot_disk) {
844 			slot = best_pending_slot;
845 			rdev = best_pending_rdev;
846 		} else {
847 			slot = best_dist_slot;
848 			rdev = best_dist_rdev;
849 		}
850 	}
851 
852 	if (slot >= 0) {
853 		atomic_inc(&rdev->nr_pending);
854 		r10_bio->read_slot = slot;
855 	} else
856 		rdev = NULL;
857 	*max_sectors = best_good_sectors;
858 
859 	return rdev;
860 }
861 
862 static void flush_pending_writes(struct r10conf *conf)
863 {
864 	/* Any writes that have been queued but are awaiting
865 	 * bitmap updates get flushed here.
866 	 */
867 	spin_lock_irq(&conf->device_lock);
868 
869 	if (conf->pending_bio_list.head) {
870 		struct blk_plug plug;
871 		struct bio *bio;
872 
873 		bio = bio_list_get(&conf->pending_bio_list);
874 		spin_unlock_irq(&conf->device_lock);
875 
876 		/*
877 		 * As this is called in a wait_event() loop (see freeze_array),
878 		 * current->state might be TASK_UNINTERRUPTIBLE which will
879 		 * cause a warning when we prepare to wait again.  As it is
880 		 * rare that this path is taken, it is perfectly safe to force
881 		 * us to go around the wait_event() loop again, so the warning
882 		 * is a false-positive. Silence the warning by resetting
883 		 * thread state
884 		 */
885 		__set_current_state(TASK_RUNNING);
886 
887 		blk_start_plug(&plug);
888 		raid1_prepare_flush_writes(conf->mddev);
889 		wake_up(&conf->wait_barrier);
890 
891 		while (bio) { /* submit pending writes */
892 			struct bio *next = bio->bi_next;
893 
894 			raid1_submit_write(bio);
895 			bio = next;
896 			cond_resched();
897 		}
898 		blk_finish_plug(&plug);
899 	} else
900 		spin_unlock_irq(&conf->device_lock);
901 }
902 
903 /* Barriers....
904  * Sometimes we need to suspend IO while we do something else,
905  * either some resync/recovery, or reconfigure the array.
906  * To do this we raise a 'barrier'.
907  * The 'barrier' is a counter that can be raised multiple times
908  * to count how many activities are happening which preclude
909  * normal IO.
910  * We can only raise the barrier if there is no pending IO.
911  * i.e. if nr_pending == 0.
912  * We choose only to raise the barrier if no-one is waiting for the
913  * barrier to go down.  This means that as soon as an IO request
914  * is ready, no other operations which require a barrier will start
915  * until the IO request has had a chance.
916  *
917  * So: regular IO calls 'wait_barrier'.  When that returns there
918  *    is no backgroup IO happening,  It must arrange to call
919  *    allow_barrier when it has finished its IO.
920  * backgroup IO calls must call raise_barrier.  Once that returns
921  *    there is no normal IO happeing.  It must arrange to call
922  *    lower_barrier when the particular background IO completes.
923  */
924 
925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927 	write_seqlock_irq(&conf->resync_lock);
928 
929 	if (WARN_ON_ONCE(force && !conf->barrier))
930 		force = false;
931 
932 	/* Wait until no block IO is waiting (unless 'force') */
933 	wait_event_barrier(conf, force || !conf->nr_waiting);
934 
935 	/* block any new IO from starting */
936 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
937 
938 	/* Now wait for all pending IO to complete */
939 	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
940 				 conf->barrier < RESYNC_DEPTH);
941 
942 	write_sequnlock_irq(&conf->resync_lock);
943 }
944 
945 static void lower_barrier(struct r10conf *conf)
946 {
947 	unsigned long flags;
948 
949 	write_seqlock_irqsave(&conf->resync_lock, flags);
950 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
951 	write_sequnlock_irqrestore(&conf->resync_lock, flags);
952 	wake_up(&conf->wait_barrier);
953 }
954 
955 static bool stop_waiting_barrier(struct r10conf *conf)
956 {
957 	struct bio_list *bio_list = current->bio_list;
958 	struct md_thread *thread;
959 
960 	/* barrier is dropped */
961 	if (!conf->barrier)
962 		return true;
963 
964 	/*
965 	 * If there are already pending requests (preventing the barrier from
966 	 * rising completely), and the pre-process bio queue isn't empty, then
967 	 * don't wait, as we need to empty that queue to get the nr_pending
968 	 * count down.
969 	 */
970 	if (atomic_read(&conf->nr_pending) && bio_list &&
971 	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
972 		return true;
973 
974 	/* daemon thread must exist while handling io */
975 	thread = rcu_dereference_protected(conf->mddev->thread, true);
976 	/*
977 	 * move on if io is issued from raid10d(), nr_pending is not released
978 	 * from original io(see handle_read_error()). All raise barrier is
979 	 * blocked until this io is done.
980 	 */
981 	if (thread->tsk == current) {
982 		WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
983 		return true;
984 	}
985 
986 	return false;
987 }
988 
989 static bool wait_barrier_nolock(struct r10conf *conf)
990 {
991 	unsigned int seq = read_seqbegin(&conf->resync_lock);
992 
993 	if (READ_ONCE(conf->barrier))
994 		return false;
995 
996 	atomic_inc(&conf->nr_pending);
997 	if (!read_seqretry(&conf->resync_lock, seq))
998 		return true;
999 
1000 	if (atomic_dec_and_test(&conf->nr_pending))
1001 		wake_up_barrier(conf);
1002 
1003 	return false;
1004 }
1005 
1006 static bool wait_barrier(struct r10conf *conf, bool nowait)
1007 {
1008 	bool ret = true;
1009 
1010 	if (wait_barrier_nolock(conf))
1011 		return true;
1012 
1013 	write_seqlock_irq(&conf->resync_lock);
1014 	if (conf->barrier) {
1015 		/* Return false when nowait flag is set */
1016 		if (nowait) {
1017 			ret = false;
1018 		} else {
1019 			conf->nr_waiting++;
1020 			mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1021 			wait_event_barrier(conf, stop_waiting_barrier(conf));
1022 			conf->nr_waiting--;
1023 		}
1024 		if (!conf->nr_waiting)
1025 			wake_up(&conf->wait_barrier);
1026 	}
1027 	/* Only increment nr_pending when we wait */
1028 	if (ret)
1029 		atomic_inc(&conf->nr_pending);
1030 	write_sequnlock_irq(&conf->resync_lock);
1031 	return ret;
1032 }
1033 
1034 static void allow_barrier(struct r10conf *conf)
1035 {
1036 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1037 			(conf->array_freeze_pending))
1038 		wake_up_barrier(conf);
1039 }
1040 
1041 static void freeze_array(struct r10conf *conf, int extra)
1042 {
1043 	/* stop syncio and normal IO and wait for everything to
1044 	 * go quiet.
1045 	 * We increment barrier and nr_waiting, and then
1046 	 * wait until nr_pending match nr_queued+extra
1047 	 * This is called in the context of one normal IO request
1048 	 * that has failed. Thus any sync request that might be pending
1049 	 * will be blocked by nr_pending, and we need to wait for
1050 	 * pending IO requests to complete or be queued for re-try.
1051 	 * Thus the number queued (nr_queued) plus this request (extra)
1052 	 * must match the number of pending IOs (nr_pending) before
1053 	 * we continue.
1054 	 */
1055 	write_seqlock_irq(&conf->resync_lock);
1056 	conf->array_freeze_pending++;
1057 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
1058 	conf->nr_waiting++;
1059 	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1060 			conf->nr_queued + extra, flush_pending_writes(conf));
1061 	conf->array_freeze_pending--;
1062 	write_sequnlock_irq(&conf->resync_lock);
1063 }
1064 
1065 static void unfreeze_array(struct r10conf *conf)
1066 {
1067 	/* reverse the effect of the freeze */
1068 	write_seqlock_irq(&conf->resync_lock);
1069 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
1070 	conf->nr_waiting--;
1071 	wake_up(&conf->wait_barrier);
1072 	write_sequnlock_irq(&conf->resync_lock);
1073 }
1074 
1075 static sector_t choose_data_offset(struct r10bio *r10_bio,
1076 				   struct md_rdev *rdev)
1077 {
1078 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1079 	    test_bit(R10BIO_Previous, &r10_bio->state))
1080 		return rdev->data_offset;
1081 	else
1082 		return rdev->new_data_offset;
1083 }
1084 
1085 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1086 {
1087 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1088 	struct mddev *mddev = plug->cb.data;
1089 	struct r10conf *conf = mddev->private;
1090 	struct bio *bio;
1091 
1092 	if (from_schedule) {
1093 		spin_lock_irq(&conf->device_lock);
1094 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095 		spin_unlock_irq(&conf->device_lock);
1096 		wake_up_barrier(conf);
1097 		md_wakeup_thread(mddev->thread);
1098 		kfree(plug);
1099 		return;
1100 	}
1101 
1102 	/* we aren't scheduling, so we can do the write-out directly. */
1103 	bio = bio_list_get(&plug->pending);
1104 	raid1_prepare_flush_writes(mddev);
1105 	wake_up_barrier(conf);
1106 
1107 	while (bio) { /* submit pending writes */
1108 		struct bio *next = bio->bi_next;
1109 
1110 		raid1_submit_write(bio);
1111 		bio = next;
1112 		cond_resched();
1113 	}
1114 	kfree(plug);
1115 }
1116 
1117 /*
1118  * 1. Register the new request and wait if the reconstruction thread has put
1119  * up a bar for new requests. Continue immediately if no resync is active
1120  * currently.
1121  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1122  */
1123 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1124 				 struct bio *bio, sector_t sectors)
1125 {
1126 	/* Bail out if REQ_NOWAIT is set for the bio */
1127 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1128 		bio_wouldblock_error(bio);
1129 		return false;
1130 	}
1131 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1132 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1133 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1134 		allow_barrier(conf);
1135 		if (bio->bi_opf & REQ_NOWAIT) {
1136 			bio_wouldblock_error(bio);
1137 			return false;
1138 		}
1139 		mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1140 		wait_event(conf->wait_barrier,
1141 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1142 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1143 			   sectors);
1144 		wait_barrier(conf, false);
1145 	}
1146 	return true;
1147 }
1148 
1149 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1150 				struct r10bio *r10_bio, bool io_accounting)
1151 {
1152 	struct r10conf *conf = mddev->private;
1153 	struct bio *read_bio;
1154 	const enum req_op op = bio_op(bio);
1155 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1156 	int max_sectors;
1157 	struct md_rdev *rdev;
1158 	char b[BDEVNAME_SIZE];
1159 	int slot = r10_bio->read_slot;
1160 	struct md_rdev *err_rdev = NULL;
1161 	gfp_t gfp = GFP_NOIO;
1162 
1163 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1164 		/*
1165 		 * This is an error retry, but we cannot
1166 		 * safely dereference the rdev in the r10_bio,
1167 		 * we must use the one in conf.
1168 		 * If it has already been disconnected (unlikely)
1169 		 * we lose the device name in error messages.
1170 		 */
1171 		int disk;
1172 		/*
1173 		 * As we are blocking raid10, it is a little safer to
1174 		 * use __GFP_HIGH.
1175 		 */
1176 		gfp = GFP_NOIO | __GFP_HIGH;
1177 
1178 		disk = r10_bio->devs[slot].devnum;
1179 		err_rdev = conf->mirrors[disk].rdev;
1180 		if (err_rdev)
1181 			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1182 		else {
1183 			strcpy(b, "???");
1184 			/* This never gets dereferenced */
1185 			err_rdev = r10_bio->devs[slot].rdev;
1186 		}
1187 	}
1188 
1189 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1190 		return;
1191 	rdev = read_balance(conf, r10_bio, &max_sectors);
1192 	if (!rdev) {
1193 		if (err_rdev) {
1194 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1195 					    mdname(mddev), b,
1196 					    (unsigned long long)r10_bio->sector);
1197 		}
1198 		raid_end_bio_io(r10_bio);
1199 		return;
1200 	}
1201 	if (err_rdev)
1202 		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1203 				   mdname(mddev),
1204 				   rdev->bdev,
1205 				   (unsigned long long)r10_bio->sector);
1206 	if (max_sectors < bio_sectors(bio)) {
1207 		struct bio *split = bio_split(bio, max_sectors,
1208 					      gfp, &conf->bio_split);
1209 		bio_chain(split, bio);
1210 		allow_barrier(conf);
1211 		submit_bio_noacct(bio);
1212 		wait_barrier(conf, false);
1213 		bio = split;
1214 		r10_bio->master_bio = bio;
1215 		r10_bio->sectors = max_sectors;
1216 	}
1217 	slot = r10_bio->read_slot;
1218 
1219 	if (io_accounting) {
1220 		md_account_bio(mddev, &bio);
1221 		r10_bio->master_bio = bio;
1222 	}
1223 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1224 
1225 	r10_bio->devs[slot].bio = read_bio;
1226 	r10_bio->devs[slot].rdev = rdev;
1227 
1228 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1229 		choose_data_offset(r10_bio, rdev);
1230 	read_bio->bi_end_io = raid10_end_read_request;
1231 	read_bio->bi_opf = op | do_sync;
1232 	if (test_bit(FailFast, &rdev->flags) &&
1233 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1234 	        read_bio->bi_opf |= MD_FAILFAST;
1235 	read_bio->bi_private = r10_bio;
1236 	mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1237 	submit_bio_noacct(read_bio);
1238 	return;
1239 }
1240 
1241 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1242 				  struct bio *bio, bool replacement,
1243 				  int n_copy)
1244 {
1245 	const enum req_op op = bio_op(bio);
1246 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1247 	const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1248 	unsigned long flags;
1249 	struct r10conf *conf = mddev->private;
1250 	struct md_rdev *rdev;
1251 	int devnum = r10_bio->devs[n_copy].devnum;
1252 	struct bio *mbio;
1253 
1254 	rdev = replacement ? conf->mirrors[devnum].replacement :
1255 			     conf->mirrors[devnum].rdev;
1256 
1257 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1258 	if (replacement)
1259 		r10_bio->devs[n_copy].repl_bio = mbio;
1260 	else
1261 		r10_bio->devs[n_copy].bio = mbio;
1262 
1263 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1264 				   choose_data_offset(r10_bio, rdev));
1265 	mbio->bi_end_io	= raid10_end_write_request;
1266 	mbio->bi_opf = op | do_sync | do_fua;
1267 	if (!replacement && test_bit(FailFast,
1268 				     &conf->mirrors[devnum].rdev->flags)
1269 			 && enough(conf, devnum))
1270 		mbio->bi_opf |= MD_FAILFAST;
1271 	mbio->bi_private = r10_bio;
1272 	mddev_trace_remap(mddev, mbio, r10_bio->sector);
1273 	/* flush_pending_writes() needs access to the rdev so...*/
1274 	mbio->bi_bdev = (void *)rdev;
1275 
1276 	atomic_inc(&r10_bio->remaining);
1277 
1278 	if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1279 		spin_lock_irqsave(&conf->device_lock, flags);
1280 		bio_list_add(&conf->pending_bio_list, mbio);
1281 		spin_unlock_irqrestore(&conf->device_lock, flags);
1282 		md_wakeup_thread(mddev->thread);
1283 	}
1284 }
1285 
1286 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1287 {
1288 	int i;
1289 	struct r10conf *conf = mddev->private;
1290 	struct md_rdev *blocked_rdev;
1291 
1292 retry_wait:
1293 	blocked_rdev = NULL;
1294 	for (i = 0; i < conf->copies; i++) {
1295 		struct md_rdev *rdev, *rrdev;
1296 
1297 		rdev = conf->mirrors[i].rdev;
1298 		rrdev = conf->mirrors[i].replacement;
1299 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1300 			atomic_inc(&rdev->nr_pending);
1301 			blocked_rdev = rdev;
1302 			break;
1303 		}
1304 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1305 			atomic_inc(&rrdev->nr_pending);
1306 			blocked_rdev = rrdev;
1307 			break;
1308 		}
1309 
1310 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1311 			sector_t dev_sector = r10_bio->devs[i].addr;
1312 
1313 			/*
1314 			 * Discard request doesn't care the write result
1315 			 * so it doesn't need to wait blocked disk here.
1316 			 */
1317 			if (!r10_bio->sectors)
1318 				continue;
1319 
1320 			if (rdev_has_badblock(rdev, dev_sector,
1321 					      r10_bio->sectors) < 0) {
1322 				/*
1323 				 * Mustn't write here until the bad block
1324 				 * is acknowledged
1325 				 */
1326 				atomic_inc(&rdev->nr_pending);
1327 				set_bit(BlockedBadBlocks, &rdev->flags);
1328 				blocked_rdev = rdev;
1329 				break;
1330 			}
1331 		}
1332 	}
1333 
1334 	if (unlikely(blocked_rdev)) {
1335 		/* Have to wait for this device to get unblocked, then retry */
1336 		allow_barrier(conf);
1337 		mddev_add_trace_msg(conf->mddev,
1338 			"raid10 %s wait rdev %d blocked",
1339 			__func__, blocked_rdev->raid_disk);
1340 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1341 		wait_barrier(conf, false);
1342 		goto retry_wait;
1343 	}
1344 }
1345 
1346 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1347 				 struct r10bio *r10_bio)
1348 {
1349 	struct r10conf *conf = mddev->private;
1350 	int i;
1351 	sector_t sectors;
1352 	int max_sectors;
1353 
1354 	if ((mddev_is_clustered(mddev) &&
1355 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1356 					    bio->bi_iter.bi_sector,
1357 					    bio_end_sector(bio)))) {
1358 		DEFINE_WAIT(w);
1359 		/* Bail out if REQ_NOWAIT is set for the bio */
1360 		if (bio->bi_opf & REQ_NOWAIT) {
1361 			bio_wouldblock_error(bio);
1362 			return;
1363 		}
1364 		for (;;) {
1365 			prepare_to_wait(&conf->wait_barrier,
1366 					&w, TASK_IDLE);
1367 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1368 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1369 				break;
1370 			schedule();
1371 		}
1372 		finish_wait(&conf->wait_barrier, &w);
1373 	}
1374 
1375 	sectors = r10_bio->sectors;
1376 	if (!regular_request_wait(mddev, conf, bio, sectors))
1377 		return;
1378 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1379 	    (mddev->reshape_backwards
1380 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1381 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1382 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1383 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1384 		/* Need to update reshape_position in metadata */
1385 		mddev->reshape_position = conf->reshape_progress;
1386 		set_mask_bits(&mddev->sb_flags, 0,
1387 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1388 		md_wakeup_thread(mddev->thread);
1389 		if (bio->bi_opf & REQ_NOWAIT) {
1390 			allow_barrier(conf);
1391 			bio_wouldblock_error(bio);
1392 			return;
1393 		}
1394 		mddev_add_trace_msg(conf->mddev,
1395 			"raid10 wait reshape metadata");
1396 		wait_event(mddev->sb_wait,
1397 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1398 
1399 		conf->reshape_safe = mddev->reshape_position;
1400 	}
1401 
1402 	/* first select target devices under rcu_lock and
1403 	 * inc refcount on their rdev.  Record them by setting
1404 	 * bios[x] to bio
1405 	 * If there are known/acknowledged bad blocks on any device
1406 	 * on which we have seen a write error, we want to avoid
1407 	 * writing to those blocks.  This potentially requires several
1408 	 * writes to write around the bad blocks.  Each set of writes
1409 	 * gets its own r10_bio with a set of bios attached.
