xref: /linux/drivers/md/raid10.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *
42  * The data to be stored is divided into chunks using chunksize.
43  * Each device is divided into far_copies sections.
44  * In each section, chunks are laid out in a style similar to raid0, but
45  * near_copies copies of each chunk is stored (each on a different drive).
46  * The starting device for each section is offset near_copies from the starting
47  * device of the previous section.
48  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49  * drive.
50  * near_copies and far_copies must be at least one, and their product is at most
51  * raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of be very far apart
55  * on disk, there are adjacent stripes.
56  */
57 
58 /*
59  * Number of guaranteed r10bios in case of extreme VM load:
60  */
61 #define	NR_RAID10_BIOS 256
62 
63 /* When there are this many requests queue to be written by
64  * the raid10 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int enough(struct r10conf *conf, int ignore);
72 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
73 				int *skipped);
74 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
75 static void end_reshape_write(struct bio *bio, int error);
76 static void end_reshape(struct r10conf *conf);
77 
78 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80 	struct r10conf *conf = data;
81 	int size = offsetof(struct r10bio, devs[conf->copies]);
82 
83 	/* allocate a r10bio with room for raid_disks entries in the
84 	 * bios array */
85 	return kzalloc(size, gfp_flags);
86 }
87 
88 static void r10bio_pool_free(void *r10_bio, void *data)
89 {
90 	kfree(r10_bio);
91 }
92 
93 /* Maximum size of each resync request */
94 #define RESYNC_BLOCK_SIZE (64*1024)
95 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
96 /* amount of memory to reserve for resync requests */
97 #define RESYNC_WINDOW (1024*1024)
98 /* maximum number of concurrent requests, memory permitting */
99 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
100 
101 /*
102  * When performing a resync, we need to read and compare, so
103  * we need as many pages are there are copies.
104  * When performing a recovery, we need 2 bios, one for read,
105  * one for write (we recover only one drive per r10buf)
106  *
107  */
108 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110 	struct r10conf *conf = data;
111 	struct page *page;
112 	struct r10bio *r10_bio;
113 	struct bio *bio;
114 	int i, j;
115 	int nalloc;
116 
117 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
118 	if (!r10_bio)
119 		return NULL;
120 
121 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
122 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
123 		nalloc = conf->copies; /* resync */
124 	else
125 		nalloc = 2; /* recovery */
126 
127 	/*
128 	 * Allocate bios.
129 	 */
130 	for (j = nalloc ; j-- ; ) {
131 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
132 		if (!bio)
133 			goto out_free_bio;
134 		r10_bio->devs[j].bio = bio;
135 		if (!conf->have_replacement)
136 			continue;
137 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
138 		if (!bio)
139 			goto out_free_bio;
140 		r10_bio->devs[j].repl_bio = bio;
141 	}
142 	/*
143 	 * Allocate RESYNC_PAGES data pages and attach them
144 	 * where needed.
145 	 */
146 	for (j = 0 ; j < nalloc; j++) {
147 		struct bio *rbio = r10_bio->devs[j].repl_bio;
148 		bio = r10_bio->devs[j].bio;
149 		for (i = 0; i < RESYNC_PAGES; i++) {
150 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
151 					       &conf->mddev->recovery)) {
152 				/* we can share bv_page's during recovery
153 				 * and reshape */
154 				struct bio *rbio = r10_bio->devs[0].bio;
155 				page = rbio->bi_io_vec[i].bv_page;
156 				get_page(page);
157 			} else
158 				page = alloc_page(gfp_flags);
159 			if (unlikely(!page))
160 				goto out_free_pages;
161 
162 			bio->bi_io_vec[i].bv_page = page;
163 			if (rbio)
164 				rbio->bi_io_vec[i].bv_page = page;
165 		}
166 	}
167 
168 	return r10_bio;
169 
170 out_free_pages:
171 	for ( ; i > 0 ; i--)
172 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
173 	while (j--)
174 		for (i = 0; i < RESYNC_PAGES ; i++)
175 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
176 	j = 0;
177 out_free_bio:
178 	for ( ; j < nalloc; j++) {
179 		if (r10_bio->devs[j].bio)
180 			bio_put(r10_bio->devs[j].bio);
181 		if (r10_bio->devs[j].repl_bio)
182 			bio_put(r10_bio->devs[j].repl_bio);
183 	}
184 	r10bio_pool_free(r10_bio, conf);
185 	return NULL;
186 }
187 
188 static void r10buf_pool_free(void *__r10_bio, void *data)
189 {
190 	int i;
191 	struct r10conf *conf = data;
192 	struct r10bio *r10bio = __r10_bio;
193 	int j;
194 
195 	for (j=0; j < conf->copies; j++) {
196 		struct bio *bio = r10bio->devs[j].bio;
197 		if (bio) {
198 			for (i = 0; i < RESYNC_PAGES; i++) {
199 				safe_put_page(bio->bi_io_vec[i].bv_page);
200 				bio->bi_io_vec[i].bv_page = NULL;
201 			}
202 			bio_put(bio);
203 		}
204 		bio = r10bio->devs[j].repl_bio;
205 		if (bio)
206 			bio_put(bio);
207 	}
208 	r10bio_pool_free(r10bio, conf);
209 }
210 
211 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
212 {
213 	int i;
214 
215 	for (i = 0; i < conf->copies; i++) {
216 		struct bio **bio = & r10_bio->devs[i].bio;
217 		if (!BIO_SPECIAL(*bio))
218 			bio_put(*bio);
219 		*bio = NULL;
220 		bio = &r10_bio->devs[i].repl_bio;
221 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
222 			bio_put(*bio);
223 		*bio = NULL;
224 	}
225 }
226 
227 static void free_r10bio(struct r10bio *r10_bio)
228 {
229 	struct r10conf *conf = r10_bio->mddev->private;
230 
231 	put_all_bios(conf, r10_bio);
232 	mempool_free(r10_bio, conf->r10bio_pool);
233 }
234 
235 static void put_buf(struct r10bio *r10_bio)
236 {
237 	struct r10conf *conf = r10_bio->mddev->private;
238 
239 	mempool_free(r10_bio, conf->r10buf_pool);
240 
241 	lower_barrier(conf);
242 }
243 
244 static void reschedule_retry(struct r10bio *r10_bio)
245 {
246 	unsigned long flags;
247 	struct mddev *mddev = r10_bio->mddev;
248 	struct r10conf *conf = mddev->private;
249 
250 	spin_lock_irqsave(&conf->device_lock, flags);
251 	list_add(&r10_bio->retry_list, &conf->retry_list);
252 	conf->nr_queued ++;
253 	spin_unlock_irqrestore(&conf->device_lock, flags);
254 
255 	/* wake up frozen array... */
256 	wake_up(&conf->wait_barrier);
257 
258 	md_wakeup_thread(mddev->thread);
259 }
260 
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void raid_end_bio_io(struct r10bio *r10_bio)
267 {
268 	struct bio *bio = r10_bio->master_bio;
269 	int done;
270 	struct r10conf *conf = r10_bio->mddev->private;
271 
272 	if (bio->bi_phys_segments) {
273 		unsigned long flags;
274 		spin_lock_irqsave(&conf->device_lock, flags);
275 		bio->bi_phys_segments--;
276 		done = (bio->bi_phys_segments == 0);
277 		spin_unlock_irqrestore(&conf->device_lock, flags);
278 	} else
279 		done = 1;
280 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
281 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
282 	if (done) {
283 		bio_endio(bio, 0);
284 		/*
285 		 * Wake up any possible resync thread that waits for the device
286 		 * to go idle.
287 		 */
288 		allow_barrier(conf);
289 	}
290 	free_r10bio(r10_bio);
291 }
292 
293 /*
294  * Update disk head position estimator based on IRQ completion info.
295  */
296 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
297 {
298 	struct r10conf *conf = r10_bio->mddev->private;
299 
300 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
301 		r10_bio->devs[slot].addr + (r10_bio->sectors);
302 }
303 
304 /*
305  * Find the disk number which triggered given bio
306  */
307 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
308 			 struct bio *bio, int *slotp, int *replp)
309 {
310 	int slot;
311 	int repl = 0;
312 
313 	for (slot = 0; slot < conf->copies; slot++) {
314 		if (r10_bio->devs[slot].bio == bio)
315 			break;
316 		if (r10_bio->devs[slot].repl_bio == bio) {
317 			repl = 1;
318 			break;
319 		}
320 	}
321 
322 	BUG_ON(slot == conf->copies);
323 	update_head_pos(slot, r10_bio);
324 
325 	if (slotp)
326 		*slotp = slot;
327 	if (replp)
328 		*replp = repl;
329 	return r10_bio->devs[slot].devnum;
330 }
331 
332 static void raid10_end_read_request(struct bio *bio, int error)
333 {
334 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
335 	struct r10bio *r10_bio = bio->bi_private;
336 	int slot, dev;
337 	struct md_rdev *rdev;
338 	struct r10conf *conf = r10_bio->mddev->private;
339 
340 
341 	slot = r10_bio->read_slot;
342 	dev = r10_bio->devs[slot].devnum;
343 	rdev = r10_bio->devs[slot].rdev;
344 	/*
345 	 * this branch is our 'one mirror IO has finished' event handler:
346 	 */
347 	update_head_pos(slot, r10_bio);
348 
349 	if (uptodate) {
350 		/*
351 		 * Set R10BIO_Uptodate in our master bio, so that
352 		 * we will return a good error code to the higher
353 		 * levels even if IO on some other mirrored buffer fails.
354 		 *
355 		 * The 'master' represents the composite IO operation to
356 		 * user-side. So if something waits for IO, then it will
357 		 * wait for the 'master' bio.
358 		 */
359 		set_bit(R10BIO_Uptodate, &r10_bio->state);
360 	} else {
361 		/* If all other devices that store this block have
362 		 * failed, we want to return the error upwards rather
363 		 * than fail the last device.  Here we redefine
364 		 * "uptodate" to mean "Don't want to retry"
365 		 */
366 		unsigned long flags;
367 		spin_lock_irqsave(&conf->device_lock, flags);
368 		if (!enough(conf, rdev->raid_disk))
369 			uptodate = 1;
370 		spin_unlock_irqrestore(&conf->device_lock, flags);
371 	}
372 	if (uptodate) {
373 		raid_end_bio_io(r10_bio);
374 		rdev_dec_pending(rdev, conf->mddev);
375 	} else {
376 		/*
377 		 * oops, read error - keep the refcount on the rdev
378 		 */
379 		char b[BDEVNAME_SIZE];
380 		printk_ratelimited(KERN_ERR
381 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
382 				   mdname(conf->mddev),
383 				   bdevname(rdev->bdev, b),
384 				   (unsigned long long)r10_bio->sector);
385 		set_bit(R10BIO_ReadError, &r10_bio->state);
386 		reschedule_retry(r10_bio);
387 	}
388 }
389 
390 static void close_write(struct r10bio *r10_bio)
391 {
392 	/* clear the bitmap if all writes complete successfully */
393 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
394 			r10_bio->sectors,
395 			!test_bit(R10BIO_Degraded, &r10_bio->state),
396 			0);
397 	md_write_end(r10_bio->mddev);
398 }
399 
400 static void one_write_done(struct r10bio *r10_bio)
401 {
402 	if (atomic_dec_and_test(&r10_bio->remaining)) {
403 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
404 			reschedule_retry(r10_bio);
405 		else {
406 			close_write(r10_bio);
407 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
408 				reschedule_retry(r10_bio);
409 			else
410 				raid_end_bio_io(r10_bio);
411 		}
412 	}
413 }
414 
415 static void raid10_end_write_request(struct bio *bio, int error)
416 {
417 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
418 	struct r10bio *r10_bio = bio->bi_private;
419 	int dev;
420 	int dec_rdev = 1;
421 	struct r10conf *conf = r10_bio->mddev->private;
422 	int slot, repl;
423 	struct md_rdev *rdev = NULL;
424 
425 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
426 
427 	if (repl)
428 		rdev = conf->mirrors[dev].replacement;
429 	if (!rdev) {
430 		smp_rmb();
431 		repl = 0;
432 		rdev = conf->mirrors[dev].rdev;
433 	}
434 	/*
435 	 * this branch is our 'one mirror IO has finished' event handler:
436 	 */
437 	if (!uptodate) {
438 		if (repl)
439 			/* Never record new bad blocks to replacement,
440 			 * just fail it.
441 			 */
442 			md_error(rdev->mddev, rdev);
443 		else {
444 			set_bit(WriteErrorSeen,	&rdev->flags);
445 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
446 				set_bit(MD_RECOVERY_NEEDED,
447 					&rdev->mddev->recovery);
448 			set_bit(R10BIO_WriteError, &r10_bio->state);
449 			dec_rdev = 0;
450 		}
451 	} else {
452 		/*
453 		 * Set R10BIO_Uptodate in our master bio, so that
454 		 * we will return a good error code for to the higher
455 		 * levels even if IO on some other mirrored buffer fails.
456 		 *
457 		 * The 'master' represents the composite IO operation to
458 		 * user-side. So if something waits for IO, then it will
459 		 * wait for the 'master' bio.
460 		 */
461 		sector_t first_bad;
462 		int bad_sectors;
463 
464 		set_bit(R10BIO_Uptodate, &r10_bio->state);
465 
466 		/* Maybe we can clear some bad blocks. */
467 		if (is_badblock(rdev,
468 				r10_bio->devs[slot].addr,
469 				r10_bio->sectors,
470 				&first_bad, &bad_sectors)) {
471 			bio_put(bio);
472 			if (repl)
473 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
474 			else
475 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
476 			dec_rdev = 0;
477 			set_bit(R10BIO_MadeGood, &r10_bio->state);
478 		}
479 	}
480 
481 	/*
482 	 *
483 	 * Let's see if all mirrored write operations have finished
484 	 * already.
485 	 */
486 	one_write_done(r10_bio);
487 	if (dec_rdev)
488 		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
489 }
490 
491 /*
492  * RAID10 layout manager
493  * As well as the chunksize and raid_disks count, there are two
494  * parameters: near_copies and far_copies.
495  * near_copies * far_copies must be <= raid_disks.
496  * Normally one of these will be 1.
497  * If both are 1, we get raid0.
498  * If near_copies == raid_disks, we get raid1.
499  *
500  * Chunks are laid out in raid0 style with near_copies copies of the
501  * first chunk, followed by near_copies copies of the next chunk and
502  * so on.
503  * If far_copies > 1, then after 1/far_copies of the array has been assigned
504  * as described above, we start again with a device offset of near_copies.
505  * So we effectively have another copy of the whole array further down all
506  * the drives, but with blocks on different drives.
507  * With this layout, and block is never stored twice on the one device.
508  *
509  * raid10_find_phys finds the sector offset of a given virtual sector
510  * on each device that it is on.
511  *
512  * raid10_find_virt does the reverse mapping, from a device and a
513  * sector offset to a virtual address
514  */
515 
516 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
517 {
518 	int n,f;
519 	sector_t sector;
520 	sector_t chunk;
521 	sector_t stripe;
522 	int dev;
523 	int slot = 0;
524 
525 	/* now calculate first sector/dev */
526 	chunk = r10bio->sector >> geo->chunk_shift;
527 	sector = r10bio->sector & geo->chunk_mask;
528 
529 	chunk *= geo->near_copies;
530 	stripe = chunk;
531 	dev = sector_div(stripe, geo->raid_disks);
532 	if (geo->far_offset)
533 		stripe *= geo->far_copies;
534 
535 	sector += stripe << geo->chunk_shift;
536 
537 	/* and calculate all the others */
538 	for (n = 0; n < geo->near_copies; n++) {
539 		int d = dev;
540 		sector_t s = sector;
541 		r10bio->devs[slot].addr = sector;
542 		r10bio->devs[slot].devnum = d;
543 		slot++;
544 
545 		for (f = 1; f < geo->far_copies; f++) {
546 			d += geo->near_copies;
547 			if (d >= geo->raid_disks)
548 				d -= geo->raid_disks;
549 			s += geo->stride;
550 			r10bio->devs[slot].devnum = d;
551 			r10bio->devs[slot].addr = s;
552 			slot++;
553 		}
554 		dev++;
555 		if (dev >= geo->raid_disks) {
556 			dev = 0;
557 			sector += (geo->chunk_mask + 1);
558 		}
559 	}
560 }
561 
562 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
563 {
564 	struct geom *geo = &conf->geo;
565 
566 	if (conf->reshape_progress != MaxSector &&
567 	    ((r10bio->sector >= conf->reshape_progress) !=
568 	     conf->mddev->reshape_backwards)) {
569 		set_bit(R10BIO_Previous, &r10bio->state);
570 		geo = &conf->prev;
571 	} else
572 		clear_bit(R10BIO_Previous, &r10bio->state);
573 
574 	__raid10_find_phys(geo, r10bio);
575 }
576 
577 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
578 {
579 	sector_t offset, chunk, vchunk;
580 	/* Never use conf->prev as this is only called during resync
581 	 * or recovery, so reshape isn't happening
582 	 */
583 	struct geom *geo = &conf->geo;
584 
585 	offset = sector & geo->chunk_mask;
586 	if (geo->far_offset) {
587 		int fc;
588 		chunk = sector >> geo->chunk_shift;
589 		fc = sector_div(chunk, geo->far_copies);
590 		dev -= fc * geo->near_copies;
591 		if (dev < 0)
592 			dev += geo->raid_disks;
593 	} else {
594 		while (sector >= geo->stride) {
595 			sector -= geo->stride;
596 			if (dev < geo->near_copies)
597 				dev += geo->raid_disks - geo->near_copies;
598 			else
599 				dev -= geo->near_copies;
600 		}
601 		chunk = sector >> geo->chunk_shift;
602 	}
603 	vchunk = chunk * geo->raid_disks + dev;
604 	sector_div(vchunk, geo->near_copies);
605 	return (vchunk << geo->chunk_shift) + offset;
606 }
607 
608 /**
609  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
610  *	@q: request queue
611  *	@bvm: properties of new bio
612  *	@biovec: the request that could be merged to it.
613  *
614  *	Return amount of bytes we can accept at this offset
615  *	This requires checking for end-of-chunk if near_copies != raid_disks,
616  *	and for subordinate merge_bvec_fns if merge_check_needed.
