xref: /linux/drivers/md/raid10.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include "md.h"
26 #include "raid10.h"
27 #include "raid0.h"
28 #include "bitmap.h"
29 
30 /*
31  * RAID10 provides a combination of RAID0 and RAID1 functionality.
32  * The layout of data is defined by
33  *    chunk_size
34  *    raid_disks
35  *    near_copies (stored in low byte of layout)
36  *    far_copies (stored in second byte of layout)
37  *    far_offset (stored in bit 16 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.
40  * Each device is divided into far_copies sections.
41  * In each section, chunks are laid out in a style similar to raid0, but
42  * near_copies copies of each chunk is stored (each on a different drive).
43  * The starting device for each section is offset near_copies from the starting
44  * device of the previous section.
45  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
46  * drive.
47  * near_copies and far_copies must be at least one, and their product is at most
48  * raid_disks.
49  *
50  * If far_offset is true, then the far_copies are handled a bit differently.
51  * The copies are still in different stripes, but instead of be very far apart
52  * on disk, there are adjacent stripes.
53  */
54 
55 /*
56  * Number of guaranteed r10bios in case of extreme VM load:
57  */
58 #define	NR_RAID10_BIOS 256
59 
60 static void unplug_slaves(mddev_t *mddev);
61 
62 static void allow_barrier(conf_t *conf);
63 static void lower_barrier(conf_t *conf);
64 
65 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
66 {
67 	conf_t *conf = data;
68 	r10bio_t *r10_bio;
69 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
70 
71 	/* allocate a r10bio with room for raid_disks entries in the bios array */
72 	r10_bio = kzalloc(size, gfp_flags);
73 	if (!r10_bio && conf->mddev)
74 		unplug_slaves(conf->mddev);
75 
76 	return r10_bio;
77 }
78 
79 static void r10bio_pool_free(void *r10_bio, void *data)
80 {
81 	kfree(r10_bio);
82 }
83 
84 /* Maximum size of each resync request */
85 #define RESYNC_BLOCK_SIZE (64*1024)
86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
87 /* amount of memory to reserve for resync requests */
88 #define RESYNC_WINDOW (1024*1024)
89 /* maximum number of concurrent requests, memory permitting */
90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
91 
92 /*
93  * When performing a resync, we need to read and compare, so
94  * we need as many pages are there are copies.
95  * When performing a recovery, we need 2 bios, one for read,
96  * one for write (we recover only one drive per r10buf)
97  *
98  */
99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
100 {
101 	conf_t *conf = data;
102 	struct page *page;
103 	r10bio_t *r10_bio;
104 	struct bio *bio;
105 	int i, j;
106 	int nalloc;
107 
108 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
109 	if (!r10_bio) {
110 		unplug_slaves(conf->mddev);
111 		return NULL;
112 	}
113 
114 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
115 		nalloc = conf->copies; /* resync */
116 	else
117 		nalloc = 2; /* recovery */
118 
119 	/*
120 	 * Allocate bios.
121 	 */
122 	for (j = nalloc ; j-- ; ) {
123 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
124 		if (!bio)
125 			goto out_free_bio;
126 		r10_bio->devs[j].bio = bio;
127 	}
128 	/*
129 	 * Allocate RESYNC_PAGES data pages and attach them
130 	 * where needed.
131 	 */
132 	for (j = 0 ; j < nalloc; j++) {
133 		bio = r10_bio->devs[j].bio;
134 		for (i = 0; i < RESYNC_PAGES; i++) {
135 			page = alloc_page(gfp_flags);
136 			if (unlikely(!page))
137 				goto out_free_pages;
138 
139 			bio->bi_io_vec[i].bv_page = page;
140 		}
141 	}
142 
143 	return r10_bio;
144 
145 out_free_pages:
146 	for ( ; i > 0 ; i--)
147 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
148 	while (j--)
149 		for (i = 0; i < RESYNC_PAGES ; i++)
150 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
151 	j = -1;
152 out_free_bio:
153 	while ( ++j < nalloc )
154 		bio_put(r10_bio->devs[j].bio);
155 	r10bio_pool_free(r10_bio, conf);
156 	return NULL;
157 }
158 
159 static void r10buf_pool_free(void *__r10_bio, void *data)
160 {
161 	int i;
162 	conf_t *conf = data;
163 	r10bio_t *r10bio = __r10_bio;
164 	int j;
165 
166 	for (j=0; j < conf->copies; j++) {
167 		struct bio *bio = r10bio->devs[j].bio;
168 		if (bio) {
169 			for (i = 0; i < RESYNC_PAGES; i++) {
170 				safe_put_page(bio->bi_io_vec[i].bv_page);
171 				bio->bi_io_vec[i].bv_page = NULL;
172 			}
173 			bio_put(bio);
174 		}
175 	}
176 	r10bio_pool_free(r10bio, conf);
177 }
178 
179 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->copies; i++) {
184 		struct bio **bio = & r10_bio->devs[i].bio;
185 		if (*bio && *bio != IO_BLOCKED)
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r10bio(r10bio_t *r10_bio)
192 {
193 	conf_t *conf = r10_bio->mddev->private;
194 
195 	/*
196 	 * Wake up any possible resync thread that waits for the device
197 	 * to go idle.
198 	 */
199 	allow_barrier(conf);
200 
201 	put_all_bios(conf, r10_bio);
202 	mempool_free(r10_bio, conf->r10bio_pool);
203 }
204 
205 static void put_buf(r10bio_t *r10_bio)
206 {
207 	conf_t *conf = r10_bio->mddev->private;
208 
209 	mempool_free(r10_bio, conf->r10buf_pool);
210 
211 	lower_barrier(conf);
212 }
213 
214 static void reschedule_retry(r10bio_t *r10_bio)
215 {
216 	unsigned long flags;
217 	mddev_t *mddev = r10_bio->mddev;
218 	conf_t *conf = mddev->private;
219 
220 	spin_lock_irqsave(&conf->device_lock, flags);
221 	list_add(&r10_bio->retry_list, &conf->retry_list);
222 	conf->nr_queued ++;
223 	spin_unlock_irqrestore(&conf->device_lock, flags);
224 
225 	/* wake up frozen array... */
226 	wake_up(&conf->wait_barrier);
227 
228 	md_wakeup_thread(mddev->thread);
229 }
230 
231 /*
232  * raid_end_bio_io() is called when we have finished servicing a mirrored
233  * operation and are ready to return a success/failure code to the buffer
234  * cache layer.
235  */
236 static void raid_end_bio_io(r10bio_t *r10_bio)
237 {
238 	struct bio *bio = r10_bio->master_bio;
239 
240 	bio_endio(bio,
241 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 	free_r10bio(r10_bio);
243 }
244 
245 /*
246  * Update disk head position estimator based on IRQ completion info.
247  */
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 {
250 	conf_t *conf = r10_bio->mddev->private;
251 
252 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 		r10_bio->devs[slot].addr + (r10_bio->sectors);
254 }
255 
256 static void raid10_end_read_request(struct bio *bio, int error)
257 {
258 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259 	r10bio_t *r10_bio = bio->bi_private;
260 	int slot, dev;
261 	conf_t *conf = r10_bio->mddev->private;
262 
263 
264 	slot = r10_bio->read_slot;
265 	dev = r10_bio->devs[slot].devnum;
266 	/*
267 	 * this branch is our 'one mirror IO has finished' event handler:
268 	 */
269 	update_head_pos(slot, r10_bio);
270 
271 	if (uptodate) {
272 		/*
273 		 * Set R10BIO_Uptodate in our master bio, so that
274 		 * we will return a good error code to the higher
275 		 * levels even if IO on some other mirrored buffer fails.
276 		 *
277 		 * The 'master' represents the composite IO operation to
278 		 * user-side. So if something waits for IO, then it will
279 		 * wait for the 'master' bio.
280 		 */
281 		set_bit(R10BIO_Uptodate, &r10_bio->state);
282 		raid_end_bio_io(r10_bio);
283 	} else {
284 		/*
285 		 * oops, read error:
286 		 */
287 		char b[BDEVNAME_SIZE];
288 		if (printk_ratelimit())
289 			printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
290 			       mdname(conf->mddev),
291 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
292 		reschedule_retry(r10_bio);
293 	}
294 
295 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
296 }
297 
298 static void raid10_end_write_request(struct bio *bio, int error)
299 {
300 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
301 	r10bio_t *r10_bio = bio->bi_private;
302 	int slot, dev;
303 	conf_t *conf = r10_bio->mddev->private;
304 
305 	for (slot = 0; slot < conf->copies; slot++)
306 		if (r10_bio->devs[slot].bio == bio)
307 			break;
308 	dev = r10_bio->devs[slot].devnum;
309 
310 	/*
311 	 * this branch is our 'one mirror IO has finished' event handler:
312 	 */
313 	if (!uptodate) {
314 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
315 		/* an I/O failed, we can't clear the bitmap */
316 		set_bit(R10BIO_Degraded, &r10_bio->state);
317 	} else
318 		/*
319 		 * Set R10BIO_Uptodate in our master bio, so that
320 		 * we will return a good error code for to the higher
321 		 * levels even if IO on some other mirrored buffer fails.
322 		 *
323 		 * The 'master' represents the composite IO operation to
324 		 * user-side. So if something waits for IO, then it will
325 		 * wait for the 'master' bio.
326 		 */
327 		set_bit(R10BIO_Uptodate, &r10_bio->state);
328 
329 	update_head_pos(slot, r10_bio);
330 
331 	/*
332 	 *
333 	 * Let's see if all mirrored write operations have finished
334 	 * already.
335 	 */
336 	if (atomic_dec_and_test(&r10_bio->remaining)) {
337 		/* clear the bitmap if all writes complete successfully */
338 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
339 				r10_bio->sectors,
340 				!test_bit(R10BIO_Degraded, &r10_bio->state),
341 				0);
342 		md_write_end(r10_bio->mddev);
343 		raid_end_bio_io(r10_bio);
344 	}
345 
346 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
347 }
348 
349 
350 /*
351  * RAID10 layout manager
352  * Aswell as the chunksize and raid_disks count, there are two
353  * parameters: near_copies and far_copies.
354  * near_copies * far_copies must be <= raid_disks.
355  * Normally one of these will be 1.
356  * If both are 1, we get raid0.
357  * If near_copies == raid_disks, we get raid1.
358  *
359  * Chunks are layed out in raid0 style with near_copies copies of the
360  * first chunk, followed by near_copies copies of the next chunk and
361  * so on.
362  * If far_copies > 1, then after 1/far_copies of the array has been assigned
363  * as described above, we start again with a device offset of near_copies.
