xref: /linux/drivers/md/raid10.c (revision c39b9fd728d8173ecda993524089fbc38211a17f)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72 
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define	NR_RAID10_BIOS 256
77 
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89 
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91 
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97 
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 				int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106 
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 	struct r10conf *conf = data;
110 	int size = offsetof(struct r10bio, devs[conf->copies]);
111 
112 	/* allocate a r10bio with room for raid_disks entries in the
113 	 * bios array */
114 	return kzalloc(size, gfp_flags);
115 }
116 
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 	kfree(r10_bio);
120 }
121 
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129 
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 	struct r10conf *conf = data;
140 	struct page *page;
141 	struct r10bio *r10_bio;
142 	struct bio *bio;
143 	int i, j;
144 	int nalloc;
145 
146 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 	if (!r10_bio)
148 		return NULL;
149 
150 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 		nalloc = conf->copies; /* resync */
153 	else
154 		nalloc = 2; /* recovery */
155 
156 	/*
157 	 * Allocate bios.
158 	 */
159 	for (j = nalloc ; j-- ; ) {
160 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 		if (!bio)
162 			goto out_free_bio;
163 		r10_bio->devs[j].bio = bio;
164 		if (!conf->have_replacement)
165 			continue;
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].repl_bio = bio;
170 	}
171 	/*
172 	 * Allocate RESYNC_PAGES data pages and attach them
173 	 * where needed.
174 	 */
175 	for (j = 0 ; j < nalloc; j++) {
176 		struct bio *rbio = r10_bio->devs[j].repl_bio;
177 		bio = r10_bio->devs[j].bio;
178 		for (i = 0; i < RESYNC_PAGES; i++) {
179 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 					       &conf->mddev->recovery)) {
181 				/* we can share bv_page's during recovery
182 				 * and reshape */
183 				struct bio *rbio = r10_bio->devs[0].bio;
184 				page = rbio->bi_io_vec[i].bv_page;
185 				get_page(page);
186 			} else
187 				page = alloc_page(gfp_flags);
188 			if (unlikely(!page))
189 				goto out_free_pages;
190 
191 			bio->bi_io_vec[i].bv_page = page;
192 			if (rbio)
193 				rbio->bi_io_vec[i].bv_page = page;
194 		}
195 	}
196 
197 	return r10_bio;
198 
199 out_free_pages:
200 	for ( ; i > 0 ; i--)
201 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 	while (j--)
203 		for (i = 0; i < RESYNC_PAGES ; i++)
204 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 	j = 0;
206 out_free_bio:
207 	for ( ; j < nalloc; j++) {
208 		if (r10_bio->devs[j].bio)
209 			bio_put(r10_bio->devs[j].bio);
210 		if (r10_bio->devs[j].repl_bio)
211 			bio_put(r10_bio->devs[j].repl_bio);
212 	}
213 	r10bio_pool_free(r10_bio, conf);
214 	return NULL;
215 }
216 
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 	int i;
220 	struct r10conf *conf = data;
221 	struct r10bio *r10bio = __r10_bio;
222 	int j;
223 
224 	for (j=0; j < conf->copies; j++) {
225 		struct bio *bio = r10bio->devs[j].bio;
226 		if (bio) {
227 			for (i = 0; i < RESYNC_PAGES; i++) {
228 				safe_put_page(bio->bi_io_vec[i].bv_page);
229 				bio->bi_io_vec[i].bv_page = NULL;
230 			}
231 			bio_put(bio);
232 		}
233 		bio = r10bio->devs[j].repl_bio;
234 		if (bio)
235 			bio_put(bio);
236 	}
237 	r10bio_pool_free(r10bio, conf);
238 }
239 
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->copies; i++) {
245 		struct bio **bio = & r10_bio->devs[i].bio;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 		bio = &r10_bio->devs[i].repl_bio;
250 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 	}
254 }
255 
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 	struct r10conf *conf = r10_bio->mddev->private;
259 
260 	put_all_bios(conf, r10_bio);
261 	mempool_free(r10_bio, conf->r10bio_pool);
262 }
263 
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 	struct r10conf *conf = r10_bio->mddev->private;
267 
268 	mempool_free(r10_bio, conf->r10buf_pool);
269 
270 	lower_barrier(conf);
271 }
272 
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 	unsigned long flags;
276 	struct mddev *mddev = r10_bio->mddev;
277 	struct r10conf *conf = mddev->private;
278 
279 	spin_lock_irqsave(&conf->device_lock, flags);
280 	list_add(&r10_bio->retry_list, &conf->retry_list);
281 	conf->nr_queued ++;
282 	spin_unlock_irqrestore(&conf->device_lock, flags);
283 
284 	/* wake up frozen array... */
285 	wake_up(&conf->wait_barrier);
286 
287 	md_wakeup_thread(mddev->thread);
288 }
289 
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 	struct bio *bio = r10_bio->master_bio;
298 	int done;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	if (bio->bi_phys_segments) {
302 		unsigned long flags;
303 		spin_lock_irqsave(&conf->device_lock, flags);
304 		bio->bi_phys_segments--;
305 		done = (bio->bi_phys_segments == 0);
306 		spin_unlock_irqrestore(&conf->device_lock, flags);
307 	} else
308 		done = 1;
309 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 	if (done) {
312 		bio_endio(bio, 0);
313 		/*
314 		 * Wake up any possible resync thread that waits for the device
315 		 * to go idle.