617  */
618 static int raid10_mergeable_bvec(struct request_queue *q,
619 				 struct bvec_merge_data *bvm,
620 				 struct bio_vec *biovec)
621 {
622 	struct mddev *mddev = q->queuedata;
623 	struct r10conf *conf = mddev->private;
624 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
625 	int max;
626 	unsigned int chunk_sectors;
627 	unsigned int bio_sectors = bvm->bi_size >> 9;
628 	struct geom *geo = &conf->geo;
629 
630 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
631 	if (conf->reshape_progress != MaxSector &&
632 	    ((sector >= conf->reshape_progress) !=
633 	     conf->mddev->reshape_backwards))
634 		geo = &conf->prev;
635 
636 	if (geo->near_copies < geo->raid_disks) {
637 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
638 					+ bio_sectors)) << 9;
639 		if (max < 0)
640 			/* bio_add cannot handle a negative return */
641 			max = 0;
642 		if (max <= biovec->bv_len && bio_sectors == 0)
643 			return biovec->bv_len;
644 	} else
645 		max = biovec->bv_len;
646 
647 	if (mddev->merge_check_needed) {
648 		struct r10bio r10_bio;
649 		int s;
650 		if (conf->reshape_progress != MaxSector) {
651 			/* Cannot give any guidance during reshape */
652 			if (max <= biovec->bv_len && bio_sectors == 0)
653 				return biovec->bv_len;
654 			return 0;
655 		}
656 		r10_bio.sector = sector;
657 		raid10_find_phys(conf, &r10_bio);
658 		rcu_read_lock();
659 		for (s = 0; s < conf->copies; s++) {
660 			int disk = r10_bio.devs[s].devnum;
661 			struct md_rdev *rdev = rcu_dereference(
662 				conf->mirrors[disk].rdev);
663 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
664 				struct request_queue *q =
665 					bdev_get_queue(rdev->bdev);
666 				if (q->merge_bvec_fn) {
667 					bvm->bi_sector = r10_bio.devs[s].addr
668 						+ rdev->data_offset;
669 					bvm->bi_bdev = rdev->bdev;
670 					max = min(max, q->merge_bvec_fn(
671 							  q, bvm, biovec));
672 				}
673 			}
674 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
675 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
676 				struct request_queue *q =
677 					bdev_get_queue(rdev->bdev);
678 				if (q->merge_bvec_fn) {
679 					bvm->bi_sector = r10_bio.devs[s].addr
680 						+ rdev->data_offset;
681 					bvm->bi_bdev = rdev->bdev;
682 					max = min(max, q->merge_bvec_fn(
683 							  q, bvm, biovec));
684 				}
685 			}
686 		}
687 		rcu_read_unlock();
688 	}
689 	return max;
690 }
691 
692 /*
693  * This routine returns the disk from which the requested read should
694  * be done. There is a per-array 'next expected sequential IO' sector
695  * number - if this matches on the next IO then we use the last disk.
696  * There is also a per-disk 'last know head position' sector that is
697  * maintained from IRQ contexts, both the normal and the resync IO
698  * completion handlers update this position correctly. If there is no
699  * perfect sequential match then we pick the disk whose head is closest.
700  *
701  * If there are 2 mirrors in the same 2 devices, performance degrades
702  * because position is mirror, not device based.
703  *
704  * The rdev for the device selected will have nr_pending incremented.
705  */
706 
707 /*
708  * FIXME: possibly should rethink readbalancing and do it differently
709  * depending on near_copies / far_copies geometry.
710  */
711 static struct md_rdev *read_balance(struct r10conf *conf,
712 				    struct r10bio *r10_bio,
713 				    int *max_sectors)
714 {
715 	const sector_t this_sector = r10_bio->sector;
716 	int disk, slot;
717 	int sectors = r10_bio->sectors;
718 	int best_good_sectors;
719 	sector_t new_distance, best_dist;
720 	struct md_rdev *rdev, *best_rdev;
721 	int do_balance;
722 	int best_slot;
723 	struct geom *geo = &conf->geo;
724 
725 	raid10_find_phys(conf, r10_bio);
726 	rcu_read_lock();
727 retry:
728 	sectors = r10_bio->sectors;
729 	best_slot = -1;
730 	best_rdev = NULL;
731 	best_dist = MaxSector;
732 	best_good_sectors = 0;
733 	do_balance = 1;
734 	/*
735 	 * Check if we can balance. We can balance on the whole
736 	 * device if no resync is going on (recovery is ok), or below
737 	 * the resync window. We take the first readable disk when
738 	 * above the resync window.
739 	 */
740 	if (conf->mddev->recovery_cp < MaxSector
741 	    && (this_sector + sectors >= conf->next_resync))
742 		do_balance = 0;
743 
744 	for (slot = 0; slot < conf->copies ; slot++) {
745 		sector_t first_bad;
746 		int bad_sectors;
747 		sector_t dev_sector;
748 
749 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
750 			continue;
751 		disk = r10_bio->devs[slot].devnum;
752 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
753 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754 		    test_bit(Unmerged, &rdev->flags) ||
755 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
757 		if (rdev == NULL ||
758 		    test_bit(Faulty, &rdev->flags) ||
759 		    test_bit(Unmerged, &rdev->flags))
760 			continue;
761 		if (!test_bit(In_sync, &rdev->flags) &&
762 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
763 			continue;
764 
765 		dev_sector = r10_bio->devs[slot].addr;
766 		if (is_badblock(rdev, dev_sector, sectors,
767 				&first_bad, &bad_sectors)) {
768 			if (best_dist < MaxSector)
769 				/* Already have a better slot */
770 				continue;
771 			if (first_bad <= dev_sector) {
772 				/* Cannot read here.  If this is the
773 				 * 'primary' device, then we must not read
774 				 * beyond 'bad_sectors' from another device.
775 				 */
776 				bad_sectors -= (dev_sector - first_bad);
777 				if (!do_balance && sectors > bad_sectors)
778 					sectors = bad_sectors;
779 				if (best_good_sectors > sectors)
780 					best_good_sectors = sectors;
781 			} else {
782 				sector_t good_sectors =
783 					first_bad - dev_sector;
784 				if (good_sectors > best_good_sectors) {
785 					best_good_sectors = good_sectors;
786 					best_slot = slot;
787 					best_rdev = rdev;
788 				}
789 				if (!do_balance)
790 					/* Must read from here */
791 					break;
792 			}
793 			continue;
794 		} else
795 			best_good_sectors = sectors;
796 
797 		if (!do_balance)
798 			break;
799 
800 		/* This optimisation is debatable, and completely destroys
801 		 * sequential read speed for 'far copies' arrays.  So only
802 		 * keep it for 'near' arrays, and review those later.
803 		 */
804 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
805 			break;
806 
807 		/* for far > 1 always use the lowest address */
808 		if (geo->far_copies > 1)
809 			new_distance = r10_bio->devs[slot].addr;
810 		else
811 			new_distance = abs(r10_bio->devs[slot].addr -
812 					   conf->mirrors[disk].head_position);
813 		if (new_distance < best_dist) {
814 			best_dist = new_distance;
815 			best_slot = slot;
816 			best_rdev = rdev;
817 		}
818 	}
819 	if (slot >= conf->copies) {
820 		slot = best_slot;
821 		rdev = best_rdev;
822 	}
823 
824 	if (slot >= 0) {
825 		atomic_inc(&rdev->nr_pending);
826 		if (test_bit(Faulty, &rdev->flags)) {
827 			/* Cannot risk returning a device that failed
828 			 * before we inc'ed nr_pending
829 			 */
830 			rdev_dec_pending(rdev, conf->mddev);
831 			goto retry;
832 		}
833 		r10_bio->read_slot = slot;
834 	} else
835 		rdev = NULL;
836 	rcu_read_unlock();
837 	*max_sectors = best_good_sectors;
838 
839 	return rdev;
840 }
841 
842 static int raid10_congested(void *data, int bits)
843 {
844 	struct mddev *mddev = data;
845 	struct r10conf *conf = mddev->private;
846 	int i, ret = 0;
847 
848 	if ((bits & (1 << BDI_async_congested)) &&
849 	    conf->pending_count >= max_queued_requests)
850 		return 1;
851 
852 	if (mddev_congested(mddev, bits))
853 		return 1;
854 	rcu_read_lock();
855 	for (i = 0;
856 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
857 		     && ret == 0;
858 	     i++) {
859 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
860 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
861 			struct request_queue *q = bdev_get_queue(rdev->bdev);
862 
863 			ret |= bdi_congested(&q->backing_dev_info, bits);
864 		}
865 	}
866 	rcu_read_unlock();
867 	return ret;
868 }
869 
870 static void flush_pending_writes(struct r10conf *conf)
871 {
872 	/* Any writes that have been queued but are awaiting
873 	 * bitmap updates get flushed here.
874 	 */
875 	spin_lock_irq(&conf->device_lock);
876 
877 	if (conf->pending_bio_list.head) {
878 		struct bio *bio;
879 		bio = bio_list_get(&conf->pending_bio_list);
880 		conf->pending_count = 0;
881 		spin_unlock_irq(&conf->device_lock);
882 		/* flush any pending bitmap writes to disk
883 		 * before proceeding w/ I/O */
884 		bitmap_unplug(conf->mddev->bitmap);
885 		wake_up(&conf->wait_barrier);
886 
887 		while (bio) { /* submit pending writes */
888 			struct bio *next = bio->bi_next;
889 			bio->bi_next = NULL;
890 			generic_make_request(bio);
891 			bio = next;
892 		}
893 	} else
894 		spin_unlock_irq(&conf->device_lock);
895 }
896 
897 /* Barriers....
898  * Sometimes we need to suspend IO while we do something else,
899  * either some resync/recovery, or reconfigure the array.
900  * To do this we raise a 'barrier'.
901  * The 'barrier' is a counter that can be raised multiple times
902  * to count how many activities are happening which preclude
903  * normal IO.
904  * We can only raise the barrier if there is no pending IO.
905  * i.e. if nr_pending == 0.
906  * We choose only to raise the barrier if no-one is waiting for the
907  * barrier to go down.  This means that as soon as an IO request
908  * is ready, no other operations which require a barrier will start
909  * until the IO request has had a chance.
910  *
911  * So: regular IO calls 'wait_barrier'.  When that returns there
912  *    is no backgroup IO happening,  It must arrange to call
913  *    allow_barrier when it has finished its IO.
914  * backgroup IO calls must call raise_barrier.  Once that returns
915  *    there is no normal IO happeing.  It must arrange to call
916  *    lower_barrier when the particular background IO completes.
917  */
918 
919 static void raise_barrier(struct r10conf *conf, int force)
920 {
921 	BUG_ON(force && !conf->barrier);
922 	spin_lock_irq(&conf->resync_lock);
923 
924 	/* Wait until no block IO is waiting (unless 'force') */
925 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
926 			    conf->resync_lock, );
927 
928 	/* block any new IO from starting */
929 	conf->barrier++;
930 
931 	/* Now wait for all pending IO to complete */
932 	wait_event_lock_irq(conf->wait_barrier,
933 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
934 			    conf->resync_lock, );
935 
936 	spin_unlock_irq(&conf->resync_lock);
937 }
938 
939 static void lower_barrier(struct r10conf *conf)
940 {
941 	unsigned long flags;
942 	spin_lock_irqsave(&conf->resync_lock, flags);
943 	conf->barrier--;
944 	spin_unlock_irqrestore(&conf->resync_lock, flags);
945 	wake_up(&conf->wait_barrier);
946 }
947 
948 static void wait_barrier(struct r10conf *conf)
949 {
950 	spin_lock_irq(&conf->resync_lock);
951 	if (conf->barrier) {
952 		conf->nr_waiting++;
953 		/* Wait for the barrier to drop.
954 		 * However if there are already pending
955 		 * requests (preventing the barrier from
956 		 * rising completely), and the
957 		 * pre-process bio queue isn't empty,
958 		 * then don't wait, as we need to empty
959 		 * that queue to get the nr_pending
960 		 * count down.
961 		 */
962 		wait_event_lock_irq(conf->wait_barrier,
963 				    !conf->barrier ||
964 				    (conf->nr_pending &&
965 				     current->bio_list &&
966 				     !bio_list_empty(current->bio_list)),
967 				    conf->resync_lock,
968 			);
969 		conf->nr_waiting--;
970 	}
971 	conf->nr_pending++;
972 	spin_unlock_irq(&conf->resync_lock);
973 }
974 
975 static void allow_barrier(struct r10conf *conf)
976 {
977 	unsigned long flags;
978 	spin_lock_irqsave(&conf->resync_lock, flags);
979 	conf->nr_pending--;
980 	spin_unlock_irqrestore(&conf->resync_lock, flags);
981 	wake_up(&conf->wait_barrier);
982 }
983 
984 static void freeze_array(struct r10conf *conf)
985 {
986 	/* stop syncio and normal IO and wait for everything to
987 	 * go quiet.
988 	 * We increment barrier and nr_waiting, and then
989 	 * wait until nr_pending match nr_queued+1
990 	 * This is called in the context of one normal IO request
991 	 * that has failed. Thus any sync request that might be pending
992 	 * will be blocked by nr_pending, and we need to wait for
993 	 * pending IO requests to complete or be queued for re-try.
994 	 * Thus the number queued (nr_queued) plus this request (1)
995 	 * must match the number of pending IOs (nr_pending) before
996 	 * we continue.
997 	 */
998 	spin_lock_irq(&conf->resync_lock);
999 	conf->barrier++;
1000 	conf->nr_waiting++;
1001 	wait_event_lock_irq(conf->wait_barrier,
1002 			    conf->nr_pending == conf->nr_queued+1,
1003 			    conf->resync_lock,
1004 			    flush_pending_writes(conf));
1005 
1006 	spin_unlock_irq(&conf->resync_lock);
1007 }
1008 
1009 static void unfreeze_array(struct r10conf *conf)
1010 {
1011 	/* reverse the effect of the freeze */
1012 	spin_lock_irq(&conf->resync_lock);
1013 	conf->barrier--;
1014 	conf->nr_waiting--;
1015 	wake_up(&conf->wait_barrier);
1016 	spin_unlock_irq(&conf->resync_lock);
1017 }
1018 
1019 static sector_t choose_data_offset(struct r10bio *r10_bio,
1020 				   struct md_rdev *rdev)
1021 {
1022 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1023 	    test_bit(R10BIO_Previous, &r10_bio->state))
1024 		return rdev->data_offset;
1025 	else
1026 		return rdev->new_data_offset;
1027 }
1028 
1029 static void make_request(struct mddev *mddev, struct bio * bio)
1030 {
1031 	struct r10conf *conf = mddev->private;
1032 	struct r10bio *r10_bio;
1033 	struct bio *read_bio;
1034 	int i;
1035 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1036 	int chunk_sects = chunk_mask + 1;
1037 	const int rw = bio_data_dir(bio);
1038 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1039 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1040 	unsigned long flags;
1041 	struct md_rdev *blocked_rdev;
1042 	int sectors_handled;
1043 	int max_sectors;
1044 	int sectors;
1045 
1046 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1047 		md_flush_request(mddev, bio);
1048 		return;
1049 	}
1050 
1051 	/* If this request crosses a chunk boundary, we need to
1052 	 * split it.  This will only happen for 1 PAGE (or less) requests.
1053 	 */
1054 	if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1055 		     > chunk_sects
1056 		     && (conf->geo.near_copies < conf->geo.raid_disks
1057 			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1058 		struct bio_pair *bp;
1059 		/* Sanity check -- queue functions should prevent this happening */
1060 		if (bio->bi_vcnt != 1 ||
1061 		    bio->bi_idx != 0)
1062 			goto bad_map;
1063 		/* This is a one page bio that upper layers
1064 		 * refuse to split for us, so we need to split it.
1065 		 */
1066 		bp = bio_split(bio,
1067 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1068 
1069 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1070 		 * If the first succeeds but the second blocks due to the resync
1071 		 * thread raising the barrier, we will deadlock because the
1072 		 * IO to the underlying device will be queued in generic_make_request
1073 		 * and will never complete, so will never reduce nr_pending.
1074 		 * So increment nr_waiting here so no new raise_barriers will
1075 		 * succeed, and so the second wait_barrier cannot block.
1076 		 */
1077 		spin_lock_irq(&conf->resync_lock);
1078 		conf->nr_waiting++;
1079 		spin_unlock_irq(&conf->resync_lock);
1080 
1081 		make_request(mddev, &bp->bio1);
1082 		make_request(mddev, &bp->bio2);
1083 
1084 		spin_lock_irq(&conf->resync_lock);
1085 		conf->nr_waiting--;
1086 		wake_up(&conf->wait_barrier);
1087 		spin_unlock_irq(&conf->resync_lock);
1088 
1089 		bio_pair_release(bp);
1090 		return;
1091 	bad_map:
1092 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1093 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1094 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1095 
1096 		bio_io_error(bio);
1097 		return;
1098 	}
1099 
1100 	md_write_start(mddev, bio);
1101 
1102 	/*
1103 	 * Register the new request and wait if the reconstruction
1104 	 * thread has put up a bar for new requests.
1105 	 * Continue immediately if no resync is active currently.
1106 	 */
1107 	wait_barrier(conf);
1108 
1109 	sectors = bio->bi_size >> 9;
1110 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1111 	    bio->bi_sector < conf->reshape_progress &&
1112 	    bio->bi_sector + sectors > conf->reshape_progress) {
1113 		/* IO spans the reshape position.  Need to wait for
1114 		 * reshape to pass
1115 		 */
1116 		allow_barrier(conf);
1117 		wait_event(conf->wait_barrier,
1118 			   conf->reshape_progress <= bio->bi_sector ||
1119 			   conf->reshape_progress >= bio->bi_sector + sectors);
1120 		wait_barrier(conf);
1121 	}
1122 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1123 	    bio_data_dir(bio) == WRITE &&
1124 	    (mddev->reshape_backwards
1125 	     ? (bio->bi_sector < conf->reshape_safe &&
1126 		bio->bi_sector + sectors > conf->reshape_progress)
1127 	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1128 		bio->bi_sector < conf->reshape_progress))) {
1129 		/* Need to update reshape_position in metadata */
1130 		mddev->reshape_position = conf->reshape_progress;
1131 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1132 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1133 		md_wakeup_thread(mddev->thread);
1134 		wait_event(mddev->sb_wait,
1135 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1136 
1137 		conf->reshape_safe = mddev->reshape_position;
1138 	}
1139 
1140 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1141 
1142 	r10_bio->master_bio = bio;
1143 	r10_bio->sectors = sectors;
1144 
1145 	r10_bio->mddev = mddev;
1146 	r10_bio->sector = bio->bi_sector;
1147 	r10_bio->state = 0;
1148 
1149 	/* We might need to issue multiple reads to different
1150 	 * devices if there are bad blocks around, so we keep
1151 	 * track of the number of reads in bio->bi_phys_segments.
1152 	 * If this is 0, there is only one r10_bio and no locking
1153 	 * will be needed when the request completes.  If it is
1154 	 * non-zero, then it is the number of not-completed requests.
1155 	 */
1156 	bio->bi_phys_segments = 0;
1157 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1158 
1159 	if (rw == READ) {
1160 		/*
1161 		 * read balancing logic:
1162 		 */
1163 		struct md_rdev *rdev;
1164 		int slot;
1165 
1166 read_again:
1167 		rdev = read_balance(conf, r10_bio, &max_sectors);
1168 		if (!rdev) {
1169 			raid_end_bio_io(r10_bio);
1170 			return;
1171 		}
1172 		slot = r10_bio->read_slot;
1173 
1174 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1175 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1176 			    max_sectors);
1177 
1178 		r10_bio->devs[slot].bio = read_bio;
1179 		r10_bio->devs[slot].rdev = rdev;
1180 
1181 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1182 			choose_data_offset(r10_bio, rdev);
1183 		read_bio->bi_bdev = rdev->bdev;
1184 		read_bio->bi_end_io = raid10_end_read_request;
1185 		read_bio->bi_rw = READ | do_sync;
1186 		read_bio->bi_private = r10_bio;
1187 
1188 		if (max_sectors < r10_bio->sectors) {
1189 			/* Could not read all from this device, so we will
1190 			 * need another r10_bio.
1191 			 */
1192 			sectors_handled = (r10_bio->sectors + max_sectors
1193 					   - bio->bi_sector);
1194 			r10_bio->sectors = max_sectors;
1195 			spin_lock_irq(&conf->device_lock);
1196 			if (bio->bi_phys_segments == 0)
1197 				bio->bi_phys_segments = 2;
1198 			else
1199 				bio->bi_phys_segments++;
1200 			spin_unlock(&conf->device_lock);
1201 			/* Cannot call generic_make_request directly
1202 			 * as that will be queued in __generic_make_request
1203 			 * and subsequent mempool_alloc might block
1204 			 * waiting for it.  so hand bio over to raid10d.
