xref: /linux/drivers/md/raid10.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72 
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define	NR_RAID10_BIOS 256
77 
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89 
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91 
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97 
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 				int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106 
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 	struct r10conf *conf = data;
110 	int size = offsetof(struct r10bio, devs[conf->copies]);
111 
112 	/* allocate a r10bio with room for raid_disks entries in the
113 	 * bios array */
114 	return kzalloc(size, gfp_flags);
115 }
116 
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 	kfree(r10_bio);
120 }
121 
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129 
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 	struct r10conf *conf = data;
140 	struct page *page;
141 	struct r10bio *r10_bio;
142 	struct bio *bio;
143 	int i, j;
144 	int nalloc;
145 
146 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 	if (!r10_bio)
148 		return NULL;
149 
150 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 		nalloc = conf->copies; /* resync */
153 	else
154 		nalloc = 2; /* recovery */
155 
156 	/*
157 	 * Allocate bios.
158 	 */
159 	for (j = nalloc ; j-- ; ) {
160 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 		if (!bio)
162 			goto out_free_bio;
163 		r10_bio->devs[j].bio = bio;
164 		if (!conf->have_replacement)
165 			continue;
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].repl_bio = bio;
170 	}
171 	/*
172 	 * Allocate RESYNC_PAGES data pages and attach them
173 	 * where needed.
174 	 */
175 	for (j = 0 ; j < nalloc; j++) {
176 		struct bio *rbio = r10_bio->devs[j].repl_bio;
177 		bio = r10_bio->devs[j].bio;
178 		for (i = 0; i < RESYNC_PAGES; i++) {
179 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 					       &conf->mddev->recovery)) {
181 				/* we can share bv_page's during recovery
182 				 * and reshape */
183 				struct bio *rbio = r10_bio->devs[0].bio;
184 				page = rbio->bi_io_vec[i].bv_page;
185 				get_page(page);
186 			} else
187 				page = alloc_page(gfp_flags);
188 			if (unlikely(!page))
189 				goto out_free_pages;
190 
191 			bio->bi_io_vec[i].bv_page = page;
192 			if (rbio)
193 				rbio->bi_io_vec[i].bv_page = page;
194 		}
195 	}
196 
197 	return r10_bio;
198 
199 out_free_pages:
200 	for ( ; i > 0 ; i--)
201 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 	while (j--)
203 		for (i = 0; i < RESYNC_PAGES ; i++)
204 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 	j = 0;
206 out_free_bio:
207 	for ( ; j < nalloc; j++) {
208 		if (r10_bio->devs[j].bio)
209 			bio_put(r10_bio->devs[j].bio);
210 		if (r10_bio->devs[j].repl_bio)
211 			bio_put(r10_bio->devs[j].repl_bio);
212 	}
213 	r10bio_pool_free(r10_bio, conf);
214 	return NULL;
215 }
216 
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 	int i;
220 	struct r10conf *conf = data;
221 	struct r10bio *r10bio = __r10_bio;
222 	int j;
223 
224 	for (j=0; j < conf->copies; j++) {
225 		struct bio *bio = r10bio->devs[j].bio;
226 		if (bio) {
227 			for (i = 0; i < RESYNC_PAGES; i++) {
228 				safe_put_page(bio->bi_io_vec[i].bv_page);
229 				bio->bi_io_vec[i].bv_page = NULL;
230 			}
231 			bio_put(bio);
232 		}
233 		bio = r10bio->devs[j].repl_bio;
234 		if (bio)
235 			bio_put(bio);
236 	}
237 	r10bio_pool_free(r10bio, conf);
238 }
239 
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->copies; i++) {
245 		struct bio **bio = & r10_bio->devs[i].bio;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 		bio = &r10_bio->devs[i].repl_bio;
250 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 	}
254 }
255 
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 	struct r10conf *conf = r10_bio->mddev->private;
259 
260 	put_all_bios(conf, r10_bio);
261 	mempool_free(r10_bio, conf->r10bio_pool);
262 }
263 
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 	struct r10conf *conf = r10_bio->mddev->private;
267 
268 	mempool_free(r10_bio, conf->r10buf_pool);
269 
270 	lower_barrier(conf);
271 }
272 
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 	unsigned long flags;
276 	struct mddev *mddev = r10_bio->mddev;
277 	struct r10conf *conf = mddev->private;
278 
279 	spin_lock_irqsave(&conf->device_lock, flags);
280 	list_add(&r10_bio->retry_list, &conf->retry_list);
281 	conf->nr_queued ++;
282 	spin_unlock_irqrestore(&conf->device_lock, flags);
283 
284 	/* wake up frozen array... */
285 	wake_up(&conf->wait_barrier);
286 
287 	md_wakeup_thread(mddev->thread);
288 }
289 
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 	struct bio *bio = r10_bio->master_bio;
298 	int done;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	if (bio->bi_phys_segments) {
302 		unsigned long flags;
303 		spin_lock_irqsave(&conf->device_lock, flags);
304 		bio->bi_phys_segments--;
305 		done = (bio->bi_phys_segments == 0);
306 		spin_unlock_irqrestore(&conf->device_lock, flags);
307 	} else
308 		done = 1;
309 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 	if (done) {
312 		bio_endio(bio, 0);
313 		/*
314 		 * Wake up any possible resync thread that waits for the device
315 		 * to go idle.
316 		 */
317 		allow_barrier(conf);
318 	}
319 	free_r10bio(r10_bio);
320 }
321 
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 	struct r10conf *conf = r10_bio->mddev->private;
328 
329 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 		r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332 
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 			 struct bio *bio, int *slotp, int *replp)
338 {
339 	int slot;
340 	int repl = 0;
341 
342 	for (slot = 0; slot < conf->copies; slot++) {
343 		if (r10_bio->devs[slot].bio == bio)
344 			break;
345 		if (r10_bio->devs[slot].repl_bio == bio) {
346 			repl = 1;
347 			break;
348 		}
349 	}
350 
351 	BUG_ON(slot == conf->copies);
352 	update_head_pos(slot, r10_bio);
353 
354 	if (slotp)
355 		*slotp = slot;
356 	if (replp)
357 		*replp = repl;
358 	return r10_bio->devs[slot].devnum;
359 }
360 
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 	struct r10bio *r10_bio = bio->bi_private;
365 	int slot, dev;
366 	struct md_rdev *rdev;
367 	struct r10conf *conf = r10_bio->mddev->private;
368 
369 
370 	slot = r10_bio->read_slot;
371 	dev = r10_bio->devs[slot].devnum;
372 	rdev = r10_bio->devs[slot].rdev;
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	update_head_pos(slot, r10_bio);
377 
378 	if (uptodate) {
379 		/*
380 		 * Set R10BIO_Uptodate in our master bio, so that
381 		 * we will return a good error code to the higher
382 		 * levels even if IO on some other mirrored buffer fails.
383 		 *
384 		 * The 'master' represents the composite IO operation to
385 		 * user-side. So if something waits for IO, then it will
386 		 * wait for the 'master' bio.
387 		 */
388 		set_bit(R10BIO_Uptodate, &r10_bio->state);
389 	} else {
390 		/* If all other devices that store this block have
391 		 * failed, we want to return the error upwards rather
392 		 * than fail the last device.  Here we redefine
393 		 * "uptodate" to mean "Don't want to retry"
394 		 */
395 		unsigned long flags;
396 		spin_lock_irqsave(&conf->device_lock, flags);
397 		if (!enough(conf, rdev->raid_disk))
398 			uptodate = 1;
399 		spin_unlock_irqrestore(&conf->device_lock, flags);
400 	}
401 	if (uptodate) {
402 		raid_end_bio_io(r10_bio);
403 		rdev_dec_pending(rdev, conf->mddev);
404 	} else {
405 		/*
406 		 * oops, read error - keep the refcount on the rdev
407 		 */
408 		char b[BDEVNAME_SIZE];
409 		printk_ratelimited(KERN_ERR
410 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
411 				   mdname(conf->mddev),
412 				   bdevname(rdev->bdev, b),
413 				   (unsigned long long)r10_bio->sector);
414 		set_bit(R10BIO_ReadError, &r10_bio->state);
415 		reschedule_retry(r10_bio);
416 	}
417 }
418 
419 static void close_write(struct r10bio *r10_bio)
420 {
421 	/* clear the bitmap if all writes complete successfully */
422 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423 			r10_bio->sectors,
424 			!test_bit(R10BIO_Degraded, &r10_bio->state),
425 			0);
426 	md_write_end(r10_bio->mddev);
427 }
428 
429 static void one_write_done(struct r10bio *r10_bio)
430 {
431 	if (atomic_dec_and_test(&r10_bio->remaining)) {
432 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
433 			reschedule_retry(r10_bio);
434 		else {
435 			close_write(r10_bio);
436 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437 				reschedule_retry(r10_bio);
438 			else
439 				raid_end_bio_io(r10_bio);
440 		}
441 	}
442 }
443 
444 static void raid10_end_write_request(struct bio *bio, int error)
445 {
446 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447 	struct r10bio *r10_bio = bio->bi_private;
448 	int dev;
449 	int dec_rdev = 1;
450 	struct r10conf *conf = r10_bio->mddev->private;
451 	int slot, repl;
452 	struct md_rdev *rdev = NULL;
453 
454 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455 
456 	if (repl)
457 		rdev = conf->mirrors[dev].replacement;
458 	if (!rdev) {
459 		smp_rmb();
460 		repl = 0;
461 		rdev = conf->mirrors[dev].rdev;
462 	}
463 	/*
464 	 * this branch is our 'one mirror IO has finished' event handler:
465 	 */
466 	if (!uptodate) {
467 		if (repl)
468 			/* Never record new bad blocks to replacement,
469 			 * just fail it.
470 			 */
471 			md_error(rdev->mddev, rdev);
472 		else {
473 			set_bit(WriteErrorSeen,	&rdev->flags);
474 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
475 				set_bit(MD_RECOVERY_NEEDED,
476 					&rdev->mddev->recovery);
477 			set_bit(R10BIO_WriteError, &r10_bio->state);
478 			dec_rdev = 0;
479 		}
480 	} else {
481 		/*
482 		 * Set R10BIO_Uptodate in our master bio, so that
483 		 * we will return a good error code for to the higher
484 		 * levels even if IO on some other mirrored buffer fails.
485 		 *
486 		 * The 'master' represents the composite IO operation to
487 		 * user-side. So if something waits for IO, then it will
488 		 * wait for the 'master' bio.
489 		 */
490 		sector_t first_bad;
491 		int bad_sectors;
492 
493 		set_bit(R10BIO_Uptodate, &r10_bio->state);
494 
495 		/* Maybe we can clear some bad blocks. */
496 		if (is_badblock(rdev,
497 				r10_bio->devs[slot].addr,
498 				r10_bio->sectors,
499 				&first_bad, &bad_sectors)) {
500 			bio_put(bio);
501 			if (repl)
502 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
503 			else
504 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
505 			dec_rdev = 0;
506 			set_bit(R10BIO_MadeGood, &r10_bio->state);
507 		}
508 	}
509 
510 	/*
511 	 *
512 	 * Let's see if all mirrored write operations have finished
513 	 * already.
514 	 */
515 	one_write_done(r10_bio);
516 	if (dec_rdev)
517 		rdev_dec_pending(rdev, conf->mddev);
518 }
519 
520 /*
521  * RAID10 layout manager
522  * As well as the chunksize and raid_disks count, there are two
523  * parameters: near_copies and far_copies.
524  * near_copies * far_copies must be <= raid_disks.
525  * Normally one of these will be 1.
526  * If both are 1, we get raid0.
527  * If near_copies == raid_disks, we get raid1.
528  *
529  * Chunks are laid out in raid0 style with near_copies copies of the
530  * first chunk, followed by near_copies copies of the next chunk and
531  * so on.
532  * If far_copies > 1, then after 1/far_copies of the array has been assigned
533  * as described above, we start again with a device offset of near_copies.
534  * So we effectively have another copy of the whole array further down all
535  * the drives, but with blocks on different drives.
536  * With this layout, and block is never stored twice on the one device.
537  *
538  * raid10_find_phys finds the sector offset of a given virtual sector
539  * on each device that it is on.
540  *
541  * raid10_find_virt does the reverse mapping, from a device and a
542  * sector offset to a virtual address
543  */
544 
545 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
546 {
547 	int n,f;
548 	sector_t sector;
549 	sector_t chunk;
550 	sector_t stripe;
551 	int dev;
552 	int slot = 0;
553 	int last_far_set_start, last_far_set_size;
554 
555 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
556 	last_far_set_start *= geo->far_set_size;
557 
558 	last_far_set_size = geo->far_set_size;
559 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
560 
561 	/* now calculate first sector/dev */
562 	chunk = r10bio->sector >> geo->chunk_shift;
563 	sector = r10bio->sector & geo->chunk_mask;
564 
565 	chunk *= geo->near_copies;
566 	stripe = chunk;
567 	dev = sector_div(stripe, geo->raid_disks);
568 	if (geo->far_offset)
569 		stripe *= geo->far_copies;
570 
571 	sector += stripe << geo->chunk_shift;
572 
573 	/* and calculate all the others */
574 	for (n = 0; n < geo->near_copies; n++) {
575 		int d = dev;
576 		int set;
577 		sector_t s = sector;
578 		r10bio->devs[slot].devnum = d;
579 		r10bio->devs[slot].addr = s;
580 		slot++;
581 
582 		for (f = 1; f < geo->far_copies; f++) {
583 			set = d / geo->far_set_size;
584 			d += geo->near_copies;
585 
586 			if ((geo->raid_disks % geo->far_set_size) &&
587 			    (d > last_far_set_start)) {
588 				d -= last_far_set_start;
589 				d %= last_far_set_size;
590 				d += last_far_set_start;
591 			} else {
592 				d %= geo->far_set_size;
593 				d += geo->far_set_size * set;
594 			}
595 			s += geo->stride;
596 			r10bio->devs[slot].devnum = d;
597 			r10bio->devs[slot].addr = s;
598 			slot++;
599 		}
600 		dev++;
601 		if (dev >= geo->raid_disks) {
602 			dev = 0;
603 			sector += (geo->chunk_mask + 1);
604 		}
605 	}
606 }
607 
608 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
609 {
610 	struct geom *geo = &conf->geo;
611 
612 	if (conf->reshape_progress != MaxSector &&
613 	    ((r10bio->sector >= conf->reshape_progress) !=
614 	     conf->mddev->reshape_backwards)) {
615 		set_bit(R10BIO_Previous, &r10bio->state);
616 		geo = &conf->prev;
617 	} else
618 		clear_bit(R10BIO_Previous, &r10bio->state);
619 
620 	__raid10_find_phys(geo, r10bio);
621 }
622 
623 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
624 {
625 	sector_t offset, chunk, vchunk;
626 	/* Never use conf->prev as this is only called during resync
627 	 * or recovery, so reshape isn't happening
628 	 */
629 	struct geom *geo = &conf->geo;
630 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
631 	int far_set_size = geo->far_set_size;
632 	int last_far_set_start;
633 
634 	if (geo->raid_disks % geo->far_set_size) {
635 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
636 		last_far_set_start *= geo->far_set_size;
637 
638 		if (dev >= last_far_set_start) {
639 			far_set_size = geo->far_set_size;
640 			far_set_size += (geo->raid_disks % geo->far_set_size);
641 			far_set_start = last_far_set_start;
642 		}
643 	}
644 
645 	offset = sector & geo->chunk_mask;
646 	if (geo->far_offset) {
647 		int fc;
648 		chunk = sector >> geo->chunk_shift;
649 		fc = sector_div(chunk, geo->far_copies);
650 		dev -= fc * geo->near_copies;
651 		if (dev < far_set_start)
652 			dev += far_set_size;
653 	} else {
654 		while (sector >= geo->stride) {
655 			sector -= geo->stride;
656 			if (dev < (geo->near_copies + far_set_start))
657 				dev += far_set_size - geo->near_copies;
658 			else
659 				dev -= geo->near_copies;
660 		}
661 		chunk = sector >> geo->chunk_shift;
662 	}
663 	vchunk = chunk * geo->raid_disks + dev;
664 	sector_div(vchunk, geo->near_copies);
665 	return (vchunk << geo->chunk_shift) + offset;
666 }
667 
668 /**
669  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
670  *	@q: request queue
671  *	@bvm: properties of new bio
672  *	@biovec: the request that could be merged to it.
673  *
674  *	Return amount of bytes we can accept at this offset
675  *	This requires checking for end-of-chunk if near_copies != raid_disks,
676  *	and for subordinate merge_bvec_fns if merge_check_needed.
677  */
678 static int raid10_mergeable_bvec(struct request_queue *q,
679 				 struct bvec_merge_data *bvm,
680 				 struct bio_vec *biovec)
681 {
682 	struct mddev *mddev = q->queuedata;
683 	struct r10conf *conf = mddev->private;
684 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
685 	int max;
686 	unsigned int chunk_sectors;
687 	unsigned int bio_sectors = bvm->bi_size >> 9;
688 	struct geom *geo = &conf->geo;
689 
690 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
691 	if (conf->reshape_progress != MaxSector &&
692 	    ((sector >= conf->reshape_progress) !=
693 	     conf->mddev->reshape_backwards))
694 		geo = &conf->prev;
695 
696 	if (geo->near_copies < geo->raid_disks) {
697 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
698 					+ bio_sectors)) << 9;
699 		if (max < 0)
700 			/* bio_add cannot handle a negative return */
701 			max = 0;
702 		if (max <= biovec->bv_len && bio_sectors == 0)
703 			return biovec->bv_len;
704 	} else
705 		max = biovec->bv_len;
706 
707 	if (mddev->merge_check_needed) {
708 		struct {
709 			struct r10bio r10_bio;
710 			struct r10dev devs[conf->copies];
711 		} on_stack;
712 		struct r10bio *r10_bio = &on_stack.r10_bio;
713 		int s;
714 		if (conf->reshape_progress != MaxSector) {
715 			/* Cannot give any guidance during reshape */
716 			if (max <= biovec->bv_len && bio_sectors == 0)
717 				return biovec->bv_len;
718 			return 0;
719 		}
720 		r10_bio->sector = sector;
721 		raid10_find_phys(conf, r10_bio);
722 		rcu_read_lock();
723 		for (s = 0; s < conf->copies; s++) {
724 			int disk = r10_bio->devs[s].devnum;
725 			struct md_rdev *rdev = rcu_dereference(
726 				conf->mirrors[disk].rdev);
727 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
728 				struct request_queue *q =
729 					bdev_get_queue(rdev->bdev);
730 				if (q->merge_bvec_fn) {
731 					bvm->bi_sector = r10_bio->devs[s].addr
732 						+ rdev->data_offset;
733 					bvm->bi_bdev = rdev->bdev;
734 					max = min(max, q->merge_bvec_fn(
735 							  q, bvm, biovec));
736 				}
737 			}
738 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
739 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
740 				struct request_queue *q =
741 					bdev_get_queue(rdev->bdev);
742 				if (q->merge_bvec_fn) {
743 					bvm->bi_sector = r10_bio->devs[s].addr
744 						+ rdev->data_offset;
745 					bvm->bi_bdev = rdev->bdev;
746 					max = min(max, q->merge_bvec_fn(
747 							  q, bvm, biovec));
748 				}
749 			}
750 		}
751 		rcu_read_unlock();
752 	}
753 	return max;
754 }
755 
756 /*
757  * This routine returns the disk from which the requested read should
758  * be done. There is a per-array 'next expected sequential IO' sector
759  * number - if this matches on the next IO then we use the last disk.
760  * There is also a per-disk 'last know head position' sector that is
761  * maintained from IRQ contexts, both the normal and the resync IO
762  * completion handlers update this position correctly. If there is no
763  * perfect sequential match then we pick the disk whose head is closest.
764  *
765  * If there are 2 mirrors in the same 2 devices, performance degrades
766  * because position is mirror, not device based.