364  * So we effectively have another copy of the whole array further down all
365  * the drives, but with blocks on different drives.
366  * With this layout, and block is never stored twice on the one device.
367  *
368  * raid10_find_phys finds the sector offset of a given virtual sector
369  * on each device that it is on.
370  *
371  * raid10_find_virt does the reverse mapping, from a device and a
372  * sector offset to a virtual address
373  */
374 
375 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
376 {
377 	int n,f;
378 	sector_t sector;
379 	sector_t chunk;
380 	sector_t stripe;
381 	int dev;
382 
383 	int slot = 0;
384 
385 	/* now calculate first sector/dev */
386 	chunk = r10bio->sector >> conf->chunk_shift;
387 	sector = r10bio->sector & conf->chunk_mask;
388 
389 	chunk *= conf->near_copies;
390 	stripe = chunk;
391 	dev = sector_div(stripe, conf->raid_disks);
392 	if (conf->far_offset)
393 		stripe *= conf->far_copies;
394 
395 	sector += stripe << conf->chunk_shift;
396 
397 	/* and calculate all the others */
398 	for (n=0; n < conf->near_copies; n++) {
399 		int d = dev;
400 		sector_t s = sector;
401 		r10bio->devs[slot].addr = sector;
402 		r10bio->devs[slot].devnum = d;
403 		slot++;
404 
405 		for (f = 1; f < conf->far_copies; f++) {
406 			d += conf->near_copies;
407 			if (d >= conf->raid_disks)
408 				d -= conf->raid_disks;
409 			s += conf->stride;
410 			r10bio->devs[slot].devnum = d;
411 			r10bio->devs[slot].addr = s;
412 			slot++;
413 		}
414 		dev++;
415 		if (dev >= conf->raid_disks) {
416 			dev = 0;
417 			sector += (conf->chunk_mask + 1);
418 		}
419 	}
420 	BUG_ON(slot != conf->copies);
421 }
422 
423 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
424 {
425 	sector_t offset, chunk, vchunk;
426 
427 	offset = sector & conf->chunk_mask;
428 	if (conf->far_offset) {
429 		int fc;
430 		chunk = sector >> conf->chunk_shift;
431 		fc = sector_div(chunk, conf->far_copies);
432 		dev -= fc * conf->near_copies;
433 		if (dev < 0)
434 			dev += conf->raid_disks;
435 	} else {
436 		while (sector >= conf->stride) {
437 			sector -= conf->stride;
438 			if (dev < conf->near_copies)
439 				dev += conf->raid_disks - conf->near_copies;
440 			else
441 				dev -= conf->near_copies;
442 		}
443 		chunk = sector >> conf->chunk_shift;
444 	}
445 	vchunk = chunk * conf->raid_disks + dev;
446 	sector_div(vchunk, conf->near_copies);
447 	return (vchunk << conf->chunk_shift) + offset;
448 }
449 
450 /**
451  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
452  *	@q: request queue
453  *	@bvm: properties of new bio
454  *	@biovec: the request that could be merged to it.
455  *
456  *	Return amount of bytes we can accept at this offset
457  *      If near_copies == raid_disk, there are no striping issues,
458  *      but in that case, the function isn't called at all.
459  */
460 static int raid10_mergeable_bvec(struct request_queue *q,
461 				 struct bvec_merge_data *bvm,
462 				 struct bio_vec *biovec)
463 {
464 	mddev_t *mddev = q->queuedata;
465 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
466 	int max;
467 	unsigned int chunk_sectors = mddev->chunk_sectors;
468 	unsigned int bio_sectors = bvm->bi_size >> 9;
469 
470 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
471 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
472 	if (max <= biovec->bv_len && bio_sectors == 0)
473 		return biovec->bv_len;
474 	else
475 		return max;
476 }
477 
478 /*
479  * This routine returns the disk from which the requested read should
480  * be done. There is a per-array 'next expected sequential IO' sector
481  * number - if this matches on the next IO then we use the last disk.
482  * There is also a per-disk 'last know head position' sector that is
483  * maintained from IRQ contexts, both the normal and the resync IO
484  * completion handlers update this position correctly. If there is no
485  * perfect sequential match then we pick the disk whose head is closest.
486  *
487  * If there are 2 mirrors in the same 2 devices, performance degrades
488  * because position is mirror, not device based.
489  *
490  * The rdev for the device selected will have nr_pending incremented.
491  */
492 
493 /*
494  * FIXME: possibly should rethink readbalancing and do it differently
495  * depending on near_copies / far_copies geometry.
496  */
497 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
498 {
499 	const sector_t this_sector = r10_bio->sector;
500 	int disk, slot, nslot;
501 	const int sectors = r10_bio->sectors;
502 	sector_t new_distance, current_distance;
503 	mdk_rdev_t *rdev;
504 
505 	raid10_find_phys(conf, r10_bio);
506 	rcu_read_lock();
507 	/*
508 	 * Check if we can balance. We can balance on the whole
509 	 * device if no resync is going on (recovery is ok), or below
510 	 * the resync window. We take the first readable disk when
511 	 * above the resync window.
512 	 */
513 	if (conf->mddev->recovery_cp < MaxSector
514 	    && (this_sector + sectors >= conf->next_resync)) {
515 		/* make sure that disk is operational */
516 		slot = 0;
517 		disk = r10_bio->devs[slot].devnum;
518 
519 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
520 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
521 		       !test_bit(In_sync, &rdev->flags)) {
522 			slot++;
523 			if (slot == conf->copies) {
524 				slot = 0;
525 				disk = -1;
526 				break;
527 			}
528 			disk = r10_bio->devs[slot].devnum;
529 		}
530 		goto rb_out;
531 	}
532 
533 
534 	/* make sure the disk is operational */
535 	slot = 0;
536 	disk = r10_bio->devs[slot].devnum;
537 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
538 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
539 	       !test_bit(In_sync, &rdev->flags)) {
540 		slot ++;
541 		if (slot == conf->copies) {
542 			disk = -1;
543 			goto rb_out;
544 		}
545 		disk = r10_bio->devs[slot].devnum;
546 	}
547 
548 
549 	current_distance = abs(r10_bio->devs[slot].addr -
550 			       conf->mirrors[disk].head_position);
551 
552 	/* Find the disk whose head is closest,
553 	 * or - for far > 1 - find the closest to partition beginning */
554 
555 	for (nslot = slot; nslot < conf->copies; nslot++) {
556 		int ndisk = r10_bio->devs[nslot].devnum;
557 
558 
559 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
560 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
561 		    !test_bit(In_sync, &rdev->flags))
562 			continue;
563 
564 		/* This optimisation is debatable, and completely destroys
565 		 * sequential read speed for 'far copies' arrays.  So only
566 		 * keep it for 'near' arrays, and review those later.
567 		 */
568 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
569 			disk = ndisk;
570 			slot = nslot;
571 			break;
572 		}
573 
574 		/* for far > 1 always use the lowest address */
575 		if (conf->far_copies > 1)
576 			new_distance = r10_bio->devs[nslot].addr;
577 		else
578 			new_distance = abs(r10_bio->devs[nslot].addr -
579 					   conf->mirrors[ndisk].head_position);
580 		if (new_distance < current_distance) {
581 			current_distance = new_distance;
582 			disk = ndisk;
583 			slot = nslot;
584 		}
585 	}
586 
587 rb_out:
588 	r10_bio->read_slot = slot;
589 /*	conf->next_seq_sect = this_sector + sectors;*/
590 
591 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
592 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
593 	else
594 		disk = -1;
595 	rcu_read_unlock();
596 
597 	return disk;
598 }
599 
600 static void unplug_slaves(mddev_t *mddev)
601 {
602 	conf_t *conf = mddev->private;
603 	int i;
604 
605 	rcu_read_lock();
606 	for (i=0; i < conf->raid_disks; i++) {
607 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
608 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
609 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
610 
611 			atomic_inc(&rdev->nr_pending);
612 			rcu_read_unlock();
613 
614 			blk_unplug(r_queue);
615 
616 			rdev_dec_pending(rdev, mddev);
617 			rcu_read_lock();
618 		}
619 	}
620 	rcu_read_unlock();
621 }
622 
623 static void raid10_unplug(struct request_queue *q)
624 {
625 	mddev_t *mddev = q->queuedata;
626 
627 	unplug_slaves(q->queuedata);
628 	md_wakeup_thread(mddev->thread);
629 }
630 
631 static int raid10_congested(void *data, int bits)
632 {
633 	mddev_t *mddev = data;
634 	conf_t *conf = mddev->private;
635 	int i, ret = 0;
636 
637 	if (mddev_congested(mddev, bits))
638 		return 1;
639 	rcu_read_lock();
640 	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
641 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
642 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
643 			struct request_queue *q = bdev_get_queue(rdev->bdev);
644 
645 			ret |= bdi_congested(&q->backing_dev_info, bits);
646 		}
647 	}
648 	rcu_read_unlock();
649 	return ret;
650 }
651 
652 static int flush_pending_writes(conf_t *conf)
653 {
654 	/* Any writes that have been queued but are awaiting
655 	 * bitmap updates get flushed here.
656 	 * We return 1 if any requests were actually submitted.
657 	 */
658 	int rv = 0;
659 
660 	spin_lock_irq(&conf->device_lock);
661 
662 	if (conf->pending_bio_list.head) {
663 		struct bio *bio;
664 		bio = bio_list_get(&conf->pending_bio_list);
665 		blk_remove_plug(conf->mddev->queue);
666 		spin_unlock_irq(&conf->device_lock);
667 		/* flush any pending bitmap writes to disk
668 		 * before proceeding w/ I/O */
669 		bitmap_unplug(conf->mddev->bitmap);
670 
671 		while (bio) { /* submit pending writes */
672 			struct bio *next = bio->bi_next;
673 			bio->bi_next = NULL;
674 			generic_make_request(bio);
675 			bio = next;
676 		}
677 		rv = 1;
678 	} else
679 		spin_unlock_irq(&conf->device_lock);
680 	return rv;
681 }
682 /* Barriers....
683  * Sometimes we need to suspend IO while we do something else,
684  * either some resync/recovery, or reconfigure the array.
685  * To do this we raise a 'barrier'.
686  * The 'barrier' is a counter that can be raised multiple times
687  * to count how many activities are happening which preclude
688  * normal IO.
689  * We can only raise the barrier if there is no pending IO.
690  * i.e. if nr_pending == 0.
691  * We choose only to raise the barrier if no-one is waiting for the
692  * barrier to go down.  This means that as soon as an IO request
693  * is ready, no other operations which require a barrier will start
694  * until the IO request has had a chance.
