1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/raid/raid10.h> 22 23 /* 24 * RAID10 provides a combination of RAID0 and RAID1 functionality. 25 * The layout of data is defined by 26 * chunk_size 27 * raid_disks 28 * near_copies (stored in low byte of layout) 29 * far_copies (stored in second byte of layout) 30 * 31 * The data to be stored is divided into chunks using chunksize. 32 * Each device is divided into far_copies sections. 33 * In each section, chunks are laid out in a style similar to raid0, but 34 * near_copies copies of each chunk is stored (each on a different drive). 35 * The starting device for each section is offset near_copies from the starting 36 * device of the previous section. 37 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different 38 * drive. 39 * near_copies and far_copies must be at least one, and their product is at most 40 * raid_disks. 41 */ 42 43 /* 44 * Number of guaranteed r10bios in case of extreme VM load: 45 */ 46 #define NR_RAID10_BIOS 256 47 48 static void unplug_slaves(mddev_t *mddev); 49 50 static void * r10bio_pool_alloc(unsigned int __nocast gfp_flags, void *data) 51 { 52 conf_t *conf = data; 53 r10bio_t *r10_bio; 54 int size = offsetof(struct r10bio_s, devs[conf->copies]); 55 56 /* allocate a r10bio with room for raid_disks entries in the bios array */ 57 r10_bio = kmalloc(size, gfp_flags); 58 if (r10_bio) 59 memset(r10_bio, 0, size); 60 else 61 unplug_slaves(conf->mddev); 62 63 return r10_bio; 64 } 65 66 static void r10bio_pool_free(void *r10_bio, void *data) 67 { 68 kfree(r10_bio); 69 } 70 71 #define RESYNC_BLOCK_SIZE (64*1024) 72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 75 #define RESYNC_WINDOW (2048*1024) 76 77 /* 78 * When performing a resync, we need to read and compare, so 79 * we need as many pages are there are copies. 80 * When performing a recovery, we need 2 bios, one for read, 81 * one for write (we recover only one drive per r10buf) 82 * 83 */ 84 static void * r10buf_pool_alloc(unsigned int __nocast gfp_flags, void *data) 85 { 86 conf_t *conf = data; 87 struct page *page; 88 r10bio_t *r10_bio; 89 struct bio *bio; 90 int i, j; 91 int nalloc; 92 93 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 94 if (!r10_bio) { 95 unplug_slaves(conf->mddev); 96 return NULL; 97 } 98 99 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 100 nalloc = conf->copies; /* resync */ 101 else 102 nalloc = 2; /* recovery */ 103 104 /* 105 * Allocate bios. 106 */ 107 for (j = nalloc ; j-- ; ) { 108 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 109 if (!bio) 110 goto out_free_bio; 111 r10_bio->devs[j].bio = bio; 112 } 113 /* 114 * Allocate RESYNC_PAGES data pages and attach them 115 * where needed. 116 */ 117 for (j = 0 ; j < nalloc; j++) { 118 bio = r10_bio->devs[j].bio; 119 for (i = 0; i < RESYNC_PAGES; i++) { 120 page = alloc_page(gfp_flags); 121 if (unlikely(!page)) 122 goto out_free_pages; 123 124 bio->bi_io_vec[i].bv_page = page; 125 } 126 } 127 128 return r10_bio; 129 130 out_free_pages: 131 for ( ; i > 0 ; i--) 132 __free_page(bio->bi_io_vec[i-1].bv_page); 133 while (j--) 134 for (i = 0; i < RESYNC_PAGES ; i++) 135 __free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 136 j = -1; 137 out_free_bio: 138 while ( ++j < nalloc ) 139 bio_put(r10_bio->devs[j].bio); 140 r10bio_pool_free(r10_bio, conf); 141 return NULL; 142 } 143 144 static void r10buf_pool_free(void *__r10_bio, void *data) 145 { 146 int i; 147 conf_t *conf = data; 148 r10bio_t *r10bio = __r10_bio; 149 int j; 150 151 for (j=0; j < conf->copies; j++) { 152 struct bio *bio = r10bio->devs[j].bio; 153 if (bio) { 154 for (i = 0; i < RESYNC_PAGES; i++) { 155 __free_page(bio->bi_io_vec[i].bv_page); 156 bio->bi_io_vec[i].bv_page = NULL; 157 } 158 bio_put(bio); 159 } 160 } 161 r10bio_pool_free(r10bio, conf); 162 } 163 164 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 165 { 166 int i; 167 168 for (i = 0; i < conf->copies; i++) { 169 struct bio **bio = & r10_bio->devs[i].bio; 170 if (*bio) 171 bio_put(*bio); 172 *bio = NULL; 173 } 174 } 175 176 static inline void free_r10bio(r10bio_t *r10_bio) 177 { 178 unsigned long flags; 179 180 conf_t *conf = mddev_to_conf(r10_bio->mddev); 181 182 /* 183 * Wake up any possible resync thread that waits for the device 184 * to go idle. 185 */ 186 spin_lock_irqsave(&conf->resync_lock, flags); 187 if (!--conf->nr_pending) { 188 wake_up(&conf->wait_idle); 189 wake_up(&conf->wait_resume); 190 } 191 spin_unlock_irqrestore(&conf->resync_lock, flags); 192 193 put_all_bios(conf, r10_bio); 194 mempool_free(r10_bio, conf->r10bio_pool); 195 } 196 197 static inline void put_buf(r10bio_t *r10_bio) 198 { 199 conf_t *conf = mddev_to_conf(r10_bio->mddev); 200 unsigned long flags; 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 spin_lock_irqsave(&conf->resync_lock, flags); 205 if (!conf->barrier) 206 BUG(); 207 --conf->barrier; 208 wake_up(&conf->wait_resume); 209 wake_up(&conf->wait_idle); 210 211 if (!--conf->nr_pending) { 212 wake_up(&conf->wait_idle); 213 wake_up(&conf->wait_resume); 214 } 215 spin_unlock_irqrestore(&conf->resync_lock, flags); 216 } 217 218 static void reschedule_retry(r10bio_t *r10_bio) 219 { 220 unsigned long flags; 221 mddev_t *mddev = r10_bio->mddev; 222 conf_t *conf = mddev_to_conf(mddev); 223 224 spin_lock_irqsave(&conf->device_lock, flags); 225 list_add(&r10_bio->retry_list, &conf->retry_list); 226 spin_unlock_irqrestore(&conf->device_lock, flags); 227 228 md_wakeup_thread(mddev->thread); 229 } 230 231 /* 232 * raid_end_bio_io() is called when we have finished servicing a mirrored 233 * operation and are ready to return a success/failure code to the buffer 234 * cache layer. 235 */ 236 static void raid_end_bio_io(r10bio_t *r10_bio) 237 { 238 struct bio *bio = r10_bio->master_bio; 239 240 bio_endio(bio, bio->bi_size, 241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 242 free_r10bio(r10_bio); 243 } 244 245 /* 246 * Update disk head position estimator based on IRQ completion info. 247 */ 248 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 249 { 250 conf_t *conf = mddev_to_conf(r10_bio->mddev); 251 252 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 253 r10_bio->devs[slot].addr + (r10_bio->sectors); 254 } 255 256 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 257 { 258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 259 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 260 int slot, dev; 261 conf_t *conf = mddev_to_conf(r10_bio->mddev); 262 263 if (bio->bi_size) 264 return 1; 265 266 slot = r10_bio->read_slot; 267 dev = r10_bio->devs[slot].devnum; 268 /* 269 * this branch is our 'one mirror IO has finished' event handler: 270 */ 271 if (!uptodate) 272 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 273 else 274 /* 275 * Set R10BIO_Uptodate in our master bio, so that 276 * we will return a good error code to the higher 277 * levels even if IO on some other mirrored buffer fails. 