316 		 */
317 		allow_barrier(conf);
318 	}
319 	free_r10bio(r10_bio);
320 }
321 
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 	struct r10conf *conf = r10_bio->mddev->private;
328 
329 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 		r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332 
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 			 struct bio *bio, int *slotp, int *replp)
338 {
339 	int slot;
340 	int repl = 0;
341 
342 	for (slot = 0; slot < conf->copies; slot++) {
343 		if (r10_bio->devs[slot].bio == bio)
344 			break;
345 		if (r10_bio->devs[slot].repl_bio == bio) {
346 			repl = 1;
347 			break;
348 		}
349 	}
350 
351 	BUG_ON(slot == conf->copies);
352 	update_head_pos(slot, r10_bio);
353 
354 	if (slotp)
355 		*slotp = slot;
356 	if (replp)
357 		*replp = repl;
358 	return r10_bio->devs[slot].devnum;
359 }
360 
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 	struct r10bio *r10_bio = bio->bi_private;
365 	int slot, dev;
366 	struct md_rdev *rdev;
367 	struct r10conf *conf = r10_bio->mddev->private;
368 
369 
370 	slot = r10_bio->read_slot;
371 	dev = r10_bio->devs[slot].devnum;
372 	rdev = r10_bio->devs[slot].rdev;
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	update_head_pos(slot, r10_bio);
377 
378 	if (uptodate) {
379 		/*
380 		 * Set R10BIO_Uptodate in our master bio, so that
381 		 * we will return a good error code to the higher
382 		 * levels even if IO on some other mirrored buffer fails.
383 		 *
384 		 * The 'master' represents the composite IO operation to
385 		 * user-side. So if something waits for IO, then it will
386 		 * wait for the 'master' bio.
387 		 */
388 		set_bit(R10BIO_Uptodate, &r10_bio->state);
389 	} else {
390 		/* If all other devices that store this block have
391 		 * failed, we want to return the error upwards rather
392 		 * than fail the last device.  Here we redefine
393 		 * "uptodate" to mean "Don't want to retry"
394 		 */
395 		unsigned long flags;
396 		spin_lock_irqsave(&conf->device_lock, flags);
397 		if (!enough(conf, rdev->raid_disk))
398 			uptodate = 1;
399 		spin_unlock_irqrestore(&conf->device_lock, flags);
400 	}
401 	if (uptodate) {
402 		raid_end_bio_io(r10_bio);
403 		rdev_dec_pending(rdev, conf->mddev);
404 	} else {
405 		/*
406 		 * oops, read error - keep the refcount on the rdev
407 		 */
408 		char b[BDEVNAME_SIZE];
409 		printk_ratelimited(KERN_ERR
410 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
411 				   mdname(conf->mddev),
412 				   bdevname(rdev->bdev, b),
413 				   (unsigned long long)r10_bio->sector);
414 		set_bit(R10BIO_ReadError, &r10_bio->state);
415 		reschedule_retry(r10_bio);
416 	}
417 }
418 
419 static void close_write(struct r10bio *r10_bio)
420 {
421 	/* clear the bitmap if all writes complete successfully */
422 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423 			r10_bio->sectors,
424 			!test_bit(R10BIO_Degraded, &r10_bio->state),
425 			0);
426 	md_write_end(r10_bio->mddev);
427 }
428 
429 static void one_write_done(struct r10bio *r10_bio)
430 {
431 	if (atomic_dec_and_test(&r10_bio->remaining)) {
432 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
433 			reschedule_retry(r10_bio);
434 		else {
435 			close_write(r10_bio);
436 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437 				reschedule_retry(r10_bio);
438 			else
439 				raid_end_bio_io(r10_bio);
440 		}
441 	}
442 }
443 
444 static void raid10_end_write_request(struct bio *bio, int error)
445 {
446 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447 	struct r10bio *r10_bio = bio->bi_private;
448 	int dev;
449 	int dec_rdev = 1;
450 	struct r10conf *conf = r10_bio->mddev->private;
451 	int slot, repl;
452 	struct md_rdev *rdev = NULL;
453 
454 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455 
456 	if (repl)
457 		rdev = conf->mirrors[dev].replacement;
458 	if (!rdev) {
459 		smp_rmb();
460 		repl = 0;
461 		rdev = conf->mirrors[dev].rdev;
462 	}
463 	/*
464 	 * this branch is our 'one mirror IO has finished' event handler:
465 	 */
466 	if (!uptodate) {
467 		if (repl)
468 			/* Never record new bad blocks to replacement,
469 			 * just fail it.
