1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * 42 * The data to be stored is divided into chunks using chunksize. 43 * Each device is divided into far_copies sections. 44 * In each section, chunks are laid out in a style similar to raid0, but 45 * near_copies copies of each chunk is stored (each on a different drive). 46 * The starting device for each section is offset near_copies from the starting 47 * device of the previous section. 48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 49 * drive. 50 * near_copies and far_copies must be at least one, and their product is at most 51 * raid_disks. 52 * 53 * If far_offset is true, then the far_copies are handled a bit differently. 54 * The copies are still in different stripes, but instead of be very far apart 55 * on disk, there are adjacent stripes. 56 */ 57 58 /* 59 * Number of guaranteed r10bios in case of extreme VM load: 60 */ 61 #define NR_RAID10_BIOS 256 62 63 /* When there are this many requests queue to be written by 64 * the raid10 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r10conf *conf); 70 static void lower_barrier(struct r10conf *conf); 71 static int enough(struct r10conf *conf, int ignore); 72 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 73 int *skipped); 74 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 75 static void end_reshape_write(struct bio *bio, int error); 76 static void end_reshape(struct r10conf *conf); 77 78 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 79 { 80 struct r10conf *conf = data; 81 int size = offsetof(struct r10bio, devs[conf->copies]); 82 83 /* allocate a r10bio with room for raid_disks entries in the 84 * bios array */ 85 return kzalloc(size, gfp_flags); 86 } 87 88 static void r10bio_pool_free(void *r10_bio, void *data) 89 { 90 kfree(r10_bio); 91 } 92 93 /* Maximum size of each resync request */ 94 #define RESYNC_BLOCK_SIZE (64*1024) 95 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 96 /* amount of memory to reserve for resync requests */ 97 #define RESYNC_WINDOW (1024*1024) 98 /* maximum number of concurrent requests, memory permitting */ 99 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 100 101 /* 102 * When performing a resync, we need to read and compare, so 103 * we need as many pages are there are copies. 104 * When performing a recovery, we need 2 bios, one for read, 105 * one for write (we recover only one drive per r10buf) 106 * 107 */ 108 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 109 { 110 struct r10conf *conf = data; 111 struct page *page; 112 struct r10bio *r10_bio; 113 struct bio *bio; 114 int i, j; 115 int nalloc; 116 117 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 118 if (!r10_bio) 119 return NULL; 120 121 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 122 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 123 nalloc = conf->copies; /* resync */ 124 else 125 nalloc = 2; /* recovery */ 126 127 /* 128 * Allocate bios. 129 */ 130 for (j = nalloc ; j-- ; ) { 131 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 132 if (!bio) 133 goto out_free_bio; 134 r10_bio->devs[j].bio = bio; 135 if (!conf->have_replacement) 136 continue; 137 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 138 if (!bio) 139 goto out_free_bio; 140 r10_bio->devs[j].repl_bio = bio; 141 } 142 /* 143 * Allocate RESYNC_PAGES data pages and attach them 144 * where needed. 145 */ 146 for (j = 0 ; j < nalloc; j++) { 147 struct bio *rbio = r10_bio->devs[j].repl_bio; 148 bio = r10_bio->devs[j].bio; 149 for (i = 0; i < RESYNC_PAGES; i++) { 150 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 151 &conf->mddev->recovery)) { 152 /* we can share bv_page's during recovery 153 * and reshape */ 154 struct bio *rbio = r10_bio->devs[0].bio; 155 page = rbio->bi_io_vec[i].bv_page; 156 get_page(page); 157 } else 158 page = alloc_page(gfp_flags); 159 if (unlikely(!page)) 160 goto out_free_pages; 161 162 bio->bi_io_vec[i].bv_page = page; 163 if (rbio) 164 rbio->bi_io_vec[i].bv_page = page; 165 } 166 } 167 168 return r10_bio; 169 170 out_free_pages: 171 for ( ; i > 0 ; i--) 172 safe_put_page(bio->bi_io_vec[i-1].bv_page); 173 while (j--) 174 for (i = 0; i < RESYNC_PAGES ; i++) 175 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 176 j = 0; 177 out_free_bio: 178 for ( ; j < nalloc; j++) { 179 if (r10_bio->devs[j].bio) 180 bio_put(r10_bio->devs[j].bio); 181 if (r10_bio->devs[j].repl_bio) 182 bio_put(r10_bio->devs[j].repl_bio); 183 } 184 r10bio_pool_free(r10_bio, conf); 185 return NULL; 186 } 187 188 static void r10buf_pool_free(void *__r10_bio, void *data) 189 { 190 int i; 191 struct r10conf *conf = data; 192 struct r10bio *r10bio = __r10_bio; 193 int j; 194 195 for (j=0; j < conf->copies; j++) { 196 struct bio *bio = r10bio->devs[j].bio; 197 if (bio) { 198 for (i = 0; i < RESYNC_PAGES; i++) { 199 safe_put_page(bio->bi_io_vec[i].bv_page); 200 bio->bi_io_vec[i].bv_page = NULL; 201 } 202 bio_put(bio); 203 } 204 bio = r10bio->devs[j].repl_bio; 205 if (bio) 206 bio_put(bio); 207 } 208 r10bio_pool_free(r10bio, conf); 209 } 210 211 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 212 { 213 int i; 214 215 for (i = 0; i < conf->copies; i++) { 216 struct bio **bio = & r10_bio->devs[i].bio; 217 if (!BIO_SPECIAL(*bio)) 218 bio_put(*bio); 219 *bio = NULL; 220 bio = &r10_bio->devs[i].repl_bio; 221 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 222 bio_put(*bio); 223 *bio = NULL; 224 } 225 } 226 227 static void free_r10bio(struct r10bio *r10_bio) 228 { 229 struct r10conf *conf = r10_bio->mddev->private; 230 231 put_all_bios(conf, r10_bio); 232 mempool_free(r10_bio, conf->r10bio_pool); 233 } 234 235 static void put_buf(struct r10bio *r10_bio) 236 { 237 struct r10conf *conf = r10_bio->mddev->private; 238 239 mempool_free(r10_bio, conf->r10buf_pool); 240 241 lower_barrier(conf); 242 } 243 244 static void reschedule_retry(struct r10bio *r10_bio) 245 { 246 unsigned long flags; 247 struct mddev *mddev = r10_bio->mddev; 248 struct r10conf *conf = mddev->private; 249 250 spin_lock_irqsave(&conf->device_lock, flags); 251 list_add(&r10_bio->retry_list, &conf->retry_list); 252 conf->nr_queued ++; 253 spin_unlock_irqrestore(&conf->device_lock, flags); 254 255 /* wake up frozen array... */ 256 wake_up(&conf->wait_barrier); 257 258 md_wakeup_thread(mddev->thread); 259 } 260 261 /* 262 * raid_end_bio_io() is called when we have finished servicing a mirrored 263 * operation and are ready to return a success/failure code to the buffer 264 * cache layer. 265 */ 266 static void raid_end_bio_io(struct r10bio *r10_bio) 267 { 268 struct bio *bio = r10_bio->master_bio; 269 int done; 270 struct r10conf *conf = r10_bio->mddev->private; 271 272 if (bio->bi_phys_segments) { 273 unsigned long flags; 274 spin_lock_irqsave(&conf->device_lock, flags); 275 bio->bi_phys_segments--; 276 done = (bio->bi_phys_segments == 0); 277 spin_unlock_irqrestore(&conf->device_lock, flags); 278 } else 279 done = 1; 280 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 281 clear_bit(BIO_UPTODATE, &bio->bi_flags); 282 if (done) { 283 bio_endio(bio, 0); 284 /* 285 * Wake up any possible resync thread that waits for the device 286 * to go idle. 287 */ 288 allow_barrier(conf); 289 } 290 free_r10bio(r10_bio); 291 } 292 293 /* 294 * Update disk head position estimator based on IRQ completion info. 295 */ 296 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 297 { 298 struct r10conf *conf = r10_bio->mddev->private; 299 300 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 301 r10_bio->devs[slot].addr + (r10_bio->sectors); 302 } 303 304 /* 305 * Find the disk number which triggered given bio 306 */ 307 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 308 struct bio *bio, int *slotp, int *replp) 309 { 310 int slot; 311 int repl = 0; 312 313 for (slot = 0; slot < conf->copies; slot++) { 314 if (r10_bio->devs[slot].bio == bio) 315 break; 316 if (r10_bio->devs[slot].repl_bio == bio) { 317 repl = 1; 318 break; 319 } 320 } 321 322 BUG_ON(slot == conf->copies); 323 update_head_pos(slot, r10_bio); 324 325 if (slotp) 326 *slotp = slot; 327 if (replp) 328 *replp = repl; 329 return r10_bio->devs[slot].devnum; 330 } 331 332 static void raid10_end_read_request(struct bio *bio, int error) 333 { 334 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 335 struct r10bio *r10_bio = bio->bi_private; 336 int slot, dev; 337 struct md_rdev *rdev; 338 struct r10conf *conf = r10_bio->mddev->private; 339 340 341 slot = r10_bio->read_slot; 342 dev = r10_bio->devs[slot].devnum; 343 rdev = r10_bio->devs[slot].rdev; 344 /* 345 * this branch is our 'one mirror IO has finished' event handler: 346 */ 347 update_head_pos(slot, r10_bio); 348 349 if (uptodate) { 350 /* 351 * Set R10BIO_Uptodate in our master bio, so that 352 * we will return a good error code to the higher 353 * levels even if IO on some other mirrored buffer fails. 354 * 355 * The 'master' represents the composite IO operation to 356 * user-side. So if something waits for IO, then it will 357 * wait for the 'master' bio. 358 */ 359 set_bit(R10BIO_Uptodate, &r10_bio->state); 360 } else { 361 /* If all other devices that store this block have 362 * failed, we want to return the error upwards rather 363 * than fail the last device. Here we redefine 364 * "uptodate" to mean "Don't want to retry" 365 */ 366 unsigned long flags; 367 spin_lock_irqsave(&conf->device_lock, flags); 368 if (!enough(conf, rdev->raid_disk)) 369 uptodate = 1; 370 spin_unlock_irqrestore(&conf->device_lock, flags); 371 } 372 if (uptodate) { 373 raid_end_bio_io(r10_bio); 374 rdev_dec_pending(rdev, conf->mddev); 375 } else { 376 /* 377 * oops, read error - keep the refcount on the rdev 378 */ 379 char b[BDEVNAME_SIZE]; 380 printk_ratelimited(KERN_ERR 381 "md/raid10:%s: %s: rescheduling sector %llu\n", 382 mdname(conf->mddev), 383 bdevname(rdev->bdev, b), 384 (unsigned long long)r10_bio->sector); 385 set_bit(R10BIO_ReadError, &r10_bio->state); 386 reschedule_retry(r10_bio); 387 } 388 } 389 390 static void close_write(struct r10bio *r10_bio) 391 { 392 /* clear the bitmap if all writes complete successfully */ 393 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 394 r10_bio->sectors, 395 !test_bit(R10BIO_Degraded, &r10_bio->state), 396 0); 397 md_write_end(r10_bio->mddev); 398 } 399 400 static void one_write_done(struct r10bio *r10_bio) 401 { 402 if (atomic_dec_and_test(&r10_bio->remaining)) { 403 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 404 reschedule_retry(r10_bio); 405 else { 406 close_write(r10_bio); 407 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 408 reschedule_retry(r10_bio); 409 else 410 raid_end_bio_io(r10_bio); 411 } 412 } 413 } 414 415 static void raid10_end_write_request(struct bio *bio, int error) 416 { 417 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 418 struct r10bio *r10_bio = bio->bi_private; 419 int dev; 420 int dec_rdev = 1; 421 struct r10conf *conf = r10_bio->mddev->private; 422 int slot, repl; 423 struct md_rdev *rdev = NULL; 424 425 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 426 427 if (repl) 428 rdev = conf->mirrors[dev].replacement; 429 if (!rdev) { 430 smp_rmb(); 431 repl = 0; 432 rdev = conf->mirrors[dev].rdev; 433 } 434 /* 435 * this branch is our 'one mirror IO has finished' event handler: 436 */ 437 if (!uptodate) { 438 if (repl) 439 /* Never record new bad blocks to replacement, 440 * just fail it. 441 */ 442 md_error(rdev->mddev, rdev); 443 else { 444 set_bit(WriteErrorSeen, &rdev->flags); 445 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 446 set_bit(MD_RECOVERY_NEEDED, 447 &rdev->mddev->recovery); 448 set_bit(R10BIO_WriteError, &r10_bio->state); 449 dec_rdev = 0; 450 } 451 } else { 452 /* 453 * Set R10BIO_Uptodate in our master bio, so that 454 * we will return a good error code for to the higher 455 * levels even if IO on some other mirrored buffer fails. 456 * 457 * The 'master' represents the composite IO operation to 458 * user-side. So if something waits for IO, then it will 459 * wait for the 'master' bio. 460 */ 461 sector_t first_bad; 462 int bad_sectors; 463 464 set_bit(R10BIO_Uptodate, &r10_bio->state); 465 466 /* Maybe we can clear some bad blocks. */ 467 if (is_badblock(rdev, 468 r10_bio->devs[slot].addr, 469 r10_bio->sectors, 470 &first_bad, &bad_sectors)) { 471 bio_put(bio); 472 if (repl) 473 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 474 else 475 r10_bio->devs[slot].bio = IO_MADE_GOOD; 476 dec_rdev = 0; 477 set_bit(R10BIO_MadeGood, &r10_bio->state); 478 } 479 } 480 481 /* 482 * 483 * Let's see if all mirrored write operations have finished 484 * already. 485 */ 486 one_write_done(r10_bio); 487 if (dec_rdev) 488 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 489 } 490 491 /* 492 * RAID10 layout manager 493 * As well as the chunksize and raid_disks count, there are two 494 * parameters: near_copies and far_copies. 495 * near_copies * far_copies must be <= raid_disks. 496 * Normally one of these will be 1. 497 * If both are 1, we get raid0. 498 * If near_copies == raid_disks, we get raid1. 499 * 500 * Chunks are laid out in raid0 style with near_copies copies of the 501 * first chunk, followed by near_copies copies of the next chunk and 502 * so on. 503 * If far_copies > 1, then after 1/far_copies of the array has been assigned 504 * as described above, we start again with a device offset of near_copies. 505 * So we effectively have another copy of the whole array further down all 506 * the drives, but with blocks on different drives. 507 * With this layout, and block is never stored twice on the one device. 508 * 509 * raid10_find_phys finds the sector offset of a given virtual sector 510 * on each device that it is on. 511 * 512 * raid10_find_virt does the reverse mapping, from a device and a 513 * sector offset to a virtual address 514 */ 515 516 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 517 { 518 int n,f; 519 sector_t sector; 520 sector_t chunk; 521 sector_t stripe; 522 int dev; 523 int slot = 0; 524 525 /* now calculate first sector/dev */ 526 chunk = r10bio->sector >> geo->chunk_shift; 527 sector = r10bio->sector & geo->chunk_mask; 528 529 chunk *= geo->near_copies; 530 stripe = chunk; 531 dev = sector_div(stripe, geo->raid_disks); 532 if (geo->far_offset) 533 stripe *= geo->far_copies; 534 535 sector += stripe << geo->chunk_shift; 536 537 /* and calculate all the others */ 538 for (n = 0; n < geo->near_copies; n++) { 539 int d = dev; 540 sector_t s = sector; 541 r10bio->devs[slot].addr = sector; 542 r10bio->devs[slot].devnum = d; 543 slot++; 544 545 for (f = 1; f < geo->far_copies; f++) { 546 d += geo->near_copies; 547 if (d >= geo->raid_disks) 548 d -= geo->raid_disks; 549 s += geo->stride; 550 r10bio->devs[slot].devnum = d; 551 r10bio->devs[slot].addr = s; 552 slot++; 553 } 554 dev++; 555 if (dev >= geo->raid_disks) { 556 dev = 0; 557 sector += (geo->chunk_mask + 1); 558 } 559 } 560 } 561 562 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 563 { 564 struct geom *geo = &conf->geo; 565 566 if (conf->reshape_progress != MaxSector && 567 ((r10bio->sector >= conf->reshape_progress) != 568 conf->mddev->reshape_backwards)) { 569 set_bit(R10BIO_Previous, &r10bio->state); 570 geo = &conf->prev; 571 } else 572 clear_bit(R10BIO_Previous, &r10bio->state); 573 574 __raid10_find_phys(geo, r10bio); 575 } 576 577 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 578 { 579 sector_t offset, chunk, vchunk; 580 /* Never use conf->prev as this is only called during resync 581 * or recovery, so reshape isn't happening 582 */ 583 struct geom *geo = &conf->geo; 584 585 offset = sector & geo->chunk_mask; 586 if (geo->far_offset) { 587 int fc; 588 chunk = sector >> geo->chunk_shift; 589 fc = sector_div(chunk, geo->far_copies); 590 dev -= fc * geo->near_copies; 591 if (dev < 0) 592 dev += geo->raid_disks; 593 } else { 594 while (sector >= geo->stride) { 595 sector -= geo->stride; 596 if (dev < geo->near_copies) 597 dev += geo->raid_disks - geo->near_copies; 598 else 599 dev -= geo->near_copies; 600 } 601 chunk = sector >> geo->chunk_shift; 602 } 603 vchunk = chunk * geo->raid_disks + dev; 604 sector_div(vchunk, geo->near_copies); 605 return (vchunk << geo->chunk_shift) + offset; 606 } 607 608 /** 609 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 610 * @q: request queue 611 * @bvm: properties of new bio 612 * @biovec: the request that could be merged to it. 613 * 614 * Return amount of bytes we can accept at this offset 615 * This requires checking for end-of-chunk if near_copies != raid_disks, 616 * and for subordinate merge_bvec_fns if merge_check_needed. 