xref: /linux/drivers/md/raid10.c (revision d97b46a64674a267bc41c9e16132ee2a98c3347d)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *
42  * The data to be stored is divided into chunks using chunksize.
43  * Each device is divided into far_copies sections.
44  * In each section, chunks are laid out in a style similar to raid0, but
45  * near_copies copies of each chunk is stored (each on a different drive).
46  * The starting device for each section is offset near_copies from the starting
47  * device of the previous section.
48  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49  * drive.
50  * near_copies and far_copies must be at least one, and their product is at most
51  * raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of be very far apart
55  * on disk, there are adjacent stripes.
56  */
57 
58 /*
59  * Number of guaranteed r10bios in case of extreme VM load:
60  */
61 #define	NR_RAID10_BIOS 256
62 
63 /* When there are this many requests queue to be written by
64  * the raid10 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int enough(struct r10conf *conf, int ignore);
72 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
73 				int *skipped);
74 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
75 static void end_reshape_write(struct bio *bio, int error);
76 static void end_reshape(struct r10conf *conf);
77 
78 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80 	struct r10conf *conf = data;
81 	int size = offsetof(struct r10bio, devs[conf->copies]);
82 
83 	/* allocate a r10bio with room for raid_disks entries in the
84 	 * bios array */
85 	return kzalloc(size, gfp_flags);
86 }
87 
88 static void r10bio_pool_free(void *r10_bio, void *data)
89 {
90 	kfree(r10_bio);
91 }
92 
93 /* Maximum size of each resync request */
94 #define RESYNC_BLOCK_SIZE (64*1024)
95 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
96 /* amount of memory to reserve for resync requests */
97 #define RESYNC_WINDOW (1024*1024)
98 /* maximum number of concurrent requests, memory permitting */
99 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
100 
101 /*
102  * When performing a resync, we need to read and compare, so
103  * we need as many pages are there are copies.
104  * When performing a recovery, we need 2 bios, one for read,
105  * one for write (we recover only one drive per r10buf)
106  *
107  */
108 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110 	struct r10conf *conf = data;
111 	struct page *page;
112 	struct r10bio *r10_bio;
113 	struct bio *bio;
114 	int i, j;
115 	int nalloc;
116 
117 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
118 	if (!r10_bio)
119 		return NULL;
120 
121 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
122 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
123 		nalloc = conf->copies; /* resync */
124 	else
125 		nalloc = 2; /* recovery */
126 
127 	/*
128 	 * Allocate bios.
129 	 */
130 	for (j = nalloc ; j-- ; ) {
131 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
132 		if (!bio)
133 			goto out_free_bio;
134 		r10_bio->devs[j].bio = bio;
135 		if (!conf->have_replacement)
136 			continue;
137 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
138 		if (!bio)
139 			goto out_free_bio;
140 		r10_bio->devs[j].repl_bio = bio;
141 	}
142 	/*
143 	 * Allocate RESYNC_PAGES data pages and attach them
144 	 * where needed.
145 	 */
146 	for (j = 0 ; j < nalloc; j++) {
147 		struct bio *rbio = r10_bio->devs[j].repl_bio;
148 		bio = r10_bio->devs[j].bio;
149 		for (i = 0; i < RESYNC_PAGES; i++) {
150 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
151 					       &conf->mddev->recovery)) {
152 				/* we can share bv_page's during recovery
153 				 * and reshape */
154 				struct bio *rbio = r10_bio->devs[0].bio;
155 				page = rbio->bi_io_vec[i].bv_page;
156 				get_page(page);
157 			} else
158 				page = alloc_page(gfp_flags);
159 			if (unlikely(!page))
160 				goto out_free_pages;
161 
162 			bio->bi_io_vec[i].bv_page = page;
163 			if (rbio)
164 				rbio->bi_io_vec[i].bv_page = page;
165 		}
166 	}
167 
168 	return r10_bio;
169 
170 out_free_pages:
171 	for ( ; i > 0 ; i--)
172 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
173 	while (j--)
174 		for (i = 0; i < RESYNC_PAGES ; i++)
175 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
176 	j = 0;
177 out_free_bio:
178 	for ( ; j < nalloc; j++) {
179 		if (r10_bio->devs[j].bio)
180 			bio_put(r10_bio->devs[j].bio);
181 		if (r10_bio->devs[j].repl_bio)
182 			bio_put(r10_bio->devs[j].repl_bio);
183 	}
184 	r10bio_pool_free(r10_bio, conf);
185 	return NULL;
186 }
187 
188 static void r10buf_pool_free(void *__r10_bio, void *data)
189 {
190 	int i;
191 	struct r10conf *conf = data;
192 	struct r10bio *r10bio = __r10_bio;
193 	int j;
194 
195 	for (j=0; j < conf->copies; j++) {
196 		struct bio *bio = r10bio->devs[j].bio;
197 		if (bio) {
198 			for (i = 0; i < RESYNC_PAGES; i++) {
199 				safe_put_page(bio->bi_io_vec[i].bv_page);
200 				bio->bi_io_vec[i].bv_page = NULL;
201 			}
202 			bio_put(bio);
203 		}
204 		bio = r10bio->devs[j].repl_bio;
205 		if (bio)
206 			bio_put(bio);
207 	}
208 	r10bio_pool_free(r10bio, conf);
209 }
210 
211 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
212 {
213 	int i;
214 
215 	for (i = 0; i < conf->copies; i++) {
216 		struct bio **bio = & r10_bio->devs[i].bio;
217 		if (!BIO_SPECIAL(*bio))
218 			bio_put(*bio);
219 		*bio = NULL;
220 		bio = &r10_bio->devs[i].repl_bio;
221 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
222 			bio_put(*bio);
223 		*bio = NULL;
224 	}
225 }
226 
227 static void free_r10bio(struct r10bio *r10_bio)
228 {
229 	struct r10conf *conf = r10_bio->mddev->private;
230 
231 	put_all_bios(conf, r10_bio);
232 	mempool_free(r10_bio, conf->r10bio_pool);
233 }
234 
235 static void put_buf(struct r10bio *r10_bio)
236 {
237 	struct r10conf *conf = r10_bio->mddev->private;
238 
239 	mempool_free(r10_bio, conf->r10buf_pool);
240 
241 	lower_barrier(conf);
242 }
243 
244 static void reschedule_retry(struct r10bio *r10_bio)
245 {
246 	unsigned long flags;
247 	struct mddev *mddev = r10_bio->mddev;
248 	struct r10conf *conf = mddev->private;
249 
250 	spin_lock_irqsave(&conf->device_lock, flags);
251 	list_add(&r10_bio->retry_list, &conf->retry_list);
252 	conf->nr_queued ++;
253 	spin_unlock_irqrestore(&conf->device_lock, flags);
254 
255 	/* wake up frozen array... */
256 	wake_up(&conf->wait_barrier);
257 
258 	md_wakeup_thread(mddev->thread);
259 }
260 
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void raid_end_bio_io(struct r10bio *r10_bio)
267 {
268 	struct bio *bio = r10_bio->master_bio;
269 	int done;
270 	struct r10conf *conf = r10_bio->mddev->private;
271 
272 	if (bio->bi_phys_segments) {
273 		unsigned long flags;
274 		spin_lock_irqsave(&conf->device_lock, flags);
275 		bio->bi_phys_segments--;
276 		done = (bio->bi_phys_segments == 0);
277 		spin_unlock_irqrestore(&conf->device_lock, flags);
278 	} else
279 		done = 1;
280 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
281 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
282 	if (done) {
283 		bio_endio(bio, 0);
284 		/*
285 		 * Wake up any possible resync thread that waits for the device
286 		 * to go idle.
287 		 */
288 		allow_barrier(conf);
289 	}
290 	free_r10bio(r10_bio);
291 }
292 
293 /*
294  * Update disk head position estimator based on IRQ completion info.
295  */
296 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
297 {
298 	struct r10conf *conf = r10_bio->mddev->private;
299 
300 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
301 		r10_bio->devs[slot].addr + (r10_bio->sectors);
302 }
303 
304 /*
305  * Find the disk number which triggered given bio
306  */
307 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
308 			 struct bio *bio, int *slotp, int *replp)
309 {
310 	int slot;
311 	int repl = 0;
312 
313 	for (slot = 0; slot < conf->copies; slot++) {
314 		if (r10_bio->devs[slot].bio == bio)
315 			break;
316 		if (r10_bio->devs[slot].repl_bio == bio) {
317 			repl = 1;
318 			break;
319 		}
320 	}
321 
322 	BUG_ON(slot == conf->copies);
323 	update_head_pos(slot, r10_bio);
324 
325 	if (slotp)
326 		*slotp = slot;
327 	if (replp)
328 		*replp = repl;
329 	return r10_bio->devs[slot].devnum;
330 }
331 
332 static void raid10_end_read_request(struct bio *bio, int error)
333 {
334 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
335 	struct r10bio *r10_bio = bio->bi_private;
336 	int slot, dev;
337 	struct md_rdev *rdev;
338 	struct r10conf *conf = r10_bio->mddev->private;
339 
340 
341 	slot = r10_bio->read_slot;
342 	dev = r10_bio->devs[slot].devnum;
343 	rdev = r10_bio->devs[slot].rdev;
344 	/*
345 	 * this branch is our 'one mirror IO has finished' event handler:
346 	 */
347 	update_head_pos(slot, r10_bio);
348 
349 	if (uptodate) {
350 		/*
351 		 * Set R10BIO_Uptodate in our master bio, so that
352 		 * we will return a good error code to the higher
353 		 * levels even if IO on some other mirrored buffer fails.
354 		 *
355 		 * The 'master' represents the composite IO operation to
356 		 * user-side. So if something waits for IO, then it will
357 		 * wait for the 'master' bio.
358 		 */
359 		set_bit(R10BIO_Uptodate, &r10_bio->state);
360 	} else {
361 		/* If all other devices that store this block have
362 		 * failed, we want to return the error upwards rather
363 		 * than fail the last device.  Here we redefine
364 		 * "uptodate" to mean "Don't want to retry"
365 		 */
366 		unsigned long flags;
367 		spin_lock_irqsave(&conf->device_lock, flags);
368 		if (!enough(conf, rdev->raid_disk))
369 			uptodate = 1;
370 		spin_unlock_irqrestore(&conf->device_lock, flags);
371 	}
372 	if (uptodate) {
373 		raid_end_bio_io(r10_bio);
374 		rdev_dec_pending(rdev, conf->mddev);
375 	} else {
376 		/*
377 		 * oops, read error - keep the refcount on the rdev
378 		 */
379 		char b[BDEVNAME_SIZE];
380 		printk_ratelimited(KERN_ERR
381 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
382 				   mdname(conf->mddev),
383 				   bdevname(rdev->bdev, b),
384 				   (unsigned long long)r10_bio->sector);
385 		set_bit(R10BIO_ReadError, &r10_bio->state);
386 		reschedule_retry(r10_bio);
387 	}
388 }
389 
390 static void close_write(struct r10bio *r10_bio)
391 {
392 	/* clear the bitmap if all writes complete successfully */
393 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
394 			r10_bio->sectors,
395 			!test_bit(R10BIO_Degraded, &r10_bio->state),
396 			0);
397 	md_write_end(r10_bio->mddev);
398 }
399 
400 static void one_write_done(struct r10bio *r10_bio)
401 {
402 	if (atomic_dec_and_test(&r10_bio->remaining)) {
403 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
404 			reschedule_retry(r10_bio);
405 		else {
406 			close_write(r10_bio);
407 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
408 				reschedule_retry(r10_bio);
409 			else
410 				raid_end_bio_io(r10_bio);
411 		}
412 	}
413 }
414 
415 static void raid10_end_write_request(struct bio *bio, int error)
416 {
417 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
418 	struct r10bio *r10_bio = bio->bi_private;
419 	int dev;
420 	int dec_rdev = 1;
421 	struct r10conf *conf = r10_bio->mddev->private;
422 	int slot, repl;
423 	struct md_rdev *rdev = NULL;
424 
425 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
426 
427 	if (repl)
428 		rdev = conf->mirrors[dev].replacement;
429 	if (!rdev) {
430 		smp_rmb();
431 		repl = 0;
432 		rdev = conf->mirrors[dev].rdev;
433 	}
434 	/*
435 	 * this branch is our 'one mirror IO has finished' event handler:
436 	 */
437 	if (!uptodate) {
438 		if (repl)
439 			/* Never record new bad blocks to replacement,
440 			 * just fail it.
441 			 */
442 			md_error(rdev->mddev, rdev);
443 		else {
444 			set_bit(WriteErrorSeen,	&rdev->flags);
445 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
446 				set_bit(MD_RECOVERY_NEEDED,
447 					&rdev->mddev->recovery);
448 			set_bit(R10BIO_WriteError, &r10_bio->state);
449 			dec_rdev = 0;
450 		}
451 	} else {
452 		/*
453 		 * Set R10BIO_Uptodate in our master bio, so that
454 		 * we will return a good error code for to the higher
455 		 * levels even if IO on some other mirrored buffer fails.
456 		 *
457 		 * The 'master' represents the composite IO operation to
458 		 * user-side. So if something waits for IO, then it will
459 		 * wait for the 'master' bio.
460 		 */
461 		sector_t first_bad;
462 		int bad_sectors;
463 
464 		set_bit(R10BIO_Uptodate, &r10_bio->state);
465 
466 		/* Maybe we can clear some bad blocks. */
467 		if (is_badblock(rdev,
468 				r10_bio->devs[slot].addr,
469 				r10_bio->sectors,
470 				&first_bad, &bad_sectors)) {
471 			bio_put(bio);
472 			if (repl)
473 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
474 			else
475 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
476 			dec_rdev = 0;
477 			set_bit(R10BIO_MadeGood, &r10_bio->state);
478 		}
479 	}
480 
481 	/*
482 	 *
483 	 * Let's see if all mirrored write operations have finished
484 	 * already.
485 	 */
486 	one_write_done(r10_bio);
487 	if (dec_rdev)
488 		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
489 }
490 
491 /*
492  * RAID10 layout manager
493  * As well as the chunksize and raid_disks count, there are two
494  * parameters: near_copies and far_copies.
495  * near_copies * far_copies must be <= raid_disks.
496  * Normally one of these will be 1.
497  * If both are 1, we get raid0.
498  * If near_copies == raid_disks, we get raid1.
499  *
500  * Chunks are laid out in raid0 style with near_copies copies of the
501  * first chunk, followed by near_copies copies of the next chunk and
502  * so on.
503  * If far_copies > 1, then after 1/far_copies of the array has been assigned
504  * as described above, we start again with a device offset of near_copies.
505  * So we effectively have another copy of the whole array further down all
506  * the drives, but with blocks on different drives.
507  * With this layout, and block is never stored twice on the one device.
508  *
509  * raid10_find_phys finds the sector offset of a given virtual sector
510  * on each device that it is on.
511  *
512  * raid10_find_virt does the reverse mapping, from a device and a
513  * sector offset to a virtual address
514  */
515 
516 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
517 {
518 	int n,f;
519 	sector_t sector;
520 	sector_t chunk;
521 	sector_t stripe;
522 	int dev;
523 	int slot = 0;
524 
525 	/* now calculate first sector/dev */
526 	chunk = r10bio->sector >> geo->chunk_shift;
527 	sector = r10bio->sector & geo->chunk_mask;
528 
529 	chunk *= geo->near_copies;
530 	stripe = chunk;
531 	dev = sector_div(stripe, geo->raid_disks);
532 	if (geo->far_offset)
533 		stripe *= geo->far_copies;
534 
535 	sector += stripe << geo->chunk_shift;
536 
537 	/* and calculate all the others */
538 	for (n = 0; n < geo->near_copies; n++) {
539 		int d = dev;
540 		sector_t s = sector;
541 		r10bio->devs[slot].addr = sector;
542 		r10bio->devs[slot].devnum = d;
543 		slot++;
544 
545 		for (f = 1; f < geo->far_copies; f++) {
546 			d += geo->near_copies;
547 			if (d >= geo->raid_disks)
548 				d -= geo->raid_disks;
549 			s += geo->stride;
550 			r10bio->devs[slot].devnum = d;
551 			r10bio->devs[slot].addr = s;
552 			slot++;
553 		}
554 		dev++;
555 		if (dev >= geo->raid_disks) {
556 			dev = 0;
557 			sector += (geo->chunk_mask + 1);
558 		}
559 	}
560 }
561 
562 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
563 {
564 	struct geom *geo = &conf->geo;
565 
566 	if (conf->reshape_progress != MaxSector &&
567 	    ((r10bio->sector >= conf->reshape_progress) !=
568 	     conf->mddev->reshape_backwards)) {
569 		set_bit(R10BIO_Previous, &r10bio->state);
570 		geo = &conf->prev;
571 	} else
572 		clear_bit(R10BIO_Previous, &r10bio->state);
573 
574 	__raid10_find_phys(geo, r10bio);
575 }
576 
577 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
578 {
579 	sector_t offset, chunk, vchunk;
580 	/* Never use conf->prev as this is only called during resync
581 	 * or recovery, so reshape isn't happening
582 	 */
583 	struct geom *geo = &conf->geo;
584 
585 	offset = sector & geo->chunk_mask;
586 	if (geo->far_offset) {
587 		int fc;
588 		chunk = sector >> geo->chunk_shift;
589 		fc = sector_div(chunk, geo->far_copies);
590 		dev -= fc * geo->near_copies;
591 		if (dev < 0)
592 			dev += geo->raid_disks;
593 	} else {
594 		while (sector >= geo->stride) {
595 			sector -= geo->stride;
596 			if (dev < geo->near_copies)
597 				dev += geo->raid_disks - geo->near_copies;
598 			else
599 				dev -= geo->near_copies;
600 		}
601 		chunk = sector >> geo->chunk_shift;
602 	}
603 	vchunk = chunk * geo->raid_disks + dev;
604 	sector_div(vchunk, geo->near_copies);
605 	return (vchunk << geo->chunk_shift) + offset;
606 }
607 
608 /**
609  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
610  *	@q: request queue
611  *	@bvm: properties of new bio
612  *	@biovec: the request that could be merged to it.
613  *
614  *	Return amount of bytes we can accept at this offset
615  *	This requires checking for end-of-chunk if near_copies != raid_disks,
616  *	and for subordinate merge_bvec_fns if merge_check_needed.
