1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * 42 * The data to be stored is divided into chunks using chunksize. 43 * Each device is divided into far_copies sections. 44 * In each section, chunks are laid out in a style similar to raid0, but 45 * near_copies copies of each chunk is stored (each on a different drive). 46 * The starting device for each section is offset near_copies from the starting 47 * device of the previous section. 48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 49 * drive. 50 * near_copies and far_copies must be at least one, and their product is at most 51 * raid_disks. 52 * 53 * If far_offset is true, then the far_copies are handled a bit differently. 54 * The copies are still in different stripes, but instead of be very far apart 55 * on disk, there are adjacent stripes. 56 */ 57 58 /* 59 * Number of guaranteed r10bios in case of extreme VM load: 60 */ 61 #define NR_RAID10_BIOS 256 62 63 /* When there are this many requests queue to be written by 64 * the raid10 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r10conf *conf); 70 static void lower_barrier(struct r10conf *conf); 71 static int enough(struct r10conf *conf, int ignore); 72 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 73 int *skipped); 74 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 75 static void end_reshape_write(struct bio *bio, int error); 76 static void end_reshape(struct r10conf *conf); 77 78 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 79 { 80 struct r10conf *conf = data; 81 int size = offsetof(struct r10bio, devs[conf->copies]); 82 83 /* allocate a r10bio with room for raid_disks entries in the 84 * bios array */ 85 return kzalloc(size, gfp_flags); 86 } 87 88 static void r10bio_pool_free(void *r10_bio, void *data) 89 { 90 kfree(r10_bio); 91 } 92 93 /* Maximum size of each resync request */ 94 #define RESYNC_BLOCK_SIZE (64*1024) 95 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 96 /* amount of memory to reserve for resync requests */ 97 #define RESYNC_WINDOW (1024*1024) 98 /* maximum number of concurrent requests, memory permitting */ 99 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 100 101 /* 102 * When performing a resync, we need to read and compare, so 103 * we need as many pages are there are copies. 104 * When performing a recovery, we need 2 bios, one for read, 105 * one for write (we recover only one drive per r10buf) 106 * 107 */ 108 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 109 { 110 struct r10conf *conf = data; 111 struct page *page; 112 struct r10bio *r10_bio; 113 struct bio *bio; 114 int i, j; 115 int nalloc; 116 117 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 118 if (!r10_bio) 119 return NULL; 120 121 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 122 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 123 nalloc = conf->copies; /* resync */ 124 else 125 nalloc = 2; /* recovery */ 126 127 /* 128 * Allocate bios. 129 */ 130 for (j = nalloc ; j-- ; ) { 131 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 132 if (!bio) 133 goto out_free_bio; 134 r10_bio->devs[j].bio = bio; 135 if (!conf->have_replacement) 136 continue; 137 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 138 if (!bio) 139 goto out_free_bio; 140 r10_bio->devs[j].repl_bio = bio; 141 } 142 /* 143 * Allocate RESYNC_PAGES data pages and attach them 144 * where needed. 145 */ 146 for (j = 0 ; j < nalloc; j++) { 147 struct bio *rbio = r10_bio->devs[j].repl_bio; 148 bio = r10_bio->devs[j].bio; 149 for (i = 0; i < RESYNC_PAGES; i++) { 150 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 151 &conf->mddev->recovery)) { 152 /* we can share bv_page's during recovery 153 * and reshape */ 154 struct bio *rbio = r10_bio->devs[0].bio; 155 page = rbio->bi_io_vec[i].bv_page; 156 get_page(page); 157 } else 158 page = alloc_page(gfp_flags); 159 if (unlikely(!page)) 160 goto out_free_pages; 161 162 bio->bi_io_vec[i].bv_page = page; 163 if (rbio) 164 rbio->bi_io_vec[i].bv_page = page; 165 } 166 } 167 168 return r10_bio; 169 170 out_free_pages: 171 for ( ; i > 0 ; i--) 172 safe_put_page(bio->bi_io_vec[i-1].bv_page); 173 while (j--) 174 for (i = 0; i < RESYNC_PAGES ; i++) 175 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 176 j = 0; 177 out_free_bio: 178 for ( ; j < nalloc; j++) { 179 if (r10_bio->devs[j].bio) 180 bio_put(r10_bio->devs[j].bio); 181 if (r10_bio->devs[j].repl_bio) 182 bio_put(r10_bio->devs[j].repl_bio); 183 } 184 r10bio_pool_free(r10_bio, conf); 185 return NULL; 186 } 187 188 static void r10buf_pool_free(void *__r10_bio, void *data) 189 { 190 int i; 191 struct r10conf *conf = data; 192 struct r10bio *r10bio = __r10_bio; 193 int j; 194 195 for (j=0; j < conf->copies; j++) { 196 struct bio *bio = r10bio->devs[j].bio; 197 if (bio) { 198 for (i = 0; i < RESYNC_PAGES; i++) { 199 safe_put_page(bio->bi_io_vec[i].bv_page); 200 bio->bi_io_vec[i].bv_page = NULL; 201 } 202 bio_put(bio); 203 } 204 bio = r10bio->devs[j].repl_bio; 205 if (bio) 206 bio_put(bio); 207 } 208 r10bio_pool_free(r10bio, conf); 209 } 210 211 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 212 { 213 int i; 214 215 for (i = 0; i < conf->copies; i++) { 216 struct bio **bio = & r10_bio->devs[i].bio; 217 if (!BIO_SPECIAL(*bio)) 218 bio_put(*bio); 219 *bio = NULL; 220 bio = &r10_bio->devs[i].repl_bio; 221 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 222 bio_put(*bio); 223 *bio = NULL; 224 } 225 } 226 227 static void free_r10bio(struct r10bio *r10_bio) 228 { 229 struct r10conf *conf = r10_bio->mddev->private; 230 231 put_all_bios(conf, r10_bio); 232 mempool_free(r10_bio, conf->r10bio_pool); 233 } 234 235 static void put_buf(struct r10bio *r10_bio) 236 { 237 struct r10conf *conf = r10_bio->mddev->private; 238 239 mempool_free(r10_bio, conf->r10buf_pool); 240 241 lower_barrier(conf); 242 } 243 244 static void reschedule_retry(struct r10bio *r10_bio) 245 { 246 unsigned long flags; 247 struct mddev *mddev = r10_bio->mddev; 248 struct r10conf *conf = mddev->private; 249 250 spin_lock_irqsave(&conf->device_lock, flags); 251 list_add(&r10_bio->retry_list, &conf->retry_list); 252 conf->nr_queued ++; 253 spin_unlock_irqrestore(&conf->device_lock, flags); 254 255 /* wake up frozen array... */ 256 wake_up(&conf->wait_barrier); 257 258 md_wakeup_thread(mddev->thread); 259 } 260 261 /* 262 * raid_end_bio_io() is called when we have finished servicing a mirrored 263 * operation and are ready to return a success/failure code to the buffer 264 * cache layer. 265 */ 266 static void raid_end_bio_io(struct r10bio *r10_bio) 267 { 268 struct bio *bio = r10_bio->master_bio; 269 int done; 270 struct r10conf *conf = r10_bio->mddev->private; 271 272 if (bio->bi_phys_segments) { 273 unsigned long flags; 274 spin_lock_irqsave(&conf->device_lock, flags); 275 bio->bi_phys_segments--; 276 done = (bio->bi_phys_segments == 0); 277 spin_unlock_irqrestore(&conf->device_lock, flags); 278 } else 279 done = 1; 280 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 281 clear_bit(BIO_UPTODATE, &bio->bi_flags); 282 if (done) { 283 bio_endio(bio, 0); 284 /* 285 * Wake up any possible resync thread that waits for the device 286 * to go idle. 287 */ 288 allow_barrier(conf); 289 } 290 free_r10bio(r10_bio); 291 } 292 293 /* 294 * Update disk head position estimator based on IRQ completion info. 295 */ 296 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 297 { 298 struct r10conf *conf = r10_bio->mddev->private; 299 300 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 301 r10_bio->devs[slot].addr + (r10_bio->sectors); 302 } 303 304 /* 305 * Find the disk number which triggered given bio 306 */ 307 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 308 struct bio *bio, int *slotp, int *replp) 309 { 310 int slot; 311 int repl = 0; 312 313 for (slot = 0; slot < conf->copies; slot++) { 314 if (r10_bio->devs[slot].bio == bio) 315 break; 316 if (r10_bio->devs[slot].repl_bio == bio) { 317 repl = 1; 318 break; 319 } 320 } 321 322 BUG_ON(slot == conf->copies); 323 update_head_pos(slot, r10_bio); 324 325 if (slotp) 326 *slotp = slot; 327 if (replp) 328 *replp = repl; 329 return r10_bio->devs[slot].devnum; 330 } 331 332 static void raid10_end_read_request(struct bio *bio, int error) 333 { 334 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 335 struct r10bio *r10_bio = bio->bi_private; 336 int slot, dev; 337 struct md_rdev *rdev; 338 struct r10conf *conf = r10_bio->mddev->private; 339 340 341 slot = r10_bio->read_slot; 342 dev = r10_bio->devs[slot].devnum; 343 rdev = r10_bio->devs[slot].rdev; 344 /* 345 * this branch is our 'one mirror IO has finished' event handler: 346 */ 347 update_head_pos(slot, r10_bio); 348 349 if (uptodate) { 350 /* 351 * Set R10BIO_Uptodate in our master bio, so that 352 * we will return a good error code to the higher 353 * levels even if IO on some other mirrored buffer fails. 354 * 355 * The 'master' represents the composite IO operation to 356 * user-side. So if something waits for IO, then it will 357 * wait for the 'master' bio. 358 */ 359 set_bit(R10BIO_Uptodate, &r10_bio->state); 360 } else { 361 /* If all other devices that store this block have 362 * failed, we want to return the error upwards rather 363 * than fail the last device. Here we redefine 364 * "uptodate" to mean "Don't want to retry" 365 */ 366 unsigned long flags; 367 spin_lock_irqsave(&conf->device_lock, flags); 368 if (!enough(conf, rdev->raid_disk)) 369 uptodate = 1; 370 spin_unlock_irqrestore(&conf->device_lock, flags); 371 } 372 if (uptodate) { 373 raid_end_bio_io(r10_bio); 374 rdev_dec_pending(rdev, conf->mddev); 375 } else { 376 /* 377 * oops, read error - keep the refcount on the rdev 378 */ 379 char b[BDEVNAME_SIZE]; 380 printk_ratelimited(KERN_ERR 381 "md/raid10:%s: %s: rescheduling sector %llu\n", 382 mdname(conf->mddev), 383 bdevname(rdev->bdev, b), 384 (unsigned long long)r10_bio->sector); 385 set_bit(R10BIO_ReadError, &r10_bio->state); 386 reschedule_retry(r10_bio); 387 } 388 } 389 390 static void close_write(struct r10bio *r10_bio) 391 { 392 /* clear the bitmap if all writes complete successfully */ 393 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 394 r10_bio->sectors, 395 !test_bit(R10BIO_Degraded, &r10_bio->state), 396 0); 397 md_write_end(r10_bio->mddev); 398 } 399 400 static void one_write_done(struct r10bio *r10_bio) 401 { 402 if (atomic_dec_and_test(&r10_bio->remaining)) { 403 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 404 reschedule_retry(r10_bio); 405 else { 406 close_write(r10_bio); 407 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 408 reschedule_retry(r10_bio); 409 else 410 raid_end_bio_io(r10_bio); 411 } 412 } 413 } 414 415 static void raid10_end_write_request(struct bio *bio, int error) 416 { 417 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 418 struct r10bio *r10_bio = bio->bi_private; 419 int dev; 420 int dec_rdev = 1; 421 struct r10conf *conf = r10_bio->mddev->private; 422 int slot, repl; 423 struct md_rdev *rdev = NULL; 424 425 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 426 427 if (repl) 428 rdev = conf->mirrors[dev].replacement; 429 if (!rdev) { 430 smp_rmb(); 431 repl = 0; 432 rdev = conf->mirrors[dev].rdev; 433 } 434 /* 435 * this branch is our 'one mirror IO has finished' event handler: 436 */ 437 if (!uptodate) { 438 if (repl) 439 /* Never record new bad blocks to replacement, 440 * just fail it. 441 */ 442 md_error(rdev->mddev, rdev); 443 else { 444 set_bit(WriteErrorSeen, &rdev->flags); 445 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 446 set_bit(MD_RECOVERY_NEEDED, 447 &rdev->mddev->recovery); 448 set_bit(R10BIO_WriteError, &r10_bio->state); 449 dec_rdev = 0; 450 } 451 } else { 452 /* 453 * Set R10BIO_Uptodate in our master bio, so that 454 * we will return a good error code for to the higher 455 * levels even if IO on some other mirrored buffer fails. 456 * 457 * The 'master' represents the composite IO operation to 458 * user-side. So if something waits for IO, then it will 459 * wait for the 'master' bio. 460 */ 461 sector_t first_bad; 462 int bad_sectors; 463 464 set_bit(R10BIO_Uptodate, &r10_bio->state); 465 466 /* Maybe we can clear some bad blocks. */ 467 if (is_badblock(rdev, 468 r10_bio->devs[slot].addr, 469 r10_bio->sectors, 470 &first_bad, &bad_sectors)) { 471 bio_put(bio); 472 if (repl) 473 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 474 else 475 r10_bio->devs[slot].bio = IO_MADE_GOOD; 476 dec_rdev = 0; 477 set_bit(R10BIO_MadeGood, &r10_bio->state); 478 } 479 } 480 481 /* 482 * 483 * Let's see if all mirrored write operations have finished 484 * already. 485 */ 486 one_write_done(r10_bio); 487 if (dec_rdev) 488 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 489 } 490 491 /* 492 * RAID10 layout manager 493 * As well as the chunksize and raid_disks count, there are two 494 * parameters: near_copies and far_copies. 495 * near_copies * far_copies must be <= raid_disks. 496 * Normally one of these will be 1. 497 * If both are 1, we get raid0. 498 * If near_copies == raid_disks, we get raid1. 499 * 500 * Chunks are laid out in raid0 style with near_copies copies of the 501 * first chunk, followed by near_copies copies of the next chunk and 502 * so on. 503 * If far_copies > 1, then after 1/far_copies of the array has been assigned 504 * as described above, we start again with a device offset of near_copies. 505 * So we effectively have another copy of the whole array further down all 506 * the drives, but with blocks on different drives. 507 * With this layout, and block is never stored twice on the one device. 508 * 509 * raid10_find_phys finds the sector offset of a given virtual sector 510 * on each device that it is on. 511 * 512 * raid10_find_virt does the reverse mapping, from a device and a 513 * sector offset to a virtual address 514 */ 515 516 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 517 { 518 int n,f; 519 sector_t sector; 520 sector_t chunk; 521 sector_t stripe; 522 int dev; 523 int slot = 0; 524 525 /* now calculate first sector/dev */ 526 chunk = r10bio->sector >> geo->chunk_shift; 527 sector = r10bio->sector & geo->chunk_mask; 528 529 chunk *= geo->near_copies; 530 stripe = chunk; 531 dev = sector_div(stripe, geo->raid_disks); 532 if (geo->far_offset) 533 stripe *= geo->far_copies; 534 535 sector += stripe << geo->chunk_shift; 536 537 /* and calculate all the others */ 538 for (n = 0; n < geo->near_copies; n++) { 539 int d = dev; 540 sector_t s = sector; 541 r10bio->devs[slot].addr = sector; 542 r10bio->devs[slot].devnum = d; 543 slot++; 544 545 for (f = 1; f < geo->far_copies; f++) { 546 d += geo->near_copies; 547 if (d >= geo->raid_disks) 548 d -= geo->raid_disks; 549 s += geo->stride; 550 r10bio->devs[slot].devnum = d; 551 r10bio->devs[slot].addr = s; 552 slot++; 553 } 554 dev++; 555 if (dev >= geo->raid_disks) { 556 dev = 0; 557 sector += (geo->chunk_mask + 1); 558 } 559 } 560 } 561 562 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 563 { 564 struct geom *geo = &conf->geo; 565 566 if (conf->reshape_progress != MaxSector && 567 ((r10bio->sector >= conf->reshape_progress) != 568 conf->mddev->reshape_backwards)) { 569 set_bit(R10BIO_Previous, &r10bio->state); 570 geo = &conf->prev; 571 } else 572 clear_bit(R10BIO_Previous, &r10bio->state); 573 574 __raid10_find_phys(geo, r10bio); 575 } 576 577 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 578 { 579 sector_t offset, chunk, vchunk; 580 /* Never use conf->prev as this is only called during resync 581 * or recovery, so reshape isn't happening 582 */ 583 struct geom *geo = &conf->geo; 584 585 offset = sector & geo->chunk_mask; 586 if (geo->far_offset) { 587 int fc; 588 chunk = sector >> geo->chunk_shift; 589 fc = sector_div(chunk, geo->far_copies); 590 dev -= fc * geo->near_copies; 591 if (dev < 0) 592 dev += geo->raid_disks; 593 } else { 594 while (sector >= geo->stride) { 595 sector -= geo->stride; 596 if (dev < geo->near_copies) 597 dev += geo->raid_disks - geo->near_copies; 598 else 599 dev -= geo->near_copies; 600 } 601 chunk = sector >> geo->chunk_shift; 602 } 603 vchunk = chunk * geo->raid_disks + dev; 604 sector_div(vchunk, geo->near_copies); 605 return (vchunk << geo->chunk_shift) + offset; 606 } 607 608 /** 609 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 610 * @q: request queue 611 * @bvm: properties of new bio 612 * @biovec: the request that could be merged to it. 613 * 614 * Return amount of bytes we can accept at this offset 615 * This requires checking for end-of-chunk if near_copies != raid_disks, 616 * and for subordinate merge_bvec_fns if merge_check_needed. 