767  *
768  * The rdev for the device selected will have nr_pending incremented.
769  */
770 
771 /*
772  * FIXME: possibly should rethink readbalancing and do it differently
773  * depending on near_copies / far_copies geometry.
774  */
775 static struct md_rdev *read_balance(struct r10conf *conf,
776 				    struct r10bio *r10_bio,
777 				    int *max_sectors)
778 {
779 	const sector_t this_sector = r10_bio->sector;
780 	int disk, slot;
781 	int sectors = r10_bio->sectors;
782 	int best_good_sectors;
783 	sector_t new_distance, best_dist;
784 	struct md_rdev *best_rdev, *rdev = NULL;
785 	int do_balance;
786 	int best_slot;
787 	struct geom *geo = &conf->geo;
788 
789 	raid10_find_phys(conf, r10_bio);
790 	rcu_read_lock();
791 retry:
792 	sectors = r10_bio->sectors;
793 	best_slot = -1;
794 	best_rdev = NULL;
795 	best_dist = MaxSector;
796 	best_good_sectors = 0;
797 	do_balance = 1;
798 	/*
799 	 * Check if we can balance. We can balance on the whole
800 	 * device if no resync is going on (recovery is ok), or below
801 	 * the resync window. We take the first readable disk when
802 	 * above the resync window.
803 	 */
804 	if (conf->mddev->recovery_cp < MaxSector
805 	    && (this_sector + sectors >= conf->next_resync))
806 		do_balance = 0;
807 
808 	for (slot = 0; slot < conf->copies ; slot++) {
809 		sector_t first_bad;
810 		int bad_sectors;
811 		sector_t dev_sector;
812 
813 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
814 			continue;
815 		disk = r10_bio->devs[slot].devnum;
816 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
817 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
818 		    test_bit(Unmerged, &rdev->flags) ||
819 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
820 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
821 		if (rdev == NULL ||
822 		    test_bit(Faulty, &rdev->flags) ||
823 		    test_bit(Unmerged, &rdev->flags))
824 			continue;
825 		if (!test_bit(In_sync, &rdev->flags) &&
826 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827 			continue;
828 
829 		dev_sector = r10_bio->devs[slot].addr;
830 		if (is_badblock(rdev, dev_sector, sectors,
831 				&first_bad, &bad_sectors)) {
832 			if (best_dist < MaxSector)
833 				/* Already have a better slot */
834 				continue;
835 			if (first_bad <= dev_sector) {
836 				/* Cannot read here.  If this is the
837 				 * 'primary' device, then we must not read
838 				 * beyond 'bad_sectors' from another device.
839 				 */
840 				bad_sectors -= (dev_sector - first_bad);
841 				if (!do_balance && sectors > bad_sectors)
842 					sectors = bad_sectors;
843 				if (best_good_sectors > sectors)
844 					best_good_sectors = sectors;
845 			} else {
846 				sector_t good_sectors =
847 					first_bad - dev_sector;
848 				if (good_sectors > best_good_sectors) {
849 					best_good_sectors = good_sectors;
850 					best_slot = slot;
851 					best_rdev = rdev;
852 				}
853 				if (!do_balance)
854 					/* Must read from here */
855 					break;
856 			}
857 			continue;
858 		} else
859 			best_good_sectors = sectors;
860 
861 		if (!do_balance)
862 			break;
863 
864 		/* This optimisation is debatable, and completely destroys
865 		 * sequential read speed for 'far copies' arrays.  So only
866 		 * keep it for 'near' arrays, and review those later.
867 		 */
868 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
869 			break;
870 
871 		/* for far > 1 always use the lowest address */
872 		if (geo->far_copies > 1)
873 			new_distance = r10_bio->devs[slot].addr;
874 		else
875 			new_distance = abs(r10_bio->devs[slot].addr -
876 					   conf->mirrors[disk].head_position);
877 		if (new_distance < best_dist) {
878 			best_dist = new_distance;
879 			best_slot = slot;
880 			best_rdev = rdev;
881 		}
882 	}
883 	if (slot >= conf->copies) {
884 		slot = best_slot;
885 		rdev = best_rdev;
886 	}
887 
888 	if (slot >= 0) {
889 		atomic_inc(&rdev->nr_pending);
890 		if (test_bit(Faulty, &rdev->flags)) {
891 			/* Cannot risk returning a device that failed
892 			 * before we inc'ed nr_pending
893 			 */
894 			rdev_dec_pending(rdev, conf->mddev);
895 			goto retry;
896 		}
897 		r10_bio->read_slot = slot;
898 	} else
899 		rdev = NULL;
900 	rcu_read_unlock();
901 	*max_sectors = best_good_sectors;
902 
903 	return rdev;
904 }
905 
906 int md_raid10_congested(struct mddev *mddev, int bits)
907 {
908 	struct r10conf *conf = mddev->private;
909 	int i, ret = 0;
910 
911 	if ((bits & (1 << BDI_async_congested)) &&
912 	    conf->pending_count >= max_queued_requests)
913 		return 1;
914 
915 	rcu_read_lock();
916 	for (i = 0;
917 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
918 		     && ret == 0;
919 	     i++) {
920 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
921 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
922 			struct request_queue *q = bdev_get_queue(rdev->bdev);
923 
924 			ret |= bdi_congested(&q->backing_dev_info, bits);
925 		}
926 	}
927 	rcu_read_unlock();
928 	return ret;
929 }
930 EXPORT_SYMBOL_GPL(md_raid10_congested);
931 
932 static int raid10_congested(void *data, int bits)
933 {
934 	struct mddev *mddev = data;
935 
936 	return mddev_congested(mddev, bits) ||
937 		md_raid10_congested(mddev, bits);
938 }
939 
940 static void flush_pending_writes(struct r10conf *conf)
941 {
942 	/* Any writes that have been queued but are awaiting
943 	 * bitmap updates get flushed here.
944 	 */
945 	spin_lock_irq(&conf->device_lock);
946 
947 	if (conf->pending_bio_list.head) {
948 		struct bio *bio;
949 		bio = bio_list_get(&conf->pending_bio_list);
950 		conf->pending_count = 0;
951 		spin_unlock_irq(&conf->device_lock);
952 		/* flush any pending bitmap writes to disk
953 		 * before proceeding w/ I/O */
954 		bitmap_unplug(conf->mddev->bitmap);
955 		wake_up(&conf->wait_barrier);
956 
957 		while (bio) { /* submit pending writes */
958 			struct bio *next = bio->bi_next;
959 			bio->bi_next = NULL;
960 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
961 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
962 				/* Just ignore it */
963 				bio_endio(bio, 0);
964 			else
965 				generic_make_request(bio);
966 			bio = next;
967 		}
968 	} else
969 		spin_unlock_irq(&conf->device_lock);
970 }
971 
972 /* Barriers....
973  * Sometimes we need to suspend IO while we do something else,
974  * either some resync/recovery, or reconfigure the array.
975  * To do this we raise a 'barrier'.
976  * The 'barrier' is a counter that can be raised multiple times
977  * to count how many activities are happening which preclude
978  * normal IO.
979  * We can only raise the barrier if there is no pending IO.
980  * i.e. if nr_pending == 0.
981  * We choose only to raise the barrier if no-one is waiting for the
982  * barrier to go down.  This means that as soon as an IO request
983  * is ready, no other operations which require a barrier will start
984  * until the IO request has had a chance.
985  *
986  * So: regular IO calls 'wait_barrier'.  When that returns there
987  *    is no backgroup IO happening,  It must arrange to call
988  *    allow_barrier when it has finished its IO.
989  * backgroup IO calls must call raise_barrier.  Once that returns
990  *    there is no normal IO happeing.  It must arrange to call
991  *    lower_barrier when the particular background IO completes.
992  */
993 
994 static void raise_barrier(struct r10conf *conf, int force)
995 {
996 	BUG_ON(force && !conf->barrier);
997 	spin_lock_irq(&conf->resync_lock);
998 
999 	/* Wait until no block IO is waiting (unless 'force') */
1000 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1001 			    conf->resync_lock);
1002 
1003 	/* block any new IO from starting */
1004 	conf->barrier++;
1005 
1006 	/* Now wait for all pending IO to complete */
1007 	wait_event_lock_irq(conf->wait_barrier,
1008 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1009 			    conf->resync_lock);
1010 
1011 	spin_unlock_irq(&conf->resync_lock);
1012 }
1013 
1014 static void lower_barrier(struct r10conf *conf)
1015 {
1016 	unsigned long flags;
1017 	spin_lock_irqsave(&conf->resync_lock, flags);
1018 	conf->barrier--;
1019 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1020 	wake_up(&conf->wait_barrier);
1021 }
1022 
1023 static void wait_barrier(struct r10conf *conf)
1024 {
1025 	spin_lock_irq(&conf->resync_lock);
1026 	if (conf->barrier) {
1027 		conf->nr_waiting++;
1028 		/* Wait for the barrier to drop.
1029 		 * However if there are already pending
1030 		 * requests (preventing the barrier from
1031 		 * rising completely), and the
1032 		 * pre-process bio queue isn't empty,
1033 		 * then don't wait, as we need to empty
1034 		 * that queue to get the nr_pending
1035 		 * count down.
1036 		 */
1037 		wait_event_lock_irq(conf->wait_barrier,
1038 				    !conf->barrier ||
1039 				    (conf->nr_pending &&
1040 				     current->bio_list &&
1041 				     !bio_list_empty(current->bio_list)),
1042 				    conf->resync_lock);
1043 		conf->nr_waiting--;
1044 	}
1045 	conf->nr_pending++;
1046 	spin_unlock_irq(&conf->resync_lock);
1047 }
1048 
1049 static void allow_barrier(struct r10conf *conf)
1050 {
1051 	unsigned long flags;
1052 	spin_lock_irqsave(&conf->resync_lock, flags);
1053 	conf->nr_pending--;
1054 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1055 	wake_up(&conf->wait_barrier);
1056 }
1057 
1058 static void freeze_array(struct r10conf *conf)
1059 {
1060 	/* stop syncio and normal IO and wait for everything to
1061 	 * go quiet.
1062 	 * We increment barrier and nr_waiting, and then
1063 	 * wait until nr_pending match nr_queued+1
1064 	 * This is called in the context of one normal IO request
1065 	 * that has failed. Thus any sync request that might be pending
1066 	 * will be blocked by nr_pending, and we need to wait for
1067 	 * pending IO requests to complete or be queued for re-try.
1068 	 * Thus the number queued (nr_queued) plus this request (1)
1069 	 * must match the number of pending IOs (nr_pending) before
1070 	 * we continue.
1071 	 */
1072 	spin_lock_irq(&conf->resync_lock);
1073 	conf->barrier++;
1074 	conf->nr_waiting++;
1075 	wait_event_lock_irq_cmd(conf->wait_barrier,
1076 				conf->nr_pending == conf->nr_queued+1,
1077 				conf->resync_lock,
1078 				flush_pending_writes(conf));
1079 
1080 	spin_unlock_irq(&conf->resync_lock);
1081 }
1082 
1083 static void unfreeze_array(struct r10conf *conf)
1084 {
1085 	/* reverse the effect of the freeze */
1086 	spin_lock_irq(&conf->resync_lock);
1087 	conf->barrier--;
1088 	conf->nr_waiting--;
1089 	wake_up(&conf->wait_barrier);
1090 	spin_unlock_irq(&conf->resync_lock);
1091 }
1092 
1093 static sector_t choose_data_offset(struct r10bio *r10_bio,
1094 				   struct md_rdev *rdev)
1095 {
1096 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097 	    test_bit(R10BIO_Previous, &r10_bio->state))
1098 		return rdev->data_offset;
1099 	else
1100 		return rdev->new_data_offset;
1101 }
1102 
1103 struct raid10_plug_cb {
1104 	struct blk_plug_cb	cb;
1105 	struct bio_list		pending;
1106 	int			pending_cnt;
1107 };
1108 
1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1112 						   cb);
1113 	struct mddev *mddev = plug->cb.data;
1114 	struct r10conf *conf = mddev->private;
1115 	struct bio *bio;
1116 
1117 	if (from_schedule || current->bio_list) {
1118 		spin_lock_irq(&conf->device_lock);
1119 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120 		conf->pending_count += plug->pending_cnt;
1121 		spin_unlock_irq(&conf->device_lock);
1122 		wake_up(&conf->wait_barrier);
1123 		md_wakeup_thread(mddev->thread);
1124 		kfree(plug);
1125 		return;
1126 	}
1127 
1128 	/* we aren't scheduling, so we can do the write-out directly. */
1129 	bio = bio_list_get(&plug->pending);
1130 	bitmap_unplug(mddev->bitmap);
1131 	wake_up(&conf->wait_barrier);
1132 
1133 	while (bio) { /* submit pending writes */
1134 		struct bio *next = bio->bi_next;
1135 		bio->bi_next = NULL;
1136 		generic_make_request(bio);
1137 		bio = next;
1138 	}
1139 	kfree(plug);
1140 }
1141 
1142 static void make_request(struct mddev *mddev, struct bio * bio)
1143 {
1144 	struct r10conf *conf = mddev->private;
1145 	struct r10bio *r10_bio;
1146 	struct bio *read_bio;
1147 	int i;
1148 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1149 	int chunk_sects = chunk_mask + 1;
1150 	const int rw = bio_data_dir(bio);
1151 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1152 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1153 	const unsigned long do_discard = (bio->bi_rw
1154 					  & (REQ_DISCARD | REQ_SECURE));
1155 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1156 	unsigned long flags;
1157 	struct md_rdev *blocked_rdev;
1158 	struct blk_plug_cb *cb;
1159 	struct raid10_plug_cb *plug = NULL;
1160 	int sectors_handled;
1161 	int max_sectors;
1162 	int sectors;
1163 
1164 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1165 		md_flush_request(mddev, bio);
1166 		return;
1167 	}
1168 
1169 	/* If this request crosses a chunk boundary, we need to
1170 	 * split it.  This will only happen for 1 PAGE (or less) requests.
1171 	 */
1172 	if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1173 		     > chunk_sects
1174 		     && (conf->geo.near_copies < conf->geo.raid_disks
1175 			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1176 		struct bio_pair *bp;
1177 		/* Sanity check -- queue functions should prevent this happening */
1178 		if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1179 		    bio->bi_idx != 0)
1180 			goto bad_map;
1181 		/* This is a one page bio that upper layers
1182 		 * refuse to split for us, so we need to split it.
1183 		 */
1184 		bp = bio_split(bio,
1185 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1186 
1187 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1188 		 * If the first succeeds but the second blocks due to the resync
1189 		 * thread raising the barrier, we will deadlock because the
1190 		 * IO to the underlying device will be queued in generic_make_request
1191 		 * and will never complete, so will never reduce nr_pending.
1192 		 * So increment nr_waiting here so no new raise_barriers will
1193 		 * succeed, and so the second wait_barrier cannot block.
1194 		 */
1195 		spin_lock_irq(&conf->resync_lock);
1196 		conf->nr_waiting++;
1197 		spin_unlock_irq(&conf->resync_lock);
1198 
1199 		make_request(mddev, &bp->bio1);
1200 		make_request(mddev, &bp->bio2);
1201 
1202 		spin_lock_irq(&conf->resync_lock);
1203 		conf->nr_waiting--;
1204 		wake_up(&conf->wait_barrier);
1205 		spin_unlock_irq(&conf->resync_lock);
1206 
1207 		bio_pair_release(bp);
1208 		return;
1209 	bad_map:
1210 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1211 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1212 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1213 
1214 		bio_io_error(bio);
1215 		return;
1216 	}
1217 
1218 	md_write_start(mddev, bio);
1219 
1220 	/*
1221 	 * Register the new request and wait if the reconstruction
1222 	 * thread has put up a bar for new requests.
1223 	 * Continue immediately if no resync is active currently.
1224 	 */
1225 	wait_barrier(conf);
1226 
1227 	sectors = bio->bi_size >> 9;
1228 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1229 	    bio->bi_sector < conf->reshape_progress &&
1230 	    bio->bi_sector + sectors > conf->reshape_progress) {
1231 		/* IO spans the reshape position.  Need to wait for
1232 		 * reshape to pass
1233 		 */
1234 		allow_barrier(conf);
1235 		wait_event(conf->wait_barrier,
1236 			   conf->reshape_progress <= bio->bi_sector ||
1237 			   conf->reshape_progress >= bio->bi_sector + sectors);
1238 		wait_barrier(conf);
1239 	}
1240 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1241 	    bio_data_dir(bio) == WRITE &&
1242 	    (mddev->reshape_backwards
1243 	     ? (bio->bi_sector < conf->reshape_safe &&
1244 		bio->bi_sector + sectors > conf->reshape_progress)
1245 	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1246 		bio->bi_sector < conf->reshape_progress))) {
1247 		/* Need to update reshape_position in metadata */
1248 		mddev->reshape_position = conf->reshape_progress;
1249 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1250 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1251 		md_wakeup_thread(mddev->thread);
1252 		wait_event(mddev->sb_wait,
1253 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1254 
1255 		conf->reshape_safe = mddev->reshape_position;
1256 	}
1257 
1258 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1259 
1260 	r10_bio->master_bio = bio;
1261 	r10_bio->sectors = sectors;
1262 
1263 	r10_bio->mddev = mddev;
1264 	r10_bio->sector = bio->bi_sector;
1265 	r10_bio->state = 0;
1266 
1267 	/* We might need to issue multiple reads to different
1268 	 * devices if there are bad blocks around, so we keep
1269 	 * track of the number of reads in bio->bi_phys_segments.
1270 	 * If this is 0, there is only one r10_bio and no locking
1271 	 * will be needed when the request completes.  If it is
1272 	 * non-zero, then it is the number of not-completed requests.
1273 	 */
1274 	bio->bi_phys_segments = 0;
1275 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1276 
1277 	if (rw == READ) {
1278 		/*
1279 		 * read balancing logic:
1280 		 */
1281 		struct md_rdev *rdev;
1282 		int slot;
1283 
1284 read_again:
1285 		rdev = read_balance(conf, r10_bio, &max_sectors);
1286 		if (!rdev) {
1287 			raid_end_bio_io(r10_bio);
1288 			return;
1289 		}
1290 		slot = r10_bio->read_slot;
1291 
1292 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1293 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1294 			    max_sectors);
1295 
1296 		r10_bio->devs[slot].bio = read_bio;
1297 		r10_bio->devs[slot].rdev = rdev;
1298 
1299 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1300 			choose_data_offset(r10_bio, rdev);
1301 		read_bio->bi_bdev = rdev->bdev;
1302 		read_bio->bi_end_io = raid10_end_read_request;
1303 		read_bio->bi_rw = READ | do_sync;
1304 		read_bio->bi_private = r10_bio;
1305 
1306 		if (max_sectors < r10_bio->sectors) {
1307 			/* Could not read all from this device, so we will
1308 			 * need another r10_bio.
1309 			 */
1310 			sectors_handled = (r10_bio->sectors + max_sectors
1311 					   - bio->bi_sector);
1312 			r10_bio->sectors = max_sectors;
1313 			spin_lock_irq(&conf->device_lock);
1314 			if (bio->bi_phys_segments == 0)
1315 				bio->bi_phys_segments = 2;
1316 			else
1317 				bio->bi_phys_segments++;
1318 			spin_unlock(&conf->device_lock);
1319 			/* Cannot call generic_make_request directly
1320 			 * as that will be queued in __generic_make_request
1321 			 * and subsequent mempool_alloc might block
1322 			 * waiting for it.  so hand bio over to raid10d.