278 * 279 * The 'master' represents the composite IO operation to 280 * user-side. So if something waits for IO, then it will 281 * wait for the 'master' bio. 282 */ 283 set_bit(R10BIO_Uptodate, &r10_bio->state); 284 285 update_head_pos(slot, r10_bio); 286 287 /* 288 * we have only one bio on the read side 289 */ 290 if (uptodate) 291 raid_end_bio_io(r10_bio); 292 else { 293 /* 294 * oops, read error: 295 */ 296 char b[BDEVNAME_SIZE]; 297 if (printk_ratelimit()) 298 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 299 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 300 reschedule_retry(r10_bio); 301 } 302 303 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 304 return 0; 305 } 306 307 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 308 { 309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 310 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 311 int slot, dev; 312 conf_t *conf = mddev_to_conf(r10_bio->mddev); 313 314 if (bio->bi_size) 315 return 1; 316 317 for (slot = 0; slot < conf->copies; slot++) 318 if (r10_bio->devs[slot].bio == bio) 319 break; 320 dev = r10_bio->devs[slot].devnum; 321 322 /* 323 * this branch is our 'one mirror IO has finished' event handler: 324 */ 325 if (!uptodate) 326 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 327 else 328 /* 329 * Set R10BIO_Uptodate in our master bio, so that 330 * we will return a good error code for to the higher 331 * levels even if IO on some other mirrored buffer fails. 332 * 333 * The 'master' represents the composite IO operation to 334 * user-side. So if something waits for IO, then it will 335 * wait for the 'master' bio. 336 */ 337 set_bit(R10BIO_Uptodate, &r10_bio->state); 338 339 update_head_pos(slot, r10_bio); 340 341 /* 342 * 343 * Let's see if all mirrored write operations have finished 344 * already. 345 */ 346 if (atomic_dec_and_test(&r10_bio->remaining)) { 347 md_write_end(r10_bio->mddev); 348 raid_end_bio_io(r10_bio); 349 } 350 351 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 352 return 0; 353 } 354 355 356 /* 357 * RAID10 layout manager 358 * Aswell as the chunksize and raid_disks count, there are two 359 * parameters: near_copies and far_copies. 360 * near_copies * far_copies must be <= raid_disks. 361 * Normally one of these will be 1. 362 * If both are 1, we get raid0. 363 * If near_copies == raid_disks, we get raid1. 364 * 365 * Chunks are layed out in raid0 style with near_copies copies of the 366 * first chunk, followed by near_copies copies of the next chunk and 367 * so on. 368 * If far_copies > 1, then after 1/far_copies of the array has been assigned 369 * as described above, we start again with a device offset of near_copies. 370 * So we effectively have another copy of the whole array further down all 371 * the drives, but with blocks on different drives. 372 * With this layout, and block is never stored twice on the one device. 373 * 374 * raid10_find_phys finds the sector offset of a given virtual sector 375 * on each device that it is on. If a block isn't on a device, 376 * that entry in the array is set to MaxSector. 377 * 378 * raid10_find_virt does the reverse mapping, from a device and a 379 * sector offset to a virtual address 380 */ 381 382 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 383 { 384 int n,f; 385 sector_t sector; 386 sector_t chunk; 387 sector_t stripe; 388 int dev; 389 390 int slot = 0; 391 392 /* now calculate first sector/dev */ 393 chunk = r10bio->sector >> conf->chunk_shift; 394 sector = r10bio->sector & conf->chunk_mask; 395 396 chunk *= conf->near_copies; 397 stripe = chunk; 398 dev = sector_div(stripe, conf->raid_disks); 399 400 sector += stripe << conf->chunk_shift; 401 402 /* and calculate all the others */ 403 for (n=0; n < conf->near_copies; n++) { 404 int d = dev; 405 sector_t s = sector; 406 r10bio->devs[slot].addr = sector; 407 r10bio->devs[slot].devnum = d; 408 slot++; 409 410 for (f = 1; f < conf->far_copies; f++) { 411 d += conf->near_copies; 412 if (d >= conf->raid_disks) 413 d -= conf->raid_disks; 414 s += conf->stride; 415 r10bio->devs[slot].devnum = d; 416 r10bio->devs[slot].addr = s; 417 slot++; 418 } 419 dev++; 420 if (dev >= conf->raid_disks) { 421 dev = 0; 422 sector += (conf->chunk_mask + 1); 423 } 424 } 425 BUG_ON(slot != conf->copies); 426 } 427 428 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 429 { 430 sector_t offset, chunk, vchunk; 431 432 while (sector > conf->stride) { 433 sector -= conf->stride; 434 if (dev < conf->near_copies) 435 dev += conf->raid_disks - conf->near_copies; 436 else 437 dev -= conf->near_copies; 438 } 439 440 offset = sector & conf->chunk_mask; 441 chunk = sector >> conf->chunk_shift; 442 vchunk = chunk * conf->raid_disks + dev; 443 sector_div(vchunk, conf->near_copies); 444 return (vchunk << conf->chunk_shift) + offset; 445 } 446 447 /** 448 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 449 * @q: request queue 450 * @bio: the buffer head that's been built up so far 451 * @biovec: the request that could be merged to it. 452 * 453 * Return amount of bytes we can accept at this offset 454 * If near_copies == raid_disk, there are no striping issues, 455 * but in that case, the function isn't called at all. 456 */ 457 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio, 458 struct bio_vec *bio_vec) 459 { 460 mddev_t *mddev = q->queuedata; 461 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 462 int max; 463 unsigned int chunk_sectors = mddev->chunk_size >> 9; 464 unsigned int bio_sectors = bio->bi_size >> 9; 465 466 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 467 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 468 if (max <= bio_vec->bv_len && bio_sectors == 0) 469 return bio_vec->bv_len; 470 else 471 return max; 472 } 473 474 /* 475 * This routine returns the disk from which the requested read should 476 * be done. There is a per-array 'next expected sequential IO' sector 477 * number - if this matches on the next IO then we use the last disk. 478 * There is also a per-disk 'last know head position' sector that is 479 * maintained from IRQ contexts, both the normal and the resync IO 480 * completion handlers update this position correctly. If there is no 481 * perfect sequential match then we pick the disk whose head is closest. 