xref: /linux/drivers/md/raid10.c (revision c7e1e3ccfbd153c890240a391f258efaedfa94d0)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72 
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define	NR_RAID10_BIOS 256
77 
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89 
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91 
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97 
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 				int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio);
105 static void end_reshape(struct r10conf *conf);
106 
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 	struct r10conf *conf = data;
110 	int size = offsetof(struct r10bio, devs[conf->copies]);
111 
112 	/* allocate a r10bio with room for raid_disks entries in the
113 	 * bios array */
114 	return kzalloc(size, gfp_flags);
115 }
116 
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 	kfree(r10_bio);
120 }
121 
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129 
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 	struct r10conf *conf = data;
140 	struct page *page;
141 	struct r10bio *r10_bio;
142 	struct bio *bio;
143 	int i, j;
144 	int nalloc;
145 
146 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 	if (!r10_bio)
148 		return NULL;
149 
150 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 		nalloc = conf->copies; /* resync */
153 	else
154 		nalloc = 2; /* recovery */
155 
156 	/*
157 	 * Allocate bios.
158 	 */
159 	for (j = nalloc ; j-- ; ) {
160 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 		if (!bio)
162 			goto out_free_bio;
163 		r10_bio->devs[j].bio = bio;
164 		if (!conf->have_replacement)
165 			continue;
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].repl_bio = bio;
170 	}
171 	/*
172 	 * Allocate RESYNC_PAGES data pages and attach them
173 	 * where needed.
174 	 */
175 	for (j = 0 ; j < nalloc; j++) {
176 		struct bio *rbio = r10_bio->devs[j].repl_bio;
177 		bio = r10_bio->devs[j].bio;
178 		for (i = 0; i < RESYNC_PAGES; i++) {
179 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 					       &conf->mddev->recovery)) {
181 				/* we can share bv_page's during recovery
182 				 * and reshape */
183 				struct bio *rbio = r10_bio->devs[0].bio;
184 				page = rbio->bi_io_vec[i].bv_page;
185 				get_page(page);
186 			} else
187 				page = alloc_page(gfp_flags);
188 			if (unlikely(!page))
189 				goto out_free_pages;
190 
191 			bio->bi_io_vec[i].bv_page = page;
192 			if (rbio)
193 				rbio->bi_io_vec[i].bv_page = page;
194 		}
195 	}
196 
197 	return r10_bio;
198 
199 out_free_pages:
200 	for ( ; i > 0 ; i--)
201 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 	while (j--)
203 		for (i = 0; i < RESYNC_PAGES ; i++)
204 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 	j = 0;
206 out_free_bio:
207 	for ( ; j < nalloc; j++) {
208 		if (r10_bio->devs[j].bio)
209 			bio_put(r10_bio->devs[j].bio);
210 		if (r10_bio->devs[j].repl_bio)
211 			bio_put(r10_bio->devs[j].repl_bio);
212 	}
213 	r10bio_pool_free(r10_bio, conf);
214 	return NULL;
215 }
216 
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 	int i;
220 	struct r10conf *conf = data;
221 	struct r10bio *r10bio = __r10_bio;
222 	int j;
223 
224 	for (j=0; j < conf->copies; j++) {
225 		struct bio *bio = r10bio->devs[j].bio;
226 		if (bio) {
227 			for (i = 0; i < RESYNC_PAGES; i++) {
228 				safe_put_page(bio->bi_io_vec[i].bv_page);
229 				bio->bi_io_vec[i].bv_page = NULL;
230 			}
231 			bio_put(bio);
232 		}
233 		bio = r10bio->devs[j].repl_bio;
234 		if (bio)
235 			bio_put(bio);
236 	}
237 	r10bio_pool_free(r10bio, conf);
238 }
239 
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->copies; i++) {
245 		struct bio **bio = & r10_bio->devs[i].bio;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 		bio = &r10_bio->devs[i].repl_bio;
250 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 	}
254 }
255 
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 	struct r10conf *conf = r10_bio->mddev->private;
259 
260 	put_all_bios(conf, r10_bio);
261 	mempool_free(r10_bio, conf->r10bio_pool);
262 }
263 
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 	struct r10conf *conf = r10_bio->mddev->private;
267 
268 	mempool_free(r10_bio, conf->r10buf_pool);
269 
270 	lower_barrier(conf);
271 }
272 
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 	unsigned long flags;
276 	struct mddev *mddev = r10_bio->mddev;
277 	struct r10conf *conf = mddev->private;
278 
279 	spin_lock_irqsave(&conf->device_lock, flags);
280 	list_add(&r10_bio->retry_list, &conf->retry_list);
281 	conf->nr_queued ++;
282 	spin_unlock_irqrestore(&conf->device_lock, flags);
283 
284 	/* wake up frozen array... */
285 	wake_up(&conf->wait_barrier);
286 
287 	md_wakeup_thread(mddev->thread);
288 }
289 
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 	struct bio *bio = r10_bio->master_bio;
298 	int done;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	if (bio->bi_phys_segments) {
302 		unsigned long flags;
303 		spin_lock_irqsave(&conf->device_lock, flags);
304 		bio->bi_phys_segments--;
305 		done = (bio->bi_phys_segments == 0);
306 		spin_unlock_irqrestore(&conf->device_lock, flags);
307 	} else
308 		done = 1;
309 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 		bio->bi_error = -EIO;
311 	if (done) {
312 		bio_endio(bio);
313 		/*
314 		 * Wake up any possible resync thread that waits for the device
315 		 * to go idle.
316 		 */
317 		allow_barrier(conf);
318 	}
319 	free_r10bio(r10_bio);
320 }
321 
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 	struct r10conf *conf = r10_bio->mddev->private;
328 
329 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 		r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332 
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 			 struct bio *bio, int *slotp, int *replp)
338 {
339 	int slot;
340 	int repl = 0;
341 
342 	for (slot = 0; slot < conf->copies; slot++) {
343 		if (r10_bio->devs[slot].bio == bio)
344 			break;
345 		if (r10_bio->devs[slot].repl_bio == bio) {
346 			repl = 1;
347 			break;
348 		}
349 	}
350 
351 	BUG_ON(slot == conf->copies);
352 	update_head_pos(slot, r10_bio);
353 
354 	if (slotp)
355 		*slotp = slot;
356 	if (replp)
357 		*replp = repl;
358 	return r10_bio->devs[slot].devnum;
359 }
360 
361 static void raid10_end_read_request(struct bio *bio)
362 {
363 	int uptodate = !bio->bi_error;
364 	struct r10bio *r10_bio = bio->bi_private;
365 	int slot, dev;
366 	struct md_rdev *rdev;
367 	struct r10conf *conf = r10_bio->mddev->private;
368 
369 	slot = r10_bio->read_slot;
370 	dev = r10_bio->devs[slot].devnum;
371 	rdev = r10_bio->devs[slot].rdev;
372 	/*
373 	 * this branch is our 'one mirror IO has finished' event handler:
374 	 */
375 	update_head_pos(slot, r10_bio);
376 
377 	if (uptodate) {
378 		/*
379 		 * Set R10BIO_Uptodate in our master bio, so that
380 		 * we will return a good error code to the higher
381 		 * levels even if IO on some other mirrored buffer fails.
382 		 *
383 		 * The 'master' represents the composite IO operation to
384 		 * user-side. So if something waits for IO, then it will
385 		 * wait for the 'master' bio.
386 		 */
387 		set_bit(R10BIO_Uptodate, &r10_bio->state);
388 	} else {
389 		/* If all other devices that store this block have
390 		 * failed, we want to return the error upwards rather
391 		 * than fail the last device.  Here we redefine
392 		 * "uptodate" to mean "Don't want to retry"
393 		 */
394 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395 			     rdev->raid_disk))
396 			uptodate = 1;
397 	}
398 	if (uptodate) {
399 		raid_end_bio_io(r10_bio);
400 		rdev_dec_pending(rdev, conf->mddev);
401 	} else {
402 		/*
403 		 * oops, read error - keep the refcount on the rdev
404 		 */
405 		char b[BDEVNAME_SIZE];
406 		printk_ratelimited(KERN_ERR
407 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
408 				   mdname(conf->mddev),
409 				   bdevname(rdev->bdev, b),
410 				   (unsigned long long)r10_bio->sector);
411 		set_bit(R10BIO_ReadError, &r10_bio->state);
412 		reschedule_retry(r10_bio);
413 	}
414 }
415 
416 static void close_write(struct r10bio *r10_bio)
417 {
418 	/* clear the bitmap if all writes complete successfully */
419 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420 			r10_bio->sectors,
421 			!test_bit(R10BIO_Degraded, &r10_bio->state),
422 			0);
423 	md_write_end(r10_bio->mddev);
424 }
425 
426 static void one_write_done(struct r10bio *r10_bio)
427 {
428 	if (atomic_dec_and_test(&r10_bio->remaining)) {
429 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
430 			reschedule_retry(r10_bio);
431 		else {
432 			close_write(r10_bio);
433 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434 				reschedule_retry(r10_bio);
435 			else
436 				raid_end_bio_io(r10_bio);
437 		}
438 	}
439 }
440 
441 static void raid10_end_write_request(struct bio *bio)
442 {
443 	struct r10bio *r10_bio = bio->bi_private;
444 	int dev;
445 	int dec_rdev = 1;
446 	struct r10conf *conf = r10_bio->mddev->private;
447 	int slot, repl;
448 	struct md_rdev *rdev = NULL;
449 
450 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
451 
452 	if (repl)
453 		rdev = conf->mirrors[dev].replacement;
454 	if (!rdev) {
455 		smp_rmb();
456 		repl = 0;
457 		rdev = conf->mirrors[dev].rdev;
458 	}
459 	/*
460 	 * this branch is our 'one mirror IO has finished' event handler:
461 	 */
462 	if (bio->bi_error) {
463 		if (repl)
464 			/* Never record new bad blocks to replacement,
465 			 * just fail it.
466 			 */
467 			md_error(rdev->mddev, rdev);
468 		else {
469 			set_bit(WriteErrorSeen,	&rdev->flags);
470 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
471 				set_bit(MD_RECOVERY_NEEDED,
472 					&rdev->mddev->recovery);
473 			set_bit(R10BIO_WriteError, &r10_bio->state);
474 			dec_rdev = 0;
475 		}
476 	} else {
477 		/*
478 		 * Set R10BIO_Uptodate in our master bio, so that
479 		 * we will return a good error code for to the higher
480 		 * levels even if IO on some other mirrored buffer fails.
481 		 *
482 		 * The 'master' represents the composite IO operation to
483 		 * user-side. So if something waits for IO, then it will
484 		 * wait for the 'master' bio.
485 		 */
486 		sector_t first_bad;
487 		int bad_sectors;
488 
489 		/*
490 		 * Do not set R10BIO_Uptodate if the current device is
491 		 * rebuilding or Faulty. This is because we cannot use
492 		 * such device for properly reading the data back (we could
493 		 * potentially use it, if the current write would have felt
494 		 * before rdev->recovery_offset, but for simplicity we don't
495 		 * check this here.
496 		 */
497 		if (test_bit(In_sync, &rdev->flags) &&
498 		    !test_bit(Faulty, &rdev->flags))
499 			set_bit(R10BIO_Uptodate, &r10_bio->state);
500 
501 		/* Maybe we can clear some bad blocks. */
502 		if (is_badblock(rdev,
503 				r10_bio->devs[slot].addr,
504 				r10_bio->sectors,
505 				&first_bad, &bad_sectors)) {
506 			bio_put(bio);
507 			if (repl)
508 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
509 			else
510 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
511 			dec_rdev = 0;
512 			set_bit(R10BIO_MadeGood, &r10_bio->state);
513 		}
514 	}
515 
516 	/*
517 	 *
518 	 * Let's see if all mirrored write operations have finished
519 	 * already.
520 	 */
521 	one_write_done(r10_bio);
522 	if (dec_rdev)
523 		rdev_dec_pending(rdev, conf->mddev);
524 }
525 
526 /*
527  * RAID10 layout manager
528  * As well as the chunksize and raid_disks count, there are two
529  * parameters: near_copies and far_copies.
530  * near_copies * far_copies must be <= raid_disks.
531  * Normally one of these will be 1.
532  * If both are 1, we get raid0.
533  * If near_copies == raid_disks, we get raid1.
534  *
535  * Chunks are laid out in raid0 style with near_copies copies of the
536  * first chunk, followed by near_copies copies of the next chunk and
537  * so on.
538  * If far_copies > 1, then after 1/far_copies of the array has been assigned
539  * as described above, we start again with a device offset of near_copies.
540  * So we effectively have another copy of the whole array further down all
541  * the drives, but with blocks on different drives.
542  * With this layout, and block is never stored twice on the one device.
543  *
544  * raid10_find_phys finds the sector offset of a given virtual sector
545  * on each device that it is on.
546  *
547  * raid10_find_virt does the reverse mapping, from a device and a
548  * sector offset to a virtual address
549  */
550 
551 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
552 {
553 	int n,f;
554 	sector_t sector;
555 	sector_t chunk;
556 	sector_t stripe;
557 	int dev;
558 	int slot = 0;
559 	int last_far_set_start, last_far_set_size;
560 
561 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
562 	last_far_set_start *= geo->far_set_size;
563 
564 	last_far_set_size = geo->far_set_size;
565 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
566 
567 	/* now calculate first sector/dev */
568 	chunk = r10bio->sector >> geo->chunk_shift;
569 	sector = r10bio->sector & geo->chunk_mask;
570 
571 	chunk *= geo->near_copies;
572 	stripe = chunk;
573 	dev = sector_div(stripe, geo->raid_disks);
574 	if (geo->far_offset)
575 		stripe *= geo->far_copies;
576 
577 	sector += stripe << geo->chunk_shift;
578 
579 	/* and calculate all the others */
580 	for (n = 0; n < geo->near_copies; n++) {
581 		int d = dev;
582 		int set;
583 		sector_t s = sector;
584 		r10bio->devs[slot].devnum = d;
585 		r10bio->devs[slot].addr = s;
586 		slot++;
587 
588 		for (f = 1; f < geo->far_copies; f++) {
589 			set = d / geo->far_set_size;
590 			d += geo->near_copies;
591 
592 			if ((geo->raid_disks % geo->far_set_size) &&
593 			    (d > last_far_set_start)) {
594 				d -= last_far_set_start;
595 				d %= last_far_set_size;
596 				d += last_far_set_start;
597 			} else {
598 				d %= geo->far_set_size;
599 				d += geo->far_set_size * set;
600 			}
601 			s += geo->stride;
602 			r10bio->devs[slot].devnum = d;
603 			r10bio->devs[slot].addr = s;
604 			slot++;
605 		}
606 		dev++;
607 		if (dev >= geo->raid_disks) {
608 			dev = 0;
609 			sector += (geo->chunk_mask + 1);
610 		}
611 	}
612 }
613 
614 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
615 {
616 	struct geom *geo = &conf->geo;
617 
618 	if (conf->reshape_progress != MaxSector &&
619 	    ((r10bio->sector >= conf->reshape_progress) !=
620 	     conf->mddev->reshape_backwards)) {
621 		set_bit(R10BIO_Previous, &r10bio->state);
622 		geo = &conf->prev;
623 	} else
624 		clear_bit(R10BIO_Previous, &r10bio->state);
625 
626 	__raid10_find_phys(geo, r10bio);
627 }
628 
629 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
630 {
631 	sector_t offset, chunk, vchunk;
632 	/* Never use conf->prev as this is only called during resync
633 	 * or recovery, so reshape isn't happening
634 	 */
635 	struct geom *geo = &conf->geo;
636 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
637 	int far_set_size = geo->far_set_size;
638 	int last_far_set_start;
639 
640 	if (geo->raid_disks % geo->far_set_size) {
641 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
642 		last_far_set_start *= geo->far_set_size;
643 
644 		if (dev >= last_far_set_start) {
645 			far_set_size = geo->far_set_size;
646 			far_set_size += (geo->raid_disks % geo->far_set_size);
647 			far_set_start = last_far_set_start;
648 		}
649 	}
650 
651 	offset = sector & geo->chunk_mask;
652 	if (geo->far_offset) {
653 		int fc;
654 		chunk = sector >> geo->chunk_shift;
655 		fc = sector_div(chunk, geo->far_copies);
656 		dev -= fc * geo->near_copies;
657 		if (dev < far_set_start)
658 			dev += far_set_size;
659 	} else {
660 		while (sector >= geo->stride) {
661 			sector -= geo->stride;
662 			if (dev < (geo->near_copies + far_set_start))
663 				dev += far_set_size - geo->near_copies;
664 			else
665 				dev -= geo->near_copies;
666 		}
667 		chunk = sector >> geo->chunk_shift;
668 	}
669 	vchunk = chunk * geo->raid_disks + dev;
670 	sector_div(vchunk, geo->near_copies);
671 	return (vchunk << geo->chunk_shift) + offset;
672 }
673 
674 /*
675  * This routine returns the disk from which the requested read should
676  * be done. There is a per-array 'next expected sequential IO' sector
677  * number - if this matches on the next IO then we use the last disk.
678  * There is also a per-disk 'last know head position' sector that is
679  * maintained from IRQ contexts, both the normal and the resync IO
680  * completion handlers update this position correctly. If there is no
681  * perfect sequential match then we pick the disk whose head is closest.
682  *
683  * If there are 2 mirrors in the same 2 devices, performance degrades
684  * because position is mirror, not device based.
685  *
686  * The rdev for the device selected will have nr_pending incremented.
687  */
688 
689 /*
690  * FIXME: possibly should rethink readbalancing and do it differently
691  * depending on near_copies / far_copies geometry.
692  */
693 static struct md_rdev *read_balance(struct r10conf *conf,
694 				    struct r10bio *r10_bio,
695 				    int *max_sectors)
696 {
697 	const sector_t this_sector = r10_bio->sector;
698 	int disk, slot;
699 	int sectors = r10_bio->sectors;
700 	int best_good_sectors;
701 	sector_t new_distance, best_dist;
702 	struct md_rdev *best_rdev, *rdev = NULL;
703 	int do_balance;
704 	int best_slot;
705 	struct geom *geo = &conf->geo;
706 
707 	raid10_find_phys(conf, r10_bio);
708 	rcu_read_lock();
709 retry:
710 	sectors = r10_bio->sectors;
711 	best_slot = -1;
712 	best_rdev = NULL;
713 	best_dist = MaxSector;
714 	best_good_sectors = 0;
715 	do_balance = 1;
716 	/*
717 	 * Check if we can balance. We can balance on the whole
718 	 * device if no resync is going on (recovery is ok), or below
719 	 * the resync window. We take the first readable disk when
720 	 * above the resync window.
721 	 */
722 	if (conf->mddev->recovery_cp < MaxSector
723 	    && (this_sector + sectors >= conf->next_resync))
724 		do_balance = 0;
725 
726 	for (slot = 0; slot < conf->copies ; slot++) {
727 		sector_t first_bad;
728 		int bad_sectors;
729 		sector_t dev_sector;
730 
731 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
732 			continue;
733 		disk = r10_bio->devs[slot].devnum;
734 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
735 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
738 		if (rdev == NULL ||
739 		    test_bit(Faulty, &rdev->flags))
740 			continue;
741 		if (!test_bit(In_sync, &rdev->flags) &&
742 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
743 			continue;
744 
745 		dev_sector = r10_bio->devs[slot].addr;
746 		if (is_badblock(rdev, dev_sector, sectors,
747 				&first_bad, &bad_sectors)) {
748 			if (best_dist < MaxSector)
749 				/* Already have a better slot */
750 				continue;
751 			if (first_bad <= dev_sector) {
752 				/* Cannot read here.  If this is the
753 				 * 'primary' device, then we must not read
754 				 * beyond 'bad_sectors' from another device.
