xref: /linux/drivers/md/raid10.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/raid/raid10.h>
22 
23 /*
24  * RAID10 provides a combination of RAID0 and RAID1 functionality.
25  * The layout of data is defined by
26  *    chunk_size
27  *    raid_disks
28  *    near_copies (stored in low byte of layout)
29  *    far_copies (stored in second byte of layout)
30  *
31  * The data to be stored is divided into chunks using chunksize.
32  * Each device is divided into far_copies sections.
33  * In each section, chunks are laid out in a style similar to raid0, but
34  * near_copies copies of each chunk is stored (each on a different drive).
35  * The starting device for each section is offset near_copies from the starting
36  * device of the previous section.
37  * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
38  * drive.
39  * near_copies and far_copies must be at least one, and their product is at most
40  * raid_disks.
41  */
42 
43 /*
44  * Number of guaranteed r10bios in case of extreme VM load:
45  */
46 #define	NR_RAID10_BIOS 256
47 
48 static void unplug_slaves(mddev_t *mddev);
49 
50 static void * r10bio_pool_alloc(unsigned int __nocast gfp_flags, void *data)
51 {
52 	conf_t *conf = data;
53 	r10bio_t *r10_bio;
54 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
55 
56 	/* allocate a r10bio with room for raid_disks entries in the bios array */
57 	r10_bio = kmalloc(size, gfp_flags);
58 	if (r10_bio)
59 		memset(r10_bio, 0, size);
60 	else
61 		unplug_slaves(conf->mddev);
62 
63 	return r10_bio;
64 }
65 
66 static void r10bio_pool_free(void *r10_bio, void *data)
67 {
68 	kfree(r10_bio);
69 }
70 
71 #define RESYNC_BLOCK_SIZE (64*1024)
72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75 #define RESYNC_WINDOW (2048*1024)
76 
77 /*
78  * When performing a resync, we need to read and compare, so
79  * we need as many pages are there are copies.
80  * When performing a recovery, we need 2 bios, one for read,
81  * one for write (we recover only one drive per r10buf)
82  *
83  */
84 static void * r10buf_pool_alloc(unsigned int __nocast gfp_flags, void *data)
85 {
86 	conf_t *conf = data;
87 	struct page *page;
88 	r10bio_t *r10_bio;
89 	struct bio *bio;
90 	int i, j;
91 	int nalloc;
92 
93 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
94 	if (!r10_bio) {
95 		unplug_slaves(conf->mddev);
96 		return NULL;
97 	}
98 
99 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
100 		nalloc = conf->copies; /* resync */
101 	else
102 		nalloc = 2; /* recovery */
103 
104 	/*
105 	 * Allocate bios.
106 	 */
107 	for (j = nalloc ; j-- ; ) {
108 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
109 		if (!bio)
110 			goto out_free_bio;
111 		r10_bio->devs[j].bio = bio;
112 	}
113 	/*
114 	 * Allocate RESYNC_PAGES data pages and attach them
115 	 * where needed.
116 	 */
117 	for (j = 0 ; j < nalloc; j++) {
118 		bio = r10_bio->devs[j].bio;
119 		for (i = 0; i < RESYNC_PAGES; i++) {
120 			page = alloc_page(gfp_flags);
121 			if (unlikely(!page))
122 				goto out_free_pages;
123 
124 			bio->bi_io_vec[i].bv_page = page;
125 		}
126 	}
127 
128 	return r10_bio;
129 
130 out_free_pages:
131 	for ( ; i > 0 ; i--)
132 		__free_page(bio->bi_io_vec[i-1].bv_page);
133 	while (j--)
134 		for (i = 0; i < RESYNC_PAGES ; i++)
135 			__free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
136 	j = -1;
137 out_free_bio:
138 	while ( ++j < nalloc )
139 		bio_put(r10_bio->devs[j].bio);
140 	r10bio_pool_free(r10_bio, conf);
141 	return NULL;
142 }
143 
144 static void r10buf_pool_free(void *__r10_bio, void *data)
145 {
146 	int i;
147 	conf_t *conf = data;
148 	r10bio_t *r10bio = __r10_bio;
149 	int j;
150 
151 	for (j=0; j < conf->copies; j++) {
152 		struct bio *bio = r10bio->devs[j].bio;
153 		if (bio) {
154 			for (i = 0; i < RESYNC_PAGES; i++) {
155 				__free_page(bio->bi_io_vec[i].bv_page);
156 				bio->bi_io_vec[i].bv_page = NULL;
157 			}
158 			bio_put(bio);
159 		}
160 	}
161 	r10bio_pool_free(r10bio, conf);
162 }
163 
164 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
165 {
166 	int i;
167 
168 	for (i = 0; i < conf->copies; i++) {
169 		struct bio **bio = & r10_bio->devs[i].bio;
170 		if (*bio)
171 			bio_put(*bio);
172 		*bio = NULL;
173 	}
174 }
175 
176 static inline void free_r10bio(r10bio_t *r10_bio)
177 {
178 	unsigned long flags;
179 
180 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
181 
182 	/*
183 	 * Wake up any possible resync thread that waits for the device
184 	 * to go idle.
185 	 */
186 	spin_lock_irqsave(&conf->resync_lock, flags);
187 	if (!--conf->nr_pending) {
188 		wake_up(&conf->wait_idle);
189 		wake_up(&conf->wait_resume);
190 	}
191 	spin_unlock_irqrestore(&conf->resync_lock, flags);
192 
193 	put_all_bios(conf, r10_bio);
194 	mempool_free(r10_bio, conf->r10bio_pool);
195 }
196 
197 static inline void put_buf(r10bio_t *r10_bio)
198 {
199 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
200 	unsigned long flags;
201 
202 	mempool_free(r10_bio, conf->r10buf_pool);
203 
204 	spin_lock_irqsave(&conf->resync_lock, flags);
205 	if (!conf->barrier)
206 		BUG();
207 	--conf->barrier;
208 	wake_up(&conf->wait_resume);
209 	wake_up(&conf->wait_idle);
210 
211 	if (!--conf->nr_pending) {
212 		wake_up(&conf->wait_idle);
213 		wake_up(&conf->wait_resume);
214 	}
215 	spin_unlock_irqrestore(&conf->resync_lock, flags);
216 }
217 
218 static void reschedule_retry(r10bio_t *r10_bio)
219 {
220 	unsigned long flags;
221 	mddev_t *mddev = r10_bio->mddev;
222 	conf_t *conf = mddev_to_conf(mddev);
223 
224 	spin_lock_irqsave(&conf->device_lock, flags);
225 	list_add(&r10_bio->retry_list, &conf->retry_list);
226 	spin_unlock_irqrestore(&conf->device_lock, flags);
227 
228 	md_wakeup_thread(mddev->thread);
229 }
230 
231 /*
232  * raid_end_bio_io() is called when we have finished servicing a mirrored
233  * operation and are ready to return a success/failure code to the buffer
234  * cache layer.
235  */
236 static void raid_end_bio_io(r10bio_t *r10_bio)
237 {
238 	struct bio *bio = r10_bio->master_bio;
239 
240 	bio_endio(bio, bio->bi_size,
241 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 	free_r10bio(r10_bio);
243 }
244 
245 /*
246  * Update disk head position estimator based on IRQ completion info.