482 * 483 * If there are 2 mirrors in the same 2 devices, performance degrades 484 * because position is mirror, not device based. 485 * 486 * The rdev for the device selected will have nr_pending incremented. 487 */ 488 489 /* 490 * FIXME: possibly should rethink readbalancing and do it differently 491 * depending on near_copies / far_copies geometry. 492 */ 493 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 494 { 495 const unsigned long this_sector = r10_bio->sector; 496 int disk, slot, nslot; 497 const int sectors = r10_bio->sectors; 498 sector_t new_distance, current_distance; 499 500 raid10_find_phys(conf, r10_bio); 501 rcu_read_lock(); 502 /* 503 * Check if we can balance. We can balance on the whole 504 * device if no resync is going on, or below the resync window. 505 * We take the first readable disk when above the resync window. 506 */ 507 if (conf->mddev->recovery_cp < MaxSector 508 && (this_sector + sectors >= conf->next_resync)) { 509 /* make sure that disk is operational */ 510 slot = 0; 511 disk = r10_bio->devs[slot].devnum; 512 513 while (!conf->mirrors[disk].rdev || 514 !conf->mirrors[disk].rdev->in_sync) { 515 slot++; 516 if (slot == conf->copies) { 517 slot = 0; 518 disk = -1; 519 break; 520 } 521 disk = r10_bio->devs[slot].devnum; 522 } 523 goto rb_out; 524 } 525 526 527 /* make sure the disk is operational */ 528 slot = 0; 529 disk = r10_bio->devs[slot].devnum; 530 while (!conf->mirrors[disk].rdev || 531 !conf->mirrors[disk].rdev->in_sync) { 532 slot ++; 533 if (slot == conf->copies) { 534 disk = -1; 535 goto rb_out; 536 } 537 disk = r10_bio->devs[slot].devnum; 538 } 539 540 541 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 542 543 /* Find the disk whose head is closest */ 544 545 for (nslot = slot; nslot < conf->copies; nslot++) { 546 int ndisk = r10_bio->devs[nslot].devnum; 547 548 549 if (!conf->mirrors[ndisk].rdev || 550 !conf->mirrors[ndisk].rdev->in_sync) 551 continue; 552 553 if (!atomic_read(&conf->mirrors[ndisk].rdev->nr_pending)) { 554 disk = ndisk; 555 slot = nslot; 556 break; 557 } 558 new_distance = abs(r10_bio->devs[nslot].addr - 559 conf->mirrors[ndisk].head_position); 560 if (new_distance < current_distance) { 561 current_distance = new_distance; 562 disk = ndisk; 563 slot = nslot; 564 } 565 } 566 567 rb_out: 568 r10_bio->read_slot = slot; 569 /* conf->next_seq_sect = this_sector + sectors;*/ 570 571 if (disk >= 0 && conf->mirrors[disk].rdev) 572 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 573 rcu_read_unlock(); 574 575 return disk; 576 } 577 578 static void unplug_slaves(mddev_t *mddev) 579 { 580 conf_t *conf = mddev_to_conf(mddev); 581 int i; 582 583 rcu_read_lock(); 584 for (i=0; i<mddev->raid_disks; i++) { 585 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 586 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) { 587 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 588 589 atomic_inc(&rdev->nr_pending); 590 rcu_read_unlock(); 591 592 if (r_queue->unplug_fn) 593 r_queue->unplug_fn(r_queue); 594 595 rdev_dec_pending(rdev, mddev); 596 rcu_read_lock(); 597 } 598 } 599 rcu_read_unlock(); 600 } 601 602 static void raid10_unplug(request_queue_t *q) 603 { 604 unplug_slaves(q->queuedata); 605 } 606 607 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk, 608 sector_t *error_sector) 609 { 610 mddev_t *mddev = q->queuedata; 611 conf_t *conf = mddev_to_conf(mddev); 612 int i, ret = 0; 613 614 rcu_read_lock(); 615 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 616 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 617 if (rdev && !rdev->faulty) { 618 struct block_device *bdev = rdev->bdev; 619 request_queue_t *r_queue = bdev_get_queue(bdev); 620 621 if (!r_queue->issue_flush_fn) 622 ret = -EOPNOTSUPP; 623 else { 624 atomic_inc(&rdev->nr_pending); 625 rcu_read_unlock(); 626 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 627 error_sector); 628 rdev_dec_pending(rdev, mddev); 629 rcu_read_lock(); 630 } 631 } 632 } 633 rcu_read_unlock(); 634 return ret; 635 } 636 637 /* 638 * Throttle resync depth, so that we can both get proper overlapping of 639 * requests, but are still able to handle normal requests quickly. 640 */ 641 #define RESYNC_DEPTH 32 642 643 static void device_barrier(conf_t *conf, sector_t sect) 644 { 645 spin_lock_irq(&conf->resync_lock); 646 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume), 647 conf->resync_lock, unplug_slaves(conf->mddev)); 648 649 if (!conf->barrier++) { 650 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending, 651 conf->resync_lock, unplug_slaves(conf->mddev)); 652 if (conf->nr_pending) 653 BUG(); 654 } 655 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH, 656 conf->resync_lock, unplug_slaves(conf->mddev)); 657 conf->next_resync = sect; 658 spin_unlock_irq(&conf->resync_lock); 659 } 660 661 static int make_request(request_queue_t *q, struct bio * bio) 662 { 663 mddev_t *mddev = q->queuedata; 664 conf_t *conf = mddev_to_conf(mddev); 665 mirror_info_t *mirror; 666 r10bio_t *r10_bio; 667 struct bio *read_bio; 668 int i; 669 int chunk_sects = conf->chunk_mask + 1; 670 671 /* If this request crosses a chunk boundary, we need to 672 * split it. This will only happen for 1 PAGE (or less) requests. 673 */ 674 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 675 > chunk_sects && 676 conf->near_copies < conf->raid_disks)) { 677 struct bio_pair *bp; 678 /* Sanity check -- queue functions should prevent this happening */ 679 if (bio->bi_vcnt != 1 || 680 bio->bi_idx != 0) 681 goto bad_map; 682 /* This is a one page bio that upper layers 683 * refuse to split for us, so we need to split it. 684 */ 685 bp = bio_split(bio, bio_split_pool, 686 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 687 if (make_request(q, &bp->bio1)) 688 generic_make_request(&bp->bio1); 689 if (make_request(q, &bp->bio2)) 690 generic_make_request(&bp->bio2); 691 692 bio_pair_release(bp); 693 return 0; 694 bad_map: 695 printk("raid10_make_request bug: can't convert block across chunks" 696 " or bigger than %dk %llu %d\n", chunk_sects/2, 697 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 698 699 bio_io_error(bio, bio->bi_size); 700 return 0; 701 } 702 703 md_write_start(mddev, bio); 704 705 /* 706 * Register the new request and wait if the reconstruction 707 * thread has put up a bar for new requests. 