617 */ 618 static int raid10_mergeable_bvec(struct request_queue *q, 619 struct bvec_merge_data *bvm, 620 struct bio_vec *biovec) 621 { 622 struct mddev *mddev = q->queuedata; 623 struct r10conf *conf = mddev->private; 624 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 625 int max; 626 unsigned int chunk_sectors; 627 unsigned int bio_sectors = bvm->bi_size >> 9; 628 struct geom *geo = &conf->geo; 629 630 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 631 if (conf->reshape_progress != MaxSector && 632 ((sector >= conf->reshape_progress) != 633 conf->mddev->reshape_backwards)) 634 geo = &conf->prev; 635 636 if (geo->near_copies < geo->raid_disks) { 637 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 638 + bio_sectors)) << 9; 639 if (max < 0) 640 /* bio_add cannot handle a negative return */ 641 max = 0; 642 if (max <= biovec->bv_len && bio_sectors == 0) 643 return biovec->bv_len; 644 } else 645 max = biovec->bv_len; 646 647 if (mddev->merge_check_needed) { 648 struct r10bio r10_bio; 649 int s; 650 if (conf->reshape_progress != MaxSector) { 651 /* Cannot give any guidance during reshape */ 652 if (max <= biovec->bv_len && bio_sectors == 0) 653 return biovec->bv_len; 654 return 0; 655 } 656 r10_bio.sector = sector; 657 raid10_find_phys(conf, &r10_bio); 658 rcu_read_lock(); 659 for (s = 0; s < conf->copies; s++) { 660 int disk = r10_bio.devs[s].devnum; 661 struct md_rdev *rdev = rcu_dereference( 662 conf->mirrors[disk].rdev); 663 if (rdev && !test_bit(Faulty, &rdev->flags)) { 664 struct request_queue *q = 665 bdev_get_queue(rdev->bdev); 666 if (q->merge_bvec_fn) { 667 bvm->bi_sector = r10_bio.devs[s].addr 668 + rdev->data_offset; 669 bvm->bi_bdev = rdev->bdev; 670 max = min(max, q->merge_bvec_fn( 671 q, bvm, biovec)); 672 } 673 } 674 rdev = rcu_dereference(conf->mirrors[disk].replacement); 675 if (rdev && !test_bit(Faulty, &rdev->flags)) { 676 struct request_queue *q = 677 bdev_get_queue(rdev->bdev); 678 if (q->merge_bvec_fn) { 679 bvm->bi_sector = r10_bio.devs[s].addr 680 + rdev->data_offset; 681 bvm->bi_bdev = rdev->bdev; 682 max = min(max, q->merge_bvec_fn( 683 q, bvm, biovec)); 684 } 685 } 686 } 687 rcu_read_unlock(); 688 } 689 return max; 690 } 691 692 /* 693 * This routine returns the disk from which the requested read should 694 * be done. There is a per-array 'next expected sequential IO' sector 695 * number - if this matches on the next IO then we use the last disk. 696 * There is also a per-disk 'last know head position' sector that is 697 * maintained from IRQ contexts, both the normal and the resync IO 698 * completion handlers update this position correctly. If there is no 699 * perfect sequential match then we pick the disk whose head is closest. 700 * 701 * If there are 2 mirrors in the same 2 devices, performance degrades 702 * because position is mirror, not device based. 703 * 704 * The rdev for the device selected will have nr_pending incremented. 705 */ 706 707 /* 708 * FIXME: possibly should rethink readbalancing and do it differently 709 * depending on near_copies / far_copies geometry. 710 */ 711 static struct md_rdev *read_balance(struct r10conf *conf, 712 struct r10bio *r10_bio, 713 int *max_sectors) 714 { 715 const sector_t this_sector = r10_bio->sector; 716 int disk, slot; 717 int sectors = r10_bio->sectors; 718 int best_good_sectors; 719 sector_t new_distance, best_dist; 720 struct md_rdev *rdev, *best_rdev; 721 int do_balance; 722 int best_slot; 723 struct geom *geo = &conf->geo; 724 725 raid10_find_phys(conf, r10_bio); 726 rcu_read_lock(); 727 retry: 728 sectors = r10_bio->sectors; 729 best_slot = -1; 730 best_rdev = NULL; 731 best_dist = MaxSector; 732 best_good_sectors = 0; 733 do_balance = 1; 734 /* 735 * Check if we can balance. We can balance on the whole 736 * device if no resync is going on (recovery is ok), or below 737 * the resync window. We take the first readable disk when 738 * above the resync window. 739 */ 740 if (conf->mddev->recovery_cp < MaxSector 741 && (this_sector + sectors >= conf->next_resync)) 742 do_balance = 0; 743 744 for (slot = 0; slot < conf->copies ; slot++) { 745 sector_t first_bad; 746 int bad_sectors; 747 sector_t dev_sector; 748 749 if (r10_bio->devs[slot].bio == IO_BLOCKED) 750 continue; 751 disk = r10_bio->devs[slot].devnum; 752 rdev = rcu_dereference(conf->mirrors[disk].replacement); 753 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 754 test_bit(Unmerged, &rdev->flags) || 755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 756 rdev = rcu_dereference(conf->mirrors[disk].rdev); 757 if (rdev == NULL || 758 test_bit(Faulty, &rdev->flags) || 759 test_bit(Unmerged, &rdev->flags)) 760 continue; 761 if (!test_bit(In_sync, &rdev->flags) && 762 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 763 continue; 764 765 dev_sector = r10_bio->devs[slot].addr; 766 if (is_badblock(rdev, dev_sector, sectors, 767 &first_bad, &bad_sectors)) { 768 if (best_dist < MaxSector) 769 /* Already have a better slot */ 770 continue; 771 if (first_bad <= dev_sector) { 772 /* Cannot read here. If this is the 773 * 'primary' device, then we must not read 774 * beyond 'bad_sectors' from another device. 775 */ 776 bad_sectors -= (dev_sector - first_bad); 777 if (!do_balance && sectors > bad_sectors) 778 sectors = bad_sectors; 779 if (best_good_sectors > sectors) 780 best_good_sectors = sectors; 781 } else { 782 sector_t good_sectors = 783 first_bad - dev_sector; 784 if (good_sectors > best_good_sectors) { 785 best_good_sectors = good_sectors; 786 best_slot = slot; 787 best_rdev = rdev; 788 } 789 if (!do_balance) 790 /* Must read from here */ 791 break; 792 } 793 continue; 794 } else 795 best_good_sectors = sectors; 796 797 if (!do_balance) 798 break; 799 800 /* This optimisation is debatable, and completely destroys 801 * sequential read speed for 'far copies' arrays. So only 802 * keep it for 'near' arrays, and review those later. 803 */ 804 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 805 break; 806 807 /* for far > 1 always use the lowest address */ 808 if (geo->far_copies > 1) 809 new_distance = r10_bio->devs[slot].addr; 810 else 811 new_distance = abs(r10_bio->devs[slot].addr - 812 conf->mirrors[disk].head_position); 813 if (new_distance < best_dist) { 814 best_dist = new_distance; 815 best_slot = slot; 816 best_rdev = rdev; 817 } 818 } 819 if (slot >= conf->copies) { 820 slot = best_slot; 821 rdev = best_rdev; 822 } 823 824 if (slot >= 0) { 825 atomic_inc(&rdev->nr_pending); 826 if (test_bit(Faulty, &rdev->flags)) { 827 /* Cannot risk returning a device that failed 828 * before we inc'ed nr_pending 829 */ 830 rdev_dec_pending(rdev, conf->mddev); 831 goto retry; 832 } 833 r10_bio->read_slot = slot; 834 } else 835 rdev = NULL; 836 rcu_read_unlock(); 837 *max_sectors = best_good_sectors; 838 839 return rdev; 840 } 841 842 static int raid10_congested(void *data, int bits) 843 { 844 struct mddev *mddev = data; 845 struct r10conf *conf = mddev->private; 846 int i, ret = 0; 847 848 if ((bits & (1 << BDI_async_congested)) && 849 conf->pending_count >= max_queued_requests) 850 return 1; 851 852 if (mddev_congested(mddev, bits)) 853 return 1; 854 rcu_read_lock(); 855 for (i = 0; 856 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 857 && ret == 0; 858 i++) { 859 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 860 if (rdev && !test_bit(Faulty, &rdev->flags)) { 861 struct request_queue *q = bdev_get_queue(rdev->bdev); 862 863 ret |= bdi_congested(&q->backing_dev_info, bits); 864 } 865 } 866 rcu_read_unlock(); 867 return ret; 868 } 869 870 static void flush_pending_writes(struct r10conf *conf) 871 { 872 /* Any writes that have been queued but are awaiting 873 * bitmap updates get flushed here. 874 */ 875 spin_lock_irq(&conf->device_lock); 876 877 if (conf->pending_bio_list.head) { 878 struct bio *bio; 879 bio = bio_list_get(&conf->pending_bio_list); 880 conf->pending_count = 0; 881 spin_unlock_irq(&conf->device_lock); 882 /* flush any pending bitmap writes to disk 883 * before proceeding w/ I/O */ 884 bitmap_unplug(conf->mddev->bitmap); 885 wake_up(&conf->wait_barrier); 886 887 while (bio) { /* submit pending writes */ 888 struct bio *next = bio->bi_next; 889 bio->bi_next = NULL; 890 generic_make_request(bio); 891 bio = next; 892 } 893 } else 894 spin_unlock_irq(&conf->device_lock); 895 } 896 897 /* Barriers.... 898 * Sometimes we need to suspend IO while we do something else, 899 * either some resync/recovery, or reconfigure the array. 900 * To do this we raise a 'barrier'. 901 * The 'barrier' is a counter that can be raised multiple times 902 * to count how many activities are happening which preclude 903 * normal IO. 904 * We can only raise the barrier if there is no pending IO. 905 * i.e. if nr_pending == 0. 906 * We choose only to raise the barrier if no-one is waiting for the 907 * barrier to go down. This means that as soon as an IO request 908 * is ready, no other operations which require a barrier will start 909 * until the IO request has had a chance. 910 * 911 * So: regular IO calls 'wait_barrier'. When that returns there 912 * is no backgroup IO happening, It must arrange to call 913 * allow_barrier when it has finished its IO. 914 * backgroup IO calls must call raise_barrier. Once that returns 915 * there is no normal IO happeing. It must arrange to call 916 * lower_barrier when the particular background IO completes. 917 */ 918 919 static void raise_barrier(struct r10conf *conf, int force) 920 { 921 BUG_ON(force && !conf->barrier); 922 spin_lock_irq(&conf->resync_lock); 923 924 /* Wait until no block IO is waiting (unless 'force') */ 925 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 926 conf->resync_lock, ); 927 928 /* block any new IO from starting */ 929 conf->barrier++; 930 931 /* Now wait for all pending IO to complete */ 932 wait_event_lock_irq(conf->wait_barrier, 933 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 934 conf->resync_lock, ); 935 936 spin_unlock_irq(&conf->resync_lock); 937 } 938 939 static void lower_barrier(struct r10conf *conf) 940 { 941 unsigned long flags; 942 spin_lock_irqsave(&conf->resync_lock, flags); 943 conf->barrier--; 944 spin_unlock_irqrestore(&conf->resync_lock, flags); 945 wake_up(&conf->wait_barrier); 946 } 947 948 static void wait_barrier(struct r10conf *conf) 949 { 950 spin_lock_irq(&conf->resync_lock); 951 if (conf->barrier) { 952 conf->nr_waiting++; 953 /* Wait for the barrier to drop. 954 * However if there are already pending 955 * requests (preventing the barrier from 956 * rising completely), and the 957 * pre-process bio queue isn't empty, 958 * then don't wait, as we need to empty 959 * that queue to get the nr_pending 960 * count down. 961 */ 962 wait_event_lock_irq(conf->wait_barrier, 963 !conf->barrier || 964 (conf->nr_pending && 965 current->bio_list && 966 !bio_list_empty(current->bio_list)), 967 conf->resync_lock, 968 ); 969 conf->nr_waiting--; 970 } 971 conf->nr_pending++; 972 spin_unlock_irq(&conf->resync_lock); 973 } 974 975 static void allow_barrier(struct r10conf *conf) 976 { 977 unsigned long flags; 978 spin_lock_irqsave(&conf->resync_lock, flags); 979 conf->nr_pending--; 980 spin_unlock_irqrestore(&conf->resync_lock, flags); 981 wake_up(&conf->wait_barrier); 982 } 983 984 static void freeze_array(struct r10conf *conf) 985 { 986 /* stop syncio and normal IO and wait for everything to 987 * go quiet. 988 * We increment barrier and nr_waiting, and then 989 * wait until nr_pending match nr_queued+1 990 * This is called in the context of one normal IO request 991 * that has failed. Thus any sync request that might be pending 992 * will be blocked by nr_pending, and we need to wait for 993 * pending IO requests to complete or be queued for re-try. 994 * Thus the number queued (nr_queued) plus this request (1) 995 * must match the number of pending IOs (nr_pending) before 996 * we continue. 997 */ 998 spin_lock_irq(&conf->resync_lock); 999 conf->barrier++; 1000 conf->nr_waiting++; 1001 wait_event_lock_irq(conf->wait_barrier, 1002 conf->nr_pending == conf->nr_queued+1, 1003 conf->resync_lock, 1004 flush_pending_writes(conf)); 1005 1006 spin_unlock_irq(&conf->resync_lock); 1007 } 1008 1009 static void unfreeze_array(struct r10conf *conf) 1010 { 1011 /* reverse the effect of the freeze */ 1012 spin_lock_irq(&conf->resync_lock); 1013 conf->barrier--; 1014 conf->nr_waiting--; 1015 wake_up(&conf->wait_barrier); 1016 spin_unlock_irq(&conf->resync_lock); 1017 } 1018 1019 static sector_t choose_data_offset(struct r10bio *r10_bio, 1020 struct md_rdev *rdev) 1021 { 1022 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1023 test_bit(R10BIO_Previous, &r10_bio->state)) 1024 return rdev->data_offset; 1025 else 1026 return rdev->new_data_offset; 1027 } 1028 1029 static void make_request(struct mddev *mddev, struct bio * bio) 1030 { 1031 struct r10conf *conf = mddev->private; 1032 struct r10bio *r10_bio; 1033 struct bio *read_bio; 1034 int i; 1035 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1036 int chunk_sects = chunk_mask + 1; 1037 const int rw = bio_data_dir(bio); 1038 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1039 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1040 unsigned long flags; 1041 struct md_rdev *blocked_rdev; 1042 int plugged; 1043 int sectors_handled; 1044 int max_sectors; 1045 int sectors; 1046 1047 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1048 md_flush_request(mddev, bio); 1049 return; 1050 } 1051 1052 /* If this request crosses a chunk boundary, we need to 1053 * split it. This will only happen for 1 PAGE (or less) requests. 1054 */ 1055 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9) 1056 > chunk_sects 1057 && (conf->geo.near_copies < conf->geo.raid_disks 1058 || conf->prev.near_copies < conf->prev.raid_disks))) { 1059 struct bio_pair *bp; 1060 /* Sanity check -- queue functions should prevent this happening */ 1061 if (bio->bi_vcnt != 1 || 1062 bio->bi_idx != 0) 1063 goto bad_map; 1064 /* This is a one page bio that upper layers 1065 * refuse to split for us, so we need to split it. 1066 */ 1067 bp = bio_split(bio, 1068 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1069 1070 /* Each of these 'make_request' calls will call 'wait_barrier'. 1071 * If the first succeeds but the second blocks due to the resync 1072 * thread raising the barrier, we will deadlock because the 1073 * IO to the underlying device will be queued in generic_make_request 1074 * and will never complete, so will never reduce nr_pending. 1075 * So increment nr_waiting here so no new raise_barriers will 1076 * succeed, and so the second wait_barrier cannot block. 1077 */ 1078 spin_lock_irq(&conf->resync_lock); 1079 conf->nr_waiting++; 1080 spin_unlock_irq(&conf->resync_lock); 1081 1082 make_request(mddev, &bp->bio1); 1083 make_request(mddev, &bp->bio2); 1084 1085 spin_lock_irq(&conf->resync_lock); 1086 conf->nr_waiting--; 1087 wake_up(&conf->wait_barrier); 1088 spin_unlock_irq(&conf->resync_lock); 1089 1090 bio_pair_release(bp); 1091 return; 1092 bad_map: 1093 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1094 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1095 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 1096 1097 bio_io_error(bio); 1098 return; 1099 } 1100 1101 md_write_start(mddev, bio); 1102 1103 /* 1104 * Register the new request and wait if the reconstruction 1105 * thread has put up a bar for new requests. 1106 * Continue immediately if no resync is active currently. 1107 */ 1108 wait_barrier(conf); 1109 1110 sectors = bio->bi_size >> 9; 1111 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1112 bio->bi_sector < conf->reshape_progress && 1113 bio->bi_sector + sectors > conf->reshape_progress) { 1114 /* IO spans the reshape position. Need to wait for 1115 * reshape to pass 1116 */ 1117 allow_barrier(conf); 1118 wait_event(conf->wait_barrier, 1119 conf->reshape_progress <= bio->bi_sector || 1120 conf->reshape_progress >= bio->bi_sector + sectors); 1121 wait_barrier(conf); 1122 } 1123 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1124 bio_data_dir(bio) == WRITE && 1125 (mddev->reshape_backwards 1126 ? (bio->bi_sector < conf->reshape_safe && 1127 bio->bi_sector + sectors > conf->reshape_progress) 1128 : (bio->bi_sector + sectors > conf->reshape_safe && 1129 bio->bi_sector < conf->reshape_progress))) { 1130 /* Need to update reshape_position in metadata */ 1131 mddev->reshape_position = conf->reshape_progress; 1132 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1133 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1134 md_wakeup_thread(mddev->thread); 1135 wait_event(mddev->sb_wait, 1136 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1137 1138 conf->reshape_safe = mddev->reshape_position; 1139 } 1140 1141 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1142 1143 r10_bio->master_bio = bio; 1144 r10_bio->sectors = sectors; 1145 1146 r10_bio->mddev = mddev; 1147 r10_bio->sector = bio->bi_sector; 1148 r10_bio->state = 0; 1149 1150 /* We might need to issue multiple reads to different 1151 * devices if there are bad blocks around, so we keep 1152 * track of the number of reads in bio->bi_phys_segments. 1153 * If this is 0, there is only one r10_bio and no locking 1154 * will be needed when the request completes. If it is 1155 * non-zero, then it is the number of not-completed requests. 