1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 23 #define RAID_1_10_NAME "raid10" 24 #include "raid10.h" 25 #include "raid0.h" 26 #include "md-bitmap.h" 27 28 /* 29 * RAID10 provides a combination of RAID0 and RAID1 functionality. 30 * The layout of data is defined by 31 * chunk_size 32 * raid_disks 33 * near_copies (stored in low byte of layout) 34 * far_copies (stored in second byte of layout) 35 * far_offset (stored in bit 16 of layout ) 36 * use_far_sets (stored in bit 17 of layout ) 37 * use_far_sets_bugfixed (stored in bit 18 of layout ) 38 * 39 * The data to be stored is divided into chunks using chunksize. Each device 40 * is divided into far_copies sections. In each section, chunks are laid out 41 * in a style similar to raid0, but near_copies copies of each chunk is stored 42 * (each on a different drive). The starting device for each section is offset 43 * near_copies from the starting device of the previous section. Thus there 44 * are (near_copies * far_copies) of each chunk, and each is on a different 45 * drive. near_copies and far_copies must be at least one, and their product 46 * is at most raid_disks. 47 * 48 * If far_offset is true, then the far_copies are handled a bit differently. 49 * The copies are still in different stripes, but instead of being very far 50 * apart on disk, there are adjacent stripes. 51 * 52 * The far and offset algorithms are handled slightly differently if 53 * 'use_far_sets' is true. In this case, the array's devices are grouped into 54 * sets that are (near_copies * far_copies) in size. The far copied stripes 55 * are still shifted by 'near_copies' devices, but this shifting stays confined 56 * to the set rather than the entire array. This is done to improve the number 57 * of device combinations that can fail without causing the array to fail. 58 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 59 * on a device): 60 * A B C D A B C D E 61 * ... ... 62 * D A B C E A B C D 63 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 64 * [A B] [C D] [A B] [C D E] 65 * |...| |...| |...| | ... | 66 * [B A] [D C] [B A] [E C D] 67 */ 68 69 static void allow_barrier(struct r10conf *conf); 70 static void lower_barrier(struct r10conf *conf); 71 static int _enough(struct r10conf *conf, int previous, int ignore); 72 static int enough(struct r10conf *conf, int ignore); 73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 74 int *skipped); 75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 76 static void end_reshape_write(struct bio *bio); 77 static void end_reshape(struct r10conf *conf); 78 79 #include "raid1-10.c" 80 81 #define NULL_CMD 82 #define cmd_before(conf, cmd) \ 83 do { \ 84 write_sequnlock_irq(&(conf)->resync_lock); \ 85 cmd; \ 86 } while (0) 87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) 88 89 #define wait_event_barrier_cmd(conf, cond, cmd) \ 90 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ 91 cmd_after(conf)) 92 93 #define wait_event_barrier(conf, cond) \ 94 wait_event_barrier_cmd(conf, cond, NULL_CMD) 95 96 /* 97 * for resync bio, r10bio pointer can be retrieved from the per-bio 98 * 'struct resync_pages'. 99 */ 100 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 101 { 102 return get_resync_pages(bio)->raid_bio; 103 } 104 105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 106 { 107 struct r10conf *conf = data; 108 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 109 110 /* allocate a r10bio with room for raid_disks entries in the 111 * bios array */ 112 return kzalloc(size, gfp_flags); 113 } 114 115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 116 /* amount of memory to reserve for resync requests */ 117 #define RESYNC_WINDOW (1024*1024) 118 /* maximum number of concurrent requests, memory permitting */ 119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 122 123 /* 124 * When performing a resync, we need to read and compare, so 125 * we need as many pages are there are copies. 126 * When performing a recovery, we need 2 bios, one for read, 127 * one for write (we recover only one drive per r10buf) 128 * 129 */ 130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct r10conf *conf = data; 133 struct r10bio *r10_bio; 134 struct bio *bio; 135 int j; 136 int nalloc, nalloc_rp; 137 struct resync_pages *rps; 138 139 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 140 if (!r10_bio) 141 return NULL; 142 143 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 144 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 145 nalloc = conf->copies; /* resync */ 146 else 147 nalloc = 2; /* recovery */ 148 149 /* allocate once for all bios */ 150 if (!conf->have_replacement) 151 nalloc_rp = nalloc; 152 else 153 nalloc_rp = nalloc * 2; 154 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 155 if (!rps) 156 goto out_free_r10bio; 157 158 /* 159 * Allocate bios. 160 */ 161 for (j = nalloc ; j-- ; ) { 162 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 163 if (!bio) 164 goto out_free_bio; 165 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 166 r10_bio->devs[j].bio = bio; 167 if (!conf->have_replacement) 168 continue; 169 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 170 if (!bio) 171 goto out_free_bio; 172 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 173 r10_bio->devs[j].repl_bio = bio; 174 } 175 /* 176 * Allocate RESYNC_PAGES data pages and attach them 177 * where needed. 178 */ 179 for (j = 0; j < nalloc; j++) { 180 struct bio *rbio = r10_bio->devs[j].repl_bio; 181 struct resync_pages *rp, *rp_repl; 182 183 rp = &rps[j]; 184 if (rbio) 185 rp_repl = &rps[nalloc + j]; 186 187 bio = r10_bio->devs[j].bio; 188 189 if (!j || test_bit(MD_RECOVERY_SYNC, 190 &conf->mddev->recovery)) { 191 if (resync_alloc_pages(rp, gfp_flags)) 192 goto out_free_pages; 193 } else { 194 memcpy(rp, &rps[0], sizeof(*rp)); 195 resync_get_all_pages(rp); 196 } 197 198 rp->raid_bio = r10_bio; 199 bio->bi_private = rp; 200 if (rbio) { 201 memcpy(rp_repl, rp, sizeof(*rp)); 202 rbio->bi_private = rp_repl; 203 } 204 } 205 206 return r10_bio; 207 208 out_free_pages: 209 while (--j >= 0) 210 resync_free_pages(&rps[j]); 211 212 j = 0; 213 out_free_bio: 214 for ( ; j < nalloc; j++) { 215 if (r10_bio->devs[j].bio) 216 bio_uninit(r10_bio->devs[j].bio); 217 kfree(r10_bio->devs[j].bio); 218 if (r10_bio->devs[j].repl_bio) 219 bio_uninit(r10_bio->devs[j].repl_bio); 220 kfree(r10_bio->devs[j].repl_bio); 221 } 222 kfree(rps); 223 out_free_r10bio: 224 rbio_pool_free(r10_bio, conf); 225 return NULL; 226 } 227 228 static void r10buf_pool_free(void *__r10_bio, void *data) 229 { 230 struct r10conf *conf = data; 231 struct r10bio *r10bio = __r10_bio; 232 int j; 233 struct resync_pages *rp = NULL; 234 235 for (j = conf->copies; j--; ) { 236 struct bio *bio = r10bio->devs[j].bio; 237 238 if (bio) { 239 rp = get_resync_pages(bio); 240 resync_free_pages(rp); 241 bio_uninit(bio); 242 kfree(bio); 243 } 244 245 bio = r10bio->devs[j].repl_bio; 246 if (bio) { 247 bio_uninit(bio); 248 kfree(bio); 249 } 250 } 251 252 /* resync pages array stored in the 1st bio's .bi_private */ 253 kfree(rp); 254 255 rbio_pool_free(r10bio, conf); 256 } 257 258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 259 { 260 int i; 261 262 for (i = 0; i < conf->geo.raid_disks; i++) { 263 struct bio **bio = & r10_bio->devs[i].bio; 264 if (!BIO_SPECIAL(*bio)) 265 bio_put(*bio); 266 *bio = NULL; 267 bio = &r10_bio->devs[i].repl_bio; 268 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 269 bio_put(*bio); 270 *bio = NULL; 271 } 272 } 273 274 static void free_r10bio(struct r10bio *r10_bio) 275 { 276 struct r10conf *conf = r10_bio->mddev->private; 277 278 put_all_bios(conf, r10_bio); 279 mempool_free(r10_bio, &conf->r10bio_pool); 280 } 281 282 static void put_buf(struct r10bio *r10_bio) 283 { 284 struct r10conf *conf = r10_bio->mddev->private; 285 286 mempool_free(r10_bio, &conf->r10buf_pool); 287 288 lower_barrier(conf); 289 } 290 291 static void wake_up_barrier(struct r10conf *conf) 292 { 293 if (wq_has_sleeper(&conf->wait_barrier)) 294 wake_up(&conf->wait_barrier); 295 } 296 297 static void reschedule_retry(struct r10bio *r10_bio) 298 { 299 unsigned long flags; 300 struct mddev *mddev = r10_bio->mddev; 301 struct r10conf *conf = mddev->private; 302 303 spin_lock_irqsave(&conf->device_lock, flags); 304 list_add(&r10_bio->retry_list, &conf->retry_list); 305 conf->nr_queued ++; 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 308 /* wake up frozen array... */ 309 wake_up(&conf->wait_barrier); 310 311 md_wakeup_thread(mddev->thread); 312 } 313 314 /* 315 * raid_end_bio_io() is called when we have finished servicing a mirrored 316 * operation and are ready to return a success/failure code to the buffer 317 * cache layer. 318 */ 319 static void raid_end_bio_io(struct r10bio *r10_bio) 320 { 321 struct bio *bio = r10_bio->master_bio; 322 struct r10conf *conf = r10_bio->mddev->private; 323 324 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 325 bio->bi_status = BLK_STS_IOERR; 326 327 bio_endio(bio); 328 /* 329 * Wake up any possible resync thread that waits for the device 330 * to go idle. 331 */ 332 allow_barrier(conf); 333 334 free_r10bio(r10_bio); 335 } 336 337 /* 338 * Update disk head position estimator based on IRQ completion info. 339 */ 340 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 341 { 342 struct r10conf *conf = r10_bio->mddev->private; 343 344 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 345 r10_bio->devs[slot].addr + (r10_bio->sectors); 346 } 347 348 /* 349 * Find the disk number which triggered given bio 350 */ 351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 352 struct bio *bio, int *slotp, int *replp) 353 { 354 int slot; 355 int repl = 0; 356 357 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 358 if (r10_bio->devs[slot].bio == bio) 359 break; 360 if (r10_bio->devs[slot].repl_bio == bio) { 361 repl = 1; 362 break; 363 } 364 } 365 366 update_head_pos(slot, r10_bio); 367 368 if (slotp) 369 *slotp = slot; 370 if (replp) 371 *replp = repl; 372 return r10_bio->devs[slot].devnum; 373 } 374 375 static void raid10_end_read_request(struct bio *bio) 376 { 377 int uptodate = !bio->bi_status; 378 struct r10bio *r10_bio = bio->bi_private; 379 int slot; 380 struct md_rdev *rdev; 381 struct r10conf *conf = r10_bio->mddev->private; 382 383 slot = r10_bio->read_slot; 384 rdev = r10_bio->devs[slot].rdev; 385 /* 386 * this branch is our 'one mirror IO has finished' event handler: 387 */ 388 update_head_pos(slot, r10_bio); 389 390 if (uptodate) { 391 /* 392 * Set R10BIO_Uptodate in our master bio, so that 393 * we will return a good error code to the higher 394 * levels even if IO on some other mirrored buffer fails. 395 * 396 * The 'master' represents the composite IO operation to 397 * user-side. So if something waits for IO, then it will 398 * wait for the 'master' bio. 399 */ 400 set_bit(R10BIO_Uptodate, &r10_bio->state); 401 } else { 402 /* If all other devices that store this block have 403 * failed, we want to return the error upwards rather 404 * than fail the last device. Here we redefine 405 * "uptodate" to mean "Don't want to retry" 406 */ 407 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 408 rdev->raid_disk)) 409 uptodate = 1; 410 } 411 if (uptodate) { 412 raid_end_bio_io(r10_bio); 413 rdev_dec_pending(rdev, conf->mddev); 414 } else { 415 /* 416 * oops, read error - keep the refcount on the rdev 417 */ 418 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", 419 mdname(conf->mddev), 420 rdev->bdev, 421 (unsigned long long)r10_bio->sector); 422 set_bit(R10BIO_ReadError, &r10_bio->state); 423 reschedule_retry(r10_bio); 424 } 425 } 426 427 static void close_write(struct r10bio *r10_bio) 428 { 429 struct mddev *mddev = r10_bio->mddev; 430 431 /* clear the bitmap if all writes complete successfully */ 432 mddev->bitmap_ops->endwrite(mddev, r10_bio->sector, r10_bio->sectors, 433 !test_bit(R10BIO_Degraded, &r10_bio->state), 434 false); 435 md_write_end(mddev); 436 } 437 438 static void one_write_done(struct r10bio *r10_bio) 439 { 440 if (atomic_dec_and_test(&r10_bio->remaining)) { 441 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 442 reschedule_retry(r10_bio); 443 else { 444 close_write(r10_bio); 445 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 446 reschedule_retry(r10_bio); 447 else 448 raid_end_bio_io(r10_bio); 449 } 450 } 451 } 452 453 static void raid10_end_write_request(struct bio *bio) 454 { 455 struct r10bio *r10_bio = bio->bi_private; 456 int dev; 457 int dec_rdev = 1; 458 struct r10conf *conf = r10_bio->mddev->private; 459 int slot, repl; 460 struct md_rdev *rdev = NULL; 461 struct bio *to_put = NULL; 462 bool discard_error; 463 464 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 465 466 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 467 468 if (repl) 469 rdev = conf->mirrors[dev].replacement; 470 if (!rdev) { 471 smp_rmb(); 472 repl = 0; 473 rdev = conf->mirrors[dev].rdev; 474 } 475 /* 476 * this branch is our 'one mirror IO has finished' event handler: 477 */ 478 if (bio->bi_status && !discard_error) { 479 if (repl) 480 /* Never record new bad blocks to replacement, 481 * just fail it. 482 */ 483 md_error(rdev->mddev, rdev); 484 else { 485 set_bit(WriteErrorSeen, &rdev->flags); 486 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 487 set_bit(MD_RECOVERY_NEEDED, 488 &rdev->mddev->recovery); 489 490 dec_rdev = 0; 491 if (test_bit(FailFast, &rdev->flags) && 492 (bio->bi_opf & MD_FAILFAST)) { 493 md_error(rdev->mddev, rdev); 494 } 495 496 /* 497 * When the device is faulty, it is not necessary to 498 * handle write error. 499 */ 500 if (!test_bit(Faulty, &rdev->flags)) 501 set_bit(R10BIO_WriteError, &r10_bio->state); 502 else { 503 /* Fail the request */ 504 set_bit(R10BIO_Degraded, &r10_bio->state); 505 r10_bio->devs[slot].bio = NULL; 506 to_put = bio; 507 dec_rdev = 1; 508 } 509 } 510 } else { 511 /* 512 * Set R10BIO_Uptodate in our master bio, so that 513 * we will return a good error code for to the higher 514 * levels even if IO on some other mirrored buffer fails. 515 * 516 * The 'master' represents the composite IO operation to 517 * user-side. So if something waits for IO, then it will 518 * wait for the 'master' bio. 519 * 520 * Do not set R10BIO_Uptodate if the current device is 521 * rebuilding or Faulty. This is because we cannot use 522 * such device for properly reading the data back (we could 523 * potentially use it, if the current write would have felt 524 * before rdev->recovery_offset, but for simplicity we don't 525 * check this here. 526 */ 527 if (test_bit(In_sync, &rdev->flags) && 528 !test_bit(Faulty, &rdev->flags)) 529 set_bit(R10BIO_Uptodate, &r10_bio->state); 530 531 /* Maybe we can clear some bad blocks. */ 532 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 533 r10_bio->sectors) && 534 !discard_error) { 535 bio_put(bio); 536 if (repl) 537 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 538 else 539 r10_bio->devs[slot].bio = IO_MADE_GOOD; 540 dec_rdev = 0; 541 set_bit(R10BIO_MadeGood, &r10_bio->state); 542 } 543 } 544 545 /* 546 * 547 * Let's see if all mirrored write operations have finished 548 * already. 549 */ 550 one_write_done(r10_bio); 551 if (dec_rdev) 552 rdev_dec_pending(rdev, conf->mddev); 553 if (to_put) 554 bio_put(to_put); 555 } 556 557 /* 558 * RAID10 layout manager 559 * As well as the chunksize and raid_disks count, there are two 560 * parameters: near_copies and far_copies. 561 * near_copies * far_copies must be <= raid_disks. 562 * Normally one of these will be 1. 563 * If both are 1, we get raid0. 564 * If near_copies == raid_disks, we get raid1. 565 * 566 * Chunks are laid out in raid0 style with near_copies copies of the 567 * first chunk, followed by near_copies copies of the next chunk and 568 * so on. 569 * If far_copies > 1, then after 1/far_copies of the array has been assigned 570 * as described above, we start again with a device offset of near_copies. 571 * So we effectively have another copy of the whole array further down all 572 * the drives, but with blocks on different drives. 573 * With this layout, and block is never stored twice on the one device. 574 * 575 * raid10_find_phys finds the sector offset of a given virtual sector 576 * on each device that it is on. 577 * 578 * raid10_find_virt does the reverse mapping, from a device and a 579 * sector offset to a virtual address 580 */ 581 582 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 583 { 584 int n,f; 585 sector_t sector; 586 sector_t chunk; 587 sector_t stripe; 588 int dev; 589 int slot = 0; 590 int last_far_set_start, last_far_set_size; 591 592 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 593 last_far_set_start *= geo->far_set_size; 594 595 last_far_set_size = geo->far_set_size; 596 last_far_set_size += (geo->raid_disks % geo->far_set_size); 597 598 /* now calculate first sector/dev */ 599 chunk = r10bio->sector >> geo->chunk_shift; 600 sector = r10bio->sector & geo->chunk_mask; 601 602 chunk *= geo->near_copies; 603 stripe = chunk; 604 dev = sector_div(stripe, geo->raid_disks); 605 if (geo->far_offset) 606 stripe *= geo->far_copies; 607 608 sector += stripe << geo->chunk_shift; 609 610 /* and calculate all the others */ 611 for (n = 0; n < geo->near_copies; n++) { 612 int d = dev; 613 int set; 614 sector_t s = sector; 615 r10bio->devs[slot].devnum = d; 616 r10bio->devs[slot].addr = s; 617 slot++; 618 619 for (f = 1; f < geo->far_copies; f++) { 620 set = d / geo->far_set_size; 621 d += geo->near_copies; 622 623 if ((geo->raid_disks % geo->far_set_size) && 624 (d > last_far_set_start)) { 625 d -= last_far_set_start; 626 d %= last_far_set_size; 627 d += last_far_set_start; 628 } else { 629 d %= geo->far_set_size; 630 d += geo->far_set_size * set; 631 } 632 s += geo->stride; 633 r10bio->devs[slot].devnum = d; 634 r10bio->devs[slot].addr = s; 635 slot++; 636 } 637 dev++; 638 if (dev >= geo->raid_disks) { 639 dev = 0; 640 sector += (geo->chunk_mask + 1); 641 } 642 } 643 } 644 645 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 646 { 647 struct geom *geo = &conf->geo; 648 649 if (conf->reshape_progress != MaxSector && 650 ((r10bio->sector >= conf->reshape_progress) != 651 conf->mddev->reshape_backwards)) { 652 set_bit(R10BIO_Previous, &r10bio->state); 653 geo = &conf->prev; 654 } else 655 clear_bit(R10BIO_Previous, &r10bio->state); 656 657 __raid10_find_phys(geo, r10bio); 658 } 659 660 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 661 { 662 sector_t offset, chunk, vchunk; 663 /* Never use conf->prev as this is only called during resync 664 * or recovery, so reshape isn't happening 665 */ 666 struct geom *geo = &conf->geo; 667 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 668 int far_set_size = geo->far_set_size; 669 int last_far_set_start; 670 671 if (geo->raid_disks % geo->far_set_size) { 672 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 673 last_far_set_start *= geo->far_set_size; 674 675 if (dev >= last_far_set_start) { 676 far_set_size = geo->far_set_size; 677 far_set_size += (geo->raid_disks % geo->far_set_size); 678 far_set_start = last_far_set_start; 679 } 680 } 681 682 offset = sector & geo->chunk_mask; 683 if (geo->far_offset) { 684 int fc; 685 chunk = sector >> geo->chunk_shift; 686 fc = sector_div(chunk, geo->far_copies); 687 dev -= fc * geo->near_copies; 688 if (dev < far_set_start) 689 dev += far_set_size; 690 } else { 691 while (sector >= geo->stride) { 692 sector -= geo->stride; 693 if (dev < (geo->near_copies + far_set_start)) 694 dev += far_set_size - geo->near_copies; 695 else 696 dev -= geo->near_copies; 697 } 698 chunk = sector >> geo->chunk_shift; 699 } 700 vchunk = chunk * geo->raid_disks + dev; 701 sector_div(vchunk, geo->near_copies); 702 return (vchunk << geo->chunk_shift) + offset; 703 } 704 705 /* 706 * This routine returns the disk from which the requested read should 707 * be done. There is a per-array 'next expected sequential IO' sector 708 * number - if this matches on the next IO then we use the last disk. 709 * There is also a per-disk 'last know head position' sector that is 710 * maintained from IRQ contexts, both the normal and the resync IO 711 * completion handlers update this position correctly. If there is no 712 * perfect sequential match then we pick the disk whose head is closest. 