1205 			 */
1206 			reschedule_retry(r10_bio);
1207 
1208 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1209 
1210 			r10_bio->master_bio = bio;
1211 			r10_bio->sectors = ((bio->bi_size >> 9)
1212 					    - sectors_handled);
1213 			r10_bio->state = 0;
1214 			r10_bio->mddev = mddev;
1215 			r10_bio->sector = bio->bi_sector + sectors_handled;
1216 			goto read_again;
1217 		} else
1218 			generic_make_request(read_bio);
1219 		return;
1220 	}
1221 
1222 	/*
1223 	 * WRITE:
1224 	 */
1225 	if (conf->pending_count >= max_queued_requests) {
1226 		md_wakeup_thread(mddev->thread);
1227 		wait_event(conf->wait_barrier,
1228 			   conf->pending_count < max_queued_requests);
1229 	}
1230 	/* first select target devices under rcu_lock and
1231 	 * inc refcount on their rdev.  Record them by setting
1232 	 * bios[x] to bio
1233 	 * If there are known/acknowledged bad blocks on any device
1234 	 * on which we have seen a write error, we want to avoid
1235 	 * writing to those blocks.  This potentially requires several
1236 	 * writes to write around the bad blocks.  Each set of writes
1237 	 * gets its own r10_bio with a set of bios attached.  The number
1238 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1239 	 * the read case.
1240 	 */
1241 
1242 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1243 	raid10_find_phys(conf, r10_bio);
1244 retry_write:
1245 	blocked_rdev = NULL;
1246 	rcu_read_lock();
1247 	max_sectors = r10_bio->sectors;
1248 
1249 	for (i = 0;  i < conf->copies; i++) {
1250 		int d = r10_bio->devs[i].devnum;
1251 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1252 		struct md_rdev *rrdev = rcu_dereference(
1253 			conf->mirrors[d].replacement);
1254 		if (rdev == rrdev)
1255 			rrdev = NULL;
1256 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1257 			atomic_inc(&rdev->nr_pending);
1258 			blocked_rdev = rdev;
1259 			break;
1260 		}
1261 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1262 			atomic_inc(&rrdev->nr_pending);
1263 			blocked_rdev = rrdev;
1264 			break;
1265 		}
1266 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1267 			      || test_bit(Unmerged, &rrdev->flags)))
1268 			rrdev = NULL;
1269 
1270 		r10_bio->devs[i].bio = NULL;
1271 		r10_bio->devs[i].repl_bio = NULL;
1272 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
1273 		    test_bit(Unmerged, &rdev->flags)) {
1274 			set_bit(R10BIO_Degraded, &r10_bio->state);
1275 			continue;
1276 		}
1277 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1278 			sector_t first_bad;
1279 			sector_t dev_sector = r10_bio->devs[i].addr;
1280 			int bad_sectors;
1281 			int is_bad;
1282 
1283 			is_bad = is_badblock(rdev, dev_sector,
1284 					     max_sectors,
1285 					     &first_bad, &bad_sectors);
1286 			if (is_bad < 0) {
1287 				/* Mustn't write here until the bad block
1288 				 * is acknowledged
1289 				 */
1290 				atomic_inc(&rdev->nr_pending);
1291 				set_bit(BlockedBadBlocks, &rdev->flags);
1292 				blocked_rdev = rdev;
1293 				break;
1294 			}
1295 			if (is_bad && first_bad <= dev_sector) {
1296 				/* Cannot write here at all */
1297 				bad_sectors -= (dev_sector - first_bad);
1298 				if (bad_sectors < max_sectors)
1299 					/* Mustn't write more than bad_sectors
1300 					 * to other devices yet
1301 					 */
1302 					max_sectors = bad_sectors;
1303 				/* We don't set R10BIO_Degraded as that
1304 				 * only applies if the disk is missing,
1305 				 * so it might be re-added, and we want to
1306 				 * know to recover this chunk.
1307 				 * In this case the device is here, and the
1308 				 * fact that this chunk is not in-sync is
1309 				 * recorded in the bad block log.
1310 				 */
1311 				continue;
1312 			}
1313 			if (is_bad) {
1314 				int good_sectors = first_bad - dev_sector;
1315 				if (good_sectors < max_sectors)
1316 					max_sectors = good_sectors;
1317 			}
1318 		}
1319 		r10_bio->devs[i].bio = bio;
1320 		atomic_inc(&rdev->nr_pending);
1321 		if (rrdev) {
1322 			r10_bio->devs[i].repl_bio = bio;
1323 			atomic_inc(&rrdev->nr_pending);
1324 		}
1325 	}
1326 	rcu_read_unlock();
1327 
1328 	if (unlikely(blocked_rdev)) {
1329 		/* Have to wait for this device to get unblocked, then retry */
1330 		int j;
1331 		int d;
1332 
1333 		for (j = 0; j < i; j++) {
1334 			if (r10_bio->devs[j].bio) {
1335 				d = r10_bio->devs[j].devnum;
1336 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1337 			}
1338 			if (r10_bio->devs[j].repl_bio) {
1339 				struct md_rdev *rdev;
1340 				d = r10_bio->devs[j].devnum;
1341 				rdev = conf->mirrors[d].replacement;
1342 				if (!rdev) {
1343 					/* Race with remove_disk */
1344 					smp_mb();
1345 					rdev = conf->mirrors[d].rdev;
1346 				}
1347 				rdev_dec_pending(rdev, mddev);
1348 			}
1349 		}
1350 		allow_barrier(conf);
1351 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1352 		wait_barrier(conf);
1353 		goto retry_write;
1354 	}
1355 
1356 	if (max_sectors < r10_bio->sectors) {
1357 		/* We are splitting this into multiple parts, so
1358 		 * we need to prepare for allocating another r10_bio.
1359 		 */
1360 		r10_bio->sectors = max_sectors;
1361 		spin_lock_irq(&conf->device_lock);
1362 		if (bio->bi_phys_segments == 0)
1363 			bio->bi_phys_segments = 2;
1364 		else
1365 			bio->bi_phys_segments++;
1366 		spin_unlock_irq(&conf->device_lock);
1367 	}
1368 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1369 
1370 	atomic_set(&r10_bio->remaining, 1);
1371 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1372 
1373 	for (i = 0; i < conf->copies; i++) {
1374 		struct bio *mbio;
1375 		int d = r10_bio->devs[i].devnum;
1376 		if (!r10_bio->devs[i].bio)
1377 			continue;
1378 
1379 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1380 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1381 			    max_sectors);
1382 		r10_bio->devs[i].bio = mbio;
1383 
1384 		mbio->bi_sector	= (r10_bio->devs[i].addr+
1385 				   choose_data_offset(r10_bio,
1386 						      conf->mirrors[d].rdev));
1387 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1388 		mbio->bi_end_io	= raid10_end_write_request;
1389 		mbio->bi_rw = WRITE | do_sync | do_fua;
1390 		mbio->bi_private = r10_bio;
1391 
1392 		atomic_inc(&r10_bio->remaining);
1393 		spin_lock_irqsave(&conf->device_lock, flags);
1394 		bio_list_add(&conf->pending_bio_list, mbio);
1395 		conf->pending_count++;
1396 		spin_unlock_irqrestore(&conf->device_lock, flags);
1397 		if (!mddev_check_plugged(mddev))
1398 			md_wakeup_thread(mddev->thread);
1399 
1400 		if (!r10_bio->devs[i].repl_bio)
1401 			continue;
1402 
1403 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1404 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1405 			    max_sectors);
1406 		r10_bio->devs[i].repl_bio = mbio;
1407 
1408 		/* We are actively writing to the original device
1409 		 * so it cannot disappear, so the replacement cannot
1410 		 * become NULL here
1411 		 */
1412 		mbio->bi_sector	= (r10_bio->devs[i].addr +
1413 				   choose_data_offset(
1414 					   r10_bio,
1415 					   conf->mirrors[d].replacement));
1416 		mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1417 		mbio->bi_end_io	= raid10_end_write_request;
1418 		mbio->bi_rw = WRITE | do_sync | do_fua;
1419 		mbio->bi_private = r10_bio;
1420 
1421 		atomic_inc(&r10_bio->remaining);
1422 		spin_lock_irqsave(&conf->device_lock, flags);
1423 		bio_list_add(&conf->pending_bio_list, mbio);
1424 		conf->pending_count++;
1425 		spin_unlock_irqrestore(&conf->device_lock, flags);
1426 		if (!mddev_check_plugged(mddev))
1427 			md_wakeup_thread(mddev->thread);
1428 	}
1429 
1430 	/* Don't remove the bias on 'remaining' (one_write_done) until
1431 	 * after checking if we need to go around again.
1432 	 */
1433 
1434 	if (sectors_handled < (bio->bi_size >> 9)) {
1435 		one_write_done(r10_bio);
1436 		/* We need another r10_bio.  It has already been counted
1437 		 * in bio->bi_phys_segments.
1438 		 */
1439 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1440 
1441 		r10_bio->master_bio = bio;
1442 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1443 
1444 		r10_bio->mddev = mddev;
1445 		r10_bio->sector = bio->bi_sector + sectors_handled;
1446 		r10_bio->state = 0;
1447 		goto retry_write;
1448 	}
1449 	one_write_done(r10_bio);
1450 
1451 	/* In case raid10d snuck in to freeze_array */
1452 	wake_up(&conf->wait_barrier);
1453 }
1454 
1455 static void status(struct seq_file *seq, struct mddev *mddev)
1456 {
1457 	struct r10conf *conf = mddev->private;
1458 	int i;
1459 
1460 	if (conf->geo.near_copies < conf->geo.raid_disks)
1461 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1462 	if (conf->geo.near_copies > 1)
1463 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1464 	if (conf->geo.far_copies > 1) {
1465 		if (conf->geo.far_offset)
1466 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1467 		else
1468 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1469 	}
1470 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1471 					conf->geo.raid_disks - mddev->degraded);
1472 	for (i = 0; i < conf->geo.raid_disks; i++)
1473 		seq_printf(seq, "%s",
1474 			      conf->mirrors[i].rdev &&
1475 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1476 	seq_printf(seq, "]");
1477 }
1478 
1479 /* check if there are enough drives for
1480  * every block to appear on atleast one.
1481  * Don't consider the device numbered 'ignore'
1482  * as we might be about to remove it.
1483  */
1484 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1485 {
1486 	int first = 0;
1487 
1488 	do {
1489 		int n = conf->copies;
1490 		int cnt = 0;
1491 		while (n--) {
1492 			if (conf->mirrors[first].rdev &&
1493 			    first != ignore)
1494 				cnt++;
1495 			first = (first+1) % geo->raid_disks;
1496 		}
1497 		if (cnt == 0)
1498 			return 0;
1499 	} while (first != 0);
1500 	return 1;
1501 }
1502 
1503 static int enough(struct r10conf *conf, int ignore)
1504 {
1505 	return _enough(conf, &conf->geo, ignore) &&
1506 		_enough(conf, &conf->prev, ignore);
1507 }
1508 
1509 static void error(struct mddev *mddev, struct md_rdev *rdev)
1510 {
1511 	char b[BDEVNAME_SIZE];
1512 	struct r10conf *conf = mddev->private;
1513 
1514 	/*
1515 	 * If it is not operational, then we have already marked it as dead
1516 	 * else if it is the last working disks, ignore the error, let the
1517 	 * next level up know.
1518 	 * else mark the drive as failed
1519 	 */
1520 	if (test_bit(In_sync, &rdev->flags)
1521 	    && !enough(conf, rdev->raid_disk))
1522 		/*
1523 		 * Don't fail the drive, just return an IO error.
1524 		 */
1525 		return;
1526 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1527 		unsigned long flags;
1528 		spin_lock_irqsave(&conf->device_lock, flags);
1529 		mddev->degraded++;
1530 		spin_unlock_irqrestore(&conf->device_lock, flags);
1531 		/*
1532 		 * if recovery is running, make sure it aborts.
1533 		 */
1534 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1535 	}
1536 	set_bit(Blocked, &rdev->flags);
1537 	set_bit(Faulty, &rdev->flags);
1538 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1539 	printk(KERN_ALERT
1540 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1541 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1542 	       mdname(mddev), bdevname(rdev->bdev, b),
1543 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1544 }
1545 
1546 static void print_conf(struct r10conf *conf)
1547 {
1548 	int i;
1549 	struct mirror_info *tmp;
1550 
1551 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1552 	if (!conf) {
1553 		printk(KERN_DEBUG "(!conf)\n");
1554 		return;
1555 	}
1556 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1557 		conf->geo.raid_disks);
1558 
1559 	for (i = 0; i < conf->geo.raid_disks; i++) {
1560 		char b[BDEVNAME_SIZE];
1561 		tmp = conf->mirrors + i;
1562 		if (tmp->rdev)
1563 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1564 				i, !test_bit(In_sync, &tmp->rdev->flags),
1565 			        !test_bit(Faulty, &tmp->rdev->flags),
1566 				bdevname(tmp->rdev->bdev,b));
1567 	}
1568 }
1569 
1570 static void close_sync(struct r10conf *conf)
1571 {
1572 	wait_barrier(conf);
1573 	allow_barrier(conf);
1574 
1575 	mempool_destroy(conf->r10buf_pool);
1576 	conf->r10buf_pool = NULL;
1577 }
1578 
1579 static int raid10_spare_active(struct mddev *mddev)
1580 {
1581 	int i;
1582 	struct r10conf *conf = mddev->private;
1583 	struct mirror_info *tmp;
1584 	int count = 0;
1585 	unsigned long flags;
1586 
1587 	/*
1588 	 * Find all non-in_sync disks within the RAID10 configuration
1589 	 * and mark them in_sync
1590 	 */
1591 	for (i = 0; i < conf->geo.raid_disks; i++) {
1592 		tmp = conf->mirrors + i;
1593 		if (tmp->replacement
1594 		    && tmp->replacement->recovery_offset == MaxSector
1595 		    && !test_bit(Faulty, &tmp->replacement->flags)
1596 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1597 			/* Replacement has just become active */
1598 			if (!tmp->rdev
1599 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1600 				count++;
1601 			if (tmp->rdev) {
1602 				/* Replaced device not technically faulty,
1603 				 * but we need to be sure it gets removed
1604 				 * and never re-added.
1605 				 */
1606 				set_bit(Faulty, &tmp->rdev->flags);
1607 				sysfs_notify_dirent_safe(
1608 					tmp->rdev->sysfs_state);
1609 			}
1610 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1611 		} else if (tmp->rdev
1612 			   && !test_bit(Faulty, &tmp->rdev->flags)
1613 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1614 			count++;
1615 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1616 		}
1617 	}
1618 	spin_lock_irqsave(&conf->device_lock, flags);
1619 	mddev->degraded -= count;
1620 	spin_unlock_irqrestore(&conf->device_lock, flags);
1621 
1622 	print_conf(conf);
1623 	return count;
1624 }
1625 
1626 
1627 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1628 {
1629 	struct r10conf *conf = mddev->private;
1630 	int err = -EEXIST;
1631 	int mirror;
1632 	int first = 0;
1633 	int last = conf->geo.raid_disks - 1;
1634 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1635 
1636 	if (mddev->recovery_cp < MaxSector)
1637 		/* only hot-add to in-sync arrays, as recovery is
1638 		 * very different from resync
1639 		 */
1640 		return -EBUSY;
1641 	if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1642 		return -EINVAL;
1643 
1644 	if (rdev->raid_disk >= 0)
1645 		first = last = rdev->raid_disk;
1646 
1647 	if (q->merge_bvec_fn) {
1648 		set_bit(Unmerged, &rdev->flags);
1649 		mddev->merge_check_needed = 1;
1650 	}
1651 
1652 	if (rdev->saved_raid_disk >= first &&
1653 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1654 		mirror = rdev->saved_raid_disk;
1655 	else
1656 		mirror = first;
1657 	for ( ; mirror <= last ; mirror++) {
1658 		struct mirror_info *p = &conf->mirrors[mirror];
1659 		if (p->recovery_disabled == mddev->recovery_disabled)
1660 			continue;
1661 		if (p->rdev) {
1662 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1663 			    p->replacement != NULL)
1664 				continue;
1665 			clear_bit(In_sync, &rdev->flags);
1666 			set_bit(Replacement, &rdev->flags);
1667 			rdev->raid_disk = mirror;
1668 			err = 0;
1669 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1670 					  rdev->data_offset << 9);
1671 			conf->fullsync = 1;
1672 			rcu_assign_pointer(p->replacement, rdev);
1673 			break;
1674 		}
1675 
1676 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1677 				  rdev->data_offset << 9);
1678 
1679 		p->head_position = 0;
1680 		p->recovery_disabled = mddev->recovery_disabled - 1;
1681 		rdev->raid_disk = mirror;
1682 		err = 0;
1683 		if (rdev->saved_raid_disk != mirror)
1684 			conf->fullsync = 1;
1685 		rcu_assign_pointer(p->rdev, rdev);
1686 		break;
1687 	}
1688 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1689 		/* Some requests might not have seen this new
1690 		 * merge_bvec_fn.  We must wait for them to complete
1691 		 * before merging the device fully.
1692 		 * First we make sure any code which has tested
1693 		 * our function has submitted the request, then
1694 		 * we wait for all outstanding requests to complete.
1695 		 */
1696 		synchronize_sched();
1697 		raise_barrier(conf, 0);
1698 		lower_barrier(conf);
1699 		clear_bit(Unmerged, &rdev->flags);
1700 	}
1701 	md_integrity_add_rdev(rdev, mddev);
1702 	print_conf(conf);
1703 	return err;
1704 }
1705 
1706 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1707 {
1708 	struct r10conf *conf = mddev->private;
1709 	int err = 0;
1710 	int number = rdev->raid_disk;
1711 	struct md_rdev **rdevp;
1712 	struct mirror_info *p = conf->mirrors + number;
1713 
1714 	print_conf(conf);
1715 	if (rdev == p->rdev)
1716 		rdevp = &p->rdev;
1717 	else if (rdev == p->replacement)
1718 		rdevp = &p->replacement;
1719 	else
1720 		return 0;
1721 
1722 	if (test_bit(In_sync, &rdev->flags) ||
1723 	    atomic_read(&rdev->nr_pending)) {
1724 		err = -EBUSY;
1725 		goto abort;
1726 	}
1727 	/* Only remove faulty devices if recovery
1728 	 * is not possible.
1729 	 */
1730 	if (!test_bit(Faulty, &rdev->flags) &&
1731 	    mddev->recovery_disabled != p->recovery_disabled &&
1732 	    (!p->replacement || p->replacement == rdev) &&
1733 	    number < conf->geo.raid_disks &&
1734 	    enough(conf, -1)) {
1735 		err = -EBUSY;
1736 		goto abort;
1737 	}
1738 	*rdevp = NULL;
1739 	synchronize_rcu();
1740 	if (atomic_read(&rdev->nr_pending)) {
1741 		/* lost the race, try later */
1742 		err = -EBUSY;
1743 		*rdevp = rdev;
1744 		goto abort;
1745 	} else if (p->replacement) {
1746 		/* We must have just cleared 'rdev' */
1747 		p->rdev = p->replacement;
1748 		clear_bit(Replacement, &p->replacement->flags);
1749 		smp_mb(); /* Make sure other CPUs may see both as identical
1750 			   * but will never see neither -- if they are careful.
