xref: /linux/drivers/md/raid10.c (revision cfc4ca8986bb1f6182da6cd7bb57f228590b4643)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27 #include "md-cluster.h"
28 
29 /*
30  * RAID10 provides a combination of RAID0 and RAID1 functionality.
31  * The layout of data is defined by
32  *    chunk_size
33  *    raid_disks
34  *    near_copies (stored in low byte of layout)
35  *    far_copies (stored in second byte of layout)
36  *    far_offset (stored in bit 16 of layout )
37  *    use_far_sets (stored in bit 17 of layout )
38  *    use_far_sets_bugfixed (stored in bit 18 of layout )
39  *
40  * The data to be stored is divided into chunks using chunksize.  Each device
41  * is divided into far_copies sections.   In each section, chunks are laid out
42  * in a style similar to raid0, but near_copies copies of each chunk is stored
43  * (each on a different drive).  The starting device for each section is offset
44  * near_copies from the starting device of the previous section.  Thus there
45  * are (near_copies * far_copies) of each chunk, and each is on a different
46  * drive.  near_copies and far_copies must be at least one, and their product
47  * is at most raid_disks.
48  *
49  * If far_offset is true, then the far_copies are handled a bit differently.
50  * The copies are still in different stripes, but instead of being very far
51  * apart on disk, there are adjacent stripes.
52  *
53  * The far and offset algorithms are handled slightly differently if
54  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
55  * sets that are (near_copies * far_copies) in size.  The far copied stripes
56  * are still shifted by 'near_copies' devices, but this shifting stays confined
57  * to the set rather than the entire array.  This is done to improve the number
58  * of device combinations that can fail without causing the array to fail.
59  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
60  * on a device):
61  *    A B C D    A B C D E
62  *      ...         ...
63  *    D A B C    E A B C D
64  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
65  *    [A B] [C D]    [A B] [C D E]
66  *    |...| |...|    |...| | ... |
67  *    [B A] [D C]    [B A] [E C D]
68  */
69 
70 static void allow_barrier(struct r10conf *conf);
71 static void lower_barrier(struct r10conf *conf);
72 static int _enough(struct r10conf *conf, int previous, int ignore);
73 static int enough(struct r10conf *conf, int ignore);
74 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
75 				int *skipped);
76 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
77 static void end_reshape_write(struct bio *bio);
78 static void end_reshape(struct r10conf *conf);
79 
80 #include "raid1-10.c"
81 
82 #define NULL_CMD
83 #define cmd_before(conf, cmd) \
84 	do { \
85 		write_sequnlock_irq(&(conf)->resync_lock); \
86 		cmd; \
87 	} while (0)
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89 
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91 	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92 		       cmd_after(conf))
93 
94 #define wait_event_barrier(conf, cond) \
95 	wait_event_barrier_cmd(conf, cond, NULL_CMD)
96 
97 /*
98  * for resync bio, r10bio pointer can be retrieved from the per-bio
99  * 'struct resync_pages'.
100  */
101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 {
103 	return get_resync_pages(bio)->raid_bio;
104 }
105 
106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108 	struct r10conf *conf = data;
109 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110 
111 	/* allocate a r10bio with room for raid_disks entries in the
112 	 * bios array */
113 	return kzalloc(size, gfp_flags);
114 }
115 
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123 
124 /*
125  * When performing a resync, we need to read and compare, so
126  * we need as many pages are there are copies.
127  * When performing a recovery, we need 2 bios, one for read,
128  * one for write (we recover only one drive per r10buf)
129  *
130  */
131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 	struct r10conf *conf = data;
134 	struct r10bio *r10_bio;
135 	struct bio *bio;
136 	int j;
137 	int nalloc, nalloc_rp;
138 	struct resync_pages *rps;
139 
140 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141 	if (!r10_bio)
142 		return NULL;
143 
144 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146 		nalloc = conf->copies; /* resync */
147 	else
148 		nalloc = 2; /* recovery */
149 
150 	/* allocate once for all bios */
151 	if (!conf->have_replacement)
152 		nalloc_rp = nalloc;
153 	else
154 		nalloc_rp = nalloc * 2;
155 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156 	if (!rps)
157 		goto out_free_r10bio;
158 
159 	/*
160 	 * Allocate bios.
161 	 */
162 	for (j = nalloc ; j-- ; ) {
163 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164 		if (!bio)
165 			goto out_free_bio;
166 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167 		r10_bio->devs[j].bio = bio;
168 		if (!conf->have_replacement)
169 			continue;
170 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171 		if (!bio)
172 			goto out_free_bio;
173 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174 		r10_bio->devs[j].repl_bio = bio;
175 	}
176 	/*
177 	 * Allocate RESYNC_PAGES data pages and attach them
178 	 * where needed.
179 	 */
180 	for (j = 0; j < nalloc; j++) {
181 		struct bio *rbio = r10_bio->devs[j].repl_bio;
182 		struct resync_pages *rp, *rp_repl;
183 
184 		rp = &rps[j];
185 		if (rbio)
186 			rp_repl = &rps[nalloc + j];
187 
188 		bio = r10_bio->devs[j].bio;
189 
190 		if (!j || test_bit(MD_RECOVERY_SYNC,
191 				   &conf->mddev->recovery)) {
192 			if (resync_alloc_pages(rp, gfp_flags))
193 				goto out_free_pages;
194 		} else {
195 			memcpy(rp, &rps[0], sizeof(*rp));
196 			resync_get_all_pages(rp);
197 		}
198 
199 		rp->raid_bio = r10_bio;
200 		bio->bi_private = rp;
201 		if (rbio) {
202 			memcpy(rp_repl, rp, sizeof(*rp));
203 			rbio->bi_private = rp_repl;
204 		}
205 	}
206 
207 	return r10_bio;
208 
209 out_free_pages:
210 	while (--j >= 0)
211 		resync_free_pages(&rps[j]);
212 
213 	j = 0;
214 out_free_bio:
215 	for ( ; j < nalloc; j++) {
216 		if (r10_bio->devs[j].bio)
217 			bio_uninit(r10_bio->devs[j].bio);
218 		kfree(r10_bio->devs[j].bio);
219 		if (r10_bio->devs[j].repl_bio)
220 			bio_uninit(r10_bio->devs[j].repl_bio);
221 		kfree(r10_bio->devs[j].repl_bio);
222 	}
223 	kfree(rps);
224 out_free_r10bio:
225 	rbio_pool_free(r10_bio, conf);
226 	return NULL;
227 }
228 
229 static void r10buf_pool_free(void *__r10_bio, void *data)
230 {
231 	struct r10conf *conf = data;
232 	struct r10bio *r10bio = __r10_bio;
233 	int j;
234 	struct resync_pages *rp = NULL;
235 
236 	for (j = conf->copies; j--; ) {
237 		struct bio *bio = r10bio->devs[j].bio;
238 
239 		if (bio) {
240 			rp = get_resync_pages(bio);
241 			resync_free_pages(rp);
242 			bio_uninit(bio);
243 			kfree(bio);
244 		}
245 
246 		bio = r10bio->devs[j].repl_bio;
247 		if (bio) {
248 			bio_uninit(bio);
249 			kfree(bio);
250 		}
251 	}
252 
253 	/* resync pages array stored in the 1st bio's .bi_private */
254 	kfree(rp);
255 
256 	rbio_pool_free(r10bio, conf);
257 }
258 
259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 {
261 	int i;
262 
263 	for (i = 0; i < conf->geo.raid_disks; i++) {
264 		struct bio **bio = & r10_bio->devs[i].bio;
265 		if (!BIO_SPECIAL(*bio))
266 			bio_put(*bio);
267 		*bio = NULL;
268 		bio = &r10_bio->devs[i].repl_bio;
269 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270 			bio_put(*bio);
271 		*bio = NULL;
272 	}
273 }
274 
275 static void free_r10bio(struct r10bio *r10_bio)
276 {
277 	struct r10conf *conf = r10_bio->mddev->private;
278 
279 	put_all_bios(conf, r10_bio);
280 	mempool_free(r10_bio, &conf->r10bio_pool);
281 }
282 
283 static void put_buf(struct r10bio *r10_bio)
284 {
285 	struct r10conf *conf = r10_bio->mddev->private;
286 
287 	mempool_free(r10_bio, &conf->r10buf_pool);
288 
289 	lower_barrier(conf);
290 }
291 
292 static void wake_up_barrier(struct r10conf *conf)
293 {
294 	if (wq_has_sleeper(&conf->wait_barrier))
295 		wake_up(&conf->wait_barrier);
296 }
297 
298 static void reschedule_retry(struct r10bio *r10_bio)
299 {
300 	unsigned long flags;
301 	struct mddev *mddev = r10_bio->mddev;
302 	struct r10conf *conf = mddev->private;
303 
304 	spin_lock_irqsave(&conf->device_lock, flags);
305 	list_add(&r10_bio->retry_list, &conf->retry_list);
306 	conf->nr_queued ++;
307 	spin_unlock_irqrestore(&conf->device_lock, flags);
308 
309 	/* wake up frozen array... */
310 	wake_up(&conf->wait_barrier);
311 
312 	md_wakeup_thread(mddev->thread);
313 }
314 
315 /*
316  * raid_end_bio_io() is called when we have finished servicing a mirrored
317  * operation and are ready to return a success/failure code to the buffer
318  * cache layer.
319  */
320 static void raid_end_bio_io(struct r10bio *r10_bio)
321 {
322 	struct bio *bio = r10_bio->master_bio;
323 	struct r10conf *conf = r10_bio->mddev->private;
324 
325 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326 		bio->bi_status = BLK_STS_IOERR;
327 
328 	bio_endio(bio);
329 	/*
330 	 * Wake up any possible resync thread that waits for the device
331 	 * to go idle.
332 	 */
333 	allow_barrier(conf);
334 
335 	free_r10bio(r10_bio);
336 }
337 
338 /*
339  * Update disk head position estimator based on IRQ completion info.
340  */
341 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
342 {
343 	struct r10conf *conf = r10_bio->mddev->private;
344 
345 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
346 		r10_bio->devs[slot].addr + (r10_bio->sectors);
347 }
348 
349 /*
350  * Find the disk number which triggered given bio
351  */
352 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
353 			 struct bio *bio, int *slotp, int *replp)
354 {
355 	int slot;
356 	int repl = 0;
357 
358 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
359 		if (r10_bio->devs[slot].bio == bio)
360 			break;
361 		if (r10_bio->devs[slot].repl_bio == bio) {
362 			repl = 1;
363 			break;
364 		}
365 	}
366 
367 	update_head_pos(slot, r10_bio);
368 
369 	if (slotp)
370 		*slotp = slot;
371 	if (replp)
372 		*replp = repl;
373 	return r10_bio->devs[slot].devnum;
374 }
375 
376 static void raid10_end_read_request(struct bio *bio)
377 {
378 	int uptodate = !bio->bi_status;
379 	struct r10bio *r10_bio = bio->bi_private;
380 	int slot;
381 	struct md_rdev *rdev;
382 	struct r10conf *conf = r10_bio->mddev->private;
383 
384 	slot = r10_bio->read_slot;
385 	rdev = r10_bio->devs[slot].rdev;
386 	/*
387 	 * this branch is our 'one mirror IO has finished' event handler:
388 	 */
389 	update_head_pos(slot, r10_bio);
390 
391 	if (uptodate) {
392 		/*
393 		 * Set R10BIO_Uptodate in our master bio, so that
394 		 * we will return a good error code to the higher
395 		 * levels even if IO on some other mirrored buffer fails.
396 		 *
397 		 * The 'master' represents the composite IO operation to
398 		 * user-side. So if something waits for IO, then it will
399 		 * wait for the 'master' bio.
400 		 */
401 		set_bit(R10BIO_Uptodate, &r10_bio->state);
402 	} else {
403 		/* If all other devices that store this block have
404 		 * failed, we want to return the error upwards rather
405 		 * than fail the last device.  Here we redefine
406 		 * "uptodate" to mean "Don't want to retry"
407 		 */
408 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
409 			     rdev->raid_disk))
410 			uptodate = 1;
411 	}
412 	if (uptodate) {
413 		raid_end_bio_io(r10_bio);
414 		rdev_dec_pending(rdev, conf->mddev);
415 	} else {
416 		/*
417 		 * oops, read error - keep the refcount on the rdev
418 		 */
419 		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
420 				   mdname(conf->mddev),
421 				   rdev->bdev,
422 				   (unsigned long long)r10_bio->sector);
423 		set_bit(R10BIO_ReadError, &r10_bio->state);
424 		reschedule_retry(r10_bio);
425 	}
426 }
427 
428 static void close_write(struct r10bio *r10_bio)
429 {
430 	struct mddev *mddev = r10_bio->mddev;
431 
432 	md_write_end(mddev);
433 }
434 
435 static void one_write_done(struct r10bio *r10_bio)
436 {
437 	if (atomic_dec_and_test(&r10_bio->remaining)) {
438 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
439 			reschedule_retry(r10_bio);
440 		else {
441 			close_write(r10_bio);
442 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
443 				reschedule_retry(r10_bio);
444 			else
445 				raid_end_bio_io(r10_bio);
446 		}
447 	}
448 }
449 
450 static void raid10_end_write_request(struct bio *bio)
451 {
452 	struct r10bio *r10_bio = bio->bi_private;
453 	int dev;
454 	int dec_rdev = 1;
455 	struct r10conf *conf = r10_bio->mddev->private;
456 	int slot, repl;
457 	struct md_rdev *rdev = NULL;
458 	struct bio *to_put = NULL;
459 	bool discard_error;
460 
461 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
462 
463 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
464 
465 	if (repl)
466 		rdev = conf->mirrors[dev].replacement;
467 	if (!rdev) {
468 		smp_rmb();
469 		repl = 0;
470 		rdev = conf->mirrors[dev].rdev;
471 	}
472 	/*
473 	 * this branch is our 'one mirror IO has finished' event handler:
474 	 */
475 	if (bio->bi_status && !discard_error) {
476 		if (repl)
477 			/* Never record new bad blocks to replacement,
478 			 * just fail it.
479 			 */
480 			md_error(rdev->mddev, rdev);
481 		else {
482 			set_bit(WriteErrorSeen,	&rdev->flags);
483 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
484 				set_bit(MD_RECOVERY_NEEDED,
485 					&rdev->mddev->recovery);
486 
487 			dec_rdev = 0;
488 			if (test_bit(FailFast, &rdev->flags) &&
489 			    (bio->bi_opf & MD_FAILFAST)) {
490 				md_error(rdev->mddev, rdev);
491 			}
492 
493 			/*
494 			 * When the device is faulty, it is not necessary to
495 			 * handle write error.
496 			 */
497 			if (!test_bit(Faulty, &rdev->flags))
498 				set_bit(R10BIO_WriteError, &r10_bio->state);
499 			else {
500 				/* Fail the request */
501 				r10_bio->devs[slot].bio = NULL;
502 				to_put = bio;
503 				dec_rdev = 1;
504 			}
505 		}
506 	} else {
507 		/*
508 		 * Set R10BIO_Uptodate in our master bio, so that
509 		 * we will return a good error code for to the higher
510 		 * levels even if IO on some other mirrored buffer fails.
511 		 *
512 		 * The 'master' represents the composite IO operation to
513 		 * user-side. So if something waits for IO, then it will
514 		 * wait for the 'master' bio.
515 		 *
516 		 * Do not set R10BIO_Uptodate if the current device is
517 		 * rebuilding or Faulty. This is because we cannot use
518 		 * such device for properly reading the data back (we could
519 		 * potentially use it, if the current write would have felt
520 		 * before rdev->recovery_offset, but for simplicity we don't
521 		 * check this here.
522 		 */
523 		if (test_bit(In_sync, &rdev->flags) &&
524 		    !test_bit(Faulty, &rdev->flags))
525 			set_bit(R10BIO_Uptodate, &r10_bio->state);
526 
527 		/* Maybe we can clear some bad blocks. */
528 		if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
529 				      r10_bio->sectors) &&
530 		    !discard_error) {
531 			bio_put(bio);
532 			if (repl)
533 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
534 			else
535 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
536 			dec_rdev = 0;
537 			set_bit(R10BIO_MadeGood, &r10_bio->state);
538 		}
539 	}
540 
541 	/*
542 	 *
543 	 * Let's see if all mirrored write operations have finished
544 	 * already.
545 	 */
546 	one_write_done(r10_bio);
547 	if (dec_rdev)
548 		rdev_dec_pending(rdev, conf->mddev);
549 	if (to_put)
550 		bio_put(to_put);
551 }
552 
553 /*
554  * RAID10 layout manager
555  * As well as the chunksize and raid_disks count, there are two
556  * parameters: near_copies and far_copies.
557  * near_copies * far_copies must be <= raid_disks.
558  * Normally one of these will be 1.
559  * If both are 1, we get raid0.
560  * If near_copies == raid_disks, we get raid1.
561  *
562  * Chunks are laid out in raid0 style with near_copies copies of the
563  * first chunk, followed by near_copies copies of the next chunk and
564  * so on.
565  * If far_copies > 1, then after 1/far_copies of the array has been assigned
566  * as described above, we start again with a device offset of near_copies.
567  * So we effectively have another copy of the whole array further down all
568  * the drives, but with blocks on different drives.
569  * With this layout, and block is never stored twice on the one device.
570  *
571  * raid10_find_phys finds the sector offset of a given virtual sector
572  * on each device that it is on.
573  *
574  * raid10_find_virt does the reverse mapping, from a device and a
575  * sector offset to a virtual address
576  */
577 
578 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
579 {
580 	int n,f;
581 	sector_t sector;
582 	sector_t chunk;
583 	sector_t stripe;
584 	int dev;
585 	int slot = 0;
586 	int last_far_set_start, last_far_set_size;
587 
588 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
589 	last_far_set_start *= geo->far_set_size;
590 
591 	last_far_set_size = geo->far_set_size;
592 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
593 
594 	/* now calculate first sector/dev */
595 	chunk = r10bio->sector >> geo->chunk_shift;
596 	sector = r10bio->sector & geo->chunk_mask;
597 
598 	chunk *= geo->near_copies;
599 	stripe = chunk;
600 	dev = sector_div(stripe, geo->raid_disks);
601 	if (geo->far_offset)
602 		stripe *= geo->far_copies;
603 
604 	sector += stripe << geo->chunk_shift;
605 
606 	/* and calculate all the others */
607 	for (n = 0; n < geo->near_copies; n++) {
608 		int d = dev;
609 		int set;
610 		sector_t s = sector;
611 		r10bio->devs[slot].devnum = d;
612 		r10bio->devs[slot].addr = s;
613 		slot++;
614 
615 		for (f = 1; f < geo->far_copies; f++) {
616 			set = d / geo->far_set_size;
617 			d += geo->near_copies;
618 
619 			if ((geo->raid_disks % geo->far_set_size) &&
620 			    (d > last_far_set_start)) {
621 				d -= last_far_set_start;
622 				d %= last_far_set_size;
623 				d += last_far_set_start;
624 			} else {
625 				d %= geo->far_set_size;
626 				d += geo->far_set_size * set;
627 			}
628 			s += geo->stride;
629 			r10bio->devs[slot].devnum = d;
630 			r10bio->devs[slot].addr = s;
631 			slot++;
632 		}
633 		dev++;
634 		if (dev >= geo->raid_disks) {
635 			dev = 0;
636 			sector += (geo->chunk_mask + 1);
637 		}
638 	}
639 }
640 
641 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
642 {
643 	struct geom *geo = &conf->geo;
644 
645 	if (conf->reshape_progress != MaxSector &&
646 	    ((r10bio->sector >= conf->reshape_progress) !=
647 	     conf->mddev->reshape_backwards)) {
648 		set_bit(R10BIO_Previous, &r10bio->state);
649 		geo = &conf->prev;
650 	} else
651 		clear_bit(R10BIO_Previous, &r10bio->state);
652 
653 	__raid10_find_phys(geo, r10bio);
654 }
655 
656 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
657 {
658 	sector_t offset, chunk, vchunk;
659 	/* Never use conf->prev as this is only called during resync
660 	 * or recovery, so reshape isn't happening
661 	 */
662 	struct geom *geo = &conf->geo;
663 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
664 	int far_set_size = geo->far_set_size;
665 	int last_far_set_start;
666 
667 	if (geo->raid_disks % geo->far_set_size) {
668 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
669 		last_far_set_start *= geo->far_set_size;
670 
671 		if (dev >= last_far_set_start) {
672 			far_set_size = geo->far_set_size;
673 			far_set_size += (geo->raid_disks % geo->far_set_size);
674 			far_set_start = last_far_set_start;
675 		}
676 	}
677 
678 	offset = sector & geo->chunk_mask;
679 	if (geo->far_offset) {
680 		int fc;
681 		chunk = sector >> geo->chunk_shift;
682 		fc = sector_div(chunk, geo->far_copies);
683 		dev -= fc * geo->near_copies;
684 		if (dev < far_set_start)
685 			dev += far_set_size;
686 	} else {
687 		while (sector >= geo->stride) {
688 			sector -= geo->stride;
689 			if (dev < (geo->near_copies + far_set_start))
690 				dev += far_set_size - geo->near_copies;
691 			else
692 				dev -= geo->near_copies;
693 		}
694 		chunk = sector >> geo->chunk_shift;
695 	}
696 	vchunk = chunk * geo->raid_disks + dev;
697 	sector_div(vchunk, geo->near_copies);
698 	return (vchunk << geo->chunk_shift) + offset;
699 }
700 
701 /*
702  * This routine returns the disk from which the requested read should
703  * be done. There is a per-array 'next expected sequential IO' sector
704  * number - if this matches on the next IO then we use the last disk.
705  * There is also a per-disk 'last know head position' sector that is
706  * maintained from IRQ contexts, both the normal and the resync IO
707  * completion handlers update this position correctly. If there is no
708  * perfect sequential match then we pick the disk whose head is closest.
709  *
710  * If there are 2 mirrors in the same 2 devices, performance degrades
711  * because position is mirror, not device based.
712  *
713  * The rdev for the device selected will have nr_pending incremented.