713 * 714 * If there are 2 mirrors in the same 2 devices, performance degrades 715 * because position is mirror, not device based. 716 * 717 * The rdev for the device selected will have nr_pending incremented. 718 */ 719 720 /* 721 * FIXME: possibly should rethink readbalancing and do it differently 722 * depending on near_copies / far_copies geometry. 723 */ 724 static struct md_rdev *read_balance(struct r10conf *conf, 725 struct r10bio *r10_bio, 726 int *max_sectors) 727 { 728 const sector_t this_sector = r10_bio->sector; 729 int disk, slot; 730 int sectors = r10_bio->sectors; 731 int best_good_sectors; 732 sector_t new_distance, best_dist; 733 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 734 int do_balance; 735 int best_dist_slot, best_pending_slot; 736 bool has_nonrot_disk = false; 737 unsigned int min_pending; 738 struct geom *geo = &conf->geo; 739 740 raid10_find_phys(conf, r10_bio); 741 best_dist_slot = -1; 742 min_pending = UINT_MAX; 743 best_dist_rdev = NULL; 744 best_pending_rdev = NULL; 745 best_dist = MaxSector; 746 best_good_sectors = 0; 747 do_balance = 1; 748 clear_bit(R10BIO_FailFast, &r10_bio->state); 749 750 if (raid1_should_read_first(conf->mddev, this_sector, sectors)) 751 do_balance = 0; 752 753 for (slot = 0; slot < conf->copies ; slot++) { 754 sector_t first_bad; 755 int bad_sectors; 756 sector_t dev_sector; 757 unsigned int pending; 758 bool nonrot; 759 760 if (r10_bio->devs[slot].bio == IO_BLOCKED) 761 continue; 762 disk = r10_bio->devs[slot].devnum; 763 rdev = conf->mirrors[disk].replacement; 764 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 765 r10_bio->devs[slot].addr + sectors > 766 rdev->recovery_offset) 767 rdev = conf->mirrors[disk].rdev; 768 if (rdev == NULL || 769 test_bit(Faulty, &rdev->flags)) 770 continue; 771 if (!test_bit(In_sync, &rdev->flags) && 772 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 773 continue; 774 775 dev_sector = r10_bio->devs[slot].addr; 776 if (is_badblock(rdev, dev_sector, sectors, 777 &first_bad, &bad_sectors)) { 778 if (best_dist < MaxSector) 779 /* Already have a better slot */ 780 continue; 781 if (first_bad <= dev_sector) { 782 /* Cannot read here. If this is the 783 * 'primary' device, then we must not read 784 * beyond 'bad_sectors' from another device. 785 */ 786 bad_sectors -= (dev_sector - first_bad); 787 if (!do_balance && sectors > bad_sectors) 788 sectors = bad_sectors; 789 if (best_good_sectors > sectors) 790 best_good_sectors = sectors; 791 } else { 792 sector_t good_sectors = 793 first_bad - dev_sector; 794 if (good_sectors > best_good_sectors) { 795 best_good_sectors = good_sectors; 796 best_dist_slot = slot; 797 best_dist_rdev = rdev; 798 } 799 if (!do_balance) 800 /* Must read from here */ 801 break; 802 } 803 continue; 804 } else 805 best_good_sectors = sectors; 806 807 if (!do_balance) 808 break; 809 810 nonrot = bdev_nonrot(rdev->bdev); 811 has_nonrot_disk |= nonrot; 812 pending = atomic_read(&rdev->nr_pending); 813 if (min_pending > pending && nonrot) { 814 min_pending = pending; 815 best_pending_slot = slot; 816 best_pending_rdev = rdev; 817 } 818 819 if (best_dist_slot >= 0) 820 /* At least 2 disks to choose from so failfast is OK */ 821 set_bit(R10BIO_FailFast, &r10_bio->state); 822 /* This optimisation is debatable, and completely destroys 823 * sequential read speed for 'far copies' arrays. So only 824 * keep it for 'near' arrays, and review those later. 825 */ 826 if (geo->near_copies > 1 && !pending) 827 new_distance = 0; 828 829 /* for far > 1 always use the lowest address */ 830 else if (geo->far_copies > 1) 831 new_distance = r10_bio->devs[slot].addr; 832 else 833 new_distance = abs(r10_bio->devs[slot].addr - 834 conf->mirrors[disk].head_position); 835 836 if (new_distance < best_dist) { 837 best_dist = new_distance; 838 best_dist_slot = slot; 839 best_dist_rdev = rdev; 840 } 841 } 842 if (slot >= conf->copies) { 843 if (has_nonrot_disk) { 844 slot = best_pending_slot; 845 rdev = best_pending_rdev; 846 } else { 847 slot = best_dist_slot; 848 rdev = best_dist_rdev; 849 } 850 } 851 852 if (slot >= 0) { 853 atomic_inc(&rdev->nr_pending); 854 r10_bio->read_slot = slot; 855 } else 856 rdev = NULL; 857 *max_sectors = best_good_sectors; 858 859 return rdev; 860 } 861 862 static void flush_pending_writes(struct r10conf *conf) 863 { 864 /* Any writes that have been queued but are awaiting 865 * bitmap updates get flushed here. 866 */ 867 spin_lock_irq(&conf->device_lock); 868 869 if (conf->pending_bio_list.head) { 870 struct blk_plug plug; 871 struct bio *bio; 872 873 bio = bio_list_get(&conf->pending_bio_list); 874 spin_unlock_irq(&conf->device_lock); 875 876 /* 877 * As this is called in a wait_event() loop (see freeze_array), 878 * current->state might be TASK_UNINTERRUPTIBLE which will 879 * cause a warning when we prepare to wait again. As it is 880 * rare that this path is taken, it is perfectly safe to force 881 * us to go around the wait_event() loop again, so the warning 882 * is a false-positive. Silence the warning by resetting 883 * thread state 884 */ 885 __set_current_state(TASK_RUNNING); 886 887 blk_start_plug(&plug); 888 raid1_prepare_flush_writes(conf->mddev); 889 wake_up(&conf->wait_barrier); 890 891 while (bio) { /* submit pending writes */ 892 struct bio *next = bio->bi_next; 893 894 raid1_submit_write(bio); 895 bio = next; 896 cond_resched(); 897 } 898 blk_finish_plug(&plug); 899 } else 900 spin_unlock_irq(&conf->device_lock); 901 } 902 903 /* Barriers.... 904 * Sometimes we need to suspend IO while we do something else, 905 * either some resync/recovery, or reconfigure the array. 906 * To do this we raise a 'barrier'. 907 * The 'barrier' is a counter that can be raised multiple times 908 * to count how many activities are happening which preclude 909 * normal IO. 910 * We can only raise the barrier if there is no pending IO. 911 * i.e. if nr_pending == 0. 912 * We choose only to raise the barrier if no-one is waiting for the 913 * barrier to go down. This means that as soon as an IO request 914 * is ready, no other operations which require a barrier will start 915 * until the IO request has had a chance. 916 * 917 * So: regular IO calls 'wait_barrier'. When that returns there 918 * is no backgroup IO happening, It must arrange to call 919 * allow_barrier when it has finished its IO. 920 * backgroup IO calls must call raise_barrier. Once that returns 921 * there is no normal IO happeing. It must arrange to call 922 * lower_barrier when the particular background IO completes. 923 */ 924 925 static void raise_barrier(struct r10conf *conf, int force) 926 { 927 write_seqlock_irq(&conf->resync_lock); 928 929 if (WARN_ON_ONCE(force && !conf->barrier)) 930 force = false; 931 932 /* Wait until no block IO is waiting (unless 'force') */ 933 wait_event_barrier(conf, force || !conf->nr_waiting); 934 935 /* block any new IO from starting */ 936 WRITE_ONCE(conf->barrier, conf->barrier + 1); 937 938 /* Now wait for all pending IO to complete */ 939 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && 940 conf->barrier < RESYNC_DEPTH); 941 942 write_sequnlock_irq(&conf->resync_lock); 943 } 944 945 static void lower_barrier(struct r10conf *conf) 946 { 947 unsigned long flags; 948 949 write_seqlock_irqsave(&conf->resync_lock, flags); 950 WRITE_ONCE(conf->barrier, conf->barrier - 1); 951 write_sequnlock_irqrestore(&conf->resync_lock, flags); 952 wake_up(&conf->wait_barrier); 953 } 954 955 static bool stop_waiting_barrier(struct r10conf *conf) 956 { 957 struct bio_list *bio_list = current->bio_list; 958 struct md_thread *thread; 959 960 /* barrier is dropped */ 961 if (!conf->barrier) 962 return true; 963 964 /* 965 * If there are already pending requests (preventing the barrier from 966 * rising completely), and the pre-process bio queue isn't empty, then 967 * don't wait, as we need to empty that queue to get the nr_pending 968 * count down. 969 */ 970 if (atomic_read(&conf->nr_pending) && bio_list && 971 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) 972 return true; 973 974 /* daemon thread must exist while handling io */ 975 thread = rcu_dereference_protected(conf->mddev->thread, true); 976 /* 977 * move on if io is issued from raid10d(), nr_pending is not released 978 * from original io(see handle_read_error()). All raise barrier is 979 * blocked until this io is done. 980 */ 981 if (thread->tsk == current) { 982 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); 983 return true; 984 } 985 986 return false; 987 } 988 989 static bool wait_barrier_nolock(struct r10conf *conf) 990 { 991 unsigned int seq = read_seqbegin(&conf->resync_lock); 992 993 if (READ_ONCE(conf->barrier)) 994 return false; 995 996 atomic_inc(&conf->nr_pending); 997 if (!read_seqretry(&conf->resync_lock, seq)) 998 return true; 999 1000 if (atomic_dec_and_test(&conf->nr_pending)) 1001 wake_up_barrier(conf); 1002 1003 return false; 1004 } 1005 1006 static bool wait_barrier(struct r10conf *conf, bool nowait) 1007 { 1008 bool ret = true; 1009 1010 if (wait_barrier_nolock(conf)) 1011 return true; 1012 1013 write_seqlock_irq(&conf->resync_lock); 1014 if (conf->barrier) { 1015 /* Return false when nowait flag is set */ 1016 if (nowait) { 1017 ret = false; 1018 } else { 1019 conf->nr_waiting++; 1020 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier"); 1021 wait_event_barrier(conf, stop_waiting_barrier(conf)); 1022 conf->nr_waiting--; 1023 } 1024 if (!conf->nr_waiting) 1025 wake_up(&conf->wait_barrier); 1026 } 1027 /* Only increment nr_pending when we wait */ 1028 if (ret) 1029 atomic_inc(&conf->nr_pending); 1030 write_sequnlock_irq(&conf->resync_lock); 1031 return ret; 1032 } 1033 1034 static void allow_barrier(struct r10conf *conf) 1035 { 1036 if ((atomic_dec_and_test(&conf->nr_pending)) || 1037 (conf->array_freeze_pending)) 1038 wake_up_barrier(conf); 1039 } 1040 1041 static void freeze_array(struct r10conf *conf, int extra) 1042 { 1043 /* stop syncio and normal IO and wait for everything to 1044 * go quiet. 1045 * We increment barrier and nr_waiting, and then 1046 * wait until nr_pending match nr_queued+extra 1047 * This is called in the context of one normal IO request 1048 * that has failed. Thus any sync request that might be pending 1049 * will be blocked by nr_pending, and we need to wait for 1050 * pending IO requests to complete or be queued for re-try. 1051 * Thus the number queued (nr_queued) plus this request (extra) 1052 * must match the number of pending IOs (nr_pending) before 1053 * we continue. 1054 */ 1055 write_seqlock_irq(&conf->resync_lock); 1056 conf->array_freeze_pending++; 1057 WRITE_ONCE(conf->barrier, conf->barrier + 1); 1058 conf->nr_waiting++; 1059 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == 1060 conf->nr_queued + extra, flush_pending_writes(conf)); 1061 conf->array_freeze_pending--; 1062 write_sequnlock_irq(&conf->resync_lock); 1063 } 1064 1065 static void unfreeze_array(struct r10conf *conf) 1066 { 1067 /* reverse the effect of the freeze */ 1068 write_seqlock_irq(&conf->resync_lock); 1069 WRITE_ONCE(conf->barrier, conf->barrier - 1); 1070 conf->nr_waiting--; 1071 wake_up(&conf->wait_barrier); 1072 write_sequnlock_irq(&conf->resync_lock); 1073 } 1074 1075 static sector_t choose_data_offset(struct r10bio *r10_bio, 1076 struct md_rdev *rdev) 1077 { 1078 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1079 test_bit(R10BIO_Previous, &r10_bio->state)) 1080 return rdev->data_offset; 1081 else 1082 return rdev->new_data_offset; 1083 } 1084 1085 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1086 { 1087 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1088 struct mddev *mddev = plug->cb.data; 1089 struct r10conf *conf = mddev->private; 1090 struct bio *bio; 1091 1092 if (from_schedule) { 1093 spin_lock_irq(&conf->device_lock); 1094 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1095 spin_unlock_irq(&conf->device_lock); 1096 wake_up_barrier(conf); 1097 md_wakeup_thread(mddev->thread); 1098 kfree(plug); 1099 return; 1100 } 1101 1102 /* we aren't scheduling, so we can do the write-out directly. */ 1103 bio = bio_list_get(&plug->pending); 1104 raid1_prepare_flush_writes(mddev); 1105 wake_up_barrier(conf); 1106 1107 while (bio) { /* submit pending writes */ 1108 struct bio *next = bio->bi_next; 1109 1110 raid1_submit_write(bio); 1111 bio = next; 1112 cond_resched(); 1113 } 1114 kfree(plug); 1115 } 1116 1117 /* 1118 * 1. Register the new request and wait if the reconstruction thread has put 1119 * up a bar for new requests. Continue immediately if no resync is active 1120 * currently. 1121 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1122 */ 1123 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1124 struct bio *bio, sector_t sectors) 1125 { 1126 /* Bail out if REQ_NOWAIT is set for the bio */ 1127 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1128 bio_wouldblock_error(bio); 1129 return false; 1130 } 1131 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1132 bio->bi_iter.bi_sector < conf->reshape_progress && 1133 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1134 allow_barrier(conf); 1135 if (bio->bi_opf & REQ_NOWAIT) { 1136 bio_wouldblock_error(bio); 1137 return false; 1138 } 1139 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape"); 1140 wait_event(conf->wait_barrier, 1141 conf->reshape_progress <= bio->bi_iter.bi_sector || 1142 conf->reshape_progress >= bio->bi_iter.bi_sector + 1143 sectors); 1144 wait_barrier(conf, false); 1145 } 1146 return true; 1147 } 1148 1149 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1150 struct r10bio *r10_bio, bool io_accounting) 1151 { 1152 struct r10conf *conf = mddev->private; 1153 struct bio *read_bio; 1154 const enum req_op op = bio_op(bio); 1155 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1156 int max_sectors; 1157 struct md_rdev *rdev; 1158 char b[BDEVNAME_SIZE]; 1159 int slot = r10_bio->read_slot; 1160 struct md_rdev *err_rdev = NULL; 1161 gfp_t gfp = GFP_NOIO; 1162 int error; 1163 1164 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1165 /* 1166 * This is an error retry, but we cannot 1167 * safely dereference the rdev in the r10_bio, 1168 * we must use the one in conf. 1169 * If it has already been disconnected (unlikely) 1170 * we lose the device name in error messages. 1171 */ 1172 int disk; 1173 /* 1174 * As we are blocking raid10, it is a little safer to 1175 * use __GFP_HIGH. 1176 */ 1177 gfp = GFP_NOIO | __GFP_HIGH; 1178 1179 disk = r10_bio->devs[slot].devnum; 1180 err_rdev = conf->mirrors[disk].rdev; 1181 if (err_rdev) 1182 snprintf(b, sizeof(b), "%pg", err_rdev->bdev); 1183 else { 1184 strcpy(b, "???"); 1185 /* This never gets dereferenced */ 1186 err_rdev = r10_bio->devs[slot].rdev; 1187 } 1188 } 1189 1190 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) 1191 return; 1192 rdev = read_balance(conf, r10_bio, &max_sectors); 1193 if (!rdev) { 1194 if (err_rdev) { 1195 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1196 mdname(mddev), b, 1197 (unsigned long long)r10_bio->sector); 1198 } 1199 raid_end_bio_io(r10_bio); 1200 return; 1201 } 1202 if (err_rdev) 1203 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", 1204 mdname(mddev), 1205 rdev->bdev, 1206 (unsigned long long)r10_bio->sector); 1207 if (max_sectors < bio_sectors(bio)) { 1208 struct bio *split = bio_split(bio, max_sectors, 1209 gfp, &conf->bio_split); 1210 if (IS_ERR(split)) { 1211 error = PTR_ERR(split); 1212 goto err_handle; 1213 } 1214 bio_chain(split, bio); 1215 allow_barrier(conf); 1216 submit_bio_noacct(bio); 1217 wait_barrier(conf, false); 1218 bio = split; 1219 r10_bio->master_bio = bio; 1220 r10_bio->sectors = max_sectors; 1221 } 1222 slot = r10_bio->read_slot; 1223 1224 if (io_accounting) { 1225 md_account_bio(mddev, &bio); 1226 r10_bio->master_bio = bio; 1227 } 1228 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1229 1230 r10_bio->devs[slot].bio = read_bio; 1231 r10_bio->devs[slot].rdev = rdev; 1232 1233 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1234 choose_data_offset(r10_bio, rdev); 1235 read_bio->bi_end_io = raid10_end_read_request; 1236 read_bio->bi_opf = op | do_sync; 1237 if (test_bit(FailFast, &rdev->flags) && 1238 test_bit(R10BIO_FailFast, &r10_bio->state)) 1239 read_bio->bi_opf |= MD_FAILFAST; 1240 read_bio->bi_private = r10_bio; 1241 mddev_trace_remap(mddev, read_bio, r10_bio->sector); 1242 submit_bio_noacct(read_bio); 1243 return; 1244 err_handle: 1245 atomic_dec(&rdev->nr_pending); 1246 bio->bi_status = errno_to_blk_status(error); 1247 set_bit(R10BIO_Uptodate, &r10_bio->state); 1248 raid_end_bio_io(r10_bio); 1249 } 1250 1251 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1252 struct bio *bio, bool replacement, 1253 int n_copy) 1254 { 1255 const enum req_op op = bio_op(bio); 1256 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1257 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA; 1258 const blk_opf_t do_atomic = bio->bi_opf & REQ_ATOMIC; 1259 unsigned long flags; 1260 struct r10conf *conf = mddev->private; 1261 struct md_rdev *rdev; 1262 int devnum = r10_bio->devs[n_copy].devnum; 1263 struct bio *mbio; 1264 1265 rdev = replacement ? conf->mirrors[devnum].replacement : 1266 conf->mirrors[devnum].rdev; 1267 1268 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1269 if (replacement) 1270 r10_bio->devs[n_copy].repl_bio = mbio; 1271 else 1272 r10_bio->devs[n_copy].bio = mbio; 1273 1274 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1275 choose_data_offset(r10_bio, rdev)); 1276 mbio->bi_end_io = raid10_end_write_request; 1277 mbio->bi_opf = op | do_sync | do_fua | do_atomic; 1278 if (!replacement && test_bit(FailFast, 1279 &conf->mirrors[devnum].rdev->flags) 1280 && enough(conf, devnum)) 1281 mbio->bi_opf |= MD_FAILFAST; 1282 mbio->bi_private = r10_bio; 1283 mddev_trace_remap(mddev, mbio, r10_bio->sector); 1284 /* flush_pending_writes() needs access to the rdev so...