1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * 43 * The data to be stored is divided into chunks using chunksize. Each device 44 * is divided into far_copies sections. In each section, chunks are laid out 45 * in a style similar to raid0, but near_copies copies of each chunk is stored 46 * (each on a different drive). The starting device for each section is offset 47 * near_copies from the starting device of the previous section. Thus there 48 * are (near_copies * far_copies) of each chunk, and each is on a different 49 * drive. near_copies and far_copies must be at least one, and their product 50 * is at most raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of being very far 54 * apart on disk, there are adjacent stripes. 55 * 56 * The far and offset algorithms are handled slightly differently if 57 * 'use_far_sets' is true. In this case, the array's devices are grouped into 58 * sets that are (near_copies * far_copies) in size. The far copied stripes 59 * are still shifted by 'near_copies' devices, but this shifting stays confined 60 * to the set rather than the entire array. This is done to improve the number 61 * of device combinations that can fail without causing the array to fail. 62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 63 * on a device): 64 * A B C D A B C D E 65 * ... ... 66 * D A B C E A B C D 67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 68 * [A B] [C D] [A B] [C D E] 69 * |...| |...| |...| | ... | 70 * [B A] [D C] [B A] [E C D] 71 */ 72 73 /* 74 * Number of guaranteed r10bios in case of extreme VM load: 75 */ 76 #define NR_RAID10_BIOS 256 77 78 /* when we get a read error on a read-only array, we redirect to another 79 * device without failing the first device, or trying to over-write to 80 * correct the read error. To keep track of bad blocks on a per-bio 81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 82 */ 83 #define IO_BLOCKED ((struct bio *)1) 84 /* When we successfully write to a known bad-block, we need to remove the 85 * bad-block marking which must be done from process context. So we record 86 * the success by setting devs[n].bio to IO_MADE_GOOD 87 */ 88 #define IO_MADE_GOOD ((struct bio *)2) 89 90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 91 92 /* When there are this many requests queued to be written by 93 * the raid10 thread, we become 'congested' to provide back-pressure 94 * for writeback. 95 */ 96 static int max_queued_requests = 1024; 97 98 static void allow_barrier(struct r10conf *conf); 99 static void lower_barrier(struct r10conf *conf); 100 static int enough(struct r10conf *conf, int ignore); 101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 102 int *skipped); 103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 104 static void end_reshape_write(struct bio *bio, int error); 105 static void end_reshape(struct r10conf *conf); 106 107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 108 { 109 struct r10conf *conf = data; 110 int size = offsetof(struct r10bio, devs[conf->copies]); 111 112 /* allocate a r10bio with room for raid_disks entries in the 113 * bios array */ 114 return kzalloc(size, gfp_flags); 115 } 116 117 static void r10bio_pool_free(void *r10_bio, void *data) 118 { 119 kfree(r10_bio); 120 } 121 122 /* Maximum size of each resync request */ 123 #define RESYNC_BLOCK_SIZE (64*1024) 124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 125 /* amount of memory to reserve for resync requests */ 126 #define RESYNC_WINDOW (1024*1024) 127 /* maximum number of concurrent requests, memory permitting */ 128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 129 130 /* 131 * When performing a resync, we need to read and compare, so 132 * we need as many pages are there are copies. 133 * When performing a recovery, we need 2 bios, one for read, 134 * one for write (we recover only one drive per r10buf) 135 * 136 */ 137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 138 { 139 struct r10conf *conf = data; 140 struct page *page; 141 struct r10bio *r10_bio; 142 struct bio *bio; 143 int i, j; 144 int nalloc; 145 146 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 147 if (!r10_bio) 148 return NULL; 149 150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 152 nalloc = conf->copies; /* resync */ 153 else 154 nalloc = 2; /* recovery */ 155 156 /* 157 * Allocate bios. 158 */ 159 for (j = nalloc ; j-- ; ) { 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 161 if (!bio) 162 goto out_free_bio; 163 r10_bio->devs[j].bio = bio; 164 if (!conf->have_replacement) 165 continue; 166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 167 if (!bio) 168 goto out_free_bio; 169 r10_bio->devs[j].repl_bio = bio; 170 } 171 /* 172 * Allocate RESYNC_PAGES data pages and attach them 173 * where needed. 174 */ 175 for (j = 0 ; j < nalloc; j++) { 176 struct bio *rbio = r10_bio->devs[j].repl_bio; 177 bio = r10_bio->devs[j].bio; 178 for (i = 0; i < RESYNC_PAGES; i++) { 179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 180 &conf->mddev->recovery)) { 181 /* we can share bv_page's during recovery 182 * and reshape */ 183 struct bio *rbio = r10_bio->devs[0].bio; 184 page = rbio->bi_io_vec[i].bv_page; 185 get_page(page); 186 } else 187 page = alloc_page(gfp_flags); 188 if (unlikely(!page)) 189 goto out_free_pages; 190 191 bio->bi_io_vec[i].bv_page = page; 192 if (rbio) 193 rbio->bi_io_vec[i].bv_page = page; 194 } 195 } 196 197 return r10_bio; 198 199 out_free_pages: 200 for ( ; i > 0 ; i--) 201 safe_put_page(bio->bi_io_vec[i-1].bv_page); 202 while (j--) 203 for (i = 0; i < RESYNC_PAGES ; i++) 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 205 j = 0; 206 out_free_bio: 207 for ( ; j < nalloc; j++) { 208 if (r10_bio->devs[j].bio) 209 bio_put(r10_bio->devs[j].bio); 210 if (r10_bio->devs[j].repl_bio) 211 bio_put(r10_bio->devs[j].repl_bio); 212 } 213 r10bio_pool_free(r10_bio, conf); 214 return NULL; 215 } 216 217 static void r10buf_pool_free(void *__r10_bio, void *data) 218 { 219 int i; 220 struct r10conf *conf = data; 221 struct r10bio *r10bio = __r10_bio; 222 int j; 223 224 for (j=0; j < conf->copies; j++) { 225 struct bio *bio = r10bio->devs[j].bio; 226 if (bio) { 227 for (i = 0; i < RESYNC_PAGES; i++) { 228 safe_put_page(bio->bi_io_vec[i].bv_page); 229 bio->bi_io_vec[i].bv_page = NULL; 230 } 231 bio_put(bio); 232 } 233 bio = r10bio->devs[j].repl_bio; 234 if (bio) 235 bio_put(bio); 236 } 237 r10bio_pool_free(r10bio, conf); 238 } 239 240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 241 { 242 int i; 243 244 for (i = 0; i < conf->copies; i++) { 245 struct bio **bio = & r10_bio->devs[i].bio; 246 if (!BIO_SPECIAL(*bio)) 247 bio_put(*bio); 248 *bio = NULL; 249 bio = &r10_bio->devs[i].repl_bio; 250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 251 bio_put(*bio); 252 *bio = NULL; 253 } 254 } 255 256 static void free_r10bio(struct r10bio *r10_bio) 257 { 258 struct r10conf *conf = r10_bio->mddev->private; 259 260 put_all_bios(conf, r10_bio); 261 mempool_free(r10_bio, conf->r10bio_pool); 262 } 263 264 static void put_buf(struct r10bio *r10_bio) 265 { 266 struct r10conf *conf = r10_bio->mddev->private; 267 268 mempool_free(r10_bio, conf->r10buf_pool); 269 270 lower_barrier(conf); 271 } 272 273 static void reschedule_retry(struct r10bio *r10_bio) 274 { 275 unsigned long flags; 276 struct mddev *mddev = r10_bio->mddev; 277 struct r10conf *conf = mddev->private; 278 279 spin_lock_irqsave(&conf->device_lock, flags); 280 list_add(&r10_bio->retry_list, &conf->retry_list); 281 conf->nr_queued ++; 282 spin_unlock_irqrestore(&conf->device_lock, flags); 283 284 /* wake up frozen array... */ 285 wake_up(&conf->wait_barrier); 286 287 md_wakeup_thread(mddev->thread); 288 } 289 290 /* 291 * raid_end_bio_io() is called when we have finished servicing a mirrored 292 * operation and are ready to return a success/failure code to the buffer 293 * cache layer. 294 */ 295 static void raid_end_bio_io(struct r10bio *r10_bio) 296 { 297 struct bio *bio = r10_bio->master_bio; 298 int done; 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 if (bio->bi_phys_segments) { 302 unsigned long flags; 303 spin_lock_irqsave(&conf->device_lock, flags); 304 bio->bi_phys_segments--; 305 done = (bio->bi_phys_segments == 0); 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 } else 308 done = 1; 309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 310 clear_bit(BIO_UPTODATE, &bio->bi_flags); 311 if (done) { 312 bio_endio(bio, 0); 313 /* 314 * Wake up any possible resync thread that waits for the device 315 * to go idle. 316 */ 317 allow_barrier(conf); 318 } 319 free_r10bio(r10_bio); 320 } 321 322 /* 323 * Update disk head position estimator based on IRQ completion info. 324 */ 325 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 326 { 327 struct r10conf *conf = r10_bio->mddev->private; 328 329 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 330 r10_bio->devs[slot].addr + (r10_bio->sectors); 331 } 332 333 /* 334 * Find the disk number which triggered given bio 335 */ 336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 337 struct bio *bio, int *slotp, int *replp) 338 { 339 int slot; 340 int repl = 0; 341 342 for (slot = 0; slot < conf->copies; slot++) { 343 if (r10_bio->devs[slot].bio == bio) 344 break; 345 if (r10_bio->devs[slot].repl_bio == bio) { 346 repl = 1; 347 break; 348 } 349 } 350 351 BUG_ON(slot == conf->copies); 352 update_head_pos(slot, r10_bio); 353 354 if (slotp) 355 *slotp = slot; 356 if (replp) 357 *replp = repl; 358 return r10_bio->devs[slot].devnum; 359 } 360 361 static void raid10_end_read_request(struct bio *bio, int error) 362 { 363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 364 struct r10bio *r10_bio = bio->bi_private; 365 int slot, dev; 366 struct md_rdev *rdev; 367 struct r10conf *conf = r10_bio->mddev->private; 368 369 370 slot = r10_bio->read_slot; 371 dev = r10_bio->devs[slot].devnum; 372 rdev = r10_bio->devs[slot].rdev; 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 update_head_pos(slot, r10_bio); 377 378 if (uptodate) { 379 /* 380 * Set R10BIO_Uptodate in our master bio, so that 381 * we will return a good error code to the higher 382 * levels even if IO on some other mirrored buffer fails. 383 * 384 * The 'master' represents the composite IO operation to 385 * user-side. So if something waits for IO, then it will 386 * wait for the 'master' bio. 387 */ 388 set_bit(R10BIO_Uptodate, &r10_bio->state); 389 } else { 390 /* If all other devices that store this block have 391 * failed, we want to return the error upwards rather 392 * than fail the last device. Here we redefine 393 * "uptodate" to mean "Don't want to retry" 394 */ 395 unsigned long flags; 396 spin_lock_irqsave(&conf->device_lock, flags); 397 if (!enough(conf, rdev->raid_disk)) 398 uptodate = 1; 399 spin_unlock_irqrestore(&conf->device_lock, flags); 400 } 401 if (uptodate) { 402 raid_end_bio_io(r10_bio); 403 rdev_dec_pending(rdev, conf->mddev); 404 } else { 405 /* 406 * oops, read error - keep the refcount on the rdev 407 */ 408 char b[BDEVNAME_SIZE]; 409 printk_ratelimited(KERN_ERR 410 "md/raid10:%s: %s: rescheduling sector %llu\n", 411 mdname(conf->mddev), 412 bdevname(rdev->bdev, b), 413 (unsigned long long)r10_bio->sector); 414 set_bit(R10BIO_ReadError, &r10_bio->state); 415 reschedule_retry(r10_bio); 416 } 417 } 418 419 static void close_write(struct r10bio *r10_bio) 420 { 421 /* clear the bitmap if all writes complete successfully */ 422 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 423 r10_bio->sectors, 424 !test_bit(R10BIO_Degraded, &r10_bio->state), 425 0); 426 md_write_end(r10_bio->mddev); 427 } 428 429 static void one_write_done(struct r10bio *r10_bio) 430 { 431 if (atomic_dec_and_test(&r10_bio->remaining)) { 432 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 433 reschedule_retry(r10_bio); 434 else { 435 close_write(r10_bio); 436 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 437 reschedule_retry(r10_bio); 438 else 439 raid_end_bio_io(r10_bio); 440 } 441 } 442 } 443 444 static void raid10_end_write_request(struct bio *bio, int error) 445 { 446 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 447 struct r10bio *r10_bio = bio->bi_private; 448 int dev; 449 int dec_rdev = 1; 450 struct r10conf *conf = r10_bio->mddev->private; 451 int slot, repl; 452 struct md_rdev *rdev = NULL; 453 454 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 455 456 if (repl) 457 rdev = conf->mirrors[dev].replacement; 458 if (!rdev) { 459 smp_rmb(); 460 repl = 0; 461 rdev = conf->mirrors[dev].rdev; 462 } 463 /* 464 * this branch is our 'one mirror IO has finished' event handler: 465 */ 466 if (!uptodate) { 467 if (repl) 468 /* Never record new bad blocks to replacement, 469 * just fail it. 470 */ 471 md_error(rdev->mddev, rdev); 472 else { 473 set_bit(WriteErrorSeen, &rdev->flags); 474 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 475 set_bit(MD_RECOVERY_NEEDED, 476 &rdev->mddev->recovery); 477 set_bit(R10BIO_WriteError, &r10_bio->state); 478 dec_rdev = 0; 479 } 480 } else { 481 /* 482 * Set R10BIO_Uptodate in our master bio, so that 483 * we will return a good error code for to the higher 484 * levels even if IO on some other mirrored buffer fails. 485 * 486 * The 'master' represents the composite IO operation to 487 * user-side. So if something waits for IO, then it will 488 * wait for the 'master' bio. 489 */ 490 sector_t first_bad; 491 int bad_sectors; 492 493 set_bit(R10BIO_Uptodate, &r10_bio->state); 494 495 /* Maybe we can clear some bad blocks. */ 496 if (is_badblock(rdev, 497 r10_bio->devs[slot].addr, 498 r10_bio->sectors, 499 &first_bad, &bad_sectors)) { 500 bio_put(bio); 501 if (repl) 502 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 503 else 504 r10_bio->devs[slot].bio = IO_MADE_GOOD; 505 dec_rdev = 0; 506 set_bit(R10BIO_MadeGood, &r10_bio->state); 507 } 508 } 509 510 /* 511 * 512 * Let's see if all mirrored write operations have finished 513 * already. 514 */ 515 one_write_done(r10_bio); 516 if (dec_rdev) 517 rdev_dec_pending(rdev, conf->mddev); 518 } 519 520 /* 521 * RAID10 layout manager 522 * As well as the chunksize and raid_disks count, there are two 523 * parameters: near_copies and far_copies. 524 * near_copies * far_copies must be <= raid_disks. 525 * Normally one of these will be 1. 526 * If both are 1, we get raid0. 527 * If near_copies == raid_disks, we get raid1. 528 * 529 * Chunks are laid out in raid0 style with near_copies copies of the 530 * first chunk, followed by near_copies copies of the next chunk and 531 * so on. 532 * If far_copies > 1, then after 1/far_copies of the array has been assigned 533 * as described above, we start again with a device offset of near_copies. 534 * So we effectively have another copy of the whole array further down all 535 * the drives, but with blocks on different drives. 536 * With this layout, and block is never stored twice on the one device. 537 * 538 * raid10_find_phys finds the sector offset of a given virtual sector 539 * on each device that it is on. 540 * 541 * raid10_find_virt does the reverse mapping, from a device and a 542 * sector offset to a virtual address 543 */ 544 545 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 546 { 547 int n,f; 548 sector_t sector; 549 sector_t chunk; 550 sector_t stripe; 551 int dev; 552 int slot = 0; 553 int last_far_set_start, last_far_set_size; 554 555 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 556 last_far_set_start *= geo->far_set_size; 557 558 last_far_set_size = geo->far_set_size; 559 last_far_set_size += (geo->raid_disks % geo->far_set_size); 560 561 /* now calculate first sector/dev */ 562 chunk = r10bio->sector >> geo->chunk_shift; 563 sector = r10bio->sector & geo->chunk_mask; 564 565 chunk *= geo->near_copies; 566 stripe = chunk; 567 dev = sector_div(stripe, geo->raid_disks); 568 if (geo->far_offset) 569 stripe *= geo->far_copies; 570 571 sector += stripe << geo->chunk_shift; 572 573 /* and calculate all the others */ 574 for (n = 0; n < geo->near_copies; n++) { 575 int d = dev; 576 int set; 577 sector_t s = sector; 578 r10bio->devs[slot].devnum = d; 579 r10bio->devs[slot].addr = s; 580 slot++; 581 582 for (f = 1; f < geo->far_copies; f++) { 583 set = d / geo->far_set_size; 584 d += geo->near_copies; 585 586 if ((geo->raid_disks % geo->far_set_size) && 587 (d > last_far_set_start)) { 588 d -= last_far_set_start; 589 d %= last_far_set_size; 590 d += last_far_set_start; 591 } else { 592 d %= geo->far_set_size; 593 d += geo->far_set_size * set; 594 } 595 s += geo->stride; 596 r10bio->devs[slot].devnum = d; 597 r10bio->devs[slot].addr = s; 598 slot++; 599 } 600 dev++; 601 if (dev >= geo->raid_disks) { 602 dev = 0; 603 sector += (geo->chunk_mask + 1); 604 } 605 } 606 } 607 608 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 609 { 610 struct geom *geo = &conf->geo; 611 612 if (conf->reshape_progress != MaxSector && 613 ((r10bio->sector >= conf->reshape_progress) != 614 conf->mddev->reshape_backwards)) { 615 set_bit(R10BIO_Previous, &r10bio->state); 616 geo = &conf->prev; 617 } else 618 clear_bit(R10BIO_Previous, &r10bio->state); 619 620 __raid10_find_phys(geo, r10bio); 621 } 622 623 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 624 { 625 sector_t offset, chunk, vchunk; 626 /* Never use conf->prev as this is only called during resync 627 * or recovery, so reshape isn't happening 628 */ 629 struct geom *geo = &conf->geo; 630 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 631 int far_set_size = geo->far_set_size; 632 int last_far_set_start; 633 634 if (geo->raid_disks % geo->far_set_size) { 635 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 636 last_far_set_start *= geo->far_set_size; 637 638 if (dev >= last_far_set_start) { 639 far_set_size = geo->far_set_size; 640 far_set_size += (geo->raid_disks % geo->far_set_size); 641 far_set_start = last_far_set_start; 642 } 643 } 644 645 offset = sector & geo->chunk_mask; 646 if (geo->far_offset) { 647 int fc; 648 chunk = sector >> geo->chunk_shift; 649 fc = sector_div(chunk, geo->far_copies); 650 dev -= fc * geo->near_copies; 651 if (dev < far_set_start) 652 dev += far_set_size; 653 } else { 654 while (sector >= geo->stride) { 655 sector -= geo->stride; 656 if (dev < (geo->near_copies + far_set_start)) 657 dev += far_set_size - geo->near_copies; 658 else 659 dev -= geo->near_copies; 660 } 661 chunk = sector >> geo->chunk_shift; 662 } 663 vchunk = chunk * geo->raid_disks + dev; 664 sector_div(vchunk, geo->near_copies); 665 return (vchunk << geo->chunk_shift) + offset; 666 } 667 668 /** 669 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 670 * @q: request queue 671 * @bvm: properties of new bio 672 * @biovec: the request that could be merged to it. 673 * 674 * Return amount of bytes we can accept at this offset 675 * This requires checking for end-of-chunk if near_copies != raid_disks, 676 * and for subordinate merge_bvec_fns if merge_check_needed. 