1410 	 */
1411 
1412 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1413 	raid10_find_phys(conf, r10_bio);
1414 
1415 	wait_blocked_dev(mddev, r10_bio);
1416 
1417 	max_sectors = r10_bio->sectors;
1418 
1419 	for (i = 0;  i < conf->copies; i++) {
1420 		int d = r10_bio->devs[i].devnum;
1421 		struct md_rdev *rdev, *rrdev;
1422 
1423 		rdev = conf->mirrors[d].rdev;
1424 		rrdev = conf->mirrors[d].replacement;
1425 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1426 			rdev = NULL;
1427 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1428 			rrdev = NULL;
1429 
1430 		r10_bio->devs[i].bio = NULL;
1431 		r10_bio->devs[i].repl_bio = NULL;
1432 
1433 		if (!rdev && !rrdev) {
1434 			set_bit(R10BIO_Degraded, &r10_bio->state);
1435 			continue;
1436 		}
1437 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1438 			sector_t first_bad;
1439 			sector_t dev_sector = r10_bio->devs[i].addr;
1440 			int bad_sectors;
1441 			int is_bad;
1442 
1443 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1444 					     &first_bad, &bad_sectors);
1445 			if (is_bad && first_bad <= dev_sector) {
1446 				/* Cannot write here at all */
1447 				bad_sectors -= (dev_sector - first_bad);
1448 				if (bad_sectors < max_sectors)
1449 					/* Mustn't write more than bad_sectors
1450 					 * to other devices yet
1451 					 */
1452 					max_sectors = bad_sectors;
1453 				/* We don't set R10BIO_Degraded as that
1454 				 * only applies if the disk is missing,
1455 				 * so it might be re-added, and we want to
1456 				 * know to recover this chunk.
1457 				 * In this case the device is here, and the
1458 				 * fact that this chunk is not in-sync is
1459 				 * recorded in the bad block log.
1460 				 */
1461 				continue;
1462 			}
1463 			if (is_bad) {
1464 				int good_sectors = first_bad - dev_sector;
1465 				if (good_sectors < max_sectors)
1466 					max_sectors = good_sectors;
1467 			}
1468 		}
1469 		if (rdev) {
1470 			r10_bio->devs[i].bio = bio;
1471 			atomic_inc(&rdev->nr_pending);
1472 		}
1473 		if (rrdev) {
1474 			r10_bio->devs[i].repl_bio = bio;
1475 			atomic_inc(&rrdev->nr_pending);
1476 		}
1477 	}
1478 
1479 	if (max_sectors < r10_bio->sectors)
1480 		r10_bio->sectors = max_sectors;
1481 
1482 	if (r10_bio->sectors < bio_sectors(bio)) {
1483 		struct bio *split = bio_split(bio, r10_bio->sectors,
1484 					      GFP_NOIO, &conf->bio_split);
1485 		bio_chain(split, bio);
1486 		allow_barrier(conf);
1487 		submit_bio_noacct(bio);
1488 		wait_barrier(conf, false);
1489 		bio = split;
1490 		r10_bio->master_bio = bio;
1491 	}
1492 
1493 	md_account_bio(mddev, &bio);
1494 	r10_bio->master_bio = bio;
1495 	atomic_set(&r10_bio->remaining, 1);
1496 	mddev->bitmap_ops->startwrite(mddev, r10_bio->sector, r10_bio->sectors,
1497 				      false);
1498 
1499 	for (i = 0; i < conf->copies; i++) {
1500 		if (r10_bio->devs[i].bio)
1501 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1502 		if (r10_bio->devs[i].repl_bio)
1503 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1504 	}
1505 	one_write_done(r10_bio);
1506 }
1507 
1508 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1509 {
1510 	struct r10conf *conf = mddev->private;
1511 	struct r10bio *r10_bio;
1512 
1513 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1514 
1515 	r10_bio->master_bio = bio;
1516 	r10_bio->sectors = sectors;
1517 
1518 	r10_bio->mddev = mddev;
1519 	r10_bio->sector = bio->bi_iter.bi_sector;
1520 	r10_bio->state = 0;
1521 	r10_bio->read_slot = -1;
1522 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1523 			conf->geo.raid_disks);
1524 
1525 	if (bio_data_dir(bio) == READ)
1526 		raid10_read_request(mddev, bio, r10_bio, true);
1527 	else
1528 		raid10_write_request(mddev, bio, r10_bio);
1529 }
1530 
1531 static void raid_end_discard_bio(struct r10bio *r10bio)
1532 {
1533 	struct r10conf *conf = r10bio->mddev->private;
1534 	struct r10bio *first_r10bio;
1535 
1536 	while (atomic_dec_and_test(&r10bio->remaining)) {
1537 
1538 		allow_barrier(conf);
1539 
1540 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1541 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1542 			free_r10bio(r10bio);
1543 			r10bio = first_r10bio;
1544 		} else {
1545 			md_write_end(r10bio->mddev);
1546 			bio_endio(r10bio->master_bio);
1547 			free_r10bio(r10bio);
1548 			break;
1549 		}
1550 	}
1551 }
1552 
1553 static void raid10_end_discard_request(struct bio *bio)
1554 {
1555 	struct r10bio *r10_bio = bio->bi_private;
1556 	struct r10conf *conf = r10_bio->mddev->private;
1557 	struct md_rdev *rdev = NULL;
1558 	int dev;
1559 	int slot, repl;
1560 
1561 	/*
1562 	 * We don't care the return value of discard bio
1563 	 */
1564 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1565 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1566 
1567 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1568 	rdev = repl ? conf->mirrors[dev].replacement :
1569 		      conf->mirrors[dev].rdev;
1570 
1571 	raid_end_discard_bio(r10_bio);
1572 	rdev_dec_pending(rdev, conf->mddev);
1573 }
1574 
1575 /*
1576  * There are some limitations to handle discard bio
1577  * 1st, the discard size is bigger than stripe_size*2.
1578  * 2st, if the discard bio spans reshape progress, we use the old way to
1579  * handle discard bio
1580  */
1581 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1582 {
1583 	struct r10conf *conf = mddev->private;
1584 	struct geom *geo = &conf->geo;
1585 	int far_copies = geo->far_copies;
1586 	bool first_copy = true;
1587 	struct r10bio *r10_bio, *first_r10bio;
1588 	struct bio *split;
1589 	int disk;
1590 	sector_t chunk;
1591 	unsigned int stripe_size;
1592 	unsigned int stripe_data_disks;
1593 	sector_t split_size;
1594 	sector_t bio_start, bio_end;
1595 	sector_t first_stripe_index, last_stripe_index;
1596 	sector_t start_disk_offset;
1597 	unsigned int start_disk_index;
1598 	sector_t end_disk_offset;
1599 	unsigned int end_disk_index;
1600 	unsigned int remainder;
1601 
1602 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1603 		return -EAGAIN;
1604 
1605 	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1606 		bio_wouldblock_error(bio);
1607 		return 0;
1608 	}
1609 	wait_barrier(conf, false);
1610 
1611 	/*
1612 	 * Check reshape again to avoid reshape happens after checking
1613 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1614 	 */
1615 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1616 		goto out;
1617 
1618 	if (geo->near_copies)
1619 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1620 					geo->raid_disks % geo->near_copies;
1621 	else
1622 		stripe_data_disks = geo->raid_disks;
1623 
1624 	stripe_size = stripe_data_disks << geo->chunk_shift;
1625 
1626 	bio_start = bio->bi_iter.bi_sector;
1627 	bio_end = bio_end_sector(bio);
1628 
1629 	/*
1630 	 * Maybe one discard bio is smaller than strip size or across one
1631 	 * stripe and discard region is larger than one stripe size. For far
1632 	 * offset layout, if the discard region is not aligned with stripe
1633 	 * size, there is hole when we submit discard bio to member disk.
1634 	 * For simplicity, we only handle discard bio which discard region
1635 	 * is bigger than stripe_size * 2
1636 	 */
1637 	if (bio_sectors(bio) < stripe_size*2)
1638 		goto out;
1639 
1640 	/*
1641 	 * Keep bio aligned with strip size.
1642 	 */
1643 	div_u64_rem(bio_start, stripe_size, &remainder);
1644 	if (remainder) {
1645 		split_size = stripe_size - remainder;
1646 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1647 		bio_chain(split, bio);
1648 		allow_barrier(conf);
1649 		/* Resend the fist split part */
1650 		submit_bio_noacct(split);
1651 		wait_barrier(conf, false);
1652 	}
1653 	div_u64_rem(bio_end, stripe_size, &remainder);
1654 	if (remainder) {
1655 		split_size = bio_sectors(bio) - remainder;
1656 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1657 		bio_chain(split, bio);
1658 		allow_barrier(conf);
1659 		/* Resend the second split part */
1660 		submit_bio_noacct(bio);
1661 		bio = split;
1662 		wait_barrier(conf, false);
1663 	}
1664 
1665 	bio_start = bio->bi_iter.bi_sector;
1666 	bio_end = bio_end_sector(bio);
1667 
1668 	/*
1669 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1670 	 * One stripe contains the chunks from all member disk (one chunk from
1671 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1672 	 */
1673 	chunk = bio_start >> geo->chunk_shift;
1674 	chunk *= geo->near_copies;
1675 	first_stripe_index = chunk;
1676 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1677 	if (geo->far_offset)
1678 		first_stripe_index *= geo->far_copies;
1679 	start_disk_offset = (bio_start & geo->chunk_mask) +
1680 				(first_stripe_index << geo->chunk_shift);
1681 
1682 	chunk = bio_end >> geo->chunk_shift;
1683 	chunk *= geo->near_copies;
1684 	last_stripe_index = chunk;
1685 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1686 	if (geo->far_offset)
1687 		last_stripe_index *= geo->far_copies;
1688 	end_disk_offset = (bio_end & geo->chunk_mask) +
1689 				(last_stripe_index << geo->chunk_shift);
1690 
1691 retry_discard:
1692 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1693 	r10_bio->mddev = mddev;
1694 	r10_bio->state = 0;
1695 	r10_bio->sectors = 0;
1696 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1697 	wait_blocked_dev(mddev, r10_bio);
1698 
1699 	/*
1700 	 * For far layout it needs more than one r10bio to cover all regions.
1701 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1702 	 * to record the discard bio. Other r10bio->master_bio record the first
1703 	 * r10bio. The first r10bio only release after all other r10bios finish.
1704 	 * The discard bio returns only first r10bio finishes
1705 	 */
1706 	if (first_copy) {
1707 		r10_bio->master_bio = bio;
1708 		set_bit(R10BIO_Discard, &r10_bio->state);
1709 		first_copy = false;
1710 		first_r10bio = r10_bio;
1711 	} else
1712 		r10_bio->master_bio = (struct bio *)first_r10bio;
1713 
1714 	/*
1715 	 * first select target devices under rcu_lock and
1716 	 * inc refcount on their rdev.  Record them by setting
1717 	 * bios[x] to bio
1718 	 */
1719 	for (disk = 0; disk < geo->raid_disks; disk++) {
1720 		struct md_rdev *rdev, *rrdev;
1721 
1722 		rdev = conf->mirrors[disk].rdev;
1723 		rrdev = conf->mirrors[disk].replacement;
1724 		r10_bio->devs[disk].bio = NULL;
1725 		r10_bio->devs[disk].repl_bio = NULL;
1726 
1727 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1728 			rdev = NULL;
1729 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1730 			rrdev = NULL;
1731 		if (!rdev && !rrdev)
1732 			continue;
1733 
1734 		if (rdev) {
1735 			r10_bio->devs[disk].bio = bio;
1736 			atomic_inc(&rdev->nr_pending);
1737 		}
1738 		if (rrdev) {
1739 			r10_bio->devs[disk].repl_bio = bio;
1740 			atomic_inc(&rrdev->nr_pending);
1741 		}
1742 	}
1743 
1744 	atomic_set(&r10_bio->remaining, 1);
1745 	for (disk = 0; disk < geo->raid_disks; disk++) {
1746 		sector_t dev_start, dev_end;
1747 		struct bio *mbio, *rbio = NULL;
1748 
1749 		/*
1750 		 * Now start to calculate the start and end address for each disk.
1751 		 * The space between dev_start and dev_end is the discard region.
1752 		 *
1753 		 * For dev_start, it needs to consider three conditions:
1754 		 * 1st, the disk is before start_disk, you can imagine the disk in
1755 		 * the next stripe. So the dev_start is the start address of next
1756 		 * stripe.
1757 		 * 2st, the disk is after start_disk, it means the disk is at the
1758 		 * same stripe of first disk
1759 		 * 3st, the first disk itself, we can use start_disk_offset directly
1760 		 */
1761 		if (disk < start_disk_index)
1762 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1763 		else if (disk > start_disk_index)
1764 			dev_start = first_stripe_index * mddev->chunk_sectors;
1765 		else
1766 			dev_start = start_disk_offset;
1767 
1768 		if (disk < end_disk_index)
1769 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1770 		else if (disk > end_disk_index)
1771 			dev_end = last_stripe_index * mddev->chunk_sectors;
1772 		else
1773 			dev_end = end_disk_offset;
1774 
1775 		/*
1776 		 * It only handles discard bio which size is >= stripe size, so
1777 		 * dev_end > dev_start all the time.
1778 		 * It doesn't need to use rcu lock to get rdev here. We already
1779 		 * add rdev->nr_pending in the first loop.
1780 		 */
1781 		if (r10_bio->devs[disk].bio) {
1782 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1783 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1784 					       &mddev->bio_set);
1785 			mbio->bi_end_io = raid10_end_discard_request;
1786 			mbio->bi_private = r10_bio;
1787 			r10_bio->devs[disk].bio = mbio;
1788 			r10_bio->devs[disk].devnum = disk;
1789 			atomic_inc(&r10_bio->remaining);
1790 			md_submit_discard_bio(mddev, rdev, mbio,
1791 					dev_start + choose_data_offset(r10_bio, rdev),
1792 					dev_end - dev_start);
1793 			bio_endio(mbio);
1794 		}
1795 		if (r10_bio->devs[disk].repl_bio) {
1796 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1797 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1798 					       &mddev->bio_set);
1799 			rbio->bi_end_io = raid10_end_discard_request;
1800 			rbio->bi_private = r10_bio;
1801 			r10_bio->devs[disk].repl_bio = rbio;
1802 			r10_bio->devs[disk].devnum = disk;
1803 			atomic_inc(&r10_bio->remaining);
1804 			md_submit_discard_bio(mddev, rrdev, rbio,
1805 					dev_start + choose_data_offset(r10_bio, rrdev),
1806 					dev_end - dev_start);
1807 			bio_endio(rbio);
1808 		}
1809 	}
1810 
1811 	if (!geo->far_offset && --far_copies) {
1812 		first_stripe_index += geo->stride >> geo->chunk_shift;
1813 		start_disk_offset += geo->stride;
1814 		last_stripe_index += geo->stride >> geo->chunk_shift;
1815 		end_disk_offset += geo->stride;
1816 		atomic_inc(&first_r10bio->remaining);
1817 		raid_end_discard_bio(r10_bio);
1818 		wait_barrier(conf, false);
1819 		goto retry_discard;
1820 	}
1821 
1822 	raid_end_discard_bio(r10_bio);
1823 
1824 	return 0;
1825 out:
1826 	allow_barrier(conf);
1827 	return -EAGAIN;
1828 }
1829 
1830 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1831 {
1832 	struct r10conf *conf = mddev->private;
1833 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1834 	int chunk_sects = chunk_mask + 1;
1835 	int sectors = bio_sectors(bio);
1836 
1837 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1838 	    && md_flush_request(mddev, bio))
1839 		return true;
1840 
1841 	md_write_start(mddev, bio);
1842 
1843 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1844 		if (!raid10_handle_discard(mddev, bio))
1845 			return true;
1846 
1847 	/*
1848 	 * If this request crosses a chunk boundary, we need to split
1849 	 * it.
1850 	 */
1851 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1852 		     sectors > chunk_sects
1853 		     && (conf->geo.near_copies < conf->geo.raid_disks
1854 			 || conf->prev.near_copies <
1855 			 conf->prev.raid_disks)))
1856 		sectors = chunk_sects -
1857 			(bio->bi_iter.bi_sector &
1858 			 (chunk_sects - 1));
1859 	__make_request(mddev, bio, sectors);
1860 
1861 	/* In case raid10d snuck in to freeze_array */
1862 	wake_up_barrier(conf);
1863 	return true;
1864 }
1865 
1866 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1867 {
1868 	struct r10conf *conf = mddev->private;
1869 	int i;
1870 
1871 	lockdep_assert_held(&mddev->lock);
1872 
1873 	if (conf->geo.near_copies < conf->geo.raid_disks)
1874 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1875 	if (conf->geo.near_copies > 1)
1876 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1877 	if (conf->geo.far_copies > 1) {
1878 		if (conf->geo.far_offset)
1879 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1880 		else
1881 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1882 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1883 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1884 	}
1885 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1886 					conf->geo.raid_disks - mddev->degraded);
1887 	for (i = 0; i < conf->geo.raid_disks; i++) {
1888 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1889 
1890 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1891 	}
1892 	seq_printf(seq, "]");
1893 }
1894 
1895 /* check if there are enough drives for
1896  * every block to appear on atleast one.
1897  * Don't consider the device numbered 'ignore'
1898  * as we might be about to remove it.