695  *
696  * So: regular IO calls 'wait_barrier'.  When that returns there
697  *    is no backgroup IO happening,  It must arrange to call
698  *    allow_barrier when it has finished its IO.
699  * backgroup IO calls must call raise_barrier.  Once that returns
700  *    there is no normal IO happeing.  It must arrange to call
701  *    lower_barrier when the particular background IO completes.
702  */
703 
704 static void raise_barrier(conf_t *conf, int force)
705 {
706 	BUG_ON(force && !conf->barrier);
707 	spin_lock_irq(&conf->resync_lock);
708 
709 	/* Wait until no block IO is waiting (unless 'force') */
710 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
711 			    conf->resync_lock,
712 			    raid10_unplug(conf->mddev->queue));
713 
714 	/* block any new IO from starting */
715 	conf->barrier++;
716 
717 	/* No wait for all pending IO to complete */
718 	wait_event_lock_irq(conf->wait_barrier,
719 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
720 			    conf->resync_lock,
721 			    raid10_unplug(conf->mddev->queue));
722 
723 	spin_unlock_irq(&conf->resync_lock);
724 }
725 
726 static void lower_barrier(conf_t *conf)
727 {
728 	unsigned long flags;
729 	spin_lock_irqsave(&conf->resync_lock, flags);
730 	conf->barrier--;
731 	spin_unlock_irqrestore(&conf->resync_lock, flags);
732 	wake_up(&conf->wait_barrier);
733 }
734 
735 static void wait_barrier(conf_t *conf)
736 {
737 	spin_lock_irq(&conf->resync_lock);
738 	if (conf->barrier) {
739 		conf->nr_waiting++;
740 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
741 				    conf->resync_lock,
742 				    raid10_unplug(conf->mddev->queue));
743 		conf->nr_waiting--;
744 	}
745 	conf->nr_pending++;
746 	spin_unlock_irq(&conf->resync_lock);
747 }
748 
749 static void allow_barrier(conf_t *conf)
750 {
751 	unsigned long flags;
752 	spin_lock_irqsave(&conf->resync_lock, flags);
753 	conf->nr_pending--;
754 	spin_unlock_irqrestore(&conf->resync_lock, flags);
755 	wake_up(&conf->wait_barrier);
756 }
757 
758 static void freeze_array(conf_t *conf)
759 {
760 	/* stop syncio and normal IO and wait for everything to
761 	 * go quiet.
762 	 * We increment barrier and nr_waiting, and then
763 	 * wait until nr_pending match nr_queued+1
764 	 * This is called in the context of one normal IO request
765 	 * that has failed. Thus any sync request that might be pending
766 	 * will be blocked by nr_pending, and we need to wait for
767 	 * pending IO requests to complete or be queued for re-try.
768 	 * Thus the number queued (nr_queued) plus this request (1)
769 	 * must match the number of pending IOs (nr_pending) before
770 	 * we continue.
771 	 */
772 	spin_lock_irq(&conf->resync_lock);
773 	conf->barrier++;
774 	conf->nr_waiting++;
775 	wait_event_lock_irq(conf->wait_barrier,
776 			    conf->nr_pending == conf->nr_queued+1,
777 			    conf->resync_lock,
778 			    ({ flush_pending_writes(conf);
779 			       raid10_unplug(conf->mddev->queue); }));
780 	spin_unlock_irq(&conf->resync_lock);
781 }
782 
783 static void unfreeze_array(conf_t *conf)
784 {
785 	/* reverse the effect of the freeze */
786 	spin_lock_irq(&conf->resync_lock);
787 	conf->barrier--;
788 	conf->nr_waiting--;
789 	wake_up(&conf->wait_barrier);
790 	spin_unlock_irq(&conf->resync_lock);
791 }
792 
793 static int make_request(mddev_t *mddev, struct bio * bio)
794 {
795 	conf_t *conf = mddev->private;
796 	mirror_info_t *mirror;
797 	r10bio_t *r10_bio;
798 	struct bio *read_bio;
799 	int i;
800 	int chunk_sects = conf->chunk_mask + 1;
801 	const int rw = bio_data_dir(bio);
802 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
803 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
804 	struct bio_list bl;
805 	unsigned long flags;
806 	mdk_rdev_t *blocked_rdev;
807 
808 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
809 		md_flush_request(mddev, bio);
810 		return 0;
811 	}
812 
813 	/* If this request crosses a chunk boundary, we need to
814 	 * split it.  This will only happen for 1 PAGE (or less) requests.
815 	 */
816 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
817 		      > chunk_sects &&
818 		    conf->near_copies < conf->raid_disks)) {
819 		struct bio_pair *bp;
820 		/* Sanity check -- queue functions should prevent this happening */
821 		if (bio->bi_vcnt != 1 ||
822 		    bio->bi_idx != 0)
823 			goto bad_map;
824 		/* This is a one page bio that upper layers
825 		 * refuse to split for us, so we need to split it.
826 		 */
827 		bp = bio_split(bio,
828 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
829 
830 		/* Each of these 'make_request' calls will call 'wait_barrier'.
831 		 * If the first succeeds but the second blocks due to the resync
832 		 * thread raising the barrier, we will deadlock because the
833 		 * IO to the underlying device will be queued in generic_make_request
834 		 * and will never complete, so will never reduce nr_pending.
835 		 * So increment nr_waiting here so no new raise_barriers will
836 		 * succeed, and so the second wait_barrier cannot block.
837 		 */
838 		spin_lock_irq(&conf->resync_lock);
839 		conf->nr_waiting++;
840 		spin_unlock_irq(&conf->resync_lock);
841 
842 		if (make_request(mddev, &bp->bio1))
843 			generic_make_request(&bp->bio1);
844 		if (make_request(mddev, &bp->bio2))
845 			generic_make_request(&bp->bio2);
846 
847 		spin_lock_irq(&conf->resync_lock);
848 		conf->nr_waiting--;
849 		wake_up(&conf->wait_barrier);
850 		spin_unlock_irq(&conf->resync_lock);
851 
852 		bio_pair_release(bp);
853 		return 0;
854 	bad_map:
855 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
856 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
857 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
858 
859 		bio_io_error(bio);
860 		return 0;
861 	}
862 
863 	md_write_start(mddev, bio);
864 
865 	/*
866 	 * Register the new request and wait if the reconstruction
867 	 * thread has put up a bar for new requests.
868 	 * Continue immediately if no resync is active currently.
869 	 */
870 	wait_barrier(conf);
871 
872 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
873 
874 	r10_bio->master_bio = bio;
875 	r10_bio->sectors = bio->bi_size >> 9;
876 
877 	r10_bio->mddev = mddev;
878 	r10_bio->sector = bio->bi_sector;
879 	r10_bio->state = 0;
880 
881 	if (rw == READ) {
882 		/*
883 		 * read balancing logic:
884 		 */
885 		int disk = read_balance(conf, r10_bio);
886 		int slot = r10_bio->read_slot;
887 		if (disk < 0) {
888 			raid_end_bio_io(r10_bio);
889 			return 0;
890 		}
891 		mirror = conf->mirrors + disk;
892 
893 		read_bio = bio_clone(bio, GFP_NOIO);
894 
895 		r10_bio->devs[slot].bio = read_bio;
896 
897 		read_bio->bi_sector = r10_bio->devs[slot].addr +
898 			mirror->rdev->data_offset;
899 		read_bio->bi_bdev = mirror->rdev->bdev;
900 		read_bio->bi_end_io = raid10_end_read_request;
901 		read_bio->bi_rw = READ | do_sync;
902 		read_bio->bi_private = r10_bio;
903 
904 		generic_make_request(read_bio);
905 		return 0;
906 	}
907 
908 	/*
909 	 * WRITE:
910 	 */
911 	/* first select target devices under rcu_lock and
912 	 * inc refcount on their rdev.  Record them by setting
913 	 * bios[x] to bio
914 	 */
915 	raid10_find_phys(conf, r10_bio);
916  retry_write:
917 	blocked_rdev = NULL;
918 	rcu_read_lock();
919 	for (i = 0;  i < conf->copies; i++) {
920 		int d = r10_bio->devs[i].devnum;
921 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
922 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
923 			atomic_inc(&rdev->nr_pending);
924 			blocked_rdev = rdev;
925 			break;
926 		}
927 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
928 			atomic_inc(&rdev->nr_pending);
929 			r10_bio->devs[i].bio = bio;
930 		} else {
931 			r10_bio->devs[i].bio = NULL;
932 			set_bit(R10BIO_Degraded, &r10_bio->state);
933 		}
934 	}
935 	rcu_read_unlock();
936 
937 	if (unlikely(blocked_rdev)) {
938 		/* Have to wait for this device to get unblocked, then retry */
939 		int j;
940 		int d;
941 
942 		for (j = 0; j < i; j++)
943 			if (r10_bio->devs[j].bio) {
944 				d = r10_bio->devs[j].devnum;
945 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
946 			}
947 		allow_barrier(conf);
948 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
949 		wait_barrier(conf);
950 		goto retry_write;
951 	}
952 
953 	atomic_set(&r10_bio->remaining, 0);
954 
955 	bio_list_init(&bl);
956 	for (i = 0; i < conf->copies; i++) {
957 		struct bio *mbio;
958 		int d = r10_bio->devs[i].devnum;
959 		if (!r10_bio->devs[i].bio)
960 			continue;
961 
962 		mbio = bio_clone(bio, GFP_NOIO);
963 		r10_bio->devs[i].bio = mbio;
964 
965 		mbio->bi_sector	= r10_bio->devs[i].addr+
966 			conf->mirrors[d].rdev->data_offset;
967 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
968 		mbio->bi_end_io	= raid10_end_write_request;
969 		mbio->bi_rw = WRITE | do_sync | do_fua;
970 		mbio->bi_private = r10_bio;
971 
972 		atomic_inc(&r10_bio->remaining);
973 		bio_list_add(&bl, mbio);
974 	}
975 
976 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
977 		/* the array is dead */
978 		md_write_end(mddev);
979 		raid_end_bio_io(r10_bio);
980 		return 0;
981 	}
982 
983 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
984 	spin_lock_irqsave(&conf->device_lock, flags);
985 	bio_list_merge(&conf->pending_bio_list, &bl);
986 	blk_plug_device(mddev->queue);
987 	spin_unlock_irqrestore(&conf->device_lock, flags);
988 
989 	/* In case raid10d snuck in to freeze_array */
990 	wake_up(&conf->wait_barrier);
991 
992 	if (do_sync)
993 		md_wakeup_thread(mddev->thread);
994 
995 	return 0;
996 }
997 
998 static void status(struct seq_file *seq, mddev_t *mddev)
999 {
1000 	conf_t *conf = mddev->private;
1001 	int i;
1002 
1003 	if (conf->near_copies < conf->raid_disks)
1004 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1005 	if (conf->near_copies > 1)
1006 		seq_printf(seq, " %d near-copies", conf->near_copies);
1007 	if (conf->far_copies > 1) {
1008 		if (conf->far_offset)
1009 			seq_printf(seq, " %d offset-copies", conf->far_copies);
1010 		else
1011 			seq_printf(seq, " %d far-copies", conf->far_copies);
1012 	}
1013 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1014 					conf->raid_disks - mddev->degraded);
1015 	for (i = 0; i < conf->raid_disks; i++)
1016 		seq_printf(seq, "%s",
1017 			      conf->mirrors[i].rdev &&
1018 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1019 	seq_printf(seq, "]");
1020 }
1021 
1022 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1023 {
1024 	char b[BDEVNAME_SIZE];
1025 	conf_t *conf = mddev->private;
1026 
1027 	/*
1028 	 * If it is not operational, then we have already marked it as dead
1029 	 * else if it is the last working disks, ignore the error, let the
1030 	 * next level up know.