677 */ 678 static int raid10_mergeable_bvec(struct request_queue *q, 679 struct bvec_merge_data *bvm, 680 struct bio_vec *biovec) 681 { 682 struct mddev *mddev = q->queuedata; 683 struct r10conf *conf = mddev->private; 684 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 685 int max; 686 unsigned int chunk_sectors; 687 unsigned int bio_sectors = bvm->bi_size >> 9; 688 struct geom *geo = &conf->geo; 689 690 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 691 if (conf->reshape_progress != MaxSector && 692 ((sector >= conf->reshape_progress) != 693 conf->mddev->reshape_backwards)) 694 geo = &conf->prev; 695 696 if (geo->near_copies < geo->raid_disks) { 697 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 698 + bio_sectors)) << 9; 699 if (max < 0) 700 /* bio_add cannot handle a negative return */ 701 max = 0; 702 if (max <= biovec->bv_len && bio_sectors == 0) 703 return biovec->bv_len; 704 } else 705 max = biovec->bv_len; 706 707 if (mddev->merge_check_needed) { 708 struct { 709 struct r10bio r10_bio; 710 struct r10dev devs[conf->copies]; 711 } on_stack; 712 struct r10bio *r10_bio = &on_stack.r10_bio; 713 int s; 714 if (conf->reshape_progress != MaxSector) { 715 /* Cannot give any guidance during reshape */ 716 if (max <= biovec->bv_len && bio_sectors == 0) 717 return biovec->bv_len; 718 return 0; 719 } 720 r10_bio->sector = sector; 721 raid10_find_phys(conf, r10_bio); 722 rcu_read_lock(); 723 for (s = 0; s < conf->copies; s++) { 724 int disk = r10_bio->devs[s].devnum; 725 struct md_rdev *rdev = rcu_dereference( 726 conf->mirrors[disk].rdev); 727 if (rdev && !test_bit(Faulty, &rdev->flags)) { 728 struct request_queue *q = 729 bdev_get_queue(rdev->bdev); 730 if (q->merge_bvec_fn) { 731 bvm->bi_sector = r10_bio->devs[s].addr 732 + rdev->data_offset; 733 bvm->bi_bdev = rdev->bdev; 734 max = min(max, q->merge_bvec_fn( 735 q, bvm, biovec)); 736 } 737 } 738 rdev = rcu_dereference(conf->mirrors[disk].replacement); 739 if (rdev && !test_bit(Faulty, &rdev->flags)) { 740 struct request_queue *q = 741 bdev_get_queue(rdev->bdev); 742 if (q->merge_bvec_fn) { 743 bvm->bi_sector = r10_bio->devs[s].addr 744 + rdev->data_offset; 745 bvm->bi_bdev = rdev->bdev; 746 max = min(max, q->merge_bvec_fn( 747 q, bvm, biovec)); 748 } 749 } 750 } 751 rcu_read_unlock(); 752 } 753 return max; 754 } 755 756 /* 757 * This routine returns the disk from which the requested read should 758 * be done. There is a per-array 'next expected sequential IO' sector 759 * number - if this matches on the next IO then we use the last disk. 760 * There is also a per-disk 'last know head position' sector that is 761 * maintained from IRQ contexts, both the normal and the resync IO 762 * completion handlers update this position correctly. If there is no 763 * perfect sequential match then we pick the disk whose head is closest. 764 * 765 * If there are 2 mirrors in the same 2 devices, performance degrades 766 * because position is mirror, not device based. 767 * 768 * The rdev for the device selected will have nr_pending incremented. 769 */ 770 771 /* 772 * FIXME: possibly should rethink readbalancing and do it differently 773 * depending on near_copies / far_copies geometry. 774 */ 775 static struct md_rdev *read_balance(struct r10conf *conf, 776 struct r10bio *r10_bio, 777 int *max_sectors) 778 { 779 const sector_t this_sector = r10_bio->sector; 780 int disk, slot; 781 int sectors = r10_bio->sectors; 782 int best_good_sectors; 783 sector_t new_distance, best_dist; 784 struct md_rdev *best_rdev, *rdev = NULL; 785 int do_balance; 786 int best_slot; 787 struct geom *geo = &conf->geo; 788 789 raid10_find_phys(conf, r10_bio); 790 rcu_read_lock(); 791 retry: 792 sectors = r10_bio->sectors; 793 best_slot = -1; 794 best_rdev = NULL; 795 best_dist = MaxSector; 796 best_good_sectors = 0; 797 do_balance = 1; 798 /* 799 * Check if we can balance. We can balance on the whole 800 * device if no resync is going on (recovery is ok), or below 801 * the resync window. We take the first readable disk when 802 * above the resync window. 803 */ 804 if (conf->mddev->recovery_cp < MaxSector 805 && (this_sector + sectors >= conf->next_resync)) 806 do_balance = 0; 807 808 for (slot = 0; slot < conf->copies ; slot++) { 809 sector_t first_bad; 810 int bad_sectors; 811 sector_t dev_sector; 812 813 if (r10_bio->devs[slot].bio == IO_BLOCKED) 814 continue; 815 disk = r10_bio->devs[slot].devnum; 816 rdev = rcu_dereference(conf->mirrors[disk].replacement); 817 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 818 test_bit(Unmerged, &rdev->flags) || 819 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 820 rdev = rcu_dereference(conf->mirrors[disk].rdev); 821 if (rdev == NULL || 822 test_bit(Faulty, &rdev->flags) || 823 test_bit(Unmerged, &rdev->flags)) 824 continue; 825 if (!test_bit(In_sync, &rdev->flags) && 826 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 827 continue; 828 829 dev_sector = r10_bio->devs[slot].addr; 830 if (is_badblock(rdev, dev_sector, sectors, 831 &first_bad, &bad_sectors)) { 832 if (best_dist < MaxSector) 833 /* Already have a better slot */ 834 continue; 835 if (first_bad <= dev_sector) { 836 /* Cannot read here. If this is the 837 * 'primary' device, then we must not read 838 * beyond 'bad_sectors' from another device. 839 */ 840 bad_sectors -= (dev_sector - first_bad); 841 if (!do_balance && sectors > bad_sectors) 842 sectors = bad_sectors; 843 if (best_good_sectors > sectors) 844 best_good_sectors = sectors; 845 } else { 846 sector_t good_sectors = 847 first_bad - dev_sector; 848 if (good_sectors > best_good_sectors) { 849 best_good_sectors = good_sectors; 850 best_slot = slot; 851 best_rdev = rdev; 852 } 853 if (!do_balance) 854 /* Must read from here */ 855 break; 856 } 857 continue; 858 } else 859 best_good_sectors = sectors; 860 861 if (!do_balance) 862 break; 863 864 /* This optimisation is debatable, and completely destroys 865 * sequential read speed for 'far copies' arrays. So only 866 * keep it for 'near' arrays, and review those later. 867 */ 868 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 869 break; 870 871 /* for far > 1 always use the lowest address */ 872 if (geo->far_copies > 1) 873 new_distance = r10_bio->devs[slot].addr; 874 else 875 new_distance = abs(r10_bio->devs[slot].addr - 876 conf->mirrors[disk].head_position); 877 if (new_distance < best_dist) { 878 best_dist = new_distance; 879 best_slot = slot; 880 best_rdev = rdev; 881 } 882 } 883 if (slot >= conf->copies) { 884 slot = best_slot; 885 rdev = best_rdev; 886 } 887 888 if (slot >= 0) { 889 atomic_inc(&rdev->nr_pending); 890 if (test_bit(Faulty, &rdev->flags)) { 891 /* Cannot risk returning a device that failed 892 * before we inc'ed nr_pending 893 */ 894 rdev_dec_pending(rdev, conf->mddev); 895 goto retry; 896 } 897 r10_bio->read_slot = slot; 898 } else 899 rdev = NULL; 900 rcu_read_unlock(); 901 *max_sectors = best_good_sectors; 902 903 return rdev; 904 } 905 906 int md_raid10_congested(struct mddev *mddev, int bits) 907 { 908 struct r10conf *conf = mddev->private; 909 int i, ret = 0; 910 911 if ((bits & (1 << BDI_async_congested)) && 912 conf->pending_count >= max_queued_requests) 913 return 1; 914 915 rcu_read_lock(); 916 for (i = 0; 917 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 918 && ret == 0; 919 i++) { 920 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 921 if (rdev && !test_bit(Faulty, &rdev->flags)) { 922 struct request_queue *q = bdev_get_queue(rdev->bdev); 923 924 ret |= bdi_congested(&q->backing_dev_info, bits); 925 } 926 } 927 rcu_read_unlock(); 928 return ret; 929 } 930 EXPORT_SYMBOL_GPL(md_raid10_congested); 931 932 static int raid10_congested(void *data, int bits) 933 { 934 struct mddev *mddev = data; 935 936 return mddev_congested(mddev, bits) || 937 md_raid10_congested(mddev, bits); 938 } 939 940 static void flush_pending_writes(struct r10conf *conf) 941 { 942 /* Any writes that have been queued but are awaiting 943 * bitmap updates get flushed here. 944 */ 945 spin_lock_irq(&conf->device_lock); 946 947 if (conf->pending_bio_list.head) { 948 struct bio *bio; 949 bio = bio_list_get(&conf->pending_bio_list); 950 conf->pending_count = 0; 951 spin_unlock_irq(&conf->device_lock); 952 /* flush any pending bitmap writes to disk 953 * before proceeding w/ I/O */ 954 bitmap_unplug(conf->mddev->bitmap); 955 wake_up(&conf->wait_barrier); 956 957 while (bio) { /* submit pending writes */ 958 struct bio *next = bio->bi_next; 959 bio->bi_next = NULL; 960 if (unlikely((bio->bi_rw & REQ_DISCARD) && 961 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 962 /* Just ignore it */ 963 bio_endio(bio, 0); 964 else 965 generic_make_request(bio); 966 bio = next; 967 } 968 } else 969 spin_unlock_irq(&conf->device_lock); 970 } 971 972 /* Barriers.... 973 * Sometimes we need to suspend IO while we do something else, 974 * either some resync/recovery, or reconfigure the array. 975 * To do this we raise a 'barrier'. 976 * The 'barrier' is a counter that can be raised multiple times 977 * to count how many activities are happening which preclude 978 * normal IO. 979 * We can only raise the barrier if there is no pending IO. 980 * i.e. if nr_pending == 0. 981 * We choose only to raise the barrier if no-one is waiting for the 982 * barrier to go down. This means that as soon as an IO request 983 * is ready, no other operations which require a barrier will start 984 * until the IO request has had a chance. 985 * 986 * So: regular IO calls 'wait_barrier'. When that returns there 987 * is no backgroup IO happening, It must arrange to call 988 * allow_barrier when it has finished its IO. 989 * backgroup IO calls must call raise_barrier. Once that returns 990 * there is no normal IO happeing. It must arrange to call 991 * lower_barrier when the particular background IO completes. 992 */ 993 994 static void raise_barrier(struct r10conf *conf, int force) 995 { 996 BUG_ON(force && !conf->barrier); 997 spin_lock_irq(&conf->resync_lock); 998 999 /* Wait until no block IO is waiting (unless 'force') */ 1000 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 1001 conf->resync_lock); 1002 1003 /* block any new IO from starting */ 1004 conf->barrier++; 1005 1006 /* Now wait for all pending IO to complete */ 1007 wait_event_lock_irq(conf->wait_barrier, 1008 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 1009 conf->resync_lock); 1010 1011 spin_unlock_irq(&conf->resync_lock); 1012 } 1013 1014 static void lower_barrier(struct r10conf *conf) 1015 { 1016 unsigned long flags; 1017 spin_lock_irqsave(&conf->resync_lock, flags); 1018 conf->barrier--; 1019 spin_unlock_irqrestore(&conf->resync_lock, flags); 1020 wake_up(&conf->wait_barrier); 1021 } 1022 1023 static void wait_barrier(struct r10conf *conf) 1024 { 1025 spin_lock_irq(&conf->resync_lock); 1026 if (conf->barrier) { 1027 conf->nr_waiting++; 1028 /* Wait for the barrier to drop. 1029 * However if there are already pending 1030 * requests (preventing the barrier from 1031 * rising completely), and the 1032 * pre-process bio queue isn't empty, 1033 * then don't wait, as we need to empty 1034 * that queue to get the nr_pending 1035 * count down. 1036 */ 1037 wait_event_lock_irq(conf->wait_barrier, 1038 !conf->barrier || 1039 (conf->nr_pending && 1040 current->bio_list && 1041 !bio_list_empty(current->bio_list)), 1042 conf->resync_lock); 1043 conf->nr_waiting--; 1044 } 1045 conf->nr_pending++; 1046 spin_unlock_irq(&conf->resync_lock); 1047 } 1048 1049 static void allow_barrier(struct r10conf *conf) 1050 { 1051 unsigned long flags; 1052 spin_lock_irqsave(&conf->resync_lock, flags); 1053 conf->nr_pending--; 1054 spin_unlock_irqrestore(&conf->resync_lock, flags); 1055 wake_up(&conf->wait_barrier); 1056 } 1057 1058 static void freeze_array(struct r10conf *conf) 1059 { 1060 /* stop syncio and normal IO and wait for everything to 1061 * go quiet. 1062 * We increment barrier and nr_waiting, and then 1063 * wait until nr_pending match nr_queued+1 1064 * This is called in the context of one normal IO request 1065 * that has failed. Thus any sync request that might be pending 1066 * will be blocked by nr_pending, and we need to wait for 1067 * pending IO requests to complete or be queued for re-try. 1068 * Thus the number queued (nr_queued) plus this request (1) 1069 * must match the number of pending IOs (nr_pending) before 1070 * we continue. 1071 */ 1072 spin_lock_irq(&conf->resync_lock); 1073 conf->barrier++; 1074 conf->nr_waiting++; 1075 wait_event_lock_irq_cmd(conf->wait_barrier, 1076 conf->nr_pending == conf->nr_queued+1, 1077 conf->resync_lock, 1078 flush_pending_writes(conf)); 1079 1080 spin_unlock_irq(&conf->resync_lock); 1081 } 1082 1083 static void unfreeze_array(struct r10conf *conf) 1084 { 1085 /* reverse the effect of the freeze */ 1086 spin_lock_irq(&conf->resync_lock); 1087 conf->barrier--; 1088 conf->nr_waiting--; 1089 wake_up(&conf->wait_barrier); 1090 spin_unlock_irq(&conf->resync_lock); 1091 } 1092 1093 static sector_t choose_data_offset(struct r10bio *r10_bio, 1094 struct md_rdev *rdev) 1095 { 1096 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1097 test_bit(R10BIO_Previous, &r10_bio->state)) 1098 return rdev->data_offset; 1099 else 1100 return rdev->new_data_offset; 1101 } 1102 1103 struct raid10_plug_cb { 1104 struct blk_plug_cb cb; 1105 struct bio_list pending; 1106 int pending_cnt; 1107 }; 1108 1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1110 { 1111 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1112 cb); 1113 struct mddev *mddev = plug->cb.data; 1114 struct r10conf *conf = mddev->private; 1115 struct bio *bio; 1116 1117 if (from_schedule || current->bio_list) { 1118 spin_lock_irq(&conf->device_lock); 1119 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1120 conf->pending_count += plug->pending_cnt; 1121 spin_unlock_irq(&conf->device_lock); 1122 wake_up(&conf->wait_barrier); 1123 md_wakeup_thread(mddev->thread); 1124 kfree(plug); 1125 return; 1126 } 1127 1128 /* we aren't scheduling, so we can do the write-out directly. */ 1129 bio = bio_list_get(&plug->pending); 1130 bitmap_unplug(mddev->bitmap); 1131 wake_up(&conf->wait_barrier); 1132 1133 while (bio) { /* submit pending writes */ 1134 struct bio *next = bio->bi_next; 1135 bio->bi_next = NULL; 1136 generic_make_request(bio); 1137 bio = next; 1138 } 1139 kfree(plug); 1140 } 1141 1142 static void make_request(struct mddev *mddev, struct bio * bio) 1143 { 1144 struct r10conf *conf = mddev->private; 1145 struct r10bio *r10_bio; 1146 struct bio *read_bio; 1147 int i; 1148 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1149 int chunk_sects = chunk_mask + 1; 1150 const int rw = bio_data_dir(bio); 1151 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1152 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1153 const unsigned long do_discard = (bio->bi_rw 1154 & (REQ_DISCARD | REQ_SECURE)); 1155 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1156 unsigned long flags; 1157 struct md_rdev *blocked_rdev; 1158 struct blk_plug_cb *cb; 1159 struct raid10_plug_cb *plug = NULL; 1160 int sectors_handled; 1161 int max_sectors; 1162 int sectors; 1163 1164 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1165 md_flush_request(mddev, bio); 1166 return; 1167 } 1168 1169 /* If this request crosses a chunk boundary, we need to 1170 * split it. This will only happen for 1 PAGE (or less) requests. 1171 */ 1172 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9) 1173 > chunk_sects 1174 && (conf->geo.near_copies < conf->geo.raid_disks 1175 || conf->prev.near_copies < conf->prev.raid_disks))) { 1176 struct bio_pair *bp; 1177 /* Sanity check -- queue functions should prevent this happening */ 1178 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) || 1179 bio->bi_idx != 0) 1180 goto bad_map; 1181 /* This is a one page bio that upper layers 1182 * refuse to split for us, so we need to split it. 1183 */ 1184 bp = bio_split(bio, 1185 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1186 1187 /* Each of these 'make_request' calls will call 'wait_barrier'. 1188 * If the first succeeds but the second blocks due to the resync 1189 * thread raising the barrier, we will deadlock because the 1190 * IO to the underlying device will be queued in generic_make_request 1191 * and will never complete, so will never reduce nr_pending. 1192 * So increment nr_waiting here so no new raise_barriers will 1193 * succeed, and so the second wait_barrier cannot block. 