470 			 */
471 			md_error(rdev->mddev, rdev);
472 		else {
473 			set_bit(WriteErrorSeen,	&rdev->flags);
474 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
475 				set_bit(MD_RECOVERY_NEEDED,
476 					&rdev->mddev->recovery);
477 			set_bit(R10BIO_WriteError, &r10_bio->state);
478 			dec_rdev = 0;
479 		}
480 	} else {
481 		/*
482 		 * Set R10BIO_Uptodate in our master bio, so that
483 		 * we will return a good error code for to the higher
484 		 * levels even if IO on some other mirrored buffer fails.
485 		 *
486 		 * The 'master' represents the composite IO operation to
487 		 * user-side. So if something waits for IO, then it will
488 		 * wait for the 'master' bio.
489 		 */
490 		sector_t first_bad;
491 		int bad_sectors;
492 
493 		set_bit(R10BIO_Uptodate, &r10_bio->state);
494 
495 		/* Maybe we can clear some bad blocks. */
496 		if (is_badblock(rdev,
497 				r10_bio->devs[slot].addr,
498 				r10_bio->sectors,
499 				&first_bad, &bad_sectors)) {
500 			bio_put(bio);
501 			if (repl)
502 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
503 			else
504 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
505 			dec_rdev = 0;
506 			set_bit(R10BIO_MadeGood, &r10_bio->state);
507 		}
508 	}
509 
510 	/*
511 	 *
512 	 * Let's see if all mirrored write operations have finished
513 	 * already.
514 	 */
515 	one_write_done(r10_bio);
516 	if (dec_rdev)
517 		rdev_dec_pending(rdev, conf->mddev);
518 }
519 
520 /*
521  * RAID10 layout manager
522  * As well as the chunksize and raid_disks count, there are two
523  * parameters: near_copies and far_copies.
524  * near_copies * far_copies must be <= raid_disks.
525  * Normally one of these will be 1.
526  * If both are 1, we get raid0.
527  * If near_copies == raid_disks, we get raid1.
528  *
529  * Chunks are laid out in raid0 style with near_copies copies of the
530  * first chunk, followed by near_copies copies of the next chunk and
531  * so on.
532  * If far_copies > 1, then after 1/far_copies of the array has been assigned
533  * as described above, we start again with a device offset of near_copies.
534  * So we effectively have another copy of the whole array further down all
535  * the drives, but with blocks on different drives.
536  * With this layout, and block is never stored twice on the one device.
537  *
538  * raid10_find_phys finds the sector offset of a given virtual sector
539  * on each device that it is on.