1156 */ 1157 bio->bi_phys_segments = 0; 1158 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1159 1160 if (rw == READ) { 1161 /* 1162 * read balancing logic: 1163 */ 1164 struct md_rdev *rdev; 1165 int slot; 1166 1167 read_again: 1168 rdev = read_balance(conf, r10_bio, &max_sectors); 1169 if (!rdev) { 1170 raid_end_bio_io(r10_bio); 1171 return; 1172 } 1173 slot = r10_bio->read_slot; 1174 1175 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1176 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1177 max_sectors); 1178 1179 r10_bio->devs[slot].bio = read_bio; 1180 r10_bio->devs[slot].rdev = rdev; 1181 1182 read_bio->bi_sector = r10_bio->devs[slot].addr + 1183 choose_data_offset(r10_bio, rdev); 1184 read_bio->bi_bdev = rdev->bdev; 1185 read_bio->bi_end_io = raid10_end_read_request; 1186 read_bio->bi_rw = READ | do_sync; 1187 read_bio->bi_private = r10_bio; 1188 1189 if (max_sectors < r10_bio->sectors) { 1190 /* Could not read all from this device, so we will 1191 * need another r10_bio. 1192 */ 1193 sectors_handled = (r10_bio->sectors + max_sectors 1194 - bio->bi_sector); 1195 r10_bio->sectors = max_sectors; 1196 spin_lock_irq(&conf->device_lock); 1197 if (bio->bi_phys_segments == 0) 1198 bio->bi_phys_segments = 2; 1199 else 1200 bio->bi_phys_segments++; 1201 spin_unlock(&conf->device_lock); 1202 /* Cannot call generic_make_request directly 1203 * as that will be queued in __generic_make_request 1204 * and subsequent mempool_alloc might block 1205 * waiting for it. so hand bio over to raid10d. 1206 */ 1207 reschedule_retry(r10_bio); 1208 1209 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1210 1211 r10_bio->master_bio = bio; 1212 r10_bio->sectors = ((bio->bi_size >> 9) 1213 - sectors_handled); 1214 r10_bio->state = 0; 1215 r10_bio->mddev = mddev; 1216 r10_bio->sector = bio->bi_sector + sectors_handled; 1217 goto read_again; 1218 } else 1219 generic_make_request(read_bio); 1220 return; 1221 } 1222 1223 /* 1224 * WRITE: 1225 */ 1226 if (conf->pending_count >= max_queued_requests) { 1227 md_wakeup_thread(mddev->thread); 1228 wait_event(conf->wait_barrier, 1229 conf->pending_count < max_queued_requests); 1230 } 1231 /* first select target devices under rcu_lock and 1232 * inc refcount on their rdev. Record them by setting 1233 * bios[x] to bio 1234 * If there are known/acknowledged bad blocks on any device 1235 * on which we have seen a write error, we want to avoid 1236 * writing to those blocks. This potentially requires several 1237 * writes to write around the bad blocks. Each set of writes 1238 * gets its own r10_bio with a set of bios attached. The number 1239 * of r10_bios is recored in bio->bi_phys_segments just as with 1240 * the read case. 1241 */ 1242 plugged = mddev_check_plugged(mddev); 1243 1244 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1245 raid10_find_phys(conf, r10_bio); 1246 retry_write: 1247 blocked_rdev = NULL; 1248 rcu_read_lock(); 1249 max_sectors = r10_bio->sectors; 1250 1251 for (i = 0; i < conf->copies; i++) { 1252 int d = r10_bio->devs[i].devnum; 1253 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1254 struct md_rdev *rrdev = rcu_dereference( 1255 conf->mirrors[d].replacement); 1256 if (rdev == rrdev) 1257 rrdev = NULL; 1258 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1259 atomic_inc(&rdev->nr_pending); 1260 blocked_rdev = rdev; 1261 break; 1262 } 1263 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1264 atomic_inc(&rrdev->nr_pending); 1265 blocked_rdev = rrdev; 1266 break; 1267 } 1268 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1269 || test_bit(Unmerged, &rrdev->flags))) 1270 rrdev = NULL; 1271 1272 r10_bio->devs[i].bio = NULL; 1273 r10_bio->devs[i].repl_bio = NULL; 1274 if (!rdev || test_bit(Faulty, &rdev->flags) || 1275 test_bit(Unmerged, &rdev->flags)) { 1276 set_bit(R10BIO_Degraded, &r10_bio->state); 1277 continue; 1278 } 1279 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1280 sector_t first_bad; 1281 sector_t dev_sector = r10_bio->devs[i].addr; 1282 int bad_sectors; 1283 int is_bad; 1284 1285 is_bad = is_badblock(rdev, dev_sector, 1286 max_sectors, 1287 &first_bad, &bad_sectors); 1288 if (is_bad < 0) { 1289 /* Mustn't write here until the bad block 1290 * is acknowledged 1291 */ 1292 atomic_inc(&rdev->nr_pending); 1293 set_bit(BlockedBadBlocks, &rdev->flags); 1294 blocked_rdev = rdev; 1295 break; 1296 } 1297 if (is_bad && first_bad <= dev_sector) { 1298 /* Cannot write here at all */ 1299 bad_sectors -= (dev_sector - first_bad); 1300 if (bad_sectors < max_sectors) 1301 /* Mustn't write more than bad_sectors 1302 * to other devices yet 1303 */ 1304 max_sectors = bad_sectors; 1305 /* We don't set R10BIO_Degraded as that 1306 * only applies if the disk is missing, 1307 * so it might be re-added, and we want to 1308 * know to recover this chunk. 1309 * In this case the device is here, and the 1310 * fact that this chunk is not in-sync is 1311 * recorded in the bad block log. 1312 */ 1313 continue; 1314 } 1315 if (is_bad) { 1316 int good_sectors = first_bad - dev_sector; 1317 if (good_sectors < max_sectors) 1318 max_sectors = good_sectors; 1319 } 1320 } 1321 r10_bio->devs[i].bio = bio; 1322 atomic_inc(&rdev->nr_pending); 1323 if (rrdev) { 1324 r10_bio->devs[i].repl_bio = bio; 1325 atomic_inc(&rrdev->nr_pending); 1326 } 1327 } 1328 rcu_read_unlock(); 1329 1330 if (unlikely(blocked_rdev)) { 1331 /* Have to wait for this device to get unblocked, then retry */ 1332 int j; 1333 int d; 1334 1335 for (j = 0; j < i; j++) { 1336 if (r10_bio->devs[j].bio) { 1337 d = r10_bio->devs[j].devnum; 1338 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1339 } 1340 if (r10_bio->devs[j].repl_bio) { 1341 struct md_rdev *rdev; 1342 d = r10_bio->devs[j].devnum; 1343 rdev = conf->mirrors[d].replacement; 1344 if (!rdev) { 1345 /* Race with remove_disk */ 1346 smp_mb(); 1347 rdev = conf->mirrors[d].rdev; 1348 } 1349 rdev_dec_pending(rdev, mddev); 1350 } 1351 } 1352 allow_barrier(conf); 1353 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1354 wait_barrier(conf); 1355 goto retry_write; 1356 } 1357 1358 if (max_sectors < r10_bio->sectors) { 1359 /* We are splitting this into multiple parts, so 1360 * we need to prepare for allocating another r10_bio. 1361 */ 1362 r10_bio->sectors = max_sectors; 1363 spin_lock_irq(&conf->device_lock); 1364 if (bio->bi_phys_segments == 0) 1365 bio->bi_phys_segments = 2; 1366 else 1367 bio->bi_phys_segments++; 1368 spin_unlock_irq(&conf->device_lock); 1369 } 1370 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1371 1372 atomic_set(&r10_bio->remaining, 1); 1373 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1374 1375 for (i = 0; i < conf->copies; i++) { 1376 struct bio *mbio; 1377 int d = r10_bio->devs[i].devnum; 1378 if (!r10_bio->devs[i].bio) 1379 continue; 1380 1381 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1382 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1383 max_sectors); 1384 r10_bio->devs[i].bio = mbio; 1385 1386 mbio->bi_sector = (r10_bio->devs[i].addr+ 1387 choose_data_offset(r10_bio, 1388 conf->mirrors[d].rdev)); 1389 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1390 mbio->bi_end_io = raid10_end_write_request; 1391 mbio->bi_rw = WRITE | do_sync | do_fua; 1392 mbio->bi_private = r10_bio; 1393 1394 atomic_inc(&r10_bio->remaining); 1395 spin_lock_irqsave(&conf->device_lock, flags); 1396 bio_list_add(&conf->pending_bio_list, mbio); 1397 conf->pending_count++; 1398 spin_unlock_irqrestore(&conf->device_lock, flags); 1399 1400 if (!r10_bio->devs[i].repl_bio) 1401 continue; 1402 1403 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1404 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1405 max_sectors); 1406 r10_bio->devs[i].repl_bio = mbio; 1407 1408 /* We are actively writing to the original device 1409 * so it cannot disappear, so the replacement cannot 1410 * become NULL here 1411 */ 1412 mbio->bi_sector = (r10_bio->devs[i].addr + 1413 choose_data_offset( 1414 r10_bio, 1415 conf->mirrors[d].replacement)); 1416 mbio->bi_bdev = conf->mirrors[d].replacement->bdev; 1417 mbio->bi_end_io = raid10_end_write_request; 1418 mbio->bi_rw = WRITE | do_sync | do_fua; 1419 mbio->bi_private = r10_bio; 1420 1421 atomic_inc(&r10_bio->remaining); 1422 spin_lock_irqsave(&conf->device_lock, flags); 1423 bio_list_add(&conf->pending_bio_list, mbio); 1424 conf->pending_count++; 1425 spin_unlock_irqrestore(&conf->device_lock, flags); 1426 } 1427 1428 /* Don't remove the bias on 'remaining' (one_write_done) until 1429 * after checking if we need to go around again. 1430 */ 1431 1432 if (sectors_handled < (bio->bi_size >> 9)) { 1433 one_write_done(r10_bio); 1434 /* We need another r10_bio. It has already been counted 1435 * in bio->bi_phys_segments. 1436 */ 1437 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1438 1439 r10_bio->master_bio = bio; 1440 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1441 1442 r10_bio->mddev = mddev; 1443 r10_bio->sector = bio->bi_sector + sectors_handled; 1444 r10_bio->state = 0; 1445 goto retry_write; 1446 } 1447 one_write_done(r10_bio); 1448 1449 /* In case raid10d snuck in to freeze_array */ 1450 wake_up(&conf->wait_barrier); 1451 1452 if (do_sync || !mddev->bitmap || !plugged) 1453 md_wakeup_thread(mddev->thread); 1454 } 1455 1456 static void status(struct seq_file *seq, struct mddev *mddev) 1457 { 1458 struct r10conf *conf = mddev->private; 1459 int i; 1460 1461 if (conf->geo.near_copies < conf->geo.raid_disks) 1462 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1463 if (conf->geo.near_copies > 1) 1464 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1465 if (conf->geo.far_copies > 1) { 1466 if (conf->geo.far_offset) 1467 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1468 else 1469 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1470 } 1471 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1472 conf->geo.raid_disks - mddev->degraded); 1473 for (i = 0; i < conf->geo.raid_disks; i++) 1474 seq_printf(seq, "%s", 1475 conf->mirrors[i].rdev && 1476 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1477 seq_printf(seq, "]"); 1478 } 1479 1480 /* check if there are enough drives for 1481 * every block to appear on atleast one. 1482 * Don't consider the device numbered 'ignore' 1483 * as we might be about to remove it. 1484 */ 1485 static int _enough(struct r10conf *conf, struct geom *geo, int ignore) 1486 { 1487 int first = 0; 1488 1489 do { 1490 int n = conf->copies; 1491 int cnt = 0; 1492 while (n--) { 1493 if (conf->mirrors[first].rdev && 1494 first != ignore) 1495 cnt++; 1496 first = (first+1) % geo->raid_disks; 1497 } 1498 if (cnt == 0) 1499 return 0; 1500 } while (first != 0); 1501 return 1; 1502 } 1503 1504 static int enough(struct r10conf *conf, int ignore) 1505 { 1506 return _enough(conf, &conf->geo, ignore) && 1507 _enough(conf, &conf->prev, ignore); 1508 } 1509 1510 static void error(struct mddev *mddev, struct md_rdev *rdev) 1511 { 1512 char b[BDEVNAME_SIZE]; 1513 struct r10conf *conf = mddev->private; 1514 1515 /* 1516 * If it is not operational, then we have already marked it as dead 1517 * else if it is the last working disks, ignore the error, let the 1518 * next level up know. 1519 * else mark the drive as failed 1520 */ 1521 if (test_bit(In_sync, &rdev->flags) 1522 && !enough(conf, rdev->raid_disk)) 1523 /* 1524 * Don't fail the drive, just return an IO error. 1525 */ 1526 return; 1527 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1528 unsigned long flags; 1529 spin_lock_irqsave(&conf->device_lock, flags); 1530 mddev->degraded++; 1531 spin_unlock_irqrestore(&conf->device_lock, flags); 1532 /* 1533 * if recovery is running, make sure it aborts. 1534 */ 1535 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1536 } 1537 set_bit(Blocked, &rdev->flags); 1538 set_bit(Faulty, &rdev->flags); 1539 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1540 printk(KERN_ALERT 1541 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1542 "md/raid10:%s: Operation continuing on %d devices.\n", 1543 mdname(mddev), bdevname(rdev->bdev, b), 1544 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1545 } 1546 1547 static void print_conf(struct r10conf *conf) 1548 { 1549 int i; 1550 struct mirror_info *tmp; 1551 1552 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1553 if (!conf) { 1554 printk(KERN_DEBUG "(!conf)\n"); 1555 return; 1556 } 1557 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1558 conf->geo.raid_disks); 1559 1560 for (i = 0; i < conf->geo.raid_disks; i++) { 1561 char b[BDEVNAME_SIZE]; 1562 tmp = conf->mirrors + i; 1563 if (tmp->rdev) 1564 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1565 i, !test_bit(In_sync, &tmp->rdev->flags), 1566 !test_bit(Faulty, &tmp->rdev->flags), 1567 bdevname(tmp->rdev->bdev,b)); 1568 } 1569 } 1570 1571 static void close_sync(struct r10conf *conf) 1572 { 1573 wait_barrier(conf); 1574 allow_barrier(conf); 1575 1576 mempool_destroy(conf->r10buf_pool); 1577 conf->r10buf_pool = NULL; 1578 } 1579 1580 static int raid10_spare_active(struct mddev *mddev) 1581 { 1582 int i; 1583 struct r10conf *conf = mddev->private; 1584 struct mirror_info *tmp; 1585 int count = 0; 1586 unsigned long flags; 1587 1588 /* 1589 * Find all non-in_sync disks within the RAID10 configuration 1590 * and mark them in_sync 1591 */ 1592 for (i = 0; i < conf->geo.raid_disks; i++) { 1593 tmp = conf->mirrors + i; 1594 if (tmp->replacement 1595 && tmp->replacement->recovery_offset == MaxSector 1596 && !test_bit(Faulty, &tmp->replacement->flags) 1597 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1598 /* Replacement has just become active */ 1599 if (!tmp->rdev 1600 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1601 count++; 1602 if (tmp->rdev) { 1603 /* Replaced device not technically faulty, 1604 * but we need to be sure it gets removed 1605 * and never re-added. 1606 */ 1607 set_bit(Faulty, &tmp->rdev->flags); 1608 sysfs_notify_dirent_safe( 1609 tmp->rdev->sysfs_state); 1610 } 1611 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1612 } else if (tmp->rdev 1613 && !test_bit(Faulty, &tmp->rdev->flags) 1614 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1615 count++; 1616 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1617 } 1618 } 1619 spin_lock_irqsave(&conf->device_lock, flags); 1620 mddev->degraded -= count; 1621 spin_unlock_irqrestore(&conf->device_lock, flags); 1622 1623 print_conf(conf); 1624 return count; 1625 } 1626 1627 1628 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1629 { 1630 struct r10conf *conf = mddev->private; 1631 int err = -EEXIST; 1632 int mirror; 1633 int first = 0; 1634 int last = conf->geo.raid_disks - 1; 1635 struct request_queue *q = bdev_get_queue(rdev->bdev); 1636 1637 if (mddev->recovery_cp < MaxSector) 1638 /* only hot-add to in-sync arrays, as recovery is 1639 * very different from resync 1640 */ 1641 return -EBUSY; 1642 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1)) 1643 return -EINVAL; 1644 1645 if (rdev->raid_disk >= 0) 1646 first = last = rdev->raid_disk; 1647 1648 if (q->merge_bvec_fn) { 1649 set_bit(Unmerged, &rdev->flags); 1650 mddev->merge_check_needed = 1; 1651 } 1652 1653 if (rdev->saved_raid_disk >= first && 1654 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1655 mirror = rdev->saved_raid_disk; 1656 else 1657 mirror = first; 1658 for ( ; mirror <= last ; mirror++) { 1659 struct mirror_info *p = &conf->mirrors[mirror]; 1660 if (p->recovery_disabled == mddev->recovery_disabled) 1661 continue; 1662 if (p->rdev) { 1663 if (!test_bit(WantReplacement, &p->rdev->flags) || 1664 p->replacement != NULL) 1665 continue; 1666 clear_bit(In_sync, &rdev->flags); 1667 set_bit(Replacement, &rdev->flags); 1668 rdev->raid_disk = mirror; 1669 err = 0; 1670 disk_stack_limits(mddev->gendisk, rdev->bdev, 1671 rdev->data_offset << 9); 1672 conf->fullsync = 1; 1673 rcu_assign_pointer(p->replacement, rdev); 1674 break; 1675 } 1676 1677 disk_stack_limits(mddev->gendisk, rdev->bdev, 1678 rdev->data_offset << 9); 1679 1680 p->head_position = 0; 1681 p->recovery_disabled = mddev->recovery_disabled - 1; 1682 rdev->raid_disk = mirror; 1683 err = 0; 1684 if (rdev->saved_raid_disk != mirror) 1685 conf->fullsync = 1; 1686 rcu_assign_pointer(p->rdev, rdev); 1687 break; 1688 } 1689 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1690 /* Some requests might not have seen this new 1691 * merge_bvec_fn. We must wait for them to complete 1692 * before merging the device fully. 1693 * First we make sure any code which has tested 1694 * our function has submitted the request, then 1695 * we wait for all outstanding requests to complete. 1696 */ 1697 synchronize_sched(); 1698 raise_barrier(conf, 0); 1699 lower_barrier(conf); 1700 clear_bit(Unmerged, &rdev->flags); 1701 } 1702 md_integrity_add_rdev(rdev, mddev); 1703 print_conf(conf); 1704 return err; 1705 } 1706 1707 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1708 { 1709 struct r10conf *conf = mddev->private; 1710 int err = 0; 1711 int number = rdev->raid_disk; 1712 struct md_rdev **rdevp; 1713 struct mirror_info *p = conf->mirrors + number; 1714 1715 print_conf(conf); 1716 if (rdev == p->rdev) 1717 rdevp = &p->rdev; 1718 else if (rdev == p->replacement) 1719 rdevp = &p->replacement; 1720 else 1721 return 0; 1722 1723 if (test_bit(In_sync, &rdev->flags) || 1724 atomic_read(&rdev->nr_pending)) { 1725 err = -EBUSY; 1726 goto abort; 1727 } 1728 /* Only remove faulty devices if recovery 1729 * is not possible. 