1751 			   */
1752 		p->replacement = NULL;
1753 		clear_bit(WantReplacement, &rdev->flags);
1754 	} else
1755 		/* We might have just remove the Replacement as faulty
1756 		 * Clear the flag just in case
1757 		 */
1758 		clear_bit(WantReplacement, &rdev->flags);
1759 
1760 	err = md_integrity_register(mddev);
1761 
1762 abort:
1763 
1764 	print_conf(conf);
1765 	return err;
1766 }
1767 
1768 
1769 static void end_sync_read(struct bio *bio, int error)
1770 {
1771 	struct r10bio *r10_bio = bio->bi_private;
1772 	struct r10conf *conf = r10_bio->mddev->private;
1773 	int d;
1774 
1775 	if (bio == r10_bio->master_bio) {
1776 		/* this is a reshape read */
1777 		d = r10_bio->read_slot; /* really the read dev */
1778 	} else
1779 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1780 
1781 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1782 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1783 	else
1784 		/* The write handler will notice the lack of
1785 		 * R10BIO_Uptodate and record any errors etc
1786 		 */
1787 		atomic_add(r10_bio->sectors,
1788 			   &conf->mirrors[d].rdev->corrected_errors);
1789 
1790 	/* for reconstruct, we always reschedule after a read.
1791 	 * for resync, only after all reads
1792 	 */
1793 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1794 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1795 	    atomic_dec_and_test(&r10_bio->remaining)) {
1796 		/* we have read all the blocks,
1797 		 * do the comparison in process context in raid10d
1798 		 */
1799 		reschedule_retry(r10_bio);
1800 	}
1801 }
1802 
1803 static void end_sync_request(struct r10bio *r10_bio)
1804 {
1805 	struct mddev *mddev = r10_bio->mddev;
1806 
1807 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1808 		if (r10_bio->master_bio == NULL) {
1809 			/* the primary of several recovery bios */
1810 			sector_t s = r10_bio->sectors;
1811 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1812 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1813 				reschedule_retry(r10_bio);
1814 			else
1815 				put_buf(r10_bio);
1816 			md_done_sync(mddev, s, 1);
1817 			break;
1818 		} else {
1819 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1820 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1821 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1822 				reschedule_retry(r10_bio);
1823 			else
1824 				put_buf(r10_bio);
1825 			r10_bio = r10_bio2;
1826 		}
1827 	}
1828 }
1829 
1830 static void end_sync_write(struct bio *bio, int error)
1831 {
1832 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1833 	struct r10bio *r10_bio = bio->bi_private;
1834 	struct mddev *mddev = r10_bio->mddev;
1835 	struct r10conf *conf = mddev->private;
1836 	int d;
1837 	sector_t first_bad;
1838 	int bad_sectors;
1839 	int slot;
1840 	int repl;
1841 	struct md_rdev *rdev = NULL;
1842 
1843 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1844 	if (repl)
1845 		rdev = conf->mirrors[d].replacement;
1846 	else
1847 		rdev = conf->mirrors[d].rdev;
1848 
1849 	if (!uptodate) {
1850 		if (repl)
1851 			md_error(mddev, rdev);
1852 		else {
1853 			set_bit(WriteErrorSeen, &rdev->flags);
1854 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1855 				set_bit(MD_RECOVERY_NEEDED,
1856 					&rdev->mddev->recovery);
1857 			set_bit(R10BIO_WriteError, &r10_bio->state);
1858 		}
1859 	} else if (is_badblock(rdev,
1860 			     r10_bio->devs[slot].addr,
1861 			     r10_bio->sectors,
1862 			     &first_bad, &bad_sectors))
1863 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1864 
1865 	rdev_dec_pending(rdev, mddev);
1866 
1867 	end_sync_request(r10_bio);
1868 }
1869 
1870 /*
1871  * Note: sync and recover and handled very differently for raid10
1872  * This code is for resync.
1873  * For resync, we read through virtual addresses and read all blocks.
1874  * If there is any error, we schedule a write.  The lowest numbered
1875  * drive is authoritative.
1876  * However requests come for physical address, so we need to map.
1877  * For every physical address there are raid_disks/copies virtual addresses,
1878  * which is always are least one, but is not necessarly an integer.
1879  * This means that a physical address can span multiple chunks, so we may
1880  * have to submit multiple io requests for a single sync request.
1881  */
1882 /*
1883  * We check if all blocks are in-sync and only write to blocks that
1884  * aren't in sync
1885  */
1886 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1887 {
1888 	struct r10conf *conf = mddev->private;
1889 	int i, first;
1890 	struct bio *tbio, *fbio;
1891 	int vcnt;
1892 
1893 	atomic_set(&r10_bio->remaining, 1);
1894 
1895 	/* find the first device with a block */
1896 	for (i=0; i<conf->copies; i++)
1897 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1898 			break;
1899 
1900 	if (i == conf->copies)
1901 		goto done;
1902 
1903 	first = i;
1904 	fbio = r10_bio->devs[i].bio;
1905 
1906 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1907 	/* now find blocks with errors */
1908 	for (i=0 ; i < conf->copies ; i++) {
1909 		int  j, d;
1910 
1911 		tbio = r10_bio->devs[i].bio;
1912 
1913 		if (tbio->bi_end_io != end_sync_read)
1914 			continue;
1915 		if (i == first)
1916 			continue;
1917 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1918 			/* We know that the bi_io_vec layout is the same for
1919 			 * both 'first' and 'i', so we just compare them.
1920 			 * All vec entries are PAGE_SIZE;
1921 			 */
1922 			for (j = 0; j < vcnt; j++)
1923 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1924 					   page_address(tbio->bi_io_vec[j].bv_page),
1925 					   fbio->bi_io_vec[j].bv_len))
1926 					break;
1927 			if (j == vcnt)
1928 				continue;
1929 			mddev->resync_mismatches += r10_bio->sectors;
1930 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1931 				/* Don't fix anything. */
1932 				continue;
1933 		}
1934 		/* Ok, we need to write this bio, either to correct an
1935 		 * inconsistency or to correct an unreadable block.
1936 		 * First we need to fixup bv_offset, bv_len and
1937 		 * bi_vecs, as the read request might have corrupted these
1938 		 */
1939 		tbio->bi_vcnt = vcnt;
1940 		tbio->bi_size = r10_bio->sectors << 9;
1941 		tbio->bi_idx = 0;
1942 		tbio->bi_phys_segments = 0;
1943 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1944 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1945 		tbio->bi_next = NULL;
1946 		tbio->bi_rw = WRITE;
1947 		tbio->bi_private = r10_bio;
1948 		tbio->bi_sector = r10_bio->devs[i].addr;
1949 
1950 		for (j=0; j < vcnt ; j++) {
1951 			tbio->bi_io_vec[j].bv_offset = 0;
1952 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1953 
1954 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1955 			       page_address(fbio->bi_io_vec[j].bv_page),
1956 			       PAGE_SIZE);
1957 		}
1958 		tbio->bi_end_io = end_sync_write;
1959 
1960 		d = r10_bio->devs[i].devnum;
1961 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1962 		atomic_inc(&r10_bio->remaining);
1963 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1964 
1965 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1966 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1967 		generic_make_request(tbio);
1968 	}
1969 
1970 	/* Now write out to any replacement devices
1971 	 * that are active
1972 	 */
1973 	for (i = 0; i < conf->copies; i++) {
1974 		int j, d;
1975 
1976 		tbio = r10_bio->devs[i].repl_bio;
1977 		if (!tbio || !tbio->bi_end_io)
1978 			continue;
1979 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1980 		    && r10_bio->devs[i].bio != fbio)
1981 			for (j = 0; j < vcnt; j++)
1982 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1983 				       page_address(fbio->bi_io_vec[j].bv_page),
1984 				       PAGE_SIZE);
1985 		d = r10_bio->devs[i].devnum;
1986 		atomic_inc(&r10_bio->remaining);
1987 		md_sync_acct(conf->mirrors[d].replacement->bdev,
1988 			     tbio->bi_size >> 9);
1989 		generic_make_request(tbio);
1990 	}
1991 
1992 done:
1993 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1994 		md_done_sync(mddev, r10_bio->sectors, 1);
1995 		put_buf(r10_bio);
1996 	}
1997 }
1998 
1999 /*
2000  * Now for the recovery code.
2001  * Recovery happens across physical sectors.
2002  * We recover all non-is_sync drives by finding the virtual address of
2003  * each, and then choose a working drive that also has that virt address.
2004  * There is a separate r10_bio for each non-in_sync drive.
2005  * Only the first two slots are in use. The first for reading,
2006  * The second for writing.
2007  *
2008  */
2009 static void fix_recovery_read_error(struct r10bio *r10_bio)
2010 {
2011 	/* We got a read error during recovery.
2012 	 * We repeat the read in smaller page-sized sections.
2013 	 * If a read succeeds, write it to the new device or record
2014 	 * a bad block if we cannot.
2015 	 * If a read fails, record a bad block on both old and
2016 	 * new devices.
2017 	 */
2018 	struct mddev *mddev = r10_bio->mddev;
2019 	struct r10conf *conf = mddev->private;
2020 	struct bio *bio = r10_bio->devs[0].bio;
2021 	sector_t sect = 0;
2022 	int sectors = r10_bio->sectors;
2023 	int idx = 0;
2024 	int dr = r10_bio->devs[0].devnum;
2025 	int dw = r10_bio->devs[1].devnum;
2026 
2027 	while (sectors) {
2028 		int s = sectors;
2029 		struct md_rdev *rdev;
2030 		sector_t addr;
2031 		int ok;
2032 
2033 		if (s > (PAGE_SIZE>>9))
2034 			s = PAGE_SIZE >> 9;
2035 
2036 		rdev = conf->mirrors[dr].rdev;
2037 		addr = r10_bio->devs[0].addr + sect,
2038 		ok = sync_page_io(rdev,
2039 				  addr,
2040 				  s << 9,
2041 				  bio->bi_io_vec[idx].bv_page,
2042 				  READ, false);
2043 		if (ok) {
2044 			rdev = conf->mirrors[dw].rdev;
2045 			addr = r10_bio->devs[1].addr + sect;
2046 			ok = sync_page_io(rdev,
2047 					  addr,
2048 					  s << 9,
2049 					  bio->bi_io_vec[idx].bv_page,
2050 					  WRITE, false);
2051 			if (!ok) {
2052 				set_bit(WriteErrorSeen, &rdev->flags);
2053 				if (!test_and_set_bit(WantReplacement,
2054 						      &rdev->flags))
2055 					set_bit(MD_RECOVERY_NEEDED,
2056 						&rdev->mddev->recovery);
2057 			}
2058 		}
2059 		if (!ok) {
2060 			/* We don't worry if we cannot set a bad block -
2061 			 * it really is bad so there is no loss in not
2062 			 * recording it yet
2063 			 */
2064 			rdev_set_badblocks(rdev, addr, s, 0);
2065 
2066 			if (rdev != conf->mirrors[dw].rdev) {
2067 				/* need bad block on destination too */
2068 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2069 				addr = r10_bio->devs[1].addr + sect;
2070 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2071 				if (!ok) {
2072 					/* just abort the recovery */
2073 					printk(KERN_NOTICE
2074 					       "md/raid10:%s: recovery aborted"
2075 					       " due to read error\n",
2076 					       mdname(mddev));
2077 
2078 					conf->mirrors[dw].recovery_disabled
2079 						= mddev->recovery_disabled;
2080 					set_bit(MD_RECOVERY_INTR,
2081 						&mddev->recovery);
2082 					break;
2083 				}
2084 			}
2085 		}
2086 
2087 		sectors -= s;
2088 		sect += s;
2089 		idx++;
2090 	}
2091 }
2092 
2093 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2094 {
2095 	struct r10conf *conf = mddev->private;
2096 	int d;
2097 	struct bio *wbio, *wbio2;
2098 
2099 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2100 		fix_recovery_read_error(r10_bio);
2101 		end_sync_request(r10_bio);
2102 		return;
2103 	}
2104 
2105 	/*
2106 	 * share the pages with the first bio
2107 	 * and submit the write request
2108 	 */
2109 	d = r10_bio->devs[1].devnum;
2110 	wbio = r10_bio->devs[1].bio;
2111 	wbio2 = r10_bio->devs[1].repl_bio;
2112 	if (wbio->bi_end_io) {
2113 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2114 		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2115 		generic_make_request(wbio);
2116 	}
2117 	if (wbio2 && wbio2->bi_end_io) {
2118 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2119 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2120 			     wbio2->bi_size >> 9);
2121 		generic_make_request(wbio2);
2122 	}
2123 }
2124 
2125 
2126 /*
2127  * Used by fix_read_error() to decay the per rdev read_errors.
2128  * We halve the read error count for every hour that has elapsed
2129  * since the last recorded read error.
2130  *
2131  */
2132 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2133 {
2134 	struct timespec cur_time_mon;
2135 	unsigned long hours_since_last;
2136 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2137 
2138 	ktime_get_ts(&cur_time_mon);
2139 
2140 	if (rdev->last_read_error.tv_sec == 0 &&
2141 	    rdev->last_read_error.tv_nsec == 0) {
2142 		/* first time we've seen a read error */
2143 		rdev->last_read_error = cur_time_mon;
2144 		return;
2145 	}
2146 
2147 	hours_since_last = (cur_time_mon.tv_sec -
2148 			    rdev->last_read_error.tv_sec) / 3600;
2149 
2150 	rdev->last_read_error = cur_time_mon;
2151 
2152 	/*
2153 	 * if hours_since_last is > the number of bits in read_errors
2154 	 * just set read errors to 0. We do this to avoid
2155 	 * overflowing the shift of read_errors by hours_since_last.
2156 	 */
2157 	if (hours_since_last >= 8 * sizeof(read_errors))
2158 		atomic_set(&rdev->read_errors, 0);
2159 	else
2160 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2161 }
2162 
2163 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2164 			    int sectors, struct page *page, int rw)
2165 {
2166 	sector_t first_bad;
2167 	int bad_sectors;
2168 
2169 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2170 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2171 		return -1;
2172 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2173 		/* success */
2174 		return 1;
2175 	if (rw == WRITE) {
2176 		set_bit(WriteErrorSeen, &rdev->flags);
2177 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2178 			set_bit(MD_RECOVERY_NEEDED,
2179 				&rdev->mddev->recovery);
2180 	}
2181 	/* need to record an error - either for the block or the device */
2182 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2183 		md_error(rdev->mddev, rdev);
2184 	return 0;
2185 }
2186 
2187 /*
2188  * This is a kernel thread which:
2189  *
2190  *	1.	Retries failed read operations on working mirrors.
2191  *	2.	Updates the raid superblock when problems encounter.
2192  *	3.	Performs writes following reads for array synchronising.
2193  */
2194 
2195 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2196 {
2197 	int sect = 0; /* Offset from r10_bio->sector */
2198 	int sectors = r10_bio->sectors;
2199 	struct md_rdev*rdev;
2200 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2201 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2202 
2203 	/* still own a reference to this rdev, so it cannot
2204 	 * have been cleared recently.
2205 	 */
2206 	rdev = conf->mirrors[d].rdev;
2207 
2208 	if (test_bit(Faulty, &rdev->flags))
2209 		/* drive has already been failed, just ignore any
2210 		   more fix_read_error() attempts */
2211 		return;
2212 
2213 	check_decay_read_errors(mddev, rdev);
2214 	atomic_inc(&rdev->read_errors);
2215 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2216 		char b[BDEVNAME_SIZE];
2217 		bdevname(rdev->bdev, b);
2218 
2219 		printk(KERN_NOTICE
2220 		       "md/raid10:%s: %s: Raid device exceeded "
2221 		       "read_error threshold [cur %d:max %d]\n",
2222 		       mdname(mddev), b,
2223 		       atomic_read(&rdev->read_errors), max_read_errors);
2224 		printk(KERN_NOTICE
2225 		       "md/raid10:%s: %s: Failing raid device\n",
2226 		       mdname(mddev), b);
2227 		md_error(mddev, conf->mirrors[d].rdev);
2228 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2229 		return;
2230 	}
2231 
2232 	while(sectors) {
2233 		int s = sectors;
2234 		int sl = r10_bio->read_slot;
2235 		int success = 0;
2236 		int start;
2237 
2238 		if (s > (PAGE_SIZE>>9))
2239 			s = PAGE_SIZE >> 9;
2240 
2241 		rcu_read_lock();
2242 		do {
2243 			sector_t first_bad;
2244 			int bad_sectors;
2245 
2246 			d = r10_bio->devs[sl].devnum;
2247 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2248 			if (rdev &&
2249 			    !test_bit(Unmerged, &rdev->flags) &&
2250 			    test_bit(In_sync, &rdev->flags) &&
2251 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2252 					&first_bad, &bad_sectors) == 0) {
2253 				atomic_inc(&rdev->nr_pending);
2254 				rcu_read_unlock();
2255 				success = sync_page_io(rdev,
2256 						       r10_bio->devs[sl].addr +
2257 						       sect,
2258 						       s<<9,
2259 						       conf->tmppage, READ, false);
2260 				rdev_dec_pending(rdev, mddev);
2261 				rcu_read_lock();
2262 				if (success)
2263 					break;
2264 			}
2265 			sl++;
2266 			if (sl == conf->copies)
2267 				sl = 0;
2268 		} while (!success && sl != r10_bio->read_slot);
2269 		rcu_read_unlock();
2270 
2271 		if (!success) {
2272 			/* Cannot read from anywhere, just mark the block
2273 			 * as bad on the first device to discourage future
2274 			 * reads.
2275 			 */
2276 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2277 			rdev = conf->mirrors[dn].rdev;
2278 
2279 			if (!rdev_set_badblocks(
2280 				    rdev,
2281 				    r10_bio->devs[r10_bio->read_slot].addr
2282 				    + sect,
2283 				    s, 0)) {
2284 				md_error(mddev, rdev);
2285 				r10_bio->devs[r10_bio->read_slot].bio
2286 					= IO_BLOCKED;
2287 			}
2288 			break;
2289 		}
2290 
2291 		start = sl;
2292 		/* write it back and re-read */
2293 		rcu_read_lock();
2294 		while (sl != r10_bio->read_slot) {
2295 			char b[BDEVNAME_SIZE];
2296 
2297 			if (sl==0)
2298 				sl = conf->copies;
2299 			sl--;
2300 			d = r10_bio->devs[sl].devnum;
2301 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2302 			if (!rdev ||
2303 			    test_bit(Unmerged, &rdev->flags) ||
2304 			    !test_bit(In_sync, &rdev->flags))
2305 				continue;
2306 
2307 			atomic_inc(&rdev->nr_pending);
2308 			rcu_read_unlock();
2309 			if (r10_sync_page_io(rdev,
2310 					     r10_bio->devs[sl].addr +
2311 					     sect,
2312 					     s, conf->tmppage, WRITE)
2313 			    == 0) {
2314 				/* Well, this device is dead */
2315 				printk(KERN_NOTICE
2316 				       "md/raid10:%s: read correction "
2317 				       "write failed"
2318 				       " (%d sectors at %llu on %s)\n",
2319 				       mdname(mddev), s,
2320 				       (unsigned long long)(
2321 					       sect +
2322 					       choose_data_offset(r10_bio,
2323 								  rdev)),
2324 				       bdevname(rdev->bdev, b));
2325 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2326 				       "drive\n",
2327 				       mdname(mddev),
2328 				       bdevname(rdev->bdev, b));
2329 			}
2330 			rdev_dec_pending(rdev, mddev);
2331 			rcu_read_lock();
2332 		}
2333 		sl = start;
2334 		while (sl != r10_bio->read_slot) {
2335 			char b[BDEVNAME_SIZE];
2336 
2337 			if (sl==0)
2338 				sl = conf->copies;
2339 			sl--;
2340 			d = r10_bio->devs[sl].devnum;
2341 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2342 			if (!rdev ||
2343 			    !test_bit(In_sync, &rdev->flags))
2344 				continue;
2345 
2346 			atomic_inc(&rdev->nr_pending);
2347 			rcu_read_unlock();
2348 			switch (r10_sync_page_io(rdev,
2349 					     r10_bio->devs[sl].addr +
2350 					     sect,
2351 					     s, conf->tmppage,
2352 						 READ)) {
2353 			case 0:
2354 				/* Well, this device is dead */
2355 				printk(KERN_NOTICE
2356 				       "md/raid10:%s: unable to read back "
2357 				       "corrected sectors"
2358 				       " (%d sectors at %llu on %s)\n",
2359 				       mdname(mddev), s,
2360 				       (unsigned long long)(
2361 					       sect +
2362 					       choose_data_offset(r10_bio, rdev)),
2363 				       bdevname(rdev->bdev, b));
2364 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2365 				       "drive\n",
2366 				       mdname(mddev),
2367 				       bdevname(rdev->bdev, b));
2368 				break;
2369 			case 1:
2370 				printk(KERN_INFO
2371 				       "md/raid10:%s: read error corrected"
2372 				       " (%d sectors at %llu on %s)\n",
2373 				       mdname(mddev), s,
2374 				       (unsigned long long)(
2375 					       sect +
2376 					       choose_data_offset(r10_bio, rdev)),
2377 				       bdevname(rdev->bdev, b));
2378 				atomic_add(s, &rdev->corrected_errors);
2379 			}
2380 
2381 			rdev_dec_pending(rdev, mddev);
2382 			rcu_read_lock();
2383 		}
2384 		rcu_read_unlock();
2385 
2386 		sectors -= s;
2387 		sect += s;
2388 	}
2389 }
2390 
2391 static void bi_complete(struct bio *bio, int error)
2392 {
2393 	complete((struct completion *)bio->bi_private);
2394 }
2395 
2396 static int submit_bio_wait(int rw, struct bio *bio)
2397 {
2398 	struct completion event;
2399 	rw |= REQ_SYNC;
2400 
2401 	init_completion(&event);
2402 	bio->bi_private = &event;
2403 	bio->bi_end_io = bi_complete;
2404 	submit_bio(rw, bio);
2405 	wait_for_completion(&event);
2406 
2407 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2408 }
2409 
2410 static int narrow_write_error(struct r10bio *r10_bio, int i)
2411 {
2412 	struct bio *bio = r10_bio->master_bio;
2413 	struct mddev *mddev = r10_bio->mddev;
2414 	struct r10conf *conf = mddev->private;
2415 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2416 	/* bio has the data to be written to slot 'i' where
2417 	 * we just recently had a write error.