617 */ 618 static int raid10_mergeable_bvec(struct request_queue *q, 619 struct bvec_merge_data *bvm, 620 struct bio_vec *biovec) 621 { 622 struct mddev *mddev = q->queuedata; 623 struct r10conf *conf = mddev->private; 624 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 625 int max; 626 unsigned int chunk_sectors; 627 unsigned int bio_sectors = bvm->bi_size >> 9; 628 struct geom *geo = &conf->geo; 629 630 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 631 if (conf->reshape_progress != MaxSector && 632 ((sector >= conf->reshape_progress) != 633 conf->mddev->reshape_backwards)) 634 geo = &conf->prev; 635 636 if (geo->near_copies < geo->raid_disks) { 637 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 638 + bio_sectors)) << 9; 639 if (max < 0) 640 /* bio_add cannot handle a negative return */ 641 max = 0; 642 if (max <= biovec->bv_len && bio_sectors == 0) 643 return biovec->bv_len; 644 } else 645 max = biovec->bv_len; 646 647 if (mddev->merge_check_needed) { 648 struct r10bio r10_bio; 649 int s; 650 if (conf->reshape_progress != MaxSector) { 651 /* Cannot give any guidance during reshape */ 652 if (max <= biovec->bv_len && bio_sectors == 0) 653 return biovec->bv_len; 654 return 0; 655 } 656 r10_bio.sector = sector; 657 raid10_find_phys(conf, &r10_bio); 658 rcu_read_lock(); 659 for (s = 0; s < conf->copies; s++) { 660 int disk = r10_bio.devs[s].devnum; 661 struct md_rdev *rdev = rcu_dereference( 662 conf->mirrors[disk].rdev); 663 if (rdev && !test_bit(Faulty, &rdev->flags)) { 664 struct request_queue *q = 665 bdev_get_queue(rdev->bdev); 666 if (q->merge_bvec_fn) { 667 bvm->bi_sector = r10_bio.devs[s].addr 668 + rdev->data_offset; 669 bvm->bi_bdev = rdev->bdev; 670 max = min(max, q->merge_bvec_fn( 671 q, bvm, biovec)); 672 } 673 } 674 rdev = rcu_dereference(conf->mirrors[disk].replacement); 675 if (rdev && !test_bit(Faulty, &rdev->flags)) { 676 struct request_queue *q = 677 bdev_get_queue(rdev->bdev); 678 if (q->merge_bvec_fn) { 679 bvm->bi_sector = r10_bio.devs[s].addr 680 + rdev->data_offset; 681 bvm->bi_bdev = rdev->bdev; 682 max = min(max, q->merge_bvec_fn( 683 q, bvm, biovec)); 684 } 685 } 686 } 687 rcu_read_unlock(); 688 } 689 return max; 690 } 691 692 /* 693 * This routine returns the disk from which the requested read should 694 * be done. There is a per-array 'next expected sequential IO' sector 695 * number - if this matches on the next IO then we use the last disk. 696 * There is also a per-disk 'last know head position' sector that is 697 * maintained from IRQ contexts, both the normal and the resync IO 698 * completion handlers update this position correctly. If there is no 699 * perfect sequential match then we pick the disk whose head is closest. 700 * 701 * If there are 2 mirrors in the same 2 devices, performance degrades 702 * because position is mirror, not device based. 703 * 704 * The rdev for the device selected will have nr_pending incremented. 705 */ 706 707 /* 708 * FIXME: possibly should rethink readbalancing and do it differently 709 * depending on near_copies / far_copies geometry. 710 */ 711 static struct md_rdev *read_balance(struct r10conf *conf, 712 struct r10bio *r10_bio, 713 int *max_sectors) 714 { 715 const sector_t this_sector = r10_bio->sector; 716 int disk, slot; 717 int sectors = r10_bio->sectors; 718 int best_good_sectors; 719 sector_t new_distance, best_dist; 720 struct md_rdev *rdev, *best_rdev; 721 int do_balance; 722 int best_slot; 723 struct geom *geo = &conf->geo; 724 725 raid10_find_phys(conf, r10_bio); 726 rcu_read_lock(); 727 retry: 728 sectors = r10_bio->sectors; 729 best_slot = -1; 730 best_rdev = NULL; 731 best_dist = MaxSector; 732 best_good_sectors = 0; 733 do_balance = 1; 734 /* 735 * Check if we can balance. We can balance on the whole 736 * device if no resync is going on (recovery is ok), or below 737 * the resync window. We take the first readable disk when 738 * above the resync window. 739 */ 740 if (conf->mddev->recovery_cp < MaxSector 741 && (this_sector + sectors >= conf->next_resync)) 742 do_balance = 0; 743 744 for (slot = 0; slot < conf->copies ; slot++) { 745 sector_t first_bad; 746 int bad_sectors; 747 sector_t dev_sector; 748 749 if (r10_bio->devs[slot].bio == IO_BLOCKED) 750 continue; 751 disk = r10_bio->devs[slot].devnum; 752 rdev = rcu_dereference(conf->mirrors[disk].replacement); 753 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 754 test_bit(Unmerged, &rdev->flags) || 755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 756 rdev = rcu_dereference(conf->mirrors[disk].rdev); 757 if (rdev == NULL || 758 test_bit(Faulty, &rdev->flags) || 759 test_bit(Unmerged, &rdev->flags)) 760 continue; 761 if (!test_bit(In_sync, &rdev->flags) && 762 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 763 continue; 764 765 dev_sector = r10_bio->devs[slot].addr; 766 if (is_badblock(rdev, dev_sector, sectors, 767 &first_bad, &bad_sectors)) { 768 if (best_dist < MaxSector) 769 /* Already have a better slot */ 770 continue; 771 if (first_bad <= dev_sector) { 772 /* Cannot read here. If this is the 773 * 'primary' device, then we must not read 774 * beyond 'bad_sectors' from another device. 775 */ 776 bad_sectors -= (dev_sector - first_bad); 777 if (!do_balance && sectors > bad_sectors) 778 sectors = bad_sectors; 779 if (best_good_sectors > sectors) 780 best_good_sectors = sectors; 781 } else { 782 sector_t good_sectors = 783 first_bad - dev_sector; 784 if (good_sectors > best_good_sectors) { 785 best_good_sectors = good_sectors; 786 best_slot = slot; 787 best_rdev = rdev; 788 } 789 if (!do_balance) 790 /* Must read from here */ 791 break; 792 } 793 continue; 794 } else 795 best_good_sectors = sectors; 796 797 if (!do_balance) 798 break; 799 800 /* This optimisation is debatable, and completely destroys 801 * sequential read speed for 'far copies' arrays. So only 802 * keep it for 'near' arrays, and review those later. 803 */ 804 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 805 break; 806 807 /* for far > 1 always use the lowest address */ 808 if (geo->far_copies > 1) 809 new_distance = r10_bio->devs[slot].addr; 810 else 811 new_distance = abs(r10_bio->devs[slot].addr - 812 conf->mirrors[disk].head_position); 813 if (new_distance < best_dist) { 814 best_dist = new_distance; 815 best_slot = slot; 816 best_rdev = rdev; 817 } 818 } 819 if (slot >= conf->copies) { 820 slot = best_slot; 821 rdev = best_rdev; 822 } 823 824 if (slot >= 0) { 825 atomic_inc(&rdev->nr_pending); 826 if (test_bit(Faulty, &rdev->flags)) { 827 /* Cannot risk returning a device that failed 828 * before we inc'ed nr_pending 829 */ 830 rdev_dec_pending(rdev, conf->mddev); 831 goto retry; 832 } 833 r10_bio->read_slot = slot; 834 } else 835 rdev = NULL; 836 rcu_read_unlock(); 837 *max_sectors = best_good_sectors; 838 839 return rdev; 840 } 841 842 static int raid10_congested(void *data, int bits) 843 { 844 struct mddev *mddev = data; 845 struct r10conf *conf = mddev->private; 846 int i, ret = 0; 847 848 if ((bits & (1 << BDI_async_congested)) && 849 conf->pending_count >= max_queued_requests) 850 return 1; 851 852 if (mddev_congested(mddev, bits)) 853 return 1; 854 rcu_read_lock(); 855 for (i = 0; 856 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 857 && ret == 0; 858 i++) { 859 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 860 if (rdev && !test_bit(Faulty, &rdev->flags)) { 861 struct request_queue *q = bdev_get_queue(rdev->bdev); 862 863 ret |= bdi_congested(&q->backing_dev_info, bits); 864 } 865 } 866 rcu_read_unlock(); 867 return ret; 868 } 869 870 static void flush_pending_writes(struct r10conf *conf) 871 { 872 /* Any writes that have been queued but are awaiting 873 * bitmap updates get flushed here. 874 */ 875 spin_lock_irq(&conf->device_lock); 876 877 if (conf->pending_bio_list.head) { 878 struct bio *bio; 879 bio = bio_list_get(&conf->pending_bio_list); 880 conf->pending_count = 0; 881 spin_unlock_irq(&conf->device_lock); 882 /* flush any pending bitmap writes to disk 883 * before proceeding w/ I/O */ 884 bitmap_unplug(conf->mddev->bitmap); 885 wake_up(&conf->wait_barrier); 886 887 while (bio) { /* submit pending writes */ 888 struct bio *next = bio->bi_next; 889 bio->bi_next = NULL; 890 generic_make_request(bio); 891 bio = next; 892 } 893 } else 894 spin_unlock_irq(&conf->device_lock); 895 } 896 897 /* Barriers.... 898 * Sometimes we need to suspend IO while we do something else, 899 * either some resync/recovery, or reconfigure the array. 900 * To do this we raise a 'barrier'. 901 * The 'barrier' is a counter that can be raised multiple times 902 * to count how many activities are happening which preclude 903 * normal IO. 904 * We can only raise the barrier if there is no pending IO. 905 * i.e. if nr_pending == 0. 906 * We choose only to raise the barrier if no-one is waiting for the 907 * barrier to go down. This means that as soon as an IO request 908 * is ready, no other operations which require a barrier will start 909 * until the IO request has had a chance. 910 * 911 * So: regular IO calls 'wait_barrier'. When that returns there 912 * is no backgroup IO happening, It must arrange to call 913 * allow_barrier when it has finished its IO. 914 * backgroup IO calls must call raise_barrier. Once that returns 915 * there is no normal IO happeing. It must arrange to call 916 * lower_barrier when the particular background IO completes. 917 */ 918 919 static void raise_barrier(struct r10conf *conf, int force) 920 { 921 BUG_ON(force && !conf->barrier); 922 spin_lock_irq(&conf->resync_lock); 923 924 /* Wait until no block IO is waiting (unless 'force') */ 925 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 926 conf->resync_lock, ); 927 928 /* block any new IO from starting */ 929 conf->barrier++; 930 931 /* Now wait for all pending IO to complete */ 932 wait_event_lock_irq(conf->wait_barrier, 933 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 934 conf->resync_lock, ); 935 936 spin_unlock_irq(&conf->resync_lock); 937 } 938 939 static void lower_barrier(struct r10conf *conf) 940 { 941 unsigned long flags; 942 spin_lock_irqsave(&conf->resync_lock, flags); 943 conf->barrier--; 944 spin_unlock_irqrestore(&conf->resync_lock, flags); 945 wake_up(&conf->wait_barrier); 946 } 947 948 static void wait_barrier(struct r10conf *conf) 949 { 950 spin_lock_irq(&conf->resync_lock); 951 if (conf->barrier) { 952 conf->nr_waiting++; 953 /* Wait for the barrier to drop. 954 * However if there are already pending 955 * requests (preventing the barrier from 956 * rising completely), and the 957 * pre-process bio queue isn't empty, 958 * then don't wait, as we need to empty 959 * that queue to get the nr_pending 960 * count down. 961 */ 962 wait_event_lock_irq(conf->wait_barrier, 963 !conf->barrier || 964 (conf->nr_pending && 965 current->bio_list && 966 !bio_list_empty(current->bio_list)), 967 conf->resync_lock, 968 ); 969 conf->nr_waiting--; 970 } 971 conf->nr_pending++; 972 spin_unlock_irq(&conf->resync_lock); 973 } 974 975 static void allow_barrier(struct r10conf *conf) 976 { 977 unsigned long flags; 978 spin_lock_irqsave(&conf->resync_lock, flags); 979 conf->nr_pending--; 980 spin_unlock_irqrestore(&conf->resync_lock, flags); 981 wake_up(&conf->wait_barrier); 982 } 983 984 static void freeze_array(struct r10conf *conf) 985 { 986 /* stop syncio and normal IO and wait for everything to 987 * go quiet. 988 * We increment barrier and nr_waiting, and then 989 * wait until nr_pending match nr_queued+1 990 * This is called in the context of one normal IO request 991 * that has failed. Thus any sync request that might be pending 992 * will be blocked by nr_pending, and we need to wait for 993 * pending IO requests to complete or be queued for re-try. 994 * Thus the number queued (nr_queued) plus this request (1) 995 * must match the number of pending IOs (nr_pending) before 996 * we continue. 997 */ 998 spin_lock_irq(&conf->resync_lock); 999 conf->barrier++; 1000 conf->nr_waiting++; 1001 wait_event_lock_irq(conf->wait_barrier, 1002 conf->nr_pending == conf->nr_queued+1, 1003 conf->resync_lock, 1004 flush_pending_writes(conf)); 1005 1006 spin_unlock_irq(&conf->resync_lock); 1007 } 1008 1009 static void unfreeze_array(struct r10conf *conf) 1010 { 1011 /* reverse the effect of the freeze */ 1012 spin_lock_irq(&conf->resync_lock); 1013 conf->barrier--; 1014 conf->nr_waiting--; 1015 wake_up(&conf->wait_barrier); 1016 spin_unlock_irq(&conf->resync_lock); 1017 } 1018 1019 static sector_t choose_data_offset(struct r10bio *r10_bio, 1020 struct md_rdev *rdev) 1021 { 1022 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1023 test_bit(R10BIO_Previous, &r10_bio->state)) 1024 return rdev->data_offset; 1025 else 1026 return rdev->new_data_offset; 1027 } 1028 1029 static void make_request(struct mddev *mddev, struct bio * bio) 1030 { 1031 struct r10conf *conf = mddev->private; 1032 struct r10bio *r10_bio; 1033 struct bio *read_bio; 1034 int i; 1035 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1036 int chunk_sects = chunk_mask + 1; 1037 const int rw = bio_data_dir(bio); 1038 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1039 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1040 unsigned long flags; 1041 struct md_rdev *blocked_rdev; 1042 int sectors_handled; 1043 int max_sectors; 1044 int sectors; 1045 1046 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1047 md_flush_request(mddev, bio); 1048 return; 1049 } 1050 1051 /* If this request crosses a chunk boundary, we need to 1052 * split it. This will only happen for 1 PAGE (or less) requests. 1053 */ 1054 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9) 1055 > chunk_sects 1056 && (conf->geo.near_copies < conf->geo.raid_disks 1057 || conf->prev.near_copies < conf->prev.raid_disks))) { 1058 struct bio_pair *bp; 1059 /* Sanity check -- queue functions should prevent this happening */ 1060 if (bio->bi_vcnt != 1 || 1061 bio->bi_idx != 0) 1062 goto bad_map; 1063 /* This is a one page bio that upper layers 1064 * refuse to split for us, so we need to split it. 1065 */ 1066 bp = bio_split(bio, 1067 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1068 1069 /* Each of these 'make_request' calls will call 'wait_barrier'. 1070 * If the first succeeds but the second blocks due to the resync 1071 * thread raising the barrier, we will deadlock because the 1072 * IO to the underlying device will be queued in generic_make_request 1073 * and will never complete, so will never reduce nr_pending. 1074 * So increment nr_waiting here so no new raise_barriers will 1075 * succeed, and so the second wait_barrier cannot block. 1076 */ 1077 spin_lock_irq(&conf->resync_lock); 1078 conf->nr_waiting++; 1079 spin_unlock_irq(&conf->resync_lock); 1080 1081 make_request(mddev, &bp->bio1); 1082 make_request(mddev, &bp->bio2); 1083 1084 spin_lock_irq(&conf->resync_lock); 1085 conf->nr_waiting--; 1086 wake_up(&conf->wait_barrier); 1087 spin_unlock_irq(&conf->resync_lock); 1088 1089 bio_pair_release(bp); 1090 return; 1091 bad_map: 1092 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1093 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1094 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 1095 1096 bio_io_error(bio); 1097 return; 1098 } 1099 1100 md_write_start(mddev, bio); 1101 1102 /* 1103 * Register the new request and wait if the reconstruction 1104 * thread has put up a bar for new requests. 1105 * Continue immediately if no resync is active currently. 1106 */ 1107 wait_barrier(conf); 1108 1109 sectors = bio->bi_size >> 9; 1110 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1111 bio->bi_sector < conf->reshape_progress && 1112 bio->bi_sector + sectors > conf->reshape_progress) { 1113 /* IO spans the reshape position. Need to wait for 1114 * reshape to pass 1115 */ 1116 allow_barrier(conf); 1117 wait_event(conf->wait_barrier, 1118 conf->reshape_progress <= bio->bi_sector || 1119 conf->reshape_progress >= bio->bi_sector + sectors); 1120 wait_barrier(conf); 1121 } 1122 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1123 bio_data_dir(bio) == WRITE && 1124 (mddev->reshape_backwards 1125 ? (bio->bi_sector < conf->reshape_safe && 1126 bio->bi_sector + sectors > conf->reshape_progress) 1127 : (bio->bi_sector + sectors > conf->reshape_safe && 1128 bio->bi_sector < conf->reshape_progress))) { 1129 /* Need to update reshape_position in metadata */ 1130 mddev->reshape_position = conf->reshape_progress; 1131 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1132 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1133 md_wakeup_thread(mddev->thread); 1134 wait_event(mddev->sb_wait, 1135 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1136 1137 conf->reshape_safe = mddev->reshape_position; 1138 } 1139 1140 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1141 1142 r10_bio->master_bio = bio; 1143 r10_bio->sectors = sectors; 1144 1145 r10_bio->mddev = mddev; 1146 r10_bio->sector = bio->bi_sector; 1147 r10_bio->state = 0; 1148 1149 /* We might need to issue multiple reads to different 1150 * devices if there are bad blocks around, so we keep 1151 * track of the number of reads in bio->bi_phys_segments. 1152 * If this is 0, there is only one r10_bio and no locking 1153 * will be needed when the request completes. If it is 1154 * non-zero, then it is the number of not-completed requests. 