1899  */
1900 static int _enough(struct r10conf *conf, int previous, int ignore)
1901 {
1902 	int first = 0;
1903 	int has_enough = 0;
1904 	int disks, ncopies;
1905 	if (previous) {
1906 		disks = conf->prev.raid_disks;
1907 		ncopies = conf->prev.near_copies;
1908 	} else {
1909 		disks = conf->geo.raid_disks;
1910 		ncopies = conf->geo.near_copies;
1911 	}
1912 
1913 	do {
1914 		int n = conf->copies;
1915 		int cnt = 0;
1916 		int this = first;
1917 		while (n--) {
1918 			struct md_rdev *rdev;
1919 			if (this != ignore &&
1920 			    (rdev = conf->mirrors[this].rdev) &&
1921 			    test_bit(In_sync, &rdev->flags))
1922 				cnt++;
1923 			this = (this+1) % disks;
1924 		}
1925 		if (cnt == 0)
1926 			goto out;
1927 		first = (first + ncopies) % disks;
1928 	} while (first != 0);
1929 	has_enough = 1;
1930 out:
1931 	return has_enough;
1932 }
1933 
1934 static int enough(struct r10conf *conf, int ignore)
1935 {
1936 	/* when calling 'enough', both 'prev' and 'geo' must
1937 	 * be stable.
1938 	 * This is ensured if ->reconfig_mutex or ->device_lock
1939 	 * is held.
1940 	 */
1941 	return _enough(conf, 0, ignore) &&
1942 		_enough(conf, 1, ignore);
1943 }
1944 
1945 /**
1946  * raid10_error() - RAID10 error handler.
1947  * @mddev: affected md device.
1948  * @rdev: member device to fail.
1949  *
1950  * The routine acknowledges &rdev failure and determines new @mddev state.
1951  * If it failed, then:
1952  *	- &MD_BROKEN flag is set in &mddev->flags.
1953  * Otherwise, it must be degraded:
1954  *	- recovery is interrupted.
1955  *	- &mddev->degraded is bumped.
1956  *
1957  * @rdev is marked as &Faulty excluding case when array is failed and
1958  * &mddev->fail_last_dev is off.
1959  */
1960 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1961 {
1962 	struct r10conf *conf = mddev->private;
1963 	unsigned long flags;
1964 
1965 	spin_lock_irqsave(&conf->device_lock, flags);
1966 
1967 	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1968 		set_bit(MD_BROKEN, &mddev->flags);
1969 
1970 		if (!mddev->fail_last_dev) {
1971 			spin_unlock_irqrestore(&conf->device_lock, flags);
1972 			return;
1973 		}
1974 	}
1975 	if (test_and_clear_bit(In_sync, &rdev->flags))
1976 		mddev->degraded++;
1977 
1978 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1979 	set_bit(Blocked, &rdev->flags);
1980 	set_bit(Faulty, &rdev->flags);
1981 	set_mask_bits(&mddev->sb_flags, 0,
1982 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1983 	spin_unlock_irqrestore(&conf->device_lock, flags);
1984 	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
1985 		"md/raid10:%s: Operation continuing on %d devices.\n",
1986 		mdname(mddev), rdev->bdev,
1987 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1988 }
1989 
1990 static void print_conf(struct r10conf *conf)
1991 {
1992 	int i;
1993 	struct md_rdev *rdev;
1994 
1995 	pr_debug("RAID10 conf printout:\n");
1996 	if (!conf) {
1997 		pr_debug("(!conf)\n");
1998 		return;
1999 	}
2000 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2001 		 conf->geo.raid_disks);
2002 
2003 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
2004 	for (i = 0; i < conf->geo.raid_disks; i++) {
2005 		rdev = conf->mirrors[i].rdev;
2006 		if (rdev)
2007 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2008 				 i, !test_bit(In_sync, &rdev->flags),
2009 				 !test_bit(Faulty, &rdev->flags),
2010 				 rdev->bdev);
2011 	}
2012 }
2013 
2014 static void close_sync(struct r10conf *conf)
2015 {
2016 	wait_barrier(conf, false);
2017 	allow_barrier(conf);
2018 
2019 	mempool_exit(&conf->r10buf_pool);
2020 }
2021 
2022 static int raid10_spare_active(struct mddev *mddev)
2023 {
2024 	int i;
2025 	struct r10conf *conf = mddev->private;
2026 	struct raid10_info *tmp;
2027 	int count = 0;
2028 	unsigned long flags;
2029 
2030 	/*
2031 	 * Find all non-in_sync disks within the RAID10 configuration
2032 	 * and mark them in_sync
2033 	 */
2034 	for (i = 0; i < conf->geo.raid_disks; i++) {
2035 		tmp = conf->mirrors + i;
2036 		if (tmp->replacement
2037 		    && tmp->replacement->recovery_offset == MaxSector
2038 		    && !test_bit(Faulty, &tmp->replacement->flags)
2039 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2040 			/* Replacement has just become active */
2041 			if (!tmp->rdev
2042 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2043 				count++;
2044 			if (tmp->rdev) {
2045 				/* Replaced device not technically faulty,
2046 				 * but we need to be sure it gets removed
2047 				 * and never re-added.
2048 				 */
2049 				set_bit(Faulty, &tmp->rdev->flags);
2050 				sysfs_notify_dirent_safe(
2051 					tmp->rdev->sysfs_state);
2052 			}
2053 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2054 		} else if (tmp->rdev
2055 			   && tmp->rdev->recovery_offset == MaxSector
2056 			   && !test_bit(Faulty, &tmp->rdev->flags)
2057 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2058 			count++;
2059 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2060 		}
2061 	}
2062 	spin_lock_irqsave(&conf->device_lock, flags);
2063 	mddev->degraded -= count;
2064 	spin_unlock_irqrestore(&conf->device_lock, flags);
2065 
2066 	print_conf(conf);
2067 	return count;
2068 }
2069 
2070 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2071 {
2072 	struct r10conf *conf = mddev->private;
2073 	int err = -EEXIST;
2074 	int mirror, repl_slot = -1;
2075 	int first = 0;
2076 	int last = conf->geo.raid_disks - 1;
2077 	struct raid10_info *p;
2078 
2079 	if (mddev->recovery_cp < MaxSector)
2080 		/* only hot-add to in-sync arrays, as recovery is
2081 		 * very different from resync
2082 		 */
2083 		return -EBUSY;
2084 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2085 		return -EINVAL;
2086 
2087 	if (rdev->raid_disk >= 0)
2088 		first = last = rdev->raid_disk;
2089 
2090 	if (rdev->saved_raid_disk >= first &&
2091 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2092 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2093 		mirror = rdev->saved_raid_disk;
2094 	else
2095 		mirror = first;
2096 	for ( ; mirror <= last ; mirror++) {
2097 		p = &conf->mirrors[mirror];
2098 		if (p->recovery_disabled == mddev->recovery_disabled)
2099 			continue;
2100 		if (p->rdev) {
2101 			if (test_bit(WantReplacement, &p->rdev->flags) &&
2102 			    p->replacement == NULL && repl_slot < 0)
2103 				repl_slot = mirror;
2104 			continue;
2105 		}
2106 
2107 		err = mddev_stack_new_rdev(mddev, rdev);
2108 		if (err)
2109 			return err;
2110 		p->head_position = 0;
2111 		p->recovery_disabled = mddev->recovery_disabled - 1;
2112 		rdev->raid_disk = mirror;
2113 		err = 0;
2114 		if (rdev->saved_raid_disk != mirror)
2115 			conf->fullsync = 1;
2116 		WRITE_ONCE(p->rdev, rdev);
2117 		break;
2118 	}
2119 
2120 	if (err && repl_slot >= 0) {
2121 		p = &conf->mirrors[repl_slot];
2122 		clear_bit(In_sync, &rdev->flags);
2123 		set_bit(Replacement, &rdev->flags);
2124 		rdev->raid_disk = repl_slot;
2125 		err = mddev_stack_new_rdev(mddev, rdev);
2126 		if (err)
2127 			return err;
2128 		conf->fullsync = 1;
2129 		WRITE_ONCE(p->replacement, rdev);
2130 	}
2131 
2132 	print_conf(conf);
2133 	return err;
2134 }
2135 
2136 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2137 {
2138 	struct r10conf *conf = mddev->private;
2139 	int err = 0;
2140 	int number = rdev->raid_disk;
2141 	struct md_rdev **rdevp;
2142 	struct raid10_info *p;
2143 
2144 	print_conf(conf);
2145 	if (unlikely(number >= mddev->raid_disks))
2146 		return 0;
2147 	p = conf->mirrors + number;
2148 	if (rdev == p->rdev)
2149 		rdevp = &p->rdev;
2150 	else if (rdev == p->replacement)
2151 		rdevp = &p->replacement;
2152 	else
2153 		return 0;
2154 
2155 	if (test_bit(In_sync, &rdev->flags) ||
2156 	    atomic_read(&rdev->nr_pending)) {
2157 		err = -EBUSY;
2158 		goto abort;
2159 	}
2160 	/* Only remove non-faulty devices if recovery
2161 	 * is not possible.
2162 	 */
2163 	if (!test_bit(Faulty, &rdev->flags) &&
2164 	    mddev->recovery_disabled != p->recovery_disabled &&
2165 	    (!p->replacement || p->replacement == rdev) &&
2166 	    number < conf->geo.raid_disks &&
2167 	    enough(conf, -1)) {
2168 		err = -EBUSY;
2169 		goto abort;
2170 	}
2171 	WRITE_ONCE(*rdevp, NULL);
2172 	if (p->replacement) {
2173 		/* We must have just cleared 'rdev' */
2174 		WRITE_ONCE(p->rdev, p->replacement);
2175 		clear_bit(Replacement, &p->replacement->flags);
2176 		WRITE_ONCE(p->replacement, NULL);
2177 	}
2178 
2179 	clear_bit(WantReplacement, &rdev->flags);
2180 	err = md_integrity_register(mddev);
2181 
2182 abort:
2183 
2184 	print_conf(conf);
2185 	return err;
2186 }
2187 
2188 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2189 {
2190 	struct r10conf *conf = r10_bio->mddev->private;
2191 
2192 	if (!bio->bi_status)
2193 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2194 	else
2195 		/* The write handler will notice the lack of
2196 		 * R10BIO_Uptodate and record any errors etc
2197 		 */
2198 		atomic_add(r10_bio->sectors,
2199 			   &conf->mirrors[d].rdev->corrected_errors);
2200 
2201 	/* for reconstruct, we always reschedule after a read.
2202 	 * for resync, only after all reads
2203 	 */
2204 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2205 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2206 	    atomic_dec_and_test(&r10_bio->remaining)) {
2207 		/* we have read all the blocks,
2208 		 * do the comparison in process context in raid10d
2209 		 */
2210 		reschedule_retry(r10_bio);
2211 	}
2212 }
2213 
2214 static void end_sync_read(struct bio *bio)
2215 {
2216 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2217 	struct r10conf *conf = r10_bio->mddev->private;
2218 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2219 
2220 	__end_sync_read(r10_bio, bio, d);
2221 }
2222 
2223 static void end_reshape_read(struct bio *bio)
2224 {
2225 	/* reshape read bio isn't allocated from r10buf_pool */
2226 	struct r10bio *r10_bio = bio->bi_private;
2227 
2228 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2229 }
2230 
2231 static void end_sync_request(struct r10bio *r10_bio)
2232 {
2233 	struct mddev *mddev = r10_bio->mddev;
2234 
2235 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2236 		if (r10_bio->master_bio == NULL) {
2237 			/* the primary of several recovery bios */
2238 			sector_t s = r10_bio->sectors;
2239 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2240 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2241 				reschedule_retry(r10_bio);
2242 			else
2243 				put_buf(r10_bio);
2244 			md_done_sync(mddev, s, 1);
2245 			break;
2246 		} else {
2247 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2248 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2249 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2250 				reschedule_retry(r10_bio);
2251 			else
2252 				put_buf(r10_bio);
2253 			r10_bio = r10_bio2;
2254 		}
2255 	}
2256 }
2257 
2258 static void end_sync_write(struct bio *bio)
2259 {
2260 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2261 	struct mddev *mddev = r10_bio->mddev;
2262 	struct r10conf *conf = mddev->private;
2263 	int d;
2264 	int slot;
2265 	int repl;
2266 	struct md_rdev *rdev = NULL;
2267 
2268 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2269 	if (repl)
2270 		rdev = conf->mirrors[d].replacement;
2271 	else
2272 		rdev = conf->mirrors[d].rdev;
2273 
2274 	if (bio->bi_status) {
2275 		if (repl)
2276 			md_error(mddev, rdev);
2277 		else {
2278 			set_bit(WriteErrorSeen, &rdev->flags);
2279 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2280 				set_bit(MD_RECOVERY_NEEDED,
2281 					&rdev->mddev->recovery);
2282 			set_bit(R10BIO_WriteError, &r10_bio->state);
2283 		}
2284 	} else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2285 				     r10_bio->sectors)) {
2286 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2287 	}
2288 
2289 	rdev_dec_pending(rdev, mddev);
2290 
2291 	end_sync_request(r10_bio);
2292 }
2293 
2294 /*
2295  * Note: sync and recover and handled very differently for raid10
2296  * This code is for resync.
2297  * For resync, we read through virtual addresses and read all blocks.
2298  * If there is any error, we schedule a write.  The lowest numbered
2299  * drive is authoritative.
2300  * However requests come for physical address, so we need to map.
2301  * For every physical address there are raid_disks/copies virtual addresses,
2302  * which is always are least one, but is not necessarly an integer.
2303  * This means that a physical address can span multiple chunks, so we may
2304  * have to submit multiple io requests for a single sync request.
2305  */
2306 /*
2307  * We check if all blocks are in-sync and only write to blocks that
2308  * aren't in sync
2309  */
2310 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2311 {
2312 	struct r10conf *conf = mddev->private;
2313 	int i, first;
2314 	struct bio *tbio, *fbio;
2315 	int vcnt;
2316 	struct page **tpages, **fpages;
2317 
2318 	atomic_set(&r10_bio->remaining, 1);
2319 
2320 	/* find the first device with a block */
2321 	for (i=0; i<conf->copies; i++)
2322 		if (!r10_bio->devs[i].bio->bi_status)
2323 			break;
2324 
2325 	if (i == conf->copies)
2326 		goto done;
2327 
2328 	first = i;
2329 	fbio = r10_bio->devs[i].bio;
2330 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2331 	fbio->bi_iter.bi_idx = 0;
2332 	fpages = get_resync_pages(fbio)->pages;
2333 
2334 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2335 	/* now find blocks with errors */
2336 	for (i=0 ; i < conf->copies ; i++) {
2337 		int  j, d;
2338 		struct md_rdev *rdev;
2339 		struct resync_pages *rp;
2340 
2341 		tbio = r10_bio->devs[i].bio;
2342 
2343 		if (tbio->bi_end_io != end_sync_read)
2344 			continue;
2345 		if (i == first)
2346 			continue;
2347 
2348 		tpages = get_resync_pages(tbio)->pages;
2349 		d = r10_bio->devs[i].devnum;
2350 		rdev = conf->mirrors[d].rdev;
2351 		if (!r10_bio->devs[i].bio->bi_status) {
2352 			/* We know that the bi_io_vec layout is the same for
2353 			 * both 'first' and 'i', so we just compare them.
2354 			 * All vec entries are PAGE_SIZE;
2355 			 */
2356 			int sectors = r10_bio->sectors;
2357 			for (j = 0; j < vcnt; j++) {
2358 				int len = PAGE_SIZE;
2359 				if (sectors < (len / 512))
2360 					len = sectors * 512;
2361 				if (memcmp(page_address(fpages[j]),
2362 					   page_address(tpages[j]),
2363 					   len))
2364 					break;
2365 				sectors -= len/512;
2366 			}
2367 			if (j == vcnt)
2368 				continue;
2369 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2370 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2371 				/* Don't fix anything. */
2372 				continue;
2373 		} else if (test_bit(FailFast, &rdev->flags)) {
2374 			/* Just give up on this device */
2375 			md_error(rdev->mddev, rdev);
2376 			continue;
2377 		}
2378 		/* Ok, we need to write this bio, either to correct an
2379 		 * inconsistency or to correct an unreadable block.
2380 		 * First we need to fixup bv_offset, bv_len and
2381 		 * bi_vecs, as the read request might have corrupted these
2382 		 */
2383 		rp = get_resync_pages(tbio);
2384 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2385 
2386 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2387 
2388 		rp->raid_bio = r10_bio;
2389 		tbio->bi_private = rp;
2390 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2391 		tbio->bi_end_io = end_sync_write;
2392 
2393 		bio_copy_data(tbio, fbio);
2394 
2395 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2396 		atomic_inc(&r10_bio->remaining);
2397 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2398 
2399 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2400 			tbio->bi_opf |= MD_FAILFAST;
2401 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2402 		submit_bio_noacct(tbio);
2403 	}
2404 
2405 	/* Now write out to any replacement devices
2406 	 * that are active
2407 	 */
2408 	for (i = 0; i < conf->copies; i++) {
2409 		int d;
2410 
2411 		tbio = r10_bio->devs[i].repl_bio;
2412 		if (!tbio || !tbio->bi_end_io)
2413 			continue;
2414 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2415 		    && r10_bio->devs[i].bio != fbio)
2416 			bio_copy_data(tbio, fbio);
2417 		d = r10_bio->devs[i].devnum;
2418 		atomic_inc(&r10_bio->remaining);
2419 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2420 			     bio_sectors(tbio));
2421 		submit_bio_noacct(tbio);
2422 	}
2423 
2424 done:
2425 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2426 		md_done_sync(mddev, r10_bio->sectors, 1);
2427 		put_buf(r10_bio);
2428 	}
2429 }
2430 
2431 /*
2432  * Now for the recovery code.
2433  * Recovery happens across physical sectors.
2434  * We recover all non-is_sync drives by finding the virtual address of
2435  * each, and then choose a working drive that also has that virt address.
2436  * There is a separate r10_bio for each non-in_sync drive.
2437  * Only the first two slots are in use. The first for reading,
2438  * The second for writing.
2439  *
2440  */
2441 static void fix_recovery_read_error(struct r10bio *r10_bio)
2442 {
2443 	/* We got a read error during recovery.
2444 	 * We repeat the read in smaller page-sized sections.
2445 	 * If a read succeeds, write it to the new device or record
2446 	 * a bad block if we cannot.
2447 	 * If a read fails, record a bad block on both old and
2448 	 * new devices.