755 				 */
756 				bad_sectors -= (dev_sector - first_bad);
757 				if (!do_balance && sectors > bad_sectors)
758 					sectors = bad_sectors;
759 				if (best_good_sectors > sectors)
760 					best_good_sectors = sectors;
761 			} else {
762 				sector_t good_sectors =
763 					first_bad - dev_sector;
764 				if (good_sectors > best_good_sectors) {
765 					best_good_sectors = good_sectors;
766 					best_slot = slot;
767 					best_rdev = rdev;
768 				}
769 				if (!do_balance)
770 					/* Must read from here */
771 					break;
772 			}
773 			continue;
774 		} else
775 			best_good_sectors = sectors;
776 
777 		if (!do_balance)
778 			break;
779 
780 		/* This optimisation is debatable, and completely destroys
781 		 * sequential read speed for 'far copies' arrays.  So only
782 		 * keep it for 'near' arrays, and review those later.
783 		 */
784 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
785 			break;
786 
787 		/* for far > 1 always use the lowest address */
788 		if (geo->far_copies > 1)
789 			new_distance = r10_bio->devs[slot].addr;
790 		else
791 			new_distance = abs(r10_bio->devs[slot].addr -
792 					   conf->mirrors[disk].head_position);
793 		if (new_distance < best_dist) {
794 			best_dist = new_distance;
795 			best_slot = slot;
796 			best_rdev = rdev;
797 		}
798 	}
799 	if (slot >= conf->copies) {
800 		slot = best_slot;
801 		rdev = best_rdev;
802 	}
803 
804 	if (slot >= 0) {
805 		atomic_inc(&rdev->nr_pending);
806 		if (test_bit(Faulty, &rdev->flags)) {
807 			/* Cannot risk returning a device that failed
808 			 * before we inc'ed nr_pending
809 			 */
810 			rdev_dec_pending(rdev, conf->mddev);
811 			goto retry;
812 		}
813 		r10_bio->read_slot = slot;
814 	} else
815 		rdev = NULL;
816 	rcu_read_unlock();
817 	*max_sectors = best_good_sectors;
818 
819 	return rdev;
820 }
821 
822 static int raid10_congested(struct mddev *mddev, int bits)
823 {
824 	struct r10conf *conf = mddev->private;
825 	int i, ret = 0;
826 
827 	if ((bits & (1 << WB_async_congested)) &&
828 	    conf->pending_count >= max_queued_requests)
829 		return 1;
830 
831 	rcu_read_lock();
832 	for (i = 0;
833 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
834 		     && ret == 0;
835 	     i++) {
836 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
837 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
838 			struct request_queue *q = bdev_get_queue(rdev->bdev);
839 
840 			ret |= bdi_congested(&q->backing_dev_info, bits);
841 		}
842 	}
843 	rcu_read_unlock();
844 	return ret;
845 }
846 
847 static void flush_pending_writes(struct r10conf *conf)
848 {
849 	/* Any writes that have been queued but are awaiting
850 	 * bitmap updates get flushed here.
851 	 */
852 	spin_lock_irq(&conf->device_lock);
853 
854 	if (conf->pending_bio_list.head) {
855 		struct bio *bio;
856 		bio = bio_list_get(&conf->pending_bio_list);
857 		conf->pending_count = 0;
858 		spin_unlock_irq(&conf->device_lock);
859 		/* flush any pending bitmap writes to disk
860 		 * before proceeding w/ I/O */
861 		bitmap_unplug(conf->mddev->bitmap);
862 		wake_up(&conf->wait_barrier);
863 
864 		while (bio) { /* submit pending writes */
865 			struct bio *next = bio->bi_next;
866 			bio->bi_next = NULL;
867 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
868 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
869 				/* Just ignore it */
870 				bio_endio(bio);
871 			else
872 				generic_make_request(bio);
873 			bio = next;
874 		}
875 	} else
876 		spin_unlock_irq(&conf->device_lock);
877 }
878 
879 /* Barriers....
880  * Sometimes we need to suspend IO while we do something else,
881  * either some resync/recovery, or reconfigure the array.
882  * To do this we raise a 'barrier'.
883  * The 'barrier' is a counter that can be raised multiple times
884  * to count how many activities are happening which preclude
885  * normal IO.
886  * We can only raise the barrier if there is no pending IO.
887  * i.e. if nr_pending == 0.
888  * We choose only to raise the barrier if no-one is waiting for the
889  * barrier to go down.  This means that as soon as an IO request
890  * is ready, no other operations which require a barrier will start
891  * until the IO request has had a chance.
892  *
893  * So: regular IO calls 'wait_barrier'.  When that returns there
894  *    is no backgroup IO happening,  It must arrange to call
895  *    allow_barrier when it has finished its IO.
896  * backgroup IO calls must call raise_barrier.  Once that returns
897  *    there is no normal IO happeing.  It must arrange to call
898  *    lower_barrier when the particular background IO completes.
899  */
900 
901 static void raise_barrier(struct r10conf *conf, int force)
902 {
903 	BUG_ON(force && !conf->barrier);
904 	spin_lock_irq(&conf->resync_lock);
905 
906 	/* Wait until no block IO is waiting (unless 'force') */
907 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
908 			    conf->resync_lock);
909 
910 	/* block any new IO from starting */
911 	conf->barrier++;
912 
913 	/* Now wait for all pending IO to complete */
914 	wait_event_lock_irq(conf->wait_barrier,
915 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
916 			    conf->resync_lock);
917 
918 	spin_unlock_irq(&conf->resync_lock);
919 }
920 
921 static void lower_barrier(struct r10conf *conf)
922 {
923 	unsigned long flags;
924 	spin_lock_irqsave(&conf->resync_lock, flags);
925 	conf->barrier--;
926 	spin_unlock_irqrestore(&conf->resync_lock, flags);
927 	wake_up(&conf->wait_barrier);
928 }
929 
930 static void wait_barrier(struct r10conf *conf)
931 {
932 	spin_lock_irq(&conf->resync_lock);
933 	if (conf->barrier) {
934 		conf->nr_waiting++;
935 		/* Wait for the barrier to drop.
936 		 * However if there are already pending
937 		 * requests (preventing the barrier from
938 		 * rising completely), and the
939 		 * pre-process bio queue isn't empty,
940 		 * then don't wait, as we need to empty
941 		 * that queue to get the nr_pending
942 		 * count down.
943 		 */
944 		wait_event_lock_irq(conf->wait_barrier,
945 				    !conf->barrier ||
946 				    (conf->nr_pending &&
947 				     current->bio_list &&
948 				     !bio_list_empty(current->bio_list)),
949 				    conf->resync_lock);
950 		conf->nr_waiting--;
951 	}
952 	conf->nr_pending++;
953 	spin_unlock_irq(&conf->resync_lock);
954 }
955 
956 static void allow_barrier(struct r10conf *conf)
957 {
958 	unsigned long flags;
959 	spin_lock_irqsave(&conf->resync_lock, flags);
960 	conf->nr_pending--;
961 	spin_unlock_irqrestore(&conf->resync_lock, flags);
962 	wake_up(&conf->wait_barrier);
963 }
964 
965 static void freeze_array(struct r10conf *conf, int extra)
966 {
967 	/* stop syncio and normal IO and wait for everything to
968 	 * go quiet.
969 	 * We increment barrier and nr_waiting, and then
970 	 * wait until nr_pending match nr_queued+extra
971 	 * This is called in the context of one normal IO request
972 	 * that has failed. Thus any sync request that might be pending
973 	 * will be blocked by nr_pending, and we need to wait for
974 	 * pending IO requests to complete or be queued for re-try.
975 	 * Thus the number queued (nr_queued) plus this request (extra)
976 	 * must match the number of pending IOs (nr_pending) before
977 	 * we continue.
978 	 */
979 	spin_lock_irq(&conf->resync_lock);
980 	conf->barrier++;
981 	conf->nr_waiting++;
982 	wait_event_lock_irq_cmd(conf->wait_barrier,
983 				conf->nr_pending == conf->nr_queued+extra,
984 				conf->resync_lock,
985 				flush_pending_writes(conf));
986 
987 	spin_unlock_irq(&conf->resync_lock);
988 }
989 
990 static void unfreeze_array(struct r10conf *conf)
991 {
992 	/* reverse the effect of the freeze */
993 	spin_lock_irq(&conf->resync_lock);
994 	conf->barrier--;
995 	conf->nr_waiting--;
996 	wake_up(&conf->wait_barrier);
997 	spin_unlock_irq(&conf->resync_lock);
998 }
999 
1000 static sector_t choose_data_offset(struct r10bio *r10_bio,
1001 				   struct md_rdev *rdev)
1002 {
1003 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1004 	    test_bit(R10BIO_Previous, &r10_bio->state))
1005 		return rdev->data_offset;
1006 	else
1007 		return rdev->new_data_offset;
1008 }
1009 
1010 struct raid10_plug_cb {
1011 	struct blk_plug_cb	cb;
1012 	struct bio_list		pending;
1013 	int			pending_cnt;
1014 };
1015 
1016 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1017 {
1018 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1019 						   cb);
1020 	struct mddev *mddev = plug->cb.data;
1021 	struct r10conf *conf = mddev->private;
1022 	struct bio *bio;
1023 
1024 	if (from_schedule || current->bio_list) {
1025 		spin_lock_irq(&conf->device_lock);
1026 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1027 		conf->pending_count += plug->pending_cnt;
1028 		spin_unlock_irq(&conf->device_lock);
1029 		wake_up(&conf->wait_barrier);
1030 		md_wakeup_thread(mddev->thread);
1031 		kfree(plug);
1032 		return;
1033 	}
1034 
1035 	/* we aren't scheduling, so we can do the write-out directly. */
1036 	bio = bio_list_get(&plug->pending);
1037 	bitmap_unplug(mddev->bitmap);
1038 	wake_up(&conf->wait_barrier);
1039 
1040 	while (bio) { /* submit pending writes */
1041 		struct bio *next = bio->bi_next;
1042 		bio->bi_next = NULL;
1043 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1044 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1045 			/* Just ignore it */
1046 			bio_endio(bio);
1047 		else
1048 			generic_make_request(bio);
1049 		bio = next;
1050 	}
1051 	kfree(plug);
1052 }
1053 
1054 static void __make_request(struct mddev *mddev, struct bio *bio)
1055 {
1056 	struct r10conf *conf = mddev->private;
1057 	struct r10bio *r10_bio;
1058 	struct bio *read_bio;
1059 	int i;
1060 	const int rw = bio_data_dir(bio);
1061 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1062 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1063 	const unsigned long do_discard = (bio->bi_rw
1064 					  & (REQ_DISCARD | REQ_SECURE));
1065 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1066 	unsigned long flags;
1067 	struct md_rdev *blocked_rdev;
1068 	struct blk_plug_cb *cb;
1069 	struct raid10_plug_cb *plug = NULL;
1070 	int sectors_handled;
1071 	int max_sectors;
1072 	int sectors;
1073 
1074 	/*
1075 	 * Register the new request and wait if the reconstruction
1076 	 * thread has put up a bar for new requests.
1077 	 * Continue immediately if no resync is active currently.
1078 	 */
1079 	wait_barrier(conf);
1080 
1081 	sectors = bio_sectors(bio);
1082 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1083 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1084 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1085 		/* IO spans the reshape position.  Need to wait for
1086 		 * reshape to pass
1087 		 */
1088 		allow_barrier(conf);
1089 		wait_event(conf->wait_barrier,
1090 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1091 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1092 			   sectors);
1093 		wait_barrier(conf);
1094 	}
1095 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1096 	    bio_data_dir(bio) == WRITE &&
1097 	    (mddev->reshape_backwards
1098 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1099 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1100 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1101 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1102 		/* Need to update reshape_position in metadata */
1103 		mddev->reshape_position = conf->reshape_progress;
1104 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1105 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1106 		md_wakeup_thread(mddev->thread);
1107 		wait_event(mddev->sb_wait,
1108 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1109 
1110 		conf->reshape_safe = mddev->reshape_position;
1111 	}
1112 
1113 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1114 
1115 	r10_bio->master_bio = bio;
1116 	r10_bio->sectors = sectors;
1117 
1118 	r10_bio->mddev = mddev;
1119 	r10_bio->sector = bio->bi_iter.bi_sector;
1120 	r10_bio->state = 0;
1121 
1122 	/* We might need to issue multiple reads to different
1123 	 * devices if there are bad blocks around, so we keep
1124 	 * track of the number of reads in bio->bi_phys_segments.
1125 	 * If this is 0, there is only one r10_bio and no locking
1126 	 * will be needed when the request completes.  If it is
1127 	 * non-zero, then it is the number of not-completed requests.
1128 	 */
1129 	bio->bi_phys_segments = 0;
1130 	bio_clear_flag(bio, BIO_SEG_VALID);
1131 
1132 	if (rw == READ) {
1133 		/*
1134 		 * read balancing logic:
1135 		 */
1136 		struct md_rdev *rdev;
1137 		int slot;
1138 
1139 read_again:
1140 		rdev = read_balance(conf, r10_bio, &max_sectors);
1141 		if (!rdev) {
1142 			raid_end_bio_io(r10_bio);
1143 			return;
1144 		}
1145 		slot = r10_bio->read_slot;
1146 
1147 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1148 		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1149 			 max_sectors);
1150 
1151 		r10_bio->devs[slot].bio = read_bio;
1152 		r10_bio->devs[slot].rdev = rdev;
1153 
1154 		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1155 			choose_data_offset(r10_bio, rdev);
1156 		read_bio->bi_bdev = rdev->bdev;
1157 		read_bio->bi_end_io = raid10_end_read_request;
1158 		read_bio->bi_rw = READ | do_sync;
1159 		read_bio->bi_private = r10_bio;
1160 
1161 		if (max_sectors < r10_bio->sectors) {
1162 			/* Could not read all from this device, so we will
1163 			 * need another r10_bio.
1164 			 */
1165 			sectors_handled = (r10_bio->sector + max_sectors
1166 					   - bio->bi_iter.bi_sector);
1167 			r10_bio->sectors = max_sectors;
1168 			spin_lock_irq(&conf->device_lock);
1169 			if (bio->bi_phys_segments == 0)
1170 				bio->bi_phys_segments = 2;
1171 			else
1172 				bio->bi_phys_segments++;
1173 			spin_unlock_irq(&conf->device_lock);
1174 			/* Cannot call generic_make_request directly
1175 			 * as that will be queued in __generic_make_request
1176 			 * and subsequent mempool_alloc might block
1177 			 * waiting for it.  so hand bio over to raid10d.
1178 			 */
1179 			reschedule_retry(r10_bio);
1180 
1181 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1182 
1183 			r10_bio->master_bio = bio;
1184 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1185 			r10_bio->state = 0;
1186 			r10_bio->mddev = mddev;
1187 			r10_bio->sector = bio->bi_iter.bi_sector +
1188 				sectors_handled;
1189 			goto read_again;
1190 		} else
1191 			generic_make_request(read_bio);
1192 		return;
1193 	}
1194 
1195 	/*
1196 	 * WRITE:
1197 	 */
1198 	if (conf->pending_count >= max_queued_requests) {
1199 		md_wakeup_thread(mddev->thread);
1200 		wait_event(conf->wait_barrier,
1201 			   conf->pending_count < max_queued_requests);
1202 	}
1203 	/* first select target devices under rcu_lock and
1204 	 * inc refcount on their rdev.  Record them by setting
1205 	 * bios[x] to bio
1206 	 * If there are known/acknowledged bad blocks on any device
1207 	 * on which we have seen a write error, we want to avoid
1208 	 * writing to those blocks.  This potentially requires several
1209 	 * writes to write around the bad blocks.  Each set of writes
1210 	 * gets its own r10_bio with a set of bios attached.  The number
1211 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1212 	 * the read case.
1213 	 */
1214 
1215 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1216 	raid10_find_phys(conf, r10_bio);
1217 retry_write:
1218 	blocked_rdev = NULL;
1219 	rcu_read_lock();
1220 	max_sectors = r10_bio->sectors;
1221 
1222 	for (i = 0;  i < conf->copies; i++) {
1223 		int d = r10_bio->devs[i].devnum;
1224 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1225 		struct md_rdev *rrdev = rcu_dereference(
1226 			conf->mirrors[d].replacement);
1227 		if (rdev == rrdev)
1228 			rrdev = NULL;
1229 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1230 			atomic_inc(&rdev->nr_pending);
1231 			blocked_rdev = rdev;
1232 			break;
1233 		}
1234 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1235 			atomic_inc(&rrdev->nr_pending);
1236 			blocked_rdev = rrdev;
1237 			break;
1238 		}
1239 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1240 			rdev = NULL;
1241 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1242 			rrdev = NULL;
1243 
1244 		r10_bio->devs[i].bio = NULL;
1245 		r10_bio->devs[i].repl_bio = NULL;
1246 
1247 		if (!rdev && !rrdev) {
1248 			set_bit(R10BIO_Degraded, &r10_bio->state);
1249 			continue;
1250 		}
1251 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1252 			sector_t first_bad;
1253 			sector_t dev_sector = r10_bio->devs[i].addr;
1254 			int bad_sectors;
1255 			int is_bad;
1256 
1257 			is_bad = is_badblock(rdev, dev_sector,
1258 					     max_sectors,
1259 					     &first_bad, &bad_sectors);
1260 			if (is_bad < 0) {
1261 				/* Mustn't write here until the bad block
1262 				 * is acknowledged
1263 				 */
1264 				atomic_inc(&rdev->nr_pending);
1265 				set_bit(BlockedBadBlocks, &rdev->flags);
1266 				blocked_rdev = rdev;
1267 				break;
1268 			}
1269 			if (is_bad && first_bad <= dev_sector) {
1270 				/* Cannot write here at all */
1271 				bad_sectors -= (dev_sector - first_bad);
1272 				if (bad_sectors < max_sectors)
1273 					/* Mustn't write more than bad_sectors
1274 					 * to other devices yet
1275 					 */
1276 					max_sectors = bad_sectors;
1277 				/* We don't set R10BIO_Degraded as that
1278 				 * only applies if the disk is missing,
1279 				 * so it might be re-added, and we want to
1280 				 * know to recover this chunk.
1281 				 * In this case the device is here, and the
1282 				 * fact that this chunk is not in-sync is
1283 				 * recorded in the bad block log.