714  */
715 
716 /*
717  * FIXME: possibly should rethink readbalancing and do it differently
718  * depending on near_copies / far_copies geometry.
719  */
720 static struct md_rdev *read_balance(struct r10conf *conf,
721 				    struct r10bio *r10_bio,
722 				    int *max_sectors)
723 {
724 	const sector_t this_sector = r10_bio->sector;
725 	int disk, slot;
726 	int sectors = r10_bio->sectors;
727 	int best_good_sectors;
728 	sector_t new_distance, best_dist;
729 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
730 	int do_balance;
731 	int best_dist_slot, best_pending_slot;
732 	bool has_nonrot_disk = false;
733 	unsigned int min_pending;
734 	struct geom *geo = &conf->geo;
735 
736 	raid10_find_phys(conf, r10_bio);
737 	best_dist_slot = -1;
738 	min_pending = UINT_MAX;
739 	best_dist_rdev = NULL;
740 	best_pending_rdev = NULL;
741 	best_dist = MaxSector;
742 	best_good_sectors = 0;
743 	do_balance = 1;
744 	clear_bit(R10BIO_FailFast, &r10_bio->state);
745 
746 	if (raid1_should_read_first(conf->mddev, this_sector, sectors))
747 		do_balance = 0;
748 
749 	for (slot = 0; slot < conf->copies ; slot++) {
750 		sector_t first_bad;
751 		sector_t bad_sectors;
752 		sector_t dev_sector;
753 		unsigned int pending;
754 		bool nonrot;
755 
756 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
757 			continue;
758 		disk = r10_bio->devs[slot].devnum;
759 		rdev = conf->mirrors[disk].replacement;
760 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
761 		    r10_bio->devs[slot].addr + sectors >
762 		    rdev->recovery_offset)
763 			rdev = conf->mirrors[disk].rdev;
764 		if (rdev == NULL ||
765 		    test_bit(Faulty, &rdev->flags))
766 			continue;
767 		if (!test_bit(In_sync, &rdev->flags) &&
768 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
769 			continue;
770 
771 		dev_sector = r10_bio->devs[slot].addr;
772 		if (is_badblock(rdev, dev_sector, sectors,
773 				&first_bad, &bad_sectors)) {
774 			if (best_dist < MaxSector)
775 				/* Already have a better slot */
776 				continue;
777 			if (first_bad <= dev_sector) {
778 				/* Cannot read here.  If this is the
779 				 * 'primary' device, then we must not read
780 				 * beyond 'bad_sectors' from another device.
781 				 */
782 				bad_sectors -= (dev_sector - first_bad);
783 				if (!do_balance && sectors > bad_sectors)
784 					sectors = bad_sectors;
785 				if (best_good_sectors > sectors)
786 					best_good_sectors = sectors;
787 			} else {
788 				sector_t good_sectors =
789 					first_bad - dev_sector;
790 				if (good_sectors > best_good_sectors) {
791 					best_good_sectors = good_sectors;
792 					best_dist_slot = slot;
793 					best_dist_rdev = rdev;
794 				}
795 				if (!do_balance)
796 					/* Must read from here */
797 					break;
798 			}
799 			continue;
800 		} else
801 			best_good_sectors = sectors;
802 
803 		if (!do_balance)
804 			break;
805 
806 		nonrot = bdev_nonrot(rdev->bdev);
807 		has_nonrot_disk |= nonrot;
808 		pending = atomic_read(&rdev->nr_pending);
809 		if (min_pending > pending && nonrot) {
810 			min_pending = pending;
811 			best_pending_slot = slot;
812 			best_pending_rdev = rdev;
813 		}
814 
815 		if (best_dist_slot >= 0)
816 			/* At least 2 disks to choose from so failfast is OK */
817 			set_bit(R10BIO_FailFast, &r10_bio->state);
818 		/* This optimisation is debatable, and completely destroys
819 		 * sequential read speed for 'far copies' arrays.  So only
820 		 * keep it for 'near' arrays, and review those later.
821 		 */
822 		if (geo->near_copies > 1 && !pending)
823 			new_distance = 0;
824 
825 		/* for far > 1 always use the lowest address */
826 		else if (geo->far_copies > 1)
827 			new_distance = r10_bio->devs[slot].addr;
828 		else
829 			new_distance = abs(r10_bio->devs[slot].addr -
830 					   conf->mirrors[disk].head_position);
831 
832 		if (new_distance < best_dist) {
833 			best_dist = new_distance;
834 			best_dist_slot = slot;
835 			best_dist_rdev = rdev;
836 		}
837 	}
838 	if (slot >= conf->copies) {
839 		if (has_nonrot_disk) {
840 			slot = best_pending_slot;
841 			rdev = best_pending_rdev;
842 		} else {
843 			slot = best_dist_slot;
844 			rdev = best_dist_rdev;
845 		}
846 	}
847 
848 	if (slot >= 0) {
849 		atomic_inc(&rdev->nr_pending);
850 		r10_bio->read_slot = slot;
851 	} else
852 		rdev = NULL;
853 	*max_sectors = best_good_sectors;
854 
855 	return rdev;
856 }
857 
858 static void flush_pending_writes(struct r10conf *conf)
859 {
860 	/* Any writes that have been queued but are awaiting
861 	 * bitmap updates get flushed here.
862 	 */
863 	spin_lock_irq(&conf->device_lock);
864 
865 	if (conf->pending_bio_list.head) {
866 		struct blk_plug plug;
867 		struct bio *bio;
868 
869 		bio = bio_list_get(&conf->pending_bio_list);
870 		spin_unlock_irq(&conf->device_lock);
871 
872 		/*
873 		 * As this is called in a wait_event() loop (see freeze_array),
874 		 * current->state might be TASK_UNINTERRUPTIBLE which will
875 		 * cause a warning when we prepare to wait again.  As it is
876 		 * rare that this path is taken, it is perfectly safe to force
877 		 * us to go around the wait_event() loop again, so the warning
878 		 * is a false-positive. Silence the warning by resetting
879 		 * thread state
880 		 */
881 		__set_current_state(TASK_RUNNING);
882 
883 		blk_start_plug(&plug);
884 		raid1_prepare_flush_writes(conf->mddev);
885 		wake_up(&conf->wait_barrier);
886 
887 		while (bio) { /* submit pending writes */
888 			struct bio *next = bio->bi_next;
889 
890 			raid1_submit_write(bio);
891 			bio = next;
892 			cond_resched();
893 		}
894 		blk_finish_plug(&plug);
895 	} else
896 		spin_unlock_irq(&conf->device_lock);
897 }
898 
899 /* Barriers....
900  * Sometimes we need to suspend IO while we do something else,
901  * either some resync/recovery, or reconfigure the array.
902  * To do this we raise a 'barrier'.
903  * The 'barrier' is a counter that can be raised multiple times
904  * to count how many activities are happening which preclude
905  * normal IO.
906  * We can only raise the barrier if there is no pending IO.
907  * i.e. if nr_pending == 0.
908  * We choose only to raise the barrier if no-one is waiting for the
909  * barrier to go down.  This means that as soon as an IO request
910  * is ready, no other operations which require a barrier will start
911  * until the IO request has had a chance.
912  *
913  * So: regular IO calls 'wait_barrier'.  When that returns there
914  *    is no backgroup IO happening,  It must arrange to call
915  *    allow_barrier when it has finished its IO.
916  * backgroup IO calls must call raise_barrier.  Once that returns
917  *    there is no normal IO happeing.  It must arrange to call
918  *    lower_barrier when the particular background IO completes.
919  */
920 
921 static void raise_barrier(struct r10conf *conf, int force)
922 {
923 	write_seqlock_irq(&conf->resync_lock);
924 
925 	if (WARN_ON_ONCE(force && !conf->barrier))
926 		force = false;
927 
928 	/* Wait until no block IO is waiting (unless 'force') */
929 	wait_event_barrier(conf, force || !conf->nr_waiting);
930 
931 	/* block any new IO from starting */
932 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
933 
934 	/* Now wait for all pending IO to complete */
935 	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
936 				 conf->barrier < RESYNC_DEPTH);
937 
938 	write_sequnlock_irq(&conf->resync_lock);
939 }
940 
941 static void lower_barrier(struct r10conf *conf)
942 {
943 	unsigned long flags;
944 
945 	write_seqlock_irqsave(&conf->resync_lock, flags);
946 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
947 	write_sequnlock_irqrestore(&conf->resync_lock, flags);
948 	wake_up(&conf->wait_barrier);
949 }
950 
951 static bool stop_waiting_barrier(struct r10conf *conf)
952 {
953 	struct bio_list *bio_list = current->bio_list;
954 	struct md_thread *thread;
955 
956 	/* barrier is dropped */
957 	if (!conf->barrier)
958 		return true;
959 
960 	/*
961 	 * If there are already pending requests (preventing the barrier from
962 	 * rising completely), and the pre-process bio queue isn't empty, then
963 	 * don't wait, as we need to empty that queue to get the nr_pending
964 	 * count down.
965 	 */
966 	if (atomic_read(&conf->nr_pending) && bio_list &&
967 	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
968 		return true;
969 
970 	/* daemon thread must exist while handling io */
971 	thread = rcu_dereference_protected(conf->mddev->thread, true);
972 	/*
973 	 * move on if io is issued from raid10d(), nr_pending is not released
974 	 * from original io(see handle_read_error()). All raise barrier is
975 	 * blocked until this io is done.
976 	 */
977 	if (thread->tsk == current) {
978 		WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
979 		return true;
980 	}
981 
982 	return false;
983 }
984 
985 static bool wait_barrier_nolock(struct r10conf *conf)
986 {
987 	unsigned int seq = read_seqbegin(&conf->resync_lock);
988 
989 	if (READ_ONCE(conf->barrier))
990 		return false;
991 
992 	atomic_inc(&conf->nr_pending);
993 	if (!read_seqretry(&conf->resync_lock, seq))
994 		return true;
995 
996 	if (atomic_dec_and_test(&conf->nr_pending))
997 		wake_up_barrier(conf);
998 
999 	return false;
1000 }
1001 
1002 static bool wait_barrier(struct r10conf *conf, bool nowait)
1003 {
1004 	bool ret = true;
1005 
1006 	if (wait_barrier_nolock(conf))
1007 		return true;
1008 
1009 	write_seqlock_irq(&conf->resync_lock);
1010 	if (conf->barrier) {
1011 		/* Return false when nowait flag is set */
1012 		if (nowait) {
1013 			ret = false;
1014 		} else {
1015 			conf->nr_waiting++;
1016 			mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1017 			wait_event_barrier(conf, stop_waiting_barrier(conf));
1018 			conf->nr_waiting--;
1019 		}
1020 		if (!conf->nr_waiting)
1021 			wake_up(&conf->wait_barrier);
1022 	}
1023 	/* Only increment nr_pending when we wait */
1024 	if (ret)
1025 		atomic_inc(&conf->nr_pending);
1026 	write_sequnlock_irq(&conf->resync_lock);
1027 	return ret;
1028 }
1029 
1030 static void allow_barrier(struct r10conf *conf)
1031 {
1032 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1033 			(conf->array_freeze_pending))
1034 		wake_up_barrier(conf);
1035 }
1036 
1037 static void freeze_array(struct r10conf *conf, int extra)
1038 {
1039 	/* stop syncio and normal IO and wait for everything to
1040 	 * go quiet.
1041 	 * We increment barrier and nr_waiting, and then
1042 	 * wait until nr_pending match nr_queued+extra
1043 	 * This is called in the context of one normal IO request
1044 	 * that has failed. Thus any sync request that might be pending
1045 	 * will be blocked by nr_pending, and we need to wait for
1046 	 * pending IO requests to complete or be queued for re-try.
1047 	 * Thus the number queued (nr_queued) plus this request (extra)
1048 	 * must match the number of pending IOs (nr_pending) before
1049 	 * we continue.
1050 	 */
1051 	write_seqlock_irq(&conf->resync_lock);
1052 	conf->array_freeze_pending++;
1053 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
1054 	conf->nr_waiting++;
1055 	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1056 			conf->nr_queued + extra, flush_pending_writes(conf));
1057 	conf->array_freeze_pending--;
1058 	write_sequnlock_irq(&conf->resync_lock);
1059 }
1060 
1061 static void unfreeze_array(struct r10conf *conf)
1062 {
1063 	/* reverse the effect of the freeze */
1064 	write_seqlock_irq(&conf->resync_lock);
1065 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
1066 	conf->nr_waiting--;
1067 	wake_up(&conf->wait_barrier);
1068 	write_sequnlock_irq(&conf->resync_lock);
1069 }
1070 
1071 static sector_t choose_data_offset(struct r10bio *r10_bio,
1072 				   struct md_rdev *rdev)
1073 {
1074 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1075 	    test_bit(R10BIO_Previous, &r10_bio->state))
1076 		return rdev->data_offset;
1077 	else
1078 		return rdev->new_data_offset;
1079 }
1080 
1081 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1082 {
1083 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1084 	struct mddev *mddev = plug->cb.data;
1085 	struct r10conf *conf = mddev->private;
1086 	struct bio *bio;
1087 
1088 	if (from_schedule) {
1089 		spin_lock_irq(&conf->device_lock);
1090 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1091 		spin_unlock_irq(&conf->device_lock);
1092 		wake_up_barrier(conf);
1093 		md_wakeup_thread(mddev->thread);
1094 		kfree(plug);
1095 		return;
1096 	}
1097 
1098 	/* we aren't scheduling, so we can do the write-out directly. */
1099 	bio = bio_list_get(&plug->pending);
1100 	raid1_prepare_flush_writes(mddev);
1101 	wake_up_barrier(conf);
1102 
1103 	while (bio) { /* submit pending writes */
1104 		struct bio *next = bio->bi_next;
1105 
1106 		raid1_submit_write(bio);
1107 		bio = next;
1108 		cond_resched();
1109 	}
1110 	kfree(plug);
1111 }
1112 
1113 /*
1114  * 1. Register the new request and wait if the reconstruction thread has put
1115  * up a bar for new requests. Continue immediately if no resync is active
1116  * currently.
1117  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1118  */
1119 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1120 				 struct bio *bio, sector_t sectors)
1121 {
1122 	/* Bail out if REQ_NOWAIT is set for the bio */
1123 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1124 		bio_wouldblock_error(bio);
1125 		return false;
1126 	}
1127 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1128 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1129 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1130 		allow_barrier(conf);
1131 		if (bio->bi_opf & REQ_NOWAIT) {
1132 			bio_wouldblock_error(bio);
1133 			return false;
1134 		}
1135 		mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1136 		wait_event(conf->wait_barrier,
1137 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1138 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1139 			   sectors);
1140 		wait_barrier(conf, false);
1141 	}
1142 	return true;
1143 }
1144 
1145 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1146 				struct r10bio *r10_bio, bool io_accounting)
1147 {
1148 	struct r10conf *conf = mddev->private;
1149 	struct bio *read_bio;
1150 	int max_sectors;
1151 	struct md_rdev *rdev;
1152 	char b[BDEVNAME_SIZE];
1153 	int slot = r10_bio->read_slot;
1154 	struct md_rdev *err_rdev = NULL;
1155 	gfp_t gfp = GFP_NOIO;
1156 	int error;
1157 
1158 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1159 		/*
1160 		 * This is an error retry, but we cannot
1161 		 * safely dereference the rdev in the r10_bio,
1162 		 * we must use the one in conf.
1163 		 * If it has already been disconnected (unlikely)
1164 		 * we lose the device name in error messages.
1165 		 */
1166 		int disk;
1167 		/*
1168 		 * As we are blocking raid10, it is a little safer to
1169 		 * use __GFP_HIGH.
1170 		 */
1171 		gfp = GFP_NOIO | __GFP_HIGH;
1172 
1173 		disk = r10_bio->devs[slot].devnum;
1174 		err_rdev = conf->mirrors[disk].rdev;
1175 		if (err_rdev)
1176 			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1177 		else {
1178 			strcpy(b, "???");
1179 			/* This never gets dereferenced */
1180 			err_rdev = r10_bio->devs[slot].rdev;
1181 		}
1182 	}
1183 
1184 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1185 		return;
1186 	rdev = read_balance(conf, r10_bio, &max_sectors);
1187 	if (!rdev) {
1188 		if (err_rdev) {
1189 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1190 					    mdname(mddev), b,
1191 					    (unsigned long long)r10_bio->sector);
1192 		}
1193 		raid_end_bio_io(r10_bio);
1194 		return;
1195 	}
1196 	if (err_rdev)
1197 		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1198 				   mdname(mddev),
1199 				   rdev->bdev,
1200 				   (unsigned long long)r10_bio->sector);
1201 	if (max_sectors < bio_sectors(bio)) {
1202 		struct bio *split = bio_split(bio, max_sectors,
1203 					      gfp, &conf->bio_split);
1204 		if (IS_ERR(split)) {
1205 			error = PTR_ERR(split);
1206 			goto err_handle;
1207 		}
1208 		bio_chain(split, bio);
1209 		allow_barrier(conf);
1210 		submit_bio_noacct(bio);
1211 		wait_barrier(conf, false);
1212 		bio = split;
1213 		r10_bio->master_bio = bio;
1214 		r10_bio->sectors = max_sectors;
1215 	}
1216 	slot = r10_bio->read_slot;
1217 
1218 	if (io_accounting) {
1219 		md_account_bio(mddev, &bio);
1220 		r10_bio->master_bio = bio;
1221 	}
1222 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1223 
1224 	r10_bio->devs[slot].bio = read_bio;
1225 	r10_bio->devs[slot].rdev = rdev;
1226 
1227 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1228 		choose_data_offset(r10_bio, rdev);
1229 	read_bio->bi_end_io = raid10_end_read_request;
1230 	if (test_bit(FailFast, &rdev->flags) &&
1231 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1232 	        read_bio->bi_opf |= MD_FAILFAST;
1233 	read_bio->bi_private = r10_bio;
1234 	mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1235 	submit_bio_noacct(read_bio);
1236 	return;
1237 err_handle:
1238 	atomic_dec(&rdev->nr_pending);
1239 	bio->bi_status = errno_to_blk_status(error);
1240 	set_bit(R10BIO_Uptodate, &r10_bio->state);
1241 	raid_end_bio_io(r10_bio);
1242 }
1243 
1244 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1245 				  struct bio *bio, bool replacement,
1246 				  int n_copy)
1247 {
1248 	unsigned long flags;
1249 	struct r10conf *conf = mddev->private;
1250 	struct md_rdev *rdev;
1251 	int devnum = r10_bio->devs[n_copy].devnum;
1252 	struct bio *mbio;
1253 
1254 	rdev = replacement ? conf->mirrors[devnum].replacement :
1255 			     conf->mirrors[devnum].rdev;
1256 
1257 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1258 	if (replacement)
1259 		r10_bio->devs[n_copy].repl_bio = mbio;
1260 	else
1261 		r10_bio->devs[n_copy].bio = mbio;
1262 
1263 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1264 				   choose_data_offset(r10_bio, rdev));
1265 	mbio->bi_end_io	= raid10_end_write_request;
1266 	if (!replacement && test_bit(FailFast,
1267 				     &conf->mirrors[devnum].rdev->flags)
1268 			 && enough(conf, devnum))
1269 		mbio->bi_opf |= MD_FAILFAST;
1270 	mbio->bi_private = r10_bio;
1271 	mddev_trace_remap(mddev, mbio, r10_bio->sector);
1272 	/* flush_pending_writes() needs access to the rdev so...*/
1273 	mbio->bi_bdev = (void *)rdev;
1274 
1275 	atomic_inc(&r10_bio->remaining);
1276 
1277 	if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1278 		spin_lock_irqsave(&conf->device_lock, flags);
1279 		bio_list_add(&conf->pending_bio_list, mbio);
1280 		spin_unlock_irqrestore(&conf->device_lock, flags);
1281 		md_wakeup_thread(mddev->thread);
1282 	}
1283 }
1284 
1285 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1286 {
1287 	struct r10conf *conf = mddev->private;
1288 	struct md_rdev *blocked_rdev;
1289 	int i;
1290 
1291 retry_wait:
1292 	blocked_rdev = NULL;
1293 	for (i = 0; i < conf->copies; i++) {
1294 		struct md_rdev *rdev, *rrdev;
1295 
1296 		rdev = conf->mirrors[i].rdev;
1297 		if (rdev) {
1298 			sector_t dev_sector = r10_bio->devs[i].addr;
1299 
1300 			/*
1301 			 * Discard request doesn't care the write result
1302 			 * so it doesn't need to wait blocked disk here.