2449 	 */
2450 	struct mddev *mddev = r10_bio->mddev;
2451 	struct r10conf *conf = mddev->private;
2452 	struct bio *bio = r10_bio->devs[0].bio;
2453 	sector_t sect = 0;
2454 	int sectors = r10_bio->sectors;
2455 	int idx = 0;
2456 	int dr = r10_bio->devs[0].devnum;
2457 	int dw = r10_bio->devs[1].devnum;
2458 	struct page **pages = get_resync_pages(bio)->pages;
2459 
2460 	while (sectors) {
2461 		int s = sectors;
2462 		struct md_rdev *rdev;
2463 		sector_t addr;
2464 		int ok;
2465 
2466 		if (s > (PAGE_SIZE>>9))
2467 			s = PAGE_SIZE >> 9;
2468 
2469 		rdev = conf->mirrors[dr].rdev;
2470 		addr = r10_bio->devs[0].addr + sect;
2471 		ok = sync_page_io(rdev,
2472 				  addr,
2473 				  s << 9,
2474 				  pages[idx],
2475 				  REQ_OP_READ, false);
2476 		if (ok) {
2477 			rdev = conf->mirrors[dw].rdev;
2478 			addr = r10_bio->devs[1].addr + sect;
2479 			ok = sync_page_io(rdev,
2480 					  addr,
2481 					  s << 9,
2482 					  pages[idx],
2483 					  REQ_OP_WRITE, false);
2484 			if (!ok) {
2485 				set_bit(WriteErrorSeen, &rdev->flags);
2486 				if (!test_and_set_bit(WantReplacement,
2487 						      &rdev->flags))
2488 					set_bit(MD_RECOVERY_NEEDED,
2489 						&rdev->mddev->recovery);
2490 			}
2491 		}
2492 		if (!ok) {
2493 			/* We don't worry if we cannot set a bad block -
2494 			 * it really is bad so there is no loss in not
2495 			 * recording it yet
2496 			 */
2497 			rdev_set_badblocks(rdev, addr, s, 0);
2498 
2499 			if (rdev != conf->mirrors[dw].rdev) {
2500 				/* need bad block on destination too */
2501 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2502 				addr = r10_bio->devs[1].addr + sect;
2503 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2504 				if (!ok) {
2505 					/* just abort the recovery */
2506 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2507 						  mdname(mddev));
2508 
2509 					conf->mirrors[dw].recovery_disabled
2510 						= mddev->recovery_disabled;
2511 					set_bit(MD_RECOVERY_INTR,
2512 						&mddev->recovery);
2513 					break;
2514 				}
2515 			}
2516 		}
2517 
2518 		sectors -= s;
2519 		sect += s;
2520 		idx++;
2521 	}
2522 }
2523 
2524 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2525 {
2526 	struct r10conf *conf = mddev->private;
2527 	int d;
2528 	struct bio *wbio = r10_bio->devs[1].bio;
2529 	struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2530 
2531 	/* Need to test wbio2->bi_end_io before we call
2532 	 * submit_bio_noacct as if the former is NULL,
2533 	 * the latter is free to free wbio2.
2534 	 */
2535 	if (wbio2 && !wbio2->bi_end_io)
2536 		wbio2 = NULL;
2537 
2538 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2539 		fix_recovery_read_error(r10_bio);
2540 		if (wbio->bi_end_io)
2541 			end_sync_request(r10_bio);
2542 		if (wbio2)
2543 			end_sync_request(r10_bio);
2544 		return;
2545 	}
2546 
2547 	/*
2548 	 * share the pages with the first bio
2549 	 * and submit the write request
2550 	 */
2551 	d = r10_bio->devs[1].devnum;
2552 	if (wbio->bi_end_io) {
2553 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2554 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2555 		submit_bio_noacct(wbio);
2556 	}
2557 	if (wbio2) {
2558 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2559 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2560 			     bio_sectors(wbio2));
2561 		submit_bio_noacct(wbio2);
2562 	}
2563 }
2564 
2565 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2566 			    int sectors, struct page *page, enum req_op op)
2567 {
2568 	if (rdev_has_badblock(rdev, sector, sectors) &&
2569 	    (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2570 		return -1;
2571 	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2572 		/* success */
2573 		return 1;
2574 	if (op == REQ_OP_WRITE) {
2575 		set_bit(WriteErrorSeen, &rdev->flags);
2576 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2577 			set_bit(MD_RECOVERY_NEEDED,
2578 				&rdev->mddev->recovery);
2579 	}
2580 	/* need to record an error - either for the block or the device */
2581 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2582 		md_error(rdev->mddev, rdev);
2583 	return 0;
2584 }
2585 
2586 /*
2587  * This is a kernel thread which:
2588  *
2589  *	1.	Retries failed read operations on working mirrors.
2590  *	2.	Updates the raid superblock when problems encounter.
2591  *	3.	Performs writes following reads for array synchronising.
2592  */
2593 
2594 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2595 {
2596 	int sect = 0; /* Offset from r10_bio->sector */
2597 	int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2598 	struct md_rdev *rdev;
2599 	int d = r10_bio->devs[slot].devnum;
2600 
2601 	/* still own a reference to this rdev, so it cannot
2602 	 * have been cleared recently.
2603 	 */
2604 	rdev = conf->mirrors[d].rdev;
2605 
2606 	if (test_bit(Faulty, &rdev->flags))
2607 		/* drive has already been failed, just ignore any
2608 		   more fix_read_error() attempts */
2609 		return;
2610 
2611 	if (exceed_read_errors(mddev, rdev)) {
2612 		r10_bio->devs[slot].bio = IO_BLOCKED;
2613 		return;
2614 	}
2615 
2616 	while(sectors) {
2617 		int s = sectors;
2618 		int sl = slot;
2619 		int success = 0;
2620 		int start;
2621 
2622 		if (s > (PAGE_SIZE>>9))
2623 			s = PAGE_SIZE >> 9;
2624 
2625 		do {
2626 			d = r10_bio->devs[sl].devnum;
2627 			rdev = conf->mirrors[d].rdev;
2628 			if (rdev &&
2629 			    test_bit(In_sync, &rdev->flags) &&
2630 			    !test_bit(Faulty, &rdev->flags) &&
2631 			    rdev_has_badblock(rdev,
2632 					      r10_bio->devs[sl].addr + sect,
2633 					      s) == 0) {
2634 				atomic_inc(&rdev->nr_pending);
2635 				success = sync_page_io(rdev,
2636 						       r10_bio->devs[sl].addr +
2637 						       sect,
2638 						       s<<9,
2639 						       conf->tmppage,
2640 						       REQ_OP_READ, false);
2641 				rdev_dec_pending(rdev, mddev);
2642 				if (success)
2643 					break;
2644 			}
2645 			sl++;
2646 			if (sl == conf->copies)
2647 				sl = 0;
2648 		} while (sl != slot);
2649 
2650 		if (!success) {
2651 			/* Cannot read from anywhere, just mark the block
2652 			 * as bad on the first device to discourage future
2653 			 * reads.
2654 			 */
2655 			int dn = r10_bio->devs[slot].devnum;
2656 			rdev = conf->mirrors[dn].rdev;
2657 
2658 			if (!rdev_set_badblocks(
2659 				    rdev,
2660 				    r10_bio->devs[slot].addr
2661 				    + sect,
2662 				    s, 0)) {
2663 				md_error(mddev, rdev);
2664 				r10_bio->devs[slot].bio
2665 					= IO_BLOCKED;
2666 			}
2667 			break;
2668 		}
2669 
2670 		start = sl;
2671 		/* write it back and re-read */
2672 		while (sl != slot) {
2673 			if (sl==0)
2674 				sl = conf->copies;
2675 			sl--;
2676 			d = r10_bio->devs[sl].devnum;
2677 			rdev = conf->mirrors[d].rdev;
2678 			if (!rdev ||
2679 			    test_bit(Faulty, &rdev->flags) ||
2680 			    !test_bit(In_sync, &rdev->flags))
2681 				continue;
2682 
2683 			atomic_inc(&rdev->nr_pending);
2684 			if (r10_sync_page_io(rdev,
2685 					     r10_bio->devs[sl].addr +
2686 					     sect,
2687 					     s, conf->tmppage, REQ_OP_WRITE)
2688 			    == 0) {
2689 				/* Well, this device is dead */
2690 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2691 					  mdname(mddev), s,
2692 					  (unsigned long long)(
2693 						  sect +
2694 						  choose_data_offset(r10_bio,
2695 								     rdev)),
2696 					  rdev->bdev);
2697 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2698 					  mdname(mddev),
2699 					  rdev->bdev);
2700 			}
2701 			rdev_dec_pending(rdev, mddev);
2702 		}
2703 		sl = start;
2704 		while (sl != slot) {
2705 			if (sl==0)
2706 				sl = conf->copies;
2707 			sl--;
2708 			d = r10_bio->devs[sl].devnum;
2709 			rdev = conf->mirrors[d].rdev;
2710 			if (!rdev ||
2711 			    test_bit(Faulty, &rdev->flags) ||
2712 			    !test_bit(In_sync, &rdev->flags))
2713 				continue;
2714 
2715 			atomic_inc(&rdev->nr_pending);
2716 			switch (r10_sync_page_io(rdev,
2717 					     r10_bio->devs[sl].addr +
2718 					     sect,
2719 					     s, conf->tmppage, REQ_OP_READ)) {
2720 			case 0:
2721 				/* Well, this device is dead */
2722 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2723 				       mdname(mddev), s,
2724 				       (unsigned long long)(
2725 					       sect +
2726 					       choose_data_offset(r10_bio, rdev)),
2727 				       rdev->bdev);
2728 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2729 				       mdname(mddev),
2730 				       rdev->bdev);
2731 				break;
2732 			case 1:
2733 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2734 				       mdname(mddev), s,
2735 				       (unsigned long long)(
2736 					       sect +
2737 					       choose_data_offset(r10_bio, rdev)),
2738 				       rdev->bdev);
2739 				atomic_add(s, &rdev->corrected_errors);
2740 			}
2741 
2742 			rdev_dec_pending(rdev, mddev);
2743 		}
2744 
2745 		sectors -= s;
2746 		sect += s;
2747 	}
2748 }
2749 
2750 static int narrow_write_error(struct r10bio *r10_bio, int i)
2751 {
2752 	struct bio *bio = r10_bio->master_bio;
2753 	struct mddev *mddev = r10_bio->mddev;
2754 	struct r10conf *conf = mddev->private;
2755 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2756 	/* bio has the data to be written to slot 'i' where
2757 	 * we just recently had a write error.
2758 	 * We repeatedly clone the bio and trim down to one block,
2759 	 * then try the write.  Where the write fails we record
2760 	 * a bad block.
2761 	 * It is conceivable that the bio doesn't exactly align with
2762 	 * blocks.  We must handle this.
2763 	 *
2764 	 * We currently own a reference to the rdev.
2765 	 */
2766 
2767 	int block_sectors;
2768 	sector_t sector;
2769 	int sectors;
2770 	int sect_to_write = r10_bio->sectors;
2771 	int ok = 1;
2772 
2773 	if (rdev->badblocks.shift < 0)
2774 		return 0;
2775 
2776 	block_sectors = roundup(1 << rdev->badblocks.shift,
2777 				bdev_logical_block_size(rdev->bdev) >> 9);
2778 	sector = r10_bio->sector;
2779 	sectors = ((r10_bio->sector + block_sectors)
2780 		   & ~(sector_t)(block_sectors - 1))
2781 		- sector;
2782 
2783 	while (sect_to_write) {
2784 		struct bio *wbio;
2785 		sector_t wsector;
2786 		if (sectors > sect_to_write)
2787 			sectors = sect_to_write;
2788 		/* Write at 'sector' for 'sectors' */
2789 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2790 				       &mddev->bio_set);
2791 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2792 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2793 		wbio->bi_iter.bi_sector = wsector +
2794 				   choose_data_offset(r10_bio, rdev);
2795 		wbio->bi_opf = REQ_OP_WRITE;
2796 
2797 		if (submit_bio_wait(wbio) < 0)
2798 			/* Failure! */
2799 			ok = rdev_set_badblocks(rdev, wsector,
2800 						sectors, 0)
2801 				&& ok;
2802 
2803 		bio_put(wbio);
2804 		sect_to_write -= sectors;
2805 		sector += sectors;
2806 		sectors = block_sectors;
2807 	}
2808 	return ok;
2809 }
2810 
2811 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2812 {
2813 	int slot = r10_bio->read_slot;
2814 	struct bio *bio;
2815 	struct r10conf *conf = mddev->private;
2816 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2817 
2818 	/* we got a read error. Maybe the drive is bad.  Maybe just
2819 	 * the block and we can fix it.
2820 	 * We freeze all other IO, and try reading the block from
2821 	 * other devices.  When we find one, we re-write
2822 	 * and check it that fixes the read error.
2823 	 * This is all done synchronously while the array is
2824 	 * frozen.
2825 	 */
2826 	bio = r10_bio->devs[slot].bio;
2827 	bio_put(bio);
2828 	r10_bio->devs[slot].bio = NULL;
2829 
2830 	if (mddev->ro)
2831 		r10_bio->devs[slot].bio = IO_BLOCKED;
2832 	else if (!test_bit(FailFast, &rdev->flags)) {
2833 		freeze_array(conf, 1);
2834 		fix_read_error(conf, mddev, r10_bio);
2835 		unfreeze_array(conf);
2836 	} else
2837 		md_error(mddev, rdev);
2838 
2839 	rdev_dec_pending(rdev, mddev);
2840 	r10_bio->state = 0;
2841 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2842 	/*
2843 	 * allow_barrier after re-submit to ensure no sync io
2844 	 * can be issued while regular io pending.
2845 	 */
2846 	allow_barrier(conf);
2847 }
2848 
2849 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2850 {
2851 	/* Some sort of write request has finished and it
2852 	 * succeeded in writing where we thought there was a
2853 	 * bad block.  So forget the bad block.
2854 	 * Or possibly if failed and we need to record
2855 	 * a bad block.
2856 	 */
2857 	int m;
2858 	struct md_rdev *rdev;
2859 
2860 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2861 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2862 		for (m = 0; m < conf->copies; m++) {
2863 			int dev = r10_bio->devs[m].devnum;
2864 			rdev = conf->mirrors[dev].rdev;
2865 			if (r10_bio->devs[m].bio == NULL ||
2866 				r10_bio->devs[m].bio->bi_end_io == NULL)
2867 				continue;
2868 			if (!r10_bio->devs[m].bio->bi_status) {
2869 				rdev_clear_badblocks(
2870 					rdev,
2871 					r10_bio->devs[m].addr,
2872 					r10_bio->sectors, 0);
2873 			} else {
2874 				if (!rdev_set_badblocks(
2875 					    rdev,
2876 					    r10_bio->devs[m].addr,
2877 					    r10_bio->sectors, 0))
2878 					md_error(conf->mddev, rdev);
2879 			}
2880 			rdev = conf->mirrors[dev].replacement;
2881 			if (r10_bio->devs[m].repl_bio == NULL ||
2882 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2883 				continue;
2884 
2885 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2886 				rdev_clear_badblocks(
2887 					rdev,
2888 					r10_bio->devs[m].addr,
2889 					r10_bio->sectors, 0);
2890 			} else {
2891 				if (!rdev_set_badblocks(
2892 					    rdev,
2893 					    r10_bio->devs[m].addr,
2894 					    r10_bio->sectors, 0))
2895 					md_error(conf->mddev, rdev);
2896 			}
2897 		}
2898 		put_buf(r10_bio);
2899 	} else {
2900 		bool fail = false;
2901 		for (m = 0; m < conf->copies; m++) {
2902 			int dev = r10_bio->devs[m].devnum;
2903 			struct bio *bio = r10_bio->devs[m].bio;
2904 			rdev = conf->mirrors[dev].rdev;
2905 			if (bio == IO_MADE_GOOD) {
2906 				rdev_clear_badblocks(
2907 					rdev,
2908 					r10_bio->devs[m].addr,
2909 					r10_bio->sectors, 0);
2910 				rdev_dec_pending(rdev, conf->mddev);
2911 			} else if (bio != NULL && bio->bi_status) {
2912 				fail = true;
2913 				if (!narrow_write_error(r10_bio, m)) {
2914 					md_error(conf->mddev, rdev);
2915 					set_bit(R10BIO_Degraded,
2916 						&r10_bio->state);
2917 				}
2918 				rdev_dec_pending(rdev, conf->mddev);
2919 			}
2920 			bio = r10_bio->devs[m].repl_bio;
2921 			rdev = conf->mirrors[dev].replacement;
2922 			if (rdev && bio == IO_MADE_GOOD) {
2923 				rdev_clear_badblocks(
2924 					rdev,
2925 					r10_bio->devs[m].addr,
2926 					r10_bio->sectors, 0);
2927 				rdev_dec_pending(rdev, conf->mddev);
2928 			}
2929 		}
2930 		if (fail) {
2931 			spin_lock_irq(&conf->device_lock);
2932 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2933 			conf->nr_queued++;
2934 			spin_unlock_irq(&conf->device_lock);
2935 			/*
2936 			 * In case freeze_array() is waiting for condition
2937 			 * nr_pending == nr_queued + extra to be true.