1284 				 */
1285 				continue;
1286 			}
1287 			if (is_bad) {
1288 				int good_sectors = first_bad - dev_sector;
1289 				if (good_sectors < max_sectors)
1290 					max_sectors = good_sectors;
1291 			}
1292 		}
1293 		if (rdev) {
1294 			r10_bio->devs[i].bio = bio;
1295 			atomic_inc(&rdev->nr_pending);
1296 		}
1297 		if (rrdev) {
1298 			r10_bio->devs[i].repl_bio = bio;
1299 			atomic_inc(&rrdev->nr_pending);
1300 		}
1301 	}
1302 	rcu_read_unlock();
1303 
1304 	if (unlikely(blocked_rdev)) {
1305 		/* Have to wait for this device to get unblocked, then retry */
1306 		int j;
1307 		int d;
1308 
1309 		for (j = 0; j < i; j++) {
1310 			if (r10_bio->devs[j].bio) {
1311 				d = r10_bio->devs[j].devnum;
1312 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1313 			}
1314 			if (r10_bio->devs[j].repl_bio) {
1315 				struct md_rdev *rdev;
1316 				d = r10_bio->devs[j].devnum;
1317 				rdev = conf->mirrors[d].replacement;
1318 				if (!rdev) {
1319 					/* Race with remove_disk */
1320 					smp_mb();
1321 					rdev = conf->mirrors[d].rdev;
1322 				}
1323 				rdev_dec_pending(rdev, mddev);
1324 			}
1325 		}
1326 		allow_barrier(conf);
1327 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1328 		wait_barrier(conf);
1329 		goto retry_write;
1330 	}
1331 
1332 	if (max_sectors < r10_bio->sectors) {
1333 		/* We are splitting this into multiple parts, so
1334 		 * we need to prepare for allocating another r10_bio.
1335 		 */
1336 		r10_bio->sectors = max_sectors;
1337 		spin_lock_irq(&conf->device_lock);
1338 		if (bio->bi_phys_segments == 0)
1339 			bio->bi_phys_segments = 2;
1340 		else
1341 			bio->bi_phys_segments++;
1342 		spin_unlock_irq(&conf->device_lock);
1343 	}
1344 	sectors_handled = r10_bio->sector + max_sectors -
1345 		bio->bi_iter.bi_sector;
1346 
1347 	atomic_set(&r10_bio->remaining, 1);
1348 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1349 
1350 	for (i = 0; i < conf->copies; i++) {
1351 		struct bio *mbio;
1352 		int d = r10_bio->devs[i].devnum;
1353 		if (r10_bio->devs[i].bio) {
1354 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1355 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1356 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1357 				 max_sectors);
1358 			r10_bio->devs[i].bio = mbio;
1359 
1360 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1361 					   choose_data_offset(r10_bio,
1362 							      rdev));
1363 			mbio->bi_bdev = rdev->bdev;
1364 			mbio->bi_end_io	= raid10_end_write_request;
1365 			mbio->bi_rw =
1366 				WRITE | do_sync | do_fua | do_discard | do_same;
1367 			mbio->bi_private = r10_bio;
1368 
1369 			atomic_inc(&r10_bio->remaining);
1370 
1371 			cb = blk_check_plugged(raid10_unplug, mddev,
1372 					       sizeof(*plug));
1373 			if (cb)
1374 				plug = container_of(cb, struct raid10_plug_cb,
1375 						    cb);
1376 			else
1377 				plug = NULL;
1378 			spin_lock_irqsave(&conf->device_lock, flags);
1379 			if (plug) {
1380 				bio_list_add(&plug->pending, mbio);
1381 				plug->pending_cnt++;
1382 			} else {
1383 				bio_list_add(&conf->pending_bio_list, mbio);
1384 				conf->pending_count++;
1385 			}
1386 			spin_unlock_irqrestore(&conf->device_lock, flags);
1387 			if (!plug)
1388 				md_wakeup_thread(mddev->thread);
1389 		}
1390 
1391 		if (r10_bio->devs[i].repl_bio) {
1392 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1393 			if (rdev == NULL) {
1394 				/* Replacement just got moved to main 'rdev' */
1395 				smp_mb();
1396 				rdev = conf->mirrors[d].rdev;
1397 			}
1398 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1399 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1400 				 max_sectors);
1401 			r10_bio->devs[i].repl_bio = mbio;
1402 
1403 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1404 					   choose_data_offset(
1405 						   r10_bio, rdev));
1406 			mbio->bi_bdev = rdev->bdev;
1407 			mbio->bi_end_io	= raid10_end_write_request;
1408 			mbio->bi_rw =
1409 				WRITE | do_sync | do_fua | do_discard | do_same;
1410 			mbio->bi_private = r10_bio;
1411 
1412 			atomic_inc(&r10_bio->remaining);
1413 			spin_lock_irqsave(&conf->device_lock, flags);
1414 			bio_list_add(&conf->pending_bio_list, mbio);
1415 			conf->pending_count++;
1416 			spin_unlock_irqrestore(&conf->device_lock, flags);
1417 			if (!mddev_check_plugged(mddev))
1418 				md_wakeup_thread(mddev->thread);
1419 		}
1420 	}
1421 
1422 	/* Don't remove the bias on 'remaining' (one_write_done) until
1423 	 * after checking if we need to go around again.
1424 	 */
1425 
1426 	if (sectors_handled < bio_sectors(bio)) {
1427 		one_write_done(r10_bio);
1428 		/* We need another r10_bio.  It has already been counted
1429 		 * in bio->bi_phys_segments.
1430 		 */
1431 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1432 
1433 		r10_bio->master_bio = bio;
1434 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1435 
1436 		r10_bio->mddev = mddev;
1437 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1438 		r10_bio->state = 0;
1439 		goto retry_write;
1440 	}
1441 	one_write_done(r10_bio);
1442 }
1443 
1444 static void make_request(struct mddev *mddev, struct bio *bio)
1445 {
1446 	struct r10conf *conf = mddev->private;
1447 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1448 	int chunk_sects = chunk_mask + 1;
1449 
1450 	struct bio *split;
1451 
1452 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1453 		md_flush_request(mddev, bio);
1454 		return;
1455 	}
1456 
1457 	md_write_start(mddev, bio);
1458 
1459 	do {
1460 
1461 		/*
1462 		 * If this request crosses a chunk boundary, we need to split
1463 		 * it.
1464 		 */
1465 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1466 			     bio_sectors(bio) > chunk_sects
1467 			     && (conf->geo.near_copies < conf->geo.raid_disks
1468 				 || conf->prev.near_copies <
1469 				 conf->prev.raid_disks))) {
1470 			split = bio_split(bio, chunk_sects -
1471 					  (bio->bi_iter.bi_sector &
1472 					   (chunk_sects - 1)),
1473 					  GFP_NOIO, fs_bio_set);
1474 			bio_chain(split, bio);
1475 		} else {
1476 			split = bio;
1477 		}
1478 
1479 		__make_request(mddev, split);
1480 	} while (split != bio);
1481 
1482 	/* In case raid10d snuck in to freeze_array */
1483 	wake_up(&conf->wait_barrier);
1484 }
1485 
1486 static void status(struct seq_file *seq, struct mddev *mddev)
1487 {
1488 	struct r10conf *conf = mddev->private;
1489 	int i;
1490 
1491 	if (conf->geo.near_copies < conf->geo.raid_disks)
1492 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1493 	if (conf->geo.near_copies > 1)
1494 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1495 	if (conf->geo.far_copies > 1) {
1496 		if (conf->geo.far_offset)
1497 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1498 		else
1499 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1500 	}
1501 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1502 					conf->geo.raid_disks - mddev->degraded);
1503 	for (i = 0; i < conf->geo.raid_disks; i++)
1504 		seq_printf(seq, "%s",
1505 			      conf->mirrors[i].rdev &&
1506 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1507 	seq_printf(seq, "]");
1508 }
1509 
1510 /* check if there are enough drives for
1511  * every block to appear on atleast one.
1512  * Don't consider the device numbered 'ignore'
1513  * as we might be about to remove it.
1514  */
1515 static int _enough(struct r10conf *conf, int previous, int ignore)
1516 {
1517 	int first = 0;
1518 	int has_enough = 0;
1519 	int disks, ncopies;
1520 	if (previous) {
1521 		disks = conf->prev.raid_disks;
1522 		ncopies = conf->prev.near_copies;
1523 	} else {
1524 		disks = conf->geo.raid_disks;
1525 		ncopies = conf->geo.near_copies;
1526 	}
1527 
1528 	rcu_read_lock();
1529 	do {
1530 		int n = conf->copies;
1531 		int cnt = 0;
1532 		int this = first;
1533 		while (n--) {
1534 			struct md_rdev *rdev;
1535 			if (this != ignore &&
1536 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1537 			    test_bit(In_sync, &rdev->flags))
1538 				cnt++;
1539 			this = (this+1) % disks;
1540 		}
1541 		if (cnt == 0)
1542 			goto out;
1543 		first = (first + ncopies) % disks;
1544 	} while (first != 0);
1545 	has_enough = 1;
1546 out:
1547 	rcu_read_unlock();
1548 	return has_enough;
1549 }
1550 
1551 static int enough(struct r10conf *conf, int ignore)
1552 {
1553 	/* when calling 'enough', both 'prev' and 'geo' must
1554 	 * be stable.
1555 	 * This is ensured if ->reconfig_mutex or ->device_lock
1556 	 * is held.
1557 	 */
1558 	return _enough(conf, 0, ignore) &&
1559 		_enough(conf, 1, ignore);
1560 }
1561 
1562 static void error(struct mddev *mddev, struct md_rdev *rdev)
1563 {
1564 	char b[BDEVNAME_SIZE];
1565 	struct r10conf *conf = mddev->private;
1566 	unsigned long flags;
1567 
1568 	/*
1569 	 * If it is not operational, then we have already marked it as dead
1570 	 * else if it is the last working disks, ignore the error, let the
1571 	 * next level up know.
1572 	 * else mark the drive as failed
1573 	 */
1574 	spin_lock_irqsave(&conf->device_lock, flags);
1575 	if (test_bit(In_sync, &rdev->flags)
1576 	    && !enough(conf, rdev->raid_disk)) {
1577 		/*
1578 		 * Don't fail the drive, just return an IO error.
1579 		 */
1580 		spin_unlock_irqrestore(&conf->device_lock, flags);
1581 		return;
1582 	}
1583 	if (test_and_clear_bit(In_sync, &rdev->flags))
1584 		mddev->degraded++;
1585 	/*
1586 	 * If recovery is running, make sure it aborts.
1587 	 */
1588 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1589 	set_bit(Blocked, &rdev->flags);
1590 	set_bit(Faulty, &rdev->flags);
1591 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1592 	spin_unlock_irqrestore(&conf->device_lock, flags);
1593 	printk(KERN_ALERT
1594 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1595 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1596 	       mdname(mddev), bdevname(rdev->bdev, b),
1597 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1598 }
1599 
1600 static void print_conf(struct r10conf *conf)
1601 {
1602 	int i;
1603 	struct raid10_info *tmp;
1604 
1605 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1606 	if (!conf) {
1607 		printk(KERN_DEBUG "(!conf)\n");
1608 		return;
1609 	}
1610 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1611 		conf->geo.raid_disks);
1612 
1613 	for (i = 0; i < conf->geo.raid_disks; i++) {
1614 		char b[BDEVNAME_SIZE];
1615 		tmp = conf->mirrors + i;
1616 		if (tmp->rdev)
1617 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1618 				i, !test_bit(In_sync, &tmp->rdev->flags),
1619 			        !test_bit(Faulty, &tmp->rdev->flags),
1620 				bdevname(tmp->rdev->bdev,b));
1621 	}
1622 }
1623 
1624 static void close_sync(struct r10conf *conf)
1625 {
1626 	wait_barrier(conf);
1627 	allow_barrier(conf);
1628 
1629 	mempool_destroy(conf->r10buf_pool);
1630 	conf->r10buf_pool = NULL;
1631 }
1632 
1633 static int raid10_spare_active(struct mddev *mddev)
1634 {
1635 	int i;
1636 	struct r10conf *conf = mddev->private;
1637 	struct raid10_info *tmp;
1638 	int count = 0;
1639 	unsigned long flags;
1640 
1641 	/*
1642 	 * Find all non-in_sync disks within the RAID10 configuration
1643 	 * and mark them in_sync
1644 	 */
1645 	for (i = 0; i < conf->geo.raid_disks; i++) {
1646 		tmp = conf->mirrors + i;
1647 		if (tmp->replacement
1648 		    && tmp->replacement->recovery_offset == MaxSector
1649 		    && !test_bit(Faulty, &tmp->replacement->flags)
1650 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1651 			/* Replacement has just become active */
1652 			if (!tmp->rdev
1653 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1654 				count++;
1655 			if (tmp->rdev) {
1656 				/* Replaced device not technically faulty,
1657 				 * but we need to be sure it gets removed
1658 				 * and never re-added.
1659 				 */
1660 				set_bit(Faulty, &tmp->rdev->flags);
1661 				sysfs_notify_dirent_safe(
1662 					tmp->rdev->sysfs_state);
1663 			}
1664 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1665 		} else if (tmp->rdev
1666 			   && tmp->rdev->recovery_offset == MaxSector
1667 			   && !test_bit(Faulty, &tmp->rdev->flags)
1668 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1669 			count++;
1670 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1671 		}
1672 	}
1673 	spin_lock_irqsave(&conf->device_lock, flags);
1674 	mddev->degraded -= count;
1675 	spin_unlock_irqrestore(&conf->device_lock, flags);
1676 
1677 	print_conf(conf);
1678 	return count;
1679 }
1680 
1681 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1682 {
1683 	struct r10conf *conf = mddev->private;
1684 	int err = -EEXIST;
1685 	int mirror;
1686 	int first = 0;
1687 	int last = conf->geo.raid_disks - 1;
1688 
1689 	if (mddev->recovery_cp < MaxSector)
1690 		/* only hot-add to in-sync arrays, as recovery is
1691 		 * very different from resync
1692 		 */
1693 		return -EBUSY;
1694 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1695 		return -EINVAL;
1696 
1697 	if (rdev->raid_disk >= 0)
1698 		first = last = rdev->raid_disk;
1699 
1700 	if (rdev->saved_raid_disk >= first &&
1701 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1702 		mirror = rdev->saved_raid_disk;
1703 	else
1704 		mirror = first;
1705 	for ( ; mirror <= last ; mirror++) {
1706 		struct raid10_info *p = &conf->mirrors[mirror];
1707 		if (p->recovery_disabled == mddev->recovery_disabled)
1708 			continue;
1709 		if (p->rdev) {
1710 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1711 			    p->replacement != NULL)
1712 				continue;
1713 			clear_bit(In_sync, &rdev->flags);
1714 			set_bit(Replacement, &rdev->flags);
1715 			rdev->raid_disk = mirror;
1716 			err = 0;
1717 			if (mddev->gendisk)
1718 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1719 						  rdev->data_offset << 9);
1720 			conf->fullsync = 1;
1721 			rcu_assign_pointer(p->replacement, rdev);
1722 			break;
1723 		}
1724 
1725 		if (mddev->gendisk)
1726 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1727 					  rdev->data_offset << 9);
1728 
1729 		p->head_position = 0;
1730 		p->recovery_disabled = mddev->recovery_disabled - 1;
1731 		rdev->raid_disk = mirror;
1732 		err = 0;
1733 		if (rdev->saved_raid_disk != mirror)
1734 			conf->fullsync = 1;
1735 		rcu_assign_pointer(p->rdev, rdev);
1736 		break;
1737 	}
1738 	md_integrity_add_rdev(rdev, mddev);
1739 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1740 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1741 
1742 	print_conf(conf);
1743 	return err;
1744 }
1745 
1746 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1747 {
1748 	struct r10conf *conf = mddev->private;
1749 	int err = 0;
1750 	int number = rdev->raid_disk;
1751 	struct md_rdev **rdevp;
1752 	struct raid10_info *p = conf->mirrors + number;
1753 
1754 	print_conf(conf);
1755 	if (rdev == p->rdev)
1756 		rdevp = &p->rdev;
1757 	else if (rdev == p->replacement)
1758 		rdevp = &p->replacement;
1759 	else
1760 		return 0;
1761 
1762 	if (test_bit(In_sync, &rdev->flags) ||
1763 	    atomic_read(&rdev->nr_pending)) {
1764 		err = -EBUSY;
1765 		goto abort;
1766 	}
1767 	/* Only remove faulty devices if recovery
1768 	 * is not possible.
1769 	 */
1770 	if (!test_bit(Faulty, &rdev->flags) &&
1771 	    mddev->recovery_disabled != p->recovery_disabled &&
1772 	    (!p->replacement || p->replacement == rdev) &&
1773 	    number < conf->geo.raid_disks &&
1774 	    enough(conf, -1)) {
1775 		err = -EBUSY;
1776 		goto abort;
1777 	}
1778 	*rdevp = NULL;
1779 	synchronize_rcu();
1780 	if (atomic_read(&rdev->nr_pending)) {
1781 		/* lost the race, try later */
1782 		err = -EBUSY;
1783 		*rdevp = rdev;
1784 		goto abort;
1785 	} else if (p->replacement) {
1786 		/* We must have just cleared 'rdev' */
1787 		p->rdev = p->replacement;
1788 		clear_bit(Replacement, &p->replacement->flags);
1789 		smp_mb(); /* Make sure other CPUs may see both as identical
1790 			   * but will never see neither -- if they are careful.
1791 			   */
1792 		p->replacement = NULL;
1793 		clear_bit(WantReplacement, &rdev->flags);
1794 	} else
1795 		/* We might have just remove the Replacement as faulty
1796 		 * Clear the flag just in case
1797 		 */
1798 		clear_bit(WantReplacement, &rdev->flags);
1799 
1800 	err = md_integrity_register(mddev);
1801 
1802 abort:
1803 
1804 	print_conf(conf);
1805 	return err;
1806 }
1807 
1808 static void end_sync_read(struct bio *bio)
1809 {
1810 	struct r10bio *r10_bio = bio->bi_private;
1811 	struct r10conf *conf = r10_bio->mddev->private;
1812 	int d;
1813 
1814 	if (bio == r10_bio->master_bio) {
1815 		/* this is a reshape read */
1816 		d = r10_bio->read_slot; /* really the read dev */
1817 	} else
1818 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1819 
1820 	if (!bio->bi_error)
1821 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1822 	else
1823 		/* The write handler will notice the lack of
1824 		 * R10BIO_Uptodate and record any errors etc
1825 		 */
1826 		atomic_add(r10_bio->sectors,
1827 			   &conf->mirrors[d].rdev->corrected_errors);
1828 
1829 	/* for reconstruct, we always reschedule after a read.