247  */
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 {
250 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
251 
252 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 		r10_bio->devs[slot].addr + (r10_bio->sectors);
254 }
255 
256 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
257 {
258 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
260 	int slot, dev;
261 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
262 
263 	if (bio->bi_size)
264 		return 1;
265 
266 	slot = r10_bio->read_slot;
267 	dev = r10_bio->devs[slot].devnum;
268 	/*
269 	 * this branch is our 'one mirror IO has finished' event handler:
270 	 */
271 	if (!uptodate)
272 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
273 	else
274 		/*
275 		 * Set R10BIO_Uptodate in our master bio, so that
276 		 * we will return a good error code to the higher
277 		 * levels even if IO on some other mirrored buffer fails.
278 		 *
279 		 * The 'master' represents the composite IO operation to
280 		 * user-side. So if something waits for IO, then it will
281 		 * wait for the 'master' bio.
282 		 */
283 		set_bit(R10BIO_Uptodate, &r10_bio->state);
284 
285 	update_head_pos(slot, r10_bio);
286 
287 	/*
288 	 * we have only one bio on the read side
289 	 */
290 	if (uptodate)
291 		raid_end_bio_io(r10_bio);
292 	else {
293 		/*
294 		 * oops, read error:
295 		 */
296 		char b[BDEVNAME_SIZE];
297 		if (printk_ratelimit())
298 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
299 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
300 		reschedule_retry(r10_bio);
301 	}
302 
303 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
304 	return 0;
305 }
306 
307 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
308 {
309 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
311 	int slot, dev;
312 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
313 
314 	if (bio->bi_size)
315 		return 1;
316 
317 	for (slot = 0; slot < conf->copies; slot++)
318 		if (r10_bio->devs[slot].bio == bio)
319 			break;
320 	dev = r10_bio->devs[slot].devnum;
321 
322 	/*
323 	 * this branch is our 'one mirror IO has finished' event handler:
324 	 */
325 	if (!uptodate)
326 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
327 	else
328 		/*
329 		 * Set R10BIO_Uptodate in our master bio, so that
330 		 * we will return a good error code for to the higher
331 		 * levels even if IO on some other mirrored buffer fails.
332 		 *
333 		 * The 'master' represents the composite IO operation to
334 		 * user-side. So if something waits for IO, then it will
335 		 * wait for the 'master' bio.
336 		 */
337 		set_bit(R10BIO_Uptodate, &r10_bio->state);
338 
339 	update_head_pos(slot, r10_bio);
340 
341 	/*
342 	 *
343 	 * Let's see if all mirrored write operations have finished
344 	 * already.
345 	 */
346 	if (atomic_dec_and_test(&r10_bio->remaining)) {
347 		md_write_end(r10_bio->mddev);
348 		raid_end_bio_io(r10_bio);
349 	}
350 
351 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
352 	return 0;
353 }
354 
355 
356 /*
357  * RAID10 layout manager
358  * Aswell as the chunksize and raid_disks count, there are two
359  * parameters: near_copies and far_copies.
360  * near_copies * far_copies must be <= raid_disks.
361  * Normally one of these will be 1.
362  * If both are 1, we get raid0.
363  * If near_copies == raid_disks, we get raid1.
364  *
365  * Chunks are layed out in raid0 style with near_copies copies of the
366  * first chunk, followed by near_copies copies of the next chunk and
367  * so on.
368  * If far_copies > 1, then after 1/far_copies of the array has been assigned
369  * as described above, we start again with a device offset of near_copies.
370  * So we effectively have another copy of the whole array further down all
371  * the drives, but with blocks on different drives.
372  * With this layout, and block is never stored twice on the one device.
373  *
374  * raid10_find_phys finds the sector offset of a given virtual sector
375  * on each device that it is on. If a block isn't on a device,
376  * that entry in the array is set to MaxSector.
377  *
378  * raid10_find_virt does the reverse mapping, from a device and a
379  * sector offset to a virtual address
380  */
381 
382 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
383 {
384 	int n,f;
385 	sector_t sector;
386 	sector_t chunk;
387 	sector_t stripe;
388 	int dev;
389 
390 	int slot = 0;
391 
392 	/* now calculate first sector/dev */
393 	chunk = r10bio->sector >> conf->chunk_shift;
394 	sector = r10bio->sector & conf->chunk_mask;
395 
396 	chunk *= conf->near_copies;
397 	stripe = chunk;
398 	dev = sector_div(stripe, conf->raid_disks);
399 
400 	sector += stripe << conf->chunk_shift;
401 
402 	/* and calculate all the others */
403 	for (n=0; n < conf->near_copies; n++) {
404 		int d = dev;
405 		sector_t s = sector;
406 		r10bio->devs[slot].addr = sector;
407 		r10bio->devs[slot].devnum = d;
408 		slot++;
409 
410 		for (f = 1; f < conf->far_copies; f++) {
411 			d += conf->near_copies;
412 			if (d >= conf->raid_disks)
413 				d -= conf->raid_disks;
414 			s += conf->stride;
415 			r10bio->devs[slot].devnum = d;
416 			r10bio->devs[slot].addr = s;
417 			slot++;
418 		}
419 		dev++;
420 		if (dev >= conf->raid_disks) {
421 			dev = 0;
422 			sector += (conf->chunk_mask + 1);
423 		}
424 	}
425 	BUG_ON(slot != conf->copies);
426 }
427 
428 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
429 {
430 	sector_t offset, chunk, vchunk;
431 
432 	while (sector > conf->stride) {
433 		sector -= conf->stride;
434 		if (dev < conf->near_copies)
435 			dev += conf->raid_disks - conf->near_copies;
436 		else
437 			dev -= conf->near_copies;
438 	}
439 
440 	offset = sector & conf->chunk_mask;
441 	chunk = sector >> conf->chunk_shift;
442 	vchunk = chunk * conf->raid_disks + dev;
443 	sector_div(vchunk, conf->near_copies);
444 	return (vchunk << conf->chunk_shift) + offset;
445 }
446 
447 /**
448  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449  *	@q: request queue
450  *	@bio: the buffer head that's been built up so far
451  *	@biovec: the request that could be merged to it.
452  *
453  *	Return amount of bytes we can accept at this offset
454  *      If near_copies == raid_disk, there are no striping issues,
455  *      but in that case, the function isn't called at all.
456  */
457 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
458 				struct bio_vec *bio_vec)
459 {
460 	mddev_t *mddev = q->queuedata;
461 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
462 	int max;
463 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
464 	unsigned int bio_sectors = bio->bi_size >> 9;
465 
466 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
467 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
468 	if (max <= bio_vec->bv_len && bio_sectors == 0)
469 		return bio_vec->bv_len;
470 	else
471 		return max;
472 }
473 
474 /*
475  * This routine returns the disk from which the requested read should
476  * be done. There is a per-array 'next expected sequential IO' sector
477  * number - if this matches on the next IO then we use the last disk.
478  * There is also a per-disk 'last know head position' sector that is
479  * maintained from IRQ contexts, both the normal and the resync IO
480  * completion handlers update this position correctly. If there is no
481  * perfect sequential match then we pick the disk whose head is closest.
482  *
483  * If there are 2 mirrors in the same 2 devices, performance degrades
484  * because position is mirror, not device based.
485  *
486  * The rdev for the device selected will have nr_pending incremented.
487  */
488 
489 /*
490  * FIXME: possibly should rethink readbalancing and do it differently
491  * depending on near_copies / far_copies geometry.