*/ 1285 mbio->bi_bdev = (void *)rdev; 1286 1287 atomic_inc(&r10_bio->remaining); 1288 1289 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) { 1290 spin_lock_irqsave(&conf->device_lock, flags); 1291 bio_list_add(&conf->pending_bio_list, mbio); 1292 spin_unlock_irqrestore(&conf->device_lock, flags); 1293 md_wakeup_thread(mddev->thread); 1294 } 1295 } 1296 1297 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1298 { 1299 struct r10conf *conf = mddev->private; 1300 struct md_rdev *blocked_rdev; 1301 int i; 1302 1303 retry_wait: 1304 blocked_rdev = NULL; 1305 for (i = 0; i < conf->copies; i++) { 1306 struct md_rdev *rdev, *rrdev; 1307 1308 rdev = conf->mirrors[i].rdev; 1309 if (rdev) { 1310 sector_t dev_sector = r10_bio->devs[i].addr; 1311 1312 /* 1313 * Discard request doesn't care the write result 1314 * so it doesn't need to wait blocked disk here. 1315 */ 1316 if (test_bit(WriteErrorSeen, &rdev->flags) && 1317 r10_bio->sectors && 1318 rdev_has_badblock(rdev, dev_sector, 1319 r10_bio->sectors) < 0) 1320 /* 1321 * Mustn't write here until the bad 1322 * block is acknowledged 1323 */ 1324 set_bit(BlockedBadBlocks, &rdev->flags); 1325 1326 if (rdev_blocked(rdev)) { 1327 blocked_rdev = rdev; 1328 atomic_inc(&rdev->nr_pending); 1329 break; 1330 } 1331 } 1332 1333 rrdev = conf->mirrors[i].replacement; 1334 if (rrdev && rdev_blocked(rrdev)) { 1335 atomic_inc(&rrdev->nr_pending); 1336 blocked_rdev = rrdev; 1337 break; 1338 } 1339 } 1340 1341 if (unlikely(blocked_rdev)) { 1342 /* Have to wait for this device to get unblocked, then retry */ 1343 allow_barrier(conf); 1344 mddev_add_trace_msg(conf->mddev, 1345 "raid10 %s wait rdev %d blocked", 1346 __func__, blocked_rdev->raid_disk); 1347 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1348 wait_barrier(conf, false); 1349 goto retry_wait; 1350 } 1351 } 1352 1353 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1354 struct r10bio *r10_bio) 1355 { 1356 struct r10conf *conf = mddev->private; 1357 int i, k; 1358 sector_t sectors; 1359 int max_sectors; 1360 int error; 1361 1362 if ((mddev_is_clustered(mddev) && 1363 md_cluster_ops->area_resyncing(mddev, WRITE, 1364 bio->bi_iter.bi_sector, 1365 bio_end_sector(bio)))) { 1366 DEFINE_WAIT(w); 1367 /* Bail out if REQ_NOWAIT is set for the bio */ 1368 if (bio->bi_opf & REQ_NOWAIT) { 1369 bio_wouldblock_error(bio); 1370 return; 1371 } 1372 for (;;) { 1373 prepare_to_wait(&conf->wait_barrier, 1374 &w, TASK_IDLE); 1375 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1376 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1377 break; 1378 schedule(); 1379 } 1380 finish_wait(&conf->wait_barrier, &w); 1381 } 1382 1383 sectors = r10_bio->sectors; 1384 if (!regular_request_wait(mddev, conf, bio, sectors)) 1385 return; 1386 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1387 (mddev->reshape_backwards 1388 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1389 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1390 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1391 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1392 /* Need to update reshape_position in metadata */ 1393 mddev->reshape_position = conf->reshape_progress; 1394 set_mask_bits(&mddev->sb_flags, 0, 1395 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1396 md_wakeup_thread(mddev->thread); 1397 if (bio->bi_opf & REQ_NOWAIT) { 1398 allow_barrier(conf); 1399 bio_wouldblock_error(bio); 1400 return; 1401 } 1402 mddev_add_trace_msg(conf->mddev, 1403 "raid10 wait reshape metadata"); 1404 wait_event(mddev->sb_wait, 1405 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1406 1407 conf->reshape_safe = mddev->reshape_position; 1408 } 1409 1410 /* first select target devices under rcu_lock and 1411 * inc refcount on their rdev. Record them by setting 1412 * bios[x] to bio 1413 * If there are known/acknowledged bad blocks on any device 1414 * on which we have seen a write error, we want to avoid 1415 * writing to those blocks. This potentially requires several 1416 * writes to write around the bad blocks. Each set of writes 1417 * gets its own r10_bio with a set of bios attached. 1418 */ 1419 1420 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1421 raid10_find_phys(conf, r10_bio); 1422 1423 wait_blocked_dev(mddev, r10_bio); 1424 1425 max_sectors = r10_bio->sectors; 1426 1427 for (i = 0; i < conf->copies; i++) { 1428 int d = r10_bio->devs[i].devnum; 1429 struct md_rdev *rdev, *rrdev; 1430 1431 rdev = conf->mirrors[d].rdev; 1432 rrdev = conf->mirrors[d].replacement; 1433 if (rdev && (test_bit(Faulty, &rdev->flags))) 1434 rdev = NULL; 1435 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1436 rrdev = NULL; 1437 1438 r10_bio->devs[i].bio = NULL; 1439 r10_bio->devs[i].repl_bio = NULL; 1440 1441 if (!rdev && !rrdev) { 1442 set_bit(R10BIO_Degraded, &r10_bio->state); 1443 continue; 1444 } 1445 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1446 sector_t first_bad; 1447 sector_t dev_sector = r10_bio->devs[i].addr; 1448 int bad_sectors; 1449 int is_bad; 1450 1451 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1452 &first_bad, &bad_sectors); 1453 if (is_bad && first_bad <= dev_sector) { 1454 /* Cannot write here at all */ 1455 bad_sectors -= (dev_sector - first_bad); 1456 if (bad_sectors < max_sectors) 1457 /* Mustn't write more than bad_sectors 1458 * to other devices yet 1459 */ 1460 max_sectors = bad_sectors; 1461 /* We don't set R10BIO_Degraded as that 1462 * only applies if the disk is missing, 1463 * so it might be re-added, and we want to 1464 * know to recover this chunk. 1465 * In this case the device is here, and the 1466 * fact that this chunk is not in-sync is 1467 * recorded in the bad block log. 1468 */ 1469 continue; 1470 } 1471 if (is_bad) { 1472 int good_sectors; 1473 1474 /* 1475 * We cannot atomically write this, so just 1476 * error in that case. It could be possible to 1477 * atomically write other mirrors, but the 1478 * complexity of supporting that is not worth 1479 * the benefit. 1480 */ 1481 if (bio->bi_opf & REQ_ATOMIC) { 1482 error = -EIO; 1483 goto err_handle; 1484 } 1485 1486 good_sectors = first_bad - dev_sector; 1487 if (good_sectors < max_sectors) 1488 max_sectors = good_sectors; 1489 } 1490 } 1491 if (rdev) { 1492 r10_bio->devs[i].bio = bio; 1493 atomic_inc(&rdev->nr_pending); 1494 } 1495 if (rrdev) { 1496 r10_bio->devs[i].repl_bio = bio; 1497 atomic_inc(&rrdev->nr_pending); 1498 } 1499 } 1500 1501 if (max_sectors < r10_bio->sectors) 1502 r10_bio->sectors = max_sectors; 1503 1504 if (r10_bio->sectors < bio_sectors(bio)) { 1505 struct bio *split = bio_split(bio, r10_bio->sectors, 1506 GFP_NOIO, &conf->bio_split); 1507 if (IS_ERR(split)) { 1508 error = PTR_ERR(split); 1509 goto err_handle; 1510 } 1511 bio_chain(split, bio); 1512 allow_barrier(conf); 1513 submit_bio_noacct(bio); 1514 wait_barrier(conf, false); 1515 bio = split; 1516 r10_bio->master_bio = bio; 1517 } 1518 1519 md_account_bio(mddev, &bio); 1520 r10_bio->master_bio = bio; 1521 atomic_set(&r10_bio->remaining, 1); 1522 mddev->bitmap_ops->startwrite(mddev, r10_bio->sector, r10_bio->sectors, 1523 false); 1524 1525 for (i = 0; i < conf->copies; i++) { 1526 if (r10_bio->devs[i].bio) 1527 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1528 if (r10_bio->devs[i].repl_bio) 1529 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1530 } 1531 one_write_done(r10_bio); 1532 return; 1533 err_handle: 1534 for (k = 0; k < i; k++) { 1535 int d = r10_bio->devs[k].devnum; 1536 struct md_rdev *rdev = conf->mirrors[d].rdev; 1537 struct md_rdev *rrdev = conf->mirrors[d].replacement; 1538 1539 if (r10_bio->devs[k].bio) { 1540 rdev_dec_pending(rdev, mddev); 1541 r10_bio->devs[k].bio = NULL; 1542 } 1543 if (r10_bio->devs[k].repl_bio) { 1544 rdev_dec_pending(rrdev, mddev); 1545 r10_bio->devs[k].repl_bio = NULL; 1546 } 1547 } 1548 1549 bio->bi_status = errno_to_blk_status(error); 1550 set_bit(R10BIO_Uptodate, &r10_bio->state); 1551 raid_end_bio_io(r10_bio); 1552 } 1553 1554 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1555 { 1556 struct r10conf *conf = mddev->private; 1557 struct r10bio *r10_bio; 1558 1559 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1560 1561 r10_bio->master_bio = bio; 1562 r10_bio->sectors = sectors; 1563 1564 r10_bio->mddev = mddev; 1565 r10_bio->sector = bio->bi_iter.bi_sector; 1566 r10_bio->state = 0; 1567 r10_bio->read_slot = -1; 1568 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1569 conf->geo.raid_disks); 1570 1571 if (bio_data_dir(bio) == READ) 1572 raid10_read_request(mddev, bio, r10_bio, true); 1573 else 1574 raid10_write_request(mddev, bio, r10_bio); 1575 } 1576 1577 static void raid_end_discard_bio(struct r10bio *r10bio) 1578 { 1579 struct r10conf *conf = r10bio->mddev->private; 1580 struct r10bio *first_r10bio; 1581 1582 while (atomic_dec_and_test(&r10bio->remaining)) { 1583 1584 allow_barrier(conf); 1585 1586 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1587 first_r10bio = (struct r10bio *)r10bio->master_bio; 1588 free_r10bio(r10bio); 1589 r10bio = first_r10bio; 1590 } else { 1591 md_write_end(r10bio->mddev); 1592 bio_endio(r10bio->master_bio); 1593 free_r10bio(r10bio); 1594 break; 1595 } 1596 } 1597 } 1598 1599 static void raid10_end_discard_request(struct bio *bio) 1600 { 1601 struct r10bio *r10_bio = bio->bi_private; 1602 struct r10conf *conf = r10_bio->mddev->private; 1603 struct md_rdev *rdev = NULL; 1604 int dev; 1605 int slot, repl; 1606 1607 /* 1608 * We don't care the return value of discard bio 1609 */ 1610 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1611 set_bit(R10BIO_Uptodate, &r10_bio->state); 1612 1613 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1614 rdev = repl ? conf->mirrors[dev].replacement : 1615 conf->mirrors[dev].rdev; 1616 1617 raid_end_discard_bio(r10_bio); 1618 rdev_dec_pending(rdev, conf->mddev); 1619 } 1620 1621 /* 1622 * There are some limitations to handle discard bio 1623 * 1st, the discard size is bigger than stripe_size*2. 1624 * 2st, if the discard bio spans reshape progress, we use the old way to 1625 * handle discard bio 1626 */ 1627 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1628 { 1629 struct r10conf *conf = mddev->private; 1630 struct geom *geo = &conf->geo; 1631 int far_copies = geo->far_copies; 1632 bool first_copy = true; 1633 struct r10bio *r10_bio, *first_r10bio; 1634 struct bio *split; 1635 int disk; 1636 sector_t chunk; 1637 unsigned int stripe_size; 1638 unsigned int stripe_data_disks; 1639 sector_t split_size; 1640 sector_t bio_start, bio_end; 1641 sector_t first_stripe_index, last_stripe_index; 1642 sector_t start_disk_offset; 1643 unsigned int start_disk_index; 1644 sector_t end_disk_offset; 1645 unsigned int end_disk_index; 1646 unsigned int remainder; 1647 1648 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1649 return -EAGAIN; 1650 1651 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) { 1652 bio_wouldblock_error(bio); 1653 return 0; 1654 } 1655 wait_barrier(conf, false); 1656 1657 /* 1658 * Check reshape again to avoid reshape happens after checking 1659 * MD_RECOVERY_RESHAPE and before wait_barrier 1660 */ 1661 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1662 goto out; 1663 1664 if (geo->near_copies) 1665 stripe_data_disks = geo->raid_disks / geo->near_copies + 1666 geo->raid_disks % geo->near_copies; 1667 else 1668 stripe_data_disks = geo->raid_disks; 1669 1670 stripe_size = stripe_data_disks << geo->chunk_shift; 1671 1672 bio_start = bio->bi_iter.bi_sector; 1673 bio_end = bio_end_sector(bio); 1674 1675 /* 1676 * Maybe one discard bio is smaller than strip size or across one 1677 * stripe and discard region is larger than one stripe size. For far 1678 * offset layout, if the discard region is not aligned with stripe 1679 * size, there is hole when we submit discard bio to member disk. 1680 * For simplicity, we only handle discard bio which discard region 1681 * is bigger than stripe_size * 2 1682 */ 1683 if (bio_sectors(bio) < stripe_size*2) 1684 goto out; 1685 1686 /* 1687 * Keep bio aligned with strip size. 1688 */ 1689 div_u64_rem(bio_start, stripe_size, &remainder); 1690 if (remainder) { 1691 split_size = stripe_size - remainder; 1692 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1693 if (IS_ERR(split)) { 1694 bio->bi_status = errno_to_blk_status(PTR_ERR(split)); 1695 bio_endio(bio); 1696 return 0; 1697 } 1698 bio_chain(split, bio); 1699 allow_barrier(conf); 1700 /* Resend the fist split part */ 1701 submit_bio_noacct(split); 1702 wait_barrier(conf, false); 1703 } 1704 div_u64_rem(bio_end, stripe_size, &remainder); 1705 if (remainder) { 1706 split_size = bio_sectors(bio) - remainder; 1707 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1708 if (IS_ERR(split)) { 1709 bio->bi_status = errno_to_blk_status(PTR_ERR(split)); 1710 bio_endio(bio); 1711 return 0; 1712 } 1713 bio_chain(split, bio); 1714 allow_barrier(conf); 1715 /* Resend the second split part */ 1716 submit_bio_noacct(bio); 1717 bio = split; 1718 wait_barrier(conf, false); 1719 } 1720 1721 bio_start = bio->bi_iter.bi_sector; 1722 bio_end = bio_end_sector(bio); 1723 1724 /* 1725 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1726 * One stripe contains the chunks from all member disk (one chunk from 1727 * one disk at the same HBA address). For layout detail, see 'man md 4' 1728 */ 1729 chunk = bio_start >> geo->chunk_shift; 1730 chunk *= geo->near_copies; 1731 first_stripe_index = chunk; 1732 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1733 if (geo->far_offset) 1734 first_stripe_index *= geo->far_copies; 1735 start_disk_offset = (bio_start & geo->chunk_mask) + 1736 (first_stripe_index << geo->chunk_shift); 1737 1738 chunk = bio_end >> geo->chunk_shift; 1739 chunk *= geo->near_copies; 1740 last_stripe_index = chunk; 1741 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1742 if (geo->far_offset) 1743 last_stripe_index *= geo->far_copies; 1744 end_disk_offset = (bio_end & geo->chunk_mask) + 1745 (last_stripe_index << geo->chunk_shift); 1746 1747 retry_discard: 1748 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1749 r10_bio->mddev = mddev; 1750 r10_bio->state = 0; 1751 r10_bio->sectors = 0; 1752 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1753 wait_blocked_dev(mddev, r10_bio); 1754 1755 /* 1756 * For far layout it needs more than one r10bio to cover all regions. 1757 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1758 * to record the discard bio. Other r10bio->master_bio record the first 1759 * r10bio. The first r10bio only release after all other r10bios finish. 1760 * The discard bio returns only first r10bio finishes 1761 */ 1762 if (first_copy) { 1763 r10_bio->master_bio = bio; 1764 set_bit(R10BIO_Discard, &r10_bio->state); 1765 first_copy = false; 1766 first_r10bio = r10_bio; 1767 } else 1768 r10_bio->master_bio = (struct bio *)first_r10bio; 1769 1770 /* 1771 * first select target devices under rcu_lock and 1772 * inc refcount on their rdev. Record them by setting 1773 * bios[x] to bio 1774 */ 1775 for (disk = 0; disk < geo->raid_disks; disk++) { 1776 struct md_rdev *rdev, *rrdev; 1777 1778 rdev = conf->mirrors[disk].rdev; 1779 rrdev = conf->mirrors[disk].replacement; 1780 r10_bio->devs[disk].bio = NULL; 1781 r10_bio->devs[disk].repl_bio = NULL; 1782 1783 if (rdev && (test_bit(Faulty, &rdev->flags))) 1784 rdev = NULL; 1785 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1786 rrdev = NULL; 1787 if (!rdev && !rrdev) 1788 continue; 1789 1790 if (rdev) { 1791 r10_bio->devs[disk].bio = bio; 1792 atomic_inc(&rdev->nr_pending); 1793 } 1794 if (rrdev) { 1795 r10_bio->devs[disk].repl_bio = bio; 1796 atomic_inc(&rrdev->nr_pending); 1797 } 1798 } 1799 1800 atomic_set(&r10_bio->remaining, 1); 1801 for (disk = 0; disk < geo->raid_disks; disk++) { 1802 sector_t dev_start, dev_end; 1803 struct bio *mbio, *rbio = NULL; 1804 1805 /* 1806 * Now start to calculate the start and end address for each disk. 1807 * The space between dev_start and dev_end is the discard region. 1808 * 1809 * For dev_start, it needs to consider three conditions: 1810 * 1st, the disk is before start_disk, you can imagine the disk in 1811 * the next stripe. So the dev_start is the start address of next 1812 * stripe. 1813 * 2st, the disk is after start_disk, it means the disk is at the 1814 * same stripe of first disk 1815 * 3st, the first disk itself, we can use start_disk_offset directly 1816 */ 1817 if (disk < start_disk_index) 1818 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1819 else if (disk > start_disk_index) 1820 dev_start = first_stripe_index * mddev->chunk_sectors; 1821 else 1822 dev_start = start_disk_offset; 1823 1824 if (disk < end_disk_index) 1825 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1826 else if (disk > end_disk_index) 1827 dev_end = last_stripe_index * mddev->chunk_sectors; 1828 else 1829 dev_end = end_disk_offset; 1830 1831 /* 1832 * It only handles discard bio which size is >= stripe size, so 1833 * dev_end > dev_start all the time. 1834 * It doesn't need to use rcu lock to get rdev here. We already 1835 * add rdev->nr_pending in the first loop. 1836 */ 1837 if (r10_bio->devs[disk].bio) { 1838 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1839 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1840 &mddev->bio_set); 1841 mbio->bi_end_io = raid10_end_discard_request; 1842 mbio->bi_private = r10_bio; 1843 r10_bio->devs[disk].bio = mbio; 1844 r10_bio->devs[disk].devnum = disk; 1845 atomic_inc(&r10_bio->remaining); 1846 md_submit_discard_bio(mddev, rdev, mbio, 1847 dev_start + choose_data_offset(r10_bio, rdev), 1848 dev_end - dev_start); 1849 bio_endio(mbio); 1850 } 1851 if (r10_bio->devs[disk].repl_bio) { 1852 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1853 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1854 &mddev->bio_set); 1855 rbio->bi_end_io = raid10_end_discard_request; 1856 rbio->bi_private = r10_bio; 1857 r10_bio->devs[disk].repl_bio = rbio; 1858 r10_bio->devs[disk].devnum = disk; 1859 atomic_inc(&r10_bio->remaining); 1860 md_submit_discard_bio(mddev, rrdev, rbio, 1861 dev_start + choose_data_offset(r10_bio, rrdev), 1862 dev_end - dev_start); 1863 bio_endio(rbio); 1864 } 1865 } 1866 1867 if (!geo->far_offset && --far_copies) { 1868 first_stripe_index += geo->stride >> geo->chunk_shift; 1869 start_disk_offset += geo->stride; 1870 last_stripe_index += geo->stride >> geo->chunk_shift; 1871 end_disk_offset += geo->stride; 1872 atomic_inc(&first_r10bio->remaining); 1873 raid_end_discard_bio(r10_bio); 1874 wait_barrier(conf, false); 1875 goto retry_discard; 1876 } 1877 1878 raid_end_discard_bio(r10_bio); 1879 1880 return 0; 1881 out: 1882 allow_barrier(conf); 1883 return -EAGAIN; 1884 } 1885 1886 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1887 { 1888 struct r10conf *conf = mddev->private; 1889 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1890 int chunk_sects = chunk_mask + 1; 1891 int sectors = bio_sectors(bio); 1892 1893 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1894 && md_flush_request(mddev, bio)) 1895 return true; 1896 1897 md_write_start(mddev, bio); 1898 1899 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1900 if (!raid10_handle_discard(mddev, bio)) 1901 return true; 1902 1903 /* 1904 * If this request crosses a chunk boundary, we need to split 1905 * it. 1906 */ 1907 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1908 sectors > chunk_sects 1909 && (conf->geo.near_copies < conf->geo.raid_disks 1910 || conf->prev.near_copies < 1911 conf->prev.raid_disks))) 1912 sectors = chunk_sects - 1913 (bio->bi_iter.bi_sector & 1914 (chunk_sects - 1)); 1915 __make_request(mddev, bio, sectors); 1916 1917 /* In case raid10d snuck in to freeze_array */ 1918 wake_up_barrier(conf); 1919 return true; 1920 } 1921 1922 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1923 { 1924 struct r10conf *conf = mddev->private; 1925 int i; 1926 1927 lockdep_assert_held(&mddev->lock); 1928 1929 if (conf->geo.near_copies < conf->geo.raid_disks) 1930 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1931 if (conf->geo.near_copies > 1) 1932 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1933 if (conf->geo.far_copies > 1) { 1934 if (conf->geo.far_offset) 1935 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1936 else 1937 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1938 if (conf->geo.far_set_size != conf->geo.raid_disks) 1939 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1940 } 1941 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1942 conf->geo.raid_disks - mddev->degraded); 1943 for (i = 0; i < conf->geo.raid_disks; i++) { 1944 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1945 1946 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1947 } 1948 seq_printf(seq, "]"); 1949 } 1950 1951 /* check if there are enough drives for 1952 * every block to appear on atleast one. 1953 * Don't consider the device numbered 'ignore' 1954 * as we might be about to remove it. 1955 */ 1956 static int _enough(struct r10conf *conf, int previous, int ignore) 1957 { 1958 int first = 0; 1959 int has_enough = 0; 1960 int disks, ncopies; 1961 if (previous) { 1962 disks = conf->prev.raid_disks; 1963 ncopies = conf->prev.near_copies; 1964 } else { 1965 disks = conf->geo.raid_disks; 1966 ncopies = conf->geo.near_copies; 1967 } 1968 1969 do { 1970 int n = conf->copies; 1971 int cnt = 0; 1972 int this = first; 1973 while (n--) { 1974 struct md_rdev *rdev; 1975 if (this != ignore && 1976 (rdev = conf->mirrors[this].rdev) && 1977 test_bit(In_sync, &rdev->flags)) 1978 cnt++; 1979 this = (this+1) % disks; 1980 } 1981 if (cnt == 0) 1982 goto out; 1983 first = (first + ncopies) % disks; 1984 } while (first != 0); 1985 has_enough = 1; 1986 out: 1987 return has_enough; 1988 } 1989 1990 static int enough(struct r10conf *conf, int ignore) 1991 { 1992 /* when calling 'enough', both 'prev' and 'geo' must 1993 * be stable. 