2938 			 */
2939 			wake_up(&conf->wait_barrier);
2940 			md_wakeup_thread(conf->mddev->thread);
2941 		} else {
2942 			if (test_bit(R10BIO_WriteError,
2943 				     &r10_bio->state))
2944 				close_write(r10_bio);
2945 			raid_end_bio_io(r10_bio);
2946 		}
2947 	}
2948 }
2949 
2950 static void raid10d(struct md_thread *thread)
2951 {
2952 	struct mddev *mddev = thread->mddev;
2953 	struct r10bio *r10_bio;
2954 	unsigned long flags;
2955 	struct r10conf *conf = mddev->private;
2956 	struct list_head *head = &conf->retry_list;
2957 	struct blk_plug plug;
2958 
2959 	md_check_recovery(mddev);
2960 
2961 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2962 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2963 		LIST_HEAD(tmp);
2964 		spin_lock_irqsave(&conf->device_lock, flags);
2965 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2966 			while (!list_empty(&conf->bio_end_io_list)) {
2967 				list_move(conf->bio_end_io_list.prev, &tmp);
2968 				conf->nr_queued--;
2969 			}
2970 		}
2971 		spin_unlock_irqrestore(&conf->device_lock, flags);
2972 		while (!list_empty(&tmp)) {
2973 			r10_bio = list_first_entry(&tmp, struct r10bio,
2974 						   retry_list);
2975 			list_del(&r10_bio->retry_list);
2976 			if (mddev->degraded)
2977 				set_bit(R10BIO_Degraded, &r10_bio->state);
2978 
2979 			if (test_bit(R10BIO_WriteError,
2980 				     &r10_bio->state))
2981 				close_write(r10_bio);
2982 			raid_end_bio_io(r10_bio);
2983 		}
2984 	}
2985 
2986 	blk_start_plug(&plug);
2987 	for (;;) {
2988 
2989 		flush_pending_writes(conf);
2990 
2991 		spin_lock_irqsave(&conf->device_lock, flags);
2992 		if (list_empty(head)) {
2993 			spin_unlock_irqrestore(&conf->device_lock, flags);
2994 			break;
2995 		}
2996 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2997 		list_del(head->prev);
2998 		conf->nr_queued--;
2999 		spin_unlock_irqrestore(&conf->device_lock, flags);
3000 
3001 		mddev = r10_bio->mddev;
3002 		conf = mddev->private;
3003 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3004 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3005 			handle_write_completed(conf, r10_bio);
3006 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3007 			reshape_request_write(mddev, r10_bio);
3008 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3009 			sync_request_write(mddev, r10_bio);
3010 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3011 			recovery_request_write(mddev, r10_bio);
3012 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3013 			handle_read_error(mddev, r10_bio);
3014 		else
3015 			WARN_ON_ONCE(1);
3016 
3017 		cond_resched();
3018 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3019 			md_check_recovery(mddev);
3020 	}
3021 	blk_finish_plug(&plug);
3022 }
3023 
3024 static int init_resync(struct r10conf *conf)
3025 {
3026 	int ret, buffs, i;
3027 
3028 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3029 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3030 	conf->have_replacement = 0;
3031 	for (i = 0; i < conf->geo.raid_disks; i++)
3032 		if (conf->mirrors[i].replacement)
3033 			conf->have_replacement = 1;
3034 	ret = mempool_init(&conf->r10buf_pool, buffs,
3035 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3036 	if (ret)
3037 		return ret;
3038 	conf->next_resync = 0;
3039 	return 0;
3040 }
3041 
3042 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3043 {
3044 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3045 	struct rsync_pages *rp;
3046 	struct bio *bio;
3047 	int nalloc;
3048 	int i;
3049 
3050 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3051 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3052 		nalloc = conf->copies; /* resync */
3053 	else
3054 		nalloc = 2; /* recovery */
3055 
3056 	for (i = 0; i < nalloc; i++) {
3057 		bio = r10bio->devs[i].bio;
3058 		rp = bio->bi_private;
3059 		bio_reset(bio, NULL, 0);
3060 		bio->bi_private = rp;
3061 		bio = r10bio->devs[i].repl_bio;
3062 		if (bio) {
3063 			rp = bio->bi_private;
3064 			bio_reset(bio, NULL, 0);
3065 			bio->bi_private = rp;
3066 		}
3067 	}
3068 	return r10bio;
3069 }
3070 
3071 /*
3072  * Set cluster_sync_high since we need other nodes to add the
3073  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3074  */
3075 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3076 {
3077 	sector_t window_size;
3078 	int extra_chunk, chunks;
3079 
3080 	/*
3081 	 * First, here we define "stripe" as a unit which across
3082 	 * all member devices one time, so we get chunks by use
3083 	 * raid_disks / near_copies. Otherwise, if near_copies is
3084 	 * close to raid_disks, then resync window could increases
3085 	 * linearly with the increase of raid_disks, which means
3086 	 * we will suspend a really large IO window while it is not
3087 	 * necessary. If raid_disks is not divisible by near_copies,
3088 	 * an extra chunk is needed to ensure the whole "stripe" is
3089 	 * covered.
3090 	 */
3091 
3092 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3093 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3094 		extra_chunk = 0;
3095 	else
3096 		extra_chunk = 1;
3097 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3098 
3099 	/*
3100 	 * At least use a 32M window to align with raid1's resync window
3101 	 */
3102 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3103 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3104 
3105 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3106 }
3107 
3108 /*
3109  * perform a "sync" on one "block"
3110  *
3111  * We need to make sure that no normal I/O request - particularly write
3112  * requests - conflict with active sync requests.
3113  *
3114  * This is achieved by tracking pending requests and a 'barrier' concept
3115  * that can be installed to exclude normal IO requests.
3116  *
3117  * Resync and recovery are handled very differently.
3118  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3119  *
3120  * For resync, we iterate over virtual addresses, read all copies,
3121  * and update if there are differences.  If only one copy is live,
3122  * skip it.
3123  * For recovery, we iterate over physical addresses, read a good
3124  * value for each non-in_sync drive, and over-write.
3125  *
3126  * So, for recovery we may have several outstanding complex requests for a
3127  * given address, one for each out-of-sync device.  We model this by allocating
3128  * a number of r10_bio structures, one for each out-of-sync device.
3129  * As we setup these structures, we collect all bio's together into a list
3130  * which we then process collectively to add pages, and then process again
3131  * to pass to submit_bio_noacct.
3132  *
3133  * The r10_bio structures are linked using a borrowed master_bio pointer.
3134  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3135  * has its remaining count decremented to 0, the whole complex operation
3136  * is complete.
3137  *
3138  */
3139 
3140 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3141 				    sector_t max_sector, int *skipped)
3142 {
3143 	struct r10conf *conf = mddev->private;
3144 	struct r10bio *r10_bio;
3145 	struct bio *biolist = NULL, *bio;
3146 	sector_t nr_sectors;
3147 	int i;
3148 	int max_sync;
3149 	sector_t sync_blocks;
3150 	sector_t sectors_skipped = 0;
3151 	int chunks_skipped = 0;
3152 	sector_t chunk_mask = conf->geo.chunk_mask;
3153 	int page_idx = 0;
3154 	int error_disk = -1;
3155 
3156 	/*
3157 	 * Allow skipping a full rebuild for incremental assembly
3158 	 * of a clean array, like RAID1 does.
3159 	 */
3160 	if (mddev->bitmap == NULL &&
3161 	    mddev->recovery_cp == MaxSector &&
3162 	    mddev->reshape_position == MaxSector &&
3163 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3164 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3165 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3166 	    conf->fullsync == 0) {
3167 		*skipped = 1;
3168 		return mddev->dev_sectors - sector_nr;
3169 	}
3170 
3171 	if (!mempool_initialized(&conf->r10buf_pool))
3172 		if (init_resync(conf))
3173 			return 0;
3174 
3175  skipped:
3176 	if (sector_nr >= max_sector) {
3177 		conf->cluster_sync_low = 0;
3178 		conf->cluster_sync_high = 0;
3179 
3180 		/* If we aborted, we need to abort the
3181 		 * sync on the 'current' bitmap chucks (there can
3182 		 * be several when recovering multiple devices).
3183 		 * as we may have started syncing it but not finished.
3184 		 * We can find the current address in
3185 		 * mddev->curr_resync, but for recovery,
3186 		 * we need to convert that to several
3187 		 * virtual addresses.
3188 		 */
3189 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3190 			end_reshape(conf);
3191 			close_sync(conf);
3192 			return 0;
3193 		}
3194 
3195 		if (mddev->curr_resync < max_sector) { /* aborted */
3196 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3197 				mddev->bitmap_ops->end_sync(mddev,
3198 							    mddev->curr_resync,
3199 							    &sync_blocks);
3200 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3201 				sector_t sect =
3202 					raid10_find_virt(conf, mddev->curr_resync, i);
3203 
3204 				mddev->bitmap_ops->end_sync(mddev, sect,
3205 							    &sync_blocks);
3206 			}
3207 		} else {
3208 			/* completed sync */
3209 			if ((!mddev->bitmap || conf->fullsync)
3210 			    && conf->have_replacement
3211 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3212 				/* Completed a full sync so the replacements
3213 				 * are now fully recovered.
3214 				 */
3215 				for (i = 0; i < conf->geo.raid_disks; i++) {
3216 					struct md_rdev *rdev =
3217 						conf->mirrors[i].replacement;
3218 
3219 					if (rdev)
3220 						rdev->recovery_offset = MaxSector;
3221 				}
3222 			}
3223 			conf->fullsync = 0;
3224 		}
3225 		mddev->bitmap_ops->close_sync(mddev);
3226 		close_sync(conf);
3227 		*skipped = 1;
3228 		return sectors_skipped;
3229 	}
3230 
3231 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3232 		return reshape_request(mddev, sector_nr, skipped);
3233 
3234 	if (chunks_skipped >= conf->geo.raid_disks) {
3235 		pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3236 			test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3237 		if (error_disk >= 0 &&
3238 		    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3239 			/*
3240 			 * recovery fails, set mirrors.recovery_disabled,
3241 			 * device shouldn't be added to there.
3242 			 */
3243 			conf->mirrors[error_disk].recovery_disabled =
3244 						mddev->recovery_disabled;
3245 			return 0;
3246 		}
3247 		/*
3248 		 * if there has been nothing to do on any drive,
3249 		 * then there is nothing to do at all.
3250 		 */
3251 		*skipped = 1;
3252 		return (max_sector - sector_nr) + sectors_skipped;
3253 	}
3254 
3255 	if (max_sector > mddev->resync_max)
3256 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3257 
3258 	/* make sure whole request will fit in a chunk - if chunks
3259 	 * are meaningful
3260 	 */
3261 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3262 	    max_sector > (sector_nr | chunk_mask))
3263 		max_sector = (sector_nr | chunk_mask) + 1;
3264 
3265 	/*
3266 	 * If there is non-resync activity waiting for a turn, then let it
3267 	 * though before starting on this new sync request.
3268 	 */
3269 	if (conf->nr_waiting)
3270 		schedule_timeout_uninterruptible(1);
3271 
3272 	/* Again, very different code for resync and recovery.
3273 	 * Both must result in an r10bio with a list of bios that
3274 	 * have bi_end_io, bi_sector, bi_bdev set,
3275 	 * and bi_private set to the r10bio.
3276 	 * For recovery, we may actually create several r10bios
3277 	 * with 2 bios in each, that correspond to the bios in the main one.
3278 	 * In this case, the subordinate r10bios link back through a
3279 	 * borrowed master_bio pointer, and the counter in the master
3280 	 * includes a ref from each subordinate.
3281 	 */
3282 	/* First, we decide what to do and set ->bi_end_io
3283 	 * To end_sync_read if we want to read, and
3284 	 * end_sync_write if we will want to write.
3285 	 */
3286 
3287 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3288 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3289 		/* recovery... the complicated one */
3290 		int j;
3291 		r10_bio = NULL;
3292 
3293 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3294 			bool still_degraded;
3295 			struct r10bio *rb2;
3296 			sector_t sect;
3297 			bool must_sync;
3298 			int any_working;
3299 			struct raid10_info *mirror = &conf->mirrors[i];
3300 			struct md_rdev *mrdev, *mreplace;
3301 
3302 			mrdev = mirror->rdev;
3303 			mreplace = mirror->replacement;
3304 
3305 			if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3306 			    test_bit(In_sync, &mrdev->flags)))
3307 				mrdev = NULL;
3308 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3309 				mreplace = NULL;
3310 
3311 			if (!mrdev && !mreplace)
3312 				continue;
3313 
3314 			still_degraded = false;
3315 			/* want to reconstruct this device */
3316 			rb2 = r10_bio;
3317 			sect = raid10_find_virt(conf, sector_nr, i);
3318 			if (sect >= mddev->resync_max_sectors)
3319 				/* last stripe is not complete - don't
3320 				 * try to recover this sector.
3321 				 */
3322 				continue;
3323 			/* Unless we are doing a full sync, or a replacement
3324 			 * we only need to recover the block if it is set in
3325 			 * the bitmap
3326 			 */
3327 			must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3328 								  &sync_blocks,
3329 								  true);
3330 			if (sync_blocks < max_sync)
3331 				max_sync = sync_blocks;
3332 			if (!must_sync &&
3333 			    mreplace == NULL &&
3334 			    !conf->fullsync) {
3335 				/* yep, skip the sync_blocks here, but don't assume
3336 				 * that there will never be anything to do here
3337 				 */
3338 				chunks_skipped = -1;
3339 				continue;
3340 			}
3341 			if (mrdev)
3342 				atomic_inc(&mrdev->nr_pending);
3343 			if (mreplace)
3344 				atomic_inc(&mreplace->nr_pending);
3345 
3346 			r10_bio = raid10_alloc_init_r10buf(conf);
3347 			r10_bio->state = 0;
3348 			raise_barrier(conf, rb2 != NULL);
3349 			atomic_set(&r10_bio->remaining, 0);
3350 
3351 			r10_bio->master_bio = (struct bio*)rb2;
3352 			if (rb2)
3353 				atomic_inc(&rb2->remaining);
3354 			r10_bio->mddev = mddev;
3355 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3356 			r10_bio->sector = sect;
3357 
3358 			raid10_find_phys(conf, r10_bio);
3359 
3360 			/* Need to check if the array will still be
3361 			 * degraded
3362 			 */
3363 			for (j = 0; j < conf->geo.raid_disks; j++) {
3364 				struct md_rdev *rdev = conf->mirrors[j].rdev;
3365 
3366 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3367 					still_degraded = false;
3368 					break;
3369 				}
3370 			}
3371 
3372 			must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3373 						&sync_blocks, still_degraded);
3374 
3375 			any_working = 0;
3376 			for (j=0; j<conf->copies;j++) {
3377 				int k;
3378 				int d = r10_bio->devs[j].devnum;
3379 				sector_t from_addr, to_addr;
3380 				struct md_rdev *rdev = conf->mirrors[d].rdev;
3381 				sector_t sector, first_bad;
3382 				int bad_sectors;
3383 				if (!rdev ||
3384 				    !test_bit(In_sync, &rdev->flags))
3385 					continue;
3386 				/* This is where we read from */
3387 				any_working = 1;
3388 				sector = r10_bio->devs[j].addr;
3389 
3390 				if (is_badblock(rdev, sector, max_sync,
3391 						&first_bad, &bad_sectors)) {
3392 					if (first_bad > sector)
3393 						max_sync = first_bad - sector;
3394 					else {
3395 						bad_sectors -= (sector
3396 								- first_bad);
3397 						if (max_sync > bad_sectors)
3398 							max_sync = bad_sectors;
3399 						continue;
3400 					}
3401 				}
3402 				bio = r10_bio->devs[0].bio;
3403 				bio->bi_next = biolist;
3404 				biolist = bio;
3405 				bio->bi_end_io = end_sync_read;
3406 				bio->bi_opf = REQ_OP_READ;
3407 				if (test_bit(FailFast, &rdev->flags))
3408 					bio->bi_opf |= MD_FAILFAST;
3409 				from_addr = r10_bio->devs[j].addr;
3410 				bio->bi_iter.bi_sector = from_addr +
3411 					rdev->data_offset;
3412 				bio_set_dev(bio, rdev->bdev);
3413 				atomic_inc(&rdev->nr_pending);
3414 				/* and we write to 'i' (if not in_sync) */
3415 
3416 				for (k=0; k<conf->copies; k++)
3417 					if (r10_bio->devs[k].devnum == i)
3418 						break;
3419 				BUG_ON(k == conf->copies);
3420 				to_addr = r10_bio->devs[k].addr;
3421 				r10_bio->devs[0].devnum = d;
3422 				r10_bio->devs[0].addr = from_addr;
3423 				r10_bio->devs[1].devnum = i;
3424 				r10_bio->devs[1].addr = to_addr;
3425 
3426 				if (mrdev) {
3427 					bio = r10_bio->devs[1].bio;
3428 					bio->bi_next = biolist;
3429 					biolist = bio;
3430 					bio->bi_end_io = end_sync_write;
3431 					bio->bi_opf = REQ_OP_WRITE;
3432 					bio->bi_iter.bi_sector = to_addr
3433 						+ mrdev->data_offset;
3434 					bio_set_dev(bio, mrdev->bdev);
3435 					atomic_inc(&r10_bio->remaining);
3436 				} else
3437 					r10_bio->devs[1].bio->bi_end_io = NULL;
3438 
3439 				/* and maybe write to replacement */
3440 				bio = r10_bio->devs[1].repl_bio;
3441 				if (bio)
3442 					bio->bi_end_io = NULL;
3443 				/* Note: if replace is not NULL, then bio
3444 				 * cannot be NULL as r10buf_pool_alloc will
3445 				 * have allocated it.
3446 				 */
3447 				if (!mreplace)
3448 					break;
3449 				bio->bi_next = biolist;
3450 				biolist = bio;
3451 				bio->bi_end_io = end_sync_write;
3452 				bio->bi_opf = REQ_OP_WRITE;
3453 				bio->bi_iter.bi_sector = to_addr +
3454 					mreplace->data_offset;
3455 				bio_set_dev(bio, mreplace->bdev);
3456 				atomic_inc(&r10_bio->remaining);
3457 				break;
3458 			}
3459 			if (j == conf->copies) {
3460 				/* Cannot recover, so abort the recovery or
3461 				 * record a bad block */
3462 				if (any_working) {
3463 					/* problem is that there are bad blocks
3464 					 * on other device(s)
3465 					 */
3466 					int k;
3467 					for (k = 0; k < conf->copies; k++)
3468 						if (r10_bio->devs[k].devnum == i)
3469 							break;
3470 					if (mrdev && !test_bit(In_sync,
3471 						      &mrdev->flags)
3472 					    && !rdev_set_badblocks(
3473 						    mrdev,
3474 						    r10_bio->devs[k].addr,
3475 						    max_sync, 0))
3476 						any_working = 0;
3477 					if (mreplace &&
3478 					    !rdev_set_badblocks(
3479 						    mreplace,
3480 						    r10_bio->devs[k].addr,
3481 						    max_sync, 0))
3482 						any_working = 0;
3483 				}
3484 				if (!any_working)  {
3485 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3486 							      &mddev->recovery))
3487 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3488 						       mdname(mddev));
3489 					mirror->recovery_disabled
3490 						= mddev->recovery_disabled;
3491 				} else {
3492 					error_disk = i;
3493 				}
3494 				put_buf(r10_bio);
3495 				if (rb2)
3496 					atomic_dec(&rb2->remaining);
3497 				r10_bio = rb2;
3498 				if (mrdev)
3499 					rdev_dec_pending(mrdev, mddev);
3500 				if (mreplace)
3501 					rdev_dec_pending(mreplace, mddev);
3502 				break;
3503 			}
3504 			if (mrdev)
3505 				rdev_dec_pending(mrdev, mddev);
3506 			if (mreplace)
3507 				rdev_dec_pending(mreplace, mddev);
3508 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3509 				/* Only want this if there is elsewhere to
3510 				 * read from. 'j' is currently the first
3511 				 * readable copy.
3512 				 */
3513 				int targets = 1;
3514 				for (; j < conf->copies; j++) {
3515 					int d = r10_bio->devs[j].devnum;
3516 					if (conf->mirrors[d].rdev &&
3517 					    test_bit(In_sync,
3518 						      &conf->mirrors[d].rdev->flags))
3519 						targets++;
3520 				}
3521 				if (targets == 1)
3522 					r10_bio->devs[0].bio->bi_opf
3523 						&= ~MD_FAILFAST;
3524 			}
3525 		}
3526 		if (biolist == NULL) {
3527 			while (r10_bio) {
3528 				struct r10bio *rb2 = r10_bio;
3529 				r10_bio = (struct r10bio*) rb2->master_bio;
3530 				rb2->master_bio = NULL;
3531 				put_buf(rb2);
3532 			}
3533 			goto giveup;
3534 		}
3535 	} else {
3536 		/* resync. Schedule a read for every block at this virt offset */
3537 		int count = 0;
3538 
3539 		/*
3540 		 * Since curr_resync_completed could probably not update in
3541 		 * time, and we will set cluster_sync_low based on it.