1730 */ 1731 if (!test_bit(Faulty, &rdev->flags) && 1732 mddev->recovery_disabled != p->recovery_disabled && 1733 (!p->replacement || p->replacement == rdev) && 1734 number < conf->geo.raid_disks && 1735 enough(conf, -1)) { 1736 err = -EBUSY; 1737 goto abort; 1738 } 1739 *rdevp = NULL; 1740 synchronize_rcu(); 1741 if (atomic_read(&rdev->nr_pending)) { 1742 /* lost the race, try later */ 1743 err = -EBUSY; 1744 *rdevp = rdev; 1745 goto abort; 1746 } else if (p->replacement) { 1747 /* We must have just cleared 'rdev' */ 1748 p->rdev = p->replacement; 1749 clear_bit(Replacement, &p->replacement->flags); 1750 smp_mb(); /* Make sure other CPUs may see both as identical 1751 * but will never see neither -- if they are careful. 1752 */ 1753 p->replacement = NULL; 1754 clear_bit(WantReplacement, &rdev->flags); 1755 } else 1756 /* We might have just remove the Replacement as faulty 1757 * Clear the flag just in case 1758 */ 1759 clear_bit(WantReplacement, &rdev->flags); 1760 1761 err = md_integrity_register(mddev); 1762 1763 abort: 1764 1765 print_conf(conf); 1766 return err; 1767 } 1768 1769 1770 static void end_sync_read(struct bio *bio, int error) 1771 { 1772 struct r10bio *r10_bio = bio->bi_private; 1773 struct r10conf *conf = r10_bio->mddev->private; 1774 int d; 1775 1776 if (bio == r10_bio->master_bio) { 1777 /* this is a reshape read */ 1778 d = r10_bio->read_slot; /* really the read dev */ 1779 } else 1780 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1781 1782 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1783 set_bit(R10BIO_Uptodate, &r10_bio->state); 1784 else 1785 /* The write handler will notice the lack of 1786 * R10BIO_Uptodate and record any errors etc 1787 */ 1788 atomic_add(r10_bio->sectors, 1789 &conf->mirrors[d].rdev->corrected_errors); 1790 1791 /* for reconstruct, we always reschedule after a read. 1792 * for resync, only after all reads 1793 */ 1794 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1795 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1796 atomic_dec_and_test(&r10_bio->remaining)) { 1797 /* we have read all the blocks, 1798 * do the comparison in process context in raid10d 1799 */ 1800 reschedule_retry(r10_bio); 1801 } 1802 } 1803 1804 static void end_sync_request(struct r10bio *r10_bio) 1805 { 1806 struct mddev *mddev = r10_bio->mddev; 1807 1808 while (atomic_dec_and_test(&r10_bio->remaining)) { 1809 if (r10_bio->master_bio == NULL) { 1810 /* the primary of several recovery bios */ 1811 sector_t s = r10_bio->sectors; 1812 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1813 test_bit(R10BIO_WriteError, &r10_bio->state)) 1814 reschedule_retry(r10_bio); 1815 else 1816 put_buf(r10_bio); 1817 md_done_sync(mddev, s, 1); 1818 break; 1819 } else { 1820 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1821 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1822 test_bit(R10BIO_WriteError, &r10_bio->state)) 1823 reschedule_retry(r10_bio); 1824 else 1825 put_buf(r10_bio); 1826 r10_bio = r10_bio2; 1827 } 1828 } 1829 } 1830 1831 static void end_sync_write(struct bio *bio, int error) 1832 { 1833 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1834 struct r10bio *r10_bio = bio->bi_private; 1835 struct mddev *mddev = r10_bio->mddev; 1836 struct r10conf *conf = mddev->private; 1837 int d; 1838 sector_t first_bad; 1839 int bad_sectors; 1840 int slot; 1841 int repl; 1842 struct md_rdev *rdev = NULL; 1843 1844 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1845 if (repl) 1846 rdev = conf->mirrors[d].replacement; 1847 else 1848 rdev = conf->mirrors[d].rdev; 1849 1850 if (!uptodate) { 1851 if (repl) 1852 md_error(mddev, rdev); 1853 else { 1854 set_bit(WriteErrorSeen, &rdev->flags); 1855 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1856 set_bit(MD_RECOVERY_NEEDED, 1857 &rdev->mddev->recovery); 1858 set_bit(R10BIO_WriteError, &r10_bio->state); 1859 } 1860 } else if (is_badblock(rdev, 1861 r10_bio->devs[slot].addr, 1862 r10_bio->sectors, 1863 &first_bad, &bad_sectors)) 1864 set_bit(R10BIO_MadeGood, &r10_bio->state); 1865 1866 rdev_dec_pending(rdev, mddev); 1867 1868 end_sync_request(r10_bio); 1869 } 1870 1871 /* 1872 * Note: sync and recover and handled very differently for raid10 1873 * This code is for resync. 1874 * For resync, we read through virtual addresses and read all blocks. 1875 * If there is any error, we schedule a write. The lowest numbered 1876 * drive is authoritative. 1877 * However requests come for physical address, so we need to map. 1878 * For every physical address there are raid_disks/copies virtual addresses, 1879 * which is always are least one, but is not necessarly an integer. 1880 * This means that a physical address can span multiple chunks, so we may 1881 * have to submit multiple io requests for a single sync request. 1882 */ 1883 /* 1884 * We check if all blocks are in-sync and only write to blocks that 1885 * aren't in sync 1886 */ 1887 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1888 { 1889 struct r10conf *conf = mddev->private; 1890 int i, first; 1891 struct bio *tbio, *fbio; 1892 int vcnt; 1893 1894 atomic_set(&r10_bio->remaining, 1); 1895 1896 /* find the first device with a block */ 1897 for (i=0; i<conf->copies; i++) 1898 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1899 break; 1900 1901 if (i == conf->copies) 1902 goto done; 1903 1904 first = i; 1905 fbio = r10_bio->devs[i].bio; 1906 1907 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 1908 /* now find blocks with errors */ 1909 for (i=0 ; i < conf->copies ; i++) { 1910 int j, d; 1911 1912 tbio = r10_bio->devs[i].bio; 1913 1914 if (tbio->bi_end_io != end_sync_read) 1915 continue; 1916 if (i == first) 1917 continue; 1918 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1919 /* We know that the bi_io_vec layout is the same for 1920 * both 'first' and 'i', so we just compare them. 1921 * All vec entries are PAGE_SIZE; 1922 */ 1923 for (j = 0; j < vcnt; j++) 1924 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1925 page_address(tbio->bi_io_vec[j].bv_page), 1926 fbio->bi_io_vec[j].bv_len)) 1927 break; 1928 if (j == vcnt) 1929 continue; 1930 mddev->resync_mismatches += r10_bio->sectors; 1931 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1932 /* Don't fix anything. */ 1933 continue; 1934 } 1935 /* Ok, we need to write this bio, either to correct an 1936 * inconsistency or to correct an unreadable block. 1937 * First we need to fixup bv_offset, bv_len and 1938 * bi_vecs, as the read request might have corrupted these 1939 */ 1940 tbio->bi_vcnt = vcnt; 1941 tbio->bi_size = r10_bio->sectors << 9; 1942 tbio->bi_idx = 0; 1943 tbio->bi_phys_segments = 0; 1944 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1945 tbio->bi_flags |= 1 << BIO_UPTODATE; 1946 tbio->bi_next = NULL; 1947 tbio->bi_rw = WRITE; 1948 tbio->bi_private = r10_bio; 1949 tbio->bi_sector = r10_bio->devs[i].addr; 1950 1951 for (j=0; j < vcnt ; j++) { 1952 tbio->bi_io_vec[j].bv_offset = 0; 1953 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1954 1955 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1956 page_address(fbio->bi_io_vec[j].bv_page), 1957 PAGE_SIZE); 1958 } 1959 tbio->bi_end_io = end_sync_write; 1960 1961 d = r10_bio->devs[i].devnum; 1962 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1963 atomic_inc(&r10_bio->remaining); 1964 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1965 1966 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1967 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1968 generic_make_request(tbio); 1969 } 1970 1971 /* Now write out to any replacement devices 1972 * that are active 1973 */ 1974 for (i = 0; i < conf->copies; i++) { 1975 int j, d; 1976 1977 tbio = r10_bio->devs[i].repl_bio; 1978 if (!tbio || !tbio->bi_end_io) 1979 continue; 1980 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 1981 && r10_bio->devs[i].bio != fbio) 1982 for (j = 0; j < vcnt; j++) 1983 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1984 page_address(fbio->bi_io_vec[j].bv_page), 1985 PAGE_SIZE); 1986 d = r10_bio->devs[i].devnum; 1987 atomic_inc(&r10_bio->remaining); 1988 md_sync_acct(conf->mirrors[d].replacement->bdev, 1989 tbio->bi_size >> 9); 1990 generic_make_request(tbio); 1991 } 1992 1993 done: 1994 if (atomic_dec_and_test(&r10_bio->remaining)) { 1995 md_done_sync(mddev, r10_bio->sectors, 1); 1996 put_buf(r10_bio); 1997 } 1998 } 1999 2000 /* 2001 * Now for the recovery code. 2002 * Recovery happens across physical sectors. 2003 * We recover all non-is_sync drives by finding the virtual address of 2004 * each, and then choose a working drive that also has that virt address. 2005 * There is a separate r10_bio for each non-in_sync drive. 2006 * Only the first two slots are in use. The first for reading, 2007 * The second for writing. 2008 * 2009 */ 2010 static void fix_recovery_read_error(struct r10bio *r10_bio) 2011 { 2012 /* We got a read error during recovery. 2013 * We repeat the read in smaller page-sized sections. 2014 * If a read succeeds, write it to the new device or record 2015 * a bad block if we cannot. 2016 * If a read fails, record a bad block on both old and 2017 * new devices. 2018 */ 2019 struct mddev *mddev = r10_bio->mddev; 2020 struct r10conf *conf = mddev->private; 2021 struct bio *bio = r10_bio->devs[0].bio; 2022 sector_t sect = 0; 2023 int sectors = r10_bio->sectors; 2024 int idx = 0; 2025 int dr = r10_bio->devs[0].devnum; 2026 int dw = r10_bio->devs[1].devnum; 2027 2028 while (sectors) { 2029 int s = sectors; 2030 struct md_rdev *rdev; 2031 sector_t addr; 2032 int ok; 2033 2034 if (s > (PAGE_SIZE>>9)) 2035 s = PAGE_SIZE >> 9; 2036 2037 rdev = conf->mirrors[dr].rdev; 2038 addr = r10_bio->devs[0].addr + sect, 2039 ok = sync_page_io(rdev, 2040 addr, 2041 s << 9, 2042 bio->bi_io_vec[idx].bv_page, 2043 READ, false); 2044 if (ok) { 2045 rdev = conf->mirrors[dw].rdev; 2046 addr = r10_bio->devs[1].addr + sect; 2047 ok = sync_page_io(rdev, 2048 addr, 2049 s << 9, 2050 bio->bi_io_vec[idx].bv_page, 2051 WRITE, false); 2052 if (!ok) { 2053 set_bit(WriteErrorSeen, &rdev->flags); 2054 if (!test_and_set_bit(WantReplacement, 2055 &rdev->flags)) 2056 set_bit(MD_RECOVERY_NEEDED, 2057 &rdev->mddev->recovery); 2058 } 2059 } 2060 if (!ok) { 2061 /* We don't worry if we cannot set a bad block - 2062 * it really is bad so there is no loss in not 2063 * recording it yet 2064 */ 2065 rdev_set_badblocks(rdev, addr, s, 0); 2066 2067 if (rdev != conf->mirrors[dw].rdev) { 2068 /* need bad block on destination too */ 2069 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2070 addr = r10_bio->devs[1].addr + sect; 2071 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2072 if (!ok) { 2073 /* just abort the recovery */ 2074 printk(KERN_NOTICE 2075 "md/raid10:%s: recovery aborted" 2076 " due to read error\n", 2077 mdname(mddev)); 2078 2079 conf->mirrors[dw].recovery_disabled 2080 = mddev->recovery_disabled; 2081 set_bit(MD_RECOVERY_INTR, 2082 &mddev->recovery); 2083 break; 2084 } 2085 } 2086 } 2087 2088 sectors -= s; 2089 sect += s; 2090 idx++; 2091 } 2092 } 2093 2094 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2095 { 2096 struct r10conf *conf = mddev->private; 2097 int d; 2098 struct bio *wbio, *wbio2; 2099 2100 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2101 fix_recovery_read_error(r10_bio); 2102 end_sync_request(r10_bio); 2103 return; 2104 } 2105 2106 /* 2107 * share the pages with the first bio 2108 * and submit the write request 2109 */ 2110 d = r10_bio->devs[1].devnum; 2111 wbio = r10_bio->devs[1].bio; 2112 wbio2 = r10_bio->devs[1].repl_bio; 2113 if (wbio->bi_end_io) { 2114 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2115 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 2116 generic_make_request(wbio); 2117 } 2118 if (wbio2 && wbio2->bi_end_io) { 2119 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2120 md_sync_acct(conf->mirrors[d].replacement->bdev, 2121 wbio2->bi_size >> 9); 2122 generic_make_request(wbio2); 2123 } 2124 } 2125 2126 2127 /* 2128 * Used by fix_read_error() to decay the per rdev read_errors. 2129 * We halve the read error count for every hour that has elapsed 2130 * since the last recorded read error. 2131 * 2132 */ 2133 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2134 { 2135 struct timespec cur_time_mon; 2136 unsigned long hours_since_last; 2137 unsigned int read_errors = atomic_read(&rdev->read_errors); 2138 2139 ktime_get_ts(&cur_time_mon); 2140 2141 if (rdev->last_read_error.tv_sec == 0 && 2142 rdev->last_read_error.tv_nsec == 0) { 2143 /* first time we've seen a read error */ 2144 rdev->last_read_error = cur_time_mon; 2145 return; 2146 } 2147 2148 hours_since_last = (cur_time_mon.tv_sec - 2149 rdev->last_read_error.tv_sec) / 3600; 2150 2151 rdev->last_read_error = cur_time_mon; 2152 2153 /* 2154 * if hours_since_last is > the number of bits in read_errors 2155 * just set read errors to 0. We do this to avoid 2156 * overflowing the shift of read_errors by hours_since_last. 2157 */ 2158 if (hours_since_last >= 8 * sizeof(read_errors)) 2159 atomic_set(&rdev->read_errors, 0); 2160 else 2161 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2162 } 2163 2164 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2165 int sectors, struct page *page, int rw) 2166 { 2167 sector_t first_bad; 2168 int bad_sectors; 2169 2170 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2171 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2172 return -1; 2173 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2174 /* success */ 2175 return 1; 2176 if (rw == WRITE) { 2177 set_bit(WriteErrorSeen, &rdev->flags); 2178 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2179 set_bit(MD_RECOVERY_NEEDED, 2180 &rdev->mddev->recovery); 2181 } 2182 /* need to record an error - either for the block or the device */ 2183 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2184 md_error(rdev->mddev, rdev); 2185 return 0; 2186 } 2187 2188 /* 2189 * This is a kernel thread which: 2190 * 2191 * 1. Retries failed read operations on working mirrors. 2192 * 2. Updates the raid superblock when problems encounter. 2193 * 3. Performs writes following reads for array synchronising. 2194 */ 2195 2196 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2197 { 2198 int sect = 0; /* Offset from r10_bio->sector */ 2199 int sectors = r10_bio->sectors; 2200 struct md_rdev*rdev; 2201 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2202 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2203 2204 /* still own a reference to this rdev, so it cannot 2205 * have been cleared recently. 2206 */ 2207 rdev = conf->mirrors[d].rdev; 2208 2209 if (test_bit(Faulty, &rdev->flags)) 2210 /* drive has already been failed, just ignore any 2211 more fix_read_error() attempts */ 2212 return; 2213 2214 check_decay_read_errors(mddev, rdev); 2215 atomic_inc(&rdev->read_errors); 2216 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2217 char b[BDEVNAME_SIZE]; 2218 bdevname(rdev->bdev, b); 2219 2220 printk(KERN_NOTICE 2221 "md/raid10:%s: %s: Raid device exceeded " 2222 "read_error threshold [cur %d:max %d]\n", 2223 mdname(mddev), b, 2224 atomic_read(&rdev->read_errors), max_read_errors); 2225 printk(KERN_NOTICE 2226 "md/raid10:%s: %s: Failing raid device\n", 2227 mdname(mddev), b); 2228 md_error(mddev, conf->mirrors[d].rdev); 2229 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2230 return; 2231 } 2232 2233 while(sectors) { 2234 int s = sectors; 2235 int sl = r10_bio->read_slot; 2236 int success = 0; 2237 int start; 2238 2239 if (s > (PAGE_SIZE>>9)) 2240 s = PAGE_SIZE >> 9; 2241 2242 rcu_read_lock(); 2243 do { 2244 sector_t first_bad; 2245 int bad_sectors; 2246 2247 d = r10_bio->devs[sl].devnum; 2248 rdev = rcu_dereference(conf->mirrors[d].rdev); 2249 if (rdev && 2250 !test_bit(Unmerged, &rdev->flags) && 2251 test_bit(In_sync, &rdev->flags) && 2252 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2253 &first_bad, &bad_sectors) == 0) { 2254 atomic_inc(&rdev->nr_pending); 2255 rcu_read_unlock(); 2256 success = sync_page_io(rdev, 2257 r10_bio->devs[sl].addr + 2258 sect, 2259 s<<9, 2260 conf->tmppage, READ, false); 2261 rdev_dec_pending(rdev, mddev); 2262 rcu_read_lock(); 2263 if (success) 2264 break; 2265 } 2266 sl++; 2267 if (sl == conf->copies) 2268 sl = 0; 2269 } while (!success && sl != r10_bio->read_slot); 2270 rcu_read_unlock(); 2271 2272 if (!success) { 2273 /* Cannot read from anywhere, just mark the block 2274 * as bad on the first device to discourage future 2275 * reads. 