1303 			 */
1304 			if (test_bit(WriteErrorSeen, &rdev->flags) &&
1305 			    r10_bio->sectors &&
1306 			    rdev_has_badblock(rdev, dev_sector,
1307 					      r10_bio->sectors) < 0)
1308 				/*
1309 				 * Mustn't write here until the bad
1310 				 * block is acknowledged
1311 				 */
1312 				set_bit(BlockedBadBlocks, &rdev->flags);
1313 
1314 			if (rdev_blocked(rdev)) {
1315 				blocked_rdev = rdev;
1316 				atomic_inc(&rdev->nr_pending);
1317 				break;
1318 			}
1319 		}
1320 
1321 		rrdev = conf->mirrors[i].replacement;
1322 		if (rrdev && rdev_blocked(rrdev)) {
1323 			atomic_inc(&rrdev->nr_pending);
1324 			blocked_rdev = rrdev;
1325 			break;
1326 		}
1327 	}
1328 
1329 	if (unlikely(blocked_rdev)) {
1330 		/* Have to wait for this device to get unblocked, then retry */
1331 		allow_barrier(conf);
1332 		mddev_add_trace_msg(conf->mddev,
1333 			"raid10 %s wait rdev %d blocked",
1334 			__func__, blocked_rdev->raid_disk);
1335 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336 		wait_barrier(conf, false);
1337 		goto retry_wait;
1338 	}
1339 }
1340 
1341 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1342 				 struct r10bio *r10_bio)
1343 {
1344 	struct r10conf *conf = mddev->private;
1345 	int i, k;
1346 	sector_t sectors;
1347 	int max_sectors;
1348 	int error;
1349 
1350 	if ((mddev_is_clustered(mddev) &&
1351 	     mddev->cluster_ops->area_resyncing(mddev, WRITE,
1352 						bio->bi_iter.bi_sector,
1353 						bio_end_sector(bio)))) {
1354 		DEFINE_WAIT(w);
1355 		/* Bail out if REQ_NOWAIT is set for the bio */
1356 		if (bio->bi_opf & REQ_NOWAIT) {
1357 			bio_wouldblock_error(bio);
1358 			return;
1359 		}
1360 		for (;;) {
1361 			prepare_to_wait(&conf->wait_barrier,
1362 					&w, TASK_IDLE);
1363 			if (!mddev->cluster_ops->area_resyncing(mddev, WRITE,
1364 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1365 				break;
1366 			schedule();
1367 		}
1368 		finish_wait(&conf->wait_barrier, &w);
1369 	}
1370 
1371 	sectors = r10_bio->sectors;
1372 	if (!regular_request_wait(mddev, conf, bio, sectors))
1373 		return;
1374 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1375 	    (mddev->reshape_backwards
1376 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1377 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1378 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1379 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1380 		/* Need to update reshape_position in metadata */
1381 		mddev->reshape_position = conf->reshape_progress;
1382 		set_mask_bits(&mddev->sb_flags, 0,
1383 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1384 		md_wakeup_thread(mddev->thread);
1385 		if (bio->bi_opf & REQ_NOWAIT) {
1386 			allow_barrier(conf);
1387 			bio_wouldblock_error(bio);
1388 			return;
1389 		}
1390 		mddev_add_trace_msg(conf->mddev,
1391 			"raid10 wait reshape metadata");
1392 		wait_event(mddev->sb_wait,
1393 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1394 
1395 		conf->reshape_safe = mddev->reshape_position;
1396 	}
1397 
1398 	/* first select target devices under rcu_lock and
1399 	 * inc refcount on their rdev.  Record them by setting
1400 	 * bios[x] to bio
1401 	 * If there are known/acknowledged bad blocks on any device
1402 	 * on which we have seen a write error, we want to avoid
1403 	 * writing to those blocks.  This potentially requires several
1404 	 * writes to write around the bad blocks.  Each set of writes
1405 	 * gets its own r10_bio with a set of bios attached.
1406 	 */
1407 
1408 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1409 	raid10_find_phys(conf, r10_bio);
1410 
1411 	wait_blocked_dev(mddev, r10_bio);
1412 
1413 	max_sectors = r10_bio->sectors;
1414 
1415 	for (i = 0;  i < conf->copies; i++) {
1416 		int d = r10_bio->devs[i].devnum;
1417 		struct md_rdev *rdev, *rrdev;
1418 
1419 		rdev = conf->mirrors[d].rdev;
1420 		rrdev = conf->mirrors[d].replacement;
1421 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1422 			rdev = NULL;
1423 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1424 			rrdev = NULL;
1425 
1426 		r10_bio->devs[i].bio = NULL;
1427 		r10_bio->devs[i].repl_bio = NULL;
1428 
1429 		if (!rdev && !rrdev)
1430 			continue;
1431 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1432 			sector_t first_bad;
1433 			sector_t dev_sector = r10_bio->devs[i].addr;
1434 			sector_t bad_sectors;
1435 			int is_bad;
1436 
1437 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1438 					     &first_bad, &bad_sectors);
1439 			if (is_bad && first_bad <= dev_sector) {
1440 				/* Cannot write here at all */
1441 				bad_sectors -= (dev_sector - first_bad);
1442 				if (bad_sectors < max_sectors)
1443 					/* Mustn't write more than bad_sectors
1444 					 * to other devices yet
1445 					 */
1446 					max_sectors = bad_sectors;
1447 				continue;
1448 			}
1449 			if (is_bad) {
1450 				int good_sectors;
1451 
1452 				/*
1453 				 * We cannot atomically write this, so just
1454 				 * error in that case. It could be possible to
1455 				 * atomically write other mirrors, but the
1456 				 * complexity of supporting that is not worth
1457 				 * the benefit.
1458 				 */
1459 				if (bio->bi_opf & REQ_ATOMIC) {
1460 					error = -EIO;
1461 					goto err_handle;
1462 				}
1463 
1464 				good_sectors = first_bad - dev_sector;
1465 				if (good_sectors < max_sectors)
1466 					max_sectors = good_sectors;
1467 			}
1468 		}
1469 		if (rdev) {
1470 			r10_bio->devs[i].bio = bio;
1471 			atomic_inc(&rdev->nr_pending);
1472 		}
1473 		if (rrdev) {
1474 			r10_bio->devs[i].repl_bio = bio;
1475 			atomic_inc(&rrdev->nr_pending);
1476 		}
1477 	}
1478 
1479 	if (max_sectors < r10_bio->sectors)
1480 		r10_bio->sectors = max_sectors;
1481 
1482 	if (r10_bio->sectors < bio_sectors(bio)) {
1483 		struct bio *split = bio_split(bio, r10_bio->sectors,
1484 					      GFP_NOIO, &conf->bio_split);
1485 		if (IS_ERR(split)) {
1486 			error = PTR_ERR(split);
1487 			goto err_handle;
1488 		}
1489 		bio_chain(split, bio);
1490 		allow_barrier(conf);
1491 		submit_bio_noacct(bio);
1492 		wait_barrier(conf, false);
1493 		bio = split;
1494 		r10_bio->master_bio = bio;
1495 	}
1496 
1497 	md_account_bio(mddev, &bio);
1498 	r10_bio->master_bio = bio;
1499 	atomic_set(&r10_bio->remaining, 1);
1500 
1501 	for (i = 0; i < conf->copies; i++) {
1502 		if (r10_bio->devs[i].bio)
1503 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1504 		if (r10_bio->devs[i].repl_bio)
1505 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1506 	}
1507 	one_write_done(r10_bio);
1508 	return;
1509 err_handle:
1510 	for (k = 0;  k < i; k++) {
1511 		int d = r10_bio->devs[k].devnum;
1512 		struct md_rdev *rdev = conf->mirrors[d].rdev;
1513 		struct md_rdev *rrdev = conf->mirrors[d].replacement;
1514 
1515 		if (r10_bio->devs[k].bio) {
1516 			rdev_dec_pending(rdev, mddev);
1517 			r10_bio->devs[k].bio = NULL;
1518 		}
1519 		if (r10_bio->devs[k].repl_bio) {
1520 			rdev_dec_pending(rrdev, mddev);
1521 			r10_bio->devs[k].repl_bio = NULL;
1522 		}
1523 	}
1524 
1525 	bio->bi_status = errno_to_blk_status(error);
1526 	set_bit(R10BIO_Uptodate, &r10_bio->state);
1527 	raid_end_bio_io(r10_bio);
1528 }
1529 
1530 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1531 {
1532 	struct r10conf *conf = mddev->private;
1533 	struct r10bio *r10_bio;
1534 
1535 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1536 
1537 	r10_bio->master_bio = bio;
1538 	r10_bio->sectors = sectors;
1539 
1540 	r10_bio->mddev = mddev;
1541 	r10_bio->sector = bio->bi_iter.bi_sector;
1542 	r10_bio->state = 0;
1543 	r10_bio->read_slot = -1;
1544 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1545 			conf->geo.raid_disks);
1546 
1547 	if (bio_data_dir(bio) == READ)
1548 		raid10_read_request(mddev, bio, r10_bio, true);
1549 	else
1550 		raid10_write_request(mddev, bio, r10_bio);
1551 }
1552 
1553 static void raid_end_discard_bio(struct r10bio *r10bio)
1554 {
1555 	struct r10conf *conf = r10bio->mddev->private;
1556 	struct r10bio *first_r10bio;
1557 
1558 	while (atomic_dec_and_test(&r10bio->remaining)) {
1559 
1560 		allow_barrier(conf);
1561 
1562 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1563 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1564 			free_r10bio(r10bio);
1565 			r10bio = first_r10bio;
1566 		} else {
1567 			md_write_end(r10bio->mddev);
1568 			bio_endio(r10bio->master_bio);
1569 			free_r10bio(r10bio);
1570 			break;
1571 		}
1572 	}
1573 }
1574 
1575 static void raid10_end_discard_request(struct bio *bio)
1576 {
1577 	struct r10bio *r10_bio = bio->bi_private;
1578 	struct r10conf *conf = r10_bio->mddev->private;
1579 	struct md_rdev *rdev = NULL;
1580 	int dev;
1581 	int slot, repl;
1582 
1583 	/*
1584 	 * We don't care the return value of discard bio
1585 	 */
1586 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1587 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1588 
1589 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1590 	rdev = repl ? conf->mirrors[dev].replacement :
1591 		      conf->mirrors[dev].rdev;
1592 
1593 	raid_end_discard_bio(r10_bio);
1594 	rdev_dec_pending(rdev, conf->mddev);
1595 }
1596 
1597 /*
1598  * There are some limitations to handle discard bio
1599  * 1st, the discard size is bigger than stripe_size*2.
1600  * 2st, if the discard bio spans reshape progress, we use the old way to
1601  * handle discard bio
1602  */
1603 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1604 {
1605 	struct r10conf *conf = mddev->private;
1606 	struct geom *geo = &conf->geo;
1607 	int far_copies = geo->far_copies;
1608 	bool first_copy = true;
1609 	struct r10bio *r10_bio, *first_r10bio;
1610 	struct bio *split;
1611 	int disk;
1612 	sector_t chunk;
1613 	unsigned int stripe_size;
1614 	unsigned int stripe_data_disks;
1615 	sector_t split_size;
1616 	sector_t bio_start, bio_end;
1617 	sector_t first_stripe_index, last_stripe_index;
1618 	sector_t start_disk_offset;
1619 	unsigned int start_disk_index;
1620 	sector_t end_disk_offset;
1621 	unsigned int end_disk_index;
1622 	unsigned int remainder;
1623 
1624 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1625 		return -EAGAIN;
1626 
1627 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1628 		bio_wouldblock_error(bio);
1629 		return 0;
1630 	}
1631 
1632 	/*
1633 	 * Check reshape again to avoid reshape happens after checking
1634 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1635 	 */
1636 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1637 		goto out;
1638 
1639 	if (geo->near_copies)
1640 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1641 					geo->raid_disks % geo->near_copies;
1642 	else
1643 		stripe_data_disks = geo->raid_disks;
1644 
1645 	stripe_size = stripe_data_disks << geo->chunk_shift;
1646 
1647 	bio_start = bio->bi_iter.bi_sector;
1648 	bio_end = bio_end_sector(bio);
1649 
1650 	/*
1651 	 * Maybe one discard bio is smaller than strip size or across one
1652 	 * stripe and discard region is larger than one stripe size. For far
1653 	 * offset layout, if the discard region is not aligned with stripe
1654 	 * size, there is hole when we submit discard bio to member disk.
1655 	 * For simplicity, we only handle discard bio which discard region
1656 	 * is bigger than stripe_size * 2
1657 	 */
1658 	if (bio_sectors(bio) < stripe_size*2)
1659 		goto out;
1660 
1661 	/*
1662 	 * Keep bio aligned with strip size.
1663 	 */
1664 	div_u64_rem(bio_start, stripe_size, &remainder);
1665 	if (remainder) {
1666 		split_size = stripe_size - remainder;
1667 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1668 		if (IS_ERR(split)) {
1669 			bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1670 			bio_endio(bio);
1671 			return 0;
1672 		}
1673 		bio_chain(split, bio);
1674 		allow_barrier(conf);
1675 		/* Resend the fist split part */
1676 		submit_bio_noacct(split);
1677 		wait_barrier(conf, false);
1678 	}
1679 	div_u64_rem(bio_end, stripe_size, &remainder);
1680 	if (remainder) {
1681 		split_size = bio_sectors(bio) - remainder;
1682 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1683 		if (IS_ERR(split)) {
1684 			bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1685 			bio_endio(bio);
1686 			return 0;
1687 		}
1688 		bio_chain(split, bio);
1689 		allow_barrier(conf);
1690 		/* Resend the second split part */
1691 		submit_bio_noacct(bio);
1692 		bio = split;
1693 		wait_barrier(conf, false);
1694 	}
1695 
1696 	bio_start = bio->bi_iter.bi_sector;
1697 	bio_end = bio_end_sector(bio);
1698 
1699 	/*
1700 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1701 	 * One stripe contains the chunks from all member disk (one chunk from
1702 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1703 	 */
1704 	chunk = bio_start >> geo->chunk_shift;
1705 	chunk *= geo->near_copies;
1706 	first_stripe_index = chunk;
1707 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1708 	if (geo->far_offset)
1709 		first_stripe_index *= geo->far_copies;
1710 	start_disk_offset = (bio_start & geo->chunk_mask) +
1711 				(first_stripe_index << geo->chunk_shift);
1712 
1713 	chunk = bio_end >> geo->chunk_shift;
1714 	chunk *= geo->near_copies;
1715 	last_stripe_index = chunk;
1716 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1717 	if (geo->far_offset)
1718 		last_stripe_index *= geo->far_copies;
1719 	end_disk_offset = (bio_end & geo->chunk_mask) +
1720 				(last_stripe_index << geo->chunk_shift);
1721 
1722 retry_discard:
1723 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1724 	r10_bio->mddev = mddev;
1725 	r10_bio->state = 0;
1726 	r10_bio->sectors = 0;
1727 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1728 	wait_blocked_dev(mddev, r10_bio);
1729 
1730 	/*
1731 	 * For far layout it needs more than one r10bio to cover all regions.
1732 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1733 	 * to record the discard bio. Other r10bio->master_bio record the first
1734 	 * r10bio. The first r10bio only release after all other r10bios finish.
1735 	 * The discard bio returns only first r10bio finishes
1736 	 */
1737 	if (first_copy) {
1738 		md_account_bio(mddev, &bio);
1739 		r10_bio->master_bio = bio;
1740 		set_bit(R10BIO_Discard, &r10_bio->state);
1741 		first_copy = false;
1742 		first_r10bio = r10_bio;
1743 	} else
1744 		r10_bio->master_bio = (struct bio *)first_r10bio;
1745 
1746 	/*
1747 	 * first select target devices under rcu_lock and
1748 	 * inc refcount on their rdev.  Record them by setting
1749 	 * bios[x] to bio
1750 	 */
1751 	for (disk = 0; disk < geo->raid_disks; disk++) {
1752 		struct md_rdev *rdev, *rrdev;
1753 
1754 		rdev = conf->mirrors[disk].rdev;
1755 		rrdev = conf->mirrors[disk].replacement;
1756 		r10_bio->devs[disk].bio = NULL;
1757 		r10_bio->devs[disk].repl_bio = NULL;
1758 
1759 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1760 			rdev = NULL;
1761 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1762 			rrdev = NULL;
1763 		if (!rdev && !rrdev)
1764 			continue;
1765 
1766 		if (rdev) {
1767 			r10_bio->devs[disk].bio = bio;
1768 			atomic_inc(&rdev->nr_pending);
1769 		}
1770 		if (rrdev) {
1771 			r10_bio->devs[disk].repl_bio = bio;
1772 			atomic_inc(&rrdev->nr_pending);
1773 		}
1774 	}
1775 
1776 	atomic_set(&r10_bio->remaining, 1);
1777 	for (disk = 0; disk < geo->raid_disks; disk++) {
1778 		sector_t dev_start, dev_end;
1779 		struct bio *mbio, *rbio = NULL;
1780 
1781 		/*
1782 		 * Now start to calculate the start and end address for each disk.
1783 		 * The space between dev_start and dev_end is the discard region.
1784 		 *
1785 		 * For dev_start, it needs to consider three conditions:
1786 		 * 1st, the disk is before start_disk, you can imagine the disk in
1787 		 * the next stripe. So the dev_start is the start address of next
1788 		 * stripe.
1789 		 * 2st, the disk is after start_disk, it means the disk is at the
1790 		 * same stripe of first disk
1791 		 * 3st, the first disk itself, we can use start_disk_offset directly
1792 		 */
1793 		if (disk < start_disk_index)
1794 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1795 		else if (disk > start_disk_index)
1796 			dev_start = first_stripe_index * mddev->chunk_sectors;
1797 		else
1798 			dev_start = start_disk_offset;
1799 
1800 		if (disk < end_disk_index)
1801 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1802 		else if (disk > end_disk_index)
1803 			dev_end = last_stripe_index * mddev->chunk_sectors;
1804 		else
1805 			dev_end = end_disk_offset;
1806 
1807 		/*
1808 		 * It only handles discard bio which size is >= stripe size, so
1809 		 * dev_end > dev_start all the time.
1810 		 * It doesn't need to use rcu lock to get rdev here. We already
1811 		 * add rdev->nr_pending in the first loop.
1812 		 */
1813 		if (r10_bio->devs[disk].bio) {
1814 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1815 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1816 					       &mddev->bio_set);
1817 			mbio->bi_end_io = raid10_end_discard_request;
1818 			mbio->bi_private = r10_bio;
1819 			r10_bio->devs[disk].bio = mbio;
1820 			r10_bio->devs[disk].devnum = disk;
1821 			atomic_inc(&r10_bio->remaining);
1822 			md_submit_discard_bio(mddev, rdev, mbio,
1823 					dev_start + choose_data_offset(r10_bio, rdev),
1824 					dev_end - dev_start);
1825 			bio_endio(mbio);
1826 		}
1827 		if (r10_bio->devs[disk].repl_bio) {
1828 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1829 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1830 					       &mddev->bio_set);
1831 			rbio->bi_end_io = raid10_end_discard_request;
1832 			rbio->bi_private = r10_bio;
1833 			r10_bio->devs[disk].repl_bio = rbio;
1834 			r10_bio->devs[disk].devnum = disk;
1835 			atomic_inc(&r10_bio->remaining);
1836 			md_submit_discard_bio(mddev, rrdev, rbio,
1837 					dev_start + choose_data_offset(r10_bio, rrdev),
1838 					dev_end - dev_start);
1839 			bio_endio(rbio);
1840 		}
1841 	}
1842 
1843 	if (!geo->far_offset && --far_copies) {
1844 		first_stripe_index += geo->stride >> geo->chunk_shift;
1845 		start_disk_offset += geo->stride;
1846 		last_stripe_index += geo->stride >> geo->chunk_shift;
1847 		end_disk_offset += geo->stride;
1848 		atomic_inc(&first_r10bio->remaining);
1849 		raid_end_discard_bio(r10_bio);
1850 		wait_barrier(conf, false);
1851 		goto retry_discard;
1852 	}
1853 
1854 	raid_end_discard_bio(r10_bio);
1855 
1856 	return 0;
1857 out:
1858 	allow_barrier(conf);
1859 	return -EAGAIN;
1860 }
1861 
1862 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1863 {
1864 	struct r10conf *conf = mddev->private;
1865 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1866 	int chunk_sects = chunk_mask + 1;
1867 	int sectors = bio_sectors(bio);
1868 
1869 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1870 	    && md_flush_request(mddev, bio))
1871 		return true;
1872 
1873 	md_write_start(mddev, bio);
1874 
1875 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1876 		if (!raid10_handle_discard(mddev, bio))
1877 			return true;
1878 
1879 	/*
1880 	 * If this request crosses a chunk boundary, we need to split
1881 	 * it.
1882 	 */
1883 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1884 		     sectors > chunk_sects
1885 		     && (conf->geo.near_copies < conf->geo.raid_disks
1886 			 || conf->prev.near_copies <
1887 			 conf->prev.raid_disks)))
1888 		sectors = chunk_sects -
1889 			(bio->bi_iter.bi_sector &
1890 			 (chunk_sects - 1));
1891 	__make_request(mddev, bio, sectors);
1892 
1893 	/* In case raid10d snuck in to freeze_array */
1894 	wake_up_barrier(conf);
1895 	return true;
1896 }
1897 
1898 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1899 {
1900 	struct r10conf *conf = mddev->private;
1901 	int i;
1902 
1903 	lockdep_assert_held(&mddev->lock);
1904 
1905 	if (conf->geo.near_copies < conf->geo.raid_disks)
1906 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1907 	if (conf->geo.near_copies > 1)
1908 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1909 	if (conf->geo.far_copies > 1) {
1910 		if (conf->geo.far_offset)
1911 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1912 		else
1913 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1914 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1915 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1916 	}
1917 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1918 					conf->geo.raid_disks - mddev->degraded);
1919 	for (i = 0; i < conf->geo.raid_disks; i++) {
1920 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1921 
1922 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1923 	}
1924 	seq_printf(seq, "]");
1925 }
1926 
1927 /* check if there are enough drives for
1928  * every block to appear on atleast one.
1929  * Don't consider the device numbered 'ignore'
1930  * as we might be about to remove it.
1931  */
1932 static int _enough(struct r10conf *conf, int previous, int ignore)
1933 {
1934 	int first = 0;
1935 	int has_enough = 0;
1936 	int disks, ncopies;
1937 	if (previous) {
1938 		disks = conf->prev.raid_disks;
1939 		ncopies = conf->prev.near_copies;
1940 	} else {
1941 		disks = conf->geo.raid_disks;
1942 		ncopies = conf->geo.near_copies;
1943 	}
1944 
1945 	do {
1946 		int n = conf->copies;
1947 		int cnt = 0;
1948 		int this = first;
1949 		while (n--) {
1950 			struct md_rdev *rdev;
1951 			if (this != ignore &&
1952 			    (rdev = conf->mirrors[this].rdev) &&
1953 			    test_bit(In_sync, &rdev->flags))
1954 				cnt++;
1955 			this = (this+1) % disks;
1956 		}
1957 		if (cnt == 0)
1958 			goto out;
1959 		first = (first + ncopies) % disks;
1960 	} while (first != 0);
1961 	has_enough = 1;
1962 out:
1963 	return has_enough;
1964 }
1965 
1966 static int enough(struct r10conf *conf, int ignore)
1967 {
1968 	/* when calling 'enough', both 'prev' and 'geo' must
1969 	 * be stable.
1970 	 * This is ensured if ->reconfig_mutex or ->device_lock
1971 	 * is held.
1972 	 */
1973 	return _enough(conf, 0, ignore) &&
1974 		_enough(conf, 1, ignore);
1975 }
1976 
1977 /**
1978  * raid10_error() - RAID10 error handler.