617  */
618 static int raid10_mergeable_bvec(struct request_queue *q,
619 				 struct bvec_merge_data *bvm,
620 				 struct bio_vec *biovec)
621 {
622 	struct mddev *mddev = q->queuedata;
623 	struct r10conf *conf = mddev->private;
624 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
625 	int max;
626 	unsigned int chunk_sectors;
627 	unsigned int bio_sectors = bvm->bi_size >> 9;
628 	struct geom *geo = &conf->geo;
629 
630 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
631 	if (conf->reshape_progress != MaxSector &&
632 	    ((sector >= conf->reshape_progress) !=
633 	     conf->mddev->reshape_backwards))
634 		geo = &conf->prev;
635 
636 	if (geo->near_copies < geo->raid_disks) {
637 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
638 					+ bio_sectors)) << 9;
639 		if (max < 0)
640 			/* bio_add cannot handle a negative return */
641 			max = 0;
642 		if (max <= biovec->bv_len && bio_sectors == 0)
643 			return biovec->bv_len;
644 	} else
645 		max = biovec->bv_len;
646 
647 	if (mddev->merge_check_needed) {
648 		struct r10bio r10_bio;
649 		int s;
650 		if (conf->reshape_progress != MaxSector) {
651 			/* Cannot give any guidance during reshape */
652 			if (max <= biovec->bv_len && bio_sectors == 0)
653 				return biovec->bv_len;
654 			return 0;
655 		}
656 		r10_bio.sector = sector;
657 		raid10_find_phys(conf, &r10_bio);
658 		rcu_read_lock();
659 		for (s = 0; s < conf->copies; s++) {
660 			int disk = r10_bio.devs[s].devnum;
661 			struct md_rdev *rdev = rcu_dereference(
662 				conf->mirrors[disk].rdev);
663 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
664 				struct request_queue *q =
665 					bdev_get_queue(rdev->bdev);
666 				if (q->merge_bvec_fn) {
667 					bvm->bi_sector = r10_bio.devs[s].addr
668 						+ rdev->data_offset;
669 					bvm->bi_bdev = rdev->bdev;
670 					max = min(max, q->merge_bvec_fn(
671 							  q, bvm, biovec));
672 				}
673 			}
674 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
675 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
676 				struct request_queue *q =
677 					bdev_get_queue(rdev->bdev);
678 				if (q->merge_bvec_fn) {
679 					bvm->bi_sector = r10_bio.devs[s].addr
680 						+ rdev->data_offset;
681 					bvm->bi_bdev = rdev->bdev;
682 					max = min(max, q->merge_bvec_fn(
683 							  q, bvm, biovec));
684 				}
685 			}
686 		}
687 		rcu_read_unlock();
688 	}
689 	return max;
690 }
691 
692 /*
693  * This routine returns the disk from which the requested read should
694  * be done. There is a per-array 'next expected sequential IO' sector
695  * number - if this matches on the next IO then we use the last disk.
696  * There is also a per-disk 'last know head position' sector that is
697  * maintained from IRQ contexts, both the normal and the resync IO
698  * completion handlers update this position correctly. If there is no
699  * perfect sequential match then we pick the disk whose head is closest.
700  *
701  * If there are 2 mirrors in the same 2 devices, performance degrades
702  * because position is mirror, not device based.
703  *
704  * The rdev for the device selected will have nr_pending incremented.
705  */
706 
707 /*
708  * FIXME: possibly should rethink readbalancing and do it differently
709  * depending on near_copies / far_copies geometry.
710  */
711 static struct md_rdev *read_balance(struct r10conf *conf,
712 				    struct r10bio *r10_bio,
713 				    int *max_sectors)
714 {
715 	const sector_t this_sector = r10_bio->sector;
716 	int disk, slot;
717 	int sectors = r10_bio->sectors;
718 	int best_good_sectors;
719 	sector_t new_distance, best_dist;
720 	struct md_rdev *rdev, *best_rdev;
721 	int do_balance;
722 	int best_slot;
723 	struct geom *geo = &conf->geo;
724 
725 	raid10_find_phys(conf, r10_bio);
726 	rcu_read_lock();
727 retry:
728 	sectors = r10_bio->sectors;
729 	best_slot = -1;
730 	best_rdev = NULL;
731 	best_dist = MaxSector;
732 	best_good_sectors = 0;
733 	do_balance = 1;
734 	/*
735 	 * Check if we can balance. We can balance on the whole
736 	 * device if no resync is going on (recovery is ok), or below
737 	 * the resync window. We take the first readable disk when
738 	 * above the resync window.
739 	 */
740 	if (conf->mddev->recovery_cp < MaxSector
741 	    && (this_sector + sectors >= conf->next_resync))
742 		do_balance = 0;
743 
744 	for (slot = 0; slot < conf->copies ; slot++) {
745 		sector_t first_bad;
746 		int bad_sectors;
747 		sector_t dev_sector;
748 
749 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
750 			continue;
751 		disk = r10_bio->devs[slot].devnum;
752 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
753 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754 		    test_bit(Unmerged, &rdev->flags) ||
755 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
757 		if (rdev == NULL ||
758 		    test_bit(Faulty, &rdev->flags) ||
759 		    test_bit(Unmerged, &rdev->flags))
760 			continue;
761 		if (!test_bit(In_sync, &rdev->flags) &&
762 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
763 			continue;
764 
765 		dev_sector = r10_bio->devs[slot].addr;
766 		if (is_badblock(rdev, dev_sector, sectors,
767 				&first_bad, &bad_sectors)) {
768 			if (best_dist < MaxSector)
769 				/* Already have a better slot */
770 				continue;
771 			if (first_bad <= dev_sector) {
772 				/* Cannot read here.  If this is the
773 				 * 'primary' device, then we must not read
774 				 * beyond 'bad_sectors' from another device.
775 				 */
776 				bad_sectors -= (dev_sector - first_bad);
777 				if (!do_balance && sectors > bad_sectors)
778 					sectors = bad_sectors;
779 				if (best_good_sectors > sectors)
780 					best_good_sectors = sectors;
781 			} else {
782 				sector_t good_sectors =
783 					first_bad - dev_sector;
784 				if (good_sectors > best_good_sectors) {
785 					best_good_sectors = good_sectors;
786 					best_slot = slot;
787 					best_rdev = rdev;
788 				}
789 				if (!do_balance)
790 					/* Must read from here */
791 					break;
792 			}
793 			continue;
794 		} else
795 			best_good_sectors = sectors;
796 
797 		if (!do_balance)
798 			break;
799 
800 		/* This optimisation is debatable, and completely destroys
801 		 * sequential read speed for 'far copies' arrays.  So only
802 		 * keep it for 'near' arrays, and review those later.
803 		 */
804 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
805 			break;
806 
807 		/* for far > 1 always use the lowest address */
808 		if (geo->far_copies > 1)
809 			new_distance = r10_bio->devs[slot].addr;
810 		else
811 			new_distance = abs(r10_bio->devs[slot].addr -
812 					   conf->mirrors[disk].head_position);
813 		if (new_distance < best_dist) {
814 			best_dist = new_distance;
815 			best_slot = slot;
816 			best_rdev = rdev;
817 		}
818 	}
819 	if (slot >= conf->copies) {
820 		slot = best_slot;
821 		rdev = best_rdev;
822 	}
823 
824 	if (slot >= 0) {
825 		atomic_inc(&rdev->nr_pending);
826 		if (test_bit(Faulty, &rdev->flags)) {
827 			/* Cannot risk returning a device that failed
828 			 * before we inc'ed nr_pending
829 			 */
830 			rdev_dec_pending(rdev, conf->mddev);
831 			goto retry;
832 		}
833 		r10_bio->read_slot = slot;
834 	} else
835 		rdev = NULL;
836 	rcu_read_unlock();
837 	*max_sectors = best_good_sectors;
838 
839 	return rdev;
840 }
841 
842 static int raid10_congested(void *data, int bits)
843 {
844 	struct mddev *mddev = data;
845 	struct r10conf *conf = mddev->private;
846 	int i, ret = 0;
847 
848 	if ((bits & (1 << BDI_async_congested)) &&
849 	    conf->pending_count >= max_queued_requests)
850 		return 1;
851 
852 	if (mddev_congested(mddev, bits))
853 		return 1;
854 	rcu_read_lock();
855 	for (i = 0;
856 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
857 		     && ret == 0;
858 	     i++) {
859 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
860 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
861 			struct request_queue *q = bdev_get_queue(rdev->bdev);
862 
863 			ret |= bdi_congested(&q->backing_dev_info, bits);
864 		}
865 	}
866 	rcu_read_unlock();
867 	return ret;
868 }
869 
870 static void flush_pending_writes(struct r10conf *conf)
871 {
872 	/* Any writes that have been queued but are awaiting
873 	 * bitmap updates get flushed here.
874 	 */
875 	spin_lock_irq(&conf->device_lock);
876 
877 	if (conf->pending_bio_list.head) {
878 		struct bio *bio;
879 		bio = bio_list_get(&conf->pending_bio_list);
880 		conf->pending_count = 0;
881 		spin_unlock_irq(&conf->device_lock);
882 		/* flush any pending bitmap writes to disk
883 		 * before proceeding w/ I/O */
884 		bitmap_unplug(conf->mddev->bitmap);
885 		wake_up(&conf->wait_barrier);
886 
887 		while (bio) { /* submit pending writes */
888 			struct bio *next = bio->bi_next;
889 			bio->bi_next = NULL;
890 			generic_make_request(bio);
891 			bio = next;
892 		}
893 	} else
894 		spin_unlock_irq(&conf->device_lock);
895 }
896 
897 /* Barriers....
898  * Sometimes we need to suspend IO while we do something else,
899  * either some resync/recovery, or reconfigure the array.
900  * To do this we raise a 'barrier'.
901  * The 'barrier' is a counter that can be raised multiple times
902  * to count how many activities are happening which preclude
903  * normal IO.
904  * We can only raise the barrier if there is no pending IO.
905  * i.e. if nr_pending == 0.
906  * We choose only to raise the barrier if no-one is waiting for the
907  * barrier to go down.  This means that as soon as an IO request
908  * is ready, no other operations which require a barrier will start
909  * until the IO request has had a chance.
910  *
911  * So: regular IO calls 'wait_barrier'.  When that returns there
912  *    is no backgroup IO happening,  It must arrange to call
913  *    allow_barrier when it has finished its IO.
914  * backgroup IO calls must call raise_barrier.  Once that returns
915  *    there is no normal IO happeing.  It must arrange to call
916  *    lower_barrier when the particular background IO completes.
917  */
918 
919 static void raise_barrier(struct r10conf *conf, int force)
920 {
921 	BUG_ON(force && !conf->barrier);
922 	spin_lock_irq(&conf->resync_lock);
923 
924 	/* Wait until no block IO is waiting (unless 'force') */
925 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
926 			    conf->resync_lock, );
927 
928 	/* block any new IO from starting */
929 	conf->barrier++;
930 
931 	/* Now wait for all pending IO to complete */
932 	wait_event_lock_irq(conf->wait_barrier,
933 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
934 			    conf->resync_lock, );
935 
936 	spin_unlock_irq(&conf->resync_lock);
937 }
938 
939 static void lower_barrier(struct r10conf *conf)
940 {
941 	unsigned long flags;
942 	spin_lock_irqsave(&conf->resync_lock, flags);
943 	conf->barrier--;
944 	spin_unlock_irqrestore(&conf->resync_lock, flags);
945 	wake_up(&conf->wait_barrier);
946 }
947 
948 static void wait_barrier(struct r10conf *conf)
949 {
950 	spin_lock_irq(&conf->resync_lock);
951 	if (conf->barrier) {
952 		conf->nr_waiting++;
953 		/* Wait for the barrier to drop.
954 		 * However if there are already pending
955 		 * requests (preventing the barrier from
956 		 * rising completely), and the
957 		 * pre-process bio queue isn't empty,
958 		 * then don't wait, as we need to empty
959 		 * that queue to get the nr_pending
960 		 * count down.
961 		 */
962 		wait_event_lock_irq(conf->wait_barrier,
963 				    !conf->barrier ||
964 				    (conf->nr_pending &&
965 				     current->bio_list &&
966 				     !bio_list_empty(current->bio_list)),
967 				    conf->resync_lock,
968 			);
969 		conf->nr_waiting--;
970 	}
971 	conf->nr_pending++;
972 	spin_unlock_irq(&conf->resync_lock);
973 }
974 
975 static void allow_barrier(struct r10conf *conf)
976 {
977 	unsigned long flags;
978 	spin_lock_irqsave(&conf->resync_lock, flags);
979 	conf->nr_pending--;
980 	spin_unlock_irqrestore(&conf->resync_lock, flags);
981 	wake_up(&conf->wait_barrier);
982 }
983 
984 static void freeze_array(struct r10conf *conf)
985 {
986 	/* stop syncio and normal IO and wait for everything to
987 	 * go quiet.
988 	 * We increment barrier and nr_waiting, and then
989 	 * wait until nr_pending match nr_queued+1
990 	 * This is called in the context of one normal IO request
991 	 * that has failed. Thus any sync request that might be pending
992 	 * will be blocked by nr_pending, and we need to wait for
993 	 * pending IO requests to complete or be queued for re-try.
994 	 * Thus the number queued (nr_queued) plus this request (1)
995 	 * must match the number of pending IOs (nr_pending) before
996 	 * we continue.
997 	 */
998 	spin_lock_irq(&conf->resync_lock);
999 	conf->barrier++;
1000 	conf->nr_waiting++;
1001 	wait_event_lock_irq(conf->wait_barrier,
1002 			    conf->nr_pending == conf->nr_queued+1,
1003 			    conf->resync_lock,
1004 			    flush_pending_writes(conf));
1005 
1006 	spin_unlock_irq(&conf->resync_lock);
1007 }
1008 
1009 static void unfreeze_array(struct r10conf *conf)
1010 {
1011 	/* reverse the effect of the freeze */
1012 	spin_lock_irq(&conf->resync_lock);
1013 	conf->barrier--;
1014 	conf->nr_waiting--;
1015 	wake_up(&conf->wait_barrier);
1016 	spin_unlock_irq(&conf->resync_lock);
1017 }
1018 
1019 static sector_t choose_data_offset(struct r10bio *r10_bio,
1020 				   struct md_rdev *rdev)
1021 {
1022 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1023 	    test_bit(R10BIO_Previous, &r10_bio->state))
1024 		return rdev->data_offset;
1025 	else
1026 		return rdev->new_data_offset;
1027 }
1028 
1029 static void make_request(struct mddev *mddev, struct bio * bio)
1030 {
1031 	struct r10conf *conf = mddev->private;
1032 	struct r10bio *r10_bio;
1033 	struct bio *read_bio;
1034 	int i;
1035 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1036 	int chunk_sects = chunk_mask + 1;
1037 	const int rw = bio_data_dir(bio);
1038 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1039 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1040 	unsigned long flags;
1041 	struct md_rdev *blocked_rdev;
1042 	int plugged;
1043 	int sectors_handled;
1044 	int max_sectors;
1045 	int sectors;
1046 
1047 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1048 		md_flush_request(mddev, bio);
1049 		return;
1050 	}
1051 
1052 	/* If this request crosses a chunk boundary, we need to
1053 	 * split it.  This will only happen for 1 PAGE (or less) requests.
1054 	 */
1055 	if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1056 		     > chunk_sects
1057 		     && (conf->geo.near_copies < conf->geo.raid_disks
1058 			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1059 		struct bio_pair *bp;
1060 		/* Sanity check -- queue functions should prevent this happening */
1061 		if (bio->bi_vcnt != 1 ||
1062 		    bio->bi_idx != 0)
1063 			goto bad_map;
1064 		/* This is a one page bio that upper layers
1065 		 * refuse to split for us, so we need to split it.
1066 		 */
1067 		bp = bio_split(bio,
1068 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1069 
1070 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1071 		 * If the first succeeds but the second blocks due to the resync
1072 		 * thread raising the barrier, we will deadlock because the
1073 		 * IO to the underlying device will be queued in generic_make_request
1074 		 * and will never complete, so will never reduce nr_pending.
1075 		 * So increment nr_waiting here so no new raise_barriers will
1076 		 * succeed, and so the second wait_barrier cannot block.
1077 		 */
1078 		spin_lock_irq(&conf->resync_lock);
1079 		conf->nr_waiting++;
1080 		spin_unlock_irq(&conf->resync_lock);
1081 
1082 		make_request(mddev, &bp->bio1);
1083 		make_request(mddev, &bp->bio2);
1084 
1085 		spin_lock_irq(&conf->resync_lock);
1086 		conf->nr_waiting--;
1087 		wake_up(&conf->wait_barrier);
1088 		spin_unlock_irq(&conf->resync_lock);
1089 
1090 		bio_pair_release(bp);
1091 		return;
1092 	bad_map:
1093 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1094 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1095 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1096 
1097 		bio_io_error(bio);
1098 		return;
1099 	}
1100 
1101 	md_write_start(mddev, bio);
1102 
1103 	/*
1104 	 * Register the new request and wait if the reconstruction
1105 	 * thread has put up a bar for new requests.
1106 	 * Continue immediately if no resync is active currently.
1107 	 */
1108 	wait_barrier(conf);
1109 
1110 	sectors = bio->bi_size >> 9;
1111 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1112 	    bio->bi_sector < conf->reshape_progress &&
1113 	    bio->bi_sector + sectors > conf->reshape_progress) {
1114 		/* IO spans the reshape position.  Need to wait for
1115 		 * reshape to pass
1116 		 */
1117 		allow_barrier(conf);
1118 		wait_event(conf->wait_barrier,
1119 			   conf->reshape_progress <= bio->bi_sector ||
1120 			   conf->reshape_progress >= bio->bi_sector + sectors);
1121 		wait_barrier(conf);
1122 	}
1123 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1124 	    bio_data_dir(bio) == WRITE &&
1125 	    (mddev->reshape_backwards
1126 	     ? (bio->bi_sector < conf->reshape_safe &&
1127 		bio->bi_sector + sectors > conf->reshape_progress)
1128 	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1129 		bio->bi_sector < conf->reshape_progress))) {
1130 		/* Need to update reshape_position in metadata */
1131 		mddev->reshape_position = conf->reshape_progress;
1132 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1133 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1134 		md_wakeup_thread(mddev->thread);
1135 		wait_event(mddev->sb_wait,
1136 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1137 
1138 		conf->reshape_safe = mddev->reshape_position;
1139 	}
1140 
1141 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1142 
1143 	r10_bio->master_bio = bio;
1144 	r10_bio->sectors = sectors;
1145 
1146 	r10_bio->mddev = mddev;
1147 	r10_bio->sector = bio->bi_sector;
1148 	r10_bio->state = 0;
1149 
1150 	/* We might need to issue multiple reads to different
1151 	 * devices if there are bad blocks around, so we keep
1152 	 * track of the number of reads in bio->bi_phys_segments.
1153 	 * If this is 0, there is only one r10_bio and no locking
1154 	 * will be needed when the request completes.  If it is
1155 	 * non-zero, then it is the number of not-completed requests.
1156 	 */
1157 	bio->bi_phys_segments = 0;
1158 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1159 
1160 	if (rw == READ) {
1161 		/*
1162 		 * read balancing logic:
1163 		 */
1164 		struct md_rdev *rdev;
1165 		int slot;
1166 
1167 read_again:
1168 		rdev = read_balance(conf, r10_bio, &max_sectors);
1169 		if (!rdev) {
1170 			raid_end_bio_io(r10_bio);
1171 			return;
1172 		}
1173 		slot = r10_bio->read_slot;
1174 
1175 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1176 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1177 			    max_sectors);
1178 
1179 		r10_bio->devs[slot].bio = read_bio;
1180 		r10_bio->devs[slot].rdev = rdev;
1181 
1182 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1183 			choose_data_offset(r10_bio, rdev);
1184 		read_bio->bi_bdev = rdev->bdev;
1185 		read_bio->bi_end_io = raid10_end_read_request;
1186 		read_bio->bi_rw = READ | do_sync;
1187 		read_bio->bi_private = r10_bio;
1188 
1189 		if (max_sectors < r10_bio->sectors) {
1190 			/* Could not read all from this device, so we will
1191 			 * need another r10_bio.
1192 			 */
1193 			sectors_handled = (r10_bio->sectors + max_sectors
1194 					   - bio->bi_sector);
1195 			r10_bio->sectors = max_sectors;
1196 			spin_lock_irq(&conf->device_lock);
1197 			if (bio->bi_phys_segments == 0)
1198 				bio->bi_phys_segments = 2;
1199 			else
1200 				bio->bi_phys_segments++;
1201 			spin_unlock(&conf->device_lock);
1202 			/* Cannot call generic_make_request directly
1203 			 * as that will be queued in __generic_make_request
1204 			 * and subsequent mempool_alloc might block
1205 			 * waiting for it.  so hand bio over to raid10d.