492  */
493 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
494 {
495 	const unsigned long this_sector = r10_bio->sector;
496 	int disk, slot, nslot;
497 	const int sectors = r10_bio->sectors;
498 	sector_t new_distance, current_distance;
499 
500 	raid10_find_phys(conf, r10_bio);
501 	rcu_read_lock();
502 	/*
503 	 * Check if we can balance. We can balance on the whole
504 	 * device if no resync is going on, or below the resync window.
505 	 * We take the first readable disk when above the resync window.
506 	 */
507 	if (conf->mddev->recovery_cp < MaxSector
508 	    && (this_sector + sectors >= conf->next_resync)) {
509 		/* make sure that disk is operational */
510 		slot = 0;
511 		disk = r10_bio->devs[slot].devnum;
512 
513 		while (!conf->mirrors[disk].rdev ||
514 		       !conf->mirrors[disk].rdev->in_sync) {
515 			slot++;
516 			if (slot == conf->copies) {
517 				slot = 0;
518 				disk = -1;
519 				break;
520 			}
521 			disk = r10_bio->devs[slot].devnum;
522 		}
523 		goto rb_out;
524 	}
525 
526 
527 	/* make sure the disk is operational */
528 	slot = 0;
529 	disk = r10_bio->devs[slot].devnum;
530 	while (!conf->mirrors[disk].rdev ||
531 	       !conf->mirrors[disk].rdev->in_sync) {
532 		slot ++;
533 		if (slot == conf->copies) {
534 			disk = -1;
535 			goto rb_out;
536 		}
537 		disk = r10_bio->devs[slot].devnum;
538 	}
539 
540 
541 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
542 
543 	/* Find the disk whose head is closest */
544 
545 	for (nslot = slot; nslot < conf->copies; nslot++) {
546 		int ndisk = r10_bio->devs[nslot].devnum;
547 
548 
549 		if (!conf->mirrors[ndisk].rdev ||
550 		    !conf->mirrors[ndisk].rdev->in_sync)
551 			continue;
552 
553 		if (!atomic_read(&conf->mirrors[ndisk].rdev->nr_pending)) {
554 			disk = ndisk;
555 			slot = nslot;
556 			break;
557 		}
558 		new_distance = abs(r10_bio->devs[nslot].addr -
559 				   conf->mirrors[ndisk].head_position);
560 		if (new_distance < current_distance) {
561 			current_distance = new_distance;
562 			disk = ndisk;
563 			slot = nslot;
564 		}
565 	}
566 
567 rb_out:
568 	r10_bio->read_slot = slot;
569 /*	conf->next_seq_sect = this_sector + sectors;*/
570 
571 	if (disk >= 0 && conf->mirrors[disk].rdev)
572 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
573 	rcu_read_unlock();
574 
575 	return disk;
576 }
577 
578 static void unplug_slaves(mddev_t *mddev)
579 {
580 	conf_t *conf = mddev_to_conf(mddev);
581 	int i;
582 
583 	rcu_read_lock();
584 	for (i=0; i<mddev->raid_disks; i++) {
585 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
586 		if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
587 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
588 
589 			atomic_inc(&rdev->nr_pending);
590 			rcu_read_unlock();
591 
592 			if (r_queue->unplug_fn)
593 				r_queue->unplug_fn(r_queue);
594 
595 			rdev_dec_pending(rdev, mddev);
596 			rcu_read_lock();
597 		}
598 	}
599 	rcu_read_unlock();
600 }
601 
602 static void raid10_unplug(request_queue_t *q)
603 {
604 	unplug_slaves(q->queuedata);
605 }
606 
607 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
608 			     sector_t *error_sector)
609 {
610 	mddev_t *mddev = q->queuedata;
611 	conf_t *conf = mddev_to_conf(mddev);
612 	int i, ret = 0;
613 
614 	rcu_read_lock();
615 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
616 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
617 		if (rdev && !rdev->faulty) {
618 			struct block_device *bdev = rdev->bdev;
619 			request_queue_t *r_queue = bdev_get_queue(bdev);
620 
621 			if (!r_queue->issue_flush_fn)
622 				ret = -EOPNOTSUPP;
623 			else {
624 				atomic_inc(&rdev->nr_pending);
625 				rcu_read_unlock();
626 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
627 							      error_sector);
628 				rdev_dec_pending(rdev, mddev);
629 				rcu_read_lock();
630 			}
631 		}
632 	}
633 	rcu_read_unlock();
634 	return ret;
635 }
636 
637 /*
638  * Throttle resync depth, so that we can both get proper overlapping of
639  * requests, but are still able to handle normal requests quickly.
640  */
641 #define RESYNC_DEPTH 32
642 
643 static void device_barrier(conf_t *conf, sector_t sect)
644 {
645 	spin_lock_irq(&conf->resync_lock);
646 	wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
647 			    conf->resync_lock, unplug_slaves(conf->mddev));
648 
649 	if (!conf->barrier++) {
650 		wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
651 				    conf->resync_lock, unplug_slaves(conf->mddev));
652 		if (conf->nr_pending)
653 			BUG();
654 	}
655 	wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
656 			    conf->resync_lock, unplug_slaves(conf->mddev));
657 	conf->next_resync = sect;
658 	spin_unlock_irq(&conf->resync_lock);
659 }
660 
661 static int make_request(request_queue_t *q, struct bio * bio)
662 {
663 	mddev_t *mddev = q->queuedata;
664 	conf_t *conf = mddev_to_conf(mddev);
665 	mirror_info_t *mirror;
666 	r10bio_t *r10_bio;
667 	struct bio *read_bio;
668 	int i;
669 	int chunk_sects = conf->chunk_mask + 1;
670 
671 	/* If this request crosses a chunk boundary, we need to
672 	 * split it.  This will only happen for 1 PAGE (or less) requests.
673 	 */
674 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
675 		      > chunk_sects &&
676 		    conf->near_copies < conf->raid_disks)) {
677 		struct bio_pair *bp;
678 		/* Sanity check -- queue functions should prevent this happening */
679 		if (bio->bi_vcnt != 1 ||
680 		    bio->bi_idx != 0)
681 			goto bad_map;
682 		/* This is a one page bio that upper layers
683 		 * refuse to split for us, so we need to split it.
684 		 */
685 		bp = bio_split(bio, bio_split_pool,
686 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
687 		if (make_request(q, &bp->bio1))
688 			generic_make_request(&bp->bio1);
689 		if (make_request(q, &bp->bio2))
690 			generic_make_request(&bp->bio2);
691 
692 		bio_pair_release(bp);
693 		return 0;
694 	bad_map:
695 		printk("raid10_make_request bug: can't convert block across chunks"
696 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
697 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
698 
699 		bio_io_error(bio, bio->bi_size);
700 		return 0;
701 	}
702 
703 	md_write_start(mddev, bio);
704 
705 	/*
706 	 * Register the new request and wait if the reconstruction
707 	 * thread has put up a bar for new requests.
708 	 * Continue immediately if no resync is active currently.