1979  * @mddev: affected md device.
1980  * @rdev: member device to fail.
1981  *
1982  * The routine acknowledges &rdev failure and determines new @mddev state.
1983  * If it failed, then:
1984  *	- &MD_BROKEN flag is set in &mddev->flags.
1985  * Otherwise, it must be degraded:
1986  *	- recovery is interrupted.
1987  *	- &mddev->degraded is bumped.
1988  *
1989  * @rdev is marked as &Faulty excluding case when array is failed and
1990  * &mddev->fail_last_dev is off.
1991  */
1992 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1993 {
1994 	struct r10conf *conf = mddev->private;
1995 	unsigned long flags;
1996 
1997 	spin_lock_irqsave(&conf->device_lock, flags);
1998 
1999 	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2000 		set_bit(MD_BROKEN, &mddev->flags);
2001 
2002 		if (!mddev->fail_last_dev) {
2003 			spin_unlock_irqrestore(&conf->device_lock, flags);
2004 			return;
2005 		}
2006 	}
2007 	if (test_and_clear_bit(In_sync, &rdev->flags))
2008 		mddev->degraded++;
2009 
2010 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2011 	set_bit(Blocked, &rdev->flags);
2012 	set_bit(Faulty, &rdev->flags);
2013 	set_mask_bits(&mddev->sb_flags, 0,
2014 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2015 	spin_unlock_irqrestore(&conf->device_lock, flags);
2016 	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2017 		"md/raid10:%s: Operation continuing on %d devices.\n",
2018 		mdname(mddev), rdev->bdev,
2019 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2020 }
2021 
2022 static void print_conf(struct r10conf *conf)
2023 {
2024 	int i;
2025 	struct md_rdev *rdev;
2026 
2027 	pr_debug("RAID10 conf printout:\n");
2028 	if (!conf) {
2029 		pr_debug("(!conf)\n");
2030 		return;
2031 	}
2032 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2033 		 conf->geo.raid_disks);
2034 
2035 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
2036 	for (i = 0; i < conf->geo.raid_disks; i++) {
2037 		rdev = conf->mirrors[i].rdev;
2038 		if (rdev)
2039 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2040 				 i, !test_bit(In_sync, &rdev->flags),
2041 				 !test_bit(Faulty, &rdev->flags),
2042 				 rdev->bdev);
2043 	}
2044 }
2045 
2046 static void close_sync(struct r10conf *conf)
2047 {
2048 	wait_barrier(conf, false);
2049 	allow_barrier(conf);
2050 
2051 	mempool_exit(&conf->r10buf_pool);
2052 }
2053 
2054 static int raid10_spare_active(struct mddev *mddev)
2055 {
2056 	int i;
2057 	struct r10conf *conf = mddev->private;
2058 	struct raid10_info *tmp;
2059 	int count = 0;
2060 	unsigned long flags;
2061 
2062 	/*
2063 	 * Find all non-in_sync disks within the RAID10 configuration
2064 	 * and mark them in_sync
2065 	 */
2066 	for (i = 0; i < conf->geo.raid_disks; i++) {
2067 		tmp = conf->mirrors + i;
2068 		if (tmp->replacement
2069 		    && tmp->replacement->recovery_offset == MaxSector
2070 		    && !test_bit(Faulty, &tmp->replacement->flags)
2071 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2072 			/* Replacement has just become active */
2073 			if (!tmp->rdev
2074 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2075 				count++;
2076 			if (tmp->rdev) {
2077 				/* Replaced device not technically faulty,
2078 				 * but we need to be sure it gets removed
2079 				 * and never re-added.
2080 				 */
2081 				set_bit(Faulty, &tmp->rdev->flags);
2082 				sysfs_notify_dirent_safe(
2083 					tmp->rdev->sysfs_state);
2084 			}
2085 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2086 		} else if (tmp->rdev
2087 			   && tmp->rdev->recovery_offset == MaxSector
2088 			   && !test_bit(Faulty, &tmp->rdev->flags)
2089 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2090 			count++;
2091 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2092 		}
2093 	}
2094 	spin_lock_irqsave(&conf->device_lock, flags);
2095 	mddev->degraded -= count;
2096 	spin_unlock_irqrestore(&conf->device_lock, flags);
2097 
2098 	print_conf(conf);
2099 	return count;
2100 }
2101 
2102 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2103 {
2104 	struct r10conf *conf = mddev->private;
2105 	int err = -EEXIST;
2106 	int mirror, repl_slot = -1;
2107 	int first = 0;
2108 	int last = conf->geo.raid_disks - 1;
2109 	struct raid10_info *p;
2110 
2111 	if (mddev->recovery_cp < MaxSector)
2112 		/* only hot-add to in-sync arrays, as recovery is
2113 		 * very different from resync
2114 		 */
2115 		return -EBUSY;
2116 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2117 		return -EINVAL;
2118 
2119 	if (rdev->raid_disk >= 0)
2120 		first = last = rdev->raid_disk;
2121 
2122 	if (rdev->saved_raid_disk >= first &&
2123 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2124 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2125 		mirror = rdev->saved_raid_disk;
2126 	else
2127 		mirror = first;
2128 	for ( ; mirror <= last ; mirror++) {
2129 		p = &conf->mirrors[mirror];
2130 		if (p->recovery_disabled == mddev->recovery_disabled)
2131 			continue;
2132 		if (p->rdev) {
2133 			if (test_bit(WantReplacement, &p->rdev->flags) &&
2134 			    p->replacement == NULL && repl_slot < 0)
2135 				repl_slot = mirror;
2136 			continue;
2137 		}
2138 
2139 		err = mddev_stack_new_rdev(mddev, rdev);
2140 		if (err)
2141 			return err;
2142 		p->head_position = 0;
2143 		p->recovery_disabled = mddev->recovery_disabled - 1;
2144 		rdev->raid_disk = mirror;
2145 		err = 0;
2146 		if (rdev->saved_raid_disk != mirror)
2147 			conf->fullsync = 1;
2148 		WRITE_ONCE(p->rdev, rdev);
2149 		break;
2150 	}
2151 
2152 	if (err && repl_slot >= 0) {
2153 		p = &conf->mirrors[repl_slot];
2154 		clear_bit(In_sync, &rdev->flags);
2155 		set_bit(Replacement, &rdev->flags);
2156 		rdev->raid_disk = repl_slot;
2157 		err = mddev_stack_new_rdev(mddev, rdev);
2158 		if (err)
2159 			return err;
2160 		conf->fullsync = 1;
2161 		WRITE_ONCE(p->replacement, rdev);
2162 	}
2163 
2164 	print_conf(conf);
2165 	return err;
2166 }
2167 
2168 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2169 {
2170 	struct r10conf *conf = mddev->private;
2171 	int err = 0;
2172 	int number = rdev->raid_disk;
2173 	struct md_rdev **rdevp;
2174 	struct raid10_info *p;
2175 
2176 	print_conf(conf);
2177 	if (unlikely(number >= mddev->raid_disks))
2178 		return 0;
2179 	p = conf->mirrors + number;
2180 	if (rdev == p->rdev)
2181 		rdevp = &p->rdev;
2182 	else if (rdev == p->replacement)
2183 		rdevp = &p->replacement;
2184 	else
2185 		return 0;
2186 
2187 	if (test_bit(In_sync, &rdev->flags) ||
2188 	    atomic_read(&rdev->nr_pending)) {
2189 		err = -EBUSY;
2190 		goto abort;
2191 	}
2192 	/* Only remove non-faulty devices if recovery
2193 	 * is not possible.
2194 	 */
2195 	if (!test_bit(Faulty, &rdev->flags) &&
2196 	    mddev->recovery_disabled != p->recovery_disabled &&
2197 	    (!p->replacement || p->replacement == rdev) &&
2198 	    number < conf->geo.raid_disks &&
2199 	    enough(conf, -1)) {
2200 		err = -EBUSY;
2201 		goto abort;
2202 	}
2203 	WRITE_ONCE(*rdevp, NULL);
2204 	if (p->replacement) {
2205 		/* We must have just cleared 'rdev' */
2206 		WRITE_ONCE(p->rdev, p->replacement);
2207 		clear_bit(Replacement, &p->replacement->flags);
2208 		WRITE_ONCE(p->replacement, NULL);
2209 	}
2210 
2211 	clear_bit(WantReplacement, &rdev->flags);
2212 	err = md_integrity_register(mddev);
2213 
2214 abort:
2215 
2216 	print_conf(conf);
2217 	return err;
2218 }
2219 
2220 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2221 {
2222 	struct r10conf *conf = r10_bio->mddev->private;
2223 
2224 	if (!bio->bi_status)
2225 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2226 	else
2227 		/* The write handler will notice the lack of
2228 		 * R10BIO_Uptodate and record any errors etc
2229 		 */
2230 		atomic_add(r10_bio->sectors,
2231 			   &conf->mirrors[d].rdev->corrected_errors);
2232 
2233 	/* for reconstruct, we always reschedule after a read.
2234 	 * for resync, only after all reads
2235 	 */
2236 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2237 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2238 	    atomic_dec_and_test(&r10_bio->remaining)) {
2239 		/* we have read all the blocks,
2240 		 * do the comparison in process context in raid10d
2241 		 */
2242 		reschedule_retry(r10_bio);
2243 	}
2244 }
2245 
2246 static void end_sync_read(struct bio *bio)
2247 {
2248 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2249 	struct r10conf *conf = r10_bio->mddev->private;
2250 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2251 
2252 	__end_sync_read(r10_bio, bio, d);
2253 }
2254 
2255 static void end_reshape_read(struct bio *bio)
2256 {
2257 	/* reshape read bio isn't allocated from r10buf_pool */
2258 	struct r10bio *r10_bio = bio->bi_private;
2259 
2260 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2261 }
2262 
2263 static void end_sync_request(struct r10bio *r10_bio)
2264 {
2265 	struct mddev *mddev = r10_bio->mddev;
2266 
2267 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2268 		if (r10_bio->master_bio == NULL) {
2269 			/* the primary of several recovery bios */
2270 			sector_t s = r10_bio->sectors;
2271 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2272 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2273 				reschedule_retry(r10_bio);
2274 			else
2275 				put_buf(r10_bio);
2276 			md_done_sync(mddev, s, 1);
2277 			break;
2278 		} else {
2279 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2280 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2281 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2282 				reschedule_retry(r10_bio);
2283 			else
2284 				put_buf(r10_bio);
2285 			r10_bio = r10_bio2;
2286 		}
2287 	}
2288 }
2289 
2290 static void end_sync_write(struct bio *bio)
2291 {
2292 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2293 	struct mddev *mddev = r10_bio->mddev;
2294 	struct r10conf *conf = mddev->private;
2295 	int d;
2296 	int slot;
2297 	int repl;
2298 	struct md_rdev *rdev = NULL;
2299 
2300 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2301 	if (repl)
2302 		rdev = conf->mirrors[d].replacement;
2303 	else
2304 		rdev = conf->mirrors[d].rdev;
2305 
2306 	if (bio->bi_status) {
2307 		if (repl)
2308 			md_error(mddev, rdev);
2309 		else {
2310 			set_bit(WriteErrorSeen, &rdev->flags);
2311 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2312 				set_bit(MD_RECOVERY_NEEDED,
2313 					&rdev->mddev->recovery);
2314 			set_bit(R10BIO_WriteError, &r10_bio->state);
2315 		}
2316 	} else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2317 				     r10_bio->sectors)) {
2318 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2319 	}
2320 
2321 	rdev_dec_pending(rdev, mddev);
2322 
2323 	end_sync_request(r10_bio);
2324 }
2325 
2326 /*
2327  * Note: sync and recover and handled very differently for raid10
2328  * This code is for resync.
2329  * For resync, we read through virtual addresses and read all blocks.
2330  * If there is any error, we schedule a write.  The lowest numbered
2331  * drive is authoritative.
2332  * However requests come for physical address, so we need to map.
2333  * For every physical address there are raid_disks/copies virtual addresses,
2334  * which is always are least one, but is not necessarly an integer.
2335  * This means that a physical address can span multiple chunks, so we may
2336  * have to submit multiple io requests for a single sync request.
2337  */
2338 /*
2339  * We check if all blocks are in-sync and only write to blocks that
2340  * aren't in sync
2341  */
2342 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2343 {
2344 	struct r10conf *conf = mddev->private;
2345 	int i, first;
2346 	struct bio *tbio, *fbio;
2347 	int vcnt;
2348 	struct page **tpages, **fpages;
2349 
2350 	atomic_set(&r10_bio->remaining, 1);
2351 
2352 	/* find the first device with a block */
2353 	for (i=0; i<conf->copies; i++)
2354 		if (!r10_bio->devs[i].bio->bi_status)
2355 			break;
2356 
2357 	if (i == conf->copies)
2358 		goto done;
2359 
2360 	first = i;
2361 	fbio = r10_bio->devs[i].bio;
2362 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2363 	fbio->bi_iter.bi_idx = 0;
2364 	fpages = get_resync_pages(fbio)->pages;
2365 
2366 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2367 	/* now find blocks with errors */
2368 	for (i=0 ; i < conf->copies ; i++) {
2369 		int  j, d;
2370 		struct md_rdev *rdev;
2371 		struct resync_pages *rp;
2372 
2373 		tbio = r10_bio->devs[i].bio;
2374 
2375 		if (tbio->bi_end_io != end_sync_read)
2376 			continue;
2377 		if (i == first)
2378 			continue;
2379 
2380 		tpages = get_resync_pages(tbio)->pages;
2381 		d = r10_bio->devs[i].devnum;
2382 		rdev = conf->mirrors[d].rdev;
2383 		if (!r10_bio->devs[i].bio->bi_status) {
2384 			/* We know that the bi_io_vec layout is the same for
2385 			 * both 'first' and 'i', so we just compare them.
2386 			 * All vec entries are PAGE_SIZE;
2387 			 */
2388 			int sectors = r10_bio->sectors;
2389 			for (j = 0; j < vcnt; j++) {
2390 				int len = PAGE_SIZE;
2391 				if (sectors < (len / 512))
2392 					len = sectors * 512;
2393 				if (memcmp(page_address(fpages[j]),
2394 					   page_address(tpages[j]),
2395 					   len))
2396 					break;
2397 				sectors -= len/512;
2398 			}
2399 			if (j == vcnt)
2400 				continue;
2401 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2402 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2403 				/* Don't fix anything. */
2404 				continue;
2405 		} else if (test_bit(FailFast, &rdev->flags)) {
2406 			/* Just give up on this device */
2407 			md_error(rdev->mddev, rdev);
2408 			continue;
2409 		}
2410 		/* Ok, we need to write this bio, either to correct an
2411 		 * inconsistency or to correct an unreadable block.
2412 		 * First we need to fixup bv_offset, bv_len and
2413 		 * bi_vecs, as the read request might have corrupted these
2414 		 */
2415 		rp = get_resync_pages(tbio);
2416 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2417 
2418 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2419 
2420 		rp->raid_bio = r10_bio;
2421 		tbio->bi_private = rp;
2422 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2423 		tbio->bi_end_io = end_sync_write;
2424 
2425 		bio_copy_data(tbio, fbio);
2426 
2427 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2428 		atomic_inc(&r10_bio->remaining);
2429 
2430 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2431 			tbio->bi_opf |= MD_FAILFAST;
2432 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2433 		submit_bio_noacct(tbio);
2434 	}
2435 
2436 	/* Now write out to any replacement devices
2437 	 * that are active
2438 	 */
2439 	for (i = 0; i < conf->copies; i++) {
2440 		int d;
2441 
2442 		tbio = r10_bio->devs[i].repl_bio;
2443 		if (!tbio || !tbio->bi_end_io)
2444 			continue;
2445 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2446 		    && r10_bio->devs[i].bio != fbio)
2447 			bio_copy_data(tbio, fbio);
2448 		d = r10_bio->devs[i].devnum;
2449 		atomic_inc(&r10_bio->remaining);
2450 		submit_bio_noacct(tbio);
2451 	}
2452 
2453 done:
2454 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2455 		md_done_sync(mddev, r10_bio->sectors, 1);
2456 		put_buf(r10_bio);
2457 	}
2458 }
2459 
2460 /*
2461  * Now for the recovery code.
2462  * Recovery happens across physical sectors.
2463  * We recover all non-is_sync drives by finding the virtual address of
2464  * each, and then choose a working drive that also has that virt address.
2465  * There is a separate r10_bio for each non-in_sync drive.
2466  * Only the first two slots are in use. The first for reading,
2467  * The second for writing.
2468  *
2469  */
2470 static void fix_recovery_read_error(struct r10bio *r10_bio)
2471 {
2472 	/* We got a read error during recovery.
2473 	 * We repeat the read in smaller page-sized sections.
2474 	 * If a read succeeds, write it to the new device or record
2475 	 * a bad block if we cannot.
2476 	 * If a read fails, record a bad block on both old and
2477 	 * new devices.
2478 	 */
2479 	struct mddev *mddev = r10_bio->mddev;
2480 	struct r10conf *conf = mddev->private;
2481 	struct bio *bio = r10_bio->devs[0].bio;
2482 	sector_t sect = 0;
2483 	int sectors = r10_bio->sectors;
2484 	int idx = 0;
2485 	int dr = r10_bio->devs[0].devnum;
2486 	int dw = r10_bio->devs[1].devnum;
2487 	struct page **pages = get_resync_pages(bio)->pages;
2488 
2489 	while (sectors) {
2490 		int s = sectors;
2491 		struct md_rdev *rdev;
2492 		sector_t addr;
2493 		int ok;
2494 
2495 		if (s > (PAGE_SIZE>>9))
2496 			s = PAGE_SIZE >> 9;
2497 
2498 		rdev = conf->mirrors[dr].rdev;
2499 		addr = r10_bio->devs[0].addr + sect;
2500 		ok = sync_page_io(rdev,
2501 				  addr,
2502 				  s << 9,
2503 				  pages[idx],
2504 				  REQ_OP_READ, false);
2505 		if (ok) {
2506 			rdev = conf->mirrors[dw].rdev;
2507 			addr = r10_bio->devs[1].addr + sect;
2508 			ok = sync_page_io(rdev,
2509 					  addr,
2510 					  s << 9,
2511 					  pages[idx],
2512 					  REQ_OP_WRITE, false);
2513 			if (!ok) {
2514 				set_bit(WriteErrorSeen, &rdev->flags);
2515 				if (!test_and_set_bit(WantReplacement,
2516 						      &rdev->flags))
2517 					set_bit(MD_RECOVERY_NEEDED,
2518 						&rdev->mddev->recovery);
2519 			}
2520 		}
2521 		if (!ok) {
2522 			/* We don't worry if we cannot set a bad block -
2523 			 * it really is bad so there is no loss in not
2524 			 * recording it yet
2525 			 */
2526 			rdev_set_badblocks(rdev, addr, s, 0);
2527 
2528 			if (rdev != conf->mirrors[dw].rdev) {
2529 				/* need bad block on destination too */
2530 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2531 				addr = r10_bio->devs[1].addr + sect;
2532 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2533 				if (!ok) {
2534 					/* just abort the recovery */
2535 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2536 						  mdname(mddev));
2537 
2538 					conf->mirrors[dw].recovery_disabled
2539 						= mddev->recovery_disabled;
2540 					set_bit(MD_RECOVERY_INTR,
2541 						&mddev->recovery);
2542 					break;
2543 				}
2544 			}
2545 		}
2546 
2547 		sectors -= s;
2548 		sect += s;
2549 		idx++;
2550 	}
2551 }
2552 
2553 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2554 {
2555 	struct r10conf *conf = mddev->private;
2556 	int d;
2557 	struct bio *wbio = r10_bio->devs[1].bio;
2558 	struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2559 
2560 	/* Need to test wbio2->bi_end_io before we call
2561 	 * submit_bio_noacct as if the former is NULL,
2562 	 * the latter is free to free wbio2.
2563 	 */
2564 	if (wbio2 && !wbio2->bi_end_io)
2565 		wbio2 = NULL;
2566 
2567 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2568 		fix_recovery_read_error(r10_bio);
2569 		if (wbio->bi_end_io)
2570 			end_sync_request(r10_bio);
2571 		if (wbio2)
2572 			end_sync_request(r10_bio);
2573 		return;
2574 	}
2575 
2576 	/*
2577 	 * share the pages with the first bio
2578 	 * and submit the write request
2579 	 */
2580 	d = r10_bio->devs[1].devnum;
2581 	if (wbio->bi_end_io) {
2582 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2583 		submit_bio_noacct(wbio);
2584 	}
2585 	if (wbio2) {
2586 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2587 		submit_bio_noacct(wbio2);
2588 	}
2589 }
2590 
2591 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2592 			    int sectors, struct page *page, enum req_op op)
2593 {
2594 	if (rdev_has_badblock(rdev, sector, sectors) &&
2595 	    (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2596 		return -1;
2597 	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2598 		/* success */
2599 		return 1;
2600 	if (op == REQ_OP_WRITE) {
2601 		set_bit(WriteErrorSeen, &rdev->flags);
2602 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2603 			set_bit(MD_RECOVERY_NEEDED,
2604 				&rdev->mddev->recovery);
2605 	}
2606 	/* need to record an error - either for the block or the device */
2607 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2608 		md_error(rdev->mddev, rdev);
2609 	return 0;
2610 }
2611 
2612 /*
2613  * This is a kernel thread which:
2614  *
2615  *	1.	Retries failed read operations on working mirrors.
2616  *	2.	Updates the raid superblock when problems encounter.
2617  *	3.	Performs writes following reads for array synchronising.
2618  */
2619 
2620 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2621 {
2622 	int sect = 0; /* Offset from r10_bio->sector */
2623 	int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2624 	struct md_rdev *rdev;
2625 	int d = r10_bio->devs[slot].devnum;
2626 
2627 	/* still own a reference to this rdev, so it cannot
2628 	 * have been cleared recently.