708 * Continue immediately if no resync is active currently. 709 */ 710 spin_lock_irq(&conf->resync_lock); 711 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, ); 712 conf->nr_pending++; 713 spin_unlock_irq(&conf->resync_lock); 714 715 if (bio_data_dir(bio)==WRITE) { 716 disk_stat_inc(mddev->gendisk, writes); 717 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio)); 718 } else { 719 disk_stat_inc(mddev->gendisk, reads); 720 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio)); 721 } 722 723 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 724 725 r10_bio->master_bio = bio; 726 r10_bio->sectors = bio->bi_size >> 9; 727 728 r10_bio->mddev = mddev; 729 r10_bio->sector = bio->bi_sector; 730 731 if (bio_data_dir(bio) == READ) { 732 /* 733 * read balancing logic: 734 */ 735 int disk = read_balance(conf, r10_bio); 736 int slot = r10_bio->read_slot; 737 if (disk < 0) { 738 raid_end_bio_io(r10_bio); 739 return 0; 740 } 741 mirror = conf->mirrors + disk; 742 743 read_bio = bio_clone(bio, GFP_NOIO); 744 745 r10_bio->devs[slot].bio = read_bio; 746 747 read_bio->bi_sector = r10_bio->devs[slot].addr + 748 mirror->rdev->data_offset; 749 read_bio->bi_bdev = mirror->rdev->bdev; 750 read_bio->bi_end_io = raid10_end_read_request; 751 read_bio->bi_rw = READ; 752 read_bio->bi_private = r10_bio; 753 754 generic_make_request(read_bio); 755 return 0; 756 } 757 758 /* 759 * WRITE: 760 */ 761 /* first select target devices under spinlock and 762 * inc refcount on their rdev. Record them by setting 763 * bios[x] to bio 764 */ 765 raid10_find_phys(conf, r10_bio); 766 rcu_read_lock(); 767 for (i = 0; i < conf->copies; i++) { 768 int d = r10_bio->devs[i].devnum; 769 if (conf->mirrors[d].rdev && 770 !conf->mirrors[d].rdev->faulty) { 771 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 772 r10_bio->devs[i].bio = bio; 773 } else 774 r10_bio->devs[i].bio = NULL; 775 } 776 rcu_read_unlock(); 777 778 atomic_set(&r10_bio->remaining, 1); 779 780 for (i = 0; i < conf->copies; i++) { 781 struct bio *mbio; 782 int d = r10_bio->devs[i].devnum; 783 if (!r10_bio->devs[i].bio) 784 continue; 785 786 mbio = bio_clone(bio, GFP_NOIO); 787 r10_bio->devs[i].bio = mbio; 788 789 mbio->bi_sector = r10_bio->devs[i].addr+ 790 conf->mirrors[d].rdev->data_offset; 791 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 792 mbio->bi_end_io = raid10_end_write_request; 793 mbio->bi_rw = WRITE; 794 mbio->bi_private = r10_bio; 795 796 atomic_inc(&r10_bio->remaining); 797 generic_make_request(mbio); 798 } 799 800 if (atomic_dec_and_test(&r10_bio->remaining)) { 801 md_write_end(mddev); 802 raid_end_bio_io(r10_bio); 803 } 804 805 return 0; 806 } 807 808 static void status(struct seq_file *seq, mddev_t *mddev) 809 { 810 conf_t *conf = mddev_to_conf(mddev); 811 int i; 812 813 if (conf->near_copies < conf->raid_disks) 814 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 815 if (conf->near_copies > 1) 816 seq_printf(seq, " %d near-copies", conf->near_copies); 817 if (conf->far_copies > 1) 818 seq_printf(seq, " %d far-copies", conf->far_copies); 819 820 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 821 conf->working_disks); 822 for (i = 0; i < conf->raid_disks; i++) 823 seq_printf(seq, "%s", 824 conf->mirrors[i].rdev && 825 conf->mirrors[i].rdev->in_sync ? "U" : "_"); 826 seq_printf(seq, "]"); 827 } 828 829 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 830 { 831 char b[BDEVNAME_SIZE]; 832 conf_t *conf = mddev_to_conf(mddev); 833 834 /* 835 * If it is not operational, then we have already marked it as dead 836 * else if it is the last working disks, ignore the error, let the 837 * next level up know. 838 * else mark the drive as failed 839 */ 840 if (rdev->in_sync 841 && conf->working_disks == 1) 842 /* 843 * Don't fail the drive, just return an IO error. 844 * The test should really be more sophisticated than 845 * "working_disks == 1", but it isn't critical, and 846 * can wait until we do more sophisticated "is the drive 847 * really dead" tests... 848 */ 849 return; 850 if (rdev->in_sync) { 851 mddev->degraded++; 852 conf->working_disks--; 853 /* 854 * if recovery is running, make sure it aborts. 855 */ 856 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 857 } 858 rdev->in_sync = 0; 859 rdev->faulty = 1; 860 mddev->sb_dirty = 1; 861 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" 862 " Operation continuing on %d devices\n", 863 bdevname(rdev->bdev,b), conf->working_disks); 864 } 865 866 static void print_conf(conf_t *conf) 867 { 868 int i; 869 mirror_info_t *tmp; 870 871 printk("RAID10 conf printout:\n"); 872 if (!conf) { 873 printk("(!conf)\n"); 874 return; 875 } 876 printk(" --- wd:%d rd:%d\n", conf->working_disks, 877 conf->raid_disks); 878 879 for (i = 0; i < conf->raid_disks; i++) { 880 char b[BDEVNAME_SIZE]; 881 tmp = conf->mirrors + i; 882 if (tmp->rdev) 883 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 884 i, !tmp->rdev->in_sync, !tmp->rdev->faulty, 885 bdevname(tmp->rdev->bdev,b)); 886 } 887 } 888 889 static void close_sync(conf_t *conf) 890 { 891 spin_lock_irq(&conf->resync_lock); 892 wait_event_lock_irq(conf->wait_resume, !conf->barrier, 893 conf->resync_lock, unplug_slaves(conf->mddev)); 894 spin_unlock_irq(&conf->resync_lock); 895 896 if (conf->barrier) BUG(); 897 if (waitqueue_active(&conf->wait_idle)) BUG(); 898 899 mempool_destroy(conf->r10buf_pool); 900 conf->r10buf_pool = NULL; 901 } 902 903 static int raid10_spare_active(mddev_t *mddev) 904 { 905 int i; 906 conf_t *conf = mddev->private; 907 mirror_info_t *tmp; 908 909 /* 910 * Find all non-in_sync disks within the RAID10 configuration 911 * and mark them in_sync 912 */ 913 for (i = 0; i < conf->raid_disks; i++) { 914 tmp = conf->mirrors + i; 915 if (tmp->rdev 916 && !tmp->rdev->faulty 917 && !tmp->rdev->in_sync) { 918 conf->working_disks++; 919 mddev->degraded--; 920 tmp->rdev->in_sync = 1; 921 } 922 } 923 924 print_conf(conf); 925 return 0; 926 } 927 928 929 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 930 { 931 conf_t *conf = mddev->private; 932 int found = 0; 933 int mirror; 934 mirror_info_t *p; 935 936 if (mddev->recovery_cp < MaxSector) 937 /* only hot-add to in-sync arrays, as recovery is 938 * very different from resync 939 */ 940 return 0; 941 942 for (mirror=0; mirror < mddev->raid_disks; mirror++) 943 if ( !