1323 			 */
1324 			reschedule_retry(r10_bio);
1325 
1326 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1327 
1328 			r10_bio->master_bio = bio;
1329 			r10_bio->sectors = ((bio->bi_size >> 9)
1330 					    - sectors_handled);
1331 			r10_bio->state = 0;
1332 			r10_bio->mddev = mddev;
1333 			r10_bio->sector = bio->bi_sector + sectors_handled;
1334 			goto read_again;
1335 		} else
1336 			generic_make_request(read_bio);
1337 		return;
1338 	}
1339 
1340 	/*
1341 	 * WRITE:
1342 	 */
1343 	if (conf->pending_count >= max_queued_requests) {
1344 		md_wakeup_thread(mddev->thread);
1345 		wait_event(conf->wait_barrier,
1346 			   conf->pending_count < max_queued_requests);
1347 	}
1348 	/* first select target devices under rcu_lock and
1349 	 * inc refcount on their rdev.  Record them by setting
1350 	 * bios[x] to bio
1351 	 * If there are known/acknowledged bad blocks on any device
1352 	 * on which we have seen a write error, we want to avoid
1353 	 * writing to those blocks.  This potentially requires several
1354 	 * writes to write around the bad blocks.  Each set of writes
1355 	 * gets its own r10_bio with a set of bios attached.  The number
1356 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1357 	 * the read case.
1358 	 */
1359 
1360 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1361 	raid10_find_phys(conf, r10_bio);
1362 retry_write:
1363 	blocked_rdev = NULL;
1364 	rcu_read_lock();
1365 	max_sectors = r10_bio->sectors;
1366 
1367 	for (i = 0;  i < conf->copies; i++) {
1368 		int d = r10_bio->devs[i].devnum;
1369 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1370 		struct md_rdev *rrdev = rcu_dereference(
1371 			conf->mirrors[d].replacement);
1372 		if (rdev == rrdev)
1373 			rrdev = NULL;
1374 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1375 			atomic_inc(&rdev->nr_pending);
1376 			blocked_rdev = rdev;
1377 			break;
1378 		}
1379 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1380 			atomic_inc(&rrdev->nr_pending);
1381 			blocked_rdev = rrdev;
1382 			break;
1383 		}
1384 		if (rdev && (test_bit(Faulty, &rdev->flags)
1385 			     || test_bit(Unmerged, &rdev->flags)))
1386 			rdev = NULL;
1387 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1388 			      || test_bit(Unmerged, &rrdev->flags)))
1389 			rrdev = NULL;
1390 
1391 		r10_bio->devs[i].bio = NULL;
1392 		r10_bio->devs[i].repl_bio = NULL;
1393 
1394 		if (!rdev && !rrdev) {
1395 			set_bit(R10BIO_Degraded, &r10_bio->state);
1396 			continue;
1397 		}
1398 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1399 			sector_t first_bad;
1400 			sector_t dev_sector = r10_bio->devs[i].addr;
1401 			int bad_sectors;
1402 			int is_bad;
1403 
1404 			is_bad = is_badblock(rdev, dev_sector,
1405 					     max_sectors,
1406 					     &first_bad, &bad_sectors);
1407 			if (is_bad < 0) {
1408 				/* Mustn't write here until the bad block
1409 				 * is acknowledged
1410 				 */
1411 				atomic_inc(&rdev->nr_pending);
1412 				set_bit(BlockedBadBlocks, &rdev->flags);
1413 				blocked_rdev = rdev;
1414 				break;
1415 			}
1416 			if (is_bad && first_bad <= dev_sector) {
1417 				/* Cannot write here at all */
1418 				bad_sectors -= (dev_sector - first_bad);
1419 				if (bad_sectors < max_sectors)
1420 					/* Mustn't write more than bad_sectors
1421 					 * to other devices yet
1422 					 */
1423 					max_sectors = bad_sectors;
1424 				/* We don't set R10BIO_Degraded as that
1425 				 * only applies if the disk is missing,
1426 				 * so it might be re-added, and we want to
1427 				 * know to recover this chunk.
1428 				 * In this case the device is here, and the
1429 				 * fact that this chunk is not in-sync is
1430 				 * recorded in the bad block log.
1431 				 */
1432 				continue;
1433 			}
1434 			if (is_bad) {
1435 				int good_sectors = first_bad - dev_sector;
1436 				if (good_sectors < max_sectors)
1437 					max_sectors = good_sectors;
1438 			}
1439 		}
1440 		if (rdev) {
1441 			r10_bio->devs[i].bio = bio;
1442 			atomic_inc(&rdev->nr_pending);
1443 		}
1444 		if (rrdev) {
1445 			r10_bio->devs[i].repl_bio = bio;
1446 			atomic_inc(&rrdev->nr_pending);
1447 		}
1448 	}
1449 	rcu_read_unlock();
1450 
1451 	if (unlikely(blocked_rdev)) {
1452 		/* Have to wait for this device to get unblocked, then retry */
1453 		int j;
1454 		int d;
1455 
1456 		for (j = 0; j < i; j++) {
1457 			if (r10_bio->devs[j].bio) {
1458 				d = r10_bio->devs[j].devnum;
1459 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1460 			}
1461 			if (r10_bio->devs[j].repl_bio) {
1462 				struct md_rdev *rdev;
1463 				d = r10_bio->devs[j].devnum;
1464 				rdev = conf->mirrors[d].replacement;
1465 				if (!rdev) {
1466 					/* Race with remove_disk */
1467 					smp_mb();
1468 					rdev = conf->mirrors[d].rdev;
1469 				}
1470 				rdev_dec_pending(rdev, mddev);
1471 			}
1472 		}
1473 		allow_barrier(conf);
1474 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1475 		wait_barrier(conf);
1476 		goto retry_write;
1477 	}
1478 
1479 	if (max_sectors < r10_bio->sectors) {
1480 		/* We are splitting this into multiple parts, so
1481 		 * we need to prepare for allocating another r10_bio.
1482 		 */
1483 		r10_bio->sectors = max_sectors;
1484 		spin_lock_irq(&conf->device_lock);
1485 		if (bio->bi_phys_segments == 0)
1486 			bio->bi_phys_segments = 2;
1487 		else
1488 			bio->bi_phys_segments++;
1489 		spin_unlock_irq(&conf->device_lock);
1490 	}
1491 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1492 
1493 	atomic_set(&r10_bio->remaining, 1);
1494 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1495 
1496 	for (i = 0; i < conf->copies; i++) {
1497 		struct bio *mbio;
1498 		int d = r10_bio->devs[i].devnum;
1499 		if (r10_bio->devs[i].bio) {
1500 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1501 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1502 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1503 				    max_sectors);
1504 			r10_bio->devs[i].bio = mbio;
1505 
1506 			mbio->bi_sector	= (r10_bio->devs[i].addr+
1507 					   choose_data_offset(r10_bio,
1508 							      rdev));
1509 			mbio->bi_bdev = rdev->bdev;
1510 			mbio->bi_end_io	= raid10_end_write_request;
1511 			mbio->bi_rw =
1512 				WRITE | do_sync | do_fua | do_discard | do_same;
1513 			mbio->bi_private = r10_bio;
1514 
1515 			atomic_inc(&r10_bio->remaining);
1516 
1517 			cb = blk_check_plugged(raid10_unplug, mddev,
1518 					       sizeof(*plug));
1519 			if (cb)
1520 				plug = container_of(cb, struct raid10_plug_cb,
1521 						    cb);
1522 			else
1523 				plug = NULL;
1524 			spin_lock_irqsave(&conf->device_lock, flags);
1525 			if (plug) {
1526 				bio_list_add(&plug->pending, mbio);
1527 				plug->pending_cnt++;
1528 			} else {
1529 				bio_list_add(&conf->pending_bio_list, mbio);
1530 				conf->pending_count++;
1531 			}
1532 			spin_unlock_irqrestore(&conf->device_lock, flags);
1533 			if (!plug)
1534 				md_wakeup_thread(mddev->thread);
1535 		}
1536 
1537 		if (r10_bio->devs[i].repl_bio) {
1538 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1539 			if (rdev == NULL) {
1540 				/* Replacement just got moved to main 'rdev' */
1541 				smp_mb();
1542 				rdev = conf->mirrors[d].rdev;
1543 			}
1544 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1545 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1546 				    max_sectors);
1547 			r10_bio->devs[i].repl_bio = mbio;
1548 
1549 			mbio->bi_sector	= (r10_bio->devs[i].addr +
1550 					   choose_data_offset(
1551 						   r10_bio, rdev));
1552 			mbio->bi_bdev = rdev->bdev;
1553 			mbio->bi_end_io	= raid10_end_write_request;
1554 			mbio->bi_rw =
1555 				WRITE | do_sync | do_fua | do_discard | do_same;
1556 			mbio->bi_private = r10_bio;
1557 
1558 			atomic_inc(&r10_bio->remaining);
1559 			spin_lock_irqsave(&conf->device_lock, flags);
1560 			bio_list_add(&conf->pending_bio_list, mbio);
1561 			conf->pending_count++;
1562 			spin_unlock_irqrestore(&conf->device_lock, flags);
1563 			if (!mddev_check_plugged(mddev))
1564 				md_wakeup_thread(mddev->thread);
1565 		}
1566 	}
1567 
1568 	/* Don't remove the bias on 'remaining' (one_write_done) until
1569 	 * after checking if we need to go around again.
1570 	 */
1571 
1572 	if (sectors_handled < (bio->bi_size >> 9)) {
1573 		one_write_done(r10_bio);
1574 		/* We need another r10_bio.  It has already been counted
1575 		 * in bio->bi_phys_segments.
1576 		 */
1577 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1578 
1579 		r10_bio->master_bio = bio;
1580 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1581 
1582 		r10_bio->mddev = mddev;
1583 		r10_bio->sector = bio->bi_sector + sectors_handled;
1584 		r10_bio->state = 0;
1585 		goto retry_write;
1586 	}
1587 	one_write_done(r10_bio);
1588 
1589 	/* In case raid10d snuck in to freeze_array */
1590 	wake_up(&conf->wait_barrier);
1591 }
1592 
1593 static void status(struct seq_file *seq, struct mddev *mddev)
1594 {
1595 	struct r10conf *conf = mddev->private;
1596 	int i;
1597 
1598 	if (conf->geo.near_copies < conf->geo.raid_disks)
1599 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1600 	if (conf->geo.near_copies > 1)
1601 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1602 	if (conf->geo.far_copies > 1) {
1603 		if (conf->geo.far_offset)
1604 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1605 		else
1606 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1607 	}
1608 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1609 					conf->geo.raid_disks - mddev->degraded);
1610 	for (i = 0; i < conf->geo.raid_disks; i++)
1611 		seq_printf(seq, "%s",
1612 			      conf->mirrors[i].rdev &&
1613 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1614 	seq_printf(seq, "]");
1615 }
1616 
1617 /* check if there are enough drives for
1618  * every block to appear on atleast one.
1619  * Don't consider the device numbered 'ignore'
1620  * as we might be about to remove it.
1621  */
1622 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1623 {
1624 	int first = 0;
1625 
1626 	do {
1627 		int n = conf->copies;
1628 		int cnt = 0;
1629 		int this = first;
1630 		while (n--) {
1631 			if (conf->mirrors[this].rdev &&
1632 			    this != ignore)
1633 				cnt++;
1634 			this = (this+1) % geo->raid_disks;
1635 		}
1636 		if (cnt == 0)
1637 			return 0;
1638 		first = (first + geo->near_copies) % geo->raid_disks;
1639 	} while (first != 0);
1640 	return 1;
1641 }
1642 
1643 static int enough(struct r10conf *conf, int ignore)
1644 {
1645 	return _enough(conf, &conf->geo, ignore) &&
1646 		_enough(conf, &conf->prev, ignore);
1647 }
1648 
1649 static void error(struct mddev *mddev, struct md_rdev *rdev)
1650 {
1651 	char b[BDEVNAME_SIZE];
1652 	struct r10conf *conf = mddev->private;
1653 
1654 	/*
1655 	 * If it is not operational, then we have already marked it as dead
1656 	 * else if it is the last working disks, ignore the error, let the
1657 	 * next level up know.
1658 	 * else mark the drive as failed
1659 	 */
1660 	if (test_bit(In_sync, &rdev->flags)
1661 	    && !enough(conf, rdev->raid_disk))
1662 		/*
1663 		 * Don't fail the drive, just return an IO error.
1664 		 */
1665 		return;
1666 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1667 		unsigned long flags;
1668 		spin_lock_irqsave(&conf->device_lock, flags);
1669 		mddev->degraded++;
1670 		spin_unlock_irqrestore(&conf->device_lock, flags);
1671 		/*
1672 		 * if recovery is running, make sure it aborts.
1673 		 */
1674 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1675 	}
1676 	set_bit(Blocked, &rdev->flags);
1677 	set_bit(Faulty, &rdev->flags);
1678 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1679 	printk(KERN_ALERT
1680 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1681 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1682 	       mdname(mddev), bdevname(rdev->bdev, b),
1683 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1684 }
1685 
1686 static void print_conf(struct r10conf *conf)
1687 {
1688 	int i;
1689 	struct raid10_info *tmp;
1690 
1691 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1692 	if (!conf) {
1693 		printk(KERN_DEBUG "(!conf)\n");
1694 		return;
1695 	}
1696 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1697 		conf->geo.raid_disks);
1698 
1699 	for (i = 0; i < conf->geo.raid_disks; i++) {
1700 		char b[BDEVNAME_SIZE];
1701 		tmp = conf->mirrors + i;
1702 		if (tmp->rdev)
1703 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1704 				i, !test_bit(In_sync, &tmp->rdev->flags),
1705 			        !test_bit(Faulty, &tmp->rdev->flags),
1706 				bdevname(tmp->rdev->bdev,b));
1707 	}
1708 }
1709 
1710 static void close_sync(struct r10conf *conf)
1711 {
1712 	wait_barrier(conf);
1713 	allow_barrier(conf);
1714 
1715 	mempool_destroy(conf->r10buf_pool);
1716 	conf->r10buf_pool = NULL;
1717 }
1718 
1719 static int raid10_spare_active(struct mddev *mddev)
1720 {
1721 	int i;
1722 	struct r10conf *conf = mddev->private;
1723 	struct raid10_info *tmp;
1724 	int count = 0;
1725 	unsigned long flags;
1726 
1727 	/*
1728 	 * Find all non-in_sync disks within the RAID10 configuration
1729 	 * and mark them in_sync
1730 	 */
1731 	for (i = 0; i < conf->geo.raid_disks; i++) {
1732 		tmp = conf->mirrors + i;
1733 		if (tmp->replacement
1734 		    && tmp->replacement->recovery_offset == MaxSector
1735 		    && !test_bit(Faulty, &tmp->replacement->flags)
1736 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1737 			/* Replacement has just become active */
1738 			if (!tmp->rdev
1739 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1740 				count++;
1741 			if (tmp->rdev) {
1742 				/* Replaced device not technically faulty,
1743 				 * but we need to be sure it gets removed
1744 				 * and never re-added.
1745 				 */
1746 				set_bit(Faulty, &tmp->rdev->flags);
1747 				sysfs_notify_dirent_safe(
1748 					tmp->rdev->sysfs_state);
1749 			}
1750 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1751 		} else if (tmp->rdev
1752 			   && !test_bit(Faulty, &tmp->rdev->flags)
1753 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1754 			count++;
1755 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1756 		}
1757 	}
1758 	spin_lock_irqsave(&conf->device_lock, flags);
1759 	mddev->degraded -= count;
1760 	spin_unlock_irqrestore(&conf->device_lock, flags);
1761 
1762 	print_conf(conf);
1763 	return count;
1764 }
1765 
1766 
1767 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1768 {
1769 	struct r10conf *conf = mddev->private;
1770 	int err = -EEXIST;
1771 	int mirror;
1772 	int first = 0;
1773 	int last = conf->geo.raid_disks - 1;
1774 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1775 
1776 	if (mddev->recovery_cp < MaxSector)
1777 		/* only hot-add to in-sync arrays, as recovery is
1778 		 * very different from resync
1779 		 */
1780 		return -EBUSY;
1781 	if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1782 		return -EINVAL;
1783 
1784 	if (rdev->raid_disk >= 0)
1785 		first = last = rdev->raid_disk;
1786 
1787 	if (q->merge_bvec_fn) {
1788 		set_bit(Unmerged, &rdev->flags);
1789 		mddev->merge_check_needed = 1;
1790 	}
1791 
1792 	if (rdev->saved_raid_disk >= first &&
1793 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1794 		mirror = rdev->saved_raid_disk;
1795 	else
1796 		mirror = first;
1797 	for ( ; mirror <= last ; mirror++) {
1798 		struct raid10_info *p = &conf->mirrors[mirror];
1799 		if (p->recovery_disabled == mddev->recovery_disabled)
1800 			continue;
1801 		if (p->rdev) {
1802 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1803 			    p->replacement != NULL)
1804 				continue;
1805 			clear_bit(In_sync, &rdev->flags);
1806 			set_bit(Replacement, &rdev->flags);
1807 			rdev->raid_disk = mirror;
1808 			err = 0;
1809 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1810 					  rdev->data_offset << 9);
1811 			conf->fullsync = 1;
1812 			rcu_assign_pointer(p->replacement, rdev);
1813 			break;
1814 		}
1815 
1816 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1817 				  rdev->data_offset << 9);
1818 
1819 		p->head_position = 0;
1820 		p->recovery_disabled = mddev->recovery_disabled - 1;
1821 		rdev->raid_disk = mirror;
1822 		err = 0;
1823 		if (rdev->saved_raid_disk != mirror)
1824 			conf->fullsync = 1;
1825 		rcu_assign_pointer(p->rdev, rdev);
1826 		break;
1827 	}
1828 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1829 		/* Some requests might not have seen this new
1830 		 * merge_bvec_fn.  We must wait for them to complete
1831 		 * before merging the device fully.
1832 		 * First we make sure any code which has tested
1833 		 * our function has submitted the request, then
1834 		 * we wait for all outstanding requests to complete.
1835 		 */
1836 		synchronize_sched();
1837 		raise_barrier(conf, 0);
1838 		lower_barrier(conf);
1839 		clear_bit(Unmerged, &rdev->flags);
1840 	}
1841 	md_integrity_add_rdev(rdev, mddev);
1842 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1843 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1844 
1845 	print_conf(conf);
1846 	return err;
1847 }
1848 
1849 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1850 {
1851 	struct r10conf *conf = mddev->private;
1852 	int err = 0;
1853 	int number = rdev->raid_disk;
1854 	struct md_rdev **rdevp;
1855 	struct raid10_info *p = conf->mirrors + number;
1856 
1857 	print_conf(conf);
1858 	if (rdev == p->rdev)
1859 		rdevp = &p->rdev;
1860 	else if (rdev == p->replacement)
1861 		rdevp = &p->replacement;
1862 	else
1863 		return 0;
1864 
1865 	if (test_bit(In_sync, &rdev->flags) ||
1866 	    atomic_read(&rdev->nr_pending)) {
1867 		err = -EBUSY;
1868 		goto abort;
1869 	}
1870 	/* Only remove faulty devices if recovery
1871 	 * is not possible.
1872 	 */
1873 	if (!test_bit(Faulty, &rdev->flags) &&
1874 	    mddev->recovery_disabled != p->recovery_disabled &&
1875 	    (!p->replacement || p->replacement == rdev) &&
1876 	    number < conf->geo.raid_disks &&
1877 	    enough(conf, -1)) {
1878 		err = -EBUSY;
1879 		goto abort;
1880 	}
1881 	*rdevp = NULL;
1882 	synchronize_rcu();
1883 	if (atomic_read(&rdev->nr_pending)) {
1884 		/* lost the race, try later */
1885 		err = -EBUSY;
1886 		*rdevp = rdev;
1887 		goto abort;
1888 	} else if (p->replacement) {
1889 		/* We must have just cleared 'rdev' */
1890 		p->rdev = p->replacement;
1891 		clear_bit(Replacement, &p->replacement->flags);
1892 		smp_mb(); /* Make sure other CPUs may see both as identical
1893 			   * but will never see neither -- if they are careful.