2629 	 */
2630 	rdev = conf->mirrors[d].rdev;
2631 
2632 	if (test_bit(Faulty, &rdev->flags))
2633 		/* drive has already been failed, just ignore any
2634 		   more fix_read_error() attempts */
2635 		return;
2636 
2637 	if (exceed_read_errors(mddev, rdev)) {
2638 		r10_bio->devs[slot].bio = IO_BLOCKED;
2639 		return;
2640 	}
2641 
2642 	while(sectors) {
2643 		int s = sectors;
2644 		int sl = slot;
2645 		int success = 0;
2646 		int start;
2647 
2648 		if (s > (PAGE_SIZE>>9))
2649 			s = PAGE_SIZE >> 9;
2650 
2651 		do {
2652 			d = r10_bio->devs[sl].devnum;
2653 			rdev = conf->mirrors[d].rdev;
2654 			if (rdev &&
2655 			    test_bit(In_sync, &rdev->flags) &&
2656 			    !test_bit(Faulty, &rdev->flags) &&
2657 			    rdev_has_badblock(rdev,
2658 					      r10_bio->devs[sl].addr + sect,
2659 					      s) == 0) {
2660 				atomic_inc(&rdev->nr_pending);
2661 				success = sync_page_io(rdev,
2662 						       r10_bio->devs[sl].addr +
2663 						       sect,
2664 						       s<<9,
2665 						       conf->tmppage,
2666 						       REQ_OP_READ, false);
2667 				rdev_dec_pending(rdev, mddev);
2668 				if (success)
2669 					break;
2670 			}
2671 			sl++;
2672 			if (sl == conf->copies)
2673 				sl = 0;
2674 		} while (sl != slot);
2675 
2676 		if (!success) {
2677 			/* Cannot read from anywhere, just mark the block
2678 			 * as bad on the first device to discourage future
2679 			 * reads.
2680 			 */
2681 			int dn = r10_bio->devs[slot].devnum;
2682 			rdev = conf->mirrors[dn].rdev;
2683 
2684 			if (!rdev_set_badblocks(
2685 				    rdev,
2686 				    r10_bio->devs[slot].addr
2687 				    + sect,
2688 				    s, 0)) {
2689 				md_error(mddev, rdev);
2690 				r10_bio->devs[slot].bio
2691 					= IO_BLOCKED;
2692 			}
2693 			break;
2694 		}
2695 
2696 		start = sl;
2697 		/* write it back and re-read */
2698 		while (sl != slot) {
2699 			if (sl==0)
2700 				sl = conf->copies;
2701 			sl--;
2702 			d = r10_bio->devs[sl].devnum;
2703 			rdev = conf->mirrors[d].rdev;
2704 			if (!rdev ||
2705 			    test_bit(Faulty, &rdev->flags) ||
2706 			    !test_bit(In_sync, &rdev->flags))
2707 				continue;
2708 
2709 			atomic_inc(&rdev->nr_pending);
2710 			if (r10_sync_page_io(rdev,
2711 					     r10_bio->devs[sl].addr +
2712 					     sect,
2713 					     s, conf->tmppage, REQ_OP_WRITE)
2714 			    == 0) {
2715 				/* Well, this device is dead */
2716 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2717 					  mdname(mddev), s,
2718 					  (unsigned long long)(
2719 						  sect +
2720 						  choose_data_offset(r10_bio,
2721 								     rdev)),
2722 					  rdev->bdev);
2723 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2724 					  mdname(mddev),
2725 					  rdev->bdev);
2726 			}
2727 			rdev_dec_pending(rdev, mddev);
2728 		}
2729 		sl = start;
2730 		while (sl != slot) {
2731 			if (sl==0)
2732 				sl = conf->copies;
2733 			sl--;
2734 			d = r10_bio->devs[sl].devnum;
2735 			rdev = conf->mirrors[d].rdev;
2736 			if (!rdev ||
2737 			    test_bit(Faulty, &rdev->flags) ||
2738 			    !test_bit(In_sync, &rdev->flags))
2739 				continue;
2740 
2741 			atomic_inc(&rdev->nr_pending);
2742 			switch (r10_sync_page_io(rdev,
2743 					     r10_bio->devs[sl].addr +
2744 					     sect,
2745 					     s, conf->tmppage, REQ_OP_READ)) {
2746 			case 0:
2747 				/* Well, this device is dead */
2748 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2749 				       mdname(mddev), s,
2750 				       (unsigned long long)(
2751 					       sect +
2752 					       choose_data_offset(r10_bio, rdev)),
2753 				       rdev->bdev);
2754 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2755 				       mdname(mddev),
2756 				       rdev->bdev);
2757 				break;
2758 			case 1:
2759 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2760 				       mdname(mddev), s,
2761 				       (unsigned long long)(
2762 					       sect +
2763 					       choose_data_offset(r10_bio, rdev)),
2764 				       rdev->bdev);
2765 				atomic_add(s, &rdev->corrected_errors);
2766 			}
2767 
2768 			rdev_dec_pending(rdev, mddev);
2769 		}
2770 
2771 		sectors -= s;
2772 		sect += s;
2773 	}
2774 }
2775 
2776 static bool narrow_write_error(struct r10bio *r10_bio, int i)
2777 {
2778 	struct bio *bio = r10_bio->master_bio;
2779 	struct mddev *mddev = r10_bio->mddev;
2780 	struct r10conf *conf = mddev->private;
2781 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2782 	/* bio has the data to be written to slot 'i' where
2783 	 * we just recently had a write error.
2784 	 * We repeatedly clone the bio and trim down to one block,
2785 	 * then try the write.  Where the write fails we record
2786 	 * a bad block.
2787 	 * It is conceivable that the bio doesn't exactly align with
2788 	 * blocks.  We must handle this.
2789 	 *
2790 	 * We currently own a reference to the rdev.
2791 	 */
2792 
2793 	int block_sectors;
2794 	sector_t sector;
2795 	int sectors;
2796 	int sect_to_write = r10_bio->sectors;
2797 	bool ok = true;
2798 
2799 	if (rdev->badblocks.shift < 0)
2800 		return false;
2801 
2802 	block_sectors = roundup(1 << rdev->badblocks.shift,
2803 				bdev_logical_block_size(rdev->bdev) >> 9);
2804 	sector = r10_bio->sector;
2805 	sectors = ((r10_bio->sector + block_sectors)
2806 		   & ~(sector_t)(block_sectors - 1))
2807 		- sector;
2808 
2809 	while (sect_to_write) {
2810 		struct bio *wbio;
2811 		sector_t wsector;
2812 		if (sectors > sect_to_write)
2813 			sectors = sect_to_write;
2814 		/* Write at 'sector' for 'sectors' */
2815 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2816 				       &mddev->bio_set);
2817 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2818 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2819 		wbio->bi_iter.bi_sector = wsector +
2820 				   choose_data_offset(r10_bio, rdev);
2821 		wbio->bi_opf = REQ_OP_WRITE;
2822 
2823 		if (submit_bio_wait(wbio) < 0)
2824 			/* Failure! */
2825 			ok = rdev_set_badblocks(rdev, wsector,
2826 						sectors, 0)
2827 				&& ok;
2828 
2829 		bio_put(wbio);
2830 		sect_to_write -= sectors;
2831 		sector += sectors;
2832 		sectors = block_sectors;
2833 	}
2834 	return ok;
2835 }
2836 
2837 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2838 {
2839 	int slot = r10_bio->read_slot;
2840 	struct bio *bio;
2841 	struct r10conf *conf = mddev->private;
2842 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2843 
2844 	/* we got a read error. Maybe the drive is bad.  Maybe just
2845 	 * the block and we can fix it.
2846 	 * We freeze all other IO, and try reading the block from
2847 	 * other devices.  When we find one, we re-write
2848 	 * and check it that fixes the read error.
2849 	 * This is all done synchronously while the array is
2850 	 * frozen.
2851 	 */
2852 	bio = r10_bio->devs[slot].bio;
2853 	bio_put(bio);
2854 	r10_bio->devs[slot].bio = NULL;
2855 
2856 	if (mddev->ro)
2857 		r10_bio->devs[slot].bio = IO_BLOCKED;
2858 	else if (!test_bit(FailFast, &rdev->flags)) {
2859 		freeze_array(conf, 1);
2860 		fix_read_error(conf, mddev, r10_bio);
2861 		unfreeze_array(conf);
2862 	} else
2863 		md_error(mddev, rdev);
2864 
2865 	rdev_dec_pending(rdev, mddev);
2866 	r10_bio->state = 0;
2867 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2868 	/*
2869 	 * allow_barrier after re-submit to ensure no sync io
2870 	 * can be issued while regular io pending.
2871 	 */
2872 	allow_barrier(conf);
2873 }
2874 
2875 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2876 {
2877 	/* Some sort of write request has finished and it
2878 	 * succeeded in writing where we thought there was a
2879 	 * bad block.  So forget the bad block.
2880 	 * Or possibly if failed and we need to record
2881 	 * a bad block.
2882 	 */
2883 	int m;
2884 	struct md_rdev *rdev;
2885 
2886 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2887 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2888 		for (m = 0; m < conf->copies; m++) {
2889 			int dev = r10_bio->devs[m].devnum;
2890 			rdev = conf->mirrors[dev].rdev;
2891 			if (r10_bio->devs[m].bio == NULL ||
2892 				r10_bio->devs[m].bio->bi_end_io == NULL)
2893 				continue;
2894 			if (!r10_bio->devs[m].bio->bi_status) {
2895 				rdev_clear_badblocks(
2896 					rdev,
2897 					r10_bio->devs[m].addr,
2898 					r10_bio->sectors, 0);
2899 			} else {
2900 				if (!rdev_set_badblocks(
2901 					    rdev,
2902 					    r10_bio->devs[m].addr,
2903 					    r10_bio->sectors, 0))
2904 					md_error(conf->mddev, rdev);
2905 			}
2906 			rdev = conf->mirrors[dev].replacement;
2907 			if (r10_bio->devs[m].repl_bio == NULL ||
2908 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2909 				continue;
2910 
2911 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2912 				rdev_clear_badblocks(
2913 					rdev,
2914 					r10_bio->devs[m].addr,
2915 					r10_bio->sectors, 0);
2916 			} else {
2917 				if (!rdev_set_badblocks(
2918 					    rdev,
2919 					    r10_bio->devs[m].addr,
2920 					    r10_bio->sectors, 0))
2921 					md_error(conf->mddev, rdev);
2922 			}
2923 		}
2924 		put_buf(r10_bio);
2925 	} else {
2926 		bool fail = false;
2927 		for (m = 0; m < conf->copies; m++) {
2928 			int dev = r10_bio->devs[m].devnum;
2929 			struct bio *bio = r10_bio->devs[m].bio;
2930 			rdev = conf->mirrors[dev].rdev;
2931 			if (bio == IO_MADE_GOOD) {
2932 				rdev_clear_badblocks(
2933 					rdev,
2934 					r10_bio->devs[m].addr,
2935 					r10_bio->sectors, 0);
2936 				rdev_dec_pending(rdev, conf->mddev);
2937 			} else if (bio != NULL && bio->bi_status) {
2938 				fail = true;
2939 				if (!narrow_write_error(r10_bio, m))
2940 					md_error(conf->mddev, rdev);
2941 				rdev_dec_pending(rdev, conf->mddev);
2942 			}
2943 			bio = r10_bio->devs[m].repl_bio;
2944 			rdev = conf->mirrors[dev].replacement;
2945 			if (rdev && bio == IO_MADE_GOOD) {
2946 				rdev_clear_badblocks(
2947 					rdev,
2948 					r10_bio->devs[m].addr,
2949 					r10_bio->sectors, 0);
2950 				rdev_dec_pending(rdev, conf->mddev);
2951 			}
2952 		}
2953 		if (fail) {
2954 			spin_lock_irq(&conf->device_lock);
2955 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2956 			conf->nr_queued++;
2957 			spin_unlock_irq(&conf->device_lock);
2958 			/*
2959 			 * In case freeze_array() is waiting for condition
2960 			 * nr_pending == nr_queued + extra to be true.
2961 			 */
2962 			wake_up(&conf->wait_barrier);
2963 			md_wakeup_thread(conf->mddev->thread);
2964 		} else {
2965 			if (test_bit(R10BIO_WriteError,
2966 				     &r10_bio->state))
2967 				close_write(r10_bio);
2968 			raid_end_bio_io(r10_bio);
2969 		}
2970 	}
2971 }
2972 
2973 static void raid10d(struct md_thread *thread)
2974 {
2975 	struct mddev *mddev = thread->mddev;
2976 	struct r10bio *r10_bio;
2977 	unsigned long flags;
2978 	struct r10conf *conf = mddev->private;
2979 	struct list_head *head = &conf->retry_list;
2980 	struct blk_plug plug;
2981 
2982 	md_check_recovery(mddev);
2983 
2984 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2985 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2986 		LIST_HEAD(tmp);
2987 		spin_lock_irqsave(&conf->device_lock, flags);
2988 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2989 			while (!list_empty(&conf->bio_end_io_list)) {
2990 				list_move(conf->bio_end_io_list.prev, &tmp);
2991 				conf->nr_queued--;
2992 			}
2993 		}
2994 		spin_unlock_irqrestore(&conf->device_lock, flags);
2995 		while (!list_empty(&tmp)) {
2996 			r10_bio = list_first_entry(&tmp, struct r10bio,
2997 						   retry_list);
2998 			list_del(&r10_bio->retry_list);
2999 
3000 			if (test_bit(R10BIO_WriteError,
3001 				     &r10_bio->state))
3002 				close_write(r10_bio);
3003 			raid_end_bio_io(r10_bio);
3004 		}
3005 	}
3006 
3007 	blk_start_plug(&plug);
3008 	for (;;) {
3009 
3010 		flush_pending_writes(conf);
3011 
3012 		spin_lock_irqsave(&conf->device_lock, flags);
3013 		if (list_empty(head)) {
3014 			spin_unlock_irqrestore(&conf->device_lock, flags);
3015 			break;
3016 		}
3017 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3018 		list_del(head->prev);
3019 		conf->nr_queued--;
3020 		spin_unlock_irqrestore(&conf->device_lock, flags);
3021 
3022 		mddev = r10_bio->mddev;
3023 		conf = mddev->private;
3024 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3025 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3026 			handle_write_completed(conf, r10_bio);
3027 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3028 			reshape_request_write(mddev, r10_bio);
3029 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3030 			sync_request_write(mddev, r10_bio);
3031 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3032 			recovery_request_write(mddev, r10_bio);
3033 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3034 			handle_read_error(mddev, r10_bio);
3035 		else
3036 			WARN_ON_ONCE(1);
3037 
3038 		cond_resched();
3039 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3040 			md_check_recovery(mddev);
3041 	}
3042 	blk_finish_plug(&plug);
3043 }
3044 
3045 static int init_resync(struct r10conf *conf)
3046 {
3047 	int ret, buffs, i;
3048 
3049 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3050 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3051 	conf->have_replacement = 0;
3052 	for (i = 0; i < conf->geo.raid_disks; i++)
3053 		if (conf->mirrors[i].replacement)
3054 			conf->have_replacement = 1;
3055 	ret = mempool_init(&conf->r10buf_pool, buffs,
3056 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3057 	if (ret)
3058 		return ret;
3059 	conf->next_resync = 0;
3060 	return 0;
3061 }
3062 
3063 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3064 {
3065 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3066 	struct rsync_pages *rp;
3067 	struct bio *bio;
3068 	int nalloc;
3069 	int i;
3070 
3071 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3072 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3073 		nalloc = conf->copies; /* resync */
3074 	else
3075 		nalloc = 2; /* recovery */
3076 
3077 	for (i = 0; i < nalloc; i++) {
3078 		bio = r10bio->devs[i].bio;
3079 		rp = bio->bi_private;
3080 		bio_reset(bio, NULL, 0);
3081 		bio->bi_private = rp;
3082 		bio = r10bio->devs[i].repl_bio;
3083 		if (bio) {
3084 			rp = bio->bi_private;
3085 			bio_reset(bio, NULL, 0);
3086 			bio->bi_private = rp;
3087 		}
3088 	}
3089 	return r10bio;
3090 }
3091 
3092 /*
3093  * Set cluster_sync_high since we need other nodes to add the
3094  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3095  */
3096 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3097 {
3098 	sector_t window_size;
3099 	int extra_chunk, chunks;
3100 
3101 	/*
3102 	 * First, here we define "stripe" as a unit which across
3103 	 * all member devices one time, so we get chunks by use
3104 	 * raid_disks / near_copies. Otherwise, if near_copies is
3105 	 * close to raid_disks, then resync window could increases
3106 	 * linearly with the increase of raid_disks, which means
3107 	 * we will suspend a really large IO window while it is not
3108 	 * necessary. If raid_disks is not divisible by near_copies,
3109 	 * an extra chunk is needed to ensure the whole "stripe" is
3110 	 * covered.
3111 	 */
3112 
3113 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3114 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3115 		extra_chunk = 0;
3116 	else
3117 		extra_chunk = 1;
3118 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3119 
3120 	/*
3121 	 * At least use a 32M window to align with raid1's resync window
3122 	 */
3123 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3124 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3125 
3126 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3127 }
3128 
3129 /*
3130  * perform a "sync" on one "block"
3131  *
3132  * We need to make sure that no normal I/O request - particularly write
3133  * requests - conflict with active sync requests.
3134  *
3135  * This is achieved by tracking pending requests and a 'barrier' concept
3136  * that can be installed to exclude normal IO requests.
3137  *
3138  * Resync and recovery are handled very differently.
3139  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3140  *
3141  * For resync, we iterate over virtual addresses, read all copies,
3142  * and update if there are differences.  If only one copy is live,
3143  * skip it.
3144  * For recovery, we iterate over physical addresses, read a good
3145  * value for each non-in_sync drive, and over-write.
3146  *
3147  * So, for recovery we may have several outstanding complex requests for a
3148  * given address, one for each out-of-sync device.  We model this by allocating
3149  * a number of r10_bio structures, one for each out-of-sync device.
3150  * As we setup these structures, we collect all bio's together into a list
3151  * which we then process collectively to add pages, and then process again
3152  * to pass to submit_bio_noacct.
3153  *
3154  * The r10_bio structures are linked using a borrowed master_bio pointer.
3155  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3156  * has its remaining count decremented to 0, the whole complex operation
3157  * is complete.
3158  *
3159  */
3160 
3161 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3162 				    sector_t max_sector, int *skipped)
3163 {
3164 	struct r10conf *conf = mddev->private;
3165 	struct r10bio *r10_bio;
3166 	struct bio *biolist = NULL, *bio;
3167 	sector_t nr_sectors;
3168 	int i;
3169 	int max_sync;
3170 	sector_t sync_blocks;
3171 	sector_t sectors_skipped = 0;
3172 	int chunks_skipped = 0;
3173 	sector_t chunk_mask = conf->geo.chunk_mask;
3174 	int page_idx = 0;
3175 	int error_disk = -1;
3176 
3177 	/*
3178 	 * Allow skipping a full rebuild for incremental assembly
3179 	 * of a clean array, like RAID1 does.
3180 	 */
3181 	if (mddev->bitmap == NULL &&
3182 	    mddev->recovery_cp == MaxSector &&
3183 	    mddev->reshape_position == MaxSector &&
3184 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3185 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3186 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3187 	    conf->fullsync == 0) {
3188 		*skipped = 1;
3189 		return mddev->dev_sectors - sector_nr;
3190 	}
3191 
3192 	if (!mempool_initialized(&conf->r10buf_pool))
3193 		if (init_resync(conf))
3194 			return 0;
3195 
3196  skipped:
3197 	if (sector_nr >= max_sector) {
3198 		conf->cluster_sync_low = 0;
3199 		conf->cluster_sync_high = 0;
3200 
3201 		/* If we aborted, we need to abort the
3202 		 * sync on the 'current' bitmap chucks (there can
3203 		 * be several when recovering multiple devices).
3204 		 * as we may have started syncing it but not finished.
3205 		 * We can find the current address in
3206 		 * mddev->curr_resync, but for recovery,
3207 		 * we need to convert that to several
3208 		 * virtual addresses.
3209 		 */
3210 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3211 			end_reshape(conf);
3212 			close_sync(conf);
3213 			return 0;
3214 		}
3215 
3216 		if (mddev->curr_resync < max_sector) { /* aborted */
3217 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3218 				mddev->bitmap_ops->end_sync(mddev,
3219 							    mddev->curr_resync,
3220 							    &sync_blocks);
3221 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3222 				sector_t sect =
3223 					raid10_find_virt(conf, mddev->curr_resync, i);
3224 
3225 				mddev->bitmap_ops->end_sync(mddev, sect,
3226 							    &sync_blocks);
3227 			}
3228 		} else {
3229 			/* completed sync */
3230 			if ((!mddev->bitmap || conf->fullsync)
3231 			    && conf->have_replacement
3232 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3233 				/* Completed a full sync so the replacements
3234 				 * are now fully recovered.
3235 				 */
3236 				for (i = 0; i < conf->geo.raid_disks; i++) {
3237 					struct md_rdev *rdev =
3238 						conf->mirrors[i].replacement;
3239 
3240 					if (rdev)
3241 						rdev->recovery_offset = MaxSector;
3242 				}
3243 			}
3244 			conf->fullsync = 0;
3245 		}
3246 		mddev->bitmap_ops->close_sync(mddev);
3247 		close_sync(conf);
3248 		*skipped = 1;
3249 		return sectors_skipped;
3250 	}
3251 
3252 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3253 		return reshape_request(mddev, sector_nr, skipped);
3254 
3255 	if (chunks_skipped >= conf->geo.raid_disks) {
3256 		pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3257 			test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3258 		if (error_disk >= 0 &&
3259 		    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3260 			/*
3261 			 * recovery fails, set mirrors.recovery_disabled,
3262 			 * device shouldn't be added to there.
3263 			 */
3264 			conf->mirrors[error_disk].recovery_disabled =
3265 						mddev->recovery_disabled;
3266 			return 0;
3267 		}
3268 		/*
3269 		 * if there has been nothing to do on any drive,
3270 		 * then there is nothing to do at all.