540  *
541  * raid10_find_virt does the reverse mapping, from a device and a
542  * sector offset to a virtual address
543  */
544 
545 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
546 {
547 	int n,f;
548 	sector_t sector;
549 	sector_t chunk;
550 	sector_t stripe;
551 	int dev;
552 	int slot = 0;
553 	int last_far_set_start, last_far_set_size;
554 
555 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
556 	last_far_set_start *= geo->far_set_size;
557 
558 	last_far_set_size = geo->far_set_size;
559 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
560 
561 	/* now calculate first sector/dev */
562 	chunk = r10bio->sector >> geo->chunk_shift;
563 	sector = r10bio->sector & geo->chunk_mask;
564 
565 	chunk *= geo->near_copies;
566 	stripe = chunk;
567 	dev = sector_div(stripe, geo->raid_disks);
568 	if (geo->far_offset)
569 		stripe *= geo->far_copies;
570 
571 	sector += stripe << geo->chunk_shift;
572 
573 	/* and calculate all the others */
574 	for (n = 0; n < geo->near_copies; n++) {
575 		int d = dev;
576 		int set;
577 		sector_t s = sector;
578 		r10bio->devs[slot].devnum = d;
579 		r10bio->devs[slot].addr = s;
580 		slot++;
581 
582 		for (f = 1; f < geo->far_copies; f++) {
583 			set = d / geo->far_set_size;
584 			d += geo->near_copies;
585 
586 			if ((geo->raid_disks % geo->far_set_size) &&
587 			    (d > last_far_set_start)) {
588 				d -= last_far_set_start;
589 				d %= last_far_set_size;
590 				d += last_far_set_start;
591 			} else {
592 				d %= geo->far_set_size;
593 				d += geo->far_set_size * set;
594 			}
595 			s += geo->stride;
596 			r10bio->devs[slot].devnum = d;
597 			r10bio->devs[slot].addr = s;
598 			slot++;
599 		}
600 		dev++;
601 		if (dev >= geo->raid_disks) {
602 			dev = 0;
603 			sector += (geo->chunk_mask + 1);
604 		}
605 	}
606 }
607 
608 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
609 {
610 	struct geom *geo = &conf->geo;
611 
612 	if (conf->reshape_progress != MaxSector &&
613 	    ((r10bio->sector >= conf->reshape_progress) !=
614 	     conf->mddev->reshape_backwards)) {
615 		set_bit(R10BIO_Previous, &r10bio->state);
616 		geo = &conf->prev;
617 	} else
618 		clear_bit(R10BIO_Previous, &r10bio->state);
619 
620 	__raid10_find_phys(geo, r10bio);
621 }
622 
623 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
624 {
625 	sector_t offset, chunk, vchunk;
626 	/* Never use conf->prev as this is only called during resync
627 	 * or recovery, so reshape isn't happening
628 	 */
629 	struct geom *geo = &conf->geo;
630 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
631 	int far_set_size = geo->far_set_size;
632 	int last_far_set_start;
633 
634 	if (geo->raid_disks % geo->far_set_size) {
635 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
636 		last_far_set_start *= geo->far_set_size;
637 
638 		if (dev >= last_far_set_start) {
639 			far_set_size = geo->far_set_size;
640 			far_set_size += (geo->raid_disks % geo->far_set_size);
641 			far_set_start = last_far_set_start;
642 		}
643 	}
644 
645 	offset = sector & geo->chunk_mask;
646 	if (geo->far_offset) {
647 		int fc;
648 		chunk = sector >> geo->chunk_shift;
649 		fc = sector_div(chunk, geo->far_copies);
650 		dev -= fc * geo->near_copies;
651 		if (dev < far_set_start)
652 			dev += far_set_size;
653 	} else {
654 		while (sector >= geo->stride) {
655 			sector -= geo->stride;
656 			if (dev < (geo->near_copies + far_set_start))
657 				dev += far_set_size - geo->near_copies;
658 			else
659 				dev -= geo->near_copies;
660 		}
661 		chunk = sector >> geo->chunk_shift;
662 	}
663 	vchunk = chunk * geo->raid_disks + dev;
664 	sector_div(vchunk, geo->near_copies);
665 	return (vchunk << geo->chunk_shift) + offset;
666 }
667 
668 /**
669  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
670  *	@q: request queue
671  *	@bvm: properties of new bio
672  *	@biovec: the request that could be merged to it.
673  *
674  *	Return amount of bytes we can accept at this offset
675  *	This requires checking for end-of-chunk if near_copies != raid_disks,
676  *	and for subordinate merge_bvec_fns if merge_check_needed.