1155 */ 1156 bio->bi_phys_segments = 0; 1157 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1158 1159 if (rw == READ) { 1160 /* 1161 * read balancing logic: 1162 */ 1163 struct md_rdev *rdev; 1164 int slot; 1165 1166 read_again: 1167 rdev = read_balance(conf, r10_bio, &max_sectors); 1168 if (!rdev) { 1169 raid_end_bio_io(r10_bio); 1170 return; 1171 } 1172 slot = r10_bio->read_slot; 1173 1174 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1175 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1176 max_sectors); 1177 1178 r10_bio->devs[slot].bio = read_bio; 1179 r10_bio->devs[slot].rdev = rdev; 1180 1181 read_bio->bi_sector = r10_bio->devs[slot].addr + 1182 choose_data_offset(r10_bio, rdev); 1183 read_bio->bi_bdev = rdev->bdev; 1184 read_bio->bi_end_io = raid10_end_read_request; 1185 read_bio->bi_rw = READ | do_sync; 1186 read_bio->bi_private = r10_bio; 1187 1188 if (max_sectors < r10_bio->sectors) { 1189 /* Could not read all from this device, so we will 1190 * need another r10_bio. 1191 */ 1192 sectors_handled = (r10_bio->sectors + max_sectors 1193 - bio->bi_sector); 1194 r10_bio->sectors = max_sectors; 1195 spin_lock_irq(&conf->device_lock); 1196 if (bio->bi_phys_segments == 0) 1197 bio->bi_phys_segments = 2; 1198 else 1199 bio->bi_phys_segments++; 1200 spin_unlock(&conf->device_lock); 1201 /* Cannot call generic_make_request directly 1202 * as that will be queued in __generic_make_request 1203 * and subsequent mempool_alloc might block 1204 * waiting for it. so hand bio over to raid10d. 1205 */ 1206 reschedule_retry(r10_bio); 1207 1208 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1209 1210 r10_bio->master_bio = bio; 1211 r10_bio->sectors = ((bio->bi_size >> 9) 1212 - sectors_handled); 1213 r10_bio->state = 0; 1214 r10_bio->mddev = mddev; 1215 r10_bio->sector = bio->bi_sector + sectors_handled; 1216 goto read_again; 1217 } else 1218 generic_make_request(read_bio); 1219 return; 1220 } 1221 1222 /* 1223 * WRITE: 1224 */ 1225 if (conf->pending_count >= max_queued_requests) { 1226 md_wakeup_thread(mddev->thread); 1227 wait_event(conf->wait_barrier, 1228 conf->pending_count < max_queued_requests); 1229 } 1230 /* first select target devices under rcu_lock and 1231 * inc refcount on their rdev. Record them by setting 1232 * bios[x] to bio 1233 * If there are known/acknowledged bad blocks on any device 1234 * on which we have seen a write error, we want to avoid 1235 * writing to those blocks. This potentially requires several 1236 * writes to write around the bad blocks. Each set of writes 1237 * gets its own r10_bio with a set of bios attached. The number 1238 * of r10_bios is recored in bio->bi_phys_segments just as with 1239 * the read case. 1240 */ 1241 1242 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1243 raid10_find_phys(conf, r10_bio); 1244 retry_write: 1245 blocked_rdev = NULL; 1246 rcu_read_lock(); 1247 max_sectors = r10_bio->sectors; 1248 1249 for (i = 0; i < conf->copies; i++) { 1250 int d = r10_bio->devs[i].devnum; 1251 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1252 struct md_rdev *rrdev = rcu_dereference( 1253 conf->mirrors[d].replacement); 1254 if (rdev == rrdev) 1255 rrdev = NULL; 1256 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1257 atomic_inc(&rdev->nr_pending); 1258 blocked_rdev = rdev; 1259 break; 1260 } 1261 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1262 atomic_inc(&rrdev->nr_pending); 1263 blocked_rdev = rrdev; 1264 break; 1265 } 1266 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1267 || test_bit(Unmerged, &rrdev->flags))) 1268 rrdev = NULL; 1269 1270 r10_bio->devs[i].bio = NULL; 1271 r10_bio->devs[i].repl_bio = NULL; 1272 if (!rdev || test_bit(Faulty, &rdev->flags) || 1273 test_bit(Unmerged, &rdev->flags)) { 1274 set_bit(R10BIO_Degraded, &r10_bio->state); 1275 continue; 1276 } 1277 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1278 sector_t first_bad; 1279 sector_t dev_sector = r10_bio->devs[i].addr; 1280 int bad_sectors; 1281 int is_bad; 1282 1283 is_bad = is_badblock(rdev, dev_sector, 1284 max_sectors, 1285 &first_bad, &bad_sectors); 1286 if (is_bad < 0) { 1287 /* Mustn't write here until the bad block 1288 * is acknowledged 1289 */ 1290 atomic_inc(&rdev->nr_pending); 1291 set_bit(BlockedBadBlocks, &rdev->flags); 1292 blocked_rdev = rdev; 1293 break; 1294 } 1295 if (is_bad && first_bad <= dev_sector) { 1296 /* Cannot write here at all */ 1297 bad_sectors -= (dev_sector - first_bad); 1298 if (bad_sectors < max_sectors) 1299 /* Mustn't write more than bad_sectors 1300 * to other devices yet 1301 */ 1302 max_sectors = bad_sectors; 1303 /* We don't set R10BIO_Degraded as that 1304 * only applies if the disk is missing, 1305 * so it might be re-added, and we want to 1306 * know to recover this chunk. 1307 * In this case the device is here, and the 1308 * fact that this chunk is not in-sync is 1309 * recorded in the bad block log. 1310 */ 1311 continue; 1312 } 1313 if (is_bad) { 1314 int good_sectors = first_bad - dev_sector; 1315 if (good_sectors < max_sectors) 1316 max_sectors = good_sectors; 1317 } 1318 } 1319 r10_bio->devs[i].bio = bio; 1320 atomic_inc(&rdev->nr_pending); 1321 if (rrdev) { 1322 r10_bio->devs[i].repl_bio = bio; 1323 atomic_inc(&rrdev->nr_pending); 1324 } 1325 } 1326 rcu_read_unlock(); 1327 1328 if (unlikely(blocked_rdev)) { 1329 /* Have to wait for this device to get unblocked, then retry */ 1330 int j; 1331 int d; 1332 1333 for (j = 0; j < i; j++) { 1334 if (r10_bio->devs[j].bio) { 1335 d = r10_bio->devs[j].devnum; 1336 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1337 } 1338 if (r10_bio->devs[j].repl_bio) { 1339 struct md_rdev *rdev; 1340 d = r10_bio->devs[j].devnum; 1341 rdev = conf->mirrors[d].replacement; 1342 if (!rdev) { 1343 /* Race with remove_disk */ 1344 smp_mb(); 1345 rdev = conf->mirrors[d].rdev; 1346 } 1347 rdev_dec_pending(rdev, mddev); 1348 } 1349 } 1350 allow_barrier(conf); 1351 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1352 wait_barrier(conf); 1353 goto retry_write; 1354 } 1355 1356 if (max_sectors < r10_bio->sectors) { 1357 /* We are splitting this into multiple parts, so 1358 * we need to prepare for allocating another r10_bio. 1359 */ 1360 r10_bio->sectors = max_sectors; 1361 spin_lock_irq(&conf->device_lock); 1362 if (bio->bi_phys_segments == 0) 1363 bio->bi_phys_segments = 2; 1364 else 1365 bio->bi_phys_segments++; 1366 spin_unlock_irq(&conf->device_lock); 1367 } 1368 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1369 1370 atomic_set(&r10_bio->remaining, 1); 1371 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1372 1373 for (i = 0; i < conf->copies; i++) { 1374 struct bio *mbio; 1375 int d = r10_bio->devs[i].devnum; 1376 if (!r10_bio->devs[i].bio) 1377 continue; 1378 1379 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1380 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1381 max_sectors); 1382 r10_bio->devs[i].bio = mbio; 1383 1384 mbio->bi_sector = (r10_bio->devs[i].addr+ 1385 choose_data_offset(r10_bio, 1386 conf->mirrors[d].rdev)); 1387 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1388 mbio->bi_end_io = raid10_end_write_request; 1389 mbio->bi_rw = WRITE | do_sync | do_fua; 1390 mbio->bi_private = r10_bio; 1391 1392 atomic_inc(&r10_bio->remaining); 1393 spin_lock_irqsave(&conf->device_lock, flags); 1394 bio_list_add(&conf->pending_bio_list, mbio); 1395 conf->pending_count++; 1396 spin_unlock_irqrestore(&conf->device_lock, flags); 1397 if (!mddev_check_plugged(mddev)) 1398 md_wakeup_thread(mddev->thread); 1399 1400 if (!r10_bio->devs[i].repl_bio) 1401 continue; 1402 1403 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1404 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1405 max_sectors); 1406 r10_bio->devs[i].repl_bio = mbio; 1407 1408 /* We are actively writing to the original device 1409 * so it cannot disappear, so the replacement cannot 1410 * become NULL here 1411 */ 1412 mbio->bi_sector = (r10_bio->devs[i].addr + 1413 choose_data_offset( 1414 r10_bio, 1415 conf->mirrors[d].replacement)); 1416 mbio->bi_bdev = conf->mirrors[d].replacement->bdev; 1417 mbio->bi_end_io = raid10_end_write_request; 1418 mbio->bi_rw = WRITE | do_sync | do_fua; 1419 mbio->bi_private = r10_bio; 1420 1421 atomic_inc(&r10_bio->remaining); 1422 spin_lock_irqsave(&conf->device_lock, flags); 1423 bio_list_add(&conf->pending_bio_list, mbio); 1424 conf->pending_count++; 1425 spin_unlock_irqrestore(&conf->device_lock, flags); 1426 if (!mddev_check_plugged(mddev)) 1427 md_wakeup_thread(mddev->thread); 1428 } 1429 1430 /* Don't remove the bias on 'remaining' (one_write_done) until 1431 * after checking if we need to go around again. 1432 */ 1433 1434 if (sectors_handled < (bio->bi_size >> 9)) { 1435 one_write_done(r10_bio); 1436 /* We need another r10_bio. It has already been counted 1437 * in bio->bi_phys_segments. 1438 */ 1439 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1440 1441 r10_bio->master_bio = bio; 1442 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1443 1444 r10_bio->mddev = mddev; 1445 r10_bio->sector = bio->bi_sector + sectors_handled; 1446 r10_bio->state = 0; 1447 goto retry_write; 1448 } 1449 one_write_done(r10_bio); 1450 1451 /* In case raid10d snuck in to freeze_array */ 1452 wake_up(&conf->wait_barrier); 1453 } 1454 1455 static void status(struct seq_file *seq, struct mddev *mddev) 1456 { 1457 struct r10conf *conf = mddev->private; 1458 int i; 1459 1460 if (conf->geo.near_copies < conf->geo.raid_disks) 1461 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1462 if (conf->geo.near_copies > 1) 1463 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1464 if (conf->geo.far_copies > 1) { 1465 if (conf->geo.far_offset) 1466 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1467 else 1468 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1469 } 1470 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1471 conf->geo.raid_disks - mddev->degraded); 1472 for (i = 0; i < conf->geo.raid_disks; i++) 1473 seq_printf(seq, "%s", 1474 conf->mirrors[i].rdev && 1475 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1476 seq_printf(seq, "]"); 1477 } 1478 1479 /* check if there are enough drives for 1480 * every block to appear on atleast one. 1481 * Don't consider the device numbered 'ignore' 1482 * as we might be about to remove it. 1483 */ 1484 static int _enough(struct r10conf *conf, struct geom *geo, int ignore) 1485 { 1486 int first = 0; 1487 1488 do { 1489 int n = conf->copies; 1490 int cnt = 0; 1491 while (n--) { 1492 if (conf->mirrors[first].rdev && 1493 first != ignore) 1494 cnt++; 1495 first = (first+1) % geo->raid_disks; 1496 } 1497 if (cnt == 0) 1498 return 0; 1499 } while (first != 0); 1500 return 1; 1501 } 1502 1503 static int enough(struct r10conf *conf, int ignore) 1504 { 1505 return _enough(conf, &conf->geo, ignore) && 1506 _enough(conf, &conf->prev, ignore); 1507 } 1508 1509 static void error(struct mddev *mddev, struct md_rdev *rdev) 1510 { 1511 char b[BDEVNAME_SIZE]; 1512 struct r10conf *conf = mddev->private; 1513 1514 /* 1515 * If it is not operational, then we have already marked it as dead 1516 * else if it is the last working disks, ignore the error, let the 1517 * next level up know. 1518 * else mark the drive as failed 1519 */ 1520 if (test_bit(In_sync, &rdev->flags) 1521 && !enough(conf, rdev->raid_disk)) 1522 /* 1523 * Don't fail the drive, just return an IO error. 1524 */ 1525 return; 1526 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1527 unsigned long flags; 1528 spin_lock_irqsave(&conf->device_lock, flags); 1529 mddev->degraded++; 1530 spin_unlock_irqrestore(&conf->device_lock, flags); 1531 /* 1532 * if recovery is running, make sure it aborts. 1533 */ 1534 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1535 } 1536 set_bit(Blocked, &rdev->flags); 1537 set_bit(Faulty, &rdev->flags); 1538 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1539 printk(KERN_ALERT 1540 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1541 "md/raid10:%s: Operation continuing on %d devices.\n", 1542 mdname(mddev), bdevname(rdev->bdev, b), 1543 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1544 } 1545 1546 static void print_conf(struct r10conf *conf) 1547 { 1548 int i; 1549 struct mirror_info *tmp; 1550 1551 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1552 if (!conf) { 1553 printk(KERN_DEBUG "(!conf)\n"); 1554 return; 1555 } 1556 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1557 conf->geo.raid_disks); 1558 1559 for (i = 0; i < conf->geo.raid_disks; i++) { 1560 char b[BDEVNAME_SIZE]; 1561 tmp = conf->mirrors + i; 1562 if (tmp->rdev) 1563 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1564 i, !test_bit(In_sync, &tmp->rdev->flags), 1565 !test_bit(Faulty, &tmp->rdev->flags), 1566 bdevname(tmp->rdev->bdev,b)); 1567 } 1568 } 1569 1570 static void close_sync(struct r10conf *conf) 1571 { 1572 wait_barrier(conf); 1573 allow_barrier(conf); 1574 1575 mempool_destroy(conf->r10buf_pool); 1576 conf->r10buf_pool = NULL; 1577 } 1578 1579 static int raid10_spare_active(struct mddev *mddev) 1580 { 1581 int i; 1582 struct r10conf *conf = mddev->private; 1583 struct mirror_info *tmp; 1584 int count = 0; 1585 unsigned long flags; 1586 1587 /* 1588 * Find all non-in_sync disks within the RAID10 configuration 1589 * and mark them in_sync 1590 */ 1591 for (i = 0; i < conf->geo.raid_disks; i++) { 1592 tmp = conf->mirrors + i; 1593 if (tmp->replacement 1594 && tmp->replacement->recovery_offset == MaxSector 1595 && !test_bit(Faulty, &tmp->replacement->flags) 1596 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1597 /* Replacement has just become active */ 1598 if (!tmp->rdev 1599 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1600 count++; 1601 if (tmp->rdev) { 1602 /* Replaced device not technically faulty, 1603 * but we need to be sure it gets removed 1604 * and never re-added. 1605 */ 1606 set_bit(Faulty, &tmp->rdev->flags); 1607 sysfs_notify_dirent_safe( 1608 tmp->rdev->sysfs_state); 1609 } 1610 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1611 } else if (tmp->rdev 1612 && !test_bit(Faulty, &tmp->rdev->flags) 1613 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1614 count++; 1615 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1616 } 1617 } 1618 spin_lock_irqsave(&conf->device_lock, flags); 1619 mddev->degraded -= count; 1620 spin_unlock_irqrestore(&conf->device_lock, flags); 1621 1622 print_conf(conf); 1623 return count; 1624 } 1625 1626 1627 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1628 { 1629 struct r10conf *conf = mddev->private; 1630 int err = -EEXIST; 1631 int mirror; 1632 int first = 0; 1633 int last = conf->geo.raid_disks - 1; 1634 struct request_queue *q = bdev_get_queue(rdev->bdev); 1635 1636 if (mddev->recovery_cp < MaxSector) 1637 /* only hot-add to in-sync arrays, as recovery is 1638 * very different from resync 1639 */ 1640 return -EBUSY; 1641 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1)) 1642 return -EINVAL; 1643 1644 if (rdev->raid_disk >= 0) 1645 first = last = rdev->raid_disk; 1646 1647 if (q->merge_bvec_fn) { 1648 set_bit(Unmerged, &rdev->flags); 1649 mddev->merge_check_needed = 1; 1650 } 1651 1652 if (rdev->saved_raid_disk >= first && 1653 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1654 mirror = rdev->saved_raid_disk; 1655 else 1656 mirror = first; 1657 for ( ; mirror <= last ; mirror++) { 1658 struct mirror_info *p = &conf->mirrors[mirror]; 1659 if (p->recovery_disabled == mddev->recovery_disabled) 1660 continue; 1661 if (p->rdev) { 1662 if (!test_bit(WantReplacement, &p->rdev->flags) || 1663 p->replacement != NULL) 1664 continue; 1665 clear_bit(In_sync, &rdev->flags); 1666 set_bit(Replacement, &rdev->flags); 1667 rdev->raid_disk = mirror; 1668 err = 0; 1669 disk_stack_limits(mddev->gendisk, rdev->bdev, 1670 rdev->data_offset << 9); 1671 conf->fullsync = 1; 1672 rcu_assign_pointer(p->replacement, rdev); 1673 break; 1674 } 1675 1676 disk_stack_limits(mddev->gendisk, rdev->bdev, 1677 rdev->data_offset << 9); 1678 1679 p->head_position = 0; 1680 p->recovery_disabled = mddev->recovery_disabled - 1; 1681 rdev->raid_disk = mirror; 1682 err = 0; 1683 if (rdev->saved_raid_disk != mirror) 1684 conf->fullsync = 1; 1685 rcu_assign_pointer(p->rdev, rdev); 1686 break; 1687 } 1688 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1689 /* Some requests might not have seen this new 1690 * merge_bvec_fn. We must wait for them to complete 1691 * before merging the device fully. 1692 * First we make sure any code which has tested 1693 * our function has submitted the request, then 1694 * we wait for all outstanding requests to complete. 1695 */ 1696 synchronize_sched(); 1697 raise_barrier(conf, 0); 1698 lower_barrier(conf); 1699 clear_bit(Unmerged, &rdev->flags); 1700 } 1701 md_integrity_add_rdev(rdev, mddev); 1702 print_conf(conf); 1703 return err; 1704 } 1705 1706 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1707 { 1708 struct r10conf *conf = mddev->private; 1709 int err = 0; 1710 int number = rdev->raid_disk; 1711 struct md_rdev **rdevp; 1712 struct mirror_info *p = conf->mirrors + number; 1713 1714 print_conf(conf); 1715 if (rdev == p->rdev) 1716 rdevp = &p->rdev; 1717 else if (rdev == p->replacement) 1718 rdevp = &p->replacement; 1719 else 1720 return 0; 1721 1722 if (test_bit(In_sync, &rdev->flags) || 1723 atomic_read(&rdev->nr_pending)) { 1724 err = -EBUSY; 1725 goto abort; 1726 } 1727 /* Only remove faulty devices if recovery 1728 * is not possible. 