1031 	 * else mark the drive as failed
1032 	 */
1033 	if (test_bit(In_sync, &rdev->flags)
1034 	    && conf->raid_disks-mddev->degraded == 1)
1035 		/*
1036 		 * Don't fail the drive, just return an IO error.
1037 		 * The test should really be more sophisticated than
1038 		 * "working_disks == 1", but it isn't critical, and
1039 		 * can wait until we do more sophisticated "is the drive
1040 		 * really dead" tests...
1041 		 */
1042 		return;
1043 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1044 		unsigned long flags;
1045 		spin_lock_irqsave(&conf->device_lock, flags);
1046 		mddev->degraded++;
1047 		spin_unlock_irqrestore(&conf->device_lock, flags);
1048 		/*
1049 		 * if recovery is running, make sure it aborts.
1050 		 */
1051 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1052 	}
1053 	set_bit(Faulty, &rdev->flags);
1054 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1055 	printk(KERN_ALERT "md/raid10:%s: Disk failure on %s, disabling device.\n"
1056 	       KERN_ALERT "md/raid10:%s: Operation continuing on %d devices.\n",
1057 	       mdname(mddev), bdevname(rdev->bdev, b),
1058 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1059 }
1060 
1061 static void print_conf(conf_t *conf)
1062 {
1063 	int i;
1064 	mirror_info_t *tmp;
1065 
1066 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1067 	if (!conf) {
1068 		printk(KERN_DEBUG "(!conf)\n");
1069 		return;
1070 	}
1071 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1072 		conf->raid_disks);
1073 
1074 	for (i = 0; i < conf->raid_disks; i++) {
1075 		char b[BDEVNAME_SIZE];
1076 		tmp = conf->mirrors + i;
1077 		if (tmp->rdev)
1078 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1079 				i, !test_bit(In_sync, &tmp->rdev->flags),
1080 			        !test_bit(Faulty, &tmp->rdev->flags),
1081 				bdevname(tmp->rdev->bdev,b));
1082 	}
1083 }
1084 
1085 static void close_sync(conf_t *conf)
1086 {
1087 	wait_barrier(conf);
1088 	allow_barrier(conf);
1089 
1090 	mempool_destroy(conf->r10buf_pool);
1091 	conf->r10buf_pool = NULL;
1092 }
1093 
1094 /* check if there are enough drives for
1095  * every block to appear on atleast one
1096  */
1097 static int enough(conf_t *conf)
1098 {
1099 	int first = 0;
1100 
1101 	do {
1102 		int n = conf->copies;
1103 		int cnt = 0;
1104 		while (n--) {
1105 			if (conf->mirrors[first].rdev)
1106 				cnt++;
1107 			first = (first+1) % conf->raid_disks;
1108 		}
1109 		if (cnt == 0)
1110 			return 0;
1111 	} while (first != 0);
1112 	return 1;
1113 }
1114 
1115 static int raid10_spare_active(mddev_t *mddev)
1116 {
1117 	int i;
1118 	conf_t *conf = mddev->private;
1119 	mirror_info_t *tmp;
1120 	int count = 0;
1121 	unsigned long flags;
1122 
1123 	/*
1124 	 * Find all non-in_sync disks within the RAID10 configuration
1125 	 * and mark them in_sync
1126 	 */
1127 	for (i = 0; i < conf->raid_disks; i++) {
1128 		tmp = conf->mirrors + i;
1129 		if (tmp->rdev
1130 		    && !test_bit(Faulty, &tmp->rdev->flags)
1131 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1132 			count++;
1133 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1134 		}
1135 	}
1136 	spin_lock_irqsave(&conf->device_lock, flags);
1137 	mddev->degraded -= count;
1138 	spin_unlock_irqrestore(&conf->device_lock, flags);
1139 
1140 	print_conf(conf);
1141 	return count;
1142 }
1143 
1144 
1145 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1146 {
1147 	conf_t *conf = mddev->private;
1148 	int err = -EEXIST;
1149 	int mirror;
1150 	mirror_info_t *p;
1151 	int first = 0;
1152 	int last = conf->raid_disks - 1;
1153 
1154 	if (mddev->recovery_cp < MaxSector)
1155 		/* only hot-add to in-sync arrays, as recovery is
1156 		 * very different from resync
1157 		 */
1158 		return -EBUSY;
1159 	if (!enough(conf))
1160 		return -EINVAL;
1161 
1162 	if (rdev->raid_disk >= 0)
1163 		first = last = rdev->raid_disk;
1164 
1165 	if (rdev->saved_raid_disk >= 0 &&
1166 	    rdev->saved_raid_disk >= first &&
1167 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1168 		mirror = rdev->saved_raid_disk;
1169 	else
1170 		mirror = first;
1171 	for ( ; mirror <= last ; mirror++)
1172 		if ( !(p=conf->mirrors+mirror)->rdev) {
1173 
1174 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1175 					  rdev->data_offset << 9);
1176 			/* as we don't honour merge_bvec_fn, we must
1177 			 * never risk violating it, so limit
1178 			 * ->max_segments to one lying with a single
1179 			 * page, as a one page request is never in
1180 			 * violation.
1181 			 */
1182 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1183 				blk_queue_max_segments(mddev->queue, 1);
1184 				blk_queue_segment_boundary(mddev->queue,
1185 							   PAGE_CACHE_SIZE - 1);
1186 			}
1187 
1188 			p->head_position = 0;
1189 			rdev->raid_disk = mirror;
1190 			err = 0;
1191 			if (rdev->saved_raid_disk != mirror)
1192 				conf->fullsync = 1;
1193 			rcu_assign_pointer(p->rdev, rdev);
1194 			break;
1195 		}
1196 
1197 	md_integrity_add_rdev(rdev, mddev);
1198 	print_conf(conf);
1199 	return err;
1200 }
1201 
1202 static int raid10_remove_disk(mddev_t *mddev, int number)
1203 {
1204 	conf_t *conf = mddev->private;
1205 	int err = 0;
1206 	mdk_rdev_t *rdev;
1207 	mirror_info_t *p = conf->mirrors+ number;
1208 
1209 	print_conf(conf);
1210 	rdev = p->rdev;
1211 	if (rdev) {
1212 		if (test_bit(In_sync, &rdev->flags) ||
1213 		    atomic_read(&rdev->nr_pending)) {
1214 			err = -EBUSY;
1215 			goto abort;
1216 		}
1217 		/* Only remove faulty devices in recovery
1218 		 * is not possible.
1219 		 */
1220 		if (!test_bit(Faulty, &rdev->flags) &&
1221 		    enough(conf)) {
1222 			err = -EBUSY;
1223 			goto abort;
1224 		}
1225 		p->rdev = NULL;
1226 		synchronize_rcu();
1227 		if (atomic_read(&rdev->nr_pending)) {
1228 			/* lost the race, try later */
1229 			err = -EBUSY;
1230 			p->rdev = rdev;
1231 			goto abort;
1232 		}
1233 		md_integrity_register(mddev);
1234 	}
1235 abort:
1236 
1237 	print_conf(conf);
1238 	return err;
1239 }
1240 
1241 
1242 static void end_sync_read(struct bio *bio, int error)
1243 {
1244 	r10bio_t *r10_bio = bio->bi_private;
1245 	conf_t *conf = r10_bio->mddev->private;
1246 	int i,d;
1247 
1248 	for (i=0; i<conf->copies; i++)
1249 		if (r10_bio->devs[i].bio == bio)
1250 			break;
1251 	BUG_ON(i == conf->copies);
1252 	update_head_pos(i, r10_bio);
1253 	d = r10_bio->devs[i].devnum;
1254 
1255 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1256 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1257 	else {
1258 		atomic_add(r10_bio->sectors,
1259 			   &conf->mirrors[d].rdev->corrected_errors);
1260 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1261 			md_error(r10_bio->mddev,
1262 				 conf->mirrors[d].rdev);
1263 	}
1264 
1265 	/* for reconstruct, we always reschedule after a read.
1266 	 * for resync, only after all reads
1267 	 */
1268 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1269 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1270 	    atomic_dec_and_test(&r10_bio->remaining)) {
1271 		/* we have read all the blocks,
1272 		 * do the comparison in process context in raid10d
1273 		 */
1274 		reschedule_retry(r10_bio);
1275 	}
1276 }
1277 
1278 static void end_sync_write(struct bio *bio, int error)
1279 {
1280 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1281 	r10bio_t *r10_bio = bio->bi_private;
1282 	mddev_t *mddev = r10_bio->mddev;
1283 	conf_t *conf = mddev->private;
1284 	int i,d;
1285 
1286 	for (i = 0; i < conf->copies; i++)
1287 		if (r10_bio->devs[i].bio == bio)
1288 			break;
1289 	d = r10_bio->devs[i].devnum;
1290 
1291 	if (!uptodate)
1292 		md_error(mddev, conf->mirrors[d].rdev);
1293 
1294 	update_head_pos(i, r10_bio);
1295 
1296 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1297 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1298 		if (r10_bio->master_bio == NULL) {
1299 			/* the primary of several recovery bios */
1300 			sector_t s = r10_bio->sectors;
1301 			put_buf(r10_bio);
1302 			md_done_sync(mddev, s, 1);
1303 			break;
1304 		} else {
1305 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1306 			put_buf(r10_bio);
1307 			r10_bio = r10_bio2;
1308 		}
1309 	}
1310 }
1311 
1312 /*
1313  * Note: sync and recover and handled very differently for raid10
1314  * This code is for resync.