2418 	 * We repeatedly clone the bio and trim down to one block,
2419 	 * then try the write.  Where the write fails we record
2420 	 * a bad block.
2421 	 * It is conceivable that the bio doesn't exactly align with
2422 	 * blocks.  We must handle this.
2423 	 *
2424 	 * We currently own a reference to the rdev.
2425 	 */
2426 
2427 	int block_sectors;
2428 	sector_t sector;
2429 	int sectors;
2430 	int sect_to_write = r10_bio->sectors;
2431 	int ok = 1;
2432 
2433 	if (rdev->badblocks.shift < 0)
2434 		return 0;
2435 
2436 	block_sectors = 1 << rdev->badblocks.shift;
2437 	sector = r10_bio->sector;
2438 	sectors = ((r10_bio->sector + block_sectors)
2439 		   & ~(sector_t)(block_sectors - 1))
2440 		- sector;
2441 
2442 	while (sect_to_write) {
2443 		struct bio *wbio;
2444 		if (sectors > sect_to_write)
2445 			sectors = sect_to_write;
2446 		/* Write at 'sector' for 'sectors' */
2447 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2448 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2449 		wbio->bi_sector = (r10_bio->devs[i].addr+
2450 				   choose_data_offset(r10_bio, rdev) +
2451 				   (sector - r10_bio->sector));
2452 		wbio->bi_bdev = rdev->bdev;
2453 		if (submit_bio_wait(WRITE, wbio) == 0)
2454 			/* Failure! */
2455 			ok = rdev_set_badblocks(rdev, sector,
2456 						sectors, 0)
2457 				&& ok;
2458 
2459 		bio_put(wbio);
2460 		sect_to_write -= sectors;
2461 		sector += sectors;
2462 		sectors = block_sectors;
2463 	}
2464 	return ok;
2465 }
2466 
2467 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2468 {
2469 	int slot = r10_bio->read_slot;
2470 	struct bio *bio;
2471 	struct r10conf *conf = mddev->private;
2472 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2473 	char b[BDEVNAME_SIZE];
2474 	unsigned long do_sync;
2475 	int max_sectors;
2476 
2477 	/* we got a read error. Maybe the drive is bad.  Maybe just
2478 	 * the block and we can fix it.
2479 	 * We freeze all other IO, and try reading the block from
2480 	 * other devices.  When we find one, we re-write
2481 	 * and check it that fixes the read error.
2482 	 * This is all done synchronously while the array is
2483 	 * frozen.
2484 	 */
2485 	bio = r10_bio->devs[slot].bio;
2486 	bdevname(bio->bi_bdev, b);
2487 	bio_put(bio);
2488 	r10_bio->devs[slot].bio = NULL;
2489 
2490 	if (mddev->ro == 0) {
2491 		freeze_array(conf);
2492 		fix_read_error(conf, mddev, r10_bio);
2493 		unfreeze_array(conf);
2494 	} else
2495 		r10_bio->devs[slot].bio = IO_BLOCKED;
2496 
2497 	rdev_dec_pending(rdev, mddev);
2498 
2499 read_more:
2500 	rdev = read_balance(conf, r10_bio, &max_sectors);
2501 	if (rdev == NULL) {
2502 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2503 		       " read error for block %llu\n",
2504 		       mdname(mddev), b,
2505 		       (unsigned long long)r10_bio->sector);
2506 		raid_end_bio_io(r10_bio);
2507 		return;
2508 	}
2509 
2510 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2511 	slot = r10_bio->read_slot;
2512 	printk_ratelimited(
2513 		KERN_ERR
2514 		"md/raid10:%s: %s: redirecting "
2515 		"sector %llu to another mirror\n",
2516 		mdname(mddev),
2517 		bdevname(rdev->bdev, b),
2518 		(unsigned long long)r10_bio->sector);
2519 	bio = bio_clone_mddev(r10_bio->master_bio,
2520 			      GFP_NOIO, mddev);
2521 	md_trim_bio(bio,
2522 		    r10_bio->sector - bio->bi_sector,
2523 		    max_sectors);
2524 	r10_bio->devs[slot].bio = bio;
2525 	r10_bio->devs[slot].rdev = rdev;
2526 	bio->bi_sector = r10_bio->devs[slot].addr
2527 		+ choose_data_offset(r10_bio, rdev);
2528 	bio->bi_bdev = rdev->bdev;
2529 	bio->bi_rw = READ | do_sync;
2530 	bio->bi_private = r10_bio;
2531 	bio->bi_end_io = raid10_end_read_request;
2532 	if (max_sectors < r10_bio->sectors) {
2533 		/* Drat - have to split this up more */
2534 		struct bio *mbio = r10_bio->master_bio;
2535 		int sectors_handled =
2536 			r10_bio->sector + max_sectors
2537 			- mbio->bi_sector;
2538 		r10_bio->sectors = max_sectors;
2539 		spin_lock_irq(&conf->device_lock);
2540 		if (mbio->bi_phys_segments == 0)
2541 			mbio->bi_phys_segments = 2;
2542 		else
2543 			mbio->bi_phys_segments++;
2544 		spin_unlock_irq(&conf->device_lock);
2545 		generic_make_request(bio);
2546 
2547 		r10_bio = mempool_alloc(conf->r10bio_pool,
2548 					GFP_NOIO);
2549 		r10_bio->master_bio = mbio;
2550 		r10_bio->sectors = (mbio->bi_size >> 9)
2551 			- sectors_handled;
2552 		r10_bio->state = 0;
2553 		set_bit(R10BIO_ReadError,
2554 			&r10_bio->state);
2555 		r10_bio->mddev = mddev;
2556 		r10_bio->sector = mbio->bi_sector
2557 			+ sectors_handled;
2558 
2559 		goto read_more;
2560 	} else
2561 		generic_make_request(bio);
2562 }
2563 
2564 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2565 {
2566 	/* Some sort of write request has finished and it
2567 	 * succeeded in writing where we thought there was a
2568 	 * bad block.  So forget the bad block.
2569 	 * Or possibly if failed and we need to record
2570 	 * a bad block.
2571 	 */
2572 	int m;
2573 	struct md_rdev *rdev;
2574 
2575 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2576 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2577 		for (m = 0; m < conf->copies; m++) {
2578 			int dev = r10_bio->devs[m].devnum;
2579 			rdev = conf->mirrors[dev].rdev;
2580 			if (r10_bio->devs[m].bio == NULL)
2581 				continue;
2582 			if (test_bit(BIO_UPTODATE,
2583 				     &r10_bio->devs[m].bio->bi_flags)) {
2584 				rdev_clear_badblocks(
2585 					rdev,
2586 					r10_bio->devs[m].addr,
2587 					r10_bio->sectors, 0);
2588 			} else {
2589 				if (!rdev_set_badblocks(
2590 					    rdev,
2591 					    r10_bio->devs[m].addr,
2592 					    r10_bio->sectors, 0))
2593 					md_error(conf->mddev, rdev);
2594 			}
2595 			rdev = conf->mirrors[dev].replacement;
2596 			if (r10_bio->devs[m].repl_bio == NULL)
2597 				continue;
2598 			if (test_bit(BIO_UPTODATE,
2599 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2600 				rdev_clear_badblocks(
2601 					rdev,
2602 					r10_bio->devs[m].addr,
2603 					r10_bio->sectors, 0);
2604 			} else {
2605 				if (!rdev_set_badblocks(
2606 					    rdev,
2607 					    r10_bio->devs[m].addr,
2608 					    r10_bio->sectors, 0))
2609 					md_error(conf->mddev, rdev);
2610 			}
2611 		}
2612 		put_buf(r10_bio);
2613 	} else {
2614 		for (m = 0; m < conf->copies; m++) {
2615 			int dev = r10_bio->devs[m].devnum;
2616 			struct bio *bio = r10_bio->devs[m].bio;
2617 			rdev = conf->mirrors[dev].rdev;
2618 			if (bio == IO_MADE_GOOD) {
2619 				rdev_clear_badblocks(
2620 					rdev,
2621 					r10_bio->devs[m].addr,
2622 					r10_bio->sectors, 0);
2623 				rdev_dec_pending(rdev, conf->mddev);
2624 			} else if (bio != NULL &&
2625 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2626 				if (!narrow_write_error(r10_bio, m)) {
2627 					md_error(conf->mddev, rdev);
2628 					set_bit(R10BIO_Degraded,
2629 						&r10_bio->state);
2630 				}
2631 				rdev_dec_pending(rdev, conf->mddev);
2632 			}
2633 			bio = r10_bio->devs[m].repl_bio;
2634 			rdev = conf->mirrors[dev].replacement;
2635 			if (rdev && bio == IO_MADE_GOOD) {
2636 				rdev_clear_badblocks(
2637 					rdev,
2638 					r10_bio->devs[m].addr,
2639 					r10_bio->sectors, 0);
2640 				rdev_dec_pending(rdev, conf->mddev);
2641 			}
2642 		}
2643 		if (test_bit(R10BIO_WriteError,
2644 			     &r10_bio->state))
2645 			close_write(r10_bio);
2646 		raid_end_bio_io(r10_bio);
2647 	}
2648 }
2649 
2650 static void raid10d(struct mddev *mddev)
2651 {
2652 	struct r10bio *r10_bio;
2653 	unsigned long flags;
2654 	struct r10conf *conf = mddev->private;
2655 	struct list_head *head = &conf->retry_list;
2656 	struct blk_plug plug;
2657 
2658 	md_check_recovery(mddev);
2659 
2660 	blk_start_plug(&plug);
2661 	for (;;) {
2662 
2663 		if (atomic_read(&mddev->plug_cnt) == 0)
2664 			flush_pending_writes(conf);
2665 
2666 		spin_lock_irqsave(&conf->device_lock, flags);
2667 		if (list_empty(head)) {
2668 			spin_unlock_irqrestore(&conf->device_lock, flags);
2669 			break;
2670 		}
2671 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2672 		list_del(head->prev);
2673 		conf->nr_queued--;
2674 		spin_unlock_irqrestore(&conf->device_lock, flags);
2675 
2676 		mddev = r10_bio->mddev;
2677 		conf = mddev->private;
2678 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2679 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2680 			handle_write_completed(conf, r10_bio);
2681 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2682 			reshape_request_write(mddev, r10_bio);
2683 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2684 			sync_request_write(mddev, r10_bio);
2685 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2686 			recovery_request_write(mddev, r10_bio);
2687 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2688 			handle_read_error(mddev, r10_bio);
2689 		else {
2690 			/* just a partial read to be scheduled from a
2691 			 * separate context
2692 			 */
2693 			int slot = r10_bio->read_slot;
2694 			generic_make_request(r10_bio->devs[slot].bio);
2695 		}
2696 
2697 		cond_resched();
2698 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2699 			md_check_recovery(mddev);
2700 	}
2701 	blk_finish_plug(&plug);
2702 }
2703 
2704 
2705 static int init_resync(struct r10conf *conf)
2706 {
2707 	int buffs;
2708 	int i;
2709 
2710 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2711 	BUG_ON(conf->r10buf_pool);
2712 	conf->have_replacement = 0;
2713 	for (i = 0; i < conf->geo.raid_disks; i++)
2714 		if (conf->mirrors[i].replacement)
2715 			conf->have_replacement = 1;
2716 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2717 	if (!conf->r10buf_pool)
2718 		return -ENOMEM;
2719 	conf->next_resync = 0;
2720 	return 0;
2721 }
2722 
2723 /*
2724  * perform a "sync" on one "block"
2725  *
2726  * We need to make sure that no normal I/O request - particularly write
2727  * requests - conflict with active sync requests.
2728  *
2729  * This is achieved by tracking pending requests and a 'barrier' concept
2730  * that can be installed to exclude normal IO requests.
2731  *
2732  * Resync and recovery are handled very differently.
2733  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2734  *
2735  * For resync, we iterate over virtual addresses, read all copies,
2736  * and update if there are differences.  If only one copy is live,
2737  * skip it.
2738  * For recovery, we iterate over physical addresses, read a good
2739  * value for each non-in_sync drive, and over-write.
2740  *
2741  * So, for recovery we may have several outstanding complex requests for a
2742  * given address, one for each out-of-sync device.  We model this by allocating
2743  * a number of r10_bio structures, one for each out-of-sync device.
2744  * As we setup these structures, we collect all bio's together into a list
2745  * which we then process collectively to add pages, and then process again
2746  * to pass to generic_make_request.
2747  *
2748  * The r10_bio structures are linked using a borrowed master_bio pointer.
2749  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2750  * has its remaining count decremented to 0, the whole complex operation
2751  * is complete.
2752  *
2753  */
2754 
2755 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2756 			     int *skipped, int go_faster)
2757 {
2758 	struct r10conf *conf = mddev->private;
2759 	struct r10bio *r10_bio;
2760 	struct bio *biolist = NULL, *bio;
2761 	sector_t max_sector, nr_sectors;
2762 	int i;
2763 	int max_sync;
2764 	sector_t sync_blocks;
2765 	sector_t sectors_skipped = 0;
2766 	int chunks_skipped = 0;
2767 	sector_t chunk_mask = conf->geo.chunk_mask;
2768 
2769 	if (!conf->r10buf_pool)
2770 		if (init_resync(conf))
2771 			return 0;
2772 
2773  skipped:
2774 	max_sector = mddev->dev_sectors;
2775 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2776 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2777 		max_sector = mddev->resync_max_sectors;
2778 	if (sector_nr >= max_sector) {
2779 		/* If we aborted, we need to abort the
2780 		 * sync on the 'current' bitmap chucks (there can
2781 		 * be several when recovering multiple devices).
2782 		 * as we may have started syncing it but not finished.
2783 		 * We can find the current address in
2784 		 * mddev->curr_resync, but for recovery,
2785 		 * we need to convert that to several
2786 		 * virtual addresses.
2787 		 */
2788 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2789 			end_reshape(conf);
2790 			return 0;
2791 		}
2792 
2793 		if (mddev->curr_resync < max_sector) { /* aborted */
2794 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2795 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2796 						&sync_blocks, 1);
2797 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2798 				sector_t sect =
2799 					raid10_find_virt(conf, mddev->curr_resync, i);
2800 				bitmap_end_sync(mddev->bitmap, sect,
2801 						&sync_blocks, 1);
2802 			}
2803 		} else {
2804 			/* completed sync */
2805 			if ((!mddev->bitmap || conf->fullsync)
2806 			    && conf->have_replacement
2807 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2808 				/* Completed a full sync so the replacements
2809 				 * are now fully recovered.
2810 				 */
2811 				for (i = 0; i < conf->geo.raid_disks; i++)
2812 					if (conf->mirrors[i].replacement)
2813 						conf->mirrors[i].replacement
2814 							->recovery_offset
2815 							= MaxSector;
2816 			}
2817 			conf->fullsync = 0;
2818 		}
2819 		bitmap_close_sync(mddev->bitmap);
2820 		close_sync(conf);
2821 		*skipped = 1;
2822 		return sectors_skipped;
2823 	}
2824 
2825 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2826 		return reshape_request(mddev, sector_nr, skipped);
2827 
2828 	if (chunks_skipped >= conf->geo.raid_disks) {
2829 		/* if there has been nothing to do on any drive,
2830 		 * then there is nothing to do at all..
2831 		 */
2832 		*skipped = 1;
2833 		return (max_sector - sector_nr) + sectors_skipped;
2834 	}
2835 
2836 	if (max_sector > mddev->resync_max)
2837 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2838 
2839 	/* make sure whole request will fit in a chunk - if chunks
2840 	 * are meaningful
2841 	 */
2842 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2843 	    max_sector > (sector_nr | chunk_mask))
2844 		max_sector = (sector_nr | chunk_mask) + 1;
2845 	/*
2846 	 * If there is non-resync activity waiting for us then
2847 	 * put in a delay to throttle resync.
2848 	 */
2849 	if (!go_faster && conf->nr_waiting)
2850 		msleep_interruptible(1000);
2851 
2852 	/* Again, very different code for resync and recovery.
2853 	 * Both must result in an r10bio with a list of bios that
2854 	 * have bi_end_io, bi_sector, bi_bdev set,
2855 	 * and bi_private set to the r10bio.
2856 	 * For recovery, we may actually create several r10bios
2857 	 * with 2 bios in each, that correspond to the bios in the main one.
2858 	 * In this case, the subordinate r10bios link back through a
2859 	 * borrowed master_bio pointer, and the counter in the master
2860 	 * includes a ref from each subordinate.
2861 	 */
2862 	/* First, we decide what to do and set ->bi_end_io
2863 	 * To end_sync_read if we want to read, and
2864 	 * end_sync_write if we will want to write.
2865 	 */
2866 
2867 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2868 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2869 		/* recovery... the complicated one */
2870 		int j;
2871 		r10_bio = NULL;
2872 
2873 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2874 			int still_degraded;
2875 			struct r10bio *rb2;
2876 			sector_t sect;
2877 			int must_sync;
2878 			int any_working;
2879 			struct mirror_info *mirror = &conf->mirrors[i];
2880 
2881 			if ((mirror->rdev == NULL ||
2882 			     test_bit(In_sync, &mirror->rdev->flags))
2883 			    &&
2884 			    (mirror->replacement == NULL ||
2885 			     test_bit(Faulty,
2886 				      &mirror->replacement->flags)))
2887 				continue;
2888 
2889 			still_degraded = 0;
2890 			/* want to reconstruct this device */
2891 			rb2 = r10_bio;
2892 			sect = raid10_find_virt(conf, sector_nr, i);
2893 			if (sect >= mddev->resync_max_sectors) {
2894 				/* last stripe is not complete - don't
2895 				 * try to recover this sector.