1729 */ 1730 if (!test_bit(Faulty, &rdev->flags) && 1731 mddev->recovery_disabled != p->recovery_disabled && 1732 (!p->replacement || p->replacement == rdev) && 1733 number < conf->geo.raid_disks && 1734 enough(conf, -1)) { 1735 err = -EBUSY; 1736 goto abort; 1737 } 1738 *rdevp = NULL; 1739 synchronize_rcu(); 1740 if (atomic_read(&rdev->nr_pending)) { 1741 /* lost the race, try later */ 1742 err = -EBUSY; 1743 *rdevp = rdev; 1744 goto abort; 1745 } else if (p->replacement) { 1746 /* We must have just cleared 'rdev' */ 1747 p->rdev = p->replacement; 1748 clear_bit(Replacement, &p->replacement->flags); 1749 smp_mb(); /* Make sure other CPUs may see both as identical 1750 * but will never see neither -- if they are careful. 1751 */ 1752 p->replacement = NULL; 1753 clear_bit(WantReplacement, &rdev->flags); 1754 } else 1755 /* We might have just remove the Replacement as faulty 1756 * Clear the flag just in case 1757 */ 1758 clear_bit(WantReplacement, &rdev->flags); 1759 1760 err = md_integrity_register(mddev); 1761 1762 abort: 1763 1764 print_conf(conf); 1765 return err; 1766 } 1767 1768 1769 static void end_sync_read(struct bio *bio, int error) 1770 { 1771 struct r10bio *r10_bio = bio->bi_private; 1772 struct r10conf *conf = r10_bio->mddev->private; 1773 int d; 1774 1775 if (bio == r10_bio->master_bio) { 1776 /* this is a reshape read */ 1777 d = r10_bio->read_slot; /* really the read dev */ 1778 } else 1779 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1780 1781 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1782 set_bit(R10BIO_Uptodate, &r10_bio->state); 1783 else 1784 /* The write handler will notice the lack of 1785 * R10BIO_Uptodate and record any errors etc 1786 */ 1787 atomic_add(r10_bio->sectors, 1788 &conf->mirrors[d].rdev->corrected_errors); 1789 1790 /* for reconstruct, we always reschedule after a read. 1791 * for resync, only after all reads 1792 */ 1793 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1794 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1795 atomic_dec_and_test(&r10_bio->remaining)) { 1796 /* we have read all the blocks, 1797 * do the comparison in process context in raid10d 1798 */ 1799 reschedule_retry(r10_bio); 1800 } 1801 } 1802 1803 static void end_sync_request(struct r10bio *r10_bio) 1804 { 1805 struct mddev *mddev = r10_bio->mddev; 1806 1807 while (atomic_dec_and_test(&r10_bio->remaining)) { 1808 if (r10_bio->master_bio == NULL) { 1809 /* the primary of several recovery bios */ 1810 sector_t s = r10_bio->sectors; 1811 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1812 test_bit(R10BIO_WriteError, &r10_bio->state)) 1813 reschedule_retry(r10_bio); 1814 else 1815 put_buf(r10_bio); 1816 md_done_sync(mddev, s, 1); 1817 break; 1818 } else { 1819 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1820 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1821 test_bit(R10BIO_WriteError, &r10_bio->state)) 1822 reschedule_retry(r10_bio); 1823 else 1824 put_buf(r10_bio); 1825 r10_bio = r10_bio2; 1826 } 1827 } 1828 } 1829 1830 static void end_sync_write(struct bio *bio, int error) 1831 { 1832 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1833 struct r10bio *r10_bio = bio->bi_private; 1834 struct mddev *mddev = r10_bio->mddev; 1835 struct r10conf *conf = mddev->private; 1836 int d; 1837 sector_t first_bad; 1838 int bad_sectors; 1839 int slot; 1840 int repl; 1841 struct md_rdev *rdev = NULL; 1842 1843 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1844 if (repl) 1845 rdev = conf->mirrors[d].replacement; 1846 else 1847 rdev = conf->mirrors[d].rdev; 1848 1849 if (!uptodate) { 1850 if (repl) 1851 md_error(mddev, rdev); 1852 else { 1853 set_bit(WriteErrorSeen, &rdev->flags); 1854 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1855 set_bit(MD_RECOVERY_NEEDED, 1856 &rdev->mddev->recovery); 1857 set_bit(R10BIO_WriteError, &r10_bio->state); 1858 } 1859 } else if (is_badblock(rdev, 1860 r10_bio->devs[slot].addr, 1861 r10_bio->sectors, 1862 &first_bad, &bad_sectors)) 1863 set_bit(R10BIO_MadeGood, &r10_bio->state); 1864 1865 rdev_dec_pending(rdev, mddev); 1866 1867 end_sync_request(r10_bio); 1868 } 1869 1870 /* 1871 * Note: sync and recover and handled very differently for raid10 1872 * This code is for resync. 1873 * For resync, we read through virtual addresses and read all blocks. 1874 * If there is any error, we schedule a write. The lowest numbered 1875 * drive is authoritative. 1876 * However requests come for physical address, so we need to map. 1877 * For every physical address there are raid_disks/copies virtual addresses, 1878 * which is always are least one, but is not necessarly an integer. 1879 * This means that a physical address can span multiple chunks, so we may 1880 * have to submit multiple io requests for a single sync request. 1881 */ 1882 /* 1883 * We check if all blocks are in-sync and only write to blocks that 1884 * aren't in sync 1885 */ 1886 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1887 { 1888 struct r10conf *conf = mddev->private; 1889 int i, first; 1890 struct bio *tbio, *fbio; 1891 int vcnt; 1892 1893 atomic_set(&r10_bio->remaining, 1); 1894 1895 /* find the first device with a block */ 1896 for (i=0; i<conf->copies; i++) 1897 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1898 break; 1899 1900 if (i == conf->copies) 1901 goto done; 1902 1903 first = i; 1904 fbio = r10_bio->devs[i].bio; 1905 1906 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 1907 /* now find blocks with errors */ 1908 for (i=0 ; i < conf->copies ; i++) { 1909 int j, d; 1910 1911 tbio = r10_bio->devs[i].bio; 1912 1913 if (tbio->bi_end_io != end_sync_read) 1914 continue; 1915 if (i == first) 1916 continue; 1917 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1918 /* We know that the bi_io_vec layout is the same for 1919 * both 'first' and 'i', so we just compare them. 1920 * All vec entries are PAGE_SIZE; 1921 */ 1922 for (j = 0; j < vcnt; j++) 1923 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1924 page_address(tbio->bi_io_vec[j].bv_page), 1925 fbio->bi_io_vec[j].bv_len)) 1926 break; 1927 if (j == vcnt) 1928 continue; 1929 mddev->resync_mismatches += r10_bio->sectors; 1930 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1931 /* Don't fix anything. */ 1932 continue; 1933 } 1934 /* Ok, we need to write this bio, either to correct an 1935 * inconsistency or to correct an unreadable block. 1936 * First we need to fixup bv_offset, bv_len and 1937 * bi_vecs, as the read request might have corrupted these 1938 */ 1939 tbio->bi_vcnt = vcnt; 1940 tbio->bi_size = r10_bio->sectors << 9; 1941 tbio->bi_idx = 0; 1942 tbio->bi_phys_segments = 0; 1943 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1944 tbio->bi_flags |= 1 << BIO_UPTODATE; 1945 tbio->bi_next = NULL; 1946 tbio->bi_rw = WRITE; 1947 tbio->bi_private = r10_bio; 1948 tbio->bi_sector = r10_bio->devs[i].addr; 1949 1950 for (j=0; j < vcnt ; j++) { 1951 tbio->bi_io_vec[j].bv_offset = 0; 1952 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1953 1954 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1955 page_address(fbio->bi_io_vec[j].bv_page), 1956 PAGE_SIZE); 1957 } 1958 tbio->bi_end_io = end_sync_write; 1959 1960 d = r10_bio->devs[i].devnum; 1961 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1962 atomic_inc(&r10_bio->remaining); 1963 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1964 1965 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1966 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1967 generic_make_request(tbio); 1968 } 1969 1970 /* Now write out to any replacement devices 1971 * that are active 1972 */ 1973 for (i = 0; i < conf->copies; i++) { 1974 int j, d; 1975 1976 tbio = r10_bio->devs[i].repl_bio; 1977 if (!tbio || !tbio->bi_end_io) 1978 continue; 1979 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 1980 && r10_bio->devs[i].bio != fbio) 1981 for (j = 0; j < vcnt; j++) 1982 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1983 page_address(fbio->bi_io_vec[j].bv_page), 1984 PAGE_SIZE); 1985 d = r10_bio->devs[i].devnum; 1986 atomic_inc(&r10_bio->remaining); 1987 md_sync_acct(conf->mirrors[d].replacement->bdev, 1988 tbio->bi_size >> 9); 1989 generic_make_request(tbio); 1990 } 1991 1992 done: 1993 if (atomic_dec_and_test(&r10_bio->remaining)) { 1994 md_done_sync(mddev, r10_bio->sectors, 1); 1995 put_buf(r10_bio); 1996 } 1997 } 1998 1999 /* 2000 * Now for the recovery code. 2001 * Recovery happens across physical sectors. 2002 * We recover all non-is_sync drives by finding the virtual address of 2003 * each, and then choose a working drive that also has that virt address. 2004 * There is a separate r10_bio for each non-in_sync drive. 2005 * Only the first two slots are in use. The first for reading, 2006 * The second for writing. 2007 * 2008 */ 2009 static void fix_recovery_read_error(struct r10bio *r10_bio) 2010 { 2011 /* We got a read error during recovery. 2012 * We repeat the read in smaller page-sized sections. 2013 * If a read succeeds, write it to the new device or record 2014 * a bad block if we cannot. 2015 * If a read fails, record a bad block on both old and 2016 * new devices. 2017 */ 2018 struct mddev *mddev = r10_bio->mddev; 2019 struct r10conf *conf = mddev->private; 2020 struct bio *bio = r10_bio->devs[0].bio; 2021 sector_t sect = 0; 2022 int sectors = r10_bio->sectors; 2023 int idx = 0; 2024 int dr = r10_bio->devs[0].devnum; 2025 int dw = r10_bio->devs[1].devnum; 2026 2027 while (sectors) { 2028 int s = sectors; 2029 struct md_rdev *rdev; 2030 sector_t addr; 2031 int ok; 2032 2033 if (s > (PAGE_SIZE>>9)) 2034 s = PAGE_SIZE >> 9; 2035 2036 rdev = conf->mirrors[dr].rdev; 2037 addr = r10_bio->devs[0].addr + sect, 2038 ok = sync_page_io(rdev, 2039 addr, 2040 s << 9, 2041 bio->bi_io_vec[idx].bv_page, 2042 READ, false); 2043 if (ok) { 2044 rdev = conf->mirrors[dw].rdev; 2045 addr = r10_bio->devs[1].addr + sect; 2046 ok = sync_page_io(rdev, 2047 addr, 2048 s << 9, 2049 bio->bi_io_vec[idx].bv_page, 2050 WRITE, false); 2051 if (!ok) { 2052 set_bit(WriteErrorSeen, &rdev->flags); 2053 if (!test_and_set_bit(WantReplacement, 2054 &rdev->flags)) 2055 set_bit(MD_RECOVERY_NEEDED, 2056 &rdev->mddev->recovery); 2057 } 2058 } 2059 if (!ok) { 2060 /* We don't worry if we cannot set a bad block - 2061 * it really is bad so there is no loss in not 2062 * recording it yet 2063 */ 2064 rdev_set_badblocks(rdev, addr, s, 0); 2065 2066 if (rdev != conf->mirrors[dw].rdev) { 2067 /* need bad block on destination too */ 2068 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2069 addr = r10_bio->devs[1].addr + sect; 2070 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2071 if (!ok) { 2072 /* just abort the recovery */ 2073 printk(KERN_NOTICE 2074 "md/raid10:%s: recovery aborted" 2075 " due to read error\n", 2076 mdname(mddev)); 2077 2078 conf->mirrors[dw].recovery_disabled 2079 = mddev->recovery_disabled; 2080 set_bit(MD_RECOVERY_INTR, 2081 &mddev->recovery); 2082 break; 2083 } 2084 } 2085 } 2086 2087 sectors -= s; 2088 sect += s; 2089 idx++; 2090 } 2091 } 2092 2093 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2094 { 2095 struct r10conf *conf = mddev->private; 2096 int d; 2097 struct bio *wbio, *wbio2; 2098 2099 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2100 fix_recovery_read_error(r10_bio); 2101 end_sync_request(r10_bio); 2102 return; 2103 } 2104 2105 /* 2106 * share the pages with the first bio 2107 * and submit the write request 2108 */ 2109 d = r10_bio->devs[1].devnum; 2110 wbio = r10_bio->devs[1].bio; 2111 wbio2 = r10_bio->devs[1].repl_bio; 2112 if (wbio->bi_end_io) { 2113 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2114 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 2115 generic_make_request(wbio); 2116 } 2117 if (wbio2 && wbio2->bi_end_io) { 2118 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2119 md_sync_acct(conf->mirrors[d].replacement->bdev, 2120 wbio2->bi_size >> 9); 2121 generic_make_request(wbio2); 2122 } 2123 } 2124 2125 2126 /* 2127 * Used by fix_read_error() to decay the per rdev read_errors. 2128 * We halve the read error count for every hour that has elapsed 2129 * since the last recorded read error. 2130 * 2131 */ 2132 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2133 { 2134 struct timespec cur_time_mon; 2135 unsigned long hours_since_last; 2136 unsigned int read_errors = atomic_read(&rdev->read_errors); 2137 2138 ktime_get_ts(&cur_time_mon); 2139 2140 if (rdev->last_read_error.tv_sec == 0 && 2141 rdev->last_read_error.tv_nsec == 0) { 2142 /* first time we've seen a read error */ 2143 rdev->last_read_error = cur_time_mon; 2144 return; 2145 } 2146 2147 hours_since_last = (cur_time_mon.tv_sec - 2148 rdev->last_read_error.tv_sec) / 3600; 2149 2150 rdev->last_read_error = cur_time_mon; 2151 2152 /* 2153 * if hours_since_last is > the number of bits in read_errors 2154 * just set read errors to 0. We do this to avoid 2155 * overflowing the shift of read_errors by hours_since_last. 2156 */ 2157 if (hours_since_last >= 8 * sizeof(read_errors)) 2158 atomic_set(&rdev->read_errors, 0); 2159 else 2160 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2161 } 2162 2163 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2164 int sectors, struct page *page, int rw) 2165 { 2166 sector_t first_bad; 2167 int bad_sectors; 2168 2169 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2170 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2171 return -1; 2172 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2173 /* success */ 2174 return 1; 2175 if (rw == WRITE) { 2176 set_bit(WriteErrorSeen, &rdev->flags); 2177 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2178 set_bit(MD_RECOVERY_NEEDED, 2179 &rdev->mddev->recovery); 2180 } 2181 /* need to record an error - either for the block or the device */ 2182 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2183 md_error(rdev->mddev, rdev); 2184 return 0; 2185 } 2186 2187 /* 2188 * This is a kernel thread which: 2189 * 2190 * 1. Retries failed read operations on working mirrors. 2191 * 2. Updates the raid superblock when problems encounter. 2192 * 3. Performs writes following reads for array synchronising. 2193 */ 2194 2195 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2196 { 2197 int sect = 0; /* Offset from r10_bio->sector */ 2198 int sectors = r10_bio->sectors; 2199 struct md_rdev*rdev; 2200 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2201 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2202 2203 /* still own a reference to this rdev, so it cannot 2204 * have been cleared recently. 2205 */ 2206 rdev = conf->mirrors[d].rdev; 2207 2208 if (test_bit(Faulty, &rdev->flags)) 2209 /* drive has already been failed, just ignore any 2210 more fix_read_error() attempts */ 2211 return; 2212 2213 check_decay_read_errors(mddev, rdev); 2214 atomic_inc(&rdev->read_errors); 2215 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2216 char b[BDEVNAME_SIZE]; 2217 bdevname(rdev->bdev, b); 2218 2219 printk(KERN_NOTICE 2220 "md/raid10:%s: %s: Raid device exceeded " 2221 "read_error threshold [cur %d:max %d]\n", 2222 mdname(mddev), b, 2223 atomic_read(&rdev->read_errors), max_read_errors); 2224 printk(KERN_NOTICE 2225 "md/raid10:%s: %s: Failing raid device\n", 2226 mdname(mddev), b); 2227 md_error(mddev, conf->mirrors[d].rdev); 2228 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2229 return; 2230 } 2231 2232 while(sectors) { 2233 int s = sectors; 2234 int sl = r10_bio->read_slot; 2235 int success = 0; 2236 int start; 2237 2238 if (s > (PAGE_SIZE>>9)) 2239 s = PAGE_SIZE >> 9; 2240 2241 rcu_read_lock(); 2242 do { 2243 sector_t first_bad; 2244 int bad_sectors; 2245 2246 d = r10_bio->devs[sl].devnum; 2247 rdev = rcu_dereference(conf->mirrors[d].rdev); 2248 if (rdev && 2249 !test_bit(Unmerged, &rdev->flags) && 2250 test_bit(In_sync, &rdev->flags) && 2251 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2252 &first_bad, &bad_sectors) == 0) { 2253 atomic_inc(&rdev->nr_pending); 2254 rcu_read_unlock(); 2255 success = sync_page_io(rdev, 2256 r10_bio->devs[sl].addr + 2257 sect, 2258 s<<9, 2259 conf->tmppage, READ, false); 2260 rdev_dec_pending(rdev, mddev); 2261 rcu_read_lock(); 2262 if (success) 2263 break; 2264 } 2265 sl++; 2266 if (sl == conf->copies) 2267 sl = 0; 2268 } while (!success && sl != r10_bio->read_slot); 2269 rcu_read_unlock(); 2270 2271 if (!success) { 2272 /* Cannot read from anywhere, just mark the block 2273 * as bad on the first device to discourage future 2274 * reads. 