1315  * For resync, we read through virtual addresses and read all blocks.
1316  * If there is any error, we schedule a write.  The lowest numbered
1317  * drive is authoritative.
1318  * However requests come for physical address, so we need to map.
1319  * For every physical address there are raid_disks/copies virtual addresses,
1320  * which is always are least one, but is not necessarly an integer.
1321  * This means that a physical address can span multiple chunks, so we may
1322  * have to submit multiple io requests for a single sync request.
1323  */
1324 /*
1325  * We check if all blocks are in-sync and only write to blocks that
1326  * aren't in sync
1327  */
1328 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1329 {
1330 	conf_t *conf = mddev->private;
1331 	int i, first;
1332 	struct bio *tbio, *fbio;
1333 
1334 	atomic_set(&r10_bio->remaining, 1);
1335 
1336 	/* find the first device with a block */
1337 	for (i=0; i<conf->copies; i++)
1338 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1339 			break;
1340 
1341 	if (i == conf->copies)
1342 		goto done;
1343 
1344 	first = i;
1345 	fbio = r10_bio->devs[i].bio;
1346 
1347 	/* now find blocks with errors */
1348 	for (i=0 ; i < conf->copies ; i++) {
1349 		int  j, d;
1350 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1351 
1352 		tbio = r10_bio->devs[i].bio;
1353 
1354 		if (tbio->bi_end_io != end_sync_read)
1355 			continue;
1356 		if (i == first)
1357 			continue;
1358 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1359 			/* We know that the bi_io_vec layout is the same for
1360 			 * both 'first' and 'i', so we just compare them.
1361 			 * All vec entries are PAGE_SIZE;
1362 			 */
1363 			for (j = 0; j < vcnt; j++)
1364 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1365 					   page_address(tbio->bi_io_vec[j].bv_page),
1366 					   PAGE_SIZE))
1367 					break;
1368 			if (j == vcnt)
1369 				continue;
1370 			mddev->resync_mismatches += r10_bio->sectors;
1371 		}
1372 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1373 			/* Don't fix anything. */
1374 			continue;
1375 		/* Ok, we need to write this bio
1376 		 * First we need to fixup bv_offset, bv_len and
1377 		 * bi_vecs, as the read request might have corrupted these
1378 		 */
1379 		tbio->bi_vcnt = vcnt;
1380 		tbio->bi_size = r10_bio->sectors << 9;
1381 		tbio->bi_idx = 0;
1382 		tbio->bi_phys_segments = 0;
1383 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1384 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1385 		tbio->bi_next = NULL;
1386 		tbio->bi_rw = WRITE;
1387 		tbio->bi_private = r10_bio;
1388 		tbio->bi_sector = r10_bio->devs[i].addr;
1389 
1390 		for (j=0; j < vcnt ; j++) {
1391 			tbio->bi_io_vec[j].bv_offset = 0;
1392 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1393 
1394 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1395 			       page_address(fbio->bi_io_vec[j].bv_page),
1396 			       PAGE_SIZE);
1397 		}
1398 		tbio->bi_end_io = end_sync_write;
1399 
1400 		d = r10_bio->devs[i].devnum;
1401 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1402 		atomic_inc(&r10_bio->remaining);
1403 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1404 
1405 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1406 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1407 		generic_make_request(tbio);
1408 	}
1409 
1410 done:
1411 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1412 		md_done_sync(mddev, r10_bio->sectors, 1);
1413 		put_buf(r10_bio);
1414 	}
1415 }
1416 
1417 /*
1418  * Now for the recovery code.
1419  * Recovery happens across physical sectors.
1420  * We recover all non-is_sync drives by finding the virtual address of
1421  * each, and then choose a working drive that also has that virt address.
1422  * There is a separate r10_bio for each non-in_sync drive.
1423  * Only the first two slots are in use. The first for reading,
1424  * The second for writing.
1425  *
1426  */
1427 
1428 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1429 {
1430 	conf_t *conf = mddev->private;
1431 	int i, d;
1432 	struct bio *bio, *wbio;
1433 
1434 
1435 	/* move the pages across to the second bio
1436 	 * and submit the write request
1437 	 */
1438 	bio = r10_bio->devs[0].bio;
1439 	wbio = r10_bio->devs[1].bio;
1440 	for (i=0; i < wbio->bi_vcnt; i++) {
1441 		struct page *p = bio->bi_io_vec[i].bv_page;
1442 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1443 		wbio->bi_io_vec[i].bv_page = p;
1444 	}
1445 	d = r10_bio->devs[1].devnum;
1446 
1447 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1448 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1449 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1450 		generic_make_request(wbio);
1451 	else
1452 		bio_endio(wbio, -EIO);
1453 }
1454 
1455 
1456 /*
1457  * Used by fix_read_error() to decay the per rdev read_errors.
1458  * We halve the read error count for every hour that has elapsed
1459  * since the last recorded read error.
1460  *
1461  */
1462 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1463 {
1464 	struct timespec cur_time_mon;
1465 	unsigned long hours_since_last;
1466 	unsigned int read_errors = atomic_read(&rdev->read_errors);
1467 
1468 	ktime_get_ts(&cur_time_mon);
1469 
1470 	if (rdev->last_read_error.tv_sec == 0 &&
1471 	    rdev->last_read_error.tv_nsec == 0) {
1472 		/* first time we've seen a read error */
1473 		rdev->last_read_error = cur_time_mon;
1474 		return;
1475 	}
1476 
1477 	hours_since_last = (cur_time_mon.tv_sec -
1478 			    rdev->last_read_error.tv_sec) / 3600;
1479 
1480 	rdev->last_read_error = cur_time_mon;
1481 
1482 	/*
1483 	 * if hours_since_last is > the number of bits in read_errors
1484 	 * just set read errors to 0. We do this to avoid
1485 	 * overflowing the shift of read_errors by hours_since_last.
1486 	 */
1487 	if (hours_since_last >= 8 * sizeof(read_errors))
1488 		atomic_set(&rdev->read_errors, 0);
1489 	else
1490 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1491 }
1492 
1493 /*
1494  * This is a kernel thread which:
1495  *
1496  *	1.	Retries failed read operations on working mirrors.
1497  *	2.	Updates the raid superblock when problems encounter.
1498  *	3.	Performs writes following reads for array synchronising.
1499  */
1500 
1501 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1502 {
1503 	int sect = 0; /* Offset from r10_bio->sector */
1504 	int sectors = r10_bio->sectors;
1505 	mdk_rdev_t*rdev;
1506 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1507 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
1508 
1509 	rcu_read_lock();
1510 	rdev = rcu_dereference(conf->mirrors[d].rdev);
1511 	if (rdev) { /* If rdev is not NULL */
1512 		char b[BDEVNAME_SIZE];
1513 		int cur_read_error_count = 0;
1514 
1515 		bdevname(rdev->bdev, b);
1516 
1517 		if (test_bit(Faulty, &rdev->flags)) {
1518 			rcu_read_unlock();
1519 			/* drive has already been failed, just ignore any
1520 			   more fix_read_error() attempts */
1521 			return;
1522 		}
1523 
1524 		check_decay_read_errors(mddev, rdev);
1525 		atomic_inc(&rdev->read_errors);
1526 		cur_read_error_count = atomic_read(&rdev->read_errors);
1527 		if (cur_read_error_count > max_read_errors) {
1528 			rcu_read_unlock();
1529 			printk(KERN_NOTICE
1530 			       "md/raid10:%s: %s: Raid device exceeded "
1531 			       "read_error threshold "
1532 			       "[cur %d:max %d]\n",
1533 			       mdname(mddev),
1534 			       b, cur_read_error_count, max_read_errors);
1535 			printk(KERN_NOTICE
1536 			       "md/raid10:%s: %s: Failing raid "
1537 			       "device\n", mdname(mddev), b);
1538 			md_error(mddev, conf->mirrors[d].rdev);
1539 			return;
1540 		}
1541 	}
1542 	rcu_read_unlock();
1543 
1544 	while(sectors) {
1545 		int s = sectors;
1546 		int sl = r10_bio->read_slot;
1547 		int success = 0;
1548 		int start;
1549 
1550 		if (s > (PAGE_SIZE>>9))
1551 			s = PAGE_SIZE >> 9;
1552 
1553 		rcu_read_lock();
1554 		do {
1555 			d = r10_bio->devs[sl].devnum;
1556 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1557 			if (rdev &&
1558 			    test_bit(In_sync, &rdev->flags)) {
1559 				atomic_inc(&rdev->nr_pending);
1560 				rcu_read_unlock();
1561 				success = sync_page_io(rdev->bdev,
1562 						       r10_bio->devs[sl].addr +
1563 						       sect + rdev->data_offset,
1564 						       s<<9,
1565 						       conf->tmppage, READ);
1566 				rdev_dec_pending(rdev, mddev);
1567 				rcu_read_lock();
1568 				if (success)
1569 					break;
1570 			}
1571 			sl++;
1572 			if (sl == conf->copies)
1573 				sl = 0;
1574 		} while (!success && sl != r10_bio->read_slot);
1575 		rcu_read_unlock();
1576 
1577 		if (!success) {
1578 			/* Cannot read from anywhere -- bye bye array */
1579 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1580 			md_error(mddev, conf->mirrors[dn].rdev);
1581 			break;
1582 		}
1583 
1584 		start = sl;
1585 		/* write it back and re-read */
1586 		rcu_read_lock();
1587 		while (sl != r10_bio->read_slot) {
1588 			char b[BDEVNAME_SIZE];
1589 
1590 			if (sl==0)
1591 				sl = conf->copies;
1592 			sl--;
1593 			d = r10_bio->devs[sl].devnum;
1594 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1595 			if (rdev &&
1596 			    test_bit(In_sync, &rdev->flags)) {
1597 				atomic_inc(&rdev->nr_pending);
1598 				rcu_read_unlock();
1599 				atomic_add(s, &rdev->corrected_errors);
1600 				if (sync_page_io(rdev->bdev,
1601 						 r10_bio->devs[sl].addr +
1602 						 sect + rdev->data_offset,
1603 						 s<<9, conf->tmppage, WRITE)
1604 				    == 0) {
1605 					/* Well, this device is dead */
1606 					printk(KERN_NOTICE
1607 					       "md/raid10:%s: read correction "
1608 					       "write failed"
1609 					       " (%d sectors at %llu on %s)\n",
1610 					       mdname(mddev), s,
1611 					       (unsigned long long)(sect+
1612 					       rdev->data_offset),
1613 					       bdevname(rdev->bdev, b));