1206 			 */
1207 			reschedule_retry(r10_bio);
1208 
1209 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1210 
1211 			r10_bio->master_bio = bio;
1212 			r10_bio->sectors = ((bio->bi_size >> 9)
1213 					    - sectors_handled);
1214 			r10_bio->state = 0;
1215 			r10_bio->mddev = mddev;
1216 			r10_bio->sector = bio->bi_sector + sectors_handled;
1217 			goto read_again;
1218 		} else
1219 			generic_make_request(read_bio);
1220 		return;
1221 	}
1222 
1223 	/*
1224 	 * WRITE:
1225 	 */
1226 	if (conf->pending_count >= max_queued_requests) {
1227 		md_wakeup_thread(mddev->thread);
1228 		wait_event(conf->wait_barrier,
1229 			   conf->pending_count < max_queued_requests);
1230 	}
1231 	/* first select target devices under rcu_lock and
1232 	 * inc refcount on their rdev.  Record them by setting
1233 	 * bios[x] to bio
1234 	 * If there are known/acknowledged bad blocks on any device
1235 	 * on which we have seen a write error, we want to avoid
1236 	 * writing to those blocks.  This potentially requires several
1237 	 * writes to write around the bad blocks.  Each set of writes
1238 	 * gets its own r10_bio with a set of bios attached.  The number
1239 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1240 	 * the read case.
1241 	 */
1242 	plugged = mddev_check_plugged(mddev);
1243 
1244 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1245 	raid10_find_phys(conf, r10_bio);
1246 retry_write:
1247 	blocked_rdev = NULL;
1248 	rcu_read_lock();
1249 	max_sectors = r10_bio->sectors;
1250 
1251 	for (i = 0;  i < conf->copies; i++) {
1252 		int d = r10_bio->devs[i].devnum;
1253 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1254 		struct md_rdev *rrdev = rcu_dereference(
1255 			conf->mirrors[d].replacement);
1256 		if (rdev == rrdev)
1257 			rrdev = NULL;
1258 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1259 			atomic_inc(&rdev->nr_pending);
1260 			blocked_rdev = rdev;
1261 			break;
1262 		}
1263 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1264 			atomic_inc(&rrdev->nr_pending);
1265 			blocked_rdev = rrdev;
1266 			break;
1267 		}
1268 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1269 			      || test_bit(Unmerged, &rrdev->flags)))
1270 			rrdev = NULL;
1271 
1272 		r10_bio->devs[i].bio = NULL;
1273 		r10_bio->devs[i].repl_bio = NULL;
1274 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
1275 		    test_bit(Unmerged, &rdev->flags)) {
1276 			set_bit(R10BIO_Degraded, &r10_bio->state);
1277 			continue;
1278 		}
1279 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280 			sector_t first_bad;
1281 			sector_t dev_sector = r10_bio->devs[i].addr;
1282 			int bad_sectors;
1283 			int is_bad;
1284 
1285 			is_bad = is_badblock(rdev, dev_sector,
1286 					     max_sectors,
1287 					     &first_bad, &bad_sectors);
1288 			if (is_bad < 0) {
1289 				/* Mustn't write here until the bad block
1290 				 * is acknowledged
1291 				 */
1292 				atomic_inc(&rdev->nr_pending);
1293 				set_bit(BlockedBadBlocks, &rdev->flags);
1294 				blocked_rdev = rdev;
1295 				break;
1296 			}
1297 			if (is_bad && first_bad <= dev_sector) {
1298 				/* Cannot write here at all */
1299 				bad_sectors -= (dev_sector - first_bad);
1300 				if (bad_sectors < max_sectors)
1301 					/* Mustn't write more than bad_sectors
1302 					 * to other devices yet
1303 					 */
1304 					max_sectors = bad_sectors;
1305 				/* We don't set R10BIO_Degraded as that
1306 				 * only applies if the disk is missing,
1307 				 * so it might be re-added, and we want to
1308 				 * know to recover this chunk.
1309 				 * In this case the device is here, and the
1310 				 * fact that this chunk is not in-sync is
1311 				 * recorded in the bad block log.
1312 				 */
1313 				continue;
1314 			}
1315 			if (is_bad) {
1316 				int good_sectors = first_bad - dev_sector;
1317 				if (good_sectors < max_sectors)
1318 					max_sectors = good_sectors;
1319 			}
1320 		}
1321 		r10_bio->devs[i].bio = bio;
1322 		atomic_inc(&rdev->nr_pending);
1323 		if (rrdev) {
1324 			r10_bio->devs[i].repl_bio = bio;
1325 			atomic_inc(&rrdev->nr_pending);
1326 		}
1327 	}
1328 	rcu_read_unlock();
1329 
1330 	if (unlikely(blocked_rdev)) {
1331 		/* Have to wait for this device to get unblocked, then retry */
1332 		int j;
1333 		int d;
1334 
1335 		for (j = 0; j < i; j++) {
1336 			if (r10_bio->devs[j].bio) {
1337 				d = r10_bio->devs[j].devnum;
1338 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1339 			}
1340 			if (r10_bio->devs[j].repl_bio) {
1341 				struct md_rdev *rdev;
1342 				d = r10_bio->devs[j].devnum;
1343 				rdev = conf->mirrors[d].replacement;
1344 				if (!rdev) {
1345 					/* Race with remove_disk */
1346 					smp_mb();
1347 					rdev = conf->mirrors[d].rdev;
1348 				}
1349 				rdev_dec_pending(rdev, mddev);
1350 			}
1351 		}
1352 		allow_barrier(conf);
1353 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1354 		wait_barrier(conf);
1355 		goto retry_write;
1356 	}
1357 
1358 	if (max_sectors < r10_bio->sectors) {
1359 		/* We are splitting this into multiple parts, so
1360 		 * we need to prepare for allocating another r10_bio.
1361 		 */
1362 		r10_bio->sectors = max_sectors;
1363 		spin_lock_irq(&conf->device_lock);
1364 		if (bio->bi_phys_segments == 0)
1365 			bio->bi_phys_segments = 2;
1366 		else
1367 			bio->bi_phys_segments++;
1368 		spin_unlock_irq(&conf->device_lock);
1369 	}
1370 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1371 
1372 	atomic_set(&r10_bio->remaining, 1);
1373 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1374 
1375 	for (i = 0; i < conf->copies; i++) {
1376 		struct bio *mbio;
1377 		int d = r10_bio->devs[i].devnum;
1378 		if (!r10_bio->devs[i].bio)
1379 			continue;
1380 
1381 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1382 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1383 			    max_sectors);
1384 		r10_bio->devs[i].bio = mbio;
1385 
1386 		mbio->bi_sector	= (r10_bio->devs[i].addr+
1387 				   choose_data_offset(r10_bio,
1388 						      conf->mirrors[d].rdev));
1389 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1390 		mbio->bi_end_io	= raid10_end_write_request;
1391 		mbio->bi_rw = WRITE | do_sync | do_fua;
1392 		mbio->bi_private = r10_bio;
1393 
1394 		atomic_inc(&r10_bio->remaining);
1395 		spin_lock_irqsave(&conf->device_lock, flags);
1396 		bio_list_add(&conf->pending_bio_list, mbio);
1397 		conf->pending_count++;
1398 		spin_unlock_irqrestore(&conf->device_lock, flags);
1399 
1400 		if (!r10_bio->devs[i].repl_bio)
1401 			continue;
1402 
1403 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1404 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1405 			    max_sectors);
1406 		r10_bio->devs[i].repl_bio = mbio;
1407 
1408 		/* We are actively writing to the original device
1409 		 * so it cannot disappear, so the replacement cannot
1410 		 * become NULL here
1411 		 */
1412 		mbio->bi_sector	= (r10_bio->devs[i].addr +
1413 				   choose_data_offset(
1414 					   r10_bio,
1415 					   conf->mirrors[d].replacement));
1416 		mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1417 		mbio->bi_end_io	= raid10_end_write_request;
1418 		mbio->bi_rw = WRITE | do_sync | do_fua;
1419 		mbio->bi_private = r10_bio;
1420 
1421 		atomic_inc(&r10_bio->remaining);
1422 		spin_lock_irqsave(&conf->device_lock, flags);
1423 		bio_list_add(&conf->pending_bio_list, mbio);
1424 		conf->pending_count++;
1425 		spin_unlock_irqrestore(&conf->device_lock, flags);
1426 	}
1427 
1428 	/* Don't remove the bias on 'remaining' (one_write_done) until
1429 	 * after checking if we need to go around again.
1430 	 */
1431 
1432 	if (sectors_handled < (bio->bi_size >> 9)) {
1433 		one_write_done(r10_bio);
1434 		/* We need another r10_bio.  It has already been counted
1435 		 * in bio->bi_phys_segments.
1436 		 */
1437 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1438 
1439 		r10_bio->master_bio = bio;
1440 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1441 
1442 		r10_bio->mddev = mddev;
1443 		r10_bio->sector = bio->bi_sector + sectors_handled;
1444 		r10_bio->state = 0;
1445 		goto retry_write;
1446 	}
1447 	one_write_done(r10_bio);
1448 
1449 	/* In case raid10d snuck in to freeze_array */
1450 	wake_up(&conf->wait_barrier);
1451 
1452 	if (do_sync || !mddev->bitmap || !plugged)
1453 		md_wakeup_thread(mddev->thread);
1454 }
1455 
1456 static void status(struct seq_file *seq, struct mddev *mddev)
1457 {
1458 	struct r10conf *conf = mddev->private;
1459 	int i;
1460 
1461 	if (conf->geo.near_copies < conf->geo.raid_disks)
1462 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1463 	if (conf->geo.near_copies > 1)
1464 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1465 	if (conf->geo.far_copies > 1) {
1466 		if (conf->geo.far_offset)
1467 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1468 		else
1469 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1470 	}
1471 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1472 					conf->geo.raid_disks - mddev->degraded);
1473 	for (i = 0; i < conf->geo.raid_disks; i++)
1474 		seq_printf(seq, "%s",
1475 			      conf->mirrors[i].rdev &&
1476 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1477 	seq_printf(seq, "]");
1478 }
1479 
1480 /* check if there are enough drives for
1481  * every block to appear on atleast one.
1482  * Don't consider the device numbered 'ignore'
1483  * as we might be about to remove it.
1484  */
1485 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1486 {
1487 	int first = 0;
1488 
1489 	do {
1490 		int n = conf->copies;
1491 		int cnt = 0;
1492 		while (n--) {
1493 			if (conf->mirrors[first].rdev &&
1494 			    first != ignore)
1495 				cnt++;
1496 			first = (first+1) % geo->raid_disks;
1497 		}
1498 		if (cnt == 0)
1499 			return 0;
1500 	} while (first != 0);
1501 	return 1;
1502 }
1503 
1504 static int enough(struct r10conf *conf, int ignore)
1505 {
1506 	return _enough(conf, &conf->geo, ignore) &&
1507 		_enough(conf, &conf->prev, ignore);
1508 }
1509 
1510 static void error(struct mddev *mddev, struct md_rdev *rdev)
1511 {
1512 	char b[BDEVNAME_SIZE];
1513 	struct r10conf *conf = mddev->private;
1514 
1515 	/*
1516 	 * If it is not operational, then we have already marked it as dead
1517 	 * else if it is the last working disks, ignore the error, let the
1518 	 * next level up know.
1519 	 * else mark the drive as failed
1520 	 */
1521 	if (test_bit(In_sync, &rdev->flags)
1522 	    && !enough(conf, rdev->raid_disk))
1523 		/*
1524 		 * Don't fail the drive, just return an IO error.
1525 		 */
1526 		return;
1527 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1528 		unsigned long flags;
1529 		spin_lock_irqsave(&conf->device_lock, flags);
1530 		mddev->degraded++;
1531 		spin_unlock_irqrestore(&conf->device_lock, flags);
1532 		/*
1533 		 * if recovery is running, make sure it aborts.
1534 		 */
1535 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1536 	}
1537 	set_bit(Blocked, &rdev->flags);
1538 	set_bit(Faulty, &rdev->flags);
1539 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1540 	printk(KERN_ALERT
1541 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1542 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1543 	       mdname(mddev), bdevname(rdev->bdev, b),
1544 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1545 }
1546 
1547 static void print_conf(struct r10conf *conf)
1548 {
1549 	int i;
1550 	struct mirror_info *tmp;
1551 
1552 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1553 	if (!conf) {
1554 		printk(KERN_DEBUG "(!conf)\n");
1555 		return;
1556 	}
1557 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1558 		conf->geo.raid_disks);
1559 
1560 	for (i = 0; i < conf->geo.raid_disks; i++) {
1561 		char b[BDEVNAME_SIZE];
1562 		tmp = conf->mirrors + i;
1563 		if (tmp->rdev)
1564 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1565 				i, !test_bit(In_sync, &tmp->rdev->flags),
1566 			        !test_bit(Faulty, &tmp->rdev->flags),
1567 				bdevname(tmp->rdev->bdev,b));
1568 	}
1569 }
1570 
1571 static void close_sync(struct r10conf *conf)
1572 {
1573 	wait_barrier(conf);
1574 	allow_barrier(conf);
1575 
1576 	mempool_destroy(conf->r10buf_pool);
1577 	conf->r10buf_pool = NULL;
1578 }
1579 
1580 static int raid10_spare_active(struct mddev *mddev)
1581 {
1582 	int i;
1583 	struct r10conf *conf = mddev->private;
1584 	struct mirror_info *tmp;
1585 	int count = 0;
1586 	unsigned long flags;
1587 
1588 	/*
1589 	 * Find all non-in_sync disks within the RAID10 configuration
1590 	 * and mark them in_sync
1591 	 */
1592 	for (i = 0; i < conf->geo.raid_disks; i++) {
1593 		tmp = conf->mirrors + i;
1594 		if (tmp->replacement
1595 		    && tmp->replacement->recovery_offset == MaxSector
1596 		    && !test_bit(Faulty, &tmp->replacement->flags)
1597 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1598 			/* Replacement has just become active */
1599 			if (!tmp->rdev
1600 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1601 				count++;
1602 			if (tmp->rdev) {
1603 				/* Replaced device not technically faulty,
1604 				 * but we need to be sure it gets removed
1605 				 * and never re-added.
1606 				 */
1607 				set_bit(Faulty, &tmp->rdev->flags);
1608 				sysfs_notify_dirent_safe(
1609 					tmp->rdev->sysfs_state);
1610 			}
1611 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1612 		} else if (tmp->rdev
1613 			   && !test_bit(Faulty, &tmp->rdev->flags)
1614 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1615 			count++;
1616 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1617 		}
1618 	}
1619 	spin_lock_irqsave(&conf->device_lock, flags);
1620 	mddev->degraded -= count;
1621 	spin_unlock_irqrestore(&conf->device_lock, flags);
1622 
1623 	print_conf(conf);
1624 	return count;
1625 }
1626 
1627 
1628 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1629 {
1630 	struct r10conf *conf = mddev->private;
1631 	int err = -EEXIST;
1632 	int mirror;
1633 	int first = 0;
1634 	int last = conf->geo.raid_disks - 1;
1635 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1636 
1637 	if (mddev->recovery_cp < MaxSector)
1638 		/* only hot-add to in-sync arrays, as recovery is
1639 		 * very different from resync
1640 		 */
1641 		return -EBUSY;
1642 	if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1643 		return -EINVAL;
1644 
1645 	if (rdev->raid_disk >= 0)
1646 		first = last = rdev->raid_disk;
1647 
1648 	if (q->merge_bvec_fn) {
1649 		set_bit(Unmerged, &rdev->flags);
1650 		mddev->merge_check_needed = 1;
1651 	}
1652 
1653 	if (rdev->saved_raid_disk >= first &&
1654 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1655 		mirror = rdev->saved_raid_disk;
1656 	else
1657 		mirror = first;
1658 	for ( ; mirror <= last ; mirror++) {
1659 		struct mirror_info *p = &conf->mirrors[mirror];
1660 		if (p->recovery_disabled == mddev->recovery_disabled)
1661 			continue;
1662 		if (p->rdev) {
1663 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1664 			    p->replacement != NULL)
1665 				continue;
1666 			clear_bit(In_sync, &rdev->flags);
1667 			set_bit(Replacement, &rdev->flags);
1668 			rdev->raid_disk = mirror;
1669 			err = 0;
1670 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1671 					  rdev->data_offset << 9);
1672 			conf->fullsync = 1;
1673 			rcu_assign_pointer(p->replacement, rdev);
1674 			break;
1675 		}
1676 
1677 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1678 				  rdev->data_offset << 9);
1679 
1680 		p->head_position = 0;
1681 		p->recovery_disabled = mddev->recovery_disabled - 1;
1682 		rdev->raid_disk = mirror;
1683 		err = 0;
1684 		if (rdev->saved_raid_disk != mirror)
1685 			conf->fullsync = 1;
1686 		rcu_assign_pointer(p->rdev, rdev);
1687 		break;
1688 	}
1689 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1690 		/* Some requests might not have seen this new
1691 		 * merge_bvec_fn.  We must wait for them to complete
1692 		 * before merging the device fully.
1693 		 * First we make sure any code which has tested
1694 		 * our function has submitted the request, then
1695 		 * we wait for all outstanding requests to complete.
1696 		 */
1697 		synchronize_sched();
1698 		raise_barrier(conf, 0);
1699 		lower_barrier(conf);
1700 		clear_bit(Unmerged, &rdev->flags);
1701 	}
1702 	md_integrity_add_rdev(rdev, mddev);
1703 	print_conf(conf);
1704 	return err;
1705 }
1706 
1707 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1708 {
1709 	struct r10conf *conf = mddev->private;
1710 	int err = 0;
1711 	int number = rdev->raid_disk;
1712 	struct md_rdev **rdevp;
1713 	struct mirror_info *p = conf->mirrors + number;
1714 
1715 	print_conf(conf);
1716 	if (rdev == p->rdev)
1717 		rdevp = &p->rdev;
1718 	else if (rdev == p->replacement)
1719 		rdevp = &p->replacement;
1720 	else
1721 		return 0;
1722 
1723 	if (test_bit(In_sync, &rdev->flags) ||
1724 	    atomic_read(&rdev->nr_pending)) {
1725 		err = -EBUSY;
1726 		goto abort;
1727 	}
1728 	/* Only remove faulty devices if recovery
1729 	 * is not possible.
1730 	 */
1731 	if (!test_bit(Faulty, &rdev->flags) &&
1732 	    mddev->recovery_disabled != p->recovery_disabled &&
1733 	    (!p->replacement || p->replacement == rdev) &&
1734 	    number < conf->geo.raid_disks &&
1735 	    enough(conf, -1)) {
1736 		err = -EBUSY;
1737 		goto abort;
1738 	}
1739 	*rdevp = NULL;
1740 	synchronize_rcu();
1741 	if (atomic_read(&rdev->nr_pending)) {
1742 		/* lost the race, try later */
1743 		err = -EBUSY;
1744 		*rdevp = rdev;
1745 		goto abort;
1746 	} else if (p->replacement) {
1747 		/* We must have just cleared 'rdev' */
1748 		p->rdev = p->replacement;
1749 		clear_bit(Replacement, &p->replacement->flags);
1750 		smp_mb(); /* Make sure other CPUs may see both as identical
1751 			   * but will never see neither -- if they are careful.