677  */
678 static int raid10_mergeable_bvec(struct request_queue *q,
679 				 struct bvec_merge_data *bvm,
680 				 struct bio_vec *biovec)
681 {
682 	struct mddev *mddev = q->queuedata;
683 	struct r10conf *conf = mddev->private;
684 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
685 	int max;
686 	unsigned int chunk_sectors;
687 	unsigned int bio_sectors = bvm->bi_size >> 9;
688 	struct geom *geo = &conf->geo;
689 
690 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
691 	if (conf->reshape_progress != MaxSector &&
692 	    ((sector >= conf->reshape_progress) !=
693 	     conf->mddev->reshape_backwards))
694 		geo = &conf->prev;
695 
696 	if (geo->near_copies < geo->raid_disks) {
697 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
698 					+ bio_sectors)) << 9;
699 		if (max < 0)
700 			/* bio_add cannot handle a negative return */
701 			max = 0;
702 		if (max <= biovec->bv_len && bio_sectors == 0)
703 			return biovec->bv_len;
704 	} else
705 		max = biovec->bv_len;
706 
707 	if (mddev->merge_check_needed) {
708 		struct {
709 			struct r10bio r10_bio;
710 			struct r10dev devs[conf->copies];
711 		} on_stack;
712 		struct r10bio *r10_bio = &on_stack.r10_bio;
713 		int s;
714 		if (conf->reshape_progress != MaxSector) {
715 			/* Cannot give any guidance during reshape */
716 			if (max <= biovec->bv_len && bio_sectors == 0)
717 				return biovec->bv_len;
718 			return 0;
719 		}
720 		r10_bio->sector = sector;
721 		raid10_find_phys(conf, r10_bio);
722 		rcu_read_lock();
723 		for (s = 0; s < conf->copies; s++) {
724 			int disk = r10_bio->devs[s].devnum;
725 			struct md_rdev *rdev = rcu_dereference(
726 				conf->mirrors[disk].rdev);
727 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
728 				struct request_queue *q =
729 					bdev_get_queue(rdev->bdev);
730 				if (q->merge_bvec_fn) {
731 					bvm->bi_sector = r10_bio->devs[s].addr
732 						+ rdev->data_offset;
733 					bvm->bi_bdev = rdev->bdev;
734 					max = min(max, q->merge_bvec_fn(
735 							  q, bvm, biovec));
736 				}
737 			}
738 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
739 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
740 				struct request_queue *q =
741 					bdev_get_queue(rdev->bdev);
742 				if (q->merge_bvec_fn) {
743 					bvm->bi_sector = r10_bio->devs[s].addr
744 						+ rdev->data_offset;
745 					bvm->bi_bdev = rdev->bdev;
746 					max = min(max, q->merge_bvec_fn(
747 							  q, bvm, biovec));
748 				}
749 			}
750 		}
751 		rcu_read_unlock();
752 	}
753 	return max;
754 }
755 
756 /*
757  * This routine returns the disk from which the requested read should
758  * be done. There is a per-array 'next expected sequential IO' sector
759  * number - if this matches on the next IO then we use the last disk.
760  * There is also a per-disk 'last know head position' sector that is
761  * maintained from IRQ contexts, both the normal and the resync IO
762  * completion handlers update this position correctly. If there is no
763  * perfect sequential match then we pick the disk whose head is closest.
764  *
765  * If there are 2 mirrors in the same 2 devices, performance degrades
766  * because position is mirror, not device based.
767  *
768  * The rdev for the device selected will have nr_pending incremented.
769  */
770 
771 /*
772  * FIXME: possibly should rethink readbalancing and do it differently
773  * depending on near_copies / far_copies geometry.
774  */
775 static struct md_rdev *read_balance(struct r10conf *conf,
776 				    struct r10bio *r10_bio,
777 				    int *max_sectors)
778 {
779 	const sector_t this_sector = r10_bio->sector;
780 	int disk, slot;
781 	int sectors = r10_bio->sectors;
782 	int best_good_sectors;
783 	sector_t new_distance, best_dist;
784 	struct md_rdev *best_rdev, *rdev = NULL;
785 	int do_balance;
786 	int best_slot;
787 	struct geom *geo = &conf->geo;
788 
789 	raid10_find_phys(conf, r10_bio);
790 	rcu_read_lock();
791 retry:
792 	sectors = r10_bio->sectors;
793 	best_slot = -1;
794 	best_rdev = NULL;
795 	best_dist = MaxSector;
796 	best_good_sectors = 0;
797 	do_balance = 1;
798 	/*
799 	 * Check if we can balance. We can balance on the whole
800 	 * device if no resync is going on (recovery is ok), or below
801 	 * the resync window. We take the first readable disk when
802 	 * above the resync window.