1614 					printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1615 					       "drive\n",
1616 					       mdname(mddev),
1617 					       bdevname(rdev->bdev, b));
1618 					md_error(mddev, rdev);
1619 				}
1620 				rdev_dec_pending(rdev, mddev);
1621 				rcu_read_lock();
1622 			}
1623 		}
1624 		sl = start;
1625 		while (sl != r10_bio->read_slot) {
1626 
1627 			if (sl==0)
1628 				sl = conf->copies;
1629 			sl--;
1630 			d = r10_bio->devs[sl].devnum;
1631 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1632 			if (rdev &&
1633 			    test_bit(In_sync, &rdev->flags)) {
1634 				char b[BDEVNAME_SIZE];
1635 				atomic_inc(&rdev->nr_pending);
1636 				rcu_read_unlock();
1637 				if (sync_page_io(rdev->bdev,
1638 						 r10_bio->devs[sl].addr +
1639 						 sect + rdev->data_offset,
1640 						 s<<9, conf->tmppage,
1641 						 READ) == 0) {
1642 					/* Well, this device is dead */
1643 					printk(KERN_NOTICE
1644 					       "md/raid10:%s: unable to read back "
1645 					       "corrected sectors"
1646 					       " (%d sectors at %llu on %s)\n",
1647 					       mdname(mddev), s,
1648 					       (unsigned long long)(sect+
1649 						    rdev->data_offset),
1650 					       bdevname(rdev->bdev, b));
1651 					printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1652 					       mdname(mddev),
1653 					       bdevname(rdev->bdev, b));
1654 
1655 					md_error(mddev, rdev);
1656 				} else {
1657 					printk(KERN_INFO
1658 					       "md/raid10:%s: read error corrected"
1659 					       " (%d sectors at %llu on %s)\n",
1660 					       mdname(mddev), s,
1661 					       (unsigned long long)(sect+
1662 					            rdev->data_offset),
1663 					       bdevname(rdev->bdev, b));
1664 				}
1665 
1666 				rdev_dec_pending(rdev, mddev);
1667 				rcu_read_lock();
1668 			}
1669 		}
1670 		rcu_read_unlock();
1671 
1672 		sectors -= s;
1673 		sect += s;
1674 	}
1675 }
1676 
1677 static void raid10d(mddev_t *mddev)
1678 {
1679 	r10bio_t *r10_bio;
1680 	struct bio *bio;
1681 	unsigned long flags;
1682 	conf_t *conf = mddev->private;
1683 	struct list_head *head = &conf->retry_list;
1684 	int unplug=0;
1685 	mdk_rdev_t *rdev;
1686 
1687 	md_check_recovery(mddev);
1688 
1689 	for (;;) {
1690 		char b[BDEVNAME_SIZE];
1691 
1692 		unplug += flush_pending_writes(conf);
1693 
1694 		spin_lock_irqsave(&conf->device_lock, flags);
1695 		if (list_empty(head)) {
1696 			spin_unlock_irqrestore(&conf->device_lock, flags);
1697 			break;
1698 		}
1699 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1700 		list_del(head->prev);
1701 		conf->nr_queued--;
1702 		spin_unlock_irqrestore(&conf->device_lock, flags);
1703 
1704 		mddev = r10_bio->mddev;
1705 		conf = mddev->private;
1706 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1707 			sync_request_write(mddev, r10_bio);
1708 			unplug = 1;
1709 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1710 			recovery_request_write(mddev, r10_bio);
1711 			unplug = 1;
1712 		} else {
1713 			int mirror;
1714 			/* we got a read error. Maybe the drive is bad.  Maybe just
1715 			 * the block and we can fix it.
1716 			 * We freeze all other IO, and try reading the block from
1717 			 * other devices.  When we find one, we re-write
1718 			 * and check it that fixes the read error.
1719 			 * This is all done synchronously while the array is
1720 			 * frozen.
1721 			 */
1722 			if (mddev->ro == 0) {
1723 				freeze_array(conf);
1724 				fix_read_error(conf, mddev, r10_bio);
1725 				unfreeze_array(conf);
1726 			}
1727 
1728 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1729 			r10_bio->devs[r10_bio->read_slot].bio =
1730 				mddev->ro ? IO_BLOCKED : NULL;
1731 			mirror = read_balance(conf, r10_bio);
1732 			if (mirror == -1) {
1733 				printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1734 				       " read error for block %llu\n",
1735 				       mdname(mddev),
1736 				       bdevname(bio->bi_bdev,b),
1737 				       (unsigned long long)r10_bio->sector);
1738 				raid_end_bio_io(r10_bio);
1739 				bio_put(bio);
1740 			} else {
1741 				const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1742 				bio_put(bio);
1743 				rdev = conf->mirrors[mirror].rdev;
1744 				if (printk_ratelimit())
1745 					printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1746 					       " another mirror\n",
1747 					       mdname(mddev),
1748 					       bdevname(rdev->bdev,b),
1749 					       (unsigned long long)r10_bio->sector);
1750 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1751 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1752 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1753 					+ rdev->data_offset;
1754 				bio->bi_bdev = rdev->bdev;
1755 				bio->bi_rw = READ | do_sync;
1756 				bio->bi_private = r10_bio;
1757 				bio->bi_end_io = raid10_end_read_request;
1758 				unplug = 1;
1759 				generic_make_request(bio);
1760 			}
1761 		}
1762 		cond_resched();
1763 	}
1764 	if (unplug)
1765 		unplug_slaves(mddev);
1766 }
1767 
1768 
1769 static int init_resync(conf_t *conf)
1770 {
1771 	int buffs;
1772 
1773 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1774 	BUG_ON(conf->r10buf_pool);
1775 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1776 	if (!conf->r10buf_pool)
1777 		return -ENOMEM;
1778 	conf->next_resync = 0;
1779 	return 0;
1780 }
1781 
1782 /*
1783  * perform a "sync" on one "block"
1784  *
1785  * We need to make sure that no normal I/O request - particularly write
1786  * requests - conflict with active sync requests.
1787  *
1788  * This is achieved by tracking pending requests and a 'barrier' concept
1789  * that can be installed to exclude normal IO requests.
1790  *
1791  * Resync and recovery are handled very differently.
1792  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1793  *
1794  * For resync, we iterate over virtual addresses, read all copies,
1795  * and update if there are differences.  If only one copy is live,
1796  * skip it.
1797  * For recovery, we iterate over physical addresses, read a good
1798  * value for each non-in_sync drive, and over-write.
1799  *
1800  * So, for recovery we may have several outstanding complex requests for a
1801  * given address, one for each out-of-sync device.  We model this by allocating
1802  * a number of r10_bio structures, one for each out-of-sync device.
1803  * As we setup these structures, we collect all bio's together into a list
1804  * which we then process collectively to add pages, and then process again
1805  * to pass to generic_make_request.
1806  *
1807  * The r10_bio structures are linked using a borrowed master_bio pointer.
1808  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1809  * has its remaining count decremented to 0, the whole complex operation
1810  * is complete.
1811  *
1812  */
1813 
1814 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1815 {
1816 	conf_t *conf = mddev->private;
1817 	r10bio_t *r10_bio;
1818 	struct bio *biolist = NULL, *bio;
1819 	sector_t max_sector, nr_sectors;
1820 	int disk;
1821 	int i;
1822 	int max_sync;
1823 	int sync_blocks;
1824 
1825 	sector_t sectors_skipped = 0;
1826 	int chunks_skipped = 0;
1827 
1828 	if (!conf->r10buf_pool)
1829 		if (init_resync(conf))
1830 			return 0;
1831 
1832  skipped:
1833 	max_sector = mddev->dev_sectors;
1834 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1835 		max_sector = mddev->resync_max_sectors;
1836 	if (sector_nr >= max_sector) {
1837 		/* If we aborted, we need to abort the
1838 		 * sync on the 'current' bitmap chucks (there can
1839 		 * be several when recovering multiple devices).
1840 		 * as we may have started syncing it but not finished.
1841 		 * We can find the current address in
1842 		 * mddev->curr_resync, but for recovery,
1843 		 * we need to convert that to several
1844 		 * virtual addresses.
1845 		 */
1846 		if (mddev->curr_resync < max_sector) { /* aborted */
1847 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1848 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1849 						&sync_blocks, 1);
1850 			else for (i=0; i<conf->raid_disks; i++) {
1851 				sector_t sect =
1852 					raid10_find_virt(conf, mddev->curr_resync, i);
1853 				bitmap_end_sync(mddev->bitmap, sect,
1854 						&sync_blocks, 1);
1855 			}
1856 		} else /* completed sync */
1857 			conf->fullsync = 0;
1858 
1859 		bitmap_close_sync(mddev->bitmap);
1860 		close_sync(conf);
1861 		*skipped = 1;
1862 		return sectors_skipped;
1863 	}
1864 	if (chunks_skipped >= conf->raid_disks) {
1865 		/* if there has been nothing to do on any drive,
1866 		 * then there is nothing to do at all..
1867 		 */
1868 		*skipped = 1;
1869 		return (max_sector - sector_nr) + sectors_skipped;
1870 	}
1871 
1872 	if (max_sector > mddev->resync_max)
1873 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1874 
1875 	/* make sure whole request will fit in a chunk - if chunks
1876 	 * are meaningful
1877 	 */
1878 	if (conf->near_copies < conf->raid_disks &&
1879 	    max_sector > (sector_nr | conf->chunk_mask))
1880 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1881 	/*
1882 	 * If there is non-resync activity waiting for us then
1883 	 * put in a delay to throttle resync.
1884 	 */
1885 	if (!go_faster && conf->nr_waiting)
1886 		msleep_interruptible(1000);
1887 
1888 	/* Again, very different code for resync and recovery.
1889 	 * Both must result in an r10bio with a list of bios that
1890 	 * have bi_end_io, bi_sector, bi_bdev set,
1891 	 * and bi_private set to the r10bio.
1892 	 * For recovery, we may actually create several r10bios
1893 	 * with 2 bios in each, that correspond to the bios in the main one.
1894 	 * In this case, the subordinate r10bios link back through a
1895 	 * borrowed master_bio pointer, and the counter in the master
1896 	 * includes a ref from each subordinate.
1897 	 */
1898 	/* First, we decide what to do and set ->bi_end_io
1899 	 * To end_sync_read if we want to read, and
1900 	 * end_sync_write if we will want to write.