3542 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3543 		 * safety reason, which ensures curr_resync_completed is
3544 		 * updated in bitmap_cond_end_sync.
3545 		 */
3546 		mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
3547 					mddev_is_clustered(mddev) &&
3548 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3549 
3550 		if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3551 						   &sync_blocks,
3552 						   mddev->degraded) &&
3553 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3554 						 &mddev->recovery)) {
3555 			/* We can skip this block */
3556 			*skipped = 1;
3557 			return sync_blocks + sectors_skipped;
3558 		}
3559 		if (sync_blocks < max_sync)
3560 			max_sync = sync_blocks;
3561 		r10_bio = raid10_alloc_init_r10buf(conf);
3562 		r10_bio->state = 0;
3563 
3564 		r10_bio->mddev = mddev;
3565 		atomic_set(&r10_bio->remaining, 0);
3566 		raise_barrier(conf, 0);
3567 		conf->next_resync = sector_nr;
3568 
3569 		r10_bio->master_bio = NULL;
3570 		r10_bio->sector = sector_nr;
3571 		set_bit(R10BIO_IsSync, &r10_bio->state);
3572 		raid10_find_phys(conf, r10_bio);
3573 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3574 
3575 		for (i = 0; i < conf->copies; i++) {
3576 			int d = r10_bio->devs[i].devnum;
3577 			sector_t first_bad, sector;
3578 			int bad_sectors;
3579 			struct md_rdev *rdev;
3580 
3581 			if (r10_bio->devs[i].repl_bio)
3582 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3583 
3584 			bio = r10_bio->devs[i].bio;
3585 			bio->bi_status = BLK_STS_IOERR;
3586 			rdev = conf->mirrors[d].rdev;
3587 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3588 				continue;
3589 
3590 			sector = r10_bio->devs[i].addr;
3591 			if (is_badblock(rdev, sector, max_sync,
3592 					&first_bad, &bad_sectors)) {
3593 				if (first_bad > sector)
3594 					max_sync = first_bad - sector;
3595 				else {
3596 					bad_sectors -= (sector - first_bad);
3597 					if (max_sync > bad_sectors)
3598 						max_sync = bad_sectors;
3599 					continue;
3600 				}
3601 			}
3602 			atomic_inc(&rdev->nr_pending);
3603 			atomic_inc(&r10_bio->remaining);
3604 			bio->bi_next = biolist;
3605 			biolist = bio;
3606 			bio->bi_end_io = end_sync_read;
3607 			bio->bi_opf = REQ_OP_READ;
3608 			if (test_bit(FailFast, &rdev->flags))
3609 				bio->bi_opf |= MD_FAILFAST;
3610 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3611 			bio_set_dev(bio, rdev->bdev);
3612 			count++;
3613 
3614 			rdev = conf->mirrors[d].replacement;
3615 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3616 				continue;
3617 
3618 			atomic_inc(&rdev->nr_pending);
3619 
3620 			/* Need to set up for writing to the replacement */
3621 			bio = r10_bio->devs[i].repl_bio;
3622 			bio->bi_status = BLK_STS_IOERR;
3623 
3624 			sector = r10_bio->devs[i].addr;
3625 			bio->bi_next = biolist;
3626 			biolist = bio;
3627 			bio->bi_end_io = end_sync_write;
3628 			bio->bi_opf = REQ_OP_WRITE;
3629 			if (test_bit(FailFast, &rdev->flags))
3630 				bio->bi_opf |= MD_FAILFAST;
3631 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3632 			bio_set_dev(bio, rdev->bdev);
3633 			count++;
3634 		}
3635 
3636 		if (count < 2) {
3637 			for (i=0; i<conf->copies; i++) {
3638 				int d = r10_bio->devs[i].devnum;
3639 				if (r10_bio->devs[i].bio->bi_end_io)
3640 					rdev_dec_pending(conf->mirrors[d].rdev,
3641 							 mddev);
3642 				if (r10_bio->devs[i].repl_bio &&
3643 				    r10_bio->devs[i].repl_bio->bi_end_io)
3644 					rdev_dec_pending(
3645 						conf->mirrors[d].replacement,
3646 						mddev);
3647 			}
3648 			put_buf(r10_bio);
3649 			biolist = NULL;
3650 			goto giveup;
3651 		}
3652 	}
3653 
3654 	nr_sectors = 0;
3655 	if (sector_nr + max_sync < max_sector)
3656 		max_sector = sector_nr + max_sync;
3657 	do {
3658 		struct page *page;
3659 		int len = PAGE_SIZE;
3660 		if (sector_nr + (len>>9) > max_sector)
3661 			len = (max_sector - sector_nr) << 9;
3662 		if (len == 0)
3663 			break;
3664 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3665 			struct resync_pages *rp = get_resync_pages(bio);
3666 			page = resync_fetch_page(rp, page_idx);
3667 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3668 				bio->bi_status = BLK_STS_RESOURCE;
3669 				bio_endio(bio);
3670 				goto giveup;
3671 			}
3672 		}
3673 		nr_sectors += len>>9;
3674 		sector_nr += len>>9;
3675 	} while (++page_idx < RESYNC_PAGES);
3676 	r10_bio->sectors = nr_sectors;
3677 
3678 	if (mddev_is_clustered(mddev) &&
3679 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3680 		/* It is resync not recovery */
3681 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3682 			conf->cluster_sync_low = mddev->curr_resync_completed;
3683 			raid10_set_cluster_sync_high(conf);
3684 			/* Send resync message */
3685 			md_cluster_ops->resync_info_update(mddev,
3686 						conf->cluster_sync_low,
3687 						conf->cluster_sync_high);
3688 		}
3689 	} else if (mddev_is_clustered(mddev)) {
3690 		/* This is recovery not resync */
3691 		sector_t sect_va1, sect_va2;
3692 		bool broadcast_msg = false;
3693 
3694 		for (i = 0; i < conf->geo.raid_disks; i++) {
3695 			/*
3696 			 * sector_nr is a device address for recovery, so we
3697 			 * need translate it to array address before compare
3698 			 * with cluster_sync_high.
3699 			 */
3700 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3701 
3702 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3703 				broadcast_msg = true;
3704 				/*
3705 				 * curr_resync_completed is similar as
3706 				 * sector_nr, so make the translation too.
3707 				 */
3708 				sect_va2 = raid10_find_virt(conf,
3709 					mddev->curr_resync_completed, i);
3710 
3711 				if (conf->cluster_sync_low == 0 ||
3712 				    conf->cluster_sync_low > sect_va2)
3713 					conf->cluster_sync_low = sect_va2;
3714 			}
3715 		}
3716 		if (broadcast_msg) {
3717 			raid10_set_cluster_sync_high(conf);
3718 			md_cluster_ops->resync_info_update(mddev,
3719 						conf->cluster_sync_low,
3720 						conf->cluster_sync_high);
3721 		}
3722 	}
3723 
3724 	while (biolist) {
3725 		bio = biolist;
3726 		biolist = biolist->bi_next;
3727 
3728 		bio->bi_next = NULL;
3729 		r10_bio = get_resync_r10bio(bio);
3730 		r10_bio->sectors = nr_sectors;
3731 
3732 		if (bio->bi_end_io == end_sync_read) {
3733 			md_sync_acct_bio(bio, nr_sectors);
3734 			bio->bi_status = 0;
3735 			submit_bio_noacct(bio);
3736 		}
3737 	}
3738 
3739 	if (sectors_skipped)
3740 		/* pretend they weren't skipped, it makes
3741 		 * no important difference in this case
3742 		 */
3743 		md_done_sync(mddev, sectors_skipped, 1);
3744 
3745 	return sectors_skipped + nr_sectors;
3746  giveup:
3747 	/* There is nowhere to write, so all non-sync
3748 	 * drives must be failed or in resync, all drives
3749 	 * have a bad block, so try the next chunk...
3750 	 */
3751 	if (sector_nr + max_sync < max_sector)
3752 		max_sector = sector_nr + max_sync;
3753 
3754 	sectors_skipped += (max_sector - sector_nr);
3755 	chunks_skipped ++;
3756 	sector_nr = max_sector;
3757 	goto skipped;
3758 }
3759 
3760 static sector_t
3761 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3762 {
3763 	sector_t size;
3764 	struct r10conf *conf = mddev->private;
3765 
3766 	if (!raid_disks)
3767 		raid_disks = min(conf->geo.raid_disks,
3768 				 conf->prev.raid_disks);
3769 	if (!sectors)
3770 		sectors = conf->dev_sectors;
3771 
3772 	size = sectors >> conf->geo.chunk_shift;
3773 	sector_div(size, conf->geo.far_copies);
3774 	size = size * raid_disks;
3775 	sector_div(size, conf->geo.near_copies);
3776 
3777 	return size << conf->geo.chunk_shift;
3778 }
3779 
3780 static void calc_sectors(struct r10conf *conf, sector_t size)
3781 {
3782 	/* Calculate the number of sectors-per-device that will
3783 	 * actually be used, and set conf->dev_sectors and
3784 	 * conf->stride
3785 	 */
3786 
3787 	size = size >> conf->geo.chunk_shift;
3788 	sector_div(size, conf->geo.far_copies);
3789 	size = size * conf->geo.raid_disks;
3790 	sector_div(size, conf->geo.near_copies);
3791 	/* 'size' is now the number of chunks in the array */
3792 	/* calculate "used chunks per device" */
3793 	size = size * conf->copies;
3794 
3795 	/* We need to round up when dividing by raid_disks to
3796 	 * get the stride size.
3797 	 */
3798 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3799 
3800 	conf->dev_sectors = size << conf->geo.chunk_shift;
3801 
3802 	if (conf->geo.far_offset)
3803 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3804 	else {
3805 		sector_div(size, conf->geo.far_copies);
3806 		conf->geo.stride = size << conf->geo.chunk_shift;
3807 	}
3808 }
3809 
3810 enum geo_type {geo_new, geo_old, geo_start};
3811 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3812 {
3813 	int nc, fc, fo;
3814 	int layout, chunk, disks;
3815 	switch (new) {
3816 	case geo_old:
3817 		layout = mddev->layout;
3818 		chunk = mddev->chunk_sectors;
3819 		disks = mddev->raid_disks - mddev->delta_disks;
3820 		break;
3821 	case geo_new:
3822 		layout = mddev->new_layout;
3823 		chunk = mddev->new_chunk_sectors;
3824 		disks = mddev->raid_disks;
3825 		break;
3826 	default: /* avoid 'may be unused' warnings */
3827 	case geo_start: /* new when starting reshape - raid_disks not
3828 			 * updated yet. */
3829 		layout = mddev->new_layout;
3830 		chunk = mddev->new_chunk_sectors;
3831 		disks = mddev->raid_disks + mddev->delta_disks;
3832 		break;
3833 	}
3834 	if (layout >> 19)
3835 		return -1;
3836 	if (chunk < (PAGE_SIZE >> 9) ||
3837 	    !is_power_of_2(chunk))
3838 		return -2;
3839 	nc = layout & 255;
3840 	fc = (layout >> 8) & 255;
3841 	fo = layout & (1<<16);
3842 	geo->raid_disks = disks;
3843 	geo->near_copies = nc;
3844 	geo->far_copies = fc;
3845 	geo->far_offset = fo;
3846 	switch (layout >> 17) {
3847 	case 0:	/* original layout.  simple but not always optimal */
3848 		geo->far_set_size = disks;
3849 		break;
3850 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3851 		 * actually using this, but leave code here just in case.*/
3852 		geo->far_set_size = disks/fc;
3853 		WARN(geo->far_set_size < fc,
3854 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3855 		break;
3856 	case 2: /* "improved" layout fixed to match documentation */
3857 		geo->far_set_size = fc * nc;
3858 		break;
3859 	default: /* Not a valid layout */
3860 		return -1;
3861 	}
3862 	geo->chunk_mask = chunk - 1;
3863 	geo->chunk_shift = ffz(~chunk);
3864 	return nc*fc;
3865 }
3866 
3867 static void raid10_free_conf(struct r10conf *conf)
3868 {
3869 	if (!conf)
3870 		return;
3871 
3872 	mempool_exit(&conf->r10bio_pool);
3873 	kfree(conf->mirrors);
3874 	kfree(conf->mirrors_old);
3875 	kfree(conf->mirrors_new);
3876 	safe_put_page(conf->tmppage);
3877 	bioset_exit(&conf->bio_split);
3878 	kfree(conf);
3879 }
3880 
3881 static struct r10conf *setup_conf(struct mddev *mddev)
3882 {
3883 	struct r10conf *conf = NULL;
3884 	int err = -EINVAL;
3885 	struct geom geo;
3886 	int copies;
3887 
3888 	copies = setup_geo(&geo, mddev, geo_new);
3889 
3890 	if (copies == -2) {
3891 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3892 			mdname(mddev), PAGE_SIZE);
3893 		goto out;
3894 	}
3895 
3896 	if (copies < 2 || copies > mddev->raid_disks) {
3897 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3898 			mdname(mddev), mddev->new_layout);
3899 		goto out;
3900 	}
3901 
3902 	err = -ENOMEM;
3903 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3904 	if (!conf)
3905 		goto out;
3906 
3907 	/* FIXME calc properly */
3908 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3909 				sizeof(struct raid10_info),
3910 				GFP_KERNEL);
3911 	if (!conf->mirrors)
3912 		goto out;
3913 
3914 	conf->tmppage = alloc_page(GFP_KERNEL);
3915 	if (!conf->tmppage)
3916 		goto out;
3917 
3918 	conf->geo = geo;
3919 	conf->copies = copies;
3920 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3921 			   rbio_pool_free, conf);
3922 	if (err)
3923 		goto out;
3924 
3925 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3926 	if (err)
3927 		goto out;
3928 
3929 	calc_sectors(conf, mddev->dev_sectors);
3930 	if (mddev->reshape_position == MaxSector) {
3931 		conf->prev = conf->geo;
3932 		conf->reshape_progress = MaxSector;
3933 	} else {
3934 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3935 			err = -EINVAL;
3936 			goto out;
3937 		}
3938 		conf->reshape_progress = mddev->reshape_position;
3939 		if (conf->prev.far_offset)
3940 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3941 		else
3942 			/* far_copies must be 1 */
3943 			conf->prev.stride = conf->dev_sectors;
3944 	}
3945 	conf->reshape_safe = conf->reshape_progress;
3946 	spin_lock_init(&conf->device_lock);
3947 	INIT_LIST_HEAD(&conf->retry_list);
3948 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3949 
3950 	seqlock_init(&conf->resync_lock);
3951 	init_waitqueue_head(&conf->wait_barrier);
3952 	atomic_set(&conf->nr_pending, 0);
3953 
3954 	err = -ENOMEM;
3955 	rcu_assign_pointer(conf->thread,
3956 			   md_register_thread(raid10d, mddev, "raid10"));
3957 	if (!conf->thread)
3958 		goto out;
3959 
3960 	conf->mddev = mddev;
3961 	return conf;
3962 
3963  out:
3964 	raid10_free_conf(conf);
3965 	return ERR_PTR(err);
3966 }
3967 
3968 static unsigned int raid10_nr_stripes(struct r10conf *conf)
3969 {
3970 	unsigned int raid_disks = conf->geo.raid_disks;
3971 
3972 	if (conf->geo.raid_disks % conf->geo.near_copies)
3973 		return raid_disks;
3974 	return raid_disks / conf->geo.near_copies;
3975 }
3976 
3977 static int raid10_set_queue_limits(struct mddev *mddev)
3978 {
3979 	struct r10conf *conf = mddev->private;
3980 	struct queue_limits lim;
3981 	int err;
3982 
3983 	md_init_stacking_limits(&lim);
3984 	lim.max_write_zeroes_sectors = 0;
3985 	lim.io_min = mddev->chunk_sectors << 9;
3986 	lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
3987 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3988 	if (err) {
3989 		queue_limits_cancel_update(mddev->gendisk->queue);
3990 		return err;
3991 	}
3992 	return queue_limits_set(mddev->gendisk->queue, &lim);
3993 }
3994 
3995 static int raid10_run(struct mddev *mddev)
3996 {
3997 	struct r10conf *conf;
3998 	int i, disk_idx;
3999 	struct raid10_info *disk;
4000 	struct md_rdev *rdev;
4001 	sector_t size;
4002 	sector_t min_offset_diff = 0;
4003 	int first = 1;
4004 	int ret = -EIO;
4005 
4006 	if (mddev->private == NULL) {
4007 		conf = setup_conf(mddev);
4008 		if (IS_ERR(conf))
4009 			return PTR_ERR(conf);
4010 		mddev->private = conf;
4011 	}
4012 	conf = mddev->private;
4013 	if (!conf)
4014 		goto out;
4015 
4016 	rcu_assign_pointer(mddev->thread, conf->thread);
4017 	rcu_assign_pointer(conf->thread, NULL);
4018 
4019 	if (mddev_is_clustered(conf->mddev)) {
4020 		int fc, fo;
4021 
4022 		fc = (mddev->layout >> 8) & 255;
4023 		fo = mddev->layout & (1<<16);
4024 		if (fc > 1 || fo > 0) {
4025 			pr_err("only near layout is supported by clustered"
4026 				" raid10\n");
4027 			goto out_free_conf;
4028 		}
4029 	}
4030 
4031 	rdev_for_each(rdev, mddev) {
4032 		long long diff;
4033 
4034 		disk_idx = rdev->raid_disk;
4035 		if (disk_idx < 0)
4036 			continue;
4037 		if (disk_idx >= conf->geo.raid_disks &&
4038 		    disk_idx >= conf->prev.raid_disks)
4039 			continue;
4040 		disk = conf->mirrors + disk_idx;
4041 
4042 		if (test_bit(Replacement, &rdev->flags)) {
4043 			if (disk->replacement)
4044 				goto out_free_conf;
4045 			disk->replacement = rdev;
4046 		} else {
4047 			if (disk->rdev)
4048 				goto out_free_conf;
4049 			disk->rdev = rdev;
4050 		}
4051 		diff = (rdev->new_data_offset - rdev->data_offset);
4052 		if (!mddev->reshape_backwards)
4053 			diff = -diff;
4054 		if (diff < 0)
4055 			diff = 0;
4056 		if (first || diff < min_offset_diff)
4057 			min_offset_diff = diff;
4058 
4059 		disk->head_position = 0;
4060 		first = 0;
4061 	}
4062 
4063 	if (!mddev_is_dm(conf->mddev)) {
4064 		ret = raid10_set_queue_limits(mddev);
4065 		if (ret)
4066 			goto out_free_conf;
4067 	}
4068 
4069 	/* need to check that every block has at least one working mirror */
4070 	if (!enough(conf, -1)) {
4071 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4072 		       mdname(mddev));
4073 		goto out_free_conf;
4074 	}
4075 
4076 	if (conf->reshape_progress != MaxSector) {
4077 		/* must ensure that shape change is supported */
4078 		if (conf->geo.far_copies != 1 &&
4079 		    conf->geo.far_offset == 0)
4080 			goto out_free_conf;
4081 		if (conf->prev.far_copies != 1 &&
4082 		    conf->prev.far_offset == 0)
4083 			goto out_free_conf;
4084 	}
4085 
4086 	mddev->degraded = 0;
4087 	for (i = 0;
4088 	     i < conf->geo.raid_disks
4089 		     || i < conf->prev.raid_disks;
4090 	     i++) {
4091 
4092 		disk = conf->mirrors + i;
4093 
4094 		if (!disk->rdev && disk->replacement) {
4095 			/* The replacement is all we have - use it */
4096 			disk->rdev = disk->replacement;
4097 			disk->replacement = NULL;
4098 			clear_bit(Replacement, &disk->rdev->flags);
4099 		}
4100 
4101 		if (!disk->rdev ||
4102 		    !test_bit(In_sync, &disk->rdev->flags)) {
4103 			disk->head_position = 0;
4104 			mddev->degraded++;
4105 			if (disk->rdev &&
4106 			    disk->rdev->saved_raid_disk < 0)
4107 				conf->fullsync = 1;
4108 		}
4109 
4110 		if (disk->replacement &&
4111 		    !test_bit(In_sync, &disk->replacement->flags) &&
4112 		    disk->replacement->saved_raid_disk < 0) {
4113 			conf->fullsync = 1;
4114 		}
4115 
4116 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4117 	}
4118 
4119 	if (mddev->recovery_cp != MaxSector)
4120 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4121 			  mdname(mddev));
4122 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4123 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4124 		conf->geo.raid_disks);
4125 	/*
4126 	 * Ok, everything is just fine now
4127 	 */
4128 	mddev->dev_sectors = conf->dev_sectors;
4129 	size = raid10_size(mddev, 0, 0);
4130 	md_set_array_sectors(mddev, size);
4131 	mddev->resync_max_sectors = size;
4132 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4133 
4134 	if (md_integrity_register(mddev))
4135 		goto out_free_conf;
4136 
4137 	if (conf->reshape_progress != MaxSector) {
4138 		unsigned long before_length, after_length;
4139 
4140 		before_length = ((1 << conf->prev.chunk_shift) *
4141 				 conf->prev.far_copies);
4142 		after_length = ((1 << conf->geo.chunk_shift) *
4143 				conf->geo.far_copies);
4144 
4145 		if (max(before_length, after_length) > min_offset_diff) {
4146 			/* This cannot work */
4147 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4148 			goto out_free_conf;
4149 		}
4150 		conf->offset_diff = min_offset_diff;
4151 
4152 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4153 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4154 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4155 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4156 	}
4157 
4158 	return 0;
4159 
4160 out_free_conf:
4161 	md_unregister_thread(mddev, &mddev->thread);
4162 	raid10_free_conf(conf);
4163 	mddev->private = NULL;
4164 out:
4165 	return ret;
4166 }
4167 
4168 static void raid10_free(struct mddev *mddev, void *priv)
4169 {
4170 	raid10_free_conf(priv);
4171 }
4172 
4173 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4174 {
4175 	struct r10conf *conf = mddev->private;
4176 
4177 	if (quiesce)
4178 		raise_barrier(conf, 0);
4179 	else
4180 		lower_barrier(conf);
4181 }
4182 
4183 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4184 {
4185 	/* Resize of 'far' arrays is not supported.
