1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * 43 * The data to be stored is divided into chunks using chunksize. Each device 44 * is divided into far_copies sections. In each section, chunks are laid out 45 * in a style similar to raid0, but near_copies copies of each chunk is stored 46 * (each on a different drive). The starting device for each section is offset 47 * near_copies from the starting device of the previous section. Thus there 48 * are (near_copies * far_copies) of each chunk, and each is on a different 49 * drive. near_copies and far_copies must be at least one, and their product 50 * is at most raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of being very far 54 * apart on disk, there are adjacent stripes. 55 * 56 * The far and offset algorithms are handled slightly differently if 57 * 'use_far_sets' is true. In this case, the array's devices are grouped into 58 * sets that are (near_copies * far_copies) in size. The far copied stripes 59 * are still shifted by 'near_copies' devices, but this shifting stays confined 60 * to the set rather than the entire array. This is done to improve the number 61 * of device combinations that can fail without causing the array to fail. 62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 63 * on a device): 64 * A B C D A B C D E 65 * ... ... 66 * D A B C E A B C D 67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 68 * [A B] [C D] [A B] [C D E] 69 * |...| |...| |...| | ... | 70 * [B A] [D C] [B A] [E C D] 71 */ 72 73 /* 74 * Number of guaranteed r10bios in case of extreme VM load: 75 */ 76 #define NR_RAID10_BIOS 256 77 78 /* when we get a read error on a read-only array, we redirect to another 79 * device without failing the first device, or trying to over-write to 80 * correct the read error. To keep track of bad blocks on a per-bio 81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 82 */ 83 #define IO_BLOCKED ((struct bio *)1) 84 /* When we successfully write to a known bad-block, we need to remove the 85 * bad-block marking which must be done from process context. So we record 86 * the success by setting devs[n].bio to IO_MADE_GOOD 87 */ 88 #define IO_MADE_GOOD ((struct bio *)2) 89 90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 91 92 /* When there are this many requests queued to be written by 93 * the raid10 thread, we become 'congested' to provide back-pressure 94 * for writeback. 95 */ 96 static int max_queued_requests = 1024; 97 98 static void allow_barrier(struct r10conf *conf); 99 static void lower_barrier(struct r10conf *conf); 100 static int enough(struct r10conf *conf, int ignore); 101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 102 int *skipped); 103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 104 static void end_reshape_write(struct bio *bio, int error); 105 static void end_reshape(struct r10conf *conf); 106 107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 108 { 109 struct r10conf *conf = data; 110 int size = offsetof(struct r10bio, devs[conf->copies]); 111 112 /* allocate a r10bio with room for raid_disks entries in the 113 * bios array */ 114 return kzalloc(size, gfp_flags); 115 } 116 117 static void r10bio_pool_free(void *r10_bio, void *data) 118 { 119 kfree(r10_bio); 120 } 121 122 /* Maximum size of each resync request */ 123 #define RESYNC_BLOCK_SIZE (64*1024) 124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 125 /* amount of memory to reserve for resync requests */ 126 #define RESYNC_WINDOW (1024*1024) 127 /* maximum number of concurrent requests, memory permitting */ 128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 129 130 /* 131 * When performing a resync, we need to read and compare, so 132 * we need as many pages are there are copies. 133 * When performing a recovery, we need 2 bios, one for read, 134 * one for write (we recover only one drive per r10buf) 135 * 136 */ 137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 138 { 139 struct r10conf *conf = data; 140 struct page *page; 141 struct r10bio *r10_bio; 142 struct bio *bio; 143 int i, j; 144 int nalloc; 145 146 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 147 if (!r10_bio) 148 return NULL; 149 150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 152 nalloc = conf->copies; /* resync */ 153 else 154 nalloc = 2; /* recovery */ 155 156 /* 157 * Allocate bios. 158 */ 159 for (j = nalloc ; j-- ; ) { 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 161 if (!bio) 162 goto out_free_bio; 163 r10_bio->devs[j].bio = bio; 164 if (!conf->have_replacement) 165 continue; 166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 167 if (!bio) 168 goto out_free_bio; 169 r10_bio->devs[j].repl_bio = bio; 170 } 171 /* 172 * Allocate RESYNC_PAGES data pages and attach them 173 * where needed. 174 */ 175 for (j = 0 ; j < nalloc; j++) { 176 struct bio *rbio = r10_bio->devs[j].repl_bio; 177 bio = r10_bio->devs[j].bio; 178 for (i = 0; i < RESYNC_PAGES; i++) { 179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 180 &conf->mddev->recovery)) { 181 /* we can share bv_page's during recovery 182 * and reshape */ 183 struct bio *rbio = r10_bio->devs[0].bio; 184 page = rbio->bi_io_vec[i].bv_page; 185 get_page(page); 186 } else 187 page = alloc_page(gfp_flags); 188 if (unlikely(!page)) 189 goto out_free_pages; 190 191 bio->bi_io_vec[i].bv_page = page; 192 if (rbio) 193 rbio->bi_io_vec[i].bv_page = page; 194 } 195 } 196 197 return r10_bio; 198 199 out_free_pages: 200 for ( ; i > 0 ; i--) 201 safe_put_page(bio->bi_io_vec[i-1].bv_page); 202 while (j--) 203 for (i = 0; i < RESYNC_PAGES ; i++) 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 205 j = 0; 206 out_free_bio: 207 for ( ; j < nalloc; j++) { 208 if (r10_bio->devs[j].bio) 209 bio_put(r10_bio->devs[j].bio); 210 if (r10_bio->devs[j].repl_bio) 211 bio_put(r10_bio->devs[j].repl_bio); 212 } 213 r10bio_pool_free(r10_bio, conf); 214 return NULL; 215 } 216 217 static void r10buf_pool_free(void *__r10_bio, void *data) 218 { 219 int i; 220 struct r10conf *conf = data; 221 struct r10bio *r10bio = __r10_bio; 222 int j; 223 224 for (j=0; j < conf->copies; j++) { 225 struct bio *bio = r10bio->devs[j].bio; 226 if (bio) { 227 for (i = 0; i < RESYNC_PAGES; i++) { 228 safe_put_page(bio->bi_io_vec[i].bv_page); 229 bio->bi_io_vec[i].bv_page = NULL; 230 } 231 bio_put(bio); 232 } 233 bio = r10bio->devs[j].repl_bio; 234 if (bio) 235 bio_put(bio); 236 } 237 r10bio_pool_free(r10bio, conf); 238 } 239 240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 241 { 242 int i; 243 244 for (i = 0; i < conf->copies; i++) { 245 struct bio **bio = & r10_bio->devs[i].bio; 246 if (!BIO_SPECIAL(*bio)) 247 bio_put(*bio); 248 *bio = NULL; 249 bio = &r10_bio->devs[i].repl_bio; 250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 251 bio_put(*bio); 252 *bio = NULL; 253 } 254 } 255 256 static void free_r10bio(struct r10bio *r10_bio) 257 { 258 struct r10conf *conf = r10_bio->mddev->private; 259 260 put_all_bios(conf, r10_bio); 261 mempool_free(r10_bio, conf->r10bio_pool); 262 } 263 264 static void put_buf(struct r10bio *r10_bio) 265 { 266 struct r10conf *conf = r10_bio->mddev->private; 267 268 mempool_free(r10_bio, conf->r10buf_pool); 269 270 lower_barrier(conf); 271 } 272 273 static void reschedule_retry(struct r10bio *r10_bio) 274 { 275 unsigned long flags; 276 struct mddev *mddev = r10_bio->mddev; 277 struct r10conf *conf = mddev->private; 278 279 spin_lock_irqsave(&conf->device_lock, flags); 280 list_add(&r10_bio->retry_list, &conf->retry_list); 281 conf->nr_queued ++; 282 spin_unlock_irqrestore(&conf->device_lock, flags); 283 284 /* wake up frozen array... */ 285 wake_up(&conf->wait_barrier); 286 287 md_wakeup_thread(mddev->thread); 288 } 289 290 /* 291 * raid_end_bio_io() is called when we have finished servicing a mirrored 292 * operation and are ready to return a success/failure code to the buffer 293 * cache layer. 294 */ 295 static void raid_end_bio_io(struct r10bio *r10_bio) 296 { 297 struct bio *bio = r10_bio->master_bio; 298 int done; 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 if (bio->bi_phys_segments) { 302 unsigned long flags; 303 spin_lock_irqsave(&conf->device_lock, flags); 304 bio->bi_phys_segments--; 305 done = (bio->bi_phys_segments == 0); 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 } else 308 done = 1; 309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 310 clear_bit(BIO_UPTODATE, &bio->bi_flags); 311 if (done) { 312 bio_endio(bio, 0); 313 /* 314 * Wake up any possible resync thread that waits for the device 315 * to go idle. 316 */ 317 allow_barrier(conf); 318 } 319 free_r10bio(r10_bio); 320 } 321 322 /* 323 * Update disk head position estimator based on IRQ completion info. 324 */ 325 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 326 { 327 struct r10conf *conf = r10_bio->mddev->private; 328 329 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 330 r10_bio->devs[slot].addr + (r10_bio->sectors); 331 } 332 333 /* 334 * Find the disk number which triggered given bio 335 */ 336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 337 struct bio *bio, int *slotp, int *replp) 338 { 339 int slot; 340 int repl = 0; 341 342 for (slot = 0; slot < conf->copies; slot++) { 343 if (r10_bio->devs[slot].bio == bio) 344 break; 345 if (r10_bio->devs[slot].repl_bio == bio) { 346 repl = 1; 347 break; 348 } 349 } 350 351 BUG_ON(slot == conf->copies); 352 update_head_pos(slot, r10_bio); 353 354 if (slotp) 355 *slotp = slot; 356 if (replp) 357 *replp = repl; 358 return r10_bio->devs[slot].devnum; 359 } 360 361 static void raid10_end_read_request(struct bio *bio, int error) 362 { 363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 364 struct r10bio *r10_bio = bio->bi_private; 365 int slot, dev; 366 struct md_rdev *rdev; 367 struct r10conf *conf = r10_bio->mddev->private; 368 369 370 slot = r10_bio->read_slot; 371 dev = r10_bio->devs[slot].devnum; 372 rdev = r10_bio->devs[slot].rdev; 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 update_head_pos(slot, r10_bio); 377 378 if (uptodate) { 379 /* 380 * Set R10BIO_Uptodate in our master bio, so that 381 * we will return a good error code to the higher 382 * levels even if IO on some other mirrored buffer fails. 383 * 384 * The 'master' represents the composite IO operation to 385 * user-side. So if something waits for IO, then it will 386 * wait for the 'master' bio. 387 */ 388 set_bit(R10BIO_Uptodate, &r10_bio->state); 389 } else { 390 /* If all other devices that store this block have 391 * failed, we want to return the error upwards rather 392 * than fail the last device. Here we redefine 393 * "uptodate" to mean "Don't want to retry" 394 */ 395 unsigned long flags; 396 spin_lock_irqsave(&conf->device_lock, flags); 397 if (!enough(conf, rdev->raid_disk)) 398 uptodate = 1; 399 spin_unlock_irqrestore(&conf->device_lock, flags); 400 } 401 if (uptodate) { 402 raid_end_bio_io(r10_bio); 403 rdev_dec_pending(rdev, conf->mddev); 404 } else { 405 /* 406 * oops, read error - keep the refcount on the rdev 407 */ 408 char b[BDEVNAME_SIZE]; 409 printk_ratelimited(KERN_ERR 410 "md/raid10:%s: %s: rescheduling sector %llu\n", 411 mdname(conf->mddev), 412 bdevname(rdev->bdev, b), 413 (unsigned long long)r10_bio->sector); 414 set_bit(R10BIO_ReadError, &r10_bio->state); 415 reschedule_retry(r10_bio); 416 } 417 } 418 419 static void close_write(struct r10bio *r10_bio) 420 { 421 /* clear the bitmap if all writes complete successfully */ 422 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 423 r10_bio->sectors, 424 !test_bit(R10BIO_Degraded, &r10_bio->state), 425 0); 426 md_write_end(r10_bio->mddev); 427 } 428 429 static void one_write_done(struct r10bio *r10_bio) 430 { 431 if (atomic_dec_and_test(&r10_bio->remaining)) { 432 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 433 reschedule_retry(r10_bio); 434 else { 435 close_write(r10_bio); 436 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 437 reschedule_retry(r10_bio); 438 else 439 raid_end_bio_io(r10_bio); 440 } 441 } 442 } 443 444 static void raid10_end_write_request(struct bio *bio, int error) 445 { 446 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 447 struct r10bio *r10_bio = bio->bi_private; 448 int dev; 449 int dec_rdev = 1; 450 struct r10conf *conf = r10_bio->mddev->private; 451 int slot, repl; 452 struct md_rdev *rdev = NULL; 453 454 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 455 456 if (repl) 457 rdev = conf->mirrors[dev].replacement; 458 if (!rdev) { 459 smp_rmb(); 460 repl = 0; 461 rdev = conf->mirrors[dev].rdev; 462 } 463 /* 464 * this branch is our 'one mirror IO has finished' event handler: 465 */ 466 if (!uptodate) { 467 if (repl) 468 /* Never record new bad blocks to replacement, 469 * just fail it. 470 */ 471 md_error(rdev->mddev, rdev); 472 else { 473 set_bit(WriteErrorSeen, &rdev->flags); 474 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 475 set_bit(MD_RECOVERY_NEEDED, 476 &rdev->mddev->recovery); 477 set_bit(R10BIO_WriteError, &r10_bio->state); 478 dec_rdev = 0; 479 } 480 } else { 481 /* 482 * Set R10BIO_Uptodate in our master bio, so that 483 * we will return a good error code for to the higher 484 * levels even if IO on some other mirrored buffer fails. 485 * 486 * The 'master' represents the composite IO operation to 487 * user-side. So if something waits for IO, then it will 488 * wait for the 'master' bio. 489 */ 490 sector_t first_bad; 491 int bad_sectors; 492 493 set_bit(R10BIO_Uptodate, &r10_bio->state); 494 495 /* Maybe we can clear some bad blocks. */ 496 if (is_badblock(rdev, 497 r10_bio->devs[slot].addr, 498 r10_bio->sectors, 499 &first_bad, &bad_sectors)) { 500 bio_put(bio); 501 if (repl) 502 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 503 else 504 r10_bio->devs[slot].bio = IO_MADE_GOOD; 505 dec_rdev = 0; 506 set_bit(R10BIO_MadeGood, &r10_bio->state); 507 } 508 } 509 510 /* 511 * 512 * Let's see if all mirrored write operations have finished 513 * already. 514 */ 515 one_write_done(r10_bio); 516 if (dec_rdev) 517 rdev_dec_pending(rdev, conf->mddev); 518 } 519 520 /* 521 * RAID10 layout manager 522 * As well as the chunksize and raid_disks count, there are two 523 * parameters: near_copies and far_copies. 524 * near_copies * far_copies must be <= raid_disks. 525 * Normally one of these will be 1. 526 * If both are 1, we get raid0. 527 * If near_copies == raid_disks, we get raid1. 528 * 529 * Chunks are laid out in raid0 style with near_copies copies of the 530 * first chunk, followed by near_copies copies of the next chunk and 531 * so on. 532 * If far_copies > 1, then after 1/far_copies of the array has been assigned 533 * as described above, we start again with a device offset of near_copies. 534 * So we effectively have another copy of the whole array further down all 535 * the drives, but with blocks on different drives. 536 * With this layout, and block is never stored twice on the one device. 537 * 538 * raid10_find_phys finds the sector offset of a given virtual sector 539 * on each device that it is on. 540 * 541 * raid10_find_virt does the reverse mapping, from a device and a 542 * sector offset to a virtual address 543 */ 544 545 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 546 { 547 int n,f; 548 sector_t sector; 549 sector_t chunk; 550 sector_t stripe; 551 int dev; 552 int slot = 0; 553 int last_far_set_start, last_far_set_size; 554 555 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 556 last_far_set_start *= geo->far_set_size; 557 558 last_far_set_size = geo->far_set_size; 559 last_far_set_size += (geo->raid_disks % geo->far_set_size); 560 561 /* now calculate first sector/dev */ 562 chunk = r10bio->sector >> geo->chunk_shift; 563 sector = r10bio->sector & geo->chunk_mask; 564 565 chunk *= geo->near_copies; 566 stripe = chunk; 567 dev = sector_div(stripe, geo->raid_disks); 568 if (geo->far_offset) 569 stripe *= geo->far_copies; 570 571 sector += stripe << geo->chunk_shift; 572 573 /* and calculate all the others */ 574 for (n = 0; n < geo->near_copies; n++) { 575 int d = dev; 576 int set; 577 sector_t s = sector; 578 r10bio->devs[slot].devnum = d; 579 r10bio->devs[slot].addr = s; 580 slot++; 581 582 for (f = 1; f < geo->far_copies; f++) { 583 set = d / geo->far_set_size; 584 d += geo->near_copies; 585 586 if ((geo->raid_disks % geo->far_set_size) && 587 (d > last_far_set_start)) { 588 d -= last_far_set_start; 589 d %= last_far_set_size; 590 d += last_far_set_start; 591 } else { 592 d %= geo->far_set_size; 593 d += geo->far_set_size * set; 594 } 595 s += geo->stride; 596 r10bio->devs[slot].devnum = d; 597 r10bio->devs[slot].addr = s; 598 slot++; 599 } 600 dev++; 601 if (dev >= geo->raid_disks) { 602 dev = 0; 603 sector += (geo->chunk_mask + 1); 604 } 605 } 606 } 607 608 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 609 { 610 struct geom *geo = &conf->geo; 611 612 if (conf->reshape_progress != MaxSector && 613 ((r10bio->sector >= conf->reshape_progress) != 614 conf->mddev->reshape_backwards)) { 615 set_bit(R10BIO_Previous, &r10bio->state); 616 geo = &conf->prev; 617 } else 618 clear_bit(R10BIO_Previous, &r10bio->state); 619 620 __raid10_find_phys(geo, r10bio); 621 } 622 623 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 624 { 625 sector_t offset, chunk, vchunk; 626 /* Never use conf->prev as this is only called during resync 627 * or recovery, so reshape isn't happening 628 */ 629 struct geom *geo = &conf->geo; 630 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 631 int far_set_size = geo->far_set_size; 632 int last_far_set_start; 633 634 if (geo->raid_disks % geo->far_set_size) { 635 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 636 last_far_set_start *= geo->far_set_size; 637 638 if (dev >= last_far_set_start) { 639 far_set_size = geo->far_set_size; 640 far_set_size += (geo->raid_disks % geo->far_set_size); 641 far_set_start = last_far_set_start; 642 } 643 } 644 645 offset = sector & geo->chunk_mask; 646 if (geo->far_offset) { 647 int fc; 648 chunk = sector >> geo->chunk_shift; 649 fc = sector_div(chunk, geo->far_copies); 650 dev -= fc * geo->near_copies; 651 if (dev < far_set_start) 652 dev += far_set_size; 653 } else { 654 while (sector >= geo->stride) { 655 sector -= geo->stride; 656 if (dev < (geo->near_copies + far_set_start)) 657 dev += far_set_size - geo->near_copies; 658 else 659 dev -= geo->near_copies; 660 } 661 chunk = sector >> geo->chunk_shift; 662 } 663 vchunk = chunk * geo->raid_disks + dev; 664 sector_div(vchunk, geo->near_copies); 665 return (vchunk << geo->chunk_shift) + offset; 666 } 667 668 /** 669 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 670 * @q: request queue 671 * @bvm: properties of new bio 672 * @biovec: the request that could be merged to it. 673 * 674 * Return amount of bytes we can accept at this offset 675 * This requires checking for end-of-chunk if near_copies != raid_disks, 676 * and for subordinate merge_bvec_fns if merge_check_needed. 