1994 * This is ensured if ->reconfig_mutex or ->device_lock 1995 * is held. 1996 */ 1997 return _enough(conf, 0, ignore) && 1998 _enough(conf, 1, ignore); 1999 } 2000 2001 /** 2002 * raid10_error() - RAID10 error handler. 2003 * @mddev: affected md device. 2004 * @rdev: member device to fail. 2005 * 2006 * The routine acknowledges &rdev failure and determines new @mddev state. 2007 * If it failed, then: 2008 * - &MD_BROKEN flag is set in &mddev->flags. 2009 * Otherwise, it must be degraded: 2010 * - recovery is interrupted. 2011 * - &mddev->degraded is bumped. 2012 * 2013 * @rdev is marked as &Faulty excluding case when array is failed and 2014 * &mddev->fail_last_dev is off. 2015 */ 2016 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 2017 { 2018 struct r10conf *conf = mddev->private; 2019 unsigned long flags; 2020 2021 spin_lock_irqsave(&conf->device_lock, flags); 2022 2023 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { 2024 set_bit(MD_BROKEN, &mddev->flags); 2025 2026 if (!mddev->fail_last_dev) { 2027 spin_unlock_irqrestore(&conf->device_lock, flags); 2028 return; 2029 } 2030 } 2031 if (test_and_clear_bit(In_sync, &rdev->flags)) 2032 mddev->degraded++; 2033 2034 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2035 set_bit(Blocked, &rdev->flags); 2036 set_bit(Faulty, &rdev->flags); 2037 set_mask_bits(&mddev->sb_flags, 0, 2038 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2039 spin_unlock_irqrestore(&conf->device_lock, flags); 2040 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" 2041 "md/raid10:%s: Operation continuing on %d devices.\n", 2042 mdname(mddev), rdev->bdev, 2043 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 2044 } 2045 2046 static void print_conf(struct r10conf *conf) 2047 { 2048 int i; 2049 struct md_rdev *rdev; 2050 2051 pr_debug("RAID10 conf printout:\n"); 2052 if (!conf) { 2053 pr_debug("(!conf)\n"); 2054 return; 2055 } 2056 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2057 conf->geo.raid_disks); 2058 2059 lockdep_assert_held(&conf->mddev->reconfig_mutex); 2060 for (i = 0; i < conf->geo.raid_disks; i++) { 2061 rdev = conf->mirrors[i].rdev; 2062 if (rdev) 2063 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 2064 i, !test_bit(In_sync, &rdev->flags), 2065 !test_bit(Faulty, &rdev->flags), 2066 rdev->bdev); 2067 } 2068 } 2069 2070 static void close_sync(struct r10conf *conf) 2071 { 2072 wait_barrier(conf, false); 2073 allow_barrier(conf); 2074 2075 mempool_exit(&conf->r10buf_pool); 2076 } 2077 2078 static int raid10_spare_active(struct mddev *mddev) 2079 { 2080 int i; 2081 struct r10conf *conf = mddev->private; 2082 struct raid10_info *tmp; 2083 int count = 0; 2084 unsigned long flags; 2085 2086 /* 2087 * Find all non-in_sync disks within the RAID10 configuration 2088 * and mark them in_sync 2089 */ 2090 for (i = 0; i < conf->geo.raid_disks; i++) { 2091 tmp = conf->mirrors + i; 2092 if (tmp->replacement 2093 && tmp->replacement->recovery_offset == MaxSector 2094 && !test_bit(Faulty, &tmp->replacement->flags) 2095 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2096 /* Replacement has just become active */ 2097 if (!tmp->rdev 2098 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2099 count++; 2100 if (tmp->rdev) { 2101 /* Replaced device not technically faulty, 2102 * but we need to be sure it gets removed 2103 * and never re-added. 2104 */ 2105 set_bit(Faulty, &tmp->rdev->flags); 2106 sysfs_notify_dirent_safe( 2107 tmp->rdev->sysfs_state); 2108 } 2109 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2110 } else if (tmp->rdev 2111 && tmp->rdev->recovery_offset == MaxSector 2112 && !test_bit(Faulty, &tmp->rdev->flags) 2113 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2114 count++; 2115 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2116 } 2117 } 2118 spin_lock_irqsave(&conf->device_lock, flags); 2119 mddev->degraded -= count; 2120 spin_unlock_irqrestore(&conf->device_lock, flags); 2121 2122 print_conf(conf); 2123 return count; 2124 } 2125 2126 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2127 { 2128 struct r10conf *conf = mddev->private; 2129 int err = -EEXIST; 2130 int mirror, repl_slot = -1; 2131 int first = 0; 2132 int last = conf->geo.raid_disks - 1; 2133 struct raid10_info *p; 2134 2135 if (mddev->recovery_cp < MaxSector) 2136 /* only hot-add to in-sync arrays, as recovery is 2137 * very different from resync 2138 */ 2139 return -EBUSY; 2140 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2141 return -EINVAL; 2142 2143 if (rdev->raid_disk >= 0) 2144 first = last = rdev->raid_disk; 2145 2146 if (rdev->saved_raid_disk >= first && 2147 rdev->saved_raid_disk < conf->geo.raid_disks && 2148 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2149 mirror = rdev->saved_raid_disk; 2150 else 2151 mirror = first; 2152 for ( ; mirror <= last ; mirror++) { 2153 p = &conf->mirrors[mirror]; 2154 if (p->recovery_disabled == mddev->recovery_disabled) 2155 continue; 2156 if (p->rdev) { 2157 if (test_bit(WantReplacement, &p->rdev->flags) && 2158 p->replacement == NULL && repl_slot < 0) 2159 repl_slot = mirror; 2160 continue; 2161 } 2162 2163 err = mddev_stack_new_rdev(mddev, rdev); 2164 if (err) 2165 return err; 2166 p->head_position = 0; 2167 p->recovery_disabled = mddev->recovery_disabled - 1; 2168 rdev->raid_disk = mirror; 2169 err = 0; 2170 if (rdev->saved_raid_disk != mirror) 2171 conf->fullsync = 1; 2172 WRITE_ONCE(p->rdev, rdev); 2173 break; 2174 } 2175 2176 if (err && repl_slot >= 0) { 2177 p = &conf->mirrors[repl_slot]; 2178 clear_bit(In_sync, &rdev->flags); 2179 set_bit(Replacement, &rdev->flags); 2180 rdev->raid_disk = repl_slot; 2181 err = mddev_stack_new_rdev(mddev, rdev); 2182 if (err) 2183 return err; 2184 conf->fullsync = 1; 2185 WRITE_ONCE(p->replacement, rdev); 2186 } 2187 2188 print_conf(conf); 2189 return err; 2190 } 2191 2192 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2193 { 2194 struct r10conf *conf = mddev->private; 2195 int err = 0; 2196 int number = rdev->raid_disk; 2197 struct md_rdev **rdevp; 2198 struct raid10_info *p; 2199 2200 print_conf(conf); 2201 if (unlikely(number >= mddev->raid_disks)) 2202 return 0; 2203 p = conf->mirrors + number; 2204 if (rdev == p->rdev) 2205 rdevp = &p->rdev; 2206 else if (rdev == p->replacement) 2207 rdevp = &p->replacement; 2208 else 2209 return 0; 2210 2211 if (test_bit(In_sync, &rdev->flags) || 2212 atomic_read(&rdev->nr_pending)) { 2213 err = -EBUSY; 2214 goto abort; 2215 } 2216 /* Only remove non-faulty devices if recovery 2217 * is not possible. 2218 */ 2219 if (!test_bit(Faulty, &rdev->flags) && 2220 mddev->recovery_disabled != p->recovery_disabled && 2221 (!p->replacement || p->replacement == rdev) && 2222 number < conf->geo.raid_disks && 2223 enough(conf, -1)) { 2224 err = -EBUSY; 2225 goto abort; 2226 } 2227 WRITE_ONCE(*rdevp, NULL); 2228 if (p->replacement) { 2229 /* We must have just cleared 'rdev' */ 2230 WRITE_ONCE(p->rdev, p->replacement); 2231 clear_bit(Replacement, &p->replacement->flags); 2232 WRITE_ONCE(p->replacement, NULL); 2233 } 2234 2235 clear_bit(WantReplacement, &rdev->flags); 2236 err = md_integrity_register(mddev); 2237 2238 abort: 2239 2240 print_conf(conf); 2241 return err; 2242 } 2243 2244 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2245 { 2246 struct r10conf *conf = r10_bio->mddev->private; 2247 2248 if (!bio->bi_status) 2249 set_bit(R10BIO_Uptodate, &r10_bio->state); 2250 else 2251 /* The write handler will notice the lack of 2252 * R10BIO_Uptodate and record any errors etc 2253 */ 2254 atomic_add(r10_bio->sectors, 2255 &conf->mirrors[d].rdev->corrected_errors); 2256 2257 /* for reconstruct, we always reschedule after a read. 2258 * for resync, only after all reads 2259 */ 2260 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2261 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2262 atomic_dec_and_test(&r10_bio->remaining)) { 2263 /* we have read all the blocks, 2264 * do the comparison in process context in raid10d 2265 */ 2266 reschedule_retry(r10_bio); 2267 } 2268 } 2269 2270 static void end_sync_read(struct bio *bio) 2271 { 2272 struct r10bio *r10_bio = get_resync_r10bio(bio); 2273 struct r10conf *conf = r10_bio->mddev->private; 2274 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2275 2276 __end_sync_read(r10_bio, bio, d); 2277 } 2278 2279 static void end_reshape_read(struct bio *bio) 2280 { 2281 /* reshape read bio isn't allocated from r10buf_pool */ 2282 struct r10bio *r10_bio = bio->bi_private; 2283 2284 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2285 } 2286 2287 static void end_sync_request(struct r10bio *r10_bio) 2288 { 2289 struct mddev *mddev = r10_bio->mddev; 2290 2291 while (atomic_dec_and_test(&r10_bio->remaining)) { 2292 if (r10_bio->master_bio == NULL) { 2293 /* the primary of several recovery bios */ 2294 sector_t s = r10_bio->sectors; 2295 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2296 test_bit(R10BIO_WriteError, &r10_bio->state)) 2297 reschedule_retry(r10_bio); 2298 else 2299 put_buf(r10_bio); 2300 md_done_sync(mddev, s, 1); 2301 break; 2302 } else { 2303 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2304 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2305 test_bit(R10BIO_WriteError, &r10_bio->state)) 2306 reschedule_retry(r10_bio); 2307 else 2308 put_buf(r10_bio); 2309 r10_bio = r10_bio2; 2310 } 2311 } 2312 } 2313 2314 static void end_sync_write(struct bio *bio) 2315 { 2316 struct r10bio *r10_bio = get_resync_r10bio(bio); 2317 struct mddev *mddev = r10_bio->mddev; 2318 struct r10conf *conf = mddev->private; 2319 int d; 2320 int slot; 2321 int repl; 2322 struct md_rdev *rdev = NULL; 2323 2324 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2325 if (repl) 2326 rdev = conf->mirrors[d].replacement; 2327 else 2328 rdev = conf->mirrors[d].rdev; 2329 2330 if (bio->bi_status) { 2331 if (repl) 2332 md_error(mddev, rdev); 2333 else { 2334 set_bit(WriteErrorSeen, &rdev->flags); 2335 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2336 set_bit(MD_RECOVERY_NEEDED, 2337 &rdev->mddev->recovery); 2338 set_bit(R10BIO_WriteError, &r10_bio->state); 2339 } 2340 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 2341 r10_bio->sectors)) { 2342 set_bit(R10BIO_MadeGood, &r10_bio->state); 2343 } 2344 2345 rdev_dec_pending(rdev, mddev); 2346 2347 end_sync_request(r10_bio); 2348 } 2349 2350 /* 2351 * Note: sync and recover and handled very differently for raid10 2352 * This code is for resync. 2353 * For resync, we read through virtual addresses and read all blocks. 2354 * If there is any error, we schedule a write. The lowest numbered 2355 * drive is authoritative. 2356 * However requests come for physical address, so we need to map. 2357 * For every physical address there are raid_disks/copies virtual addresses, 2358 * which is always are least one, but is not necessarly an integer. 2359 * This means that a physical address can span multiple chunks, so we may 2360 * have to submit multiple io requests for a single sync request. 2361 */ 2362 /* 2363 * We check if all blocks are in-sync and only write to blocks that 2364 * aren't in sync 2365 */ 2366 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2367 { 2368 struct r10conf *conf = mddev->private; 2369 int i, first; 2370 struct bio *tbio, *fbio; 2371 int vcnt; 2372 struct page **tpages, **fpages; 2373 2374 atomic_set(&r10_bio->remaining, 1); 2375 2376 /* find the first device with a block */ 2377 for (i=0; i<conf->copies; i++) 2378 if (!r10_bio->devs[i].bio->bi_status) 2379 break; 2380 2381 if (i == conf->copies) 2382 goto done; 2383 2384 first = i; 2385 fbio = r10_bio->devs[i].bio; 2386 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2387 fbio->bi_iter.bi_idx = 0; 2388 fpages = get_resync_pages(fbio)->pages; 2389 2390 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2391 /* now find blocks with errors */ 2392 for (i=0 ; i < conf->copies ; i++) { 2393 int j, d; 2394 struct md_rdev *rdev; 2395 struct resync_pages *rp; 2396 2397 tbio = r10_bio->devs[i].bio; 2398 2399 if (tbio->bi_end_io != end_sync_read) 2400 continue; 2401 if (i == first) 2402 continue; 2403 2404 tpages = get_resync_pages(tbio)->pages; 2405 d = r10_bio->devs[i].devnum; 2406 rdev = conf->mirrors[d].rdev; 2407 if (!r10_bio->devs[i].bio->bi_status) { 2408 /* We know that the bi_io_vec layout is the same for 2409 * both 'first' and 'i', so we just compare them. 2410 * All vec entries are PAGE_SIZE; 2411 */ 2412 int sectors = r10_bio->sectors; 2413 for (j = 0; j < vcnt; j++) { 2414 int len = PAGE_SIZE; 2415 if (sectors < (len / 512)) 2416 len = sectors * 512; 2417 if (memcmp(page_address(fpages[j]), 2418 page_address(tpages[j]), 2419 len)) 2420 break; 2421 sectors -= len/512; 2422 } 2423 if (j == vcnt) 2424 continue; 2425 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2426 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2427 /* Don't fix anything. */ 2428 continue; 2429 } else if (test_bit(FailFast, &rdev->flags)) { 2430 /* Just give up on this device */ 2431 md_error(rdev->mddev, rdev); 2432 continue; 2433 } 2434 /* Ok, we need to write this bio, either to correct an 2435 * inconsistency or to correct an unreadable block. 2436 * First we need to fixup bv_offset, bv_len and 2437 * bi_vecs, as the read request might have corrupted these 2438 */ 2439 rp = get_resync_pages(tbio); 2440 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2441 2442 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2443 2444 rp->raid_bio = r10_bio; 2445 tbio->bi_private = rp; 2446 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2447 tbio->bi_end_io = end_sync_write; 2448 2449 bio_copy_data(tbio, fbio); 2450 2451 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2452 atomic_inc(&r10_bio->remaining); 2453 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2454 2455 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2456 tbio->bi_opf |= MD_FAILFAST; 2457 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2458 submit_bio_noacct(tbio); 2459 } 2460 2461 /* Now write out to any replacement devices 2462 * that are active 2463 */ 2464 for (i = 0; i < conf->copies; i++) { 2465 int d; 2466 2467 tbio = r10_bio->devs[i].repl_bio; 2468 if (!tbio || !tbio->bi_end_io) 2469 continue; 2470 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2471 && r10_bio->devs[i].bio != fbio) 2472 bio_copy_data(tbio, fbio); 2473 d = r10_bio->devs[i].devnum; 2474 atomic_inc(&r10_bio->remaining); 2475 md_sync_acct(conf->mirrors[d].replacement->bdev, 2476 bio_sectors(tbio)); 2477 submit_bio_noacct(tbio); 2478 } 2479 2480 done: 2481 if (atomic_dec_and_test(&r10_bio->remaining)) { 2482 md_done_sync(mddev, r10_bio->sectors, 1); 2483 put_buf(r10_bio); 2484 } 2485 } 2486 2487 /* 2488 * Now for the recovery code. 2489 * Recovery happens across physical sectors. 2490 * We recover all non-is_sync drives by finding the virtual address of 2491 * each, and then choose a working drive that also has that virt address. 2492 * There is a separate r10_bio for each non-in_sync drive. 2493 * Only the first two slots are in use. The first for reading, 2494 * The second for writing. 2495 * 2496 */ 2497 static void fix_recovery_read_error(struct r10bio *r10_bio) 2498 { 2499 /* We got a read error during recovery. 2500 * We repeat the read in smaller page-sized sections. 2501 * If a read succeeds, write it to the new device or record 2502 * a bad block if we cannot. 2503 * If a read fails, record a bad block on both old and 2504 * new devices. 2505 */ 2506 struct mddev *mddev = r10_bio->mddev; 2507 struct r10conf *conf = mddev->private; 2508 struct bio *bio = r10_bio->devs[0].bio; 2509 sector_t sect = 0; 2510 int sectors = r10_bio->sectors; 2511 int idx = 0; 2512 int dr = r10_bio->devs[0].devnum; 2513 int dw = r10_bio->devs[1].devnum; 2514 struct page **pages = get_resync_pages(bio)->pages; 2515 2516 while (sectors) { 2517 int s = sectors; 2518 struct md_rdev *rdev; 2519 sector_t addr; 2520 int ok; 2521 2522 if (s > (PAGE_SIZE>>9)) 2523 s = PAGE_SIZE >> 9; 2524 2525 rdev = conf->mirrors[dr].rdev; 2526 addr = r10_bio->devs[0].addr + sect; 2527 ok = sync_page_io(rdev, 2528 addr, 2529 s << 9, 2530 pages[idx], 2531 REQ_OP_READ, false); 2532 if (ok) { 2533 rdev = conf->mirrors[dw].rdev; 2534 addr = r10_bio->devs[1].addr + sect; 2535 ok = sync_page_io(rdev, 2536 addr, 2537 s << 9, 2538 pages[idx], 2539 REQ_OP_WRITE, false); 2540 if (!ok) { 2541 set_bit(WriteErrorSeen, &rdev->flags); 2542 if (!test_and_set_bit(WantReplacement, 2543 &rdev->flags)) 2544 set_bit(MD_RECOVERY_NEEDED, 2545 &rdev->mddev->recovery); 2546 } 2547 } 2548 if (!ok) { 2549 /* We don't worry if we cannot set a bad block - 2550 * it really is bad so there is no loss in not 2551 * recording it yet 2552 */ 2553 rdev_set_badblocks(rdev, addr, s, 0); 2554 2555 if (rdev != conf->mirrors[dw].rdev) { 2556 /* need bad block on destination too */ 2557 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2558 addr = r10_bio->devs[1].addr + sect; 2559 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2560 if (!ok) { 2561 /* just abort the recovery */ 2562 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2563 mdname(mddev)); 2564 2565 conf->mirrors[dw].recovery_disabled 2566 = mddev->recovery_disabled; 2567 set_bit(MD_RECOVERY_INTR, 2568 &mddev->recovery); 2569 break; 2570 } 2571 } 2572 } 2573 2574 sectors -= s; 2575 sect += s; 2576 idx++; 2577 } 2578 } 2579 2580 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2581 { 2582 struct r10conf *conf = mddev->private; 2583 int d; 2584 struct bio *wbio = r10_bio->devs[1].bio; 2585 struct bio *wbio2 = r10_bio->devs[1].repl_bio; 2586 2587 /* Need to test wbio2->bi_end_io before we call 2588 * submit_bio_noacct as if the former is NULL, 2589 * the latter is free to free wbio2. 