2896 				 */
2897 				continue;
2898 			}
2899 			/* Unless we are doing a full sync, or a replacement
2900 			 * we only need to recover the block if it is set in
2901 			 * the bitmap
2902 			 */
2903 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2904 						      &sync_blocks, 1);
2905 			if (sync_blocks < max_sync)
2906 				max_sync = sync_blocks;
2907 			if (!must_sync &&
2908 			    mirror->replacement == NULL &&
2909 			    !conf->fullsync) {
2910 				/* yep, skip the sync_blocks here, but don't assume
2911 				 * that there will never be anything to do here
2912 				 */
2913 				chunks_skipped = -1;
2914 				continue;
2915 			}
2916 
2917 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2918 			raise_barrier(conf, rb2 != NULL);
2919 			atomic_set(&r10_bio->remaining, 0);
2920 
2921 			r10_bio->master_bio = (struct bio*)rb2;
2922 			if (rb2)
2923 				atomic_inc(&rb2->remaining);
2924 			r10_bio->mddev = mddev;
2925 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2926 			r10_bio->sector = sect;
2927 
2928 			raid10_find_phys(conf, r10_bio);
2929 
2930 			/* Need to check if the array will still be
2931 			 * degraded
2932 			 */
2933 			for (j = 0; j < conf->geo.raid_disks; j++)
2934 				if (conf->mirrors[j].rdev == NULL ||
2935 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2936 					still_degraded = 1;
2937 					break;
2938 				}
2939 
2940 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2941 						      &sync_blocks, still_degraded);
2942 
2943 			any_working = 0;
2944 			for (j=0; j<conf->copies;j++) {
2945 				int k;
2946 				int d = r10_bio->devs[j].devnum;
2947 				sector_t from_addr, to_addr;
2948 				struct md_rdev *rdev;
2949 				sector_t sector, first_bad;
2950 				int bad_sectors;
2951 				if (!conf->mirrors[d].rdev ||
2952 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2953 					continue;
2954 				/* This is where we read from */
2955 				any_working = 1;
2956 				rdev = conf->mirrors[d].rdev;
2957 				sector = r10_bio->devs[j].addr;
2958 
2959 				if (is_badblock(rdev, sector, max_sync,
2960 						&first_bad, &bad_sectors)) {
2961 					if (first_bad > sector)
2962 						max_sync = first_bad - sector;
2963 					else {
2964 						bad_sectors -= (sector
2965 								- first_bad);
2966 						if (max_sync > bad_sectors)
2967 							max_sync = bad_sectors;
2968 						continue;
2969 					}
2970 				}
2971 				bio = r10_bio->devs[0].bio;
2972 				bio->bi_next = biolist;
2973 				biolist = bio;
2974 				bio->bi_private = r10_bio;
2975 				bio->bi_end_io = end_sync_read;
2976 				bio->bi_rw = READ;
2977 				from_addr = r10_bio->devs[j].addr;
2978 				bio->bi_sector = from_addr + rdev->data_offset;
2979 				bio->bi_bdev = rdev->bdev;
2980 				atomic_inc(&rdev->nr_pending);
2981 				/* and we write to 'i' (if not in_sync) */
2982 
2983 				for (k=0; k<conf->copies; k++)
2984 					if (r10_bio->devs[k].devnum == i)
2985 						break;
2986 				BUG_ON(k == conf->copies);
2987 				to_addr = r10_bio->devs[k].addr;
2988 				r10_bio->devs[0].devnum = d;
2989 				r10_bio->devs[0].addr = from_addr;
2990 				r10_bio->devs[1].devnum = i;
2991 				r10_bio->devs[1].addr = to_addr;
2992 
2993 				rdev = mirror->rdev;
2994 				if (!test_bit(In_sync, &rdev->flags)) {
2995 					bio = r10_bio->devs[1].bio;
2996 					bio->bi_next = biolist;
2997 					biolist = bio;
2998 					bio->bi_private = r10_bio;
2999 					bio->bi_end_io = end_sync_write;
3000 					bio->bi_rw = WRITE;
3001 					bio->bi_sector = to_addr
3002 						+ rdev->data_offset;
3003 					bio->bi_bdev = rdev->bdev;
3004 					atomic_inc(&r10_bio->remaining);
3005 				} else
3006 					r10_bio->devs[1].bio->bi_end_io = NULL;
3007 
3008 				/* and maybe write to replacement */
3009 				bio = r10_bio->devs[1].repl_bio;
3010 				if (bio)
3011 					bio->bi_end_io = NULL;
3012 				rdev = mirror->replacement;
3013 				/* Note: if rdev != NULL, then bio
3014 				 * cannot be NULL as r10buf_pool_alloc will
3015 				 * have allocated it.
3016 				 * So the second test here is pointless.
3017 				 * But it keeps semantic-checkers happy, and
3018 				 * this comment keeps human reviewers
3019 				 * happy.
3020 				 */
3021 				if (rdev == NULL || bio == NULL ||
3022 				    test_bit(Faulty, &rdev->flags))
3023 					break;
3024 				bio->bi_next = biolist;
3025 				biolist = bio;
3026 				bio->bi_private = r10_bio;
3027 				bio->bi_end_io = end_sync_write;
3028 				bio->bi_rw = WRITE;
3029 				bio->bi_sector = to_addr + rdev->data_offset;
3030 				bio->bi_bdev = rdev->bdev;
3031 				atomic_inc(&r10_bio->remaining);
3032 				break;
3033 			}
3034 			if (j == conf->copies) {
3035 				/* Cannot recover, so abort the recovery or
3036 				 * record a bad block */
3037 				put_buf(r10_bio);
3038 				if (rb2)
3039 					atomic_dec(&rb2->remaining);
3040 				r10_bio = rb2;
3041 				if (any_working) {
3042 					/* problem is that there are bad blocks
3043 					 * on other device(s)
3044 					 */
3045 					int k;
3046 					for (k = 0; k < conf->copies; k++)
3047 						if (r10_bio->devs[k].devnum == i)
3048 							break;
3049 					if (!test_bit(In_sync,
3050 						      &mirror->rdev->flags)
3051 					    && !rdev_set_badblocks(
3052 						    mirror->rdev,
3053 						    r10_bio->devs[k].addr,
3054 						    max_sync, 0))
3055 						any_working = 0;
3056 					if (mirror->replacement &&
3057 					    !rdev_set_badblocks(
3058 						    mirror->replacement,
3059 						    r10_bio->devs[k].addr,
3060 						    max_sync, 0))
3061 						any_working = 0;
3062 				}
3063 				if (!any_working)  {
3064 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3065 							      &mddev->recovery))
3066 						printk(KERN_INFO "md/raid10:%s: insufficient "
3067 						       "working devices for recovery.\n",
3068 						       mdname(mddev));
3069 					mirror->recovery_disabled
3070 						= mddev->recovery_disabled;
3071 				}
3072 				break;
3073 			}
3074 		}
3075 		if (biolist == NULL) {
3076 			while (r10_bio) {
3077 				struct r10bio *rb2 = r10_bio;
3078 				r10_bio = (struct r10bio*) rb2->master_bio;
3079 				rb2->master_bio = NULL;
3080 				put_buf(rb2);
3081 			}
3082 			goto giveup;
3083 		}
3084 	} else {
3085 		/* resync. Schedule a read for every block at this virt offset */
3086 		int count = 0;
3087 
3088 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3089 
3090 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3091 				       &sync_blocks, mddev->degraded) &&
3092 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3093 						 &mddev->recovery)) {
3094 			/* We can skip this block */
3095 			*skipped = 1;
3096 			return sync_blocks + sectors_skipped;
3097 		}
3098 		if (sync_blocks < max_sync)
3099 			max_sync = sync_blocks;
3100 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3101 
3102 		r10_bio->mddev = mddev;
3103 		atomic_set(&r10_bio->remaining, 0);
3104 		raise_barrier(conf, 0);
3105 		conf->next_resync = sector_nr;
3106 
3107 		r10_bio->master_bio = NULL;
3108 		r10_bio->sector = sector_nr;
3109 		set_bit(R10BIO_IsSync, &r10_bio->state);
3110 		raid10_find_phys(conf, r10_bio);
3111 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3112 
3113 		for (i = 0; i < conf->copies; i++) {
3114 			int d = r10_bio->devs[i].devnum;
3115 			sector_t first_bad, sector;
3116 			int bad_sectors;
3117 
3118 			if (r10_bio->devs[i].repl_bio)
3119 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3120 
3121 			bio = r10_bio->devs[i].bio;
3122 			bio->bi_end_io = NULL;
3123 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3124 			if (conf->mirrors[d].rdev == NULL ||
3125 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3126 				continue;
3127 			sector = r10_bio->devs[i].addr;
3128 			if (is_badblock(conf->mirrors[d].rdev,
3129 					sector, max_sync,
3130 					&first_bad, &bad_sectors)) {
3131 				if (first_bad > sector)
3132 					max_sync = first_bad - sector;
3133 				else {
3134 					bad_sectors -= (sector - first_bad);
3135 					if (max_sync > bad_sectors)
3136 						max_sync = max_sync;
3137 					continue;
3138 				}
3139 			}
3140 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3141 			atomic_inc(&r10_bio->remaining);
3142 			bio->bi_next = biolist;
3143 			biolist = bio;
3144 			bio->bi_private = r10_bio;
3145 			bio->bi_end_io = end_sync_read;
3146 			bio->bi_rw = READ;
3147 			bio->bi_sector = sector +
3148 				conf->mirrors[d].rdev->data_offset;
3149 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3150 			count++;
3151 
3152 			if (conf->mirrors[d].replacement == NULL ||
3153 			    test_bit(Faulty,
3154 				     &conf->mirrors[d].replacement->flags))
3155 				continue;
3156 
3157 			/* Need to set up for writing to the replacement */
3158 			bio = r10_bio->devs[i].repl_bio;
3159 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3160 
3161 			sector = r10_bio->devs[i].addr;
3162 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3163 			bio->bi_next = biolist;
3164 			biolist = bio;
3165 			bio->bi_private = r10_bio;
3166 			bio->bi_end_io = end_sync_write;
3167 			bio->bi_rw = WRITE;
3168 			bio->bi_sector = sector +
3169 				conf->mirrors[d].replacement->data_offset;
3170 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3171 			count++;
3172 		}
3173 
3174 		if (count < 2) {
3175 			for (i=0; i<conf->copies; i++) {
3176 				int d = r10_bio->devs[i].devnum;
3177 				if (r10_bio->devs[i].bio->bi_end_io)
3178 					rdev_dec_pending(conf->mirrors[d].rdev,
3179 							 mddev);
3180 				if (r10_bio->devs[i].repl_bio &&
3181 				    r10_bio->devs[i].repl_bio->bi_end_io)
3182 					rdev_dec_pending(
3183 						conf->mirrors[d].replacement,
3184 						mddev);
3185 			}
3186 			put_buf(r10_bio);
3187 			biolist = NULL;
3188 			goto giveup;
3189 		}
3190 	}
3191 
3192 	for (bio = biolist; bio ; bio=bio->bi_next) {
3193 
3194 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3195 		if (bio->bi_end_io)
3196 			bio->bi_flags |= 1 << BIO_UPTODATE;
3197 		bio->bi_vcnt = 0;
3198 		bio->bi_idx = 0;
3199 		bio->bi_phys_segments = 0;
3200 		bio->bi_size = 0;
3201 	}
3202 
3203 	nr_sectors = 0;
3204 	if (sector_nr + max_sync < max_sector)
3205 		max_sector = sector_nr + max_sync;
3206 	do {
3207 		struct page *page;
3208 		int len = PAGE_SIZE;
3209 		if (sector_nr + (len>>9) > max_sector)
3210 			len = (max_sector - sector_nr) << 9;
3211 		if (len == 0)
3212 			break;
3213 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3214 			struct bio *bio2;
3215 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3216 			if (bio_add_page(bio, page, len, 0))
3217 				continue;
3218 
3219 			/* stop here */
3220 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3221 			for (bio2 = biolist;
3222 			     bio2 && bio2 != bio;
3223 			     bio2 = bio2->bi_next) {
3224 				/* remove last page from this bio */
3225 				bio2->bi_vcnt--;
3226 				bio2->bi_size -= len;
3227 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3228 			}
3229 			goto bio_full;
3230 		}
3231 		nr_sectors += len>>9;
3232 		sector_nr += len>>9;
3233 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3234  bio_full:
3235 	r10_bio->sectors = nr_sectors;
3236 
3237 	while (biolist) {
3238 		bio = biolist;
3239 		biolist = biolist->bi_next;
3240 
3241 		bio->bi_next = NULL;
3242 		r10_bio = bio->bi_private;
3243 		r10_bio->sectors = nr_sectors;
3244 
3245 		if (bio->bi_end_io == end_sync_read) {
3246 			md_sync_acct(bio->bi_bdev, nr_sectors);
3247 			generic_make_request(bio);
3248 		}
3249 	}
3250 
3251 	if (sectors_skipped)
3252 		/* pretend they weren't skipped, it makes
3253 		 * no important difference in this case
3254 		 */
3255 		md_done_sync(mddev, sectors_skipped, 1);
3256 
3257 	return sectors_skipped + nr_sectors;
3258  giveup:
3259 	/* There is nowhere to write, so all non-sync
3260 	 * drives must be failed or in resync, all drives
3261 	 * have a bad block, so try the next chunk...
3262 	 */
3263 	if (sector_nr + max_sync < max_sector)
3264 		max_sector = sector_nr + max_sync;
3265 
3266 	sectors_skipped += (max_sector - sector_nr);
3267 	chunks_skipped ++;
3268 	sector_nr = max_sector;
3269 	goto skipped;
3270 }
3271 
3272 static sector_t
3273 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3274 {
3275 	sector_t size;
3276 	struct r10conf *conf = mddev->private;
3277 
3278 	if (!raid_disks)
3279 		raid_disks = min(conf->geo.raid_disks,
3280 				 conf->prev.raid_disks);
3281 	if (!sectors)
3282 		sectors = conf->dev_sectors;
3283 
3284 	size = sectors >> conf->geo.chunk_shift;
3285 	sector_div(size, conf->geo.far_copies);
3286 	size = size * raid_disks;
3287 	sector_div(size, conf->geo.near_copies);
3288 
3289 	return size << conf->geo.chunk_shift;
3290 }
3291 
3292 static void calc_sectors(struct r10conf *conf, sector_t size)
3293 {
3294 	/* Calculate the number of sectors-per-device that will
3295 	 * actually be used, and set conf->dev_sectors and
3296 	 * conf->stride
3297 	 */
3298 
3299 	size = size >> conf->geo.chunk_shift;
3300 	sector_div(size, conf->geo.far_copies);
3301 	size = size * conf->geo.raid_disks;
3302 	sector_div(size, conf->geo.near_copies);
3303 	/* 'size' is now the number of chunks in the array */
3304 	/* calculate "used chunks per device" */
3305 	size = size * conf->copies;
3306 
3307 	/* We need to round up when dividing by raid_disks to
3308 	 * get the stride size.