1894 			   */
1895 		p->replacement = NULL;
1896 		clear_bit(WantReplacement, &rdev->flags);
1897 	} else
1898 		/* We might have just remove the Replacement as faulty
1899 		 * Clear the flag just in case
1900 		 */
1901 		clear_bit(WantReplacement, &rdev->flags);
1902 
1903 	err = md_integrity_register(mddev);
1904 
1905 abort:
1906 
1907 	print_conf(conf);
1908 	return err;
1909 }
1910 
1911 
1912 static void end_sync_read(struct bio *bio, int error)
1913 {
1914 	struct r10bio *r10_bio = bio->bi_private;
1915 	struct r10conf *conf = r10_bio->mddev->private;
1916 	int d;
1917 
1918 	if (bio == r10_bio->master_bio) {
1919 		/* this is a reshape read */
1920 		d = r10_bio->read_slot; /* really the read dev */
1921 	} else
1922 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1923 
1924 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1925 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1926 	else
1927 		/* The write handler will notice the lack of
1928 		 * R10BIO_Uptodate and record any errors etc
1929 		 */
1930 		atomic_add(r10_bio->sectors,
1931 			   &conf->mirrors[d].rdev->corrected_errors);
1932 
1933 	/* for reconstruct, we always reschedule after a read.
1934 	 * for resync, only after all reads
1935 	 */
1936 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1937 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1938 	    atomic_dec_and_test(&r10_bio->remaining)) {
1939 		/* we have read all the blocks,
1940 		 * do the comparison in process context in raid10d
1941 		 */
1942 		reschedule_retry(r10_bio);
1943 	}
1944 }
1945 
1946 static void end_sync_request(struct r10bio *r10_bio)
1947 {
1948 	struct mddev *mddev = r10_bio->mddev;
1949 
1950 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1951 		if (r10_bio->master_bio == NULL) {
1952 			/* the primary of several recovery bios */
1953 			sector_t s = r10_bio->sectors;
1954 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1955 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1956 				reschedule_retry(r10_bio);
1957 			else
1958 				put_buf(r10_bio);
1959 			md_done_sync(mddev, s, 1);
1960 			break;
1961 		} else {
1962 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1963 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1964 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1965 				reschedule_retry(r10_bio);
1966 			else
1967 				put_buf(r10_bio);
1968 			r10_bio = r10_bio2;
1969 		}
1970 	}
1971 }
1972 
1973 static void end_sync_write(struct bio *bio, int error)
1974 {
1975 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1976 	struct r10bio *r10_bio = bio->bi_private;
1977 	struct mddev *mddev = r10_bio->mddev;
1978 	struct r10conf *conf = mddev->private;
1979 	int d;
1980 	sector_t first_bad;
1981 	int bad_sectors;
1982 	int slot;
1983 	int repl;
1984 	struct md_rdev *rdev = NULL;
1985 
1986 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1987 	if (repl)
1988 		rdev = conf->mirrors[d].replacement;
1989 	else
1990 		rdev = conf->mirrors[d].rdev;
1991 
1992 	if (!uptodate) {
1993 		if (repl)
1994 			md_error(mddev, rdev);
1995 		else {
1996 			set_bit(WriteErrorSeen, &rdev->flags);
1997 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1998 				set_bit(MD_RECOVERY_NEEDED,
1999 					&rdev->mddev->recovery);
2000 			set_bit(R10BIO_WriteError, &r10_bio->state);
2001 		}
2002 	} else if (is_badblock(rdev,
2003 			     r10_bio->devs[slot].addr,
2004 			     r10_bio->sectors,
2005 			     &first_bad, &bad_sectors))
2006 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2007 
2008 	rdev_dec_pending(rdev, mddev);
2009 
2010 	end_sync_request(r10_bio);
2011 }
2012 
2013 /*
2014  * Note: sync and recover and handled very differently for raid10
2015  * This code is for resync.
2016  * For resync, we read through virtual addresses and read all blocks.
2017  * If there is any error, we schedule a write.  The lowest numbered
2018  * drive is authoritative.
2019  * However requests come for physical address, so we need to map.
2020  * For every physical address there are raid_disks/copies virtual addresses,
2021  * which is always are least one, but is not necessarly an integer.
2022  * This means that a physical address can span multiple chunks, so we may
2023  * have to submit multiple io requests for a single sync request.
2024  */
2025 /*
2026  * We check if all blocks are in-sync and only write to blocks that
2027  * aren't in sync
2028  */
2029 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2030 {
2031 	struct r10conf *conf = mddev->private;
2032 	int i, first;
2033 	struct bio *tbio, *fbio;
2034 	int vcnt;
2035 
2036 	atomic_set(&r10_bio->remaining, 1);
2037 
2038 	/* find the first device with a block */
2039 	for (i=0; i<conf->copies; i++)
2040 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2041 			break;
2042 
2043 	if (i == conf->copies)
2044 		goto done;
2045 
2046 	first = i;
2047 	fbio = r10_bio->devs[i].bio;
2048 
2049 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2050 	/* now find blocks with errors */
2051 	for (i=0 ; i < conf->copies ; i++) {
2052 		int  j, d;
2053 
2054 		tbio = r10_bio->devs[i].bio;
2055 
2056 		if (tbio->bi_end_io != end_sync_read)
2057 			continue;
2058 		if (i == first)
2059 			continue;
2060 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2061 			/* We know that the bi_io_vec layout is the same for
2062 			 * both 'first' and 'i', so we just compare them.
2063 			 * All vec entries are PAGE_SIZE;
2064 			 */
2065 			for (j = 0; j < vcnt; j++)
2066 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2067 					   page_address(tbio->bi_io_vec[j].bv_page),
2068 					   fbio->bi_io_vec[j].bv_len))
2069 					break;
2070 			if (j == vcnt)
2071 				continue;
2072 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2073 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2074 				/* Don't fix anything. */
2075 				continue;
2076 		}
2077 		/* Ok, we need to write this bio, either to correct an
2078 		 * inconsistency or to correct an unreadable block.
2079 		 * First we need to fixup bv_offset, bv_len and
2080 		 * bi_vecs, as the read request might have corrupted these
2081 		 */
2082 		tbio->bi_vcnt = vcnt;
2083 		tbio->bi_size = r10_bio->sectors << 9;
2084 		tbio->bi_idx = 0;
2085 		tbio->bi_phys_segments = 0;
2086 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2087 		tbio->bi_flags |= 1 << BIO_UPTODATE;
2088 		tbio->bi_next = NULL;
2089 		tbio->bi_rw = WRITE;
2090 		tbio->bi_private = r10_bio;
2091 		tbio->bi_sector = r10_bio->devs[i].addr;
2092 
2093 		for (j=0; j < vcnt ; j++) {
2094 			tbio->bi_io_vec[j].bv_offset = 0;
2095 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2096 
2097 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2098 			       page_address(fbio->bi_io_vec[j].bv_page),
2099 			       PAGE_SIZE);
2100 		}
2101 		tbio->bi_end_io = end_sync_write;
2102 
2103 		d = r10_bio->devs[i].devnum;
2104 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2105 		atomic_inc(&r10_bio->remaining);
2106 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2107 
2108 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2109 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2110 		generic_make_request(tbio);
2111 	}
2112 
2113 	/* Now write out to any replacement devices
2114 	 * that are active
2115 	 */
2116 	for (i = 0; i < conf->copies; i++) {
2117 		int j, d;
2118 
2119 		tbio = r10_bio->devs[i].repl_bio;
2120 		if (!tbio || !tbio->bi_end_io)
2121 			continue;
2122 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2123 		    && r10_bio->devs[i].bio != fbio)
2124 			for (j = 0; j < vcnt; j++)
2125 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2126 				       page_address(fbio->bi_io_vec[j].bv_page),
2127 				       PAGE_SIZE);
2128 		d = r10_bio->devs[i].devnum;
2129 		atomic_inc(&r10_bio->remaining);
2130 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2131 			     tbio->bi_size >> 9);
2132 		generic_make_request(tbio);
2133 	}
2134 
2135 done:
2136 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2137 		md_done_sync(mddev, r10_bio->sectors, 1);
2138 		put_buf(r10_bio);
2139 	}
2140 }
2141 
2142 /*
2143  * Now for the recovery code.
2144  * Recovery happens across physical sectors.
2145  * We recover all non-is_sync drives by finding the virtual address of
2146  * each, and then choose a working drive that also has that virt address.
2147  * There is a separate r10_bio for each non-in_sync drive.
2148  * Only the first two slots are in use. The first for reading,
2149  * The second for writing.
2150  *
2151  */
2152 static void fix_recovery_read_error(struct r10bio *r10_bio)
2153 {
2154 	/* We got a read error during recovery.
2155 	 * We repeat the read in smaller page-sized sections.
2156 	 * If a read succeeds, write it to the new device or record
2157 	 * a bad block if we cannot.
2158 	 * If a read fails, record a bad block on both old and
2159 	 * new devices.
2160 	 */
2161 	struct mddev *mddev = r10_bio->mddev;
2162 	struct r10conf *conf = mddev->private;
2163 	struct bio *bio = r10_bio->devs[0].bio;
2164 	sector_t sect = 0;
2165 	int sectors = r10_bio->sectors;
2166 	int idx = 0;
2167 	int dr = r10_bio->devs[0].devnum;
2168 	int dw = r10_bio->devs[1].devnum;
2169 
2170 	while (sectors) {
2171 		int s = sectors;
2172 		struct md_rdev *rdev;
2173 		sector_t addr;
2174 		int ok;
2175 
2176 		if (s > (PAGE_SIZE>>9))
2177 			s = PAGE_SIZE >> 9;
2178 
2179 		rdev = conf->mirrors[dr].rdev;
2180 		addr = r10_bio->devs[0].addr + sect,
2181 		ok = sync_page_io(rdev,
2182 				  addr,
2183 				  s << 9,
2184 				  bio->bi_io_vec[idx].bv_page,
2185 				  READ, false);
2186 		if (ok) {
2187 			rdev = conf->mirrors[dw].rdev;
2188 			addr = r10_bio->devs[1].addr + sect;
2189 			ok = sync_page_io(rdev,
2190 					  addr,
2191 					  s << 9,
2192 					  bio->bi_io_vec[idx].bv_page,
2193 					  WRITE, false);
2194 			if (!ok) {
2195 				set_bit(WriteErrorSeen, &rdev->flags);
2196 				if (!test_and_set_bit(WantReplacement,
2197 						      &rdev->flags))
2198 					set_bit(MD_RECOVERY_NEEDED,
2199 						&rdev->mddev->recovery);
2200 			}
2201 		}
2202 		if (!ok) {
2203 			/* We don't worry if we cannot set a bad block -
2204 			 * it really is bad so there is no loss in not
2205 			 * recording it yet
2206 			 */
2207 			rdev_set_badblocks(rdev, addr, s, 0);
2208 
2209 			if (rdev != conf->mirrors[dw].rdev) {
2210 				/* need bad block on destination too */
2211 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2212 				addr = r10_bio->devs[1].addr + sect;
2213 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2214 				if (!ok) {
2215 					/* just abort the recovery */
2216 					printk(KERN_NOTICE
2217 					       "md/raid10:%s: recovery aborted"
2218 					       " due to read error\n",
2219 					       mdname(mddev));
2220 
2221 					conf->mirrors[dw].recovery_disabled
2222 						= mddev->recovery_disabled;
2223 					set_bit(MD_RECOVERY_INTR,
2224 						&mddev->recovery);
2225 					break;
2226 				}
2227 			}
2228 		}
2229 
2230 		sectors -= s;
2231 		sect += s;
2232 		idx++;
2233 	}
2234 }
2235 
2236 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2237 {
2238 	struct r10conf *conf = mddev->private;
2239 	int d;
2240 	struct bio *wbio, *wbio2;
2241 
2242 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2243 		fix_recovery_read_error(r10_bio);
2244 		end_sync_request(r10_bio);
2245 		return;
2246 	}
2247 
2248 	/*
2249 	 * share the pages with the first bio
2250 	 * and submit the write request
2251 	 */
2252 	d = r10_bio->devs[1].devnum;
2253 	wbio = r10_bio->devs[1].bio;
2254 	wbio2 = r10_bio->devs[1].repl_bio;
2255 	if (wbio->bi_end_io) {
2256 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2257 		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2258 		generic_make_request(wbio);
2259 	}
2260 	if (wbio2 && wbio2->bi_end_io) {
2261 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2262 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2263 			     wbio2->bi_size >> 9);
2264 		generic_make_request(wbio2);
2265 	}
2266 }
2267 
2268 
2269 /*
2270  * Used by fix_read_error() to decay the per rdev read_errors.
2271  * We halve the read error count for every hour that has elapsed
2272  * since the last recorded read error.
2273  *
2274  */
2275 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2276 {
2277 	struct timespec cur_time_mon;
2278 	unsigned long hours_since_last;
2279 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2280 
2281 	ktime_get_ts(&cur_time_mon);
2282 
2283 	if (rdev->last_read_error.tv_sec == 0 &&
2284 	    rdev->last_read_error.tv_nsec == 0) {
2285 		/* first time we've seen a read error */
2286 		rdev->last_read_error = cur_time_mon;
2287 		return;
2288 	}
2289 
2290 	hours_since_last = (cur_time_mon.tv_sec -
2291 			    rdev->last_read_error.tv_sec) / 3600;
2292 
2293 	rdev->last_read_error = cur_time_mon;
2294 
2295 	/*
2296 	 * if hours_since_last is > the number of bits in read_errors
2297 	 * just set read errors to 0. We do this to avoid
2298 	 * overflowing the shift of read_errors by hours_since_last.
2299 	 */
2300 	if (hours_since_last >= 8 * sizeof(read_errors))
2301 		atomic_set(&rdev->read_errors, 0);
2302 	else
2303 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2304 }
2305 
2306 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2307 			    int sectors, struct page *page, int rw)
2308 {
2309 	sector_t first_bad;
2310 	int bad_sectors;
2311 
2312 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2313 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2314 		return -1;
2315 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2316 		/* success */
2317 		return 1;
2318 	if (rw == WRITE) {
2319 		set_bit(WriteErrorSeen, &rdev->flags);
2320 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2321 			set_bit(MD_RECOVERY_NEEDED,
2322 				&rdev->mddev->recovery);
2323 	}
2324 	/* need to record an error - either for the block or the device */
2325 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2326 		md_error(rdev->mddev, rdev);
2327 	return 0;
2328 }
2329 
2330 /*
2331  * This is a kernel thread which:
2332  *
2333  *	1.	Retries failed read operations on working mirrors.
2334  *	2.	Updates the raid superblock when problems encounter.
2335  *	3.	Performs writes following reads for array synchronising.
2336  */
2337 
2338 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2339 {
2340 	int sect = 0; /* Offset from r10_bio->sector */
2341 	int sectors = r10_bio->sectors;
2342 	struct md_rdev*rdev;
2343 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2344 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2345 
2346 	/* still own a reference to this rdev, so it cannot
2347 	 * have been cleared recently.
2348 	 */
2349 	rdev = conf->mirrors[d].rdev;
2350 
2351 	if (test_bit(Faulty, &rdev->flags))
2352 		/* drive has already been failed, just ignore any
2353 		   more fix_read_error() attempts */
2354 		return;
2355 
2356 	check_decay_read_errors(mddev, rdev);
2357 	atomic_inc(&rdev->read_errors);
2358 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2359 		char b[BDEVNAME_SIZE];
2360 		bdevname(rdev->bdev, b);
2361 
2362 		printk(KERN_NOTICE
2363 		       "md/raid10:%s: %s: Raid device exceeded "
2364 		       "read_error threshold [cur %d:max %d]\n",
2365 		       mdname(mddev), b,
2366 		       atomic_read(&rdev->read_errors), max_read_errors);
2367 		printk(KERN_NOTICE
2368 		       "md/raid10:%s: %s: Failing raid device\n",
2369 		       mdname(mddev), b);
2370 		md_error(mddev, conf->mirrors[d].rdev);
2371 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2372 		return;
2373 	}
2374 
2375 	while(sectors) {
2376 		int s = sectors;
2377 		int sl = r10_bio->read_slot;
2378 		int success = 0;
2379 		int start;
2380 
2381 		if (s > (PAGE_SIZE>>9))
2382 			s = PAGE_SIZE >> 9;
2383 
2384 		rcu_read_lock();
2385 		do {
2386 			sector_t first_bad;
2387 			int bad_sectors;
2388 
2389 			d = r10_bio->devs[sl].devnum;
2390 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2391 			if (rdev &&
2392 			    !test_bit(Unmerged, &rdev->flags) &&
2393 			    test_bit(In_sync, &rdev->flags) &&
2394 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2395 					&first_bad, &bad_sectors) == 0) {
2396 				atomic_inc(&rdev->nr_pending);
2397 				rcu_read_unlock();
2398 				success = sync_page_io(rdev,
2399 						       r10_bio->devs[sl].addr +
2400 						       sect,
2401 						       s<<9,
2402 						       conf->tmppage, READ, false);
2403 				rdev_dec_pending(rdev, mddev);
2404 				rcu_read_lock();
2405 				if (success)
2406 					break;
2407 			}
2408 			sl++;
2409 			if (sl == conf->copies)
2410 				sl = 0;
2411 		} while (!success && sl != r10_bio->read_slot);
2412 		rcu_read_unlock();
2413 
2414 		if (!success) {
2415 			/* Cannot read from anywhere, just mark the block
2416 			 * as bad on the first device to discourage future
2417 			 * reads.