1901 	 */
1902 
1903 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1904 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1905 		/* recovery... the complicated one */
1906 		int j, k;
1907 		r10_bio = NULL;
1908 
1909 		for (i=0 ; i<conf->raid_disks; i++)
1910 			if (conf->mirrors[i].rdev &&
1911 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1912 				int still_degraded = 0;
1913 				/* want to reconstruct this device */
1914 				r10bio_t *rb2 = r10_bio;
1915 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1916 				int must_sync;
1917 				/* Unless we are doing a full sync, we only need
1918 				 * to recover the block if it is set in the bitmap
1919 				 */
1920 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1921 							      &sync_blocks, 1);
1922 				if (sync_blocks < max_sync)
1923 					max_sync = sync_blocks;
1924 				if (!must_sync &&
1925 				    !conf->fullsync) {
1926 					/* yep, skip the sync_blocks here, but don't assume
1927 					 * that there will never be anything to do here
1928 					 */
1929 					chunks_skipped = -1;
1930 					continue;
1931 				}
1932 
1933 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1934 				raise_barrier(conf, rb2 != NULL);
1935 				atomic_set(&r10_bio->remaining, 0);
1936 
1937 				r10_bio->master_bio = (struct bio*)rb2;
1938 				if (rb2)
1939 					atomic_inc(&rb2->remaining);
1940 				r10_bio->mddev = mddev;
1941 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1942 				r10_bio->sector = sect;
1943 
1944 				raid10_find_phys(conf, r10_bio);
1945 
1946 				/* Need to check if the array will still be
1947 				 * degraded
1948 				 */
1949 				for (j=0; j<conf->raid_disks; j++)
1950 					if (conf->mirrors[j].rdev == NULL ||
1951 					    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1952 						still_degraded = 1;
1953 						break;
1954 					}
1955 
1956 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1957 							      &sync_blocks, still_degraded);
1958 
1959 				for (j=0; j<conf->copies;j++) {
1960 					int d = r10_bio->devs[j].devnum;
1961 					if (conf->mirrors[d].rdev &&
1962 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1963 						/* This is where we read from */
1964 						bio = r10_bio->devs[0].bio;
1965 						bio->bi_next = biolist;
1966 						biolist = bio;
1967 						bio->bi_private = r10_bio;
1968 						bio->bi_end_io = end_sync_read;
1969 						bio->bi_rw = READ;
1970 						bio->bi_sector = r10_bio->devs[j].addr +
1971 							conf->mirrors[d].rdev->data_offset;
1972 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1973 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1974 						atomic_inc(&r10_bio->remaining);
1975 						/* and we write to 'i' */
1976 
1977 						for (k=0; k<conf->copies; k++)
1978 							if (r10_bio->devs[k].devnum == i)
1979 								break;
1980 						BUG_ON(k == conf->copies);
1981 						bio = r10_bio->devs[1].bio;
1982 						bio->bi_next = biolist;
1983 						biolist = bio;
1984 						bio->bi_private = r10_bio;
1985 						bio->bi_end_io = end_sync_write;
1986 						bio->bi_rw = WRITE;
1987 						bio->bi_sector = r10_bio->devs[k].addr +
1988 							conf->mirrors[i].rdev->data_offset;
1989 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1990 
1991 						r10_bio->devs[0].devnum = d;
1992 						r10_bio->devs[1].devnum = i;
1993 
1994 						break;
1995 					}
1996 				}
1997 				if (j == conf->copies) {
1998 					/* Cannot recover, so abort the recovery */
1999 					put_buf(r10_bio);
2000 					if (rb2)
2001 						atomic_dec(&rb2->remaining);
2002 					r10_bio = rb2;
2003 					if (!test_and_set_bit(MD_RECOVERY_INTR,
2004 							      &mddev->recovery))
2005 						printk(KERN_INFO "md/raid10:%s: insufficient "
2006 						       "working devices for recovery.\n",
2007 						       mdname(mddev));
2008 					break;
2009 				}
2010 			}
2011 		if (biolist == NULL) {
2012 			while (r10_bio) {
2013 				r10bio_t *rb2 = r10_bio;
2014 				r10_bio = (r10bio_t*) rb2->master_bio;
2015 				rb2->master_bio = NULL;
2016 				put_buf(rb2);
2017 			}
2018 			goto giveup;
2019 		}
2020 	} else {
2021 		/* resync. Schedule a read for every block at this virt offset */
2022 		int count = 0;
2023 
2024 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2025 
2026 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2027 				       &sync_blocks, mddev->degraded) &&
2028 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2029 			/* We can skip this block */
2030 			*skipped = 1;
2031 			return sync_blocks + sectors_skipped;
2032 		}
2033 		if (sync_blocks < max_sync)
2034 			max_sync = sync_blocks;
2035 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2036 
2037 		r10_bio->mddev = mddev;
2038 		atomic_set(&r10_bio->remaining, 0);
2039 		raise_barrier(conf, 0);
2040 		conf->next_resync = sector_nr;
2041 
2042 		r10_bio->master_bio = NULL;
2043 		r10_bio->sector = sector_nr;
2044 		set_bit(R10BIO_IsSync, &r10_bio->state);
2045 		raid10_find_phys(conf, r10_bio);
2046 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2047 
2048 		for (i=0; i<conf->copies; i++) {
2049 			int d = r10_bio->devs[i].devnum;
2050 			bio = r10_bio->devs[i].bio;
2051 			bio->bi_end_io = NULL;
2052 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2053 			if (conf->mirrors[d].rdev == NULL ||
2054 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2055 				continue;
2056 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2057 			atomic_inc(&r10_bio->remaining);
2058 			bio->bi_next = biolist;
2059 			biolist = bio;
2060 			bio->bi_private = r10_bio;
2061 			bio->bi_end_io = end_sync_read;
2062 			bio->bi_rw = READ;
2063 			bio->bi_sector = r10_bio->devs[i].addr +
2064 				conf->mirrors[d].rdev->data_offset;
2065 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2066 			count++;
2067 		}
2068 
2069 		if (count < 2) {
2070 			for (i=0; i<conf->copies; i++) {
2071 				int d = r10_bio->devs[i].devnum;
2072 				if (r10_bio->devs[i].bio->bi_end_io)
2073 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2074 			}
2075 			put_buf(r10_bio);
2076 			biolist = NULL;
2077 			goto giveup;
2078 		}
2079 	}
2080 
2081 	for (bio = biolist; bio ; bio=bio->bi_next) {
2082 
2083 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2084 		if (bio->bi_end_io)
2085 			bio->bi_flags |= 1 << BIO_UPTODATE;
2086 		bio->bi_vcnt = 0;
2087 		bio->bi_idx = 0;
2088 		bio->bi_phys_segments = 0;
2089 		bio->bi_size = 0;
2090 	}
2091 
2092 	nr_sectors = 0;
2093 	if (sector_nr + max_sync < max_sector)
2094 		max_sector = sector_nr + max_sync;
2095 	do {
2096 		struct page *page;
2097 		int len = PAGE_SIZE;
2098 		disk = 0;
2099 		if (sector_nr + (len>>9) > max_sector)
2100 			len = (max_sector - sector_nr) << 9;
2101 		if (len == 0)
2102 			break;
2103 		for (bio= biolist ; bio ; bio=bio->bi_next) {
2104 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2105 			if (bio_add_page(bio, page, len, 0) == 0) {
2106 				/* stop here */
2107 				struct bio *bio2;
2108 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2109 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2110 					/* remove last page from this bio */
2111 					bio2->bi_vcnt--;
2112 					bio2->bi_size -= len;
2113 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2114 				}
2115 				goto bio_full;
2116 			}
2117 			disk = i;
2118 		}
2119 		nr_sectors += len>>9;
2120 		sector_nr += len>>9;
2121 	} while (biolist->bi_vcnt < RESYNC_PAGES);
2122  bio_full:
2123 	r10_bio->sectors = nr_sectors;
2124 
2125 	while (biolist) {
2126 		bio = biolist;
2127 		biolist = biolist->bi_next;
2128 
2129 		bio->bi_next = NULL;
2130 		r10_bio = bio->bi_private;
2131 		r10_bio->sectors = nr_sectors;
2132 
2133 		if (bio->bi_end_io == end_sync_read) {
2134 			md_sync_acct(bio->bi_bdev, nr_sectors);
2135 			generic_make_request(bio);
2136 		}
2137 	}
2138 
2139 	if (sectors_skipped)
2140 		/* pretend they weren't skipped, it makes
2141 		 * no important difference in this case
2142 		 */
2143 		md_done_sync(mddev, sectors_skipped, 1);
2144 
2145 	return sectors_skipped + nr_sectors;
2146  giveup:
2147 	/* There is nowhere to write, so all non-sync
2148 	 * drives must be failed, so try the next chunk...
2149 	 */
2150 	if (sector_nr + max_sync < max_sector)
2151 		max_sector = sector_nr + max_sync;
2152 
2153 	sectors_skipped += (max_sector - sector_nr);
2154 	chunks_skipped ++;
2155 	sector_nr = max_sector;
2156 	goto skipped;
2157 }
2158 
2159 static sector_t
2160 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2161 {
2162 	sector_t size;
2163 	conf_t *conf = mddev->private;
2164 
2165 	if (!raid_disks)
2166 		raid_disks = conf->raid_disks;
2167 	if (!sectors)
2168 		sectors = conf->dev_sectors;
2169 
2170 	size = sectors >> conf->chunk_shift;
2171 	sector_div(size, conf->far_copies);
2172 	size = size * raid_disks;
2173 	sector_div(size, conf->near_copies);
2174 
2175 	return size << conf->chunk_shift;
2176 }
2177 
2178 
2179 static conf_t *setup_conf(mddev_t *mddev)
2180 {
2181 	conf_t *conf = NULL;
2182 	int nc, fc, fo;
2183 	sector_t stride, size;
2184 	int err = -EINVAL;
2185 
2186 	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2187 	    !is_power_of_2(mddev->new_chunk_sectors)) {
2188 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
2189 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2190 		       mdname(mddev), PAGE_SIZE);
2191 		goto out;
2192 	}
2193 
2194 	nc = mddev->new_layout & 255;
2195 	fc = (mddev->new_layout >> 8) & 255;
2196 	fo = mddev->new_layout & (1<<16);
2197 
2198 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2199 	    (mddev->new_layout >> 17)) {
2200 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2201 		       mdname(mddev), mddev->new_layout);
2202 		goto out;
2203 	}
2204 
2205 	err = -ENOMEM;
2206 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2207 	if (!conf)
2208 		goto out;
2209 
2210 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2211 				GFP_KERNEL);
2212 	if (!conf->mirrors)
2213 		goto out;
2214 
2215 	conf->tmppage = alloc_page(GFP_KERNEL);
2216 	if (!conf->tmppage)
2217 		goto out;
2218 
2219 
2220 	conf->raid_disks = mddev->raid_disks;
2221 	conf->near_copies = nc;
2222 	conf->far_copies = fc;
2223 	conf->copies = nc*fc;
2224 	conf->far_offset = fo;
2225 	conf->chunk_mask = mddev->new_chunk_sectors - 1;
2226 	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2227 
2228 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2229 					   r10bio_pool_free, conf);
2230 	if (!conf->r10bio_pool)
2231 		goto out;
2232 
2233 	size = mddev->dev_sectors >> conf->chunk_shift;
2234 	sector_div(size, fc);
2235 	size = size * conf->raid_disks;
2236 	sector_div(size, nc);
2237 	/* 'size' is now the number of chunks in the array */
2238 	/* calculate "used chunks per device" in 'stride' */
2239 	stride = size * conf->copies;
2240 
2241 	/* We need to round up when dividing by raid_disks to
2242 	 * get the stride size.