709 	 */
710 	spin_lock_irq(&conf->resync_lock);
711 	wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
712 	conf->nr_pending++;
713 	spin_unlock_irq(&conf->resync_lock);
714 
715 	if (bio_data_dir(bio)==WRITE) {
716 		disk_stat_inc(mddev->gendisk, writes);
717 		disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
718 	} else {
719 		disk_stat_inc(mddev->gendisk, reads);
720 		disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
721 	}
722 
723 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
724 
725 	r10_bio->master_bio = bio;
726 	r10_bio->sectors = bio->bi_size >> 9;
727 
728 	r10_bio->mddev = mddev;
729 	r10_bio->sector = bio->bi_sector;
730 
731 	if (bio_data_dir(bio) == READ) {
732 		/*
733 		 * read balancing logic:
734 		 */
735 		int disk = read_balance(conf, r10_bio);
736 		int slot = r10_bio->read_slot;
737 		if (disk < 0) {
738 			raid_end_bio_io(r10_bio);
739 			return 0;
740 		}
741 		mirror = conf->mirrors + disk;
742 
743 		read_bio = bio_clone(bio, GFP_NOIO);
744 
745 		r10_bio->devs[slot].bio = read_bio;
746 
747 		read_bio->bi_sector = r10_bio->devs[slot].addr +
748 			mirror->rdev->data_offset;
749 		read_bio->bi_bdev = mirror->rdev->bdev;
750 		read_bio->bi_end_io = raid10_end_read_request;
751 		read_bio->bi_rw = READ;
752 		read_bio->bi_private = r10_bio;
753 
754 		generic_make_request(read_bio);
755 		return 0;
756 	}
757 
758 	/*
759 	 * WRITE:
760 	 */
761 	/* first select target devices under spinlock and
762 	 * inc refcount on their rdev.  Record them by setting
763 	 * bios[x] to bio
764 	 */
765 	raid10_find_phys(conf, r10_bio);
766 	rcu_read_lock();
767 	for (i = 0;  i < conf->copies; i++) {
768 		int d = r10_bio->devs[i].devnum;
769 		if (conf->mirrors[d].rdev &&
770 		    !conf->mirrors[d].rdev->faulty) {
771 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
772 			r10_bio->devs[i].bio = bio;
773 		} else
774 			r10_bio->devs[i].bio = NULL;
775 	}
776 	rcu_read_unlock();
777 
778 	atomic_set(&r10_bio->remaining, 1);
779 
780 	for (i = 0; i < conf->copies; i++) {
781 		struct bio *mbio;
782 		int d = r10_bio->devs[i].devnum;
783 		if (!r10_bio->devs[i].bio)
784 			continue;
785 
786 		mbio = bio_clone(bio, GFP_NOIO);
787 		r10_bio->devs[i].bio = mbio;
788 
789 		mbio->bi_sector	= r10_bio->devs[i].addr+
790 			conf->mirrors[d].rdev->data_offset;
791 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
792 		mbio->bi_end_io	= raid10_end_write_request;
793 		mbio->bi_rw = WRITE;
794 		mbio->bi_private = r10_bio;
795 
796 		atomic_inc(&r10_bio->remaining);
797 		generic_make_request(mbio);
798 	}
799 
800 	if (atomic_dec_and_test(&r10_bio->remaining)) {
801 		md_write_end(mddev);
802 		raid_end_bio_io(r10_bio);
803 	}
804 
805 	return 0;
806 }
807 
808 static void status(struct seq_file *seq, mddev_t *mddev)
809 {
810 	conf_t *conf = mddev_to_conf(mddev);
811 	int i;
812 
813 	if (conf->near_copies < conf->raid_disks)
814 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
815 	if (conf->near_copies > 1)
816 		seq_printf(seq, " %d near-copies", conf->near_copies);
817 	if (conf->far_copies > 1)
818 		seq_printf(seq, " %d far-copies", conf->far_copies);
819 
820 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
821 						conf->working_disks);
822 	for (i = 0; i < conf->raid_disks; i++)
823 		seq_printf(seq, "%s",
824 			      conf->mirrors[i].rdev &&
825 			      conf->mirrors[i].rdev->in_sync ? "U" : "_");
826 	seq_printf(seq, "]");
827 }
828 
829 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
830 {
831 	char b[BDEVNAME_SIZE];
832 	conf_t *conf = mddev_to_conf(mddev);
833 
834 	/*
835 	 * If it is not operational, then we have already marked it as dead
836 	 * else if it is the last working disks, ignore the error, let the
837 	 * next level up know.
838 	 * else mark the drive as failed
839 	 */
840 	if (rdev->in_sync
841 	    && conf->working_disks == 1)
842 		/*
843 		 * Don't fail the drive, just return an IO error.
844 		 * The test should really be more sophisticated than
845 		 * "working_disks == 1", but it isn't critical, and
846 		 * can wait until we do more sophisticated "is the drive
847 		 * really dead" tests...
848 		 */
849 		return;
850 	if (rdev->in_sync) {
851 		mddev->degraded++;
852 		conf->working_disks--;
853 		/*
854 		 * if recovery is running, make sure it aborts.
855 		 */
856 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
857 	}
858 	rdev->in_sync = 0;
859 	rdev->faulty = 1;
860 	mddev->sb_dirty = 1;
861 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
862 		"	Operation continuing on %d devices\n",
863 		bdevname(rdev->bdev,b), conf->working_disks);
864 }
865 
866 static void print_conf(conf_t *conf)
867 {
868 	int i;
869 	mirror_info_t *tmp;
870 
871 	printk("RAID10 conf printout:\n");
872 	if (!conf) {
873 		printk("(!conf)\n");
874 		return;
875 	}
876 	printk(" --- wd:%d rd:%d\n", conf->working_disks,
877 		conf->raid_disks);
878 
879 	for (i = 0; i < conf->raid_disks; i++) {
880 		char b[BDEVNAME_SIZE];
881 		tmp = conf->mirrors + i;
882 		if (tmp->rdev)
883 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
884 				i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
885 				bdevname(tmp->rdev->bdev,b));
886 	}
887 }
888 
889 static void close_sync(conf_t *conf)
890 {
891 	spin_lock_irq(&conf->resync_lock);
892 	wait_event_lock_irq(conf->wait_resume, !conf->barrier,
893 			    conf->resync_lock, 	unplug_slaves(conf->mddev));
894 	spin_unlock_irq(&conf->resync_lock);
895 
896 	if (conf->barrier) BUG();
897 	if (waitqueue_active(&conf->wait_idle)) BUG();
898 
899 	mempool_destroy(conf->r10buf_pool);
900 	conf->r10buf_pool = NULL;
901 }
902 
903 static int raid10_spare_active(mddev_t *mddev)
904 {
905 	int i;
906 	conf_t *conf = mddev->private;
907 	mirror_info_t *tmp;
908 
909 	/*
910 	 * Find all non-in_sync disks within the RAID10 configuration
911 	 * and mark them in_sync
912 	 */
913 	for (i = 0; i < conf->raid_disks; i++) {
914 		tmp = conf->mirrors + i;
915 		if (tmp->rdev
916 		    && !tmp->rdev->faulty
917 		    && !tmp->rdev->in_sync) {
918 			conf->working_disks++;
919 			mddev->degraded--;
920 			tmp->rdev->in_sync = 1;
921 		}
922 	}
923 
924 	print_conf(conf);
925 	return 0;
926 }
927 
928 
929 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
930 {
931 	conf_t *conf = mddev->private;
932 	int found = 0;
933 	int mirror;
934 	mirror_info_t *p;
935 
936 	if (mddev->recovery_cp < MaxSector)
937 		/* only hot-add to in-sync arrays, as recovery is
938 		 * very different from resync
939 		 */
940 		return 0;
941 
942 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
943 		if ( !(p=conf->mirrors+mirror)->rdev) {
944 
945 			blk_queue_stack_limits(mddev->queue,
946 					       rdev->bdev->bd_disk->queue);
947 			/* as we don't honour merge_bvec_fn, we must never risk
948 			 * violating it, so limit ->max_sector to one PAGE, as
949 			 * a one page request is never in violation.