677 */ 678 static int raid10_mergeable_bvec(struct request_queue *q, 679 struct bvec_merge_data *bvm, 680 struct bio_vec *biovec) 681 { 682 struct mddev *mddev = q->queuedata; 683 struct r10conf *conf = mddev->private; 684 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 685 int max; 686 unsigned int chunk_sectors; 687 unsigned int bio_sectors = bvm->bi_size >> 9; 688 struct geom *geo = &conf->geo; 689 690 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 691 if (conf->reshape_progress != MaxSector && 692 ((sector >= conf->reshape_progress) != 693 conf->mddev->reshape_backwards)) 694 geo = &conf->prev; 695 696 if (geo->near_copies < geo->raid_disks) { 697 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 698 + bio_sectors)) << 9; 699 if (max < 0) 700 /* bio_add cannot handle a negative return */ 701 max = 0; 702 if (max <= biovec->bv_len && bio_sectors == 0) 703 return biovec->bv_len; 704 } else 705 max = biovec->bv_len; 706 707 if (mddev->merge_check_needed) { 708 struct { 709 struct r10bio r10_bio; 710 struct r10dev devs[conf->copies]; 711 } on_stack; 712 struct r10bio *r10_bio = &on_stack.r10_bio; 713 int s; 714 if (conf->reshape_progress != MaxSector) { 715 /* Cannot give any guidance during reshape */ 716 if (max <= biovec->bv_len && bio_sectors == 0) 717 return biovec->bv_len; 718 return 0; 719 } 720 r10_bio->sector = sector; 721 raid10_find_phys(conf, r10_bio); 722 rcu_read_lock(); 723 for (s = 0; s < conf->copies; s++) { 724 int disk = r10_bio->devs[s].devnum; 725 struct md_rdev *rdev = rcu_dereference( 726 conf->mirrors[disk].rdev); 727 if (rdev && !test_bit(Faulty, &rdev->flags)) { 728 struct request_queue *q = 729 bdev_get_queue(rdev->bdev); 730 if (q->merge_bvec_fn) { 731 bvm->bi_sector = r10_bio->devs[s].addr 732 + rdev->data_offset; 733 bvm->bi_bdev = rdev->bdev; 734 max = min(max, q->merge_bvec_fn( 735 q, bvm, biovec)); 736 } 737 } 738 rdev = rcu_dereference(conf->mirrors[disk].replacement); 739 if (rdev && !test_bit(Faulty, &rdev->flags)) { 740 struct request_queue *q = 741 bdev_get_queue(rdev->bdev); 742 if (q->merge_bvec_fn) { 743 bvm->bi_sector = r10_bio->devs[s].addr 744 + rdev->data_offset; 745 bvm->bi_bdev = rdev->bdev; 746 max = min(max, q->merge_bvec_fn( 747 q, bvm, biovec)); 748 } 749 } 750 } 751 rcu_read_unlock(); 752 } 753 return max; 754 } 755 756 /* 757 * This routine returns the disk from which the requested read should 758 * be done. There is a per-array 'next expected sequential IO' sector 759 * number - if this matches on the next IO then we use the last disk. 760 * There is also a per-disk 'last know head position' sector that is 761 * maintained from IRQ contexts, both the normal and the resync IO 762 * completion handlers update this position correctly. If there is no 763 * perfect sequential match then we pick the disk whose head is closest. 764 * 765 * If there are 2 mirrors in the same 2 devices, performance degrades 766 * because position is mirror, not device based. 767 * 768 * The rdev for the device selected will have nr_pending incremented. 769 */ 770 771 /* 772 * FIXME: possibly should rethink readbalancing and do it differently 773 * depending on near_copies / far_copies geometry. 774 */ 775 static struct md_rdev *read_balance(struct r10conf *conf, 776 struct r10bio *r10_bio, 777 int *max_sectors) 778 { 779 const sector_t this_sector = r10_bio->sector; 780 int disk, slot; 781 int sectors = r10_bio->sectors; 782 int best_good_sectors; 783 sector_t new_distance, best_dist; 784 struct md_rdev *best_rdev, *rdev = NULL; 785 int do_balance; 786 int best_slot; 787 struct geom *geo = &conf->geo; 788 789 raid10_find_phys(conf, r10_bio); 790 rcu_read_lock(); 791 retry: 792 sectors = r10_bio->sectors; 793 best_slot = -1; 794 best_rdev = NULL; 795 best_dist = MaxSector; 796 best_good_sectors = 0; 797 do_balance = 1; 798 /* 799 * Check if we can balance. We can balance on the whole 800 * device if no resync is going on (recovery is ok), or below 801 * the resync window. We take the first readable disk when 802 * above the resync window. 803 */ 804 if (conf->mddev->recovery_cp < MaxSector 805 && (this_sector + sectors >= conf->next_resync)) 806 do_balance = 0; 807 808 for (slot = 0; slot < conf->copies ; slot++) { 809 sector_t first_bad; 810 int bad_sectors; 811 sector_t dev_sector; 812 813 if (r10_bio->devs[slot].bio == IO_BLOCKED) 814 continue; 815 disk = r10_bio->devs[slot].devnum; 816 rdev = rcu_dereference(conf->mirrors[disk].replacement); 817 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 818 test_bit(Unmerged, &rdev->flags) || 819 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 820 rdev = rcu_dereference(conf->mirrors[disk].rdev); 821 if (rdev == NULL || 822 test_bit(Faulty, &rdev->flags) || 823 test_bit(Unmerged, &rdev->flags)) 824 continue; 825 if (!test_bit(In_sync, &rdev->flags) && 826 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 827 continue; 828 829 dev_sector = r10_bio->devs[slot].addr; 830 if (is_badblock(rdev, dev_sector, sectors, 831 &first_bad, &bad_sectors)) { 832 if (best_dist < MaxSector) 833 /* Already have a better slot */ 834 continue; 835 if (first_bad <= dev_sector) { 836 /* Cannot read here. If this is the 837 * 'primary' device, then we must not read 838 * beyond 'bad_sectors' from another device. 839 */ 840 bad_sectors -= (dev_sector - first_bad); 841 if (!do_balance && sectors > bad_sectors) 842 sectors = bad_sectors; 843 if (best_good_sectors > sectors) 844 best_good_sectors = sectors; 845 } else { 846 sector_t good_sectors = 847 first_bad - dev_sector; 848 if (good_sectors > best_good_sectors) { 849 best_good_sectors = good_sectors; 850 best_slot = slot; 851 best_rdev = rdev; 852 } 853 if (!do_balance) 854 /* Must read from here */ 855 break; 856 } 857 continue; 858 } else 859 best_good_sectors = sectors; 860 861 if (!do_balance) 862 break; 863 864 /* This optimisation is debatable, and completely destroys 865 * sequential read speed for 'far copies' arrays. So only 866 * keep it for 'near' arrays, and review those later. 867 */ 868 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 869 break; 870 871 /* for far > 1 always use the lowest address */ 872 if (geo->far_copies > 1) 873 new_distance = r10_bio->devs[slot].addr; 874 else 875 new_distance = abs(r10_bio->devs[slot].addr - 876 conf->mirrors[disk].head_position); 877 if (new_distance < best_dist) { 878 best_dist = new_distance; 879 best_slot = slot; 880 best_rdev = rdev; 881 } 882 } 883 if (slot >= conf->copies) { 884 slot = best_slot; 885 rdev = best_rdev; 886 } 887 888 if (slot >= 0) { 889 atomic_inc(&rdev->nr_pending); 890 if (test_bit(Faulty, &rdev->flags)) { 891 /* Cannot risk returning a device that failed 892 * before we inc'ed nr_pending 893 */ 894 rdev_dec_pending(rdev, conf->mddev); 895 goto retry; 896 } 897 r10_bio->read_slot = slot; 898 } else 899 rdev = NULL; 900 rcu_read_unlock(); 901 *max_sectors = best_good_sectors; 902 903 return rdev; 904 } 905 906 int md_raid10_congested(struct mddev *mddev, int bits) 907 { 908 struct r10conf *conf = mddev->private; 909 int i, ret = 0; 910 911 if ((bits & (1 << BDI_async_congested)) && 912 conf->pending_count >= max_queued_requests) 913 return 1; 914 915 rcu_read_lock(); 916 for (i = 0; 917 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 918 && ret == 0; 919 i++) { 920 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 921 if (rdev && !test_bit(Faulty, &rdev->flags)) { 922 struct request_queue *q = bdev_get_queue(rdev->bdev); 923 924 ret |= bdi_congested(&q->backing_dev_info, bits); 925 } 926 } 927 rcu_read_unlock(); 928 return ret; 929 } 930 EXPORT_SYMBOL_GPL(md_raid10_congested); 931 932 static int raid10_congested(void *data, int bits) 933 { 934 struct mddev *mddev = data; 935 936 return mddev_congested(mddev, bits) || 937 md_raid10_congested(mddev, bits); 938 } 939 940 static void flush_pending_writes(struct r10conf *conf) 941 { 942 /* Any writes that have been queued but are awaiting 943 * bitmap updates get flushed here. 944 */ 945 spin_lock_irq(&conf->device_lock); 946 947 if (conf->pending_bio_list.head) { 948 struct bio *bio; 949 bio = bio_list_get(&conf->pending_bio_list); 950 conf->pending_count = 0; 951 spin_unlock_irq(&conf->device_lock); 952 /* flush any pending bitmap writes to disk 953 * before proceeding w/ I/O */ 954 bitmap_unplug(conf->mddev->bitmap); 955 wake_up(&conf->wait_barrier); 956 957 while (bio) { /* submit pending writes */ 958 struct bio *next = bio->bi_next; 959 bio->bi_next = NULL; 960 if (unlikely((bio->bi_rw & REQ_DISCARD) && 961 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 962 /* Just ignore it */ 963 bio_endio(bio, 0); 964 else 965 generic_make_request(bio); 966 bio = next; 967 } 968 } else 969 spin_unlock_irq(&conf->device_lock); 970 } 971 972 /* Barriers.... 973 * Sometimes we need to suspend IO while we do something else, 974 * either some resync/recovery, or reconfigure the array. 975 * To do this we raise a 'barrier'. 976 * The 'barrier' is a counter that can be raised multiple times 977 * to count how many activities are happening which preclude 978 * normal IO. 979 * We can only raise the barrier if there is no pending IO. 980 * i.e. if nr_pending == 0. 981 * We choose only to raise the barrier if no-one is waiting for the 982 * barrier to go down. This means that as soon as an IO request 983 * is ready, no other operations which require a barrier will start 984 * until the IO request has had a chance. 985 * 986 * So: regular IO calls 'wait_barrier'. When that returns there 987 * is no backgroup IO happening, It must arrange to call 988 * allow_barrier when it has finished its IO. 989 * backgroup IO calls must call raise_barrier. Once that returns 990 * there is no normal IO happeing. It must arrange to call 991 * lower_barrier when the particular background IO completes. 992 */ 993 994 static void raise_barrier(struct r10conf *conf, int force) 995 { 996 BUG_ON(force && !conf->barrier); 997 spin_lock_irq(&conf->resync_lock); 998 999 /* Wait until no block IO is waiting (unless 'force') */ 1000 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 1001 conf->resync_lock); 1002 1003 /* block any new IO from starting */ 1004 conf->barrier++; 1005 1006 /* Now wait for all pending IO to complete */ 1007 wait_event_lock_irq(conf->wait_barrier, 1008 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 1009 conf->resync_lock); 1010 1011 spin_unlock_irq(&conf->resync_lock); 1012 } 1013 1014 static void lower_barrier(struct r10conf *conf) 1015 { 1016 unsigned long flags; 1017 spin_lock_irqsave(&conf->resync_lock, flags); 1018 conf->barrier--; 1019 spin_unlock_irqrestore(&conf->resync_lock, flags); 1020 wake_up(&conf->wait_barrier); 1021 } 1022 1023 static void wait_barrier(struct r10conf *conf) 1024 { 1025 spin_lock_irq(&conf->resync_lock); 1026 if (conf->barrier) { 1027 conf->nr_waiting++; 1028 /* Wait for the barrier to drop. 1029 * However if there are already pending 1030 * requests (preventing the barrier from 1031 * rising completely), and the 1032 * pre-process bio queue isn't empty, 1033 * then don't wait, as we need to empty 1034 * that queue to get the nr_pending 1035 * count down. 1036 */ 1037 wait_event_lock_irq(conf->wait_barrier, 1038 !conf->barrier || 1039 (conf->nr_pending && 1040 current->bio_list && 1041 !bio_list_empty(current->bio_list)), 1042 conf->resync_lock); 1043 conf->nr_waiting--; 1044 } 1045 conf->nr_pending++; 1046 spin_unlock_irq(&conf->resync_lock); 1047 } 1048 1049 static void allow_barrier(struct r10conf *conf) 1050 { 1051 unsigned long flags; 1052 spin_lock_irqsave(&conf->resync_lock, flags); 1053 conf->nr_pending--; 1054 spin_unlock_irqrestore(&conf->resync_lock, flags); 1055 wake_up(&conf->wait_barrier); 1056 } 1057 1058 static void freeze_array(struct r10conf *conf) 1059 { 1060 /* stop syncio and normal IO and wait for everything to 1061 * go quiet. 1062 * We increment barrier and nr_waiting, and then 1063 * wait until nr_pending match nr_queued+1 1064 * This is called in the context of one normal IO request 1065 * that has failed. Thus any sync request that might be pending 1066 * will be blocked by nr_pending, and we need to wait for 1067 * pending IO requests to complete or be queued for re-try. 1068 * Thus the number queued (nr_queued) plus this request (1) 1069 * must match the number of pending IOs (nr_pending) before 1070 * we continue. 1071 */ 1072 spin_lock_irq(&conf->resync_lock); 1073 conf->barrier++; 1074 conf->nr_waiting++; 1075 wait_event_lock_irq_cmd(conf->wait_barrier, 1076 conf->nr_pending == conf->nr_queued+1, 1077 conf->resync_lock, 1078 flush_pending_writes(conf)); 1079 1080 spin_unlock_irq(&conf->resync_lock); 1081 } 1082 1083 static void unfreeze_array(struct r10conf *conf) 1084 { 1085 /* reverse the effect of the freeze */ 1086 spin_lock_irq(&conf->resync_lock); 1087 conf->barrier--; 1088 conf->nr_waiting--; 1089 wake_up(&conf->wait_barrier); 1090 spin_unlock_irq(&conf->resync_lock); 1091 } 1092 1093 static sector_t choose_data_offset(struct r10bio *r10_bio, 1094 struct md_rdev *rdev) 1095 { 1096 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1097 test_bit(R10BIO_Previous, &r10_bio->state)) 1098 return rdev->data_offset; 1099 else 1100 return rdev->new_data_offset; 1101 } 1102 1103 struct raid10_plug_cb { 1104 struct blk_plug_cb cb; 1105 struct bio_list pending; 1106 int pending_cnt; 1107 }; 1108 1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1110 { 1111 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1112 cb); 1113 struct mddev *mddev = plug->cb.data; 1114 struct r10conf *conf = mddev->private; 1115 struct bio *bio; 1116 1117 if (from_schedule || current->bio_list) { 1118 spin_lock_irq(&conf->device_lock); 1119 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1120 conf->pending_count += plug->pending_cnt; 1121 spin_unlock_irq(&conf->device_lock); 1122 wake_up(&conf->wait_barrier); 1123 md_wakeup_thread(mddev->thread); 1124 kfree(plug); 1125 return; 1126 } 1127 1128 /* we aren't scheduling, so we can do the write-out directly. */ 1129 bio = bio_list_get(&plug->pending); 1130 bitmap_unplug(mddev->bitmap); 1131 wake_up(&conf->wait_barrier); 1132 1133 while (bio) { /* submit pending writes */ 1134 struct bio *next = bio->bi_next; 1135 bio->bi_next = NULL; 1136 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1137 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1138 /* Just ignore it */ 1139 bio_endio(bio, 0); 1140 else 1141 generic_make_request(bio); 1142 bio = next; 1143 } 1144 kfree(plug); 1145 } 1146 1147 static void make_request(struct mddev *mddev, struct bio * bio) 1148 { 1149 struct r10conf *conf = mddev->private; 1150 struct r10bio *r10_bio; 1151 struct bio *read_bio; 1152 int i; 1153 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1154 int chunk_sects = chunk_mask + 1; 1155 const int rw = bio_data_dir(bio); 1156 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1157 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1158 const unsigned long do_discard = (bio->bi_rw 1159 & (REQ_DISCARD | REQ_SECURE)); 1160 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1161 unsigned long flags; 1162 struct md_rdev *blocked_rdev; 1163 struct blk_plug_cb *cb; 1164 struct raid10_plug_cb *plug = NULL; 1165 int sectors_handled; 1166 int max_sectors; 1167 int sectors; 1168 1169 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1170 md_flush_request(mddev, bio); 1171 return; 1172 } 1173 1174 /* If this request crosses a chunk boundary, we need to 1175 * split it. This will only happen for 1 PAGE (or less) requests. 1176 */ 1177 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9) 1178 > chunk_sects 1179 && (conf->geo.near_copies < conf->geo.raid_disks 1180 || conf->prev.near_copies < conf->prev.raid_disks))) { 1181 struct bio_pair *bp; 1182 /* Sanity check -- queue functions should prevent this happening */ 1183 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) || 1184 bio->bi_idx != 0) 1185 goto bad_map; 1186 /* This is a one page bio that upper layers 1187 * refuse to split for us, so we need to split it. 1188 */ 1189 bp = bio_split(bio, 1190 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1191 1192 /* Each of these 'make_request' calls will call 'wait_barrier'. 1193 * If the first succeeds but the second blocks due to the resync 1194 * thread raising the barrier, we will deadlock because the 1195 * IO to the underlying device will be queued in generic_make_request 1196 * and will never complete, so will never reduce nr_pending. 1197 * So increment nr_waiting here so no new raise_barriers will 1198 * succeed, and so the second wait_barrier cannot block. 