1830 	 * for resync, only after all reads
1831 	 */
1832 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1833 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1834 	    atomic_dec_and_test(&r10_bio->remaining)) {
1835 		/* we have read all the blocks,
1836 		 * do the comparison in process context in raid10d
1837 		 */
1838 		reschedule_retry(r10_bio);
1839 	}
1840 }
1841 
1842 static void end_sync_request(struct r10bio *r10_bio)
1843 {
1844 	struct mddev *mddev = r10_bio->mddev;
1845 
1846 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1847 		if (r10_bio->master_bio == NULL) {
1848 			/* the primary of several recovery bios */
1849 			sector_t s = r10_bio->sectors;
1850 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1851 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1852 				reschedule_retry(r10_bio);
1853 			else
1854 				put_buf(r10_bio);
1855 			md_done_sync(mddev, s, 1);
1856 			break;
1857 		} else {
1858 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1859 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1860 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1861 				reschedule_retry(r10_bio);
1862 			else
1863 				put_buf(r10_bio);
1864 			r10_bio = r10_bio2;
1865 		}
1866 	}
1867 }
1868 
1869 static void end_sync_write(struct bio *bio)
1870 {
1871 	struct r10bio *r10_bio = bio->bi_private;
1872 	struct mddev *mddev = r10_bio->mddev;
1873 	struct r10conf *conf = mddev->private;
1874 	int d;
1875 	sector_t first_bad;
1876 	int bad_sectors;
1877 	int slot;
1878 	int repl;
1879 	struct md_rdev *rdev = NULL;
1880 
1881 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1882 	if (repl)
1883 		rdev = conf->mirrors[d].replacement;
1884 	else
1885 		rdev = conf->mirrors[d].rdev;
1886 
1887 	if (bio->bi_error) {
1888 		if (repl)
1889 			md_error(mddev, rdev);
1890 		else {
1891 			set_bit(WriteErrorSeen, &rdev->flags);
1892 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1893 				set_bit(MD_RECOVERY_NEEDED,
1894 					&rdev->mddev->recovery);
1895 			set_bit(R10BIO_WriteError, &r10_bio->state);
1896 		}
1897 	} else if (is_badblock(rdev,
1898 			     r10_bio->devs[slot].addr,
1899 			     r10_bio->sectors,
1900 			     &first_bad, &bad_sectors))
1901 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1902 
1903 	rdev_dec_pending(rdev, mddev);
1904 
1905 	end_sync_request(r10_bio);
1906 }
1907 
1908 /*
1909  * Note: sync and recover and handled very differently for raid10
1910  * This code is for resync.
1911  * For resync, we read through virtual addresses and read all blocks.
1912  * If there is any error, we schedule a write.  The lowest numbered
1913  * drive is authoritative.
1914  * However requests come for physical address, so we need to map.
1915  * For every physical address there are raid_disks/copies virtual addresses,
1916  * which is always are least one, but is not necessarly an integer.
1917  * This means that a physical address can span multiple chunks, so we may
1918  * have to submit multiple io requests for a single sync request.
1919  */
1920 /*
1921  * We check if all blocks are in-sync and only write to blocks that
1922  * aren't in sync
1923  */
1924 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1925 {
1926 	struct r10conf *conf = mddev->private;
1927 	int i, first;
1928 	struct bio *tbio, *fbio;
1929 	int vcnt;
1930 
1931 	atomic_set(&r10_bio->remaining, 1);
1932 
1933 	/* find the first device with a block */
1934 	for (i=0; i<conf->copies; i++)
1935 		if (!r10_bio->devs[i].bio->bi_error)
1936 			break;
1937 
1938 	if (i == conf->copies)
1939 		goto done;
1940 
1941 	first = i;
1942 	fbio = r10_bio->devs[i].bio;
1943 
1944 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1945 	/* now find blocks with errors */
1946 	for (i=0 ; i < conf->copies ; i++) {
1947 		int  j, d;
1948 
1949 		tbio = r10_bio->devs[i].bio;
1950 
1951 		if (tbio->bi_end_io != end_sync_read)
1952 			continue;
1953 		if (i == first)
1954 			continue;
1955 		if (!r10_bio->devs[i].bio->bi_error) {
1956 			/* We know that the bi_io_vec layout is the same for
1957 			 * both 'first' and 'i', so we just compare them.
1958 			 * All vec entries are PAGE_SIZE;
1959 			 */
1960 			int sectors = r10_bio->sectors;
1961 			for (j = 0; j < vcnt; j++) {
1962 				int len = PAGE_SIZE;
1963 				if (sectors < (len / 512))
1964 					len = sectors * 512;
1965 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1966 					   page_address(tbio->bi_io_vec[j].bv_page),
1967 					   len))
1968 					break;
1969 				sectors -= len/512;
1970 			}
1971 			if (j == vcnt)
1972 				continue;
1973 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1974 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1975 				/* Don't fix anything. */
1976 				continue;
1977 		}
1978 		/* Ok, we need to write this bio, either to correct an
1979 		 * inconsistency or to correct an unreadable block.
1980 		 * First we need to fixup bv_offset, bv_len and
1981 		 * bi_vecs, as the read request might have corrupted these
1982 		 */
1983 		bio_reset(tbio);
1984 
1985 		tbio->bi_vcnt = vcnt;
1986 		tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1987 		tbio->bi_rw = WRITE;
1988 		tbio->bi_private = r10_bio;
1989 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1990 		tbio->bi_end_io = end_sync_write;
1991 
1992 		bio_copy_data(tbio, fbio);
1993 
1994 		d = r10_bio->devs[i].devnum;
1995 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1996 		atomic_inc(&r10_bio->remaining);
1997 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1998 
1999 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2000 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2001 		generic_make_request(tbio);
2002 	}
2003 
2004 	/* Now write out to any replacement devices
2005 	 * that are active
2006 	 */
2007 	for (i = 0; i < conf->copies; i++) {
2008 		int d;
2009 
2010 		tbio = r10_bio->devs[i].repl_bio;
2011 		if (!tbio || !tbio->bi_end_io)
2012 			continue;
2013 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2014 		    && r10_bio->devs[i].bio != fbio)
2015 			bio_copy_data(tbio, fbio);
2016 		d = r10_bio->devs[i].devnum;
2017 		atomic_inc(&r10_bio->remaining);
2018 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2019 			     bio_sectors(tbio));
2020 		generic_make_request(tbio);
2021 	}
2022 
2023 done:
2024 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2025 		md_done_sync(mddev, r10_bio->sectors, 1);
2026 		put_buf(r10_bio);
2027 	}
2028 }
2029 
2030 /*
2031  * Now for the recovery code.
2032  * Recovery happens across physical sectors.
2033  * We recover all non-is_sync drives by finding the virtual address of
2034  * each, and then choose a working drive that also has that virt address.
2035  * There is a separate r10_bio for each non-in_sync drive.
2036  * Only the first two slots are in use. The first for reading,
2037  * The second for writing.
2038  *
2039  */
2040 static void fix_recovery_read_error(struct r10bio *r10_bio)
2041 {
2042 	/* We got a read error during recovery.
2043 	 * We repeat the read in smaller page-sized sections.
2044 	 * If a read succeeds, write it to the new device or record
2045 	 * a bad block if we cannot.
2046 	 * If a read fails, record a bad block on both old and
2047 	 * new devices.
2048 	 */
2049 	struct mddev *mddev = r10_bio->mddev;
2050 	struct r10conf *conf = mddev->private;
2051 	struct bio *bio = r10_bio->devs[0].bio;
2052 	sector_t sect = 0;
2053 	int sectors = r10_bio->sectors;
2054 	int idx = 0;
2055 	int dr = r10_bio->devs[0].devnum;
2056 	int dw = r10_bio->devs[1].devnum;
2057 
2058 	while (sectors) {
2059 		int s = sectors;
2060 		struct md_rdev *rdev;
2061 		sector_t addr;
2062 		int ok;
2063 
2064 		if (s > (PAGE_SIZE>>9))
2065 			s = PAGE_SIZE >> 9;
2066 
2067 		rdev = conf->mirrors[dr].rdev;
2068 		addr = r10_bio->devs[0].addr + sect,
2069 		ok = sync_page_io(rdev,
2070 				  addr,
2071 				  s << 9,
2072 				  bio->bi_io_vec[idx].bv_page,
2073 				  READ, false);
2074 		if (ok) {
2075 			rdev = conf->mirrors[dw].rdev;
2076 			addr = r10_bio->devs[1].addr + sect;
2077 			ok = sync_page_io(rdev,
2078 					  addr,
2079 					  s << 9,
2080 					  bio->bi_io_vec[idx].bv_page,
2081 					  WRITE, false);
2082 			if (!ok) {
2083 				set_bit(WriteErrorSeen, &rdev->flags);
2084 				if (!test_and_set_bit(WantReplacement,
2085 						      &rdev->flags))
2086 					set_bit(MD_RECOVERY_NEEDED,
2087 						&rdev->mddev->recovery);
2088 			}
2089 		}
2090 		if (!ok) {
2091 			/* We don't worry if we cannot set a bad block -
2092 			 * it really is bad so there is no loss in not
2093 			 * recording it yet
2094 			 */
2095 			rdev_set_badblocks(rdev, addr, s, 0);
2096 
2097 			if (rdev != conf->mirrors[dw].rdev) {
2098 				/* need bad block on destination too */
2099 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2100 				addr = r10_bio->devs[1].addr + sect;
2101 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2102 				if (!ok) {
2103 					/* just abort the recovery */
2104 					printk(KERN_NOTICE
2105 					       "md/raid10:%s: recovery aborted"
2106 					       " due to read error\n",
2107 					       mdname(mddev));
2108 
2109 					conf->mirrors[dw].recovery_disabled
2110 						= mddev->recovery_disabled;
2111 					set_bit(MD_RECOVERY_INTR,
2112 						&mddev->recovery);
2113 					break;
2114 				}
2115 			}
2116 		}
2117 
2118 		sectors -= s;
2119 		sect += s;
2120 		idx++;
2121 	}
2122 }
2123 
2124 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2125 {
2126 	struct r10conf *conf = mddev->private;
2127 	int d;
2128 	struct bio *wbio, *wbio2;
2129 
2130 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2131 		fix_recovery_read_error(r10_bio);
2132 		end_sync_request(r10_bio);
2133 		return;
2134 	}
2135 
2136 	/*
2137 	 * share the pages with the first bio
2138 	 * and submit the write request
2139 	 */
2140 	d = r10_bio->devs[1].devnum;
2141 	wbio = r10_bio->devs[1].bio;
2142 	wbio2 = r10_bio->devs[1].repl_bio;
2143 	/* Need to test wbio2->bi_end_io before we call
2144 	 * generic_make_request as if the former is NULL,
2145 	 * the latter is free to free wbio2.
2146 	 */
2147 	if (wbio2 && !wbio2->bi_end_io)
2148 		wbio2 = NULL;
2149 	if (wbio->bi_end_io) {
2150 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2151 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2152 		generic_make_request(wbio);
2153 	}
2154 	if (wbio2) {
2155 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2156 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2157 			     bio_sectors(wbio2));
2158 		generic_make_request(wbio2);
2159 	}
2160 }
2161 
2162 /*
2163  * Used by fix_read_error() to decay the per rdev read_errors.
2164  * We halve the read error count for every hour that has elapsed
2165  * since the last recorded read error.
2166  *
2167  */
2168 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2169 {
2170 	struct timespec cur_time_mon;
2171 	unsigned long hours_since_last;
2172 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2173 
2174 	ktime_get_ts(&cur_time_mon);
2175 
2176 	if (rdev->last_read_error.tv_sec == 0 &&
2177 	    rdev->last_read_error.tv_nsec == 0) {
2178 		/* first time we've seen a read error */
2179 		rdev->last_read_error = cur_time_mon;
2180 		return;
2181 	}
2182 
2183 	hours_since_last = (cur_time_mon.tv_sec -
2184 			    rdev->last_read_error.tv_sec) / 3600;
2185 
2186 	rdev->last_read_error = cur_time_mon;
2187 
2188 	/*
2189 	 * if hours_since_last is > the number of bits in read_errors
2190 	 * just set read errors to 0. We do this to avoid
2191 	 * overflowing the shift of read_errors by hours_since_last.
2192 	 */
2193 	if (hours_since_last >= 8 * sizeof(read_errors))
2194 		atomic_set(&rdev->read_errors, 0);
2195 	else
2196 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2197 }
2198 
2199 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2200 			    int sectors, struct page *page, int rw)
2201 {
2202 	sector_t first_bad;
2203 	int bad_sectors;
2204 
2205 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2206 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2207 		return -1;
2208 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2209 		/* success */
2210 		return 1;
2211 	if (rw == WRITE) {
2212 		set_bit(WriteErrorSeen, &rdev->flags);
2213 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2214 			set_bit(MD_RECOVERY_NEEDED,
2215 				&rdev->mddev->recovery);
2216 	}
2217 	/* need to record an error - either for the block or the device */
2218 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2219 		md_error(rdev->mddev, rdev);
2220 	return 0;
2221 }
2222 
2223 /*
2224  * This is a kernel thread which:
2225  *
2226  *	1.	Retries failed read operations on working mirrors.
2227  *	2.	Updates the raid superblock when problems encounter.
2228  *	3.	Performs writes following reads for array synchronising.
2229  */
2230 
2231 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2232 {
2233 	int sect = 0; /* Offset from r10_bio->sector */
2234 	int sectors = r10_bio->sectors;
2235 	struct md_rdev*rdev;
2236 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2237 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2238 
2239 	/* still own a reference to this rdev, so it cannot
2240 	 * have been cleared recently.
2241 	 */
2242 	rdev = conf->mirrors[d].rdev;
2243 
2244 	if (test_bit(Faulty, &rdev->flags))
2245 		/* drive has already been failed, just ignore any
2246 		   more fix_read_error() attempts */
2247 		return;
2248 
2249 	check_decay_read_errors(mddev, rdev);
2250 	atomic_inc(&rdev->read_errors);
2251 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2252 		char b[BDEVNAME_SIZE];
2253 		bdevname(rdev->bdev, b);
2254 
2255 		printk(KERN_NOTICE
2256 		       "md/raid10:%s: %s: Raid device exceeded "
2257 		       "read_error threshold [cur %d:max %d]\n",
2258 		       mdname(mddev), b,
2259 		       atomic_read(&rdev->read_errors), max_read_errors);
2260 		printk(KERN_NOTICE
2261 		       "md/raid10:%s: %s: Failing raid device\n",
2262 		       mdname(mddev), b);
2263 		md_error(mddev, conf->mirrors[d].rdev);
2264 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2265 		return;
2266 	}
2267 
2268 	while(sectors) {
2269 		int s = sectors;
2270 		int sl = r10_bio->read_slot;
2271 		int success = 0;
2272 		int start;
2273 
2274 		if (s > (PAGE_SIZE>>9))
2275 			s = PAGE_SIZE >> 9;
2276 
2277 		rcu_read_lock();
2278 		do {
2279 			sector_t first_bad;
2280 			int bad_sectors;
2281 
2282 			d = r10_bio->devs[sl].devnum;
2283 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2284 			if (rdev &&
2285 			    test_bit(In_sync, &rdev->flags) &&
2286 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2287 					&first_bad, &bad_sectors) == 0) {
2288 				atomic_inc(&rdev->nr_pending);
2289 				rcu_read_unlock();
2290 				success = sync_page_io(rdev,
2291 						       r10_bio->devs[sl].addr +
2292 						       sect,
2293 						       s<<9,
2294 						       conf->tmppage, READ, false);
2295 				rdev_dec_pending(rdev, mddev);
2296 				rcu_read_lock();
2297 				if (success)
2298 					break;
2299 			}
2300 			sl++;
2301 			if (sl == conf->copies)
2302 				sl = 0;
2303 		} while (!success && sl != r10_bio->read_slot);
2304 		rcu_read_unlock();
2305 
2306 		if (!success) {
2307 			/* Cannot read from anywhere, just mark the block
2308 			 * as bad on the first device to discourage future
2309 			 * reads.
2310 			 */
2311 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2312 			rdev = conf->mirrors[dn].rdev;
2313 
2314 			if (!rdev_set_badblocks(
2315 				    rdev,
2316 				    r10_bio->devs[r10_bio->read_slot].addr
2317 				    + sect,
2318 				    s, 0)) {
2319 				md_error(mddev, rdev);
2320 				r10_bio->devs[r10_bio->read_slot].bio
2321 					= IO_BLOCKED;
2322 			}
2323 			break;
2324 		}
2325 
2326 		start = sl;
2327 		/* write it back and re-read */
2328 		rcu_read_lock();
2329 		while (sl != r10_bio->read_slot) {
2330 			char b[BDEVNAME_SIZE];
2331 
2332 			if (sl==0)
2333 				sl = conf->copies;
2334 			sl--;
2335 			d = r10_bio->devs[sl].devnum;
2336 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2337 			if (!rdev ||
2338 			    !test_bit(In_sync, &rdev->flags))
2339 				continue;
2340 
2341 			atomic_inc(&rdev->nr_pending);
2342 			rcu_read_unlock();
2343 			if (r10_sync_page_io(rdev,
2344 					     r10_bio->devs[sl].addr +
2345 					     sect,
2346 					     s, conf->tmppage, WRITE)
2347 			    == 0) {
2348 				/* Well, this device is dead */
2349 				printk(KERN_NOTICE
2350 				       "md/raid10:%s: read correction "
2351 				       "write failed"
2352 				       " (%d sectors at %llu on %s)\n",
2353 				       mdname(mddev), s,
2354 				       (unsigned long long)(
2355 					       sect +
2356 					       choose_data_offset(r10_bio,
2357 								  rdev)),
2358 				       bdevname(rdev->bdev, b));
2359 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2360 				       "drive\n",
2361 				       mdname(mddev),
2362 				       bdevname(rdev->bdev, b));
2363 			}
2364 			rdev_dec_pending(rdev, mddev);
2365 			rcu_read_lock();
2366 		}
2367 		sl = start;
2368 		while (sl != r10_bio->read_slot) {
2369 			char b[BDEVNAME_SIZE];
2370 
2371 			if (sl==0)
2372 				sl = conf->copies;
2373 			sl--;
2374 			d = r10_bio->devs[sl].devnum;
2375 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2376 			if (!rdev ||
2377 			    !test_bit(In_sync, &rdev->flags))
2378 				continue;
2379 
2380 			atomic_inc(&rdev->nr_pending);
2381 			rcu_read_unlock();
2382 			switch (r10_sync_page_io(rdev,
2383 					     r10_bio->devs[sl].addr +
2384 					     sect,
2385 					     s, conf->tmppage,
2386 						 READ)) {
2387 			case 0:
2388 				/* Well, this device is dead */
2389 				printk(KERN_NOTICE
2390 				       "md/raid10:%s: unable to read back "
2391 				       "corrected sectors"
2392 				       " (%d sectors at %llu on %s)\n",
2393 				       mdname(mddev), s,
2394 				       (unsigned long long)(
2395 					       sect +
2396 					       choose_data_offset(r10_bio, rdev)),
2397 				       bdevname(rdev->bdev, b));
2398 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2399 				       "drive\n",
2400 				       mdname(mddev),
2401 				       bdevname(rdev->bdev, b));
2402 				break;
2403 			case 1:
2404 				printk(KERN_INFO
2405 				       "md/raid10:%s: read error corrected"
2406 				       " (%d sectors at %llu on %s)\n",
2407 				       mdname(mddev), s,
2408 				       (unsigned long long)(
2409 					       sect +
2410 					       choose_data_offset(r10_bio, rdev)),
2411 				       bdevname(rdev->bdev, b));
2412 				atomic_add(s, &rdev->corrected_errors);
2413 			}
2414 
2415 			rdev_dec_pending(rdev, mddev);
2416 			rcu_read_lock();
2417 		}
2418 		rcu_read_unlock();
2419 
2420 		sectors -= s;
2421 		sect += s;
2422 	}
2423 }
2424 
2425 static int narrow_write_error(struct r10bio *r10_bio, int i)
2426 {
2427 	struct bio *bio = r10_bio->master_bio;
2428 	struct mddev *mddev = r10_bio->mddev;
2429 	struct r10conf *conf = mddev->private;
2430 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2431 	/* bio has the data to be written to slot 'i' where
2432 	 * we just recently had a write error.