950 			 */
951 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
952 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
953 				mddev->queue->max_sectors = (PAGE_SIZE>>9);
954 
955 			p->head_position = 0;
956 			rdev->raid_disk = mirror;
957 			found = 1;
958 			p->rdev = rdev;
959 			break;
960 		}
961 
962 	print_conf(conf);
963 	return found;
964 }
965 
966 static int raid10_remove_disk(mddev_t *mddev, int number)
967 {
968 	conf_t *conf = mddev->private;
969 	int err = 0;
970 	mdk_rdev_t *rdev;
971 	mirror_info_t *p = conf->mirrors+ number;
972 
973 	print_conf(conf);
974 	rdev = p->rdev;
975 	if (rdev) {
976 		if (rdev->in_sync ||
977 		    atomic_read(&rdev->nr_pending)) {
978 			err = -EBUSY;
979 			goto abort;
980 		}
981 		p->rdev = NULL;
982 		synchronize_rcu();
983 		if (atomic_read(&rdev->nr_pending)) {
984 			/* lost the race, try later */
985 			err = -EBUSY;
986 			p->rdev = rdev;
987 		}
988 	}
989 abort:
990 
991 	print_conf(conf);
992 	return err;
993 }
994 
995 
996 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
997 {
998 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
999 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1000 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
1001 	int i,d;
1002 
1003 	if (bio->bi_size)
1004 		return 1;
1005 
1006 	for (i=0; i<conf->copies; i++)
1007 		if (r10_bio->devs[i].bio == bio)
1008 			break;
1009 	if (i == conf->copies)
1010 		BUG();
1011 	update_head_pos(i, r10_bio);
1012 	d = r10_bio->devs[i].devnum;
1013 	if (!uptodate)
1014 		md_error(r10_bio->mddev,
1015 			 conf->mirrors[d].rdev);
1016 
1017 	/* for reconstruct, we always reschedule after a read.
1018 	 * for resync, only after all reads
1019 	 */
1020 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1021 	    atomic_dec_and_test(&r10_bio->remaining)) {
1022 		/* we have read all the blocks,
1023 		 * do the comparison in process context in raid10d
1024 		 */
1025 		reschedule_retry(r10_bio);
1026 	}
1027 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1028 	return 0;
1029 }
1030 
1031 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1032 {
1033 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1034 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1035 	mddev_t *mddev = r10_bio->mddev;
1036 	conf_t *conf = mddev_to_conf(mddev);
1037 	int i,d;
1038 
1039 	if (bio->bi_size)
1040 		return 1;
1041 
1042 	for (i = 0; i < conf->copies; i++)
1043 		if (r10_bio->devs[i].bio == bio)
1044 			break;
1045 	d = r10_bio->devs[i].devnum;
1046 
1047 	if (!uptodate)
1048 		md_error(mddev, conf->mirrors[d].rdev);
1049 	update_head_pos(i, r10_bio);
1050 
1051 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1052 		if (r10_bio->master_bio == NULL) {
1053 			/* the primary of several recovery bios */
1054 			md_done_sync(mddev, r10_bio->sectors, 1);
1055 			put_buf(r10_bio);
1056 			break;
1057 		} else {
1058 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1059 			put_buf(r10_bio);
1060 			r10_bio = r10_bio2;
1061 		}
1062 	}
1063 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1064 	return 0;
1065 }
1066 
1067 /*
1068  * Note: sync and recover and handled very differently for raid10
1069  * This code is for resync.
1070  * For resync, we read through virtual addresses and read all blocks.
1071  * If there is any error, we schedule a write.  The lowest numbered
1072  * drive is authoritative.
1073  * However requests come for physical address, so we need to map.
1074  * For every physical address there are raid_disks/copies virtual addresses,
1075  * which is always are least one, but is not necessarly an integer.
1076  * This means that a physical address can span multiple chunks, so we may
1077  * have to submit multiple io requests for a single sync request.
1078  */
1079 /*
1080  * We check if all blocks are in-sync and only write to blocks that
1081  * aren't in sync
1082  */
1083 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1084 {
1085 	conf_t *conf = mddev_to_conf(mddev);
1086 	int i, first;
1087 	struct bio *tbio, *fbio;
1088 
1089 	atomic_set(&r10_bio->remaining, 1);
1090 
1091 	/* find the first device with a block */
1092 	for (i=0; i<conf->copies; i++)
1093 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1094 			break;
1095 
1096 	if (i == conf->copies)
1097 		goto done;
1098 
1099 	first = i;
1100 	fbio = r10_bio->devs[i].bio;
1101 
1102 	/* now find blocks with errors */
1103 	for (i=first+1 ; i < conf->copies ; i++) {
1104 		int vcnt, j, d;
1105 
1106 		if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1107 			continue;
1108 		/* We know that the bi_io_vec layout is the same for
1109 		 * both 'first' and 'i', so we just compare them.
1110 		 * All vec entries are PAGE_SIZE;
1111 		 */
1112 		tbio = r10_bio->devs[i].bio;
1113 		vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1114 		for (j = 0; j < vcnt; j++)
1115 			if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1116 				   page_address(tbio->bi_io_vec[j].bv_page),
1117 				   PAGE_SIZE))
1118 				break;
1119 		if (j == vcnt)
1120 			continue;
1121 		/* Ok, we need to write this bio
1122 		 * First we need to fixup bv_offset, bv_len and
1123 		 * bi_vecs, as the read request might have corrupted these
1124 		 */
1125 		tbio->bi_vcnt = vcnt;
1126 		tbio->bi_size = r10_bio->sectors << 9;
1127 		tbio->bi_idx = 0;
1128 		tbio->bi_phys_segments = 0;
1129 		tbio->bi_hw_segments = 0;
1130 		tbio->bi_hw_front_size = 0;
1131 		tbio->bi_hw_back_size = 0;
1132 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1133 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1134 		tbio->bi_next = NULL;
1135 		tbio->bi_rw = WRITE;
1136 		tbio->bi_private = r10_bio;
1137 		tbio->bi_sector = r10_bio->devs[i].addr;
1138 
1139 		for (j=0; j < vcnt ; j++) {
1140 			tbio->bi_io_vec[j].bv_offset = 0;
1141 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1142 
1143 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1144 			       page_address(fbio->bi_io_vec[j].bv_page),
1145 			       PAGE_SIZE);
1146 		}
1147 		tbio->bi_end_io = end_sync_write;
1148 
1149 		d = r10_bio->devs[i].devnum;
1150 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1151 		atomic_inc(&r10_bio->remaining);
1152 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1153 
1154 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1155 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1156 		generic_make_request(tbio);
1157 	}
1158 
1159 done:
1160 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1161 		md_done_sync(mddev, r10_bio->sectors, 1);
1162 		put_buf(r10_bio);
1163 	}
1164 }
1165 
1166 /*
1167  * Now for the recovery code.