1752 			   */
1753 		p->replacement = NULL;
1754 		clear_bit(WantReplacement, &rdev->flags);
1755 	} else
1756 		/* We might have just remove the Replacement as faulty
1757 		 * Clear the flag just in case
1758 		 */
1759 		clear_bit(WantReplacement, &rdev->flags);
1760 
1761 	err = md_integrity_register(mddev);
1762 
1763 abort:
1764 
1765 	print_conf(conf);
1766 	return err;
1767 }
1768 
1769 
1770 static void end_sync_read(struct bio *bio, int error)
1771 {
1772 	struct r10bio *r10_bio = bio->bi_private;
1773 	struct r10conf *conf = r10_bio->mddev->private;
1774 	int d;
1775 
1776 	if (bio == r10_bio->master_bio) {
1777 		/* this is a reshape read */
1778 		d = r10_bio->read_slot; /* really the read dev */
1779 	} else
1780 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1781 
1782 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1783 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1784 	else
1785 		/* The write handler will notice the lack of
1786 		 * R10BIO_Uptodate and record any errors etc
1787 		 */
1788 		atomic_add(r10_bio->sectors,
1789 			   &conf->mirrors[d].rdev->corrected_errors);
1790 
1791 	/* for reconstruct, we always reschedule after a read.
1792 	 * for resync, only after all reads
1793 	 */
1794 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1795 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1796 	    atomic_dec_and_test(&r10_bio->remaining)) {
1797 		/* we have read all the blocks,
1798 		 * do the comparison in process context in raid10d
1799 		 */
1800 		reschedule_retry(r10_bio);
1801 	}
1802 }
1803 
1804 static void end_sync_request(struct r10bio *r10_bio)
1805 {
1806 	struct mddev *mddev = r10_bio->mddev;
1807 
1808 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1809 		if (r10_bio->master_bio == NULL) {
1810 			/* the primary of several recovery bios */
1811 			sector_t s = r10_bio->sectors;
1812 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1813 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1814 				reschedule_retry(r10_bio);
1815 			else
1816 				put_buf(r10_bio);
1817 			md_done_sync(mddev, s, 1);
1818 			break;
1819 		} else {
1820 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1821 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1822 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1823 				reschedule_retry(r10_bio);
1824 			else
1825 				put_buf(r10_bio);
1826 			r10_bio = r10_bio2;
1827 		}
1828 	}
1829 }
1830 
1831 static void end_sync_write(struct bio *bio, int error)
1832 {
1833 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1834 	struct r10bio *r10_bio = bio->bi_private;
1835 	struct mddev *mddev = r10_bio->mddev;
1836 	struct r10conf *conf = mddev->private;
1837 	int d;
1838 	sector_t first_bad;
1839 	int bad_sectors;
1840 	int slot;
1841 	int repl;
1842 	struct md_rdev *rdev = NULL;
1843 
1844 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1845 	if (repl)
1846 		rdev = conf->mirrors[d].replacement;
1847 	else
1848 		rdev = conf->mirrors[d].rdev;
1849 
1850 	if (!uptodate) {
1851 		if (repl)
1852 			md_error(mddev, rdev);
1853 		else {
1854 			set_bit(WriteErrorSeen, &rdev->flags);
1855 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1856 				set_bit(MD_RECOVERY_NEEDED,
1857 					&rdev->mddev->recovery);
1858 			set_bit(R10BIO_WriteError, &r10_bio->state);
1859 		}
1860 	} else if (is_badblock(rdev,
1861 			     r10_bio->devs[slot].addr,
1862 			     r10_bio->sectors,
1863 			     &first_bad, &bad_sectors))
1864 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1865 
1866 	rdev_dec_pending(rdev, mddev);
1867 
1868 	end_sync_request(r10_bio);
1869 }
1870 
1871 /*
1872  * Note: sync and recover and handled very differently for raid10
1873  * This code is for resync.
1874  * For resync, we read through virtual addresses and read all blocks.
1875  * If there is any error, we schedule a write.  The lowest numbered
1876  * drive is authoritative.
1877  * However requests come for physical address, so we need to map.
1878  * For every physical address there are raid_disks/copies virtual addresses,
1879  * which is always are least one, but is not necessarly an integer.
1880  * This means that a physical address can span multiple chunks, so we may
1881  * have to submit multiple io requests for a single sync request.
1882  */
1883 /*
1884  * We check if all blocks are in-sync and only write to blocks that
1885  * aren't in sync
1886  */
1887 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1888 {
1889 	struct r10conf *conf = mddev->private;
1890 	int i, first;
1891 	struct bio *tbio, *fbio;
1892 	int vcnt;
1893 
1894 	atomic_set(&r10_bio->remaining, 1);
1895 
1896 	/* find the first device with a block */
1897 	for (i=0; i<conf->copies; i++)
1898 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1899 			break;
1900 
1901 	if (i == conf->copies)
1902 		goto done;
1903 
1904 	first = i;
1905 	fbio = r10_bio->devs[i].bio;
1906 
1907 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1908 	/* now find blocks with errors */
1909 	for (i=0 ; i < conf->copies ; i++) {
1910 		int  j, d;
1911 
1912 		tbio = r10_bio->devs[i].bio;
1913 
1914 		if (tbio->bi_end_io != end_sync_read)
1915 			continue;
1916 		if (i == first)
1917 			continue;
1918 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1919 			/* We know that the bi_io_vec layout is the same for
1920 			 * both 'first' and 'i', so we just compare them.
1921 			 * All vec entries are PAGE_SIZE;
1922 			 */
1923 			for (j = 0; j < vcnt; j++)
1924 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1925 					   page_address(tbio->bi_io_vec[j].bv_page),
1926 					   fbio->bi_io_vec[j].bv_len))
1927 					break;
1928 			if (j == vcnt)
1929 				continue;
1930 			mddev->resync_mismatches += r10_bio->sectors;
1931 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1932 				/* Don't fix anything. */
1933 				continue;
1934 		}
1935 		/* Ok, we need to write this bio, either to correct an
1936 		 * inconsistency or to correct an unreadable block.
1937 		 * First we need to fixup bv_offset, bv_len and
1938 		 * bi_vecs, as the read request might have corrupted these
1939 		 */
1940 		tbio->bi_vcnt = vcnt;
1941 		tbio->bi_size = r10_bio->sectors << 9;
1942 		tbio->bi_idx = 0;
1943 		tbio->bi_phys_segments = 0;
1944 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1945 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1946 		tbio->bi_next = NULL;
1947 		tbio->bi_rw = WRITE;
1948 		tbio->bi_private = r10_bio;
1949 		tbio->bi_sector = r10_bio->devs[i].addr;
1950 
1951 		for (j=0; j < vcnt ; j++) {
1952 			tbio->bi_io_vec[j].bv_offset = 0;
1953 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1954 
1955 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1956 			       page_address(fbio->bi_io_vec[j].bv_page),
1957 			       PAGE_SIZE);
1958 		}
1959 		tbio->bi_end_io = end_sync_write;
1960 
1961 		d = r10_bio->devs[i].devnum;
1962 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1963 		atomic_inc(&r10_bio->remaining);
1964 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1965 
1966 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1967 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1968 		generic_make_request(tbio);
1969 	}
1970 
1971 	/* Now write out to any replacement devices
1972 	 * that are active
1973 	 */
1974 	for (i = 0; i < conf->copies; i++) {
1975 		int j, d;
1976 
1977 		tbio = r10_bio->devs[i].repl_bio;
1978 		if (!tbio || !tbio->bi_end_io)
1979 			continue;
1980 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1981 		    && r10_bio->devs[i].bio != fbio)
1982 			for (j = 0; j < vcnt; j++)
1983 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1984 				       page_address(fbio->bi_io_vec[j].bv_page),
1985 				       PAGE_SIZE);
1986 		d = r10_bio->devs[i].devnum;
1987 		atomic_inc(&r10_bio->remaining);
1988 		md_sync_acct(conf->mirrors[d].replacement->bdev,
1989 			     tbio->bi_size >> 9);
1990 		generic_make_request(tbio);
1991 	}
1992 
1993 done:
1994 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1995 		md_done_sync(mddev, r10_bio->sectors, 1);
1996 		put_buf(r10_bio);
1997 	}
1998 }
1999 
2000 /*
2001  * Now for the recovery code.
2002  * Recovery happens across physical sectors.
2003  * We recover all non-is_sync drives by finding the virtual address of
2004  * each, and then choose a working drive that also has that virt address.
2005  * There is a separate r10_bio for each non-in_sync drive.
2006  * Only the first two slots are in use. The first for reading,
2007  * The second for writing.
2008  *
2009  */
2010 static void fix_recovery_read_error(struct r10bio *r10_bio)
2011 {
2012 	/* We got a read error during recovery.
2013 	 * We repeat the read in smaller page-sized sections.
2014 	 * If a read succeeds, write it to the new device or record
2015 	 * a bad block if we cannot.
2016 	 * If a read fails, record a bad block on both old and
2017 	 * new devices.
2018 	 */
2019 	struct mddev *mddev = r10_bio->mddev;
2020 	struct r10conf *conf = mddev->private;
2021 	struct bio *bio = r10_bio->devs[0].bio;
2022 	sector_t sect = 0;
2023 	int sectors = r10_bio->sectors;
2024 	int idx = 0;
2025 	int dr = r10_bio->devs[0].devnum;
2026 	int dw = r10_bio->devs[1].devnum;
2027 
2028 	while (sectors) {
2029 		int s = sectors;
2030 		struct md_rdev *rdev;
2031 		sector_t addr;
2032 		int ok;
2033 
2034 		if (s > (PAGE_SIZE>>9))
2035 			s = PAGE_SIZE >> 9;
2036 
2037 		rdev = conf->mirrors[dr].rdev;
2038 		addr = r10_bio->devs[0].addr + sect,
2039 		ok = sync_page_io(rdev,
2040 				  addr,
2041 				  s << 9,
2042 				  bio->bi_io_vec[idx].bv_page,
2043 				  READ, false);
2044 		if (ok) {
2045 			rdev = conf->mirrors[dw].rdev;
2046 			addr = r10_bio->devs[1].addr + sect;
2047 			ok = sync_page_io(rdev,
2048 					  addr,
2049 					  s << 9,
2050 					  bio->bi_io_vec[idx].bv_page,
2051 					  WRITE, false);
2052 			if (!ok) {
2053 				set_bit(WriteErrorSeen, &rdev->flags);
2054 				if (!test_and_set_bit(WantReplacement,
2055 						      &rdev->flags))
2056 					set_bit(MD_RECOVERY_NEEDED,
2057 						&rdev->mddev->recovery);
2058 			}
2059 		}
2060 		if (!ok) {
2061 			/* We don't worry if we cannot set a bad block -
2062 			 * it really is bad so there is no loss in not
2063 			 * recording it yet
2064 			 */
2065 			rdev_set_badblocks(rdev, addr, s, 0);
2066 
2067 			if (rdev != conf->mirrors[dw].rdev) {
2068 				/* need bad block on destination too */
2069 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2070 				addr = r10_bio->devs[1].addr + sect;
2071 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2072 				if (!ok) {
2073 					/* just abort the recovery */
2074 					printk(KERN_NOTICE
2075 					       "md/raid10:%s: recovery aborted"
2076 					       " due to read error\n",
2077 					       mdname(mddev));
2078 
2079 					conf->mirrors[dw].recovery_disabled
2080 						= mddev->recovery_disabled;
2081 					set_bit(MD_RECOVERY_INTR,
2082 						&mddev->recovery);
2083 					break;
2084 				}
2085 			}
2086 		}
2087 
2088 		sectors -= s;
2089 		sect += s;
2090 		idx++;
2091 	}
2092 }
2093 
2094 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2095 {
2096 	struct r10conf *conf = mddev->private;
2097 	int d;
2098 	struct bio *wbio, *wbio2;
2099 
2100 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2101 		fix_recovery_read_error(r10_bio);
2102 		end_sync_request(r10_bio);
2103 		return;
2104 	}
2105 
2106 	/*
2107 	 * share the pages with the first bio
2108 	 * and submit the write request
2109 	 */
2110 	d = r10_bio->devs[1].devnum;
2111 	wbio = r10_bio->devs[1].bio;
2112 	wbio2 = r10_bio->devs[1].repl_bio;
2113 	if (wbio->bi_end_io) {
2114 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2115 		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2116 		generic_make_request(wbio);
2117 	}
2118 	if (wbio2 && wbio2->bi_end_io) {
2119 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2120 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2121 			     wbio2->bi_size >> 9);
2122 		generic_make_request(wbio2);
2123 	}
2124 }
2125 
2126 
2127 /*
2128  * Used by fix_read_error() to decay the per rdev read_errors.
2129  * We halve the read error count for every hour that has elapsed
2130  * since the last recorded read error.
2131  *
2132  */
2133 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2134 {
2135 	struct timespec cur_time_mon;
2136 	unsigned long hours_since_last;
2137 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2138 
2139 	ktime_get_ts(&cur_time_mon);
2140 
2141 	if (rdev->last_read_error.tv_sec == 0 &&
2142 	    rdev->last_read_error.tv_nsec == 0) {
2143 		/* first time we've seen a read error */
2144 		rdev->last_read_error = cur_time_mon;
2145 		return;
2146 	}
2147 
2148 	hours_since_last = (cur_time_mon.tv_sec -
2149 			    rdev->last_read_error.tv_sec) / 3600;
2150 
2151 	rdev->last_read_error = cur_time_mon;
2152 
2153 	/*
2154 	 * if hours_since_last is > the number of bits in read_errors
2155 	 * just set read errors to 0. We do this to avoid
2156 	 * overflowing the shift of read_errors by hours_since_last.
2157 	 */
2158 	if (hours_since_last >= 8 * sizeof(read_errors))
2159 		atomic_set(&rdev->read_errors, 0);
2160 	else
2161 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2162 }
2163 
2164 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2165 			    int sectors, struct page *page, int rw)
2166 {
2167 	sector_t first_bad;
2168 	int bad_sectors;
2169 
2170 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2171 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2172 		return -1;
2173 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2174 		/* success */
2175 		return 1;
2176 	if (rw == WRITE) {
2177 		set_bit(WriteErrorSeen, &rdev->flags);
2178 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2179 			set_bit(MD_RECOVERY_NEEDED,
2180 				&rdev->mddev->recovery);
2181 	}
2182 	/* need to record an error - either for the block or the device */
2183 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2184 		md_error(rdev->mddev, rdev);
2185 	return 0;
2186 }
2187 
2188 /*
2189  * This is a kernel thread which:
2190  *
2191  *	1.	Retries failed read operations on working mirrors.
2192  *	2.	Updates the raid superblock when problems encounter.
2193  *	3.	Performs writes following reads for array synchronising.
2194  */
2195 
2196 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2197 {
2198 	int sect = 0; /* Offset from r10_bio->sector */
2199 	int sectors = r10_bio->sectors;
2200 	struct md_rdev*rdev;
2201 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2202 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2203 
2204 	/* still own a reference to this rdev, so it cannot
2205 	 * have been cleared recently.
2206 	 */
2207 	rdev = conf->mirrors[d].rdev;
2208 
2209 	if (test_bit(Faulty, &rdev->flags))
2210 		/* drive has already been failed, just ignore any
2211 		   more fix_read_error() attempts */
2212 		return;
2213 
2214 	check_decay_read_errors(mddev, rdev);
2215 	atomic_inc(&rdev->read_errors);
2216 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2217 		char b[BDEVNAME_SIZE];
2218 		bdevname(rdev->bdev, b);
2219 
2220 		printk(KERN_NOTICE
2221 		       "md/raid10:%s: %s: Raid device exceeded "
2222 		       "read_error threshold [cur %d:max %d]\n",
2223 		       mdname(mddev), b,
2224 		       atomic_read(&rdev->read_errors), max_read_errors);
2225 		printk(KERN_NOTICE
2226 		       "md/raid10:%s: %s: Failing raid device\n",
2227 		       mdname(mddev), b);
2228 		md_error(mddev, conf->mirrors[d].rdev);
2229 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2230 		return;
2231 	}
2232 
2233 	while(sectors) {
2234 		int s = sectors;
2235 		int sl = r10_bio->read_slot;
2236 		int success = 0;
2237 		int start;
2238 
2239 		if (s > (PAGE_SIZE>>9))
2240 			s = PAGE_SIZE >> 9;
2241 
2242 		rcu_read_lock();
2243 		do {
2244 			sector_t first_bad;
2245 			int bad_sectors;
2246 
2247 			d = r10_bio->devs[sl].devnum;
2248 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2249 			if (rdev &&
2250 			    !test_bit(Unmerged, &rdev->flags) &&
2251 			    test_bit(In_sync, &rdev->flags) &&
2252 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2253 					&first_bad, &bad_sectors) == 0) {
2254 				atomic_inc(&rdev->nr_pending);
2255 				rcu_read_unlock();
2256 				success = sync_page_io(rdev,
2257 						       r10_bio->devs[sl].addr +
2258 						       sect,
2259 						       s<<9,
2260 						       conf->tmppage, READ, false);
2261 				rdev_dec_pending(rdev, mddev);
2262 				rcu_read_lock();
2263 				if (success)
2264 					break;
2265 			}
2266 			sl++;
2267 			if (sl == conf->copies)
2268 				sl = 0;
2269 		} while (!success && sl != r10_bio->read_slot);
2270 		rcu_read_unlock();
2271 
2272 		if (!success) {
2273 			/* Cannot read from anywhere, just mark the block
2274 			 * as bad on the first device to discourage future
2275 			 * reads.