2590 */ 2591 if (wbio2 && !wbio2->bi_end_io) 2592 wbio2 = NULL; 2593 2594 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2595 fix_recovery_read_error(r10_bio); 2596 if (wbio->bi_end_io) 2597 end_sync_request(r10_bio); 2598 if (wbio2) 2599 end_sync_request(r10_bio); 2600 return; 2601 } 2602 2603 /* 2604 * share the pages with the first bio 2605 * and submit the write request 2606 */ 2607 d = r10_bio->devs[1].devnum; 2608 if (wbio->bi_end_io) { 2609 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2610 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2611 submit_bio_noacct(wbio); 2612 } 2613 if (wbio2) { 2614 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2615 md_sync_acct(conf->mirrors[d].replacement->bdev, 2616 bio_sectors(wbio2)); 2617 submit_bio_noacct(wbio2); 2618 } 2619 } 2620 2621 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2622 int sectors, struct page *page, enum req_op op) 2623 { 2624 if (rdev_has_badblock(rdev, sector, sectors) && 2625 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) 2626 return -1; 2627 if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) 2628 /* success */ 2629 return 1; 2630 if (op == REQ_OP_WRITE) { 2631 set_bit(WriteErrorSeen, &rdev->flags); 2632 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2633 set_bit(MD_RECOVERY_NEEDED, 2634 &rdev->mddev->recovery); 2635 } 2636 /* need to record an error - either for the block or the device */ 2637 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2638 md_error(rdev->mddev, rdev); 2639 return 0; 2640 } 2641 2642 /* 2643 * This is a kernel thread which: 2644 * 2645 * 1. Retries failed read operations on working mirrors. 2646 * 2. Updates the raid superblock when problems encounter. 2647 * 3. Performs writes following reads for array synchronising. 2648 */ 2649 2650 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2651 { 2652 int sect = 0; /* Offset from r10_bio->sector */ 2653 int sectors = r10_bio->sectors, slot = r10_bio->read_slot; 2654 struct md_rdev *rdev; 2655 int d = r10_bio->devs[slot].devnum; 2656 2657 /* still own a reference to this rdev, so it cannot 2658 * have been cleared recently. 2659 */ 2660 rdev = conf->mirrors[d].rdev; 2661 2662 if (test_bit(Faulty, &rdev->flags)) 2663 /* drive has already been failed, just ignore any 2664 more fix_read_error() attempts */ 2665 return; 2666 2667 if (exceed_read_errors(mddev, rdev)) { 2668 r10_bio->devs[slot].bio = IO_BLOCKED; 2669 return; 2670 } 2671 2672 while(sectors) { 2673 int s = sectors; 2674 int sl = slot; 2675 int success = 0; 2676 int start; 2677 2678 if (s > (PAGE_SIZE>>9)) 2679 s = PAGE_SIZE >> 9; 2680 2681 do { 2682 d = r10_bio->devs[sl].devnum; 2683 rdev = conf->mirrors[d].rdev; 2684 if (rdev && 2685 test_bit(In_sync, &rdev->flags) && 2686 !test_bit(Faulty, &rdev->flags) && 2687 rdev_has_badblock(rdev, 2688 r10_bio->devs[sl].addr + sect, 2689 s) == 0) { 2690 atomic_inc(&rdev->nr_pending); 2691 success = sync_page_io(rdev, 2692 r10_bio->devs[sl].addr + 2693 sect, 2694 s<<9, 2695 conf->tmppage, 2696 REQ_OP_READ, false); 2697 rdev_dec_pending(rdev, mddev); 2698 if (success) 2699 break; 2700 } 2701 sl++; 2702 if (sl == conf->copies) 2703 sl = 0; 2704 } while (sl != slot); 2705 2706 if (!success) { 2707 /* Cannot read from anywhere, just mark the block 2708 * as bad on the first device to discourage future 2709 * reads. 2710 */ 2711 int dn = r10_bio->devs[slot].devnum; 2712 rdev = conf->mirrors[dn].rdev; 2713 2714 if (!rdev_set_badblocks( 2715 rdev, 2716 r10_bio->devs[slot].addr 2717 + sect, 2718 s, 0)) { 2719 md_error(mddev, rdev); 2720 r10_bio->devs[slot].bio 2721 = IO_BLOCKED; 2722 } 2723 break; 2724 } 2725 2726 start = sl; 2727 /* write it back and re-read */ 2728 while (sl != slot) { 2729 if (sl==0) 2730 sl = conf->copies; 2731 sl--; 2732 d = r10_bio->devs[sl].devnum; 2733 rdev = conf->mirrors[d].rdev; 2734 if (!rdev || 2735 test_bit(Faulty, &rdev->flags) || 2736 !test_bit(In_sync, &rdev->flags)) 2737 continue; 2738 2739 atomic_inc(&rdev->nr_pending); 2740 if (r10_sync_page_io(rdev, 2741 r10_bio->devs[sl].addr + 2742 sect, 2743 s, conf->tmppage, REQ_OP_WRITE) 2744 == 0) { 2745 /* Well, this device is dead */ 2746 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", 2747 mdname(mddev), s, 2748 (unsigned long long)( 2749 sect + 2750 choose_data_offset(r10_bio, 2751 rdev)), 2752 rdev->bdev); 2753 pr_notice("md/raid10:%s: %pg: failing drive\n", 2754 mdname(mddev), 2755 rdev->bdev); 2756 } 2757 rdev_dec_pending(rdev, mddev); 2758 } 2759 sl = start; 2760 while (sl != slot) { 2761 if (sl==0) 2762 sl = conf->copies; 2763 sl--; 2764 d = r10_bio->devs[sl].devnum; 2765 rdev = conf->mirrors[d].rdev; 2766 if (!rdev || 2767 test_bit(Faulty, &rdev->flags) || 2768 !test_bit(In_sync, &rdev->flags)) 2769 continue; 2770 2771 atomic_inc(&rdev->nr_pending); 2772 switch (r10_sync_page_io(rdev, 2773 r10_bio->devs[sl].addr + 2774 sect, 2775 s, conf->tmppage, REQ_OP_READ)) { 2776 case 0: 2777 /* Well, this device is dead */ 2778 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", 2779 mdname(mddev), s, 2780 (unsigned long long)( 2781 sect + 2782 choose_data_offset(r10_bio, rdev)), 2783 rdev->bdev); 2784 pr_notice("md/raid10:%s: %pg: failing drive\n", 2785 mdname(mddev), 2786 rdev->bdev); 2787 break; 2788 case 1: 2789 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", 2790 mdname(mddev), s, 2791 (unsigned long long)( 2792 sect + 2793 choose_data_offset(r10_bio, rdev)), 2794 rdev->bdev); 2795 atomic_add(s, &rdev->corrected_errors); 2796 } 2797 2798 rdev_dec_pending(rdev, mddev); 2799 } 2800 2801 sectors -= s; 2802 sect += s; 2803 } 2804 } 2805 2806 static int narrow_write_error(struct r10bio *r10_bio, int i) 2807 { 2808 struct bio *bio = r10_bio->master_bio; 2809 struct mddev *mddev = r10_bio->mddev; 2810 struct r10conf *conf = mddev->private; 2811 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2812 /* bio has the data to be written to slot 'i' where 2813 * we just recently had a write error. 2814 * We repeatedly clone the bio and trim down to one block, 2815 * then try the write. Where the write fails we record 2816 * a bad block. 2817 * It is conceivable that the bio doesn't exactly align with 2818 * blocks. We must handle this. 2819 * 2820 * We currently own a reference to the rdev. 2821 */ 2822 2823 int block_sectors; 2824 sector_t sector; 2825 int sectors; 2826 int sect_to_write = r10_bio->sectors; 2827 int ok = 1; 2828 2829 if (rdev->badblocks.shift < 0) 2830 return 0; 2831 2832 block_sectors = roundup(1 << rdev->badblocks.shift, 2833 bdev_logical_block_size(rdev->bdev) >> 9); 2834 sector = r10_bio->sector; 2835 sectors = ((r10_bio->sector + block_sectors) 2836 & ~(sector_t)(block_sectors - 1)) 2837 - sector; 2838 2839 while (sect_to_write) { 2840 struct bio *wbio; 2841 sector_t wsector; 2842 if (sectors > sect_to_write) 2843 sectors = sect_to_write; 2844 /* Write at 'sector' for 'sectors' */ 2845 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2846 &mddev->bio_set); 2847 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2848 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2849 wbio->bi_iter.bi_sector = wsector + 2850 choose_data_offset(r10_bio, rdev); 2851 wbio->bi_opf = REQ_OP_WRITE; 2852 2853 if (submit_bio_wait(wbio) < 0) 2854 /* Failure! */ 2855 ok = rdev_set_badblocks(rdev, wsector, 2856 sectors, 0) 2857 && ok; 2858 2859 bio_put(wbio); 2860 sect_to_write -= sectors; 2861 sector += sectors; 2862 sectors = block_sectors; 2863 } 2864 return ok; 2865 } 2866 2867 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2868 { 2869 int slot = r10_bio->read_slot; 2870 struct bio *bio; 2871 struct r10conf *conf = mddev->private; 2872 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2873 2874 /* we got a read error. Maybe the drive is bad. Maybe just 2875 * the block and we can fix it. 2876 * We freeze all other IO, and try reading the block from 2877 * other devices. When we find one, we re-write 2878 * and check it that fixes the read error. 2879 * This is all done synchronously while the array is 2880 * frozen. 2881 */ 2882 bio = r10_bio->devs[slot].bio; 2883 bio_put(bio); 2884 r10_bio->devs[slot].bio = NULL; 2885 2886 if (mddev->ro) 2887 r10_bio->devs[slot].bio = IO_BLOCKED; 2888 else if (!test_bit(FailFast, &rdev->flags)) { 2889 freeze_array(conf, 1); 2890 fix_read_error(conf, mddev, r10_bio); 2891 unfreeze_array(conf); 2892 } else 2893 md_error(mddev, rdev); 2894 2895 rdev_dec_pending(rdev, mddev); 2896 r10_bio->state = 0; 2897 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false); 2898 /* 2899 * allow_barrier after re-submit to ensure no sync io 2900 * can be issued while regular io pending. 2901 */ 2902 allow_barrier(conf); 2903 } 2904 2905 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2906 { 2907 /* Some sort of write request has finished and it 2908 * succeeded in writing where we thought there was a 2909 * bad block. So forget the bad block. 2910 * Or possibly if failed and we need to record 2911 * a bad block. 2912 */ 2913 int m; 2914 struct md_rdev *rdev; 2915 2916 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2917 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2918 for (m = 0; m < conf->copies; m++) { 2919 int dev = r10_bio->devs[m].devnum; 2920 rdev = conf->mirrors[dev].rdev; 2921 if (r10_bio->devs[m].bio == NULL || 2922 r10_bio->devs[m].bio->bi_end_io == NULL) 2923 continue; 2924 if (!r10_bio->devs[m].bio->bi_status) { 2925 rdev_clear_badblocks( 2926 rdev, 2927 r10_bio->devs[m].addr, 2928 r10_bio->sectors, 0); 2929 } else { 2930 if (!rdev_set_badblocks( 2931 rdev, 2932 r10_bio->devs[m].addr, 2933 r10_bio->sectors, 0)) 2934 md_error(conf->mddev, rdev); 2935 } 2936 rdev = conf->mirrors[dev].replacement; 2937 if (r10_bio->devs[m].repl_bio == NULL || 2938 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2939 continue; 2940 2941 if (!r10_bio->devs[m].repl_bio->bi_status) { 2942 rdev_clear_badblocks( 2943 rdev, 2944 r10_bio->devs[m].addr, 2945 r10_bio->sectors, 0); 2946 } else { 2947 if (!rdev_set_badblocks( 2948 rdev, 2949 r10_bio->devs[m].addr, 2950 r10_bio->sectors, 0)) 2951 md_error(conf->mddev, rdev); 2952 } 2953 } 2954 put_buf(r10_bio); 2955 } else { 2956 bool fail = false; 2957 for (m = 0; m < conf->copies; m++) { 2958 int dev = r10_bio->devs[m].devnum; 2959 struct bio *bio = r10_bio->devs[m].bio; 2960 rdev = conf->mirrors[dev].rdev; 2961 if (bio == IO_MADE_GOOD) { 2962 rdev_clear_badblocks( 2963 rdev, 2964 r10_bio->devs[m].addr, 2965 r10_bio->sectors, 0); 2966 rdev_dec_pending(rdev, conf->mddev); 2967 } else if (bio != NULL && bio->bi_status) { 2968 fail = true; 2969 if (!narrow_write_error(r10_bio, m)) { 2970 md_error(conf->mddev, rdev); 2971 set_bit(R10BIO_Degraded, 2972 &r10_bio->state); 2973 } 2974 rdev_dec_pending(rdev, conf->mddev); 2975 } 2976 bio = r10_bio->devs[m].repl_bio; 2977 rdev = conf->mirrors[dev].replacement; 2978 if (rdev && bio == IO_MADE_GOOD) { 2979 rdev_clear_badblocks( 2980 rdev, 2981 r10_bio->devs[m].addr, 2982 r10_bio->sectors, 0); 2983 rdev_dec_pending(rdev, conf->mddev); 2984 } 2985 } 2986 if (fail) { 2987 spin_lock_irq(&conf->device_lock); 2988 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2989 conf->nr_queued++; 2990 spin_unlock_irq(&conf->device_lock); 2991 /* 2992 * In case freeze_array() is waiting for condition 2993 * nr_pending == nr_queued + extra to be true. 2994 */ 2995 wake_up(&conf->wait_barrier); 2996 md_wakeup_thread(conf->mddev->thread); 2997 } else { 2998 if (test_bit(R10BIO_WriteError, 2999 &r10_bio->state)) 3000 close_write(r10_bio); 3001 raid_end_bio_io(r10_bio); 3002 } 3003 } 3004 } 3005 3006 static void raid10d(struct md_thread *thread) 3007 { 3008 struct mddev *mddev = thread->mddev; 3009 struct r10bio *r10_bio; 3010 unsigned long flags; 3011 struct r10conf *conf = mddev->private; 3012 struct list_head *head = &conf->retry_list; 3013 struct blk_plug plug; 3014 3015 md_check_recovery(mddev); 3016 3017 if (!list_empty_careful(&conf->bio_end_io_list) && 3018 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3019 LIST_HEAD(tmp); 3020 spin_lock_irqsave(&conf->device_lock, flags); 3021 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3022 while (!list_empty(&conf->bio_end_io_list)) { 3023 list_move(conf->bio_end_io_list.prev, &tmp); 3024 conf->nr_queued--; 3025 } 3026 } 3027 spin_unlock_irqrestore(&conf->device_lock, flags); 3028 while (!list_empty(&tmp)) { 3029 r10_bio = list_first_entry(&tmp, struct r10bio, 3030 retry_list); 3031 list_del(&r10_bio->retry_list); 3032 if (mddev->degraded) 3033 set_bit(R10BIO_Degraded, &r10_bio->state); 3034 3035 if (test_bit(R10BIO_WriteError, 3036 &r10_bio->state)) 3037 close_write(r10_bio); 3038 raid_end_bio_io(r10_bio); 3039 } 3040 } 3041 3042 blk_start_plug(&plug); 3043 for (;;) { 3044 3045 flush_pending_writes(conf); 3046 3047 spin_lock_irqsave(&conf->device_lock, flags); 3048 if (list_empty(head)) { 3049 spin_unlock_irqrestore(&conf->device_lock, flags); 3050 break; 3051 } 3052 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3053 list_del(head->prev); 3054 conf->nr_queued--; 3055 spin_unlock_irqrestore(&conf->device_lock, flags); 3056 3057 mddev = r10_bio->mddev; 3058 conf = mddev->private; 3059 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3060 test_bit(R10BIO_WriteError, &r10_bio->state)) 3061 handle_write_completed(conf, r10_bio); 3062 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3063 reshape_request_write(mddev, r10_bio); 3064 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3065 sync_request_write(mddev, r10_bio); 3066 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3067 recovery_request_write(mddev, r10_bio); 3068 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3069 handle_read_error(mddev, r10_bio); 3070 else 3071 WARN_ON_ONCE(1); 3072 3073 cond_resched(); 3074 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3075 md_check_recovery(mddev); 3076 } 3077 blk_finish_plug(&plug); 3078 } 3079 3080 static int init_resync(struct r10conf *conf) 3081 { 3082 int ret, buffs, i; 3083 3084 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3085 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3086 conf->have_replacement = 0; 3087 for (i = 0; i < conf->geo.raid_disks; i++) 3088 if (conf->mirrors[i].replacement) 3089 conf->have_replacement = 1; 3090 ret = mempool_init(&conf->r10buf_pool, buffs, 3091 r10buf_pool_alloc, r10buf_pool_free, conf); 3092 if (ret) 3093 return ret; 3094 conf->next_resync = 0; 3095 return 0; 3096 } 3097 3098 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3099 { 3100 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3101 struct rsync_pages *rp; 3102 struct bio *bio; 3103 int nalloc; 3104 int i; 3105 3106 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3107 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3108 nalloc = conf->copies; /* resync */ 3109 else 3110 nalloc = 2; /* recovery */ 3111 3112 for (i = 0; i < nalloc; i++) { 3113 bio = r10bio->devs[i].bio; 3114 rp = bio->bi_private; 3115 bio_reset(bio, NULL, 0); 3116 bio->bi_private = rp; 3117 bio = r10bio->devs[i].repl_bio; 3118 if (bio) { 3119 rp = bio->bi_private; 3120 bio_reset(bio, NULL, 0); 3121 bio->bi_private = rp; 3122 } 3123 } 3124 return r10bio; 3125 } 3126 3127 /* 3128 * Set cluster_sync_high since we need other nodes to add the 3129 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3130 */ 3131 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3132 { 3133 sector_t window_size; 3134 int extra_chunk, chunks; 3135 3136 /* 3137 * First, here we define "stripe" as a unit which across 3138 * all member devices one time, so we get chunks by use 3139 * raid_disks / near_copies. Otherwise, if near_copies is 3140 * close to raid_disks, then resync window could increases 3141 * linearly with the increase of raid_disks, which means 3142 * we will suspend a really large IO window while it is not 3143 * necessary. If raid_disks is not divisible by near_copies, 3144 * an extra chunk is needed to ensure the whole "stripe" is 3145 * covered. 3146 */ 3147 3148 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3149 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3150 extra_chunk = 0; 3151 else 3152 extra_chunk = 1; 3153 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3154 3155 /* 3156 * At least use a 32M window to align with raid1's resync window 3157 */ 3158 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3159 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3160 3161 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3162 } 3163 3164 /* 3165 * perform a "sync" on one "block" 3166 * 3167 * We need to make sure that no normal I/O request - particularly write 3168 * requests - conflict with active sync requests. 3169 * 3170 * This is achieved by tracking pending requests and a 'barrier' concept 3171 * that can be installed to exclude normal IO requests. 3172 * 3173 * Resync and recovery are handled very differently. 3174 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3175 * 3176 * For resync, we iterate over virtual addresses, read all copies, 3177 * and update if there are differences. If only one copy is live, 3178 * skip it. 3179 * For recovery, we iterate over physical addresses, read a good 3180 * value for each non-in_sync drive, and over-write. 3181 * 3182 * So, for recovery we may have several outstanding complex requests for a 3183 * given address, one for each out-of-sync device. We model this by allocating 3184 * a number of r10_bio structures, one for each out-of-sync device. 3185 * As we setup these structures, we collect all bio's together into a list 3186 * which we then process collectively to add pages, and then process again 3187 * to pass to submit_bio_noacct. 3188 * 3189 * The r10_bio structures are linked using a borrowed master_bio pointer. 3190 * This link is counted in ->remaining. When the r10_bio that points to NULL 3191 * has its remaining count decremented to 0, the whole complex operation 3192 * is complete. 3193 * 3194 */ 3195 3196 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3197 sector_t max_sector, int *skipped) 3198 { 3199 struct r10conf *conf = mddev->private; 3200 struct r10bio *r10_bio; 3201 struct bio *biolist = NULL, *bio; 3202 sector_t nr_sectors; 3203 int i; 3204 int max_sync; 3205 sector_t sync_blocks; 3206 sector_t sectors_skipped = 0; 3207 int chunks_skipped = 0; 3208 sector_t chunk_mask = conf->geo.chunk_mask; 3209 int page_idx = 0; 3210 int error_disk = -1; 3211 3212 /* 3213 * Allow skipping a full rebuild for incremental assembly 3214 * of a clean array, like RAID1 does. 3215 */ 3216 if (mddev->bitmap == NULL && 3217 mddev->recovery_cp == MaxSector && 3218 mddev->reshape_position == MaxSector && 3219 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3220 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3221 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3222 conf->fullsync == 0) { 3223 *skipped = 1; 3224 return mddev->dev_sectors - sector_nr; 3225 } 3226 3227 if (!mempool_initialized(&conf->r10buf_pool)) 3228 if (init_resync(conf)) 3229 return 0; 3230 3231 skipped: 3232 if (sector_nr >= max_sector) { 3233 conf->cluster_sync_low = 0; 3234 conf->cluster_sync_high = 0; 3235 3236 /* If we aborted, we need to abort the 3237 * sync on the 'current' bitmap chucks (there can 3238 * be several when recovering multiple devices). 3239 * as we may have started syncing it but not finished. 3240 * We can find the current address in 3241 * mddev->curr_resync, but for recovery, 3242 * we need to convert that to several 3243 * virtual addresses. 