2276 */ 2277 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2278 rdev = conf->mirrors[dn].rdev; 2279 2280 if (!rdev_set_badblocks( 2281 rdev, 2282 r10_bio->devs[r10_bio->read_slot].addr 2283 + sect, 2284 s, 0)) { 2285 md_error(mddev, rdev); 2286 r10_bio->devs[r10_bio->read_slot].bio 2287 = IO_BLOCKED; 2288 } 2289 break; 2290 } 2291 2292 start = sl; 2293 /* write it back and re-read */ 2294 rcu_read_lock(); 2295 while (sl != r10_bio->read_slot) { 2296 char b[BDEVNAME_SIZE]; 2297 2298 if (sl==0) 2299 sl = conf->copies; 2300 sl--; 2301 d = r10_bio->devs[sl].devnum; 2302 rdev = rcu_dereference(conf->mirrors[d].rdev); 2303 if (!rdev || 2304 test_bit(Unmerged, &rdev->flags) || 2305 !test_bit(In_sync, &rdev->flags)) 2306 continue; 2307 2308 atomic_inc(&rdev->nr_pending); 2309 rcu_read_unlock(); 2310 if (r10_sync_page_io(rdev, 2311 r10_bio->devs[sl].addr + 2312 sect, 2313 s<<9, conf->tmppage, WRITE) 2314 == 0) { 2315 /* Well, this device is dead */ 2316 printk(KERN_NOTICE 2317 "md/raid10:%s: read correction " 2318 "write failed" 2319 " (%d sectors at %llu on %s)\n", 2320 mdname(mddev), s, 2321 (unsigned long long)( 2322 sect + 2323 choose_data_offset(r10_bio, 2324 rdev)), 2325 bdevname(rdev->bdev, b)); 2326 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2327 "drive\n", 2328 mdname(mddev), 2329 bdevname(rdev->bdev, b)); 2330 } 2331 rdev_dec_pending(rdev, mddev); 2332 rcu_read_lock(); 2333 } 2334 sl = start; 2335 while (sl != r10_bio->read_slot) { 2336 char b[BDEVNAME_SIZE]; 2337 2338 if (sl==0) 2339 sl = conf->copies; 2340 sl--; 2341 d = r10_bio->devs[sl].devnum; 2342 rdev = rcu_dereference(conf->mirrors[d].rdev); 2343 if (!rdev || 2344 !test_bit(In_sync, &rdev->flags)) 2345 continue; 2346 2347 atomic_inc(&rdev->nr_pending); 2348 rcu_read_unlock(); 2349 switch (r10_sync_page_io(rdev, 2350 r10_bio->devs[sl].addr + 2351 sect, 2352 s<<9, conf->tmppage, 2353 READ)) { 2354 case 0: 2355 /* Well, this device is dead */ 2356 printk(KERN_NOTICE 2357 "md/raid10:%s: unable to read back " 2358 "corrected sectors" 2359 " (%d sectors at %llu on %s)\n", 2360 mdname(mddev), s, 2361 (unsigned long long)( 2362 sect + 2363 choose_data_offset(r10_bio, rdev)), 2364 bdevname(rdev->bdev, b)); 2365 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2366 "drive\n", 2367 mdname(mddev), 2368 bdevname(rdev->bdev, b)); 2369 break; 2370 case 1: 2371 printk(KERN_INFO 2372 "md/raid10:%s: read error corrected" 2373 " (%d sectors at %llu on %s)\n", 2374 mdname(mddev), s, 2375 (unsigned long long)( 2376 sect + 2377 choose_data_offset(r10_bio, rdev)), 2378 bdevname(rdev->bdev, b)); 2379 atomic_add(s, &rdev->corrected_errors); 2380 } 2381 2382 rdev_dec_pending(rdev, mddev); 2383 rcu_read_lock(); 2384 } 2385 rcu_read_unlock(); 2386 2387 sectors -= s; 2388 sect += s; 2389 } 2390 } 2391 2392 static void bi_complete(struct bio *bio, int error) 2393 { 2394 complete((struct completion *)bio->bi_private); 2395 } 2396 2397 static int submit_bio_wait(int rw, struct bio *bio) 2398 { 2399 struct completion event; 2400 rw |= REQ_SYNC; 2401 2402 init_completion(&event); 2403 bio->bi_private = &event; 2404 bio->bi_end_io = bi_complete; 2405 submit_bio(rw, bio); 2406 wait_for_completion(&event); 2407 2408 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2409 } 2410 2411 static int narrow_write_error(struct r10bio *r10_bio, int i) 2412 { 2413 struct bio *bio = r10_bio->master_bio; 2414 struct mddev *mddev = r10_bio->mddev; 2415 struct r10conf *conf = mddev->private; 2416 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2417 /* bio has the data to be written to slot 'i' where 2418 * we just recently had a write error. 2419 * We repeatedly clone the bio and trim down to one block, 2420 * then try the write. Where the write fails we record 2421 * a bad block. 2422 * It is conceivable that the bio doesn't exactly align with 2423 * blocks. We must handle this. 2424 * 2425 * We currently own a reference to the rdev. 2426 */ 2427 2428 int block_sectors; 2429 sector_t sector; 2430 int sectors; 2431 int sect_to_write = r10_bio->sectors; 2432 int ok = 1; 2433 2434 if (rdev->badblocks.shift < 0) 2435 return 0; 2436 2437 block_sectors = 1 << rdev->badblocks.shift; 2438 sector = r10_bio->sector; 2439 sectors = ((r10_bio->sector + block_sectors) 2440 & ~(sector_t)(block_sectors - 1)) 2441 - sector; 2442 2443 while (sect_to_write) { 2444 struct bio *wbio; 2445 if (sectors > sect_to_write) 2446 sectors = sect_to_write; 2447 /* Write at 'sector' for 'sectors' */ 2448 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2449 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2450 wbio->bi_sector = (r10_bio->devs[i].addr+ 2451 choose_data_offset(r10_bio, rdev) + 2452 (sector - r10_bio->sector)); 2453 wbio->bi_bdev = rdev->bdev; 2454 if (submit_bio_wait(WRITE, wbio) == 0) 2455 /* Failure! */ 2456 ok = rdev_set_badblocks(rdev, sector, 2457 sectors, 0) 2458 && ok; 2459 2460 bio_put(wbio); 2461 sect_to_write -= sectors; 2462 sector += sectors; 2463 sectors = block_sectors; 2464 } 2465 return ok; 2466 } 2467 2468 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2469 { 2470 int slot = r10_bio->read_slot; 2471 struct bio *bio; 2472 struct r10conf *conf = mddev->private; 2473 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2474 char b[BDEVNAME_SIZE]; 2475 unsigned long do_sync; 2476 int max_sectors; 2477 2478 /* we got a read error. Maybe the drive is bad. Maybe just 2479 * the block and we can fix it. 2480 * We freeze all other IO, and try reading the block from 2481 * other devices. When we find one, we re-write 2482 * and check it that fixes the read error. 2483 * This is all done synchronously while the array is 2484 * frozen. 2485 */ 2486 bio = r10_bio->devs[slot].bio; 2487 bdevname(bio->bi_bdev, b); 2488 bio_put(bio); 2489 r10_bio->devs[slot].bio = NULL; 2490 2491 if (mddev->ro == 0) { 2492 freeze_array(conf); 2493 fix_read_error(conf, mddev, r10_bio); 2494 unfreeze_array(conf); 2495 } else 2496 r10_bio->devs[slot].bio = IO_BLOCKED; 2497 2498 rdev_dec_pending(rdev, mddev); 2499 2500 read_more: 2501 rdev = read_balance(conf, r10_bio, &max_sectors); 2502 if (rdev == NULL) { 2503 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2504 " read error for block %llu\n", 2505 mdname(mddev), b, 2506 (unsigned long long)r10_bio->sector); 2507 raid_end_bio_io(r10_bio); 2508 return; 2509 } 2510 2511 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2512 slot = r10_bio->read_slot; 2513 printk_ratelimited( 2514 KERN_ERR 2515 "md/raid10:%s: %s: redirecting" 2516 "sector %llu to another mirror\n", 2517 mdname(mddev), 2518 bdevname(rdev->bdev, b), 2519 (unsigned long long)r10_bio->sector); 2520 bio = bio_clone_mddev(r10_bio->master_bio, 2521 GFP_NOIO, mddev); 2522 md_trim_bio(bio, 2523 r10_bio->sector - bio->bi_sector, 2524 max_sectors); 2525 r10_bio->devs[slot].bio = bio; 2526 r10_bio->devs[slot].rdev = rdev; 2527 bio->bi_sector = r10_bio->devs[slot].addr 2528 + choose_data_offset(r10_bio, rdev); 2529 bio->bi_bdev = rdev->bdev; 2530 bio->bi_rw = READ | do_sync; 2531 bio->bi_private = r10_bio; 2532 bio->bi_end_io = raid10_end_read_request; 2533 if (max_sectors < r10_bio->sectors) { 2534 /* Drat - have to split this up more */ 2535 struct bio *mbio = r10_bio->master_bio; 2536 int sectors_handled = 2537 r10_bio->sector + max_sectors 2538 - mbio->bi_sector; 2539 r10_bio->sectors = max_sectors; 2540 spin_lock_irq(&conf->device_lock); 2541 if (mbio->bi_phys_segments == 0) 2542 mbio->bi_phys_segments = 2; 2543 else 2544 mbio->bi_phys_segments++; 2545 spin_unlock_irq(&conf->device_lock); 2546 generic_make_request(bio); 2547 2548 r10_bio = mempool_alloc(conf->r10bio_pool, 2549 GFP_NOIO); 2550 r10_bio->master_bio = mbio; 2551 r10_bio->sectors = (mbio->bi_size >> 9) 2552 - sectors_handled; 2553 r10_bio->state = 0; 2554 set_bit(R10BIO_ReadError, 2555 &r10_bio->state); 2556 r10_bio->mddev = mddev; 2557 r10_bio->sector = mbio->bi_sector 2558 + sectors_handled; 2559 2560 goto read_more; 2561 } else 2562 generic_make_request(bio); 2563 } 2564 2565 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2566 { 2567 /* Some sort of write request has finished and it 2568 * succeeded in writing where we thought there was a 2569 * bad block. So forget the bad block. 2570 * Or possibly if failed and we need to record 2571 * a bad block. 2572 */ 2573 int m; 2574 struct md_rdev *rdev; 2575 2576 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2577 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2578 for (m = 0; m < conf->copies; m++) { 2579 int dev = r10_bio->devs[m].devnum; 2580 rdev = conf->mirrors[dev].rdev; 2581 if (r10_bio->devs[m].bio == NULL) 2582 continue; 2583 if (test_bit(BIO_UPTODATE, 2584 &r10_bio->devs[m].bio->bi_flags)) { 2585 rdev_clear_badblocks( 2586 rdev, 2587 r10_bio->devs[m].addr, 2588 r10_bio->sectors, 0); 2589 } else { 2590 if (!rdev_set_badblocks( 2591 rdev, 2592 r10_bio->devs[m].addr, 2593 r10_bio->sectors, 0)) 2594 md_error(conf->mddev, rdev); 2595 } 2596 rdev = conf->mirrors[dev].replacement; 2597 if (r10_bio->devs[m].repl_bio == NULL) 2598 continue; 2599 if (test_bit(BIO_UPTODATE, 2600 &r10_bio->devs[m].repl_bio->bi_flags)) { 2601 rdev_clear_badblocks( 2602 rdev, 2603 r10_bio->devs[m].addr, 2604 r10_bio->sectors, 0); 2605 } else { 2606 if (!rdev_set_badblocks( 2607 rdev, 2608 r10_bio->devs[m].addr, 2609 r10_bio->sectors, 0)) 2610 md_error(conf->mddev, rdev); 2611 } 2612 } 2613 put_buf(r10_bio); 2614 } else { 2615 for (m = 0; m < conf->copies; m++) { 2616 int dev = r10_bio->devs[m].devnum; 2617 struct bio *bio = r10_bio->devs[m].bio; 2618 rdev = conf->mirrors[dev].rdev; 2619 if (bio == IO_MADE_GOOD) { 2620 rdev_clear_badblocks( 2621 rdev, 2622 r10_bio->devs[m].addr, 2623 r10_bio->sectors, 0); 2624 rdev_dec_pending(rdev, conf->mddev); 2625 } else if (bio != NULL && 2626 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2627 if (!narrow_write_error(r10_bio, m)) { 2628 md_error(conf->mddev, rdev); 2629 set_bit(R10BIO_Degraded, 2630 &r10_bio->state); 2631 } 2632 rdev_dec_pending(rdev, conf->mddev); 2633 } 2634 bio = r10_bio->devs[m].repl_bio; 2635 rdev = conf->mirrors[dev].replacement; 2636 if (rdev && bio == IO_MADE_GOOD) { 2637 rdev_clear_badblocks( 2638 rdev, 2639 r10_bio->devs[m].addr, 2640 r10_bio->sectors, 0); 2641 rdev_dec_pending(rdev, conf->mddev); 2642 } 2643 } 2644 if (test_bit(R10BIO_WriteError, 2645 &r10_bio->state)) 2646 close_write(r10_bio); 2647 raid_end_bio_io(r10_bio); 2648 } 2649 } 2650 2651 static void raid10d(struct mddev *mddev) 2652 { 2653 struct r10bio *r10_bio; 2654 unsigned long flags; 2655 struct r10conf *conf = mddev->private; 2656 struct list_head *head = &conf->retry_list; 2657 struct blk_plug plug; 2658 2659 md_check_recovery(mddev); 2660 2661 blk_start_plug(&plug); 2662 for (;;) { 2663 2664 flush_pending_writes(conf); 2665 2666 spin_lock_irqsave(&conf->device_lock, flags); 2667 if (list_empty(head)) { 2668 spin_unlock_irqrestore(&conf->device_lock, flags); 2669 break; 2670 } 2671 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2672 list_del(head->prev); 2673 conf->nr_queued--; 2674 spin_unlock_irqrestore(&conf->device_lock, flags); 2675 2676 mddev = r10_bio->mddev; 2677 conf = mddev->private; 2678 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2679 test_bit(R10BIO_WriteError, &r10_bio->state)) 2680 handle_write_completed(conf, r10_bio); 2681 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2682 reshape_request_write(mddev, r10_bio); 2683 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2684 sync_request_write(mddev, r10_bio); 2685 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2686 recovery_request_write(mddev, r10_bio); 2687 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2688 handle_read_error(mddev, r10_bio); 2689 else { 2690 /* just a partial read to be scheduled from a 2691 * separate context 2692 */ 2693 int slot = r10_bio->read_slot; 2694 generic_make_request(r10_bio->devs[slot].bio); 2695 } 2696 2697 cond_resched(); 2698 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2699 md_check_recovery(mddev); 2700 } 2701 blk_finish_plug(&plug); 2702 } 2703 2704 2705 static int init_resync(struct r10conf *conf) 2706 { 2707 int buffs; 2708 int i; 2709 2710 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2711 BUG_ON(conf->r10buf_pool); 2712 conf->have_replacement = 0; 2713 for (i = 0; i < conf->geo.raid_disks; i++) 2714 if (conf->mirrors[i].replacement) 2715 conf->have_replacement = 1; 2716 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2717 if (!conf->r10buf_pool) 2718 return -ENOMEM; 2719 conf->next_resync = 0; 2720 return 0; 2721 } 2722 2723 /* 2724 * perform a "sync" on one "block" 2725 * 2726 * We need to make sure that no normal I/O request - particularly write 2727 * requests - conflict with active sync requests. 2728 * 2729 * This is achieved by tracking pending requests and a 'barrier' concept 2730 * that can be installed to exclude normal IO requests. 2731 * 2732 * Resync and recovery are handled very differently. 2733 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2734 * 2735 * For resync, we iterate over virtual addresses, read all copies, 2736 * and update if there are differences. If only one copy is live, 2737 * skip it. 2738 * For recovery, we iterate over physical addresses, read a good 2739 * value for each non-in_sync drive, and over-write. 2740 * 2741 * So, for recovery we may have several outstanding complex requests for a 2742 * given address, one for each out-of-sync device. We model this by allocating 2743 * a number of r10_bio structures, one for each out-of-sync device. 2744 * As we setup these structures, we collect all bio's together into a list 2745 * which we then process collectively to add pages, and then process again 2746 * to pass to generic_make_request. 2747 * 2748 * The r10_bio structures are linked using a borrowed master_bio pointer. 2749 * This link is counted in ->remaining. When the r10_bio that points to NULL 2750 * has its remaining count decremented to 0, the whole complex operation 2751 * is complete. 2752 * 2753 */ 2754 2755 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2756 int *skipped, int go_faster) 2757 { 2758 struct r10conf *conf = mddev->private; 2759 struct r10bio *r10_bio; 2760 struct bio *biolist = NULL, *bio; 2761 sector_t max_sector, nr_sectors; 2762 int i; 2763 int max_sync; 2764 sector_t sync_blocks; 2765 sector_t sectors_skipped = 0; 2766 int chunks_skipped = 0; 2767 sector_t chunk_mask = conf->geo.chunk_mask; 2768 2769 if (!conf->r10buf_pool) 2770 if (init_resync(conf)) 2771 return 0; 2772 2773 skipped: 2774 max_sector = mddev->dev_sectors; 2775 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2776 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2777 max_sector = mddev->resync_max_sectors; 2778 if (sector_nr >= max_sector) { 2779 /* If we aborted, we need to abort the 2780 * sync on the 'current' bitmap chucks (there can 2781 * be several when recovering multiple devices). 2782 * as we may have started syncing it but not finished. 2783 * We can find the current address in 2784 * mddev->curr_resync, but for recovery, 2785 * we need to convert that to several 2786 * virtual addresses. 2787 */ 2788 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2789 end_reshape(conf); 2790 return 0; 2791 } 2792 2793 if (mddev->curr_resync < max_sector) { /* aborted */ 2794 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2795 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2796 &sync_blocks, 1); 2797 else for (i = 0; i < conf->geo.raid_disks; i++) { 2798 sector_t sect = 2799 raid10_find_virt(conf, mddev->curr_resync, i); 2800 bitmap_end_sync(mddev->bitmap, sect, 2801 &sync_blocks, 1); 2802 } 2803 } else { 2804 /* completed sync */ 2805 if ((!mddev->bitmap || conf->fullsync) 2806 && conf->have_replacement 2807 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2808 /* Completed a full sync so the replacements 2809 * are now fully recovered. 2810 */ 2811 for (i = 0; i < conf->geo.raid_disks; i++) 2812 if (conf->mirrors[i].replacement) 2813 conf->mirrors[i].replacement 2814 ->recovery_offset 2815 = MaxSector; 2816 } 2817 conf->fullsync = 0; 2818 } 2819 bitmap_close_sync(mddev->bitmap); 2820 close_sync(conf); 2821 *skipped = 1; 2822 return sectors_skipped; 2823 } 2824 2825 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2826 return reshape_request(mddev, sector_nr, skipped); 2827 2828 if (chunks_skipped >= conf->geo.raid_disks) { 2829 /* if there has been nothing to do on any drive, 2830 * then there is nothing to do at all.. 2831 */ 2832 *skipped = 1; 2833 return (max_sector - sector_nr) + sectors_skipped; 2834 } 2835 2836 if (max_sector > mddev->resync_max) 2837 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2838 2839 /* make sure whole request will fit in a chunk - if chunks 2840 * are meaningful 2841 */ 2842 if (conf->geo.near_copies < conf->geo.raid_disks && 2843 max_sector > (sector_nr | chunk_mask)) 2844 max_sector = (sector_nr | chunk_mask) + 1; 2845 /* 2846 * If there is non-resync activity waiting for us then 2847 * put in a delay to throttle resync. 2848 */ 2849 if (!go_faster && conf->nr_waiting) 2850 msleep_interruptible(1000); 2851 2852 /* Again, very different code for resync and recovery. 