3309 	 */
3310 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3311 
3312 	conf->dev_sectors = size << conf->geo.chunk_shift;
3313 
3314 	if (conf->geo.far_offset)
3315 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3316 	else {
3317 		sector_div(size, conf->geo.far_copies);
3318 		conf->geo.stride = size << conf->geo.chunk_shift;
3319 	}
3320 }
3321 
3322 enum geo_type {geo_new, geo_old, geo_start};
3323 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3324 {
3325 	int nc, fc, fo;
3326 	int layout, chunk, disks;
3327 	switch (new) {
3328 	case geo_old:
3329 		layout = mddev->layout;
3330 		chunk = mddev->chunk_sectors;
3331 		disks = mddev->raid_disks - mddev->delta_disks;
3332 		break;
3333 	case geo_new:
3334 		layout = mddev->new_layout;
3335 		chunk = mddev->new_chunk_sectors;
3336 		disks = mddev->raid_disks;
3337 		break;
3338 	default: /* avoid 'may be unused' warnings */
3339 	case geo_start: /* new when starting reshape - raid_disks not
3340 			 * updated yet. */
3341 		layout = mddev->new_layout;
3342 		chunk = mddev->new_chunk_sectors;
3343 		disks = mddev->raid_disks + mddev->delta_disks;
3344 		break;
3345 	}
3346 	if (layout >> 17)
3347 		return -1;
3348 	if (chunk < (PAGE_SIZE >> 9) ||
3349 	    !is_power_of_2(chunk))
3350 		return -2;
3351 	nc = layout & 255;
3352 	fc = (layout >> 8) & 255;
3353 	fo = layout & (1<<16);
3354 	geo->raid_disks = disks;
3355 	geo->near_copies = nc;
3356 	geo->far_copies = fc;
3357 	geo->far_offset = fo;
3358 	geo->chunk_mask = chunk - 1;
3359 	geo->chunk_shift = ffz(~chunk);
3360 	return nc*fc;
3361 }
3362 
3363 static struct r10conf *setup_conf(struct mddev *mddev)
3364 {
3365 	struct r10conf *conf = NULL;
3366 	int err = -EINVAL;
3367 	struct geom geo;
3368 	int copies;
3369 
3370 	copies = setup_geo(&geo, mddev, geo_new);
3371 
3372 	if (copies == -2) {
3373 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3374 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3375 		       mdname(mddev), PAGE_SIZE);
3376 		goto out;
3377 	}
3378 
3379 	if (copies < 2 || copies > mddev->raid_disks) {
3380 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3381 		       mdname(mddev), mddev->new_layout);
3382 		goto out;
3383 	}
3384 
3385 	err = -ENOMEM;
3386 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3387 	if (!conf)
3388 		goto out;
3389 
3390 	/* FIXME calc properly */
3391 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*(mddev->raid_disks +
3392 							    max(0,mddev->delta_disks)),
3393 				GFP_KERNEL);
3394 	if (!conf->mirrors)
3395 		goto out;
3396 
3397 	conf->tmppage = alloc_page(GFP_KERNEL);
3398 	if (!conf->tmppage)
3399 		goto out;
3400 
3401 	conf->geo = geo;
3402 	conf->copies = copies;
3403 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3404 					   r10bio_pool_free, conf);
3405 	if (!conf->r10bio_pool)
3406 		goto out;
3407 
3408 	calc_sectors(conf, mddev->dev_sectors);
3409 	if (mddev->reshape_position == MaxSector) {
3410 		conf->prev = conf->geo;
3411 		conf->reshape_progress = MaxSector;
3412 	} else {
3413 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3414 			err = -EINVAL;
3415 			goto out;
3416 		}
3417 		conf->reshape_progress = mddev->reshape_position;
3418 		if (conf->prev.far_offset)
3419 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3420 		else
3421 			/* far_copies must be 1 */
3422 			conf->prev.stride = conf->dev_sectors;
3423 	}
3424 	spin_lock_init(&conf->device_lock);
3425 	INIT_LIST_HEAD(&conf->retry_list);
3426 
3427 	spin_lock_init(&conf->resync_lock);
3428 	init_waitqueue_head(&conf->wait_barrier);
3429 
3430 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3431 	if (!conf->thread)
3432 		goto out;
3433 
3434 	conf->mddev = mddev;
3435 	return conf;
3436 
3437  out:
3438 	if (err == -ENOMEM)
3439 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3440 		       mdname(mddev));
3441 	if (conf) {
3442 		if (conf->r10bio_pool)
3443 			mempool_destroy(conf->r10bio_pool);
3444 		kfree(conf->mirrors);
3445 		safe_put_page(conf->tmppage);
3446 		kfree(conf);
3447 	}
3448 	return ERR_PTR(err);
3449 }
3450 
3451 static int run(struct mddev *mddev)
3452 {
3453 	struct r10conf *conf;
3454 	int i, disk_idx, chunk_size;
3455 	struct mirror_info *disk;
3456 	struct md_rdev *rdev;
3457 	sector_t size;
3458 	sector_t min_offset_diff = 0;
3459 	int first = 1;
3460 
3461 	if (mddev->private == NULL) {
3462 		conf = setup_conf(mddev);
3463 		if (IS_ERR(conf))
3464 			return PTR_ERR(conf);
3465 		mddev->private = conf;
3466 	}
3467 	conf = mddev->private;
3468 	if (!conf)
3469 		goto out;
3470 
3471 	mddev->thread = conf->thread;
3472 	conf->thread = NULL;
3473 
3474 	chunk_size = mddev->chunk_sectors << 9;
3475 	blk_queue_io_min(mddev->queue, chunk_size);
3476 	if (conf->geo.raid_disks % conf->geo.near_copies)
3477 		blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3478 	else
3479 		blk_queue_io_opt(mddev->queue, chunk_size *
3480 				 (conf->geo.raid_disks / conf->geo.near_copies));
3481 
3482 	rdev_for_each(rdev, mddev) {
3483 		long long diff;
3484 		struct request_queue *q;
3485 
3486 		disk_idx = rdev->raid_disk;
3487 		if (disk_idx < 0)
3488 			continue;
3489 		if (disk_idx >= conf->geo.raid_disks &&
3490 		    disk_idx >= conf->prev.raid_disks)
3491 			continue;
3492 		disk = conf->mirrors + disk_idx;
3493 
3494 		if (test_bit(Replacement, &rdev->flags)) {
3495 			if (disk->replacement)
3496 				goto out_free_conf;
3497 			disk->replacement = rdev;
3498 		} else {
3499 			if (disk->rdev)
3500 				goto out_free_conf;
3501 			disk->rdev = rdev;
3502 		}
3503 		q = bdev_get_queue(rdev->bdev);
3504 		if (q->merge_bvec_fn)
3505 			mddev->merge_check_needed = 1;
3506 		diff = (rdev->new_data_offset - rdev->data_offset);
3507 		if (!mddev->reshape_backwards)
3508 			diff = -diff;
3509 		if (diff < 0)
3510 			diff = 0;
3511 		if (first || diff < min_offset_diff)
3512 			min_offset_diff = diff;
3513 
3514 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3515 				  rdev->data_offset << 9);
3516 
3517 		disk->head_position = 0;
3518 	}
3519 
3520 	/* need to check that every block has at least one working mirror */
3521 	if (!enough(conf, -1)) {
3522 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3523 		       mdname(mddev));
3524 		goto out_free_conf;
3525 	}
3526 
3527 	if (conf->reshape_progress != MaxSector) {
3528 		/* must ensure that shape change is supported */
3529 		if (conf->geo.far_copies != 1 &&
3530 		    conf->geo.far_offset == 0)
3531 			goto out_free_conf;
3532 		if (conf->prev.far_copies != 1 &&
3533 		    conf->geo.far_offset == 0)
3534 			goto out_free_conf;
3535 	}
3536 
3537 	mddev->degraded = 0;
3538 	for (i = 0;
3539 	     i < conf->geo.raid_disks
3540 		     || i < conf->prev.raid_disks;
3541 	     i++) {
3542 
3543 		disk = conf->mirrors + i;
3544 
3545 		if (!disk->rdev && disk->replacement) {
3546 			/* The replacement is all we have - use it */
3547 			disk->rdev = disk->replacement;
3548 			disk->replacement = NULL;
3549 			clear_bit(Replacement, &disk->rdev->flags);
3550 		}
3551 
3552 		if (!disk->rdev ||
3553 		    !test_bit(In_sync, &disk->rdev->flags)) {
3554 			disk->head_position = 0;
3555 			mddev->degraded++;
3556 			if (disk->rdev)
3557 				conf->fullsync = 1;
3558 		}
3559 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3560 	}
3561 
3562 	if (mddev->recovery_cp != MaxSector)
3563 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3564 		       " -- starting background reconstruction\n",
3565 		       mdname(mddev));
3566 	printk(KERN_INFO
3567 		"md/raid10:%s: active with %d out of %d devices\n",
3568 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3569 		conf->geo.raid_disks);
3570 	/*
3571 	 * Ok, everything is just fine now
3572 	 */
3573 	mddev->dev_sectors = conf->dev_sectors;
3574 	size = raid10_size(mddev, 0, 0);
3575 	md_set_array_sectors(mddev, size);
3576 	mddev->resync_max_sectors = size;
3577 
3578 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3579 	mddev->queue->backing_dev_info.congested_data = mddev;
3580 
3581 	/* Calculate max read-ahead size.
3582 	 * We need to readahead at least twice a whole stripe....
3583 	 * maybe...
3584 	 */
3585 	{
3586 		int stripe = conf->geo.raid_disks *
3587 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3588 		stripe /= conf->geo.near_copies;
3589 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3590 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3591 	}
3592 
3593 	blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3594 
3595 	if (md_integrity_register(mddev))
3596 		goto out_free_conf;
3597 
3598 	if (conf->reshape_progress != MaxSector) {
3599 		unsigned long before_length, after_length;
3600 
3601 		before_length = ((1 << conf->prev.chunk_shift) *
3602 				 conf->prev.far_copies);
3603 		after_length = ((1 << conf->geo.chunk_shift) *
3604 				conf->geo.far_copies);
3605 
3606 		if (max(before_length, after_length) > min_offset_diff) {
3607 			/* This cannot work */
3608 			printk("md/raid10: offset difference not enough to continue reshape\n");
3609 			goto out_free_conf;
3610 		}
3611 		conf->offset_diff = min_offset_diff;
3612 
3613 		conf->reshape_safe = conf->reshape_progress;
3614 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3615 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3616 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3617 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3618 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3619 							"reshape");
3620 	}
3621 
3622 	return 0;
3623 
3624 out_free_conf:
3625 	md_unregister_thread(&mddev->thread);
3626 	if (conf->r10bio_pool)
3627 		mempool_destroy(conf->r10bio_pool);
3628 	safe_put_page(conf->tmppage);
3629 	kfree(conf->mirrors);
3630 	kfree(conf);
3631 	mddev->private = NULL;
3632 out:
3633 	return -EIO;
3634 }
3635 
3636 static int stop(struct mddev *mddev)
3637 {
3638 	struct r10conf *conf = mddev->private;
3639 
3640 	raise_barrier(conf, 0);
3641 	lower_barrier(conf);
3642 
3643 	md_unregister_thread(&mddev->thread);
3644 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3645 	if (conf->r10bio_pool)
3646 		mempool_destroy(conf->r10bio_pool);
3647 	kfree(conf->mirrors);
3648 	kfree(conf);
3649 	mddev->private = NULL;
3650 	return 0;
3651 }
3652 
3653 static void raid10_quiesce(struct mddev *mddev, int state)
3654 {
3655 	struct r10conf *conf = mddev->private;
3656 
3657 	switch(state) {
3658 	case 1:
3659 		raise_barrier(conf, 0);
3660 		break;
3661 	case 0:
3662 		lower_barrier(conf);
3663 		break;
3664 	}
3665 }
3666 
3667 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3668 {
3669 	/* Resize of 'far' arrays is not supported.
3670 	 * For 'near' and 'offset' arrays we can set the
3671 	 * number of sectors used to be an appropriate multiple
3672 	 * of the chunk size.
3673 	 * For 'offset', this is far_copies*chunksize.
3674 	 * For 'near' the multiplier is the LCM of
3675 	 * near_copies and raid_disks.
3676 	 * So if far_copies > 1 && !far_offset, fail.
3677 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3678 	 * multiply by chunk_size.  Then round to this number.
3679 	 * This is mostly done by raid10_size()
3680 	 */
3681 	struct r10conf *conf = mddev->private;
3682 	sector_t oldsize, size;
3683 
3684 	if (mddev->reshape_position != MaxSector)
3685 		return -EBUSY;
3686 
3687 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3688 		return -EINVAL;
3689 
3690 	oldsize = raid10_size(mddev, 0, 0);
3691 	size = raid10_size(mddev, sectors, 0);
3692 	if (mddev->external_size &&
3693 	    mddev->array_sectors > size)
3694 		return -EINVAL;
3695 	if (mddev->bitmap) {
3696 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3697 		if (ret)
3698 			return ret;
3699 	}
3700 	md_set_array_sectors(mddev, size);
3701 	set_capacity(mddev->gendisk, mddev->array_sectors);
3702 	revalidate_disk(mddev->gendisk);
3703 	if (sectors > mddev->dev_sectors &&
3704 	    mddev->recovery_cp > oldsize) {
3705 		mddev->recovery_cp = oldsize;
3706 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3707 	}
3708 	calc_sectors(conf, sectors);
3709 	mddev->dev_sectors = conf->dev_sectors;
3710 	mddev->resync_max_sectors = size;
3711 	return 0;
3712 }
3713 
3714 static void *raid10_takeover_raid0(struct mddev *mddev)
3715 {
3716 	struct md_rdev *rdev;
3717 	struct r10conf *conf;
3718 
3719 	if (mddev->degraded > 0) {
3720 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3721 		       mdname(mddev));
3722 		return ERR_PTR(-EINVAL);
3723 	}
3724 
3725 	/* Set new parameters */
3726 	mddev->new_level = 10;
3727 	/* new layout: far_copies = 1, near_copies = 2 */
3728 	mddev->new_layout = (1<<8) + 2;
3729 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3730 	mddev->delta_disks = mddev->raid_disks;
3731 	mddev->raid_disks *= 2;
3732 	/* make sure it will be not marked as dirty */
3733 	mddev->recovery_cp = MaxSector;
3734 
3735 	conf = setup_conf(mddev);
3736 	if (!IS_ERR(conf)) {
3737 		rdev_for_each(rdev, mddev)
3738 			if (rdev->raid_disk >= 0)
3739 				rdev->new_raid_disk = rdev->raid_disk * 2;
3740 		conf->barrier = 1;
3741 	}
3742 
3743 	return conf;
3744 }
3745 
3746 static void *raid10_takeover(struct mddev *mddev)
3747 {
3748 	struct r0conf *raid0_conf;
3749 
3750 	/* raid10 can take over:
3751 	 *  raid0 - providing it has only two drives
3752 	 */
3753 	if (mddev->level == 0) {
3754 		/* for raid0 takeover only one zone is supported */
3755 		raid0_conf = mddev->private;
3756 		if (raid0_conf->nr_strip_zones > 1) {
3757 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3758 			       " with more than one zone.\n",
3759 			       mdname(mddev));
3760 			return ERR_PTR(-EINVAL);
3761 		}
3762 		return raid10_takeover_raid0(mddev);
3763 	}
3764 	return ERR_PTR(-EINVAL);
3765 }
3766 
3767 static int raid10_check_reshape(struct mddev *mddev)
3768 {
3769 	/* Called when there is a request to change
3770 	 * - layout (to ->new_layout)
3771 	 * - chunk size (to ->new_chunk_sectors)
3772 	 * - raid_disks (by delta_disks)
3773 	 * or when trying to restart a reshape that was ongoing.
3774 	 *
3775 	 * We need to validate the request and possibly allocate
3776 	 * space if that might be an issue later.
3777 	 *
3778 	 * Currently we reject any reshape of a 'far' mode array,
3779 	 * allow chunk size to change if new is generally acceptable,
3780 	 * allow raid_disks to increase, and allow
3781 	 * a switch between 'near' mode and 'offset' mode.
3782 	 */
3783 	struct r10conf *conf = mddev->private;
3784 	struct geom geo;
3785 
3786 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3787 		return -EINVAL;
3788 
3789 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3790 		/* mustn't change number of copies */
3791 		return -EINVAL;
3792 	if (geo.far_copies > 1 && !geo.far_offset)
3793 		/* Cannot switch to 'far' mode */
3794 		return -EINVAL;
3795 
3796 	if (mddev->array_sectors & geo.chunk_mask)
3797 			/* not factor of array size */
3798 			return -EINVAL;
3799 
3800 	if (!enough(conf, -1))
3801 		return -EINVAL;
3802 
3803 	kfree(conf->mirrors_new);
3804 	conf->mirrors_new = NULL;
3805 	if (mddev->delta_disks > 0) {
3806 		/* allocate new 'mirrors' list */
3807 		conf->mirrors_new = kzalloc(
3808 			sizeof(struct mirror_info)
3809 			*(mddev->raid_disks +
3810 			  mddev->delta_disks),
3811 			GFP_KERNEL);
3812 		if (!conf->mirrors_new)
3813 			return -ENOMEM;
3814 	}
3815 	return 0;
3816 }
3817 
3818 /*
3819  * Need to check if array has failed when deciding whether to:
3820  *  - start an array
3821  *  - remove non-faulty devices
3822  *  - add a spare
3823  *  - allow a reshape
3824  * This determination is simple when no reshape is happening.
3825  * However if there is a reshape, we need to carefully check
3826  * both the before and after sections.
3827  * This is because some failed devices may only affect one
3828  * of the two sections, and some non-in_sync devices may
3829  * be insync in the section most affected by failed devices.
3830  */
3831 static int calc_degraded(struct r10conf *conf)
3832 {
3833 	int degraded, degraded2;
3834 	int i;
3835 
3836 	rcu_read_lock();
3837 	degraded = 0;
3838 	/* 'prev' section first */
3839 	for (i = 0; i < conf->prev.raid_disks; i++) {
3840 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3841 		if (!rdev || test_bit(Faulty, &rdev->flags))
3842 			degraded++;
3843 		else if (!test_bit(In_sync, &rdev->flags))
3844 			/* When we can reduce the number of devices in
3845 			 * an array, this might not contribute to
3846 			 * 'degraded'.  It does now.
3847 			 */
3848 			degraded++;
3849 	}
3850 	rcu_read_unlock();
3851 	if (conf->geo.raid_disks == conf->prev.raid_disks)
3852 		return degraded;
3853 	rcu_read_lock();
3854 	degraded2 = 0;
3855 	for (i = 0; i < conf->geo.raid_disks; i++) {
3856 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3857 		if (!rdev || test_bit(Faulty, &rdev->flags))
3858 			degraded2++;
3859 		else if (!test_bit(In_sync, &rdev->flags)) {
3860 			/* If reshape is increasing the number of devices,
3861 			 * this section has already been recovered, so
3862 			 * it doesn't contribute to degraded.
3863 			 * else it does.
3864 			 */
3865 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3866 				degraded2++;
3867 		}
3868 	}
3869 	rcu_read_unlock();
3870 	if (degraded2 > degraded)
3871 		return degraded2;
3872 	return degraded;
3873 }
3874 
3875 static int raid10_start_reshape(struct mddev *mddev)
3876 {
3877 	/* A 'reshape' has been requested. This commits
3878 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3879 	 * This also checks if there are enough spares and adds them
3880 	 * to the array.
3881 	 * We currently require enough spares to make the final
3882 	 * array non-degraded.  We also require that the difference
3883 	 * between old and new data_offset - on each device - is
3884 	 * enough that we never risk over-writing.
3885 	 */
3886 
3887 	unsigned long before_length, after_length;
3888 	sector_t min_offset_diff = 0;
3889 	int first = 1;
3890 	struct geom new;
3891 	struct r10conf *conf = mddev->private;
3892 	struct md_rdev *rdev;
3893 	int spares = 0;
3894 	int ret;
3895 
3896 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3897 		return -EBUSY;
3898 
3899 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
3900 		return -EINVAL;
3901 
3902 	before_length = ((1 << conf->prev.chunk_shift) *
3903 			 conf->prev.far_copies);
3904 	after_length = ((1 << conf->geo.chunk_shift) *
3905 			conf->geo.far_copies);
3906 
3907 	rdev_for_each(rdev, mddev) {
3908 		if (!test_bit(In_sync, &rdev->flags)
3909 		    && !test_bit(Faulty, &rdev->flags))
3910 			spares++;
3911 		if (rdev->raid_disk >= 0) {
3912 			long long diff = (rdev->new_data_offset
3913 					  - rdev->data_offset);
3914 			if (!mddev->reshape_backwards)
3915 				diff = -diff;
3916 			if (diff < 0)
3917 				diff = 0;
3918 			if (first || diff < min_offset_diff)
3919 				min_offset_diff = diff;
3920 		}
3921 	}
3922 
3923 	if (max(before_length, after_length) > min_offset_diff)
3924 		return -EINVAL;
3925 
3926 	if (spares < mddev->delta_disks)
3927 		return -EINVAL;
3928 
3929 	conf->offset_diff = min_offset_diff;
3930 	spin_lock_irq(&conf->device_lock);
3931 	if (conf->mirrors_new) {
3932 		memcpy(conf->mirrors_new, conf->mirrors,
3933 		       sizeof(struct mirror_info)*conf->prev.raid_disks);
3934 		smp_mb();
3935 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
3936 		conf->mirrors_old = conf->mirrors;
3937 		conf->mirrors = conf->mirrors_new;
3938 		conf->mirrors_new = NULL;
3939 	}
3940 	setup_geo(&conf->geo, mddev, geo_start);
3941 	smp_mb();
3942 	if (mddev->reshape_backwards) {
3943 		sector_t size = raid10_size(mddev, 0, 0);
3944 		if (size < mddev->array_sectors) {
3945 			spin_unlock_irq(&conf->device_lock);
3946 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3947 			       mdname(mddev));
3948 			return -EINVAL;
3949 		}
3950 		mddev->resync_max_sectors = size;
3951 		conf->reshape_progress = size;
3952 	} else
3953 		conf->reshape_progress = 0;
3954 	spin_unlock_irq(&conf->device_lock);
3955 
3956 	if (mddev->delta_disks && mddev->bitmap) {
3957 		ret = bitmap_resize(mddev->bitmap,
3958 				    raid10_size(mddev, 0,
3959 						conf->geo.raid_disks),
3960 				    0, 0);
3961 		if (ret)
3962 			goto abort;
3963 	}
3964 	if (mddev->delta_disks > 0) {
3965 		rdev_for_each(rdev, mddev)
3966 			if (rdev->raid_disk < 0 &&
3967 			    !test_bit(Faulty, &rdev->flags)) {
3968 				if (raid10_add_disk(mddev, rdev) == 0) {
3969 					if (rdev->raid_disk >=
3970 					    conf->prev.raid_disks)
3971 						set_bit(In_sync, &rdev->flags);
3972 					else
3973 						rdev->recovery_offset = 0;
3974 
3975 					if (sysfs_link_rdev(mddev, rdev))
3976 						/* Failure here  is OK */;
3977 				}
3978 			} else if (rdev->raid_disk >= conf->prev.raid_disks
3979 				   && !test_bit(Faulty, &rdev->flags)) {
3980 				/* This is a spare that was manually added */
3981 				set_bit(In_sync, &rdev->flags);
3982 			}
3983 	}
3984 	/* When a reshape changes the number of devices,
3985 	 * ->degraded is measured against the larger of the
3986 	 * pre and  post numbers.