3244 */ 3245 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3246 end_reshape(conf); 3247 close_sync(conf); 3248 return 0; 3249 } 3250 3251 if (mddev->curr_resync < max_sector) { /* aborted */ 3252 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3253 mddev->bitmap_ops->end_sync(mddev, 3254 mddev->curr_resync, 3255 &sync_blocks); 3256 else for (i = 0; i < conf->geo.raid_disks; i++) { 3257 sector_t sect = 3258 raid10_find_virt(conf, mddev->curr_resync, i); 3259 3260 mddev->bitmap_ops->end_sync(mddev, sect, 3261 &sync_blocks); 3262 } 3263 } else { 3264 /* completed sync */ 3265 if ((!mddev->bitmap || conf->fullsync) 3266 && conf->have_replacement 3267 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3268 /* Completed a full sync so the replacements 3269 * are now fully recovered. 3270 */ 3271 for (i = 0; i < conf->geo.raid_disks; i++) { 3272 struct md_rdev *rdev = 3273 conf->mirrors[i].replacement; 3274 3275 if (rdev) 3276 rdev->recovery_offset = MaxSector; 3277 } 3278 } 3279 conf->fullsync = 0; 3280 } 3281 mddev->bitmap_ops->close_sync(mddev); 3282 close_sync(conf); 3283 *skipped = 1; 3284 return sectors_skipped; 3285 } 3286 3287 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3288 return reshape_request(mddev, sector_nr, skipped); 3289 3290 if (chunks_skipped >= conf->geo.raid_disks) { 3291 pr_err("md/raid10:%s: %s fails\n", mdname(mddev), 3292 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"); 3293 if (error_disk >= 0 && 3294 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3295 /* 3296 * recovery fails, set mirrors.recovery_disabled, 3297 * device shouldn't be added to there. 3298 */ 3299 conf->mirrors[error_disk].recovery_disabled = 3300 mddev->recovery_disabled; 3301 return 0; 3302 } 3303 /* 3304 * if there has been nothing to do on any drive, 3305 * then there is nothing to do at all. 3306 */ 3307 *skipped = 1; 3308 return (max_sector - sector_nr) + sectors_skipped; 3309 } 3310 3311 if (max_sector > mddev->resync_max) 3312 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3313 3314 /* make sure whole request will fit in a chunk - if chunks 3315 * are meaningful 3316 */ 3317 if (conf->geo.near_copies < conf->geo.raid_disks && 3318 max_sector > (sector_nr | chunk_mask)) 3319 max_sector = (sector_nr | chunk_mask) + 1; 3320 3321 /* 3322 * If there is non-resync activity waiting for a turn, then let it 3323 * though before starting on this new sync request. 3324 */ 3325 if (conf->nr_waiting) 3326 schedule_timeout_uninterruptible(1); 3327 3328 /* Again, very different code for resync and recovery. 3329 * Both must result in an r10bio with a list of bios that 3330 * have bi_end_io, bi_sector, bi_bdev set, 3331 * and bi_private set to the r10bio. 3332 * For recovery, we may actually create several r10bios 3333 * with 2 bios in each, that correspond to the bios in the main one. 3334 * In this case, the subordinate r10bios link back through a 3335 * borrowed master_bio pointer, and the counter in the master 3336 * includes a ref from each subordinate. 3337 */ 3338 /* First, we decide what to do and set ->bi_end_io 3339 * To end_sync_read if we want to read, and 3340 * end_sync_write if we will want to write. 3341 */ 3342 3343 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3344 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3345 /* recovery... the complicated one */ 3346 int j; 3347 r10_bio = NULL; 3348 3349 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3350 bool still_degraded; 3351 struct r10bio *rb2; 3352 sector_t sect; 3353 bool must_sync; 3354 int any_working; 3355 struct raid10_info *mirror = &conf->mirrors[i]; 3356 struct md_rdev *mrdev, *mreplace; 3357 3358 mrdev = mirror->rdev; 3359 mreplace = mirror->replacement; 3360 3361 if (mrdev && (test_bit(Faulty, &mrdev->flags) || 3362 test_bit(In_sync, &mrdev->flags))) 3363 mrdev = NULL; 3364 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3365 mreplace = NULL; 3366 3367 if (!mrdev && !mreplace) 3368 continue; 3369 3370 still_degraded = false; 3371 /* want to reconstruct this device */ 3372 rb2 = r10_bio; 3373 sect = raid10_find_virt(conf, sector_nr, i); 3374 if (sect >= mddev->resync_max_sectors) 3375 /* last stripe is not complete - don't 3376 * try to recover this sector. 3377 */ 3378 continue; 3379 /* Unless we are doing a full sync, or a replacement 3380 * we only need to recover the block if it is set in 3381 * the bitmap 3382 */ 3383 must_sync = mddev->bitmap_ops->start_sync(mddev, sect, 3384 &sync_blocks, 3385 true); 3386 if (sync_blocks < max_sync) 3387 max_sync = sync_blocks; 3388 if (!must_sync && 3389 mreplace == NULL && 3390 !conf->fullsync) { 3391 /* yep, skip the sync_blocks here, but don't assume 3392 * that there will never be anything to do here 3393 */ 3394 chunks_skipped = -1; 3395 continue; 3396 } 3397 if (mrdev) 3398 atomic_inc(&mrdev->nr_pending); 3399 if (mreplace) 3400 atomic_inc(&mreplace->nr_pending); 3401 3402 r10_bio = raid10_alloc_init_r10buf(conf); 3403 r10_bio->state = 0; 3404 raise_barrier(conf, rb2 != NULL); 3405 atomic_set(&r10_bio->remaining, 0); 3406 3407 r10_bio->master_bio = (struct bio*)rb2; 3408 if (rb2) 3409 atomic_inc(&rb2->remaining); 3410 r10_bio->mddev = mddev; 3411 set_bit(R10BIO_IsRecover, &r10_bio->state); 3412 r10_bio->sector = sect; 3413 3414 raid10_find_phys(conf, r10_bio); 3415 3416 /* Need to check if the array will still be 3417 * degraded 3418 */ 3419 for (j = 0; j < conf->geo.raid_disks; j++) { 3420 struct md_rdev *rdev = conf->mirrors[j].rdev; 3421 3422 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3423 still_degraded = false; 3424 break; 3425 } 3426 } 3427 3428 must_sync = mddev->bitmap_ops->start_sync(mddev, sect, 3429 &sync_blocks, still_degraded); 3430 3431 any_working = 0; 3432 for (j=0; j<conf->copies;j++) { 3433 int k; 3434 int d = r10_bio->devs[j].devnum; 3435 sector_t from_addr, to_addr; 3436 struct md_rdev *rdev = conf->mirrors[d].rdev; 3437 sector_t sector, first_bad; 3438 int bad_sectors; 3439 if (!rdev || 3440 !test_bit(In_sync, &rdev->flags)) 3441 continue; 3442 /* This is where we read from */ 3443 any_working = 1; 3444 sector = r10_bio->devs[j].addr; 3445 3446 if (is_badblock(rdev, sector, max_sync, 3447 &first_bad, &bad_sectors)) { 3448 if (first_bad > sector) 3449 max_sync = first_bad - sector; 3450 else { 3451 bad_sectors -= (sector 3452 - first_bad); 3453 if (max_sync > bad_sectors) 3454 max_sync = bad_sectors; 3455 continue; 3456 } 3457 } 3458 bio = r10_bio->devs[0].bio; 3459 bio->bi_next = biolist; 3460 biolist = bio; 3461 bio->bi_end_io = end_sync_read; 3462 bio->bi_opf = REQ_OP_READ; 3463 if (test_bit(FailFast, &rdev->flags)) 3464 bio->bi_opf |= MD_FAILFAST; 3465 from_addr = r10_bio->devs[j].addr; 3466 bio->bi_iter.bi_sector = from_addr + 3467 rdev->data_offset; 3468 bio_set_dev(bio, rdev->bdev); 3469 atomic_inc(&rdev->nr_pending); 3470 /* and we write to 'i' (if not in_sync) */ 3471 3472 for (k=0; k<conf->copies; k++) 3473 if (r10_bio->devs[k].devnum == i) 3474 break; 3475 BUG_ON(k == conf->copies); 3476 to_addr = r10_bio->devs[k].addr; 3477 r10_bio->devs[0].devnum = d; 3478 r10_bio->devs[0].addr = from_addr; 3479 r10_bio->devs[1].devnum = i; 3480 r10_bio->devs[1].addr = to_addr; 3481 3482 if (mrdev) { 3483 bio = r10_bio->devs[1].bio; 3484 bio->bi_next = biolist; 3485 biolist = bio; 3486 bio->bi_end_io = end_sync_write; 3487 bio->bi_opf = REQ_OP_WRITE; 3488 bio->bi_iter.bi_sector = to_addr 3489 + mrdev->data_offset; 3490 bio_set_dev(bio, mrdev->bdev); 3491 atomic_inc(&r10_bio->remaining); 3492 } else 3493 r10_bio->devs[1].bio->bi_end_io = NULL; 3494 3495 /* and maybe write to replacement */ 3496 bio = r10_bio->devs[1].repl_bio; 3497 if (bio) 3498 bio->bi_end_io = NULL; 3499 /* Note: if replace is not NULL, then bio 3500 * cannot be NULL as r10buf_pool_alloc will 3501 * have allocated it. 3502 */ 3503 if (!mreplace) 3504 break; 3505 bio->bi_next = biolist; 3506 biolist = bio; 3507 bio->bi_end_io = end_sync_write; 3508 bio->bi_opf = REQ_OP_WRITE; 3509 bio->bi_iter.bi_sector = to_addr + 3510 mreplace->data_offset; 3511 bio_set_dev(bio, mreplace->bdev); 3512 atomic_inc(&r10_bio->remaining); 3513 break; 3514 } 3515 if (j == conf->copies) { 3516 /* Cannot recover, so abort the recovery or 3517 * record a bad block */ 3518 if (any_working) { 3519 /* problem is that there are bad blocks 3520 * on other device(s) 3521 */ 3522 int k; 3523 for (k = 0; k < conf->copies; k++) 3524 if (r10_bio->devs[k].devnum == i) 3525 break; 3526 if (mrdev && !test_bit(In_sync, 3527 &mrdev->flags) 3528 && !rdev_set_badblocks( 3529 mrdev, 3530 r10_bio->devs[k].addr, 3531 max_sync, 0)) 3532 any_working = 0; 3533 if (mreplace && 3534 !rdev_set_badblocks( 3535 mreplace, 3536 r10_bio->devs[k].addr, 3537 max_sync, 0)) 3538 any_working = 0; 3539 } 3540 if (!any_working) { 3541 if (!test_and_set_bit(MD_RECOVERY_INTR, 3542 &mddev->recovery)) 3543 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3544 mdname(mddev)); 3545 mirror->recovery_disabled 3546 = mddev->recovery_disabled; 3547 } else { 3548 error_disk = i; 3549 } 3550 put_buf(r10_bio); 3551 if (rb2) 3552 atomic_dec(&rb2->remaining); 3553 r10_bio = rb2; 3554 if (mrdev) 3555 rdev_dec_pending(mrdev, mddev); 3556 if (mreplace) 3557 rdev_dec_pending(mreplace, mddev); 3558 break; 3559 } 3560 if (mrdev) 3561 rdev_dec_pending(mrdev, mddev); 3562 if (mreplace) 3563 rdev_dec_pending(mreplace, mddev); 3564 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3565 /* Only want this if there is elsewhere to 3566 * read from. 'j' is currently the first 3567 * readable copy. 3568 */ 3569 int targets = 1; 3570 for (; j < conf->copies; j++) { 3571 int d = r10_bio->devs[j].devnum; 3572 if (conf->mirrors[d].rdev && 3573 test_bit(In_sync, 3574 &conf->mirrors[d].rdev->flags)) 3575 targets++; 3576 } 3577 if (targets == 1) 3578 r10_bio->devs[0].bio->bi_opf 3579 &= ~MD_FAILFAST; 3580 } 3581 } 3582 if (biolist == NULL) { 3583 while (r10_bio) { 3584 struct r10bio *rb2 = r10_bio; 3585 r10_bio = (struct r10bio*) rb2->master_bio; 3586 rb2->master_bio = NULL; 3587 put_buf(rb2); 3588 } 3589 goto giveup; 3590 } 3591 } else { 3592 /* resync. Schedule a read for every block at this virt offset */ 3593 int count = 0; 3594 3595 /* 3596 * Since curr_resync_completed could probably not update in 3597 * time, and we will set cluster_sync_low based on it. 3598 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3599 * safety reason, which ensures curr_resync_completed is 3600 * updated in bitmap_cond_end_sync. 3601 */ 3602 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, 3603 mddev_is_clustered(mddev) && 3604 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3605 3606 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, 3607 &sync_blocks, 3608 mddev->degraded) && 3609 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3610 &mddev->recovery)) { 3611 /* We can skip this block */ 3612 *skipped = 1; 3613 return sync_blocks + sectors_skipped; 3614 } 3615 if (sync_blocks < max_sync) 3616 max_sync = sync_blocks; 3617 r10_bio = raid10_alloc_init_r10buf(conf); 3618 r10_bio->state = 0; 3619 3620 r10_bio->mddev = mddev; 3621 atomic_set(&r10_bio->remaining, 0); 3622 raise_barrier(conf, 0); 3623 conf->next_resync = sector_nr; 3624 3625 r10_bio->master_bio = NULL; 3626 r10_bio->sector = sector_nr; 3627 set_bit(R10BIO_IsSync, &r10_bio->state); 3628 raid10_find_phys(conf, r10_bio); 3629 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3630 3631 for (i = 0; i < conf->copies; i++) { 3632 int d = r10_bio->devs[i].devnum; 3633 sector_t first_bad, sector; 3634 int bad_sectors; 3635 struct md_rdev *rdev; 3636 3637 if (r10_bio->devs[i].repl_bio) 3638 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3639 3640 bio = r10_bio->devs[i].bio; 3641 bio->bi_status = BLK_STS_IOERR; 3642 rdev = conf->mirrors[d].rdev; 3643 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3644 continue; 3645 3646 sector = r10_bio->devs[i].addr; 3647 if (is_badblock(rdev, sector, max_sync, 3648 &first_bad, &bad_sectors)) { 3649 if (first_bad > sector) 3650 max_sync = first_bad - sector; 3651 else { 3652 bad_sectors -= (sector - first_bad); 3653 if (max_sync > bad_sectors) 3654 max_sync = bad_sectors; 3655 continue; 3656 } 3657 } 3658 atomic_inc(&rdev->nr_pending); 3659 atomic_inc(&r10_bio->remaining); 3660 bio->bi_next = biolist; 3661 biolist = bio; 3662 bio->bi_end_io = end_sync_read; 3663 bio->bi_opf = REQ_OP_READ; 3664 if (test_bit(FailFast, &rdev->flags)) 3665 bio->bi_opf |= MD_FAILFAST; 3666 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3667 bio_set_dev(bio, rdev->bdev); 3668 count++; 3669 3670 rdev = conf->mirrors[d].replacement; 3671 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3672 continue; 3673 3674 atomic_inc(&rdev->nr_pending); 3675 3676 /* Need to set up for writing to the replacement */ 3677 bio = r10_bio->devs[i].repl_bio; 3678 bio->bi_status = BLK_STS_IOERR; 3679 3680 sector = r10_bio->devs[i].addr; 3681 bio->bi_next = biolist; 3682 biolist = bio; 3683 bio->bi_end_io = end_sync_write; 3684 bio->bi_opf = REQ_OP_WRITE; 3685 if (test_bit(FailFast, &rdev->flags)) 3686 bio->bi_opf |= MD_FAILFAST; 3687 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3688 bio_set_dev(bio, rdev->bdev); 3689 count++; 3690 } 3691 3692 if (count < 2) { 3693 for (i=0; i<conf->copies; i++) { 3694 int d = r10_bio->devs[i].devnum; 3695 if (r10_bio->devs[i].bio->bi_end_io) 3696 rdev_dec_pending(conf->mirrors[d].rdev, 3697 mddev); 3698 if (r10_bio->devs[i].repl_bio && 3699 r10_bio->devs[i].repl_bio->bi_end_io) 3700 rdev_dec_pending( 3701 conf->mirrors[d].replacement, 3702 mddev); 3703 } 3704 put_buf(r10_bio); 3705 biolist = NULL; 3706 goto giveup; 3707 } 3708 } 3709 3710 nr_sectors = 0; 3711 if (sector_nr + max_sync < max_sector) 3712 max_sector = sector_nr + max_sync; 3713 do { 3714 struct page *page; 3715 int len = PAGE_SIZE; 3716 if (sector_nr + (len>>9) > max_sector) 3717 len = (max_sector - sector_nr) << 9; 3718 if (len == 0) 3719 break; 3720 for (bio= biolist ; bio ; bio=bio->bi_next) { 3721 struct resync_pages *rp = get_resync_pages(bio); 3722 page = resync_fetch_page(rp, page_idx); 3723 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 3724 bio->bi_status = BLK_STS_RESOURCE; 3725 bio_endio(bio); 3726 goto giveup; 3727 } 3728 } 3729 nr_sectors += len>>9; 3730 sector_nr += len>>9; 3731 } while (++page_idx < RESYNC_PAGES); 3732 r10_bio->sectors = nr_sectors; 3733 3734 if (mddev_is_clustered(mddev) && 3735 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3736 /* It is resync not recovery */ 3737 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3738 conf->cluster_sync_low = mddev->curr_resync_completed; 3739 raid10_set_cluster_sync_high(conf); 3740 /* Send resync message */ 3741 md_cluster_ops->resync_info_update(mddev, 3742 conf->cluster_sync_low, 3743 conf->cluster_sync_high); 3744 } 3745 } else if (mddev_is_clustered(mddev)) { 3746 /* This is recovery not resync */ 3747 sector_t sect_va1, sect_va2; 3748 bool broadcast_msg = false; 3749 3750 for (i = 0; i < conf->geo.raid_disks; i++) { 3751 /* 3752 * sector_nr is a device address for recovery, so we 3753 * need translate it to array address before compare 3754 * with cluster_sync_high. 3755 */ 3756 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3757 3758 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3759 broadcast_msg = true; 3760 /* 3761 * curr_resync_completed is similar as 3762 * sector_nr, so make the translation too. 3763 */ 3764 sect_va2 = raid10_find_virt(conf, 3765 mddev->curr_resync_completed, i); 3766 3767 if (conf->cluster_sync_low == 0 || 3768 conf->cluster_sync_low > sect_va2) 3769 conf->cluster_sync_low = sect_va2; 3770 } 3771 } 3772 if (broadcast_msg) { 3773 raid10_set_cluster_sync_high(conf); 3774 md_cluster_ops->resync_info_update(mddev, 3775 conf->cluster_sync_low, 3776 conf->cluster_sync_high); 3777 } 3778 } 3779 3780 while (biolist) { 3781 bio = biolist; 3782 biolist = biolist->bi_next; 3783 3784 bio->bi_next = NULL; 3785 r10_bio = get_resync_r10bio(bio); 3786 r10_bio->sectors = nr_sectors; 3787 3788 if (bio->bi_end_io == end_sync_read) { 3789 md_sync_acct_bio(bio, nr_sectors); 3790 bio->bi_status = 0; 3791 submit_bio_noacct(bio); 3792 } 3793 } 3794 3795 if (sectors_skipped) 3796 /* pretend they weren't skipped, it makes 3797 * no important difference in this case 3798 */ 3799 md_done_sync(mddev, sectors_skipped, 1); 3800 3801 return sectors_skipped + nr_sectors; 3802 giveup: 3803 /* There is nowhere to write, so all non-sync 3804 * drives must be failed or in resync, all drives 3805 * have a bad block, so try the next chunk... 3806 */ 3807 if (sector_nr + max_sync < max_sector) 3808 max_sector = sector_nr + max_sync; 3809 3810 sectors_skipped += (max_sector - sector_nr); 3811 chunks_skipped ++; 3812 sector_nr = max_sector; 3813 goto skipped; 3814 } 3815 3816 static sector_t 3817 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3818 { 3819 sector_t size; 3820 struct r10conf *conf = mddev->private; 3821 3822 if (!raid_disks) 3823 raid_disks = min(conf->geo.raid_disks, 3824 conf->prev.raid_disks); 3825 if (!sectors) 3826 sectors = conf->dev_sectors; 3827 3828 size = sectors >> conf->geo.chunk_shift; 3829 sector_div(size, conf->geo.far_copies); 3830 size = size * raid_disks; 3831 sector_div(size, conf->geo.near_copies); 3832 3833 return size << conf->geo.chunk_shift; 3834 } 3835 3836 static void calc_sectors(struct r10conf *conf, sector_t size) 3837 { 3838 /* Calculate the number of sectors-per-device that will 3839 * actually be used, and set conf->dev_sectors and 3840 * conf->stride 3841 */ 3842 3843 size = size >> conf->geo.chunk_shift; 3844 sector_div(size, conf->geo.far_copies); 3845 size = size * conf->geo.raid_disks; 3846 sector_div(size, conf->geo.near_copies); 3847 /* 'size' is now the number of chunks in the array */ 3848 /* calculate "used chunks per device" */ 3849 size = size * conf->copies; 3850 3851 /* We need to round up when dividing by raid_disks to 3852 * get the stride size. 3853 */ 3854 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3855 3856 conf->dev_sectors = size << conf->geo.chunk_shift; 3857 3858 if (conf->geo.far_offset) 3859 conf->geo.stride = 1 << conf->geo.chunk_shift; 3860 else { 3861 sector_div(size, conf->geo.far_copies); 3862 conf->geo.stride = size << conf->geo.chunk_shift; 3863 } 3864 } 3865 3866 enum geo_type {geo_new, geo_old, geo_start}; 3867 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3868 { 3869 int nc, fc, fo; 3870 int layout, chunk, disks; 3871 switch (new) { 3872 case geo_old: 3873 layout = mddev->layout; 3874 chunk = mddev->chunk_sectors; 3875 disks = mddev->raid_disks - mddev->delta_disks; 3876 break; 3877 case geo_new: 3878 layout = mddev->new_layout; 3879 chunk = mddev->new_chunk_sectors; 3880 disks = mddev->raid_disks; 3881 break; 3882 default: /* avoid 'may be unused' warnings */ 3883 case geo_start: /* new when starting reshape - raid_disks not 3884 * updated yet. */ 3885 layout = mddev->new_layout; 3886 chunk = mddev->new_chunk_sectors; 3887 disks = mddev->raid_disks + mddev->delta_disks; 3888 break; 3889 } 3890 if (layout >> 19) 3891 return -1; 3892 if (chunk < (PAGE_SIZE >> 9) || 3893 !is_power_of_2(chunk)) 3894 return -2; 3895 nc = layout & 255; 3896 fc = (layout >> 8) & 255; 3897 fo = layout & (1<<16); 3898 geo->raid_disks = disks; 3899 geo->near_copies = nc; 3900 geo->far_copies = fc; 3901 geo->far_offset = fo; 3902 switch (layout >> 17) { 3903 case 0: /* original layout. simple but not always optimal */ 3904 geo->far_set_size = disks; 3905 break; 3906 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3907 * actually using this, but leave code here just in case.