2853 * Both must result in an r10bio with a list of bios that 2854 * have bi_end_io, bi_sector, bi_bdev set, 2855 * and bi_private set to the r10bio. 2856 * For recovery, we may actually create several r10bios 2857 * with 2 bios in each, that correspond to the bios in the main one. 2858 * In this case, the subordinate r10bios link back through a 2859 * borrowed master_bio pointer, and the counter in the master 2860 * includes a ref from each subordinate. 2861 */ 2862 /* First, we decide what to do and set ->bi_end_io 2863 * To end_sync_read if we want to read, and 2864 * end_sync_write if we will want to write. 2865 */ 2866 2867 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2868 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2869 /* recovery... the complicated one */ 2870 int j; 2871 r10_bio = NULL; 2872 2873 for (i = 0 ; i < conf->geo.raid_disks; i++) { 2874 int still_degraded; 2875 struct r10bio *rb2; 2876 sector_t sect; 2877 int must_sync; 2878 int any_working; 2879 struct mirror_info *mirror = &conf->mirrors[i]; 2880 2881 if ((mirror->rdev == NULL || 2882 test_bit(In_sync, &mirror->rdev->flags)) 2883 && 2884 (mirror->replacement == NULL || 2885 test_bit(Faulty, 2886 &mirror->replacement->flags))) 2887 continue; 2888 2889 still_degraded = 0; 2890 /* want to reconstruct this device */ 2891 rb2 = r10_bio; 2892 sect = raid10_find_virt(conf, sector_nr, i); 2893 /* Unless we are doing a full sync, or a replacement 2894 * we only need to recover the block if it is set in 2895 * the bitmap 2896 */ 2897 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2898 &sync_blocks, 1); 2899 if (sync_blocks < max_sync) 2900 max_sync = sync_blocks; 2901 if (!must_sync && 2902 mirror->replacement == NULL && 2903 !conf->fullsync) { 2904 /* yep, skip the sync_blocks here, but don't assume 2905 * that there will never be anything to do here 2906 */ 2907 chunks_skipped = -1; 2908 continue; 2909 } 2910 2911 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2912 raise_barrier(conf, rb2 != NULL); 2913 atomic_set(&r10_bio->remaining, 0); 2914 2915 r10_bio->master_bio = (struct bio*)rb2; 2916 if (rb2) 2917 atomic_inc(&rb2->remaining); 2918 r10_bio->mddev = mddev; 2919 set_bit(R10BIO_IsRecover, &r10_bio->state); 2920 r10_bio->sector = sect; 2921 2922 raid10_find_phys(conf, r10_bio); 2923 2924 /* Need to check if the array will still be 2925 * degraded 2926 */ 2927 for (j = 0; j < conf->geo.raid_disks; j++) 2928 if (conf->mirrors[j].rdev == NULL || 2929 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 2930 still_degraded = 1; 2931 break; 2932 } 2933 2934 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2935 &sync_blocks, still_degraded); 2936 2937 any_working = 0; 2938 for (j=0; j<conf->copies;j++) { 2939 int k; 2940 int d = r10_bio->devs[j].devnum; 2941 sector_t from_addr, to_addr; 2942 struct md_rdev *rdev; 2943 sector_t sector, first_bad; 2944 int bad_sectors; 2945 if (!conf->mirrors[d].rdev || 2946 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 2947 continue; 2948 /* This is where we read from */ 2949 any_working = 1; 2950 rdev = conf->mirrors[d].rdev; 2951 sector = r10_bio->devs[j].addr; 2952 2953 if (is_badblock(rdev, sector, max_sync, 2954 &first_bad, &bad_sectors)) { 2955 if (first_bad > sector) 2956 max_sync = first_bad - sector; 2957 else { 2958 bad_sectors -= (sector 2959 - first_bad); 2960 if (max_sync > bad_sectors) 2961 max_sync = bad_sectors; 2962 continue; 2963 } 2964 } 2965 bio = r10_bio->devs[0].bio; 2966 bio->bi_next = biolist; 2967 biolist = bio; 2968 bio->bi_private = r10_bio; 2969 bio->bi_end_io = end_sync_read; 2970 bio->bi_rw = READ; 2971 from_addr = r10_bio->devs[j].addr; 2972 bio->bi_sector = from_addr + rdev->data_offset; 2973 bio->bi_bdev = rdev->bdev; 2974 atomic_inc(&rdev->nr_pending); 2975 /* and we write to 'i' (if not in_sync) */ 2976 2977 for (k=0; k<conf->copies; k++) 2978 if (r10_bio->devs[k].devnum == i) 2979 break; 2980 BUG_ON(k == conf->copies); 2981 to_addr = r10_bio->devs[k].addr; 2982 r10_bio->devs[0].devnum = d; 2983 r10_bio->devs[0].addr = from_addr; 2984 r10_bio->devs[1].devnum = i; 2985 r10_bio->devs[1].addr = to_addr; 2986 2987 rdev = mirror->rdev; 2988 if (!test_bit(In_sync, &rdev->flags)) { 2989 bio = r10_bio->devs[1].bio; 2990 bio->bi_next = biolist; 2991 biolist = bio; 2992 bio->bi_private = r10_bio; 2993 bio->bi_end_io = end_sync_write; 2994 bio->bi_rw = WRITE; 2995 bio->bi_sector = to_addr 2996 + rdev->data_offset; 2997 bio->bi_bdev = rdev->bdev; 2998 atomic_inc(&r10_bio->remaining); 2999 } else 3000 r10_bio->devs[1].bio->bi_end_io = NULL; 3001 3002 /* and maybe write to replacement */ 3003 bio = r10_bio->devs[1].repl_bio; 3004 if (bio) 3005 bio->bi_end_io = NULL; 3006 rdev = mirror->replacement; 3007 /* Note: if rdev != NULL, then bio 3008 * cannot be NULL as r10buf_pool_alloc will 3009 * have allocated it. 3010 * So the second test here is pointless. 3011 * But it keeps semantic-checkers happy, and 3012 * this comment keeps human reviewers 3013 * happy. 3014 */ 3015 if (rdev == NULL || bio == NULL || 3016 test_bit(Faulty, &rdev->flags)) 3017 break; 3018 bio->bi_next = biolist; 3019 biolist = bio; 3020 bio->bi_private = r10_bio; 3021 bio->bi_end_io = end_sync_write; 3022 bio->bi_rw = WRITE; 3023 bio->bi_sector = to_addr + rdev->data_offset; 3024 bio->bi_bdev = rdev->bdev; 3025 atomic_inc(&r10_bio->remaining); 3026 break; 3027 } 3028 if (j == conf->copies) { 3029 /* Cannot recover, so abort the recovery or 3030 * record a bad block */ 3031 put_buf(r10_bio); 3032 if (rb2) 3033 atomic_dec(&rb2->remaining); 3034 r10_bio = rb2; 3035 if (any_working) { 3036 /* problem is that there are bad blocks 3037 * on other device(s) 3038 */ 3039 int k; 3040 for (k = 0; k < conf->copies; k++) 3041 if (r10_bio->devs[k].devnum == i) 3042 break; 3043 if (!test_bit(In_sync, 3044 &mirror->rdev->flags) 3045 && !rdev_set_badblocks( 3046 mirror->rdev, 3047 r10_bio->devs[k].addr, 3048 max_sync, 0)) 3049 any_working = 0; 3050 if (mirror->replacement && 3051 !rdev_set_badblocks( 3052 mirror->replacement, 3053 r10_bio->devs[k].addr, 3054 max_sync, 0)) 3055 any_working = 0; 3056 } 3057 if (!any_working) { 3058 if (!test_and_set_bit(MD_RECOVERY_INTR, 3059 &mddev->recovery)) 3060 printk(KERN_INFO "md/raid10:%s: insufficient " 3061 "working devices for recovery.\n", 3062 mdname(mddev)); 3063 mirror->recovery_disabled 3064 = mddev->recovery_disabled; 3065 } 3066 break; 3067 } 3068 } 3069 if (biolist == NULL) { 3070 while (r10_bio) { 3071 struct r10bio *rb2 = r10_bio; 3072 r10_bio = (struct r10bio*) rb2->master_bio; 3073 rb2->master_bio = NULL; 3074 put_buf(rb2); 3075 } 3076 goto giveup; 3077 } 3078 } else { 3079 /* resync. Schedule a read for every block at this virt offset */ 3080 int count = 0; 3081 3082 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3083 3084 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3085 &sync_blocks, mddev->degraded) && 3086 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3087 &mddev->recovery)) { 3088 /* We can skip this block */ 3089 *skipped = 1; 3090 return sync_blocks + sectors_skipped; 3091 } 3092 if (sync_blocks < max_sync) 3093 max_sync = sync_blocks; 3094 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3095 3096 r10_bio->mddev = mddev; 3097 atomic_set(&r10_bio->remaining, 0); 3098 raise_barrier(conf, 0); 3099 conf->next_resync = sector_nr; 3100 3101 r10_bio->master_bio = NULL; 3102 r10_bio->sector = sector_nr; 3103 set_bit(R10BIO_IsSync, &r10_bio->state); 3104 raid10_find_phys(conf, r10_bio); 3105 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3106 3107 for (i = 0; i < conf->copies; i++) { 3108 int d = r10_bio->devs[i].devnum; 3109 sector_t first_bad, sector; 3110 int bad_sectors; 3111 3112 if (r10_bio->devs[i].repl_bio) 3113 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3114 3115 bio = r10_bio->devs[i].bio; 3116 bio->bi_end_io = NULL; 3117 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3118 if (conf->mirrors[d].rdev == NULL || 3119 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3120 continue; 3121 sector = r10_bio->devs[i].addr; 3122 if (is_badblock(conf->mirrors[d].rdev, 3123 sector, max_sync, 3124 &first_bad, &bad_sectors)) { 3125 if (first_bad > sector) 3126 max_sync = first_bad - sector; 3127 else { 3128 bad_sectors -= (sector - first_bad); 3129 if (max_sync > bad_sectors) 3130 max_sync = max_sync; 3131 continue; 3132 } 3133 } 3134 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3135 atomic_inc(&r10_bio->remaining); 3136 bio->bi_next = biolist; 3137 biolist = bio; 3138 bio->bi_private = r10_bio; 3139 bio->bi_end_io = end_sync_read; 3140 bio->bi_rw = READ; 3141 bio->bi_sector = sector + 3142 conf->mirrors[d].rdev->data_offset; 3143 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3144 count++; 3145 3146 if (conf->mirrors[d].replacement == NULL || 3147 test_bit(Faulty, 3148 &conf->mirrors[d].replacement->flags)) 3149 continue; 3150 3151 /* Need to set up for writing to the replacement */ 3152 bio = r10_bio->devs[i].repl_bio; 3153 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3154 3155 sector = r10_bio->devs[i].addr; 3156 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3157 bio->bi_next = biolist; 3158 biolist = bio; 3159 bio->bi_private = r10_bio; 3160 bio->bi_end_io = end_sync_write; 3161 bio->bi_rw = WRITE; 3162 bio->bi_sector = sector + 3163 conf->mirrors[d].replacement->data_offset; 3164 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3165 count++; 3166 } 3167 3168 if (count < 2) { 3169 for (i=0; i<conf->copies; i++) { 3170 int d = r10_bio->devs[i].devnum; 3171 if (r10_bio->devs[i].bio->bi_end_io) 3172 rdev_dec_pending(conf->mirrors[d].rdev, 3173 mddev); 3174 if (r10_bio->devs[i].repl_bio && 3175 r10_bio->devs[i].repl_bio->bi_end_io) 3176 rdev_dec_pending( 3177 conf->mirrors[d].replacement, 3178 mddev); 3179 } 3180 put_buf(r10_bio); 3181 biolist = NULL; 3182 goto giveup; 3183 } 3184 } 3185 3186 for (bio = biolist; bio ; bio=bio->bi_next) { 3187 3188 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 3189 if (bio->bi_end_io) 3190 bio->bi_flags |= 1 << BIO_UPTODATE; 3191 bio->bi_vcnt = 0; 3192 bio->bi_idx = 0; 3193 bio->bi_phys_segments = 0; 3194 bio->bi_size = 0; 3195 } 3196 3197 nr_sectors = 0; 3198 if (sector_nr + max_sync < max_sector) 3199 max_sector = sector_nr + max_sync; 3200 do { 3201 struct page *page; 3202 int len = PAGE_SIZE; 3203 if (sector_nr + (len>>9) > max_sector) 3204 len = (max_sector - sector_nr) << 9; 3205 if (len == 0) 3206 break; 3207 for (bio= biolist ; bio ; bio=bio->bi_next) { 3208 struct bio *bio2; 3209 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3210 if (bio_add_page(bio, page, len, 0)) 3211 continue; 3212 3213 /* stop here */ 3214 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3215 for (bio2 = biolist; 3216 bio2 && bio2 != bio; 3217 bio2 = bio2->bi_next) { 3218 /* remove last page from this bio */ 3219 bio2->bi_vcnt--; 3220 bio2->bi_size -= len; 3221 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3222 } 3223 goto bio_full; 3224 } 3225 nr_sectors += len>>9; 3226 sector_nr += len>>9; 3227 } while (biolist->bi_vcnt < RESYNC_PAGES); 3228 bio_full: 3229 r10_bio->sectors = nr_sectors; 3230 3231 while (biolist) { 3232 bio = biolist; 3233 biolist = biolist->bi_next; 3234 3235 bio->bi_next = NULL; 3236 r10_bio = bio->bi_private; 3237 r10_bio->sectors = nr_sectors; 3238 3239 if (bio->bi_end_io == end_sync_read) { 3240 md_sync_acct(bio->bi_bdev, nr_sectors); 3241 generic_make_request(bio); 3242 } 3243 } 3244 3245 if (sectors_skipped) 3246 /* pretend they weren't skipped, it makes 3247 * no important difference in this case 3248 */ 3249 md_done_sync(mddev, sectors_skipped, 1); 3250 3251 return sectors_skipped + nr_sectors; 3252 giveup: 3253 /* There is nowhere to write, so all non-sync 3254 * drives must be failed or in resync, all drives 3255 * have a bad block, so try the next chunk... 3256 */ 3257 if (sector_nr + max_sync < max_sector) 3258 max_sector = sector_nr + max_sync; 3259 3260 sectors_skipped += (max_sector - sector_nr); 3261 chunks_skipped ++; 3262 sector_nr = max_sector; 3263 goto skipped; 3264 } 3265 3266 static sector_t 3267 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3268 { 3269 sector_t size; 3270 struct r10conf *conf = mddev->private; 3271 3272 if (!raid_disks) 3273 raid_disks = min(conf->geo.raid_disks, 3274 conf->prev.raid_disks); 3275 if (!sectors) 3276 sectors = conf->dev_sectors; 3277 3278 size = sectors >> conf->geo.chunk_shift; 3279 sector_div(size, conf->geo.far_copies); 3280 size = size * raid_disks; 3281 sector_div(size, conf->geo.near_copies); 3282 3283 return size << conf->geo.chunk_shift; 3284 } 3285 3286 static void calc_sectors(struct r10conf *conf, sector_t size) 3287 { 3288 /* Calculate the number of sectors-per-device that will 3289 * actually be used, and set conf->dev_sectors and 3290 * conf->stride 3291 */ 3292 3293 size = size >> conf->geo.chunk_shift; 3294 sector_div(size, conf->geo.far_copies); 3295 size = size * conf->geo.raid_disks; 3296 sector_div(size, conf->geo.near_copies); 3297 /* 'size' is now the number of chunks in the array */ 3298 /* calculate "used chunks per device" */ 3299 size = size * conf->copies; 3300 3301 /* We need to round up when dividing by raid_disks to 3302 * get the stride size. 3303 */ 3304 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3305 3306 conf->dev_sectors = size << conf->geo.chunk_shift; 3307 3308 if (conf->geo.far_offset) 3309 conf->geo.stride = 1 << conf->geo.chunk_shift; 3310 else { 3311 sector_div(size, conf->geo.far_copies); 3312 conf->geo.stride = size << conf->geo.chunk_shift; 3313 } 3314 } 3315 3316 enum geo_type {geo_new, geo_old, geo_start}; 3317 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3318 { 3319 int nc, fc, fo; 3320 int layout, chunk, disks; 3321 switch (new) { 3322 case geo_old: 3323 layout = mddev->layout; 3324 chunk = mddev->chunk_sectors; 3325 disks = mddev->raid_disks - mddev->delta_disks; 3326 break; 3327 case geo_new: 3328 layout = mddev->new_layout; 3329 chunk = mddev->new_chunk_sectors; 3330 disks = mddev->raid_disks; 3331 break; 3332 default: /* avoid 'may be unused' warnings */ 3333 case geo_start: /* new when starting reshape - raid_disks not 3334 * updated yet. */ 3335 layout = mddev->new_layout; 3336 chunk = mddev->new_chunk_sectors; 3337 disks = mddev->raid_disks + mddev->delta_disks; 3338 break; 3339 } 3340 if (layout >> 17) 3341 return -1; 3342 if (chunk < (PAGE_SIZE >> 9) || 3343 !is_power_of_2(chunk)) 3344 return -2; 3345 nc = layout & 255; 3346 fc = (layout >> 8) & 255; 3347 fo = layout & (1<<16); 3348 geo->raid_disks = disks; 3349 geo->near_copies = nc; 3350 geo->far_copies = fc; 3351 geo->far_offset = fo; 3352 geo->chunk_mask = chunk - 1; 3353 geo->chunk_shift = ffz(~chunk); 3354 return nc*fc; 3355 } 3356 3357 static struct r10conf *setup_conf(struct mddev *mddev) 3358 { 3359 struct r10conf *conf = NULL; 3360 int err = -EINVAL; 3361 struct geom geo; 3362 int copies; 3363 3364 copies = setup_geo(&geo, mddev, geo_new); 3365 3366 if (copies == -2) { 3367 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3368 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3369 mdname(mddev), PAGE_SIZE); 3370 goto out; 3371 } 3372 3373 if (copies < 2 || copies > mddev->raid_disks) { 3374 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3375 mdname(mddev), mddev->new_layout); 3376 goto out; 3377 } 3378 3379 err = -ENOMEM; 3380 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3381 if (!conf) 3382 goto out; 3383 3384 /* FIXME calc properly */ 3385 conf->mirrors = kzalloc(sizeof(struct mirror_info)*(mddev->raid_disks + 3386 max(0,mddev->delta_disks)), 3387 GFP_KERNEL); 3388 if (!conf->mirrors) 3389 goto out; 3390 3391 conf->tmppage = alloc_page(GFP_KERNEL); 3392 if (!conf->tmppage) 3393 goto out; 3394 3395 conf->geo = geo; 3396 conf->copies = copies; 3397 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3398 r10bio_pool_free, conf); 3399 if (!conf->r10bio_pool) 3400 goto out; 3401 3402 calc_sectors(conf, mddev->dev_sectors); 3403 if (mddev->reshape_position == MaxSector) { 3404 conf->prev = conf->geo; 3405 conf->reshape_progress = MaxSector; 3406 } else { 3407 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3408 err = -EINVAL; 3409 goto out; 3410 } 3411 conf->reshape_progress = mddev->reshape_position; 3412 if (conf->prev.far_offset) 3413 conf->prev.stride = 1 << conf->prev.chunk_shift; 3414 else 3415 /* far_copies must be 1 */ 3416 conf->prev.stride = conf->dev_sectors; 3417 } 3418 spin_lock_init(&conf->device_lock); 3419 INIT_LIST_HEAD(&conf->retry_list); 3420 3421 spin_lock_init(&conf->resync_lock); 3422 init_waitqueue_head(&conf->wait_barrier); 3423 3424 conf->thread = md_register_thread(raid10d, mddev, NULL); 3425 if (!conf->thread) 3426 goto out; 3427 3428 conf->mddev = mddev; 3429 return conf; 3430 3431 out: 3432 if (err == -ENOMEM) 3433 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3434 mdname(mddev)); 3435 if (conf) { 3436 if (conf->r10bio_pool) 3437 mempool_destroy(conf->r10bio_pool); 3438 kfree(conf->mirrors); 3439 safe_put_page(conf->tmppage); 3440 kfree(conf); 3441 } 3442 return ERR_PTR(err); 3443 } 3444 3445 static int run(struct mddev *mddev) 3446 { 3447 struct r10conf *conf; 3448 int