2243 	 */
2244 	stride += conf->raid_disks - 1;
2245 	sector_div(stride, conf->raid_disks);
2246 
2247 	conf->dev_sectors = stride << conf->chunk_shift;
2248 
2249 	if (fo)
2250 		stride = 1;
2251 	else
2252 		sector_div(stride, fc);
2253 	conf->stride = stride << conf->chunk_shift;
2254 
2255 
2256 	spin_lock_init(&conf->device_lock);
2257 	INIT_LIST_HEAD(&conf->retry_list);
2258 
2259 	spin_lock_init(&conf->resync_lock);
2260 	init_waitqueue_head(&conf->wait_barrier);
2261 
2262 	conf->thread = md_register_thread(raid10d, mddev, NULL);
2263 	if (!conf->thread)
2264 		goto out;
2265 
2266 	conf->mddev = mddev;
2267 	return conf;
2268 
2269  out:
2270 	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2271 	       mdname(mddev));
2272 	if (conf) {
2273 		if (conf->r10bio_pool)
2274 			mempool_destroy(conf->r10bio_pool);
2275 		kfree(conf->mirrors);
2276 		safe_put_page(conf->tmppage);
2277 		kfree(conf);
2278 	}
2279 	return ERR_PTR(err);
2280 }
2281 
2282 static int run(mddev_t *mddev)
2283 {
2284 	conf_t *conf;
2285 	int i, disk_idx, chunk_size;
2286 	mirror_info_t *disk;
2287 	mdk_rdev_t *rdev;
2288 	sector_t size;
2289 
2290 	/*
2291 	 * copy the already verified devices into our private RAID10
2292 	 * bookkeeping area. [whatever we allocate in run(),
2293 	 * should be freed in stop()]
2294 	 */
2295 
2296 	if (mddev->private == NULL) {
2297 		conf = setup_conf(mddev);
2298 		if (IS_ERR(conf))
2299 			return PTR_ERR(conf);
2300 		mddev->private = conf;
2301 	}
2302 	conf = mddev->private;
2303 	if (!conf)
2304 		goto out;
2305 
2306 	mddev->queue->queue_lock = &conf->device_lock;
2307 
2308 	mddev->thread = conf->thread;
2309 	conf->thread = NULL;
2310 
2311 	chunk_size = mddev->chunk_sectors << 9;
2312 	blk_queue_io_min(mddev->queue, chunk_size);
2313 	if (conf->raid_disks % conf->near_copies)
2314 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2315 	else
2316 		blk_queue_io_opt(mddev->queue, chunk_size *
2317 				 (conf->raid_disks / conf->near_copies));
2318 
2319 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2320 		disk_idx = rdev->raid_disk;
2321 		if (disk_idx >= conf->raid_disks
2322 		    || disk_idx < 0)
2323 			continue;
2324 		disk = conf->mirrors + disk_idx;
2325 
2326 		disk->rdev = rdev;
2327 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2328 				  rdev->data_offset << 9);
2329 		/* as we don't honour merge_bvec_fn, we must never risk
2330 		 * violating it, so limit max_segments to 1 lying
2331 		 * within a single page.
2332 		 */
2333 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2334 			blk_queue_max_segments(mddev->queue, 1);
2335 			blk_queue_segment_boundary(mddev->queue,
2336 						   PAGE_CACHE_SIZE - 1);
2337 		}
2338 
2339 		disk->head_position = 0;
2340 	}
2341 	/* need to check that every block has at least one working mirror */
2342 	if (!enough(conf)) {
2343 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2344 		       mdname(mddev));
2345 		goto out_free_conf;
2346 	}
2347 
2348 	mddev->degraded = 0;
2349 	for (i = 0; i < conf->raid_disks; i++) {
2350 
2351 		disk = conf->mirrors + i;
2352 
2353 		if (!disk->rdev ||
2354 		    !test_bit(In_sync, &disk->rdev->flags)) {
2355 			disk->head_position = 0;
2356 			mddev->degraded++;
2357 			if (disk->rdev)
2358 				conf->fullsync = 1;
2359 		}
2360 	}
2361 
2362 	if (mddev->recovery_cp != MaxSector)
2363 		printk(KERN_NOTICE "md/raid10:%s: not clean"
2364 		       " -- starting background reconstruction\n",
2365 		       mdname(mddev));
2366 	printk(KERN_INFO
2367 		"md/raid10:%s: active with %d out of %d devices\n",
2368 		mdname(mddev), conf->raid_disks - mddev->degraded,
2369 		conf->raid_disks);
2370 	/*
2371 	 * Ok, everything is just fine now
2372 	 */
2373 	mddev->dev_sectors = conf->dev_sectors;
2374 	size = raid10_size(mddev, 0, 0);
2375 	md_set_array_sectors(mddev, size);
2376 	mddev->resync_max_sectors = size;
2377 
2378 	mddev->queue->unplug_fn = raid10_unplug;
2379 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2380 	mddev->queue->backing_dev_info.congested_data = mddev;
2381 
2382 	/* Calculate max read-ahead size.
2383 	 * We need to readahead at least twice a whole stripe....
2384 	 * maybe...
2385 	 */
2386 	{
2387 		int stripe = conf->raid_disks *
2388 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
2389 		stripe /= conf->near_copies;
2390 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2391 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2392 	}
2393 
2394 	if (conf->near_copies < conf->raid_disks)
2395 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2396 	md_integrity_register(mddev);
2397 	return 0;
2398 
2399 out_free_conf:
2400 	if (conf->r10bio_pool)
2401 		mempool_destroy(conf->r10bio_pool);
2402 	safe_put_page(conf->tmppage);
2403 	kfree(conf->mirrors);
2404 	kfree(conf);
2405 	mddev->private = NULL;
2406 	md_unregister_thread(mddev->thread);
2407 out:
2408 	return -EIO;
2409 }
2410 
2411 static int stop(mddev_t *mddev)
2412 {
2413 	conf_t *conf = mddev->private;
2414 
2415 	raise_barrier(conf, 0);
2416 	lower_barrier(conf);
2417 
2418 	md_unregister_thread(mddev->thread);
2419 	mddev->thread = NULL;
2420 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2421 	if (conf->r10bio_pool)
2422 		mempool_destroy(conf->r10bio_pool);
2423 	kfree(conf->mirrors);
2424 	kfree(conf);
2425 	mddev->private = NULL;
2426 	return 0;
2427 }
2428 
2429 static void raid10_quiesce(mddev_t *mddev, int state)
2430 {
2431 	conf_t *conf = mddev->private;
2432 
2433 	switch(state) {
2434 	case 1:
2435 		raise_barrier(conf, 0);
2436 		break;
2437 	case 0:
2438 		lower_barrier(conf);
2439 		break;
2440 	}
2441 }
2442 
2443 static void *raid10_takeover_raid0(mddev_t *mddev)
2444 {
2445 	mdk_rdev_t *rdev;
2446 	conf_t *conf;
2447 
2448 	if (mddev->degraded > 0) {
2449 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2450 		       mdname(mddev));
2451 		return ERR_PTR(-EINVAL);
2452 	}
2453 
2454 	/* Set new parameters */
2455 	mddev->new_level = 10;
2456 	/* new layout: far_copies = 1, near_copies = 2 */
2457 	mddev->new_layout = (1<<8) + 2;
2458 	mddev->new_chunk_sectors = mddev->chunk_sectors;
2459 	mddev->delta_disks = mddev->raid_disks;
2460 	mddev->raid_disks *= 2;
2461 	/* make sure it will be not marked as dirty */
2462 	mddev->recovery_cp = MaxSector;
2463 
2464 	conf = setup_conf(mddev);
2465 	if (!IS_ERR(conf))
2466 		list_for_each_entry(rdev, &mddev->disks, same_set)
2467 			if (rdev->raid_disk >= 0)
2468 				rdev->new_raid_disk = rdev->raid_disk * 2;
2469 
2470 	return conf;
2471 }
2472 
2473 static void *raid10_takeover(mddev_t *mddev)
2474 {
2475 	struct raid0_private_data *raid0_priv;
2476 
2477 	/* raid10 can take over:
2478 	 *  raid0 - providing it has only two drives
2479 	 */
2480 	if (mddev->level == 0) {
2481 		/* for raid0 takeover only one zone is supported */
2482 		raid0_priv = mddev->private;
2483 		if (raid0_priv->nr_strip_zones > 1) {
2484 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2485 			       " with more than one zone.\n",
2486 			       mdname(mddev));
2487 			return ERR_PTR(-EINVAL);
2488 		}
2489 		return raid10_takeover_raid0(mddev);
2490 	}
2491 	return ERR_PTR(-EINVAL);
2492 }
2493 
2494 static struct mdk_personality raid10_personality =
2495 {
2496 	.name		= "raid10",
2497 	.level		= 10,
2498 	.owner		= THIS_MODULE,
2499 	.make_request	= make_request,
2500 	.run		= run,
2501 	.stop		= stop,
2502 	.status		= status,
2503 	.error_handler	= error,
2504 	.hot_add_disk	= raid10_add_disk,
2505 	.hot_remove_disk= raid10_remove_disk,
2506 	.spare_active	= raid10_spare_active,
2507 	.sync_request	= sync_request,
2508 	.quiesce	= raid10_quiesce,
2509 	.size		= raid10_size,
2510 	.takeover	= raid10_takeover,
2511 };
2512 
2513 static int __init raid_init(void)
2514 {
2515 	return register_md_personality(&raid10_personality);
2516 }
2517 
2518 static void raid_exit(void)
2519 {
2520 	unregister_md_personality(&raid10_personality);
2521 }
2522 
2523 module_init(raid_init);
2524 module_exit(raid_exit);
2525 MODULE_LICENSE("GPL");
2526 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2527 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2528 MODULE_ALIAS("md-raid10");
2529 MODULE_ALIAS("md-level-10");
2530