1194 */ 1195 spin_lock_irq(&conf->resync_lock); 1196 conf->nr_waiting++; 1197 spin_unlock_irq(&conf->resync_lock); 1198 1199 make_request(mddev, &bp->bio1); 1200 make_request(mddev, &bp->bio2); 1201 1202 spin_lock_irq(&conf->resync_lock); 1203 conf->nr_waiting--; 1204 wake_up(&conf->wait_barrier); 1205 spin_unlock_irq(&conf->resync_lock); 1206 1207 bio_pair_release(bp); 1208 return; 1209 bad_map: 1210 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1211 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1212 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 1213 1214 bio_io_error(bio); 1215 return; 1216 } 1217 1218 md_write_start(mddev, bio); 1219 1220 /* 1221 * Register the new request and wait if the reconstruction 1222 * thread has put up a bar for new requests. 1223 * Continue immediately if no resync is active currently. 1224 */ 1225 wait_barrier(conf); 1226 1227 sectors = bio->bi_size >> 9; 1228 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1229 bio->bi_sector < conf->reshape_progress && 1230 bio->bi_sector + sectors > conf->reshape_progress) { 1231 /* IO spans the reshape position. Need to wait for 1232 * reshape to pass 1233 */ 1234 allow_barrier(conf); 1235 wait_event(conf->wait_barrier, 1236 conf->reshape_progress <= bio->bi_sector || 1237 conf->reshape_progress >= bio->bi_sector + sectors); 1238 wait_barrier(conf); 1239 } 1240 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1241 bio_data_dir(bio) == WRITE && 1242 (mddev->reshape_backwards 1243 ? (bio->bi_sector < conf->reshape_safe && 1244 bio->bi_sector + sectors > conf->reshape_progress) 1245 : (bio->bi_sector + sectors > conf->reshape_safe && 1246 bio->bi_sector < conf->reshape_progress))) { 1247 /* Need to update reshape_position in metadata */ 1248 mddev->reshape_position = conf->reshape_progress; 1249 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1250 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1251 md_wakeup_thread(mddev->thread); 1252 wait_event(mddev->sb_wait, 1253 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1254 1255 conf->reshape_safe = mddev->reshape_position; 1256 } 1257 1258 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1259 1260 r10_bio->master_bio = bio; 1261 r10_bio->sectors = sectors; 1262 1263 r10_bio->mddev = mddev; 1264 r10_bio->sector = bio->bi_sector; 1265 r10_bio->state = 0; 1266 1267 /* We might need to issue multiple reads to different 1268 * devices if there are bad blocks around, so we keep 1269 * track of the number of reads in bio->bi_phys_segments. 1270 * If this is 0, there is only one r10_bio and no locking 1271 * will be needed when the request completes. If it is 1272 * non-zero, then it is the number of not-completed requests. 1273 */ 1274 bio->bi_phys_segments = 0; 1275 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1276 1277 if (rw == READ) { 1278 /* 1279 * read balancing logic: 1280 */ 1281 struct md_rdev *rdev; 1282 int slot; 1283 1284 read_again: 1285 rdev = read_balance(conf, r10_bio, &max_sectors); 1286 if (!rdev) { 1287 raid_end_bio_io(r10_bio); 1288 return; 1289 } 1290 slot = r10_bio->read_slot; 1291 1292 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1293 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1294 max_sectors); 1295 1296 r10_bio->devs[slot].bio = read_bio; 1297 r10_bio->devs[slot].rdev = rdev; 1298 1299 read_bio->bi_sector = r10_bio->devs[slot].addr + 1300 choose_data_offset(r10_bio, rdev); 1301 read_bio->bi_bdev = rdev->bdev; 1302 read_bio->bi_end_io = raid10_end_read_request; 1303 read_bio->bi_rw = READ | do_sync; 1304 read_bio->bi_private = r10_bio; 1305 1306 if (max_sectors < r10_bio->sectors) { 1307 /* Could not read all from this device, so we will 1308 * need another r10_bio. 1309 */ 1310 sectors_handled = (r10_bio->sectors + max_sectors 1311 - bio->bi_sector); 1312 r10_bio->sectors = max_sectors; 1313 spin_lock_irq(&conf->device_lock); 1314 if (bio->bi_phys_segments == 0) 1315 bio->bi_phys_segments = 2; 1316 else 1317 bio->bi_phys_segments++; 1318 spin_unlock(&conf->device_lock); 1319 /* Cannot call generic_make_request directly 1320 * as that will be queued in __generic_make_request 1321 * and subsequent mempool_alloc might block 1322 * waiting for it. so hand bio over to raid10d. 1323 */ 1324 reschedule_retry(r10_bio); 1325 1326 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1327 1328 r10_bio->master_bio = bio; 1329 r10_bio->sectors = ((bio->bi_size >> 9) 1330 - sectors_handled); 1331 r10_bio->state = 0; 1332 r10_bio->mddev = mddev; 1333 r10_bio->sector = bio->bi_sector + sectors_handled; 1334 goto read_again; 1335 } else 1336 generic_make_request(read_bio); 1337 return; 1338 } 1339 1340 /* 1341 * WRITE: 1342 */ 1343 if (conf->pending_count >= max_queued_requests) { 1344 md_wakeup_thread(mddev->thread); 1345 wait_event(conf->wait_barrier, 1346 conf->pending_count < max_queued_requests); 1347 } 1348 /* first select target devices under rcu_lock and 1349 * inc refcount on their rdev. Record them by setting 1350 * bios[x] to bio 1351 * If there are known/acknowledged bad blocks on any device 1352 * on which we have seen a write error, we want to avoid 1353 * writing to those blocks. This potentially requires several 1354 * writes to write around the bad blocks. Each set of writes 1355 * gets its own r10_bio with a set of bios attached. The number 1356 * of r10_bios is recored in bio->bi_phys_segments just as with 1357 * the read case. 1358 */ 1359 1360 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1361 raid10_find_phys(conf, r10_bio); 1362 retry_write: 1363 blocked_rdev = NULL; 1364 rcu_read_lock(); 1365 max_sectors = r10_bio->sectors; 1366 1367 for (i = 0; i < conf->copies; i++) { 1368 int d = r10_bio->devs[i].devnum; 1369 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1370 struct md_rdev *rrdev = rcu_dereference( 1371 conf->mirrors[d].replacement); 1372 if (rdev == rrdev) 1373 rrdev = NULL; 1374 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1375 atomic_inc(&rdev->nr_pending); 1376 blocked_rdev = rdev; 1377 break; 1378 } 1379 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1380 atomic_inc(&rrdev->nr_pending); 1381 blocked_rdev = rrdev; 1382 break; 1383 } 1384 if (rdev && (test_bit(Faulty, &rdev->flags) 1385 || test_bit(Unmerged, &rdev->flags))) 1386 rdev = NULL; 1387 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1388 || test_bit(Unmerged, &rrdev->flags))) 1389 rrdev = NULL; 1390 1391 r10_bio->devs[i].bio = NULL; 1392 r10_bio->devs[i].repl_bio = NULL; 1393 1394 if (!rdev && !rrdev) { 1395 set_bit(R10BIO_Degraded, &r10_bio->state); 1396 continue; 1397 } 1398 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1399 sector_t first_bad; 1400 sector_t dev_sector = r10_bio->devs[i].addr; 1401 int bad_sectors; 1402 int is_bad; 1403 1404 is_bad = is_badblock(rdev, dev_sector, 1405 max_sectors, 1406 &first_bad, &bad_sectors); 1407 if (is_bad < 0) { 1408 /* Mustn't write here until the bad block 1409 * is acknowledged 1410 */ 1411 atomic_inc(&rdev->nr_pending); 1412 set_bit(BlockedBadBlocks, &rdev->flags); 1413 blocked_rdev = rdev; 1414 break; 1415 } 1416 if (is_bad && first_bad <= dev_sector) { 1417 /* Cannot write here at all */ 1418 bad_sectors -= (dev_sector - first_bad); 1419 if (bad_sectors < max_sectors) 1420 /* Mustn't write more than bad_sectors 1421 * to other devices yet 1422 */ 1423 max_sectors = bad_sectors; 1424 /* We don't set R10BIO_Degraded as that 1425 * only applies if the disk is missing, 1426 * so it might be re-added, and we want to 1427 * know to recover this chunk. 1428 * In this case the device is here, and the 1429 * fact that this chunk is not in-sync is 1430 * recorded in the bad block log. 1431 */ 1432 continue; 1433 } 1434 if (is_bad) { 1435 int good_sectors = first_bad - dev_sector; 1436 if (good_sectors < max_sectors) 1437 max_sectors = good_sectors; 1438 } 1439 } 1440 if (rdev) { 1441 r10_bio->devs[i].bio = bio; 1442 atomic_inc(&rdev->nr_pending); 1443 } 1444 if (rrdev) { 1445 r10_bio->devs[i].repl_bio = bio; 1446 atomic_inc(&rrdev->nr_pending); 1447 } 1448 } 1449 rcu_read_unlock(); 1450 1451 if (unlikely(blocked_rdev)) { 1452 /* Have to wait for this device to get unblocked, then retry */ 1453 int j; 1454 int d; 1455 1456 for (j = 0; j < i; j++) { 1457 if (r10_bio->devs[j].bio) { 1458 d = r10_bio->devs[j].devnum; 1459 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1460 } 1461 if (r10_bio->devs[j].repl_bio) { 1462 struct md_rdev *rdev; 1463 d = r10_bio->devs[j].devnum; 1464 rdev = conf->mirrors[d].replacement; 1465 if (!rdev) { 1466 /* Race with remove_disk */ 1467 smp_mb(); 1468 rdev = conf->mirrors[d].rdev; 1469 } 1470 rdev_dec_pending(rdev, mddev); 1471 } 1472 } 1473 allow_barrier(conf); 1474 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1475 wait_barrier(conf); 1476 goto retry_write; 1477 } 1478 1479 if (max_sectors < r10_bio->sectors) { 1480 /* We are splitting this into multiple parts, so 1481 * we need to prepare for allocating another r10_bio. 1482 */ 1483 r10_bio->sectors = max_sectors; 1484 spin_lock_irq(&conf->device_lock); 1485 if (bio->bi_phys_segments == 0) 1486 bio->bi_phys_segments = 2; 1487 else 1488 bio->bi_phys_segments++; 1489 spin_unlock_irq(&conf->device_lock); 1490 } 1491 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1492 1493 atomic_set(&r10_bio->remaining, 1); 1494 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1495 1496 for (i = 0; i < conf->copies; i++) { 1497 struct bio *mbio; 1498 int d = r10_bio->devs[i].devnum; 1499 if (r10_bio->devs[i].bio) { 1500 struct md_rdev *rdev = conf->mirrors[d].rdev; 1501 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1502 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1503 max_sectors); 1504 r10_bio->devs[i].bio = mbio; 1505 1506 mbio->bi_sector = (r10_bio->devs[i].addr+ 1507 choose_data_offset(r10_bio, 1508 rdev)); 1509 mbio->bi_bdev = rdev->bdev; 1510 mbio->bi_end_io = raid10_end_write_request; 1511 mbio->bi_rw = 1512 WRITE | do_sync | do_fua | do_discard | do_same; 1513 mbio->bi_private = r10_bio; 1514 1515 atomic_inc(&r10_bio->remaining); 1516 1517 cb = blk_check_plugged(raid10_unplug, mddev, 1518 sizeof(*plug)); 1519 if (cb) 1520 plug = container_of(cb, struct raid10_plug_cb, 1521 cb); 1522 else 1523 plug = NULL; 1524 spin_lock_irqsave(&conf->device_lock, flags); 1525 if (plug) { 1526 bio_list_add(&plug->pending, mbio); 1527 plug->pending_cnt++; 1528 } else { 1529 bio_list_add(&conf->pending_bio_list, mbio); 1530 conf->pending_count++; 1531 } 1532 spin_unlock_irqrestore(&conf->device_lock, flags); 1533 if (!plug) 1534 md_wakeup_thread(mddev->thread); 1535 } 1536 1537 if (r10_bio->devs[i].repl_bio) { 1538 struct md_rdev *rdev = conf->mirrors[d].replacement; 1539 if (rdev == NULL) { 1540 /* Replacement just got moved to main 'rdev' */ 1541 smp_mb(); 1542 rdev = conf->mirrors[d].rdev; 1543 } 1544 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1545 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1546 max_sectors); 1547 r10_bio->devs[i].repl_bio = mbio; 1548 1549 mbio->bi_sector = (r10_bio->devs[i].addr + 1550 choose_data_offset( 1551 r10_bio, rdev)); 1552 mbio->bi_bdev = rdev->bdev; 1553 mbio->bi_end_io = raid10_end_write_request; 1554 mbio->bi_rw = 1555 WRITE | do_sync | do_fua | do_discard | do_same; 1556 mbio->bi_private = r10_bio; 1557 1558 atomic_inc(&r10_bio->remaining); 1559 spin_lock_irqsave(&conf->device_lock, flags); 1560 bio_list_add(&conf->pending_bio_list, mbio); 1561 conf->pending_count++; 1562 spin_unlock_irqrestore(&conf->device_lock, flags); 1563 if (!mddev_check_plugged(mddev)) 1564 md_wakeup_thread(mddev->thread); 1565 } 1566 } 1567 1568 /* Don't remove the bias on 'remaining' (one_write_done) until 1569 * after checking if we need to go around again. 1570 */ 1571 1572 if (sectors_handled < (bio->bi_size >> 9)) { 1573 one_write_done(r10_bio); 1574 /* We need another r10_bio. It has already been counted 1575 * in bio->bi_phys_segments. 1576 */ 1577 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1578 1579 r10_bio->master_bio = bio; 1580 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1581 1582 r10_bio->mddev = mddev; 1583 r10_bio->sector = bio->bi_sector + sectors_handled; 1584 r10_bio->state = 0; 1585 goto retry_write; 1586 } 1587 one_write_done(r10_bio); 1588 1589 /* In case raid10d snuck in to freeze_array */ 1590 wake_up(&conf->wait_barrier); 1591 } 1592 1593 static void status(struct seq_file *seq, struct mddev *mddev) 1594 { 1595 struct r10conf *conf = mddev->private; 1596 int i; 1597 1598 if (conf->geo.near_copies < conf->geo.raid_disks) 1599 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1600 if (conf->geo.near_copies > 1) 1601 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1602 if (conf->geo.far_copies > 1) { 1603 if (conf->geo.far_offset) 1604 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1605 else 1606 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1607 } 1608 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1609 conf->geo.raid_disks - mddev->degraded); 1610 for (i = 0; i < conf->geo.raid_disks; i++) 1611 seq_printf(seq, "%s", 1612 conf->mirrors[i].rdev && 1613 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1614 seq_printf(seq, "]"); 1615 } 1616 1617 /* check if there are enough drives for 1618 * every block to appear on atleast one. 1619 * Don't consider the device numbered 'ignore' 1620 * as we might be about to remove it. 1621 */ 1622 static int _enough(struct r10conf *conf, struct geom *geo, int ignore) 1623 { 1624 int first = 0; 1625 1626 do { 1627 int n = conf->copies; 1628 int cnt = 0; 1629 int this = first; 1630 while (n--) { 1631 if (conf->mirrors[this].rdev && 1632 this != ignore) 1633 cnt++; 1634 this = (this+1) % geo->raid_disks; 1635 } 1636 if (cnt == 0) 1637 return 0; 1638 first = (first + geo->near_copies) % geo->raid_disks; 1639 } while (first != 0); 1640 return 1; 1641 } 1642 1643 static int enough(struct r10conf *conf, int ignore) 1644 { 1645 return _enough(conf, &conf->geo, ignore) && 1646 _enough(conf, &conf->prev, ignore); 1647 } 1648 1649 static void error(struct mddev *mddev, struct md_rdev *rdev) 1650 { 1651 char b[BDEVNAME_SIZE]; 1652 struct r10conf *conf = mddev->private; 1653 1654 /* 1655 * If it is not operational, then we have already marked it as dead 1656 * else if it is the last working disks, ignore the error, let the 1657 * next level up know. 1658 * else mark the drive as failed 1659 */ 1660 if (test_bit(In_sync, &rdev->flags) 1661 && !enough(conf, rdev->raid_disk)) 1662 /* 1663 * Don't fail the drive, just return an IO error. 1664 */ 1665 return; 1666 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1667 unsigned long flags; 1668 spin_lock_irqsave(&conf->device_lock, flags); 1669 mddev->degraded++; 1670 spin_unlock_irqrestore(&conf->device_lock, flags); 1671 /* 1672 * if recovery is running, make sure it aborts. 1673 */ 1674 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1675 } 1676 set_bit(Blocked, &rdev->flags); 1677 set_bit(Faulty, &rdev->flags); 1678 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1679 printk(KERN_ALERT 1680 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1681 "md/raid10:%s: Operation continuing on %d devices.\n", 1682 mdname(mddev), bdevname(rdev->bdev, b), 1683 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1684 } 1685 1686 static void print_conf(struct r10conf *conf) 1687 { 1688 int i; 1689 struct raid10_info *tmp; 1690 1691 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1692 if (!conf) { 1693 printk(KERN_DEBUG "(!conf)\n"); 1694 return; 1695 } 1696 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1697 conf->geo.raid_disks); 1698 1699 for (i = 0; i < conf->geo.raid_disks; i++) { 1700 char b[BDEVNAME_SIZE]; 1701 tmp = conf->mirrors + i; 1702 if (tmp->rdev) 1703 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1704 i, !test_bit(In_sync, &tmp->rdev->flags), 1705 !test_bit(Faulty, &tmp->rdev->flags), 1706 bdevname(tmp->rdev->bdev,b)); 1707 } 1708 } 1709 1710 static void close_sync(struct r10conf *conf) 1711 { 1712 wait_barrier(conf); 1713 allow_barrier(conf); 1714 1715 mempool_destroy(conf->r10buf_pool); 1716 conf->r10buf_pool = NULL; 1717 } 1718 1719 static int raid10_spare_active(struct mddev *mddev) 1720 { 1721 int i; 1722 struct r10conf *conf = mddev->private; 1723 struct raid10_info *tmp; 1724 int count = 0; 1725 unsigned long flags; 1726 1727 /* 1728 * Find all non-in_sync disks within the RAID10 configuration 1729 * and mark them in_sync 1730 */ 1731 for (i = 0; i < conf->geo.raid_disks; i++) { 1732 tmp = conf->mirrors + i; 1733 if (tmp->replacement 1734 && tmp->replacement->recovery_offset == MaxSector 1735 && !test_bit(Faulty, &tmp->replacement->flags) 1736 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1737 /* Replacement has just become active */ 1738 if (!tmp->rdev 1739 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1740 count++; 1741 if (tmp->rdev) { 1742 /* Replaced device not technically faulty, 1743 * but we need to be sure it gets removed 1744 * and never re-added. 