2418 			 */
2419 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2420 			rdev = conf->mirrors[dn].rdev;
2421 
2422 			if (!rdev_set_badblocks(
2423 				    rdev,
2424 				    r10_bio->devs[r10_bio->read_slot].addr
2425 				    + sect,
2426 				    s, 0)) {
2427 				md_error(mddev, rdev);
2428 				r10_bio->devs[r10_bio->read_slot].bio
2429 					= IO_BLOCKED;
2430 			}
2431 			break;
2432 		}
2433 
2434 		start = sl;
2435 		/* write it back and re-read */
2436 		rcu_read_lock();
2437 		while (sl != r10_bio->read_slot) {
2438 			char b[BDEVNAME_SIZE];
2439 
2440 			if (sl==0)
2441 				sl = conf->copies;
2442 			sl--;
2443 			d = r10_bio->devs[sl].devnum;
2444 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2445 			if (!rdev ||
2446 			    test_bit(Unmerged, &rdev->flags) ||
2447 			    !test_bit(In_sync, &rdev->flags))
2448 				continue;
2449 
2450 			atomic_inc(&rdev->nr_pending);
2451 			rcu_read_unlock();
2452 			if (r10_sync_page_io(rdev,
2453 					     r10_bio->devs[sl].addr +
2454 					     sect,
2455 					     s, conf->tmppage, WRITE)
2456 			    == 0) {
2457 				/* Well, this device is dead */
2458 				printk(KERN_NOTICE
2459 				       "md/raid10:%s: read correction "
2460 				       "write failed"
2461 				       " (%d sectors at %llu on %s)\n",
2462 				       mdname(mddev), s,
2463 				       (unsigned long long)(
2464 					       sect +
2465 					       choose_data_offset(r10_bio,
2466 								  rdev)),
2467 				       bdevname(rdev->bdev, b));
2468 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2469 				       "drive\n",
2470 				       mdname(mddev),
2471 				       bdevname(rdev->bdev, b));
2472 			}
2473 			rdev_dec_pending(rdev, mddev);
2474 			rcu_read_lock();
2475 		}
2476 		sl = start;
2477 		while (sl != r10_bio->read_slot) {
2478 			char b[BDEVNAME_SIZE];
2479 
2480 			if (sl==0)
2481 				sl = conf->copies;
2482 			sl--;
2483 			d = r10_bio->devs[sl].devnum;
2484 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2485 			if (!rdev ||
2486 			    !test_bit(In_sync, &rdev->flags))
2487 				continue;
2488 
2489 			atomic_inc(&rdev->nr_pending);
2490 			rcu_read_unlock();
2491 			switch (r10_sync_page_io(rdev,
2492 					     r10_bio->devs[sl].addr +
2493 					     sect,
2494 					     s, conf->tmppage,
2495 						 READ)) {
2496 			case 0:
2497 				/* Well, this device is dead */
2498 				printk(KERN_NOTICE
2499 				       "md/raid10:%s: unable to read back "
2500 				       "corrected sectors"
2501 				       " (%d sectors at %llu on %s)\n",
2502 				       mdname(mddev), s,
2503 				       (unsigned long long)(
2504 					       sect +
2505 					       choose_data_offset(r10_bio, rdev)),
2506 				       bdevname(rdev->bdev, b));
2507 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2508 				       "drive\n",
2509 				       mdname(mddev),
2510 				       bdevname(rdev->bdev, b));
2511 				break;
2512 			case 1:
2513 				printk(KERN_INFO
2514 				       "md/raid10:%s: read error corrected"
2515 				       " (%d sectors at %llu on %s)\n",
2516 				       mdname(mddev), s,
2517 				       (unsigned long long)(
2518 					       sect +
2519 					       choose_data_offset(r10_bio, rdev)),
2520 				       bdevname(rdev->bdev, b));
2521 				atomic_add(s, &rdev->corrected_errors);
2522 			}
2523 
2524 			rdev_dec_pending(rdev, mddev);
2525 			rcu_read_lock();
2526 		}
2527 		rcu_read_unlock();
2528 
2529 		sectors -= s;
2530 		sect += s;
2531 	}
2532 }
2533 
2534 static void bi_complete(struct bio *bio, int error)
2535 {
2536 	complete((struct completion *)bio->bi_private);
2537 }
2538 
2539 static int submit_bio_wait(int rw, struct bio *bio)
2540 {
2541 	struct completion event;
2542 	rw |= REQ_SYNC;
2543 
2544 	init_completion(&event);
2545 	bio->bi_private = &event;
2546 	bio->bi_end_io = bi_complete;
2547 	submit_bio(rw, bio);
2548 	wait_for_completion(&event);
2549 
2550 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2551 }
2552 
2553 static int narrow_write_error(struct r10bio *r10_bio, int i)
2554 {
2555 	struct bio *bio = r10_bio->master_bio;
2556 	struct mddev *mddev = r10_bio->mddev;
2557 	struct r10conf *conf = mddev->private;
2558 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2559 	/* bio has the data to be written to slot 'i' where
2560 	 * we just recently had a write error.
2561 	 * We repeatedly clone the bio and trim down to one block,
2562 	 * then try the write.  Where the write fails we record
2563 	 * a bad block.
2564 	 * It is conceivable that the bio doesn't exactly align with
2565 	 * blocks.  We must handle this.
2566 	 *
2567 	 * We currently own a reference to the rdev.
2568 	 */
2569 
2570 	int block_sectors;
2571 	sector_t sector;
2572 	int sectors;
2573 	int sect_to_write = r10_bio->sectors;
2574 	int ok = 1;
2575 
2576 	if (rdev->badblocks.shift < 0)
2577 		return 0;
2578 
2579 	block_sectors = 1 << rdev->badblocks.shift;
2580 	sector = r10_bio->sector;
2581 	sectors = ((r10_bio->sector + block_sectors)
2582 		   & ~(sector_t)(block_sectors - 1))
2583 		- sector;
2584 
2585 	while (sect_to_write) {
2586 		struct bio *wbio;
2587 		if (sectors > sect_to_write)
2588 			sectors = sect_to_write;
2589 		/* Write at 'sector' for 'sectors' */
2590 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2591 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2592 		wbio->bi_sector = (r10_bio->devs[i].addr+
2593 				   choose_data_offset(r10_bio, rdev) +
2594 				   (sector - r10_bio->sector));
2595 		wbio->bi_bdev = rdev->bdev;
2596 		if (submit_bio_wait(WRITE, wbio) == 0)
2597 			/* Failure! */
2598 			ok = rdev_set_badblocks(rdev, sector,
2599 						sectors, 0)
2600 				&& ok;
2601 
2602 		bio_put(wbio);
2603 		sect_to_write -= sectors;
2604 		sector += sectors;
2605 		sectors = block_sectors;
2606 	}
2607 	return ok;
2608 }
2609 
2610 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2611 {
2612 	int slot = r10_bio->read_slot;
2613 	struct bio *bio;
2614 	struct r10conf *conf = mddev->private;
2615 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2616 	char b[BDEVNAME_SIZE];
2617 	unsigned long do_sync;
2618 	int max_sectors;
2619 
2620 	/* we got a read error. Maybe the drive is bad.  Maybe just
2621 	 * the block and we can fix it.
2622 	 * We freeze all other IO, and try reading the block from
2623 	 * other devices.  When we find one, we re-write
2624 	 * and check it that fixes the read error.
2625 	 * This is all done synchronously while the array is
2626 	 * frozen.
2627 	 */
2628 	bio = r10_bio->devs[slot].bio;
2629 	bdevname(bio->bi_bdev, b);
2630 	bio_put(bio);
2631 	r10_bio->devs[slot].bio = NULL;
2632 
2633 	if (mddev->ro == 0) {
2634 		freeze_array(conf);
2635 		fix_read_error(conf, mddev, r10_bio);
2636 		unfreeze_array(conf);
2637 	} else
2638 		r10_bio->devs[slot].bio = IO_BLOCKED;
2639 
2640 	rdev_dec_pending(rdev, mddev);
2641 
2642 read_more:
2643 	rdev = read_balance(conf, r10_bio, &max_sectors);
2644 	if (rdev == NULL) {
2645 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2646 		       " read error for block %llu\n",
2647 		       mdname(mddev), b,
2648 		       (unsigned long long)r10_bio->sector);
2649 		raid_end_bio_io(r10_bio);
2650 		return;
2651 	}
2652 
2653 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2654 	slot = r10_bio->read_slot;
2655 	printk_ratelimited(
2656 		KERN_ERR
2657 		"md/raid10:%s: %s: redirecting "
2658 		"sector %llu to another mirror\n",
2659 		mdname(mddev),
2660 		bdevname(rdev->bdev, b),
2661 		(unsigned long long)r10_bio->sector);
2662 	bio = bio_clone_mddev(r10_bio->master_bio,
2663 			      GFP_NOIO, mddev);
2664 	md_trim_bio(bio,
2665 		    r10_bio->sector - bio->bi_sector,
2666 		    max_sectors);
2667 	r10_bio->devs[slot].bio = bio;
2668 	r10_bio->devs[slot].rdev = rdev;
2669 	bio->bi_sector = r10_bio->devs[slot].addr
2670 		+ choose_data_offset(r10_bio, rdev);
2671 	bio->bi_bdev = rdev->bdev;
2672 	bio->bi_rw = READ | do_sync;
2673 	bio->bi_private = r10_bio;
2674 	bio->bi_end_io = raid10_end_read_request;
2675 	if (max_sectors < r10_bio->sectors) {
2676 		/* Drat - have to split this up more */
2677 		struct bio *mbio = r10_bio->master_bio;
2678 		int sectors_handled =
2679 			r10_bio->sector + max_sectors
2680 			- mbio->bi_sector;
2681 		r10_bio->sectors = max_sectors;
2682 		spin_lock_irq(&conf->device_lock);
2683 		if (mbio->bi_phys_segments == 0)
2684 			mbio->bi_phys_segments = 2;
2685 		else
2686 			mbio->bi_phys_segments++;
2687 		spin_unlock_irq(&conf->device_lock);
2688 		generic_make_request(bio);
2689 
2690 		r10_bio = mempool_alloc(conf->r10bio_pool,
2691 					GFP_NOIO);
2692 		r10_bio->master_bio = mbio;
2693 		r10_bio->sectors = (mbio->bi_size >> 9)
2694 			- sectors_handled;
2695 		r10_bio->state = 0;
2696 		set_bit(R10BIO_ReadError,
2697 			&r10_bio->state);
2698 		r10_bio->mddev = mddev;
2699 		r10_bio->sector = mbio->bi_sector
2700 			+ sectors_handled;
2701 
2702 		goto read_more;
2703 	} else
2704 		generic_make_request(bio);
2705 }
2706 
2707 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2708 {
2709 	/* Some sort of write request has finished and it
2710 	 * succeeded in writing where we thought there was a
2711 	 * bad block.  So forget the bad block.
2712 	 * Or possibly if failed and we need to record
2713 	 * a bad block.
2714 	 */
2715 	int m;
2716 	struct md_rdev *rdev;
2717 
2718 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2719 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2720 		for (m = 0; m < conf->copies; m++) {
2721 			int dev = r10_bio->devs[m].devnum;
2722 			rdev = conf->mirrors[dev].rdev;
2723 			if (r10_bio->devs[m].bio == NULL)
2724 				continue;
2725 			if (test_bit(BIO_UPTODATE,
2726 				     &r10_bio->devs[m].bio->bi_flags)) {
2727 				rdev_clear_badblocks(
2728 					rdev,
2729 					r10_bio->devs[m].addr,
2730 					r10_bio->sectors, 0);
2731 			} else {
2732 				if (!rdev_set_badblocks(
2733 					    rdev,
2734 					    r10_bio->devs[m].addr,
2735 					    r10_bio->sectors, 0))
2736 					md_error(conf->mddev, rdev);
2737 			}
2738 			rdev = conf->mirrors[dev].replacement;
2739 			if (r10_bio->devs[m].repl_bio == NULL)
2740 				continue;
2741 			if (test_bit(BIO_UPTODATE,
2742 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2743 				rdev_clear_badblocks(
2744 					rdev,
2745 					r10_bio->devs[m].addr,
2746 					r10_bio->sectors, 0);
2747 			} else {
2748 				if (!rdev_set_badblocks(
2749 					    rdev,
2750 					    r10_bio->devs[m].addr,
2751 					    r10_bio->sectors, 0))
2752 					md_error(conf->mddev, rdev);
2753 			}
2754 		}
2755 		put_buf(r10_bio);
2756 	} else {
2757 		for (m = 0; m < conf->copies; m++) {
2758 			int dev = r10_bio->devs[m].devnum;
2759 			struct bio *bio = r10_bio->devs[m].bio;
2760 			rdev = conf->mirrors[dev].rdev;
2761 			if (bio == IO_MADE_GOOD) {
2762 				rdev_clear_badblocks(
2763 					rdev,
2764 					r10_bio->devs[m].addr,
2765 					r10_bio->sectors, 0);
2766 				rdev_dec_pending(rdev, conf->mddev);
2767 			} else if (bio != NULL &&
2768 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2769 				if (!narrow_write_error(r10_bio, m)) {
2770 					md_error(conf->mddev, rdev);
2771 					set_bit(R10BIO_Degraded,
2772 						&r10_bio->state);
2773 				}
2774 				rdev_dec_pending(rdev, conf->mddev);
2775 			}
2776 			bio = r10_bio->devs[m].repl_bio;
2777 			rdev = conf->mirrors[dev].replacement;
2778 			if (rdev && bio == IO_MADE_GOOD) {
2779 				rdev_clear_badblocks(
2780 					rdev,
2781 					r10_bio->devs[m].addr,
2782 					r10_bio->sectors, 0);
2783 				rdev_dec_pending(rdev, conf->mddev);
2784 			}
2785 		}
2786 		if (test_bit(R10BIO_WriteError,
2787 			     &r10_bio->state))
2788 			close_write(r10_bio);
2789 		raid_end_bio_io(r10_bio);
2790 	}
2791 }
2792 
2793 static void raid10d(struct md_thread *thread)
2794 {
2795 	struct mddev *mddev = thread->mddev;
2796 	struct r10bio *r10_bio;
2797 	unsigned long flags;
2798 	struct r10conf *conf = mddev->private;
2799 	struct list_head *head = &conf->retry_list;
2800 	struct blk_plug plug;
2801 
2802 	md_check_recovery(mddev);
2803 
2804 	blk_start_plug(&plug);
2805 	for (;;) {
2806 
2807 		flush_pending_writes(conf);
2808 
2809 		spin_lock_irqsave(&conf->device_lock, flags);
2810 		if (list_empty(head)) {
2811 			spin_unlock_irqrestore(&conf->device_lock, flags);
2812 			break;
2813 		}
2814 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2815 		list_del(head->prev);
2816 		conf->nr_queued--;
2817 		spin_unlock_irqrestore(&conf->device_lock, flags);
2818 
2819 		mddev = r10_bio->mddev;
2820 		conf = mddev->private;
2821 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2822 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2823 			handle_write_completed(conf, r10_bio);
2824 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2825 			reshape_request_write(mddev, r10_bio);
2826 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2827 			sync_request_write(mddev, r10_bio);
2828 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2829 			recovery_request_write(mddev, r10_bio);
2830 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2831 			handle_read_error(mddev, r10_bio);
2832 		else {
2833 			/* just a partial read to be scheduled from a
2834 			 * separate context
2835 			 */
2836 			int slot = r10_bio->read_slot;
2837 			generic_make_request(r10_bio->devs[slot].bio);
2838 		}
2839 
2840 		cond_resched();
2841 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2842 			md_check_recovery(mddev);
2843 	}
2844 	blk_finish_plug(&plug);
2845 }
2846 
2847 
2848 static int init_resync(struct r10conf *conf)
2849 {
2850 	int buffs;
2851 	int i;
2852 
2853 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2854 	BUG_ON(conf->r10buf_pool);
2855 	conf->have_replacement = 0;
2856 	for (i = 0; i < conf->geo.raid_disks; i++)
2857 		if (conf->mirrors[i].replacement)
2858 			conf->have_replacement = 1;
2859 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2860 	if (!conf->r10buf_pool)
2861 		return -ENOMEM;
2862 	conf->next_resync = 0;
2863 	return 0;
2864 }
2865 
2866 /*
2867  * perform a "sync" on one "block"
2868  *
2869  * We need to make sure that no normal I/O request - particularly write
2870  * requests - conflict with active sync requests.
2871  *
2872  * This is achieved by tracking pending requests and a 'barrier' concept
2873  * that can be installed to exclude normal IO requests.
2874  *
2875  * Resync and recovery are handled very differently.
2876  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2877  *
2878  * For resync, we iterate over virtual addresses, read all copies,
2879  * and update if there are differences.  If only one copy is live,
2880  * skip it.
2881  * For recovery, we iterate over physical addresses, read a good
2882  * value for each non-in_sync drive, and over-write.
2883  *
2884  * So, for recovery we may have several outstanding complex requests for a
2885  * given address, one for each out-of-sync device.  We model this by allocating
2886  * a number of r10_bio structures, one for each out-of-sync device.
2887  * As we setup these structures, we collect all bio's together into a list
2888  * which we then process collectively to add pages, and then process again
2889  * to pass to generic_make_request.
2890  *
2891  * The r10_bio structures are linked using a borrowed master_bio pointer.
2892  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2893  * has its remaining count decremented to 0, the whole complex operation
2894  * is complete.
2895  *
2896  */
2897 
2898 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2899 			     int *skipped, int go_faster)
2900 {
2901 	struct r10conf *conf = mddev->private;
2902 	struct r10bio *r10_bio;
2903 	struct bio *biolist = NULL, *bio;
2904 	sector_t max_sector, nr_sectors;
2905 	int i;
2906 	int max_sync;
2907 	sector_t sync_blocks;
2908 	sector_t sectors_skipped = 0;
2909 	int chunks_skipped = 0;
2910 	sector_t chunk_mask = conf->geo.chunk_mask;
2911 
2912 	if (!conf->r10buf_pool)
2913 		if (init_resync(conf))
2914 			return 0;
2915 
2916  skipped:
2917 	max_sector = mddev->dev_sectors;
2918 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2919 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2920 		max_sector = mddev->resync_max_sectors;
2921 	if (sector_nr >= max_sector) {
2922 		/* If we aborted, we need to abort the
2923 		 * sync on the 'current' bitmap chucks (there can
2924 		 * be several when recovering multiple devices).
2925 		 * as we may have started syncing it but not finished.
2926 		 * We can find the current address in
2927 		 * mddev->curr_resync, but for recovery,
2928 		 * we need to convert that to several
2929 		 * virtual addresses.
2930 		 */
2931 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2932 			end_reshape(conf);
2933 			return 0;
2934 		}
2935 
2936 		if (mddev->curr_resync < max_sector) { /* aborted */
2937 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2938 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2939 						&sync_blocks, 1);
2940 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2941 				sector_t sect =
2942 					raid10_find_virt(conf, mddev->curr_resync, i);
2943 				bitmap_end_sync(mddev->bitmap, sect,
2944 						&sync_blocks, 1);
2945 			}
2946 		} else {
2947 			/* completed sync */
2948 			if ((!mddev->bitmap || conf->fullsync)
2949 			    && conf->have_replacement
2950 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2951 				/* Completed a full sync so the replacements
2952 				 * are now fully recovered.
2953 				 */
2954 				for (i = 0; i < conf->geo.raid_disks; i++)
2955 					if (conf->mirrors[i].replacement)
2956 						conf->mirrors[i].replacement
2957 							->recovery_offset
2958 							= MaxSector;
2959 			}
2960 			conf->fullsync = 0;
2961 		}
2962 		bitmap_close_sync(mddev->bitmap);
2963 		close_sync(conf);
2964 		*skipped = 1;
2965 		return sectors_skipped;
2966 	}
2967 
2968 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2969 		return reshape_request(mddev, sector_nr, skipped);
2970 
2971 	if (chunks_skipped >= conf->geo.raid_disks) {
2972 		/* if there has been nothing to do on any drive,
2973 		 * then there is nothing to do at all..
2974 		 */
2975 		*skipped = 1;
2976 		return (max_sector - sector_nr) + sectors_skipped;
2977 	}
2978 
2979 	if (max_sector > mddev->resync_max)
2980 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2981 
2982 	/* make sure whole request will fit in a chunk - if chunks
2983 	 * are meaningful
2984 	 */
2985 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2986 	    max_sector > (sector_nr | chunk_mask))
2987 		max_sector = (sector_nr | chunk_mask) + 1;
2988 	/*
2989 	 * If there is non-resync activity waiting for us then
2990 	 * put in a delay to throttle resync.
2991 	 */
2992 	if (!go_faster && conf->nr_waiting)
2993 		msleep_interruptible(1000);
2994 
2995 	/* Again, very different code for resync and recovery.
2996 	 * Both must result in an r10bio with a list of bios that
2997 	 * have bi_end_io, bi_sector, bi_bdev set,
2998 	 * and bi_private set to the r10bio.
2999 	 * For recovery, we may actually create several r10bios
3000 	 * with 2 bios in each, that correspond to the bios in the main one.
3001 	 * In this case, the subordinate r10bios link back through a
3002 	 * borrowed master_bio pointer, and the counter in the master
3003 	 * includes a ref from each subordinate.
3004 	 */
3005 	/* First, we decide what to do and set ->bi_end_io
3006 	 * To end_sync_read if we want to read, and
3007 	 * end_sync_write if we will want to write.
3008 	 */
3009 
3010 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3011 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3012 		/* recovery... the complicated one */
3013 		int j;
3014 		r10_bio = NULL;
3015 
3016 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3017 			int still_degraded;
3018 			struct r10bio *rb2;
3019 			sector_t sect;
3020 			int must_sync;
3021 			int any_working;
3022 			struct raid10_info *mirror = &conf->mirrors[i];
3023 
3024 			if ((mirror->rdev == NULL ||
3025 			     test_bit(In_sync, &mirror->rdev->flags))
3026 			    &&
3027 			    (mirror->replacement == NULL ||
3028 			     test_bit(Faulty,
3029 				      &mirror->replacement->flags)))
3030 				continue;
3031 
3032 			still_degraded = 0;
3033 			/* want to reconstruct this device */
3034 			rb2 = r10_bio;
3035 			sect = raid10_find_virt(conf, sector_nr, i);
3036 			if (sect >= mddev->resync_max_sectors) {
3037 				/* last stripe is not complete - don't
3038 				 * try to recover this sector.