2433 	 * We repeatedly clone the bio and trim down to one block,
2434 	 * then try the write.  Where the write fails we record
2435 	 * a bad block.
2436 	 * It is conceivable that the bio doesn't exactly align with
2437 	 * blocks.  We must handle this.
2438 	 *
2439 	 * We currently own a reference to the rdev.
2440 	 */
2441 
2442 	int block_sectors;
2443 	sector_t sector;
2444 	int sectors;
2445 	int sect_to_write = r10_bio->sectors;
2446 	int ok = 1;
2447 
2448 	if (rdev->badblocks.shift < 0)
2449 		return 0;
2450 
2451 	block_sectors = roundup(1 << rdev->badblocks.shift,
2452 				bdev_logical_block_size(rdev->bdev) >> 9);
2453 	sector = r10_bio->sector;
2454 	sectors = ((r10_bio->sector + block_sectors)
2455 		   & ~(sector_t)(block_sectors - 1))
2456 		- sector;
2457 
2458 	while (sect_to_write) {
2459 		struct bio *wbio;
2460 		if (sectors > sect_to_write)
2461 			sectors = sect_to_write;
2462 		/* Write at 'sector' for 'sectors' */
2463 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2464 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2465 		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2466 				   choose_data_offset(r10_bio, rdev) +
2467 				   (sector - r10_bio->sector));
2468 		wbio->bi_bdev = rdev->bdev;
2469 		if (submit_bio_wait(WRITE, wbio) == 0)
2470 			/* Failure! */
2471 			ok = rdev_set_badblocks(rdev, sector,
2472 						sectors, 0)
2473 				&& ok;
2474 
2475 		bio_put(wbio);
2476 		sect_to_write -= sectors;
2477 		sector += sectors;
2478 		sectors = block_sectors;
2479 	}
2480 	return ok;
2481 }
2482 
2483 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2484 {
2485 	int slot = r10_bio->read_slot;
2486 	struct bio *bio;
2487 	struct r10conf *conf = mddev->private;
2488 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2489 	char b[BDEVNAME_SIZE];
2490 	unsigned long do_sync;
2491 	int max_sectors;
2492 
2493 	/* we got a read error. Maybe the drive is bad.  Maybe just
2494 	 * the block and we can fix it.
2495 	 * We freeze all other IO, and try reading the block from
2496 	 * other devices.  When we find one, we re-write
2497 	 * and check it that fixes the read error.
2498 	 * This is all done synchronously while the array is
2499 	 * frozen.
2500 	 */
2501 	bio = r10_bio->devs[slot].bio;
2502 	bdevname(bio->bi_bdev, b);
2503 	bio_put(bio);
2504 	r10_bio->devs[slot].bio = NULL;
2505 
2506 	if (mddev->ro == 0) {
2507 		freeze_array(conf, 1);
2508 		fix_read_error(conf, mddev, r10_bio);
2509 		unfreeze_array(conf);
2510 	} else
2511 		r10_bio->devs[slot].bio = IO_BLOCKED;
2512 
2513 	rdev_dec_pending(rdev, mddev);
2514 
2515 read_more:
2516 	rdev = read_balance(conf, r10_bio, &max_sectors);
2517 	if (rdev == NULL) {
2518 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2519 		       " read error for block %llu\n",
2520 		       mdname(mddev), b,
2521 		       (unsigned long long)r10_bio->sector);
2522 		raid_end_bio_io(r10_bio);
2523 		return;
2524 	}
2525 
2526 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2527 	slot = r10_bio->read_slot;
2528 	printk_ratelimited(
2529 		KERN_ERR
2530 		"md/raid10:%s: %s: redirecting "
2531 		"sector %llu to another mirror\n",
2532 		mdname(mddev),
2533 		bdevname(rdev->bdev, b),
2534 		(unsigned long long)r10_bio->sector);
2535 	bio = bio_clone_mddev(r10_bio->master_bio,
2536 			      GFP_NOIO, mddev);
2537 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2538 	r10_bio->devs[slot].bio = bio;
2539 	r10_bio->devs[slot].rdev = rdev;
2540 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2541 		+ choose_data_offset(r10_bio, rdev);
2542 	bio->bi_bdev = rdev->bdev;
2543 	bio->bi_rw = READ | do_sync;
2544 	bio->bi_private = r10_bio;
2545 	bio->bi_end_io = raid10_end_read_request;
2546 	if (max_sectors < r10_bio->sectors) {
2547 		/* Drat - have to split this up more */
2548 		struct bio *mbio = r10_bio->master_bio;
2549 		int sectors_handled =
2550 			r10_bio->sector + max_sectors
2551 			- mbio->bi_iter.bi_sector;
2552 		r10_bio->sectors = max_sectors;
2553 		spin_lock_irq(&conf->device_lock);
2554 		if (mbio->bi_phys_segments == 0)
2555 			mbio->bi_phys_segments = 2;
2556 		else
2557 			mbio->bi_phys_segments++;
2558 		spin_unlock_irq(&conf->device_lock);
2559 		generic_make_request(bio);
2560 
2561 		r10_bio = mempool_alloc(conf->r10bio_pool,
2562 					GFP_NOIO);
2563 		r10_bio->master_bio = mbio;
2564 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2565 		r10_bio->state = 0;
2566 		set_bit(R10BIO_ReadError,
2567 			&r10_bio->state);
2568 		r10_bio->mddev = mddev;
2569 		r10_bio->sector = mbio->bi_iter.bi_sector
2570 			+ sectors_handled;
2571 
2572 		goto read_more;
2573 	} else
2574 		generic_make_request(bio);
2575 }
2576 
2577 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2578 {
2579 	/* Some sort of write request has finished and it
2580 	 * succeeded in writing where we thought there was a
2581 	 * bad block.  So forget the bad block.
2582 	 * Or possibly if failed and we need to record
2583 	 * a bad block.
2584 	 */
2585 	int m;
2586 	struct md_rdev *rdev;
2587 
2588 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2589 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2590 		for (m = 0; m < conf->copies; m++) {
2591 			int dev = r10_bio->devs[m].devnum;
2592 			rdev = conf->mirrors[dev].rdev;
2593 			if (r10_bio->devs[m].bio == NULL)
2594 				continue;
2595 			if (!r10_bio->devs[m].bio->bi_error) {
2596 				rdev_clear_badblocks(
2597 					rdev,
2598 					r10_bio->devs[m].addr,
2599 					r10_bio->sectors, 0);
2600 			} else {
2601 				if (!rdev_set_badblocks(
2602 					    rdev,
2603 					    r10_bio->devs[m].addr,
2604 					    r10_bio->sectors, 0))
2605 					md_error(conf->mddev, rdev);
2606 			}
2607 			rdev = conf->mirrors[dev].replacement;
2608 			if (r10_bio->devs[m].repl_bio == NULL)
2609 				continue;
2610 
2611 			if (!r10_bio->devs[m].repl_bio->bi_error) {
2612 				rdev_clear_badblocks(
2613 					rdev,
2614 					r10_bio->devs[m].addr,
2615 					r10_bio->sectors, 0);
2616 			} else {
2617 				if (!rdev_set_badblocks(
2618 					    rdev,
2619 					    r10_bio->devs[m].addr,
2620 					    r10_bio->sectors, 0))
2621 					md_error(conf->mddev, rdev);
2622 			}
2623 		}
2624 		put_buf(r10_bio);
2625 	} else {
2626 		for (m = 0; m < conf->copies; m++) {
2627 			int dev = r10_bio->devs[m].devnum;
2628 			struct bio *bio = r10_bio->devs[m].bio;
2629 			rdev = conf->mirrors[dev].rdev;
2630 			if (bio == IO_MADE_GOOD) {
2631 				rdev_clear_badblocks(
2632 					rdev,
2633 					r10_bio->devs[m].addr,
2634 					r10_bio->sectors, 0);
2635 				rdev_dec_pending(rdev, conf->mddev);
2636 			} else if (bio != NULL && bio->bi_error) {
2637 				if (!narrow_write_error(r10_bio, m)) {
2638 					md_error(conf->mddev, rdev);
2639 					set_bit(R10BIO_Degraded,
2640 						&r10_bio->state);
2641 				}
2642 				rdev_dec_pending(rdev, conf->mddev);
2643 			}
2644 			bio = r10_bio->devs[m].repl_bio;
2645 			rdev = conf->mirrors[dev].replacement;
2646 			if (rdev && bio == IO_MADE_GOOD) {
2647 				rdev_clear_badblocks(
2648 					rdev,
2649 					r10_bio->devs[m].addr,
2650 					r10_bio->sectors, 0);
2651 				rdev_dec_pending(rdev, conf->mddev);
2652 			}
2653 		}
2654 		if (test_bit(R10BIO_WriteError,
2655 			     &r10_bio->state))
2656 			close_write(r10_bio);
2657 		raid_end_bio_io(r10_bio);
2658 	}
2659 }
2660 
2661 static void raid10d(struct md_thread *thread)
2662 {
2663 	struct mddev *mddev = thread->mddev;
2664 	struct r10bio *r10_bio;
2665 	unsigned long flags;
2666 	struct r10conf *conf = mddev->private;
2667 	struct list_head *head = &conf->retry_list;
2668 	struct blk_plug plug;
2669 
2670 	md_check_recovery(mddev);
2671 
2672 	blk_start_plug(&plug);
2673 	for (;;) {
2674 
2675 		flush_pending_writes(conf);
2676 
2677 		spin_lock_irqsave(&conf->device_lock, flags);
2678 		if (list_empty(head)) {
2679 			spin_unlock_irqrestore(&conf->device_lock, flags);
2680 			break;
2681 		}
2682 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2683 		list_del(head->prev);
2684 		conf->nr_queued--;
2685 		spin_unlock_irqrestore(&conf->device_lock, flags);
2686 
2687 		mddev = r10_bio->mddev;
2688 		conf = mddev->private;
2689 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2690 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2691 			handle_write_completed(conf, r10_bio);
2692 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2693 			reshape_request_write(mddev, r10_bio);
2694 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2695 			sync_request_write(mddev, r10_bio);
2696 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2697 			recovery_request_write(mddev, r10_bio);
2698 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2699 			handle_read_error(mddev, r10_bio);
2700 		else {
2701 			/* just a partial read to be scheduled from a
2702 			 * separate context
2703 			 */
2704 			int slot = r10_bio->read_slot;
2705 			generic_make_request(r10_bio->devs[slot].bio);
2706 		}
2707 
2708 		cond_resched();
2709 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2710 			md_check_recovery(mddev);
2711 	}
2712 	blk_finish_plug(&plug);
2713 }
2714 
2715 static int init_resync(struct r10conf *conf)
2716 {
2717 	int buffs;
2718 	int i;
2719 
2720 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2721 	BUG_ON(conf->r10buf_pool);
2722 	conf->have_replacement = 0;
2723 	for (i = 0; i < conf->geo.raid_disks; i++)
2724 		if (conf->mirrors[i].replacement)
2725 			conf->have_replacement = 1;
2726 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2727 	if (!conf->r10buf_pool)
2728 		return -ENOMEM;
2729 	conf->next_resync = 0;
2730 	return 0;
2731 }
2732 
2733 /*
2734  * perform a "sync" on one "block"
2735  *
2736  * We need to make sure that no normal I/O request - particularly write
2737  * requests - conflict with active sync requests.
2738  *
2739  * This is achieved by tracking pending requests and a 'barrier' concept
2740  * that can be installed to exclude normal IO requests.
2741  *
2742  * Resync and recovery are handled very differently.
2743  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2744  *
2745  * For resync, we iterate over virtual addresses, read all copies,
2746  * and update if there are differences.  If only one copy is live,
2747  * skip it.
2748  * For recovery, we iterate over physical addresses, read a good
2749  * value for each non-in_sync drive, and over-write.
2750  *
2751  * So, for recovery we may have several outstanding complex requests for a
2752  * given address, one for each out-of-sync device.  We model this by allocating
2753  * a number of r10_bio structures, one for each out-of-sync device.
2754  * As we setup these structures, we collect all bio's together into a list
2755  * which we then process collectively to add pages, and then process again
2756  * to pass to generic_make_request.
2757  *
2758  * The r10_bio structures are linked using a borrowed master_bio pointer.
2759  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2760  * has its remaining count decremented to 0, the whole complex operation
2761  * is complete.
2762  *
2763  */
2764 
2765 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2766 			     int *skipped)
2767 {
2768 	struct r10conf *conf = mddev->private;
2769 	struct r10bio *r10_bio;
2770 	struct bio *biolist = NULL, *bio;
2771 	sector_t max_sector, nr_sectors;
2772 	int i;
2773 	int max_sync;
2774 	sector_t sync_blocks;
2775 	sector_t sectors_skipped = 0;
2776 	int chunks_skipped = 0;
2777 	sector_t chunk_mask = conf->geo.chunk_mask;
2778 
2779 	if (!conf->r10buf_pool)
2780 		if (init_resync(conf))
2781 			return 0;
2782 
2783 	/*
2784 	 * Allow skipping a full rebuild for incremental assembly
2785 	 * of a clean array, like RAID1 does.
2786 	 */
2787 	if (mddev->bitmap == NULL &&
2788 	    mddev->recovery_cp == MaxSector &&
2789 	    mddev->reshape_position == MaxSector &&
2790 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2791 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2792 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2793 	    conf->fullsync == 0) {
2794 		*skipped = 1;
2795 		return mddev->dev_sectors - sector_nr;
2796 	}
2797 
2798  skipped:
2799 	max_sector = mddev->dev_sectors;
2800 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2801 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2802 		max_sector = mddev->resync_max_sectors;
2803 	if (sector_nr >= max_sector) {
2804 		/* If we aborted, we need to abort the
2805 		 * sync on the 'current' bitmap chucks (there can
2806 		 * be several when recovering multiple devices).
2807 		 * as we may have started syncing it but not finished.
2808 		 * We can find the current address in
2809 		 * mddev->curr_resync, but for recovery,
2810 		 * we need to convert that to several
2811 		 * virtual addresses.
2812 		 */
2813 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2814 			end_reshape(conf);
2815 			close_sync(conf);
2816 			return 0;
2817 		}
2818 
2819 		if (mddev->curr_resync < max_sector) { /* aborted */
2820 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2821 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2822 						&sync_blocks, 1);
2823 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2824 				sector_t sect =
2825 					raid10_find_virt(conf, mddev->curr_resync, i);
2826 				bitmap_end_sync(mddev->bitmap, sect,
2827 						&sync_blocks, 1);
2828 			}
2829 		} else {
2830 			/* completed sync */
2831 			if ((!mddev->bitmap || conf->fullsync)
2832 			    && conf->have_replacement
2833 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2834 				/* Completed a full sync so the replacements
2835 				 * are now fully recovered.
2836 				 */
2837 				for (i = 0; i < conf->geo.raid_disks; i++)
2838 					if (conf->mirrors[i].replacement)
2839 						conf->mirrors[i].replacement
2840 							->recovery_offset
2841 							= MaxSector;
2842 			}
2843 			conf->fullsync = 0;
2844 		}
2845 		bitmap_close_sync(mddev->bitmap);
2846 		close_sync(conf);
2847 		*skipped = 1;
2848 		return sectors_skipped;
2849 	}
2850 
2851 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2852 		return reshape_request(mddev, sector_nr, skipped);
2853 
2854 	if (chunks_skipped >= conf->geo.raid_disks) {
2855 		/* if there has been nothing to do on any drive,
2856 		 * then there is nothing to do at all..
2857 		 */
2858 		*skipped = 1;
2859 		return (max_sector - sector_nr) + sectors_skipped;
2860 	}
2861 
2862 	if (max_sector > mddev->resync_max)
2863 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2864 
2865 	/* make sure whole request will fit in a chunk - if chunks
2866 	 * are meaningful
2867 	 */
2868 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2869 	    max_sector > (sector_nr | chunk_mask))
2870 		max_sector = (sector_nr | chunk_mask) + 1;
2871 
2872 	/* Again, very different code for resync and recovery.
2873 	 * Both must result in an r10bio with a list of bios that
2874 	 * have bi_end_io, bi_sector, bi_bdev set,
2875 	 * and bi_private set to the r10bio.
2876 	 * For recovery, we may actually create several r10bios
2877 	 * with 2 bios in each, that correspond to the bios in the main one.
2878 	 * In this case, the subordinate r10bios link back through a
2879 	 * borrowed master_bio pointer, and the counter in the master
2880 	 * includes a ref from each subordinate.
2881 	 */
2882 	/* First, we decide what to do and set ->bi_end_io
2883 	 * To end_sync_read if we want to read, and
2884 	 * end_sync_write if we will want to write.
2885 	 */
2886 
2887 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2888 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2889 		/* recovery... the complicated one */
2890 		int j;
2891 		r10_bio = NULL;
2892 
2893 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2894 			int still_degraded;
2895 			struct r10bio *rb2;
2896 			sector_t sect;
2897 			int must_sync;
2898 			int any_working;
2899 			struct raid10_info *mirror = &conf->mirrors[i];
2900 
2901 			if ((mirror->rdev == NULL ||
2902 			     test_bit(In_sync, &mirror->rdev->flags))
2903 			    &&
2904 			    (mirror->replacement == NULL ||
2905 			     test_bit(Faulty,
2906 				      &mirror->replacement->flags)))
2907 				continue;
2908 
2909 			still_degraded = 0;
2910 			/* want to reconstruct this device */
2911 			rb2 = r10_bio;
2912 			sect = raid10_find_virt(conf, sector_nr, i);
2913 			if (sect >= mddev->resync_max_sectors) {
2914 				/* last stripe is not complete - don't
2915 				 * try to recover this sector.