3271 		 */
3272 		*skipped = 1;
3273 		return (max_sector - sector_nr) + sectors_skipped;
3274 	}
3275 
3276 	if (max_sector > mddev->resync_max)
3277 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3278 
3279 	/* make sure whole request will fit in a chunk - if chunks
3280 	 * are meaningful
3281 	 */
3282 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3283 	    max_sector > (sector_nr | chunk_mask))
3284 		max_sector = (sector_nr | chunk_mask) + 1;
3285 
3286 	/*
3287 	 * If there is non-resync activity waiting for a turn, then let it
3288 	 * though before starting on this new sync request.
3289 	 */
3290 	if (conf->nr_waiting)
3291 		schedule_timeout_uninterruptible(1);
3292 
3293 	/* Again, very different code for resync and recovery.
3294 	 * Both must result in an r10bio with a list of bios that
3295 	 * have bi_end_io, bi_sector, bi_bdev set,
3296 	 * and bi_private set to the r10bio.
3297 	 * For recovery, we may actually create several r10bios
3298 	 * with 2 bios in each, that correspond to the bios in the main one.
3299 	 * In this case, the subordinate r10bios link back through a
3300 	 * borrowed master_bio pointer, and the counter in the master
3301 	 * includes a ref from each subordinate.
3302 	 */
3303 	/* First, we decide what to do and set ->bi_end_io
3304 	 * To end_sync_read if we want to read, and
3305 	 * end_sync_write if we will want to write.
3306 	 */
3307 
3308 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3309 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3310 		/* recovery... the complicated one */
3311 		int j;
3312 		r10_bio = NULL;
3313 
3314 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3315 			bool still_degraded;
3316 			struct r10bio *rb2;
3317 			sector_t sect;
3318 			bool must_sync;
3319 			int any_working;
3320 			struct raid10_info *mirror = &conf->mirrors[i];
3321 			struct md_rdev *mrdev, *mreplace;
3322 
3323 			mrdev = mirror->rdev;
3324 			mreplace = mirror->replacement;
3325 
3326 			if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3327 			    test_bit(In_sync, &mrdev->flags)))
3328 				mrdev = NULL;
3329 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3330 				mreplace = NULL;
3331 
3332 			if (!mrdev && !mreplace)
3333 				continue;
3334 
3335 			still_degraded = false;
3336 			/* want to reconstruct this device */
3337 			rb2 = r10_bio;
3338 			sect = raid10_find_virt(conf, sector_nr, i);
3339 			if (sect >= mddev->resync_max_sectors)
3340 				/* last stripe is not complete - don't
3341 				 * try to recover this sector.
3342 				 */
3343 				continue;
3344 			/* Unless we are doing a full sync, or a replacement
3345 			 * we only need to recover the block if it is set in
3346 			 * the bitmap
3347 			 */
3348 			must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3349 								  &sync_blocks,
3350 								  true);
3351 			if (sync_blocks < max_sync)
3352 				max_sync = sync_blocks;
3353 			if (!must_sync &&
3354 			    mreplace == NULL &&
3355 			    !conf->fullsync) {
3356 				/* yep, skip the sync_blocks here, but don't assume
3357 				 * that there will never be anything to do here
3358 				 */
3359 				chunks_skipped = -1;
3360 				continue;
3361 			}
3362 			if (mrdev)
3363 				atomic_inc(&mrdev->nr_pending);
3364 			if (mreplace)
3365 				atomic_inc(&mreplace->nr_pending);
3366 
3367 			r10_bio = raid10_alloc_init_r10buf(conf);
3368 			r10_bio->state = 0;
3369 			raise_barrier(conf, rb2 != NULL);
3370 			atomic_set(&r10_bio->remaining, 0);
3371 
3372 			r10_bio->master_bio = (struct bio*)rb2;
3373 			if (rb2)
3374 				atomic_inc(&rb2->remaining);
3375 			r10_bio->mddev = mddev;
3376 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3377 			r10_bio->sector = sect;
3378 
3379 			raid10_find_phys(conf, r10_bio);
3380 
3381 			/* Need to check if the array will still be
3382 			 * degraded
3383 			 */
3384 			for (j = 0; j < conf->geo.raid_disks; j++) {
3385 				struct md_rdev *rdev = conf->mirrors[j].rdev;
3386 
3387 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3388 					still_degraded = false;
3389 					break;
3390 				}
3391 			}
3392 
3393 			must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3394 						&sync_blocks, still_degraded);
3395 
3396 			any_working = 0;
3397 			for (j=0; j<conf->copies;j++) {
3398 				int k;
3399 				int d = r10_bio->devs[j].devnum;
3400 				sector_t from_addr, to_addr;
3401 				struct md_rdev *rdev = conf->mirrors[d].rdev;
3402 				sector_t sector, first_bad;
3403 				sector_t bad_sectors;
3404 				if (!rdev ||
3405 				    !test_bit(In_sync, &rdev->flags))
3406 					continue;
3407 				/* This is where we read from */
3408 				any_working = 1;
3409 				sector = r10_bio->devs[j].addr;
3410 
3411 				if (is_badblock(rdev, sector, max_sync,
3412 						&first_bad, &bad_sectors)) {
3413 					if (first_bad > sector)
3414 						max_sync = first_bad - sector;
3415 					else {
3416 						bad_sectors -= (sector
3417 								- first_bad);
3418 						if (max_sync > bad_sectors)
3419 							max_sync = bad_sectors;
3420 						continue;
3421 					}
3422 				}
3423 				bio = r10_bio->devs[0].bio;
3424 				bio->bi_next = biolist;
3425 				biolist = bio;
3426 				bio->bi_end_io = end_sync_read;
3427 				bio->bi_opf = REQ_OP_READ;
3428 				if (test_bit(FailFast, &rdev->flags))
3429 					bio->bi_opf |= MD_FAILFAST;
3430 				from_addr = r10_bio->devs[j].addr;
3431 				bio->bi_iter.bi_sector = from_addr +
3432 					rdev->data_offset;
3433 				bio_set_dev(bio, rdev->bdev);
3434 				atomic_inc(&rdev->nr_pending);
3435 				/* and we write to 'i' (if not in_sync) */
3436 
3437 				for (k=0; k<conf->copies; k++)
3438 					if (r10_bio->devs[k].devnum == i)
3439 						break;
3440 				BUG_ON(k == conf->copies);
3441 				to_addr = r10_bio->devs[k].addr;
3442 				r10_bio->devs[0].devnum = d;
3443 				r10_bio->devs[0].addr = from_addr;
3444 				r10_bio->devs[1].devnum = i;
3445 				r10_bio->devs[1].addr = to_addr;
3446 
3447 				if (mrdev) {
3448 					bio = r10_bio->devs[1].bio;
3449 					bio->bi_next = biolist;
3450 					biolist = bio;
3451 					bio->bi_end_io = end_sync_write;
3452 					bio->bi_opf = REQ_OP_WRITE;
3453 					bio->bi_iter.bi_sector = to_addr
3454 						+ mrdev->data_offset;
3455 					bio_set_dev(bio, mrdev->bdev);
3456 					atomic_inc(&r10_bio->remaining);
3457 				} else
3458 					r10_bio->devs[1].bio->bi_end_io = NULL;
3459 
3460 				/* and maybe write to replacement */
3461 				bio = r10_bio->devs[1].repl_bio;
3462 				if (bio)
3463 					bio->bi_end_io = NULL;
3464 				/* Note: if replace is not NULL, then bio
3465 				 * cannot be NULL as r10buf_pool_alloc will
3466 				 * have allocated it.
3467 				 */
3468 				if (!mreplace)
3469 					break;
3470 				bio->bi_next = biolist;
3471 				biolist = bio;
3472 				bio->bi_end_io = end_sync_write;
3473 				bio->bi_opf = REQ_OP_WRITE;
3474 				bio->bi_iter.bi_sector = to_addr +
3475 					mreplace->data_offset;
3476 				bio_set_dev(bio, mreplace->bdev);
3477 				atomic_inc(&r10_bio->remaining);
3478 				break;
3479 			}
3480 			if (j == conf->copies) {
3481 				/* Cannot recover, so abort the recovery or
3482 				 * record a bad block */
3483 				if (any_working) {
3484 					/* problem is that there are bad blocks
3485 					 * on other device(s)
3486 					 */
3487 					int k;
3488 					for (k = 0; k < conf->copies; k++)
3489 						if (r10_bio->devs[k].devnum == i)
3490 							break;
3491 					if (mrdev && !test_bit(In_sync,
3492 						      &mrdev->flags)
3493 					    && !rdev_set_badblocks(
3494 						    mrdev,
3495 						    r10_bio->devs[k].addr,
3496 						    max_sync, 0))
3497 						any_working = 0;
3498 					if (mreplace &&
3499 					    !rdev_set_badblocks(
3500 						    mreplace,
3501 						    r10_bio->devs[k].addr,
3502 						    max_sync, 0))
3503 						any_working = 0;
3504 				}
3505 				if (!any_working)  {
3506 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3507 							      &mddev->recovery))
3508 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3509 						       mdname(mddev));
3510 					mirror->recovery_disabled
3511 						= mddev->recovery_disabled;
3512 				} else {
3513 					error_disk = i;
3514 				}
3515 				put_buf(r10_bio);
3516 				if (rb2)
3517 					atomic_dec(&rb2->remaining);
3518 				r10_bio = rb2;
3519 				if (mrdev)
3520 					rdev_dec_pending(mrdev, mddev);
3521 				if (mreplace)
3522 					rdev_dec_pending(mreplace, mddev);
3523 				break;
3524 			}
3525 			if (mrdev)
3526 				rdev_dec_pending(mrdev, mddev);
3527 			if (mreplace)
3528 				rdev_dec_pending(mreplace, mddev);
3529 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3530 				/* Only want this if there is elsewhere to
3531 				 * read from. 'j' is currently the first
3532 				 * readable copy.
3533 				 */
3534 				int targets = 1;
3535 				for (; j < conf->copies; j++) {
3536 					int d = r10_bio->devs[j].devnum;
3537 					if (conf->mirrors[d].rdev &&
3538 					    test_bit(In_sync,
3539 						      &conf->mirrors[d].rdev->flags))
3540 						targets++;
3541 				}
3542 				if (targets == 1)
3543 					r10_bio->devs[0].bio->bi_opf
3544 						&= ~MD_FAILFAST;
3545 			}
3546 		}
3547 		if (biolist == NULL) {
3548 			while (r10_bio) {
3549 				struct r10bio *rb2 = r10_bio;
3550 				r10_bio = (struct r10bio*) rb2->master_bio;
3551 				rb2->master_bio = NULL;
3552 				put_buf(rb2);
3553 			}
3554 			goto giveup;
3555 		}
3556 	} else {
3557 		/* resync. Schedule a read for every block at this virt offset */
3558 		int count = 0;
3559 
3560 		/*
3561 		 * Since curr_resync_completed could probably not update in
3562 		 * time, and we will set cluster_sync_low based on it.
3563 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3564 		 * safety reason, which ensures curr_resync_completed is
3565 		 * updated in bitmap_cond_end_sync.
3566 		 */
3567 		mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
3568 					mddev_is_clustered(mddev) &&
3569 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3570 
3571 		if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3572 						   &sync_blocks,
3573 						   mddev->degraded) &&
3574 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3575 						 &mddev->recovery)) {
3576 			/* We can skip this block */
3577 			*skipped = 1;
3578 			return sync_blocks + sectors_skipped;
3579 		}
3580 		if (sync_blocks < max_sync)
3581 			max_sync = sync_blocks;
3582 		r10_bio = raid10_alloc_init_r10buf(conf);
3583 		r10_bio->state = 0;
3584 
3585 		r10_bio->mddev = mddev;
3586 		atomic_set(&r10_bio->remaining, 0);
3587 		raise_barrier(conf, 0);
3588 		conf->next_resync = sector_nr;
3589 
3590 		r10_bio->master_bio = NULL;
3591 		r10_bio->sector = sector_nr;
3592 		set_bit(R10BIO_IsSync, &r10_bio->state);
3593 		raid10_find_phys(conf, r10_bio);
3594 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3595 
3596 		for (i = 0; i < conf->copies; i++) {
3597 			int d = r10_bio->devs[i].devnum;
3598 			sector_t first_bad, sector;
3599 			sector_t bad_sectors;
3600 			struct md_rdev *rdev;
3601 
3602 			if (r10_bio->devs[i].repl_bio)
3603 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3604 
3605 			bio = r10_bio->devs[i].bio;
3606 			bio->bi_status = BLK_STS_IOERR;
3607 			rdev = conf->mirrors[d].rdev;
3608 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3609 				continue;
3610 
3611 			sector = r10_bio->devs[i].addr;
3612 			if (is_badblock(rdev, sector, max_sync,
3613 					&first_bad, &bad_sectors)) {
3614 				if (first_bad > sector)
3615 					max_sync = first_bad - sector;
3616 				else {
3617 					bad_sectors -= (sector - first_bad);
3618 					if (max_sync > bad_sectors)
3619 						max_sync = bad_sectors;
3620 					continue;
3621 				}
3622 			}
3623 			atomic_inc(&rdev->nr_pending);
3624 			atomic_inc(&r10_bio->remaining);
3625 			bio->bi_next = biolist;
3626 			biolist = bio;
3627 			bio->bi_end_io = end_sync_read;
3628 			bio->bi_opf = REQ_OP_READ;
3629 			if (test_bit(FailFast, &rdev->flags))
3630 				bio->bi_opf |= MD_FAILFAST;
3631 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3632 			bio_set_dev(bio, rdev->bdev);
3633 			count++;
3634 
3635 			rdev = conf->mirrors[d].replacement;
3636 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3637 				continue;
3638 
3639 			atomic_inc(&rdev->nr_pending);
3640 
3641 			/* Need to set up for writing to the replacement */
3642 			bio = r10_bio->devs[i].repl_bio;
3643 			bio->bi_status = BLK_STS_IOERR;
3644 
3645 			sector = r10_bio->devs[i].addr;
3646 			bio->bi_next = biolist;
3647 			biolist = bio;
3648 			bio->bi_end_io = end_sync_write;
3649 			bio->bi_opf = REQ_OP_WRITE;
3650 			if (test_bit(FailFast, &rdev->flags))
3651 				bio->bi_opf |= MD_FAILFAST;
3652 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3653 			bio_set_dev(bio, rdev->bdev);
3654 			count++;
3655 		}
3656 
3657 		if (count < 2) {
3658 			for (i=0; i<conf->copies; i++) {
3659 				int d = r10_bio->devs[i].devnum;
3660 				if (r10_bio->devs[i].bio->bi_end_io)
3661 					rdev_dec_pending(conf->mirrors[d].rdev,
3662 							 mddev);
3663 				if (r10_bio->devs[i].repl_bio &&
3664 				    r10_bio->devs[i].repl_bio->bi_end_io)
3665 					rdev_dec_pending(
3666 						conf->mirrors[d].replacement,
3667 						mddev);
3668 			}
3669 			put_buf(r10_bio);
3670 			biolist = NULL;
3671 			goto giveup;
3672 		}
3673 	}
3674 
3675 	nr_sectors = 0;
3676 	if (sector_nr + max_sync < max_sector)
3677 		max_sector = sector_nr + max_sync;
3678 	do {
3679 		struct page *page;
3680 		int len = PAGE_SIZE;
3681 		if (sector_nr + (len>>9) > max_sector)
3682 			len = (max_sector - sector_nr) << 9;
3683 		if (len == 0)
3684 			break;
3685 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3686 			struct resync_pages *rp = get_resync_pages(bio);
3687 			page = resync_fetch_page(rp, page_idx);
3688 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3689 				bio->bi_status = BLK_STS_RESOURCE;
3690 				bio_endio(bio);
3691 				goto giveup;
3692 			}
3693 		}
3694 		nr_sectors += len>>9;
3695 		sector_nr += len>>9;
3696 	} while (++page_idx < RESYNC_PAGES);
3697 	r10_bio->sectors = nr_sectors;
3698 
3699 	if (mddev_is_clustered(mddev) &&
3700 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3701 		/* It is resync not recovery */
3702 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3703 			conf->cluster_sync_low = mddev->curr_resync_completed;
3704 			raid10_set_cluster_sync_high(conf);
3705 			/* Send resync message */
3706 			mddev->cluster_ops->resync_info_update(mddev,
3707 						conf->cluster_sync_low,
3708 						conf->cluster_sync_high);
3709 		}
3710 	} else if (mddev_is_clustered(mddev)) {
3711 		/* This is recovery not resync */
3712 		sector_t sect_va1, sect_va2;
3713 		bool broadcast_msg = false;
3714 
3715 		for (i = 0; i < conf->geo.raid_disks; i++) {
3716 			/*
3717 			 * sector_nr is a device address for recovery, so we
3718 			 * need translate it to array address before compare
3719 			 * with cluster_sync_high.
3720 			 */
3721 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3722 
3723 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3724 				broadcast_msg = true;
3725 				/*
3726 				 * curr_resync_completed is similar as
3727 				 * sector_nr, so make the translation too.
3728 				 */
3729 				sect_va2 = raid10_find_virt(conf,
3730 					mddev->curr_resync_completed, i);
3731 
3732 				if (conf->cluster_sync_low == 0 ||
3733 				    conf->cluster_sync_low > sect_va2)
3734 					conf->cluster_sync_low = sect_va2;
3735 			}
3736 		}
3737 		if (broadcast_msg) {
3738 			raid10_set_cluster_sync_high(conf);
3739 			mddev->cluster_ops->resync_info_update(mddev,
3740 						conf->cluster_sync_low,
3741 						conf->cluster_sync_high);
3742 		}
3743 	}
3744 
3745 	while (biolist) {
3746 		bio = biolist;
3747 		biolist = biolist->bi_next;
3748 
3749 		bio->bi_next = NULL;
3750 		r10_bio = get_resync_r10bio(bio);
3751 		r10_bio->sectors = nr_sectors;
3752 
3753 		if (bio->bi_end_io == end_sync_read) {
3754 			bio->bi_status = 0;
3755 			submit_bio_noacct(bio);
3756 		}
3757 	}
3758 
3759 	if (sectors_skipped)
3760 		/* pretend they weren't skipped, it makes
3761 		 * no important difference in this case
3762 		 */
3763 		md_done_sync(mddev, sectors_skipped, 1);
3764 
3765 	return sectors_skipped + nr_sectors;
3766  giveup:
3767 	/* There is nowhere to write, so all non-sync
3768 	 * drives must be failed or in resync, all drives
3769 	 * have a bad block, so try the next chunk...
3770 	 */
3771 	if (sector_nr + max_sync < max_sector)
3772 		max_sector = sector_nr + max_sync;
3773 
3774 	sectors_skipped += (max_sector - sector_nr);
3775 	chunks_skipped ++;
3776 	sector_nr = max_sector;
3777 	goto skipped;
3778 }
3779 
3780 static sector_t
3781 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3782 {
3783 	sector_t size;
3784 	struct r10conf *conf = mddev->private;
3785 
3786 	if (!raid_disks)
3787 		raid_disks = min(conf->geo.raid_disks,
3788 				 conf->prev.raid_disks);
3789 	if (!sectors)
3790 		sectors = conf->dev_sectors;
3791 
3792 	size = sectors >> conf->geo.chunk_shift;
3793 	sector_div(size, conf->geo.far_copies);
3794 	size = size * raid_disks;
3795 	sector_div(size, conf->geo.near_copies);
3796 
3797 	return size << conf->geo.chunk_shift;
3798 }
3799 
3800 static void calc_sectors(struct r10conf *conf, sector_t size)
3801 {
3802 	/* Calculate the number of sectors-per-device that will
3803 	 * actually be used, and set conf->dev_sectors and
3804 	 * conf->stride
3805 	 */
3806 
3807 	size = size >> conf->geo.chunk_shift;
3808 	sector_div(size, conf->geo.far_copies);
3809 	size = size * conf->geo.raid_disks;
3810 	sector_div(size, conf->geo.near_copies);
3811 	/* 'size' is now the number of chunks in the array */
3812 	/* calculate "used chunks per device" */
3813 	size = size * conf->copies;
3814 
3815 	/* We need to round up when dividing by raid_disks to
3816 	 * get the stride size.