1168  * Recovery happens across physical sectors.
1169  * We recover all non-is_sync drives by finding the virtual address of
1170  * each, and then choose a working drive that also has that virt address.
1171  * There is a separate r10_bio for each non-in_sync drive.
1172  * Only the first two slots are in use. The first for reading,
1173  * The second for writing.
1174  *
1175  */
1176 
1177 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1178 {
1179 	conf_t *conf = mddev_to_conf(mddev);
1180 	int i, d;
1181 	struct bio *bio, *wbio;
1182 
1183 
1184 	/* move the pages across to the second bio
1185 	 * and submit the write request
1186 	 */
1187 	bio = r10_bio->devs[0].bio;
1188 	wbio = r10_bio->devs[1].bio;
1189 	for (i=0; i < wbio->bi_vcnt; i++) {
1190 		struct page *p = bio->bi_io_vec[i].bv_page;
1191 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1192 		wbio->bi_io_vec[i].bv_page = p;
1193 	}
1194 	d = r10_bio->devs[1].devnum;
1195 
1196 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1197 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1198 	generic_make_request(wbio);
1199 }
1200 
1201 
1202 /*
1203  * This is a kernel thread which:
1204  *
1205  *	1.	Retries failed read operations on working mirrors.
1206  *	2.	Updates the raid superblock when problems encounter.
1207  *	3.	Performs writes following reads for array syncronising.
1208  */
1209 
1210 static void raid10d(mddev_t *mddev)
1211 {
1212 	r10bio_t *r10_bio;
1213 	struct bio *bio;
1214 	unsigned long flags;
1215 	conf_t *conf = mddev_to_conf(mddev);
1216 	struct list_head *head = &conf->retry_list;
1217 	int unplug=0;
1218 	mdk_rdev_t *rdev;
1219 
1220 	md_check_recovery(mddev);
1221 
1222 	for (;;) {
1223 		char b[BDEVNAME_SIZE];
1224 		spin_lock_irqsave(&conf->device_lock, flags);
1225 		if (list_empty(head))
1226 			break;
1227 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1228 		list_del(head->prev);
1229 		spin_unlock_irqrestore(&conf->device_lock, flags);
1230 
1231 		mddev = r10_bio->mddev;
1232 		conf = mddev_to_conf(mddev);
1233 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1234 			sync_request_write(mddev, r10_bio);
1235 			unplug = 1;
1236 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1237 			recovery_request_write(mddev, r10_bio);
1238 			unplug = 1;
1239 		} else {
1240 			int mirror;
1241 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1242 			r10_bio->devs[r10_bio->read_slot].bio = NULL;
1243 			bio_put(bio);
1244 			mirror = read_balance(conf, r10_bio);
1245 			if (mirror == -1) {
1246 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1247 				       " read error for block %llu\n",
1248 				       bdevname(bio->bi_bdev,b),
1249 				       (unsigned long long)r10_bio->sector);
1250 				raid_end_bio_io(r10_bio);
1251 			} else {
1252 				rdev = conf->mirrors[mirror].rdev;
1253 				if (printk_ratelimit())
1254 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1255 					       " another mirror\n",
1256 					       bdevname(rdev->bdev,b),
1257 					       (unsigned long long)r10_bio->sector);
1258 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1259 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1260 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1261 					+ rdev->data_offset;
1262 				bio->bi_bdev = rdev->bdev;
1263 				bio->bi_rw = READ;
1264 				bio->bi_private = r10_bio;
1265 				bio->bi_end_io = raid10_end_read_request;
1266 				unplug = 1;
1267 				generic_make_request(bio);
1268 			}
1269 		}
1270 	}
1271 	spin_unlock_irqrestore(&conf->device_lock, flags);
1272 	if (unplug)
1273 		unplug_slaves(mddev);
1274 }
1275 
1276 
1277 static int init_resync(conf_t *conf)
1278 {
1279 	int buffs;
1280 
1281 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1282 	if (conf->r10buf_pool)
1283 		BUG();
1284 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1285 	if (!conf->r10buf_pool)
1286 		return -ENOMEM;
1287 	conf->next_resync = 0;
1288 	return 0;
1289 }
1290 
1291 /*
1292  * perform a "sync" on one "block"
1293  *
1294  * We need to make sure that no normal I/O request - particularly write
1295  * requests - conflict with active sync requests.
1296  *
1297  * This is achieved by tracking pending requests and a 'barrier' concept
1298  * that can be installed to exclude normal IO requests.
1299  *
1300  * Resync and recovery are handled very differently.
1301  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1302  *
1303  * For resync, we iterate over virtual addresses, read all copies,
1304  * and update if there are differences.  If only one copy is live,
1305  * skip it.
1306  * For recovery, we iterate over physical addresses, read a good
1307  * value for each non-in_sync drive, and over-write.
1308  *
1309  * So, for recovery we may have several outstanding complex requests for a
1310  * given address, one for each out-of-sync device.  We model this by allocating
1311  * a number of r10_bio structures, one for each out-of-sync device.
1312  * As we setup these structures, we collect all bio's together into a list
1313  * which we then process collectively to add pages, and then process again
1314  * to pass to generic_make_request.
1315  *
1316  * The r10_bio structures are linked using a borrowed master_bio pointer.
1317  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1318  * has its remaining count decremented to 0, the whole complex operation
1319  * is complete.
1320  *
1321  */
1322 
1323 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1324 {
1325 	conf_t *conf = mddev_to_conf(mddev);
1326 	r10bio_t *r10_bio;
1327 	struct bio *biolist = NULL, *bio;
1328 	sector_t max_sector, nr_sectors;
1329 	int disk;
1330 	int i;
1331 
1332 	sector_t sectors_skipped = 0;
1333 	int chunks_skipped = 0;
1334 
1335 	if (!conf->r10buf_pool)
1336 		if (init_resync(conf))
1337 			return 0;
1338 
1339  skipped:
1340 	max_sector = mddev->size << 1;
1341 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1342 		max_sector = mddev->resync_max_sectors;
1343 	if (sector_nr >= max_sector) {
1344 		close_sync(conf);
1345 		*skipped = 1;
1346 		return sectors_skipped;
1347 	}
1348 	if (chunks_skipped >= conf->raid_disks) {
1349 		/* if there has been nothing to do on any drive,
1350 		 * then there is nothing to do at all..
1351 		 */
1352 		*skipped = 1;
1353 		return (max_sector - sector_nr) + sectors_skipped;
1354 	}
1355 
1356 	/* make sure whole request will fit in a chunk - if chunks
1357 	 * are meaningful
1358 	 */
1359 	if (conf->near_copies < conf->raid_disks &&
1360 	    max_sector > (sector_nr | conf->chunk_mask))
1361 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1362 	/*
1363 	 * If there is non-resync activity waiting for us then
1364 	 * put in a delay to throttle resync.
1365 	 */
1366 	if (!go_faster && waitqueue_active(&conf->wait_resume))
1367 		msleep_interruptible(1000);
1368 	device_barrier(conf, sector_nr + RESYNC_SECTORS);
1369 
1370 	/* Again, very different code for resync and recovery.
1371 	 * Both must result in an r10bio with a list of bios that
1372 	 * have bi_end_io, bi_sector, bi_bdev set,
1373 	 * and bi_private set to the r10bio.