(p=conf->mirrors+mirror)->rdev) { 944 945 blk_queue_stack_limits(mddev->queue, 946 rdev->bdev->bd_disk->queue); 947 /* as we don't honour merge_bvec_fn, we must never risk 948 * violating it, so limit ->max_sector to one PAGE, as 949 * a one page request is never in violation. 950 */ 951 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 952 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 953 mddev->queue->max_sectors = (PAGE_SIZE>>9); 954 955 p->head_position = 0; 956 rdev->raid_disk = mirror; 957 found = 1; 958 p->rdev = rdev; 959 break; 960 } 961 962 print_conf(conf); 963 return found; 964 } 965 966 static int raid10_remove_disk(mddev_t *mddev, int number) 967 { 968 conf_t *conf = mddev->private; 969 int err = 0; 970 mdk_rdev_t *rdev; 971 mirror_info_t *p = conf->mirrors+ number; 972 973 print_conf(conf); 974 rdev = p->rdev; 975 if (rdev) { 976 if (rdev->in_sync || 977 atomic_read(&rdev->nr_pending)) { 978 err = -EBUSY; 979 goto abort; 980 } 981 p->rdev = NULL; 982 synchronize_rcu(); 983 if (atomic_read(&rdev->nr_pending)) { 984 /* lost the race, try later */ 985 err = -EBUSY; 986 p->rdev = rdev; 987 } 988 } 989 abort: 990 991 print_conf(conf); 992 return err; 993 } 994 995 996 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 997 { 998 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 999 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1000 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1001 int i,d; 1002 1003 if (bio->bi_size) 1004 return 1; 1005 1006 for (i=0; i<conf->copies; i++) 1007 if (r10_bio->devs[i].bio == bio) 1008 break; 1009 if (i == conf->copies) 1010 BUG(); 1011 update_head_pos(i, r10_bio); 1012 d = r10_bio->devs[i].devnum; 1013 if (!uptodate) 1014 md_error(r10_bio->mddev, 1015 conf->mirrors[d].rdev); 1016 1017 /* for reconstruct, we always reschedule after a read. 1018 * for resync, only after all reads 1019 */ 1020 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1021 atomic_dec_and_test(&r10_bio->remaining)) { 1022 /* we have read all the blocks, 1023 * do the comparison in process context in raid10d 1024 */ 1025 reschedule_retry(r10_bio); 1026 } 1027 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1028 return 0; 1029 } 1030 1031 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1032 { 1033 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1034 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1035 mddev_t *mddev = r10_bio->mddev; 1036 conf_t *conf = mddev_to_conf(mddev); 1037 int i,d; 1038 1039 if (bio->bi_size) 1040 return 1; 1041 1042 for (i = 0; i < conf->copies; i++) 1043 if (r10_bio->devs[i].bio == bio) 1044 break; 1045 d = r10_bio->devs[i].devnum; 1046 1047 if (!uptodate) 1048 md_error(mddev, conf->mirrors[d].rdev); 1049 update_head_pos(i, r10_bio); 1050 1051 while (atomic_dec_and_test(&r10_bio->remaining)) { 1052 if (r10_bio->master_bio == NULL) { 1053 /* the primary of several recovery bios */ 1054 md_done_sync(mddev, r10_bio->sectors, 1); 1055 put_buf(r10_bio); 1056 break; 1057 } else { 1058 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1059 put_buf(r10_bio); 1060 r10_bio = r10_bio2; 1061 } 1062 } 1063 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1064 return 0; 1065 } 1066 1067 /* 1068 * Note: sync and recover and handled very differently for raid10 1069 * This code is for resync. 1070 * For resync, we read through virtual addresses and read all blocks. 1071 * If there is any error, we schedule a write. The lowest numbered 1072 * drive is authoritative. 1073 * However requests come for physical address, so we need to map. 1074 * For every physical address there are raid_disks/copies virtual addresses, 1075 * which is always are least one, but is not necessarly an integer. 1076 * This means that a physical address can span multiple chunks, so we may 1077 * have to submit multiple io requests for a single sync request. 1078 */ 1079 /* 1080 * We check if all blocks are in-sync and only write to blocks that 1081 * aren't in sync 1082 */ 1083 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1084 { 1085 conf_t *conf = mddev_to_conf(mddev); 1086 int i, first; 1087 struct bio *tbio, *fbio; 1088 1089 atomic_set(&r10_bio->remaining, 1); 1090 1091 /* find the first device with a block */ 1092 for (i=0; i<conf->copies; i++) 1093 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1094 break; 1095 1096 if (i == conf->copies) 1097 goto done; 1098 1099 first = i; 1100 fbio = r10_bio->devs[i].bio; 1101 1102 /* now find blocks with errors */ 1103 for (i=first+1 ; i < conf->copies ; i++) { 1104 int vcnt, j, d; 1105 1106 if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1107 continue; 1108 /* We know that the bi_io_vec layout is the same for 1109 * both 'first' and 'i', so we just compare them. 1110 * All vec entries are PAGE_SIZE; 1111 */ 1112 tbio = r10_bio->devs[i].bio; 1113 vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1114 for (j = 0; j < vcnt; j++) 1115 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1116 page_address(tbio->bi_io_vec[j].bv_page), 1117 PAGE_SIZE)) 1118 break; 1119 if (j == vcnt) 1120 continue; 1121 /* Ok, we need to write this bio 1122 * First we need to fixup bv_offset, bv_len and 1123 * bi_vecs, as the read request might have corrupted these 1124 */ 1125 tbio->bi_vcnt = vcnt; 1126 tbio->bi_size = r10_bio->sectors << 9; 1127 tbio->bi_idx = 0; 1128 tbio->bi_phys_segments = 0; 1129 tbio->bi_hw_segments = 0; 1130 tbio->bi_hw_front_size = 0; 1131 tbio->bi_hw_back_size = 0; 1132 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1133 tbio->bi_flags |= 1 << BIO_UPTODATE; 1134 tbio->bi_next = NULL; 1135 tbio->bi_rw = WRITE; 1136 tbio->bi_private = r10_bio; 1137 tbio->bi_sector = r10_bio->devs[i].addr; 1138 1139 for (j=0; j < vcnt ; j++) { 1140 tbio->bi_io_vec[j].bv_offset = 0; 1141 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1142 1143 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1144 page_address(fbio->bi_io_vec[j].bv_page), 1145 PAGE_SIZE); 1146 } 1147 tbio->bi_end_io = end_sync_write; 1148 1149 d = r10_bio->devs[i].devnum; 1150 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1151 atomic_inc(&r10_bio->remaining); 1152 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1153 1154 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1155 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1156 generic_make_request(tbio); 1157 } 1158 1159 done: 1160 if (atomic_dec_and_test(&r10_bio->remaining)) { 1161 md_done_sync(mddev, r10_bio->sectors, 1); 1162 put_buf(r10_bio); 1163 } 1164 } 1165 1166 /* 1167 * Now for the recovery code. 1168 * Recovery happens across physical sectors. 