3817 	 */
3818 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3819 
3820 	conf->dev_sectors = size << conf->geo.chunk_shift;
3821 
3822 	if (conf->geo.far_offset)
3823 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3824 	else {
3825 		sector_div(size, conf->geo.far_copies);
3826 		conf->geo.stride = size << conf->geo.chunk_shift;
3827 	}
3828 }
3829 
3830 enum geo_type {geo_new, geo_old, geo_start};
3831 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3832 {
3833 	int nc, fc, fo;
3834 	int layout, chunk, disks;
3835 	switch (new) {
3836 	case geo_old:
3837 		layout = mddev->layout;
3838 		chunk = mddev->chunk_sectors;
3839 		disks = mddev->raid_disks - mddev->delta_disks;
3840 		break;
3841 	case geo_new:
3842 		layout = mddev->new_layout;
3843 		chunk = mddev->new_chunk_sectors;
3844 		disks = mddev->raid_disks;
3845 		break;
3846 	default: /* avoid 'may be unused' warnings */
3847 	case geo_start: /* new when starting reshape - raid_disks not
3848 			 * updated yet. */
3849 		layout = mddev->new_layout;
3850 		chunk = mddev->new_chunk_sectors;
3851 		disks = mddev->raid_disks + mddev->delta_disks;
3852 		break;
3853 	}
3854 	if (layout >> 19)
3855 		return -1;
3856 	if (chunk < (PAGE_SIZE >> 9) ||
3857 	    !is_power_of_2(chunk))
3858 		return -2;
3859 	nc = layout & 255;
3860 	fc = (layout >> 8) & 255;
3861 	fo = layout & (1<<16);
3862 	geo->raid_disks = disks;
3863 	geo->near_copies = nc;
3864 	geo->far_copies = fc;
3865 	geo->far_offset = fo;
3866 	switch (layout >> 17) {
3867 	case 0:	/* original layout.  simple but not always optimal */
3868 		geo->far_set_size = disks;
3869 		break;
3870 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3871 		 * actually using this, but leave code here just in case.*/
3872 		geo->far_set_size = disks/fc;
3873 		WARN(geo->far_set_size < fc,
3874 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3875 		break;
3876 	case 2: /* "improved" layout fixed to match documentation */
3877 		geo->far_set_size = fc * nc;
3878 		break;
3879 	default: /* Not a valid layout */
3880 		return -1;
3881 	}
3882 	geo->chunk_mask = chunk - 1;
3883 	geo->chunk_shift = ffz(~chunk);
3884 	return nc*fc;
3885 }
3886 
3887 static void raid10_free_conf(struct r10conf *conf)
3888 {
3889 	if (!conf)
3890 		return;
3891 
3892 	mempool_exit(&conf->r10bio_pool);
3893 	kfree(conf->mirrors);
3894 	kfree(conf->mirrors_old);
3895 	kfree(conf->mirrors_new);
3896 	safe_put_page(conf->tmppage);
3897 	bioset_exit(&conf->bio_split);
3898 	kfree(conf);
3899 }
3900 
3901 static struct r10conf *setup_conf(struct mddev *mddev)
3902 {
3903 	struct r10conf *conf = NULL;
3904 	int err = -EINVAL;
3905 	struct geom geo;
3906 	int copies;
3907 
3908 	copies = setup_geo(&geo, mddev, geo_new);
3909 
3910 	if (copies == -2) {
3911 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3912 			mdname(mddev), PAGE_SIZE);
3913 		goto out;
3914 	}
3915 
3916 	if (copies < 2 || copies > mddev->raid_disks) {
3917 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3918 			mdname(mddev), mddev->new_layout);
3919 		goto out;
3920 	}
3921 
3922 	err = -ENOMEM;
3923 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3924 	if (!conf)
3925 		goto out;
3926 
3927 	/* FIXME calc properly */
3928 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3929 				sizeof(struct raid10_info),
3930 				GFP_KERNEL);
3931 	if (!conf->mirrors)
3932 		goto out;
3933 
3934 	conf->tmppage = alloc_page(GFP_KERNEL);
3935 	if (!conf->tmppage)
3936 		goto out;
3937 
3938 	conf->geo = geo;
3939 	conf->copies = copies;
3940 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3941 			   rbio_pool_free, conf);
3942 	if (err)
3943 		goto out;
3944 
3945 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3946 	if (err)
3947 		goto out;
3948 
3949 	calc_sectors(conf, mddev->dev_sectors);
3950 	if (mddev->reshape_position == MaxSector) {
3951 		conf->prev = conf->geo;
3952 		conf->reshape_progress = MaxSector;
3953 	} else {
3954 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3955 			err = -EINVAL;
3956 			goto out;
3957 		}
3958 		conf->reshape_progress = mddev->reshape_position;
3959 		if (conf->prev.far_offset)
3960 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3961 		else
3962 			/* far_copies must be 1 */
3963 			conf->prev.stride = conf->dev_sectors;
3964 	}
3965 	conf->reshape_safe = conf->reshape_progress;
3966 	spin_lock_init(&conf->device_lock);
3967 	INIT_LIST_HEAD(&conf->retry_list);
3968 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3969 
3970 	seqlock_init(&conf->resync_lock);
3971 	init_waitqueue_head(&conf->wait_barrier);
3972 	atomic_set(&conf->nr_pending, 0);
3973 
3974 	err = -ENOMEM;
3975 	rcu_assign_pointer(conf->thread,
3976 			   md_register_thread(raid10d, mddev, "raid10"));
3977 	if (!conf->thread)
3978 		goto out;
3979 
3980 	conf->mddev = mddev;
3981 	return conf;
3982 
3983  out:
3984 	raid10_free_conf(conf);
3985 	return ERR_PTR(err);
3986 }
3987 
3988 static unsigned int raid10_nr_stripes(struct r10conf *conf)
3989 {
3990 	unsigned int raid_disks = conf->geo.raid_disks;
3991 
3992 	if (conf->geo.raid_disks % conf->geo.near_copies)
3993 		return raid_disks;
3994 	return raid_disks / conf->geo.near_copies;
3995 }
3996 
3997 static int raid10_set_queue_limits(struct mddev *mddev)
3998 {
3999 	struct r10conf *conf = mddev->private;
4000 	struct queue_limits lim;
4001 	int err;
4002 
4003 	md_init_stacking_limits(&lim);
4004 	lim.max_write_zeroes_sectors = 0;
4005 	lim.io_min = mddev->chunk_sectors << 9;
4006 	lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
4007 	lim.features |= BLK_FEAT_ATOMIC_WRITES;
4008 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
4009 	if (err)
4010 		return err;
4011 	return queue_limits_set(mddev->gendisk->queue, &lim);
4012 }
4013 
4014 static int raid10_run(struct mddev *mddev)
4015 {
4016 	struct r10conf *conf;
4017 	int i, disk_idx;
4018 	struct raid10_info *disk;
4019 	struct md_rdev *rdev;
4020 	sector_t size;
4021 	sector_t min_offset_diff = 0;
4022 	int first = 1;
4023 	int ret = -EIO;
4024 
4025 	if (mddev->private == NULL) {
4026 		conf = setup_conf(mddev);
4027 		if (IS_ERR(conf))
4028 			return PTR_ERR(conf);
4029 		mddev->private = conf;
4030 	}
4031 	conf = mddev->private;
4032 	if (!conf)
4033 		goto out;
4034 
4035 	rcu_assign_pointer(mddev->thread, conf->thread);
4036 	rcu_assign_pointer(conf->thread, NULL);
4037 
4038 	if (mddev_is_clustered(conf->mddev)) {
4039 		int fc, fo;
4040 
4041 		fc = (mddev->layout >> 8) & 255;
4042 		fo = mddev->layout & (1<<16);
4043 		if (fc > 1 || fo > 0) {
4044 			pr_err("only near layout is supported by clustered"
4045 				" raid10\n");
4046 			goto out_free_conf;
4047 		}
4048 	}
4049 
4050 	rdev_for_each(rdev, mddev) {
4051 		long long diff;
4052 
4053 		disk_idx = rdev->raid_disk;
4054 		if (disk_idx < 0)
4055 			continue;
4056 		if (disk_idx >= conf->geo.raid_disks &&
4057 		    disk_idx >= conf->prev.raid_disks)
4058 			continue;
4059 		disk = conf->mirrors + disk_idx;
4060 
4061 		if (test_bit(Replacement, &rdev->flags)) {
4062 			if (disk->replacement)
4063 				goto out_free_conf;
4064 			disk->replacement = rdev;
4065 		} else {
4066 			if (disk->rdev)
4067 				goto out_free_conf;
4068 			disk->rdev = rdev;
4069 		}
4070 		diff = (rdev->new_data_offset - rdev->data_offset);
4071 		if (!mddev->reshape_backwards)
4072 			diff = -diff;
4073 		if (diff < 0)
4074 			diff = 0;
4075 		if (first || diff < min_offset_diff)
4076 			min_offset_diff = diff;
4077 
4078 		disk->head_position = 0;
4079 		first = 0;
4080 	}
4081 
4082 	if (!mddev_is_dm(conf->mddev)) {
4083 		int err = raid10_set_queue_limits(mddev);
4084 
4085 		if (err) {
4086 			ret = err;
4087 			goto out_free_conf;
4088 		}
4089 	}
4090 
4091 	/* need to check that every block has at least one working mirror */
4092 	if (!enough(conf, -1)) {
4093 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4094 		       mdname(mddev));
4095 		goto out_free_conf;
4096 	}
4097 
4098 	if (conf->reshape_progress != MaxSector) {
4099 		/* must ensure that shape change is supported */
4100 		if (conf->geo.far_copies != 1 &&
4101 		    conf->geo.far_offset == 0)
4102 			goto out_free_conf;
4103 		if (conf->prev.far_copies != 1 &&
4104 		    conf->prev.far_offset == 0)
4105 			goto out_free_conf;
4106 	}
4107 
4108 	mddev->degraded = 0;
4109 	for (i = 0;
4110 	     i < conf->geo.raid_disks
4111 		     || i < conf->prev.raid_disks;
4112 	     i++) {
4113 
4114 		disk = conf->mirrors + i;
4115 
4116 		if (!disk->rdev && disk->replacement) {
4117 			/* The replacement is all we have - use it */
4118 			disk->rdev = disk->replacement;
4119 			disk->replacement = NULL;
4120 			clear_bit(Replacement, &disk->rdev->flags);
4121 		}
4122 
4123 		if (!disk->rdev ||
4124 		    !test_bit(In_sync, &disk->rdev->flags)) {
4125 			disk->head_position = 0;
4126 			mddev->degraded++;
4127 			if (disk->rdev &&
4128 			    disk->rdev->saved_raid_disk < 0)
4129 				conf->fullsync = 1;
4130 		}
4131 
4132 		if (disk->replacement &&
4133 		    !test_bit(In_sync, &disk->replacement->flags) &&
4134 		    disk->replacement->saved_raid_disk < 0) {
4135 			conf->fullsync = 1;
4136 		}
4137 
4138 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4139 	}
4140 
4141 	if (mddev->recovery_cp != MaxSector)
4142 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4143 			  mdname(mddev));
4144 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4145 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4146 		conf->geo.raid_disks);
4147 	/*
4148 	 * Ok, everything is just fine now
4149 	 */
4150 	mddev->dev_sectors = conf->dev_sectors;
4151 	size = raid10_size(mddev, 0, 0);
4152 	md_set_array_sectors(mddev, size);
4153 	mddev->resync_max_sectors = size;
4154 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4155 
4156 	if (md_integrity_register(mddev))
4157 		goto out_free_conf;
4158 
4159 	if (conf->reshape_progress != MaxSector) {
4160 		unsigned long before_length, after_length;
4161 
4162 		before_length = ((1 << conf->prev.chunk_shift) *
4163 				 conf->prev.far_copies);
4164 		after_length = ((1 << conf->geo.chunk_shift) *
4165 				conf->geo.far_copies);
4166 
4167 		if (max(before_length, after_length) > min_offset_diff) {
4168 			/* This cannot work */
4169 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4170 			goto out_free_conf;
4171 		}
4172 		conf->offset_diff = min_offset_diff;
4173 
4174 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4175 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4176 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4177 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4178 	}
4179 
4180 	return 0;
4181 
4182 out_free_conf:
4183 	md_unregister_thread(mddev, &mddev->thread);
4184 	raid10_free_conf(conf);
4185 	mddev->private = NULL;
4186 out:
4187 	return ret;
4188 }
4189 
4190 static void raid10_free(struct mddev *mddev, void *priv)
4191 {
4192 	raid10_free_conf(priv);
4193 }
4194 
4195 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4196 {
4197 	struct r10conf *conf = mddev->private;
4198 
4199 	if (quiesce)
4200 		raise_barrier(conf, 0);
4201 	else
4202 		lower_barrier(conf);
4203 }
4204 
4205 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4206 {
4207 	/* Resize of 'far' arrays is not supported.
4208 	 * For 'near' and 'offset' arrays we can set the
4209 	 * number of sectors used to be an appropriate multiple
4210 	 * of the chunk size.
4211 	 * For 'offset', this is far_copies*chunksize.
4212 	 * For 'near' the multiplier is the LCM of
4213 	 * near_copies and raid_disks.
4214 	 * So if far_copies > 1 && !far_offset, fail.
4215 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4216 	 * multiply by chunk_size.  Then round to this number.
4217 	 * This is mostly done by raid10_size()
4218 	 */
4219 	struct r10conf *conf = mddev->private;
4220 	sector_t oldsize, size;
4221 	int ret;
4222 
4223 	if (mddev->reshape_position != MaxSector)
4224 		return -EBUSY;
4225 
4226 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4227 		return -EINVAL;
4228 
4229 	oldsize = raid10_size(mddev, 0, 0);
4230 	size = raid10_size(mddev, sectors, 0);
4231 	if (mddev->external_size &&
4232 	    mddev->array_sectors > size)
4233 		return -EINVAL;
4234 
4235 	ret = mddev->bitmap_ops->resize(mddev, size, 0, false);
4236 	if (ret)
4237 		return ret;
4238 
4239 	md_set_array_sectors(mddev, size);
4240 	if (sectors > mddev->dev_sectors &&
4241 	    mddev->recovery_cp > oldsize) {
4242 		mddev->recovery_cp = oldsize;
4243 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4244 	}
4245 	calc_sectors(conf, sectors);
4246 	mddev->dev_sectors = conf->dev_sectors;
4247 	mddev->resync_max_sectors = size;
4248 	return 0;
4249 }
4250 
4251 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4252 {
4253 	struct md_rdev *rdev;
4254 	struct r10conf *conf;
4255 
4256 	if (mddev->degraded > 0) {
4257 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4258 			mdname(mddev));
4259 		return ERR_PTR(-EINVAL);
4260 	}
4261 	sector_div(size, devs);
4262 
4263 	/* Set new parameters */
4264 	mddev->new_level = 10;
4265 	/* new layout: far_copies = 1, near_copies = 2 */
4266 	mddev->new_layout = (1<<8) + 2;
4267 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4268 	mddev->delta_disks = mddev->raid_disks;
4269 	mddev->raid_disks *= 2;
4270 	/* make sure it will be not marked as dirty */
4271 	mddev->recovery_cp = MaxSector;
4272 	mddev->dev_sectors = size;
4273 
4274 	conf = setup_conf(mddev);
4275 	if (!IS_ERR(conf)) {
4276 		rdev_for_each(rdev, mddev)
4277 			if (rdev->raid_disk >= 0) {
4278 				rdev->new_raid_disk = rdev->raid_disk * 2;
4279 				rdev->sectors = size;
4280 			}
4281 	}
4282 
4283 	return conf;
4284 }
4285 
4286 static void *raid10_takeover(struct mddev *mddev)
4287 {
4288 	struct r0conf *raid0_conf;
4289 
4290 	/* raid10 can take over:
4291 	 *  raid0 - providing it has only two drives
4292 	 */
4293 	if (mddev->level == 0) {
4294 		/* for raid0 takeover only one zone is supported */
4295 		raid0_conf = mddev->private;
4296 		if (raid0_conf->nr_strip_zones > 1) {
4297 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4298 				mdname(mddev));
4299 			return ERR_PTR(-EINVAL);
4300 		}
4301 		return raid10_takeover_raid0(mddev,
4302 			raid0_conf->strip_zone->zone_end,
4303 			raid0_conf->strip_zone->nb_dev);
4304 	}
4305 	return ERR_PTR(-EINVAL);
4306 }
4307 
4308 static int raid10_check_reshape(struct mddev *mddev)
4309 {
4310 	/* Called when there is a request to change
4311 	 * - layout (to ->new_layout)
4312 	 * - chunk size (to ->new_chunk_sectors)
4313 	 * - raid_disks (by delta_disks)
4314 	 * or when trying to restart a reshape that was ongoing.
4315 	 *
4316 	 * We need to validate the request and possibly allocate
4317 	 * space if that might be an issue later.
4318 	 *
4319 	 * Currently we reject any reshape of a 'far' mode array,
4320 	 * allow chunk size to change if new is generally acceptable,
4321 	 * allow raid_disks to increase, and allow
4322 	 * a switch between 'near' mode and 'offset' mode.
4323 	 */
4324 	struct r10conf *conf = mddev->private;
4325 	struct geom geo;
4326 
4327 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4328 		return -EINVAL;
4329 
4330 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4331 		/* mustn't change number of copies */
4332 		return -EINVAL;
4333 	if (geo.far_copies > 1 && !geo.far_offset)
4334 		/* Cannot switch to 'far' mode */
4335 		return -EINVAL;
4336 
4337 	if (mddev->array_sectors & geo.chunk_mask)
4338 			/* not factor of array size */
4339 			return -EINVAL;
4340 
4341 	if (!enough(conf, -1))
4342 		return -EINVAL;
4343 
4344 	kfree(conf->mirrors_new);
4345 	conf->mirrors_new = NULL;
4346 	if (mddev->delta_disks > 0) {
4347 		/* allocate new 'mirrors' list */
4348 		conf->mirrors_new =
4349 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4350 				sizeof(struct raid10_info),
4351 				GFP_KERNEL);
4352 		if (!conf->mirrors_new)
4353 			return -ENOMEM;
4354 	}
4355 	return 0;
4356 }
4357 
4358 /*
4359  * Need to check if array has failed when deciding whether to:
4360  *  - start an array
4361  *  - remove non-faulty devices
4362  *  - add a spare
4363  *  - allow a reshape
4364  * This determination is simple when no reshape is happening.
4365  * However if there is a reshape, we need to carefully check
4366  * both the before and after sections.
4367  * This is because some failed devices may only affect one
4368  * of the two sections, and some non-in_sync devices may
4369  * be insync in the section most affected by failed devices.
4370  */
4371 static int calc_degraded(struct r10conf *conf)
4372 {
4373 	int degraded, degraded2;
4374 	int i;
4375 
4376 	degraded = 0;
4377 	/* 'prev' section first */
4378 	for (i = 0; i < conf->prev.raid_disks; i++) {
4379 		struct md_rdev *rdev = conf->mirrors[i].rdev;
4380 
4381 		if (!rdev || test_bit(Faulty, &rdev->flags))
4382 			degraded++;
4383 		else if (!test_bit(In_sync, &rdev->flags))
4384 			/* When we can reduce the number of devices in
4385 			 * an array, this might not contribute to
4386 			 * 'degraded'.  It does now.
4387 			 */
4388 			degraded++;
4389 	}
4390 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4391 		return degraded;
4392 	degraded2 = 0;
4393 	for (i = 0; i < conf->geo.raid_disks; i++) {
4394 		struct md_rdev *rdev = conf->mirrors[i].rdev;
4395 
4396 		if (!rdev || test_bit(Faulty, &rdev->flags))
4397 			degraded2++;
4398 		else if (!test_bit(In_sync, &rdev->flags)) {
4399 			/* If reshape is increasing the number of devices,
4400 			 * this section has already been recovered, so
4401 			 * it doesn't contribute to degraded.
4402 			 * else it does.
4403 			 */
4404 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4405 				degraded2++;
4406 		}
4407 	}
4408 	if (degraded2 > degraded)
4409 		return degraded2;
4410 	return degraded;
4411 }
4412 
4413 static int raid10_start_reshape(struct mddev *mddev)
4414 {
4415 	/* A 'reshape' has been requested. This commits
4416 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4417 	 * This also checks if there are enough spares and adds them
4418 	 * to the array.
4419 	 * We currently require enough spares to make the final
4420 	 * array non-degraded.  We also require that the difference
4421 	 * between old and new data_offset - on each device - is
4422 	 * enough that we never risk over-writing.
4423 	 */
4424 
4425 	unsigned long before_length, after_length;
4426 	sector_t min_offset_diff = 0;
4427 	int first = 1;
4428 	struct geom new;
4429 	struct r10conf *conf = mddev->private;
4430 	struct md_rdev *rdev;
4431 	int spares = 0;
4432 	int ret;
4433 
4434 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4435 		return -EBUSY;
4436 
4437 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4438 		return -EINVAL;
4439 
4440 	before_length = ((1 << conf->prev.chunk_shift) *
4441 			 conf->prev.far_copies);
4442 	after_length = ((1 << conf->geo.chunk_shift) *
4443 			conf->geo.far_copies);
4444 
4445 	rdev_for_each(rdev, mddev) {
4446 		if (!test_bit(In_sync, &rdev->flags)
4447 		    && !test_bit(Faulty, &rdev->flags))
4448 			spares++;
4449 		if (rdev->raid_disk >= 0) {
4450 			long long diff = (rdev->new_data_offset
4451 					  - rdev->data_offset);
4452 			if (!mddev->reshape_backwards)
4453 				diff = -diff;
4454 			if (diff < 0)
4455 				diff = 0;
4456 			if (first || diff < min_offset_diff)
4457 				min_offset_diff = diff;
4458 			first = 0;
4459 		}
4460 	}
4461 
4462 	if (max(before_length, after_length) > min_offset_diff)
4463 		return -EINVAL;
4464 
4465 	if (spares < mddev->delta_disks)
4466 		return -EINVAL;
4467 
4468 	conf->offset_diff = min_offset_diff;
4469 	spin_lock_irq(&conf->device_lock);
4470 	if (conf->mirrors_new) {
4471 		memcpy(conf->mirrors_new, conf->mirrors,
4472 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4473 		smp_mb();
4474 		kfree(conf->mirrors_old);
4475 		conf->mirrors_old = conf->mirrors;
4476 		conf->mirrors = conf->mirrors_new;
4477 		conf->mirrors_new = NULL;
4478 	}
4479 	setup_geo(&conf->geo, mddev, geo_start);
4480 	smp_mb();
4481 	if (mddev->reshape_backwards) {
4482 		sector_t size = raid10_size(mddev, 0, 0);
4483 		if (size < mddev->array_sectors) {
4484 			spin_unlock_irq(&conf->device_lock);
4485 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4486 				mdname(mddev));
4487 			return -EINVAL;
4488 		}
4489 		mddev->resync_max_sectors = size;
4490 		conf->reshape_progress = size;
4491 	} else
4492 		conf->reshape_progress = 0;
4493 	conf->reshape_safe = conf->reshape_progress;
4494 	spin_unlock_irq(&conf->device_lock);
4495 
4496 	if (mddev->delta_disks && mddev->bitmap) {
4497 		struct mdp_superblock_1 *sb = NULL;
4498 		sector_t oldsize, newsize;
4499 
4500 		oldsize = raid10_size(mddev, 0, 0);
4501 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4502 
4503 		if (!mddev_is_clustered(mddev)) {
4504 			ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4505 			if (ret)
4506 				goto abort;
4507 			else
4508 				goto out;
4509 		}
4510 
4511 		rdev_for_each(rdev, mddev) {
4512 			if (rdev->raid_disk > -1 &&
4513 			    !test_bit(Faulty, &rdev->flags))
4514 				sb = page_address(rdev->sb_page);
4515 		}
4516 
4517 		/*
4518 		 * some node is already performing reshape, and no need to
4519 		 * call bitmap_ops->resize again since it should be called when
4520 		 * receiving BITMAP_RESIZE msg
4521 		 */
4522 		if ((sb && (le32_to_cpu(sb->feature_map) &
4523 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4524 			goto out;
4525 
4526 		ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4527 		if (ret)
4528 			goto abort;
4529 
4530 		ret = mddev->cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4531 		if (ret) {
4532 			mddev->bitmap_ops->resize(mddev, oldsize, 0, false);
4533 			goto abort;
4534 		}
4535 	}
4536 out:
4537 	if (mddev->delta_disks > 0) {
4538 		rdev_for_each(rdev, mddev)
4539 			if (rdev->raid_disk < 0 &&
4540 			    !test_bit(Faulty, &rdev->flags)) {
4541 				if (raid10_add_disk(mddev, rdev) == 0) {
4542 					if (rdev->raid_disk >=
4543 					    conf->prev.raid_disks)
4544 						set_bit(In_sync, &rdev->flags);
4545 					else
4546 						rdev->recovery_offset = 0;
4547 
4548 					/* Failure here is OK */
4549 					sysfs_link_rdev(mddev, rdev);
4550 				}
4551 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4552 				   && !test_bit(Faulty, &rdev->flags)) {
4553 				/* This is a spare that was manually added */
4554 				set_bit(In_sync, &rdev->flags);
4555 			}
4556 	}
4557 	/* When a reshape changes the number of devices,
4558 	 * ->degraded is measured against the larger of the
4559 	 * pre and  post numbers.