3039 				 */
3040 				continue;
3041 			}
3042 			/* Unless we are doing a full sync, or a replacement
3043 			 * we only need to recover the block if it is set in
3044 			 * the bitmap
3045 			 */
3046 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3047 						      &sync_blocks, 1);
3048 			if (sync_blocks < max_sync)
3049 				max_sync = sync_blocks;
3050 			if (!must_sync &&
3051 			    mirror->replacement == NULL &&
3052 			    !conf->fullsync) {
3053 				/* yep, skip the sync_blocks here, but don't assume
3054 				 * that there will never be anything to do here
3055 				 */
3056 				chunks_skipped = -1;
3057 				continue;
3058 			}
3059 
3060 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3061 			raise_barrier(conf, rb2 != NULL);
3062 			atomic_set(&r10_bio->remaining, 0);
3063 
3064 			r10_bio->master_bio = (struct bio*)rb2;
3065 			if (rb2)
3066 				atomic_inc(&rb2->remaining);
3067 			r10_bio->mddev = mddev;
3068 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3069 			r10_bio->sector = sect;
3070 
3071 			raid10_find_phys(conf, r10_bio);
3072 
3073 			/* Need to check if the array will still be
3074 			 * degraded
3075 			 */
3076 			for (j = 0; j < conf->geo.raid_disks; j++)
3077 				if (conf->mirrors[j].rdev == NULL ||
3078 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3079 					still_degraded = 1;
3080 					break;
3081 				}
3082 
3083 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3084 						      &sync_blocks, still_degraded);
3085 
3086 			any_working = 0;
3087 			for (j=0; j<conf->copies;j++) {
3088 				int k;
3089 				int d = r10_bio->devs[j].devnum;
3090 				sector_t from_addr, to_addr;
3091 				struct md_rdev *rdev;
3092 				sector_t sector, first_bad;
3093 				int bad_sectors;
3094 				if (!conf->mirrors[d].rdev ||
3095 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3096 					continue;
3097 				/* This is where we read from */
3098 				any_working = 1;
3099 				rdev = conf->mirrors[d].rdev;
3100 				sector = r10_bio->devs[j].addr;
3101 
3102 				if (is_badblock(rdev, sector, max_sync,
3103 						&first_bad, &bad_sectors)) {
3104 					if (first_bad > sector)
3105 						max_sync = first_bad - sector;
3106 					else {
3107 						bad_sectors -= (sector
3108 								- first_bad);
3109 						if (max_sync > bad_sectors)
3110 							max_sync = bad_sectors;
3111 						continue;
3112 					}
3113 				}
3114 				bio = r10_bio->devs[0].bio;
3115 				bio->bi_next = biolist;
3116 				biolist = bio;
3117 				bio->bi_private = r10_bio;
3118 				bio->bi_end_io = end_sync_read;
3119 				bio->bi_rw = READ;
3120 				from_addr = r10_bio->devs[j].addr;
3121 				bio->bi_sector = from_addr + rdev->data_offset;
3122 				bio->bi_bdev = rdev->bdev;
3123 				atomic_inc(&rdev->nr_pending);
3124 				/* and we write to 'i' (if not in_sync) */
3125 
3126 				for (k=0; k<conf->copies; k++)
3127 					if (r10_bio->devs[k].devnum == i)
3128 						break;
3129 				BUG_ON(k == conf->copies);
3130 				to_addr = r10_bio->devs[k].addr;
3131 				r10_bio->devs[0].devnum = d;
3132 				r10_bio->devs[0].addr = from_addr;
3133 				r10_bio->devs[1].devnum = i;
3134 				r10_bio->devs[1].addr = to_addr;
3135 
3136 				rdev = mirror->rdev;
3137 				if (!test_bit(In_sync, &rdev->flags)) {
3138 					bio = r10_bio->devs[1].bio;
3139 					bio->bi_next = biolist;
3140 					biolist = bio;
3141 					bio->bi_private = r10_bio;
3142 					bio->bi_end_io = end_sync_write;
3143 					bio->bi_rw = WRITE;
3144 					bio->bi_sector = to_addr
3145 						+ rdev->data_offset;
3146 					bio->bi_bdev = rdev->bdev;
3147 					atomic_inc(&r10_bio->remaining);
3148 				} else
3149 					r10_bio->devs[1].bio->bi_end_io = NULL;
3150 
3151 				/* and maybe write to replacement */
3152 				bio = r10_bio->devs[1].repl_bio;
3153 				if (bio)
3154 					bio->bi_end_io = NULL;
3155 				rdev = mirror->replacement;
3156 				/* Note: if rdev != NULL, then bio
3157 				 * cannot be NULL as r10buf_pool_alloc will
3158 				 * have allocated it.
3159 				 * So the second test here is pointless.
3160 				 * But it keeps semantic-checkers happy, and
3161 				 * this comment keeps human reviewers
3162 				 * happy.
3163 				 */
3164 				if (rdev == NULL || bio == NULL ||
3165 				    test_bit(Faulty, &rdev->flags))
3166 					break;
3167 				bio->bi_next = biolist;
3168 				biolist = bio;
3169 				bio->bi_private = r10_bio;
3170 				bio->bi_end_io = end_sync_write;
3171 				bio->bi_rw = WRITE;
3172 				bio->bi_sector = to_addr + rdev->data_offset;
3173 				bio->bi_bdev = rdev->bdev;
3174 				atomic_inc(&r10_bio->remaining);
3175 				break;
3176 			}
3177 			if (j == conf->copies) {
3178 				/* Cannot recover, so abort the recovery or
3179 				 * record a bad block */
3180 				put_buf(r10_bio);
3181 				if (rb2)
3182 					atomic_dec(&rb2->remaining);
3183 				r10_bio = rb2;
3184 				if (any_working) {
3185 					/* problem is that there are bad blocks
3186 					 * on other device(s)
3187 					 */
3188 					int k;
3189 					for (k = 0; k < conf->copies; k++)
3190 						if (r10_bio->devs[k].devnum == i)
3191 							break;
3192 					if (!test_bit(In_sync,
3193 						      &mirror->rdev->flags)
3194 					    && !rdev_set_badblocks(
3195 						    mirror->rdev,
3196 						    r10_bio->devs[k].addr,
3197 						    max_sync, 0))
3198 						any_working = 0;
3199 					if (mirror->replacement &&
3200 					    !rdev_set_badblocks(
3201 						    mirror->replacement,
3202 						    r10_bio->devs[k].addr,
3203 						    max_sync, 0))
3204 						any_working = 0;
3205 				}
3206 				if (!any_working)  {
3207 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3208 							      &mddev->recovery))
3209 						printk(KERN_INFO "md/raid10:%s: insufficient "
3210 						       "working devices for recovery.\n",
3211 						       mdname(mddev));
3212 					mirror->recovery_disabled
3213 						= mddev->recovery_disabled;
3214 				}
3215 				break;
3216 			}
3217 		}
3218 		if (biolist == NULL) {
3219 			while (r10_bio) {
3220 				struct r10bio *rb2 = r10_bio;
3221 				r10_bio = (struct r10bio*) rb2->master_bio;
3222 				rb2->master_bio = NULL;
3223 				put_buf(rb2);
3224 			}
3225 			goto giveup;
3226 		}
3227 	} else {
3228 		/* resync. Schedule a read for every block at this virt offset */
3229 		int count = 0;
3230 
3231 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3232 
3233 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3234 				       &sync_blocks, mddev->degraded) &&
3235 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3236 						 &mddev->recovery)) {
3237 			/* We can skip this block */
3238 			*skipped = 1;
3239 			return sync_blocks + sectors_skipped;
3240 		}
3241 		if (sync_blocks < max_sync)
3242 			max_sync = sync_blocks;
3243 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3244 
3245 		r10_bio->mddev = mddev;
3246 		atomic_set(&r10_bio->remaining, 0);
3247 		raise_barrier(conf, 0);
3248 		conf->next_resync = sector_nr;
3249 
3250 		r10_bio->master_bio = NULL;
3251 		r10_bio->sector = sector_nr;
3252 		set_bit(R10BIO_IsSync, &r10_bio->state);
3253 		raid10_find_phys(conf, r10_bio);
3254 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3255 
3256 		for (i = 0; i < conf->copies; i++) {
3257 			int d = r10_bio->devs[i].devnum;
3258 			sector_t first_bad, sector;
3259 			int bad_sectors;
3260 
3261 			if (r10_bio->devs[i].repl_bio)
3262 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3263 
3264 			bio = r10_bio->devs[i].bio;
3265 			bio->bi_end_io = NULL;
3266 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3267 			if (conf->mirrors[d].rdev == NULL ||
3268 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3269 				continue;
3270 			sector = r10_bio->devs[i].addr;
3271 			if (is_badblock(conf->mirrors[d].rdev,
3272 					sector, max_sync,
3273 					&first_bad, &bad_sectors)) {
3274 				if (first_bad > sector)
3275 					max_sync = first_bad - sector;
3276 				else {
3277 					bad_sectors -= (sector - first_bad);
3278 					if (max_sync > bad_sectors)
3279 						max_sync = bad_sectors;
3280 					continue;
3281 				}
3282 			}
3283 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3284 			atomic_inc(&r10_bio->remaining);
3285 			bio->bi_next = biolist;
3286 			biolist = bio;
3287 			bio->bi_private = r10_bio;
3288 			bio->bi_end_io = end_sync_read;
3289 			bio->bi_rw = READ;
3290 			bio->bi_sector = sector +
3291 				conf->mirrors[d].rdev->data_offset;
3292 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3293 			count++;
3294 
3295 			if (conf->mirrors[d].replacement == NULL ||
3296 			    test_bit(Faulty,
3297 				     &conf->mirrors[d].replacement->flags))
3298 				continue;
3299 
3300 			/* Need to set up for writing to the replacement */
3301 			bio = r10_bio->devs[i].repl_bio;
3302 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3303 
3304 			sector = r10_bio->devs[i].addr;
3305 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3306 			bio->bi_next = biolist;
3307 			biolist = bio;
3308 			bio->bi_private = r10_bio;
3309 			bio->bi_end_io = end_sync_write;
3310 			bio->bi_rw = WRITE;
3311 			bio->bi_sector = sector +
3312 				conf->mirrors[d].replacement->data_offset;
3313 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3314 			count++;
3315 		}
3316 
3317 		if (count < 2) {
3318 			for (i=0; i<conf->copies; i++) {
3319 				int d = r10_bio->devs[i].devnum;
3320 				if (r10_bio->devs[i].bio->bi_end_io)
3321 					rdev_dec_pending(conf->mirrors[d].rdev,
3322 							 mddev);
3323 				if (r10_bio->devs[i].repl_bio &&
3324 				    r10_bio->devs[i].repl_bio->bi_end_io)
3325 					rdev_dec_pending(
3326 						conf->mirrors[d].replacement,
3327 						mddev);
3328 			}
3329 			put_buf(r10_bio);
3330 			biolist = NULL;
3331 			goto giveup;
3332 		}
3333 	}
3334 
3335 	for (bio = biolist; bio ; bio=bio->bi_next) {
3336 
3337 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3338 		if (bio->bi_end_io)
3339 			bio->bi_flags |= 1 << BIO_UPTODATE;
3340 		bio->bi_vcnt = 0;
3341 		bio->bi_idx = 0;
3342 		bio->bi_phys_segments = 0;
3343 		bio->bi_size = 0;
3344 	}
3345 
3346 	nr_sectors = 0;
3347 	if (sector_nr + max_sync < max_sector)
3348 		max_sector = sector_nr + max_sync;
3349 	do {
3350 		struct page *page;
3351 		int len = PAGE_SIZE;
3352 		if (sector_nr + (len>>9) > max_sector)
3353 			len = (max_sector - sector_nr) << 9;
3354 		if (len == 0)
3355 			break;
3356 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3357 			struct bio *bio2;
3358 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3359 			if (bio_add_page(bio, page, len, 0))
3360 				continue;
3361 
3362 			/* stop here */
3363 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3364 			for (bio2 = biolist;
3365 			     bio2 && bio2 != bio;
3366 			     bio2 = bio2->bi_next) {
3367 				/* remove last page from this bio */
3368 				bio2->bi_vcnt--;
3369 				bio2->bi_size -= len;
3370 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3371 			}
3372 			goto bio_full;
3373 		}
3374 		nr_sectors += len>>9;
3375 		sector_nr += len>>9;
3376 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3377  bio_full:
3378 	r10_bio->sectors = nr_sectors;
3379 
3380 	while (biolist) {
3381 		bio = biolist;
3382 		biolist = biolist->bi_next;
3383 
3384 		bio->bi_next = NULL;
3385 		r10_bio = bio->bi_private;
3386 		r10_bio->sectors = nr_sectors;
3387 
3388 		if (bio->bi_end_io == end_sync_read) {
3389 			md_sync_acct(bio->bi_bdev, nr_sectors);
3390 			generic_make_request(bio);
3391 		}
3392 	}
3393 
3394 	if (sectors_skipped)
3395 		/* pretend they weren't skipped, it makes
3396 		 * no important difference in this case
3397 		 */
3398 		md_done_sync(mddev, sectors_skipped, 1);
3399 
3400 	return sectors_skipped + nr_sectors;
3401  giveup:
3402 	/* There is nowhere to write, so all non-sync
3403 	 * drives must be failed or in resync, all drives
3404 	 * have a bad block, so try the next chunk...
3405 	 */
3406 	if (sector_nr + max_sync < max_sector)
3407 		max_sector = sector_nr + max_sync;
3408 
3409 	sectors_skipped += (max_sector - sector_nr);
3410 	chunks_skipped ++;
3411 	sector_nr = max_sector;
3412 	goto skipped;
3413 }
3414 
3415 static sector_t
3416 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3417 {
3418 	sector_t size;
3419 	struct r10conf *conf = mddev->private;
3420 
3421 	if (!raid_disks)
3422 		raid_disks = min(conf->geo.raid_disks,
3423 				 conf->prev.raid_disks);
3424 	if (!sectors)
3425 		sectors = conf->dev_sectors;
3426 
3427 	size = sectors >> conf->geo.chunk_shift;
3428 	sector_div(size, conf->geo.far_copies);
3429 	size = size * raid_disks;
3430 	sector_div(size, conf->geo.near_copies);
3431 
3432 	return size << conf->geo.chunk_shift;
3433 }
3434 
3435 static void calc_sectors(struct r10conf *conf, sector_t size)
3436 {
3437 	/* Calculate the number of sectors-per-device that will
3438 	 * actually be used, and set conf->dev_sectors and
3439 	 * conf->stride
3440 	 */
3441 
3442 	size = size >> conf->geo.chunk_shift;
3443 	sector_div(size, conf->geo.far_copies);
3444 	size = size * conf->geo.raid_disks;
3445 	sector_div(size, conf->geo.near_copies);
3446 	/* 'size' is now the number of chunks in the array */
3447 	/* calculate "used chunks per device" */
3448 	size = size * conf->copies;
3449 
3450 	/* We need to round up when dividing by raid_disks to
3451 	 * get the stride size.