1169 * We recover all non-is_sync drives by finding the virtual address of 1170 * each, and then choose a working drive that also has that virt address. 1171 * There is a separate r10_bio for each non-in_sync drive. 1172 * Only the first two slots are in use. The first for reading, 1173 * The second for writing. 1174 * 1175 */ 1176 1177 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1178 { 1179 conf_t *conf = mddev_to_conf(mddev); 1180 int i, d; 1181 struct bio *bio, *wbio; 1182 1183 1184 /* move the pages across to the second bio 1185 * and submit the write request 1186 */ 1187 bio = r10_bio->devs[0].bio; 1188 wbio = r10_bio->devs[1].bio; 1189 for (i=0; i < wbio->bi_vcnt; i++) { 1190 struct page *p = bio->bi_io_vec[i].bv_page; 1191 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1192 wbio->bi_io_vec[i].bv_page = p; 1193 } 1194 d = r10_bio->devs[1].devnum; 1195 1196 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1197 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1198 generic_make_request(wbio); 1199 } 1200 1201 1202 /* 1203 * This is a kernel thread which: 1204 * 1205 * 1. Retries failed read operations on working mirrors. 1206 * 2. Updates the raid superblock when problems encounter. 1207 * 3. Performs writes following reads for array syncronising. 1208 */ 1209 1210 static void raid10d(mddev_t *mddev) 1211 { 1212 r10bio_t *r10_bio; 1213 struct bio *bio; 1214 unsigned long flags; 1215 conf_t *conf = mddev_to_conf(mddev); 1216 struct list_head *head = &conf->retry_list; 1217 int unplug=0; 1218 mdk_rdev_t *rdev; 1219 1220 md_check_recovery(mddev); 1221 1222 for (;;) { 1223 char b[BDEVNAME_SIZE]; 1224 spin_lock_irqsave(&conf->device_lock, flags); 1225 if (list_empty(head)) 1226 break; 1227 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1228 list_del(head->prev); 1229 spin_unlock_irqrestore(&conf->device_lock, flags); 1230 1231 mddev = r10_bio->mddev; 1232 conf = mddev_to_conf(mddev); 1233 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1234 sync_request_write(mddev, r10_bio); 1235 unplug = 1; 1236 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1237 recovery_request_write(mddev, r10_bio); 1238 unplug = 1; 1239 } else { 1240 int mirror; 1241 bio = r10_bio->devs[r10_bio->read_slot].bio; 1242 r10_bio->devs[r10_bio->read_slot].bio = NULL; 1243 bio_put(bio); 1244 mirror = read_balance(conf, r10_bio); 1245 if (mirror == -1) { 1246 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1247 " read error for block %llu\n", 1248 bdevname(bio->bi_bdev,b), 1249 (unsigned long long)r10_bio->sector); 1250 raid_end_bio_io(r10_bio); 1251 } else { 1252 rdev = conf->mirrors[mirror].rdev; 1253 if (printk_ratelimit()) 1254 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1255 " another mirror\n", 1256 bdevname(rdev->bdev,b), 1257 (unsigned long long)r10_bio->sector); 1258 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1259 r10_bio->devs[r10_bio->read_slot].bio = bio; 1260 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1261 + rdev->data_offset; 1262 bio->bi_bdev = rdev->bdev; 1263 bio->bi_rw = READ; 1264 bio->bi_private = r10_bio; 1265 bio->bi_end_io = raid10_end_read_request; 1266 unplug = 1; 1267 generic_make_request(bio); 1268 } 1269 } 1270 } 1271 spin_unlock_irqrestore(&conf->device_lock, flags); 1272 if (unplug) 1273 unplug_slaves(mddev); 1274 } 1275 1276 1277 static int init_resync(conf_t *conf) 1278 { 1279 int buffs; 1280 1281 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1282 if (conf->r10buf_pool) 1283 BUG(); 1284 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1285 if (!conf->r10buf_pool) 1286 return -ENOMEM; 1287 conf->next_resync = 0; 1288 return 0; 1289 } 1290 1291 /* 1292 * perform a "sync" on one "block" 1293 * 1294 * We need to make sure that no normal I/O request - particularly write 1295 * requests - conflict with active sync requests. 1296 * 1297 * This is achieved by tracking pending requests and a 'barrier' concept 1298 * that can be installed to exclude normal IO requests. 1299 * 1300 * Resync and recovery are handled very differently. 1301 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1302 * 1303 * For resync, we iterate over virtual addresses, read all copies, 1304 * and update if there are differences. If only one copy is live, 1305 * skip it. 1306 * For recovery, we iterate over physical addresses, read a good 1307 * value for each non-in_sync drive, and over-write. 1308 * 1309 * So, for recovery we may have several outstanding complex requests for a 1310 * given address, one for each out-of-sync device. We model this by allocating 1311 * a number of r10_bio structures, one for each out-of-sync device. 1312 * As we setup these structures, we collect all bio's together into a list 1313 * which we then process collectively to add pages, and then process again 1314 * to pass to generic_make_request. 1315 * 1316 * The r10_bio structures are linked using a borrowed master_bio pointer. 1317 * This link is counted in ->remaining. When the r10_bio that points to NULL 1318 * has its remaining count decremented to 0, the whole complex operation 1319 * is complete. 1320 * 1321 */ 1322 1323 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1324 { 1325 conf_t *conf = mddev_to_conf(mddev); 1326 r10bio_t *r10_bio; 1327 struct bio *biolist = NULL, *bio; 1328 sector_t max_sector, nr_sectors; 1329 int disk; 1330 int i; 1331 1332 sector_t sectors_skipped = 0; 1333 int chunks_skipped = 0; 1334 1335 if (!conf->r10buf_pool) 1336 if (init_resync(conf)) 1337 return 0; 1338 1339 skipped: 1340 max_sector = mddev->size << 1; 1341 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1342 max_sector = mddev->resync_max_sectors; 1343 if (sector_nr >= max_sector) { 1344 close_sync(conf); 1345 *skipped = 1; 1346 return sectors_skipped; 1347 } 1348 if (chunks_skipped >= conf->raid_disks) { 1349 /* if there has been nothing to do on any drive, 1350 * then there is nothing to do at all.. 1351 */ 1352 *skipped = 1; 1353 return (max_sector - sector_nr) + sectors_skipped; 1354 } 1355 1356 /* make sure whole request will fit in a chunk - if chunks 1357 * are meaningful 1358 */ 1359 if (conf->near_copies < conf->raid_disks && 1360 max_sector > (sector_nr | conf->chunk_mask)) 1361 max_sector = (sector_nr | conf->chunk_mask) + 1; 1362 /* 1363 * If there is non-resync activity waiting for us then 1364 * put in a delay to throttle resync. 