1745 */ 1746 set_bit(Faulty, &tmp->rdev->flags); 1747 sysfs_notify_dirent_safe( 1748 tmp->rdev->sysfs_state); 1749 } 1750 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1751 } else if (tmp->rdev 1752 && !test_bit(Faulty, &tmp->rdev->flags) 1753 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1754 count++; 1755 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1756 } 1757 } 1758 spin_lock_irqsave(&conf->device_lock, flags); 1759 mddev->degraded -= count; 1760 spin_unlock_irqrestore(&conf->device_lock, flags); 1761 1762 print_conf(conf); 1763 return count; 1764 } 1765 1766 1767 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1768 { 1769 struct r10conf *conf = mddev->private; 1770 int err = -EEXIST; 1771 int mirror; 1772 int first = 0; 1773 int last = conf->geo.raid_disks - 1; 1774 struct request_queue *q = bdev_get_queue(rdev->bdev); 1775 1776 if (mddev->recovery_cp < MaxSector) 1777 /* only hot-add to in-sync arrays, as recovery is 1778 * very different from resync 1779 */ 1780 return -EBUSY; 1781 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1)) 1782 return -EINVAL; 1783 1784 if (rdev->raid_disk >= 0) 1785 first = last = rdev->raid_disk; 1786 1787 if (q->merge_bvec_fn) { 1788 set_bit(Unmerged, &rdev->flags); 1789 mddev->merge_check_needed = 1; 1790 } 1791 1792 if (rdev->saved_raid_disk >= first && 1793 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1794 mirror = rdev->saved_raid_disk; 1795 else 1796 mirror = first; 1797 for ( ; mirror <= last ; mirror++) { 1798 struct raid10_info *p = &conf->mirrors[mirror]; 1799 if (p->recovery_disabled == mddev->recovery_disabled) 1800 continue; 1801 if (p->rdev) { 1802 if (!test_bit(WantReplacement, &p->rdev->flags) || 1803 p->replacement != NULL) 1804 continue; 1805 clear_bit(In_sync, &rdev->flags); 1806 set_bit(Replacement, &rdev->flags); 1807 rdev->raid_disk = mirror; 1808 err = 0; 1809 disk_stack_limits(mddev->gendisk, rdev->bdev, 1810 rdev->data_offset << 9); 1811 conf->fullsync = 1; 1812 rcu_assign_pointer(p->replacement, rdev); 1813 break; 1814 } 1815 1816 disk_stack_limits(mddev->gendisk, rdev->bdev, 1817 rdev->data_offset << 9); 1818 1819 p->head_position = 0; 1820 p->recovery_disabled = mddev->recovery_disabled - 1; 1821 rdev->raid_disk = mirror; 1822 err = 0; 1823 if (rdev->saved_raid_disk != mirror) 1824 conf->fullsync = 1; 1825 rcu_assign_pointer(p->rdev, rdev); 1826 break; 1827 } 1828 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1829 /* Some requests might not have seen this new 1830 * merge_bvec_fn. We must wait for them to complete 1831 * before merging the device fully. 1832 * First we make sure any code which has tested 1833 * our function has submitted the request, then 1834 * we wait for all outstanding requests to complete. 1835 */ 1836 synchronize_sched(); 1837 raise_barrier(conf, 0); 1838 lower_barrier(conf); 1839 clear_bit(Unmerged, &rdev->flags); 1840 } 1841 md_integrity_add_rdev(rdev, mddev); 1842 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1843 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1844 1845 print_conf(conf); 1846 return err; 1847 } 1848 1849 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1850 { 1851 struct r10conf *conf = mddev->private; 1852 int err = 0; 1853 int number = rdev->raid_disk; 1854 struct md_rdev **rdevp; 1855 struct raid10_info *p = conf->mirrors + number; 1856 1857 print_conf(conf); 1858 if (rdev == p->rdev) 1859 rdevp = &p->rdev; 1860 else if (rdev == p->replacement) 1861 rdevp = &p->replacement; 1862 else 1863 return 0; 1864 1865 if (test_bit(In_sync, &rdev->flags) || 1866 atomic_read(&rdev->nr_pending)) { 1867 err = -EBUSY; 1868 goto abort; 1869 } 1870 /* Only remove faulty devices if recovery 1871 * is not possible. 1872 */ 1873 if (!test_bit(Faulty, &rdev->flags) && 1874 mddev->recovery_disabled != p->recovery_disabled && 1875 (!p->replacement || p->replacement == rdev) && 1876 number < conf->geo.raid_disks && 1877 enough(conf, -1)) { 1878 err = -EBUSY; 1879 goto abort; 1880 } 1881 *rdevp = NULL; 1882 synchronize_rcu(); 1883 if (atomic_read(&rdev->nr_pending)) { 1884 /* lost the race, try later */ 1885 err = -EBUSY; 1886 *rdevp = rdev; 1887 goto abort; 1888 } else if (p->replacement) { 1889 /* We must have just cleared 'rdev' */ 1890 p->rdev = p->replacement; 1891 clear_bit(Replacement, &p->replacement->flags); 1892 smp_mb(); /* Make sure other CPUs may see both as identical 1893 * but will never see neither -- if they are careful. 1894 */ 1895 p->replacement = NULL; 1896 clear_bit(WantReplacement, &rdev->flags); 1897 } else 1898 /* We might have just remove the Replacement as faulty 1899 * Clear the flag just in case 1900 */ 1901 clear_bit(WantReplacement, &rdev->flags); 1902 1903 err = md_integrity_register(mddev); 1904 1905 abort: 1906 1907 print_conf(conf); 1908 return err; 1909 } 1910 1911 1912 static void end_sync_read(struct bio *bio, int error) 1913 { 1914 struct r10bio *r10_bio = bio->bi_private; 1915 struct r10conf *conf = r10_bio->mddev->private; 1916 int d; 1917 1918 if (bio == r10_bio->master_bio) { 1919 /* this is a reshape read */ 1920 d = r10_bio->read_slot; /* really the read dev */ 1921 } else 1922 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1923 1924 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1925 set_bit(R10BIO_Uptodate, &r10_bio->state); 1926 else 1927 /* The write handler will notice the lack of 1928 * R10BIO_Uptodate and record any errors etc 1929 */ 1930 atomic_add(r10_bio->sectors, 1931 &conf->mirrors[d].rdev->corrected_errors); 1932 1933 /* for reconstruct, we always reschedule after a read. 1934 * for resync, only after all reads 1935 */ 1936 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1937 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1938 atomic_dec_and_test(&r10_bio->remaining)) { 1939 /* we have read all the blocks, 1940 * do the comparison in process context in raid10d 1941 */ 1942 reschedule_retry(r10_bio); 1943 } 1944 } 1945 1946 static void end_sync_request(struct r10bio *r10_bio) 1947 { 1948 struct mddev *mddev = r10_bio->mddev; 1949 1950 while (atomic_dec_and_test(&r10_bio->remaining)) { 1951 if (r10_bio->master_bio == NULL) { 1952 /* the primary of several recovery bios */ 1953 sector_t s = r10_bio->sectors; 1954 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1955 test_bit(R10BIO_WriteError, &r10_bio->state)) 1956 reschedule_retry(r10_bio); 1957 else 1958 put_buf(r10_bio); 1959 md_done_sync(mddev, s, 1); 1960 break; 1961 } else { 1962 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1963 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1964 test_bit(R10BIO_WriteError, &r10_bio->state)) 1965 reschedule_retry(r10_bio); 1966 else 1967 put_buf(r10_bio); 1968 r10_bio = r10_bio2; 1969 } 1970 } 1971 } 1972 1973 static void end_sync_write(struct bio *bio, int error) 1974 { 1975 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1976 struct r10bio *r10_bio = bio->bi_private; 1977 struct mddev *mddev = r10_bio->mddev; 1978 struct r10conf *conf = mddev->private; 1979 int d; 1980 sector_t first_bad; 1981 int bad_sectors; 1982 int slot; 1983 int repl; 1984 struct md_rdev *rdev = NULL; 1985 1986 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1987 if (repl) 1988 rdev = conf->mirrors[d].replacement; 1989 else 1990 rdev = conf->mirrors[d].rdev; 1991 1992 if (!uptodate) { 1993 if (repl) 1994 md_error(mddev, rdev); 1995 else { 1996 set_bit(WriteErrorSeen, &rdev->flags); 1997 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1998 set_bit(MD_RECOVERY_NEEDED, 1999 &rdev->mddev->recovery); 2000 set_bit(R10BIO_WriteError, &r10_bio->state); 2001 } 2002 } else if (is_badblock(rdev, 2003 r10_bio->devs[slot].addr, 2004 r10_bio->sectors, 2005 &first_bad, &bad_sectors)) 2006 set_bit(R10BIO_MadeGood, &r10_bio->state); 2007 2008 rdev_dec_pending(rdev, mddev); 2009 2010 end_sync_request(r10_bio); 2011 } 2012 2013 /* 2014 * Note: sync and recover and handled very differently for raid10 2015 * This code is for resync. 2016 * For resync, we read through virtual addresses and read all blocks. 2017 * If there is any error, we schedule a write. The lowest numbered 2018 * drive is authoritative. 2019 * However requests come for physical address, so we need to map. 2020 * For every physical address there are raid_disks/copies virtual addresses, 2021 * which is always are least one, but is not necessarly an integer. 2022 * This means that a physical address can span multiple chunks, so we may 2023 * have to submit multiple io requests for a single sync request. 2024 */ 2025 /* 2026 * We check if all blocks are in-sync and only write to blocks that 2027 * aren't in sync 2028 */ 2029 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2030 { 2031 struct r10conf *conf = mddev->private; 2032 int i, first; 2033 struct bio *tbio, *fbio; 2034 int vcnt; 2035 2036 atomic_set(&r10_bio->remaining, 1); 2037 2038 /* find the first device with a block */ 2039 for (i=0; i<conf->copies; i++) 2040 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 2041 break; 2042 2043 if (i == conf->copies) 2044 goto done; 2045 2046 first = i; 2047 fbio = r10_bio->devs[i].bio; 2048 2049 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2050 /* now find blocks with errors */ 2051 for (i=0 ; i < conf->copies ; i++) { 2052 int j, d; 2053 2054 tbio = r10_bio->devs[i].bio; 2055 2056 if (tbio->bi_end_io != end_sync_read) 2057 continue; 2058 if (i == first) 2059 continue; 2060 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 2061 /* We know that the bi_io_vec layout is the same for 2062 * both 'first' and 'i', so we just compare them. 2063 * All vec entries are PAGE_SIZE; 2064 */ 2065 for (j = 0; j < vcnt; j++) 2066 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2067 page_address(tbio->bi_io_vec[j].bv_page), 2068 fbio->bi_io_vec[j].bv_len)) 2069 break; 2070 if (j == vcnt) 2071 continue; 2072 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2073 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2074 /* Don't fix anything. */ 2075 continue; 2076 } 2077 /* Ok, we need to write this bio, either to correct an 2078 * inconsistency or to correct an unreadable block. 2079 * First we need to fixup bv_offset, bv_len and 2080 * bi_vecs, as the read request might have corrupted these 2081 */ 2082 tbio->bi_vcnt = vcnt; 2083 tbio->bi_size = r10_bio->sectors << 9; 2084 tbio->bi_idx = 0; 2085 tbio->bi_phys_segments = 0; 2086 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 2087 tbio->bi_flags |= 1 << BIO_UPTODATE; 2088 tbio->bi_next = NULL; 2089 tbio->bi_rw = WRITE; 2090 tbio->bi_private = r10_bio; 2091 tbio->bi_sector = r10_bio->devs[i].addr; 2092 2093 for (j=0; j < vcnt ; j++) { 2094 tbio->bi_io_vec[j].bv_offset = 0; 2095 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 2096 2097 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2098 page_address(fbio->bi_io_vec[j].bv_page), 2099 PAGE_SIZE); 2100 } 2101 tbio->bi_end_io = end_sync_write; 2102 2103 d = r10_bio->devs[i].devnum; 2104 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2105 atomic_inc(&r10_bio->remaining); 2106 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 2107 2108 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 2109 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2110 generic_make_request(tbio); 2111 } 2112 2113 /* Now write out to any replacement devices 2114 * that are active 2115 */ 2116 for (i = 0; i < conf->copies; i++) { 2117 int j, d; 2118 2119 tbio = r10_bio->devs[i].repl_bio; 2120 if (!tbio || !tbio->bi_end_io) 2121 continue; 2122 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2123 && r10_bio->devs[i].bio != fbio) 2124 for (j = 0; j < vcnt; j++) 2125 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2126 page_address(fbio->bi_io_vec[j].bv_page), 2127 PAGE_SIZE); 2128 d = r10_bio->devs[i].devnum; 2129 atomic_inc(&r10_bio->remaining); 2130 md_sync_acct(conf->mirrors[d].replacement->bdev, 2131 tbio->bi_size >> 9); 2132 generic_make_request(tbio); 2133 } 2134 2135 done: 2136 if (atomic_dec_and_test(&r10_bio->remaining)) { 2137 md_done_sync(mddev, r10_bio->sectors, 1); 2138 put_buf(r10_bio); 2139 } 2140 } 2141 2142 /* 2143 * Now for the recovery code. 2144 * Recovery happens across physical sectors. 2145 * We recover all non-is_sync drives by finding the virtual address of 2146 * each, and then choose a working drive that also has that virt address. 2147 * There is a separate r10_bio for each non-in_sync drive. 2148 * Only the first two slots are in use. The first for reading, 2149 * The second for writing. 2150 * 2151 */ 2152 static void fix_recovery_read_error(struct r10bio *r10_bio) 2153 { 2154 /* We got a read error during recovery. 2155 * We repeat the read in smaller page-sized sections. 2156 * If a read succeeds, write it to the new device or record 2157 * a bad block if we cannot. 2158 * If a read fails, record a bad block on both old and 2159 * new devices. 2160 */ 2161 struct mddev *mddev = r10_bio->mddev; 2162 struct r10conf *conf = mddev->private; 2163 struct bio *bio = r10_bio->devs[0].bio; 2164 sector_t sect = 0; 2165 int sectors = r10_bio->sectors; 2166 int idx = 0; 2167 int dr = r10_bio->devs[0].devnum; 2168 int dw = r10_bio->devs[1].devnum; 2169 2170 while (sectors) { 2171 int s = sectors; 2172 struct md_rdev *rdev; 2173 sector_t addr; 2174 int ok; 2175 2176 if (s > (PAGE_SIZE>>9)) 2177 s = PAGE_SIZE >> 9; 2178 2179 rdev = conf->mirrors[dr].rdev; 2180 addr = r10_bio->devs[0].addr + sect, 2181 ok = sync_page_io(rdev, 2182 addr, 2183 s << 9, 2184 bio->bi_io_vec[idx].bv_page, 2185 READ, false); 2186 if (ok) { 2187 rdev = conf->mirrors[dw].rdev; 2188 addr = r10_bio->devs[1].addr + sect; 2189 ok = sync_page_io(rdev, 2190 addr, 2191 s << 9, 2192 bio->bi_io_vec[idx].bv_page, 2193 WRITE, false); 2194 if (!ok) { 2195 set_bit(WriteErrorSeen, &rdev->flags); 2196 if (!test_and_set_bit(WantReplacement, 2197 &rdev->flags)) 2198 set_bit(MD_RECOVERY_NEEDED, 2199 &rdev->mddev->recovery); 2200 } 2201 } 2202 if (!ok) { 2203 /* We don't worry if we cannot set a bad block - 2204 * it really is bad so there is no loss in not 2205 * recording it yet 2206 */ 2207 rdev_set_badblocks(rdev, addr, s, 0); 2208 2209 if (rdev != conf->mirrors[dw].rdev) { 2210 /* need bad block on destination too */ 2211 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2212 addr = r10_bio->devs[1].addr + sect; 2213 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2214 if (!ok) { 2215 /* just abort the recovery */ 2216 printk(KERN_NOTICE 2217 "md/raid10:%s: recovery aborted" 2218 " due to read error\n", 2219 mdname(mddev)); 2220 2221 conf->mirrors[dw].recovery_disabled 2222 = mddev->recovery_disabled; 2223 set_bit(MD_RECOVERY_INTR, 2224 &mddev->recovery); 2225 break; 2226 } 2227 } 2228 } 2229 2230 sectors -= s; 2231 sect += s; 2232 idx++; 2233 } 2234 } 2235 2236 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2237 { 2238 struct r10conf *conf = mddev->private; 2239 int d; 2240 struct bio *wbio, *wbio2; 2241 2242 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2243 fix_recovery_read_error(r10_bio); 2244 end_sync_request(r10_bio); 2245 return; 2246 } 2247 2248 /* 2249 * share the pages with the first bio 2250 * and submit the write request 2251 */ 2252 d = r10_bio->devs[1].devnum; 2253 wbio = r10_bio->devs[1].bio; 2254 wbio2 = r10_bio->devs[1].repl_bio; 2255 if (wbio->bi_end_io) { 2256 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2257 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 2258 generic_make_request(wbio); 2259 } 2260 if (wbio2 && wbio2->bi_end_io) { 2261 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2262 md_sync_acct(conf->mirrors[d].replacement->bdev, 2263 wbio2->bi_size >> 9); 2264 generic_make_request(wbio2); 2265 } 2266 } 2267 2268 2269 /* 2270 * Used by fix_read_error() to decay the per rdev read_errors. 2271 * We halve the read error count for every hour that has elapsed 2272 * since the last recorded read error. 2273 * 2274 */ 2275 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2276 { 2277 struct timespec cur_time_mon; 2278 unsigned long hours_since_last; 2279 unsigned int read_errors = atomic_read(&rdev->read_errors); 2280 2281 ktime_get_ts(&cur_time_mon); 2282 2283 if (rdev->last_read_error.tv_sec == 0 && 2284 rdev->last_read_error.tv_nsec == 0) { 2285 /* first time we've seen a read error */ 2286 rdev->last_read_error = cur_time_mon; 2287 return; 2288 } 2289 2290 hours_since_last = (cur_time_mon.tv_sec - 2291 rdev->last_read_error.tv_sec) / 3600; 2292 2293 rdev->last_read_error = cur_time_mon; 2294 2295 /* 2296 * if hours_since_last is > the number of bits in read_errors 2297 * just set read errors to 0. We do this to avoid 2298 * overflowing the shift of read_errors by hours_since_last. 2299 */ 2300 if (hours_since_last >= 8 * sizeof(read_errors)) 2301 atomic_set(&rdev->read_errors, 0); 2302 else 2303 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2304 } 2305 2306 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2307 int sectors, struct page *page, int rw) 2308 { 2309 sector_t first_bad; 2310 int bad_sectors; 2311 2312 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2313 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2314 return -1; 2315 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2316 /* success */ 2317 return 1; 2318 if (rw == WRITE) { 2319 set_bit(WriteErrorSeen, &rdev->flags); 2320 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2321 set_bit(MD_RECOVERY_NEEDED, 2322 &rdev->mddev->recovery); 2323 } 2324 /* need to record an error - either for the block or the device */ 2325 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2326 md_error(rdev->mddev, rdev); 2327 return 0; 2328 } 2329 2330 /* 2331 * This is a kernel thread which: 2332 * 2333 * 1. Retries failed read operations on working mirrors. 2334 * 2. Updates the raid superblock when problems encounter. 2335 * 3. Performs writes following reads for array synchronising. 2336 */ 2337 2338 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2339 { 2340 int sect = 0; /* Offset from r10_bio->sector */ 2341 int sectors = r10_bio->sectors; 2342 struct md_rdev*rdev; 2343 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2344 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2345 2346 /* still own a reference to this rdev, so it cannot 2347 * have been cleared recently. 