2916 				 */
2917 				continue;
2918 			}
2919 			/* Unless we are doing a full sync, or a replacement
2920 			 * we only need to recover the block if it is set in
2921 			 * the bitmap
2922 			 */
2923 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2924 						      &sync_blocks, 1);
2925 			if (sync_blocks < max_sync)
2926 				max_sync = sync_blocks;
2927 			if (!must_sync &&
2928 			    mirror->replacement == NULL &&
2929 			    !conf->fullsync) {
2930 				/* yep, skip the sync_blocks here, but don't assume
2931 				 * that there will never be anything to do here
2932 				 */
2933 				chunks_skipped = -1;
2934 				continue;
2935 			}
2936 
2937 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2938 			r10_bio->state = 0;
2939 			raise_barrier(conf, rb2 != NULL);
2940 			atomic_set(&r10_bio->remaining, 0);
2941 
2942 			r10_bio->master_bio = (struct bio*)rb2;
2943 			if (rb2)
2944 				atomic_inc(&rb2->remaining);
2945 			r10_bio->mddev = mddev;
2946 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2947 			r10_bio->sector = sect;
2948 
2949 			raid10_find_phys(conf, r10_bio);
2950 
2951 			/* Need to check if the array will still be
2952 			 * degraded
2953 			 */
2954 			for (j = 0; j < conf->geo.raid_disks; j++)
2955 				if (conf->mirrors[j].rdev == NULL ||
2956 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2957 					still_degraded = 1;
2958 					break;
2959 				}
2960 
2961 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2962 						      &sync_blocks, still_degraded);
2963 
2964 			any_working = 0;
2965 			for (j=0; j<conf->copies;j++) {
2966 				int k;
2967 				int d = r10_bio->devs[j].devnum;
2968 				sector_t from_addr, to_addr;
2969 				struct md_rdev *rdev;
2970 				sector_t sector, first_bad;
2971 				int bad_sectors;
2972 				if (!conf->mirrors[d].rdev ||
2973 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2974 					continue;
2975 				/* This is where we read from */
2976 				any_working = 1;
2977 				rdev = conf->mirrors[d].rdev;
2978 				sector = r10_bio->devs[j].addr;
2979 
2980 				if (is_badblock(rdev, sector, max_sync,
2981 						&first_bad, &bad_sectors)) {
2982 					if (first_bad > sector)
2983 						max_sync = first_bad - sector;
2984 					else {
2985 						bad_sectors -= (sector
2986 								- first_bad);
2987 						if (max_sync > bad_sectors)
2988 							max_sync = bad_sectors;
2989 						continue;
2990 					}
2991 				}
2992 				bio = r10_bio->devs[0].bio;
2993 				bio_reset(bio);
2994 				bio->bi_next = biolist;
2995 				biolist = bio;
2996 				bio->bi_private = r10_bio;
2997 				bio->bi_end_io = end_sync_read;
2998 				bio->bi_rw = READ;
2999 				from_addr = r10_bio->devs[j].addr;
3000 				bio->bi_iter.bi_sector = from_addr +
3001 					rdev->data_offset;
3002 				bio->bi_bdev = rdev->bdev;
3003 				atomic_inc(&rdev->nr_pending);
3004 				/* and we write to 'i' (if not in_sync) */
3005 
3006 				for (k=0; k<conf->copies; k++)
3007 					if (r10_bio->devs[k].devnum == i)
3008 						break;
3009 				BUG_ON(k == conf->copies);
3010 				to_addr = r10_bio->devs[k].addr;
3011 				r10_bio->devs[0].devnum = d;
3012 				r10_bio->devs[0].addr = from_addr;
3013 				r10_bio->devs[1].devnum = i;
3014 				r10_bio->devs[1].addr = to_addr;
3015 
3016 				rdev = mirror->rdev;
3017 				if (!test_bit(In_sync, &rdev->flags)) {
3018 					bio = r10_bio->devs[1].bio;
3019 					bio_reset(bio);
3020 					bio->bi_next = biolist;
3021 					biolist = bio;
3022 					bio->bi_private = r10_bio;
3023 					bio->bi_end_io = end_sync_write;
3024 					bio->bi_rw = WRITE;
3025 					bio->bi_iter.bi_sector = to_addr
3026 						+ rdev->data_offset;
3027 					bio->bi_bdev = rdev->bdev;
3028 					atomic_inc(&r10_bio->remaining);
3029 				} else
3030 					r10_bio->devs[1].bio->bi_end_io = NULL;
3031 
3032 				/* and maybe write to replacement */
3033 				bio = r10_bio->devs[1].repl_bio;
3034 				if (bio)
3035 					bio->bi_end_io = NULL;
3036 				rdev = mirror->replacement;
3037 				/* Note: if rdev != NULL, then bio
3038 				 * cannot be NULL as r10buf_pool_alloc will
3039 				 * have allocated it.
3040 				 * So the second test here is pointless.
3041 				 * But it keeps semantic-checkers happy, and
3042 				 * this comment keeps human reviewers
3043 				 * happy.
3044 				 */
3045 				if (rdev == NULL || bio == NULL ||
3046 				    test_bit(Faulty, &rdev->flags))
3047 					break;
3048 				bio_reset(bio);
3049 				bio->bi_next = biolist;
3050 				biolist = bio;
3051 				bio->bi_private = r10_bio;
3052 				bio->bi_end_io = end_sync_write;
3053 				bio->bi_rw = WRITE;
3054 				bio->bi_iter.bi_sector = to_addr +
3055 					rdev->data_offset;
3056 				bio->bi_bdev = rdev->bdev;
3057 				atomic_inc(&r10_bio->remaining);
3058 				break;
3059 			}
3060 			if (j == conf->copies) {
3061 				/* Cannot recover, so abort the recovery or
3062 				 * record a bad block */
3063 				if (any_working) {
3064 					/* problem is that there are bad blocks
3065 					 * on other device(s)
3066 					 */
3067 					int k;
3068 					for (k = 0; k < conf->copies; k++)
3069 						if (r10_bio->devs[k].devnum == i)
3070 							break;
3071 					if (!test_bit(In_sync,
3072 						      &mirror->rdev->flags)
3073 					    && !rdev_set_badblocks(
3074 						    mirror->rdev,
3075 						    r10_bio->devs[k].addr,
3076 						    max_sync, 0))
3077 						any_working = 0;
3078 					if (mirror->replacement &&
3079 					    !rdev_set_badblocks(
3080 						    mirror->replacement,
3081 						    r10_bio->devs[k].addr,
3082 						    max_sync, 0))
3083 						any_working = 0;
3084 				}
3085 				if (!any_working)  {
3086 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3087 							      &mddev->recovery))
3088 						printk(KERN_INFO "md/raid10:%s: insufficient "
3089 						       "working devices for recovery.\n",
3090 						       mdname(mddev));
3091 					mirror->recovery_disabled
3092 						= mddev->recovery_disabled;
3093 				}
3094 				put_buf(r10_bio);
3095 				if (rb2)
3096 					atomic_dec(&rb2->remaining);
3097 				r10_bio = rb2;
3098 				break;
3099 			}
3100 		}
3101 		if (biolist == NULL) {
3102 			while (r10_bio) {
3103 				struct r10bio *rb2 = r10_bio;
3104 				r10_bio = (struct r10bio*) rb2->master_bio;
3105 				rb2->master_bio = NULL;
3106 				put_buf(rb2);
3107 			}
3108 			goto giveup;
3109 		}
3110 	} else {
3111 		/* resync. Schedule a read for every block at this virt offset */
3112 		int count = 0;
3113 
3114 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3115 
3116 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3117 				       &sync_blocks, mddev->degraded) &&
3118 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3119 						 &mddev->recovery)) {
3120 			/* We can skip this block */
3121 			*skipped = 1;
3122 			return sync_blocks + sectors_skipped;
3123 		}
3124 		if (sync_blocks < max_sync)
3125 			max_sync = sync_blocks;
3126 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3127 		r10_bio->state = 0;
3128 
3129 		r10_bio->mddev = mddev;
3130 		atomic_set(&r10_bio->remaining, 0);
3131 		raise_barrier(conf, 0);
3132 		conf->next_resync = sector_nr;
3133 
3134 		r10_bio->master_bio = NULL;
3135 		r10_bio->sector = sector_nr;
3136 		set_bit(R10BIO_IsSync, &r10_bio->state);
3137 		raid10_find_phys(conf, r10_bio);
3138 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3139 
3140 		for (i = 0; i < conf->copies; i++) {
3141 			int d = r10_bio->devs[i].devnum;
3142 			sector_t first_bad, sector;
3143 			int bad_sectors;
3144 
3145 			if (r10_bio->devs[i].repl_bio)
3146 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3147 
3148 			bio = r10_bio->devs[i].bio;
3149 			bio_reset(bio);
3150 			bio->bi_error = -EIO;
3151 			if (conf->mirrors[d].rdev == NULL ||
3152 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3153 				continue;
3154 			sector = r10_bio->devs[i].addr;
3155 			if (is_badblock(conf->mirrors[d].rdev,
3156 					sector, max_sync,
3157 					&first_bad, &bad_sectors)) {
3158 				if (first_bad > sector)
3159 					max_sync = first_bad - sector;
3160 				else {
3161 					bad_sectors -= (sector - first_bad);
3162 					if (max_sync > bad_sectors)
3163 						max_sync = bad_sectors;
3164 					continue;
3165 				}
3166 			}
3167 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3168 			atomic_inc(&r10_bio->remaining);
3169 			bio->bi_next = biolist;
3170 			biolist = bio;
3171 			bio->bi_private = r10_bio;
3172 			bio->bi_end_io = end_sync_read;
3173 			bio->bi_rw = READ;
3174 			bio->bi_iter.bi_sector = sector +
3175 				conf->mirrors[d].rdev->data_offset;
3176 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3177 			count++;
3178 
3179 			if (conf->mirrors[d].replacement == NULL ||
3180 			    test_bit(Faulty,
3181 				     &conf->mirrors[d].replacement->flags))
3182 				continue;
3183 
3184 			/* Need to set up for writing to the replacement */
3185 			bio = r10_bio->devs[i].repl_bio;
3186 			bio_reset(bio);
3187 			bio->bi_error = -EIO;
3188 
3189 			sector = r10_bio->devs[i].addr;
3190 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3191 			bio->bi_next = biolist;
3192 			biolist = bio;
3193 			bio->bi_private = r10_bio;
3194 			bio->bi_end_io = end_sync_write;
3195 			bio->bi_rw = WRITE;
3196 			bio->bi_iter.bi_sector = sector +
3197 				conf->mirrors[d].replacement->data_offset;
3198 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3199 			count++;
3200 		}
3201 
3202 		if (count < 2) {
3203 			for (i=0; i<conf->copies; i++) {
3204 				int d = r10_bio->devs[i].devnum;
3205 				if (r10_bio->devs[i].bio->bi_end_io)
3206 					rdev_dec_pending(conf->mirrors[d].rdev,
3207 							 mddev);
3208 				if (r10_bio->devs[i].repl_bio &&
3209 				    r10_bio->devs[i].repl_bio->bi_end_io)
3210 					rdev_dec_pending(
3211 						conf->mirrors[d].replacement,
3212 						mddev);
3213 			}
3214 			put_buf(r10_bio);
3215 			biolist = NULL;
3216 			goto giveup;
3217 		}
3218 	}
3219 
3220 	nr_sectors = 0;
3221 	if (sector_nr + max_sync < max_sector)
3222 		max_sector = sector_nr + max_sync;
3223 	do {
3224 		struct page *page;
3225 		int len = PAGE_SIZE;
3226 		if (sector_nr + (len>>9) > max_sector)
3227 			len = (max_sector - sector_nr) << 9;
3228 		if (len == 0)
3229 			break;
3230 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3231 			struct bio *bio2;
3232 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3233 			if (bio_add_page(bio, page, len, 0))
3234 				continue;
3235 
3236 			/* stop here */
3237 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3238 			for (bio2 = biolist;
3239 			     bio2 && bio2 != bio;
3240 			     bio2 = bio2->bi_next) {
3241 				/* remove last page from this bio */
3242 				bio2->bi_vcnt--;
3243 				bio2->bi_iter.bi_size -= len;
3244 				bio_clear_flag(bio2, BIO_SEG_VALID);
3245 			}
3246 			goto bio_full;
3247 		}
3248 		nr_sectors += len>>9;
3249 		sector_nr += len>>9;
3250 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3251  bio_full:
3252 	r10_bio->sectors = nr_sectors;
3253 
3254 	while (biolist) {
3255 		bio = biolist;
3256 		biolist = biolist->bi_next;
3257 
3258 		bio->bi_next = NULL;
3259 		r10_bio = bio->bi_private;
3260 		r10_bio->sectors = nr_sectors;
3261 
3262 		if (bio->bi_end_io == end_sync_read) {
3263 			md_sync_acct(bio->bi_bdev, nr_sectors);
3264 			bio->bi_error = 0;
3265 			generic_make_request(bio);
3266 		}
3267 	}
3268 
3269 	if (sectors_skipped)
3270 		/* pretend they weren't skipped, it makes
3271 		 * no important difference in this case
3272 		 */
3273 		md_done_sync(mddev, sectors_skipped, 1);
3274 
3275 	return sectors_skipped + nr_sectors;
3276  giveup:
3277 	/* There is nowhere to write, so all non-sync
3278 	 * drives must be failed or in resync, all drives
3279 	 * have a bad block, so try the next chunk...
3280 	 */
3281 	if (sector_nr + max_sync < max_sector)
3282 		max_sector = sector_nr + max_sync;
3283 
3284 	sectors_skipped += (max_sector - sector_nr);
3285 	chunks_skipped ++;
3286 	sector_nr = max_sector;
3287 	goto skipped;
3288 }
3289 
3290 static sector_t
3291 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3292 {
3293 	sector_t size;
3294 	struct r10conf *conf = mddev->private;
3295 
3296 	if (!raid_disks)
3297 		raid_disks = min(conf->geo.raid_disks,
3298 				 conf->prev.raid_disks);
3299 	if (!sectors)
3300 		sectors = conf->dev_sectors;
3301 
3302 	size = sectors >> conf->geo.chunk_shift;
3303 	sector_div(size, conf->geo.far_copies);
3304 	size = size * raid_disks;
3305 	sector_div(size, conf->geo.near_copies);
3306 
3307 	return size << conf->geo.chunk_shift;
3308 }
3309 
3310 static void calc_sectors(struct r10conf *conf, sector_t size)
3311 {
3312 	/* Calculate the number of sectors-per-device that will
3313 	 * actually be used, and set conf->dev_sectors and
3314 	 * conf->stride
3315 	 */
3316 
3317 	size = size >> conf->geo.chunk_shift;
3318 	sector_div(size, conf->geo.far_copies);
3319 	size = size * conf->geo.raid_disks;
3320 	sector_div(size, conf->geo.near_copies);
3321 	/* 'size' is now the number of chunks in the array */
3322 	/* calculate "used chunks per device" */
3323 	size = size * conf->copies;
3324 
3325 	/* We need to round up when dividing by raid_disks to
3326 	 * get the stride size.
3327 	 */
3328 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3329 
3330 	conf->dev_sectors = size << conf->geo.chunk_shift;
3331 
3332 	if (conf->geo.far_offset)
3333 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3334 	else {
3335 		sector_div(size, conf->geo.far_copies);
3336 		conf->geo.stride = size << conf->geo.chunk_shift;
3337 	}
3338 }
3339 
3340 enum geo_type {geo_new, geo_old, geo_start};
3341 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3342 {
3343 	int nc, fc, fo;
3344 	int layout, chunk, disks;
3345 	switch (new) {
3346 	case geo_old:
3347 		layout = mddev->layout;
3348 		chunk = mddev->chunk_sectors;
3349 		disks = mddev->raid_disks - mddev->delta_disks;
3350 		break;
3351 	case geo_new:
3352 		layout = mddev->new_layout;
3353 		chunk = mddev->new_chunk_sectors;
3354 		disks = mddev->raid_disks;
3355 		break;
3356 	default: /* avoid 'may be unused' warnings */
3357 	case geo_start: /* new when starting reshape - raid_disks not
3358 			 * updated yet. */
3359 		layout = mddev->new_layout;
3360 		chunk = mddev->new_chunk_sectors;
3361 		disks = mddev->raid_disks + mddev->delta_disks;
3362 		break;
3363 	}
3364 	if (layout >> 18)
3365 		return -1;
3366 	if (chunk < (PAGE_SIZE >> 9) ||
3367 	    !is_power_of_2(chunk))
3368 		return -2;
3369 	nc = layout & 255;
3370 	fc = (layout >> 8) & 255;
3371 	fo = layout & (1<<16);
3372 	geo->raid_disks = disks;
3373 	geo->near_copies = nc;
3374 	geo->far_copies = fc;
3375 	geo->far_offset = fo;
3376 	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3377 	geo->chunk_mask = chunk - 1;
3378 	geo->chunk_shift = ffz(~chunk);
3379 	return nc*fc;
3380 }
3381 
3382 static struct r10conf *setup_conf(struct mddev *mddev)
3383 {
3384 	struct r10conf *conf = NULL;
3385 	int err = -EINVAL;
3386 	struct geom geo;
3387 	int copies;
3388 
3389 	copies = setup_geo(&geo, mddev, geo_new);
3390 
3391 	if (copies == -2) {
3392 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3393 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3394 		       mdname(mddev), PAGE_SIZE);
3395 		goto out;
3396 	}
3397 
3398 	if (copies < 2 || copies > mddev->raid_disks) {
3399 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3400 		       mdname(mddev), mddev->new_layout);
3401 		goto out;
3402 	}
3403 
3404 	err = -ENOMEM;
3405 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3406 	if (!conf)
3407 		goto out;
3408 
3409 	/* FIXME calc properly */
3410 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3411 							    max(0,-mddev->delta_disks)),
3412 				GFP_KERNEL);
3413 	if (!conf->mirrors)
3414 		goto out;
3415 
3416 	conf->tmppage = alloc_page(GFP_KERNEL);
3417 	if (!conf->tmppage)
3418 		goto out;
3419 
3420 	conf->geo = geo;
3421 	conf->copies = copies;
3422 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3423 					   r10bio_pool_free, conf);
3424 	if (!conf->r10bio_pool)
3425 		goto out;
3426 
3427 	calc_sectors(conf, mddev->dev_sectors);
3428 	if (mddev->reshape_position == MaxSector) {
3429 		conf->prev = conf->geo;
3430 		conf->reshape_progress = MaxSector;
3431 	} else {
3432 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3433 			err = -EINVAL;
3434 			goto out;
3435 		}
3436 		conf->reshape_progress = mddev->reshape_position;
3437 		if (conf->prev.far_offset)
3438 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3439 		else
3440 			/* far_copies must be 1 */
3441 			conf->prev.stride = conf->dev_sectors;
3442 	}
3443 	conf->reshape_safe = conf->reshape_progress;
3444 	spin_lock_init(&conf->device_lock);
3445 	INIT_LIST_HEAD(&conf->retry_list);
3446 
3447 	spin_lock_init(&conf->resync_lock);
3448 	init_waitqueue_head(&conf->wait_barrier);
3449 
3450 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3451 	if (!conf->thread)
3452 		goto out;
3453 
3454 	conf->mddev = mddev;
3455 	return conf;
3456 
3457  out:
3458 	if (err == -ENOMEM)
3459 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3460 		       mdname(mddev));
3461 	if (conf) {
3462 		if (conf->r10bio_pool)
3463 			mempool_destroy(conf->r10bio_pool);
3464 		kfree(conf->mirrors);
3465 		safe_put_page(conf->tmppage);
3466 		kfree(conf);
3467 	}
3468 	return ERR_PTR(err);
3469 }
3470 
3471 static int run(struct mddev *mddev)
3472 {
3473 	struct r10conf *conf;
3474 	int i, disk_idx, chunk_size;
3475 	struct raid10_info *disk;
3476 	struct md_rdev *rdev;
3477 	sector_t size;
3478 	sector_t min_offset_diff = 0;
3479 	int first = 1;
3480 	bool discard_supported = false;
3481 
3482 	if (mddev->private == NULL) {
3483 		conf = setup_conf(mddev);
3484 		if (IS_ERR(conf))
3485 			return PTR_ERR(conf);
3486 		mddev->private = conf;
3487 	}
3488 	conf = mddev->private;
3489 	if (!conf)
3490 		goto out;
3491 
3492 	mddev->thread = conf->thread;
3493 	conf->thread = NULL;
3494 
3495 	chunk_size = mddev->chunk_sectors << 9;
3496 	if (mddev->queue) {
3497 		blk_queue_max_discard_sectors(mddev->queue,
3498 					      mddev->chunk_sectors);
3499 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3500 		blk_queue_io_min(mddev->queue, chunk_size);
3501 		if (conf->geo.raid_disks % conf->geo.near_copies)
3502 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3503 		else
3504 			blk_queue_io_opt(mddev->queue, chunk_size *
3505 					 (conf->geo.raid_disks / conf->geo.near_copies));
3506 	}
3507 
3508 	rdev_for_each(rdev, mddev) {
3509 		long long diff;
3510 		struct request_queue *q;
3511 
3512 		disk_idx = rdev->raid_disk;
3513 		if (disk_idx < 0)
3514 			continue;
3515 		if (disk_idx >= conf->geo.raid_disks &&
3516 		    disk_idx >= conf->prev.raid_disks)
3517 			continue;
3518 		disk = conf->mirrors + disk_idx;
3519 
3520 		if (test_bit(Replacement, &rdev->flags)) {
3521 			if (disk->replacement)
3522 				goto out_free_conf;
3523 			disk->replacement = rdev;
3524 		} else {
3525 			if (disk->rdev)
3526 				goto out_free_conf;
3527 			disk->rdev = rdev;
3528 		}
3529 		q = bdev_get_queue(rdev->bdev);
3530 		diff = (rdev->new_data_offset - rdev->data_offset);
3531 		if (!mddev->reshape_backwards)
3532 			diff = -diff;
3533 		if (diff < 0)
3534 			diff = 0;
3535 		if (first || diff < min_offset_diff)
3536 			min_offset_diff = diff;
3537 
3538 		if (mddev->gendisk)
3539 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3540 					  rdev->data_offset << 9);
3541 
3542 		disk->head_position = 0;
3543 
3544 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3545 			discard_supported = true;
3546 	}
3547 
3548 	if (mddev->queue) {
3549 		if (discard_supported)
3550 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3551 						mddev->queue);
3552 		else
3553 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3554 						  mddev->queue);
3555 	}
3556 	/* need to check that every block has at least one working mirror */
3557 	if (!enough(conf, -1)) {
3558 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3559 		       mdname(mddev));
3560 		goto out_free_conf;
3561 	}
3562 
3563 	if (conf->reshape_progress != MaxSector) {
3564 		/* must ensure that shape change is supported */
3565 		if (conf->geo.far_copies != 1 &&
3566 		    conf->geo.far_offset == 0)
3567 			goto out_free_conf;
3568 		if (conf->prev.far_copies != 1 &&
3569 		    conf->prev.far_offset == 0)
3570 			goto out_free_conf;
3571 	}
3572 
3573 	mddev->degraded = 0;
3574 	for (i = 0;
3575 	     i < conf->geo.raid_disks
3576 		     || i < conf->prev.raid_disks;
3577 	     i++) {
3578 
3579 		disk = conf->mirrors + i;
3580 
3581 		if (!disk->rdev && disk->replacement) {
3582 			/* The replacement is all we have - use it */
3583 			disk->rdev = disk->replacement;
3584 			disk->replacement = NULL;
3585 			clear_bit(Replacement, &disk->rdev->flags);
3586 		}
3587 
3588 		if (!disk->rdev ||
3589 		    !test_bit(In_sync, &disk->rdev->flags)) {
3590 			disk->head_position = 0;
3591 			mddev->degraded++;
3592 			if (disk->rdev &&
3593 			    disk->rdev->saved_raid_disk < 0)
3594 				conf->fullsync = 1;
3595 		}
3596 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3597 	}
3598 
3599 	if (mddev->recovery_cp != MaxSector)
3600 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3601 		       " -- starting background reconstruction\n",
3602 		       mdname(mddev));
3603 	printk(KERN_INFO
3604 		"md/raid10:%s: active with %d out of %d devices\n",
3605 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3606 		conf->geo.raid_disks);
3607 	/*
3608 	 * Ok, everything is just fine now
3609 	 */
3610 	mddev->dev_sectors = conf->dev_sectors;
3611 	size = raid10_size(mddev, 0, 0);
3612 	md_set_array_sectors(mddev, size);
3613 	mddev->resync_max_sectors = size;
3614 
3615 	if (mddev->queue) {
3616 		int stripe = conf->geo.raid_disks *
3617 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3618 
3619 		/* Calculate max read-ahead size.