2275 */ 2276 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2277 rdev = conf->mirrors[dn].rdev; 2278 2279 if (!rdev_set_badblocks( 2280 rdev, 2281 r10_bio->devs[r10_bio->read_slot].addr 2282 + sect, 2283 s, 0)) { 2284 md_error(mddev, rdev); 2285 r10_bio->devs[r10_bio->read_slot].bio 2286 = IO_BLOCKED; 2287 } 2288 break; 2289 } 2290 2291 start = sl; 2292 /* write it back and re-read */ 2293 rcu_read_lock(); 2294 while (sl != r10_bio->read_slot) { 2295 char b[BDEVNAME_SIZE]; 2296 2297 if (sl==0) 2298 sl = conf->copies; 2299 sl--; 2300 d = r10_bio->devs[sl].devnum; 2301 rdev = rcu_dereference(conf->mirrors[d].rdev); 2302 if (!rdev || 2303 test_bit(Unmerged, &rdev->flags) || 2304 !test_bit(In_sync, &rdev->flags)) 2305 continue; 2306 2307 atomic_inc(&rdev->nr_pending); 2308 rcu_read_unlock(); 2309 if (r10_sync_page_io(rdev, 2310 r10_bio->devs[sl].addr + 2311 sect, 2312 s, conf->tmppage, WRITE) 2313 == 0) { 2314 /* Well, this device is dead */ 2315 printk(KERN_NOTICE 2316 "md/raid10:%s: read correction " 2317 "write failed" 2318 " (%d sectors at %llu on %s)\n", 2319 mdname(mddev), s, 2320 (unsigned long long)( 2321 sect + 2322 choose_data_offset(r10_bio, 2323 rdev)), 2324 bdevname(rdev->bdev, b)); 2325 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2326 "drive\n", 2327 mdname(mddev), 2328 bdevname(rdev->bdev, b)); 2329 } 2330 rdev_dec_pending(rdev, mddev); 2331 rcu_read_lock(); 2332 } 2333 sl = start; 2334 while (sl != r10_bio->read_slot) { 2335 char b[BDEVNAME_SIZE]; 2336 2337 if (sl==0) 2338 sl = conf->copies; 2339 sl--; 2340 d = r10_bio->devs[sl].devnum; 2341 rdev = rcu_dereference(conf->mirrors[d].rdev); 2342 if (!rdev || 2343 !test_bit(In_sync, &rdev->flags)) 2344 continue; 2345 2346 atomic_inc(&rdev->nr_pending); 2347 rcu_read_unlock(); 2348 switch (r10_sync_page_io(rdev, 2349 r10_bio->devs[sl].addr + 2350 sect, 2351 s, conf->tmppage, 2352 READ)) { 2353 case 0: 2354 /* Well, this device is dead */ 2355 printk(KERN_NOTICE 2356 "md/raid10:%s: unable to read back " 2357 "corrected sectors" 2358 " (%d sectors at %llu on %s)\n", 2359 mdname(mddev), s, 2360 (unsigned long long)( 2361 sect + 2362 choose_data_offset(r10_bio, rdev)), 2363 bdevname(rdev->bdev, b)); 2364 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2365 "drive\n", 2366 mdname(mddev), 2367 bdevname(rdev->bdev, b)); 2368 break; 2369 case 1: 2370 printk(KERN_INFO 2371 "md/raid10:%s: read error corrected" 2372 " (%d sectors at %llu on %s)\n", 2373 mdname(mddev), s, 2374 (unsigned long long)( 2375 sect + 2376 choose_data_offset(r10_bio, rdev)), 2377 bdevname(rdev->bdev, b)); 2378 atomic_add(s, &rdev->corrected_errors); 2379 } 2380 2381 rdev_dec_pending(rdev, mddev); 2382 rcu_read_lock(); 2383 } 2384 rcu_read_unlock(); 2385 2386 sectors -= s; 2387 sect += s; 2388 } 2389 } 2390 2391 static void bi_complete(struct bio *bio, int error) 2392 { 2393 complete((struct completion *)bio->bi_private); 2394 } 2395 2396 static int submit_bio_wait(int rw, struct bio *bio) 2397 { 2398 struct completion event; 2399 rw |= REQ_SYNC; 2400 2401 init_completion(&event); 2402 bio->bi_private = &event; 2403 bio->bi_end_io = bi_complete; 2404 submit_bio(rw, bio); 2405 wait_for_completion(&event); 2406 2407 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2408 } 2409 2410 static int narrow_write_error(struct r10bio *r10_bio, int i) 2411 { 2412 struct bio *bio = r10_bio->master_bio; 2413 struct mddev *mddev = r10_bio->mddev; 2414 struct r10conf *conf = mddev->private; 2415 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2416 /* bio has the data to be written to slot 'i' where 2417 * we just recently had a write error. 2418 * We repeatedly clone the bio and trim down to one block, 2419 * then try the write. Where the write fails we record 2420 * a bad block. 2421 * It is conceivable that the bio doesn't exactly align with 2422 * blocks. We must handle this. 2423 * 2424 * We currently own a reference to the rdev. 2425 */ 2426 2427 int block_sectors; 2428 sector_t sector; 2429 int sectors; 2430 int sect_to_write = r10_bio->sectors; 2431 int ok = 1; 2432 2433 if (rdev->badblocks.shift < 0) 2434 return 0; 2435 2436 block_sectors = 1 << rdev->badblocks.shift; 2437 sector = r10_bio->sector; 2438 sectors = ((r10_bio->sector + block_sectors) 2439 & ~(sector_t)(block_sectors - 1)) 2440 - sector; 2441 2442 while (sect_to_write) { 2443 struct bio *wbio; 2444 if (sectors > sect_to_write) 2445 sectors = sect_to_write; 2446 /* Write at 'sector' for 'sectors' */ 2447 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2448 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2449 wbio->bi_sector = (r10_bio->devs[i].addr+ 2450 choose_data_offset(r10_bio, rdev) + 2451 (sector - r10_bio->sector)); 2452 wbio->bi_bdev = rdev->bdev; 2453 if (submit_bio_wait(WRITE, wbio) == 0) 2454 /* Failure! */ 2455 ok = rdev_set_badblocks(rdev, sector, 2456 sectors, 0) 2457 && ok; 2458 2459 bio_put(wbio); 2460 sect_to_write -= sectors; 2461 sector += sectors; 2462 sectors = block_sectors; 2463 } 2464 return ok; 2465 } 2466 2467 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2468 { 2469 int slot = r10_bio->read_slot; 2470 struct bio *bio; 2471 struct r10conf *conf = mddev->private; 2472 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2473 char b[BDEVNAME_SIZE]; 2474 unsigned long do_sync; 2475 int max_sectors; 2476 2477 /* we got a read error. Maybe the drive is bad. Maybe just 2478 * the block and we can fix it. 2479 * We freeze all other IO, and try reading the block from 2480 * other devices. When we find one, we re-write 2481 * and check it that fixes the read error. 2482 * This is all done synchronously while the array is 2483 * frozen. 2484 */ 2485 bio = r10_bio->devs[slot].bio; 2486 bdevname(bio->bi_bdev, b); 2487 bio_put(bio); 2488 r10_bio->devs[slot].bio = NULL; 2489 2490 if (mddev->ro == 0) { 2491 freeze_array(conf); 2492 fix_read_error(conf, mddev, r10_bio); 2493 unfreeze_array(conf); 2494 } else 2495 r10_bio->devs[slot].bio = IO_BLOCKED; 2496 2497 rdev_dec_pending(rdev, mddev); 2498 2499 read_more: 2500 rdev = read_balance(conf, r10_bio, &max_sectors); 2501 if (rdev == NULL) { 2502 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2503 " read error for block %llu\n", 2504 mdname(mddev), b, 2505 (unsigned long long)r10_bio->sector); 2506 raid_end_bio_io(r10_bio); 2507 return; 2508 } 2509 2510 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2511 slot = r10_bio->read_slot; 2512 printk_ratelimited( 2513 KERN_ERR 2514 "md/raid10:%s: %s: redirecting " 2515 "sector %llu to another mirror\n", 2516 mdname(mddev), 2517 bdevname(rdev->bdev, b), 2518 (unsigned long long)r10_bio->sector); 2519 bio = bio_clone_mddev(r10_bio->master_bio, 2520 GFP_NOIO, mddev); 2521 md_trim_bio(bio, 2522 r10_bio->sector - bio->bi_sector, 2523 max_sectors); 2524 r10_bio->devs[slot].bio = bio; 2525 r10_bio->devs[slot].rdev = rdev; 2526 bio->bi_sector = r10_bio->devs[slot].addr 2527 + choose_data_offset(r10_bio, rdev); 2528 bio->bi_bdev = rdev->bdev; 2529 bio->bi_rw = READ | do_sync; 2530 bio->bi_private = r10_bio; 2531 bio->bi_end_io = raid10_end_read_request; 2532 if (max_sectors < r10_bio->sectors) { 2533 /* Drat - have to split this up more */ 2534 struct bio *mbio = r10_bio->master_bio; 2535 int sectors_handled = 2536 r10_bio->sector + max_sectors 2537 - mbio->bi_sector; 2538 r10_bio->sectors = max_sectors; 2539 spin_lock_irq(&conf->device_lock); 2540 if (mbio->bi_phys_segments == 0) 2541 mbio->bi_phys_segments = 2; 2542 else 2543 mbio->bi_phys_segments++; 2544 spin_unlock_irq(&conf->device_lock); 2545 generic_make_request(bio); 2546 2547 r10_bio = mempool_alloc(conf->r10bio_pool, 2548 GFP_NOIO); 2549 r10_bio->master_bio = mbio; 2550 r10_bio->sectors = (mbio->bi_size >> 9) 2551 - sectors_handled; 2552 r10_bio->state = 0; 2553 set_bit(R10BIO_ReadError, 2554 &r10_bio->state); 2555 r10_bio->mddev = mddev; 2556 r10_bio->sector = mbio->bi_sector 2557 + sectors_handled; 2558 2559 goto read_more; 2560 } else 2561 generic_make_request(bio); 2562 } 2563 2564 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2565 { 2566 /* Some sort of write request has finished and it 2567 * succeeded in writing where we thought there was a 2568 * bad block. So forget the bad block. 2569 * Or possibly if failed and we need to record 2570 * a bad block. 2571 */ 2572 int m; 2573 struct md_rdev *rdev; 2574 2575 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2576 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2577 for (m = 0; m < conf->copies; m++) { 2578 int dev = r10_bio->devs[m].devnum; 2579 rdev = conf->mirrors[dev].rdev; 2580 if (r10_bio->devs[m].bio == NULL) 2581 continue; 2582 if (test_bit(BIO_UPTODATE, 2583 &r10_bio->devs[m].bio->bi_flags)) { 2584 rdev_clear_badblocks( 2585 rdev, 2586 r10_bio->devs[m].addr, 2587 r10_bio->sectors, 0); 2588 } else { 2589 if (!rdev_set_badblocks( 2590 rdev, 2591 r10_bio->devs[m].addr, 2592 r10_bio->sectors, 0)) 2593 md_error(conf->mddev, rdev); 2594 } 2595 rdev = conf->mirrors[dev].replacement; 2596 if (r10_bio->devs[m].repl_bio == NULL) 2597 continue; 2598 if (test_bit(BIO_UPTODATE, 2599 &r10_bio->devs[m].repl_bio->bi_flags)) { 2600 rdev_clear_badblocks( 2601 rdev, 2602 r10_bio->devs[m].addr, 2603 r10_bio->sectors, 0); 2604 } else { 2605 if (!rdev_set_badblocks( 2606 rdev, 2607 r10_bio->devs[m].addr, 2608 r10_bio->sectors, 0)) 2609 md_error(conf->mddev, rdev); 2610 } 2611 } 2612 put_buf(r10_bio); 2613 } else { 2614 for (m = 0; m < conf->copies; m++) { 2615 int dev = r10_bio->devs[m].devnum; 2616 struct bio *bio = r10_bio->devs[m].bio; 2617 rdev = conf->mirrors[dev].rdev; 2618 if (bio == IO_MADE_GOOD) { 2619 rdev_clear_badblocks( 2620 rdev, 2621 r10_bio->devs[m].addr, 2622 r10_bio->sectors, 0); 2623 rdev_dec_pending(rdev, conf->mddev); 2624 } else if (bio != NULL && 2625 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2626 if (!narrow_write_error(r10_bio, m)) { 2627 md_error(conf->mddev, rdev); 2628 set_bit(R10BIO_Degraded, 2629 &r10_bio->state); 2630 } 2631 rdev_dec_pending(rdev, conf->mddev); 2632 } 2633 bio = r10_bio->devs[m].repl_bio; 2634 rdev = conf->mirrors[dev].replacement; 2635 if (rdev && bio == IO_MADE_GOOD) { 2636 rdev_clear_badblocks( 2637 rdev, 2638 r10_bio->devs[m].addr, 2639 r10_bio->sectors, 0); 2640 rdev_dec_pending(rdev, conf->mddev); 2641 } 2642 } 2643 if (test_bit(R10BIO_WriteError, 2644 &r10_bio->state)) 2645 close_write(r10_bio); 2646 raid_end_bio_io(r10_bio); 2647 } 2648 } 2649 2650 static void raid10d(struct mddev *mddev) 2651 { 2652 struct r10bio *r10_bio; 2653 unsigned long flags; 2654 struct r10conf *conf = mddev->private; 2655 struct list_head *head = &conf->retry_list; 2656 struct blk_plug plug; 2657 2658 md_check_recovery(mddev); 2659 2660 blk_start_plug(&plug); 2661 for (;;) { 2662 2663 if (atomic_read(&mddev->plug_cnt) == 0) 2664 flush_pending_writes(conf); 2665 2666 spin_lock_irqsave(&conf->device_lock, flags); 2667 if (list_empty(head)) { 2668 spin_unlock_irqrestore(&conf->device_lock, flags); 2669 break; 2670 } 2671 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2672 list_del(head->prev); 2673 conf->nr_queued--; 2674 spin_unlock_irqrestore(&conf->device_lock, flags); 2675 2676 mddev = r10_bio->mddev; 2677 conf = mddev->private; 2678 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2679 test_bit(R10BIO_WriteError, &r10_bio->state)) 2680 handle_write_completed(conf, r10_bio); 2681 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2682 reshape_request_write(mddev, r10_bio); 2683 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2684 sync_request_write(mddev, r10_bio); 2685 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2686 recovery_request_write(mddev, r10_bio); 2687 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2688 handle_read_error(mddev, r10_bio); 2689 else { 2690 /* just a partial read to be scheduled from a 2691 * separate context 2692 */ 2693 int slot = r10_bio->read_slot; 2694 generic_make_request(r10_bio->devs[slot].bio); 2695 } 2696 2697 cond_resched(); 2698 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2699 md_check_recovery(mddev); 2700 } 2701 blk_finish_plug(&plug); 2702 } 2703 2704 2705 static int init_resync(struct r10conf *conf) 2706 { 2707 int buffs; 2708 int i; 2709 2710 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2711 BUG_ON(conf->r10buf_pool); 2712 conf->have_replacement = 0; 2713 for (i = 0; i < conf->geo.raid_disks; i++) 2714 if (conf->mirrors[i].replacement) 2715 conf->have_replacement = 1; 2716 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2717 if (!conf->r10buf_pool) 2718 return -ENOMEM; 2719 conf->next_resync = 0; 2720 return 0; 2721 } 2722 2723 /* 2724 * perform a "sync" on one "block" 2725 * 2726 * We need to make sure that no normal I/O request - particularly write 2727 * requests - conflict with active sync requests. 2728 * 2729 * This is achieved by tracking pending requests and a 'barrier' concept 2730 * that can be installed to exclude normal IO requests. 2731 * 2732 * Resync and recovery are handled very differently. 2733 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2734 * 2735 * For resync, we iterate over virtual addresses, read all copies, 2736 * and update if there are differences. If only one copy is live, 2737 * skip it. 2738 * For recovery, we iterate over physical addresses, read a good 2739 * value for each non-in_sync drive, and over-write. 2740 * 2741 * So, for recovery we may have several outstanding complex requests for a 2742 * given address, one for each out-of-sync device. We model this by allocating 2743 * a number of r10_bio structures, one for each out-of-sync device. 2744 * As we setup these structures, we collect all bio's together into a list 2745 * which we then process collectively to add pages, and then process again 2746 * to pass to generic_make_request. 2747 * 2748 * The r10_bio structures are linked using a borrowed master_bio pointer. 2749 * This link is counted in ->remaining. When the r10_bio that points to NULL 2750 * has its remaining count decremented to 0, the whole complex operation 2751 * is complete. 2752 * 2753 */ 2754 2755 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2756 int *skipped, int go_faster) 2757 { 2758 struct r10conf *conf = mddev->private; 2759 struct r10bio *r10_bio; 2760 struct bio *biolist = NULL, *bio; 2761 sector_t max_sector, nr_sectors; 2762 int i; 2763 int max_sync; 2764 sector_t sync_blocks; 2765 sector_t sectors_skipped = 0; 2766 int chunks_skipped = 0; 2767 sector_t chunk_mask = conf->geo.chunk_mask; 2768 2769 if (!conf->r10buf_pool) 2770 if (init_resync(conf)) 2771 return 0; 2772 2773 skipped: 2774 max_sector = mddev->dev_sectors; 2775 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2776 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2777 max_sector = mddev->resync_max_sectors; 2778 if (sector_nr >= max_sector) { 2779 /* If we aborted, we need to abort the 2780 * sync on the 'current' bitmap chucks (there can 2781 * be several when recovering multiple devices). 2782 * as we may have started syncing it but not finished. 2783 * We can find the current address in 2784 * mddev->curr_resync, but for recovery, 2785 * we need to convert that to several 2786 * virtual addresses. 2787 */ 2788 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2789 end_reshape(conf); 2790 return 0; 2791 } 2792 2793 if (mddev->curr_resync < max_sector) { /* aborted */ 2794 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2795 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2796 &sync_blocks, 1); 2797 else for (i = 0; i < conf->geo.raid_disks; i++) { 2798 sector_t sect = 2799 raid10_find_virt(conf, mddev->curr_resync, i); 2800 bitmap_end_sync(mddev->bitmap, sect, 2801 &sync_blocks, 1); 2802 } 2803 } else { 2804 /* completed sync */ 2805 if ((!mddev->bitmap || conf->fullsync) 2806 && conf->have_replacement 2807 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2808 /* Completed a full sync so the replacements 2809 * are now fully recovered. 2810 */ 2811 for (i = 0; i < conf->geo.raid_disks; i++) 2812 if (conf->mirrors[i].replacement) 2813 conf->mirrors[i].replacement 2814 ->recovery_offset 2815 = MaxSector; 2816 } 2817 conf->fullsync = 0; 2818 } 2819 bitmap_close_sync(mddev->bitmap); 2820 close_sync(conf); 2821 *skipped = 1; 2822 return sectors_skipped; 2823 } 2824 2825 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2826 return reshape_request(mddev, sector_nr, skipped); 2827 2828 if (chunks_skipped >= conf->geo.raid_disks) { 2829 /* if there has been nothing to do on any drive, 2830 * then there is nothing to do at all.. 2831 */ 2832 *skipped = 1; 2833 return (max_sector - sector_nr) + sectors_skipped; 2834 } 2835 2836 if (max_sector > mddev->resync_max) 2837 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2838 2839 /* make sure whole request will fit in a chunk - if chunks 2840 * are meaningful 2841 */ 2842 if (conf->geo.near_copies < conf->geo.raid_disks && 2843 max_sector > (sector_nr | chunk_mask)) 2844 max_sector = (sector_nr | chunk_mask) + 1; 2845 /* 2846 * If there is non-resync activity waiting for us then 2847 * put in a delay to throttle resync. 2848 */ 2849 if (!go_faster && conf->nr_waiting) 2850 msleep_interruptible(1000); 2851 2852 /* Again, very different code for resync and recovery. 2853 * Both must result in an r10bio with a list of bios that 2854 * have bi_end_io, bi_sector, bi_bdev set, 2855 * and bi_private set to the r10bio. 2856 * For recovery, we may actually create several r10bios 2857 * with 2 bios in each, that correspond to the bios in the main one. 2858 * In this case, the subordinate r10bios link back through a 2859 * borrowed master_bio pointer, and the counter in the master 2860 * includes a ref from each subordinate. 