i, disk_idx, chunk_size; 3449 struct mirror_info *disk; 3450 struct md_rdev *rdev; 3451 sector_t size; 3452 sector_t min_offset_diff = 0; 3453 int first = 1; 3454 3455 if (mddev->private == NULL) { 3456 conf = setup_conf(mddev); 3457 if (IS_ERR(conf)) 3458 return PTR_ERR(conf); 3459 mddev->private = conf; 3460 } 3461 conf = mddev->private; 3462 if (!conf) 3463 goto out; 3464 3465 mddev->thread = conf->thread; 3466 conf->thread = NULL; 3467 3468 chunk_size = mddev->chunk_sectors << 9; 3469 blk_queue_io_min(mddev->queue, chunk_size); 3470 if (conf->geo.raid_disks % conf->geo.near_copies) 3471 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3472 else 3473 blk_queue_io_opt(mddev->queue, chunk_size * 3474 (conf->geo.raid_disks / conf->geo.near_copies)); 3475 3476 rdev_for_each(rdev, mddev) { 3477 long long diff; 3478 3479 disk_idx = rdev->raid_disk; 3480 if (disk_idx < 0) 3481 continue; 3482 if (disk_idx >= conf->geo.raid_disks && 3483 disk_idx >= conf->prev.raid_disks) 3484 continue; 3485 disk = conf->mirrors + disk_idx; 3486 3487 if (test_bit(Replacement, &rdev->flags)) { 3488 if (disk->replacement) 3489 goto out_free_conf; 3490 disk->replacement = rdev; 3491 } else { 3492 if (disk->rdev) 3493 goto out_free_conf; 3494 disk->rdev = rdev; 3495 } 3496 diff = (rdev->new_data_offset - rdev->data_offset); 3497 if (!mddev->reshape_backwards) 3498 diff = -diff; 3499 if (diff < 0) 3500 diff = 0; 3501 if (first || diff < min_offset_diff) 3502 min_offset_diff = diff; 3503 3504 disk_stack_limits(mddev->gendisk, rdev->bdev, 3505 rdev->data_offset << 9); 3506 3507 disk->head_position = 0; 3508 } 3509 3510 /* need to check that every block has at least one working mirror */ 3511 if (!enough(conf, -1)) { 3512 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3513 mdname(mddev)); 3514 goto out_free_conf; 3515 } 3516 3517 if (conf->reshape_progress != MaxSector) { 3518 /* must ensure that shape change is supported */ 3519 if (conf->geo.far_copies != 1 && 3520 conf->geo.far_offset == 0) 3521 goto out_free_conf; 3522 if (conf->prev.far_copies != 1 && 3523 conf->geo.far_offset == 0) 3524 goto out_free_conf; 3525 } 3526 3527 mddev->degraded = 0; 3528 for (i = 0; 3529 i < conf->geo.raid_disks 3530 || i < conf->prev.raid_disks; 3531 i++) { 3532 3533 disk = conf->mirrors + i; 3534 3535 if (!disk->rdev && disk->replacement) { 3536 /* The replacement is all we have - use it */ 3537 disk->rdev = disk->replacement; 3538 disk->replacement = NULL; 3539 clear_bit(Replacement, &disk->rdev->flags); 3540 } 3541 3542 if (!disk->rdev || 3543 !test_bit(In_sync, &disk->rdev->flags)) { 3544 disk->head_position = 0; 3545 mddev->degraded++; 3546 if (disk->rdev) 3547 conf->fullsync = 1; 3548 } 3549 disk->recovery_disabled = mddev->recovery_disabled - 1; 3550 } 3551 3552 if (mddev->recovery_cp != MaxSector) 3553 printk(KERN_NOTICE "md/raid10:%s: not clean" 3554 " -- starting background reconstruction\n", 3555 mdname(mddev)); 3556 printk(KERN_INFO 3557 "md/raid10:%s: active with %d out of %d devices\n", 3558 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3559 conf->geo.raid_disks); 3560 /* 3561 * Ok, everything is just fine now 3562 */ 3563 mddev->dev_sectors = conf->dev_sectors; 3564 size = raid10_size(mddev, 0, 0); 3565 md_set_array_sectors(mddev, size); 3566 mddev->resync_max_sectors = size; 3567 3568 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3569 mddev->queue->backing_dev_info.congested_data = mddev; 3570 3571 /* Calculate max read-ahead size. 3572 * We need to readahead at least twice a whole stripe.... 3573 * maybe... 3574 */ 3575 { 3576 int stripe = conf->geo.raid_disks * 3577 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3578 stripe /= conf->geo.near_copies; 3579 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3580 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3581 } 3582 3583 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3584 3585 if (md_integrity_register(mddev)) 3586 goto out_free_conf; 3587 3588 if (conf->reshape_progress != MaxSector) { 3589 unsigned long before_length, after_length; 3590 3591 before_length = ((1 << conf->prev.chunk_shift) * 3592 conf->prev.far_copies); 3593 after_length = ((1 << conf->geo.chunk_shift) * 3594 conf->geo.far_copies); 3595 3596 if (max(before_length, after_length) > min_offset_diff) { 3597 /* This cannot work */ 3598 printk("md/raid10: offset difference not enough to continue reshape\n"); 3599 goto out_free_conf; 3600 } 3601 conf->offset_diff = min_offset_diff; 3602 3603 conf->reshape_safe = conf->reshape_progress; 3604 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3605 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3606 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3607 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3608 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3609 "reshape"); 3610 } 3611 3612 return 0; 3613 3614 out_free_conf: 3615 md_unregister_thread(&mddev->thread); 3616 if (conf->r10bio_pool) 3617 mempool_destroy(conf->r10bio_pool); 3618 safe_put_page(conf->tmppage); 3619 kfree(conf->mirrors); 3620 kfree(conf); 3621 mddev->private = NULL; 3622 out: 3623 return -EIO; 3624 } 3625 3626 static int stop(struct mddev *mddev) 3627 { 3628 struct r10conf *conf = mddev->private; 3629 3630 raise_barrier(conf, 0); 3631 lower_barrier(conf); 3632 3633 md_unregister_thread(&mddev->thread); 3634 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 3635 if (conf->r10bio_pool) 3636 mempool_destroy(conf->r10bio_pool); 3637 kfree(conf->mirrors); 3638 kfree(conf); 3639 mddev->private = NULL; 3640 return 0; 3641 } 3642 3643 static void raid10_quiesce(struct mddev *mddev, int state) 3644 { 3645 struct r10conf *conf = mddev->private; 3646 3647 switch(state) { 3648 case 1: 3649 raise_barrier(conf, 0); 3650 break; 3651 case 0: 3652 lower_barrier(conf); 3653 break; 3654 } 3655 } 3656 3657 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3658 { 3659 /* Resize of 'far' arrays is not supported. 3660 * For 'near' and 'offset' arrays we can set the 3661 * number of sectors used to be an appropriate multiple 3662 * of the chunk size. 3663 * For 'offset', this is far_copies*chunksize. 3664 * For 'near' the multiplier is the LCM of 3665 * near_copies and raid_disks. 3666 * So if far_copies > 1 && !far_offset, fail. 3667 * Else find LCM(raid_disks, near_copy)*far_copies and 3668 * multiply by chunk_size. Then round to this number. 3669 * This is mostly done by raid10_size() 3670 */ 3671 struct r10conf *conf = mddev->private; 3672 sector_t oldsize, size; 3673 3674 if (mddev->reshape_position != MaxSector) 3675 return -EBUSY; 3676 3677 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3678 return -EINVAL; 3679 3680 oldsize = raid10_size(mddev, 0, 0); 3681 size = raid10_size(mddev, sectors, 0); 3682 if (mddev->external_size && 3683 mddev->array_sectors > size) 3684 return -EINVAL; 3685 if (mddev->bitmap) { 3686 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3687 if (ret) 3688 return ret; 3689 } 3690 md_set_array_sectors(mddev, size); 3691 set_capacity(mddev->gendisk, mddev->array_sectors); 3692 revalidate_disk(mddev->gendisk); 3693 if (sectors > mddev->dev_sectors && 3694 mddev->recovery_cp > oldsize) { 3695 mddev->recovery_cp = oldsize; 3696 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3697 } 3698 calc_sectors(conf, sectors); 3699 mddev->dev_sectors = conf->dev_sectors; 3700 mddev->resync_max_sectors = size; 3701 return 0; 3702 } 3703 3704 static void *raid10_takeover_raid0(struct mddev *mddev) 3705 { 3706 struct md_rdev *rdev; 3707 struct r10conf *conf; 3708 3709 if (mddev->degraded > 0) { 3710 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3711 mdname(mddev)); 3712 return ERR_PTR(-EINVAL); 3713 } 3714 3715 /* Set new parameters */ 3716 mddev->new_level = 10; 3717 /* new layout: far_copies = 1, near_copies = 2 */ 3718 mddev->new_layout = (1<<8) + 2; 3719 mddev->new_chunk_sectors = mddev->chunk_sectors; 3720 mddev->delta_disks = mddev->raid_disks; 3721 mddev->raid_disks *= 2; 3722 /* make sure it will be not marked as dirty */ 3723 mddev->recovery_cp = MaxSector; 3724 3725 conf = setup_conf(mddev); 3726 if (!IS_ERR(conf)) { 3727 rdev_for_each(rdev, mddev) 3728 if (rdev->raid_disk >= 0) 3729 rdev->new_raid_disk = rdev->raid_disk * 2; 3730 conf->barrier = 1; 3731 } 3732 3733 return conf; 3734 } 3735 3736 static void *raid10_takeover(struct mddev *mddev) 3737 { 3738 struct r0conf *raid0_conf; 3739 3740 /* raid10 can take over: 3741 * raid0 - providing it has only two drives 3742 */ 3743 if (mddev->level == 0) { 3744 /* for raid0 takeover only one zone is supported */ 3745 raid0_conf = mddev->private; 3746 if (raid0_conf->nr_strip_zones > 1) { 3747 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3748 " with more than one zone.\n", 3749 mdname(mddev)); 3750 return ERR_PTR(-EINVAL); 3751 } 3752 return raid10_takeover_raid0(mddev); 3753 } 3754 return ERR_PTR(-EINVAL); 3755 } 3756 3757 static int raid10_check_reshape(struct mddev *mddev) 3758 { 3759 /* Called when there is a request to change 3760 * - layout (to ->new_layout) 3761 * - chunk size (to ->new_chunk_sectors) 3762 * - raid_disks (by delta_disks) 3763 * or when trying to restart a reshape that was ongoing. 3764 * 3765 * We need to validate the request and possibly allocate 3766 * space if that might be an issue later. 3767 * 3768 * Currently we reject any reshape of a 'far' mode array, 3769 * allow chunk size to change if new is generally acceptable, 3770 * allow raid_disks to increase, and allow 3771 * a switch between 'near' mode and 'offset' mode. 3772 */ 3773 struct r10conf *conf = mddev->private; 3774 struct geom geo; 3775 3776 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3777 return -EINVAL; 3778 3779 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3780 /* mustn't change number of copies */ 3781 return -EINVAL; 3782 if (geo.far_copies > 1 && !geo.far_offset) 3783 /* Cannot switch to 'far' mode */ 3784 return -EINVAL; 3785 3786 if (mddev->array_sectors & geo.chunk_mask) 3787 /* not factor of array size */ 3788 return -EINVAL; 3789 3790 if (!enough(conf, -1)) 3791 return -EINVAL; 3792 3793 kfree(conf->mirrors_new); 3794 conf->mirrors_new = NULL; 3795 if (mddev->delta_disks > 0) { 3796 /* allocate new 'mirrors' list */ 3797 conf->mirrors_new = kzalloc( 3798 sizeof(struct mirror_info) 3799 *(mddev->raid_disks + 3800 mddev->delta_disks), 3801 GFP_KERNEL); 3802 if (!conf->mirrors_new) 3803 return -ENOMEM; 3804 } 3805 return 0; 3806 } 3807 3808 /* 3809 * Need to check if array has failed when deciding whether to: 3810 * - start an array 3811 * - remove non-faulty devices 3812 * - add a spare 3813 * - allow a reshape 3814 * This determination is simple when no reshape is happening. 3815 * However if there is a reshape, we need to carefully check 3816 * both the before and after sections. 3817 * This is because some failed devices may only affect one 3818 * of the two sections, and some non-in_sync devices may 3819 * be insync in the section most affected by failed devices. 3820 */ 3821 static int calc_degraded(struct r10conf *conf) 3822 { 3823 int degraded, degraded2; 3824 int i; 3825 3826 rcu_read_lock(); 3827 degraded = 0; 3828 /* 'prev' section first */ 3829 for (i = 0; i < conf->prev.raid_disks; i++) { 3830 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3831 if (!rdev || test_bit(Faulty, &rdev->flags)) 3832 degraded++; 3833 else if (!test_bit(In_sync, &rdev->flags)) 3834 /* When we can reduce the number of devices in 3835 * an array, this might not contribute to 3836 * 'degraded'. It does now. 3837 */ 3838 degraded++; 3839 } 3840 rcu_read_unlock(); 3841 if (conf->geo.raid_disks == conf->prev.raid_disks) 3842 return degraded; 3843 rcu_read_lock(); 3844 degraded2 = 0; 3845 for (i = 0; i < conf->geo.raid_disks; i++) { 3846 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3847 if (!rdev || test_bit(Faulty, &rdev->flags)) 3848 degraded2++; 3849 else if (!test_bit(In_sync, &rdev->flags)) { 3850 /* If reshape is increasing the number of devices, 3851 * this section has already been recovered, so 3852 * it doesn't contribute to degraded. 3853 * else it does. 3854 */ 3855 if (conf->geo.raid_disks <= conf->prev.raid_disks) 3856 degraded2++; 3857 } 3858 } 3859 rcu_read_unlock(); 3860 if (degraded2 > degraded) 3861 return degraded2; 3862 return degraded; 3863 } 3864 3865 static int raid10_start_reshape(struct mddev *mddev) 3866 { 3867 /* A 'reshape' has been requested. This commits 3868 * the various 'new' fields and sets MD_RECOVER_RESHAPE 3869 * This also checks if there are enough spares and adds them 3870 * to the array. 3871 * We currently require enough spares to make the final 3872 * array non-degraded. We also require that the difference 3873 * between old and new data_offset - on each device - is 3874 * enough that we never risk over-writing. 3875 */ 3876 3877 unsigned long before_length, after_length; 3878 sector_t min_offset_diff = 0; 3879 int first = 1; 3880 struct geom new; 3881 struct r10conf *conf = mddev->private; 3882 struct md_rdev *rdev; 3883 int spares = 0; 3884 int ret; 3885 3886 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3887 return -EBUSY; 3888 3889 if (setup_geo(&new, mddev, geo_start) != conf->copies) 3890 return -EINVAL; 3891 3892 before_length = ((1 << conf->prev.chunk_shift) * 3893 conf->prev.far_copies); 3894 after_length = ((1 << conf->geo.chunk_shift) * 3895 conf->geo.far_copies); 3896 3897 rdev_for_each(rdev, mddev) { 3898 if (!test_bit(In_sync, &rdev->flags) 3899 && !test_bit(Faulty, &rdev->flags)) 3900 spares++; 3901 if (rdev->raid_disk >= 0) { 3902 long long diff = (rdev->new_data_offset 3903 - rdev->data_offset); 3904 if (!mddev->reshape_backwards) 3905 diff = -diff; 3906 if (diff < 0) 3907 diff = 0; 3908 if (first || diff < min_offset_diff) 3909 min_offset_diff = diff; 3910 } 3911 } 3912 3913 if (max(before_length, after_length) > min_offset_diff) 3914 return -EINVAL; 3915 3916 if (spares < mddev->delta_disks) 3917 return -EINVAL; 3918 3919 conf->offset_diff = min_offset_diff; 3920 spin_lock_irq(&conf->device_lock); 3921 if (conf->mirrors_new) { 3922 memcpy(conf->mirrors_new, conf->mirrors, 3923 sizeof(struct mirror_info)*conf->prev.raid_disks); 3924 smp_mb(); 3925 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 3926 conf->mirrors_old = conf->mirrors; 3927 conf->mirrors = conf->mirrors_new; 3928 conf->mirrors_new = NULL; 3929 } 3930 setup_geo(&conf->geo, mddev, geo_start); 3931 smp_mb(); 3932 if (mddev->reshape_backwards) { 3933 sector_t size = raid10_size(mddev, 0, 0); 3934 if (size < mddev->array_sectors) { 3935 spin_unlock_irq(&conf->device_lock); 3936 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 3937 mdname(mddev)); 3938 return -EINVAL; 3939 } 3940 mddev->resync_max_sectors = size; 3941 conf->reshape_progress = size; 3942 } else 3943 conf->reshape_progress = 0; 3944 spin_unlock_irq(&conf->device_lock); 3945 3946 if (mddev->delta_disks && mddev->bitmap) { 3947 ret = bitmap_resize(mddev->bitmap, 3948 raid10_size(mddev, 0, 3949 conf->geo.raid_disks), 3950 0, 0); 3951 if (ret) 3952 goto abort; 3953 } 3954 if (mddev->delta_disks > 0) { 3955 rdev_for_each(rdev, mddev) 3956 if (rdev->raid_disk < 0 && 3957 !test_bit(Faulty, &rdev->flags)) { 3958 if (raid10_add_disk(mddev, rdev) == 0) { 3959 if (rdev->raid_disk >= 3960 conf->prev.raid_disks) 3961 set_bit(In_sync, &rdev->flags); 3962 else 3963 rdev->recovery_offset = 0; 3964 3965 if (sysfs_link_rdev(mddev, rdev)) 3966 /* Failure here is OK */; 3967 } 3968 } else if (rdev->raid_disk >= conf->prev.raid_disks 3969 && !test_bit(Faulty, &rdev->flags)) { 3970 /* This is a spare that was manually added */ 3971 set_bit(In_sync, &rdev->flags); 3972 } 3973 } 3974 /* When a reshape changes the number of devices, 3975 * ->degraded is measured against the larger of the 3976 * pre and post numbers. 3977 */ 3978 spin_lock_irq(&conf->device_lock); 3979 mddev->degraded = calc_degraded(conf); 3980 spin_unlock_irq(&conf->device_lock); 3981 mddev->raid_disks = conf->geo.raid_disks; 3982 mddev->reshape_position = conf->reshape_progress; 3983 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3984 3985 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3986 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3987 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3988 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3989 3990 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3991 "reshape"); 3992 if (!mddev->sync_thread) { 3993 ret = -EAGAIN; 3994 goto abort; 3995 } 3996 conf->reshape_checkpoint = jiffies; 3997 md_wakeup_thread(mddev->sync_thread); 3998 md_new_event(mddev); 3999 return 0; 4000 4001 abort: 4002 mddev->recovery = 0; 4003 spin_lock_irq(&conf->device_lock); 4004 conf->geo = conf->prev; 4005 mddev->raid_disks = conf->geo.raid_disks; 4006 rdev_for_each(rdev, mddev) 4007 rdev->new_data_offset = rdev->data_offset; 4008 smp_wmb(); 4009 conf->reshape_progress = MaxSector; 4010 mddev->reshape_position = MaxSector; 4011 spin_unlock_irq(&conf->device_lock); 4012 return ret; 4013 } 4014 4015 /* Calculate the last device-address that could contain 4016 * any block from the chunk that includes the array-address 's' 4017 * and report the next address. 