1199 */ 1200 spin_lock_irq(&conf->resync_lock); 1201 conf->nr_waiting++; 1202 spin_unlock_irq(&conf->resync_lock); 1203 1204 make_request(mddev, &bp->bio1); 1205 make_request(mddev, &bp->bio2); 1206 1207 spin_lock_irq(&conf->resync_lock); 1208 conf->nr_waiting--; 1209 wake_up(&conf->wait_barrier); 1210 spin_unlock_irq(&conf->resync_lock); 1211 1212 bio_pair_release(bp); 1213 return; 1214 bad_map: 1215 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1216 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1217 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 1218 1219 bio_io_error(bio); 1220 return; 1221 } 1222 1223 md_write_start(mddev, bio); 1224 1225 /* 1226 * Register the new request and wait if the reconstruction 1227 * thread has put up a bar for new requests. 1228 * Continue immediately if no resync is active currently. 1229 */ 1230 wait_barrier(conf); 1231 1232 sectors = bio->bi_size >> 9; 1233 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1234 bio->bi_sector < conf->reshape_progress && 1235 bio->bi_sector + sectors > conf->reshape_progress) { 1236 /* IO spans the reshape position. Need to wait for 1237 * reshape to pass 1238 */ 1239 allow_barrier(conf); 1240 wait_event(conf->wait_barrier, 1241 conf->reshape_progress <= bio->bi_sector || 1242 conf->reshape_progress >= bio->bi_sector + sectors); 1243 wait_barrier(conf); 1244 } 1245 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1246 bio_data_dir(bio) == WRITE && 1247 (mddev->reshape_backwards 1248 ? (bio->bi_sector < conf->reshape_safe && 1249 bio->bi_sector + sectors > conf->reshape_progress) 1250 : (bio->bi_sector + sectors > conf->reshape_safe && 1251 bio->bi_sector < conf->reshape_progress))) { 1252 /* Need to update reshape_position in metadata */ 1253 mddev->reshape_position = conf->reshape_progress; 1254 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1255 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1256 md_wakeup_thread(mddev->thread); 1257 wait_event(mddev->sb_wait, 1258 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1259 1260 conf->reshape_safe = mddev->reshape_position; 1261 } 1262 1263 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1264 1265 r10_bio->master_bio = bio; 1266 r10_bio->sectors = sectors; 1267 1268 r10_bio->mddev = mddev; 1269 r10_bio->sector = bio->bi_sector; 1270 r10_bio->state = 0; 1271 1272 /* We might need to issue multiple reads to different 1273 * devices if there are bad blocks around, so we keep 1274 * track of the number of reads in bio->bi_phys_segments. 1275 * If this is 0, there is only one r10_bio and no locking 1276 * will be needed when the request completes. If it is 1277 * non-zero, then it is the number of not-completed requests. 1278 */ 1279 bio->bi_phys_segments = 0; 1280 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1281 1282 if (rw == READ) { 1283 /* 1284 * read balancing logic: 1285 */ 1286 struct md_rdev *rdev; 1287 int slot; 1288 1289 read_again: 1290 rdev = read_balance(conf, r10_bio, &max_sectors); 1291 if (!rdev) { 1292 raid_end_bio_io(r10_bio); 1293 return; 1294 } 1295 slot = r10_bio->read_slot; 1296 1297 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1298 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1299 max_sectors); 1300 1301 r10_bio->devs[slot].bio = read_bio; 1302 r10_bio->devs[slot].rdev = rdev; 1303 1304 read_bio->bi_sector = r10_bio->devs[slot].addr + 1305 choose_data_offset(r10_bio, rdev); 1306 read_bio->bi_bdev = rdev->bdev; 1307 read_bio->bi_end_io = raid10_end_read_request; 1308 read_bio->bi_rw = READ | do_sync; 1309 read_bio->bi_private = r10_bio; 1310 1311 if (max_sectors < r10_bio->sectors) { 1312 /* Could not read all from this device, so we will 1313 * need another r10_bio. 1314 */ 1315 sectors_handled = (r10_bio->sectors + max_sectors 1316 - bio->bi_sector); 1317 r10_bio->sectors = max_sectors; 1318 spin_lock_irq(&conf->device_lock); 1319 if (bio->bi_phys_segments == 0) 1320 bio->bi_phys_segments = 2; 1321 else 1322 bio->bi_phys_segments++; 1323 spin_unlock(&conf->device_lock); 1324 /* Cannot call generic_make_request directly 1325 * as that will be queued in __generic_make_request 1326 * and subsequent mempool_alloc might block 1327 * waiting for it. so hand bio over to raid10d. 1328 */ 1329 reschedule_retry(r10_bio); 1330 1331 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1332 1333 r10_bio->master_bio = bio; 1334 r10_bio->sectors = ((bio->bi_size >> 9) 1335 - sectors_handled); 1336 r10_bio->state = 0; 1337 r10_bio->mddev = mddev; 1338 r10_bio->sector = bio->bi_sector + sectors_handled; 1339 goto read_again; 1340 } else 1341 generic_make_request(read_bio); 1342 return; 1343 } 1344 1345 /* 1346 * WRITE: 1347 */ 1348 if (conf->pending_count >= max_queued_requests) { 1349 md_wakeup_thread(mddev->thread); 1350 wait_event(conf->wait_barrier, 1351 conf->pending_count < max_queued_requests); 1352 } 1353 /* first select target devices under rcu_lock and 1354 * inc refcount on their rdev. Record them by setting 1355 * bios[x] to bio 1356 * If there are known/acknowledged bad blocks on any device 1357 * on which we have seen a write error, we want to avoid 1358 * writing to those blocks. This potentially requires several 1359 * writes to write around the bad blocks. Each set of writes 1360 * gets its own r10_bio with a set of bios attached. The number 1361 * of r10_bios is recored in bio->bi_phys_segments just as with 1362 * the read case. 1363 */ 1364 1365 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1366 raid10_find_phys(conf, r10_bio); 1367 retry_write: 1368 blocked_rdev = NULL; 1369 rcu_read_lock(); 1370 max_sectors = r10_bio->sectors; 1371 1372 for (i = 0; i < conf->copies; i++) { 1373 int d = r10_bio->devs[i].devnum; 1374 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1375 struct md_rdev *rrdev = rcu_dereference( 1376 conf->mirrors[d].replacement); 1377 if (rdev == rrdev) 1378 rrdev = NULL; 1379 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1380 atomic_inc(&rdev->nr_pending); 1381 blocked_rdev = rdev; 1382 break; 1383 } 1384 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1385 atomic_inc(&rrdev->nr_pending); 1386 blocked_rdev = rrdev; 1387 break; 1388 } 1389 if (rdev && (test_bit(Faulty, &rdev->flags) 1390 || test_bit(Unmerged, &rdev->flags))) 1391 rdev = NULL; 1392 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1393 || test_bit(Unmerged, &rrdev->flags))) 1394 rrdev = NULL; 1395 1396 r10_bio->devs[i].bio = NULL; 1397 r10_bio->devs[i].repl_bio = NULL; 1398 1399 if (!rdev && !rrdev) { 1400 set_bit(R10BIO_Degraded, &r10_bio->state); 1401 continue; 1402 } 1403 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1404 sector_t first_bad; 1405 sector_t dev_sector = r10_bio->devs[i].addr; 1406 int bad_sectors; 1407 int is_bad; 1408 1409 is_bad = is_badblock(rdev, dev_sector, 1410 max_sectors, 1411 &first_bad, &bad_sectors); 1412 if (is_bad < 0) { 1413 /* Mustn't write here until the bad block 1414 * is acknowledged 1415 */ 1416 atomic_inc(&rdev->nr_pending); 1417 set_bit(BlockedBadBlocks, &rdev->flags); 1418 blocked_rdev = rdev; 1419 break; 1420 } 1421 if (is_bad && first_bad <= dev_sector) { 1422 /* Cannot write here at all */ 1423 bad_sectors -= (dev_sector - first_bad); 1424 if (bad_sectors < max_sectors) 1425 /* Mustn't write more than bad_sectors 1426 * to other devices yet 1427 */ 1428 max_sectors = bad_sectors; 1429 /* We don't set R10BIO_Degraded as that 1430 * only applies if the disk is missing, 1431 * so it might be re-added, and we want to 1432 * know to recover this chunk. 1433 * In this case the device is here, and the 1434 * fact that this chunk is not in-sync is 1435 * recorded in the bad block log. 1436 */ 1437 continue; 1438 } 1439 if (is_bad) { 1440 int good_sectors = first_bad - dev_sector; 1441 if (good_sectors < max_sectors) 1442 max_sectors = good_sectors; 1443 } 1444 } 1445 if (rdev) { 1446 r10_bio->devs[i].bio = bio; 1447 atomic_inc(&rdev->nr_pending); 1448 } 1449 if (rrdev) { 1450 r10_bio->devs[i].repl_bio = bio; 1451 atomic_inc(&rrdev->nr_pending); 1452 } 1453 } 1454 rcu_read_unlock(); 1455 1456 if (unlikely(blocked_rdev)) { 1457 /* Have to wait for this device to get unblocked, then retry */ 1458 int j; 1459 int d; 1460 1461 for (j = 0; j < i; j++) { 1462 if (r10_bio->devs[j].bio) { 1463 d = r10_bio->devs[j].devnum; 1464 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1465 } 1466 if (r10_bio->devs[j].repl_bio) { 1467 struct md_rdev *rdev; 1468 d = r10_bio->devs[j].devnum; 1469 rdev = conf->mirrors[d].replacement; 1470 if (!rdev) { 1471 /* Race with remove_disk */ 1472 smp_mb(); 1473 rdev = conf->mirrors[d].rdev; 1474 } 1475 rdev_dec_pending(rdev, mddev); 1476 } 1477 } 1478 allow_barrier(conf); 1479 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1480 wait_barrier(conf); 1481 goto retry_write; 1482 } 1483 1484 if (max_sectors < r10_bio->sectors) { 1485 /* We are splitting this into multiple parts, so 1486 * we need to prepare for allocating another r10_bio. 1487 */ 1488 r10_bio->sectors = max_sectors; 1489 spin_lock_irq(&conf->device_lock); 1490 if (bio->bi_phys_segments == 0) 1491 bio->bi_phys_segments = 2; 1492 else 1493 bio->bi_phys_segments++; 1494 spin_unlock_irq(&conf->device_lock); 1495 } 1496 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1497 1498 atomic_set(&r10_bio->remaining, 1); 1499 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1500 1501 for (i = 0; i < conf->copies; i++) { 1502 struct bio *mbio; 1503 int d = r10_bio->devs[i].devnum; 1504 if (r10_bio->devs[i].bio) { 1505 struct md_rdev *rdev = conf->mirrors[d].rdev; 1506 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1507 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1508 max_sectors); 1509 r10_bio->devs[i].bio = mbio; 1510 1511 mbio->bi_sector = (r10_bio->devs[i].addr+ 1512 choose_data_offset(r10_bio, 1513 rdev)); 1514 mbio->bi_bdev = rdev->bdev; 1515 mbio->bi_end_io = raid10_end_write_request; 1516 mbio->bi_rw = 1517 WRITE | do_sync | do_fua | do_discard | do_same; 1518 mbio->bi_private = r10_bio; 1519 1520 atomic_inc(&r10_bio->remaining); 1521 1522 cb = blk_check_plugged(raid10_unplug, mddev, 1523 sizeof(*plug)); 1524 if (cb) 1525 plug = container_of(cb, struct raid10_plug_cb, 1526 cb); 1527 else 1528 plug = NULL; 1529 spin_lock_irqsave(&conf->device_lock, flags); 1530 if (plug) { 1531 bio_list_add(&plug->pending, mbio); 1532 plug->pending_cnt++; 1533 } else { 1534 bio_list_add(&conf->pending_bio_list, mbio); 1535 conf->pending_count++; 1536 } 1537 spin_unlock_irqrestore(&conf->device_lock, flags); 1538 if (!plug) 1539 md_wakeup_thread(mddev->thread); 1540 } 1541 1542 if (r10_bio->devs[i].repl_bio) { 1543 struct md_rdev *rdev = conf->mirrors[d].replacement; 1544 if (rdev == NULL) { 1545 /* Replacement just got moved to main 'rdev' */ 1546 smp_mb(); 1547 rdev = conf->mirrors[d].rdev; 1548 } 1549 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1550 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1551 max_sectors); 1552 r10_bio->devs[i].repl_bio = mbio; 1553 1554 mbio->bi_sector = (r10_bio->devs[i].addr + 1555 choose_data_offset( 1556 r10_bio, rdev)); 1557 mbio->bi_bdev = rdev->bdev; 1558 mbio->bi_end_io = raid10_end_write_request; 1559 mbio->bi_rw = 1560 WRITE | do_sync | do_fua | do_discard | do_same; 1561 mbio->bi_private = r10_bio; 1562 1563 atomic_inc(&r10_bio->remaining); 1564 spin_lock_irqsave(&conf->device_lock, flags); 1565 bio_list_add(&conf->pending_bio_list, mbio); 1566 conf->pending_count++; 1567 spin_unlock_irqrestore(&conf->device_lock, flags); 1568 if (!mddev_check_plugged(mddev)) 1569 md_wakeup_thread(mddev->thread); 1570 } 1571 } 1572 1573 /* Don't remove the bias on 'remaining' (one_write_done) until 1574 * after checking if we need to go around again. 1575 */ 1576 1577 if (sectors_handled < (bio->bi_size >> 9)) { 1578 one_write_done(r10_bio); 1579 /* We need another r10_bio. It has already been counted 1580 * in bio->bi_phys_segments. 1581 */ 1582 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1583 1584 r10_bio->master_bio = bio; 1585 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1586 1587 r10_bio->mddev = mddev; 1588 r10_bio->sector = bio->bi_sector + sectors_handled; 1589 r10_bio->state = 0; 1590 goto retry_write; 1591 } 1592 one_write_done(r10_bio); 1593 1594 /* In case raid10d snuck in to freeze_array */ 1595 wake_up(&conf->wait_barrier); 1596 } 1597 1598 static void status(struct seq_file *seq, struct mddev *mddev) 1599 { 1600 struct r10conf *conf = mddev->private; 1601 int i; 1602 1603 if (conf->geo.near_copies < conf->geo.raid_disks) 1604 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1605 if (conf->geo.near_copies > 1) 1606 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1607 if (conf->geo.far_copies > 1) { 1608 if (conf->geo.far_offset) 1609 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1610 else 1611 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1612 } 1613 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1614 conf->geo.raid_disks - mddev->degraded); 1615 for (i = 0; i < conf->geo.raid_disks; i++) 1616 seq_printf(seq, "%s", 1617 conf->mirrors[i].rdev && 1618 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1619 seq_printf(seq, "]"); 1620 } 1621 1622 /* check if there are enough drives for 1623 * every block to appear on atleast one. 1624 * Don't consider the device numbered 'ignore' 1625 * as we might be about to remove it. 1626 */ 1627 static int _enough(struct r10conf *conf, struct geom *geo, int ignore) 1628 { 1629 int first = 0; 1630 1631 do { 1632 int n = conf->copies; 1633 int cnt = 0; 1634 int this = first; 1635 while (n--) { 1636 if (conf->mirrors[this].rdev && 1637 this != ignore) 1638 cnt++; 1639 this = (this+1) % geo->raid_disks; 1640 } 1641 if (cnt == 0) 1642 return 0; 1643 first = (first + geo->near_copies) % geo->raid_disks; 1644 } while (first != 0); 1645 return 1; 1646 } 1647 1648 static int enough(struct r10conf *conf, int ignore) 1649 { 1650 return _enough(conf, &conf->geo, ignore) && 1651 _enough(conf, &conf->prev, ignore); 1652 } 1653 1654 static void error(struct mddev *mddev, struct md_rdev *rdev) 1655 { 1656 char b[BDEVNAME_SIZE]; 1657 struct r10conf *conf = mddev->private; 1658 1659 /* 1660 * If it is not operational, then we have already marked it as dead 1661 * else if it is the last working disks, ignore the error, let the 1662 * next level up know. 1663 * else mark the drive as failed 1664 */ 1665 if (test_bit(In_sync, &rdev->flags) 1666 && !enough(conf, rdev->raid_disk)) 1667 /* 1668 * Don't fail the drive, just return an IO error. 1669 */ 1670 return; 1671 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1672 unsigned long flags; 1673 spin_lock_irqsave(&conf->device_lock, flags); 1674 mddev->degraded++; 1675 spin_unlock_irqrestore(&conf->device_lock, flags); 1676 /* 1677 * if recovery is running, make sure it aborts. 1678 */ 1679 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1680 } 1681 set_bit(Blocked, &rdev->flags); 1682 set_bit(Faulty, &rdev->flags); 1683 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1684 printk(KERN_ALERT 1685 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1686 "md/raid10:%s: Operation continuing on %d devices.\n", 1687 mdname(mddev), bdevname(rdev->bdev, b), 1688 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1689 } 1690 1691 static void print_conf(struct r10conf *conf) 1692 { 1693 int i; 1694 struct raid10_info *tmp; 1695 1696 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1697 if (!conf) { 1698 printk(KERN_DEBUG "(!conf)\n"); 1699 return; 1700 } 1701 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1702 conf->geo.raid_disks); 1703 1704 for (i = 0; i < conf->geo.raid_disks; i++) { 1705 char b[BDEVNAME_SIZE]; 1706 tmp = conf->mirrors + i; 1707 if (tmp->rdev) 1708 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1709 i, !test_bit(In_sync, &tmp->rdev->flags), 1710 !test_bit(Faulty, &tmp->rdev->flags), 1711 bdevname(tmp->rdev->bdev,b)); 1712 } 1713 } 1714 1715 static void close_sync(struct r10conf *conf) 1716 { 1717 wait_barrier(conf); 1718 allow_barrier(conf); 1719 1720 mempool_destroy(conf->r10buf_pool); 1721 conf->r10buf_pool = NULL; 1722 } 1723 1724 static int raid10_spare_active(struct mddev *mddev) 1725 { 1726 int i; 1727 struct r10conf *conf = mddev->private; 1728 struct raid10_info *tmp; 1729 int count = 0; 1730 unsigned long flags; 1731 1732 /* 1733 * Find all non-in_sync disks within the RAID10 configuration 1734 * and mark them in_sync 1735 */ 1736 for (i = 0; i < conf->geo.raid_disks; i++) { 1737 tmp = conf->mirrors + i; 1738 if (tmp->replacement 1739 && tmp->replacement->recovery_offset == MaxSector 1740 && !test_bit(Faulty, &tmp->replacement->flags) 1741 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1742 /* Replacement has just become active */ 1743 if (!tmp->rdev 1744 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1745 count++; 1746 if (tmp->rdev) { 1747 /* Replaced device not technically faulty, 1748 * but we need to be sure it gets removed 1749 * and never re-added. 