2861 */ 2862 /* First, we decide what to do and set ->bi_end_io 2863 * To end_sync_read if we want to read, and 2864 * end_sync_write if we will want to write. 2865 */ 2866 2867 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2868 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2869 /* recovery... the complicated one */ 2870 int j; 2871 r10_bio = NULL; 2872 2873 for (i = 0 ; i < conf->geo.raid_disks; i++) { 2874 int still_degraded; 2875 struct r10bio *rb2; 2876 sector_t sect; 2877 int must_sync; 2878 int any_working; 2879 struct mirror_info *mirror = &conf->mirrors[i]; 2880 2881 if ((mirror->rdev == NULL || 2882 test_bit(In_sync, &mirror->rdev->flags)) 2883 && 2884 (mirror->replacement == NULL || 2885 test_bit(Faulty, 2886 &mirror->replacement->flags))) 2887 continue; 2888 2889 still_degraded = 0; 2890 /* want to reconstruct this device */ 2891 rb2 = r10_bio; 2892 sect = raid10_find_virt(conf, sector_nr, i); 2893 if (sect >= mddev->resync_max_sectors) { 2894 /* last stripe is not complete - don't 2895 * try to recover this sector. 2896 */ 2897 continue; 2898 } 2899 /* Unless we are doing a full sync, or a replacement 2900 * we only need to recover the block if it is set in 2901 * the bitmap 2902 */ 2903 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2904 &sync_blocks, 1); 2905 if (sync_blocks < max_sync) 2906 max_sync = sync_blocks; 2907 if (!must_sync && 2908 mirror->replacement == NULL && 2909 !conf->fullsync) { 2910 /* yep, skip the sync_blocks here, but don't assume 2911 * that there will never be anything to do here 2912 */ 2913 chunks_skipped = -1; 2914 continue; 2915 } 2916 2917 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2918 raise_barrier(conf, rb2 != NULL); 2919 atomic_set(&r10_bio->remaining, 0); 2920 2921 r10_bio->master_bio = (struct bio*)rb2; 2922 if (rb2) 2923 atomic_inc(&rb2->remaining); 2924 r10_bio->mddev = mddev; 2925 set_bit(R10BIO_IsRecover, &r10_bio->state); 2926 r10_bio->sector = sect; 2927 2928 raid10_find_phys(conf, r10_bio); 2929 2930 /* Need to check if the array will still be 2931 * degraded 2932 */ 2933 for (j = 0; j < conf->geo.raid_disks; j++) 2934 if (conf->mirrors[j].rdev == NULL || 2935 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 2936 still_degraded = 1; 2937 break; 2938 } 2939 2940 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2941 &sync_blocks, still_degraded); 2942 2943 any_working = 0; 2944 for (j=0; j<conf->copies;j++) { 2945 int k; 2946 int d = r10_bio->devs[j].devnum; 2947 sector_t from_addr, to_addr; 2948 struct md_rdev *rdev; 2949 sector_t sector, first_bad; 2950 int bad_sectors; 2951 if (!conf->mirrors[d].rdev || 2952 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 2953 continue; 2954 /* This is where we read from */ 2955 any_working = 1; 2956 rdev = conf->mirrors[d].rdev; 2957 sector = r10_bio->devs[j].addr; 2958 2959 if (is_badblock(rdev, sector, max_sync, 2960 &first_bad, &bad_sectors)) { 2961 if (first_bad > sector) 2962 max_sync = first_bad - sector; 2963 else { 2964 bad_sectors -= (sector 2965 - first_bad); 2966 if (max_sync > bad_sectors) 2967 max_sync = bad_sectors; 2968 continue; 2969 } 2970 } 2971 bio = r10_bio->devs[0].bio; 2972 bio->bi_next = biolist; 2973 biolist = bio; 2974 bio->bi_private = r10_bio; 2975 bio->bi_end_io = end_sync_read; 2976 bio->bi_rw = READ; 2977 from_addr = r10_bio->devs[j].addr; 2978 bio->bi_sector = from_addr + rdev->data_offset; 2979 bio->bi_bdev = rdev->bdev; 2980 atomic_inc(&rdev->nr_pending); 2981 /* and we write to 'i' (if not in_sync) */ 2982 2983 for (k=0; k<conf->copies; k++) 2984 if (r10_bio->devs[k].devnum == i) 2985 break; 2986 BUG_ON(k == conf->copies); 2987 to_addr = r10_bio->devs[k].addr; 2988 r10_bio->devs[0].devnum = d; 2989 r10_bio->devs[0].addr = from_addr; 2990 r10_bio->devs[1].devnum = i; 2991 r10_bio->devs[1].addr = to_addr; 2992 2993 rdev = mirror->rdev; 2994 if (!test_bit(In_sync, &rdev->flags)) { 2995 bio = r10_bio->devs[1].bio; 2996 bio->bi_next = biolist; 2997 biolist = bio; 2998 bio->bi_private = r10_bio; 2999 bio->bi_end_io = end_sync_write; 3000 bio->bi_rw = WRITE; 3001 bio->bi_sector = to_addr 3002 + rdev->data_offset; 3003 bio->bi_bdev = rdev->bdev; 3004 atomic_inc(&r10_bio->remaining); 3005 } else 3006 r10_bio->devs[1].bio->bi_end_io = NULL; 3007 3008 /* and maybe write to replacement */ 3009 bio = r10_bio->devs[1].repl_bio; 3010 if (bio) 3011 bio->bi_end_io = NULL; 3012 rdev = mirror->replacement; 3013 /* Note: if rdev != NULL, then bio 3014 * cannot be NULL as r10buf_pool_alloc will 3015 * have allocated it. 3016 * So the second test here is pointless. 3017 * But it keeps semantic-checkers happy, and 3018 * this comment keeps human reviewers 3019 * happy. 3020 */ 3021 if (rdev == NULL || bio == NULL || 3022 test_bit(Faulty, &rdev->flags)) 3023 break; 3024 bio->bi_next = biolist; 3025 biolist = bio; 3026 bio->bi_private = r10_bio; 3027 bio->bi_end_io = end_sync_write; 3028 bio->bi_rw = WRITE; 3029 bio->bi_sector = to_addr + rdev->data_offset; 3030 bio->bi_bdev = rdev->bdev; 3031 atomic_inc(&r10_bio->remaining); 3032 break; 3033 } 3034 if (j == conf->copies) { 3035 /* Cannot recover, so abort the recovery or 3036 * record a bad block */ 3037 put_buf(r10_bio); 3038 if (rb2) 3039 atomic_dec(&rb2->remaining); 3040 r10_bio = rb2; 3041 if (any_working) { 3042 /* problem is that there are bad blocks 3043 * on other device(s) 3044 */ 3045 int k; 3046 for (k = 0; k < conf->copies; k++) 3047 if (r10_bio->devs[k].devnum == i) 3048 break; 3049 if (!test_bit(In_sync, 3050 &mirror->rdev->flags) 3051 && !rdev_set_badblocks( 3052 mirror->rdev, 3053 r10_bio->devs[k].addr, 3054 max_sync, 0)) 3055 any_working = 0; 3056 if (mirror->replacement && 3057 !rdev_set_badblocks( 3058 mirror->replacement, 3059 r10_bio->devs[k].addr, 3060 max_sync, 0)) 3061 any_working = 0; 3062 } 3063 if (!any_working) { 3064 if (!test_and_set_bit(MD_RECOVERY_INTR, 3065 &mddev->recovery)) 3066 printk(KERN_INFO "md/raid10:%s: insufficient " 3067 "working devices for recovery.\n", 3068 mdname(mddev)); 3069 mirror->recovery_disabled 3070 = mddev->recovery_disabled; 3071 } 3072 break; 3073 } 3074 } 3075 if (biolist == NULL) { 3076 while (r10_bio) { 3077 struct r10bio *rb2 = r10_bio; 3078 r10_bio = (struct r10bio*) rb2->master_bio; 3079 rb2->master_bio = NULL; 3080 put_buf(rb2); 3081 } 3082 goto giveup; 3083 } 3084 } else { 3085 /* resync. Schedule a read for every block at this virt offset */ 3086 int count = 0; 3087 3088 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3089 3090 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3091 &sync_blocks, mddev->degraded) && 3092 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3093 &mddev->recovery)) { 3094 /* We can skip this block */ 3095 *skipped = 1; 3096 return sync_blocks + sectors_skipped; 3097 } 3098 if (sync_blocks < max_sync) 3099 max_sync = sync_blocks; 3100 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3101 3102 r10_bio->mddev = mddev; 3103 atomic_set(&r10_bio->remaining, 0); 3104 raise_barrier(conf, 0); 3105 conf->next_resync = sector_nr; 3106 3107 r10_bio->master_bio = NULL; 3108 r10_bio->sector = sector_nr; 3109 set_bit(R10BIO_IsSync, &r10_bio->state); 3110 raid10_find_phys(conf, r10_bio); 3111 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3112 3113 for (i = 0; i < conf->copies; i++) { 3114 int d = r10_bio->devs[i].devnum; 3115 sector_t first_bad, sector; 3116 int bad_sectors; 3117 3118 if (r10_bio->devs[i].repl_bio) 3119 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3120 3121 bio = r10_bio->devs[i].bio; 3122 bio->bi_end_io = NULL; 3123 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3124 if (conf->mirrors[d].rdev == NULL || 3125 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3126 continue; 3127 sector = r10_bio->devs[i].addr; 3128 if (is_badblock(conf->mirrors[d].rdev, 3129 sector, max_sync, 3130 &first_bad, &bad_sectors)) { 3131 if (first_bad > sector) 3132 max_sync = first_bad - sector; 3133 else { 3134 bad_sectors -= (sector - first_bad); 3135 if (max_sync > bad_sectors) 3136 max_sync = max_sync; 3137 continue; 3138 } 3139 } 3140 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3141 atomic_inc(&r10_bio->remaining); 3142 bio->bi_next = biolist; 3143 biolist = bio; 3144 bio->bi_private = r10_bio; 3145 bio->bi_end_io = end_sync_read; 3146 bio->bi_rw = READ; 3147 bio->bi_sector = sector + 3148 conf->mirrors[d].rdev->data_offset; 3149 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3150 count++; 3151 3152 if (conf->mirrors[d].replacement == NULL || 3153 test_bit(Faulty, 3154 &conf->mirrors[d].replacement->flags)) 3155 continue; 3156 3157 /* Need to set up for writing to the replacement */ 3158 bio = r10_bio->devs[i].repl_bio; 3159 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3160 3161 sector = r10_bio->devs[i].addr; 3162 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3163 bio->bi_next = biolist; 3164 biolist = bio; 3165 bio->bi_private = r10_bio; 3166 bio->bi_end_io = end_sync_write; 3167 bio->bi_rw = WRITE; 3168 bio->bi_sector = sector + 3169 conf->mirrors[d].replacement->data_offset; 3170 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3171 count++; 3172 } 3173 3174 if (count < 2) { 3175 for (i=0; i<conf->copies; i++) { 3176 int d = r10_bio->devs[i].devnum; 3177 if (r10_bio->devs[i].bio->bi_end_io) 3178 rdev_dec_pending(conf->mirrors[d].rdev, 3179 mddev); 3180 if (r10_bio->devs[i].repl_bio && 3181 r10_bio->devs[i].repl_bio->bi_end_io) 3182 rdev_dec_pending( 3183 conf->mirrors[d].replacement, 3184 mddev); 3185 } 3186 put_buf(r10_bio); 3187 biolist = NULL; 3188 goto giveup; 3189 } 3190 } 3191 3192 for (bio = biolist; bio ; bio=bio->bi_next) { 3193 3194 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 3195 if (bio->bi_end_io) 3196 bio->bi_flags |= 1 << BIO_UPTODATE; 3197 bio->bi_vcnt = 0; 3198 bio->bi_idx = 0; 3199 bio->bi_phys_segments = 0; 3200 bio->bi_size = 0; 3201 } 3202 3203 nr_sectors = 0; 3204 if (sector_nr + max_sync < max_sector) 3205 max_sector = sector_nr + max_sync; 3206 do { 3207 struct page *page; 3208 int len = PAGE_SIZE; 3209 if (sector_nr + (len>>9) > max_sector) 3210 len = (max_sector - sector_nr) << 9; 3211 if (len == 0) 3212 break; 3213 for (bio= biolist ; bio ; bio=bio->bi_next) { 3214 struct bio *bio2; 3215 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3216 if (bio_add_page(bio, page, len, 0)) 3217 continue; 3218 3219 /* stop here */ 3220 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3221 for (bio2 = biolist; 3222 bio2 && bio2 != bio; 3223 bio2 = bio2->bi_next) { 3224 /* remove last page from this bio */ 3225 bio2->bi_vcnt--; 3226 bio2->bi_size -= len; 3227 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3228 } 3229 goto bio_full; 3230 } 3231 nr_sectors += len>>9; 3232 sector_nr += len>>9; 3233 } while (biolist->bi_vcnt < RESYNC_PAGES); 3234 bio_full: 3235 r10_bio->sectors = nr_sectors; 3236 3237 while (biolist) { 3238 bio = biolist; 3239 biolist = biolist->bi_next; 3240 3241 bio->bi_next = NULL; 3242 r10_bio = bio->bi_private; 3243 r10_bio->sectors = nr_sectors; 3244 3245 if (bio->bi_end_io == end_sync_read) { 3246 md_sync_acct(bio->bi_bdev, nr_sectors); 3247 generic_make_request(bio); 3248 } 3249 } 3250 3251 if (sectors_skipped) 3252 /* pretend they weren't skipped, it makes 3253 * no important difference in this case 3254 */ 3255 md_done_sync(mddev, sectors_skipped, 1); 3256 3257 return sectors_skipped + nr_sectors; 3258 giveup: 3259 /* There is nowhere to write, so all non-sync 3260 * drives must be failed or in resync, all drives 3261 * have a bad block, so try the next chunk... 3262 */ 3263 if (sector_nr + max_sync < max_sector) 3264 max_sector = sector_nr + max_sync; 3265 3266 sectors_skipped += (max_sector - sector_nr); 3267 chunks_skipped ++; 3268 sector_nr = max_sector; 3269 goto skipped; 3270 } 3271 3272 static sector_t 3273 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3274 { 3275 sector_t size; 3276 struct r10conf *conf = mddev->private; 3277 3278 if (!raid_disks) 3279 raid_disks = min(conf->geo.raid_disks, 3280 conf->prev.raid_disks); 3281 if (!sectors) 3282 sectors = conf->dev_sectors; 3283 3284 size = sectors >> conf->geo.chunk_shift; 3285 sector_div(size, conf->geo.far_copies); 3286 size = size * raid_disks; 3287 sector_div(size, conf->geo.near_copies); 3288 3289 return size << conf->geo.chunk_shift; 3290 } 3291 3292 static void calc_sectors(struct r10conf *conf, sector_t size) 3293 { 3294 /* Calculate the number of sectors-per-device that will 3295 * actually be used, and set conf->dev_sectors and 3296 * conf->stride 3297 */ 3298 3299 size = size >> conf->geo.chunk_shift; 3300 sector_div(size, conf->geo.far_copies); 3301 size = size * conf->geo.raid_disks; 3302 sector_div(size, conf->geo.near_copies); 3303 /* 'size' is now the number of chunks in the array */ 3304 /* calculate "used chunks per device" */ 3305 size = size * conf->copies; 3306 3307 /* We need to round up when dividing by raid_disks to 3308 * get the stride size. 3309 */ 3310 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3311 3312 conf->dev_sectors = size << conf->geo.chunk_shift; 3313 3314 if (conf->geo.far_offset) 3315 conf->geo.stride = 1 << conf->geo.chunk_shift; 3316 else { 3317 sector_div(size, conf->geo.far_copies); 3318 conf->geo.stride = size << conf->geo.chunk_shift; 3319 } 3320 } 3321 3322 enum geo_type {geo_new, geo_old, geo_start}; 3323 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3324 { 3325 int nc, fc, fo; 3326 int layout, chunk, disks; 3327 switch (new) { 3328 case geo_old: 3329 layout = mddev->layout; 3330 chunk = mddev->chunk_sectors; 3331 disks = mddev->raid_disks - mddev->delta_disks; 3332 break; 3333 case geo_new: 3334 layout = mddev->new_layout; 3335 chunk = mddev->new_chunk_sectors; 3336 disks = mddev->raid_disks; 3337 break; 3338 default: /* avoid 'may be unused' warnings */ 3339 case geo_start: /* new when starting reshape - raid_disks not 3340 * updated yet. */ 3341 layout = mddev->new_layout; 3342 chunk = mddev->new_chunk_sectors; 3343 disks = mddev->raid_disks + mddev->delta_disks; 3344 break; 3345 } 3346 if (layout >> 17) 3347 return -1; 3348 if (chunk < (PAGE_SIZE >> 9) || 3349 !is_power_of_2(chunk)) 3350 return -2; 3351 nc = layout & 255; 3352 fc = (layout >> 8) & 255; 3353 fo = layout & (1<<16); 3354 geo->raid_disks = disks; 3355 geo->near_copies = nc; 3356 geo->far_copies = fc; 3357 geo->far_offset = fo; 3358 geo->chunk_mask = chunk - 1; 3359 geo->chunk_shift = ffz(~chunk); 3360 return nc*fc; 3361 } 3362 3363 static struct r10conf *setup_conf(struct mddev *mddev) 3364 { 3365 struct r10conf *conf = NULL; 3366 int err = -EINVAL; 3367 struct geom geo; 3368 int copies; 3369 3370 copies = setup_geo(&geo, mddev, geo_new); 3371 3372 if (copies == -2) { 3373 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3374 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3375 mdname(mddev), PAGE_SIZE); 3376 goto out; 3377 } 3378 3379 if (copies < 2 || copies > mddev->raid_disks) { 3380 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3381 mdname(mddev), mddev->new_layout); 3382 goto out; 3383 } 3384 3385 err = -ENOMEM; 3386 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3387 if (!conf) 3388 goto out; 3389 3390 /* FIXME calc properly */ 3391 conf->mirrors = kzalloc(sizeof(struct mirror_info)*(mddev->raid_disks + 3392 max(0,mddev->delta_disks)), 3393 GFP_KERNEL); 3394 if (!conf->mirrors) 3395 goto out; 3396 3397 conf->tmppage = alloc_page(GFP_KERNEL); 3398 if (!conf->tmppage) 3399 goto out; 3400 3401 conf->geo = geo; 3402 conf->copies = copies; 3403 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3404 r10bio_pool_free, conf); 3405 if (!conf->r10bio_pool) 3406 goto out; 3407 3408 calc_sectors(conf, mddev->dev_sectors); 3409 if (mddev->reshape_position == MaxSector) { 3410 conf->prev = conf->geo; 3411 conf->reshape_progress = MaxSector; 3412 } else { 3413 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3414 err = -EINVAL; 3415 goto out; 3416 } 3417 conf->reshape_progress = mddev->reshape_position; 3418 if (conf->prev.far_offset) 3419 conf->prev.stride = 1 << conf->prev.chunk_shift; 3420 else 3421 /* far_copies must be 1 */ 3422 conf->prev.stride = conf->dev_sectors; 3423 } 3424 spin_lock_init(&conf->device_lock); 3425 INIT_LIST_HEAD(&conf->retry_list); 3426 3427 spin_lock_init(&conf->resync_lock); 3428 init_waitqueue_head(&conf->wait_barrier); 3429 3430 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3431 if (!conf->thread) 3432 goto out; 3433 3434 conf->mddev = mddev; 3435 return conf; 3436 3437 out: 3438 if (err == -ENOMEM) 3439 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3440 mdname(mddev)); 3441 if (conf) { 3442 if (conf->r10bio_pool) 3443 mempool_destroy(conf->r10bio_pool); 3444 kfree(conf->mirrors); 3445 safe_put_page(conf->tmppage); 3446 kfree(conf); 3447 } 3448 return ERR_PTR(err); 3449 } 3450 3451 static int run(struct mddev *mddev) 3452 { 3453 struct r10conf *conf; 3454 int i, disk_idx, chunk_size; 3455 struct mirror_info *disk; 3456 