2348 */ 2349 rdev = conf->mirrors[d].rdev; 2350 2351 if (test_bit(Faulty, &rdev->flags)) 2352 /* drive has already been failed, just ignore any 2353 more fix_read_error() attempts */ 2354 return; 2355 2356 check_decay_read_errors(mddev, rdev); 2357 atomic_inc(&rdev->read_errors); 2358 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2359 char b[BDEVNAME_SIZE]; 2360 bdevname(rdev->bdev, b); 2361 2362 printk(KERN_NOTICE 2363 "md/raid10:%s: %s: Raid device exceeded " 2364 "read_error threshold [cur %d:max %d]\n", 2365 mdname(mddev), b, 2366 atomic_read(&rdev->read_errors), max_read_errors); 2367 printk(KERN_NOTICE 2368 "md/raid10:%s: %s: Failing raid device\n", 2369 mdname(mddev), b); 2370 md_error(mddev, conf->mirrors[d].rdev); 2371 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2372 return; 2373 } 2374 2375 while(sectors) { 2376 int s = sectors; 2377 int sl = r10_bio->read_slot; 2378 int success = 0; 2379 int start; 2380 2381 if (s > (PAGE_SIZE>>9)) 2382 s = PAGE_SIZE >> 9; 2383 2384 rcu_read_lock(); 2385 do { 2386 sector_t first_bad; 2387 int bad_sectors; 2388 2389 d = r10_bio->devs[sl].devnum; 2390 rdev = rcu_dereference(conf->mirrors[d].rdev); 2391 if (rdev && 2392 !test_bit(Unmerged, &rdev->flags) && 2393 test_bit(In_sync, &rdev->flags) && 2394 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2395 &first_bad, &bad_sectors) == 0) { 2396 atomic_inc(&rdev->nr_pending); 2397 rcu_read_unlock(); 2398 success = sync_page_io(rdev, 2399 r10_bio->devs[sl].addr + 2400 sect, 2401 s<<9, 2402 conf->tmppage, READ, false); 2403 rdev_dec_pending(rdev, mddev); 2404 rcu_read_lock(); 2405 if (success) 2406 break; 2407 } 2408 sl++; 2409 if (sl == conf->copies) 2410 sl = 0; 2411 } while (!success && sl != r10_bio->read_slot); 2412 rcu_read_unlock(); 2413 2414 if (!success) { 2415 /* Cannot read from anywhere, just mark the block 2416 * as bad on the first device to discourage future 2417 * reads. 2418 */ 2419 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2420 rdev = conf->mirrors[dn].rdev; 2421 2422 if (!rdev_set_badblocks( 2423 rdev, 2424 r10_bio->devs[r10_bio->read_slot].addr 2425 + sect, 2426 s, 0)) { 2427 md_error(mddev, rdev); 2428 r10_bio->devs[r10_bio->read_slot].bio 2429 = IO_BLOCKED; 2430 } 2431 break; 2432 } 2433 2434 start = sl; 2435 /* write it back and re-read */ 2436 rcu_read_lock(); 2437 while (sl != r10_bio->read_slot) { 2438 char b[BDEVNAME_SIZE]; 2439 2440 if (sl==0) 2441 sl = conf->copies; 2442 sl--; 2443 d = r10_bio->devs[sl].devnum; 2444 rdev = rcu_dereference(conf->mirrors[d].rdev); 2445 if (!rdev || 2446 test_bit(Unmerged, &rdev->flags) || 2447 !test_bit(In_sync, &rdev->flags)) 2448 continue; 2449 2450 atomic_inc(&rdev->nr_pending); 2451 rcu_read_unlock(); 2452 if (r10_sync_page_io(rdev, 2453 r10_bio->devs[sl].addr + 2454 sect, 2455 s, conf->tmppage, WRITE) 2456 == 0) { 2457 /* Well, this device is dead */ 2458 printk(KERN_NOTICE 2459 "md/raid10:%s: read correction " 2460 "write failed" 2461 " (%d sectors at %llu on %s)\n", 2462 mdname(mddev), s, 2463 (unsigned long long)( 2464 sect + 2465 choose_data_offset(r10_bio, 2466 rdev)), 2467 bdevname(rdev->bdev, b)); 2468 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2469 "drive\n", 2470 mdname(mddev), 2471 bdevname(rdev->bdev, b)); 2472 } 2473 rdev_dec_pending(rdev, mddev); 2474 rcu_read_lock(); 2475 } 2476 sl = start; 2477 while (sl != r10_bio->read_slot) { 2478 char b[BDEVNAME_SIZE]; 2479 2480 if (sl==0) 2481 sl = conf->copies; 2482 sl--; 2483 d = r10_bio->devs[sl].devnum; 2484 rdev = rcu_dereference(conf->mirrors[d].rdev); 2485 if (!rdev || 2486 !test_bit(In_sync, &rdev->flags)) 2487 continue; 2488 2489 atomic_inc(&rdev->nr_pending); 2490 rcu_read_unlock(); 2491 switch (r10_sync_page_io(rdev, 2492 r10_bio->devs[sl].addr + 2493 sect, 2494 s, conf->tmppage, 2495 READ)) { 2496 case 0: 2497 /* Well, this device is dead */ 2498 printk(KERN_NOTICE 2499 "md/raid10:%s: unable to read back " 2500 "corrected sectors" 2501 " (%d sectors at %llu on %s)\n", 2502 mdname(mddev), s, 2503 (unsigned long long)( 2504 sect + 2505 choose_data_offset(r10_bio, rdev)), 2506 bdevname(rdev->bdev, b)); 2507 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2508 "drive\n", 2509 mdname(mddev), 2510 bdevname(rdev->bdev, b)); 2511 break; 2512 case 1: 2513 printk(KERN_INFO 2514 "md/raid10:%s: read error corrected" 2515 " (%d sectors at %llu on %s)\n", 2516 mdname(mddev), s, 2517 (unsigned long long)( 2518 sect + 2519 choose_data_offset(r10_bio, rdev)), 2520 bdevname(rdev->bdev, b)); 2521 atomic_add(s, &rdev->corrected_errors); 2522 } 2523 2524 rdev_dec_pending(rdev, mddev); 2525 rcu_read_lock(); 2526 } 2527 rcu_read_unlock(); 2528 2529 sectors -= s; 2530 sect += s; 2531 } 2532 } 2533 2534 static void bi_complete(struct bio *bio, int error) 2535 { 2536 complete((struct completion *)bio->bi_private); 2537 } 2538 2539 static int submit_bio_wait(int rw, struct bio *bio) 2540 { 2541 struct completion event; 2542 rw |= REQ_SYNC; 2543 2544 init_completion(&event); 2545 bio->bi_private = &event; 2546 bio->bi_end_io = bi_complete; 2547 submit_bio(rw, bio); 2548 wait_for_completion(&event); 2549 2550 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2551 } 2552 2553 static int narrow_write_error(struct r10bio *r10_bio, int i) 2554 { 2555 struct bio *bio = r10_bio->master_bio; 2556 struct mddev *mddev = r10_bio->mddev; 2557 struct r10conf *conf = mddev->private; 2558 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2559 /* bio has the data to be written to slot 'i' where 2560 * we just recently had a write error. 2561 * We repeatedly clone the bio and trim down to one block, 2562 * then try the write. Where the write fails we record 2563 * a bad block. 2564 * It is conceivable that the bio doesn't exactly align with 2565 * blocks. We must handle this. 2566 * 2567 * We currently own a reference to the rdev. 2568 */ 2569 2570 int block_sectors; 2571 sector_t sector; 2572 int sectors; 2573 int sect_to_write = r10_bio->sectors; 2574 int ok = 1; 2575 2576 if (rdev->badblocks.shift < 0) 2577 return 0; 2578 2579 block_sectors = 1 << rdev->badblocks.shift; 2580 sector = r10_bio->sector; 2581 sectors = ((r10_bio->sector + block_sectors) 2582 & ~(sector_t)(block_sectors - 1)) 2583 - sector; 2584 2585 while (sect_to_write) { 2586 struct bio *wbio; 2587 if (sectors > sect_to_write) 2588 sectors = sect_to_write; 2589 /* Write at 'sector' for 'sectors' */ 2590 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2591 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2592 wbio->bi_sector = (r10_bio->devs[i].addr+ 2593 choose_data_offset(r10_bio, rdev) + 2594 (sector - r10_bio->sector)); 2595 wbio->bi_bdev = rdev->bdev; 2596 if (submit_bio_wait(WRITE, wbio) == 0) 2597 /* Failure! */ 2598 ok = rdev_set_badblocks(rdev, sector, 2599 sectors, 0) 2600 && ok; 2601 2602 bio_put(wbio); 2603 sect_to_write -= sectors; 2604 sector += sectors; 2605 sectors = block_sectors; 2606 } 2607 return ok; 2608 } 2609 2610 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2611 { 2612 int slot = r10_bio->read_slot; 2613 struct bio *bio; 2614 struct r10conf *conf = mddev->private; 2615 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2616 char b[BDEVNAME_SIZE]; 2617 unsigned long do_sync; 2618 int max_sectors; 2619 2620 /* we got a read error. Maybe the drive is bad. Maybe just 2621 * the block and we can fix it. 2622 * We freeze all other IO, and try reading the block from 2623 * other devices. When we find one, we re-write 2624 * and check it that fixes the read error. 2625 * This is all done synchronously while the array is 2626 * frozen. 2627 */ 2628 bio = r10_bio->devs[slot].bio; 2629 bdevname(bio->bi_bdev, b); 2630 bio_put(bio); 2631 r10_bio->devs[slot].bio = NULL; 2632 2633 if (mddev->ro == 0) { 2634 freeze_array(conf); 2635 fix_read_error(conf, mddev, r10_bio); 2636 unfreeze_array(conf); 2637 } else 2638 r10_bio->devs[slot].bio = IO_BLOCKED; 2639 2640 rdev_dec_pending(rdev, mddev); 2641 2642 read_more: 2643 rdev = read_balance(conf, r10_bio, &max_sectors); 2644 if (rdev == NULL) { 2645 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2646 " read error for block %llu\n", 2647 mdname(mddev), b, 2648 (unsigned long long)r10_bio->sector); 2649 raid_end_bio_io(r10_bio); 2650 return; 2651 } 2652 2653 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2654 slot = r10_bio->read_slot; 2655 printk_ratelimited( 2656 KERN_ERR 2657 "md/raid10:%s: %s: redirecting " 2658 "sector %llu to another mirror\n", 2659 mdname(mddev), 2660 bdevname(rdev->bdev, b), 2661 (unsigned long long)r10_bio->sector); 2662 bio = bio_clone_mddev(r10_bio->master_bio, 2663 GFP_NOIO, mddev); 2664 md_trim_bio(bio, 2665 r10_bio->sector - bio->bi_sector, 2666 max_sectors); 2667 r10_bio->devs[slot].bio = bio; 2668 r10_bio->devs[slot].rdev = rdev; 2669 bio->bi_sector = r10_bio->devs[slot].addr 2670 + choose_data_offset(r10_bio, rdev); 2671 bio->bi_bdev = rdev->bdev; 2672 bio->bi_rw = READ | do_sync; 2673 bio->bi_private = r10_bio; 2674 bio->bi_end_io = raid10_end_read_request; 2675 if (max_sectors < r10_bio->sectors) { 2676 /* Drat - have to split this up more */ 2677 struct bio *mbio = r10_bio->master_bio; 2678 int sectors_handled = 2679 r10_bio->sector + max_sectors 2680 - mbio->bi_sector; 2681 r10_bio->sectors = max_sectors; 2682 spin_lock_irq(&conf->device_lock); 2683 if (mbio->bi_phys_segments == 0) 2684 mbio->bi_phys_segments = 2; 2685 else 2686 mbio->bi_phys_segments++; 2687 spin_unlock_irq(&conf->device_lock); 2688 generic_make_request(bio); 2689 2690 r10_bio = mempool_alloc(conf->r10bio_pool, 2691 GFP_NOIO); 2692 r10_bio->master_bio = mbio; 2693 r10_bio->sectors = (mbio->bi_size >> 9) 2694 - sectors_handled; 2695 r10_bio->state = 0; 2696 set_bit(R10BIO_ReadError, 2697 &r10_bio->state); 2698 r10_bio->mddev = mddev; 2699 r10_bio->sector = mbio->bi_sector 2700 + sectors_handled; 2701 2702 goto read_more; 2703 } else 2704 generic_make_request(bio); 2705 } 2706 2707 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2708 { 2709 /* Some sort of write request has finished and it 2710 * succeeded in writing where we thought there was a 2711 * bad block. So forget the bad block. 2712 * Or possibly if failed and we need to record 2713 * a bad block. 2714 */ 2715 int m; 2716 struct md_rdev *rdev; 2717 2718 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2719 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2720 for (m = 0; m < conf->copies; m++) { 2721 int dev = r10_bio->devs[m].devnum; 2722 rdev = conf->mirrors[dev].rdev; 2723 if (r10_bio->devs[m].bio == NULL) 2724 continue; 2725 if (test_bit(BIO_UPTODATE, 2726 &r10_bio->devs[m].bio->bi_flags)) { 2727 rdev_clear_badblocks( 2728 rdev, 2729 r10_bio->devs[m].addr, 2730 r10_bio->sectors, 0); 2731 } else { 2732 if (!rdev_set_badblocks( 2733 rdev, 2734 r10_bio->devs[m].addr, 2735 r10_bio->sectors, 0)) 2736 md_error(conf->mddev, rdev); 2737 } 2738 rdev = conf->mirrors[dev].replacement; 2739 if (r10_bio->devs[m].repl_bio == NULL) 2740 continue; 2741 if (test_bit(BIO_UPTODATE, 2742 &r10_bio->devs[m].repl_bio->bi_flags)) { 2743 rdev_clear_badblocks( 2744 rdev, 2745 r10_bio->devs[m].addr, 2746 r10_bio->sectors, 0); 2747 } else { 2748 if (!rdev_set_badblocks( 2749 rdev, 2750 r10_bio->devs[m].addr, 2751 r10_bio->sectors, 0)) 2752 md_error(conf->mddev, rdev); 2753 } 2754 } 2755 put_buf(r10_bio); 2756 } else { 2757 for (m = 0; m < conf->copies; m++) { 2758 int dev = r10_bio->devs[m].devnum; 2759 struct bio *bio = r10_bio->devs[m].bio; 2760 rdev = conf->mirrors[dev].rdev; 2761 if (bio == IO_MADE_GOOD) { 2762 rdev_clear_badblocks( 2763 rdev, 2764 r10_bio->devs[m].addr, 2765 r10_bio->sectors, 0); 2766 rdev_dec_pending(rdev, conf->mddev); 2767 } else if (bio != NULL && 2768 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2769 if (!narrow_write_error(r10_bio, m)) { 2770 md_error(conf->mddev, rdev); 2771 set_bit(R10BIO_Degraded, 2772 &r10_bio->state); 2773 } 2774 rdev_dec_pending(rdev, conf->mddev); 2775 } 2776 bio = r10_bio->devs[m].repl_bio; 2777 rdev = conf->mirrors[dev].replacement; 2778 if (rdev && bio == IO_MADE_GOOD) { 2779 rdev_clear_badblocks( 2780 rdev, 2781 r10_bio->devs[m].addr, 2782 r10_bio->sectors, 0); 2783 rdev_dec_pending(rdev, conf->mddev); 2784 } 2785 } 2786 if (test_bit(R10BIO_WriteError, 2787 &r10_bio->state)) 2788 close_write(r10_bio); 2789 raid_end_bio_io(r10_bio); 2790 } 2791 } 2792 2793 static void raid10d(struct md_thread *thread) 2794 { 2795 struct mddev *mddev = thread->mddev; 2796 struct r10bio *r10_bio; 2797 unsigned long flags; 2798 struct r10conf *conf = mddev->private; 2799 struct list_head *head = &conf->retry_list; 2800 struct blk_plug plug; 2801 2802 md_check_recovery(mddev); 2803 2804 blk_start_plug(&plug); 2805 for (;;) { 2806 2807 flush_pending_writes(conf); 2808 2809 spin_lock_irqsave(&conf->device_lock, flags); 2810 if (list_empty(head)) { 2811 spin_unlock_irqrestore(&conf->device_lock, flags); 2812 break; 2813 } 2814 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2815 list_del(head->prev); 2816 conf->nr_queued--; 2817 spin_unlock_irqrestore(&conf->device_lock, flags); 2818 2819 mddev = r10_bio->mddev; 2820 conf = mddev->private; 2821 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2822 test_bit(R10BIO_WriteError, &r10_bio->state)) 2823 handle_write_completed(conf, r10_bio); 2824 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2825 reshape_request_write(mddev, r10_bio); 2826 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2827 sync_request_write(mddev, r10_bio); 2828 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2829 recovery_request_write(mddev, r10_bio); 2830 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2831 handle_read_error(mddev, r10_bio); 2832 else { 2833 /* just a partial read to be scheduled from a 2834 * separate context 2835 */ 2836 int slot = r10_bio->read_slot; 2837 generic_make_request(r10_bio->devs[slot].bio); 2838 } 2839 2840 cond_resched(); 2841 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2842 md_check_recovery(mddev); 2843 } 2844 blk_finish_plug(&plug); 2845 } 2846 2847 2848 static int init_resync(struct r10conf *conf) 2849 { 2850 int buffs; 2851 int i; 2852 2853 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2854 BUG_ON(conf->r10buf_pool); 2855 conf->have_replacement = 0; 2856 for (i = 0; i < conf->geo.raid_disks; i++) 2857 if (conf->mirrors[i].replacement) 2858 conf->have_replacement = 1; 2859 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2860 if (!conf->r10buf_pool) 2861 return -ENOMEM; 2862 conf->next_resync = 0; 2863 return 0; 2864 } 2865 2866 /* 2867 * perform a "sync" on one "block" 2868 * 2869 * We need to make sure that no normal I/O request - particularly write 2870 * requests - conflict with active sync requests. 2871 * 2872 * This is achieved by tracking pending requests and a 'barrier' concept 2873 * that can be installed to exclude normal IO requests. 2874 * 2875 * Resync and recovery are handled very differently. 2876 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2877 * 2878 * For resync, we iterate over virtual addresses, read all copies, 2879 * and update if there are differences. If only one copy is live, 2880 * skip it. 2881 * For recovery, we iterate over physical addresses, read a good 2882 * value for each non-in_sync drive, and over-write. 2883 * 2884 * So, for recovery we may have several outstanding complex requests for a 2885 * given address, one for each out-of-sync device. We model this by allocating 2886 * a number of r10_bio structures, one for each out-of-sync device. 2887 * As we setup these structures, we collect all bio's together into a list 2888 * which we then process collectively to add pages, and then process again 2889 * to pass to generic_make_request. 2890 * 2891 * The r10_bio structures are linked using a borrowed master_bio pointer. 2892 * This link is counted in ->remaining. When the r10_bio that points to NULL 2893 * has its remaining count decremented to 0, the whole complex operation 2894 * is complete. 2895 * 2896 */ 2897 2898 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2899 int *skipped, int go_faster) 2900 { 2901 struct r10conf *conf = mddev->private; 2902 struct r10bio *r10_bio; 2903 struct bio *biolist = NULL, *bio; 2904 sector_t max_sector, nr_sectors; 2905 int i; 2906 int max_sync; 2907 sector_t sync_blocks; 2908 sector_t sectors_skipped = 0; 2909 int chunks_skipped = 0; 2910 sector_t chunk_mask = conf->geo.chunk_mask; 2911 2912 if (!conf->r10buf_pool) 2913 if (init_resync(conf)) 2914 return 0; 2915 2916 skipped: 2917 max_sector = mddev->dev_sectors; 2918 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2919 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2920 max_sector = mddev->resync_max_sectors; 2921 if (sector_nr >= max_sector) { 2922 /* If we aborted, we need to abort the 2923 * sync on the 'current' bitmap chucks (there can 2924 * be several when recovering multiple devices). 2925 * as we may have started syncing it but not finished. 2926 * We can find the current address in 2927 * mddev->curr_resync, but for recovery, 2928 * we need to convert that to several 2929 * virtual addresses. 2930 */ 2931 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2932 end_reshape(conf); 2933 return 0; 2934 } 2935 2936 if (mddev->curr_resync < max_sector) { /* aborted */ 2937 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2938 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2939 &sync_blocks, 1); 2940 else for (i = 0; i < conf->geo.raid_disks; i++) { 2941 sector_t sect = 2942 raid10_find_virt(conf, mddev->curr_resync, i); 2943 bitmap_end_sync(mddev->bitmap, sect, 2944 &sync_blocks, 1); 2945 } 2946 } else { 2947 /* completed sync */ 2948 if ((!mddev->bitmap || conf->fullsync) 2949 && conf->have_replacement 2950 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2951 /* Completed a full sync so the replacements 2952 * are now fully recovered. 