1750 */ 1751 set_bit(Faulty, &tmp->rdev->flags); 1752 sysfs_notify_dirent_safe( 1753 tmp->rdev->sysfs_state); 1754 } 1755 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1756 } else if (tmp->rdev 1757 && !test_bit(Faulty, &tmp->rdev->flags) 1758 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1759 count++; 1760 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1761 } 1762 } 1763 spin_lock_irqsave(&conf->device_lock, flags); 1764 mddev->degraded -= count; 1765 spin_unlock_irqrestore(&conf->device_lock, flags); 1766 1767 print_conf(conf); 1768 return count; 1769 } 1770 1771 1772 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1773 { 1774 struct r10conf *conf = mddev->private; 1775 int err = -EEXIST; 1776 int mirror; 1777 int first = 0; 1778 int last = conf->geo.raid_disks - 1; 1779 struct request_queue *q = bdev_get_queue(rdev->bdev); 1780 1781 if (mddev->recovery_cp < MaxSector) 1782 /* only hot-add to in-sync arrays, as recovery is 1783 * very different from resync 1784 */ 1785 return -EBUSY; 1786 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1)) 1787 return -EINVAL; 1788 1789 if (rdev->raid_disk >= 0) 1790 first = last = rdev->raid_disk; 1791 1792 if (q->merge_bvec_fn) { 1793 set_bit(Unmerged, &rdev->flags); 1794 mddev->merge_check_needed = 1; 1795 } 1796 1797 if (rdev->saved_raid_disk >= first && 1798 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1799 mirror = rdev->saved_raid_disk; 1800 else 1801 mirror = first; 1802 for ( ; mirror <= last ; mirror++) { 1803 struct raid10_info *p = &conf->mirrors[mirror]; 1804 if (p->recovery_disabled == mddev->recovery_disabled) 1805 continue; 1806 if (p->rdev) { 1807 if (!test_bit(WantReplacement, &p->rdev->flags) || 1808 p->replacement != NULL) 1809 continue; 1810 clear_bit(In_sync, &rdev->flags); 1811 set_bit(Replacement, &rdev->flags); 1812 rdev->raid_disk = mirror; 1813 err = 0; 1814 disk_stack_limits(mddev->gendisk, rdev->bdev, 1815 rdev->data_offset << 9); 1816 conf->fullsync = 1; 1817 rcu_assign_pointer(p->replacement, rdev); 1818 break; 1819 } 1820 1821 disk_stack_limits(mddev->gendisk, rdev->bdev, 1822 rdev->data_offset << 9); 1823 1824 p->head_position = 0; 1825 p->recovery_disabled = mddev->recovery_disabled - 1; 1826 rdev->raid_disk = mirror; 1827 err = 0; 1828 if (rdev->saved_raid_disk != mirror) 1829 conf->fullsync = 1; 1830 rcu_assign_pointer(p->rdev, rdev); 1831 break; 1832 } 1833 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1834 /* Some requests might not have seen this new 1835 * merge_bvec_fn. We must wait for them to complete 1836 * before merging the device fully. 1837 * First we make sure any code which has tested 1838 * our function has submitted the request, then 1839 * we wait for all outstanding requests to complete. 1840 */ 1841 synchronize_sched(); 1842 raise_barrier(conf, 0); 1843 lower_barrier(conf); 1844 clear_bit(Unmerged, &rdev->flags); 1845 } 1846 md_integrity_add_rdev(rdev, mddev); 1847 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1848 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1849 1850 print_conf(conf); 1851 return err; 1852 } 1853 1854 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1855 { 1856 struct r10conf *conf = mddev->private; 1857 int err = 0; 1858 int number = rdev->raid_disk; 1859 struct md_rdev **rdevp; 1860 struct raid10_info *p = conf->mirrors + number; 1861 1862 print_conf(conf); 1863 if (rdev == p->rdev) 1864 rdevp = &p->rdev; 1865 else if (rdev == p->replacement) 1866 rdevp = &p->replacement; 1867 else 1868 return 0; 1869 1870 if (test_bit(In_sync, &rdev->flags) || 1871 atomic_read(&rdev->nr_pending)) { 1872 err = -EBUSY; 1873 goto abort; 1874 } 1875 /* Only remove faulty devices if recovery 1876 * is not possible. 1877 */ 1878 if (!test_bit(Faulty, &rdev->flags) && 1879 mddev->recovery_disabled != p->recovery_disabled && 1880 (!p->replacement || p->replacement == rdev) && 1881 number < conf->geo.raid_disks && 1882 enough(conf, -1)) { 1883 err = -EBUSY; 1884 goto abort; 1885 } 1886 *rdevp = NULL; 1887 synchronize_rcu(); 1888 if (atomic_read(&rdev->nr_pending)) { 1889 /* lost the race, try later */ 1890 err = -EBUSY; 1891 *rdevp = rdev; 1892 goto abort; 1893 } else if (p->replacement) { 1894 /* We must have just cleared 'rdev' */ 1895 p->rdev = p->replacement; 1896 clear_bit(Replacement, &p->replacement->flags); 1897 smp_mb(); /* Make sure other CPUs may see both as identical 1898 * but will never see neither -- if they are careful. 1899 */ 1900 p->replacement = NULL; 1901 clear_bit(WantReplacement, &rdev->flags); 1902 } else 1903 /* We might have just remove the Replacement as faulty 1904 * Clear the flag just in case 1905 */ 1906 clear_bit(WantReplacement, &rdev->flags); 1907 1908 err = md_integrity_register(mddev); 1909 1910 abort: 1911 1912 print_conf(conf); 1913 return err; 1914 } 1915 1916 1917 static void end_sync_read(struct bio *bio, int error) 1918 { 1919 struct r10bio *r10_bio = bio->bi_private; 1920 struct r10conf *conf = r10_bio->mddev->private; 1921 int d; 1922 1923 if (bio == r10_bio->master_bio) { 1924 /* this is a reshape read */ 1925 d = r10_bio->read_slot; /* really the read dev */ 1926 } else 1927 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1928 1929 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1930 set_bit(R10BIO_Uptodate, &r10_bio->state); 1931 else 1932 /* The write handler will notice the lack of 1933 * R10BIO_Uptodate and record any errors etc 1934 */ 1935 atomic_add(r10_bio->sectors, 1936 &conf->mirrors[d].rdev->corrected_errors); 1937 1938 /* for reconstruct, we always reschedule after a read. 1939 * for resync, only after all reads 1940 */ 1941 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1942 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1943 atomic_dec_and_test(&r10_bio->remaining)) { 1944 /* we have read all the blocks, 1945 * do the comparison in process context in raid10d 1946 */ 1947 reschedule_retry(r10_bio); 1948 } 1949 } 1950 1951 static void end_sync_request(struct r10bio *r10_bio) 1952 { 1953 struct mddev *mddev = r10_bio->mddev; 1954 1955 while (atomic_dec_and_test(&r10_bio->remaining)) { 1956 if (r10_bio->master_bio == NULL) { 1957 /* the primary of several recovery bios */ 1958 sector_t s = r10_bio->sectors; 1959 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1960 test_bit(R10BIO_WriteError, &r10_bio->state)) 1961 reschedule_retry(r10_bio); 1962 else 1963 put_buf(r10_bio); 1964 md_done_sync(mddev, s, 1); 1965 break; 1966 } else { 1967 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1968 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1969 test_bit(R10BIO_WriteError, &r10_bio->state)) 1970 reschedule_retry(r10_bio); 1971 else 1972 put_buf(r10_bio); 1973 r10_bio = r10_bio2; 1974 } 1975 } 1976 } 1977 1978 static void end_sync_write(struct bio *bio, int error) 1979 { 1980 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1981 struct r10bio *r10_bio = bio->bi_private; 1982 struct mddev *mddev = r10_bio->mddev; 1983 struct r10conf *conf = mddev->private; 1984 int d; 1985 sector_t first_bad; 1986 int bad_sectors; 1987 int slot; 1988 int repl; 1989 struct md_rdev *rdev = NULL; 1990 1991 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1992 if (repl) 1993 rdev = conf->mirrors[d].replacement; 1994 else 1995 rdev = conf->mirrors[d].rdev; 1996 1997 if (!uptodate) { 1998 if (repl) 1999 md_error(mddev, rdev); 2000 else { 2001 set_bit(WriteErrorSeen, &rdev->flags); 2002 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2003 set_bit(MD_RECOVERY_NEEDED, 2004 &rdev->mddev->recovery); 2005 set_bit(R10BIO_WriteError, &r10_bio->state); 2006 } 2007 } else if (is_badblock(rdev, 2008 r10_bio->devs[slot].addr, 2009 r10_bio->sectors, 2010 &first_bad, &bad_sectors)) 2011 set_bit(R10BIO_MadeGood, &r10_bio->state); 2012 2013 rdev_dec_pending(rdev, mddev); 2014 2015 end_sync_request(r10_bio); 2016 } 2017 2018 /* 2019 * Note: sync and recover and handled very differently for raid10 2020 * This code is for resync. 2021 * For resync, we read through virtual addresses and read all blocks. 2022 * If there is any error, we schedule a write. The lowest numbered 2023 * drive is authoritative. 2024 * However requests come for physical address, so we need to map. 2025 * For every physical address there are raid_disks/copies virtual addresses, 2026 * which is always are least one, but is not necessarly an integer. 2027 * This means that a physical address can span multiple chunks, so we may 2028 * have to submit multiple io requests for a single sync request. 2029 */ 2030 /* 2031 * We check if all blocks are in-sync and only write to blocks that 2032 * aren't in sync 2033 */ 2034 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2035 { 2036 struct r10conf *conf = mddev->private; 2037 int i, first; 2038 struct bio *tbio, *fbio; 2039 int vcnt; 2040 2041 atomic_set(&r10_bio->remaining, 1); 2042 2043 /* find the first device with a block */ 2044 for (i=0; i<conf->copies; i++) 2045 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 2046 break; 2047 2048 if (i == conf->copies) 2049 goto done; 2050 2051 first = i; 2052 fbio = r10_bio->devs[i].bio; 2053 2054 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2055 /* now find blocks with errors */ 2056 for (i=0 ; i < conf->copies ; i++) { 2057 int j, d; 2058 2059 tbio = r10_bio->devs[i].bio; 2060 2061 if (tbio->bi_end_io != end_sync_read) 2062 continue; 2063 if (i == first) 2064 continue; 2065 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 2066 /* We know that the bi_io_vec layout is the same for 2067 * both 'first' and 'i', so we just compare them. 2068 * All vec entries are PAGE_SIZE; 2069 */ 2070 for (j = 0; j < vcnt; j++) 2071 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2072 page_address(tbio->bi_io_vec[j].bv_page), 2073 fbio->bi_io_vec[j].bv_len)) 2074 break; 2075 if (j == vcnt) 2076 continue; 2077 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2078 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2079 /* Don't fix anything. */ 2080 continue; 2081 } 2082 /* Ok, we need to write this bio, either to correct an 2083 * inconsistency or to correct an unreadable block. 2084 * First we need to fixup bv_offset, bv_len and 2085 * bi_vecs, as the read request might have corrupted these 2086 */ 2087 tbio->bi_vcnt = vcnt; 2088 tbio->bi_size = r10_bio->sectors << 9; 2089 tbio->bi_idx = 0; 2090 tbio->bi_phys_segments = 0; 2091 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 2092 tbio->bi_flags |= 1 << BIO_UPTODATE; 2093 tbio->bi_next = NULL; 2094 tbio->bi_rw = WRITE; 2095 tbio->bi_private = r10_bio; 2096 tbio->bi_sector = r10_bio->devs[i].addr; 2097 2098 for (j=0; j < vcnt ; j++) { 2099 tbio->bi_io_vec[j].bv_offset = 0; 2100 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 2101 2102 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2103 page_address(fbio->bi_io_vec[j].bv_page), 2104 PAGE_SIZE); 2105 } 2106 tbio->bi_end_io = end_sync_write; 2107 2108 d = r10_bio->devs[i].devnum; 2109 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2110 atomic_inc(&r10_bio->remaining); 2111 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 2112 2113 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 2114 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2115 generic_make_request(tbio); 2116 } 2117 2118 /* Now write out to any replacement devices 2119 * that are active 2120 */ 2121 for (i = 0; i < conf->copies; i++) { 2122 int j, d; 2123 2124 tbio = r10_bio->devs[i].repl_bio; 2125 if (!tbio || !tbio->bi_end_io) 2126 continue; 2127 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2128 && r10_bio->devs[i].bio != fbio) 2129 for (j = 0; j < vcnt; j++) 2130 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2131 page_address(fbio->bi_io_vec[j].bv_page), 2132 PAGE_SIZE); 2133 d = r10_bio->devs[i].devnum; 2134 atomic_inc(&r10_bio->remaining); 2135 md_sync_acct(conf->mirrors[d].replacement->bdev, 2136 tbio->bi_size >> 9); 2137 generic_make_request(tbio); 2138 } 2139 2140 done: 2141 if (atomic_dec_and_test(&r10_bio->remaining)) { 2142 md_done_sync(mddev, r10_bio->sectors, 1); 2143 put_buf(r10_bio); 2144 } 2145 } 2146 2147 /* 2148 * Now for the recovery code. 2149 * Recovery happens across physical sectors. 2150 * We recover all non-is_sync drives by finding the virtual address of 2151 * each, and then choose a working drive that also has that virt address. 2152 * There is a separate r10_bio for each non-in_sync drive. 2153 * Only the first two slots are in use. The first for reading, 2154 * The second for writing. 2155 * 2156 */ 2157 static void fix_recovery_read_error(struct r10bio *r10_bio) 2158 { 2159 /* We got a read error during recovery. 2160 * We repeat the read in smaller page-sized sections. 2161 * If a read succeeds, write it to the new device or record 2162 * a bad block if we cannot. 2163 * If a read fails, record a bad block on both old and 2164 * new devices. 2165 */ 2166 struct mddev *mddev = r10_bio->mddev; 2167 struct r10conf *conf = mddev->private; 2168 struct bio *bio = r10_bio->devs[0].bio; 2169 sector_t sect = 0; 2170 int sectors = r10_bio->sectors; 2171 int idx = 0; 2172 int dr = r10_bio->devs[0].devnum; 2173 int dw = r10_bio->devs[1].devnum; 2174 2175 while (sectors) { 2176 int s = sectors; 2177 struct md_rdev *rdev; 2178 sector_t addr; 2179 int ok; 2180 2181 if (s > (PAGE_SIZE>>9)) 2182 s = PAGE_SIZE >> 9; 2183 2184 rdev = conf->mirrors[dr].rdev; 2185 addr = r10_bio->devs[0].addr + sect, 2186 ok = sync_page_io(rdev, 2187 addr, 2188 s << 9, 2189 bio->bi_io_vec[idx].bv_page, 2190 READ, false); 2191 if (ok) { 2192 rdev = conf->mirrors[dw].rdev; 2193 addr = r10_bio->devs[1].addr + sect; 2194 ok = sync_page_io(rdev, 2195 addr, 2196 s << 9, 2197 bio->bi_io_vec[idx].bv_page, 2198 WRITE, false); 2199 if (!ok) { 2200 set_bit(WriteErrorSeen, &rdev->flags); 2201 if (!test_and_set_bit(WantReplacement, 2202 &rdev->flags)) 2203 set_bit(MD_RECOVERY_NEEDED, 2204 &rdev->mddev->recovery); 2205 } 2206 } 2207 if (!ok) { 2208 /* We don't worry if we cannot set a bad block - 2209 * it really is bad so there is no loss in not 2210 * recording it yet 2211 */ 2212 rdev_set_badblocks(rdev, addr, s, 0); 2213 2214 if (rdev != conf->mirrors[dw].rdev) { 2215 /* need bad block on destination too */ 2216 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2217 addr = r10_bio->devs[1].addr + sect; 2218 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2219 if (!ok) { 2220 /* just abort the recovery */ 2221 printk(KERN_NOTICE 2222 "md/raid10:%s: recovery aborted" 2223 " due to read error\n", 2224 mdname(mddev)); 2225 2226 conf->mirrors[dw].recovery_disabled 2227 = mddev->recovery_disabled; 2228 set_bit(MD_RECOVERY_INTR, 2229 &mddev->recovery); 2230 break; 2231 } 2232 } 2233 } 2234 2235 sectors -= s; 2236 sect += s; 2237 idx++; 2238 } 2239 } 2240 2241 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2242 { 2243 struct r10conf *conf = mddev->private; 2244 int d; 2245 struct bio *wbio, *wbio2; 2246 2247 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2248 fix_recovery_read_error(r10_bio); 2249 end_sync_request(r10_bio); 2250 return; 2251 } 2252 2253 /* 2254 * share the pages with the first bio 2255 * and submit the write request 2256 */ 2257 d = r10_bio->devs[1].devnum; 2258 wbio = r10_bio->devs[1].bio; 2259 wbio2 = r10_bio->devs[1].repl_bio; 2260 if (wbio->bi_end_io) { 2261 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2262 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 2263 generic_make_request(wbio); 2264 } 2265 if (wbio2 && wbio2->bi_end_io) { 2266 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2267 md_sync_acct(conf->mirrors[d].replacement->bdev, 2268 wbio2->bi_size >> 9); 2269 generic_make_request(wbio2); 2270 } 2271 } 2272 2273 2274 /* 2275 * Used by fix_read_error() to decay the per rdev read_errors. 2276 * We halve the read error count for every hour that has elapsed 2277 * since the last recorded read error. 2278 * 2279 */ 2280 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2281 { 2282 struct timespec cur_time_mon; 2283 unsigned long hours_since_last; 2284 unsigned int read_errors = atomic_read(&rdev->read_errors); 2285 2286 ktime_get_ts(&cur_time_mon); 2287 2288 if (rdev->last_read_error.tv_sec == 0 && 2289 rdev->last_read_error.tv_nsec == 0) { 2290 /* first time we've seen a read error */ 2291 rdev->last_read_error = cur_time_mon; 2292 return; 2293 } 2294 2295 hours_since_last = (cur_time_mon.tv_sec - 2296 rdev->last_read_error.tv_sec) / 3600; 2297 2298 rdev->last_read_error = cur_time_mon; 2299 2300 /* 2301 * if hours_since_last is > the number of bits in read_errors 2302 * just set read errors to 0. We do this to avoid 2303 * overflowing the shift of read_errors by hours_since_last. 2304 */ 2305 if (hours_since_last >= 8 * sizeof(read_errors)) 2306 atomic_set(&rdev->read_errors, 0); 2307 else 2308 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2309 } 2310 2311 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2312 int sectors, struct page *page, int rw) 2313 { 2314 sector_t first_bad; 2315 int bad_sectors; 2316 2317 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2318 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2319 return -1; 2320 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2321 /* success */ 2322 return 1; 2323 if (rw == WRITE) { 2324 set_bit(WriteErrorSeen, &rdev->flags); 2325 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2326 set_bit(MD_RECOVERY_NEEDED, 2327 &rdev->mddev->recovery); 2328 } 2329 /* need to record an error - either for the block or the device */ 2330 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2331 md_error(rdev->mddev, rdev); 2332 return 0; 2333 } 2334 2335 /* 2336 * This is a kernel thread which: 2337 * 2338 * 1. Retries failed read operations on working mirrors. 2339 * 2. Updates the raid superblock when problems encounter. 2340 * 3. Performs writes following reads for array synchronising. 2341 */ 2342 2343 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2344 { 2345 int sect = 0; /* Offset from r10_bio->sector */ 2346 int sectors = r10_bio->sectors; 2347 struct md_rdev*rdev; 2348 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2349 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2350 2351 /* still own a reference to this rdev, so it cannot 2352 * have been cleared recently. 