2276 			 */
2277 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2278 			rdev = conf->mirrors[dn].rdev;
2279 
2280 			if (!rdev_set_badblocks(
2281 				    rdev,
2282 				    r10_bio->devs[r10_bio->read_slot].addr
2283 				    + sect,
2284 				    s, 0)) {
2285 				md_error(mddev, rdev);
2286 				r10_bio->devs[r10_bio->read_slot].bio
2287 					= IO_BLOCKED;
2288 			}
2289 			break;
2290 		}
2291 
2292 		start = sl;
2293 		/* write it back and re-read */
2294 		rcu_read_lock();
2295 		while (sl != r10_bio->read_slot) {
2296 			char b[BDEVNAME_SIZE];
2297 
2298 			if (sl==0)
2299 				sl = conf->copies;
2300 			sl--;
2301 			d = r10_bio->devs[sl].devnum;
2302 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2303 			if (!rdev ||
2304 			    test_bit(Unmerged, &rdev->flags) ||
2305 			    !test_bit(In_sync, &rdev->flags))
2306 				continue;
2307 
2308 			atomic_inc(&rdev->nr_pending);
2309 			rcu_read_unlock();
2310 			if (r10_sync_page_io(rdev,
2311 					     r10_bio->devs[sl].addr +
2312 					     sect,
2313 					     s<<9, conf->tmppage, WRITE)
2314 			    == 0) {
2315 				/* Well, this device is dead */
2316 				printk(KERN_NOTICE
2317 				       "md/raid10:%s: read correction "
2318 				       "write failed"
2319 				       " (%d sectors at %llu on %s)\n",
2320 				       mdname(mddev), s,
2321 				       (unsigned long long)(
2322 					       sect +
2323 					       choose_data_offset(r10_bio,
2324 								  rdev)),
2325 				       bdevname(rdev->bdev, b));
2326 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2327 				       "drive\n",
2328 				       mdname(mddev),
2329 				       bdevname(rdev->bdev, b));
2330 			}
2331 			rdev_dec_pending(rdev, mddev);
2332 			rcu_read_lock();
2333 		}
2334 		sl = start;
2335 		while (sl != r10_bio->read_slot) {
2336 			char b[BDEVNAME_SIZE];
2337 
2338 			if (sl==0)
2339 				sl = conf->copies;
2340 			sl--;
2341 			d = r10_bio->devs[sl].devnum;
2342 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2343 			if (!rdev ||
2344 			    !test_bit(In_sync, &rdev->flags))
2345 				continue;
2346 
2347 			atomic_inc(&rdev->nr_pending);
2348 			rcu_read_unlock();
2349 			switch (r10_sync_page_io(rdev,
2350 					     r10_bio->devs[sl].addr +
2351 					     sect,
2352 					     s<<9, conf->tmppage,
2353 						 READ)) {
2354 			case 0:
2355 				/* Well, this device is dead */
2356 				printk(KERN_NOTICE
2357 				       "md/raid10:%s: unable to read back "
2358 				       "corrected sectors"
2359 				       " (%d sectors at %llu on %s)\n",
2360 				       mdname(mddev), s,
2361 				       (unsigned long long)(
2362 					       sect +
2363 					       choose_data_offset(r10_bio, rdev)),
2364 				       bdevname(rdev->bdev, b));
2365 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2366 				       "drive\n",
2367 				       mdname(mddev),
2368 				       bdevname(rdev->bdev, b));
2369 				break;
2370 			case 1:
2371 				printk(KERN_INFO
2372 				       "md/raid10:%s: read error corrected"
2373 				       " (%d sectors at %llu on %s)\n",
2374 				       mdname(mddev), s,
2375 				       (unsigned long long)(
2376 					       sect +
2377 					       choose_data_offset(r10_bio, rdev)),
2378 				       bdevname(rdev->bdev, b));
2379 				atomic_add(s, &rdev->corrected_errors);
2380 			}
2381 
2382 			rdev_dec_pending(rdev, mddev);
2383 			rcu_read_lock();
2384 		}
2385 		rcu_read_unlock();
2386 
2387 		sectors -= s;
2388 		sect += s;
2389 	}
2390 }
2391 
2392 static void bi_complete(struct bio *bio, int error)
2393 {
2394 	complete((struct completion *)bio->bi_private);
2395 }
2396 
2397 static int submit_bio_wait(int rw, struct bio *bio)
2398 {
2399 	struct completion event;
2400 	rw |= REQ_SYNC;
2401 
2402 	init_completion(&event);
2403 	bio->bi_private = &event;
2404 	bio->bi_end_io = bi_complete;
2405 	submit_bio(rw, bio);
2406 	wait_for_completion(&event);
2407 
2408 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2409 }
2410 
2411 static int narrow_write_error(struct r10bio *r10_bio, int i)
2412 {
2413 	struct bio *bio = r10_bio->master_bio;
2414 	struct mddev *mddev = r10_bio->mddev;
2415 	struct r10conf *conf = mddev->private;
2416 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2417 	/* bio has the data to be written to slot 'i' where
2418 	 * we just recently had a write error.
2419 	 * We repeatedly clone the bio and trim down to one block,
2420 	 * then try the write.  Where the write fails we record
2421 	 * a bad block.
2422 	 * It is conceivable that the bio doesn't exactly align with
2423 	 * blocks.  We must handle this.
2424 	 *
2425 	 * We currently own a reference to the rdev.
2426 	 */
2427 
2428 	int block_sectors;
2429 	sector_t sector;
2430 	int sectors;
2431 	int sect_to_write = r10_bio->sectors;
2432 	int ok = 1;
2433 
2434 	if (rdev->badblocks.shift < 0)
2435 		return 0;
2436 
2437 	block_sectors = 1 << rdev->badblocks.shift;
2438 	sector = r10_bio->sector;
2439 	sectors = ((r10_bio->sector + block_sectors)
2440 		   & ~(sector_t)(block_sectors - 1))
2441 		- sector;
2442 
2443 	while (sect_to_write) {
2444 		struct bio *wbio;
2445 		if (sectors > sect_to_write)
2446 			sectors = sect_to_write;
2447 		/* Write at 'sector' for 'sectors' */
2448 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2449 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2450 		wbio->bi_sector = (r10_bio->devs[i].addr+
2451 				   choose_data_offset(r10_bio, rdev) +
2452 				   (sector - r10_bio->sector));
2453 		wbio->bi_bdev = rdev->bdev;
2454 		if (submit_bio_wait(WRITE, wbio) == 0)
2455 			/* Failure! */
2456 			ok = rdev_set_badblocks(rdev, sector,
2457 						sectors, 0)
2458 				&& ok;
2459 
2460 		bio_put(wbio);
2461 		sect_to_write -= sectors;
2462 		sector += sectors;
2463 		sectors = block_sectors;
2464 	}
2465 	return ok;
2466 }
2467 
2468 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2469 {
2470 	int slot = r10_bio->read_slot;
2471 	struct bio *bio;
2472 	struct r10conf *conf = mddev->private;
2473 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2474 	char b[BDEVNAME_SIZE];
2475 	unsigned long do_sync;
2476 	int max_sectors;
2477 
2478 	/* we got a read error. Maybe the drive is bad.  Maybe just
2479 	 * the block and we can fix it.
2480 	 * We freeze all other IO, and try reading the block from
2481 	 * other devices.  When we find one, we re-write
2482 	 * and check it that fixes the read error.
2483 	 * This is all done synchronously while the array is
2484 	 * frozen.
2485 	 */
2486 	bio = r10_bio->devs[slot].bio;
2487 	bdevname(bio->bi_bdev, b);
2488 	bio_put(bio);
2489 	r10_bio->devs[slot].bio = NULL;
2490 
2491 	if (mddev->ro == 0) {
2492 		freeze_array(conf);
2493 		fix_read_error(conf, mddev, r10_bio);
2494 		unfreeze_array(conf);
2495 	} else
2496 		r10_bio->devs[slot].bio = IO_BLOCKED;
2497 
2498 	rdev_dec_pending(rdev, mddev);
2499 
2500 read_more:
2501 	rdev = read_balance(conf, r10_bio, &max_sectors);
2502 	if (rdev == NULL) {
2503 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2504 		       " read error for block %llu\n",
2505 		       mdname(mddev), b,
2506 		       (unsigned long long)r10_bio->sector);
2507 		raid_end_bio_io(r10_bio);
2508 		return;
2509 	}
2510 
2511 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2512 	slot = r10_bio->read_slot;
2513 	printk_ratelimited(
2514 		KERN_ERR
2515 		"md/raid10:%s: %s: redirecting"
2516 		"sector %llu to another mirror\n",
2517 		mdname(mddev),
2518 		bdevname(rdev->bdev, b),
2519 		(unsigned long long)r10_bio->sector);
2520 	bio = bio_clone_mddev(r10_bio->master_bio,
2521 			      GFP_NOIO, mddev);
2522 	md_trim_bio(bio,
2523 		    r10_bio->sector - bio->bi_sector,
2524 		    max_sectors);
2525 	r10_bio->devs[slot].bio = bio;
2526 	r10_bio->devs[slot].rdev = rdev;
2527 	bio->bi_sector = r10_bio->devs[slot].addr
2528 		+ choose_data_offset(r10_bio, rdev);
2529 	bio->bi_bdev = rdev->bdev;
2530 	bio->bi_rw = READ | do_sync;
2531 	bio->bi_private = r10_bio;
2532 	bio->bi_end_io = raid10_end_read_request;
2533 	if (max_sectors < r10_bio->sectors) {
2534 		/* Drat - have to split this up more */
2535 		struct bio *mbio = r10_bio->master_bio;
2536 		int sectors_handled =
2537 			r10_bio->sector + max_sectors
2538 			- mbio->bi_sector;
2539 		r10_bio->sectors = max_sectors;
2540 		spin_lock_irq(&conf->device_lock);
2541 		if (mbio->bi_phys_segments == 0)
2542 			mbio->bi_phys_segments = 2;
2543 		else
2544 			mbio->bi_phys_segments++;
2545 		spin_unlock_irq(&conf->device_lock);
2546 		generic_make_request(bio);
2547 
2548 		r10_bio = mempool_alloc(conf->r10bio_pool,
2549 					GFP_NOIO);
2550 		r10_bio->master_bio = mbio;
2551 		r10_bio->sectors = (mbio->bi_size >> 9)
2552 			- sectors_handled;
2553 		r10_bio->state = 0;
2554 		set_bit(R10BIO_ReadError,
2555 			&r10_bio->state);
2556 		r10_bio->mddev = mddev;
2557 		r10_bio->sector = mbio->bi_sector
2558 			+ sectors_handled;
2559 
2560 		goto read_more;
2561 	} else
2562 		generic_make_request(bio);
2563 }
2564 
2565 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2566 {
2567 	/* Some sort of write request has finished and it
2568 	 * succeeded in writing where we thought there was a
2569 	 * bad block.  So forget the bad block.
2570 	 * Or possibly if failed and we need to record
2571 	 * a bad block.
2572 	 */
2573 	int m;
2574 	struct md_rdev *rdev;
2575 
2576 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2577 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2578 		for (m = 0; m < conf->copies; m++) {
2579 			int dev = r10_bio->devs[m].devnum;
2580 			rdev = conf->mirrors[dev].rdev;
2581 			if (r10_bio->devs[m].bio == NULL)
2582 				continue;
2583 			if (test_bit(BIO_UPTODATE,
2584 				     &r10_bio->devs[m].bio->bi_flags)) {
2585 				rdev_clear_badblocks(
2586 					rdev,
2587 					r10_bio->devs[m].addr,
2588 					r10_bio->sectors, 0);
2589 			} else {
2590 				if (!rdev_set_badblocks(
2591 					    rdev,
2592 					    r10_bio->devs[m].addr,
2593 					    r10_bio->sectors, 0))
2594 					md_error(conf->mddev, rdev);
2595 			}
2596 			rdev = conf->mirrors[dev].replacement;
2597 			if (r10_bio->devs[m].repl_bio == NULL)
2598 				continue;
2599 			if (test_bit(BIO_UPTODATE,
2600 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2601 				rdev_clear_badblocks(
2602 					rdev,
2603 					r10_bio->devs[m].addr,
2604 					r10_bio->sectors, 0);
2605 			} else {
2606 				if (!rdev_set_badblocks(
2607 					    rdev,
2608 					    r10_bio->devs[m].addr,
2609 					    r10_bio->sectors, 0))
2610 					md_error(conf->mddev, rdev);
2611 			}
2612 		}
2613 		put_buf(r10_bio);
2614 	} else {
2615 		for (m = 0; m < conf->copies; m++) {
2616 			int dev = r10_bio->devs[m].devnum;
2617 			struct bio *bio = r10_bio->devs[m].bio;
2618 			rdev = conf->mirrors[dev].rdev;
2619 			if (bio == IO_MADE_GOOD) {
2620 				rdev_clear_badblocks(
2621 					rdev,
2622 					r10_bio->devs[m].addr,
2623 					r10_bio->sectors, 0);
2624 				rdev_dec_pending(rdev, conf->mddev);
2625 			} else if (bio != NULL &&
2626 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2627 				if (!narrow_write_error(r10_bio, m)) {
2628 					md_error(conf->mddev, rdev);
2629 					set_bit(R10BIO_Degraded,
2630 						&r10_bio->state);
2631 				}
2632 				rdev_dec_pending(rdev, conf->mddev);
2633 			}
2634 			bio = r10_bio->devs[m].repl_bio;
2635 			rdev = conf->mirrors[dev].replacement;
2636 			if (rdev && bio == IO_MADE_GOOD) {
2637 				rdev_clear_badblocks(
2638 					rdev,
2639 					r10_bio->devs[m].addr,
2640 					r10_bio->sectors, 0);
2641 				rdev_dec_pending(rdev, conf->mddev);
2642 			}
2643 		}
2644 		if (test_bit(R10BIO_WriteError,
2645 			     &r10_bio->state))
2646 			close_write(r10_bio);
2647 		raid_end_bio_io(r10_bio);
2648 	}
2649 }
2650 
2651 static void raid10d(struct mddev *mddev)
2652 {
2653 	struct r10bio *r10_bio;
2654 	unsigned long flags;
2655 	struct r10conf *conf = mddev->private;
2656 	struct list_head *head = &conf->retry_list;
2657 	struct blk_plug plug;
2658 
2659 	md_check_recovery(mddev);
2660 
2661 	blk_start_plug(&plug);
2662 	for (;;) {
2663 
2664 		flush_pending_writes(conf);
2665 
2666 		spin_lock_irqsave(&conf->device_lock, flags);
2667 		if (list_empty(head)) {
2668 			spin_unlock_irqrestore(&conf->device_lock, flags);
2669 			break;
2670 		}
2671 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2672 		list_del(head->prev);
2673 		conf->nr_queued--;
2674 		spin_unlock_irqrestore(&conf->device_lock, flags);
2675 
2676 		mddev = r10_bio->mddev;
2677 		conf = mddev->private;
2678 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2679 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2680 			handle_write_completed(conf, r10_bio);
2681 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2682 			reshape_request_write(mddev, r10_bio);
2683 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2684 			sync_request_write(mddev, r10_bio);
2685 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2686 			recovery_request_write(mddev, r10_bio);
2687 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2688 			handle_read_error(mddev, r10_bio);
2689 		else {
2690 			/* just a partial read to be scheduled from a
2691 			 * separate context
2692 			 */
2693 			int slot = r10_bio->read_slot;
2694 			generic_make_request(r10_bio->devs[slot].bio);
2695 		}
2696 
2697 		cond_resched();
2698 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2699 			md_check_recovery(mddev);
2700 	}
2701 	blk_finish_plug(&plug);
2702 }
2703 
2704 
2705 static int init_resync(struct r10conf *conf)
2706 {
2707 	int buffs;
2708 	int i;
2709 
2710 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2711 	BUG_ON(conf->r10buf_pool);
2712 	conf->have_replacement = 0;
2713 	for (i = 0; i < conf->geo.raid_disks; i++)
2714 		if (conf->mirrors[i].replacement)
2715 			conf->have_replacement = 1;
2716 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2717 	if (!conf->r10buf_pool)
2718 		return -ENOMEM;
2719 	conf->next_resync = 0;
2720 	return 0;
2721 }
2722 
2723 /*
2724  * perform a "sync" on one "block"
2725  *
2726  * We need to make sure that no normal I/O request - particularly write
2727  * requests - conflict with active sync requests.
2728  *
2729  * This is achieved by tracking pending requests and a 'barrier' concept
2730  * that can be installed to exclude normal IO requests.
2731  *
2732  * Resync and recovery are handled very differently.
2733  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2734  *
2735  * For resync, we iterate over virtual addresses, read all copies,
2736  * and update if there are differences.  If only one copy is live,
2737  * skip it.
2738  * For recovery, we iterate over physical addresses, read a good
2739  * value for each non-in_sync drive, and over-write.
2740  *
2741  * So, for recovery we may have several outstanding complex requests for a
2742  * given address, one for each out-of-sync device.  We model this by allocating
2743  * a number of r10_bio structures, one for each out-of-sync device.
2744  * As we setup these structures, we collect all bio's together into a list
2745  * which we then process collectively to add pages, and then process again
2746  * to pass to generic_make_request.
2747  *
2748  * The r10_bio structures are linked using a borrowed master_bio pointer.
2749  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2750  * has its remaining count decremented to 0, the whole complex operation
2751  * is complete.
2752  *
2753  */
2754 
2755 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2756 			     int *skipped, int go_faster)
2757 {
2758 	struct r10conf *conf = mddev->private;
2759 	struct r10bio *r10_bio;
2760 	struct bio *biolist = NULL, *bio;
2761 	sector_t max_sector, nr_sectors;
2762 	int i;
2763 	int max_sync;
2764 	sector_t sync_blocks;
2765 	sector_t sectors_skipped = 0;
2766 	int chunks_skipped = 0;
2767 	sector_t chunk_mask = conf->geo.chunk_mask;
2768 
2769 	if (!conf->r10buf_pool)
2770 		if (init_resync(conf))
2771 			return 0;
2772 
2773  skipped:
2774 	max_sector = mddev->dev_sectors;
2775 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2776 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2777 		max_sector = mddev->resync_max_sectors;
2778 	if (sector_nr >= max_sector) {
2779 		/* If we aborted, we need to abort the
2780 		 * sync on the 'current' bitmap chucks (there can
2781 		 * be several when recovering multiple devices).
2782 		 * as we may have started syncing it but not finished.
2783 		 * We can find the current address in
2784 		 * mddev->curr_resync, but for recovery,
2785 		 * we need to convert that to several
2786 		 * virtual addresses.
2787 		 */
2788 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2789 			end_reshape(conf);
2790 			return 0;
2791 		}
2792 
2793 		if (mddev->curr_resync < max_sector) { /* aborted */
2794 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2795 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2796 						&sync_blocks, 1);
2797 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2798 				sector_t sect =
2799 					raid10_find_virt(conf, mddev->curr_resync, i);
2800 				bitmap_end_sync(mddev->bitmap, sect,
2801 						&sync_blocks, 1);
2802 			}
2803 		} else {
2804 			/* completed sync */
2805 			if ((!mddev->bitmap || conf->fullsync)
2806 			    && conf->have_replacement
2807 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2808 				/* Completed a full sync so the replacements
2809 				 * are now fully recovered.
2810 				 */
2811 				for (i = 0; i < conf->geo.raid_disks; i++)
2812 					if (conf->mirrors[i].replacement)
2813 						conf->mirrors[i].replacement
2814 							->recovery_offset
2815 							= MaxSector;
2816 			}
2817 			conf->fullsync = 0;
2818 		}
2819 		bitmap_close_sync(mddev->bitmap);
2820 		close_sync(conf);
2821 		*skipped = 1;
2822 		return sectors_skipped;
2823 	}
2824 
2825 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2826 		return reshape_request(mddev, sector_nr, skipped);
2827 
2828 	if (chunks_skipped >= conf->geo.raid_disks) {
2829 		/* if there has been nothing to do on any drive,
2830 		 * then there is nothing to do at all..
2831 		 */
2832 		*skipped = 1;
2833 		return (max_sector - sector_nr) + sectors_skipped;
2834 	}
2835 
2836 	if (max_sector > mddev->resync_max)
2837 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2838 
2839 	/* make sure whole request will fit in a chunk - if chunks
2840 	 * are meaningful
2841 	 */
2842 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2843 	    max_sector > (sector_nr | chunk_mask))
2844 		max_sector = (sector_nr | chunk_mask) + 1;
2845 	/*
2846 	 * If there is non-resync activity waiting for us then
2847 	 * put in a delay to throttle resync.
2848 	 */
2849 	if (!go_faster && conf->nr_waiting)
2850 		msleep_interruptible(1000);
2851 
2852 	/* Again, very different code for resync and recovery.
2853 	 * Both must result in an r10bio with a list of bios that
2854 	 * have bi_end_io, bi_sector, bi_bdev set,
2855 	 * and bi_private set to the r10bio.
2856 	 * For recovery, we may actually create several r10bios
2857 	 * with 2 bios in each, that correspond to the bios in the main one.
2858 	 * In this case, the subordinate r10bios link back through a
2859 	 * borrowed master_bio pointer, and the counter in the master
2860 	 * includes a ref from each subordinate.
2861 	 */
2862 	/* First, we decide what to do and set ->bi_end_io
2863 	 * To end_sync_read if we want to read, and
2864 	 * end_sync_write if we will want to write.