3620 		 * We need to readahead at least twice a whole stripe....
3621 		 * maybe...
3622 		 */
3623 		stripe /= conf->geo.near_copies;
3624 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3625 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3626 	}
3627 
3628 	if (md_integrity_register(mddev))
3629 		goto out_free_conf;
3630 
3631 	if (conf->reshape_progress != MaxSector) {
3632 		unsigned long before_length, after_length;
3633 
3634 		before_length = ((1 << conf->prev.chunk_shift) *
3635 				 conf->prev.far_copies);
3636 		after_length = ((1 << conf->geo.chunk_shift) *
3637 				conf->geo.far_copies);
3638 
3639 		if (max(before_length, after_length) > min_offset_diff) {
3640 			/* This cannot work */
3641 			printk("md/raid10: offset difference not enough to continue reshape\n");
3642 			goto out_free_conf;
3643 		}
3644 		conf->offset_diff = min_offset_diff;
3645 
3646 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3647 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3648 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3649 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3650 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3651 							"reshape");
3652 	}
3653 
3654 	return 0;
3655 
3656 out_free_conf:
3657 	md_unregister_thread(&mddev->thread);
3658 	if (conf->r10bio_pool)
3659 		mempool_destroy(conf->r10bio_pool);
3660 	safe_put_page(conf->tmppage);
3661 	kfree(conf->mirrors);
3662 	kfree(conf);
3663 	mddev->private = NULL;
3664 out:
3665 	return -EIO;
3666 }
3667 
3668 static void raid10_free(struct mddev *mddev, void *priv)
3669 {
3670 	struct r10conf *conf = priv;
3671 
3672 	if (conf->r10bio_pool)
3673 		mempool_destroy(conf->r10bio_pool);
3674 	safe_put_page(conf->tmppage);
3675 	kfree(conf->mirrors);
3676 	kfree(conf->mirrors_old);
3677 	kfree(conf->mirrors_new);
3678 	kfree(conf);
3679 }
3680 
3681 static void raid10_quiesce(struct mddev *mddev, int state)
3682 {
3683 	struct r10conf *conf = mddev->private;
3684 
3685 	switch(state) {
3686 	case 1:
3687 		raise_barrier(conf, 0);
3688 		break;
3689 	case 0:
3690 		lower_barrier(conf);
3691 		break;
3692 	}
3693 }
3694 
3695 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3696 {
3697 	/* Resize of 'far' arrays is not supported.
3698 	 * For 'near' and 'offset' arrays we can set the
3699 	 * number of sectors used to be an appropriate multiple
3700 	 * of the chunk size.
3701 	 * For 'offset', this is far_copies*chunksize.
3702 	 * For 'near' the multiplier is the LCM of
3703 	 * near_copies and raid_disks.
3704 	 * So if far_copies > 1 && !far_offset, fail.
3705 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3706 	 * multiply by chunk_size.  Then round to this number.
3707 	 * This is mostly done by raid10_size()
3708 	 */
3709 	struct r10conf *conf = mddev->private;
3710 	sector_t oldsize, size;
3711 
3712 	if (mddev->reshape_position != MaxSector)
3713 		return -EBUSY;
3714 
3715 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3716 		return -EINVAL;
3717 
3718 	oldsize = raid10_size(mddev, 0, 0);
3719 	size = raid10_size(mddev, sectors, 0);
3720 	if (mddev->external_size &&
3721 	    mddev->array_sectors > size)
3722 		return -EINVAL;
3723 	if (mddev->bitmap) {
3724 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3725 		if (ret)
3726 			return ret;
3727 	}
3728 	md_set_array_sectors(mddev, size);
3729 	set_capacity(mddev->gendisk, mddev->array_sectors);
3730 	revalidate_disk(mddev->gendisk);
3731 	if (sectors > mddev->dev_sectors &&
3732 	    mddev->recovery_cp > oldsize) {
3733 		mddev->recovery_cp = oldsize;
3734 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3735 	}
3736 	calc_sectors(conf, sectors);
3737 	mddev->dev_sectors = conf->dev_sectors;
3738 	mddev->resync_max_sectors = size;
3739 	return 0;
3740 }
3741 
3742 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3743 {
3744 	struct md_rdev *rdev;
3745 	struct r10conf *conf;
3746 
3747 	if (mddev->degraded > 0) {
3748 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3749 		       mdname(mddev));
3750 		return ERR_PTR(-EINVAL);
3751 	}
3752 	sector_div(size, devs);
3753 
3754 	/* Set new parameters */
3755 	mddev->new_level = 10;
3756 	/* new layout: far_copies = 1, near_copies = 2 */
3757 	mddev->new_layout = (1<<8) + 2;
3758 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3759 	mddev->delta_disks = mddev->raid_disks;
3760 	mddev->raid_disks *= 2;
3761 	/* make sure it will be not marked as dirty */
3762 	mddev->recovery_cp = MaxSector;
3763 	mddev->dev_sectors = size;
3764 
3765 	conf = setup_conf(mddev);
3766 	if (!IS_ERR(conf)) {
3767 		rdev_for_each(rdev, mddev)
3768 			if (rdev->raid_disk >= 0) {
3769 				rdev->new_raid_disk = rdev->raid_disk * 2;
3770 				rdev->sectors = size;
3771 			}
3772 		conf->barrier = 1;
3773 	}
3774 
3775 	return conf;
3776 }
3777 
3778 static void *raid10_takeover(struct mddev *mddev)
3779 {
3780 	struct r0conf *raid0_conf;
3781 
3782 	/* raid10 can take over:
3783 	 *  raid0 - providing it has only two drives
3784 	 */
3785 	if (mddev->level == 0) {
3786 		/* for raid0 takeover only one zone is supported */
3787 		raid0_conf = mddev->private;
3788 		if (raid0_conf->nr_strip_zones > 1) {
3789 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3790 			       " with more than one zone.\n",
3791 			       mdname(mddev));
3792 			return ERR_PTR(-EINVAL);
3793 		}
3794 		return raid10_takeover_raid0(mddev,
3795 			raid0_conf->strip_zone->zone_end,
3796 			raid0_conf->strip_zone->nb_dev);
3797 	}
3798 	return ERR_PTR(-EINVAL);
3799 }
3800 
3801 static int raid10_check_reshape(struct mddev *mddev)
3802 {
3803 	/* Called when there is a request to change
3804 	 * - layout (to ->new_layout)
3805 	 * - chunk size (to ->new_chunk_sectors)
3806 	 * - raid_disks (by delta_disks)
3807 	 * or when trying to restart a reshape that was ongoing.
3808 	 *
3809 	 * We need to validate the request and possibly allocate
3810 	 * space if that might be an issue later.
3811 	 *
3812 	 * Currently we reject any reshape of a 'far' mode array,
3813 	 * allow chunk size to change if new is generally acceptable,
3814 	 * allow raid_disks to increase, and allow
3815 	 * a switch between 'near' mode and 'offset' mode.
3816 	 */
3817 	struct r10conf *conf = mddev->private;
3818 	struct geom geo;
3819 
3820 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3821 		return -EINVAL;
3822 
3823 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3824 		/* mustn't change number of copies */
3825 		return -EINVAL;
3826 	if (geo.far_copies > 1 && !geo.far_offset)
3827 		/* Cannot switch to 'far' mode */
3828 		return -EINVAL;
3829 
3830 	if (mddev->array_sectors & geo.chunk_mask)
3831 			/* not factor of array size */
3832 			return -EINVAL;
3833 
3834 	if (!enough(conf, -1))
3835 		return -EINVAL;
3836 
3837 	kfree(conf->mirrors_new);
3838 	conf->mirrors_new = NULL;
3839 	if (mddev->delta_disks > 0) {
3840 		/* allocate new 'mirrors' list */
3841 		conf->mirrors_new = kzalloc(
3842 			sizeof(struct raid10_info)
3843 			*(mddev->raid_disks +
3844 			  mddev->delta_disks),
3845 			GFP_KERNEL);
3846 		if (!conf->mirrors_new)
3847 			return -ENOMEM;
3848 	}
3849 	return 0;
3850 }
3851 
3852 /*
3853  * Need to check if array has failed when deciding whether to:
3854  *  - start an array
3855  *  - remove non-faulty devices
3856  *  - add a spare
3857  *  - allow a reshape
3858  * This determination is simple when no reshape is happening.
3859  * However if there is a reshape, we need to carefully check
3860  * both the before and after sections.
3861  * This is because some failed devices may only affect one
3862  * of the two sections, and some non-in_sync devices may
3863  * be insync in the section most affected by failed devices.
3864  */
3865 static int calc_degraded(struct r10conf *conf)
3866 {
3867 	int degraded, degraded2;
3868 	int i;
3869 
3870 	rcu_read_lock();
3871 	degraded = 0;
3872 	/* 'prev' section first */
3873 	for (i = 0; i < conf->prev.raid_disks; i++) {
3874 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3875 		if (!rdev || test_bit(Faulty, &rdev->flags))
3876 			degraded++;
3877 		else if (!test_bit(In_sync, &rdev->flags))
3878 			/* When we can reduce the number of devices in
3879 			 * an array, this might not contribute to
3880 			 * 'degraded'.  It does now.
3881 			 */
3882 			degraded++;
3883 	}
3884 	rcu_read_unlock();
3885 	if (conf->geo.raid_disks == conf->prev.raid_disks)
3886 		return degraded;
3887 	rcu_read_lock();
3888 	degraded2 = 0;
3889 	for (i = 0; i < conf->geo.raid_disks; i++) {
3890 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3891 		if (!rdev || test_bit(Faulty, &rdev->flags))
3892 			degraded2++;
3893 		else if (!test_bit(In_sync, &rdev->flags)) {
3894 			/* If reshape is increasing the number of devices,
3895 			 * this section has already been recovered, so
3896 			 * it doesn't contribute to degraded.
3897 			 * else it does.
3898 			 */
3899 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3900 				degraded2++;
3901 		}
3902 	}
3903 	rcu_read_unlock();
3904 	if (degraded2 > degraded)
3905 		return degraded2;
3906 	return degraded;
3907 }
3908 
3909 static int raid10_start_reshape(struct mddev *mddev)
3910 {
3911 	/* A 'reshape' has been requested. This commits
3912 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3913 	 * This also checks if there are enough spares and adds them
3914 	 * to the array.
3915 	 * We currently require enough spares to make the final
3916 	 * array non-degraded.  We also require that the difference
3917 	 * between old and new data_offset - on each device - is
3918 	 * enough that we never risk over-writing.
3919 	 */
3920 
3921 	unsigned long before_length, after_length;
3922 	sector_t min_offset_diff = 0;
3923 	int first = 1;
3924 	struct geom new;
3925 	struct r10conf *conf = mddev->private;
3926 	struct md_rdev *rdev;
3927 	int spares = 0;
3928 	int ret;
3929 
3930 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3931 		return -EBUSY;
3932 
3933 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
3934 		return -EINVAL;
3935 
3936 	before_length = ((1 << conf->prev.chunk_shift) *
3937 			 conf->prev.far_copies);
3938 	after_length = ((1 << conf->geo.chunk_shift) *
3939 			conf->geo.far_copies);
3940 
3941 	rdev_for_each(rdev, mddev) {
3942 		if (!test_bit(In_sync, &rdev->flags)
3943 		    && !test_bit(Faulty, &rdev->flags))
3944 			spares++;
3945 		if (rdev->raid_disk >= 0) {
3946 			long long diff = (rdev->new_data_offset
3947 					  - rdev->data_offset);
3948 			if (!mddev->reshape_backwards)
3949 				diff = -diff;
3950 			if (diff < 0)
3951 				diff = 0;
3952 			if (first || diff < min_offset_diff)
3953 				min_offset_diff = diff;
3954 		}
3955 	}
3956 
3957 	if (max(before_length, after_length) > min_offset_diff)
3958 		return -EINVAL;
3959 
3960 	if (spares < mddev->delta_disks)
3961 		return -EINVAL;
3962 
3963 	conf->offset_diff = min_offset_diff;
3964 	spin_lock_irq(&conf->device_lock);
3965 	if (conf->mirrors_new) {
3966 		memcpy(conf->mirrors_new, conf->mirrors,
3967 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
3968 		smp_mb();
3969 		kfree(conf->mirrors_old);
3970 		conf->mirrors_old = conf->mirrors;
3971 		conf->mirrors = conf->mirrors_new;
3972 		conf->mirrors_new = NULL;
3973 	}
3974 	setup_geo(&conf->geo, mddev, geo_start);
3975 	smp_mb();
3976 	if (mddev->reshape_backwards) {
3977 		sector_t size = raid10_size(mddev, 0, 0);
3978 		if (size < mddev->array_sectors) {
3979 			spin_unlock_irq(&conf->device_lock);
3980 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3981 			       mdname(mddev));
3982 			return -EINVAL;
3983 		}
3984 		mddev->resync_max_sectors = size;
3985 		conf->reshape_progress = size;
3986 	} else
3987 		conf->reshape_progress = 0;
3988 	conf->reshape_safe = conf->reshape_progress;
3989 	spin_unlock_irq(&conf->device_lock);
3990 
3991 	if (mddev->delta_disks && mddev->bitmap) {
3992 		ret = bitmap_resize(mddev->bitmap,
3993 				    raid10_size(mddev, 0,
3994 						conf->geo.raid_disks),
3995 				    0, 0);
3996 		if (ret)
3997 			goto abort;
3998 	}
3999 	if (mddev->delta_disks > 0) {
4000 		rdev_for_each(rdev, mddev)
4001 			if (rdev->raid_disk < 0 &&
4002 			    !test_bit(Faulty, &rdev->flags)) {
4003 				if (raid10_add_disk(mddev, rdev) == 0) {
4004 					if (rdev->raid_disk >=
4005 					    conf->prev.raid_disks)
4006 						set_bit(In_sync, &rdev->flags);
4007 					else
4008 						rdev->recovery_offset = 0;
4009 
4010 					if (sysfs_link_rdev(mddev, rdev))
4011 						/* Failure here  is OK */;
4012 				}
4013 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4014 				   && !test_bit(Faulty, &rdev->flags)) {
4015 				/* This is a spare that was manually added */
4016 				set_bit(In_sync, &rdev->flags);
4017 			}
4018 	}
4019 	/* When a reshape changes the number of devices,
4020 	 * ->degraded is measured against the larger of the
4021 	 * pre and  post numbers.
4022 	 */
4023 	spin_lock_irq(&conf->device_lock);
4024 	mddev->degraded = calc_degraded(conf);
4025 	spin_unlock_irq(&conf->device_lock);
4026 	mddev->raid_disks = conf->geo.raid_disks;
4027 	mddev->reshape_position = conf->reshape_progress;
4028 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4029 
4030 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4031 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4032 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4033 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4034 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4035 
4036 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4037 						"reshape");
4038 	if (!mddev->sync_thread) {
4039 		ret = -EAGAIN;
4040 		goto abort;
4041 	}
4042 	conf->reshape_checkpoint = jiffies;
4043 	md_wakeup_thread(mddev->sync_thread);
4044 	md_new_event(mddev);
4045 	return 0;
4046 
4047 abort:
4048 	mddev->recovery = 0;
4049 	spin_lock_irq(&conf->device_lock);
4050 	conf->geo = conf->prev;
4051 	mddev->raid_disks = conf->geo.raid_disks;
4052 	rdev_for_each(rdev, mddev)
4053 		rdev->new_data_offset = rdev->data_offset;
4054 	smp_wmb();
4055 	conf->reshape_progress = MaxSector;
4056 	conf->reshape_safe = MaxSector;
4057 	mddev->reshape_position = MaxSector;
4058 	spin_unlock_irq(&conf->device_lock);
4059 	return ret;
4060 }
4061 
4062 /* Calculate the last device-address that could contain
4063  * any block from the chunk that includes the array-address 's'
4064  * and report the next address.