2953 */ 2954 for (i = 0; i < conf->geo.raid_disks; i++) 2955 if (conf->mirrors[i].replacement) 2956 conf->mirrors[i].replacement 2957 ->recovery_offset 2958 = MaxSector; 2959 } 2960 conf->fullsync = 0; 2961 } 2962 bitmap_close_sync(mddev->bitmap); 2963 close_sync(conf); 2964 *skipped = 1; 2965 return sectors_skipped; 2966 } 2967 2968 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2969 return reshape_request(mddev, sector_nr, skipped); 2970 2971 if (chunks_skipped >= conf->geo.raid_disks) { 2972 /* if there has been nothing to do on any drive, 2973 * then there is nothing to do at all.. 2974 */ 2975 *skipped = 1; 2976 return (max_sector - sector_nr) + sectors_skipped; 2977 } 2978 2979 if (max_sector > mddev->resync_max) 2980 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2981 2982 /* make sure whole request will fit in a chunk - if chunks 2983 * are meaningful 2984 */ 2985 if (conf->geo.near_copies < conf->geo.raid_disks && 2986 max_sector > (sector_nr | chunk_mask)) 2987 max_sector = (sector_nr | chunk_mask) + 1; 2988 /* 2989 * If there is non-resync activity waiting for us then 2990 * put in a delay to throttle resync. 2991 */ 2992 if (!go_faster && conf->nr_waiting) 2993 msleep_interruptible(1000); 2994 2995 /* Again, very different code for resync and recovery. 2996 * Both must result in an r10bio with a list of bios that 2997 * have bi_end_io, bi_sector, bi_bdev set, 2998 * and bi_private set to the r10bio. 2999 * For recovery, we may actually create several r10bios 3000 * with 2 bios in each, that correspond to the bios in the main one. 3001 * In this case, the subordinate r10bios link back through a 3002 * borrowed master_bio pointer, and the counter in the master 3003 * includes a ref from each subordinate. 3004 */ 3005 /* First, we decide what to do and set ->bi_end_io 3006 * To end_sync_read if we want to read, and 3007 * end_sync_write if we will want to write. 3008 */ 3009 3010 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3011 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3012 /* recovery... the complicated one */ 3013 int j; 3014 r10_bio = NULL; 3015 3016 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3017 int still_degraded; 3018 struct r10bio *rb2; 3019 sector_t sect; 3020 int must_sync; 3021 int any_working; 3022 struct raid10_info *mirror = &conf->mirrors[i]; 3023 3024 if ((mirror->rdev == NULL || 3025 test_bit(In_sync, &mirror->rdev->flags)) 3026 && 3027 (mirror->replacement == NULL || 3028 test_bit(Faulty, 3029 &mirror->replacement->flags))) 3030 continue; 3031 3032 still_degraded = 0; 3033 /* want to reconstruct this device */ 3034 rb2 = r10_bio; 3035 sect = raid10_find_virt(conf, sector_nr, i); 3036 if (sect >= mddev->resync_max_sectors) { 3037 /* last stripe is not complete - don't 3038 * try to recover this sector. 3039 */ 3040 continue; 3041 } 3042 /* Unless we are doing a full sync, or a replacement 3043 * we only need to recover the block if it is set in 3044 * the bitmap 3045 */ 3046 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3047 &sync_blocks, 1); 3048 if (sync_blocks < max_sync) 3049 max_sync = sync_blocks; 3050 if (!must_sync && 3051 mirror->replacement == NULL && 3052 !conf->fullsync) { 3053 /* yep, skip the sync_blocks here, but don't assume 3054 * that there will never be anything to do here 3055 */ 3056 chunks_skipped = -1; 3057 continue; 3058 } 3059 3060 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3061 raise_barrier(conf, rb2 != NULL); 3062 atomic_set(&r10_bio->remaining, 0); 3063 3064 r10_bio->master_bio = (struct bio*)rb2; 3065 if (rb2) 3066 atomic_inc(&rb2->remaining); 3067 r10_bio->mddev = mddev; 3068 set_bit(R10BIO_IsRecover, &r10_bio->state); 3069 r10_bio->sector = sect; 3070 3071 raid10_find_phys(conf, r10_bio); 3072 3073 /* Need to check if the array will still be 3074 * degraded 3075 */ 3076 for (j = 0; j < conf->geo.raid_disks; j++) 3077 if (conf->mirrors[j].rdev == NULL || 3078 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 3079 still_degraded = 1; 3080 break; 3081 } 3082 3083 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3084 &sync_blocks, still_degraded); 3085 3086 any_working = 0; 3087 for (j=0; j<conf->copies;j++) { 3088 int k; 3089 int d = r10_bio->devs[j].devnum; 3090 sector_t from_addr, to_addr; 3091 struct md_rdev *rdev; 3092 sector_t sector, first_bad; 3093 int bad_sectors; 3094 if (!conf->mirrors[d].rdev || 3095 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3096 continue; 3097 /* This is where we read from */ 3098 any_working = 1; 3099 rdev = conf->mirrors[d].rdev; 3100 sector = r10_bio->devs[j].addr; 3101 3102 if (is_badblock(rdev, sector, max_sync, 3103 &first_bad, &bad_sectors)) { 3104 if (first_bad > sector) 3105 max_sync = first_bad - sector; 3106 else { 3107 bad_sectors -= (sector 3108 - first_bad); 3109 if (max_sync > bad_sectors) 3110 max_sync = bad_sectors; 3111 continue; 3112 } 3113 } 3114 bio = r10_bio->devs[0].bio; 3115 bio->bi_next = biolist; 3116 biolist = bio; 3117 bio->bi_private = r10_bio; 3118 bio->bi_end_io = end_sync_read; 3119 bio->bi_rw = READ; 3120 from_addr = r10_bio->devs[j].addr; 3121 bio->bi_sector = from_addr + rdev->data_offset; 3122 bio->bi_bdev = rdev->bdev; 3123 atomic_inc(&rdev->nr_pending); 3124 /* and we write to 'i' (if not in_sync) */ 3125 3126 for (k=0; k<conf->copies; k++) 3127 if (r10_bio->devs[k].devnum == i) 3128 break; 3129 BUG_ON(k == conf->copies); 3130 to_addr = r10_bio->devs[k].addr; 3131 r10_bio->devs[0].devnum = d; 3132 r10_bio->devs[0].addr = from_addr; 3133 r10_bio->devs[1].devnum = i; 3134 r10_bio->devs[1].addr = to_addr; 3135 3136 rdev = mirror->rdev; 3137 if (!test_bit(In_sync, &rdev->flags)) { 3138 bio = r10_bio->devs[1].bio; 3139 bio->bi_next = biolist; 3140 biolist = bio; 3141 bio->bi_private = r10_bio; 3142 bio->bi_end_io = end_sync_write; 3143 bio->bi_rw = WRITE; 3144 bio->bi_sector = to_addr 3145 + rdev->data_offset; 3146 bio->bi_bdev = rdev->bdev; 3147 atomic_inc(&r10_bio->remaining); 3148 } else 3149 r10_bio->devs[1].bio->bi_end_io = NULL; 3150 3151 /* and maybe write to replacement */ 3152 bio = r10_bio->devs[1].repl_bio; 3153 if (bio) 3154 bio->bi_end_io = NULL; 3155 rdev = mirror->replacement; 3156 /* Note: if rdev != NULL, then bio 3157 * cannot be NULL as r10buf_pool_alloc will 3158 * have allocated it. 3159 * So the second test here is pointless. 3160 * But it keeps semantic-checkers happy, and 3161 * this comment keeps human reviewers 3162 * happy. 3163 */ 3164 if (rdev == NULL || bio == NULL || 3165 test_bit(Faulty, &rdev->flags)) 3166 break; 3167 bio->bi_next = biolist; 3168 biolist = bio; 3169 bio->bi_private = r10_bio; 3170 bio->bi_end_io = end_sync_write; 3171 bio->bi_rw = WRITE; 3172 bio->bi_sector = to_addr + rdev->data_offset; 3173 bio->bi_bdev = rdev->bdev; 3174 atomic_inc(&r10_bio->remaining); 3175 break; 3176 } 3177 if (j == conf->copies) { 3178 /* Cannot recover, so abort the recovery or 3179 * record a bad block */ 3180 put_buf(r10_bio); 3181 if (rb2) 3182 atomic_dec(&rb2->remaining); 3183 r10_bio = rb2; 3184 if (any_working) { 3185 /* problem is that there are bad blocks 3186 * on other device(s) 3187 */ 3188 int k; 3189 for (k = 0; k < conf->copies; k++) 3190 if (r10_bio->devs[k].devnum == i) 3191 break; 3192 if (!test_bit(In_sync, 3193 &mirror->rdev->flags) 3194 && !rdev_set_badblocks( 3195 mirror->rdev, 3196 r10_bio->devs[k].addr, 3197 max_sync, 0)) 3198 any_working = 0; 3199 if (mirror->replacement && 3200 !rdev_set_badblocks( 3201 mirror->replacement, 3202 r10_bio->devs[k].addr, 3203 max_sync, 0)) 3204 any_working = 0; 3205 } 3206 if (!any_working) { 3207 if (!test_and_set_bit(MD_RECOVERY_INTR, 3208 &mddev->recovery)) 3209 printk(KERN_INFO "md/raid10:%s: insufficient " 3210 "working devices for recovery.\n", 3211 mdname(mddev)); 3212 mirror->recovery_disabled 3213 = mddev->recovery_disabled; 3214 } 3215 break; 3216 } 3217 } 3218 if (biolist == NULL) { 3219 while (r10_bio) { 3220 struct r10bio *rb2 = r10_bio; 3221 r10_bio = (struct r10bio*) rb2->master_bio; 3222 rb2->master_bio = NULL; 3223 put_buf(rb2); 3224 } 3225 goto giveup; 3226 } 3227 } else { 3228 /* resync. Schedule a read for every block at this virt offset */ 3229 int count = 0; 3230 3231 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3232 3233 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3234 &sync_blocks, mddev->degraded) && 3235 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3236 &mddev->recovery)) { 3237 /* We can skip this block */ 3238 *skipped = 1; 3239 return sync_blocks + sectors_skipped; 3240 } 3241 if (sync_blocks < max_sync) 3242 max_sync = sync_blocks; 3243 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3244 3245 r10_bio->mddev = mddev; 3246 atomic_set(&r10_bio->remaining, 0); 3247 raise_barrier(conf, 0); 3248 conf->next_resync = sector_nr; 3249 3250 r10_bio->master_bio = NULL; 3251 r10_bio->sector = sector_nr; 3252 set_bit(R10BIO_IsSync, &r10_bio->state); 3253 raid10_find_phys(conf, r10_bio); 3254 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3255 3256 for (i = 0; i < conf->copies; i++) { 3257 int d = r10_bio->devs[i].devnum; 3258 sector_t first_bad, sector; 3259 int bad_sectors; 3260 3261 if (r10_bio->devs[i].repl_bio) 3262 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3263 3264 bio = r10_bio->devs[i].bio; 3265 bio->bi_end_io = NULL; 3266 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3267 if (conf->mirrors[d].rdev == NULL || 3268 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3269 continue; 3270 sector = r10_bio->devs[i].addr; 3271 if (is_badblock(conf->mirrors[d].rdev, 3272 sector, max_sync, 3273 &first_bad, &bad_sectors)) { 3274 if (first_bad > sector) 3275 max_sync = first_bad - sector; 3276 else { 3277 bad_sectors -= (sector - first_bad); 3278 if (max_sync > bad_sectors) 3279 max_sync = bad_sectors; 3280 continue; 3281 } 3282 } 3283 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3284 atomic_inc(&r10_bio->remaining); 3285 bio->bi_next = biolist; 3286 biolist = bio; 3287 bio->bi_private = r10_bio; 3288 bio->bi_end_io = end_sync_read; 3289 bio->bi_rw = READ; 3290 bio->bi_sector = sector + 3291 conf->mirrors[d].rdev->data_offset; 3292 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3293 count++; 3294 3295 if (conf->mirrors[d].replacement == NULL || 3296 test_bit(Faulty, 3297 &conf->mirrors[d].replacement->flags)) 3298 continue; 3299 3300 /* Need to set up for writing to the replacement */ 3301 bio = r10_bio->devs[i].repl_bio; 3302 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3303 3304 sector = r10_bio->devs[i].addr; 3305 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3306 bio->bi_next = biolist; 3307 biolist = bio; 3308 bio->bi_private = r10_bio; 3309 bio->bi_end_io = end_sync_write; 3310 bio->bi_rw = WRITE; 3311 bio->bi_sector = sector + 3312 conf->mirrors[d].replacement->data_offset; 3313 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3314 count++; 3315 } 3316 3317 if (count < 2) { 3318 for (i=0; i<conf->copies; i++) { 3319 int d = r10_bio->devs[i].devnum; 3320 if (r10_bio->devs[i].bio->bi_end_io) 3321 rdev_dec_pending(conf->mirrors[d].rdev, 3322 mddev); 3323 if (r10_bio->devs[i].repl_bio && 3324 r10_bio->devs[i].repl_bio->bi_end_io) 3325 rdev_dec_pending( 3326 conf->mirrors[d].replacement, 3327 mddev); 3328 } 3329 put_buf(r10_bio); 3330 biolist = NULL; 3331 goto giveup; 3332 } 3333 } 3334 3335 for (bio = biolist; bio ; bio=bio->bi_next) { 3336 3337 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 3338 if (bio->bi_end_io) 3339 bio->bi_flags |= 1 << BIO_UPTODATE; 3340 bio->bi_vcnt = 0; 3341 bio->bi_idx = 0; 3342 bio->bi_phys_segments = 0; 3343 bio->bi_size = 0; 3344 } 3345 3346 nr_sectors = 0; 3347 if (sector_nr + max_sync < max_sector) 3348 max_sector = sector_nr + max_sync; 3349 do { 3350 struct page *page; 3351 int len = PAGE_SIZE; 3352 if (sector_nr + (len>>9) > max_sector) 3353 len = (max_sector - sector_nr) << 9; 3354 if (len == 0) 3355 break; 3356 for (bio= biolist ; bio ; bio=bio->bi_next) { 3357 struct bio *bio2; 3358 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3359 if (bio_add_page(bio, page, len, 0)) 3360 continue; 3361 3362 /* stop here */ 3363 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3364 for (bio2 = biolist; 3365 bio2 && bio2 != bio; 3366 bio2 = bio2->bi_next) { 3367 /* remove last page from this bio */ 3368 bio2->bi_vcnt--; 3369 bio2->bi_size -= len; 3370 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3371 } 3372 goto bio_full; 3373 } 3374 nr_sectors += len>>9; 3375 sector_nr += len>>9; 3376 } while (biolist->bi_vcnt < RESYNC_PAGES); 3377 bio_full: 3378 r10_bio->sectors = nr_sectors; 3379 3380 while (biolist) { 3381 bio = biolist; 3382 biolist = biolist->bi_next; 3383 3384 bio->bi_next = NULL; 3385 r10_bio = bio->bi_private; 3386 r10_bio->sectors = nr_sectors; 3387 3388 if (bio->bi_end_io == end_sync_read) { 3389 md_sync_acct(bio->bi_bdev, nr_sectors); 3390 generic_make_request(bio); 3391 } 3392 } 3393 3394 if (sectors_skipped) 3395 /* pretend they weren't skipped, it makes 3396 * no important difference in this case 3397 */ 3398 md_done_sync(mddev, sectors_skipped, 1); 3399 3400 return sectors_skipped + nr_sectors; 3401 giveup: 3402 /* There is nowhere to write, so all non-sync 3403 * drives must be failed or in resync, all drives 3404 * have a bad block, so try the next chunk... 3405 */ 3406 if (sector_nr + max_sync < max_sector) 3407 max_sector = sector_nr + max_sync; 3408 3409 sectors_skipped += (max_sector - sector_nr); 3410 chunks_skipped ++; 3411 sector_nr = max_sector; 3412 goto skipped; 3413 } 3414 3415 static sector_t 3416 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3417 { 3418 sector_t size; 3419 struct r10conf *conf = mddev->private; 3420 3421 if (!raid_disks) 3422 raid_disks = min(conf->geo.raid_disks, 3423 conf->prev.raid_disks); 3424 if (!sectors) 3425 sectors = conf->dev_sectors; 3426 3427 size = sectors >> conf->geo.chunk_shift; 3428 sector_div(size, conf->geo.far_copies); 3429 size = size * raid_disks; 3430 sector_div(size, conf->geo.near_copies); 3431 3432 return size << conf->geo.chunk_shift; 3433 } 3434 3435 static void calc_sectors(struct r10conf *conf, sector_t size) 3436 { 3437 /* Calculate the number of sectors-per-device that will 3438 * actually be used, and set conf->dev_sectors and 3439 * conf->stride 3440 */ 3441 3442 size = size >> conf->geo.chunk_shift; 3443 sector_div(size, conf->geo.far_copies); 3444 size = size * conf->geo.raid_disks; 3445 sector_div(size, conf->geo.near_copies); 3446 /* 'size' is now the number of chunks in the array */ 3447 /* calculate "used chunks per device" */ 3448 size = size * conf->copies; 3449 3450 /* We need to round up when dividing by raid_disks to 3451 * get the stride size. 3452 */ 3453 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3454 3455 conf->dev_sectors = size << conf->geo.chunk_shift; 3456 3457 if (conf->geo.far_offset) 3458 conf->geo.stride = 1 << conf->geo.chunk_shift; 3459 else { 3460 sector_div(size, conf->geo.far_copies); 3461 conf->geo.stride = size << conf->geo.chunk_shift; 3462 } 3463 } 3464 3465 enum geo_type {geo_new, geo_old, geo_start}; 3466 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3467 { 3468 int nc, fc, fo; 3469 int layout, chunk, disks; 3470 switch (new) { 3471 case geo_old: 3472 layout = mddev->layout; 3473 chunk = mddev->chunk_sectors; 3474 disks = mddev->raid_disks - mddev->delta_disks; 3475 break; 3476 case geo_new: 3477 layout = mddev->new_layout; 3478 chunk = mddev->new_chunk_sectors; 3479 disks = mddev->raid_disks; 3480 break; 3481 default: /* avoid 'may be unused' warnings */ 3482 case geo_start: /* new when starting reshape - raid_disks not 3483 * updated yet. */ 3484 layout = mddev->new_layout; 3485 chunk = mddev->new_chunk_sectors; 3486 disks = mddev->raid_disks + mddev->delta_disks; 3487 break; 3488 } 3489 if (layout >> 18) 3490 return -1; 3491 if (chunk < (PAGE_SIZE >> 9) || 3492 !is_power_of_2(chunk)) 3493 return -2; 3494 nc = layout & 255; 3495 fc = (layout >> 8) & 255; 3496 fo = layout & (1<<16); 3497 geo->raid_disks = disks; 3498 geo->near_copies = nc; 3499 geo->far_copies = fc; 3500 geo->far_offset = fo; 3501 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; 3502 geo->chunk_mask = chunk - 1; 3503 geo->chunk_shift = ffz(~chunk); 3504 return nc*fc; 3505 } 3506 3507 static struct r10conf *setup_conf(struct mddev *mddev) 3508 { 3509 struct r10conf *conf = NULL; 3510 int err = -EINVAL; 3511 struct geom geo; 3512 int copies; 3513 3514 copies = setup_geo(&geo, mddev, geo_new); 3515 3516 if (copies == -2) { 3517 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3518 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3519 mdname(mddev), PAGE_SIZE); 3520 goto out; 3521 } 3522 3523 if (copies < 2 || copies > mddev->raid_disks) { 3524 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3525 mdname(mddev), mddev->new_layout); 3526 goto out; 3527 } 3528 3529 err = -ENOMEM; 3530 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3531 if (!conf) 3532 goto out; 3533 3534 /* FIXME calc properly */ 3535 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3536 max(0,mddev->delta_disks)), 3537 GFP_KERNEL); 3538 if (!conf->mirrors) 3539 goto out; 3540 3541 conf->tmppage = alloc_page(GFP_KERNEL); 3542 if (!conf->tmppage) 3543 goto out; 3544 3545 conf->geo = geo; 3546 conf->copies = copies; 3547 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3548 r10bio_pool_free, conf); 3549 if (!conf->r10bio_pool) 3550 goto out; 3551 3552 calc_sectors(conf, mddev->dev_sectors); 3553 if (mddev->reshape_position == MaxSector) { 3554 conf->prev = conf->geo; 3555 conf->reshape_progress = MaxSector; 3556 } else { 3557 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3558 err = -EINVAL; 3559 goto out; 3560 } 3561 conf->reshape_progress = mddev->reshape_position; 3562 if (conf->prev.far_offset) 3563 conf->prev.stride = 1 << conf->prev.chunk_shift; 3564 else 3565 /* far_copies must be 1 */ 3566 conf->prev.stride = conf->dev_sectors; 3567 } 3568 spin_lock_init(&conf->device_lock); 3569 INIT_LIST_HEAD(&conf->retry_list); 3570 3571 spin_lock_init(&conf->resync_lock); 3572 init_waitqueue_head(&conf->wait_barrier); 