1374 	 * For recovery, we may actually create several r10bios
1375 	 * with 2 bios in each, that correspond to the bios in the main one.
1376 	 * In this case, the subordinate r10bios link back through a
1377 	 * borrowed master_bio pointer, and the counter in the master
1378 	 * includes a ref from each subordinate.
1379 	 */
1380 	/* First, we decide what to do and set ->bi_end_io
1381 	 * To end_sync_read if we want to read, and
1382 	 * end_sync_write if we will want to write.
1383 	 */
1384 
1385 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1386 		/* recovery... the complicated one */
1387 		int i, j, k;
1388 		r10_bio = NULL;
1389 
1390 		for (i=0 ; i<conf->raid_disks; i++)
1391 			if (conf->mirrors[i].rdev &&
1392 			    !conf->mirrors[i].rdev->in_sync) {
1393 				/* want to reconstruct this device */
1394 				r10bio_t *rb2 = r10_bio;
1395 
1396 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1397 				spin_lock_irq(&conf->resync_lock);
1398 				conf->nr_pending++;
1399 				if (rb2) conf->barrier++;
1400 				spin_unlock_irq(&conf->resync_lock);
1401 				atomic_set(&r10_bio->remaining, 0);
1402 
1403 				r10_bio->master_bio = (struct bio*)rb2;
1404 				if (rb2)
1405 					atomic_inc(&rb2->remaining);
1406 				r10_bio->mddev = mddev;
1407 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1408 				r10_bio->sector = raid10_find_virt(conf, sector_nr, i);
1409 				raid10_find_phys(conf, r10_bio);
1410 				for (j=0; j<conf->copies;j++) {
1411 					int d = r10_bio->devs[j].devnum;
1412 					if (conf->mirrors[d].rdev &&
1413 					    conf->mirrors[d].rdev->in_sync) {
1414 						/* This is where we read from */
1415 						bio = r10_bio->devs[0].bio;
1416 						bio->bi_next = biolist;
1417 						biolist = bio;
1418 						bio->bi_private = r10_bio;
1419 						bio->bi_end_io = end_sync_read;
1420 						bio->bi_rw = 0;
1421 						bio->bi_sector = r10_bio->devs[j].addr +
1422 							conf->mirrors[d].rdev->data_offset;
1423 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1424 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1425 						atomic_inc(&r10_bio->remaining);
1426 						/* and we write to 'i' */
1427 
1428 						for (k=0; k<conf->copies; k++)
1429 							if (r10_bio->devs[k].devnum == i)
1430 								break;
1431 						bio = r10_bio->devs[1].bio;
1432 						bio->bi_next = biolist;
1433 						biolist = bio;
1434 						bio->bi_private = r10_bio;
1435 						bio->bi_end_io = end_sync_write;
1436 						bio->bi_rw = 1;
1437 						bio->bi_sector = r10_bio->devs[k].addr +
1438 							conf->mirrors[i].rdev->data_offset;
1439 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1440 
1441 						r10_bio->devs[0].devnum = d;
1442 						r10_bio->devs[1].devnum = i;
1443 
1444 						break;
1445 					}
1446 				}
1447 				if (j == conf->copies) {
1448 					BUG();
1449 				}
1450 			}
1451 		if (biolist == NULL) {
1452 			while (r10_bio) {
1453 				r10bio_t *rb2 = r10_bio;
1454 				r10_bio = (r10bio_t*) rb2->master_bio;
1455 				rb2->master_bio = NULL;
1456 				put_buf(rb2);
1457 			}
1458 			goto giveup;
1459 		}
1460 	} else {
1461 		/* resync. Schedule a read for every block at this virt offset */
1462 		int count = 0;
1463 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1464 
1465 		spin_lock_irq(&conf->resync_lock);
1466 		conf->nr_pending++;
1467 		spin_unlock_irq(&conf->resync_lock);
1468 
1469 		r10_bio->mddev = mddev;
1470 		atomic_set(&r10_bio->remaining, 0);
1471 
1472 		r10_bio->master_bio = NULL;
1473 		r10_bio->sector = sector_nr;
1474 		set_bit(R10BIO_IsSync, &r10_bio->state);
1475 		raid10_find_phys(conf, r10_bio);
1476 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1477 
1478 		for (i=0; i<conf->copies; i++) {
1479 			int d = r10_bio->devs[i].devnum;
1480 			bio = r10_bio->devs[i].bio;
1481 			bio->bi_end_io = NULL;
1482 			if (conf->mirrors[d].rdev == NULL ||
1483 			    conf->mirrors[d].rdev->faulty)
1484 				continue;
1485 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1486 			atomic_inc(&r10_bio->remaining);
1487 			bio->bi_next = biolist;
1488 			biolist = bio;
1489 			bio->bi_private = r10_bio;
1490 			bio->bi_end_io = end_sync_read;
1491 			bio->bi_rw = 0;
1492 			bio->bi_sector = r10_bio->devs[i].addr +
1493 				conf->mirrors[d].rdev->data_offset;
1494 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1495 			count++;
1496 		}
1497 
1498 		if (count < 2) {
1499 			for (i=0; i<conf->copies; i++) {
1500 				int d = r10_bio->devs[i].devnum;
1501 				if (r10_bio->devs[i].bio->bi_end_io)
1502 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1503 			}
1504 			put_buf(r10_bio);
1505 			biolist = NULL;
1506 			goto giveup;
1507 		}
1508 	}
1509 
1510 	for (bio = biolist; bio ; bio=bio->bi_next) {
1511 
1512 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1513 		if (bio->bi_end_io)
1514 			bio->bi_flags |= 1 << BIO_UPTODATE;
1515 		bio->bi_vcnt = 0;
1516 		bio->bi_idx = 0;
1517 		bio->bi_phys_segments = 0;
1518 		bio->bi_hw_segments = 0;
1519 		bio->bi_size = 0;
1520 	}
1521 
1522 	nr_sectors = 0;
1523 	do {
1524 		struct page *page;
1525 		int len = PAGE_SIZE;
1526 		disk = 0;
1527 		if (sector_nr + (len>>9) > max_sector)
1528 			len = (max_sector - sector_nr) << 9;
1529 		if (len == 0)
1530 			break;
1531 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1532 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1533 			if (bio_add_page(bio, page, len, 0) == 0) {
1534 				/* stop here */
1535 				struct bio *bio2;
1536 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1537 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1538 					/* remove last page from this bio */
1539 					bio2->bi_vcnt--;
1540 					bio2->bi_size -= len;
1541 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1542 				}
1543 				goto bio_full;
1544 			}
1545 			disk = i;
1546 		}
1547 		nr_sectors += len>>9;
1548 		sector_nr += len>>9;
1549 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1550  bio_full:
1551 	r10_bio->sectors = nr_sectors;
1552 
1553 	while (biolist) {
1554 		bio = biolist;
1555 		biolist = biolist->bi_next;
1556 
1557 		bio->bi_next = NULL;
1558 		r10_bio = bio->bi_private;
1559 		r10_bio->sectors = nr_sectors;
1560 
1561 		if (bio->bi_end_io == end_sync_read) {
1562 			md_sync_acct(bio->bi_bdev, nr_sectors);
1563 			generic_make_request(bio);
1564 		}
1565 	}
1566 
1567 	if (sectors_skipped)
1568 		/* pretend they weren't skipped, it makes
1569 		 * no important difference in this case
1570 		 */
1571 		md_done_sync(mddev, sectors_skipped, 1);
1572 
1573 	return sectors_skipped + nr_sectors;
1574  giveup:
1575 	/* There is nowhere to write, so all non-sync
1576 	 * drives must be failed, so try the next chunk...