*/ 3908 geo->far_set_size = disks/fc; 3909 WARN(geo->far_set_size < fc, 3910 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3911 break; 3912 case 2: /* "improved" layout fixed to match documentation */ 3913 geo->far_set_size = fc * nc; 3914 break; 3915 default: /* Not a valid layout */ 3916 return -1; 3917 } 3918 geo->chunk_mask = chunk - 1; 3919 geo->chunk_shift = ffz(~chunk); 3920 return nc*fc; 3921 } 3922 3923 static void raid10_free_conf(struct r10conf *conf) 3924 { 3925 if (!conf) 3926 return; 3927 3928 mempool_exit(&conf->r10bio_pool); 3929 kfree(conf->mirrors); 3930 kfree(conf->mirrors_old); 3931 kfree(conf->mirrors_new); 3932 safe_put_page(conf->tmppage); 3933 bioset_exit(&conf->bio_split); 3934 kfree(conf); 3935 } 3936 3937 static struct r10conf *setup_conf(struct mddev *mddev) 3938 { 3939 struct r10conf *conf = NULL; 3940 int err = -EINVAL; 3941 struct geom geo; 3942 int copies; 3943 3944 copies = setup_geo(&geo, mddev, geo_new); 3945 3946 if (copies == -2) { 3947 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3948 mdname(mddev), PAGE_SIZE); 3949 goto out; 3950 } 3951 3952 if (copies < 2 || copies > mddev->raid_disks) { 3953 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3954 mdname(mddev), mddev->new_layout); 3955 goto out; 3956 } 3957 3958 err = -ENOMEM; 3959 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3960 if (!conf) 3961 goto out; 3962 3963 /* FIXME calc properly */ 3964 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3965 sizeof(struct raid10_info), 3966 GFP_KERNEL); 3967 if (!conf->mirrors) 3968 goto out; 3969 3970 conf->tmppage = alloc_page(GFP_KERNEL); 3971 if (!conf->tmppage) 3972 goto out; 3973 3974 conf->geo = geo; 3975 conf->copies = copies; 3976 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3977 rbio_pool_free, conf); 3978 if (err) 3979 goto out; 3980 3981 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3982 if (err) 3983 goto out; 3984 3985 calc_sectors(conf, mddev->dev_sectors); 3986 if (mddev->reshape_position == MaxSector) { 3987 conf->prev = conf->geo; 3988 conf->reshape_progress = MaxSector; 3989 } else { 3990 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3991 err = -EINVAL; 3992 goto out; 3993 } 3994 conf->reshape_progress = mddev->reshape_position; 3995 if (conf->prev.far_offset) 3996 conf->prev.stride = 1 << conf->prev.chunk_shift; 3997 else 3998 /* far_copies must be 1 */ 3999 conf->prev.stride = conf->dev_sectors; 4000 } 4001 conf->reshape_safe = conf->reshape_progress; 4002 spin_lock_init(&conf->device_lock); 4003 INIT_LIST_HEAD(&conf->retry_list); 4004 INIT_LIST_HEAD(&conf->bio_end_io_list); 4005 4006 seqlock_init(&conf->resync_lock); 4007 init_waitqueue_head(&conf->wait_barrier); 4008 atomic_set(&conf->nr_pending, 0); 4009 4010 err = -ENOMEM; 4011 rcu_assign_pointer(conf->thread, 4012 md_register_thread(raid10d, mddev, "raid10")); 4013 if (!conf->thread) 4014 goto out; 4015 4016 conf->mddev = mddev; 4017 return conf; 4018 4019 out: 4020 raid10_free_conf(conf); 4021 return ERR_PTR(err); 4022 } 4023 4024 static unsigned int raid10_nr_stripes(struct r10conf *conf) 4025 { 4026 unsigned int raid_disks = conf->geo.raid_disks; 4027 4028 if (conf->geo.raid_disks % conf->geo.near_copies) 4029 return raid_disks; 4030 return raid_disks / conf->geo.near_copies; 4031 } 4032 4033 static int raid10_set_queue_limits(struct mddev *mddev) 4034 { 4035 struct r10conf *conf = mddev->private; 4036 struct queue_limits lim; 4037 int err; 4038 4039 md_init_stacking_limits(&lim); 4040 lim.max_write_zeroes_sectors = 0; 4041 lim.io_min = mddev->chunk_sectors << 9; 4042 lim.io_opt = lim.io_min * raid10_nr_stripes(conf); 4043 lim.features |= BLK_FEAT_ATOMIC_WRITES_STACKED; 4044 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 4045 if (err) { 4046 queue_limits_cancel_update(mddev->gendisk->queue); 4047 return err; 4048 } 4049 return queue_limits_set(mddev->gendisk->queue, &lim); 4050 } 4051 4052 static int raid10_run(struct mddev *mddev) 4053 { 4054 struct r10conf *conf; 4055 int i, disk_idx; 4056 struct raid10_info *disk; 4057 struct md_rdev *rdev; 4058 sector_t size; 4059 sector_t min_offset_diff = 0; 4060 int first = 1; 4061 int ret = -EIO; 4062 4063 if (mddev->private == NULL) { 4064 conf = setup_conf(mddev); 4065 if (IS_ERR(conf)) 4066 return PTR_ERR(conf); 4067 mddev->private = conf; 4068 } 4069 conf = mddev->private; 4070 if (!conf) 4071 goto out; 4072 4073 rcu_assign_pointer(mddev->thread, conf->thread); 4074 rcu_assign_pointer(conf->thread, NULL); 4075 4076 if (mddev_is_clustered(conf->mddev)) { 4077 int fc, fo; 4078 4079 fc = (mddev->layout >> 8) & 255; 4080 fo = mddev->layout & (1<<16); 4081 if (fc > 1 || fo > 0) { 4082 pr_err("only near layout is supported by clustered" 4083 " raid10\n"); 4084 goto out_free_conf; 4085 } 4086 } 4087 4088 rdev_for_each(rdev, mddev) { 4089 long long diff; 4090 4091 disk_idx = rdev->raid_disk; 4092 if (disk_idx < 0) 4093 continue; 4094 if (disk_idx >= conf->geo.raid_disks && 4095 disk_idx >= conf->prev.raid_disks) 4096 continue; 4097 disk = conf->mirrors + disk_idx; 4098 4099 if (test_bit(Replacement, &rdev->flags)) { 4100 if (disk->replacement) 4101 goto out_free_conf; 4102 disk->replacement = rdev; 4103 } else { 4104 if (disk->rdev) 4105 goto out_free_conf; 4106 disk->rdev = rdev; 4107 } 4108 diff = (rdev->new_data_offset - rdev->data_offset); 4109 if (!mddev->reshape_backwards) 4110 diff = -diff; 4111 if (diff < 0) 4112 diff = 0; 4113 if (first || diff < min_offset_diff) 4114 min_offset_diff = diff; 4115 4116 disk->head_position = 0; 4117 first = 0; 4118 } 4119 4120 if (!mddev_is_dm(conf->mddev)) { 4121 int err = raid10_set_queue_limits(mddev); 4122 4123 if (err) { 4124 ret = err; 4125 goto out_free_conf; 4126 } 4127 } 4128 4129 /* need to check that every block has at least one working mirror */ 4130 if (!enough(conf, -1)) { 4131 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4132 mdname(mddev)); 4133 goto out_free_conf; 4134 } 4135 4136 if (conf->reshape_progress != MaxSector) { 4137 /* must ensure that shape change is supported */ 4138 if (conf->geo.far_copies != 1 && 4139 conf->geo.far_offset == 0) 4140 goto out_free_conf; 4141 if (conf->prev.far_copies != 1 && 4142 conf->prev.far_offset == 0) 4143 goto out_free_conf; 4144 } 4145 4146 mddev->degraded = 0; 4147 for (i = 0; 4148 i < conf->geo.raid_disks 4149 || i < conf->prev.raid_disks; 4150 i++) { 4151 4152 disk = conf->mirrors + i; 4153 4154 if (!disk->rdev && disk->replacement) { 4155 /* The replacement is all we have - use it */ 4156 disk->rdev = disk->replacement; 4157 disk->replacement = NULL; 4158 clear_bit(Replacement, &disk->rdev->flags); 4159 } 4160 4161 if (!disk->rdev || 4162 !test_bit(In_sync, &disk->rdev->flags)) { 4163 disk->head_position = 0; 4164 mddev->degraded++; 4165 if (disk->rdev && 4166 disk->rdev->saved_raid_disk < 0) 4167 conf->fullsync = 1; 4168 } 4169 4170 if (disk->replacement && 4171 !test_bit(In_sync, &disk->replacement->flags) && 4172 disk->replacement->saved_raid_disk < 0) { 4173 conf->fullsync = 1; 4174 } 4175 4176 disk->recovery_disabled = mddev->recovery_disabled - 1; 4177 } 4178 4179 if (mddev->recovery_cp != MaxSector) 4180 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4181 mdname(mddev)); 4182 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4183 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4184 conf->geo.raid_disks); 4185 /* 4186 * Ok, everything is just fine now 4187 */ 4188 mddev->dev_sectors = conf->dev_sectors; 4189 size = raid10_size(mddev, 0, 0); 4190 md_set_array_sectors(mddev, size); 4191 mddev->resync_max_sectors = size; 4192 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4193 4194 if (md_integrity_register(mddev)) 4195 goto out_free_conf; 4196 4197 if (conf->reshape_progress != MaxSector) { 4198 unsigned long before_length, after_length; 4199 4200 before_length = ((1 << conf->prev.chunk_shift) * 4201 conf->prev.far_copies); 4202 after_length = ((1 << conf->geo.chunk_shift) * 4203 conf->geo.far_copies); 4204 4205 if (max(before_length, after_length) > min_offset_diff) { 4206 /* This cannot work */ 4207 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4208 goto out_free_conf; 4209 } 4210 conf->offset_diff = min_offset_diff; 4211 4212 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4213 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4214 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4215 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4216 } 4217 4218 return 0; 4219 4220 out_free_conf: 4221 md_unregister_thread(mddev, &mddev->thread); 4222 raid10_free_conf(conf); 4223 mddev->private = NULL; 4224 out: 4225 return ret; 4226 } 4227 4228 static void raid10_free(struct mddev *mddev, void *priv) 4229 { 4230 raid10_free_conf(priv); 4231 } 4232 4233 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4234 { 4235 struct r10conf *conf = mddev->private; 4236 4237 if (quiesce) 4238 raise_barrier(conf, 0); 4239 else 4240 lower_barrier(conf); 4241 } 4242 4243 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4244 { 4245 /* Resize of 'far' arrays is not supported. 4246 * For 'near' and 'offset' arrays we can set the 4247 * number of sectors used to be an appropriate multiple 4248 * of the chunk size. 4249 * For 'offset', this is far_copies*chunksize. 4250 * For 'near' the multiplier is the LCM of 4251 * near_copies and raid_disks. 4252 * So if far_copies > 1 && !far_offset, fail. 4253 * Else find LCM(raid_disks, near_copy)*far_copies and 4254 * multiply by chunk_size. Then round to this number. 4255 * This is mostly done by raid10_size() 4256 */ 4257 struct r10conf *conf = mddev->private; 4258 sector_t oldsize, size; 4259 int ret; 4260 4261 if (mddev->reshape_position != MaxSector) 4262 return -EBUSY; 4263 4264 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4265 return -EINVAL; 4266 4267 oldsize = raid10_size(mddev, 0, 0); 4268 size = raid10_size(mddev, sectors, 0); 4269 if (mddev->external_size && 4270 mddev->array_sectors > size) 4271 return -EINVAL; 4272 4273 ret = mddev->bitmap_ops->resize(mddev, size, 0, false); 4274 if (ret) 4275 return ret; 4276 4277 md_set_array_sectors(mddev, size); 4278 if (sectors > mddev->dev_sectors && 4279 mddev->recovery_cp > oldsize) { 4280 mddev->recovery_cp = oldsize; 4281 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4282 } 4283 calc_sectors(conf, sectors); 4284 mddev->dev_sectors = conf->dev_sectors; 4285 mddev->resync_max_sectors = size; 4286 return 0; 4287 } 4288 4289 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4290 { 4291 struct md_rdev *rdev; 4292 struct r10conf *conf; 4293 4294 if (mddev->degraded > 0) { 4295 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4296 mdname(mddev)); 4297 return ERR_PTR(-EINVAL); 4298 } 4299 sector_div(size, devs); 4300 4301 /* Set new parameters */ 4302 mddev->new_level = 10; 4303 /* new layout: far_copies = 1, near_copies = 2 */ 4304 mddev->new_layout = (1<<8) + 2; 4305 mddev->new_chunk_sectors = mddev->chunk_sectors; 4306 mddev->delta_disks = mddev->raid_disks; 4307 mddev->raid_disks *= 2; 4308 /* make sure it will be not marked as dirty */ 4309 mddev->recovery_cp = MaxSector; 4310 mddev->dev_sectors = size; 4311 4312 conf = setup_conf(mddev); 4313 if (!IS_ERR(conf)) { 4314 rdev_for_each(rdev, mddev) 4315 if (rdev->raid_disk >= 0) { 4316 rdev->new_raid_disk = rdev->raid_disk * 2; 4317 rdev->sectors = size; 4318 } 4319 } 4320 4321 return conf; 4322 } 4323 4324 static void *raid10_takeover(struct mddev *mddev) 4325 { 4326 struct r0conf *raid0_conf; 4327 4328 /* raid10 can take over: 4329 * raid0 - providing it has only two drives 4330 */ 4331 if (mddev->level == 0) { 4332 /* for raid0 takeover only one zone is supported */ 4333 raid0_conf = mddev->private; 4334 if (raid0_conf->nr_strip_zones > 1) { 4335 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4336 mdname(mddev)); 4337 return ERR_PTR(-EINVAL); 4338 } 4339 return raid10_takeover_raid0(mddev, 4340 raid0_conf->strip_zone->zone_end, 4341 raid0_conf->strip_zone->nb_dev); 4342 } 4343 return ERR_PTR(-EINVAL); 4344 } 4345 4346 static int raid10_check_reshape(struct mddev *mddev) 4347 { 4348 /* Called when there is a request to change 4349 * - layout (to ->new_layout) 4350 * - chunk size (to ->new_chunk_sectors) 4351 * - raid_disks (by delta_disks) 4352 * or when trying to restart a reshape that was ongoing. 4353 * 4354 * We need to validate the request and possibly allocate 4355 * space if that might be an issue later. 4356 * 4357 * Currently we reject any reshape of a 'far' mode array, 4358 * allow chunk size to change if new is generally acceptable, 4359 * allow raid_disks to increase, and allow 4360 * a switch between 'near' mode and 'offset' mode. 4361 */ 4362 struct r10conf *conf = mddev->private; 4363 struct geom geo; 4364 4365 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4366 return -EINVAL; 4367 4368 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4369 /* mustn't change number of copies */ 4370 return -EINVAL; 4371 if (geo.far_copies > 1 && !geo.far_offset) 4372 /* Cannot switch to 'far' mode */ 4373 return -EINVAL; 4374 4375 if (mddev->array_sectors & geo.chunk_mask) 4376 /* not factor of array size */ 4377 return -EINVAL; 4378 4379 if (!enough(conf, -1)) 4380 return -EINVAL; 4381 4382 kfree(conf->mirrors_new); 4383 conf->mirrors_new = NULL; 4384 if (mddev->delta_disks > 0) { 4385 /* allocate new 'mirrors' list */ 4386 conf->mirrors_new = 4387 kcalloc(mddev->raid_disks + mddev->delta_disks, 4388 sizeof(struct raid10_info), 4389 GFP_KERNEL); 4390 if (!conf->mirrors_new) 4391 return -ENOMEM; 4392 } 4393 return 0; 4394 } 4395 4396 /* 4397 * Need to check if array has failed when deciding whether to: 4398 * - start an array 4399 * - remove non-faulty devices 4400 * - add a spare 4401 * - allow a reshape 4402 * This determination is simple when no reshape is happening. 4403 * However if there is a reshape, we need to carefully check 4404 * both the before and after sections. 4405 * This is because some failed devices may only affect one 4406 * of the two sections, and some non-in_sync devices may 4407 * be insync in the section most affected by failed devices. 4408 */ 4409 static int calc_degraded(struct r10conf *conf) 4410 { 4411 int degraded, degraded2; 4412 int i; 4413 4414 degraded = 0; 4415 /* 'prev' section first */ 4416 for (i = 0; i < conf->prev.raid_disks; i++) { 4417 struct md_rdev *rdev = conf->mirrors[i].rdev; 4418 4419 if (!rdev || test_bit(Faulty, &rdev->flags)) 4420 degraded++; 4421 else if (!test_bit(In_sync, &rdev->flags)) 4422 /* When we can reduce the number of devices in 4423 * an array, this might not contribute to 4424 * 'degraded'. It does now. 4425 */ 4426 degraded++; 4427 } 4428 if (conf->geo.raid_disks == conf->prev.raid_disks) 4429 return degraded; 4430 degraded2 = 0; 4431 for (i = 0; i < conf->geo.raid_disks; i++) { 4432 struct md_rdev *rdev = conf->mirrors[i].rdev; 4433 4434 if (!rdev || test_bit(Faulty, &rdev->flags)) 4435 degraded2++; 4436 else if (!test_bit(In_sync, &rdev->flags)) { 4437 /* If reshape is increasing the number of devices, 4438 * this section has already been recovered, so 4439 * it doesn't contribute to degraded. 4440 * else it does. 4441 */ 4442 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4443 degraded2++; 4444 } 4445 } 4446 if (degraded2 > degraded) 4447 return degraded2; 4448 return degraded; 4449 } 4450 4451 static int raid10_start_reshape(struct mddev *mddev) 4452 { 4453 /* A 'reshape' has been requested. This commits 4454 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4455 * This also checks if there are enough spares and adds them 4456 * to the array. 4457 * We currently require enough spares to make the final 4458 * array non-degraded. We also require that the difference 4459 * between old and new data_offset - on each device - is 4460 * enough that we never risk over-writing. 4461 */ 4462 4463 unsigned long before_length, after_length; 4464 sector_t min_offset_diff = 0; 4465 int first = 1; 4466 struct geom new; 4467 struct r10conf *conf = mddev->private; 4468 struct md_rdev *rdev; 4469 int spares = 0; 4470 int ret; 4471 4472 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4473 return -EBUSY; 4474 4475 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4476 return -EINVAL; 4477 4478 before_length = ((1 << conf->prev.chunk_shift) * 4479 conf->prev.far_copies); 4480 after_length = ((1 << conf->geo.chunk_shift) * 4481 conf->geo.far_copies); 4482 4483 rdev_for_each(rdev, mddev) { 4484 if (!test_bit(In_sync, &rdev->flags) 4485 && !test_bit(Faulty, &rdev->flags)) 4486 spares++; 4487 if (rdev->raid_disk >= 0) { 4488 long long diff = (rdev->new_data_offset 4489 - rdev->data_offset); 4490 if (!mddev->reshape_backwards) 4491 diff = -diff; 4492 if (diff < 0) 4493 diff = 0; 4494 if (first || diff < min_offset_diff) 4495 min_offset_diff = diff; 4496 first = 0; 4497 } 4498 } 4499 4500 if (max(before_length, after_length) > min_offset_diff) 4501 return -EINVAL; 4502 4503 if (spares < mddev->delta_disks) 4504 return -EINVAL; 4505 4506 conf->offset_diff = min_offset_diff; 4507 spin_lock_irq(&conf->device_lock); 4508 if (conf->mirrors_new) { 4509 memcpy(conf->mirrors_new, conf->mirrors, 4510 sizeof(struct raid10_info)*conf->prev.raid_disks); 4511 smp_mb(); 4512 kfree(conf->mirrors_old); 4513 conf->mirrors_old = conf->mirrors; 4514 conf->mirrors = conf->mirrors_new; 4515 conf->mirrors_new = NULL; 4516 } 4517 setup_geo(&conf->geo, mddev, geo_start); 4518 smp_mb(); 4519 if (mddev->reshape_backwards) { 4520 sector_t size = raid10_size(mddev, 0, 0); 4521 if (size < mddev->array_sectors) { 4522 spin_unlock_irq(&conf->device_lock); 4523 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4524 mdname(mddev)); 4525 return -EINVAL; 4526 } 4527 mddev->resync_max_sectors = size; 4528 conf->reshape_progress = size; 4529 } else 4530 conf->reshape_progress = 0; 4531 conf->reshape_safe = conf->reshape_progress; 4532 spin_unlock_irq(&conf->device_lock); 4533 4534 if (mddev->delta_disks && mddev->bitmap) { 4535 struct mdp_superblock_1 *sb = NULL; 4536 sector_t oldsize, newsize; 4537 4538 oldsize = raid10_size(mddev, 0, 0); 4539 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4540 4541 if (!mddev_is_clustered(mddev)) { 4542 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 4543 if (ret) 4544 goto abort; 4545 else 4546 goto out; 4547 } 4548 4549 rdev_for_each(rdev, mddev) { 4550 if (rdev->raid_disk > -1 && 4551 !test_bit(Faulty, &rdev->flags)) 4552 sb = page_address(rdev->sb_page); 4553 } 4554 4555 /* 4556 * some node is already performing reshape, and no need to 4557 * call bitmap_ops->resize again since it should be called when 4558 * receiving BITMAP_RESIZE msg 4559 */ 4560 if ((sb && (le32_to_cpu(sb->feature_map) & 4561 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4562 goto out; 4563 4564 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 4565 if (ret) 4566 goto abort; 4567 4568 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4569 if (ret) { 4570 mddev->bitmap_ops->resize(mddev, oldsize, 0, false); 4571 goto abort; 4572 } 4573 } 4574 out: 4575 if (mddev->delta_disks > 0) { 4576 rdev_for_each(rdev, mddev) 4577 if (rdev->raid_disk < 0 && 4578 !test_bit(Faulty, &rdev->flags)) { 4579 if (raid10_add_disk(mddev, rdev) == 0) { 4580 if (rdev->raid_disk >= 4581 conf->prev.raid_disks) 4582 set_bit(In_sync, &rdev->flags); 4583 else 4584 rdev->recovery_offset = 0; 4585 4586 /* Failure here is OK */ 4587 sysfs_link_rdev(mddev, rdev); 4588 } 4589 } else if (rdev->raid_disk >= conf->prev.raid_disks 4590 && !test_bit(Faulty, &rdev->flags)) { 4591 /* This is a spare that was manually added */ 4592 set_bit(In_sync, &rdev->flags); 4593 } 4594 } 4595 /* When a reshape changes the number of devices, 4596 * ->degraded is measured against the larger of the 4597 * pre and post numbers. 