2353 */ 2354 rdev = conf->mirrors[d].rdev; 2355 2356 if (test_bit(Faulty, &rdev->flags)) 2357 /* drive has already been failed, just ignore any 2358 more fix_read_error() attempts */ 2359 return; 2360 2361 check_decay_read_errors(mddev, rdev); 2362 atomic_inc(&rdev->read_errors); 2363 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2364 char b[BDEVNAME_SIZE]; 2365 bdevname(rdev->bdev, b); 2366 2367 printk(KERN_NOTICE 2368 "md/raid10:%s: %s: Raid device exceeded " 2369 "read_error threshold [cur %d:max %d]\n", 2370 mdname(mddev), b, 2371 atomic_read(&rdev->read_errors), max_read_errors); 2372 printk(KERN_NOTICE 2373 "md/raid10:%s: %s: Failing raid device\n", 2374 mdname(mddev), b); 2375 md_error(mddev, conf->mirrors[d].rdev); 2376 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2377 return; 2378 } 2379 2380 while(sectors) { 2381 int s = sectors; 2382 int sl = r10_bio->read_slot; 2383 int success = 0; 2384 int start; 2385 2386 if (s > (PAGE_SIZE>>9)) 2387 s = PAGE_SIZE >> 9; 2388 2389 rcu_read_lock(); 2390 do { 2391 sector_t first_bad; 2392 int bad_sectors; 2393 2394 d = r10_bio->devs[sl].devnum; 2395 rdev = rcu_dereference(conf->mirrors[d].rdev); 2396 if (rdev && 2397 !test_bit(Unmerged, &rdev->flags) && 2398 test_bit(In_sync, &rdev->flags) && 2399 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2400 &first_bad, &bad_sectors) == 0) { 2401 atomic_inc(&rdev->nr_pending); 2402 rcu_read_unlock(); 2403 success = sync_page_io(rdev, 2404 r10_bio->devs[sl].addr + 2405 sect, 2406 s<<9, 2407 conf->tmppage, READ, false); 2408 rdev_dec_pending(rdev, mddev); 2409 rcu_read_lock(); 2410 if (success) 2411 break; 2412 } 2413 sl++; 2414 if (sl == conf->copies) 2415 sl = 0; 2416 } while (!success && sl != r10_bio->read_slot); 2417 rcu_read_unlock(); 2418 2419 if (!success) { 2420 /* Cannot read from anywhere, just mark the block 2421 * as bad on the first device to discourage future 2422 * reads. 2423 */ 2424 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2425 rdev = conf->mirrors[dn].rdev; 2426 2427 if (!rdev_set_badblocks( 2428 rdev, 2429 r10_bio->devs[r10_bio->read_slot].addr 2430 + sect, 2431 s, 0)) { 2432 md_error(mddev, rdev); 2433 r10_bio->devs[r10_bio->read_slot].bio 2434 = IO_BLOCKED; 2435 } 2436 break; 2437 } 2438 2439 start = sl; 2440 /* write it back and re-read */ 2441 rcu_read_lock(); 2442 while (sl != r10_bio->read_slot) { 2443 char b[BDEVNAME_SIZE]; 2444 2445 if (sl==0) 2446 sl = conf->copies; 2447 sl--; 2448 d = r10_bio->devs[sl].devnum; 2449 rdev = rcu_dereference(conf->mirrors[d].rdev); 2450 if (!rdev || 2451 test_bit(Unmerged, &rdev->flags) || 2452 !test_bit(In_sync, &rdev->flags)) 2453 continue; 2454 2455 atomic_inc(&rdev->nr_pending); 2456 rcu_read_unlock(); 2457 if (r10_sync_page_io(rdev, 2458 r10_bio->devs[sl].addr + 2459 sect, 2460 s, conf->tmppage, WRITE) 2461 == 0) { 2462 /* Well, this device is dead */ 2463 printk(KERN_NOTICE 2464 "md/raid10:%s: read correction " 2465 "write failed" 2466 " (%d sectors at %llu on %s)\n", 2467 mdname(mddev), s, 2468 (unsigned long long)( 2469 sect + 2470 choose_data_offset(r10_bio, 2471 rdev)), 2472 bdevname(rdev->bdev, b)); 2473 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2474 "drive\n", 2475 mdname(mddev), 2476 bdevname(rdev->bdev, b)); 2477 } 2478 rdev_dec_pending(rdev, mddev); 2479 rcu_read_lock(); 2480 } 2481 sl = start; 2482 while (sl != r10_bio->read_slot) { 2483 char b[BDEVNAME_SIZE]; 2484 2485 if (sl==0) 2486 sl = conf->copies; 2487 sl--; 2488 d = r10_bio->devs[sl].devnum; 2489 rdev = rcu_dereference(conf->mirrors[d].rdev); 2490 if (!rdev || 2491 !test_bit(In_sync, &rdev->flags)) 2492 continue; 2493 2494 atomic_inc(&rdev->nr_pending); 2495 rcu_read_unlock(); 2496 switch (r10_sync_page_io(rdev, 2497 r10_bio->devs[sl].addr + 2498 sect, 2499 s, conf->tmppage, 2500 READ)) { 2501 case 0: 2502 /* Well, this device is dead */ 2503 printk(KERN_NOTICE 2504 "md/raid10:%s: unable to read back " 2505 "corrected sectors" 2506 " (%d sectors at %llu on %s)\n", 2507 mdname(mddev), s, 2508 (unsigned long long)( 2509 sect + 2510 choose_data_offset(r10_bio, rdev)), 2511 bdevname(rdev->bdev, b)); 2512 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2513 "drive\n", 2514 mdname(mddev), 2515 bdevname(rdev->bdev, b)); 2516 break; 2517 case 1: 2518 printk(KERN_INFO 2519 "md/raid10:%s: read error corrected" 2520 " (%d sectors at %llu on %s)\n", 2521 mdname(mddev), s, 2522 (unsigned long long)( 2523 sect + 2524 choose_data_offset(r10_bio, rdev)), 2525 bdevname(rdev->bdev, b)); 2526 atomic_add(s, &rdev->corrected_errors); 2527 } 2528 2529 rdev_dec_pending(rdev, mddev); 2530 rcu_read_lock(); 2531 } 2532 rcu_read_unlock(); 2533 2534 sectors -= s; 2535 sect += s; 2536 } 2537 } 2538 2539 static void bi_complete(struct bio *bio, int error) 2540 { 2541 complete((struct completion *)bio->bi_private); 2542 } 2543 2544 static int submit_bio_wait(int rw, struct bio *bio) 2545 { 2546 struct completion event; 2547 rw |= REQ_SYNC; 2548 2549 init_completion(&event); 2550 bio->bi_private = &event; 2551 bio->bi_end_io = bi_complete; 2552 submit_bio(rw, bio); 2553 wait_for_completion(&event); 2554 2555 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2556 } 2557 2558 static int narrow_write_error(struct r10bio *r10_bio, int i) 2559 { 2560 struct bio *bio = r10_bio->master_bio; 2561 struct mddev *mddev = r10_bio->mddev; 2562 struct r10conf *conf = mddev->private; 2563 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2564 /* bio has the data to be written to slot 'i' where 2565 * we just recently had a write error. 2566 * We repeatedly clone the bio and trim down to one block, 2567 * then try the write. Where the write fails we record 2568 * a bad block. 2569 * It is conceivable that the bio doesn't exactly align with 2570 * blocks. We must handle this. 2571 * 2572 * We currently own a reference to the rdev. 2573 */ 2574 2575 int block_sectors; 2576 sector_t sector; 2577 int sectors; 2578 int sect_to_write = r10_bio->sectors; 2579 int ok = 1; 2580 2581 if (rdev->badblocks.shift < 0) 2582 return 0; 2583 2584 block_sectors = 1 << rdev->badblocks.shift; 2585 sector = r10_bio->sector; 2586 sectors = ((r10_bio->sector + block_sectors) 2587 & ~(sector_t)(block_sectors - 1)) 2588 - sector; 2589 2590 while (sect_to_write) { 2591 struct bio *wbio; 2592 if (sectors > sect_to_write) 2593 sectors = sect_to_write; 2594 /* Write at 'sector' for 'sectors' */ 2595 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2596 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2597 wbio->bi_sector = (r10_bio->devs[i].addr+ 2598 choose_data_offset(r10_bio, rdev) + 2599 (sector - r10_bio->sector)); 2600 wbio->bi_bdev = rdev->bdev; 2601 if (submit_bio_wait(WRITE, wbio) == 0) 2602 /* Failure! */ 2603 ok = rdev_set_badblocks(rdev, sector, 2604 sectors, 0) 2605 && ok; 2606 2607 bio_put(wbio); 2608 sect_to_write -= sectors; 2609 sector += sectors; 2610 sectors = block_sectors; 2611 } 2612 return ok; 2613 } 2614 2615 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2616 { 2617 int slot = r10_bio->read_slot; 2618 struct bio *bio; 2619 struct r10conf *conf = mddev->private; 2620 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2621 char b[BDEVNAME_SIZE]; 2622 unsigned long do_sync; 2623 int max_sectors; 2624 2625 /* we got a read error. Maybe the drive is bad. Maybe just 2626 * the block and we can fix it. 2627 * We freeze all other IO, and try reading the block from 2628 * other devices. When we find one, we re-write 2629 * and check it that fixes the read error. 2630 * This is all done synchronously while the array is 2631 * frozen. 2632 */ 2633 bio = r10_bio->devs[slot].bio; 2634 bdevname(bio->bi_bdev, b); 2635 bio_put(bio); 2636 r10_bio->devs[slot].bio = NULL; 2637 2638 if (mddev->ro == 0) { 2639 freeze_array(conf); 2640 fix_read_error(conf, mddev, r10_bio); 2641 unfreeze_array(conf); 2642 } else 2643 r10_bio->devs[slot].bio = IO_BLOCKED; 2644 2645 rdev_dec_pending(rdev, mddev); 2646 2647 read_more: 2648 rdev = read_balance(conf, r10_bio, &max_sectors); 2649 if (rdev == NULL) { 2650 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2651 " read error for block %llu\n", 2652 mdname(mddev), b, 2653 (unsigned long long)r10_bio->sector); 2654 raid_end_bio_io(r10_bio); 2655 return; 2656 } 2657 2658 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2659 slot = r10_bio->read_slot; 2660 printk_ratelimited( 2661 KERN_ERR 2662 "md/raid10:%s: %s: redirecting " 2663 "sector %llu to another mirror\n", 2664 mdname(mddev), 2665 bdevname(rdev->bdev, b), 2666 (unsigned long long)r10_bio->sector); 2667 bio = bio_clone_mddev(r10_bio->master_bio, 2668 GFP_NOIO, mddev); 2669 md_trim_bio(bio, 2670 r10_bio->sector - bio->bi_sector, 2671 max_sectors); 2672 r10_bio->devs[slot].bio = bio; 2673 r10_bio->devs[slot].rdev = rdev; 2674 bio->bi_sector = r10_bio->devs[slot].addr 2675 + choose_data_offset(r10_bio, rdev); 2676 bio->bi_bdev = rdev->bdev; 2677 bio->bi_rw = READ | do_sync; 2678 bio->bi_private = r10_bio; 2679 bio->bi_end_io = raid10_end_read_request; 2680 if (max_sectors < r10_bio->sectors) { 2681 /* Drat - have to split this up more */ 2682 struct bio *mbio = r10_bio->master_bio; 2683 int sectors_handled = 2684 r10_bio->sector + max_sectors 2685 - mbio->bi_sector; 2686 r10_bio->sectors = max_sectors; 2687 spin_lock_irq(&conf->device_lock); 2688 if (mbio->bi_phys_segments == 0) 2689 mbio->bi_phys_segments = 2; 2690 else 2691 mbio->bi_phys_segments++; 2692 spin_unlock_irq(&conf->device_lock); 2693 generic_make_request(bio); 2694 2695 r10_bio = mempool_alloc(conf->r10bio_pool, 2696 GFP_NOIO); 2697 r10_bio->master_bio = mbio; 2698 r10_bio->sectors = (mbio->bi_size >> 9) 2699 - sectors_handled; 2700 r10_bio->state = 0; 2701 set_bit(R10BIO_ReadError, 2702 &r10_bio->state); 2703 r10_bio->mddev = mddev; 2704 r10_bio->sector = mbio->bi_sector 2705 + sectors_handled; 2706 2707 goto read_more; 2708 } else 2709 generic_make_request(bio); 2710 } 2711 2712 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2713 { 2714 /* Some sort of write request has finished and it 2715 * succeeded in writing where we thought there was a 2716 * bad block. So forget the bad block. 2717 * Or possibly if failed and we need to record 2718 * a bad block. 2719 */ 2720 int m; 2721 struct md_rdev *rdev; 2722 2723 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2724 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2725 for (m = 0; m < conf->copies; m++) { 2726 int dev = r10_bio->devs[m].devnum; 2727 rdev = conf->mirrors[dev].rdev; 2728 if (r10_bio->devs[m].bio == NULL) 2729 continue; 2730 if (test_bit(BIO_UPTODATE, 2731 &r10_bio->devs[m].bio->bi_flags)) { 2732 rdev_clear_badblocks( 2733 rdev, 2734 r10_bio->devs[m].addr, 2735 r10_bio->sectors, 0); 2736 } else { 2737 if (!rdev_set_badblocks( 2738 rdev, 2739 r10_bio->devs[m].addr, 2740 r10_bio->sectors, 0)) 2741 md_error(conf->mddev, rdev); 2742 } 2743 rdev = conf->mirrors[dev].replacement; 2744 if (r10_bio->devs[m].repl_bio == NULL) 2745 continue; 2746 if (test_bit(BIO_UPTODATE, 2747 &r10_bio->devs[m].repl_bio->bi_flags)) { 2748 rdev_clear_badblocks( 2749 rdev, 2750 r10_bio->devs[m].addr, 2751 r10_bio->sectors, 0); 2752 } else { 2753 if (!rdev_set_badblocks( 2754 rdev, 2755 r10_bio->devs[m].addr, 2756 r10_bio->sectors, 0)) 2757 md_error(conf->mddev, rdev); 2758 } 2759 } 2760 put_buf(r10_bio); 2761 } else { 2762 for (m = 0; m < conf->copies; m++) { 2763 int dev = r10_bio->devs[m].devnum; 2764 struct bio *bio = r10_bio->devs[m].bio; 2765 rdev = conf->mirrors[dev].rdev; 2766 if (bio == IO_MADE_GOOD) { 2767 rdev_clear_badblocks( 2768 rdev, 2769 r10_bio->devs[m].addr, 2770 r10_bio->sectors, 0); 2771 rdev_dec_pending(rdev, conf->mddev); 2772 } else if (bio != NULL && 2773 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2774 if (!narrow_write_error(r10_bio, m)) { 2775 md_error(conf->mddev, rdev); 2776 set_bit(R10BIO_Degraded, 2777 &r10_bio->state); 2778 } 2779 rdev_dec_pending(rdev, conf->mddev); 2780 } 2781 bio = r10_bio->devs[m].repl_bio; 2782 rdev = conf->mirrors[dev].replacement; 2783 if (rdev && bio == IO_MADE_GOOD) { 2784 rdev_clear_badblocks( 2785 rdev, 2786 r10_bio->devs[m].addr, 2787 r10_bio->sectors, 0); 2788 rdev_dec_pending(rdev, conf->mddev); 2789 } 2790 } 2791 if (test_bit(R10BIO_WriteError, 2792 &r10_bio->state)) 2793 close_write(r10_bio); 2794 raid_end_bio_io(r10_bio); 2795 } 2796 } 2797 2798 static void raid10d(struct md_thread *thread) 2799 { 2800 struct mddev *mddev = thread->mddev; 2801 struct r10bio *r10_bio; 2802 unsigned long flags; 2803 struct r10conf *conf = mddev->private; 2804 struct list_head *head = &conf->retry_list; 2805 struct blk_plug plug; 2806 2807 md_check_recovery(mddev); 2808 2809 blk_start_plug(&plug); 2810 for (;;) { 2811 2812 flush_pending_writes(conf); 2813 2814 spin_lock_irqsave(&conf->device_lock, flags); 2815 if (list_empty(head)) { 2816 spin_unlock_irqrestore(&conf->device_lock, flags); 2817 break; 2818 } 2819 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2820 list_del(head->prev); 2821 conf->nr_queued--; 2822 spin_unlock_irqrestore(&conf->device_lock, flags); 2823 2824 mddev = r10_bio->mddev; 2825 conf = mddev->private; 2826 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2827 test_bit(R10BIO_WriteError, &r10_bio->state)) 2828 handle_write_completed(conf, r10_bio); 2829 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2830 reshape_request_write(mddev, r10_bio); 2831 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2832 sync_request_write(mddev, r10_bio); 2833 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2834 recovery_request_write(mddev, r10_bio); 2835 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2836 handle_read_error(mddev, r10_bio); 2837 else { 2838 /* just a partial read to be scheduled from a 2839 * separate context 2840 */ 2841 int slot = r10_bio->read_slot; 2842 generic_make_request(r10_bio->devs[slot].bio); 2843 } 2844 2845 cond_resched(); 2846 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2847 md_check_recovery(mddev); 2848 } 2849 blk_finish_plug(&plug); 2850 } 2851 2852 2853 static int init_resync(struct r10conf *conf) 2854 { 2855 int buffs; 2856 int i; 2857 2858 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2859 BUG_ON(conf->r10buf_pool); 2860 conf->have_replacement = 0; 2861 for (i = 0; i < conf->geo.raid_disks; i++) 2862 if (conf->mirrors[i].replacement) 2863 conf->have_replacement = 1; 2864 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2865 if (!conf->r10buf_pool) 2866 return -ENOMEM; 2867 conf->next_resync = 0; 2868 return 0; 2869 } 2870 2871 /* 2872 * perform a "sync" on one "block" 2873 * 2874 * We need to make sure that no normal I/O request - particularly write 2875 * requests - conflict with active sync requests. 2876 * 2877 * This is achieved by tracking pending requests and a 'barrier' concept 2878 * that can be installed to exclude normal IO requests. 2879 * 2880 * Resync and recovery are handled very differently. 2881 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2882 * 2883 * For resync, we iterate over virtual addresses, read all copies, 2884 * and update if there are differences. If only one copy is live, 2885 * skip it. 2886 * For recovery, we iterate over physical addresses, read a good 2887 * value for each non-in_sync drive, and over-write. 2888 * 2889 * So, for recovery we may have several outstanding complex requests for a 2890 * given address, one for each out-of-sync device. We model this by allocating 2891 * a number of r10_bio structures, one for each out-of-sync device. 2892 * As we setup these structures, we collect all bio's together into a list 2893 * which we then process collectively to add pages, and then process again 2894 * to pass to generic_make_request. 2895 * 2896 * The r10_bio structures are linked using a borrowed master_bio pointer. 2897 * This link is counted in ->remaining. When the r10_bio that points to NULL 2898 * has its remaining count decremented to 0, the whole complex operation 2899 * is complete. 2900 * 2901 */ 2902 2903 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2904 int *skipped, int go_faster) 2905 { 2906 struct r10conf *conf = mddev->private; 2907 struct r10bio *r10_bio; 2908 struct bio *biolist = NULL, *bio; 2909 sector_t max_sector, nr_sectors; 2910 int i; 2911 int max_sync; 2912 sector_t sync_blocks; 2913 sector_t sectors_skipped = 0; 2914 int chunks_skipped = 0; 2915 sector_t chunk_mask = conf->geo.chunk_mask; 2916 2917 if (!conf->r10buf_pool) 2918 if (init_resync(conf)) 2919 return 0; 2920 2921 /* 2922 * Allow skipping a full rebuild for incremental assembly 2923 * of a clean array, like RAID1 does. 2924 */ 2925 if (mddev->bitmap == NULL && 2926 mddev->recovery_cp == MaxSector && 2927 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2928 conf->fullsync == 0) { 2929 *skipped = 1; 2930 max_sector = mddev->dev_sectors; 2931 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2932 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2933 max_sector = mddev->resync_max_sectors; 2934 return max_sector - sector_nr; 2935 } 2936 2937 skipped: 2938 max_sector = mddev->dev_sectors; 2939 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2940 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2941 max_sector = mddev->resync_max_sectors; 2942 if (sector_nr >= max_sector) { 2943 /* If we aborted, we need to abort the 2944 * sync on the 'current' bitmap chucks (there can 2945 * be several when recovering multiple devices). 2946 * as we may have started syncing it but not finished. 2947 * We can find the current address in 2948 * mddev->curr_resync, but for recovery, 2949 * we need to convert that to several 2950 * virtual addresses. 2951 */ 2952 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2953 end_reshape(conf); 2954 return 0; 2955 } 2956 2957 if (mddev->curr_resync < max_sector) { /* aborted */ 2958 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2959 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2960 &sync_blocks, 1); 2961 else for (i = 0; i < conf->geo.raid_disks; i++) { 2962 sector_t sect = 2963 raid10_find_virt(conf, mddev->curr_resync, i); 2964 bitmap_end_sync(mddev->bitmap, sect, 2965 &sync_blocks, 1); 2966 } 2967 } else { 2968 /* completed sync */ 2969 if ((!mddev->bitmap || conf->fullsync) 2970 && conf->have_replacement 2971 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2972 /* Completed a full sync so the replacements 2973 * are now fully recovered. 