struct md_rdev *rdev; 3457 sector_t size; 3458 sector_t min_offset_diff = 0; 3459 int first = 1; 3460 3461 if (mddev->private == NULL) { 3462 conf = setup_conf(mddev); 3463 if (IS_ERR(conf)) 3464 return PTR_ERR(conf); 3465 mddev->private = conf; 3466 } 3467 conf = mddev->private; 3468 if (!conf) 3469 goto out; 3470 3471 mddev->thread = conf->thread; 3472 conf->thread = NULL; 3473 3474 chunk_size = mddev->chunk_sectors << 9; 3475 blk_queue_io_min(mddev->queue, chunk_size); 3476 if (conf->geo.raid_disks % conf->geo.near_copies) 3477 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3478 else 3479 blk_queue_io_opt(mddev->queue, chunk_size * 3480 (conf->geo.raid_disks / conf->geo.near_copies)); 3481 3482 rdev_for_each(rdev, mddev) { 3483 long long diff; 3484 struct request_queue *q; 3485 3486 disk_idx = rdev->raid_disk; 3487 if (disk_idx < 0) 3488 continue; 3489 if (disk_idx >= conf->geo.raid_disks && 3490 disk_idx >= conf->prev.raid_disks) 3491 continue; 3492 disk = conf->mirrors + disk_idx; 3493 3494 if (test_bit(Replacement, &rdev->flags)) { 3495 if (disk->replacement) 3496 goto out_free_conf; 3497 disk->replacement = rdev; 3498 } else { 3499 if (disk->rdev) 3500 goto out_free_conf; 3501 disk->rdev = rdev; 3502 } 3503 q = bdev_get_queue(rdev->bdev); 3504 if (q->merge_bvec_fn) 3505 mddev->merge_check_needed = 1; 3506 diff = (rdev->new_data_offset - rdev->data_offset); 3507 if (!mddev->reshape_backwards) 3508 diff = -diff; 3509 if (diff < 0) 3510 diff = 0; 3511 if (first || diff < min_offset_diff) 3512 min_offset_diff = diff; 3513 3514 disk_stack_limits(mddev->gendisk, rdev->bdev, 3515 rdev->data_offset << 9); 3516 3517 disk->head_position = 0; 3518 } 3519 3520 /* need to check that every block has at least one working mirror */ 3521 if (!enough(conf, -1)) { 3522 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3523 mdname(mddev)); 3524 goto out_free_conf; 3525 } 3526 3527 if (conf->reshape_progress != MaxSector) { 3528 /* must ensure that shape change is supported */ 3529 if (conf->geo.far_copies != 1 && 3530 conf->geo.far_offset == 0) 3531 goto out_free_conf; 3532 if (conf->prev.far_copies != 1 && 3533 conf->geo.far_offset == 0) 3534 goto out_free_conf; 3535 } 3536 3537 mddev->degraded = 0; 3538 for (i = 0; 3539 i < conf->geo.raid_disks 3540 || i < conf->prev.raid_disks; 3541 i++) { 3542 3543 disk = conf->mirrors + i; 3544 3545 if (!disk->rdev && disk->replacement) { 3546 /* The replacement is all we have - use it */ 3547 disk->rdev = disk->replacement; 3548 disk->replacement = NULL; 3549 clear_bit(Replacement, &disk->rdev->flags); 3550 } 3551 3552 if (!disk->rdev || 3553 !test_bit(In_sync, &disk->rdev->flags)) { 3554 disk->head_position = 0; 3555 mddev->degraded++; 3556 if (disk->rdev) 3557 conf->fullsync = 1; 3558 } 3559 disk->recovery_disabled = mddev->recovery_disabled - 1; 3560 } 3561 3562 if (mddev->recovery_cp != MaxSector) 3563 printk(KERN_NOTICE "md/raid10:%s: not clean" 3564 " -- starting background reconstruction\n", 3565 mdname(mddev)); 3566 printk(KERN_INFO 3567 "md/raid10:%s: active with %d out of %d devices\n", 3568 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3569 conf->geo.raid_disks); 3570 /* 3571 * Ok, everything is just fine now 3572 */ 3573 mddev->dev_sectors = conf->dev_sectors; 3574 size = raid10_size(mddev, 0, 0); 3575 md_set_array_sectors(mddev, size); 3576 mddev->resync_max_sectors = size; 3577 3578 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3579 mddev->queue->backing_dev_info.congested_data = mddev; 3580 3581 /* Calculate max read-ahead size. 3582 * We need to readahead at least twice a whole stripe.... 3583 * maybe... 3584 */ 3585 { 3586 int stripe = conf->geo.raid_disks * 3587 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3588 stripe /= conf->geo.near_copies; 3589 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3590 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3591 } 3592 3593 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3594 3595 if (md_integrity_register(mddev)) 3596 goto out_free_conf; 3597 3598 if (conf->reshape_progress != MaxSector) { 3599 unsigned long before_length, after_length; 3600 3601 before_length = ((1 << conf->prev.chunk_shift) * 3602 conf->prev.far_copies); 3603 after_length = ((1 << conf->geo.chunk_shift) * 3604 conf->geo.far_copies); 3605 3606 if (max(before_length, after_length) > min_offset_diff) { 3607 /* This cannot work */ 3608 printk("md/raid10: offset difference not enough to continue reshape\n"); 3609 goto out_free_conf; 3610 } 3611 conf->offset_diff = min_offset_diff; 3612 3613 conf->reshape_safe = conf->reshape_progress; 3614 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3615 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3616 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3617 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3618 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3619 "reshape"); 3620 } 3621 3622 return 0; 3623 3624 out_free_conf: 3625 md_unregister_thread(&mddev->thread); 3626 if (conf->r10bio_pool) 3627 mempool_destroy(conf->r10bio_pool); 3628 safe_put_page(conf->tmppage); 3629 kfree(conf->mirrors); 3630 kfree(conf); 3631 mddev->private = NULL; 3632 out: 3633 return -EIO; 3634 } 3635 3636 static int stop(struct mddev *mddev) 3637 { 3638 struct r10conf *conf = mddev->private; 3639 3640 raise_barrier(conf, 0); 3641 lower_barrier(conf); 3642 3643 md_unregister_thread(&mddev->thread); 3644 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 3645 if (conf->r10bio_pool) 3646 mempool_destroy(conf->r10bio_pool); 3647 kfree(conf->mirrors); 3648 kfree(conf); 3649 mddev->private = NULL; 3650 return 0; 3651 } 3652 3653 static void raid10_quiesce(struct mddev *mddev, int state) 3654 { 3655 struct r10conf *conf = mddev->private; 3656 3657 switch(state) { 3658 case 1: 3659 raise_barrier(conf, 0); 3660 break; 3661 case 0: 3662 lower_barrier(conf); 3663 break; 3664 } 3665 } 3666 3667 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3668 { 3669 /* Resize of 'far' arrays is not supported. 3670 * For 'near' and 'offset' arrays we can set the 3671 * number of sectors used to be an appropriate multiple 3672 * of the chunk size. 3673 * For 'offset', this is far_copies*chunksize. 3674 * For 'near' the multiplier is the LCM of 3675 * near_copies and raid_disks. 3676 * So if far_copies > 1 && !far_offset, fail. 3677 * Else find LCM(raid_disks, near_copy)*far_copies and 3678 * multiply by chunk_size. Then round to this number. 3679 * This is mostly done by raid10_size() 3680 */ 3681 struct r10conf *conf = mddev->private; 3682 sector_t oldsize, size; 3683 3684 if (mddev->reshape_position != MaxSector) 3685 return -EBUSY; 3686 3687 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3688 return -EINVAL; 3689 3690 oldsize = raid10_size(mddev, 0, 0); 3691 size = raid10_size(mddev, sectors, 0); 3692 if (mddev->external_size && 3693 mddev->array_sectors > size) 3694 return -EINVAL; 3695 if (mddev->bitmap) { 3696 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3697 if (ret) 3698 return ret; 3699 } 3700 md_set_array_sectors(mddev, size); 3701 set_capacity(mddev->gendisk, mddev->array_sectors); 3702 revalidate_disk(mddev->gendisk); 3703 if (sectors > mddev->dev_sectors && 3704 mddev->recovery_cp > oldsize) { 3705 mddev->recovery_cp = oldsize; 3706 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3707 } 3708 calc_sectors(conf, sectors); 3709 mddev->dev_sectors = conf->dev_sectors; 3710 mddev->resync_max_sectors = size; 3711 return 0; 3712 } 3713 3714 static void *raid10_takeover_raid0(struct mddev *mddev) 3715 { 3716 struct md_rdev *rdev; 3717 struct r10conf *conf; 3718 3719 if (mddev->degraded > 0) { 3720 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3721 mdname(mddev)); 3722 return ERR_PTR(-EINVAL); 3723 } 3724 3725 /* Set new parameters */ 3726 mddev->new_level = 10; 3727 /* new layout: far_copies = 1, near_copies = 2 */ 3728 mddev->new_layout = (1<<8) + 2; 3729 mddev->new_chunk_sectors = mddev->chunk_sectors; 3730 mddev->delta_disks = mddev->raid_disks; 3731 mddev->raid_disks *= 2; 3732 /* make sure it will be not marked as dirty */ 3733 mddev->recovery_cp = MaxSector; 3734 3735 conf = setup_conf(mddev); 3736 if (!IS_ERR(conf)) { 3737 rdev_for_each(rdev, mddev) 3738 if (rdev->raid_disk >= 0) 3739 rdev->new_raid_disk = rdev->raid_disk * 2; 3740 conf->barrier = 1; 3741 } 3742 3743 return conf; 3744 } 3745 3746 static void *raid10_takeover(struct mddev *mddev) 3747 { 3748 struct r0conf *raid0_conf; 3749 3750 /* raid10 can take over: 3751 * raid0 - providing it has only two drives 3752 */ 3753 if (mddev->level == 0) { 3754 /* for raid0 takeover only one zone is supported */ 3755 raid0_conf = mddev->private; 3756 if (raid0_conf->nr_strip_zones > 1) { 3757 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3758 " with more than one zone.\n", 3759 mdname(mddev)); 3760 return ERR_PTR(-EINVAL); 3761 } 3762 return raid10_takeover_raid0(mddev); 3763 } 3764 return ERR_PTR(-EINVAL); 3765 } 3766 3767 static int raid10_check_reshape(struct mddev *mddev) 3768 { 3769 /* Called when there is a request to change 3770 * - layout (to ->new_layout) 3771 * - chunk size (to ->new_chunk_sectors) 3772 * - raid_disks (by delta_disks) 3773 * or when trying to restart a reshape that was ongoing. 3774 * 3775 * We need to validate the request and possibly allocate 3776 * space if that might be an issue later. 3777 * 3778 * Currently we reject any reshape of a 'far' mode array, 3779 * allow chunk size to change if new is generally acceptable, 3780 * allow raid_disks to increase, and allow 3781 * a switch between 'near' mode and 'offset' mode. 3782 */ 3783 struct r10conf *conf = mddev->private; 3784 struct geom geo; 3785 3786 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3787 return -EINVAL; 3788 3789 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3790 /* mustn't change number of copies */ 3791 return -EINVAL; 3792 if (geo.far_copies > 1 && !geo.far_offset) 3793 /* Cannot switch to 'far' mode */ 3794 return -EINVAL; 3795 3796 if (mddev->array_sectors & geo.chunk_mask) 3797 /* not factor of array size */ 3798 return -EINVAL; 3799 3800 if (!enough(conf, -1)) 3801 return -EINVAL; 3802 3803 kfree(conf->mirrors_new); 3804 conf->mirrors_new = NULL; 3805 if (mddev->delta_disks > 0) { 3806 /* allocate new 'mirrors' list */ 3807 conf->mirrors_new = kzalloc( 3808 sizeof(struct mirror_info) 3809 *(mddev->raid_disks + 3810 mddev->delta_disks), 3811 GFP_KERNEL); 3812 if (!conf->mirrors_new) 3813 return -ENOMEM; 3814 } 3815 return 0; 3816 } 3817 3818 /* 3819 * Need to check if array has failed when deciding whether to: 3820 * - start an array 3821 * - remove non-faulty devices 3822 * - add a spare 3823 * - allow a reshape 3824 * This determination is simple when no reshape is happening. 3825 * However if there is a reshape, we need to carefully check 3826 * both the before and after sections. 3827 * This is because some failed devices may only affect one 3828 * of the two sections, and some non-in_sync devices may 3829 * be insync in the section most affected by failed devices. 3830 */ 3831 static int calc_degraded(struct r10conf *conf) 3832 { 3833 int degraded, degraded2; 3834 int i; 3835 3836 rcu_read_lock(); 3837 degraded = 0; 3838 /* 'prev' section first */ 3839 for (i = 0; i < conf->prev.raid_disks; i++) { 3840 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3841 if (!rdev || test_bit(Faulty, &rdev->flags)) 3842 degraded++; 3843 else if (!test_bit(In_sync, &rdev->flags)) 3844 /* When we can reduce the number of devices in 3845 * an array, this might not contribute to 3846 * 'degraded'. It does now. 3847 */ 3848 degraded++; 3849 } 3850 rcu_read_unlock(); 3851 if (conf->geo.raid_disks == conf->prev.raid_disks) 3852 return degraded; 3853 rcu_read_lock(); 3854 degraded2 = 0; 3855 for (i = 0; i < conf->geo.raid_disks; i++) { 3856 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3857 if (!rdev || test_bit(Faulty, &rdev->flags)) 3858 degraded2++; 3859 else if (!test_bit(In_sync, &rdev->flags)) { 3860 /* If reshape is increasing the number of devices, 3861 * this section has already been recovered, so 3862 * it doesn't contribute to degraded. 3863 * else it does. 3864 */ 3865 if (conf->geo.raid_disks <= conf->prev.raid_disks) 3866 degraded2++; 3867 } 3868 } 3869 rcu_read_unlock(); 3870 if (degraded2 > degraded) 3871 return degraded2; 3872 return degraded; 3873 } 3874 3875 static int raid10_start_reshape(struct mddev *mddev) 3876 { 3877 /* A 'reshape' has been requested. This commits 3878 * the various 'new' fields and sets MD_RECOVER_RESHAPE 3879 * This also checks if there are enough spares and adds them 3880 * to the array. 3881 * We currently require enough spares to make the final 3882 * array non-degraded. We also require that the difference 3883 * between old and new data_offset - on each device - is 3884 * enough that we never risk over-writing. 3885 */ 3886 3887 unsigned long before_length, after_length; 3888 sector_t min_offset_diff = 0; 3889 int first = 1; 3890 struct geom new; 3891 struct r10conf *conf = mddev->private; 3892 struct md_rdev *rdev; 3893 int spares = 0; 3894 int ret; 3895 3896 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3897 return -EBUSY; 3898 3899 if (setup_geo(&new, mddev, geo_start) != conf->copies) 3900 return -EINVAL; 3901 3902 before_length = ((1 << conf->prev.chunk_shift) * 3903 conf->prev.far_copies); 3904 after_length = ((1 << conf->geo.chunk_shift) * 3905 conf->geo.far_copies); 3906 3907 rdev_for_each(rdev, mddev) { 3908 if (!test_bit(In_sync, &rdev->flags) 3909 && !test_bit(Faulty, &rdev->flags)) 3910 spares++; 3911 if (rdev->raid_disk >= 0) { 3912 long long diff = (rdev->new_data_offset 3913 - rdev->data_offset); 3914 if (!mddev->reshape_backwards) 3915 diff = -diff; 3916 if (diff < 0) 3917 diff = 0; 3918 if (first || diff < min_offset_diff) 3919 min_offset_diff = diff; 3920 } 3921 } 3922 3923 if (max(before_length, after_length) > min_offset_diff) 3924 return -EINVAL; 3925 3926 if (spares < mddev->delta_disks) 3927 return -EINVAL; 3928 3929 conf->offset_diff = min_offset_diff; 3930 spin_lock_irq(&conf->device_lock); 3931 if (conf->mirrors_new) { 3932 memcpy(conf->mirrors_new, conf->mirrors, 3933 sizeof(struct mirror_info)*conf->prev.raid_disks); 3934 smp_mb(); 3935 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 3936 conf->mirrors_old = conf->mirrors; 3937 conf->mirrors = conf->mirrors_new; 3938 conf->mirrors_new = NULL; 3939 } 3940 setup_geo(&conf->geo, mddev, geo_start); 3941 smp_mb(); 3942 if (mddev->reshape_backwards) { 3943 sector_t size = raid10_size(mddev, 0, 0); 3944 if (size < mddev->array_sectors) { 3945 spin_unlock_irq(&conf->device_lock); 3946 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 3947 mdname(mddev)); 3948 return -EINVAL; 3949 } 3950 mddev->resync_max_sectors = size; 3951 conf->reshape_progress = size; 3952 } else 3953 conf->reshape_progress = 0; 3954 spin_unlock_irq(&conf->device_lock); 3955 3956 if (mddev->delta_disks && mddev->bitmap) { 3957 ret = bitmap_resize(mddev->bitmap, 3958 raid10_size(mddev, 0, 3959 conf->geo.raid_disks), 3960 0, 0); 3961 if (ret) 3962 goto abort; 3963 } 3964 if (mddev->delta_disks > 0) { 3965 rdev_for_each(rdev, mddev) 3966 if (rdev->raid_disk < 0 && 3967 !test_bit(Faulty, &rdev->flags)) { 3968 if (raid10_add_disk(mddev, rdev) == 0) { 3969 if (rdev->raid_disk >= 3970 conf->prev.raid_disks) 3971 set_bit(In_sync, &rdev->flags); 3972 else 3973 rdev->recovery_offset = 0; 3974 3975 if (sysfs_link_rdev(mddev, rdev)) 3976 /* Failure here is OK */; 3977 } 3978 } else if (rdev->raid_disk >= conf->prev.raid_disks 3979 && !test_bit(Faulty, &rdev->flags)) { 3980 /* This is a spare that was manually added */ 3981 set_bit(In_sync, &rdev->flags); 3982 } 3983 } 3984 /* When a reshape changes the number of devices, 3985 * ->degraded is measured against the larger of the 3986 * pre and post numbers. 3987 */ 3988 spin_lock_irq(&conf->device_lock); 3989 mddev->degraded = calc_degraded(conf); 3990 spin_unlock_irq(&conf->device_lock); 3991 mddev->raid_disks = conf->geo.raid_disks; 3992 mddev->reshape_position = conf->reshape_progress; 3993 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3994 3995 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3996 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3997 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3998 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3999 4000 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4001 "reshape"); 4002 if (!mddev->sync_thread) { 4003 ret = -EAGAIN; 4004 goto abort; 4005 } 4006 conf->reshape_checkpoint = jiffies; 4007 md_wakeup_thread(mddev->sync_thread); 4008 md_new_event(mddev); 4009 return 0; 4010 4011 abort: 4012 mddev->recovery = 0; 4013 spin_lock_irq(&conf->device_lock); 4014 conf->geo = conf->prev; 4015 mddev->raid_disks = conf->geo.raid_disks; 4016 rdev_for_each(rdev, mddev) 4017 rdev->new_data_offset = rdev->data_offset; 4018 smp_wmb(); 4019 conf->reshape_progress = MaxSector; 4020 mddev->reshape_position = MaxSector; 4021 spin_unlock_irq(&conf->device_lock); 4022 return ret; 4023 } 4024 4025 /* Calculate the last device-address that could contain 4026 * any block from the chunk that includes the array-address 's' 4027 * and report the next address. 