2865 	 */
2866 
2867 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2868 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2869 		/* recovery... the complicated one */
2870 		int j;
2871 		r10_bio = NULL;
2872 
2873 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2874 			int still_degraded;
2875 			struct r10bio *rb2;
2876 			sector_t sect;
2877 			int must_sync;
2878 			int any_working;
2879 			struct mirror_info *mirror = &conf->mirrors[i];
2880 
2881 			if ((mirror->rdev == NULL ||
2882 			     test_bit(In_sync, &mirror->rdev->flags))
2883 			    &&
2884 			    (mirror->replacement == NULL ||
2885 			     test_bit(Faulty,
2886 				      &mirror->replacement->flags)))
2887 				continue;
2888 
2889 			still_degraded = 0;
2890 			/* want to reconstruct this device */
2891 			rb2 = r10_bio;
2892 			sect = raid10_find_virt(conf, sector_nr, i);
2893 			/* Unless we are doing a full sync, or a replacement
2894 			 * we only need to recover the block if it is set in
2895 			 * the bitmap
2896 			 */
2897 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2898 						      &sync_blocks, 1);
2899 			if (sync_blocks < max_sync)
2900 				max_sync = sync_blocks;
2901 			if (!must_sync &&
2902 			    mirror->replacement == NULL &&
2903 			    !conf->fullsync) {
2904 				/* yep, skip the sync_blocks here, but don't assume
2905 				 * that there will never be anything to do here
2906 				 */
2907 				chunks_skipped = -1;
2908 				continue;
2909 			}
2910 
2911 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2912 			raise_barrier(conf, rb2 != NULL);
2913 			atomic_set(&r10_bio->remaining, 0);
2914 
2915 			r10_bio->master_bio = (struct bio*)rb2;
2916 			if (rb2)
2917 				atomic_inc(&rb2->remaining);
2918 			r10_bio->mddev = mddev;
2919 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2920 			r10_bio->sector = sect;
2921 
2922 			raid10_find_phys(conf, r10_bio);
2923 
2924 			/* Need to check if the array will still be
2925 			 * degraded
2926 			 */
2927 			for (j = 0; j < conf->geo.raid_disks; j++)
2928 				if (conf->mirrors[j].rdev == NULL ||
2929 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2930 					still_degraded = 1;
2931 					break;
2932 				}
2933 
2934 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2935 						      &sync_blocks, still_degraded);
2936 
2937 			any_working = 0;
2938 			for (j=0; j<conf->copies;j++) {
2939 				int k;
2940 				int d = r10_bio->devs[j].devnum;
2941 				sector_t from_addr, to_addr;
2942 				struct md_rdev *rdev;
2943 				sector_t sector, first_bad;
2944 				int bad_sectors;
2945 				if (!conf->mirrors[d].rdev ||
2946 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2947 					continue;
2948 				/* This is where we read from */
2949 				any_working = 1;
2950 				rdev = conf->mirrors[d].rdev;
2951 				sector = r10_bio->devs[j].addr;
2952 
2953 				if (is_badblock(rdev, sector, max_sync,
2954 						&first_bad, &bad_sectors)) {
2955 					if (first_bad > sector)
2956 						max_sync = first_bad - sector;
2957 					else {
2958 						bad_sectors -= (sector
2959 								- first_bad);
2960 						if (max_sync > bad_sectors)
2961 							max_sync = bad_sectors;
2962 						continue;
2963 					}
2964 				}
2965 				bio = r10_bio->devs[0].bio;
2966 				bio->bi_next = biolist;
2967 				biolist = bio;
2968 				bio->bi_private = r10_bio;
2969 				bio->bi_end_io = end_sync_read;
2970 				bio->bi_rw = READ;
2971 				from_addr = r10_bio->devs[j].addr;
2972 				bio->bi_sector = from_addr + rdev->data_offset;
2973 				bio->bi_bdev = rdev->bdev;
2974 				atomic_inc(&rdev->nr_pending);
2975 				/* and we write to 'i' (if not in_sync) */
2976 
2977 				for (k=0; k<conf->copies; k++)
2978 					if (r10_bio->devs[k].devnum == i)
2979 						break;
2980 				BUG_ON(k == conf->copies);
2981 				to_addr = r10_bio->devs[k].addr;
2982 				r10_bio->devs[0].devnum = d;
2983 				r10_bio->devs[0].addr = from_addr;
2984 				r10_bio->devs[1].devnum = i;
2985 				r10_bio->devs[1].addr = to_addr;
2986 
2987 				rdev = mirror->rdev;
2988 				if (!test_bit(In_sync, &rdev->flags)) {
2989 					bio = r10_bio->devs[1].bio;
2990 					bio->bi_next = biolist;
2991 					biolist = bio;
2992 					bio->bi_private = r10_bio;
2993 					bio->bi_end_io = end_sync_write;
2994 					bio->bi_rw = WRITE;
2995 					bio->bi_sector = to_addr
2996 						+ rdev->data_offset;
2997 					bio->bi_bdev = rdev->bdev;
2998 					atomic_inc(&r10_bio->remaining);
2999 				} else
3000 					r10_bio->devs[1].bio->bi_end_io = NULL;
3001 
3002 				/* and maybe write to replacement */
3003 				bio = r10_bio->devs[1].repl_bio;
3004 				if (bio)
3005 					bio->bi_end_io = NULL;
3006 				rdev = mirror->replacement;
3007 				/* Note: if rdev != NULL, then bio
3008 				 * cannot be NULL as r10buf_pool_alloc will
3009 				 * have allocated it.
3010 				 * So the second test here is pointless.
3011 				 * But it keeps semantic-checkers happy, and
3012 				 * this comment keeps human reviewers
3013 				 * happy.
3014 				 */
3015 				if (rdev == NULL || bio == NULL ||
3016 				    test_bit(Faulty, &rdev->flags))
3017 					break;
3018 				bio->bi_next = biolist;
3019 				biolist = bio;
3020 				bio->bi_private = r10_bio;
3021 				bio->bi_end_io = end_sync_write;
3022 				bio->bi_rw = WRITE;
3023 				bio->bi_sector = to_addr + rdev->data_offset;
3024 				bio->bi_bdev = rdev->bdev;
3025 				atomic_inc(&r10_bio->remaining);
3026 				break;
3027 			}
3028 			if (j == conf->copies) {
3029 				/* Cannot recover, so abort the recovery or
3030 				 * record a bad block */
3031 				put_buf(r10_bio);
3032 				if (rb2)
3033 					atomic_dec(&rb2->remaining);
3034 				r10_bio = rb2;
3035 				if (any_working) {
3036 					/* problem is that there are bad blocks
3037 					 * on other device(s)
3038 					 */
3039 					int k;
3040 					for (k = 0; k < conf->copies; k++)
3041 						if (r10_bio->devs[k].devnum == i)
3042 							break;
3043 					if (!test_bit(In_sync,
3044 						      &mirror->rdev->flags)
3045 					    && !rdev_set_badblocks(
3046 						    mirror->rdev,
3047 						    r10_bio->devs[k].addr,
3048 						    max_sync, 0))
3049 						any_working = 0;
3050 					if (mirror->replacement &&
3051 					    !rdev_set_badblocks(
3052 						    mirror->replacement,
3053 						    r10_bio->devs[k].addr,
3054 						    max_sync, 0))
3055 						any_working = 0;
3056 				}
3057 				if (!any_working)  {
3058 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3059 							      &mddev->recovery))
3060 						printk(KERN_INFO "md/raid10:%s: insufficient "
3061 						       "working devices for recovery.\n",
3062 						       mdname(mddev));
3063 					mirror->recovery_disabled
3064 						= mddev->recovery_disabled;
3065 				}
3066 				break;
3067 			}
3068 		}
3069 		if (biolist == NULL) {
3070 			while (r10_bio) {
3071 				struct r10bio *rb2 = r10_bio;
3072 				r10_bio = (struct r10bio*) rb2->master_bio;
3073 				rb2->master_bio = NULL;
3074 				put_buf(rb2);
3075 			}
3076 			goto giveup;
3077 		}
3078 	} else {
3079 		/* resync. Schedule a read for every block at this virt offset */
3080 		int count = 0;
3081 
3082 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3083 
3084 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3085 				       &sync_blocks, mddev->degraded) &&
3086 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3087 						 &mddev->recovery)) {
3088 			/* We can skip this block */
3089 			*skipped = 1;
3090 			return sync_blocks + sectors_skipped;
3091 		}
3092 		if (sync_blocks < max_sync)
3093 			max_sync = sync_blocks;
3094 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3095 
3096 		r10_bio->mddev = mddev;
3097 		atomic_set(&r10_bio->remaining, 0);
3098 		raise_barrier(conf, 0);
3099 		conf->next_resync = sector_nr;
3100 
3101 		r10_bio->master_bio = NULL;
3102 		r10_bio->sector = sector_nr;
3103 		set_bit(R10BIO_IsSync, &r10_bio->state);
3104 		raid10_find_phys(conf, r10_bio);
3105 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3106 
3107 		for (i = 0; i < conf->copies; i++) {
3108 			int d = r10_bio->devs[i].devnum;
3109 			sector_t first_bad, sector;
3110 			int bad_sectors;
3111 
3112 			if (r10_bio->devs[i].repl_bio)
3113 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3114 
3115 			bio = r10_bio->devs[i].bio;
3116 			bio->bi_end_io = NULL;
3117 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3118 			if (conf->mirrors[d].rdev == NULL ||
3119 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3120 				continue;
3121 			sector = r10_bio->devs[i].addr;
3122 			if (is_badblock(conf->mirrors[d].rdev,
3123 					sector, max_sync,
3124 					&first_bad, &bad_sectors)) {
3125 				if (first_bad > sector)
3126 					max_sync = first_bad - sector;
3127 				else {
3128 					bad_sectors -= (sector - first_bad);
3129 					if (max_sync > bad_sectors)
3130 						max_sync = max_sync;
3131 					continue;
3132 				}
3133 			}
3134 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3135 			atomic_inc(&r10_bio->remaining);
3136 			bio->bi_next = biolist;
3137 			biolist = bio;
3138 			bio->bi_private = r10_bio;
3139 			bio->bi_end_io = end_sync_read;
3140 			bio->bi_rw = READ;
3141 			bio->bi_sector = sector +
3142 				conf->mirrors[d].rdev->data_offset;
3143 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3144 			count++;
3145 
3146 			if (conf->mirrors[d].replacement == NULL ||
3147 			    test_bit(Faulty,
3148 				     &conf->mirrors[d].replacement->flags))
3149 				continue;
3150 
3151 			/* Need to set up for writing to the replacement */
3152 			bio = r10_bio->devs[i].repl_bio;
3153 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3154 
3155 			sector = r10_bio->devs[i].addr;
3156 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3157 			bio->bi_next = biolist;
3158 			biolist = bio;
3159 			bio->bi_private = r10_bio;
3160 			bio->bi_end_io = end_sync_write;
3161 			bio->bi_rw = WRITE;
3162 			bio->bi_sector = sector +
3163 				conf->mirrors[d].replacement->data_offset;
3164 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3165 			count++;
3166 		}
3167 
3168 		if (count < 2) {
3169 			for (i=0; i<conf->copies; i++) {
3170 				int d = r10_bio->devs[i].devnum;
3171 				if (r10_bio->devs[i].bio->bi_end_io)
3172 					rdev_dec_pending(conf->mirrors[d].rdev,
3173 							 mddev);
3174 				if (r10_bio->devs[i].repl_bio &&
3175 				    r10_bio->devs[i].repl_bio->bi_end_io)
3176 					rdev_dec_pending(
3177 						conf->mirrors[d].replacement,
3178 						mddev);
3179 			}
3180 			put_buf(r10_bio);
3181 			biolist = NULL;
3182 			goto giveup;
3183 		}
3184 	}
3185 
3186 	for (bio = biolist; bio ; bio=bio->bi_next) {
3187 
3188 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3189 		if (bio->bi_end_io)
3190 			bio->bi_flags |= 1 << BIO_UPTODATE;
3191 		bio->bi_vcnt = 0;
3192 		bio->bi_idx = 0;
3193 		bio->bi_phys_segments = 0;
3194 		bio->bi_size = 0;
3195 	}
3196 
3197 	nr_sectors = 0;
3198 	if (sector_nr + max_sync < max_sector)
3199 		max_sector = sector_nr + max_sync;
3200 	do {
3201 		struct page *page;
3202 		int len = PAGE_SIZE;
3203 		if (sector_nr + (len>>9) > max_sector)
3204 			len = (max_sector - sector_nr) << 9;
3205 		if (len == 0)
3206 			break;
3207 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3208 			struct bio *bio2;
3209 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3210 			if (bio_add_page(bio, page, len, 0))
3211 				continue;
3212 
3213 			/* stop here */
3214 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3215 			for (bio2 = biolist;
3216 			     bio2 && bio2 != bio;
3217 			     bio2 = bio2->bi_next) {
3218 				/* remove last page from this bio */
3219 				bio2->bi_vcnt--;
3220 				bio2->bi_size -= len;
3221 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3222 			}
3223 			goto bio_full;
3224 		}
3225 		nr_sectors += len>>9;
3226 		sector_nr += len>>9;
3227 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3228  bio_full:
3229 	r10_bio->sectors = nr_sectors;
3230 
3231 	while (biolist) {
3232 		bio = biolist;
3233 		biolist = biolist->bi_next;
3234 
3235 		bio->bi_next = NULL;
3236 		r10_bio = bio->bi_private;
3237 		r10_bio->sectors = nr_sectors;
3238 
3239 		if (bio->bi_end_io == end_sync_read) {
3240 			md_sync_acct(bio->bi_bdev, nr_sectors);
3241 			generic_make_request(bio);
3242 		}
3243 	}
3244 
3245 	if (sectors_skipped)
3246 		/* pretend they weren't skipped, it makes
3247 		 * no important difference in this case
3248 		 */
3249 		md_done_sync(mddev, sectors_skipped, 1);
3250 
3251 	return sectors_skipped + nr_sectors;
3252  giveup:
3253 	/* There is nowhere to write, so all non-sync
3254 	 * drives must be failed or in resync, all drives
3255 	 * have a bad block, so try the next chunk...
3256 	 */
3257 	if (sector_nr + max_sync < max_sector)
3258 		max_sector = sector_nr + max_sync;
3259 
3260 	sectors_skipped += (max_sector - sector_nr);
3261 	chunks_skipped ++;
3262 	sector_nr = max_sector;
3263 	goto skipped;
3264 }
3265 
3266 static sector_t
3267 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3268 {
3269 	sector_t size;
3270 	struct r10conf *conf = mddev->private;
3271 
3272 	if (!raid_disks)
3273 		raid_disks = min(conf->geo.raid_disks,
3274 				 conf->prev.raid_disks);
3275 	if (!sectors)
3276 		sectors = conf->dev_sectors;
3277 
3278 	size = sectors >> conf->geo.chunk_shift;
3279 	sector_div(size, conf->geo.far_copies);
3280 	size = size * raid_disks;
3281 	sector_div(size, conf->geo.near_copies);
3282 
3283 	return size << conf->geo.chunk_shift;
3284 }
3285 
3286 static void calc_sectors(struct r10conf *conf, sector_t size)
3287 {
3288 	/* Calculate the number of sectors-per-device that will
3289 	 * actually be used, and set conf->dev_sectors and
3290 	 * conf->stride
3291 	 */
3292 
3293 	size = size >> conf->geo.chunk_shift;
3294 	sector_div(size, conf->geo.far_copies);
3295 	size = size * conf->geo.raid_disks;
3296 	sector_div(size, conf->geo.near_copies);
3297 	/* 'size' is now the number of chunks in the array */
3298 	/* calculate "used chunks per device" */
3299 	size = size * conf->copies;
3300 
3301 	/* We need to round up when dividing by raid_disks to
3302 	 * get the stride size.