1577 	 */
1578 	{
1579 	sector_t sec = max_sector - sector_nr;
1580 	sectors_skipped += sec;
1581 	chunks_skipped ++;
1582 	sector_nr = max_sector;
1583 	goto skipped;
1584 	}
1585 }
1586 
1587 static int run(mddev_t *mddev)
1588 {
1589 	conf_t *conf;
1590 	int i, disk_idx;
1591 	mirror_info_t *disk;
1592 	mdk_rdev_t *rdev;
1593 	struct list_head *tmp;
1594 	int nc, fc;
1595 	sector_t stride, size;
1596 
1597 	if (mddev->level != 10) {
1598 		printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1599 		       mdname(mddev), mddev->level);
1600 		goto out;
1601 	}
1602 	nc = mddev->layout & 255;
1603 	fc = (mddev->layout >> 8) & 255;
1604 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1605 	    (mddev->layout >> 16)) {
1606 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1607 		       mdname(mddev), mddev->layout);
1608 		goto out;
1609 	}
1610 	/*
1611 	 * copy the already verified devices into our private RAID10
1612 	 * bookkeeping area. [whatever we allocate in run(),
1613 	 * should be freed in stop()]
1614 	 */
1615 	conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1616 	mddev->private = conf;
1617 	if (!conf) {
1618 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1619 			mdname(mddev));
1620 		goto out;
1621 	}
1622 	memset(conf, 0, sizeof(*conf));
1623 	conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1624 				 GFP_KERNEL);
1625 	if (!conf->mirrors) {
1626 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1627 		       mdname(mddev));
1628 		goto out_free_conf;
1629 	}
1630 	memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1631 
1632 	conf->near_copies = nc;
1633 	conf->far_copies = fc;
1634 	conf->copies = nc*fc;
1635 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1636 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1637 	stride = mddev->size >> (conf->chunk_shift-1);
1638 	sector_div(stride, fc);
1639 	conf->stride = stride << conf->chunk_shift;
1640 
1641 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1642 						r10bio_pool_free, conf);
1643 	if (!conf->r10bio_pool) {
1644 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1645 			mdname(mddev));
1646 		goto out_free_conf;
1647 	}
1648 
1649 	ITERATE_RDEV(mddev, rdev, tmp) {
1650 		disk_idx = rdev->raid_disk;
1651 		if (disk_idx >= mddev->raid_disks
1652 		    || disk_idx < 0)
1653 			continue;
1654 		disk = conf->mirrors + disk_idx;
1655 
1656 		disk->rdev = rdev;
1657 
1658 		blk_queue_stack_limits(mddev->queue,
1659 				       rdev->bdev->bd_disk->queue);
1660 		/* as we don't honour merge_bvec_fn, we must never risk
1661 		 * violating it, so limit ->max_sector to one PAGE, as
1662 		 * a one page request is never in violation.
1663 		 */
1664 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1665 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1666 			mddev->queue->max_sectors = (PAGE_SIZE>>9);
1667 
1668 		disk->head_position = 0;
1669 		if (!rdev->faulty && rdev->in_sync)
1670 			conf->working_disks++;
1671 	}
1672 	conf->raid_disks = mddev->raid_disks;
1673 	conf->mddev = mddev;
1674 	spin_lock_init(&conf->device_lock);
1675 	INIT_LIST_HEAD(&conf->retry_list);
1676 
1677 	spin_lock_init(&conf->resync_lock);
1678 	init_waitqueue_head(&conf->wait_idle);
1679 	init_waitqueue_head(&conf->wait_resume);
1680 
1681 	if (!conf->working_disks) {
1682 		printk(KERN_ERR "raid10: no operational mirrors for %s\n",
1683 			mdname(mddev));
1684 		goto out_free_conf;
1685 	}
1686 
1687 	mddev->degraded = 0;
1688 	for (i = 0; i < conf->raid_disks; i++) {
1689 
1690 		disk = conf->mirrors + i;
1691 
1692 		if (!disk->rdev) {
1693 			disk->head_position = 0;
1694 			mddev->degraded++;
1695 		}
1696 	}
1697 
1698 
1699 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1700 	if (!mddev->thread) {
1701 		printk(KERN_ERR
1702 		       "raid10: couldn't allocate thread for %s\n",
1703 		       mdname(mddev));
1704 		goto out_free_conf;
1705 	}
1706 
1707 	printk(KERN_INFO
1708 		"raid10: raid set %s active with %d out of %d devices\n",
1709 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1710 		mddev->raid_disks);
1711 	/*
1712 	 * Ok, everything is just fine now
1713 	 */
1714 	size = conf->stride * conf->raid_disks;
1715 	sector_div(size, conf->near_copies);
1716 	mddev->array_size = size/2;
1717 	mddev->resync_max_sectors = size;
1718 
1719 	mddev->queue->unplug_fn = raid10_unplug;
1720 	mddev->queue->issue_flush_fn = raid10_issue_flush;
1721 
1722 	/* Calculate max read-ahead size.
1723 	 * We need to readahead at least twice a whole stripe....
1724 	 * maybe...
1725 	 */
1726 	{
1727 		int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
1728 		stripe /= conf->near_copies;
1729 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
1730 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
1731 	}
1732 
1733 	if (conf->near_copies < mddev->raid_disks)
1734 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1735 	return 0;
1736 
1737 out_free_conf:
1738 	if (conf->r10bio_pool)
1739 		mempool_destroy(conf->r10bio_pool);
1740 	kfree(conf->mirrors);
1741 	kfree(conf);
1742 	mddev->private = NULL;
1743 out:
1744 	return -EIO;
1745 }
1746 
1747 static int stop(mddev_t *mddev)
1748 {
1749 	conf_t *conf = mddev_to_conf(mddev);
1750 
1751 	md_unregister_thread(mddev->thread);
1752 	mddev->thread = NULL;
1753 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1754 	if (conf->r10bio_pool)
1755 		mempool_destroy(conf->r10bio_pool);
1756 	kfree(conf->mirrors);
1757 	kfree(conf);
1758 	mddev->private = NULL;
1759 	return 0;
1760 }
1761 
1762 
1763 static mdk_personality_t raid10_personality =
1764 {
1765 	.name		= "raid10",
1766 	.owner		= THIS_MODULE,
1767 	.make_request	= make_request,
1768 	.run		= run,
1769 	.stop		= stop,
1770 	.status		= status,
1771 	.error_handler	= error,
1772 	.hot_add_disk	= raid10_add_disk,
1773 	.hot_remove_disk= raid10_remove_disk,
1774 	.spare_active	= raid10_spare_active,
1775 	.sync_request	= sync_request,
1776 };
1777 
1778 static int __init raid_init(void)
1779 {
1780 	return register_md_personality(RAID10, &raid10_personality);
1781 }
1782 
1783 static void raid_exit(void)
1784 {
1785 	unregister_md_personality(RAID10);
1786 }
1787 
1788 module_init(raid_init);
1789 module_exit(raid_exit);
1790 MODULE_LICENSE("GPL");
1791 MODULE_ALIAS("md-personality-9"); /* RAID10 */
1792