4065  * i.e. the address returned will be chunk-aligned and after
4066  * any data that is in the chunk containing 's'.
4067  */
4068 static sector_t last_dev_address(sector_t s, struct geom *geo)
4069 {
4070 	s = (s | geo->chunk_mask) + 1;
4071 	s >>= geo->chunk_shift;
4072 	s *= geo->near_copies;
4073 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4074 	s *= geo->far_copies;
4075 	s <<= geo->chunk_shift;
4076 	return s;
4077 }
4078 
4079 /* Calculate the first device-address that could contain
4080  * any block from the chunk that includes the array-address 's'.
4081  * This too will be the start of a chunk
4082  */
4083 static sector_t first_dev_address(sector_t s, struct geom *geo)
4084 {
4085 	s >>= geo->chunk_shift;
4086 	s *= geo->near_copies;
4087 	sector_div(s, geo->raid_disks);
4088 	s *= geo->far_copies;
4089 	s <<= geo->chunk_shift;
4090 	return s;
4091 }
4092 
4093 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4094 				int *skipped)
4095 {
4096 	/* We simply copy at most one chunk (smallest of old and new)
4097 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4098 	 * or we hit a bad block or something.
4099 	 * This might mean we pause for normal IO in the middle of
4100 	 * a chunk, but that is not a problem was mddev->reshape_position
4101 	 * can record any location.
4102 	 *
4103 	 * If we will want to write to a location that isn't
4104 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4105 	 * we need to flush all reshape requests and update the metadata.
4106 	 *
4107 	 * When reshaping forwards (e.g. to more devices), we interpret
4108 	 * 'safe' as the earliest block which might not have been copied
4109 	 * down yet.  We divide this by previous stripe size and multiply
4110 	 * by previous stripe length to get lowest device offset that we
4111 	 * cannot write to yet.
4112 	 * We interpret 'sector_nr' as an address that we want to write to.
4113 	 * From this we use last_device_address() to find where we might
4114 	 * write to, and first_device_address on the  'safe' position.
4115 	 * If this 'next' write position is after the 'safe' position,
4116 	 * we must update the metadata to increase the 'safe' position.
4117 	 *
4118 	 * When reshaping backwards, we round in the opposite direction
4119 	 * and perform the reverse test:  next write position must not be
4120 	 * less than current safe position.
4121 	 *
4122 	 * In all this the minimum difference in data offsets
4123 	 * (conf->offset_diff - always positive) allows a bit of slack,
4124 	 * so next can be after 'safe', but not by more than offset_disk
4125 	 *
4126 	 * We need to prepare all the bios here before we start any IO
4127 	 * to ensure the size we choose is acceptable to all devices.
4128 	 * The means one for each copy for write-out and an extra one for
4129 	 * read-in.
4130 	 * We store the read-in bio in ->master_bio and the others in
4131 	 * ->devs[x].bio and ->devs[x].repl_bio.
4132 	 */
4133 	struct r10conf *conf = mddev->private;
4134 	struct r10bio *r10_bio;
4135 	sector_t next, safe, last;
4136 	int max_sectors;
4137 	int nr_sectors;
4138 	int s;
4139 	struct md_rdev *rdev;
4140 	int need_flush = 0;
4141 	struct bio *blist;
4142 	struct bio *bio, *read_bio;
4143 	int sectors_done = 0;
4144 
4145 	if (sector_nr == 0) {
4146 		/* If restarting in the middle, skip the initial sectors */
4147 		if (mddev->reshape_backwards &&
4148 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4149 			sector_nr = (raid10_size(mddev, 0, 0)
4150 				     - conf->reshape_progress);
4151 		} else if (!mddev->reshape_backwards &&
4152 			   conf->reshape_progress > 0)
4153 			sector_nr = conf->reshape_progress;
4154 		if (sector_nr) {
4155 			mddev->curr_resync_completed = sector_nr;
4156 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4157 			*skipped = 1;
4158 			return sector_nr;
4159 		}
4160 	}
4161 
4162 	/* We don't use sector_nr to track where we are up to
4163 	 * as that doesn't work well for ->reshape_backwards.
4164 	 * So just use ->reshape_progress.
4165 	 */
4166 	if (mddev->reshape_backwards) {
4167 		/* 'next' is the earliest device address that we might
4168 		 * write to for this chunk in the new layout
4169 		 */
4170 		next = first_dev_address(conf->reshape_progress - 1,
4171 					 &conf->geo);
4172 
4173 		/* 'safe' is the last device address that we might read from
4174 		 * in the old layout after a restart
4175 		 */
4176 		safe = last_dev_address(conf->reshape_safe - 1,
4177 					&conf->prev);
4178 
4179 		if (next + conf->offset_diff < safe)
4180 			need_flush = 1;
4181 
4182 		last = conf->reshape_progress - 1;
4183 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4184 					       & conf->prev.chunk_mask);
4185 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4186 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4187 	} else {
4188 		/* 'next' is after the last device address that we
4189 		 * might write to for this chunk in the new layout
4190 		 */
4191 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4192 
4193 		/* 'safe' is the earliest device address that we might
4194 		 * read from in the old layout after a restart
4195 		 */
4196 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4197 
4198 		/* Need to update metadata if 'next' might be beyond 'safe'
4199 		 * as that would possibly corrupt data
4200 		 */
4201 		if (next > safe + conf->offset_diff)
4202 			need_flush = 1;
4203 
4204 		sector_nr = conf->reshape_progress;
4205 		last  = sector_nr | (conf->geo.chunk_mask
4206 				     & conf->prev.chunk_mask);
4207 
4208 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4209 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4210 	}
4211 
4212 	if (need_flush ||
4213 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4214 		/* Need to update reshape_position in metadata */
4215 		wait_barrier(conf);
4216 		mddev->reshape_position = conf->reshape_progress;
4217 		if (mddev->reshape_backwards)
4218 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4219 				- conf->reshape_progress;
4220 		else
4221 			mddev->curr_resync_completed = conf->reshape_progress;
4222 		conf->reshape_checkpoint = jiffies;
4223 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4224 		md_wakeup_thread(mddev->thread);
4225 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4226 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4227 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4228 			allow_barrier(conf);
4229 			return sectors_done;
4230 		}
4231 		conf->reshape_safe = mddev->reshape_position;
4232 		allow_barrier(conf);
4233 	}
4234 
4235 read_more:
4236 	/* Now schedule reads for blocks from sector_nr to last */
4237 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4238 	r10_bio->state = 0;
4239 	raise_barrier(conf, sectors_done != 0);
4240 	atomic_set(&r10_bio->remaining, 0);
4241 	r10_bio->mddev = mddev;
4242 	r10_bio->sector = sector_nr;
4243 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4244 	r10_bio->sectors = last - sector_nr + 1;
4245 	rdev = read_balance(conf, r10_bio, &max_sectors);
4246 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4247 
4248 	if (!rdev) {
4249 		/* Cannot read from here, so need to record bad blocks
4250 		 * on all the target devices.
4251 		 */
4252 		// FIXME
4253 		mempool_free(r10_bio, conf->r10buf_pool);
4254 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4255 		return sectors_done;
4256 	}
4257 
4258 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4259 
4260 	read_bio->bi_bdev = rdev->bdev;
4261 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4262 			       + rdev->data_offset);
4263 	read_bio->bi_private = r10_bio;
4264 	read_bio->bi_end_io = end_sync_read;
4265 	read_bio->bi_rw = READ;
4266 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4267 	read_bio->bi_error = 0;
4268 	read_bio->bi_vcnt = 0;
4269 	read_bio->bi_iter.bi_size = 0;
4270 	r10_bio->master_bio = read_bio;
4271 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4272 
4273 	/* Now find the locations in the new layout */
4274 	__raid10_find_phys(&conf->geo, r10_bio);
4275 
4276 	blist = read_bio;
4277 	read_bio->bi_next = NULL;
4278 
4279 	for (s = 0; s < conf->copies*2; s++) {
4280 		struct bio *b;
4281 		int d = r10_bio->devs[s/2].devnum;
4282 		struct md_rdev *rdev2;
4283 		if (s&1) {
4284 			rdev2 = conf->mirrors[d].replacement;
4285 			b = r10_bio->devs[s/2].repl_bio;
4286 		} else {
4287 			rdev2 = conf->mirrors[d].rdev;
4288 			b = r10_bio->devs[s/2].bio;
4289 		}
4290 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4291 			continue;
4292 
4293 		bio_reset(b);
4294 		b->bi_bdev = rdev2->bdev;
4295 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4296 			rdev2->new_data_offset;
4297 		b->bi_private = r10_bio;
4298 		b->bi_end_io = end_reshape_write;
4299 		b->bi_rw = WRITE;
4300 		b->bi_next = blist;
4301 		blist = b;
4302 	}
4303 
4304 	/* Now add as many pages as possible to all of these bios. */
4305 
4306 	nr_sectors = 0;
4307 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4308 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4309 		int len = (max_sectors - s) << 9;
4310 		if (len > PAGE_SIZE)
4311 			len = PAGE_SIZE;
4312 		for (bio = blist; bio ; bio = bio->bi_next) {
4313 			struct bio *bio2;
4314 			if (bio_add_page(bio, page, len, 0))
4315 				continue;
4316 
4317 			/* Didn't fit, must stop */
4318 			for (bio2 = blist;
4319 			     bio2 && bio2 != bio;
4320 			     bio2 = bio2->bi_next) {
4321 				/* Remove last page from this bio */
4322 				bio2->bi_vcnt--;
4323 				bio2->bi_iter.bi_size -= len;
4324 				bio_clear_flag(bio2, BIO_SEG_VALID);
4325 			}
4326 			goto bio_full;
4327 		}
4328 		sector_nr += len >> 9;
4329 		nr_sectors += len >> 9;
4330 	}
4331 bio_full:
4332 	r10_bio->sectors = nr_sectors;
4333 
4334 	/* Now submit the read */
4335 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4336 	atomic_inc(&r10_bio->remaining);
4337 	read_bio->bi_next = NULL;
4338 	generic_make_request(read_bio);
4339 	sector_nr += nr_sectors;
4340 	sectors_done += nr_sectors;
4341 	if (sector_nr <= last)
4342 		goto read_more;
4343 
4344 	/* Now that we have done the whole section we can
4345 	 * update reshape_progress
4346 	 */
4347 	if (mddev->reshape_backwards)
4348 		conf->reshape_progress -= sectors_done;
4349 	else
4350 		conf->reshape_progress += sectors_done;
4351 
4352 	return sectors_done;
4353 }
4354 
4355 static void end_reshape_request(struct r10bio *r10_bio);
4356 static int handle_reshape_read_error(struct mddev *mddev,
4357 				     struct r10bio *r10_bio);
4358 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4359 {
4360 	/* Reshape read completed.  Hopefully we have a block
4361 	 * to write out.
4362 	 * If we got a read error then we do sync 1-page reads from
4363 	 * elsewhere until we find the data - or give up.
4364 	 */
4365 	struct r10conf *conf = mddev->private;
4366 	int s;
4367 
4368 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4369 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4370 			/* Reshape has been aborted */
4371 			md_done_sync(mddev, r10_bio->sectors, 0);
4372 			return;
4373 		}
4374 
4375 	/* We definitely have the data in the pages, schedule the
4376 	 * writes.
4377 	 */
4378 	atomic_set(&r10_bio->remaining, 1);
4379 	for (s = 0; s < conf->copies*2; s++) {
4380 		struct bio *b;
4381 		int d = r10_bio->devs[s/2].devnum;
4382 		struct md_rdev *rdev;
4383 		if (s&1) {
4384 			rdev = conf->mirrors[d].replacement;
4385 			b = r10_bio->devs[s/2].repl_bio;
4386 		} else {
4387 			rdev = conf->mirrors[d].rdev;
4388 			b = r10_bio->devs[s/2].bio;
4389 		}
4390 		if (!rdev || test_bit(Faulty, &rdev->flags))
4391 			continue;
4392 		atomic_inc(&rdev->nr_pending);
4393 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4394 		atomic_inc(&r10_bio->remaining);
4395 		b->bi_next = NULL;
4396 		generic_make_request(b);
4397 	}
4398 	end_reshape_request(r10_bio);
4399 }
4400 
4401 static void end_reshape(struct r10conf *conf)
4402 {
4403 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4404 		return;
4405 
4406 	spin_lock_irq(&conf->device_lock);
4407 	conf->prev = conf->geo;
4408 	md_finish_reshape(conf->mddev);
4409 	smp_wmb();
4410 	conf->reshape_progress = MaxSector;
4411 	conf->reshape_safe = MaxSector;
4412 	spin_unlock_irq(&conf->device_lock);
4413 
4414 	/* read-ahead size must cover two whole stripes, which is
4415 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4416 	 */
4417 	if (conf->mddev->queue) {
4418 		int stripe = conf->geo.raid_disks *
4419 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4420 		stripe /= conf->geo.near_copies;
4421 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4422 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4423 	}
4424 	conf->fullsync = 0;
4425 }
4426 
4427 static int handle_reshape_read_error(struct mddev *mddev,
4428 				     struct r10bio *r10_bio)
4429 {
4430 	/* Use sync reads to get the blocks from somewhere else */
4431 	int sectors = r10_bio->sectors;
4432 	struct r10conf *conf = mddev->private;
4433 	struct {
4434 		struct r10bio r10_bio;
4435 		struct r10dev devs[conf->copies];
4436 	} on_stack;
4437 	struct r10bio *r10b = &on_stack.r10_bio;
4438 	int slot = 0;
4439 	int idx = 0;
4440 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4441 
4442 	r10b->sector = r10_bio->sector;
4443 	__raid10_find_phys(&conf->prev, r10b);
4444 
4445 	while (sectors) {
4446 		int s = sectors;
4447 		int success = 0;
4448 		int first_slot = slot;
4449 
4450 		if (s > (PAGE_SIZE >> 9))
4451 			s = PAGE_SIZE >> 9;
4452 
4453 		while (!success) {
4454 			int d = r10b->devs[slot].devnum;
4455 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4456 			sector_t addr;
4457 			if (rdev == NULL ||
4458 			    test_bit(Faulty, &rdev->flags) ||
4459 			    !test_bit(In_sync, &rdev->flags))
4460 				goto failed;
4461 
4462 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4463 			success = sync_page_io(rdev,
4464 					       addr,
4465 					       s << 9,
4466 					       bvec[idx].bv_page,
4467 					       READ, false);
4468 			if (success)
4469 				break;
4470 		failed:
4471 			slot++;
4472 			if (slot >= conf->copies)
4473 				slot = 0;
4474 			if (slot == first_slot)
4475 				break;
4476 		}
4477 		if (!success) {
4478 			/* couldn't read this block, must give up */
4479 			set_bit(MD_RECOVERY_INTR,
4480 				&mddev->recovery);
4481 			return -EIO;
4482 		}
4483 		sectors -= s;
4484 		idx++;
4485 	}
4486 	return 0;
4487 }
4488 
4489 static void end_reshape_write(struct bio *bio)
4490 {
4491 	struct r10bio *r10_bio = bio->bi_private;
4492 	struct mddev *mddev = r10_bio->mddev;
4493 	struct r10conf *conf = mddev->private;
4494 	int d;
4495 	int slot;
4496 	int repl;
4497 	struct md_rdev *rdev = NULL;
4498 
4499 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4500 	if (repl)
4501 		rdev = conf->mirrors[d].replacement;
4502 	if (!rdev) {
4503 		smp_mb();
4504 		rdev = conf->mirrors[d].rdev;
4505 	}
4506 
4507 	if (bio->bi_error) {
4508 		/* FIXME should record badblock */
4509 		md_error(mddev, rdev);
4510 	}
4511 
4512 	rdev_dec_pending(rdev, mddev);
4513 	end_reshape_request(r10_bio);
4514 }
4515 
4516 static void end_reshape_request(struct r10bio *r10_bio)
4517 {
4518 	if (!atomic_dec_and_test(&r10_bio->remaining))
4519 		return;
4520 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4521 	bio_put(r10_bio->master_bio);
4522 	put_buf(r10_bio);
4523 }
4524 
4525 static void raid10_finish_reshape(struct mddev *mddev)
4526 {
4527 	struct r10conf *conf = mddev->private;
4528 
4529 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4530 		return;
4531 
4532 	if (mddev->delta_disks > 0) {
4533 		sector_t size = raid10_size(mddev, 0, 0);
4534 		md_set_array_sectors(mddev, size);
4535 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4536 			mddev->recovery_cp = mddev->resync_max_sectors;
4537 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4538 		}
4539 		mddev->resync_max_sectors = size;
4540 		set_capacity(mddev->gendisk, mddev->array_sectors);
4541 		revalidate_disk(mddev->gendisk);
4542 	} else {
4543 		int d;
4544 		for (d = conf->geo.raid_disks ;
4545 		     d < conf->geo.raid_disks - mddev->delta_disks;
4546 		     d++) {
4547 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4548 			if (rdev)
4549 				clear_bit(In_sync, &rdev->flags);
4550 			rdev = conf->mirrors[d].replacement;
4551 			if (rdev)
4552 				clear_bit(In_sync, &rdev->flags);
4553 		}
4554 	}
4555 	mddev->layout = mddev->new_layout;
4556 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4557 	mddev->reshape_position = MaxSector;
4558 	mddev->delta_disks = 0;
4559 	mddev->reshape_backwards = 0;
4560 }
4561 
4562 static struct md_personality raid10_personality =
4563 {
4564 	.name		= "raid10",
4565 	.level		= 10,
4566 	.owner		= THIS_MODULE,
4567 	.make_request	= make_request,
4568 	.run		= run,
4569 	.free		= raid10_free,
4570 	.status		= status,
4571 	.error_handler	= error,
4572 	.hot_add_disk	= raid10_add_disk,
4573 	.hot_remove_disk= raid10_remove_disk,
4574 	.spare_active	= raid10_spare_active,
4575 	.sync_request	= sync_request,
4576 	.quiesce	= raid10_quiesce,
4577 	.size		= raid10_size,
4578 	.resize		= raid10_resize,
4579 	.takeover	= raid10_takeover,
4580 	.check_reshape	= raid10_check_reshape,
4581 	.start_reshape	= raid10_start_reshape,
4582 	.finish_reshape	= raid10_finish_reshape,
4583 	.congested	= raid10_congested,
4584 };
4585 
4586 static int __init raid_init(void)
4587 {
4588 	return register_md_personality(&raid10_personality);
4589 }
4590 
4591 static void raid_exit(void)
4592 {
4593 	unregister_md_personality(&raid10_personality);
4594 }
4595 
4596 module_init(raid_init);
4597 module_exit(raid_exit);
4598 MODULE_LICENSE("GPL");
4599 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4600 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4601 MODULE_ALIAS("md-raid10");
4602 MODULE_ALIAS("md-level-10");
4603 
4604 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4605