3452 	 */
3453 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3454 
3455 	conf->dev_sectors = size << conf->geo.chunk_shift;
3456 
3457 	if (conf->geo.far_offset)
3458 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3459 	else {
3460 		sector_div(size, conf->geo.far_copies);
3461 		conf->geo.stride = size << conf->geo.chunk_shift;
3462 	}
3463 }
3464 
3465 enum geo_type {geo_new, geo_old, geo_start};
3466 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3467 {
3468 	int nc, fc, fo;
3469 	int layout, chunk, disks;
3470 	switch (new) {
3471 	case geo_old:
3472 		layout = mddev->layout;
3473 		chunk = mddev->chunk_sectors;
3474 		disks = mddev->raid_disks - mddev->delta_disks;
3475 		break;
3476 	case geo_new:
3477 		layout = mddev->new_layout;
3478 		chunk = mddev->new_chunk_sectors;
3479 		disks = mddev->raid_disks;
3480 		break;
3481 	default: /* avoid 'may be unused' warnings */
3482 	case geo_start: /* new when starting reshape - raid_disks not
3483 			 * updated yet. */
3484 		layout = mddev->new_layout;
3485 		chunk = mddev->new_chunk_sectors;
3486 		disks = mddev->raid_disks + mddev->delta_disks;
3487 		break;
3488 	}
3489 	if (layout >> 18)
3490 		return -1;
3491 	if (chunk < (PAGE_SIZE >> 9) ||
3492 	    !is_power_of_2(chunk))
3493 		return -2;
3494 	nc = layout & 255;
3495 	fc = (layout >> 8) & 255;
3496 	fo = layout & (1<<16);
3497 	geo->raid_disks = disks;
3498 	geo->near_copies = nc;
3499 	geo->far_copies = fc;
3500 	geo->far_offset = fo;
3501 	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3502 	geo->chunk_mask = chunk - 1;
3503 	geo->chunk_shift = ffz(~chunk);
3504 	return nc*fc;
3505 }
3506 
3507 static struct r10conf *setup_conf(struct mddev *mddev)
3508 {
3509 	struct r10conf *conf = NULL;
3510 	int err = -EINVAL;
3511 	struct geom geo;
3512 	int copies;
3513 
3514 	copies = setup_geo(&geo, mddev, geo_new);
3515 
3516 	if (copies == -2) {
3517 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3518 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3519 		       mdname(mddev), PAGE_SIZE);
3520 		goto out;
3521 	}
3522 
3523 	if (copies < 2 || copies > mddev->raid_disks) {
3524 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3525 		       mdname(mddev), mddev->new_layout);
3526 		goto out;
3527 	}
3528 
3529 	err = -ENOMEM;
3530 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3531 	if (!conf)
3532 		goto out;
3533 
3534 	/* FIXME calc properly */
3535 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3536 							    max(0,mddev->delta_disks)),
3537 				GFP_KERNEL);
3538 	if (!conf->mirrors)
3539 		goto out;
3540 
3541 	conf->tmppage = alloc_page(GFP_KERNEL);
3542 	if (!conf->tmppage)
3543 		goto out;
3544 
3545 	conf->geo = geo;
3546 	conf->copies = copies;
3547 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3548 					   r10bio_pool_free, conf);
3549 	if (!conf->r10bio_pool)
3550 		goto out;
3551 
3552 	calc_sectors(conf, mddev->dev_sectors);
3553 	if (mddev->reshape_position == MaxSector) {
3554 		conf->prev = conf->geo;
3555 		conf->reshape_progress = MaxSector;
3556 	} else {
3557 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3558 			err = -EINVAL;
3559 			goto out;
3560 		}
3561 		conf->reshape_progress = mddev->reshape_position;
3562 		if (conf->prev.far_offset)
3563 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3564 		else
3565 			/* far_copies must be 1 */
3566 			conf->prev.stride = conf->dev_sectors;
3567 	}
3568 	spin_lock_init(&conf->device_lock);
3569 	INIT_LIST_HEAD(&conf->retry_list);
3570 
3571 	spin_lock_init(&conf->resync_lock);
3572 	init_waitqueue_head(&conf->wait_barrier);
3573 
3574 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3575 	if (!conf->thread)
3576 		goto out;
3577 
3578 	conf->mddev = mddev;
3579 	return conf;
3580 
3581  out:
3582 	if (err == -ENOMEM)
3583 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3584 		       mdname(mddev));
3585 	if (conf) {
3586 		if (conf->r10bio_pool)
3587 			mempool_destroy(conf->r10bio_pool);
3588 		kfree(conf->mirrors);
3589 		safe_put_page(conf->tmppage);
3590 		kfree(conf);
3591 	}
3592 	return ERR_PTR(err);
3593 }
3594 
3595 static int run(struct mddev *mddev)
3596 {
3597 	struct r10conf *conf;
3598 	int i, disk_idx, chunk_size;
3599 	struct raid10_info *disk;
3600 	struct md_rdev *rdev;
3601 	sector_t size;
3602 	sector_t min_offset_diff = 0;
3603 	int first = 1;
3604 	bool discard_supported = false;
3605 
3606 	if (mddev->private == NULL) {
3607 		conf = setup_conf(mddev);
3608 		if (IS_ERR(conf))
3609 			return PTR_ERR(conf);
3610 		mddev->private = conf;
3611 	}
3612 	conf = mddev->private;
3613 	if (!conf)
3614 		goto out;
3615 
3616 	mddev->thread = conf->thread;
3617 	conf->thread = NULL;
3618 
3619 	chunk_size = mddev->chunk_sectors << 9;
3620 	if (mddev->queue) {
3621 		blk_queue_max_discard_sectors(mddev->queue,
3622 					      mddev->chunk_sectors);
3623 		blk_queue_max_write_same_sectors(mddev->queue,
3624 						 mddev->chunk_sectors);
3625 		blk_queue_io_min(mddev->queue, chunk_size);
3626 		if (conf->geo.raid_disks % conf->geo.near_copies)
3627 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3628 		else
3629 			blk_queue_io_opt(mddev->queue, chunk_size *
3630 					 (conf->geo.raid_disks / conf->geo.near_copies));
3631 	}
3632 
3633 	rdev_for_each(rdev, mddev) {
3634 		long long diff;
3635 		struct request_queue *q;
3636 
3637 		disk_idx = rdev->raid_disk;
3638 		if (disk_idx < 0)
3639 			continue;
3640 		if (disk_idx >= conf->geo.raid_disks &&
3641 		    disk_idx >= conf->prev.raid_disks)
3642 			continue;
3643 		disk = conf->mirrors + disk_idx;
3644 
3645 		if (test_bit(Replacement, &rdev->flags)) {
3646 			if (disk->replacement)
3647 				goto out_free_conf;
3648 			disk->replacement = rdev;
3649 		} else {
3650 			if (disk->rdev)
3651 				goto out_free_conf;
3652 			disk->rdev = rdev;
3653 		}
3654 		q = bdev_get_queue(rdev->bdev);
3655 		if (q->merge_bvec_fn)
3656 			mddev->merge_check_needed = 1;
3657 		diff = (rdev->new_data_offset - rdev->data_offset);
3658 		if (!mddev->reshape_backwards)
3659 			diff = -diff;
3660 		if (diff < 0)
3661 			diff = 0;
3662 		if (first || diff < min_offset_diff)
3663 			min_offset_diff = diff;
3664 
3665 		if (mddev->gendisk)
3666 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3667 					  rdev->data_offset << 9);
3668 
3669 		disk->head_position = 0;
3670 
3671 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3672 			discard_supported = true;
3673 	}
3674 
3675 	if (mddev->queue) {
3676 		if (discard_supported)
3677 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3678 						mddev->queue);
3679 		else
3680 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3681 						  mddev->queue);
3682 	}
3683 	/* need to check that every block has at least one working mirror */
3684 	if (!enough(conf, -1)) {
3685 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3686 		       mdname(mddev));
3687 		goto out_free_conf;
3688 	}
3689 
3690 	if (conf->reshape_progress != MaxSector) {
3691 		/* must ensure that shape change is supported */
3692 		if (conf->geo.far_copies != 1 &&
3693 		    conf->geo.far_offset == 0)
3694 			goto out_free_conf;
3695 		if (conf->prev.far_copies != 1 &&
3696 		    conf->geo.far_offset == 0)
3697 			goto out_free_conf;
3698 	}
3699 
3700 	mddev->degraded = 0;
3701 	for (i = 0;
3702 	     i < conf->geo.raid_disks
3703 		     || i < conf->prev.raid_disks;
3704 	     i++) {
3705 
3706 		disk = conf->mirrors + i;
3707 
3708 		if (!disk->rdev && disk->replacement) {
3709 			/* The replacement is all we have - use it */
3710 			disk->rdev = disk->replacement;
3711 			disk->replacement = NULL;
3712 			clear_bit(Replacement, &disk->rdev->flags);
3713 		}
3714 
3715 		if (!disk->rdev ||
3716 		    !test_bit(In_sync, &disk->rdev->flags)) {
3717 			disk->head_position = 0;
3718 			mddev->degraded++;
3719 			if (disk->rdev)
3720 				conf->fullsync = 1;
3721 		}
3722 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3723 	}
3724 
3725 	if (mddev->recovery_cp != MaxSector)
3726 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3727 		       " -- starting background reconstruction\n",
3728 		       mdname(mddev));
3729 	printk(KERN_INFO
3730 		"md/raid10:%s: active with %d out of %d devices\n",
3731 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3732 		conf->geo.raid_disks);
3733 	/*
3734 	 * Ok, everything is just fine now
3735 	 */
3736 	mddev->dev_sectors = conf->dev_sectors;
3737 	size = raid10_size(mddev, 0, 0);
3738 	md_set_array_sectors(mddev, size);
3739 	mddev->resync_max_sectors = size;
3740 
3741 	if (mddev->queue) {
3742 		int stripe = conf->geo.raid_disks *
3743 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3744 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3745 		mddev->queue->backing_dev_info.congested_data = mddev;
3746 
3747 		/* Calculate max read-ahead size.
3748 		 * We need to readahead at least twice a whole stripe....
3749 		 * maybe...
3750 		 */
3751 		stripe /= conf->geo.near_copies;
3752 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3753 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3754 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3755 	}
3756 
3757 
3758 	if (md_integrity_register(mddev))
3759 		goto out_free_conf;
3760 
3761 	if (conf->reshape_progress != MaxSector) {
3762 		unsigned long before_length, after_length;
3763 
3764 		before_length = ((1 << conf->prev.chunk_shift) *
3765 				 conf->prev.far_copies);
3766 		after_length = ((1 << conf->geo.chunk_shift) *
3767 				conf->geo.far_copies);
3768 
3769 		if (max(before_length, after_length) > min_offset_diff) {
3770 			/* This cannot work */
3771 			printk("md/raid10: offset difference not enough to continue reshape\n");
3772 			goto out_free_conf;
3773 		}
3774 		conf->offset_diff = min_offset_diff;
3775 
3776 		conf->reshape_safe = conf->reshape_progress;
3777 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3778 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3779 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3780 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3781 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3782 							"reshape");
3783 	}
3784 
3785 	return 0;
3786 
3787 out_free_conf:
3788 	md_unregister_thread(&mddev->thread);
3789 	if (conf->r10bio_pool)
3790 		mempool_destroy(conf->r10bio_pool);
3791 	safe_put_page(conf->tmppage);
3792 	kfree(conf->mirrors);
3793 	kfree(conf);
3794 	mddev->private = NULL;
3795 out:
3796 	return -EIO;
3797 }
3798 
3799 static int stop(struct mddev *mddev)
3800 {
3801 	struct r10conf *conf = mddev->private;
3802 
3803 	raise_barrier(conf, 0);
3804 	lower_barrier(conf);
3805 
3806 	md_unregister_thread(&mddev->thread);
3807 	if (mddev->queue)
3808 		/* the unplug fn references 'conf'*/
3809 		blk_sync_queue(mddev->queue);
3810 
3811 	if (conf->r10bio_pool)
3812 		mempool_destroy(conf->r10bio_pool);
3813 	kfree(conf->mirrors);
3814 	kfree(conf);
3815 	mddev->private = NULL;
3816 	return 0;
3817 }
3818 
3819 static void raid10_quiesce(struct mddev *mddev, int state)
3820 {
3821 	struct r10conf *conf = mddev->private;
3822 
3823 	switch(state) {
3824 	case 1:
3825 		raise_barrier(conf, 0);
3826 		break;
3827 	case 0:
3828 		lower_barrier(conf);
3829 		break;
3830 	}
3831 }
3832 
3833 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3834 {
3835 	/* Resize of 'far' arrays is not supported.
3836 	 * For 'near' and 'offset' arrays we can set the
3837 	 * number of sectors used to be an appropriate multiple
3838 	 * of the chunk size.
3839 	 * For 'offset', this is far_copies*chunksize.
3840 	 * For 'near' the multiplier is the LCM of
3841 	 * near_copies and raid_disks.
3842 	 * So if far_copies > 1 && !far_offset, fail.
3843 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3844 	 * multiply by chunk_size.  Then round to this number.
3845 	 * This is mostly done by raid10_size()
3846 	 */
3847 	struct r10conf *conf = mddev->private;
3848 	sector_t oldsize, size;
3849 
3850 	if (mddev->reshape_position != MaxSector)
3851 		return -EBUSY;
3852 
3853 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3854 		return -EINVAL;
3855 
3856 	oldsize = raid10_size(mddev, 0, 0);
3857 	size = raid10_size(mddev, sectors, 0);
3858 	if (mddev->external_size &&
3859 	    mddev->array_sectors > size)
3860 		return -EINVAL;
3861 	if (mddev->bitmap) {
3862 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3863 		if (ret)
3864 			return ret;
3865 	}
3866 	md_set_array_sectors(mddev, size);
3867 	set_capacity(mddev->gendisk, mddev->array_sectors);
3868 	revalidate_disk(mddev->gendisk);
3869 	if (sectors > mddev->dev_sectors &&
3870 	    mddev->recovery_cp > oldsize) {
3871 		mddev->recovery_cp = oldsize;
3872 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3873 	}
3874 	calc_sectors(conf, sectors);
3875 	mddev->dev_sectors = conf->dev_sectors;
3876 	mddev->resync_max_sectors = size;
3877 	return 0;
3878 }
3879 
3880 static void *raid10_takeover_raid0(struct mddev *mddev)
3881 {
3882 	struct md_rdev *rdev;
3883 	struct r10conf *conf;
3884 
3885 	if (mddev->degraded > 0) {
3886 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3887 		       mdname(mddev));
3888 		return ERR_PTR(-EINVAL);
3889 	}
3890 
3891 	/* Set new parameters */
3892 	mddev->new_level = 10;
3893 	/* new layout: far_copies = 1, near_copies = 2 */
3894 	mddev->new_layout = (1<<8) + 2;
3895 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3896 	mddev->delta_disks = mddev->raid_disks;
3897 	mddev->raid_disks *= 2;
3898 	/* make sure it will be not marked as dirty */
3899 	mddev->recovery_cp = MaxSector;
3900 
3901 	conf = setup_conf(mddev);
3902 	if (!IS_ERR(conf)) {
3903 		rdev_for_each(rdev, mddev)
3904 			if (rdev->raid_disk >= 0)
3905 				rdev->new_raid_disk = rdev->raid_disk * 2;
3906 		conf->barrier = 1;
3907 	}
3908 
3909 	return conf;
3910 }
3911 
3912 static void *raid10_takeover(struct mddev *mddev)
3913 {
3914 	struct r0conf *raid0_conf;
3915 
3916 	/* raid10 can take over:
3917 	 *  raid0 - providing it has only two drives
3918 	 */
3919 	if (mddev->level == 0) {
3920 		/* for raid0 takeover only one zone is supported */
3921 		raid0_conf = mddev->private;
3922 		if (raid0_conf->nr_strip_zones > 1) {
3923 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3924 			       " with more than one zone.\n",
3925 			       mdname(mddev));
3926 			return ERR_PTR(-EINVAL);
3927 		}
3928 		return raid10_takeover_raid0(mddev);
3929 	}
3930 	return ERR_PTR(-EINVAL);
3931 }
3932 
3933 static int raid10_check_reshape(struct mddev *mddev)
3934 {
3935 	/* Called when there is a request to change
3936 	 * - layout (to ->new_layout)
3937 	 * - chunk size (to ->new_chunk_sectors)
3938 	 * - raid_disks (by delta_disks)
3939 	 * or when trying to restart a reshape that was ongoing.
3940 	 *
3941 	 * We need to validate the request and possibly allocate
3942 	 * space if that might be an issue later.
3943 	 *
3944 	 * Currently we reject any reshape of a 'far' mode array,
3945 	 * allow chunk size to change if new is generally acceptable,
3946 	 * allow raid_disks to increase, and allow
3947 	 * a switch between 'near' mode and 'offset' mode.
3948 	 */
3949 	struct r10conf *conf = mddev->private;
3950 	struct geom geo;
3951 
3952 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3953 		return -EINVAL;
3954 
3955 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3956 		/* mustn't change number of copies */
3957 		return -EINVAL;
3958 	if (geo.far_copies > 1 && !geo.far_offset)
3959 		/* Cannot switch to 'far' mode */
3960 		return -EINVAL;
3961 
3962 	if (mddev->array_sectors & geo.chunk_mask)
3963 			/* not factor of array size */
3964 			return -EINVAL;
3965 
3966 	if (!enough(conf, -1))
3967 		return -EINVAL;
3968 
3969 	kfree(conf->mirrors_new);
3970 	conf->mirrors_new = NULL;
3971 	if (mddev->delta_disks > 0) {
3972 		/* allocate new 'mirrors' list */
3973 		conf->mirrors_new = kzalloc(
3974 			sizeof(struct raid10_info)
3975 			*(mddev->raid_disks +
3976 			  mddev->delta_disks),
3977 			GFP_KERNEL);
3978 		if (!conf->mirrors_new)
3979 			return -ENOMEM;
3980 	}
3981 	return 0;
3982 }
3983 
3984 /*
3985  * Need to check if array has failed when deciding whether to:
3986  *  - start an array
3987  *  - remove non-faulty devices
3988  *  - add a spare
3989  *  - allow a reshape
3990  * This determination is simple when no reshape is happening.
3991  * However if there is a reshape, we need to carefully check
3992  * both the before and after sections.
3993  * This is because some failed devices may only affect one
3994  * of the two sections, and some non-in_sync devices may
3995  * be insync in the section most affected by failed devices.
3996  */
3997 static int calc_degraded(struct r10conf *conf)
3998 {
3999 	int degraded, degraded2;
4000 	int i;
4001 
4002 	rcu_read_lock();
4003 	degraded = 0;
4004 	/* 'prev' section first */
4005 	for (i = 0; i < conf->prev.raid_disks; i++) {
4006 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4007 		if (!rdev || test_bit(Faulty, &rdev->flags))
4008 			degraded++;
4009 		else if (!test_bit(In_sync, &rdev->flags))
4010 			/* When we can reduce the number of devices in
4011 			 * an array, this might not contribute to
4012 			 * 'degraded'.  It does now.
4013 			 */
4014 			degraded++;
4015 	}
4016 	rcu_read_unlock();
4017 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4018 		return degraded;
4019 	rcu_read_lock();
4020 	degraded2 = 0;
4021 	for (i = 0; i < conf->geo.raid_disks; i++) {
4022 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4023 		if (!rdev || test_bit(Faulty, &rdev->flags))
4024 			degraded2++;
4025 		else if (!test_bit(In_sync, &rdev->flags)) {
4026 			/* If reshape is increasing the number of devices,
4027 			 * this section has already been recovered, so
4028 			 * it doesn't contribute to degraded.
4029 			 * else it does.
4030 			 */
4031 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4032 				degraded2++;
4033 		}
4034 	}
4035 	rcu_read_unlock();
4036 	if (degraded2 > degraded)
4037 		return degraded2;
4038 	return degraded;
4039 }
4040 
4041 static int raid10_start_reshape(struct mddev *mddev)
4042 {
4043 	/* A 'reshape' has been requested. This commits
4044 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4045 	 * This also checks if there are enough spares and adds them
4046 	 * to the array.
4047 	 * We currently require enough spares to make the final
4048 	 * array non-degraded.  We also require that the difference
4049 	 * between old and new data_offset - on each device - is
4050 	 * enough that we never risk over-writing.
4051 	 */
4052 
4053 	unsigned long before_length, after_length;
4054 	sector_t min_offset_diff = 0;
4055 	int first = 1;
4056 	struct geom new;
4057 	struct r10conf *conf = mddev->private;
4058 	struct md_rdev *rdev;
4059 	int spares = 0;
4060 	int ret;
4061 
4062 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4063 		return -EBUSY;
4064 
4065 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4066 		return -EINVAL;
4067 
4068 	before_length = ((1 << conf->prev.chunk_shift) *
4069 			 conf->prev.far_copies);
4070 	after_length = ((1 << conf->geo.chunk_shift) *
4071 			conf->geo.far_copies);
4072 
4073 	rdev_for_each(rdev, mddev) {
4074 		if (!test_bit(In_sync, &rdev->flags)
4075 		    && !test_bit(Faulty, &rdev->flags))
4076 			spares++;
4077 		if (rdev->raid_disk >= 0) {
4078 			long long diff = (rdev->new_data_offset
4079 					  - rdev->data_offset);
4080 			if (!mddev->reshape_backwards)
4081 				diff = -diff;
4082 			if (diff < 0)
4083 				diff = 0;
4084 			if (first || diff < min_offset_diff)
4085 				min_offset_diff = diff;
4086 		}
4087 	}
4088 
4089 	if (max(before_length, after_length) > min_offset_diff)
4090 		return -EINVAL;
4091 
4092 	if (spares < mddev->delta_disks)
4093 		return -EINVAL;
4094 
4095 	conf->offset_diff = min_offset_diff;
4096 	spin_lock_irq(&conf->device_lock);
4097 	if (conf->mirrors_new) {
4098 		memcpy(conf->mirrors_new, conf->mirrors,
4099 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4100 		smp_mb();
4101 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
4102 		conf->mirrors_old = conf->mirrors;
4103 		conf->mirrors = conf->mirrors_new;
4104 		conf->mirrors_new = NULL;
4105 	}
4106 	setup_geo(&conf->geo, mddev, geo_start);
4107 	smp_mb();
4108 	if (mddev->reshape_backwards) {
4109 		sector_t size = raid10_size(mddev, 0, 0);
4110 		if (size < mddev->array_sectors) {
4111 			spin_unlock_irq(&conf->device_lock);
4112 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4113 			       mdname(mddev));
4114 			return -EINVAL;
4115 		}
4116 		mddev->resync_max_sectors = size;
4117 		conf->reshape_progress = size;
4118 	} else
4119 		conf->reshape_progress = 0;
4120 	spin_unlock_irq(&conf->device_lock);
4121 
4122 	if (mddev->delta_disks && mddev->bitmap) {
4123 		ret = bitmap_resize(mddev->bitmap,
4124 				    raid10_size(mddev, 0,
4125 						conf->geo.raid_disks),
4126 				    0, 0);
4127 		if (ret)
4128 			goto abort;
4129 	}
4130 	if (mddev->delta_disks > 0) {
4131 		rdev_for_each(rdev, mddev)
4132 			if (rdev->raid_disk < 0 &&
4133 			    !test_bit(Faulty, &rdev->flags)) {
4134 				if (raid10_add_disk(mddev, rdev) == 0) {
4135 					if (rdev->raid_disk >=
4136 					    conf->prev.raid_disks)
4137 						set_bit(In_sync, &rdev->flags);
4138 					else
4139 						rdev->recovery_offset = 0;
4140 
4141 					if (sysfs_link_rdev(mddev, rdev))
4142 						/* Failure here  is OK */;
4143 				}
4144 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4145 				   && !test_bit(Faulty, &rdev->flags)) {
4146 				/* This is a spare that was manually added */
4147 				set_bit(In_sync, &rdev->flags);
4148 			}
4149 	}
4150 	/* When a reshape changes the number of devices,
4151 	 * ->degraded is measured against the larger of the
4152 	 * pre and  post numbers.