4186 	 * For 'near' and 'offset' arrays we can set the
4187 	 * number of sectors used to be an appropriate multiple
4188 	 * of the chunk size.
4189 	 * For 'offset', this is far_copies*chunksize.
4190 	 * For 'near' the multiplier is the LCM of
4191 	 * near_copies and raid_disks.
4192 	 * So if far_copies > 1 && !far_offset, fail.
4193 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4194 	 * multiply by chunk_size.  Then round to this number.
4195 	 * This is mostly done by raid10_size()
4196 	 */
4197 	struct r10conf *conf = mddev->private;
4198 	sector_t oldsize, size;
4199 	int ret;
4200 
4201 	if (mddev->reshape_position != MaxSector)
4202 		return -EBUSY;
4203 
4204 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4205 		return -EINVAL;
4206 
4207 	oldsize = raid10_size(mddev, 0, 0);
4208 	size = raid10_size(mddev, sectors, 0);
4209 	if (mddev->external_size &&
4210 	    mddev->array_sectors > size)
4211 		return -EINVAL;
4212 
4213 	ret = mddev->bitmap_ops->resize(mddev, size, 0, false);
4214 	if (ret)
4215 		return ret;
4216 
4217 	md_set_array_sectors(mddev, size);
4218 	if (sectors > mddev->dev_sectors &&
4219 	    mddev->recovery_cp > oldsize) {
4220 		mddev->recovery_cp = oldsize;
4221 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4222 	}
4223 	calc_sectors(conf, sectors);
4224 	mddev->dev_sectors = conf->dev_sectors;
4225 	mddev->resync_max_sectors = size;
4226 	return 0;
4227 }
4228 
4229 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4230 {
4231 	struct md_rdev *rdev;
4232 	struct r10conf *conf;
4233 
4234 	if (mddev->degraded > 0) {
4235 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4236 			mdname(mddev));
4237 		return ERR_PTR(-EINVAL);
4238 	}
4239 	sector_div(size, devs);
4240 
4241 	/* Set new parameters */
4242 	mddev->new_level = 10;
4243 	/* new layout: far_copies = 1, near_copies = 2 */
4244 	mddev->new_layout = (1<<8) + 2;
4245 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4246 	mddev->delta_disks = mddev->raid_disks;
4247 	mddev->raid_disks *= 2;
4248 	/* make sure it will be not marked as dirty */
4249 	mddev->recovery_cp = MaxSector;
4250 	mddev->dev_sectors = size;
4251 
4252 	conf = setup_conf(mddev);
4253 	if (!IS_ERR(conf)) {
4254 		rdev_for_each(rdev, mddev)
4255 			if (rdev->raid_disk >= 0) {
4256 				rdev->new_raid_disk = rdev->raid_disk * 2;
4257 				rdev->sectors = size;
4258 			}
4259 	}
4260 
4261 	return conf;
4262 }
4263 
4264 static void *raid10_takeover(struct mddev *mddev)
4265 {
4266 	struct r0conf *raid0_conf;
4267 
4268 	/* raid10 can take over:
4269 	 *  raid0 - providing it has only two drives
4270 	 */
4271 	if (mddev->level == 0) {
4272 		/* for raid0 takeover only one zone is supported */
4273 		raid0_conf = mddev->private;
4274 		if (raid0_conf->nr_strip_zones > 1) {
4275 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4276 				mdname(mddev));
4277 			return ERR_PTR(-EINVAL);
4278 		}
4279 		return raid10_takeover_raid0(mddev,
4280 			raid0_conf->strip_zone->zone_end,
4281 			raid0_conf->strip_zone->nb_dev);
4282 	}
4283 	return ERR_PTR(-EINVAL);
4284 }
4285 
4286 static int raid10_check_reshape(struct mddev *mddev)
4287 {
4288 	/* Called when there is a request to change
4289 	 * - layout (to ->new_layout)
4290 	 * - chunk size (to ->new_chunk_sectors)
4291 	 * - raid_disks (by delta_disks)
4292 	 * or when trying to restart a reshape that was ongoing.
4293 	 *
4294 	 * We need to validate the request and possibly allocate
4295 	 * space if that might be an issue later.
4296 	 *
4297 	 * Currently we reject any reshape of a 'far' mode array,
4298 	 * allow chunk size to change if new is generally acceptable,
4299 	 * allow raid_disks to increase, and allow
4300 	 * a switch between 'near' mode and 'offset' mode.
4301 	 */
4302 	struct r10conf *conf = mddev->private;
4303 	struct geom geo;
4304 
4305 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4306 		return -EINVAL;
4307 
4308 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4309 		/* mustn't change number of copies */
4310 		return -EINVAL;
4311 	if (geo.far_copies > 1 && !geo.far_offset)
4312 		/* Cannot switch to 'far' mode */
4313 		return -EINVAL;
4314 
4315 	if (mddev->array_sectors & geo.chunk_mask)
4316 			/* not factor of array size */
4317 			return -EINVAL;
4318 
4319 	if (!enough(conf, -1))
4320 		return -EINVAL;
4321 
4322 	kfree(conf->mirrors_new);
4323 	conf->mirrors_new = NULL;
4324 	if (mddev->delta_disks > 0) {
4325 		/* allocate new 'mirrors' list */
4326 		conf->mirrors_new =
4327 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4328 				sizeof(struct raid10_info),
4329 				GFP_KERNEL);
4330 		if (!conf->mirrors_new)
4331 			return -ENOMEM;
4332 	}
4333 	return 0;
4334 }
4335 
4336 /*
4337  * Need to check if array has failed when deciding whether to:
4338  *  - start an array
4339  *  - remove non-faulty devices
4340  *  - add a spare
4341  *  - allow a reshape
4342  * This determination is simple when no reshape is happening.
4343  * However if there is a reshape, we need to carefully check
4344  * both the before and after sections.
4345  * This is because some failed devices may only affect one
4346  * of the two sections, and some non-in_sync devices may
4347  * be insync in the section most affected by failed devices.
4348  */
4349 static int calc_degraded(struct r10conf *conf)
4350 {
4351 	int degraded, degraded2;
4352 	int i;
4353 
4354 	degraded = 0;
4355 	/* 'prev' section first */
4356 	for (i = 0; i < conf->prev.raid_disks; i++) {
4357 		struct md_rdev *rdev = conf->mirrors[i].rdev;
4358 
4359 		if (!rdev || test_bit(Faulty, &rdev->flags))
4360 			degraded++;
4361 		else if (!test_bit(In_sync, &rdev->flags))
4362 			/* When we can reduce the number of devices in
4363 			 * an array, this might not contribute to
4364 			 * 'degraded'.  It does now.
4365 			 */
4366 			degraded++;
4367 	}
4368 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4369 		return degraded;
4370 	degraded2 = 0;
4371 	for (i = 0; i < conf->geo.raid_disks; i++) {
4372 		struct md_rdev *rdev = conf->mirrors[i].rdev;
4373 
4374 		if (!rdev || test_bit(Faulty, &rdev->flags))
4375 			degraded2++;
4376 		else if (!test_bit(In_sync, &rdev->flags)) {
4377 			/* If reshape is increasing the number of devices,
4378 			 * this section has already been recovered, so
4379 			 * it doesn't contribute to degraded.
4380 			 * else it does.
4381 			 */
4382 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4383 				degraded2++;
4384 		}
4385 	}
4386 	if (degraded2 > degraded)
4387 		return degraded2;
4388 	return degraded;
4389 }
4390 
4391 static int raid10_start_reshape(struct mddev *mddev)
4392 {
4393 	/* A 'reshape' has been requested. This commits
4394 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4395 	 * This also checks if there are enough spares and adds them
4396 	 * to the array.
4397 	 * We currently require enough spares to make the final
4398 	 * array non-degraded.  We also require that the difference
4399 	 * between old and new data_offset - on each device - is
4400 	 * enough that we never risk over-writing.
4401 	 */
4402 
4403 	unsigned long before_length, after_length;
4404 	sector_t min_offset_diff = 0;
4405 	int first = 1;
4406 	struct geom new;
4407 	struct r10conf *conf = mddev->private;
4408 	struct md_rdev *rdev;
4409 	int spares = 0;
4410 	int ret;
4411 
4412 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4413 		return -EBUSY;
4414 
4415 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4416 		return -EINVAL;
4417 
4418 	before_length = ((1 << conf->prev.chunk_shift) *
4419 			 conf->prev.far_copies);
4420 	after_length = ((1 << conf->geo.chunk_shift) *
4421 			conf->geo.far_copies);
4422 
4423 	rdev_for_each(rdev, mddev) {
4424 		if (!test_bit(In_sync, &rdev->flags)
4425 		    && !test_bit(Faulty, &rdev->flags))
4426 			spares++;
4427 		if (rdev->raid_disk >= 0) {
4428 			long long diff = (rdev->new_data_offset
4429 					  - rdev->data_offset);
4430 			if (!mddev->reshape_backwards)
4431 				diff = -diff;
4432 			if (diff < 0)
4433 				diff = 0;
4434 			if (first || diff < min_offset_diff)
4435 				min_offset_diff = diff;
4436 			first = 0;
4437 		}
4438 	}
4439 
4440 	if (max(before_length, after_length) > min_offset_diff)
4441 		return -EINVAL;
4442 
4443 	if (spares < mddev->delta_disks)
4444 		return -EINVAL;
4445 
4446 	conf->offset_diff = min_offset_diff;
4447 	spin_lock_irq(&conf->device_lock);
4448 	if (conf->mirrors_new) {
4449 		memcpy(conf->mirrors_new, conf->mirrors,
4450 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4451 		smp_mb();
4452 		kfree(conf->mirrors_old);
4453 		conf->mirrors_old = conf->mirrors;
4454 		conf->mirrors = conf->mirrors_new;
4455 		conf->mirrors_new = NULL;
4456 	}
4457 	setup_geo(&conf->geo, mddev, geo_start);
4458 	smp_mb();
4459 	if (mddev->reshape_backwards) {
4460 		sector_t size = raid10_size(mddev, 0, 0);
4461 		if (size < mddev->array_sectors) {
4462 			spin_unlock_irq(&conf->device_lock);
4463 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4464 				mdname(mddev));
4465 			return -EINVAL;
4466 		}
4467 		mddev->resync_max_sectors = size;
4468 		conf->reshape_progress = size;
4469 	} else
4470 		conf->reshape_progress = 0;
4471 	conf->reshape_safe = conf->reshape_progress;
4472 	spin_unlock_irq(&conf->device_lock);
4473 
4474 	if (mddev->delta_disks && mddev->bitmap) {
4475 		struct mdp_superblock_1 *sb = NULL;
4476 		sector_t oldsize, newsize;
4477 
4478 		oldsize = raid10_size(mddev, 0, 0);
4479 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4480 
4481 		if (!mddev_is_clustered(mddev)) {
4482 			ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4483 			if (ret)
4484 				goto abort;
4485 			else
4486 				goto out;
4487 		}
4488 
4489 		rdev_for_each(rdev, mddev) {
4490 			if (rdev->raid_disk > -1 &&
4491 			    !test_bit(Faulty, &rdev->flags))
4492 				sb = page_address(rdev->sb_page);
4493 		}
4494 
4495 		/*
4496 		 * some node is already performing reshape, and no need to
4497 		 * call bitmap_ops->resize again since it should be called when
4498 		 * receiving BITMAP_RESIZE msg
4499 		 */
4500 		if ((sb && (le32_to_cpu(sb->feature_map) &
4501 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4502 			goto out;
4503 
4504 		ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4505 		if (ret)
4506 			goto abort;
4507 
4508 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4509 		if (ret) {
4510 			mddev->bitmap_ops->resize(mddev, oldsize, 0, false);
4511 			goto abort;
4512 		}
4513 	}
4514 out:
4515 	if (mddev->delta_disks > 0) {
4516 		rdev_for_each(rdev, mddev)
4517 			if (rdev->raid_disk < 0 &&
4518 			    !test_bit(Faulty, &rdev->flags)) {
4519 				if (raid10_add_disk(mddev, rdev) == 0) {
4520 					if (rdev->raid_disk >=
4521 					    conf->prev.raid_disks)
4522 						set_bit(In_sync, &rdev->flags);
4523 					else
4524 						rdev->recovery_offset = 0;
4525 
4526 					/* Failure here is OK */
4527 					sysfs_link_rdev(mddev, rdev);
4528 				}
4529 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4530 				   && !test_bit(Faulty, &rdev->flags)) {
4531 				/* This is a spare that was manually added */
4532 				set_bit(In_sync, &rdev->flags);
4533 			}
4534 	}
4535 	/* When a reshape changes the number of devices,
4536 	 * ->degraded is measured against the larger of the
4537 	 * pre and  post numbers.
4538 	 */
4539 	spin_lock_irq(&conf->device_lock);
4540 	mddev->degraded = calc_degraded(conf);
4541 	spin_unlock_irq(&conf->device_lock);
4542 	mddev->raid_disks = conf->geo.raid_disks;
4543 	mddev->reshape_position = conf->reshape_progress;
4544 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4545 
4546 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4547 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4548 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4549 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4550 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4551 	conf->reshape_checkpoint = jiffies;
4552 	md_new_event();
4553 	return 0;
4554 
4555 abort:
4556 	mddev->recovery = 0;
4557 	spin_lock_irq(&conf->device_lock);
4558 	conf->geo = conf->prev;
4559 	mddev->raid_disks = conf->geo.raid_disks;
4560 	rdev_for_each(rdev, mddev)
4561 		rdev->new_data_offset = rdev->data_offset;
4562 	smp_wmb();
4563 	conf->reshape_progress = MaxSector;
4564 	conf->reshape_safe = MaxSector;
4565 	mddev->reshape_position = MaxSector;
4566 	spin_unlock_irq(&conf->device_lock);
4567 	return ret;
4568 }
4569 
4570 /* Calculate the last device-address that could contain
4571  * any block from the chunk that includes the array-address 's'
4572  * and report the next address.
4573  * i.e. the address returned will be chunk-aligned and after
4574  * any data that is in the chunk containing 's'.
4575  */
4576 static sector_t last_dev_address(sector_t s, struct geom *geo)
4577 {
4578 	s = (s | geo->chunk_mask) + 1;
4579 	s >>= geo->chunk_shift;
4580 	s *= geo->near_copies;
4581 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4582 	s *= geo->far_copies;
4583 	s <<= geo->chunk_shift;
4584 	return s;
4585 }
4586 
4587 /* Calculate the first device-address that could contain
4588  * any block from the chunk that includes the array-address 's'.