2974 */ 2975 for (i = 0; i < conf->geo.raid_disks; i++) 2976 if (conf->mirrors[i].replacement) 2977 conf->mirrors[i].replacement 2978 ->recovery_offset 2979 = MaxSector; 2980 } 2981 conf->fullsync = 0; 2982 } 2983 bitmap_close_sync(mddev->bitmap); 2984 close_sync(conf); 2985 *skipped = 1; 2986 return sectors_skipped; 2987 } 2988 2989 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2990 return reshape_request(mddev, sector_nr, skipped); 2991 2992 if (chunks_skipped >= conf->geo.raid_disks) { 2993 /* if there has been nothing to do on any drive, 2994 * then there is nothing to do at all.. 2995 */ 2996 *skipped = 1; 2997 return (max_sector - sector_nr) + sectors_skipped; 2998 } 2999 3000 if (max_sector > mddev->resync_max) 3001 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3002 3003 /* make sure whole request will fit in a chunk - if chunks 3004 * are meaningful 3005 */ 3006 if (conf->geo.near_copies < conf->geo.raid_disks && 3007 max_sector > (sector_nr | chunk_mask)) 3008 max_sector = (sector_nr | chunk_mask) + 1; 3009 /* 3010 * If there is non-resync activity waiting for us then 3011 * put in a delay to throttle resync. 3012 */ 3013 if (!go_faster && conf->nr_waiting) 3014 msleep_interruptible(1000); 3015 3016 /* Again, very different code for resync and recovery. 3017 * Both must result in an r10bio with a list of bios that 3018 * have bi_end_io, bi_sector, bi_bdev set, 3019 * and bi_private set to the r10bio. 3020 * For recovery, we may actually create several r10bios 3021 * with 2 bios in each, that correspond to the bios in the main one. 3022 * In this case, the subordinate r10bios link back through a 3023 * borrowed master_bio pointer, and the counter in the master 3024 * includes a ref from each subordinate. 3025 */ 3026 /* First, we decide what to do and set ->bi_end_io 3027 * To end_sync_read if we want to read, and 3028 * end_sync_write if we will want to write. 3029 */ 3030 3031 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3032 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3033 /* recovery... the complicated one */ 3034 int j; 3035 r10_bio = NULL; 3036 3037 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3038 int still_degraded; 3039 struct r10bio *rb2; 3040 sector_t sect; 3041 int must_sync; 3042 int any_working; 3043 struct raid10_info *mirror = &conf->mirrors[i]; 3044 3045 if ((mirror->rdev == NULL || 3046 test_bit(In_sync, &mirror->rdev->flags)) 3047 && 3048 (mirror->replacement == NULL || 3049 test_bit(Faulty, 3050 &mirror->replacement->flags))) 3051 continue; 3052 3053 still_degraded = 0; 3054 /* want to reconstruct this device */ 3055 rb2 = r10_bio; 3056 sect = raid10_find_virt(conf, sector_nr, i); 3057 if (sect >= mddev->resync_max_sectors) { 3058 /* last stripe is not complete - don't 3059 * try to recover this sector. 3060 */ 3061 continue; 3062 } 3063 /* Unless we are doing a full sync, or a replacement 3064 * we only need to recover the block if it is set in 3065 * the bitmap 3066 */ 3067 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3068 &sync_blocks, 1); 3069 if (sync_blocks < max_sync) 3070 max_sync = sync_blocks; 3071 if (!must_sync && 3072 mirror->replacement == NULL && 3073 !conf->fullsync) { 3074 /* yep, skip the sync_blocks here, but don't assume 3075 * that there will never be anything to do here 3076 */ 3077 chunks_skipped = -1; 3078 continue; 3079 } 3080 3081 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3082 raise_barrier(conf, rb2 != NULL); 3083 atomic_set(&r10_bio->remaining, 0); 3084 3085 r10_bio->master_bio = (struct bio*)rb2; 3086 if (rb2) 3087 atomic_inc(&rb2->remaining); 3088 r10_bio->mddev = mddev; 3089 set_bit(R10BIO_IsRecover, &r10_bio->state); 3090 r10_bio->sector = sect; 3091 3092 raid10_find_phys(conf, r10_bio); 3093 3094 /* Need to check if the array will still be 3095 * degraded 3096 */ 3097 for (j = 0; j < conf->geo.raid_disks; j++) 3098 if (conf->mirrors[j].rdev == NULL || 3099 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 3100 still_degraded = 1; 3101 break; 3102 } 3103 3104 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3105 &sync_blocks, still_degraded); 3106 3107 any_working = 0; 3108 for (j=0; j<conf->copies;j++) { 3109 int k; 3110 int d = r10_bio->devs[j].devnum; 3111 sector_t from_addr, to_addr; 3112 struct md_rdev *rdev; 3113 sector_t sector, first_bad; 3114 int bad_sectors; 3115 if (!conf->mirrors[d].rdev || 3116 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3117 continue; 3118 /* This is where we read from */ 3119 any_working = 1; 3120 rdev = conf->mirrors[d].rdev; 3121 sector = r10_bio->devs[j].addr; 3122 3123 if (is_badblock(rdev, sector, max_sync, 3124 &first_bad, &bad_sectors)) { 3125 if (first_bad > sector) 3126 max_sync = first_bad - sector; 3127 else { 3128 bad_sectors -= (sector 3129 - first_bad); 3130 if (max_sync > bad_sectors) 3131 max_sync = bad_sectors; 3132 continue; 3133 } 3134 } 3135 bio = r10_bio->devs[0].bio; 3136 bio->bi_next = biolist; 3137 biolist = bio; 3138 bio->bi_private = r10_bio; 3139 bio->bi_end_io = end_sync_read; 3140 bio->bi_rw = READ; 3141 from_addr = r10_bio->devs[j].addr; 3142 bio->bi_sector = from_addr + rdev->data_offset; 3143 bio->bi_bdev = rdev->bdev; 3144 atomic_inc(&rdev->nr_pending); 3145 /* and we write to 'i' (if not in_sync) */ 3146 3147 for (k=0; k<conf->copies; k++) 3148 if (r10_bio->devs[k].devnum == i) 3149 break; 3150 BUG_ON(k == conf->copies); 3151 to_addr = r10_bio->devs[k].addr; 3152 r10_bio->devs[0].devnum = d; 3153 r10_bio->devs[0].addr = from_addr; 3154 r10_bio->devs[1].devnum = i; 3155 r10_bio->devs[1].addr = to_addr; 3156 3157 rdev = mirror->rdev; 3158 if (!test_bit(In_sync, &rdev->flags)) { 3159 bio = r10_bio->devs[1].bio; 3160 bio->bi_next = biolist; 3161 biolist = bio; 3162 bio->bi_private = r10_bio; 3163 bio->bi_end_io = end_sync_write; 3164 bio->bi_rw = WRITE; 3165 bio->bi_sector = to_addr 3166 + rdev->data_offset; 3167 bio->bi_bdev = rdev->bdev; 3168 atomic_inc(&r10_bio->remaining); 3169 } else 3170 r10_bio->devs[1].bio->bi_end_io = NULL; 3171 3172 /* and maybe write to replacement */ 3173 bio = r10_bio->devs[1].repl_bio; 3174 if (bio) 3175 bio->bi_end_io = NULL; 3176 rdev = mirror->replacement; 3177 /* Note: if rdev != NULL, then bio 3178 * cannot be NULL as r10buf_pool_alloc will 3179 * have allocated it. 3180 * So the second test here is pointless. 3181 * But it keeps semantic-checkers happy, and 3182 * this comment keeps human reviewers 3183 * happy. 3184 */ 3185 if (rdev == NULL || bio == NULL || 3186 test_bit(Faulty, &rdev->flags)) 3187 break; 3188 bio->bi_next = biolist; 3189 biolist = bio; 3190 bio->bi_private = r10_bio; 3191 bio->bi_end_io = end_sync_write; 3192 bio->bi_rw = WRITE; 3193 bio->bi_sector = to_addr + rdev->data_offset; 3194 bio->bi_bdev = rdev->bdev; 3195 atomic_inc(&r10_bio->remaining); 3196 break; 3197 } 3198 if (j == conf->copies) { 3199 /* Cannot recover, so abort the recovery or 3200 * record a bad block */ 3201 put_buf(r10_bio); 3202 if (rb2) 3203 atomic_dec(&rb2->remaining); 3204 r10_bio = rb2; 3205 if (any_working) { 3206 /* problem is that there are bad blocks 3207 * on other device(s) 3208 */ 3209 int k; 3210 for (k = 0; k < conf->copies; k++) 3211 if (r10_bio->devs[k].devnum == i) 3212 break; 3213 if (!test_bit(In_sync, 3214 &mirror->rdev->flags) 3215 && !rdev_set_badblocks( 3216 mirror->rdev, 3217 r10_bio->devs[k].addr, 3218 max_sync, 0)) 3219 any_working = 0; 3220 if (mirror->replacement && 3221 !rdev_set_badblocks( 3222 mirror->replacement, 3223 r10_bio->devs[k].addr, 3224 max_sync, 0)) 3225 any_working = 0; 3226 } 3227 if (!any_working) { 3228 if (!test_and_set_bit(MD_RECOVERY_INTR, 3229 &mddev->recovery)) 3230 printk(KERN_INFO "md/raid10:%s: insufficient " 3231 "working devices for recovery.\n", 3232 mdname(mddev)); 3233 mirror->recovery_disabled 3234 = mddev->recovery_disabled; 3235 } 3236 break; 3237 } 3238 } 3239 if (biolist == NULL) { 3240 while (r10_bio) { 3241 struct r10bio *rb2 = r10_bio; 3242 r10_bio = (struct r10bio*) rb2->master_bio; 3243 rb2->master_bio = NULL; 3244 put_buf(rb2); 3245 } 3246 goto giveup; 3247 } 3248 } else { 3249 /* resync. Schedule a read for every block at this virt offset */ 3250 int count = 0; 3251 3252 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3253 3254 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3255 &sync_blocks, mddev->degraded) && 3256 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3257 &mddev->recovery)) { 3258 /* We can skip this block */ 3259 *skipped = 1; 3260 return sync_blocks + sectors_skipped; 3261 } 3262 if (sync_blocks < max_sync) 3263 max_sync = sync_blocks; 3264 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3265 3266 r10_bio->mddev = mddev; 3267 atomic_set(&r10_bio->remaining, 0); 3268 raise_barrier(conf, 0); 3269 conf->next_resync = sector_nr; 3270 3271 r10_bio->master_bio = NULL; 3272 r10_bio->sector = sector_nr; 3273 set_bit(R10BIO_IsSync, &r10_bio->state); 3274 raid10_find_phys(conf, r10_bio); 3275 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3276 3277 for (i = 0; i < conf->copies; i++) { 3278 int d = r10_bio->devs[i].devnum; 3279 sector_t first_bad, sector; 3280 int bad_sectors; 3281 3282 if (r10_bio->devs[i].repl_bio) 3283 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3284 3285 bio = r10_bio->devs[i].bio; 3286 bio->bi_end_io = NULL; 3287 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3288 if (conf->mirrors[d].rdev == NULL || 3289 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3290 continue; 3291 sector = r10_bio->devs[i].addr; 3292 if (is_badblock(conf->mirrors[d].rdev, 3293 sector, max_sync, 3294 &first_bad, &bad_sectors)) { 3295 if (first_bad > sector) 3296 max_sync = first_bad - sector; 3297 else { 3298 bad_sectors -= (sector - first_bad); 3299 if (max_sync > bad_sectors) 3300 max_sync = bad_sectors; 3301 continue; 3302 } 3303 } 3304 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3305 atomic_inc(&r10_bio->remaining); 3306 bio->bi_next = biolist; 3307 biolist = bio; 3308 bio->bi_private = r10_bio; 3309 bio->bi_end_io = end_sync_read; 3310 bio->bi_rw = READ; 3311 bio->bi_sector = sector + 3312 conf->mirrors[d].rdev->data_offset; 3313 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3314 count++; 3315 3316 if (conf->mirrors[d].replacement == NULL || 3317 test_bit(Faulty, 3318 &conf->mirrors[d].replacement->flags)) 3319 continue; 3320 3321 /* Need to set up for writing to the replacement */ 3322 bio = r10_bio->devs[i].repl_bio; 3323 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3324 3325 sector = r10_bio->devs[i].addr; 3326 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3327 bio->bi_next = biolist; 3328 biolist = bio; 3329 bio->bi_private = r10_bio; 3330 bio->bi_end_io = end_sync_write; 3331 bio->bi_rw = WRITE; 3332 bio->bi_sector = sector + 3333 conf->mirrors[d].replacement->data_offset; 3334 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3335 count++; 3336 } 3337 3338 if (count < 2) { 3339 for (i=0; i<conf->copies; i++) { 3340 int d = r10_bio->devs[i].devnum; 3341 if (r10_bio->devs[i].bio->bi_end_io) 3342 rdev_dec_pending(conf->mirrors[d].rdev, 3343 mddev); 3344 if (r10_bio->devs[i].repl_bio && 3345 r10_bio->devs[i].repl_bio->bi_end_io) 3346 rdev_dec_pending( 3347 conf->mirrors[d].replacement, 3348 mddev); 3349 } 3350 put_buf(r10_bio); 3351 biolist = NULL; 3352 goto giveup; 3353 } 3354 } 3355 3356 for (bio = biolist; bio ; bio=bio->bi_next) { 3357 3358 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 3359 if (bio->bi_end_io) 3360 bio->bi_flags |= 1 << BIO_UPTODATE; 3361 bio->bi_vcnt = 0; 3362 bio->bi_idx = 0; 3363 bio->bi_phys_segments = 0; 3364 bio->bi_size = 0; 3365 } 3366 3367 nr_sectors = 0; 3368 if (sector_nr + max_sync < max_sector) 3369 max_sector = sector_nr + max_sync; 3370 do { 3371 struct page *page; 3372 int len = PAGE_SIZE; 3373 if (sector_nr + (len>>9) > max_sector) 3374 len = (max_sector - sector_nr) << 9; 3375 if (len == 0) 3376 break; 3377 for (bio= biolist ; bio ; bio=bio->bi_next) { 3378 struct bio *bio2; 3379 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3380 if (bio_add_page(bio, page, len, 0)) 3381 continue; 3382 3383 /* stop here */ 3384 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3385 for (bio2 = biolist; 3386 bio2 && bio2 != bio; 3387 bio2 = bio2->bi_next) { 3388 /* remove last page from this bio */ 3389 bio2->bi_vcnt--; 3390 bio2->bi_size -= len; 3391 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3392 } 3393 goto bio_full; 3394 } 3395 nr_sectors += len>>9; 3396 sector_nr += len>>9; 3397 } while (biolist->bi_vcnt < RESYNC_PAGES); 3398 bio_full: 3399 r10_bio->sectors = nr_sectors; 3400 3401 while (biolist) { 3402 bio = biolist; 3403 biolist = biolist->bi_next; 3404 3405 bio->bi_next = NULL; 3406 r10_bio = bio->bi_private; 3407 r10_bio->sectors = nr_sectors; 3408 3409 if (bio->bi_end_io == end_sync_read) { 3410 md_sync_acct(bio->bi_bdev, nr_sectors); 3411 generic_make_request(bio); 3412 } 3413 } 3414 3415 if (sectors_skipped) 3416 /* pretend they weren't skipped, it makes 3417 * no important difference in this case 3418 */ 3419 md_done_sync(mddev, sectors_skipped, 1); 3420 3421 return sectors_skipped + nr_sectors; 3422 giveup: 3423 /* There is nowhere to write, so all non-sync 3424 * drives must be failed or in resync, all drives 3425 * have a bad block, so try the next chunk... 3426 */ 3427 if (sector_nr + max_sync < max_sector) 3428 max_sector = sector_nr + max_sync; 3429 3430 sectors_skipped += (max_sector - sector_nr); 3431 chunks_skipped ++; 3432 sector_nr = max_sector; 3433 goto skipped; 3434 } 3435 3436 static sector_t 3437 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3438 { 3439 sector_t size; 3440 struct r10conf *conf = mddev->private; 3441 3442 if (!raid_disks) 3443 raid_disks = min(conf->geo.raid_disks, 3444 conf->prev.raid_disks); 3445 if (!sectors) 3446 sectors = conf->dev_sectors; 3447 3448 size = sectors >> conf->geo.chunk_shift; 3449 sector_div(size, conf->geo.far_copies); 3450 size = size * raid_disks; 3451 sector_div(size, conf->geo.near_copies); 3452 3453 return size << conf->geo.chunk_shift; 3454 } 3455 3456 static void calc_sectors(struct r10conf *conf, sector_t size) 3457 { 3458 /* Calculate the number of sectors-per-device that will 3459 * actually be used, and set conf->dev_sectors and 3460 * conf->stride 3461 */ 3462 3463 size = size >> conf->geo.chunk_shift; 3464 sector_div(size, conf->geo.far_copies); 3465 size = size * conf->geo.raid_disks; 3466 sector_div(size, conf->geo.near_copies); 3467 /* 'size' is now the number of chunks in the array */ 3468 /* calculate "used chunks per device" */ 3469 size = size * conf->copies; 3470 3471 /* We need to round up when dividing by raid_disks to 3472 * get the stride size. 3473 */ 3474 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3475 3476 conf->dev_sectors = size << conf->geo.chunk_shift; 3477 3478 if (conf->geo.far_offset) 3479 conf->geo.stride = 1 << conf->geo.chunk_shift; 3480 else { 3481 sector_div(size, conf->geo.far_copies); 3482 conf->geo.stride = size << conf->geo.chunk_shift; 3483 } 3484 } 3485 3486 enum geo_type {geo_new, geo_old, geo_start}; 3487 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3488 { 3489 int nc, fc, fo; 3490 int layout, chunk, disks; 3491 switch (new) { 3492 case geo_old: 3493 layout = mddev->layout; 3494 chunk = mddev->chunk_sectors; 3495 disks = mddev->raid_disks - mddev->delta_disks; 3496 break; 3497 case geo_new: 3498 layout = mddev->new_layout; 3499 chunk = mddev->new_chunk_sectors; 3500 disks = mddev->raid_disks; 3501 break; 3502 default: /* avoid 'may be unused' warnings */ 3503 case geo_start: /* new when starting reshape - raid_disks not 3504 * updated yet. */ 3505 layout = mddev->new_layout; 3506 chunk = mddev->new_chunk_sectors; 3507 disks = mddev->raid_disks + mddev->delta_disks; 3508 break; 3509 } 3510 if (layout >> 18) 3511 return -1; 3512 if (chunk < (PAGE_SIZE >> 9) || 3513 !is_power_of_2(chunk)) 3514 return -2; 3515 nc = layout & 255; 3516 fc = (layout >> 8) & 255; 3517 fo = layout & (1<<16); 3518 geo->raid_disks = disks; 3519 geo->near_copies = nc; 3520 geo->far_copies = fc; 3521 geo->far_offset = fo; 3522 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; 3523 geo->chunk_mask = chunk - 1; 3524 geo->chunk_shift = ffz(~chunk); 3525 return nc*fc; 3526 } 3527 3528 static struct r10conf *setup_conf(struct mddev *mddev) 3529 { 3530 struct r10conf *conf = NULL; 3531 int err = -EINVAL; 3532 struct geom geo; 3533 int copies; 3534 3535 copies = setup_geo(&geo, mddev, geo_new); 3536 3537 if (copies == -2) { 3538 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3539 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3540 mdname(mddev), PAGE_SIZE); 3541 goto out; 3542 } 3543 3544 if (copies < 2 || copies > mddev->raid_disks) { 3545 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3546 mdname(mddev), mddev->new_layout); 3547 goto out; 3548 } 3549 3550 err = -ENOMEM; 3551 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3552 if (!conf) 3553 goto out; 3554 3555 /* FIXME calc properly */ 3556 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3557 max(0,mddev->delta_disks)), 3558 GFP_KERNEL); 3559 if (!conf->mirrors) 3560 goto out; 3561 3562 conf->tmppage = alloc_page(GFP_KERNEL); 3563 if (!conf->tmppage) 3564 goto out; 3565 3566 conf->geo = geo; 3567 conf->copies = copies; 3568 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3569 r10bio_pool_free, conf); 3570 if (!conf->r10bio_pool) 3571 goto out; 3572 3573 calc_sectors(conf, mddev->dev_sectors); 3574 if (mddev->reshape_position == MaxSector) { 3575 conf->prev = conf->geo; 3576 conf->reshape_progress = MaxSector; 3577 } else { 3578 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3579 err = -EINVAL; 3580 goto out; 3581 } 3582 conf->reshape_progress = mddev->reshape_position; 3583 if (conf->prev.far_offset) 3584 conf->prev.stride = 1 << conf->prev.chunk_shift; 3585 else 3586 /* far_copies must be 1 */ 3587 conf->prev.stride = conf->dev_sectors; 3588 } 3589 