4028 * i.e. the address returned will be chunk-aligned and after 4029 * any data that is in the chunk containing 's'. 4030 */ 4031 static sector_t last_dev_address(sector_t s, struct geom *geo) 4032 { 4033 s = (s | geo->chunk_mask) + 1; 4034 s >>= geo->chunk_shift; 4035 s *= geo->near_copies; 4036 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4037 s *= geo->far_copies; 4038 s <<= geo->chunk_shift; 4039 return s; 4040 } 4041 4042 /* Calculate the first device-address that could contain 4043 * any block from the chunk that includes the array-address 's'. 4044 * This too will be the start of a chunk 4045 */ 4046 static sector_t first_dev_address(sector_t s, struct geom *geo) 4047 { 4048 s >>= geo->chunk_shift; 4049 s *= geo->near_copies; 4050 sector_div(s, geo->raid_disks); 4051 s *= geo->far_copies; 4052 s <<= geo->chunk_shift; 4053 return s; 4054 } 4055 4056 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4057 int *skipped) 4058 { 4059 /* We simply copy at most one chunk (smallest of old and new) 4060 * at a time, possibly less if that exceeds RESYNC_PAGES, 4061 * or we hit a bad block or something. 4062 * This might mean we pause for normal IO in the middle of 4063 * a chunk, but that is not a problem was mddev->reshape_position 4064 * can record any location. 4065 * 4066 * If we will want to write to a location that isn't 4067 * yet recorded as 'safe' (i.e. in metadata on disk) then 4068 * we need to flush all reshape requests and update the metadata. 4069 * 4070 * When reshaping forwards (e.g. to more devices), we interpret 4071 * 'safe' as the earliest block which might not have been copied 4072 * down yet. We divide this by previous stripe size and multiply 4073 * by previous stripe length to get lowest device offset that we 4074 * cannot write to yet. 4075 * We interpret 'sector_nr' as an address that we want to write to. 4076 * From this we use last_device_address() to find where we might 4077 * write to, and first_device_address on the 'safe' position. 4078 * If this 'next' write position is after the 'safe' position, 4079 * we must update the metadata to increase the 'safe' position. 4080 * 4081 * When reshaping backwards, we round in the opposite direction 4082 * and perform the reverse test: next write position must not be 4083 * less than current safe position. 4084 * 4085 * In all this the minimum difference in data offsets 4086 * (conf->offset_diff - always positive) allows a bit of slack, 4087 * so next can be after 'safe', but not by more than offset_disk 4088 * 4089 * We need to prepare all the bios here before we start any IO 4090 * to ensure the size we choose is acceptable to all devices. 4091 * The means one for each copy for write-out and an extra one for 4092 * read-in. 4093 * We store the read-in bio in ->master_bio and the others in 4094 * ->devs[x].bio and ->devs[x].repl_bio. 4095 */ 4096 struct r10conf *conf = mddev->private; 4097 struct r10bio *r10_bio; 4098 sector_t next, safe, last; 4099 int max_sectors; 4100 int nr_sectors; 4101 int s; 4102 struct md_rdev *rdev; 4103 int need_flush = 0; 4104 struct bio *blist; 4105 struct bio *bio, *read_bio; 4106 int sectors_done = 0; 4107 4108 if (sector_nr == 0) { 4109 /* If restarting in the middle, skip the initial sectors */ 4110 if (mddev->reshape_backwards && 4111 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4112 sector_nr = (raid10_size(mddev, 0, 0) 4113 - conf->reshape_progress); 4114 } else if (!mddev->reshape_backwards && 4115 conf->reshape_progress > 0) 4116 sector_nr = conf->reshape_progress; 4117 if (sector_nr) { 4118 mddev->curr_resync_completed = sector_nr; 4119 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4120 *skipped = 1; 4121 return sector_nr; 4122 } 4123 } 4124 4125 /* We don't use sector_nr to track where we are up to 4126 * as that doesn't work well for ->reshape_backwards. 4127 * So just use ->reshape_progress. 4128 */ 4129 if (mddev->reshape_backwards) { 4130 /* 'next' is the earliest device address that we might 4131 * write to for this chunk in the new layout 4132 */ 4133 next = first_dev_address(conf->reshape_progress - 1, 4134 &conf->geo); 4135 4136 /* 'safe' is the last device address that we might read from 4137 * in the old layout after a restart 4138 */ 4139 safe = last_dev_address(conf->reshape_safe - 1, 4140 &conf->prev); 4141 4142 if (next + conf->offset_diff < safe) 4143 need_flush = 1; 4144 4145 last = conf->reshape_progress - 1; 4146 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4147 & conf->prev.chunk_mask); 4148 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4149 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4150 } else { 4151 /* 'next' is after the last device address that we 4152 * might write to for this chunk in the new layout 4153 */ 4154 next = last_dev_address(conf->reshape_progress, &conf->geo); 4155 4156 /* 'safe' is the earliest device address that we might 4157 * read from in the old layout after a restart 4158 */ 4159 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4160 4161 /* Need to update metadata if 'next' might be beyond 'safe' 4162 * as that would possibly corrupt data 4163 */ 4164 if (next > safe + conf->offset_diff) 4165 need_flush = 1; 4166 4167 sector_nr = conf->reshape_progress; 4168 last = sector_nr | (conf->geo.chunk_mask 4169 & conf->prev.chunk_mask); 4170 4171 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4172 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4173 } 4174 4175 if (need_flush || 4176 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4177 /* Need to update reshape_position in metadata */ 4178 wait_barrier(conf); 4179 mddev->reshape_position = conf->reshape_progress; 4180 if (mddev->reshape_backwards) 4181 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4182 - conf->reshape_progress; 4183 else 4184 mddev->curr_resync_completed = conf->reshape_progress; 4185 conf->reshape_checkpoint = jiffies; 4186 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4187 md_wakeup_thread(mddev->thread); 4188 wait_event(mddev->sb_wait, mddev->flags == 0 || 4189 kthread_should_stop()); 4190 conf->reshape_safe = mddev->reshape_position; 4191 allow_barrier(conf); 4192 } 4193 4194 read_more: 4195 /* Now schedule reads for blocks from sector_nr to last */ 4196 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4197 raise_barrier(conf, sectors_done != 0); 4198 atomic_set(&r10_bio->remaining, 0); 4199 r10_bio->mddev = mddev; 4200 r10_bio->sector = sector_nr; 4201 set_bit(R10BIO_IsReshape, &r10_bio->state); 4202 r10_bio->sectors = last - sector_nr + 1; 4203 rdev = read_balance(conf, r10_bio, &max_sectors); 4204 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4205 4206 if (!rdev) { 4207 /* Cannot read from here, so need to record bad blocks 4208 * on all the target devices. 4209 */ 4210 // FIXME 4211 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4212 return sectors_done; 4213 } 4214 4215 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4216 4217 read_bio->bi_bdev = rdev->bdev; 4218 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4219 + rdev->data_offset); 4220 read_bio->bi_private = r10_bio; 4221 read_bio->bi_end_io = end_sync_read; 4222 read_bio->bi_rw = READ; 4223 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4224 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4225 read_bio->bi_vcnt = 0; 4226 read_bio->bi_idx = 0; 4227 read_bio->bi_size = 0; 4228 r10_bio->master_bio = read_bio; 4229 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4230 4231 /* Now find the locations in the new layout */ 4232 __raid10_find_phys(&conf->geo, r10_bio); 4233 4234 blist = read_bio; 4235 read_bio->bi_next = NULL; 4236 4237 for (s = 0; s < conf->copies*2; s++) { 4238 struct bio *b; 4239 int d = r10_bio->devs[s/2].devnum; 4240 struct md_rdev *rdev2; 4241 if (s&1) { 4242 rdev2 = conf->mirrors[d].replacement; 4243 b = r10_bio->devs[s/2].repl_bio; 4244 } else { 4245 rdev2 = conf->mirrors[d].rdev; 4246 b = r10_bio->devs[s/2].bio; 4247 } 4248 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4249 continue; 4250 b->bi_bdev = rdev2->bdev; 4251 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; 4252 b->bi_private = r10_bio; 4253 b->bi_end_io = end_reshape_write; 4254 b->bi_rw = WRITE; 4255 b->bi_flags &= ~(BIO_POOL_MASK - 1); 4256 b->bi_flags |= 1 << BIO_UPTODATE; 4257 b->bi_next = blist; 4258 b->bi_vcnt = 0; 4259 b->bi_idx = 0; 4260 b->bi_size = 0; 4261 blist = b; 4262 } 4263 4264 /* Now add as many pages as possible to all of these bios. */ 4265 4266 nr_sectors = 0; 4267 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4268 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4269 int len = (max_sectors - s) << 9; 4270 if (len > PAGE_SIZE) 4271 len = PAGE_SIZE; 4272 for (bio = blist; bio ; bio = bio->bi_next) { 4273 struct bio *bio2; 4274 if (bio_add_page(bio, page, len, 0)) 4275 continue; 4276 4277 /* Didn't fit, must stop */ 4278 for (bio2 = blist; 4279 bio2 && bio2 != bio; 4280 bio2 = bio2->bi_next) { 4281 /* Remove last page from this bio */ 4282 bio2->bi_vcnt--; 4283 bio2->bi_size -= len; 4284 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4285 } 4286 goto bio_full; 4287 } 4288 sector_nr += len >> 9; 4289 nr_sectors += len >> 9; 4290 } 4291 bio_full: 4292 r10_bio->sectors = nr_sectors; 4293 4294 /* Now submit the read */ 4295 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4296 atomic_inc(&r10_bio->remaining); 4297 read_bio->bi_next = NULL; 4298 generic_make_request(read_bio); 4299 sector_nr += nr_sectors; 4300 sectors_done += nr_sectors; 4301 if (sector_nr <= last) 4302 goto read_more; 4303 4304 /* Now that we have done the whole section we can 4305 * update reshape_progress 4306 */ 4307 if (mddev->reshape_backwards) 4308 conf->reshape_progress -= sectors_done; 4309 else 4310 conf->reshape_progress += sectors_done; 4311 4312 return sectors_done; 4313 } 4314 4315 static void end_reshape_request(struct r10bio *r10_bio); 4316 static int handle_reshape_read_error(struct mddev *mddev, 4317 struct r10bio *r10_bio); 4318 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4319 { 4320 /* Reshape read completed. Hopefully we have a block 4321 * to write out. 4322 * If we got a read error then we do sync 1-page reads from 4323 * elsewhere until we find the data - or give up. 4324 */ 4325 struct r10conf *conf = mddev->private; 4326 int s; 4327 4328 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4329 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4330 /* Reshape has been aborted */ 4331 md_done_sync(mddev, r10_bio->sectors, 0); 4332 return; 4333 } 4334 4335 /* We definitely have the data in the pages, schedule the 4336 * writes. 4337 */ 4338 atomic_set(&r10_bio->remaining, 1); 4339 for (s = 0; s < conf->copies*2; s++) { 4340 struct bio *b; 4341 int d = r10_bio->devs[s/2].devnum; 4342 struct md_rdev *rdev; 4343 if (s&1) { 4344 rdev = conf->mirrors[d].replacement; 4345 b = r10_bio->devs[s/2].repl_bio; 4346 } else { 4347 rdev = conf->mirrors[d].rdev; 4348 b = r10_bio->devs[s/2].bio; 4349 } 4350 if (!rdev || test_bit(Faulty, &rdev->flags)) 4351 continue; 4352 atomic_inc(&rdev->nr_pending); 4353 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4354 atomic_inc(&r10_bio->remaining); 4355 b->bi_next = NULL; 4356 generic_make_request(b); 4357 } 4358 end_reshape_request(r10_bio); 4359 } 4360 4361 static void end_reshape(struct r10conf *conf) 4362 { 4363 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4364 return; 4365 4366 spin_lock_irq(&conf->device_lock); 4367 conf->prev = conf->geo; 4368 md_finish_reshape(conf->mddev); 4369 smp_wmb(); 4370 conf->reshape_progress = MaxSector; 4371 spin_unlock_irq(&conf->device_lock); 4372 4373 /* read-ahead size must cover two whole stripes, which is 4374 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4375 */ 4376 if (conf->mddev->queue) { 4377 int stripe = conf->geo.raid_disks * 4378 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4379 stripe /= conf->geo.near_copies; 4380 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4381 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4382 } 4383 conf->fullsync = 0; 4384 } 4385 4386 4387 static int handle_reshape_read_error(struct mddev *mddev, 4388 struct r10bio *r10_bio) 4389 { 4390 /* Use sync reads to get the blocks from somewhere else */ 4391 int sectors = r10_bio->sectors; 4392 struct r10bio r10b; 4393 struct r10conf *conf = mddev->private; 4394 int slot = 0; 4395 int idx = 0; 4396 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4397 4398 r10b.sector = r10_bio->sector; 4399 __raid10_find_phys(&conf->prev, &r10b); 4400 4401 while (sectors) { 4402 int s = sectors; 4403 int success = 0; 4404 int first_slot = slot; 4405 4406 if (s > (PAGE_SIZE >> 9)) 4407 s = PAGE_SIZE >> 9; 4408 4409 while (!success) { 4410 int d = r10b.devs[slot].devnum; 4411 struct md_rdev *rdev = conf->mirrors[d].rdev; 4412 sector_t addr; 4413 if (rdev == NULL || 4414 test_bit(Faulty, &rdev->flags) || 4415 !test_bit(In_sync, &rdev->flags)) 4416 goto failed; 4417 4418 addr = r10b.devs[slot].addr + idx * PAGE_SIZE; 4419 success = sync_page_io(rdev, 4420 addr, 4421 s << 9, 4422 bvec[idx].bv_page, 4423 READ, false); 4424 if (success) 4425 break; 4426 failed: 4427 slot++; 4428 if (slot >= conf->copies) 4429 slot = 0; 4430 if (slot == first_slot) 4431 break; 4432 } 4433 if (!success) { 4434 /* couldn't read this block, must give up */ 4435 set_bit(MD_RECOVERY_INTR, 4436 &mddev->recovery); 4437 return -EIO; 4438 } 4439 sectors -= s; 4440 idx++; 4441 } 4442 return 0; 4443 } 4444 4445 static void end_reshape_write(struct bio *bio, int error) 4446 { 4447 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4448 struct r10bio *r10_bio = bio->bi_private; 4449 struct mddev *mddev = r10_bio->mddev; 4450 struct r10conf *conf = mddev->private; 4451 int d; 4452 int slot; 4453 int repl; 4454 struct md_rdev *rdev = NULL; 4455 4456 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4457 if (repl) 4458 rdev = conf->mirrors[d].replacement; 4459 if (!rdev) { 4460 smp_mb(); 4461 rdev = conf->mirrors[d].rdev; 4462 } 4463 4464 if (!uptodate) { 4465 /* FIXME should record badblock */ 4466 md_error(mddev, rdev); 4467 } 4468 4469 rdev_dec_pending(rdev, mddev); 4470 end_reshape_request(r10_bio); 4471 } 4472 4473 static void end_reshape_request(struct r10bio *r10_bio) 4474 { 4475 if (!atomic_dec_and_test(&r10_bio->remaining)) 4476 return; 4477 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4478 bio_put(r10_bio->master_bio); 4479 put_buf(r10_bio); 4480 } 4481 4482 static void raid10_finish_reshape(struct mddev *mddev) 4483 { 4484 struct r10conf *conf = mddev->private; 4485 4486 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4487 return; 4488 4489 if (mddev->delta_disks > 0) { 4490 sector_t size = raid10_size(mddev, 0, 0); 4491 md_set_array_sectors(mddev, size); 4492 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4493 mddev->recovery_cp = mddev->resync_max_sectors; 4494 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4495 } 4496 mddev->resync_max_sectors = size; 4497 set_capacity(mddev->gendisk, mddev->array_sectors); 4498 revalidate_disk(mddev->gendisk); 4499 } else { 4500 int d; 4501 for (d = conf->geo.raid_disks ; 4502 d < conf->geo.raid_disks - mddev->delta_disks; 4503 d++) { 4504 struct md_rdev *rdev = conf->mirrors[d].rdev; 4505 if (rdev) 4506 clear_bit(In_sync, &rdev->flags); 4507 rdev = conf->mirrors[d].replacement; 4508 if (rdev) 4509 clear_bit(In_sync, &rdev->flags); 4510 } 4511 } 4512 mddev->layout = mddev->new_layout; 4513 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4514 mddev->reshape_position = MaxSector; 4515 mddev->delta_disks = 0; 4516 mddev->reshape_backwards = 0; 4517 } 4518 4519 static struct md_personality raid10_personality = 4520 { 4521 .name = "raid10", 4522 .level = 10, 4523 .owner = THIS_MODULE, 4524 .make_request = make_request, 4525 .run = run, 4526 .stop = stop, 4527 .status = status, 4528 .error_handler = error, 4529 .hot_add_disk = raid10_add_disk, 4530 .hot_remove_disk= raid10_remove_disk, 4531 .spare_active = raid10_spare_active, 4532 .sync_request = sync_request, 4533 .quiesce = raid10_quiesce, 4534 .size = raid10_size, 4535 .resize = raid10_resize, 4536 .takeover = raid10_takeover, 4537 .check_reshape = raid10_check_reshape, 4538 .start_reshape = raid10_start_reshape, 4539 .finish_reshape = raid10_finish_reshape, 4540 }; 4541 4542 static int __init raid_init(void) 4543 { 4544 return register_md_personality(&raid10_personality); 4545 } 4546 4547 static void raid_exit(void) 4548 { 4549 unregister_md_personality(&raid10_personality); 4550 } 4551 4552 module_init(raid_init); 4553 module_exit(raid_exit); 4554 MODULE_LICENSE("GPL"); 4555 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4556 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4557 MODULE_ALIAS("md-raid10"); 4558 MODULE_ALIAS("md-level-10"); 4559 4560 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4561