3303 	 */
3304 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3305 
3306 	conf->dev_sectors = size << conf->geo.chunk_shift;
3307 
3308 	if (conf->geo.far_offset)
3309 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3310 	else {
3311 		sector_div(size, conf->geo.far_copies);
3312 		conf->geo.stride = size << conf->geo.chunk_shift;
3313 	}
3314 }
3315 
3316 enum geo_type {geo_new, geo_old, geo_start};
3317 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3318 {
3319 	int nc, fc, fo;
3320 	int layout, chunk, disks;
3321 	switch (new) {
3322 	case geo_old:
3323 		layout = mddev->layout;
3324 		chunk = mddev->chunk_sectors;
3325 		disks = mddev->raid_disks - mddev->delta_disks;
3326 		break;
3327 	case geo_new:
3328 		layout = mddev->new_layout;
3329 		chunk = mddev->new_chunk_sectors;
3330 		disks = mddev->raid_disks;
3331 		break;
3332 	default: /* avoid 'may be unused' warnings */
3333 	case geo_start: /* new when starting reshape - raid_disks not
3334 			 * updated yet. */
3335 		layout = mddev->new_layout;
3336 		chunk = mddev->new_chunk_sectors;
3337 		disks = mddev->raid_disks + mddev->delta_disks;
3338 		break;
3339 	}
3340 	if (layout >> 17)
3341 		return -1;
3342 	if (chunk < (PAGE_SIZE >> 9) ||
3343 	    !is_power_of_2(chunk))
3344 		return -2;
3345 	nc = layout & 255;
3346 	fc = (layout >> 8) & 255;
3347 	fo = layout & (1<<16);
3348 	geo->raid_disks = disks;
3349 	geo->near_copies = nc;
3350 	geo->far_copies = fc;
3351 	geo->far_offset = fo;
3352 	geo->chunk_mask = chunk - 1;
3353 	geo->chunk_shift = ffz(~chunk);
3354 	return nc*fc;
3355 }
3356 
3357 static struct r10conf *setup_conf(struct mddev *mddev)
3358 {
3359 	struct r10conf *conf = NULL;
3360 	int err = -EINVAL;
3361 	struct geom geo;
3362 	int copies;
3363 
3364 	copies = setup_geo(&geo, mddev, geo_new);
3365 
3366 	if (copies == -2) {
3367 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3368 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3369 		       mdname(mddev), PAGE_SIZE);
3370 		goto out;
3371 	}
3372 
3373 	if (copies < 2 || copies > mddev->raid_disks) {
3374 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3375 		       mdname(mddev), mddev->new_layout);
3376 		goto out;
3377 	}
3378 
3379 	err = -ENOMEM;
3380 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3381 	if (!conf)
3382 		goto out;
3383 
3384 	/* FIXME calc properly */
3385 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*(mddev->raid_disks +
3386 							    max(0,mddev->delta_disks)),
3387 				GFP_KERNEL);
3388 	if (!conf->mirrors)
3389 		goto out;
3390 
3391 	conf->tmppage = alloc_page(GFP_KERNEL);
3392 	if (!conf->tmppage)
3393 		goto out;
3394 
3395 	conf->geo = geo;
3396 	conf->copies = copies;
3397 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3398 					   r10bio_pool_free, conf);
3399 	if (!conf->r10bio_pool)
3400 		goto out;
3401 
3402 	calc_sectors(conf, mddev->dev_sectors);
3403 	if (mddev->reshape_position == MaxSector) {
3404 		conf->prev = conf->geo;
3405 		conf->reshape_progress = MaxSector;
3406 	} else {
3407 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3408 			err = -EINVAL;
3409 			goto out;
3410 		}
3411 		conf->reshape_progress = mddev->reshape_position;
3412 		if (conf->prev.far_offset)
3413 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3414 		else
3415 			/* far_copies must be 1 */
3416 			conf->prev.stride = conf->dev_sectors;
3417 	}
3418 	spin_lock_init(&conf->device_lock);
3419 	INIT_LIST_HEAD(&conf->retry_list);
3420 
3421 	spin_lock_init(&conf->resync_lock);
3422 	init_waitqueue_head(&conf->wait_barrier);
3423 
3424 	conf->thread = md_register_thread(raid10d, mddev, NULL);
3425 	if (!conf->thread)
3426 		goto out;
3427 
3428 	conf->mddev = mddev;
3429 	return conf;
3430 
3431  out:
3432 	if (err == -ENOMEM)
3433 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3434 		       mdname(mddev));
3435 	if (conf) {
3436 		if (conf->r10bio_pool)
3437 			mempool_destroy(conf->r10bio_pool);
3438 		kfree(conf->mirrors);
3439 		safe_put_page(conf->tmppage);
3440 		kfree(conf);
3441 	}
3442 	return ERR_PTR(err);
3443 }
3444 
3445 static int run(struct mddev *mddev)
3446 {
3447 	struct r10conf *conf;
3448 	int i, disk_idx, chunk_size;
3449 	struct mirror_info *disk;
3450 	struct md_rdev *rdev;
3451 	sector_t size;
3452 	sector_t min_offset_diff = 0;
3453 	int first = 1;
3454 
3455 	if (mddev->private == NULL) {
3456 		conf = setup_conf(mddev);
3457 		if (IS_ERR(conf))
3458 			return PTR_ERR(conf);
3459 		mddev->private = conf;
3460 	}
3461 	conf = mddev->private;
3462 	if (!conf)
3463 		goto out;
3464 
3465 	mddev->thread = conf->thread;
3466 	conf->thread = NULL;
3467 
3468 	chunk_size = mddev->chunk_sectors << 9;
3469 	blk_queue_io_min(mddev->queue, chunk_size);
3470 	if (conf->geo.raid_disks % conf->geo.near_copies)
3471 		blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3472 	else
3473 		blk_queue_io_opt(mddev->queue, chunk_size *
3474 				 (conf->geo.raid_disks / conf->geo.near_copies));
3475 
3476 	rdev_for_each(rdev, mddev) {
3477 		long long diff;
3478 
3479 		disk_idx = rdev->raid_disk;
3480 		if (disk_idx < 0)
3481 			continue;
3482 		if (disk_idx >= conf->geo.raid_disks &&
3483 		    disk_idx >= conf->prev.raid_disks)
3484 			continue;
3485 		disk = conf->mirrors + disk_idx;
3486 
3487 		if (test_bit(Replacement, &rdev->flags)) {
3488 			if (disk->replacement)
3489 				goto out_free_conf;
3490 			disk->replacement = rdev;
3491 		} else {
3492 			if (disk->rdev)
3493 				goto out_free_conf;
3494 			disk->rdev = rdev;
3495 		}
3496 		diff = (rdev->new_data_offset - rdev->data_offset);
3497 		if (!mddev->reshape_backwards)
3498 			diff = -diff;
3499 		if (diff < 0)
3500 			diff = 0;
3501 		if (first || diff < min_offset_diff)
3502 			min_offset_diff = diff;
3503 
3504 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3505 				  rdev->data_offset << 9);
3506 
3507 		disk->head_position = 0;
3508 	}
3509 
3510 	/* need to check that every block has at least one working mirror */
3511 	if (!enough(conf, -1)) {
3512 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3513 		       mdname(mddev));
3514 		goto out_free_conf;
3515 	}
3516 
3517 	if (conf->reshape_progress != MaxSector) {
3518 		/* must ensure that shape change is supported */
3519 		if (conf->geo.far_copies != 1 &&
3520 		    conf->geo.far_offset == 0)
3521 			goto out_free_conf;
3522 		if (conf->prev.far_copies != 1 &&
3523 		    conf->geo.far_offset == 0)
3524 			goto out_free_conf;
3525 	}
3526 
3527 	mddev->degraded = 0;
3528 	for (i = 0;
3529 	     i < conf->geo.raid_disks
3530 		     || i < conf->prev.raid_disks;
3531 	     i++) {
3532 
3533 		disk = conf->mirrors + i;
3534 
3535 		if (!disk->rdev && disk->replacement) {
3536 			/* The replacement is all we have - use it */
3537 			disk->rdev = disk->replacement;
3538 			disk->replacement = NULL;
3539 			clear_bit(Replacement, &disk->rdev->flags);
3540 		}
3541 
3542 		if (!disk->rdev ||
3543 		    !test_bit(In_sync, &disk->rdev->flags)) {
3544 			disk->head_position = 0;
3545 			mddev->degraded++;
3546 			if (disk->rdev)
3547 				conf->fullsync = 1;
3548 		}
3549 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3550 	}
3551 
3552 	if (mddev->recovery_cp != MaxSector)
3553 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3554 		       " -- starting background reconstruction\n",
3555 		       mdname(mddev));
3556 	printk(KERN_INFO
3557 		"md/raid10:%s: active with %d out of %d devices\n",
3558 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3559 		conf->geo.raid_disks);
3560 	/*
3561 	 * Ok, everything is just fine now
3562 	 */
3563 	mddev->dev_sectors = conf->dev_sectors;
3564 	size = raid10_size(mddev, 0, 0);
3565 	md_set_array_sectors(mddev, size);
3566 	mddev->resync_max_sectors = size;
3567 
3568 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3569 	mddev->queue->backing_dev_info.congested_data = mddev;
3570 
3571 	/* Calculate max read-ahead size.
3572 	 * We need to readahead at least twice a whole stripe....
3573 	 * maybe...
3574 	 */
3575 	{
3576 		int stripe = conf->geo.raid_disks *
3577 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3578 		stripe /= conf->geo.near_copies;
3579 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3580 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3581 	}
3582 
3583 	blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3584 
3585 	if (md_integrity_register(mddev))
3586 		goto out_free_conf;
3587 
3588 	if (conf->reshape_progress != MaxSector) {
3589 		unsigned long before_length, after_length;
3590 
3591 		before_length = ((1 << conf->prev.chunk_shift) *
3592 				 conf->prev.far_copies);
3593 		after_length = ((1 << conf->geo.chunk_shift) *
3594 				conf->geo.far_copies);
3595 
3596 		if (max(before_length, after_length) > min_offset_diff) {
3597 			/* This cannot work */
3598 			printk("md/raid10: offset difference not enough to continue reshape\n");
3599 			goto out_free_conf;
3600 		}
3601 		conf->offset_diff = min_offset_diff;
3602 
3603 		conf->reshape_safe = conf->reshape_progress;
3604 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3605 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3606 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3607 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3608 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3609 							"reshape");
3610 	}
3611 
3612 	return 0;
3613 
3614 out_free_conf:
3615 	md_unregister_thread(&mddev->thread);
3616 	if (conf->r10bio_pool)
3617 		mempool_destroy(conf->r10bio_pool);
3618 	safe_put_page(conf->tmppage);
3619 	kfree(conf->mirrors);
3620 	kfree(conf);
3621 	mddev->private = NULL;
3622 out:
3623 	return -EIO;
3624 }
3625 
3626 static int stop(struct mddev *mddev)
3627 {
3628 	struct r10conf *conf = mddev->private;
3629 
3630 	raise_barrier(conf, 0);
3631 	lower_barrier(conf);
3632 
3633 	md_unregister_thread(&mddev->thread);
3634 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3635 	if (conf->r10bio_pool)
3636 		mempool_destroy(conf->r10bio_pool);
3637 	kfree(conf->mirrors);
3638 	kfree(conf);
3639 	mddev->private = NULL;
3640 	return 0;
3641 }
3642 
3643 static void raid10_quiesce(struct mddev *mddev, int state)
3644 {
3645 	struct r10conf *conf = mddev->private;
3646 
3647 	switch(state) {
3648 	case 1:
3649 		raise_barrier(conf, 0);
3650 		break;
3651 	case 0:
3652 		lower_barrier(conf);
3653 		break;
3654 	}
3655 }
3656 
3657 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3658 {
3659 	/* Resize of 'far' arrays is not supported.
3660 	 * For 'near' and 'offset' arrays we can set the
3661 	 * number of sectors used to be an appropriate multiple
3662 	 * of the chunk size.
3663 	 * For 'offset', this is far_copies*chunksize.
3664 	 * For 'near' the multiplier is the LCM of
3665 	 * near_copies and raid_disks.
3666 	 * So if far_copies > 1 && !far_offset, fail.
3667 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3668 	 * multiply by chunk_size.  Then round to this number.
3669 	 * This is mostly done by raid10_size()
3670 	 */
3671 	struct r10conf *conf = mddev->private;
3672 	sector_t oldsize, size;
3673 
3674 	if (mddev->reshape_position != MaxSector)
3675 		return -EBUSY;
3676 
3677 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3678 		return -EINVAL;
3679 
3680 	oldsize = raid10_size(mddev, 0, 0);
3681 	size = raid10_size(mddev, sectors, 0);
3682 	if (mddev->external_size &&
3683 	    mddev->array_sectors > size)
3684 		return -EINVAL;
3685 	if (mddev->bitmap) {
3686 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3687 		if (ret)
3688 			return ret;
3689 	}
3690 	md_set_array_sectors(mddev, size);
3691 	set_capacity(mddev->gendisk, mddev->array_sectors);
3692 	revalidate_disk(mddev->gendisk);
3693 	if (sectors > mddev->dev_sectors &&
3694 	    mddev->recovery_cp > oldsize) {
3695 		mddev->recovery_cp = oldsize;
3696 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3697 	}
3698 	calc_sectors(conf, sectors);
3699 	mddev->dev_sectors = conf->dev_sectors;
3700 	mddev->resync_max_sectors = size;
3701 	return 0;
3702 }
3703 
3704 static void *raid10_takeover_raid0(struct mddev *mddev)
3705 {
3706 	struct md_rdev *rdev;
3707 	struct r10conf *conf;
3708 
3709 	if (mddev->degraded > 0) {
3710 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3711 		       mdname(mddev));
3712 		return ERR_PTR(-EINVAL);
3713 	}
3714 
3715 	/* Set new parameters */
3716 	mddev->new_level = 10;
3717 	/* new layout: far_copies = 1, near_copies = 2 */
3718 	mddev->new_layout = (1<<8) + 2;
3719 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3720 	mddev->delta_disks = mddev->raid_disks;
3721 	mddev->raid_disks *= 2;
3722 	/* make sure it will be not marked as dirty */
3723 	mddev->recovery_cp = MaxSector;
3724 
3725 	conf = setup_conf(mddev);
3726 	if (!IS_ERR(conf)) {
3727 		rdev_for_each(rdev, mddev)
3728 			if (rdev->raid_disk >= 0)
3729 				rdev->new_raid_disk = rdev->raid_disk * 2;
3730 		conf->barrier = 1;
3731 	}
3732 
3733 	return conf;
3734 }
3735 
3736 static void *raid10_takeover(struct mddev *mddev)
3737 {
3738 	struct r0conf *raid0_conf;
3739 
3740 	/* raid10 can take over:
3741 	 *  raid0 - providing it has only two drives
3742 	 */
3743 	if (mddev->level == 0) {
3744 		/* for raid0 takeover only one zone is supported */
3745 		raid0_conf = mddev->private;
3746 		if (raid0_conf->nr_strip_zones > 1) {
3747 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3748 			       " with more than one zone.\n",
3749 			       mdname(mddev));
3750 			return ERR_PTR(-EINVAL);
3751 		}
3752 		return raid10_takeover_raid0(mddev);
3753 	}
3754 	return ERR_PTR(-EINVAL);
3755 }
3756 
3757 static int raid10_check_reshape(struct mddev *mddev)
3758 {
3759 	/* Called when there is a request to change
3760 	 * - layout (to ->new_layout)
3761 	 * - chunk size (to ->new_chunk_sectors)
3762 	 * - raid_disks (by delta_disks)
3763 	 * or when trying to restart a reshape that was ongoing.
3764 	 *
3765 	 * We need to validate the request and possibly allocate
3766 	 * space if that might be an issue later.
3767 	 *
3768 	 * Currently we reject any reshape of a 'far' mode array,
3769 	 * allow chunk size to change if new is generally acceptable,
3770 	 * allow raid_disks to increase, and allow
3771 	 * a switch between 'near' mode and 'offset' mode.
3772 	 */
3773 	struct r10conf *conf = mddev->private;
3774 	struct geom geo;
3775 
3776 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3777 		return -EINVAL;
3778 
3779 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3780 		/* mustn't change number of copies */
3781 		return -EINVAL;
3782 	if (geo.far_copies > 1 && !geo.far_offset)
3783 		/* Cannot switch to 'far' mode */
3784 		return -EINVAL;
3785 
3786 	if (mddev->array_sectors & geo.chunk_mask)
3787 			/* not factor of array size */
3788 			return -EINVAL;
3789 
3790 	if (!enough(conf, -1))
3791 		return -EINVAL;
3792 
3793 	kfree(conf->mirrors_new);
3794 	conf->mirrors_new = NULL;
3795 	if (mddev->delta_disks > 0) {
3796 		/* allocate new 'mirrors' list */
3797 		conf->mirrors_new = kzalloc(
3798 			sizeof(struct mirror_info)
3799 			*(mddev->raid_disks +
3800 			  mddev->delta_disks),
3801 			GFP_KERNEL);
3802 		if (!conf->mirrors_new)
3803 			return -ENOMEM;
3804 	}
3805 	return 0;
3806 }
3807 
3808 /*
3809  * Need to check if array has failed when deciding whether to:
3810  *  - start an array
3811  *  - remove non-faulty devices
3812  *  - add a spare
3813  *  - allow a reshape
3814  * This determination is simple when no reshape is happening.
3815  * However if there is a reshape, we need to carefully check
3816  * both the before and after sections.
3817  * This is because some failed devices may only affect one
3818  * of the two sections, and some non-in_sync devices may
3819  * be insync in the section most affected by failed devices.
3820  */
3821 static int calc_degraded(struct r10conf *conf)
3822 {
3823 	int degraded, degraded2;
3824 	int i;
3825 
3826 	rcu_read_lock();
3827 	degraded = 0;
3828 	/* 'prev' section first */
3829 	for (i = 0; i < conf->prev.raid_disks; i++) {
3830 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3831 		if (!rdev || test_bit(Faulty, &rdev->flags))
3832 			degraded++;
3833 		else if (!test_bit(In_sync, &rdev->flags))
3834 			/* When we can reduce the number of devices in
3835 			 * an array, this might not contribute to
3836 			 * 'degraded'.  It does now.
3837 			 */
3838 			degraded++;
3839 	}
3840 	rcu_read_unlock();
3841 	if (conf->geo.raid_disks == conf->prev.raid_disks)
3842 		return degraded;
3843 	rcu_read_lock();
3844 	degraded2 = 0;
3845 	for (i = 0; i < conf->geo.raid_disks; i++) {
3846 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3847 		if (!rdev || test_bit(Faulty, &rdev->flags))
3848 			degraded2++;
3849 		else if (!test_bit(In_sync, &rdev->flags)) {
3850 			/* If reshape is increasing the number of devices,
3851 			 * this section has already been recovered, so
3852 			 * it doesn't contribute to degraded.
3853 			 * else it does.
3854 			 */
3855 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3856 				degraded2++;
3857 		}
3858 	}
3859 	rcu_read_unlock();
3860 	if (degraded2 > degraded)
3861 		return degraded2;
3862 	return degraded;
3863 }
3864 
3865 static int raid10_start_reshape(struct mddev *mddev)
3866 {
3867 	/* A 'reshape' has been requested. This commits
3868 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3869 	 * This also checks if there are enough spares and adds them
3870 	 * to the array.
3871 	 * We currently require enough spares to make the final
3872 	 * array non-degraded.  We also require that the difference
3873 	 * between old and new data_offset - on each device - is
3874 	 * enough that we never risk over-writing.
3875 	 */
3876 
3877 	unsigned long before_length, after_length;
3878 	sector_t min_offset_diff = 0;
3879 	int first = 1;
3880 	struct geom new;
3881 	struct r10conf *conf = mddev->private;
3882 	struct md_rdev *rdev;
3883 	int spares = 0;
3884 	int ret;
3885 
3886 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3887 		return -EBUSY;
3888 
3889 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
3890 		return -EINVAL;
3891 
3892 	before_length = ((1 << conf->prev.chunk_shift) *
3893 			 conf->prev.far_copies);
3894 	after_length = ((1 << conf->geo.chunk_shift) *
3895 			conf->geo.far_copies);
3896 
3897 	rdev_for_each(rdev, mddev) {
3898 		if (!test_bit(In_sync, &rdev->flags)
3899 		    && !test_bit(Faulty, &rdev->flags))
3900 			spares++;
3901 		if (rdev->raid_disk >= 0) {
3902 			long long diff = (rdev->new_data_offset
3903 					  - rdev->data_offset);
3904 			if (!mddev->reshape_backwards)
3905 				diff = -diff;
3906 			if (diff < 0)
3907 				diff = 0;
3908 			if (first || diff < min_offset_diff)
3909 				min_offset_diff = diff;
3910 		}
3911 	}
3912 
3913 	if (max(before_length, after_length) > min_offset_diff)
3914 		return -EINVAL;
3915 
3916 	if (spares < mddev->delta_disks)
3917 		return -EINVAL;
3918 
3919 	conf->offset_diff = min_offset_diff;
3920 	spin_lock_irq(&conf->device_lock);
3921 	if (conf->mirrors_new) {
3922 		memcpy(conf->mirrors_new, conf->mirrors,
3923 		       sizeof(struct mirror_info)*conf->prev.raid_disks);
3924 		smp_mb();
3925 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
3926 		conf->mirrors_old = conf->mirrors;
3927 		conf->mirrors = conf->mirrors_new;
3928 		conf->mirrors_new = NULL;
3929 	}
3930 	setup_geo(&conf->geo, mddev, geo_start);
3931 	smp_mb();
3932 	if (mddev->reshape_backwards) {
3933 		sector_t size = raid10_size(mddev, 0, 0);
3934 		if (size < mddev->array_sectors) {
3935 			spin_unlock_irq(&conf->device_lock);
3936 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3937 			       mdname(mddev));
3938 			return -EINVAL;
3939 		}
3940 		mddev->resync_max_sectors = size;
3941 		conf->reshape_progress = size;
3942 	} else
3943 		conf->reshape_progress = 0;
3944 	spin_unlock_irq(&conf->device_lock);
3945 
3946 	if (mddev->delta_disks && mddev->bitmap) {
3947 		ret = bitmap_resize(mddev->bitmap,
3948 				    raid10_size(mddev, 0,
3949 						conf->geo.raid_disks),
3950 				    0, 0);
3951 		if (ret)
3952 			goto abort;
3953 	}
3954 	if (mddev->delta_disks > 0) {
3955 		rdev_for_each(rdev, mddev)
3956 			if (rdev->raid_disk < 0 &&
3957 			    !test_bit(Faulty, &rdev->flags)) {
3958 				if (raid10_add_disk(mddev, rdev) == 0) {
3959 					if (rdev->raid_disk >=
3960 					    conf->prev.raid_disks)
3961 						set_bit(In_sync, &rdev->flags);
3962 					else
3963 						rdev->recovery_offset = 0;
3964 
3965 					if (sysfs_link_rdev(mddev, rdev))
3966 						/* Failure here  is OK */;
3967 				}
3968 			} else if (rdev->raid_disk >= conf->prev.raid_disks
3969 				   && !test_bit(Faulty, &rdev->flags)) {
3970 				/* This is a spare that was manually added */
3971 				set_bit(In_sync, &rdev->flags);
3972 			}
3973 	}
3974 	/* When a reshape changes the number of devices,
3975 	 * ->degraded is measured against the larger of the
3976 	 * pre and  post numbers.