3573 3574 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3575 if (!conf->thread) 3576 goto out; 3577 3578 conf->mddev = mddev; 3579 return conf; 3580 3581 out: 3582 if (err == -ENOMEM) 3583 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3584 mdname(mddev)); 3585 if (conf) { 3586 if (conf->r10bio_pool) 3587 mempool_destroy(conf->r10bio_pool); 3588 kfree(conf->mirrors); 3589 safe_put_page(conf->tmppage); 3590 kfree(conf); 3591 } 3592 return ERR_PTR(err); 3593 } 3594 3595 static int run(struct mddev *mddev) 3596 { 3597 struct r10conf *conf; 3598 int i, disk_idx, chunk_size; 3599 struct raid10_info *disk; 3600 struct md_rdev *rdev; 3601 sector_t size; 3602 sector_t min_offset_diff = 0; 3603 int first = 1; 3604 bool discard_supported = false; 3605 3606 if (mddev->private == NULL) { 3607 conf = setup_conf(mddev); 3608 if (IS_ERR(conf)) 3609 return PTR_ERR(conf); 3610 mddev->private = conf; 3611 } 3612 conf = mddev->private; 3613 if (!conf) 3614 goto out; 3615 3616 mddev->thread = conf->thread; 3617 conf->thread = NULL; 3618 3619 chunk_size = mddev->chunk_sectors << 9; 3620 if (mddev->queue) { 3621 blk_queue_max_discard_sectors(mddev->queue, 3622 mddev->chunk_sectors); 3623 blk_queue_max_write_same_sectors(mddev->queue, 3624 mddev->chunk_sectors); 3625 blk_queue_io_min(mddev->queue, chunk_size); 3626 if (conf->geo.raid_disks % conf->geo.near_copies) 3627 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3628 else 3629 blk_queue_io_opt(mddev->queue, chunk_size * 3630 (conf->geo.raid_disks / conf->geo.near_copies)); 3631 } 3632 3633 rdev_for_each(rdev, mddev) { 3634 long long diff; 3635 struct request_queue *q; 3636 3637 disk_idx = rdev->raid_disk; 3638 if (disk_idx < 0) 3639 continue; 3640 if (disk_idx >= conf->geo.raid_disks && 3641 disk_idx >= conf->prev.raid_disks) 3642 continue; 3643 disk = conf->mirrors + disk_idx; 3644 3645 if (test_bit(Replacement, &rdev->flags)) { 3646 if (disk->replacement) 3647 goto out_free_conf; 3648 disk->replacement = rdev; 3649 } else { 3650 if (disk->rdev) 3651 goto out_free_conf; 3652 disk->rdev = rdev; 3653 } 3654 q = bdev_get_queue(rdev->bdev); 3655 if (q->merge_bvec_fn) 3656 mddev->merge_check_needed = 1; 3657 diff = (rdev->new_data_offset - rdev->data_offset); 3658 if (!mddev->reshape_backwards) 3659 diff = -diff; 3660 if (diff < 0) 3661 diff = 0; 3662 if (first || diff < min_offset_diff) 3663 min_offset_diff = diff; 3664 3665 if (mddev->gendisk) 3666 disk_stack_limits(mddev->gendisk, rdev->bdev, 3667 rdev->data_offset << 9); 3668 3669 disk->head_position = 0; 3670 3671 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3672 discard_supported = true; 3673 } 3674 3675 if (mddev->queue) { 3676 if (discard_supported) 3677 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3678 mddev->queue); 3679 else 3680 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3681 mddev->queue); 3682 } 3683 /* need to check that every block has at least one working mirror */ 3684 if (!enough(conf, -1)) { 3685 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3686 mdname(mddev)); 3687 goto out_free_conf; 3688 } 3689 3690 if (conf->reshape_progress != MaxSector) { 3691 /* must ensure that shape change is supported */ 3692 if (conf->geo.far_copies != 1 && 3693 conf->geo.far_offset == 0) 3694 goto out_free_conf; 3695 if (conf->prev.far_copies != 1 && 3696 conf->geo.far_offset == 0) 3697 goto out_free_conf; 3698 } 3699 3700 mddev->degraded = 0; 3701 for (i = 0; 3702 i < conf->geo.raid_disks 3703 || i < conf->prev.raid_disks; 3704 i++) { 3705 3706 disk = conf->mirrors + i; 3707 3708 if (!disk->rdev && disk->replacement) { 3709 /* The replacement is all we have - use it */ 3710 disk->rdev = disk->replacement; 3711 disk->replacement = NULL; 3712 clear_bit(Replacement, &disk->rdev->flags); 3713 } 3714 3715 if (!disk->rdev || 3716 !test_bit(In_sync, &disk->rdev->flags)) { 3717 disk->head_position = 0; 3718 mddev->degraded++; 3719 if (disk->rdev) 3720 conf->fullsync = 1; 3721 } 3722 disk->recovery_disabled = mddev->recovery_disabled - 1; 3723 } 3724 3725 if (mddev->recovery_cp != MaxSector) 3726 printk(KERN_NOTICE "md/raid10:%s: not clean" 3727 " -- starting background reconstruction\n", 3728 mdname(mddev)); 3729 printk(KERN_INFO 3730 "md/raid10:%s: active with %d out of %d devices\n", 3731 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3732 conf->geo.raid_disks); 3733 /* 3734 * Ok, everything is just fine now 3735 */ 3736 mddev->dev_sectors = conf->dev_sectors; 3737 size = raid10_size(mddev, 0, 0); 3738 md_set_array_sectors(mddev, size); 3739 mddev->resync_max_sectors = size; 3740 3741 if (mddev->queue) { 3742 int stripe = conf->geo.raid_disks * 3743 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3744 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3745 mddev->queue->backing_dev_info.congested_data = mddev; 3746 3747 /* Calculate max read-ahead size. 3748 * We need to readahead at least twice a whole stripe.... 3749 * maybe... 3750 */ 3751 stripe /= conf->geo.near_copies; 3752 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3753 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3754 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3755 } 3756 3757 3758 if (md_integrity_register(mddev)) 3759 goto out_free_conf; 3760 3761 if (conf->reshape_progress != MaxSector) { 3762 unsigned long before_length, after_length; 3763 3764 before_length = ((1 << conf->prev.chunk_shift) * 3765 conf->prev.far_copies); 3766 after_length = ((1 << conf->geo.chunk_shift) * 3767 conf->geo.far_copies); 3768 3769 if (max(before_length, after_length) > min_offset_diff) { 3770 /* This cannot work */ 3771 printk("md/raid10: offset difference not enough to continue reshape\n"); 3772 goto out_free_conf; 3773 } 3774 conf->offset_diff = min_offset_diff; 3775 3776 conf->reshape_safe = conf->reshape_progress; 3777 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3778 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3779 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3780 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3781 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3782 "reshape"); 3783 } 3784 3785 return 0; 3786 3787 out_free_conf: 3788 md_unregister_thread(&mddev->thread); 3789 if (conf->r10bio_pool) 3790 mempool_destroy(conf->r10bio_pool); 3791 safe_put_page(conf->tmppage); 3792 kfree(conf->mirrors); 3793 kfree(conf); 3794 mddev->private = NULL; 3795 out: 3796 return -EIO; 3797 } 3798 3799 static int stop(struct mddev *mddev) 3800 { 3801 struct r10conf *conf = mddev->private; 3802 3803 raise_barrier(conf, 0); 3804 lower_barrier(conf); 3805 3806 md_unregister_thread(&mddev->thread); 3807 if (mddev->queue) 3808 /* the unplug fn references 'conf'*/ 3809 blk_sync_queue(mddev->queue); 3810 3811 if (conf->r10bio_pool) 3812 mempool_destroy(conf->r10bio_pool); 3813 kfree(conf->mirrors); 3814 kfree(conf); 3815 mddev->private = NULL; 3816 return 0; 3817 } 3818 3819 static void raid10_quiesce(struct mddev *mddev, int state) 3820 { 3821 struct r10conf *conf = mddev->private; 3822 3823 switch(state) { 3824 case 1: 3825 raise_barrier(conf, 0); 3826 break; 3827 case 0: 3828 lower_barrier(conf); 3829 break; 3830 } 3831 } 3832 3833 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3834 { 3835 /* Resize of 'far' arrays is not supported. 3836 * For 'near' and 'offset' arrays we can set the 3837 * number of sectors used to be an appropriate multiple 3838 * of the chunk size. 3839 * For 'offset', this is far_copies*chunksize. 3840 * For 'near' the multiplier is the LCM of 3841 * near_copies and raid_disks. 3842 * So if far_copies > 1 && !far_offset, fail. 3843 * Else find LCM(raid_disks, near_copy)*far_copies and 3844 * multiply by chunk_size. Then round to this number. 3845 * This is mostly done by raid10_size() 3846 */ 3847 struct r10conf *conf = mddev->private; 3848 sector_t oldsize, size; 3849 3850 if (mddev->reshape_position != MaxSector) 3851 return -EBUSY; 3852 3853 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3854 return -EINVAL; 3855 3856 oldsize = raid10_size(mddev, 0, 0); 3857 size = raid10_size(mddev, sectors, 0); 3858 if (mddev->external_size && 3859 mddev->array_sectors > size) 3860 return -EINVAL; 3861 if (mddev->bitmap) { 3862 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3863 if (ret) 3864 return ret; 3865 } 3866 md_set_array_sectors(mddev, size); 3867 set_capacity(mddev->gendisk, mddev->array_sectors); 3868 revalidate_disk(mddev->gendisk); 3869 if (sectors > mddev->dev_sectors && 3870 mddev->recovery_cp > oldsize) { 3871 mddev->recovery_cp = oldsize; 3872 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3873 } 3874 calc_sectors(conf, sectors); 3875 mddev->dev_sectors = conf->dev_sectors; 3876 mddev->resync_max_sectors = size; 3877 return 0; 3878 } 3879 3880 static void *raid10_takeover_raid0(struct mddev *mddev) 3881 { 3882 struct md_rdev *rdev; 3883 struct r10conf *conf; 3884 3885 if (mddev->degraded > 0) { 3886 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3887 mdname(mddev)); 3888 return ERR_PTR(-EINVAL); 3889 } 3890 3891 /* Set new parameters */ 3892 mddev->new_level = 10; 3893 /* new layout: far_copies = 1, near_copies = 2 */ 3894 mddev->new_layout = (1<<8) + 2; 3895 mddev->new_chunk_sectors = mddev->chunk_sectors; 3896 mddev->delta_disks = mddev->raid_disks; 3897 mddev->raid_disks *= 2; 3898 /* make sure it will be not marked as dirty */ 3899 mddev->recovery_cp = MaxSector; 3900 3901 conf = setup_conf(mddev); 3902 if (!IS_ERR(conf)) { 3903 rdev_for_each(rdev, mddev) 3904 if (rdev->raid_disk >= 0) 3905 rdev->new_raid_disk = rdev->raid_disk * 2; 3906 conf->barrier = 1; 3907 } 3908 3909 return conf; 3910 } 3911 3912 static void *raid10_takeover(struct mddev *mddev) 3913 { 3914 struct r0conf *raid0_conf; 3915 3916 /* raid10 can take over: 3917 * raid0 - providing it has only two drives 3918 */ 3919 if (mddev->level == 0) { 3920 /* for raid0 takeover only one zone is supported */ 3921 raid0_conf = mddev->private; 3922 if (raid0_conf->nr_strip_zones > 1) { 3923 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3924 " with more than one zone.\n", 3925 mdname(mddev)); 3926 return ERR_PTR(-EINVAL); 3927 } 3928 return raid10_takeover_raid0(mddev); 3929 } 3930 return ERR_PTR(-EINVAL); 3931 } 3932 3933 static int raid10_check_reshape(struct mddev *mddev) 3934 { 3935 /* Called when there is a request to change 3936 * - layout (to ->new_layout) 3937 * - chunk size (to ->new_chunk_sectors) 3938 * - raid_disks (by delta_disks) 3939 * or when trying to restart a reshape that was ongoing. 3940 * 3941 * We need to validate the request and possibly allocate 3942 * space if that might be an issue later. 3943 * 3944 * Currently we reject any reshape of a 'far' mode array, 3945 * allow chunk size to change if new is generally acceptable, 3946 * allow raid_disks to increase, and allow 3947 * a switch between 'near' mode and 'offset' mode. 3948 */ 3949 struct r10conf *conf = mddev->private; 3950 struct geom geo; 3951 3952 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3953 return -EINVAL; 3954 3955 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3956 /* mustn't change number of copies */ 3957 return -EINVAL; 3958 if (geo.far_copies > 1 && !geo.far_offset) 3959 /* Cannot switch to 'far' mode */ 3960 return -EINVAL; 3961 3962 if (mddev->array_sectors & geo.chunk_mask) 3963 /* not factor of array size */ 3964 return -EINVAL; 3965 3966 if (!enough(conf, -1)) 3967 return -EINVAL; 3968 3969 kfree(conf->mirrors_new); 3970 conf->mirrors_new = NULL; 3971 if (mddev->delta_disks > 0) { 3972 /* allocate new 'mirrors' list */ 3973 conf->mirrors_new = kzalloc( 3974 sizeof(struct raid10_info) 3975 *(mddev->raid_disks + 3976 mddev->delta_disks), 3977 GFP_KERNEL); 3978 if (!conf->mirrors_new) 3979 return -ENOMEM; 3980 } 3981 return 0; 3982 } 3983 3984 /* 3985 * Need to check if array has failed when deciding whether to: 3986 * - start an array 3987 * - remove non-faulty devices 3988 * - add a spare 3989 * - allow a reshape 3990 * This determination is simple when no reshape is happening. 3991 * However if there is a reshape, we need to carefully check 3992 * both the before and after sections. 3993 * This is because some failed devices may only affect one 3994 * of the two sections, and some non-in_sync devices may 3995 * be insync in the section most affected by failed devices. 3996 */ 3997 static int calc_degraded(struct r10conf *conf) 3998 { 3999 int degraded, degraded2; 4000 int i; 4001 4002 rcu_read_lock(); 4003 degraded = 0; 4004 /* 'prev' section first */ 4005 for (i = 0; i < conf->prev.raid_disks; i++) { 4006 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4007 if (!rdev || test_bit(Faulty, &rdev->flags)) 4008 degraded++; 4009 else if (!test_bit(In_sync, &rdev->flags)) 4010 /* When we can reduce the number of devices in 4011 * an array, this might not contribute to 4012 * 'degraded'. It does now. 4013 */ 4014 degraded++; 4015 } 4016 rcu_read_unlock(); 4017 if (conf->geo.raid_disks == conf->prev.raid_disks) 4018 return degraded; 4019 rcu_read_lock(); 4020 degraded2 = 0; 4021 for (i = 0; i < conf->geo.raid_disks; i++) { 4022 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4023 if (!rdev || test_bit(Faulty, &rdev->flags)) 4024 degraded2++; 4025 else if (!test_bit(In_sync, &rdev->flags)) { 4026 /* If reshape is increasing the number of devices, 4027 * this section has already been recovered, so 4028 * it doesn't contribute to degraded. 4029 * else it does. 4030 */ 4031 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4032 degraded2++; 4033 } 4034 } 4035 rcu_read_unlock(); 4036 if (degraded2 > degraded) 4037 return degraded2; 4038 return degraded; 4039 } 4040 4041 static int raid10_start_reshape(struct mddev *mddev) 4042 { 4043 /* A 'reshape' has been requested. This commits 4044 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4045 * This also checks if there are enough spares and adds them 4046 * to the array. 4047 * We currently require enough spares to make the final 4048 * array non-degraded. We also require that the difference 4049 * between old and new data_offset - on each device - is 4050 * enough that we never risk over-writing. 4051 */ 4052 4053 unsigned long before_length, after_length; 4054 sector_t min_offset_diff = 0; 4055 int first = 1; 4056 struct geom new; 4057 struct r10conf *conf = mddev->private; 4058 struct md_rdev *rdev; 4059 int spares = 0; 4060 int ret; 4061 4062 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4063 return -EBUSY; 4064 4065 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4066 return -EINVAL; 4067 4068 before_length = ((1 << conf->prev.chunk_shift) * 4069 conf->prev.far_copies); 4070 after_length = ((1 << conf->geo.chunk_shift) * 4071 conf->geo.far_copies); 4072 4073 rdev_for_each(rdev, mddev) { 4074 if (!test_bit(In_sync, &rdev->flags) 4075 && !test_bit(Faulty, &rdev->flags)) 4076 spares++; 4077 if (rdev->raid_disk >= 0) { 4078 long long diff = (rdev->new_data_offset 4079 - rdev->data_offset); 4080 if (!mddev->reshape_backwards) 4081 diff = -diff; 4082 if (diff < 0) 4083 diff = 0; 4084 if (first || diff < min_offset_diff) 4085 min_offset_diff = diff; 4086 } 4087 } 4088 4089 if (max(before_length, after_length) > min_offset_diff) 4090 return -EINVAL; 4091 4092 if (spares < mddev->delta_disks) 4093 return -EINVAL; 4094 4095 conf->offset_diff = min_offset_diff; 4096 spin_lock_irq(&conf->device_lock); 4097 if (conf->mirrors_new) { 4098 memcpy(conf->mirrors_new, conf->mirrors, 4099 sizeof(struct raid10_info)*conf->prev.raid_disks); 4100 smp_mb(); 4101 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 4102 conf->mirrors_old = conf->mirrors; 4103 conf->mirrors = conf->mirrors_new; 4104 conf->mirrors_new = NULL; 4105 } 4106 setup_geo(&conf->geo, mddev, geo_start); 4107 smp_mb(); 4108 if (mddev->reshape_backwards) { 4109 sector_t size = raid10_size(mddev, 0, 0); 4110 if (size < mddev->array_sectors) { 4111 spin_unlock_irq(&conf->device_lock); 4112 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4113 mdname(mddev)); 4114 return -EINVAL; 4115 } 4116 mddev->resync_max_sectors = size; 4117 conf->reshape_progress = size; 4118 } else 4119 conf->reshape_progress = 0; 4120 spin_unlock_irq(&conf->device_lock); 4121 4122 if (mddev->delta_disks && mddev->bitmap) { 4123 ret = bitmap_resize(mddev->bitmap, 4124 raid10_size(mddev, 0, 4125 conf->geo.raid_disks), 4126 0, 0); 4127 if (ret) 4128 goto abort; 4129 } 4130 if (mddev->delta_disks > 0) { 4131 rdev_for_each(rdev, mddev) 4132 if (rdev->raid_disk < 0 && 4133 !test_bit(Faulty, &rdev->flags)) { 4134 if (raid10_add_disk(mddev, rdev) == 0) { 4135 if (rdev->raid_disk >= 4136 conf->prev.raid_disks) 4137 set_bit(In_sync, &rdev->flags); 4138 else 4139 rdev->recovery_offset = 0; 4140 4141 if (sysfs_link_rdev(mddev, rdev)) 4142 /* Failure here is OK */; 4143 } 4144 } else if (rdev->raid_disk >= conf->prev.raid_disks 4145 && !test_bit(Faulty, &rdev->flags)) { 4146 /* This is a spare that was manually added */ 4147 set_bit(In_sync, &rdev->flags); 4148 } 4149 } 4150 /* When a reshape changes the number of devices, 4151 * ->degraded is measured against the larger of the 4152 * pre and post numbers. 