4589  * This too will be the start of a chunk
4590  */
4591 static sector_t first_dev_address(sector_t s, struct geom *geo)
4592 {
4593 	s >>= geo->chunk_shift;
4594 	s *= geo->near_copies;
4595 	sector_div(s, geo->raid_disks);
4596 	s *= geo->far_copies;
4597 	s <<= geo->chunk_shift;
4598 	return s;
4599 }
4600 
4601 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4602 				int *skipped)
4603 {
4604 	/* We simply copy at most one chunk (smallest of old and new)
4605 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4606 	 * or we hit a bad block or something.
4607 	 * This might mean we pause for normal IO in the middle of
4608 	 * a chunk, but that is not a problem as mddev->reshape_position
4609 	 * can record any location.
4610 	 *
4611 	 * If we will want to write to a location that isn't
4612 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4613 	 * we need to flush all reshape requests and update the metadata.
4614 	 *
4615 	 * When reshaping forwards (e.g. to more devices), we interpret
4616 	 * 'safe' as the earliest block which might not have been copied
4617 	 * down yet.  We divide this by previous stripe size and multiply
4618 	 * by previous stripe length to get lowest device offset that we
4619 	 * cannot write to yet.
4620 	 * We interpret 'sector_nr' as an address that we want to write to.
4621 	 * From this we use last_device_address() to find where we might
4622 	 * write to, and first_device_address on the  'safe' position.
4623 	 * If this 'next' write position is after the 'safe' position,
4624 	 * we must update the metadata to increase the 'safe' position.
4625 	 *
4626 	 * When reshaping backwards, we round in the opposite direction
4627 	 * and perform the reverse test:  next write position must not be
4628 	 * less than current safe position.
4629 	 *
4630 	 * In all this the minimum difference in data offsets
4631 	 * (conf->offset_diff - always positive) allows a bit of slack,
4632 	 * so next can be after 'safe', but not by more than offset_diff
4633 	 *
4634 	 * We need to prepare all the bios here before we start any IO
4635 	 * to ensure the size we choose is acceptable to all devices.
4636 	 * The means one for each copy for write-out and an extra one for
4637 	 * read-in.
4638 	 * We store the read-in bio in ->master_bio and the others in
4639 	 * ->devs[x].bio and ->devs[x].repl_bio.
4640 	 */
4641 	struct r10conf *conf = mddev->private;
4642 	struct r10bio *r10_bio;
4643 	sector_t next, safe, last;
4644 	int max_sectors;
4645 	int nr_sectors;
4646 	int s;
4647 	struct md_rdev *rdev;
4648 	int need_flush = 0;
4649 	struct bio *blist;
4650 	struct bio *bio, *read_bio;
4651 	int sectors_done = 0;
4652 	struct page **pages;
4653 
4654 	if (sector_nr == 0) {
4655 		/* If restarting in the middle, skip the initial sectors */
4656 		if (mddev->reshape_backwards &&
4657 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4658 			sector_nr = (raid10_size(mddev, 0, 0)
4659 				     - conf->reshape_progress);
4660 		} else if (!mddev->reshape_backwards &&
4661 			   conf->reshape_progress > 0)
4662 			sector_nr = conf->reshape_progress;
4663 		if (sector_nr) {
4664 			mddev->curr_resync_completed = sector_nr;
4665 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4666 			*skipped = 1;
4667 			return sector_nr;
4668 		}
4669 	}
4670 
4671 	/* We don't use sector_nr to track where we are up to
4672 	 * as that doesn't work well for ->reshape_backwards.
4673 	 * So just use ->reshape_progress.
4674 	 */
4675 	if (mddev->reshape_backwards) {
4676 		/* 'next' is the earliest device address that we might
4677 		 * write to for this chunk in the new layout
4678 		 */
4679 		next = first_dev_address(conf->reshape_progress - 1,
4680 					 &conf->geo);
4681 
4682 		/* 'safe' is the last device address that we might read from
4683 		 * in the old layout after a restart
4684 		 */
4685 		safe = last_dev_address(conf->reshape_safe - 1,
4686 					&conf->prev);
4687 
4688 		if (next + conf->offset_diff < safe)
4689 			need_flush = 1;
4690 
4691 		last = conf->reshape_progress - 1;
4692 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4693 					       & conf->prev.chunk_mask);
4694 		if (sector_nr + RESYNC_SECTORS < last)
4695 			sector_nr = last + 1 - RESYNC_SECTORS;
4696 	} else {
4697 		/* 'next' is after the last device address that we
4698 		 * might write to for this chunk in the new layout
4699 		 */
4700 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4701 
4702 		/* 'safe' is the earliest device address that we might
4703 		 * read from in the old layout after a restart
4704 		 */
4705 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4706 
4707 		/* Need to update metadata if 'next' might be beyond 'safe'
4708 		 * as that would possibly corrupt data
4709 		 */
4710 		if (next > safe + conf->offset_diff)
4711 			need_flush = 1;
4712 
4713 		sector_nr = conf->reshape_progress;
4714 		last  = sector_nr | (conf->geo.chunk_mask
4715 				     & conf->prev.chunk_mask);
4716 
4717 		if (sector_nr + RESYNC_SECTORS <= last)
4718 			last = sector_nr + RESYNC_SECTORS - 1;
4719 	}
4720 
4721 	if (need_flush ||
4722 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4723 		/* Need to update reshape_position in metadata */
4724 		wait_barrier(conf, false);
4725 		mddev->reshape_position = conf->reshape_progress;
4726 		if (mddev->reshape_backwards)
4727 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4728 				- conf->reshape_progress;
4729 		else
4730 			mddev->curr_resync_completed = conf->reshape_progress;
4731 		conf->reshape_checkpoint = jiffies;
4732 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4733 		md_wakeup_thread(mddev->thread);
4734 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4735 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4736 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4737 			allow_barrier(conf);
4738 			return sectors_done;
4739 		}
4740 		conf->reshape_safe = mddev->reshape_position;
4741 		allow_barrier(conf);
4742 	}
4743 
4744 	raise_barrier(conf, 0);
4745 read_more:
4746 	/* Now schedule reads for blocks from sector_nr to last */
4747 	r10_bio = raid10_alloc_init_r10buf(conf);
4748 	r10_bio->state = 0;
4749 	raise_barrier(conf, 1);
4750 	atomic_set(&r10_bio->remaining, 0);
4751 	r10_bio->mddev = mddev;
4752 	r10_bio->sector = sector_nr;
4753 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4754 	r10_bio->sectors = last - sector_nr + 1;
4755 	rdev = read_balance(conf, r10_bio, &max_sectors);
4756 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4757 
4758 	if (!rdev) {
4759 		/* Cannot read from here, so need to record bad blocks
4760 		 * on all the target devices.
4761 		 */
4762 		// FIXME
4763 		mempool_free(r10_bio, &conf->r10buf_pool);
4764 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4765 		return sectors_done;
4766 	}
4767 
4768 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4769 				    GFP_KERNEL, &mddev->bio_set);
4770 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4771 			       + rdev->data_offset);
4772 	read_bio->bi_private = r10_bio;
4773 	read_bio->bi_end_io = end_reshape_read;
4774 	r10_bio->master_bio = read_bio;
4775 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4776 
4777 	/*
4778 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4779 	 * write to the region to avoid conflict.
4780 	*/
4781 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4782 		struct mdp_superblock_1 *sb = NULL;
4783 		int sb_reshape_pos = 0;
4784 
4785 		conf->cluster_sync_low = sector_nr;
4786 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4787 		sb = page_address(rdev->sb_page);
4788 		if (sb) {
4789 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4790 			/*
4791 			 * Set cluster_sync_low again if next address for array
4792 			 * reshape is less than cluster_sync_low. Since we can't
4793 			 * update cluster_sync_low until it has finished reshape.
4794 			 */
4795 			if (sb_reshape_pos < conf->cluster_sync_low)
4796 				conf->cluster_sync_low = sb_reshape_pos;
4797 		}
4798 
4799 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4800 							  conf->cluster_sync_high);
4801 	}
4802 
4803 	/* Now find the locations in the new layout */
4804 	__raid10_find_phys(&conf->geo, r10_bio);
4805 
4806 	blist = read_bio;
4807 	read_bio->bi_next = NULL;
4808 
4809 	for (s = 0; s < conf->copies*2; s++) {
4810 		struct bio *b;
4811 		int d = r10_bio->devs[s/2].devnum;
4812 		struct md_rdev *rdev2;
4813 		if (s&1) {
4814 			rdev2 = conf->mirrors[d].replacement;
4815 			b = r10_bio->devs[s/2].repl_bio;
4816 		} else {
4817 			rdev2 = conf->mirrors[d].rdev;
4818 			b = r10_bio->devs[s/2].bio;
4819 		}
4820 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4821 			continue;
4822 
4823 		bio_set_dev(b, rdev2->bdev);
4824 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4825 			rdev2->new_data_offset;
4826 		b->bi_end_io = end_reshape_write;
4827 		b->bi_opf = REQ_OP_WRITE;
4828 		b->bi_next = blist;
4829 		blist = b;
4830 	}
4831 
4832 	/* Now add as many pages as possible to all of these bios. */
4833 
4834 	nr_sectors = 0;
4835 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4836 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4837 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4838 		int len = (max_sectors - s) << 9;
4839 		if (len > PAGE_SIZE)
4840 			len = PAGE_SIZE;
4841 		for (bio = blist; bio ; bio = bio->bi_next) {
4842 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4843 				bio->bi_status = BLK_STS_RESOURCE;
4844 				bio_endio(bio);
4845 				return sectors_done;
4846 			}
4847 		}
4848 		sector_nr += len >> 9;
4849 		nr_sectors += len >> 9;
4850 	}
4851 	r10_bio->sectors = nr_sectors;
4852 
4853 	/* Now submit the read */
4854 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4855 	atomic_inc(&r10_bio->remaining);
4856 	read_bio->bi_next = NULL;
4857 	submit_bio_noacct(read_bio);
4858 	sectors_done += nr_sectors;
4859 	if (sector_nr <= last)
4860 		goto read_more;
4861 
4862 	lower_barrier(conf);
4863 
4864 	/* Now that we have done the whole section we can
4865 	 * update reshape_progress
4866 	 */
4867 	if (mddev->reshape_backwards)
4868 		conf->reshape_progress -= sectors_done;
4869 	else
4870 		conf->reshape_progress += sectors_done;
4871 
4872 	return sectors_done;
4873 }
4874 
4875 static void end_reshape_request(struct r10bio *r10_bio);
4876 static int handle_reshape_read_error(struct mddev *mddev,
4877 				     struct r10bio *r10_bio);
4878 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4879 {
4880 	/* Reshape read completed.  Hopefully we have a block
4881 	 * to write out.
4882 	 * If we got a read error then we do sync 1-page reads from
4883 	 * elsewhere until we find the data - or give up.
4884 	 */
4885 	struct r10conf *conf = mddev->private;
4886 	int s;
4887 
4888 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4889 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4890 			/* Reshape has been aborted */
4891 			md_done_sync(mddev, r10_bio->sectors, 0);
4892 			return;
4893 		}
4894 
4895 	/* We definitely have the data in the pages, schedule the
4896 	 * writes.
4897 	 */
4898 	atomic_set(&r10_bio->remaining, 1);
4899 	for (s = 0; s < conf->copies*2; s++) {
4900 		struct bio *b;
4901 		int d = r10_bio->devs[s/2].devnum;
4902 		struct md_rdev *rdev;
4903 		if (s&1) {
4904 			rdev = conf->mirrors[d].replacement;
4905 			b = r10_bio->devs[s/2].repl_bio;
4906 		} else {
4907 			rdev = conf->mirrors[d].rdev;
4908 			b = r10_bio->devs[s/2].bio;
4909 		}
4910 		if (!rdev || test_bit(Faulty, &rdev->flags))
4911 			continue;
4912 
4913 		atomic_inc(&rdev->nr_pending);
4914 		md_sync_acct_bio(b, r10_bio->sectors);
4915 		atomic_inc(&r10_bio->remaining);
4916 		b->bi_next = NULL;
4917 		submit_bio_noacct(b);
4918 	}
4919 	end_reshape_request(r10_bio);
4920 }
4921 
4922 static void end_reshape(struct r10conf *conf)
4923 {
4924 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4925 		return;
4926 
4927 	spin_lock_irq(&conf->device_lock);
4928 	conf->prev = conf->geo;
4929 	md_finish_reshape(conf->mddev);
4930 	smp_wmb();
4931 	conf->reshape_progress = MaxSector;
4932 	conf->reshape_safe = MaxSector;
4933 	spin_unlock_irq(&conf->device_lock);
4934 
4935 	mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4936 	conf->fullsync = 0;
4937 }
4938 
4939 static void raid10_update_reshape_pos(struct mddev *mddev)
4940 {
4941 	struct r10conf *conf = mddev->private;
4942 	sector_t lo, hi;
4943 
4944 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4945 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4946 	    || mddev->reshape_position == MaxSector)
4947 		conf->reshape_progress = mddev->reshape_position;
4948 	else
4949 		WARN_ON_ONCE(1);
4950 }
4951 
4952 static int handle_reshape_read_error(struct mddev *mddev,
4953 				     struct r10bio *r10_bio)
4954 {
4955 	/* Use sync reads to get the blocks from somewhere else */
4956 	int sectors = r10_bio->sectors;
4957 	struct r10conf *conf = mddev->private;
4958 	struct r10bio *r10b;
4959 	int slot = 0;
4960 	int idx = 0;
4961 	struct page **pages;
4962 
4963 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4964 	if (!r10b) {
4965 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4966 		return -ENOMEM;
4967 	}
4968 
4969 	/* reshape IOs share pages from .devs[0].bio */
4970 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4971 
4972 	r10b->sector = r10_bio->sector;
4973 	__raid10_find_phys(&conf->prev, r10b);
4974 
4975 	while (sectors) {
4976 		int s = sectors;
4977 		int success = 0;
4978 		int first_slot = slot;
4979 
4980 		if (s > (PAGE_SIZE >> 9))
4981 			s = PAGE_SIZE >> 9;
4982 
4983 		while (!success) {
4984 			int d = r10b->devs[slot].devnum;
4985 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4986 			sector_t addr;
4987 			if (rdev == NULL ||
4988 			    test_bit(Faulty, &rdev->flags) ||
4989 			    !test_bit(In_sync, &rdev->flags))
4990 				goto failed;
4991 
4992 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4993 			atomic_inc(&rdev->nr_pending);
4994 			success = sync_page_io(rdev,
4995 					       addr,
4996 					       s << 9,
4997 					       pages[idx],
4998 					       REQ_OP_READ, false);
4999 			rdev_dec_pending(rdev, mddev);
5000 			if (success)
5001 				break;
5002 		failed:
5003 			slot++;
5004 			if (slot >= conf->copies)
5005 				slot = 0;
5006 			if (slot == first_slot)
5007 				break;
5008 		}
5009 		if (!success) {
5010 			/* couldn't read this block, must give up */
5011 			set_bit(MD_RECOVERY_INTR,
5012 				&mddev->recovery);
5013 			kfree(r10b);
5014 			return -EIO;
5015 		}
5016 		sectors -= s;
5017 		idx++;
5018 	}
5019 	kfree(r10b);
5020 	return 0;
5021 }
5022 
5023 static void end_reshape_write(struct bio *bio)
5024 {
5025 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5026 	struct mddev *mddev = r10_bio->mddev;
5027 	struct r10conf *conf = mddev->private;
5028 	int d;
5029 	int slot;
5030 	int repl;
5031 	struct md_rdev *rdev = NULL;
5032 
5033 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5034 	rdev = repl ? conf->mirrors[d].replacement :
5035 		      conf->mirrors[d].rdev;
5036 
5037 	if (bio->bi_status) {
5038 		/* FIXME should record badblock */
5039 		md_error(mddev, rdev);
5040 	}
5041 
5042 	rdev_dec_pending(rdev, mddev);
5043 	end_reshape_request(r10_bio);
5044 }
5045 
5046 static void end_reshape_request(struct r10bio *r10_bio)
5047 {
5048 	if (!atomic_dec_and_test(&r10_bio->remaining))
5049 		return;
5050 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5051 	bio_put(r10_bio->master_bio);
5052 	put_buf(r10_bio);
5053 }
5054 
5055 static void raid10_finish_reshape(struct mddev *mddev)
5056 {
5057 	struct r10conf *conf = mddev->private;
5058 
5059 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5060 		return;
5061 
5062 	if (mddev->delta_disks > 0) {
5063 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5064 			mddev->recovery_cp = mddev->resync_max_sectors;
5065 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5066 		}
5067 		mddev->resync_max_sectors = mddev->array_sectors;
5068 	} else {
5069 		int d;
5070 		for (d = conf->geo.raid_disks ;
5071 		     d < conf->geo.raid_disks - mddev->delta_disks;
5072 		     d++) {
5073 			struct md_rdev *rdev = conf->mirrors[d].rdev;
5074 			if (rdev)
5075 				clear_bit(In_sync, &rdev->flags);
5076 			rdev = conf->mirrors[d].replacement;
5077 			if (rdev)
5078 				clear_bit(In_sync, &rdev->flags);
5079 		}
5080 	}
5081 	mddev->layout = mddev->new_layout;
5082 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5083 	mddev->reshape_position = MaxSector;
5084 	mddev->delta_disks = 0;
5085 	mddev->reshape_backwards = 0;
5086 }
5087 
5088 static struct md_personality raid10_personality =
5089 {
5090 	.name		= "raid10",
5091 	.level		= 10,
5092 	.owner		= THIS_MODULE,
5093 	.make_request	= raid10_make_request,
5094 	.run		= raid10_run,
5095 	.free		= raid10_free,
5096 	.status		= raid10_status,
5097 	.error_handler	= raid10_error,
5098 	.hot_add_disk	= raid10_add_disk,
5099 	.hot_remove_disk= raid10_remove_disk,
5100 	.spare_active	= raid10_spare_active,
5101 	.sync_request	= raid10_sync_request,
5102 	.quiesce	= raid10_quiesce,
5103 	.size		= raid10_size,
5104 	.resize		= raid10_resize,
5105 	.takeover	= raid10_takeover,
5106 	.check_reshape	= raid10_check_reshape,
5107 	.start_reshape	= raid10_start_reshape,
5108 	.finish_reshape	= raid10_finish_reshape,
5109 	.update_reshape_pos = raid10_update_reshape_pos,
5110 };
5111 
5112 static int __init raid_init(void)
5113 {
5114 	return register_md_personality(&raid10_personality);
5115 }
5116 
5117 static void raid_exit(void)
5118 {
5119 	unregister_md_personality(&raid10_personality);
5120 }
5121 
5122 module_init(raid_init);
5123 module_exit(raid_exit);
5124 MODULE_LICENSE("GPL");
5125 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5126 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5127 MODULE_ALIAS("md-raid10");
5128 MODULE_ALIAS("md-level-10");
5129