spin_lock_init(&conf->device_lock); 3590 INIT_LIST_HEAD(&conf->retry_list); 3591 3592 spin_lock_init(&conf->resync_lock); 3593 init_waitqueue_head(&conf->wait_barrier); 3594 3595 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3596 if (!conf->thread) 3597 goto out; 3598 3599 conf->mddev = mddev; 3600 return conf; 3601 3602 out: 3603 if (err == -ENOMEM) 3604 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3605 mdname(mddev)); 3606 if (conf) { 3607 if (conf->r10bio_pool) 3608 mempool_destroy(conf->r10bio_pool); 3609 kfree(conf->mirrors); 3610 safe_put_page(conf->tmppage); 3611 kfree(conf); 3612 } 3613 return ERR_PTR(err); 3614 } 3615 3616 static int run(struct mddev *mddev) 3617 { 3618 struct r10conf *conf; 3619 int i, disk_idx, chunk_size; 3620 struct raid10_info *disk; 3621 struct md_rdev *rdev; 3622 sector_t size; 3623 sector_t min_offset_diff = 0; 3624 int first = 1; 3625 bool discard_supported = false; 3626 3627 if (mddev->private == NULL) { 3628 conf = setup_conf(mddev); 3629 if (IS_ERR(conf)) 3630 return PTR_ERR(conf); 3631 mddev->private = conf; 3632 } 3633 conf = mddev->private; 3634 if (!conf) 3635 goto out; 3636 3637 mddev->thread = conf->thread; 3638 conf->thread = NULL; 3639 3640 chunk_size = mddev->chunk_sectors << 9; 3641 if (mddev->queue) { 3642 blk_queue_max_discard_sectors(mddev->queue, 3643 mddev->chunk_sectors); 3644 blk_queue_max_write_same_sectors(mddev->queue, 3645 mddev->chunk_sectors); 3646 blk_queue_io_min(mddev->queue, chunk_size); 3647 if (conf->geo.raid_disks % conf->geo.near_copies) 3648 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3649 else 3650 blk_queue_io_opt(mddev->queue, chunk_size * 3651 (conf->geo.raid_disks / conf->geo.near_copies)); 3652 } 3653 3654 rdev_for_each(rdev, mddev) { 3655 long long diff; 3656 struct request_queue *q; 3657 3658 disk_idx = rdev->raid_disk; 3659 if (disk_idx < 0) 3660 continue; 3661 if (disk_idx >= conf->geo.raid_disks && 3662 disk_idx >= conf->prev.raid_disks) 3663 continue; 3664 disk = conf->mirrors + disk_idx; 3665 3666 if (test_bit(Replacement, &rdev->flags)) { 3667 if (disk->replacement) 3668 goto out_free_conf; 3669 disk->replacement = rdev; 3670 } else { 3671 if (disk->rdev) 3672 goto out_free_conf; 3673 disk->rdev = rdev; 3674 } 3675 q = bdev_get_queue(rdev->bdev); 3676 if (q->merge_bvec_fn) 3677 mddev->merge_check_needed = 1; 3678 diff = (rdev->new_data_offset - rdev->data_offset); 3679 if (!mddev->reshape_backwards) 3680 diff = -diff; 3681 if (diff < 0) 3682 diff = 0; 3683 if (first || diff < min_offset_diff) 3684 min_offset_diff = diff; 3685 3686 if (mddev->gendisk) 3687 disk_stack_limits(mddev->gendisk, rdev->bdev, 3688 rdev->data_offset << 9); 3689 3690 disk->head_position = 0; 3691 3692 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3693 discard_supported = true; 3694 } 3695 3696 if (mddev->queue) { 3697 if (discard_supported) 3698 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3699 mddev->queue); 3700 else 3701 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3702 mddev->queue); 3703 } 3704 /* need to check that every block has at least one working mirror */ 3705 if (!enough(conf, -1)) { 3706 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3707 mdname(mddev)); 3708 goto out_free_conf; 3709 } 3710 3711 if (conf->reshape_progress != MaxSector) { 3712 /* must ensure that shape change is supported */ 3713 if (conf->geo.far_copies != 1 && 3714 conf->geo.far_offset == 0) 3715 goto out_free_conf; 3716 if (conf->prev.far_copies != 1 && 3717 conf->geo.far_offset == 0) 3718 goto out_free_conf; 3719 } 3720 3721 mddev->degraded = 0; 3722 for (i = 0; 3723 i < conf->geo.raid_disks 3724 || i < conf->prev.raid_disks; 3725 i++) { 3726 3727 disk = conf->mirrors + i; 3728 3729 if (!disk->rdev && disk->replacement) { 3730 /* The replacement is all we have - use it */ 3731 disk->rdev = disk->replacement; 3732 disk->replacement = NULL; 3733 clear_bit(Replacement, &disk->rdev->flags); 3734 } 3735 3736 if (!disk->rdev || 3737 !test_bit(In_sync, &disk->rdev->flags)) { 3738 disk->head_position = 0; 3739 mddev->degraded++; 3740 if (disk->rdev) 3741 conf->fullsync = 1; 3742 } 3743 disk->recovery_disabled = mddev->recovery_disabled - 1; 3744 } 3745 3746 if (mddev->recovery_cp != MaxSector) 3747 printk(KERN_NOTICE "md/raid10:%s: not clean" 3748 " -- starting background reconstruction\n", 3749 mdname(mddev)); 3750 printk(KERN_INFO 3751 "md/raid10:%s: active with %d out of %d devices\n", 3752 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3753 conf->geo.raid_disks); 3754 /* 3755 * Ok, everything is just fine now 3756 */ 3757 mddev->dev_sectors = conf->dev_sectors; 3758 size = raid10_size(mddev, 0, 0); 3759 md_set_array_sectors(mddev, size); 3760 mddev->resync_max_sectors = size; 3761 3762 if (mddev->queue) { 3763 int stripe = conf->geo.raid_disks * 3764 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3765 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3766 mddev->queue->backing_dev_info.congested_data = mddev; 3767 3768 /* Calculate max read-ahead size. 3769 * We need to readahead at least twice a whole stripe.... 3770 * maybe... 3771 */ 3772 stripe /= conf->geo.near_copies; 3773 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3774 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3775 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3776 } 3777 3778 3779 if (md_integrity_register(mddev)) 3780 goto out_free_conf; 3781 3782 if (conf->reshape_progress != MaxSector) { 3783 unsigned long before_length, after_length; 3784 3785 before_length = ((1 << conf->prev.chunk_shift) * 3786 conf->prev.far_copies); 3787 after_length = ((1 << conf->geo.chunk_shift) * 3788 conf->geo.far_copies); 3789 3790 if (max(before_length, after_length) > min_offset_diff) { 3791 /* This cannot work */ 3792 printk("md/raid10: offset difference not enough to continue reshape\n"); 3793 goto out_free_conf; 3794 } 3795 conf->offset_diff = min_offset_diff; 3796 3797 conf->reshape_safe = conf->reshape_progress; 3798 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3799 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3800 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3801 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3802 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3803 "reshape"); 3804 } 3805 3806 return 0; 3807 3808 out_free_conf: 3809 md_unregister_thread(&mddev->thread); 3810 if (conf->r10bio_pool) 3811 mempool_destroy(conf->r10bio_pool); 3812 safe_put_page(conf->tmppage); 3813 kfree(conf->mirrors); 3814 kfree(conf); 3815 mddev->private = NULL; 3816 out: 3817 return -EIO; 3818 } 3819 3820 static int stop(struct mddev *mddev) 3821 { 3822 struct r10conf *conf = mddev->private; 3823 3824 raise_barrier(conf, 0); 3825 lower_barrier(conf); 3826 3827 md_unregister_thread(&mddev->thread); 3828 if (mddev->queue) 3829 /* the unplug fn references 'conf'*/ 3830 blk_sync_queue(mddev->queue); 3831 3832 if (conf->r10bio_pool) 3833 mempool_destroy(conf->r10bio_pool); 3834 safe_put_page(conf->tmppage); 3835 kfree(conf->mirrors); 3836 kfree(conf); 3837 mddev->private = NULL; 3838 return 0; 3839 } 3840 3841 static void raid10_quiesce(struct mddev *mddev, int state) 3842 { 3843 struct r10conf *conf = mddev->private; 3844 3845 switch(state) { 3846 case 1: 3847 raise_barrier(conf, 0); 3848 break; 3849 case 0: 3850 lower_barrier(conf); 3851 break; 3852 } 3853 } 3854 3855 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3856 { 3857 /* Resize of 'far' arrays is not supported. 3858 * For 'near' and 'offset' arrays we can set the 3859 * number of sectors used to be an appropriate multiple 3860 * of the chunk size. 3861 * For 'offset', this is far_copies*chunksize. 3862 * For 'near' the multiplier is the LCM of 3863 * near_copies and raid_disks. 3864 * So if far_copies > 1 && !far_offset, fail. 3865 * Else find LCM(raid_disks, near_copy)*far_copies and 3866 * multiply by chunk_size. Then round to this number. 3867 * This is mostly done by raid10_size() 3868 */ 3869 struct r10conf *conf = mddev->private; 3870 sector_t oldsize, size; 3871 3872 if (mddev->reshape_position != MaxSector) 3873 return -EBUSY; 3874 3875 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3876 return -EINVAL; 3877 3878 oldsize = raid10_size(mddev, 0, 0); 3879 size = raid10_size(mddev, sectors, 0); 3880 if (mddev->external_size && 3881 mddev->array_sectors > size) 3882 return -EINVAL; 3883 if (mddev->bitmap) { 3884 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3885 if (ret) 3886 return ret; 3887 } 3888 md_set_array_sectors(mddev, size); 3889 set_capacity(mddev->gendisk, mddev->array_sectors); 3890 revalidate_disk(mddev->gendisk); 3891 if (sectors > mddev->dev_sectors && 3892 mddev->recovery_cp > oldsize) { 3893 mddev->recovery_cp = oldsize; 3894 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3895 } 3896 calc_sectors(conf, sectors); 3897 mddev->dev_sectors = conf->dev_sectors; 3898 mddev->resync_max_sectors = size; 3899 return 0; 3900 } 3901 3902 static void *raid10_takeover_raid0(struct mddev *mddev) 3903 { 3904 struct md_rdev *rdev; 3905 struct r10conf *conf; 3906 3907 if (mddev->degraded > 0) { 3908 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3909 mdname(mddev)); 3910 return ERR_PTR(-EINVAL); 3911 } 3912 3913 /* Set new parameters */ 3914 mddev->new_level = 10; 3915 /* new layout: far_copies = 1, near_copies = 2 */ 3916 mddev->new_layout = (1<<8) + 2; 3917 mddev->new_chunk_sectors = mddev->chunk_sectors; 3918 mddev->delta_disks = mddev->raid_disks; 3919 mddev->raid_disks *= 2; 3920 /* make sure it will be not marked as dirty */ 3921 mddev->recovery_cp = MaxSector; 3922 3923 conf = setup_conf(mddev); 3924 if (!IS_ERR(conf)) { 3925 rdev_for_each(rdev, mddev) 3926 if (rdev->raid_disk >= 0) 3927 rdev->new_raid_disk = rdev->raid_disk * 2; 3928 conf->barrier = 1; 3929 } 3930 3931 return conf; 3932 } 3933 3934 static void *raid10_takeover(struct mddev *mddev) 3935 { 3936 struct r0conf *raid0_conf; 3937 3938 /* raid10 can take over: 3939 * raid0 - providing it has only two drives 3940 */ 3941 if (mddev->level == 0) { 3942 /* for raid0 takeover only one zone is supported */ 3943 raid0_conf = mddev->private; 3944 if (raid0_conf->nr_strip_zones > 1) { 3945 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3946 " with more than one zone.\n", 3947 mdname(mddev)); 3948 return ERR_PTR(-EINVAL); 3949 } 3950 return raid10_takeover_raid0(mddev); 3951 } 3952 return ERR_PTR(-EINVAL); 3953 } 3954 3955 static int raid10_check_reshape(struct mddev *mddev) 3956 { 3957 /* Called when there is a request to change 3958 * - layout (to ->new_layout) 3959 * - chunk size (to ->new_chunk_sectors) 3960 * - raid_disks (by delta_disks) 3961 * or when trying to restart a reshape that was ongoing. 3962 * 3963 * We need to validate the request and possibly allocate 3964 * space if that might be an issue later. 3965 * 3966 * Currently we reject any reshape of a 'far' mode array, 3967 * allow chunk size to change if new is generally acceptable, 3968 * allow raid_disks to increase, and allow 3969 * a switch between 'near' mode and 'offset' mode. 3970 */ 3971 struct r10conf *conf = mddev->private; 3972 struct geom geo; 3973 3974 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3975 return -EINVAL; 3976 3977 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3978 /* mustn't change number of copies */ 3979 return -EINVAL; 3980 if (geo.far_copies > 1 && !geo.far_offset) 3981 /* Cannot switch to 'far' mode */ 3982 return -EINVAL; 3983 3984 if (mddev->array_sectors & geo.chunk_mask) 3985 /* not factor of array size */ 3986 return -EINVAL; 3987 3988 if (!enough(conf, -1)) 3989 return -EINVAL; 3990 3991 kfree(conf->mirrors_new); 3992 conf->mirrors_new = NULL; 3993 if (mddev->delta_disks > 0) { 3994 /* allocate new 'mirrors' list */ 3995 conf->mirrors_new = kzalloc( 3996 sizeof(struct raid10_info) 3997 *(mddev->raid_disks + 3998 mddev->delta_disks), 3999 GFP_KERNEL); 4000 if (!conf->mirrors_new) 4001 return -ENOMEM; 4002 } 4003 return 0; 4004 } 4005 4006 /* 4007 * Need to check if array has failed when deciding whether to: 4008 * - start an array 4009 * - remove non-faulty devices 4010 * - add a spare 4011 * - allow a reshape 4012 * This determination is simple when no reshape is happening. 4013 * However if there is a reshape, we need to carefully check 4014 * both the before and after sections. 4015 * This is because some failed devices may only affect one 4016 * of the two sections, and some non-in_sync devices may 4017 * be insync in the section most affected by failed devices. 4018 */ 4019 static int calc_degraded(struct r10conf *conf) 4020 { 4021 int degraded, degraded2; 4022 int i; 4023 4024 rcu_read_lock(); 4025 degraded = 0; 4026 /* 'prev' section first */ 4027 for (i = 0; i < conf->prev.raid_disks; i++) { 4028 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4029 if (!rdev || test_bit(Faulty, &rdev->flags)) 4030 degraded++; 4031 else if (!test_bit(In_sync, &rdev->flags)) 4032 /* When we can reduce the number of devices in 4033 * an array, this might not contribute to 4034 * 'degraded'. It does now. 4035 */ 4036 degraded++; 4037 } 4038 rcu_read_unlock(); 4039 if (conf->geo.raid_disks == conf->prev.raid_disks) 4040 return degraded; 4041 rcu_read_lock(); 4042 degraded2 = 0; 4043 for (i = 0; i < conf->geo.raid_disks; i++) { 4044 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4045 if (!rdev || test_bit(Faulty, &rdev->flags)) 4046 degraded2++; 4047 else if (!test_bit(In_sync, &rdev->flags)) { 4048 /* If reshape is increasing the number of devices, 4049 * this section has already been recovered, so 4050 * it doesn't contribute to degraded. 4051 * else it does. 4052 */ 4053 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4054 degraded2++; 4055 } 4056 } 4057 rcu_read_unlock(); 4058 if (degraded2 > degraded) 4059 return degraded2; 4060 return degraded; 4061 } 4062 4063 static int raid10_start_reshape(struct mddev *mddev) 4064 { 4065 /* A 'reshape' has been requested. This commits 4066 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4067 * This also checks if there are enough spares and adds them 4068 * to the array. 4069 * We currently require enough spares to make the final 4070 * array non-degraded. We also require that the difference 4071 * between old and new data_offset - on each device - is 4072 * enough that we never risk over-writing. 4073 */ 4074 4075 unsigned long before_length, after_length; 4076 sector_t min_offset_diff = 0; 4077 int first = 1; 4078 struct geom new; 4079 struct r10conf *conf = mddev->private; 4080 struct md_rdev *rdev; 4081 int spares = 0; 4082 int ret; 4083 4084 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4085 return -EBUSY; 4086 4087 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4088 return -EINVAL; 4089 4090 before_length = ((1 << conf->prev.chunk_shift) * 4091 conf->prev.far_copies); 4092 after_length = ((1 << conf->geo.chunk_shift) * 4093 conf->geo.far_copies); 4094 4095 rdev_for_each(rdev, mddev) { 4096 if (!test_bit(In_sync, &rdev->flags) 4097 && !test_bit(Faulty, &rdev->flags)) 4098 spares++; 4099 if (rdev->raid_disk >= 0) { 4100 long long diff = (rdev->new_data_offset 4101 - rdev->data_offset); 4102 if (!mddev->reshape_backwards) 4103 diff = -diff; 4104 if (diff < 0) 4105 diff = 0; 4106 if (first || diff < min_offset_diff) 4107 min_offset_diff = diff; 4108 } 4109 } 4110 4111 if (max(before_length, after_length) > min_offset_diff) 4112 return -EINVAL; 4113 4114 if (spares < mddev->delta_disks) 4115 return -EINVAL; 4116 4117 conf->offset_diff = min_offset_diff; 4118 spin_lock_irq(&conf->device_lock); 4119 if (conf->mirrors_new) { 4120 memcpy(conf->mirrors_new, conf->mirrors, 4121 sizeof(struct raid10_info)*conf->prev.raid_disks); 4122 smp_mb(); 4123 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 4124 conf->mirrors_old = conf->mirrors; 4125 conf->mirrors = conf->mirrors_new; 4126 conf->mirrors_new = NULL; 4127 } 4128 setup_geo(&conf->geo, mddev, geo_start); 4129 smp_mb(); 4130 if (mddev->reshape_backwards) { 4131 sector_t size = raid10_size(mddev, 0, 0); 4132 if (size < mddev->array_sectors) { 4133 spin_unlock_irq(&conf->device_lock); 4134 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4135 mdname(mddev)); 4136 return -EINVAL; 4137 } 4138 mddev->resync_max_sectors = size; 4139 conf->reshape_progress = size; 4140 } else 4141 conf->reshape_progress = 0; 4142 spin_unlock_irq(&conf->device_lock); 4143 4144 if (mddev->delta_disks && mddev->bitmap) { 4145 ret = bitmap_resize(mddev->bitmap, 4146 raid10_size(mddev, 0, 4147 conf->geo.raid_disks), 4148 0, 0); 4149 if (ret) 4150 goto abort; 4151 } 4152 if (mddev->delta_disks > 0) { 4153 rdev_for_each(rdev, mddev) 4154 if (rdev->raid_disk < 0 && 4155 !test_bit(Faulty, &rdev->flags)) { 4156 if (raid10_add_disk(mddev, rdev) == 0) { 4157 if (rdev->raid_disk >= 4158 conf->prev.raid_disks) 4159 set_bit(In_sync, &rdev->flags); 4160 else 4161 rdev->recovery_offset = 0; 4162 4163 if (sysfs_link_rdev(mddev, rdev)) 4164 /* Failure here is OK */; 4165 } 4166 } else if (rdev->raid_disk >= conf->prev.raid_disks 4167 && !test_bit(Faulty, &rdev->flags)) { 4168 /* This is a spare that was manually added */ 4169 set_bit(In_sync, &rdev->flags); 4170 } 4171 } 4172 /* When a reshape changes the number of devices, 4173 * ->degraded is measured against the larger of the 4174 * pre and post numbers. 