4153 */ 4154 spin_lock_irq(&conf->device_lock); 4155 mddev->degraded = calc_degraded(conf); 4156 spin_unlock_irq(&conf->device_lock); 4157 mddev->raid_disks = conf->geo.raid_disks; 4158 mddev->reshape_position = conf->reshape_progress; 4159 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4160 4161 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4162 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4163 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4164 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4165 4166 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4167 "reshape"); 4168 if (!mddev->sync_thread) { 4169 ret = -EAGAIN; 4170 goto abort; 4171 } 4172 conf->reshape_checkpoint = jiffies; 4173 md_wakeup_thread(mddev->sync_thread); 4174 md_new_event(mddev); 4175 return 0; 4176 4177 abort: 4178 mddev->recovery = 0; 4179 spin_lock_irq(&conf->device_lock); 4180 conf->geo = conf->prev; 4181 mddev->raid_disks = conf->geo.raid_disks; 4182 rdev_for_each(rdev, mddev) 4183 rdev->new_data_offset = rdev->data_offset; 4184 smp_wmb(); 4185 conf->reshape_progress = MaxSector; 4186 mddev->reshape_position = MaxSector; 4187 spin_unlock_irq(&conf->device_lock); 4188 return ret; 4189 } 4190 4191 /* Calculate the last device-address that could contain 4192 * any block from the chunk that includes the array-address 's' 4193 * and report the next address. 4194 * i.e. the address returned will be chunk-aligned and after 4195 * any data that is in the chunk containing 's'. 4196 */ 4197 static sector_t last_dev_address(sector_t s, struct geom *geo) 4198 { 4199 s = (s | geo->chunk_mask) + 1; 4200 s >>= geo->chunk_shift; 4201 s *= geo->near_copies; 4202 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4203 s *= geo->far_copies; 4204 s <<= geo->chunk_shift; 4205 return s; 4206 } 4207 4208 /* Calculate the first device-address that could contain 4209 * any block from the chunk that includes the array-address 's'. 4210 * This too will be the start of a chunk 4211 */ 4212 static sector_t first_dev_address(sector_t s, struct geom *geo) 4213 { 4214 s >>= geo->chunk_shift; 4215 s *= geo->near_copies; 4216 sector_div(s, geo->raid_disks); 4217 s *= geo->far_copies; 4218 s <<= geo->chunk_shift; 4219 return s; 4220 } 4221 4222 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4223 int *skipped) 4224 { 4225 /* We simply copy at most one chunk (smallest of old and new) 4226 * at a time, possibly less if that exceeds RESYNC_PAGES, 4227 * or we hit a bad block or something. 4228 * This might mean we pause for normal IO in the middle of 4229 * a chunk, but that is not a problem was mddev->reshape_position 4230 * can record any location. 4231 * 4232 * If we will want to write to a location that isn't 4233 * yet recorded as 'safe' (i.e. in metadata on disk) then 4234 * we need to flush all reshape requests and update the metadata. 4235 * 4236 * When reshaping forwards (e.g. to more devices), we interpret 4237 * 'safe' as the earliest block which might not have been copied 4238 * down yet. We divide this by previous stripe size and multiply 4239 * by previous stripe length to get lowest device offset that we 4240 * cannot write to yet. 4241 * We interpret 'sector_nr' as an address that we want to write to. 4242 * From this we use last_device_address() to find where we might 4243 * write to, and first_device_address on the 'safe' position. 4244 * If this 'next' write position is after the 'safe' position, 4245 * we must update the metadata to increase the 'safe' position. 4246 * 4247 * When reshaping backwards, we round in the opposite direction 4248 * and perform the reverse test: next write position must not be 4249 * less than current safe position. 4250 * 4251 * In all this the minimum difference in data offsets 4252 * (conf->offset_diff - always positive) allows a bit of slack, 4253 * so next can be after 'safe', but not by more than offset_disk 4254 * 4255 * We need to prepare all the bios here before we start any IO 4256 * to ensure the size we choose is acceptable to all devices. 4257 * The means one for each copy for write-out and an extra one for 4258 * read-in. 4259 * We store the read-in bio in ->master_bio and the others in 4260 * ->devs[x].bio and ->devs[x].repl_bio. 4261 */ 4262 struct r10conf *conf = mddev->private; 4263 struct r10bio *r10_bio; 4264 sector_t next, safe, last; 4265 int max_sectors; 4266 int nr_sectors; 4267 int s; 4268 struct md_rdev *rdev; 4269 int need_flush = 0; 4270 struct bio *blist; 4271 struct bio *bio, *read_bio; 4272 int sectors_done = 0; 4273 4274 if (sector_nr == 0) { 4275 /* If restarting in the middle, skip the initial sectors */ 4276 if (mddev->reshape_backwards && 4277 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4278 sector_nr = (raid10_size(mddev, 0, 0) 4279 - conf->reshape_progress); 4280 } else if (!mddev->reshape_backwards && 4281 conf->reshape_progress > 0) 4282 sector_nr = conf->reshape_progress; 4283 if (sector_nr) { 4284 mddev->curr_resync_completed = sector_nr; 4285 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4286 *skipped = 1; 4287 return sector_nr; 4288 } 4289 } 4290 4291 /* We don't use sector_nr to track where we are up to 4292 * as that doesn't work well for ->reshape_backwards. 4293 * So just use ->reshape_progress. 4294 */ 4295 if (mddev->reshape_backwards) { 4296 /* 'next' is the earliest device address that we might 4297 * write to for this chunk in the new layout 4298 */ 4299 next = first_dev_address(conf->reshape_progress - 1, 4300 &conf->geo); 4301 4302 /* 'safe' is the last device address that we might read from 4303 * in the old layout after a restart 4304 */ 4305 safe = last_dev_address(conf->reshape_safe - 1, 4306 &conf->prev); 4307 4308 if (next + conf->offset_diff < safe) 4309 need_flush = 1; 4310 4311 last = conf->reshape_progress - 1; 4312 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4313 & conf->prev.chunk_mask); 4314 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4315 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4316 } else { 4317 /* 'next' is after the last device address that we 4318 * might write to for this chunk in the new layout 4319 */ 4320 next = last_dev_address(conf->reshape_progress, &conf->geo); 4321 4322 /* 'safe' is the earliest device address that we might 4323 * read from in the old layout after a restart 4324 */ 4325 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4326 4327 /* Need to update metadata if 'next' might be beyond 'safe' 4328 * as that would possibly corrupt data 4329 */ 4330 if (next > safe + conf->offset_diff) 4331 need_flush = 1; 4332 4333 sector_nr = conf->reshape_progress; 4334 last = sector_nr | (conf->geo.chunk_mask 4335 & conf->prev.chunk_mask); 4336 4337 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4338 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4339 } 4340 4341 if (need_flush || 4342 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4343 /* Need to update reshape_position in metadata */ 4344 wait_barrier(conf); 4345 mddev->reshape_position = conf->reshape_progress; 4346 if (mddev->reshape_backwards) 4347 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4348 - conf->reshape_progress; 4349 else 4350 mddev->curr_resync_completed = conf->reshape_progress; 4351 conf->reshape_checkpoint = jiffies; 4352 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4353 md_wakeup_thread(mddev->thread); 4354 wait_event(mddev->sb_wait, mddev->flags == 0 || 4355 kthread_should_stop()); 4356 conf->reshape_safe = mddev->reshape_position; 4357 allow_barrier(conf); 4358 } 4359 4360 read_more: 4361 /* Now schedule reads for blocks from sector_nr to last */ 4362 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4363 raise_barrier(conf, sectors_done != 0); 4364 atomic_set(&r10_bio->remaining, 0); 4365 r10_bio->mddev = mddev; 4366 r10_bio->sector = sector_nr; 4367 set_bit(R10BIO_IsReshape, &r10_bio->state); 4368 r10_bio->sectors = last - sector_nr + 1; 4369 rdev = read_balance(conf, r10_bio, &max_sectors); 4370 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4371 4372 if (!rdev) { 4373 /* Cannot read from here, so need to record bad blocks 4374 * on all the target devices. 4375 */ 4376 // FIXME 4377 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4378 return sectors_done; 4379 } 4380 4381 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4382 4383 read_bio->bi_bdev = rdev->bdev; 4384 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4385 + rdev->data_offset); 4386 read_bio->bi_private = r10_bio; 4387 read_bio->bi_end_io = end_sync_read; 4388 read_bio->bi_rw = READ; 4389 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4390 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4391 read_bio->bi_vcnt = 0; 4392 read_bio->bi_idx = 0; 4393 read_bio->bi_size = 0; 4394 r10_bio->master_bio = read_bio; 4395 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4396 4397 /* Now find the locations in the new layout */ 4398 __raid10_find_phys(&conf->geo, r10_bio); 4399 4400 blist = read_bio; 4401 read_bio->bi_next = NULL; 4402 4403 for (s = 0; s < conf->copies*2; s++) { 4404 struct bio *b; 4405 int d = r10_bio->devs[s/2].devnum; 4406 struct md_rdev *rdev2; 4407 if (s&1) { 4408 rdev2 = conf->mirrors[d].replacement; 4409 b = r10_bio->devs[s/2].repl_bio; 4410 } else { 4411 rdev2 = conf->mirrors[d].rdev; 4412 b = r10_bio->devs[s/2].bio; 4413 } 4414 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4415 continue; 4416 b->bi_bdev = rdev2->bdev; 4417 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; 4418 b->bi_private = r10_bio; 4419 b->bi_end_io = end_reshape_write; 4420 b->bi_rw = WRITE; 4421 b->bi_flags &= ~(BIO_POOL_MASK - 1); 4422 b->bi_flags |= 1 << BIO_UPTODATE; 4423 b->bi_next = blist; 4424 b->bi_vcnt = 0; 4425 b->bi_idx = 0; 4426 b->bi_size = 0; 4427 blist = b; 4428 } 4429 4430 /* Now add as many pages as possible to all of these bios. */ 4431 4432 nr_sectors = 0; 4433 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4434 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4435 int len = (max_sectors - s) << 9; 4436 if (len > PAGE_SIZE) 4437 len = PAGE_SIZE; 4438 for (bio = blist; bio ; bio = bio->bi_next) { 4439 struct bio *bio2; 4440 if (bio_add_page(bio, page, len, 0)) 4441 continue; 4442 4443 /* Didn't fit, must stop */ 4444 for (bio2 = blist; 4445 bio2 && bio2 != bio; 4446 bio2 = bio2->bi_next) { 4447 /* Remove last page from this bio */ 4448 bio2->bi_vcnt--; 4449 bio2->bi_size -= len; 4450 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4451 } 4452 goto bio_full; 4453 } 4454 sector_nr += len >> 9; 4455 nr_sectors += len >> 9; 4456 } 4457 bio_full: 4458 r10_bio->sectors = nr_sectors; 4459 4460 /* Now submit the read */ 4461 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4462 atomic_inc(&r10_bio->remaining); 4463 read_bio->bi_next = NULL; 4464 generic_make_request(read_bio); 4465 sector_nr += nr_sectors; 4466 sectors_done += nr_sectors; 4467 if (sector_nr <= last) 4468 goto read_more; 4469 4470 /* Now that we have done the whole section we can 4471 * update reshape_progress 4472 */ 4473 if (mddev->reshape_backwards) 4474 conf->reshape_progress -= sectors_done; 4475 else 4476 conf->reshape_progress += sectors_done; 4477 4478 return sectors_done; 4479 } 4480 4481 static void end_reshape_request(struct r10bio *r10_bio); 4482 static int handle_reshape_read_error(struct mddev *mddev, 4483 struct r10bio *r10_bio); 4484 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4485 { 4486 /* Reshape read completed. Hopefully we have a block 4487 * to write out. 4488 * If we got a read error then we do sync 1-page reads from 4489 * elsewhere until we find the data - or give up. 4490 */ 4491 struct r10conf *conf = mddev->private; 4492 int s; 4493 4494 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4495 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4496 /* Reshape has been aborted */ 4497 md_done_sync(mddev, r10_bio->sectors, 0); 4498 return; 4499 } 4500 4501 /* We definitely have the data in the pages, schedule the 4502 * writes. 4503 */ 4504 atomic_set(&r10_bio->remaining, 1); 4505 for (s = 0; s < conf->copies*2; s++) { 4506 struct bio *b; 4507 int d = r10_bio->devs[s/2].devnum; 4508 struct md_rdev *rdev; 4509 if (s&1) { 4510 rdev = conf->mirrors[d].replacement; 4511 b = r10_bio->devs[s/2].repl_bio; 4512 } else { 4513 rdev = conf->mirrors[d].rdev; 4514 b = r10_bio->devs[s/2].bio; 4515 } 4516 if (!rdev || test_bit(Faulty, &rdev->flags)) 4517 continue; 4518 atomic_inc(&rdev->nr_pending); 4519 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4520 atomic_inc(&r10_bio->remaining); 4521 b->bi_next = NULL; 4522 generic_make_request(b); 4523 } 4524 end_reshape_request(r10_bio); 4525 } 4526 4527 static void end_reshape(struct r10conf *conf) 4528 { 4529 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4530 return; 4531 4532 spin_lock_irq(&conf->device_lock); 4533 conf->prev = conf->geo; 4534 md_finish_reshape(conf->mddev); 4535 smp_wmb(); 4536 conf->reshape_progress = MaxSector; 4537 spin_unlock_irq(&conf->device_lock); 4538 4539 /* read-ahead size must cover two whole stripes, which is 4540 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4541 */ 4542 if (conf->mddev->queue) { 4543 int stripe = conf->geo.raid_disks * 4544 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4545 stripe /= conf->geo.near_copies; 4546 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4547 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4548 } 4549 conf->fullsync = 0; 4550 } 4551 4552 4553 static int handle_reshape_read_error(struct mddev *mddev, 4554 struct r10bio *r10_bio) 4555 { 4556 /* Use sync reads to get the blocks from somewhere else */ 4557 int sectors = r10_bio->sectors; 4558 struct r10conf *conf = mddev->private; 4559 struct { 4560 struct r10bio r10_bio; 4561 struct r10dev devs[conf->copies]; 4562 } on_stack; 4563 struct r10bio *r10b = &on_stack.r10_bio; 4564 int slot = 0; 4565 int idx = 0; 4566 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4567 4568 r10b->sector = r10_bio->sector; 4569 __raid10_find_phys(&conf->prev, r10b); 4570 4571 while (sectors) { 4572 int s = sectors; 4573 int success = 0; 4574 int first_slot = slot; 4575 4576 if (s > (PAGE_SIZE >> 9)) 4577 s = PAGE_SIZE >> 9; 4578 4579 while (!success) { 4580 int d = r10b->devs[slot].devnum; 4581 struct md_rdev *rdev = conf->mirrors[d].rdev; 4582 sector_t addr; 4583 if (rdev == NULL || 4584 test_bit(Faulty, &rdev->flags) || 4585 !test_bit(In_sync, &rdev->flags)) 4586 goto failed; 4587 4588 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4589 success = sync_page_io(rdev, 4590 addr, 4591 s << 9, 4592 bvec[idx].bv_page, 4593 READ, false); 4594 if (success) 4595 break; 4596 failed: 4597 slot++; 4598 if (slot >= conf->copies) 4599 slot = 0; 4600 if (slot == first_slot) 4601 break; 4602 } 4603 if (!success) { 4604 /* couldn't read this block, must give up */ 4605 set_bit(MD_RECOVERY_INTR, 4606 &mddev->recovery); 4607 return -EIO; 4608 } 4609 sectors -= s; 4610 idx++; 4611 } 4612 return 0; 4613 } 4614 4615 static void end_reshape_write(struct bio *bio, int error) 4616 { 4617 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4618 struct r10bio *r10_bio = bio->bi_private; 4619 struct mddev *mddev = r10_bio->mddev; 4620 struct r10conf *conf = mddev->private; 4621 int d; 4622 int slot; 4623 int repl; 4624 struct md_rdev *rdev = NULL; 4625 4626 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4627 if (repl) 4628 rdev = conf->mirrors[d].replacement; 4629 if (!rdev) { 4630 smp_mb(); 4631 rdev = conf->mirrors[d].rdev; 4632 } 4633 4634 if (!uptodate) { 4635 /* FIXME should record badblock */ 4636 md_error(mddev, rdev); 4637 } 4638 4639 rdev_dec_pending(rdev, mddev); 4640 end_reshape_request(r10_bio); 4641 } 4642 4643 static void end_reshape_request(struct r10bio *r10_bio) 4644 { 4645 if (!atomic_dec_and_test(&r10_bio->remaining)) 4646 return; 4647 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4648 bio_put(r10_bio->master_bio); 4649 put_buf(r10_bio); 4650 } 4651 4652 static void raid10_finish_reshape(struct mddev *mddev) 4653 { 4654 struct r10conf *conf = mddev->private; 4655 4656 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4657 return; 4658 4659 if (mddev->delta_disks > 0) { 4660 sector_t size = raid10_size(mddev, 0, 0); 4661 md_set_array_sectors(mddev, size); 4662 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4663 mddev->recovery_cp = mddev->resync_max_sectors; 4664 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4665 } 4666 mddev->resync_max_sectors = size; 4667 set_capacity(mddev->gendisk, mddev->array_sectors); 4668 revalidate_disk(mddev->gendisk); 4669 } else { 4670 int d; 4671 for (d = conf->geo.raid_disks ; 4672 d < conf->geo.raid_disks - mddev->delta_disks; 4673 d++) { 4674 struct md_rdev *rdev = conf->mirrors[d].rdev; 4675 if (rdev) 4676 clear_bit(In_sync, &rdev->flags); 4677 rdev = conf->mirrors[d].replacement; 4678 if (rdev) 4679 clear_bit(In_sync, &rdev->flags); 4680 } 4681 } 4682 mddev->layout = mddev->new_layout; 4683 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4684 mddev->reshape_position = MaxSector; 4685 mddev->delta_disks = 0; 4686 mddev->reshape_backwards = 0; 4687 } 4688 4689 static struct md_personality raid10_personality = 4690 { 4691 .name = "raid10", 4692 .level = 10, 4693 .owner = THIS_MODULE, 4694 .make_request = make_request, 4695 .run = run, 4696 .stop = stop, 4697 .status = status, 4698 .error_handler = error, 4699 .hot_add_disk = raid10_add_disk, 4700 .hot_remove_disk= raid10_remove_disk, 4701 .spare_active = raid10_spare_active, 4702 .sync_request = sync_request, 4703 .quiesce = raid10_quiesce, 4704 .size = raid10_size, 4705 .resize = raid10_resize, 4706 .takeover = raid10_takeover, 4707 .check_reshape = raid10_check_reshape, 4708 .start_reshape = raid10_start_reshape, 4709 .finish_reshape = raid10_finish_reshape, 4710 }; 4711 4712 static int __init raid_init(void) 4713 { 4714 return register_md_personality(&raid10_personality); 4715 } 4716 4717 static void raid_exit(void) 4718 { 4719 unregister_md_personality(&raid10_personality); 4720 } 4721 4722 module_init(raid_init); 4723 module_exit(raid_exit); 4724 MODULE_LICENSE("GPL"); 4725 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4726 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4727 MODULE_ALIAS("md-raid10"); 4728 MODULE_ALIAS("md-level-10"); 4729 4730 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4731