1365 */ 1366 if (!go_faster && waitqueue_active(&conf->wait_resume)) 1367 msleep_interruptible(1000); 1368 device_barrier(conf, sector_nr + RESYNC_SECTORS); 1369 1370 /* Again, very different code for resync and recovery. 1371 * Both must result in an r10bio with a list of bios that 1372 * have bi_end_io, bi_sector, bi_bdev set, 1373 * and bi_private set to the r10bio. 1374 * For recovery, we may actually create several r10bios 1375 * with 2 bios in each, that correspond to the bios in the main one. 1376 * In this case, the subordinate r10bios link back through a 1377 * borrowed master_bio pointer, and the counter in the master 1378 * includes a ref from each subordinate. 1379 */ 1380 /* First, we decide what to do and set ->bi_end_io 1381 * To end_sync_read if we want to read, and 1382 * end_sync_write if we will want to write. 1383 */ 1384 1385 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1386 /* recovery... the complicated one */ 1387 int i, j, k; 1388 r10_bio = NULL; 1389 1390 for (i=0 ; i<conf->raid_disks; i++) 1391 if (conf->mirrors[i].rdev && 1392 !conf->mirrors[i].rdev->in_sync) { 1393 /* want to reconstruct this device */ 1394 r10bio_t *rb2 = r10_bio; 1395 1396 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1397 spin_lock_irq(&conf->resync_lock); 1398 conf->nr_pending++; 1399 if (rb2) conf->barrier++; 1400 spin_unlock_irq(&conf->resync_lock); 1401 atomic_set(&r10_bio->remaining, 0); 1402 1403 r10_bio->master_bio = (struct bio*)rb2; 1404 if (rb2) 1405 atomic_inc(&rb2->remaining); 1406 r10_bio->mddev = mddev; 1407 set_bit(R10BIO_IsRecover, &r10_bio->state); 1408 r10_bio->sector = raid10_find_virt(conf, sector_nr, i); 1409 raid10_find_phys(conf, r10_bio); 1410 for (j=0; j<conf->copies;j++) { 1411 int d = r10_bio->devs[j].devnum; 1412 if (conf->mirrors[d].rdev && 1413 conf->mirrors[d].rdev->in_sync) { 1414 /* This is where we read from */ 1415 bio = r10_bio->devs[0].bio; 1416 bio->bi_next = biolist; 1417 biolist = bio; 1418 bio->bi_private = r10_bio; 1419 bio->bi_end_io = end_sync_read; 1420 bio->bi_rw = 0; 1421 bio->bi_sector = r10_bio->devs[j].addr + 1422 conf->mirrors[d].rdev->data_offset; 1423 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1424 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1425 atomic_inc(&r10_bio->remaining); 1426 /* and we write to 'i' */ 1427 1428 for (k=0; k<conf->copies; k++) 1429 if (r10_bio->devs[k].devnum == i) 1430 break; 1431 bio = r10_bio->devs[1].bio; 1432 bio->bi_next = biolist; 1433 biolist = bio; 1434 bio->bi_private = r10_bio; 1435 bio->bi_end_io = end_sync_write; 1436 bio->bi_rw = 1; 1437 bio->bi_sector = r10_bio->devs[k].addr + 1438 conf->mirrors[i].rdev->data_offset; 1439 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1440 1441 r10_bio->devs[0].devnum = d; 1442 r10_bio->devs[1].devnum = i; 1443 1444 break; 1445 } 1446 } 1447 if (j == conf->copies) { 1448 BUG(); 1449 } 1450 } 1451 if (biolist == NULL) { 1452 while (r10_bio) { 1453 r10bio_t *rb2 = r10_bio; 1454 r10_bio = (r10bio_t*) rb2->master_bio; 1455 rb2->master_bio = NULL; 1456 put_buf(rb2); 1457 } 1458 goto giveup; 1459 } 1460 } else { 1461 /* resync. Schedule a read for every block at this virt offset */ 1462 int count = 0; 1463 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1464 1465 spin_lock_irq(&conf->resync_lock); 1466 conf->nr_pending++; 1467 spin_unlock_irq(&conf->resync_lock); 1468 1469 r10_bio->mddev = mddev; 1470 atomic_set(&r10_bio->remaining, 0); 1471 1472 r10_bio->master_bio = NULL; 1473 r10_bio->sector = sector_nr; 1474 set_bit(R10BIO_IsSync, &r10_bio->state); 1475 raid10_find_phys(conf, r10_bio); 1476 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1477 1478 for (i=0; i<conf->copies; i++) { 1479 int d = r10_bio->devs[i].devnum; 1480 bio = r10_bio->devs[i].bio; 1481 bio->bi_end_io = NULL; 1482 if (conf->mirrors[d].rdev == NULL || 1483 conf->mirrors[d].rdev->faulty) 1484 continue; 1485 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1486 atomic_inc(&r10_bio->remaining); 1487 bio->bi_next = biolist; 1488 biolist = bio; 1489 bio->bi_private = r10_bio; 1490 bio->bi_end_io = end_sync_read; 1491 bio->bi_rw = 0; 1492 bio->bi_sector = r10_bio->devs[i].addr + 1493 conf->mirrors[d].rdev->data_offset; 1494 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1495 count++; 1496 } 1497 1498 if (count < 2) { 1499 for (i=0; i<conf->copies; i++) { 1500 int d = r10_bio->devs[i].devnum; 1501 if (r10_bio->devs[i].bio->bi_end_io) 1502 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1503 } 1504 put_buf(r10_bio); 1505 biolist = NULL; 1506 goto giveup; 1507 } 1508 } 1509 1510 for (bio = biolist; bio ; bio=bio->bi_next) { 1511 1512 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1513 if (bio->bi_end_io) 1514 bio->bi_flags |= 1 << BIO_UPTODATE; 1515 bio->bi_vcnt = 0; 1516 bio->bi_idx = 0; 1517 bio->bi_phys_segments = 0; 1518 bio->bi_hw_segments = 0; 1519 bio->bi_size = 0; 1520 } 1521 1522 nr_sectors = 0; 1523 do { 1524 struct page *page; 1525 int len = PAGE_SIZE; 1526 disk = 0; 1527 if (sector_nr + (len>>9) > max_sector) 1528 len = (max_sector - sector_nr) << 9; 1529 if (len == 0) 1530 break; 1531 for (bio= biolist ; bio ; bio=bio->bi_next) { 1532 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1533 if (bio_add_page(bio, page, len, 0) == 0) { 1534 /* stop here */ 1535 struct bio *bio2; 1536 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1537 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1538 /* remove last page from this bio */ 1539 bio2->bi_vcnt--; 1540 bio2->bi_size -= len; 1541 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1542 } 1543 goto bio_full; 1544 } 1545 disk = i; 1546 } 1547 nr_sectors += len>>9; 1548 sector_nr += len>>9; 1549 } while (biolist->bi_vcnt < RESYNC_PAGES); 1550 bio_full: 1551 r10_bio->sectors = nr_sectors; 1552 1553 while (biolist) { 1554 bio = biolist; 1555 biolist = biolist->bi_next; 1556 1557 bio->bi_next = NULL; 1558 r10_bio = bio->bi_private; 1559 r10_bio->sectors = nr_sectors; 1560 1561 if (bio->bi_end_io == end_sync_read) { 1562 md_sync_acct(bio->bi_bdev, nr_sectors); 1563 generic_make_request(bio); 1564 } 1565 } 1566 1567 if (sectors_skipped) 1568 /* pretend they weren't skipped, it makes 1569 * no important difference in this case 1570 */ 1571 md_done_sync(mddev, sectors_skipped, 1); 1572 1573 return sectors_skipped + nr_sectors; 1574 giveup: 1575 /* There is nowhere to write, so all non-sync 1576 * drives must be failed, so try the next chunk... 