4175 */ 4176 spin_lock_irq(&conf->device_lock); 4177 mddev->degraded = calc_degraded(conf); 4178 spin_unlock_irq(&conf->device_lock); 4179 mddev->raid_disks = conf->geo.raid_disks; 4180 mddev->reshape_position = conf->reshape_progress; 4181 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4182 4183 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4184 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4185 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4186 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4187 4188 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4189 "reshape"); 4190 if (!mddev->sync_thread) { 4191 ret = -EAGAIN; 4192 goto abort; 4193 } 4194 conf->reshape_checkpoint = jiffies; 4195 md_wakeup_thread(mddev->sync_thread); 4196 md_new_event(mddev); 4197 return 0; 4198 4199 abort: 4200 mddev->recovery = 0; 4201 spin_lock_irq(&conf->device_lock); 4202 conf->geo = conf->prev; 4203 mddev->raid_disks = conf->geo.raid_disks; 4204 rdev_for_each(rdev, mddev) 4205 rdev->new_data_offset = rdev->data_offset; 4206 smp_wmb(); 4207 conf->reshape_progress = MaxSector; 4208 mddev->reshape_position = MaxSector; 4209 spin_unlock_irq(&conf->device_lock); 4210 return ret; 4211 } 4212 4213 /* Calculate the last device-address that could contain 4214 * any block from the chunk that includes the array-address 's' 4215 * and report the next address. 4216 * i.e. the address returned will be chunk-aligned and after 4217 * any data that is in the chunk containing 's'. 4218 */ 4219 static sector_t last_dev_address(sector_t s, struct geom *geo) 4220 { 4221 s = (s | geo->chunk_mask) + 1; 4222 s >>= geo->chunk_shift; 4223 s *= geo->near_copies; 4224 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4225 s *= geo->far_copies; 4226 s <<= geo->chunk_shift; 4227 return s; 4228 } 4229 4230 /* Calculate the first device-address that could contain 4231 * any block from the chunk that includes the array-address 's'. 4232 * This too will be the start of a chunk 4233 */ 4234 static sector_t first_dev_address(sector_t s, struct geom *geo) 4235 { 4236 s >>= geo->chunk_shift; 4237 s *= geo->near_copies; 4238 sector_div(s, geo->raid_disks); 4239 s *= geo->far_copies; 4240 s <<= geo->chunk_shift; 4241 return s; 4242 } 4243 4244 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4245 int *skipped) 4246 { 4247 /* We simply copy at most one chunk (smallest of old and new) 4248 * at a time, possibly less if that exceeds RESYNC_PAGES, 4249 * or we hit a bad block or something. 4250 * This might mean we pause for normal IO in the middle of 4251 * a chunk, but that is not a problem was mddev->reshape_position 4252 * can record any location. 4253 * 4254 * If we will want to write to a location that isn't 4255 * yet recorded as 'safe' (i.e. in metadata on disk) then 4256 * we need to flush all reshape requests and update the metadata. 4257 * 4258 * When reshaping forwards (e.g. to more devices), we interpret 4259 * 'safe' as the earliest block which might not have been copied 4260 * down yet. We divide this by previous stripe size and multiply 4261 * by previous stripe length to get lowest device offset that we 4262 * cannot write to yet. 4263 * We interpret 'sector_nr' as an address that we want to write to. 4264 * From this we use last_device_address() to find where we might 4265 * write to, and first_device_address on the 'safe' position. 4266 * If this 'next' write position is after the 'safe' position, 4267 * we must update the metadata to increase the 'safe' position. 4268 * 4269 * When reshaping backwards, we round in the opposite direction 4270 * and perform the reverse test: next write position must not be 4271 * less than current safe position. 4272 * 4273 * In all this the minimum difference in data offsets 4274 * (conf->offset_diff - always positive) allows a bit of slack, 4275 * so next can be after 'safe', but not by more than offset_disk 4276 * 4277 * We need to prepare all the bios here before we start any IO 4278 * to ensure the size we choose is acceptable to all devices. 4279 * The means one for each copy for write-out and an extra one for 4280 * read-in. 4281 * We store the read-in bio in ->master_bio and the others in 4282 * ->devs[x].bio and ->devs[x].repl_bio. 4283 */ 4284 struct r10conf *conf = mddev->private; 4285 struct r10bio *r10_bio; 4286 sector_t next, safe, last; 4287 int max_sectors; 4288 int nr_sectors; 4289 int s; 4290 struct md_rdev *rdev; 4291 int need_flush = 0; 4292 struct bio *blist; 4293 struct bio *bio, *read_bio; 4294 int sectors_done = 0; 4295 4296 if (sector_nr == 0) { 4297 /* If restarting in the middle, skip the initial sectors */ 4298 if (mddev->reshape_backwards && 4299 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4300 sector_nr = (raid10_size(mddev, 0, 0) 4301 - conf->reshape_progress); 4302 } else if (!mddev->reshape_backwards && 4303 conf->reshape_progress > 0) 4304 sector_nr = conf->reshape_progress; 4305 if (sector_nr) { 4306 mddev->curr_resync_completed = sector_nr; 4307 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4308 *skipped = 1; 4309 return sector_nr; 4310 } 4311 } 4312 4313 /* We don't use sector_nr to track where we are up to 4314 * as that doesn't work well for ->reshape_backwards. 4315 * So just use ->reshape_progress. 4316 */ 4317 if (mddev->reshape_backwards) { 4318 /* 'next' is the earliest device address that we might 4319 * write to for this chunk in the new layout 4320 */ 4321 next = first_dev_address(conf->reshape_progress - 1, 4322 &conf->geo); 4323 4324 /* 'safe' is the last device address that we might read from 4325 * in the old layout after a restart 4326 */ 4327 safe = last_dev_address(conf->reshape_safe - 1, 4328 &conf->prev); 4329 4330 if (next + conf->offset_diff < safe) 4331 need_flush = 1; 4332 4333 last = conf->reshape_progress - 1; 4334 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4335 & conf->prev.chunk_mask); 4336 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4337 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4338 } else { 4339 /* 'next' is after the last device address that we 4340 * might write to for this chunk in the new layout 4341 */ 4342 next = last_dev_address(conf->reshape_progress, &conf->geo); 4343 4344 /* 'safe' is the earliest device address that we might 4345 * read from in the old layout after a restart 4346 */ 4347 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4348 4349 /* Need to update metadata if 'next' might be beyond 'safe' 4350 * as that would possibly corrupt data 4351 */ 4352 if (next > safe + conf->offset_diff) 4353 need_flush = 1; 4354 4355 sector_nr = conf->reshape_progress; 4356 last = sector_nr | (conf->geo.chunk_mask 4357 & conf->prev.chunk_mask); 4358 4359 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4360 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4361 } 4362 4363 if (need_flush || 4364 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4365 /* Need to update reshape_position in metadata */ 4366 wait_barrier(conf); 4367 mddev->reshape_position = conf->reshape_progress; 4368 if (mddev->reshape_backwards) 4369 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4370 - conf->reshape_progress; 4371 else 4372 mddev->curr_resync_completed = conf->reshape_progress; 4373 conf->reshape_checkpoint = jiffies; 4374 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4375 md_wakeup_thread(mddev->thread); 4376 wait_event(mddev->sb_wait, mddev->flags == 0 || 4377 kthread_should_stop()); 4378 conf->reshape_safe = mddev->reshape_position; 4379 allow_barrier(conf); 4380 } 4381 4382 read_more: 4383 /* Now schedule reads for blocks from sector_nr to last */ 4384 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4385 raise_barrier(conf, sectors_done != 0); 4386 atomic_set(&r10_bio->remaining, 0); 4387 r10_bio->mddev = mddev; 4388 r10_bio->sector = sector_nr; 4389 set_bit(R10BIO_IsReshape, &r10_bio->state); 4390 r10_bio->sectors = last - sector_nr + 1; 4391 rdev = read_balance(conf, r10_bio, &max_sectors); 4392 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4393 4394 if (!rdev) { 4395 /* Cannot read from here, so need to record bad blocks 4396 * on all the target devices. 4397 */ 4398 // FIXME 4399 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4400 return sectors_done; 4401 } 4402 4403 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4404 4405 read_bio->bi_bdev = rdev->bdev; 4406 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4407 + rdev->data_offset); 4408 read_bio->bi_private = r10_bio; 4409 read_bio->bi_end_io = end_sync_read; 4410 read_bio->bi_rw = READ; 4411 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4412 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4413 read_bio->bi_vcnt = 0; 4414 read_bio->bi_idx = 0; 4415 read_bio->bi_size = 0; 4416 r10_bio->master_bio = read_bio; 4417 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4418 4419 /* Now find the locations in the new layout */ 4420 __raid10_find_phys(&conf->geo, r10_bio); 4421 4422 blist = read_bio; 4423 read_bio->bi_next = NULL; 4424 4425 for (s = 0; s < conf->copies*2; s++) { 4426 struct bio *b; 4427 int d = r10_bio->devs[s/2].devnum; 4428 struct md_rdev *rdev2; 4429 if (s&1) { 4430 rdev2 = conf->mirrors[d].replacement; 4431 b = r10_bio->devs[s/2].repl_bio; 4432 } else { 4433 rdev2 = conf->mirrors[d].rdev; 4434 b = r10_bio->devs[s/2].bio; 4435 } 4436 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4437 continue; 4438 b->bi_bdev = rdev2->bdev; 4439 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; 4440 b->bi_private = r10_bio; 4441 b->bi_end_io = end_reshape_write; 4442 b->bi_rw = WRITE; 4443 b->bi_flags &= ~(BIO_POOL_MASK - 1); 4444 b->bi_flags |= 1 << BIO_UPTODATE; 4445 b->bi_next = blist; 4446 b->bi_vcnt = 0; 4447 b->bi_idx = 0; 4448 b->bi_size = 0; 4449 blist = b; 4450 } 4451 4452 /* Now add as many pages as possible to all of these bios. */ 4453 4454 nr_sectors = 0; 4455 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4456 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4457 int len = (max_sectors - s) << 9; 4458 if (len > PAGE_SIZE) 4459 len = PAGE_SIZE; 4460 for (bio = blist; bio ; bio = bio->bi_next) { 4461 struct bio *bio2; 4462 if (bio_add_page(bio, page, len, 0)) 4463 continue; 4464 4465 /* Didn't fit, must stop */ 4466 for (bio2 = blist; 4467 bio2 && bio2 != bio; 4468 bio2 = bio2->bi_next) { 4469 /* Remove last page from this bio */ 4470 bio2->bi_vcnt--; 4471 bio2->bi_size -= len; 4472 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4473 } 4474 goto bio_full; 4475 } 4476 sector_nr += len >> 9; 4477 nr_sectors += len >> 9; 4478 } 4479 bio_full: 4480 r10_bio->sectors = nr_sectors; 4481 4482 /* Now submit the read */ 4483 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4484 atomic_inc(&r10_bio->remaining); 4485 read_bio->bi_next = NULL; 4486 generic_make_request(read_bio); 4487 sector_nr += nr_sectors; 4488 sectors_done += nr_sectors; 4489 if (sector_nr <= last) 4490 goto read_more; 4491 4492 /* Now that we have done the whole section we can 4493 * update reshape_progress 4494 */ 4495 if (mddev->reshape_backwards) 4496 conf->reshape_progress -= sectors_done; 4497 else 4498 conf->reshape_progress += sectors_done; 4499 4500 return sectors_done; 4501 } 4502 4503 static void end_reshape_request(struct r10bio *r10_bio); 4504 static int handle_reshape_read_error(struct mddev *mddev, 4505 struct r10bio *r10_bio); 4506 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4507 { 4508 /* Reshape read completed. Hopefully we have a block 4509 * to write out. 4510 * If we got a read error then we do sync 1-page reads from 4511 * elsewhere until we find the data - or give up. 4512 */ 4513 struct r10conf *conf = mddev->private; 4514 int s; 4515 4516 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4517 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4518 /* Reshape has been aborted */ 4519 md_done_sync(mddev, r10_bio->sectors, 0); 4520 return; 4521 } 4522 4523 /* We definitely have the data in the pages, schedule the 4524 * writes. 4525 */ 4526 atomic_set(&r10_bio->remaining, 1); 4527 for (s = 0; s < conf->copies*2; s++) { 4528 struct bio *b; 4529 int d = r10_bio->devs[s/2].devnum; 4530 struct md_rdev *rdev; 4531 if (s&1) { 4532 rdev = conf->mirrors[d].replacement; 4533 b = r10_bio->devs[s/2].repl_bio; 4534 } else { 4535 rdev = conf->mirrors[d].rdev; 4536 b = r10_bio->devs[s/2].bio; 4537 } 4538 if (!rdev || test_bit(Faulty, &rdev->flags)) 4539 continue; 4540 atomic_inc(&rdev->nr_pending); 4541 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4542 atomic_inc(&r10_bio->remaining); 4543 b->bi_next = NULL; 4544 generic_make_request(b); 4545 } 4546 end_reshape_request(r10_bio); 4547 } 4548 4549 static void end_reshape(struct r10conf *conf) 4550 { 4551 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4552 return; 4553 4554 spin_lock_irq(&conf->device_lock); 4555 conf->prev = conf->geo; 4556 md_finish_reshape(conf->mddev); 4557 smp_wmb(); 4558 conf->reshape_progress = MaxSector; 4559 spin_unlock_irq(&conf->device_lock); 4560 4561 /* read-ahead size must cover two whole stripes, which is 4562 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4563 */ 4564 if (conf->mddev->queue) { 4565 int stripe = conf->geo.raid_disks * 4566 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4567 stripe /= conf->geo.near_copies; 4568 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4569 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4570 } 4571 conf->fullsync = 0; 4572 } 4573 4574 4575 static int handle_reshape_read_error(struct mddev *mddev, 4576 struct r10bio *r10_bio) 4577 { 4578 /* Use sync reads to get the blocks from somewhere else */ 4579 int sectors = r10_bio->sectors; 4580 struct r10conf *conf = mddev->private; 4581 struct { 4582 struct r10bio r10_bio; 4583 struct r10dev devs[conf->copies]; 4584 } on_stack; 4585 struct r10bio *r10b = &on_stack.r10_bio; 4586 int slot = 0; 4587 int idx = 0; 4588 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4589 4590 r10b->sector = r10_bio->sector; 4591 __raid10_find_phys(&conf->prev, r10b); 4592 4593 while (sectors) { 4594 int s = sectors; 4595 int success = 0; 4596 int first_slot = slot; 4597 4598 if (s > (PAGE_SIZE >> 9)) 4599 s = PAGE_SIZE >> 9; 4600 4601 while (!success) { 4602 int d = r10b->devs[slot].devnum; 4603 struct md_rdev *rdev = conf->mirrors[d].rdev; 4604 sector_t addr; 4605 if (rdev == NULL || 4606 test_bit(Faulty, &rdev->flags) || 4607 !test_bit(In_sync, &rdev->flags)) 4608 goto failed; 4609 4610 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4611 success = sync_page_io(rdev, 4612 addr, 4613 s << 9, 4614 bvec[idx].bv_page, 4615 READ, false); 4616 if (success) 4617 break; 4618 failed: 4619 slot++; 4620 if (slot >= conf->copies) 4621 slot = 0; 4622 if (slot == first_slot) 4623 break; 4624 } 4625 if (!success) { 4626 /* couldn't read this block, must give up */ 4627 set_bit(MD_RECOVERY_INTR, 4628 &mddev->recovery); 4629 return -EIO; 4630 } 4631 sectors -= s; 4632 idx++; 4633 } 4634 return 0; 4635 } 4636 4637 static void end_reshape_write(struct bio *bio, int error) 4638 { 4639 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4640 struct r10bio *r10_bio = bio->bi_private; 4641 struct mddev *mddev = r10_bio->mddev; 4642 struct r10conf *conf = mddev->private; 4643 int d; 4644 int slot; 4645 int repl; 4646 struct md_rdev *rdev = NULL; 4647 4648 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4649 if (repl) 4650 rdev = conf->mirrors[d].replacement; 4651 if (!rdev) { 4652 smp_mb(); 4653 rdev = conf->mirrors[d].rdev; 4654 } 4655 4656 if (!uptodate) { 4657 /* FIXME should record badblock */ 4658 md_error(mddev, rdev); 4659 } 4660 4661 rdev_dec_pending(rdev, mddev); 4662 end_reshape_request(r10_bio); 4663 } 4664 4665 static void end_reshape_request(struct r10bio *r10_bio) 4666 { 4667 if (!atomic_dec_and_test(&r10_bio->remaining)) 4668 return; 4669 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4670 bio_put(r10_bio->master_bio); 4671 put_buf(r10_bio); 4672 } 4673 4674 static void raid10_finish_reshape(struct mddev *mddev) 4675 { 4676 struct r10conf *conf = mddev->private; 4677 4678 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4679 return; 4680 4681 if (mddev->delta_disks > 0) { 4682 sector_t size = raid10_size(mddev, 0, 0); 4683 md_set_array_sectors(mddev, size); 4684 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4685 mddev->recovery_cp = mddev->resync_max_sectors; 4686 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4687 } 4688 mddev->resync_max_sectors = size; 4689 set_capacity(mddev->gendisk, mddev->array_sectors); 4690 revalidate_disk(mddev->gendisk); 4691 } else { 4692 int d; 4693 for (d = conf->geo.raid_disks ; 4694 d < conf->geo.raid_disks - mddev->delta_disks; 4695 d++) { 4696 struct md_rdev *rdev = conf->mirrors[d].rdev; 4697 if (rdev) 4698 clear_bit(In_sync, &rdev->flags); 4699 rdev = conf->mirrors[d].replacement; 4700 if (rdev) 4701 clear_bit(In_sync, &rdev->flags); 4702 } 4703 } 4704 mddev->layout = mddev->new_layout; 4705 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4706 mddev->reshape_position = MaxSector; 4707 mddev->delta_disks = 0; 4708 mddev->reshape_backwards = 0; 4709 } 4710 4711 static struct md_personality raid10_personality = 4712 { 4713 .name = "raid10", 4714 .level = 10, 4715 .owner = THIS_MODULE, 4716 .make_request = make_request, 4717 .run = run, 4718 .stop = stop, 4719 .status = status, 4720 .error_handler = error, 4721 .hot_add_disk = raid10_add_disk, 4722 .hot_remove_disk= raid10_remove_disk, 4723 .spare_active = raid10_spare_active, 4724 .sync_request = sync_request, 4725 .quiesce = raid10_quiesce, 4726 .size = raid10_size, 4727 .resize = raid10_resize, 4728 .takeover = raid10_takeover, 4729 .check_reshape = raid10_check_reshape, 4730 .start_reshape = raid10_start_reshape, 4731 .finish_reshape = raid10_finish_reshape, 4732 }; 4733 4734 static int __init raid_init(void) 4735 { 4736 return register_md_personality(&raid10_personality); 4737 } 4738 4739 static void raid_exit(void) 4740 { 4741 unregister_md_personality(&raid10_personality); 4742 } 4743 4744 module_init(raid_init); 4745 module_exit(raid_exit); 4746 MODULE_LICENSE("GPL"); 4747 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4748 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4749 MODULE_ALIAS("md-raid10"); 4750 MODULE_ALIAS("md-level-10"); 4751 4752 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4753