4153 	 */
4154 	spin_lock_irq(&conf->device_lock);
4155 	mddev->degraded = calc_degraded(conf);
4156 	spin_unlock_irq(&conf->device_lock);
4157 	mddev->raid_disks = conf->geo.raid_disks;
4158 	mddev->reshape_position = conf->reshape_progress;
4159 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4160 
4161 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4162 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4163 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4164 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4165 
4166 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4167 						"reshape");
4168 	if (!mddev->sync_thread) {
4169 		ret = -EAGAIN;
4170 		goto abort;
4171 	}
4172 	conf->reshape_checkpoint = jiffies;
4173 	md_wakeup_thread(mddev->sync_thread);
4174 	md_new_event(mddev);
4175 	return 0;
4176 
4177 abort:
4178 	mddev->recovery = 0;
4179 	spin_lock_irq(&conf->device_lock);
4180 	conf->geo = conf->prev;
4181 	mddev->raid_disks = conf->geo.raid_disks;
4182 	rdev_for_each(rdev, mddev)
4183 		rdev->new_data_offset = rdev->data_offset;
4184 	smp_wmb();
4185 	conf->reshape_progress = MaxSector;
4186 	mddev->reshape_position = MaxSector;
4187 	spin_unlock_irq(&conf->device_lock);
4188 	return ret;
4189 }
4190 
4191 /* Calculate the last device-address that could contain
4192  * any block from the chunk that includes the array-address 's'
4193  * and report the next address.
4194  * i.e. the address returned will be chunk-aligned and after
4195  * any data that is in the chunk containing 's'.
4196  */
4197 static sector_t last_dev_address(sector_t s, struct geom *geo)
4198 {
4199 	s = (s | geo->chunk_mask) + 1;
4200 	s >>= geo->chunk_shift;
4201 	s *= geo->near_copies;
4202 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4203 	s *= geo->far_copies;
4204 	s <<= geo->chunk_shift;
4205 	return s;
4206 }
4207 
4208 /* Calculate the first device-address that could contain
4209  * any block from the chunk that includes the array-address 's'.
4210  * This too will be the start of a chunk
4211  */
4212 static sector_t first_dev_address(sector_t s, struct geom *geo)
4213 {
4214 	s >>= geo->chunk_shift;
4215 	s *= geo->near_copies;
4216 	sector_div(s, geo->raid_disks);
4217 	s *= geo->far_copies;
4218 	s <<= geo->chunk_shift;
4219 	return s;
4220 }
4221 
4222 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4223 				int *skipped)
4224 {
4225 	/* We simply copy at most one chunk (smallest of old and new)
4226 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4227 	 * or we hit a bad block or something.
4228 	 * This might mean we pause for normal IO in the middle of
4229 	 * a chunk, but that is not a problem was mddev->reshape_position
4230 	 * can record any location.
4231 	 *
4232 	 * If we will want to write to a location that isn't
4233 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4234 	 * we need to flush all reshape requests and update the metadata.
4235 	 *
4236 	 * When reshaping forwards (e.g. to more devices), we interpret
4237 	 * 'safe' as the earliest block which might not have been copied
4238 	 * down yet.  We divide this by previous stripe size and multiply
4239 	 * by previous stripe length to get lowest device offset that we
4240 	 * cannot write to yet.
4241 	 * We interpret 'sector_nr' as an address that we want to write to.
4242 	 * From this we use last_device_address() to find where we might
4243 	 * write to, and first_device_address on the  'safe' position.
4244 	 * If this 'next' write position is after the 'safe' position,
4245 	 * we must update the metadata to increase the 'safe' position.
4246 	 *
4247 	 * When reshaping backwards, we round in the opposite direction
4248 	 * and perform the reverse test:  next write position must not be
4249 	 * less than current safe position.
4250 	 *
4251 	 * In all this the minimum difference in data offsets
4252 	 * (conf->offset_diff - always positive) allows a bit of slack,
4253 	 * so next can be after 'safe', but not by more than offset_disk
4254 	 *
4255 	 * We need to prepare all the bios here before we start any IO
4256 	 * to ensure the size we choose is acceptable to all devices.
4257 	 * The means one for each copy for write-out and an extra one for
4258 	 * read-in.
4259 	 * We store the read-in bio in ->master_bio and the others in
4260 	 * ->devs[x].bio and ->devs[x].repl_bio.
4261 	 */
4262 	struct r10conf *conf = mddev->private;
4263 	struct r10bio *r10_bio;
4264 	sector_t next, safe, last;
4265 	int max_sectors;
4266 	int nr_sectors;
4267 	int s;
4268 	struct md_rdev *rdev;
4269 	int need_flush = 0;
4270 	struct bio *blist;
4271 	struct bio *bio, *read_bio;
4272 	int sectors_done = 0;
4273 
4274 	if (sector_nr == 0) {
4275 		/* If restarting in the middle, skip the initial sectors */
4276 		if (mddev->reshape_backwards &&
4277 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4278 			sector_nr = (raid10_size(mddev, 0, 0)
4279 				     - conf->reshape_progress);
4280 		} else if (!mddev->reshape_backwards &&
4281 			   conf->reshape_progress > 0)
4282 			sector_nr = conf->reshape_progress;
4283 		if (sector_nr) {
4284 			mddev->curr_resync_completed = sector_nr;
4285 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4286 			*skipped = 1;
4287 			return sector_nr;
4288 		}
4289 	}
4290 
4291 	/* We don't use sector_nr to track where we are up to
4292 	 * as that doesn't work well for ->reshape_backwards.
4293 	 * So just use ->reshape_progress.
4294 	 */
4295 	if (mddev->reshape_backwards) {
4296 		/* 'next' is the earliest device address that we might
4297 		 * write to for this chunk in the new layout
4298 		 */
4299 		next = first_dev_address(conf->reshape_progress - 1,
4300 					 &conf->geo);
4301 
4302 		/* 'safe' is the last device address that we might read from
4303 		 * in the old layout after a restart
4304 		 */
4305 		safe = last_dev_address(conf->reshape_safe - 1,
4306 					&conf->prev);
4307 
4308 		if (next + conf->offset_diff < safe)
4309 			need_flush = 1;
4310 
4311 		last = conf->reshape_progress - 1;
4312 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4313 					       & conf->prev.chunk_mask);
4314 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4315 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4316 	} else {
4317 		/* 'next' is after the last device address that we
4318 		 * might write to for this chunk in the new layout
4319 		 */
4320 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4321 
4322 		/* 'safe' is the earliest device address that we might
4323 		 * read from in the old layout after a restart
4324 		 */
4325 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4326 
4327 		/* Need to update metadata if 'next' might be beyond 'safe'
4328 		 * as that would possibly corrupt data
4329 		 */
4330 		if (next > safe + conf->offset_diff)
4331 			need_flush = 1;
4332 
4333 		sector_nr = conf->reshape_progress;
4334 		last  = sector_nr | (conf->geo.chunk_mask
4335 				     & conf->prev.chunk_mask);
4336 
4337 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4338 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4339 	}
4340 
4341 	if (need_flush ||
4342 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4343 		/* Need to update reshape_position in metadata */
4344 		wait_barrier(conf);
4345 		mddev->reshape_position = conf->reshape_progress;
4346 		if (mddev->reshape_backwards)
4347 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4348 				- conf->reshape_progress;
4349 		else
4350 			mddev->curr_resync_completed = conf->reshape_progress;
4351 		conf->reshape_checkpoint = jiffies;
4352 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4353 		md_wakeup_thread(mddev->thread);
4354 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4355 			   kthread_should_stop());
4356 		conf->reshape_safe = mddev->reshape_position;
4357 		allow_barrier(conf);
4358 	}
4359 
4360 read_more:
4361 	/* Now schedule reads for blocks from sector_nr to last */
4362 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4363 	raise_barrier(conf, sectors_done != 0);
4364 	atomic_set(&r10_bio->remaining, 0);
4365 	r10_bio->mddev = mddev;
4366 	r10_bio->sector = sector_nr;
4367 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4368 	r10_bio->sectors = last - sector_nr + 1;
4369 	rdev = read_balance(conf, r10_bio, &max_sectors);
4370 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4371 
4372 	if (!rdev) {
4373 		/* Cannot read from here, so need to record bad blocks
4374 		 * on all the target devices.
4375 		 */
4376 		// FIXME
4377 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4378 		return sectors_done;
4379 	}
4380 
4381 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4382 
4383 	read_bio->bi_bdev = rdev->bdev;
4384 	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4385 			       + rdev->data_offset);
4386 	read_bio->bi_private = r10_bio;
4387 	read_bio->bi_end_io = end_sync_read;
4388 	read_bio->bi_rw = READ;
4389 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4390 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4391 	read_bio->bi_vcnt = 0;
4392 	read_bio->bi_idx = 0;
4393 	read_bio->bi_size = 0;
4394 	r10_bio->master_bio = read_bio;
4395 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4396 
4397 	/* Now find the locations in the new layout */
4398 	__raid10_find_phys(&conf->geo, r10_bio);
4399 
4400 	blist = read_bio;
4401 	read_bio->bi_next = NULL;
4402 
4403 	for (s = 0; s < conf->copies*2; s++) {
4404 		struct bio *b;
4405 		int d = r10_bio->devs[s/2].devnum;
4406 		struct md_rdev *rdev2;
4407 		if (s&1) {
4408 			rdev2 = conf->mirrors[d].replacement;
4409 			b = r10_bio->devs[s/2].repl_bio;
4410 		} else {
4411 			rdev2 = conf->mirrors[d].rdev;
4412 			b = r10_bio->devs[s/2].bio;
4413 		}
4414 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4415 			continue;
4416 		b->bi_bdev = rdev2->bdev;
4417 		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4418 		b->bi_private = r10_bio;
4419 		b->bi_end_io = end_reshape_write;
4420 		b->bi_rw = WRITE;
4421 		b->bi_flags &= ~(BIO_POOL_MASK - 1);
4422 		b->bi_flags |= 1 << BIO_UPTODATE;
4423 		b->bi_next = blist;
4424 		b->bi_vcnt = 0;
4425 		b->bi_idx = 0;
4426 		b->bi_size = 0;
4427 		blist = b;
4428 	}
4429 
4430 	/* Now add as many pages as possible to all of these bios. */
4431 
4432 	nr_sectors = 0;
4433 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4434 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4435 		int len = (max_sectors - s) << 9;
4436 		if (len > PAGE_SIZE)
4437 			len = PAGE_SIZE;
4438 		for (bio = blist; bio ; bio = bio->bi_next) {
4439 			struct bio *bio2;
4440 			if (bio_add_page(bio, page, len, 0))
4441 				continue;
4442 
4443 			/* Didn't fit, must stop */
4444 			for (bio2 = blist;
4445 			     bio2 && bio2 != bio;
4446 			     bio2 = bio2->bi_next) {
4447 				/* Remove last page from this bio */
4448 				bio2->bi_vcnt--;
4449 				bio2->bi_size -= len;
4450 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4451 			}
4452 			goto bio_full;
4453 		}
4454 		sector_nr += len >> 9;
4455 		nr_sectors += len >> 9;
4456 	}
4457 bio_full:
4458 	r10_bio->sectors = nr_sectors;
4459 
4460 	/* Now submit the read */
4461 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4462 	atomic_inc(&r10_bio->remaining);
4463 	read_bio->bi_next = NULL;
4464 	generic_make_request(read_bio);
4465 	sector_nr += nr_sectors;
4466 	sectors_done += nr_sectors;
4467 	if (sector_nr <= last)
4468 		goto read_more;
4469 
4470 	/* Now that we have done the whole section we can
4471 	 * update reshape_progress
4472 	 */
4473 	if (mddev->reshape_backwards)
4474 		conf->reshape_progress -= sectors_done;
4475 	else
4476 		conf->reshape_progress += sectors_done;
4477 
4478 	return sectors_done;
4479 }
4480 
4481 static void end_reshape_request(struct r10bio *r10_bio);
4482 static int handle_reshape_read_error(struct mddev *mddev,
4483 				     struct r10bio *r10_bio);
4484 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4485 {
4486 	/* Reshape read completed.  Hopefully we have a block
4487 	 * to write out.
4488 	 * If we got a read error then we do sync 1-page reads from
4489 	 * elsewhere until we find the data - or give up.
4490 	 */
4491 	struct r10conf *conf = mddev->private;
4492 	int s;
4493 
4494 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4495 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4496 			/* Reshape has been aborted */
4497 			md_done_sync(mddev, r10_bio->sectors, 0);
4498 			return;
4499 		}
4500 
4501 	/* We definitely have the data in the pages, schedule the
4502 	 * writes.
4503 	 */
4504 	atomic_set(&r10_bio->remaining, 1);
4505 	for (s = 0; s < conf->copies*2; s++) {
4506 		struct bio *b;
4507 		int d = r10_bio->devs[s/2].devnum;
4508 		struct md_rdev *rdev;
4509 		if (s&1) {
4510 			rdev = conf->mirrors[d].replacement;
4511 			b = r10_bio->devs[s/2].repl_bio;
4512 		} else {
4513 			rdev = conf->mirrors[d].rdev;
4514 			b = r10_bio->devs[s/2].bio;
4515 		}
4516 		if (!rdev || test_bit(Faulty, &rdev->flags))
4517 			continue;
4518 		atomic_inc(&rdev->nr_pending);
4519 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4520 		atomic_inc(&r10_bio->remaining);
4521 		b->bi_next = NULL;
4522 		generic_make_request(b);
4523 	}
4524 	end_reshape_request(r10_bio);
4525 }
4526 
4527 static void end_reshape(struct r10conf *conf)
4528 {
4529 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4530 		return;
4531 
4532 	spin_lock_irq(&conf->device_lock);
4533 	conf->prev = conf->geo;
4534 	md_finish_reshape(conf->mddev);
4535 	smp_wmb();
4536 	conf->reshape_progress = MaxSector;
4537 	spin_unlock_irq(&conf->device_lock);
4538 
4539 	/* read-ahead size must cover two whole stripes, which is
4540 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4541 	 */
4542 	if (conf->mddev->queue) {
4543 		int stripe = conf->geo.raid_disks *
4544 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4545 		stripe /= conf->geo.near_copies;
4546 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4547 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4548 	}
4549 	conf->fullsync = 0;
4550 }
4551 
4552 
4553 static int handle_reshape_read_error(struct mddev *mddev,
4554 				     struct r10bio *r10_bio)
4555 {
4556 	/* Use sync reads to get the blocks from somewhere else */
4557 	int sectors = r10_bio->sectors;
4558 	struct r10conf *conf = mddev->private;
4559 	struct {
4560 		struct r10bio r10_bio;
4561 		struct r10dev devs[conf->copies];
4562 	} on_stack;
4563 	struct r10bio *r10b = &on_stack.r10_bio;
4564 	int slot = 0;
4565 	int idx = 0;
4566 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4567 
4568 	r10b->sector = r10_bio->sector;
4569 	__raid10_find_phys(&conf->prev, r10b);
4570 
4571 	while (sectors) {
4572 		int s = sectors;
4573 		int success = 0;
4574 		int first_slot = slot;
4575 
4576 		if (s > (PAGE_SIZE >> 9))
4577 			s = PAGE_SIZE >> 9;
4578 
4579 		while (!success) {
4580 			int d = r10b->devs[slot].devnum;
4581 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4582 			sector_t addr;
4583 			if (rdev == NULL ||
4584 			    test_bit(Faulty, &rdev->flags) ||
4585 			    !test_bit(In_sync, &rdev->flags))
4586 				goto failed;
4587 
4588 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4589 			success = sync_page_io(rdev,
4590 					       addr,
4591 					       s << 9,
4592 					       bvec[idx].bv_page,
4593 					       READ, false);
4594 			if (success)
4595 				break;
4596 		failed:
4597 			slot++;
4598 			if (slot >= conf->copies)
4599 				slot = 0;
4600 			if (slot == first_slot)
4601 				break;
4602 		}
4603 		if (!success) {
4604 			/* couldn't read this block, must give up */
4605 			set_bit(MD_RECOVERY_INTR,
4606 				&mddev->recovery);
4607 			return -EIO;
4608 		}
4609 		sectors -= s;
4610 		idx++;
4611 	}
4612 	return 0;
4613 }
4614 
4615 static void end_reshape_write(struct bio *bio, int error)
4616 {
4617 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4618 	struct r10bio *r10_bio = bio->bi_private;
4619 	struct mddev *mddev = r10_bio->mddev;
4620 	struct r10conf *conf = mddev->private;
4621 	int d;
4622 	int slot;
4623 	int repl;
4624 	struct md_rdev *rdev = NULL;
4625 
4626 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4627 	if (repl)
4628 		rdev = conf->mirrors[d].replacement;
4629 	if (!rdev) {
4630 		smp_mb();
4631 		rdev = conf->mirrors[d].rdev;
4632 	}
4633 
4634 	if (!uptodate) {
4635 		/* FIXME should record badblock */
4636 		md_error(mddev, rdev);
4637 	}
4638 
4639 	rdev_dec_pending(rdev, mddev);
4640 	end_reshape_request(r10_bio);
4641 }
4642 
4643 static void end_reshape_request(struct r10bio *r10_bio)
4644 {
4645 	if (!atomic_dec_and_test(&r10_bio->remaining))
4646 		return;
4647 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4648 	bio_put(r10_bio->master_bio);
4649 	put_buf(r10_bio);
4650 }
4651 
4652 static void raid10_finish_reshape(struct mddev *mddev)
4653 {
4654 	struct r10conf *conf = mddev->private;
4655 
4656 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4657 		return;
4658 
4659 	if (mddev->delta_disks > 0) {
4660 		sector_t size = raid10_size(mddev, 0, 0);
4661 		md_set_array_sectors(mddev, size);
4662 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4663 			mddev->recovery_cp = mddev->resync_max_sectors;
4664 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4665 		}
4666 		mddev->resync_max_sectors = size;
4667 		set_capacity(mddev->gendisk, mddev->array_sectors);
4668 		revalidate_disk(mddev->gendisk);
4669 	} else {
4670 		int d;
4671 		for (d = conf->geo.raid_disks ;
4672 		     d < conf->geo.raid_disks - mddev->delta_disks;
4673 		     d++) {
4674 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4675 			if (rdev)
4676 				clear_bit(In_sync, &rdev->flags);
4677 			rdev = conf->mirrors[d].replacement;
4678 			if (rdev)
4679 				clear_bit(In_sync, &rdev->flags);
4680 		}
4681 	}
4682 	mddev->layout = mddev->new_layout;
4683 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4684 	mddev->reshape_position = MaxSector;
4685 	mddev->delta_disks = 0;
4686 	mddev->reshape_backwards = 0;
4687 }
4688 
4689 static struct md_personality raid10_personality =
4690 {
4691 	.name		= "raid10",
4692 	.level		= 10,
4693 	.owner		= THIS_MODULE,
4694 	.make_request	= make_request,
4695 	.run		= run,
4696 	.stop		= stop,
4697 	.status		= status,
4698 	.error_handler	= error,
4699 	.hot_add_disk	= raid10_add_disk,
4700 	.hot_remove_disk= raid10_remove_disk,
4701 	.spare_active	= raid10_spare_active,
4702 	.sync_request	= sync_request,
4703 	.quiesce	= raid10_quiesce,
4704 	.size		= raid10_size,
4705 	.resize		= raid10_resize,
4706 	.takeover	= raid10_takeover,
4707 	.check_reshape	= raid10_check_reshape,
4708 	.start_reshape	= raid10_start_reshape,
4709 	.finish_reshape	= raid10_finish_reshape,
4710 };
4711 
4712 static int __init raid_init(void)
4713 {
4714 	return register_md_personality(&raid10_personality);
4715 }
4716 
4717 static void raid_exit(void)
4718 {
4719 	unregister_md_personality(&raid10_personality);
4720 }
4721 
4722 module_init(raid_init);
4723 module_exit(raid_exit);
4724 MODULE_LICENSE("GPL");
4725 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4726 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4727 MODULE_ALIAS("md-raid10");
4728 MODULE_ALIAS("md-level-10");
4729 
4730 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4731