1577 */ 1578 { 1579 sector_t sec = max_sector - sector_nr; 1580 sectors_skipped += sec; 1581 chunks_skipped ++; 1582 sector_nr = max_sector; 1583 goto skipped; 1584 } 1585 } 1586 1587 static int run(mddev_t *mddev) 1588 { 1589 conf_t *conf; 1590 int i, disk_idx; 1591 mirror_info_t *disk; 1592 mdk_rdev_t *rdev; 1593 struct list_head *tmp; 1594 int nc, fc; 1595 sector_t stride, size; 1596 1597 if (mddev->level != 10) { 1598 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n", 1599 mdname(mddev), mddev->level); 1600 goto out; 1601 } 1602 nc = mddev->layout & 255; 1603 fc = (mddev->layout >> 8) & 255; 1604 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 1605 (mddev->layout >> 16)) { 1606 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 1607 mdname(mddev), mddev->layout); 1608 goto out; 1609 } 1610 /* 1611 * copy the already verified devices into our private RAID10 1612 * bookkeeping area. [whatever we allocate in run(), 1613 * should be freed in stop()] 1614 */ 1615 conf = kmalloc(sizeof(conf_t), GFP_KERNEL); 1616 mddev->private = conf; 1617 if (!conf) { 1618 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1619 mdname(mddev)); 1620 goto out; 1621 } 1622 memset(conf, 0, sizeof(*conf)); 1623 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1624 GFP_KERNEL); 1625 if (!conf->mirrors) { 1626 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1627 mdname(mddev)); 1628 goto out_free_conf; 1629 } 1630 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks); 1631 1632 conf->near_copies = nc; 1633 conf->far_copies = fc; 1634 conf->copies = nc*fc; 1635 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 1636 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 1637 stride = mddev->size >> (conf->chunk_shift-1); 1638 sector_div(stride, fc); 1639 conf->stride = stride << conf->chunk_shift; 1640 1641 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 1642 r10bio_pool_free, conf); 1643 if (!conf->r10bio_pool) { 1644 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1645 mdname(mddev)); 1646 goto out_free_conf; 1647 } 1648 1649 ITERATE_RDEV(mddev, rdev, tmp) { 1650 disk_idx = rdev->raid_disk; 1651 if (disk_idx >= mddev->raid_disks 1652 || disk_idx < 0) 1653 continue; 1654 disk = conf->mirrors + disk_idx; 1655 1656 disk->rdev = rdev; 1657 1658 blk_queue_stack_limits(mddev->queue, 1659 rdev->bdev->bd_disk->queue); 1660 /* as we don't honour merge_bvec_fn, we must never risk 1661 * violating it, so limit ->max_sector to one PAGE, as 1662 * a one page request is never in violation. 1663 */ 1664 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1665 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1666 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1667 1668 disk->head_position = 0; 1669 if (!rdev->faulty && rdev->in_sync) 1670 conf->working_disks++; 1671 } 1672 conf->raid_disks = mddev->raid_disks; 1673 conf->mddev = mddev; 1674 spin_lock_init(&conf->device_lock); 1675 INIT_LIST_HEAD(&conf->retry_list); 1676 1677 spin_lock_init(&conf->resync_lock); 1678 init_waitqueue_head(&conf->wait_idle); 1679 init_waitqueue_head(&conf->wait_resume); 1680 1681 if (!conf->working_disks) { 1682 printk(KERN_ERR "raid10: no operational mirrors for %s\n", 1683 mdname(mddev)); 1684 goto out_free_conf; 1685 } 1686 1687 mddev->degraded = 0; 1688 for (i = 0; i < conf->raid_disks; i++) { 1689 1690 disk = conf->mirrors + i; 1691 1692 if (!disk->rdev) { 1693 disk->head_position = 0; 1694 mddev->degraded++; 1695 } 1696 } 1697 1698 1699 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 1700 if (!mddev->thread) { 1701 printk(KERN_ERR 1702 "raid10: couldn't allocate thread for %s\n", 1703 mdname(mddev)); 1704 goto out_free_conf; 1705 } 1706 1707 printk(KERN_INFO 1708 "raid10: raid set %s active with %d out of %d devices\n", 1709 mdname(mddev), mddev->raid_disks - mddev->degraded, 1710 mddev->raid_disks); 1711 /* 1712 * Ok, everything is just fine now 1713 */ 1714 size = conf->stride * conf->raid_disks; 1715 sector_div(size, conf->near_copies); 1716 mddev->array_size = size/2; 1717 mddev->resync_max_sectors = size; 1718 1719 mddev->queue->unplug_fn = raid10_unplug; 1720 mddev->queue->issue_flush_fn = raid10_issue_flush; 1721 1722 /* Calculate max read-ahead size. 1723 * We need to readahead at least twice a whole stripe.... 1724 * maybe... 1725 */ 1726 { 1727 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE; 1728 stripe /= conf->near_copies; 1729 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 1730 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 1731 } 1732 1733 if (conf->near_copies < mddev->raid_disks) 1734 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 1735 return 0; 1736 1737 out_free_conf: 1738 if (conf->r10bio_pool) 1739 mempool_destroy(conf->r10bio_pool); 1740 kfree(conf->mirrors); 1741 kfree(conf); 1742 mddev->private = NULL; 1743 out: 1744 return -EIO; 1745 } 1746 1747 static int stop(mddev_t *mddev) 1748 { 1749 conf_t *conf = mddev_to_conf(mddev); 1750 1751 md_unregister_thread(mddev->thread); 1752 mddev->thread = NULL; 1753 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 1754 if (conf->r10bio_pool) 1755 mempool_destroy(conf->r10bio_pool); 1756 kfree(conf->mirrors); 1757 kfree(conf); 1758 mddev->private = NULL; 1759 return 0; 1760 } 1761 1762 1763 static mdk_personality_t raid10_personality = 1764 { 1765 .name = "raid10", 1766 .owner = THIS_MODULE, 1767 .make_request = make_request, 1768 .run = run, 1769 .stop = stop, 1770 .status = status, 1771 .error_handler = error, 1772 .hot_add_disk = raid10_add_disk, 1773 .hot_remove_disk= raid10_remove_disk, 1774 .spare_active = raid10_spare_active, 1775 .sync_request = sync_request, 1776 }; 1777 1778 static int __init raid_init(void) 1779 { 1780 return register_md_personality(RAID10, &raid10_personality); 1781 } 1782 1783 static void raid_exit(void) 1784 { 1785 unregister_md_personality(RAID10); 1786 } 1787 1788 module_init(raid_init); 1789 module_exit(raid_exit); 1790 MODULE_LICENSE("GPL"); 1791 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 1792