4598 */ 4599 spin_lock_irq(&conf->device_lock); 4600 mddev->degraded = calc_degraded(conf); 4601 spin_unlock_irq(&conf->device_lock); 4602 mddev->raid_disks = conf->geo.raid_disks; 4603 mddev->reshape_position = conf->reshape_progress; 4604 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4605 4606 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4607 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4608 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4609 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4610 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4611 conf->reshape_checkpoint = jiffies; 4612 md_new_event(); 4613 return 0; 4614 4615 abort: 4616 mddev->recovery = 0; 4617 spin_lock_irq(&conf->device_lock); 4618 conf->geo = conf->prev; 4619 mddev->raid_disks = conf->geo.raid_disks; 4620 rdev_for_each(rdev, mddev) 4621 rdev->new_data_offset = rdev->data_offset; 4622 smp_wmb(); 4623 conf->reshape_progress = MaxSector; 4624 conf->reshape_safe = MaxSector; 4625 mddev->reshape_position = MaxSector; 4626 spin_unlock_irq(&conf->device_lock); 4627 return ret; 4628 } 4629 4630 /* Calculate the last device-address that could contain 4631 * any block from the chunk that includes the array-address 's' 4632 * and report the next address. 4633 * i.e. the address returned will be chunk-aligned and after 4634 * any data that is in the chunk containing 's'. 4635 */ 4636 static sector_t last_dev_address(sector_t s, struct geom *geo) 4637 { 4638 s = (s | geo->chunk_mask) + 1; 4639 s >>= geo->chunk_shift; 4640 s *= geo->near_copies; 4641 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4642 s *= geo->far_copies; 4643 s <<= geo->chunk_shift; 4644 return s; 4645 } 4646 4647 /* Calculate the first device-address that could contain 4648 * any block from the chunk that includes the array-address 's'. 4649 * This too will be the start of a chunk 4650 */ 4651 static sector_t first_dev_address(sector_t s, struct geom *geo) 4652 { 4653 s >>= geo->chunk_shift; 4654 s *= geo->near_copies; 4655 sector_div(s, geo->raid_disks); 4656 s *= geo->far_copies; 4657 s <<= geo->chunk_shift; 4658 return s; 4659 } 4660 4661 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4662 int *skipped) 4663 { 4664 /* We simply copy at most one chunk (smallest of old and new) 4665 * at a time, possibly less if that exceeds RESYNC_PAGES, 4666 * or we hit a bad block or something. 4667 * This might mean we pause for normal IO in the middle of 4668 * a chunk, but that is not a problem as mddev->reshape_position 4669 * can record any location. 4670 * 4671 * If we will want to write to a location that isn't 4672 * yet recorded as 'safe' (i.e. in metadata on disk) then 4673 * we need to flush all reshape requests and update the metadata. 4674 * 4675 * When reshaping forwards (e.g. to more devices), we interpret 4676 * 'safe' as the earliest block which might not have been copied 4677 * down yet. We divide this by previous stripe size and multiply 4678 * by previous stripe length to get lowest device offset that we 4679 * cannot write to yet. 4680 * We interpret 'sector_nr' as an address that we want to write to. 4681 * From this we use last_device_address() to find where we might 4682 * write to, and first_device_address on the 'safe' position. 4683 * If this 'next' write position is after the 'safe' position, 4684 * we must update the metadata to increase the 'safe' position. 4685 * 4686 * When reshaping backwards, we round in the opposite direction 4687 * and perform the reverse test: next write position must not be 4688 * less than current safe position. 4689 * 4690 * In all this the minimum difference in data offsets 4691 * (conf->offset_diff - always positive) allows a bit of slack, 4692 * so next can be after 'safe', but not by more than offset_diff 4693 * 4694 * We need to prepare all the bios here before we start any IO 4695 * to ensure the size we choose is acceptable to all devices. 4696 * The means one for each copy for write-out and an extra one for 4697 * read-in. 4698 * We store the read-in bio in ->master_bio and the others in 4699 * ->devs[x].bio and ->devs[x].repl_bio. 4700 */ 4701 struct r10conf *conf = mddev->private; 4702 struct r10bio *r10_bio; 4703 sector_t next, safe, last; 4704 int max_sectors; 4705 int nr_sectors; 4706 int s; 4707 struct md_rdev *rdev; 4708 int need_flush = 0; 4709 struct bio *blist; 4710 struct bio *bio, *read_bio; 4711 int sectors_done = 0; 4712 struct page **pages; 4713 4714 if (sector_nr == 0) { 4715 /* If restarting in the middle, skip the initial sectors */ 4716 if (mddev->reshape_backwards && 4717 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4718 sector_nr = (raid10_size(mddev, 0, 0) 4719 - conf->reshape_progress); 4720 } else if (!mddev->reshape_backwards && 4721 conf->reshape_progress > 0) 4722 sector_nr = conf->reshape_progress; 4723 if (sector_nr) { 4724 mddev->curr_resync_completed = sector_nr; 4725 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4726 *skipped = 1; 4727 return sector_nr; 4728 } 4729 } 4730 4731 /* We don't use sector_nr to track where we are up to 4732 * as that doesn't work well for ->reshape_backwards. 4733 * So just use ->reshape_progress. 4734 */ 4735 if (mddev->reshape_backwards) { 4736 /* 'next' is the earliest device address that we might 4737 * write to for this chunk in the new layout 4738 */ 4739 next = first_dev_address(conf->reshape_progress - 1, 4740 &conf->geo); 4741 4742 /* 'safe' is the last device address that we might read from 4743 * in the old layout after a restart 4744 */ 4745 safe = last_dev_address(conf->reshape_safe - 1, 4746 &conf->prev); 4747 4748 if (next + conf->offset_diff < safe) 4749 need_flush = 1; 4750 4751 last = conf->reshape_progress - 1; 4752 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4753 & conf->prev.chunk_mask); 4754 if (sector_nr + RESYNC_SECTORS < last) 4755 sector_nr = last + 1 - RESYNC_SECTORS; 4756 } else { 4757 /* 'next' is after the last device address that we 4758 * might write to for this chunk in the new layout 4759 */ 4760 next = last_dev_address(conf->reshape_progress, &conf->geo); 4761 4762 /* 'safe' is the earliest device address that we might 4763 * read from in the old layout after a restart 4764 */ 4765 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4766 4767 /* Need to update metadata if 'next' might be beyond 'safe' 4768 * as that would possibly corrupt data 4769 */ 4770 if (next > safe + conf->offset_diff) 4771 need_flush = 1; 4772 4773 sector_nr = conf->reshape_progress; 4774 last = sector_nr | (conf->geo.chunk_mask 4775 & conf->prev.chunk_mask); 4776 4777 if (sector_nr + RESYNC_SECTORS <= last) 4778 last = sector_nr + RESYNC_SECTORS - 1; 4779 } 4780 4781 if (need_flush || 4782 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4783 /* Need to update reshape_position in metadata */ 4784 wait_barrier(conf, false); 4785 mddev->reshape_position = conf->reshape_progress; 4786 if (mddev->reshape_backwards) 4787 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4788 - conf->reshape_progress; 4789 else 4790 mddev->curr_resync_completed = conf->reshape_progress; 4791 conf->reshape_checkpoint = jiffies; 4792 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4793 md_wakeup_thread(mddev->thread); 4794 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4795 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4796 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4797 allow_barrier(conf); 4798 return sectors_done; 4799 } 4800 conf->reshape_safe = mddev->reshape_position; 4801 allow_barrier(conf); 4802 } 4803 4804 raise_barrier(conf, 0); 4805 read_more: 4806 /* Now schedule reads for blocks from sector_nr to last */ 4807 r10_bio = raid10_alloc_init_r10buf(conf); 4808 r10_bio->state = 0; 4809 raise_barrier(conf, 1); 4810 atomic_set(&r10_bio->remaining, 0); 4811 r10_bio->mddev = mddev; 4812 r10_bio->sector = sector_nr; 4813 set_bit(R10BIO_IsReshape, &r10_bio->state); 4814 r10_bio->sectors = last - sector_nr + 1; 4815 rdev = read_balance(conf, r10_bio, &max_sectors); 4816 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4817 4818 if (!rdev) { 4819 /* Cannot read from here, so need to record bad blocks 4820 * on all the target devices. 4821 */ 4822 // FIXME 4823 mempool_free(r10_bio, &conf->r10buf_pool); 4824 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4825 return sectors_done; 4826 } 4827 4828 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4829 GFP_KERNEL, &mddev->bio_set); 4830 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4831 + rdev->data_offset); 4832 read_bio->bi_private = r10_bio; 4833 read_bio->bi_end_io = end_reshape_read; 4834 r10_bio->master_bio = read_bio; 4835 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4836 4837 /* 4838 * Broadcast RESYNC message to other nodes, so all nodes would not 4839 * write to the region to avoid conflict. 4840 */ 4841 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4842 struct mdp_superblock_1 *sb = NULL; 4843 int sb_reshape_pos = 0; 4844 4845 conf->cluster_sync_low = sector_nr; 4846 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4847 sb = page_address(rdev->sb_page); 4848 if (sb) { 4849 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4850 /* 4851 * Set cluster_sync_low again if next address for array 4852 * reshape is less than cluster_sync_low. Since we can't 4853 * update cluster_sync_low until it has finished reshape. 4854 */ 4855 if (sb_reshape_pos < conf->cluster_sync_low) 4856 conf->cluster_sync_low = sb_reshape_pos; 4857 } 4858 4859 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4860 conf->cluster_sync_high); 4861 } 4862 4863 /* Now find the locations in the new layout */ 4864 __raid10_find_phys(&conf->geo, r10_bio); 4865 4866 blist = read_bio; 4867 read_bio->bi_next = NULL; 4868 4869 for (s = 0; s < conf->copies*2; s++) { 4870 struct bio *b; 4871 int d = r10_bio->devs[s/2].devnum; 4872 struct md_rdev *rdev2; 4873 if (s&1) { 4874 rdev2 = conf->mirrors[d].replacement; 4875 b = r10_bio->devs[s/2].repl_bio; 4876 } else { 4877 rdev2 = conf->mirrors[d].rdev; 4878 b = r10_bio->devs[s/2].bio; 4879 } 4880 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4881 continue; 4882 4883 bio_set_dev(b, rdev2->bdev); 4884 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4885 rdev2->new_data_offset; 4886 b->bi_end_io = end_reshape_write; 4887 b->bi_opf = REQ_OP_WRITE; 4888 b->bi_next = blist; 4889 blist = b; 4890 } 4891 4892 /* Now add as many pages as possible to all of these bios. */ 4893 4894 nr_sectors = 0; 4895 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4896 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4897 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4898 int len = (max_sectors - s) << 9; 4899 if (len > PAGE_SIZE) 4900 len = PAGE_SIZE; 4901 for (bio = blist; bio ; bio = bio->bi_next) { 4902 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 4903 bio->bi_status = BLK_STS_RESOURCE; 4904 bio_endio(bio); 4905 return sectors_done; 4906 } 4907 } 4908 sector_nr += len >> 9; 4909 nr_sectors += len >> 9; 4910 } 4911 r10_bio->sectors = nr_sectors; 4912 4913 /* Now submit the read */ 4914 md_sync_acct_bio(read_bio, r10_bio->sectors); 4915 atomic_inc(&r10_bio->remaining); 4916 read_bio->bi_next = NULL; 4917 submit_bio_noacct(read_bio); 4918 sectors_done += nr_sectors; 4919 if (sector_nr <= last) 4920 goto read_more; 4921 4922 lower_barrier(conf); 4923 4924 /* Now that we have done the whole section we can 4925 * update reshape_progress 4926 */ 4927 if (mddev->reshape_backwards) 4928 conf->reshape_progress -= sectors_done; 4929 else 4930 conf->reshape_progress += sectors_done; 4931 4932 return sectors_done; 4933 } 4934 4935 static void end_reshape_request(struct r10bio *r10_bio); 4936 static int handle_reshape_read_error(struct mddev *mddev, 4937 struct r10bio *r10_bio); 4938 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4939 { 4940 /* Reshape read completed. Hopefully we have a block 4941 * to write out. 4942 * If we got a read error then we do sync 1-page reads from 4943 * elsewhere until we find the data - or give up. 4944 */ 4945 struct r10conf *conf = mddev->private; 4946 int s; 4947 4948 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4949 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4950 /* Reshape has been aborted */ 4951 md_done_sync(mddev, r10_bio->sectors, 0); 4952 return; 4953 } 4954 4955 /* We definitely have the data in the pages, schedule the 4956 * writes. 4957 */ 4958 atomic_set(&r10_bio->remaining, 1); 4959 for (s = 0; s < conf->copies*2; s++) { 4960 struct bio *b; 4961 int d = r10_bio->devs[s/2].devnum; 4962 struct md_rdev *rdev; 4963 if (s&1) { 4964 rdev = conf->mirrors[d].replacement; 4965 b = r10_bio->devs[s/2].repl_bio; 4966 } else { 4967 rdev = conf->mirrors[d].rdev; 4968 b = r10_bio->devs[s/2].bio; 4969 } 4970 if (!rdev || test_bit(Faulty, &rdev->flags)) 4971 continue; 4972 4973 atomic_inc(&rdev->nr_pending); 4974 md_sync_acct_bio(b, r10_bio->sectors); 4975 atomic_inc(&r10_bio->remaining); 4976 b->bi_next = NULL; 4977 submit_bio_noacct(b); 4978 } 4979 end_reshape_request(r10_bio); 4980 } 4981 4982 static void end_reshape(struct r10conf *conf) 4983 { 4984 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4985 return; 4986 4987 spin_lock_irq(&conf->device_lock); 4988 conf->prev = conf->geo; 4989 md_finish_reshape(conf->mddev); 4990 smp_wmb(); 4991 conf->reshape_progress = MaxSector; 4992 conf->reshape_safe = MaxSector; 4993 spin_unlock_irq(&conf->device_lock); 4994 4995 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf)); 4996 conf->fullsync = 0; 4997 } 4998 4999 static void raid10_update_reshape_pos(struct mddev *mddev) 5000 { 5001 struct r10conf *conf = mddev->private; 5002 sector_t lo, hi; 5003 5004 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 5005 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 5006 || mddev->reshape_position == MaxSector) 5007 conf->reshape_progress = mddev->reshape_position; 5008 else 5009 WARN_ON_ONCE(1); 5010 } 5011 5012 static int handle_reshape_read_error(struct mddev *mddev, 5013 struct r10bio *r10_bio) 5014 { 5015 /* Use sync reads to get the blocks from somewhere else */ 5016 int sectors = r10_bio->sectors; 5017 struct r10conf *conf = mddev->private; 5018 struct r10bio *r10b; 5019 int slot = 0; 5020 int idx = 0; 5021 struct page **pages; 5022 5023 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 5024 if (!r10b) { 5025 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5026 return -ENOMEM; 5027 } 5028 5029 /* reshape IOs share pages from .devs[0].bio */ 5030 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 5031 5032 r10b->sector = r10_bio->sector; 5033 __raid10_find_phys(&conf->prev, r10b); 5034 5035 while (sectors) { 5036 int s = sectors; 5037 int success = 0; 5038 int first_slot = slot; 5039 5040 if (s > (PAGE_SIZE >> 9)) 5041 s = PAGE_SIZE >> 9; 5042 5043 while (!success) { 5044 int d = r10b->devs[slot].devnum; 5045 struct md_rdev *rdev = conf->mirrors[d].rdev; 5046 sector_t addr; 5047 if (rdev == NULL || 5048 test_bit(Faulty, &rdev->flags) || 5049 !test_bit(In_sync, &rdev->flags)) 5050 goto failed; 5051 5052 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5053 atomic_inc(&rdev->nr_pending); 5054 success = sync_page_io(rdev, 5055 addr, 5056 s << 9, 5057 pages[idx], 5058 REQ_OP_READ, false); 5059 rdev_dec_pending(rdev, mddev); 5060 if (success) 5061 break; 5062 failed: 5063 slot++; 5064 if (slot >= conf->copies) 5065 slot = 0; 5066 if (slot == first_slot) 5067 break; 5068 } 5069 if (!success) { 5070 /* couldn't read this block, must give up */ 5071 set_bit(MD_RECOVERY_INTR, 5072 &mddev->recovery); 5073 kfree(r10b); 5074 return -EIO; 5075 } 5076 sectors -= s; 5077 idx++; 5078 } 5079 kfree(r10b); 5080 return 0; 5081 } 5082 5083 static void end_reshape_write(struct bio *bio) 5084 { 5085 struct r10bio *r10_bio = get_resync_r10bio(bio); 5086 struct mddev *mddev = r10_bio->mddev; 5087 struct r10conf *conf = mddev->private; 5088 int d; 5089 int slot; 5090 int repl; 5091 struct md_rdev *rdev = NULL; 5092 5093 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5094 rdev = repl ? conf->mirrors[d].replacement : 5095 conf->mirrors[d].rdev; 5096 5097 if (bio->bi_status) { 5098 /* FIXME should record badblock */ 5099 md_error(mddev, rdev); 5100 } 5101 5102 rdev_dec_pending(rdev, mddev); 5103 end_reshape_request(r10_bio); 5104 } 5105 5106 static void end_reshape_request(struct r10bio *r10_bio) 5107 { 5108 if (!atomic_dec_and_test(&r10_bio->remaining)) 5109 return; 5110 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5111 bio_put(r10_bio->master_bio); 5112 put_buf(r10_bio); 5113 } 5114 5115 static void raid10_finish_reshape(struct mddev *mddev) 5116 { 5117 struct r10conf *conf = mddev->private; 5118 5119 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5120 return; 5121 5122 if (mddev->delta_disks > 0) { 5123 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5124 mddev->recovery_cp = mddev->resync_max_sectors; 5125 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5126 } 5127 mddev->resync_max_sectors = mddev->array_sectors; 5128 } else { 5129 int d; 5130 for (d = conf->geo.raid_disks ; 5131 d < conf->geo.raid_disks - mddev->delta_disks; 5132 d++) { 5133 struct md_rdev *rdev = conf->mirrors[d].rdev; 5134 if (rdev) 5135 clear_bit(In_sync, &rdev->flags); 5136 rdev = conf->mirrors[d].replacement; 5137 if (rdev) 5138 clear_bit(In_sync, &rdev->flags); 5139 } 5140 } 5141 mddev->layout = mddev->new_layout; 5142 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5143 mddev->reshape_position = MaxSector; 5144 mddev->delta_disks = 0; 5145 mddev->reshape_backwards = 0; 5146 } 5147 5148 static struct md_personality raid10_personality = 5149 { 5150 .name = "raid10", 5151 .level = 10, 5152 .owner = THIS_MODULE, 5153 .make_request = raid10_make_request, 5154 .run = raid10_run, 5155 .free = raid10_free, 5156 .status = raid10_status, 5157 .error_handler = raid10_error, 5158 .hot_add_disk = raid10_add_disk, 5159 .hot_remove_disk= raid10_remove_disk, 5160 .spare_active = raid10_spare_active, 5161 .sync_request = raid10_sync_request, 5162 .quiesce = raid10_quiesce, 5163 .size = raid10_size, 5164 .resize = raid10_resize, 5165 .takeover = raid10_takeover, 5166 .check_reshape = raid10_check_reshape, 5167 .start_reshape = raid10_start_reshape, 5168 .finish_reshape = raid10_finish_reshape, 5169 .update_reshape_pos = raid10_update_reshape_pos, 5170 }; 5171 5172 static int __init raid_init(void) 5173 { 5174 return register_md_personality(&raid10_personality); 5175 } 5176 5177 static void raid_exit(void) 5178 { 5179 unregister_md_personality(&raid10_personality); 5180 } 5181 5182 module_init(raid_init); 5183 module_exit(raid_exit); 5184 MODULE_LICENSE("GPL"); 5185 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5186 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5187 MODULE_ALIAS("md-raid10"); 5188 MODULE_ALIAS("md-level-10"); 5189