4560 	 */
4561 	spin_lock_irq(&conf->device_lock);
4562 	mddev->degraded = calc_degraded(conf);
4563 	spin_unlock_irq(&conf->device_lock);
4564 	mddev->raid_disks = conf->geo.raid_disks;
4565 	mddev->reshape_position = conf->reshape_progress;
4566 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4567 
4568 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4569 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4570 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4571 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4572 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4573 	conf->reshape_checkpoint = jiffies;
4574 	md_new_event();
4575 	return 0;
4576 
4577 abort:
4578 	mddev->recovery = 0;
4579 	spin_lock_irq(&conf->device_lock);
4580 	conf->geo = conf->prev;
4581 	mddev->raid_disks = conf->geo.raid_disks;
4582 	rdev_for_each(rdev, mddev)
4583 		rdev->new_data_offset = rdev->data_offset;
4584 	smp_wmb();
4585 	conf->reshape_progress = MaxSector;
4586 	conf->reshape_safe = MaxSector;
4587 	mddev->reshape_position = MaxSector;
4588 	spin_unlock_irq(&conf->device_lock);
4589 	return ret;
4590 }
4591 
4592 /* Calculate the last device-address that could contain
4593  * any block from the chunk that includes the array-address 's'
4594  * and report the next address.
4595  * i.e. the address returned will be chunk-aligned and after
4596  * any data that is in the chunk containing 's'.
4597  */
4598 static sector_t last_dev_address(sector_t s, struct geom *geo)
4599 {
4600 	s = (s | geo->chunk_mask) + 1;
4601 	s >>= geo->chunk_shift;
4602 	s *= geo->near_copies;
4603 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4604 	s *= geo->far_copies;
4605 	s <<= geo->chunk_shift;
4606 	return s;
4607 }
4608 
4609 /* Calculate the first device-address that could contain
4610  * any block from the chunk that includes the array-address 's'.
4611  * This too will be the start of a chunk
4612  */
4613 static sector_t first_dev_address(sector_t s, struct geom *geo)
4614 {
4615 	s >>= geo->chunk_shift;
4616 	s *= geo->near_copies;
4617 	sector_div(s, geo->raid_disks);
4618 	s *= geo->far_copies;
4619 	s <<= geo->chunk_shift;
4620 	return s;
4621 }
4622 
4623 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4624 				int *skipped)
4625 {
4626 	/* We simply copy at most one chunk (smallest of old and new)
4627 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4628 	 * or we hit a bad block or something.
4629 	 * This might mean we pause for normal IO in the middle of
4630 	 * a chunk, but that is not a problem as mddev->reshape_position
4631 	 * can record any location.
4632 	 *
4633 	 * If we will want to write to a location that isn't
4634 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4635 	 * we need to flush all reshape requests and update the metadata.
4636 	 *
4637 	 * When reshaping forwards (e.g. to more devices), we interpret
4638 	 * 'safe' as the earliest block which might not have been copied
4639 	 * down yet.  We divide this by previous stripe size and multiply
4640 	 * by previous stripe length to get lowest device offset that we
4641 	 * cannot write to yet.
4642 	 * We interpret 'sector_nr' as an address that we want to write to.
4643 	 * From this we use last_device_address() to find where we might
4644 	 * write to, and first_device_address on the  'safe' position.
4645 	 * If this 'next' write position is after the 'safe' position,
4646 	 * we must update the metadata to increase the 'safe' position.
4647 	 *
4648 	 * When reshaping backwards, we round in the opposite direction
4649 	 * and perform the reverse test:  next write position must not be
4650 	 * less than current safe position.
4651 	 *
4652 	 * In all this the minimum difference in data offsets
4653 	 * (conf->offset_diff - always positive) allows a bit of slack,
4654 	 * so next can be after 'safe', but not by more than offset_diff
4655 	 *
4656 	 * We need to prepare all the bios here before we start any IO
4657 	 * to ensure the size we choose is acceptable to all devices.
4658 	 * The means one for each copy for write-out and an extra one for
4659 	 * read-in.
4660 	 * We store the read-in bio in ->master_bio and the others in
4661 	 * ->devs[x].bio and ->devs[x].repl_bio.
4662 	 */
4663 	struct r10conf *conf = mddev->private;
4664 	struct r10bio *r10_bio;
4665 	sector_t next, safe, last;
4666 	int max_sectors;
4667 	int nr_sectors;
4668 	int s;
4669 	struct md_rdev *rdev;
4670 	int need_flush = 0;
4671 	struct bio *blist;
4672 	struct bio *bio, *read_bio;
4673 	int sectors_done = 0;
4674 	struct page **pages;
4675 
4676 	if (sector_nr == 0) {
4677 		/* If restarting in the middle, skip the initial sectors */
4678 		if (mddev->reshape_backwards &&
4679 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4680 			sector_nr = (raid10_size(mddev, 0, 0)
4681 				     - conf->reshape_progress);
4682 		} else if (!mddev->reshape_backwards &&
4683 			   conf->reshape_progress > 0)
4684 			sector_nr = conf->reshape_progress;
4685 		if (sector_nr) {
4686 			mddev->curr_resync_completed = sector_nr;
4687 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4688 			*skipped = 1;
4689 			return sector_nr;
4690 		}
4691 	}
4692 
4693 	/* We don't use sector_nr to track where we are up to
4694 	 * as that doesn't work well for ->reshape_backwards.
4695 	 * So just use ->reshape_progress.
4696 	 */
4697 	if (mddev->reshape_backwards) {
4698 		/* 'next' is the earliest device address that we might
4699 		 * write to for this chunk in the new layout
4700 		 */
4701 		next = first_dev_address(conf->reshape_progress - 1,
4702 					 &conf->geo);
4703 
4704 		/* 'safe' is the last device address that we might read from
4705 		 * in the old layout after a restart
4706 		 */
4707 		safe = last_dev_address(conf->reshape_safe - 1,
4708 					&conf->prev);
4709 
4710 		if (next + conf->offset_diff < safe)
4711 			need_flush = 1;
4712 
4713 		last = conf->reshape_progress - 1;
4714 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4715 					       & conf->prev.chunk_mask);
4716 		if (sector_nr + RESYNC_SECTORS < last)
4717 			sector_nr = last + 1 - RESYNC_SECTORS;
4718 	} else {
4719 		/* 'next' is after the last device address that we
4720 		 * might write to for this chunk in the new layout
4721 		 */
4722 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4723 
4724 		/* 'safe' is the earliest device address that we might
4725 		 * read from in the old layout after a restart
4726 		 */
4727 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4728 
4729 		/* Need to update metadata if 'next' might be beyond 'safe'
4730 		 * as that would possibly corrupt data
4731 		 */
4732 		if (next > safe + conf->offset_diff)
4733 			need_flush = 1;
4734 
4735 		sector_nr = conf->reshape_progress;
4736 		last  = sector_nr | (conf->geo.chunk_mask
4737 				     & conf->prev.chunk_mask);
4738 
4739 		if (sector_nr + RESYNC_SECTORS <= last)
4740 			last = sector_nr + RESYNC_SECTORS - 1;
4741 	}
4742 
4743 	if (need_flush ||
4744 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4745 		/* Need to update reshape_position in metadata */
4746 		wait_barrier(conf, false);
4747 		mddev->reshape_position = conf->reshape_progress;
4748 		if (mddev->reshape_backwards)
4749 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4750 				- conf->reshape_progress;
4751 		else
4752 			mddev->curr_resync_completed = conf->reshape_progress;
4753 		conf->reshape_checkpoint = jiffies;
4754 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4755 		md_wakeup_thread(mddev->thread);
4756 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4757 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4758 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4759 			allow_barrier(conf);
4760 			return sectors_done;
4761 		}
4762 		conf->reshape_safe = mddev->reshape_position;
4763 		allow_barrier(conf);
4764 	}
4765 
4766 	raise_barrier(conf, 0);
4767 read_more:
4768 	/* Now schedule reads for blocks from sector_nr to last */
4769 	r10_bio = raid10_alloc_init_r10buf(conf);
4770 	r10_bio->state = 0;
4771 	raise_barrier(conf, 1);
4772 	atomic_set(&r10_bio->remaining, 0);
4773 	r10_bio->mddev = mddev;
4774 	r10_bio->sector = sector_nr;
4775 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4776 	r10_bio->sectors = last - sector_nr + 1;
4777 	rdev = read_balance(conf, r10_bio, &max_sectors);
4778 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4779 
4780 	if (!rdev) {
4781 		/* Cannot read from here, so need to record bad blocks
4782 		 * on all the target devices.
4783 		 */
4784 		// FIXME
4785 		mempool_free(r10_bio, &conf->r10buf_pool);
4786 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4787 		return sectors_done;
4788 	}
4789 
4790 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4791 				    GFP_KERNEL, &mddev->bio_set);
4792 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4793 			       + rdev->data_offset);
4794 	read_bio->bi_private = r10_bio;
4795 	read_bio->bi_end_io = end_reshape_read;
4796 	r10_bio->master_bio = read_bio;
4797 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4798 
4799 	/*
4800 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4801 	 * write to the region to avoid conflict.
4802 	*/
4803 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4804 		struct mdp_superblock_1 *sb = NULL;
4805 		int sb_reshape_pos = 0;
4806 
4807 		conf->cluster_sync_low = sector_nr;
4808 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4809 		sb = page_address(rdev->sb_page);
4810 		if (sb) {
4811 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4812 			/*
4813 			 * Set cluster_sync_low again if next address for array
4814 			 * reshape is less than cluster_sync_low. Since we can't
4815 			 * update cluster_sync_low until it has finished reshape.
4816 			 */
4817 			if (sb_reshape_pos < conf->cluster_sync_low)
4818 				conf->cluster_sync_low = sb_reshape_pos;
4819 		}
4820 
4821 		mddev->cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4822 							  conf->cluster_sync_high);
4823 	}
4824 
4825 	/* Now find the locations in the new layout */
4826 	__raid10_find_phys(&conf->geo, r10_bio);
4827 
4828 	blist = read_bio;
4829 	read_bio->bi_next = NULL;
4830 
4831 	for (s = 0; s < conf->copies*2; s++) {
4832 		struct bio *b;
4833 		int d = r10_bio->devs[s/2].devnum;
4834 		struct md_rdev *rdev2;
4835 		if (s&1) {
4836 			rdev2 = conf->mirrors[d].replacement;
4837 			b = r10_bio->devs[s/2].repl_bio;
4838 		} else {
4839 			rdev2 = conf->mirrors[d].rdev;
4840 			b = r10_bio->devs[s/2].bio;
4841 		}
4842 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4843 			continue;
4844 
4845 		bio_set_dev(b, rdev2->bdev);
4846 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4847 			rdev2->new_data_offset;
4848 		b->bi_end_io = end_reshape_write;
4849 		b->bi_opf = REQ_OP_WRITE;
4850 		b->bi_next = blist;
4851 		blist = b;
4852 	}
4853 
4854 	/* Now add as many pages as possible to all of these bios. */
4855 
4856 	nr_sectors = 0;
4857 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4858 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4859 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4860 		int len = (max_sectors - s) << 9;
4861 		if (len > PAGE_SIZE)
4862 			len = PAGE_SIZE;
4863 		for (bio = blist; bio ; bio = bio->bi_next) {
4864 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4865 				bio->bi_status = BLK_STS_RESOURCE;
4866 				bio_endio(bio);
4867 				return sectors_done;
4868 			}
4869 		}
4870 		sector_nr += len >> 9;
4871 		nr_sectors += len >> 9;
4872 	}
4873 	r10_bio->sectors = nr_sectors;
4874 
4875 	/* Now submit the read */
4876 	atomic_inc(&r10_bio->remaining);
4877 	read_bio->bi_next = NULL;
4878 	submit_bio_noacct(read_bio);
4879 	sectors_done += nr_sectors;
4880 	if (sector_nr <= last)
4881 		goto read_more;
4882 
4883 	lower_barrier(conf);
4884 
4885 	/* Now that we have done the whole section we can
4886 	 * update reshape_progress
4887 	 */
4888 	if (mddev->reshape_backwards)
4889 		conf->reshape_progress -= sectors_done;
4890 	else
4891 		conf->reshape_progress += sectors_done;
4892 
4893 	return sectors_done;
4894 }
4895 
4896 static void end_reshape_request(struct r10bio *r10_bio);
4897 static int handle_reshape_read_error(struct mddev *mddev,
4898 				     struct r10bio *r10_bio);
4899 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4900 {
4901 	/* Reshape read completed.  Hopefully we have a block
4902 	 * to write out.
4903 	 * If we got a read error then we do sync 1-page reads from
4904 	 * elsewhere until we find the data - or give up.
4905 	 */
4906 	struct r10conf *conf = mddev->private;
4907 	int s;
4908 
4909 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4910 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4911 			/* Reshape has been aborted */
4912 			md_done_sync(mddev, r10_bio->sectors, 0);
4913 			return;
4914 		}
4915 
4916 	/* We definitely have the data in the pages, schedule the
4917 	 * writes.
4918 	 */
4919 	atomic_set(&r10_bio->remaining, 1);
4920 	for (s = 0; s < conf->copies*2; s++) {
4921 		struct bio *b;
4922 		int d = r10_bio->devs[s/2].devnum;
4923 		struct md_rdev *rdev;
4924 		if (s&1) {
4925 			rdev = conf->mirrors[d].replacement;
4926 			b = r10_bio->devs[s/2].repl_bio;
4927 		} else {
4928 			rdev = conf->mirrors[d].rdev;
4929 			b = r10_bio->devs[s/2].bio;
4930 		}
4931 		if (!rdev || test_bit(Faulty, &rdev->flags))
4932 			continue;
4933 
4934 		atomic_inc(&rdev->nr_pending);
4935 		atomic_inc(&r10_bio->remaining);
4936 		b->bi_next = NULL;
4937 		submit_bio_noacct(b);
4938 	}
4939 	end_reshape_request(r10_bio);
4940 }
4941 
4942 static void end_reshape(struct r10conf *conf)
4943 {
4944 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4945 		return;
4946 
4947 	spin_lock_irq(&conf->device_lock);
4948 	conf->prev = conf->geo;
4949 	md_finish_reshape(conf->mddev);
4950 	smp_wmb();
4951 	conf->reshape_progress = MaxSector;
4952 	conf->reshape_safe = MaxSector;
4953 	spin_unlock_irq(&conf->device_lock);
4954 
4955 	mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4956 	conf->fullsync = 0;
4957 }
4958 
4959 static void raid10_update_reshape_pos(struct mddev *mddev)
4960 {
4961 	struct r10conf *conf = mddev->private;
4962 	sector_t lo, hi;
4963 
4964 	mddev->cluster_ops->resync_info_get(mddev, &lo, &hi);
4965 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4966 	    || mddev->reshape_position == MaxSector)
4967 		conf->reshape_progress = mddev->reshape_position;
4968 	else
4969 		WARN_ON_ONCE(1);
4970 }
4971 
4972 static int handle_reshape_read_error(struct mddev *mddev,
4973 				     struct r10bio *r10_bio)
4974 {
4975 	/* Use sync reads to get the blocks from somewhere else */
4976 	int sectors = r10_bio->sectors;
4977 	struct r10conf *conf = mddev->private;
4978 	struct r10bio *r10b;
4979 	int slot = 0;
4980 	int idx = 0;
4981 	struct page **pages;
4982 
4983 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4984 	if (!r10b) {
4985 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4986 		return -ENOMEM;
4987 	}
4988 
4989 	/* reshape IOs share pages from .devs[0].bio */
4990 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4991 
4992 	r10b->sector = r10_bio->sector;
4993 	__raid10_find_phys(&conf->prev, r10b);
4994 
4995 	while (sectors) {
4996 		int s = sectors;
4997 		int success = 0;
4998 		int first_slot = slot;
4999 
5000 		if (s > (PAGE_SIZE >> 9))
5001 			s = PAGE_SIZE >> 9;
5002 
5003 		while (!success) {
5004 			int d = r10b->devs[slot].devnum;
5005 			struct md_rdev *rdev = conf->mirrors[d].rdev;
5006 			sector_t addr;
5007 			if (rdev == NULL ||
5008 			    test_bit(Faulty, &rdev->flags) ||
5009 			    !test_bit(In_sync, &rdev->flags))
5010 				goto failed;
5011 
5012 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5013 			atomic_inc(&rdev->nr_pending);
5014 			success = sync_page_io(rdev,
5015 					       addr,
5016 					       s << 9,
5017 					       pages[idx],
5018 					       REQ_OP_READ, false);
5019 			rdev_dec_pending(rdev, mddev);
5020 			if (success)
5021 				break;
5022 		failed:
5023 			slot++;
5024 			if (slot >= conf->copies)
5025 				slot = 0;
5026 			if (slot == first_slot)
5027 				break;
5028 		}
5029 		if (!success) {
5030 			/* couldn't read this block, must give up */
5031 			set_bit(MD_RECOVERY_INTR,
5032 				&mddev->recovery);
5033 			kfree(r10b);
5034 			return -EIO;
5035 		}
5036 		sectors -= s;
5037 		idx++;
5038 	}
5039 	kfree(r10b);
5040 	return 0;
5041 }
5042 
5043 static void end_reshape_write(struct bio *bio)
5044 {
5045 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5046 	struct mddev *mddev = r10_bio->mddev;
5047 	struct r10conf *conf = mddev->private;
5048 	int d;
5049 	int slot;
5050 	int repl;
5051 	struct md_rdev *rdev = NULL;
5052 
5053 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5054 	rdev = repl ? conf->mirrors[d].replacement :
5055 		      conf->mirrors[d].rdev;
5056 
5057 	if (bio->bi_status) {
5058 		/* FIXME should record badblock */
5059 		md_error(mddev, rdev);
5060 	}
5061 
5062 	rdev_dec_pending(rdev, mddev);
5063 	end_reshape_request(r10_bio);
5064 }
5065 
5066 static void end_reshape_request(struct r10bio *r10_bio)
5067 {
5068 	if (!atomic_dec_and_test(&r10_bio->remaining))
5069 		return;
5070 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5071 	bio_put(r10_bio->master_bio);
5072 	put_buf(r10_bio);
5073 }
5074 
5075 static void raid10_finish_reshape(struct mddev *mddev)
5076 {
5077 	struct r10conf *conf = mddev->private;
5078 
5079 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5080 		return;
5081 
5082 	if (mddev->delta_disks > 0) {
5083 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5084 			mddev->recovery_cp = mddev->resync_max_sectors;
5085 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5086 		}
5087 		mddev->resync_max_sectors = mddev->array_sectors;
5088 	} else {
5089 		int d;
5090 		for (d = conf->geo.raid_disks ;
5091 		     d < conf->geo.raid_disks - mddev->delta_disks;
5092 		     d++) {
5093 			struct md_rdev *rdev = conf->mirrors[d].rdev;
5094 			if (rdev)
5095 				clear_bit(In_sync, &rdev->flags);
5096 			rdev = conf->mirrors[d].replacement;
5097 			if (rdev)
5098 				clear_bit(In_sync, &rdev->flags);
5099 		}
5100 	}
5101 	mddev->layout = mddev->new_layout;
5102 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5103 	mddev->reshape_position = MaxSector;
5104 	mddev->delta_disks = 0;
5105 	mddev->reshape_backwards = 0;
5106 }
5107 
5108 static struct md_personality raid10_personality =
5109 {
5110 	.head = {
5111 		.type	= MD_PERSONALITY,
5112 		.id	= ID_RAID10,
5113 		.name	= "raid10",
5114 		.owner	= THIS_MODULE,
5115 	},
5116 
5117 	.make_request	= raid10_make_request,
5118 	.run		= raid10_run,
5119 	.free		= raid10_free,
5120 	.status		= raid10_status,
5121 	.error_handler	= raid10_error,
5122 	.hot_add_disk	= raid10_add_disk,
5123 	.hot_remove_disk= raid10_remove_disk,
5124 	.spare_active	= raid10_spare_active,
5125 	.sync_request	= raid10_sync_request,
5126 	.quiesce	= raid10_quiesce,
5127 	.size		= raid10_size,
5128 	.resize		= raid10_resize,
5129 	.takeover	= raid10_takeover,
5130 	.check_reshape	= raid10_check_reshape,
5131 	.start_reshape	= raid10_start_reshape,
5132 	.finish_reshape	= raid10_finish_reshape,
5133 	.update_reshape_pos = raid10_update_reshape_pos,
5134 };
5135 
5136 static int __init raid10_init(void)
5137 {
5138 	return register_md_submodule(&raid10_personality.head);
5139 }
5140 
5141 static void __exit raid10_exit(void)
5142 {
5143 	unregister_md_submodule(&raid10_personality.head);
5144 }
5145 
5146 module_init(raid10_init);
5147 module_exit(raid10_exit);
5148 MODULE_LICENSE("GPL");
5149 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5150 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5151 MODULE_ALIAS("md-raid10");
5152 MODULE_ALIAS("md-level-10");
5153