4018 * i.e. the address returned will be chunk-aligned and after 4019 * any data that is in the chunk containing 's'. 4020 */ 4021 static sector_t last_dev_address(sector_t s, struct geom *geo) 4022 { 4023 s = (s | geo->chunk_mask) + 1; 4024 s >>= geo->chunk_shift; 4025 s *= geo->near_copies; 4026 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4027 s *= geo->far_copies; 4028 s <<= geo->chunk_shift; 4029 return s; 4030 } 4031 4032 /* Calculate the first device-address that could contain 4033 * any block from the chunk that includes the array-address 's'. 4034 * This too will be the start of a chunk 4035 */ 4036 static sector_t first_dev_address(sector_t s, struct geom *geo) 4037 { 4038 s >>= geo->chunk_shift; 4039 s *= geo->near_copies; 4040 sector_div(s, geo->raid_disks); 4041 s *= geo->far_copies; 4042 s <<= geo->chunk_shift; 4043 return s; 4044 } 4045 4046 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4047 int *skipped) 4048 { 4049 /* We simply copy at most one chunk (smallest of old and new) 4050 * at a time, possibly less if that exceeds RESYNC_PAGES, 4051 * or we hit a bad block or something. 4052 * This might mean we pause for normal IO in the middle of 4053 * a chunk, but that is not a problem was mddev->reshape_position 4054 * can record any location. 4055 * 4056 * If we will want to write to a location that isn't 4057 * yet recorded as 'safe' (i.e. in metadata on disk) then 4058 * we need to flush all reshape requests and update the metadata. 4059 * 4060 * When reshaping forwards (e.g. to more devices), we interpret 4061 * 'safe' as the earliest block which might not have been copied 4062 * down yet. We divide this by previous stripe size and multiply 4063 * by previous stripe length to get lowest device offset that we 4064 * cannot write to yet. 4065 * We interpret 'sector_nr' as an address that we want to write to. 4066 * From this we use last_device_address() to find where we might 4067 * write to, and first_device_address on the 'safe' position. 4068 * If this 'next' write position is after the 'safe' position, 4069 * we must update the metadata to increase the 'safe' position. 4070 * 4071 * When reshaping backwards, we round in the opposite direction 4072 * and perform the reverse test: next write position must not be 4073 * less than current safe position. 4074 * 4075 * In all this the minimum difference in data offsets 4076 * (conf->offset_diff - always positive) allows a bit of slack, 4077 * so next can be after 'safe', but not by more than offset_disk 4078 * 4079 * We need to prepare all the bios here before we start any IO 4080 * to ensure the size we choose is acceptable to all devices. 4081 * The means one for each copy for write-out and an extra one for 4082 * read-in. 4083 * We store the read-in bio in ->master_bio and the others in 4084 * ->devs[x].bio and ->devs[x].repl_bio. 4085 */ 4086 struct r10conf *conf = mddev->private; 4087 struct r10bio *r10_bio; 4088 sector_t next, safe, last; 4089 int max_sectors; 4090 int nr_sectors; 4091 int s; 4092 struct md_rdev *rdev; 4093 int need_flush = 0; 4094 struct bio *blist; 4095 struct bio *bio, *read_bio; 4096 int sectors_done = 0; 4097 4098 if (sector_nr == 0) { 4099 /* If restarting in the middle, skip the initial sectors */ 4100 if (mddev->reshape_backwards && 4101 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4102 sector_nr = (raid10_size(mddev, 0, 0) 4103 - conf->reshape_progress); 4104 } else if (!mddev->reshape_backwards && 4105 conf->reshape_progress > 0) 4106 sector_nr = conf->reshape_progress; 4107 if (sector_nr) { 4108 mddev->curr_resync_completed = sector_nr; 4109 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4110 *skipped = 1; 4111 return sector_nr; 4112 } 4113 } 4114 4115 /* We don't use sector_nr to track where we are up to 4116 * as that doesn't work well for ->reshape_backwards. 4117 * So just use ->reshape_progress. 4118 */ 4119 if (mddev->reshape_backwards) { 4120 /* 'next' is the earliest device address that we might 4121 * write to for this chunk in the new layout 4122 */ 4123 next = first_dev_address(conf->reshape_progress - 1, 4124 &conf->geo); 4125 4126 /* 'safe' is the last device address that we might read from 4127 * in the old layout after a restart 4128 */ 4129 safe = last_dev_address(conf->reshape_safe - 1, 4130 &conf->prev); 4131 4132 if (next + conf->offset_diff < safe) 4133 need_flush = 1; 4134 4135 last = conf->reshape_progress - 1; 4136 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4137 & conf->prev.chunk_mask); 4138 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4139 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4140 } else { 4141 /* 'next' is after the last device address that we 4142 * might write to for this chunk in the new layout 4143 */ 4144 next = last_dev_address(conf->reshape_progress, &conf->geo); 4145 4146 /* 'safe' is the earliest device address that we might 4147 * read from in the old layout after a restart 4148 */ 4149 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4150 4151 /* Need to update metadata if 'next' might be beyond 'safe' 4152 * as that would possibly corrupt data 4153 */ 4154 if (next > safe + conf->offset_diff) 4155 need_flush = 1; 4156 4157 sector_nr = conf->reshape_progress; 4158 last = sector_nr | (conf->geo.chunk_mask 4159 & conf->prev.chunk_mask); 4160 4161 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4162 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4163 } 4164 4165 if (need_flush || 4166 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4167 /* Need to update reshape_position in metadata */ 4168 wait_barrier(conf); 4169 mddev->reshape_position = conf->reshape_progress; 4170 if (mddev->reshape_backwards) 4171 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4172 - conf->reshape_progress; 4173 else 4174 mddev->curr_resync_completed = conf->reshape_progress; 4175 conf->reshape_checkpoint = jiffies; 4176 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4177 md_wakeup_thread(mddev->thread); 4178 wait_event(mddev->sb_wait, mddev->flags == 0 || 4179 kthread_should_stop()); 4180 conf->reshape_safe = mddev->reshape_position; 4181 allow_barrier(conf); 4182 } 4183 4184 read_more: 4185 /* Now schedule reads for blocks from sector_nr to last */ 4186 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4187 raise_barrier(conf, sectors_done != 0); 4188 atomic_set(&r10_bio->remaining, 0); 4189 r10_bio->mddev = mddev; 4190 r10_bio->sector = sector_nr; 4191 set_bit(R10BIO_IsReshape, &r10_bio->state); 4192 r10_bio->sectors = last - sector_nr + 1; 4193 rdev = read_balance(conf, r10_bio, &max_sectors); 4194 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4195 4196 if (!rdev) { 4197 /* Cannot read from here, so need to record bad blocks 4198 * on all the target devices. 4199 */ 4200 // FIXME 4201 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4202 return sectors_done; 4203 } 4204 4205 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4206 4207 read_bio->bi_bdev = rdev->bdev; 4208 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4209 + rdev->data_offset); 4210 read_bio->bi_private = r10_bio; 4211 read_bio->bi_end_io = end_sync_read; 4212 read_bio->bi_rw = READ; 4213 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4214 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4215 read_bio->bi_vcnt = 0; 4216 read_bio->bi_idx = 0; 4217 read_bio->bi_size = 0; 4218 r10_bio->master_bio = read_bio; 4219 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4220 4221 /* Now find the locations in the new layout */ 4222 __raid10_find_phys(&conf->geo, r10_bio); 4223 4224 blist = read_bio; 4225 read_bio->bi_next = NULL; 4226 4227 for (s = 0; s < conf->copies*2; s++) { 4228 struct bio *b; 4229 int d = r10_bio->devs[s/2].devnum; 4230 struct md_rdev *rdev2; 4231 if (s&1) { 4232 rdev2 = conf->mirrors[d].replacement; 4233 b = r10_bio->devs[s/2].repl_bio; 4234 } else { 4235 rdev2 = conf->mirrors[d].rdev; 4236 b = r10_bio->devs[s/2].bio; 4237 } 4238 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4239 continue; 4240 b->bi_bdev = rdev2->bdev; 4241 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; 4242 b->bi_private = r10_bio; 4243 b->bi_end_io = end_reshape_write; 4244 b->bi_rw = WRITE; 4245 b->bi_flags &= ~(BIO_POOL_MASK - 1); 4246 b->bi_flags |= 1 << BIO_UPTODATE; 4247 b->bi_next = blist; 4248 b->bi_vcnt = 0; 4249 b->bi_idx = 0; 4250 b->bi_size = 0; 4251 blist = b; 4252 } 4253 4254 /* Now add as many pages as possible to all of these bios. */ 4255 4256 nr_sectors = 0; 4257 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4258 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4259 int len = (max_sectors - s) << 9; 4260 if (len > PAGE_SIZE) 4261 len = PAGE_SIZE; 4262 for (bio = blist; bio ; bio = bio->bi_next) { 4263 struct bio *bio2; 4264 if (bio_add_page(bio, page, len, 0)) 4265 continue; 4266 4267 /* Didn't fit, must stop */ 4268 for (bio2 = blist; 4269 bio2 && bio2 != bio; 4270 bio2 = bio2->bi_next) { 4271 /* Remove last page from this bio */ 4272 bio2->bi_vcnt--; 4273 bio2->bi_size -= len; 4274 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4275 } 4276 goto bio_full; 4277 } 4278 sector_nr += len >> 9; 4279 nr_sectors += len >> 9; 4280 } 4281 bio_full: 4282 r10_bio->sectors = nr_sectors; 4283 4284 /* Now submit the read */ 4285 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4286 atomic_inc(&r10_bio->remaining); 4287 read_bio->bi_next = NULL; 4288 generic_make_request(read_bio); 4289 sector_nr += nr_sectors; 4290 sectors_done += nr_sectors; 4291 if (sector_nr <= last) 4292 goto read_more; 4293 4294 /* Now that we have done the whole section we can 4295 * update reshape_progress 4296 */ 4297 if (mddev->reshape_backwards) 4298 conf->reshape_progress -= sectors_done; 4299 else 4300 conf->reshape_progress += sectors_done; 4301 4302 return sectors_done; 4303 } 4304 4305 static void end_reshape_request(struct r10bio *r10_bio); 4306 static int handle_reshape_read_error(struct mddev *mddev, 4307 struct r10bio *r10_bio); 4308 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4309 { 4310 /* Reshape read completed. Hopefully we have a block 4311 * to write out. 4312 * If we got a read error then we do sync 1-page reads from 4313 * elsewhere until we find the data - or give up. 4314 */ 4315 struct r10conf *conf = mddev->private; 4316 int s; 4317 4318 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4319 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4320 /* Reshape has been aborted */ 4321 md_done_sync(mddev, r10_bio->sectors, 0); 4322 return; 4323 } 4324 4325 /* We definitely have the data in the pages, schedule the 4326 * writes. 4327 */ 4328 atomic_set(&r10_bio->remaining, 1); 4329 for (s = 0; s < conf->copies*2; s++) { 4330 struct bio *b; 4331 int d = r10_bio->devs[s/2].devnum; 4332 struct md_rdev *rdev; 4333 if (s&1) { 4334 rdev = conf->mirrors[d].replacement; 4335 b = r10_bio->devs[s/2].repl_bio; 4336 } else { 4337 rdev = conf->mirrors[d].rdev; 4338 b = r10_bio->devs[s/2].bio; 4339 } 4340 if (!rdev || test_bit(Faulty, &rdev->flags)) 4341 continue; 4342 atomic_inc(&rdev->nr_pending); 4343 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4344 atomic_inc(&r10_bio->remaining); 4345 b->bi_next = NULL; 4346 generic_make_request(b); 4347 } 4348 end_reshape_request(r10_bio); 4349 } 4350 4351 static void end_reshape(struct r10conf *conf) 4352 { 4353 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4354 return; 4355 4356 spin_lock_irq(&conf->device_lock); 4357 conf->prev = conf->geo; 4358 md_finish_reshape(conf->mddev); 4359 smp_wmb(); 4360 conf->reshape_progress = MaxSector; 4361 spin_unlock_irq(&conf->device_lock); 4362 4363 /* read-ahead size must cover two whole stripes, which is 4364 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4365 */ 4366 if (conf->mddev->queue) { 4367 int stripe = conf->geo.raid_disks * 4368 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4369 stripe /= conf->geo.near_copies; 4370 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4371 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4372 } 4373 conf->fullsync = 0; 4374 } 4375 4376 4377 static int handle_reshape_read_error(struct mddev *mddev, 4378 struct r10bio *r10_bio) 4379 { 4380 /* Use sync reads to get the blocks from somewhere else */ 4381 int sectors = r10_bio->sectors; 4382 struct r10bio r10b; 4383 struct r10conf *conf = mddev->private; 4384 int slot = 0; 4385 int idx = 0; 4386 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4387 4388 r10b.sector = r10_bio->sector; 4389 __raid10_find_phys(&conf->prev, &r10b); 4390 4391 while (sectors) { 4392 int s = sectors; 4393 int success = 0; 4394 int first_slot = slot; 4395 4396 if (s > (PAGE_SIZE >> 9)) 4397 s = PAGE_SIZE >> 9; 4398 4399 while (!success) { 4400 int d = r10b.devs[slot].devnum; 4401 struct md_rdev *rdev = conf->mirrors[d].rdev; 4402 sector_t addr; 4403 if (rdev == NULL || 4404 test_bit(Faulty, &rdev->flags) || 4405 !test_bit(In_sync, &rdev->flags)) 4406 goto failed; 4407 4408 addr = r10b.devs[slot].addr + idx * PAGE_SIZE; 4409 success = sync_page_io(rdev, 4410 addr, 4411 s << 9, 4412 bvec[idx].bv_page, 4413 READ, false); 4414 if (success) 4415 break; 4416 failed: 4417 slot++; 4418 if (slot >= conf->copies) 4419 slot = 0; 4420 if (slot == first_slot) 4421 break; 4422 } 4423 if (!success) { 4424 /* couldn't read this block, must give up */ 4425 set_bit(MD_RECOVERY_INTR, 4426 &mddev->recovery); 4427 return -EIO; 4428 } 4429 sectors -= s; 4430 idx++; 4431 } 4432 return 0; 4433 } 4434 4435 static void end_reshape_write(struct bio *bio, int error) 4436 { 4437 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4438 struct r10bio *r10_bio = bio->bi_private; 4439 struct mddev *mddev = r10_bio->mddev; 4440 struct r10conf *conf = mddev->private; 4441 int d; 4442 int slot; 4443 int repl; 4444 struct md_rdev *rdev = NULL; 4445 4446 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4447 if (repl) 4448 rdev = conf->mirrors[d].replacement; 4449 if (!rdev) { 4450 smp_mb(); 4451 rdev = conf->mirrors[d].rdev; 4452 } 4453 4454 if (!uptodate) { 4455 /* FIXME should record badblock */ 4456 md_error(mddev, rdev); 4457 } 4458 4459 rdev_dec_pending(rdev, mddev); 4460 end_reshape_request(r10_bio); 4461 } 4462 4463 static void end_reshape_request(struct r10bio *r10_bio) 4464 { 4465 if (!atomic_dec_and_test(&r10_bio->remaining)) 4466 return; 4467 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4468 bio_put(r10_bio->master_bio); 4469 put_buf(r10_bio); 4470 } 4471 4472 static void raid10_finish_reshape(struct mddev *mddev) 4473 { 4474 struct r10conf *conf = mddev->private; 4475 4476 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4477 return; 4478 4479 if (mddev->delta_disks > 0) { 4480 sector_t size = raid10_size(mddev, 0, 0); 4481 md_set_array_sectors(mddev, size); 4482 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4483 mddev->recovery_cp = mddev->resync_max_sectors; 4484 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4485 } 4486 mddev->resync_max_sectors = size; 4487 set_capacity(mddev->gendisk, mddev->array_sectors); 4488 revalidate_disk(mddev->gendisk); 4489 } else { 4490 int d; 4491 for (d = conf->geo.raid_disks ; 4492 d < conf->geo.raid_disks - mddev->delta_disks; 4493 d++) { 4494 struct md_rdev *rdev = conf->mirrors[d].rdev; 4495 if (rdev) 4496 clear_bit(In_sync, &rdev->flags); 4497 rdev = conf->mirrors[d].replacement; 4498 if (rdev) 4499 clear_bit(In_sync, &rdev->flags); 4500 } 4501 } 4502 mddev->layout = mddev->new_layout; 4503 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4504 mddev->reshape_position = MaxSector; 4505 mddev->delta_disks = 0; 4506 mddev->reshape_backwards = 0; 4507 } 4508 4509 static struct md_personality raid10_personality = 4510 { 4511 .name = "raid10", 4512 .level = 10, 4513 .owner = THIS_MODULE, 4514 .make_request = make_request, 4515 .run = run, 4516 .stop = stop, 4517 .status = status, 4518 .error_handler = error, 4519 .hot_add_disk = raid10_add_disk, 4520 .hot_remove_disk= raid10_remove_disk, 4521 .spare_active = raid10_spare_active, 4522 .sync_request = sync_request, 4523 .quiesce = raid10_quiesce, 4524 .size = raid10_size, 4525 .resize = raid10_resize, 4526 .takeover = raid10_takeover, 4527 .check_reshape = raid10_check_reshape, 4528 .start_reshape = raid10_start_reshape, 4529 .finish_reshape = raid10_finish_reshape, 4530 }; 4531 4532 static int __init raid_init(void) 4533 { 4534 return register_md_personality(&raid10_personality); 4535 } 4536 4537 static void raid_exit(void) 4538 { 4539 unregister_md_personality(&raid10_personality); 4540 } 4541 4542 module_init(raid_init); 4543 module_exit(raid_exit); 4544 MODULE_LICENSE("GPL"); 4545 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4546 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4547 MODULE_ALIAS("md-raid10"); 4548 MODULE_ALIAS("md-level-10"); 4549 4550 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4551