3987 	 */
3988 	spin_lock_irq(&conf->device_lock);
3989 	mddev->degraded = calc_degraded(conf);
3990 	spin_unlock_irq(&conf->device_lock);
3991 	mddev->raid_disks = conf->geo.raid_disks;
3992 	mddev->reshape_position = conf->reshape_progress;
3993 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3994 
3995 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3996 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3997 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3998 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3999 
4000 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4001 						"reshape");
4002 	if (!mddev->sync_thread) {
4003 		ret = -EAGAIN;
4004 		goto abort;
4005 	}
4006 	conf->reshape_checkpoint = jiffies;
4007 	md_wakeup_thread(mddev->sync_thread);
4008 	md_new_event(mddev);
4009 	return 0;
4010 
4011 abort:
4012 	mddev->recovery = 0;
4013 	spin_lock_irq(&conf->device_lock);
4014 	conf->geo = conf->prev;
4015 	mddev->raid_disks = conf->geo.raid_disks;
4016 	rdev_for_each(rdev, mddev)
4017 		rdev->new_data_offset = rdev->data_offset;
4018 	smp_wmb();
4019 	conf->reshape_progress = MaxSector;
4020 	mddev->reshape_position = MaxSector;
4021 	spin_unlock_irq(&conf->device_lock);
4022 	return ret;
4023 }
4024 
4025 /* Calculate the last device-address that could contain
4026  * any block from the chunk that includes the array-address 's'
4027  * and report the next address.
4028  * i.e. the address returned will be chunk-aligned and after
4029  * any data that is in the chunk containing 's'.
4030  */
4031 static sector_t last_dev_address(sector_t s, struct geom *geo)
4032 {
4033 	s = (s | geo->chunk_mask) + 1;
4034 	s >>= geo->chunk_shift;
4035 	s *= geo->near_copies;
4036 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4037 	s *= geo->far_copies;
4038 	s <<= geo->chunk_shift;
4039 	return s;
4040 }
4041 
4042 /* Calculate the first device-address that could contain
4043  * any block from the chunk that includes the array-address 's'.
4044  * This too will be the start of a chunk
4045  */
4046 static sector_t first_dev_address(sector_t s, struct geom *geo)
4047 {
4048 	s >>= geo->chunk_shift;
4049 	s *= geo->near_copies;
4050 	sector_div(s, geo->raid_disks);
4051 	s *= geo->far_copies;
4052 	s <<= geo->chunk_shift;
4053 	return s;
4054 }
4055 
4056 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4057 				int *skipped)
4058 {
4059 	/* We simply copy at most one chunk (smallest of old and new)
4060 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4061 	 * or we hit a bad block or something.
4062 	 * This might mean we pause for normal IO in the middle of
4063 	 * a chunk, but that is not a problem was mddev->reshape_position
4064 	 * can record any location.
4065 	 *
4066 	 * If we will want to write to a location that isn't
4067 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4068 	 * we need to flush all reshape requests and update the metadata.
4069 	 *
4070 	 * When reshaping forwards (e.g. to more devices), we interpret
4071 	 * 'safe' as the earliest block which might not have been copied
4072 	 * down yet.  We divide this by previous stripe size and multiply
4073 	 * by previous stripe length to get lowest device offset that we
4074 	 * cannot write to yet.
4075 	 * We interpret 'sector_nr' as an address that we want to write to.
4076 	 * From this we use last_device_address() to find where we might
4077 	 * write to, and first_device_address on the  'safe' position.
4078 	 * If this 'next' write position is after the 'safe' position,
4079 	 * we must update the metadata to increase the 'safe' position.
4080 	 *
4081 	 * When reshaping backwards, we round in the opposite direction
4082 	 * and perform the reverse test:  next write position must not be
4083 	 * less than current safe position.
4084 	 *
4085 	 * In all this the minimum difference in data offsets
4086 	 * (conf->offset_diff - always positive) allows a bit of slack,
4087 	 * so next can be after 'safe', but not by more than offset_disk
4088 	 *
4089 	 * We need to prepare all the bios here before we start any IO
4090 	 * to ensure the size we choose is acceptable to all devices.
4091 	 * The means one for each copy for write-out and an extra one for
4092 	 * read-in.
4093 	 * We store the read-in bio in ->master_bio and the others in
4094 	 * ->devs[x].bio and ->devs[x].repl_bio.
4095 	 */
4096 	struct r10conf *conf = mddev->private;
4097 	struct r10bio *r10_bio;
4098 	sector_t next, safe, last;
4099 	int max_sectors;
4100 	int nr_sectors;
4101 	int s;
4102 	struct md_rdev *rdev;
4103 	int need_flush = 0;
4104 	struct bio *blist;
4105 	struct bio *bio, *read_bio;
4106 	int sectors_done = 0;
4107 
4108 	if (sector_nr == 0) {
4109 		/* If restarting in the middle, skip the initial sectors */
4110 		if (mddev->reshape_backwards &&
4111 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4112 			sector_nr = (raid10_size(mddev, 0, 0)
4113 				     - conf->reshape_progress);
4114 		} else if (!mddev->reshape_backwards &&
4115 			   conf->reshape_progress > 0)
4116 			sector_nr = conf->reshape_progress;
4117 		if (sector_nr) {
4118 			mddev->curr_resync_completed = sector_nr;
4119 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4120 			*skipped = 1;
4121 			return sector_nr;
4122 		}
4123 	}
4124 
4125 	/* We don't use sector_nr to track where we are up to
4126 	 * as that doesn't work well for ->reshape_backwards.
4127 	 * So just use ->reshape_progress.
4128 	 */
4129 	if (mddev->reshape_backwards) {
4130 		/* 'next' is the earliest device address that we might
4131 		 * write to for this chunk in the new layout
4132 		 */
4133 		next = first_dev_address(conf->reshape_progress - 1,
4134 					 &conf->geo);
4135 
4136 		/* 'safe' is the last device address that we might read from
4137 		 * in the old layout after a restart
4138 		 */
4139 		safe = last_dev_address(conf->reshape_safe - 1,
4140 					&conf->prev);
4141 
4142 		if (next + conf->offset_diff < safe)
4143 			need_flush = 1;
4144 
4145 		last = conf->reshape_progress - 1;
4146 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4147 					       & conf->prev.chunk_mask);
4148 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4149 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4150 	} else {
4151 		/* 'next' is after the last device address that we
4152 		 * might write to for this chunk in the new layout
4153 		 */
4154 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4155 
4156 		/* 'safe' is the earliest device address that we might
4157 		 * read from in the old layout after a restart
4158 		 */
4159 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4160 
4161 		/* Need to update metadata if 'next' might be beyond 'safe'
4162 		 * as that would possibly corrupt data
4163 		 */
4164 		if (next > safe + conf->offset_diff)
4165 			need_flush = 1;
4166 
4167 		sector_nr = conf->reshape_progress;
4168 		last  = sector_nr | (conf->geo.chunk_mask
4169 				     & conf->prev.chunk_mask);
4170 
4171 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4172 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4173 	}
4174 
4175 	if (need_flush ||
4176 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4177 		/* Need to update reshape_position in metadata */
4178 		wait_barrier(conf);
4179 		mddev->reshape_position = conf->reshape_progress;
4180 		if (mddev->reshape_backwards)
4181 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4182 				- conf->reshape_progress;
4183 		else
4184 			mddev->curr_resync_completed = conf->reshape_progress;
4185 		conf->reshape_checkpoint = jiffies;
4186 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4187 		md_wakeup_thread(mddev->thread);
4188 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4189 			   kthread_should_stop());
4190 		conf->reshape_safe = mddev->reshape_position;
4191 		allow_barrier(conf);
4192 	}
4193 
4194 read_more:
4195 	/* Now schedule reads for blocks from sector_nr to last */
4196 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4197 	raise_barrier(conf, sectors_done != 0);
4198 	atomic_set(&r10_bio->remaining, 0);
4199 	r10_bio->mddev = mddev;
4200 	r10_bio->sector = sector_nr;
4201 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4202 	r10_bio->sectors = last - sector_nr + 1;
4203 	rdev = read_balance(conf, r10_bio, &max_sectors);
4204 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4205 
4206 	if (!rdev) {
4207 		/* Cannot read from here, so need to record bad blocks
4208 		 * on all the target devices.
4209 		 */
4210 		// FIXME
4211 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4212 		return sectors_done;
4213 	}
4214 
4215 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4216 
4217 	read_bio->bi_bdev = rdev->bdev;
4218 	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4219 			       + rdev->data_offset);
4220 	read_bio->bi_private = r10_bio;
4221 	read_bio->bi_end_io = end_sync_read;
4222 	read_bio->bi_rw = READ;
4223 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4224 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4225 	read_bio->bi_vcnt = 0;
4226 	read_bio->bi_idx = 0;
4227 	read_bio->bi_size = 0;
4228 	r10_bio->master_bio = read_bio;
4229 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4230 
4231 	/* Now find the locations in the new layout */
4232 	__raid10_find_phys(&conf->geo, r10_bio);
4233 
4234 	blist = read_bio;
4235 	read_bio->bi_next = NULL;
4236 
4237 	for (s = 0; s < conf->copies*2; s++) {
4238 		struct bio *b;
4239 		int d = r10_bio->devs[s/2].devnum;
4240 		struct md_rdev *rdev2;
4241 		if (s&1) {
4242 			rdev2 = conf->mirrors[d].replacement;
4243 			b = r10_bio->devs[s/2].repl_bio;
4244 		} else {
4245 			rdev2 = conf->mirrors[d].rdev;
4246 			b = r10_bio->devs[s/2].bio;
4247 		}
4248 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4249 			continue;
4250 		b->bi_bdev = rdev2->bdev;
4251 		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4252 		b->bi_private = r10_bio;
4253 		b->bi_end_io = end_reshape_write;
4254 		b->bi_rw = WRITE;
4255 		b->bi_flags &= ~(BIO_POOL_MASK - 1);
4256 		b->bi_flags |= 1 << BIO_UPTODATE;
4257 		b->bi_next = blist;
4258 		b->bi_vcnt = 0;
4259 		b->bi_idx = 0;
4260 		b->bi_size = 0;
4261 		blist = b;
4262 	}
4263 
4264 	/* Now add as many pages as possible to all of these bios. */
4265 
4266 	nr_sectors = 0;
4267 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4268 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4269 		int len = (max_sectors - s) << 9;
4270 		if (len > PAGE_SIZE)
4271 			len = PAGE_SIZE;
4272 		for (bio = blist; bio ; bio = bio->bi_next) {
4273 			struct bio *bio2;
4274 			if (bio_add_page(bio, page, len, 0))
4275 				continue;
4276 
4277 			/* Didn't fit, must stop */
4278 			for (bio2 = blist;
4279 			     bio2 && bio2 != bio;
4280 			     bio2 = bio2->bi_next) {
4281 				/* Remove last page from this bio */
4282 				bio2->bi_vcnt--;
4283 				bio2->bi_size -= len;
4284 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4285 			}
4286 			goto bio_full;
4287 		}
4288 		sector_nr += len >> 9;
4289 		nr_sectors += len >> 9;
4290 	}
4291 bio_full:
4292 	r10_bio->sectors = nr_sectors;
4293 
4294 	/* Now submit the read */
4295 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4296 	atomic_inc(&r10_bio->remaining);
4297 	read_bio->bi_next = NULL;
4298 	generic_make_request(read_bio);
4299 	sector_nr += nr_sectors;
4300 	sectors_done += nr_sectors;
4301 	if (sector_nr <= last)
4302 		goto read_more;
4303 
4304 	/* Now that we have done the whole section we can
4305 	 * update reshape_progress
4306 	 */
4307 	if (mddev->reshape_backwards)
4308 		conf->reshape_progress -= sectors_done;
4309 	else
4310 		conf->reshape_progress += sectors_done;
4311 
4312 	return sectors_done;
4313 }
4314 
4315 static void end_reshape_request(struct r10bio *r10_bio);
4316 static int handle_reshape_read_error(struct mddev *mddev,
4317 				     struct r10bio *r10_bio);
4318 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4319 {
4320 	/* Reshape read completed.  Hopefully we have a block
4321 	 * to write out.
4322 	 * If we got a read error then we do sync 1-page reads from
4323 	 * elsewhere until we find the data - or give up.
4324 	 */
4325 	struct r10conf *conf = mddev->private;
4326 	int s;
4327 
4328 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4329 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4330 			/* Reshape has been aborted */
4331 			md_done_sync(mddev, r10_bio->sectors, 0);
4332 			return;
4333 		}
4334 
4335 	/* We definitely have the data in the pages, schedule the
4336 	 * writes.
4337 	 */
4338 	atomic_set(&r10_bio->remaining, 1);
4339 	for (s = 0; s < conf->copies*2; s++) {
4340 		struct bio *b;
4341 		int d = r10_bio->devs[s/2].devnum;
4342 		struct md_rdev *rdev;
4343 		if (s&1) {
4344 			rdev = conf->mirrors[d].replacement;
4345 			b = r10_bio->devs[s/2].repl_bio;
4346 		} else {
4347 			rdev = conf->mirrors[d].rdev;
4348 			b = r10_bio->devs[s/2].bio;
4349 		}
4350 		if (!rdev || test_bit(Faulty, &rdev->flags))
4351 			continue;
4352 		atomic_inc(&rdev->nr_pending);
4353 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4354 		atomic_inc(&r10_bio->remaining);
4355 		b->bi_next = NULL;
4356 		generic_make_request(b);
4357 	}
4358 	end_reshape_request(r10_bio);
4359 }
4360 
4361 static void end_reshape(struct r10conf *conf)
4362 {
4363 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4364 		return;
4365 
4366 	spin_lock_irq(&conf->device_lock);
4367 	conf->prev = conf->geo;
4368 	md_finish_reshape(conf->mddev);
4369 	smp_wmb();
4370 	conf->reshape_progress = MaxSector;
4371 	spin_unlock_irq(&conf->device_lock);
4372 
4373 	/* read-ahead size must cover two whole stripes, which is
4374 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4375 	 */
4376 	if (conf->mddev->queue) {
4377 		int stripe = conf->geo.raid_disks *
4378 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4379 		stripe /= conf->geo.near_copies;
4380 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4381 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4382 	}
4383 	conf->fullsync = 0;
4384 }
4385 
4386 
4387 static int handle_reshape_read_error(struct mddev *mddev,
4388 				     struct r10bio *r10_bio)
4389 {
4390 	/* Use sync reads to get the blocks from somewhere else */
4391 	int sectors = r10_bio->sectors;
4392 	struct r10bio r10b;
4393 	struct r10conf *conf = mddev->private;
4394 	int slot = 0;
4395 	int idx = 0;
4396 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4397 
4398 	r10b.sector = r10_bio->sector;
4399 	__raid10_find_phys(&conf->prev, &r10b);
4400 
4401 	while (sectors) {
4402 		int s = sectors;
4403 		int success = 0;
4404 		int first_slot = slot;
4405 
4406 		if (s > (PAGE_SIZE >> 9))
4407 			s = PAGE_SIZE >> 9;
4408 
4409 		while (!success) {
4410 			int d = r10b.devs[slot].devnum;
4411 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4412 			sector_t addr;
4413 			if (rdev == NULL ||
4414 			    test_bit(Faulty, &rdev->flags) ||
4415 			    !test_bit(In_sync, &rdev->flags))
4416 				goto failed;
4417 
4418 			addr = r10b.devs[slot].addr + idx * PAGE_SIZE;
4419 			success = sync_page_io(rdev,
4420 					       addr,
4421 					       s << 9,
4422 					       bvec[idx].bv_page,
4423 					       READ, false);
4424 			if (success)
4425 				break;
4426 		failed:
4427 			slot++;
4428 			if (slot >= conf->copies)
4429 				slot = 0;
4430 			if (slot == first_slot)
4431 				break;
4432 		}
4433 		if (!success) {
4434 			/* couldn't read this block, must give up */
4435 			set_bit(MD_RECOVERY_INTR,
4436 				&mddev->recovery);
4437 			return -EIO;
4438 		}
4439 		sectors -= s;
4440 		idx++;
4441 	}
4442 	return 0;
4443 }
4444 
4445 static void end_reshape_write(struct bio *bio, int error)
4446 {
4447 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4448 	struct r10bio *r10_bio = bio->bi_private;
4449 	struct mddev *mddev = r10_bio->mddev;
4450 	struct r10conf *conf = mddev->private;
4451 	int d;
4452 	int slot;
4453 	int repl;
4454 	struct md_rdev *rdev = NULL;
4455 
4456 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4457 	if (repl)
4458 		rdev = conf->mirrors[d].replacement;
4459 	if (!rdev) {
4460 		smp_mb();
4461 		rdev = conf->mirrors[d].rdev;
4462 	}
4463 
4464 	if (!uptodate) {
4465 		/* FIXME should record badblock */
4466 		md_error(mddev, rdev);
4467 	}
4468 
4469 	rdev_dec_pending(rdev, mddev);
4470 	end_reshape_request(r10_bio);
4471 }
4472 
4473 static void end_reshape_request(struct r10bio *r10_bio)
4474 {
4475 	if (!atomic_dec_and_test(&r10_bio->remaining))
4476 		return;
4477 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4478 	bio_put(r10_bio->master_bio);
4479 	put_buf(r10_bio);
4480 }
4481 
4482 static void raid10_finish_reshape(struct mddev *mddev)
4483 {
4484 	struct r10conf *conf = mddev->private;
4485 
4486 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4487 		return;
4488 
4489 	if (mddev->delta_disks > 0) {
4490 		sector_t size = raid10_size(mddev, 0, 0);
4491 		md_set_array_sectors(mddev, size);
4492 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4493 			mddev->recovery_cp = mddev->resync_max_sectors;
4494 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4495 		}
4496 		mddev->resync_max_sectors = size;
4497 		set_capacity(mddev->gendisk, mddev->array_sectors);
4498 		revalidate_disk(mddev->gendisk);
4499 	} else {
4500 		int d;
4501 		for (d = conf->geo.raid_disks ;
4502 		     d < conf->geo.raid_disks - mddev->delta_disks;
4503 		     d++) {
4504 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4505 			if (rdev)
4506 				clear_bit(In_sync, &rdev->flags);
4507 			rdev = conf->mirrors[d].replacement;
4508 			if (rdev)
4509 				clear_bit(In_sync, &rdev->flags);
4510 		}
4511 	}
4512 	mddev->layout = mddev->new_layout;
4513 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4514 	mddev->reshape_position = MaxSector;
4515 	mddev->delta_disks = 0;
4516 	mddev->reshape_backwards = 0;
4517 }
4518 
4519 static struct md_personality raid10_personality =
4520 {
4521 	.name		= "raid10",
4522 	.level		= 10,
4523 	.owner		= THIS_MODULE,
4524 	.make_request	= make_request,
4525 	.run		= run,
4526 	.stop		= stop,
4527 	.status		= status,
4528 	.error_handler	= error,
4529 	.hot_add_disk	= raid10_add_disk,
4530 	.hot_remove_disk= raid10_remove_disk,
4531 	.spare_active	= raid10_spare_active,
4532 	.sync_request	= sync_request,
4533 	.quiesce	= raid10_quiesce,
4534 	.size		= raid10_size,
4535 	.resize		= raid10_resize,
4536 	.takeover	= raid10_takeover,
4537 	.check_reshape	= raid10_check_reshape,
4538 	.start_reshape	= raid10_start_reshape,
4539 	.finish_reshape	= raid10_finish_reshape,
4540 };
4541 
4542 static int __init raid_init(void)
4543 {
4544 	return register_md_personality(&raid10_personality);
4545 }
4546 
4547 static void raid_exit(void)
4548 {
4549 	unregister_md_personality(&raid10_personality);
4550 }
4551 
4552 module_init(raid_init);
4553 module_exit(raid_exit);
4554 MODULE_LICENSE("GPL");
4555 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4556 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4557 MODULE_ALIAS("md-raid10");
4558 MODULE_ALIAS("md-level-10");
4559 
4560 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4561