3977 	 */
3978 	spin_lock_irq(&conf->device_lock);
3979 	mddev->degraded = calc_degraded(conf);
3980 	spin_unlock_irq(&conf->device_lock);
3981 	mddev->raid_disks = conf->geo.raid_disks;
3982 	mddev->reshape_position = conf->reshape_progress;
3983 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3984 
3985 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3986 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3987 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3988 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3989 
3990 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3991 						"reshape");
3992 	if (!mddev->sync_thread) {
3993 		ret = -EAGAIN;
3994 		goto abort;
3995 	}
3996 	conf->reshape_checkpoint = jiffies;
3997 	md_wakeup_thread(mddev->sync_thread);
3998 	md_new_event(mddev);
3999 	return 0;
4000 
4001 abort:
4002 	mddev->recovery = 0;
4003 	spin_lock_irq(&conf->device_lock);
4004 	conf->geo = conf->prev;
4005 	mddev->raid_disks = conf->geo.raid_disks;
4006 	rdev_for_each(rdev, mddev)
4007 		rdev->new_data_offset = rdev->data_offset;
4008 	smp_wmb();
4009 	conf->reshape_progress = MaxSector;
4010 	mddev->reshape_position = MaxSector;
4011 	spin_unlock_irq(&conf->device_lock);
4012 	return ret;
4013 }
4014 
4015 /* Calculate the last device-address that could contain
4016  * any block from the chunk that includes the array-address 's'
4017  * and report the next address.
4018  * i.e. the address returned will be chunk-aligned and after
4019  * any data that is in the chunk containing 's'.
4020  */
4021 static sector_t last_dev_address(sector_t s, struct geom *geo)
4022 {
4023 	s = (s | geo->chunk_mask) + 1;
4024 	s >>= geo->chunk_shift;
4025 	s *= geo->near_copies;
4026 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4027 	s *= geo->far_copies;
4028 	s <<= geo->chunk_shift;
4029 	return s;
4030 }
4031 
4032 /* Calculate the first device-address that could contain
4033  * any block from the chunk that includes the array-address 's'.
4034  * This too will be the start of a chunk
4035  */
4036 static sector_t first_dev_address(sector_t s, struct geom *geo)
4037 {
4038 	s >>= geo->chunk_shift;
4039 	s *= geo->near_copies;
4040 	sector_div(s, geo->raid_disks);
4041 	s *= geo->far_copies;
4042 	s <<= geo->chunk_shift;
4043 	return s;
4044 }
4045 
4046 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4047 				int *skipped)
4048 {
4049 	/* We simply copy at most one chunk (smallest of old and new)
4050 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4051 	 * or we hit a bad block or something.
4052 	 * This might mean we pause for normal IO in the middle of
4053 	 * a chunk, but that is not a problem was mddev->reshape_position
4054 	 * can record any location.
4055 	 *
4056 	 * If we will want to write to a location that isn't
4057 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4058 	 * we need to flush all reshape requests and update the metadata.
4059 	 *
4060 	 * When reshaping forwards (e.g. to more devices), we interpret
4061 	 * 'safe' as the earliest block which might not have been copied
4062 	 * down yet.  We divide this by previous stripe size and multiply
4063 	 * by previous stripe length to get lowest device offset that we
4064 	 * cannot write to yet.
4065 	 * We interpret 'sector_nr' as an address that we want to write to.
4066 	 * From this we use last_device_address() to find where we might
4067 	 * write to, and first_device_address on the  'safe' position.
4068 	 * If this 'next' write position is after the 'safe' position,
4069 	 * we must update the metadata to increase the 'safe' position.
4070 	 *
4071 	 * When reshaping backwards, we round in the opposite direction
4072 	 * and perform the reverse test:  next write position must not be
4073 	 * less than current safe position.
4074 	 *
4075 	 * In all this the minimum difference in data offsets
4076 	 * (conf->offset_diff - always positive) allows a bit of slack,
4077 	 * so next can be after 'safe', but not by more than offset_disk
4078 	 *
4079 	 * We need to prepare all the bios here before we start any IO
4080 	 * to ensure the size we choose is acceptable to all devices.
4081 	 * The means one for each copy for write-out and an extra one for
4082 	 * read-in.
4083 	 * We store the read-in bio in ->master_bio and the others in
4084 	 * ->devs[x].bio and ->devs[x].repl_bio.
4085 	 */
4086 	struct r10conf *conf = mddev->private;
4087 	struct r10bio *r10_bio;
4088 	sector_t next, safe, last;
4089 	int max_sectors;
4090 	int nr_sectors;
4091 	int s;
4092 	struct md_rdev *rdev;
4093 	int need_flush = 0;
4094 	struct bio *blist;
4095 	struct bio *bio, *read_bio;
4096 	int sectors_done = 0;
4097 
4098 	if (sector_nr == 0) {
4099 		/* If restarting in the middle, skip the initial sectors */
4100 		if (mddev->reshape_backwards &&
4101 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4102 			sector_nr = (raid10_size(mddev, 0, 0)
4103 				     - conf->reshape_progress);
4104 		} else if (!mddev->reshape_backwards &&
4105 			   conf->reshape_progress > 0)
4106 			sector_nr = conf->reshape_progress;
4107 		if (sector_nr) {
4108 			mddev->curr_resync_completed = sector_nr;
4109 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4110 			*skipped = 1;
4111 			return sector_nr;
4112 		}
4113 	}
4114 
4115 	/* We don't use sector_nr to track where we are up to
4116 	 * as that doesn't work well for ->reshape_backwards.
4117 	 * So just use ->reshape_progress.
4118 	 */
4119 	if (mddev->reshape_backwards) {
4120 		/* 'next' is the earliest device address that we might
4121 		 * write to for this chunk in the new layout
4122 		 */
4123 		next = first_dev_address(conf->reshape_progress - 1,
4124 					 &conf->geo);
4125 
4126 		/* 'safe' is the last device address that we might read from
4127 		 * in the old layout after a restart
4128 		 */
4129 		safe = last_dev_address(conf->reshape_safe - 1,
4130 					&conf->prev);
4131 
4132 		if (next + conf->offset_diff < safe)
4133 			need_flush = 1;
4134 
4135 		last = conf->reshape_progress - 1;
4136 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4137 					       & conf->prev.chunk_mask);
4138 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4139 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4140 	} else {
4141 		/* 'next' is after the last device address that we
4142 		 * might write to for this chunk in the new layout
4143 		 */
4144 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4145 
4146 		/* 'safe' is the earliest device address that we might
4147 		 * read from in the old layout after a restart
4148 		 */
4149 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4150 
4151 		/* Need to update metadata if 'next' might be beyond 'safe'
4152 		 * as that would possibly corrupt data
4153 		 */
4154 		if (next > safe + conf->offset_diff)
4155 			need_flush = 1;
4156 
4157 		sector_nr = conf->reshape_progress;
4158 		last  = sector_nr | (conf->geo.chunk_mask
4159 				     & conf->prev.chunk_mask);
4160 
4161 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4162 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4163 	}
4164 
4165 	if (need_flush ||
4166 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4167 		/* Need to update reshape_position in metadata */
4168 		wait_barrier(conf);
4169 		mddev->reshape_position = conf->reshape_progress;
4170 		if (mddev->reshape_backwards)
4171 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4172 				- conf->reshape_progress;
4173 		else
4174 			mddev->curr_resync_completed = conf->reshape_progress;
4175 		conf->reshape_checkpoint = jiffies;
4176 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4177 		md_wakeup_thread(mddev->thread);
4178 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4179 			   kthread_should_stop());
4180 		conf->reshape_safe = mddev->reshape_position;
4181 		allow_barrier(conf);
4182 	}
4183 
4184 read_more:
4185 	/* Now schedule reads for blocks from sector_nr to last */
4186 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4187 	raise_barrier(conf, sectors_done != 0);
4188 	atomic_set(&r10_bio->remaining, 0);
4189 	r10_bio->mddev = mddev;
4190 	r10_bio->sector = sector_nr;
4191 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4192 	r10_bio->sectors = last - sector_nr + 1;
4193 	rdev = read_balance(conf, r10_bio, &max_sectors);
4194 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4195 
4196 	if (!rdev) {
4197 		/* Cannot read from here, so need to record bad blocks
4198 		 * on all the target devices.
4199 		 */
4200 		// FIXME
4201 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4202 		return sectors_done;
4203 	}
4204 
4205 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4206 
4207 	read_bio->bi_bdev = rdev->bdev;
4208 	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4209 			       + rdev->data_offset);
4210 	read_bio->bi_private = r10_bio;
4211 	read_bio->bi_end_io = end_sync_read;
4212 	read_bio->bi_rw = READ;
4213 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4214 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4215 	read_bio->bi_vcnt = 0;
4216 	read_bio->bi_idx = 0;
4217 	read_bio->bi_size = 0;
4218 	r10_bio->master_bio = read_bio;
4219 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4220 
4221 	/* Now find the locations in the new layout */
4222 	__raid10_find_phys(&conf->geo, r10_bio);
4223 
4224 	blist = read_bio;
4225 	read_bio->bi_next = NULL;
4226 
4227 	for (s = 0; s < conf->copies*2; s++) {
4228 		struct bio *b;
4229 		int d = r10_bio->devs[s/2].devnum;
4230 		struct md_rdev *rdev2;
4231 		if (s&1) {
4232 			rdev2 = conf->mirrors[d].replacement;
4233 			b = r10_bio->devs[s/2].repl_bio;
4234 		} else {
4235 			rdev2 = conf->mirrors[d].rdev;
4236 			b = r10_bio->devs[s/2].bio;
4237 		}
4238 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4239 			continue;
4240 		b->bi_bdev = rdev2->bdev;
4241 		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4242 		b->bi_private = r10_bio;
4243 		b->bi_end_io = end_reshape_write;
4244 		b->bi_rw = WRITE;
4245 		b->bi_flags &= ~(BIO_POOL_MASK - 1);
4246 		b->bi_flags |= 1 << BIO_UPTODATE;
4247 		b->bi_next = blist;
4248 		b->bi_vcnt = 0;
4249 		b->bi_idx = 0;
4250 		b->bi_size = 0;
4251 		blist = b;
4252 	}
4253 
4254 	/* Now add as many pages as possible to all of these bios. */
4255 
4256 	nr_sectors = 0;
4257 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4258 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4259 		int len = (max_sectors - s) << 9;
4260 		if (len > PAGE_SIZE)
4261 			len = PAGE_SIZE;
4262 		for (bio = blist; bio ; bio = bio->bi_next) {
4263 			struct bio *bio2;
4264 			if (bio_add_page(bio, page, len, 0))
4265 				continue;
4266 
4267 			/* Didn't fit, must stop */
4268 			for (bio2 = blist;
4269 			     bio2 && bio2 != bio;
4270 			     bio2 = bio2->bi_next) {
4271 				/* Remove last page from this bio */
4272 				bio2->bi_vcnt--;
4273 				bio2->bi_size -= len;
4274 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4275 			}
4276 			goto bio_full;
4277 		}
4278 		sector_nr += len >> 9;
4279 		nr_sectors += len >> 9;
4280 	}
4281 bio_full:
4282 	r10_bio->sectors = nr_sectors;
4283 
4284 	/* Now submit the read */
4285 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4286 	atomic_inc(&r10_bio->remaining);
4287 	read_bio->bi_next = NULL;
4288 	generic_make_request(read_bio);
4289 	sector_nr += nr_sectors;
4290 	sectors_done += nr_sectors;
4291 	if (sector_nr <= last)
4292 		goto read_more;
4293 
4294 	/* Now that we have done the whole section we can
4295 	 * update reshape_progress
4296 	 */
4297 	if (mddev->reshape_backwards)
4298 		conf->reshape_progress -= sectors_done;
4299 	else
4300 		conf->reshape_progress += sectors_done;
4301 
4302 	return sectors_done;
4303 }
4304 
4305 static void end_reshape_request(struct r10bio *r10_bio);
4306 static int handle_reshape_read_error(struct mddev *mddev,
4307 				     struct r10bio *r10_bio);
4308 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4309 {
4310 	/* Reshape read completed.  Hopefully we have a block
4311 	 * to write out.
4312 	 * If we got a read error then we do sync 1-page reads from
4313 	 * elsewhere until we find the data - or give up.
4314 	 */
4315 	struct r10conf *conf = mddev->private;
4316 	int s;
4317 
4318 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4319 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4320 			/* Reshape has been aborted */
4321 			md_done_sync(mddev, r10_bio->sectors, 0);
4322 			return;
4323 		}
4324 
4325 	/* We definitely have the data in the pages, schedule the
4326 	 * writes.
4327 	 */
4328 	atomic_set(&r10_bio->remaining, 1);
4329 	for (s = 0; s < conf->copies*2; s++) {
4330 		struct bio *b;
4331 		int d = r10_bio->devs[s/2].devnum;
4332 		struct md_rdev *rdev;
4333 		if (s&1) {
4334 			rdev = conf->mirrors[d].replacement;
4335 			b = r10_bio->devs[s/2].repl_bio;
4336 		} else {
4337 			rdev = conf->mirrors[d].rdev;
4338 			b = r10_bio->devs[s/2].bio;
4339 		}
4340 		if (!rdev || test_bit(Faulty, &rdev->flags))
4341 			continue;
4342 		atomic_inc(&rdev->nr_pending);
4343 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4344 		atomic_inc(&r10_bio->remaining);
4345 		b->bi_next = NULL;
4346 		generic_make_request(b);
4347 	}
4348 	end_reshape_request(r10_bio);
4349 }
4350 
4351 static void end_reshape(struct r10conf *conf)
4352 {
4353 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4354 		return;
4355 
4356 	spin_lock_irq(&conf->device_lock);
4357 	conf->prev = conf->geo;
4358 	md_finish_reshape(conf->mddev);
4359 	smp_wmb();
4360 	conf->reshape_progress = MaxSector;
4361 	spin_unlock_irq(&conf->device_lock);
4362 
4363 	/* read-ahead size must cover two whole stripes, which is
4364 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4365 	 */
4366 	if (conf->mddev->queue) {
4367 		int stripe = conf->geo.raid_disks *
4368 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4369 		stripe /= conf->geo.near_copies;
4370 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4371 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4372 	}
4373 	conf->fullsync = 0;
4374 }
4375 
4376 
4377 static int handle_reshape_read_error(struct mddev *mddev,
4378 				     struct r10bio *r10_bio)
4379 {
4380 	/* Use sync reads to get the blocks from somewhere else */
4381 	int sectors = r10_bio->sectors;
4382 	struct r10bio r10b;
4383 	struct r10conf *conf = mddev->private;
4384 	int slot = 0;
4385 	int idx = 0;
4386 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4387 
4388 	r10b.sector = r10_bio->sector;
4389 	__raid10_find_phys(&conf->prev, &r10b);
4390 
4391 	while (sectors) {
4392 		int s = sectors;
4393 		int success = 0;
4394 		int first_slot = slot;
4395 
4396 		if (s > (PAGE_SIZE >> 9))
4397 			s = PAGE_SIZE >> 9;
4398 
4399 		while (!success) {
4400 			int d = r10b.devs[slot].devnum;
4401 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4402 			sector_t addr;
4403 			if (rdev == NULL ||
4404 			    test_bit(Faulty, &rdev->flags) ||
4405 			    !test_bit(In_sync, &rdev->flags))
4406 				goto failed;
4407 
4408 			addr = r10b.devs[slot].addr + idx * PAGE_SIZE;
4409 			success = sync_page_io(rdev,
4410 					       addr,
4411 					       s << 9,
4412 					       bvec[idx].bv_page,
4413 					       READ, false);
4414 			if (success)
4415 				break;
4416 		failed:
4417 			slot++;
4418 			if (slot >= conf->copies)
4419 				slot = 0;
4420 			if (slot == first_slot)
4421 				break;
4422 		}
4423 		if (!success) {
4424 			/* couldn't read this block, must give up */
4425 			set_bit(MD_RECOVERY_INTR,
4426 				&mddev->recovery);
4427 			return -EIO;
4428 		}
4429 		sectors -= s;
4430 		idx++;
4431 	}
4432 	return 0;
4433 }
4434 
4435 static void end_reshape_write(struct bio *bio, int error)
4436 {
4437 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4438 	struct r10bio *r10_bio = bio->bi_private;
4439 	struct mddev *mddev = r10_bio->mddev;
4440 	struct r10conf *conf = mddev->private;
4441 	int d;
4442 	int slot;
4443 	int repl;
4444 	struct md_rdev *rdev = NULL;
4445 
4446 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4447 	if (repl)
4448 		rdev = conf->mirrors[d].replacement;
4449 	if (!rdev) {
4450 		smp_mb();
4451 		rdev = conf->mirrors[d].rdev;
4452 	}
4453 
4454 	if (!uptodate) {
4455 		/* FIXME should record badblock */
4456 		md_error(mddev, rdev);
4457 	}
4458 
4459 	rdev_dec_pending(rdev, mddev);
4460 	end_reshape_request(r10_bio);
4461 }
4462 
4463 static void end_reshape_request(struct r10bio *r10_bio)
4464 {
4465 	if (!atomic_dec_and_test(&r10_bio->remaining))
4466 		return;
4467 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4468 	bio_put(r10_bio->master_bio);
4469 	put_buf(r10_bio);
4470 }
4471 
4472 static void raid10_finish_reshape(struct mddev *mddev)
4473 {
4474 	struct r10conf *conf = mddev->private;
4475 
4476 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4477 		return;
4478 
4479 	if (mddev->delta_disks > 0) {
4480 		sector_t size = raid10_size(mddev, 0, 0);
4481 		md_set_array_sectors(mddev, size);
4482 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4483 			mddev->recovery_cp = mddev->resync_max_sectors;
4484 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4485 		}
4486 		mddev->resync_max_sectors = size;
4487 		set_capacity(mddev->gendisk, mddev->array_sectors);
4488 		revalidate_disk(mddev->gendisk);
4489 	} else {
4490 		int d;
4491 		for (d = conf->geo.raid_disks ;
4492 		     d < conf->geo.raid_disks - mddev->delta_disks;
4493 		     d++) {
4494 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4495 			if (rdev)
4496 				clear_bit(In_sync, &rdev->flags);
4497 			rdev = conf->mirrors[d].replacement;
4498 			if (rdev)
4499 				clear_bit(In_sync, &rdev->flags);
4500 		}
4501 	}
4502 	mddev->layout = mddev->new_layout;
4503 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4504 	mddev->reshape_position = MaxSector;
4505 	mddev->delta_disks = 0;
4506 	mddev->reshape_backwards = 0;
4507 }
4508 
4509 static struct md_personality raid10_personality =
4510 {
4511 	.name		= "raid10",
4512 	.level		= 10,
4513 	.owner		= THIS_MODULE,
4514 	.make_request	= make_request,
4515 	.run		= run,
4516 	.stop		= stop,
4517 	.status		= status,
4518 	.error_handler	= error,
4519 	.hot_add_disk	= raid10_add_disk,
4520 	.hot_remove_disk= raid10_remove_disk,
4521 	.spare_active	= raid10_spare_active,
4522 	.sync_request	= sync_request,
4523 	.quiesce	= raid10_quiesce,
4524 	.size		= raid10_size,
4525 	.resize		= raid10_resize,
4526 	.takeover	= raid10_takeover,
4527 	.check_reshape	= raid10_check_reshape,
4528 	.start_reshape	= raid10_start_reshape,
4529 	.finish_reshape	= raid10_finish_reshape,
4530 };
4531 
4532 static int __init raid_init(void)
4533 {
4534 	return register_md_personality(&raid10_personality);
4535 }
4536 
4537 static void raid_exit(void)
4538 {
4539 	unregister_md_personality(&raid10_personality);
4540 }
4541 
4542 module_init(raid_init);
4543 module_exit(raid_exit);
4544 MODULE_LICENSE("GPL");
4545 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4546 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4547 MODULE_ALIAS("md-raid10");
4548 MODULE_ALIAS("md-level-10");
4549 
4550 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4551