803 	 */
804 	if (conf->mddev->recovery_cp < MaxSector
805 	    && (this_sector + sectors >= conf->next_resync))
806 		do_balance = 0;
807 
808 	for (slot = 0; slot < conf->copies ; slot++) {
809 		sector_t first_bad;
810 		int bad_sectors;
811 		sector_t dev_sector;
812 
813 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
814 			continue;
815 		disk = r10_bio->devs[slot].devnum;
816 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
817 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
818 		    test_bit(Unmerged, &rdev->flags) ||
819 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
820 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
821 		if (rdev == NULL ||
822 		    test_bit(Faulty, &rdev->flags) ||
823 		    test_bit(Unmerged, &rdev->flags))
824 			continue;
825 		if (!test_bit(In_sync, &rdev->flags) &&
826 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827 			continue;
828 
829 		dev_sector = r10_bio->devs[slot].addr;
830 		if (is_badblock(rdev, dev_sector, sectors,
831 				&first_bad, &bad_sectors)) {
832 			if (best_dist < MaxSector)
833 				/* Already have a better slot */
834 				continue;
835 			if (first_bad <= dev_sector) {
836 				/* Cannot read here.  If this is the
837 				 * 'primary' device, then we must not read
838 				 * beyond 'bad_sectors' from another device.
839 				 */
840 				bad_sectors -= (dev_sector - first_bad);
841 				if (!do_balance && sectors > bad_sectors)
842 					sectors = bad_sectors;
843 				if (best_good_sectors > sectors)
844 					best_good_sectors = sectors;
845 			} else {
846 				sector_t good_sectors =
847 					first_bad - dev_sector;
848 				if (good_sectors > best_good_sectors) {
849 					best_good_sectors = good_sectors;
850 					best_slot = slot;
851 					best_rdev = rdev;
852 				}
853 				if (!do_balance)
854 					/* Must read from here */
855 					break;
856 			}
857 			continue;
858 		} else
859 			best_good_sectors = sectors;
860 
861 		if (!do_balance)
862 			break;
863 
864 		/* This optimisation is debatable, and completely destroys
865 		 * sequential read speed for 'far copies' arrays.  So only
866 		 * keep it for 'near' arrays, and review those later.
867 		 */
868 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
869 			break;
870 
871 		/* for far > 1 always use the lowest address */
872 		if (geo->far_copies > 1)
873 			new_distance = r10_bio->devs[slot].addr;
874 		else
875 			new_distance = abs(r10_bio->devs[slot].addr -
876 					   conf->mirrors[disk].head_position);
877 		if (new_distance < best_dist) {
878 			best_dist = new_distance;
879 			best_slot = slot;
880 			best_rdev = rdev;
881 		}
882 	}
883 	if (slot >= conf->copies) {
884 		slot = best_slot;
885 		rdev = best_rdev;
886 	}
887 
888 	if (slot >= 0) {
889 		atomic_inc(&rdev->nr_pending);
890 		if (test_bit(Faulty, &rdev->flags)) {
891 			/* Cannot risk returning a device that failed
892 			 * before we inc'ed nr_pending
893 			 */
894 			rdev_dec_pending(rdev, conf->mddev);
895 			goto retry;
896 		}
897 		r10_bio->read_slot = slot;
898 	} else
899 		rdev = NULL;
900 	rcu_read_unlock();
901 	*max_sectors = best_good_sectors;
902 
903 	return rdev;
904 }
905 
906 int md_raid10_congested(struct mddev *mddev, int bits)
907 {
908 	struct r10conf *conf = mddev->private;
909 	int i, ret = 0;
910 
911 	if ((bits & (1 << BDI_async_congested)) &&
912 	    conf->pending_count >= max_queued_requests)
913 		return 1;
914 
915 	rcu_read_lock();
916 	for (i = 0;
917 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
918 		     && ret == 0;
919 	     i++) {
920 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
921 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
922 			struct request_queue *q = bdev_get_queue(rdev->bdev);
923 
924 			ret |= bdi_congested(&q->backing_dev_info, bits);
925 		}
926 	}
927 	rcu_read_unlock();
928 	return ret;
929 }
930 EXPORT_SYMBOL_GPL(md_raid10_congested);
931 
932 static int raid10_congested(void *data, int bits)
933 {
934 	struct mddev *mddev = data;
935 
936 	return mddev_congested(mddev, bits) ||
937 		md_raid10_congested(mddev, bits);
938 }
939 
940 static void flush_pending_writes(struct r10conf *conf)
941 {
942 	/* Any writes that have been queued but are awaiting
943 	 * bitmap updates get flushed here.
944 	 */
945 	spin_lock_irq(&conf->device_lock);
946 
947 	if (conf->pending_bio_list.head) {
948 		struct bio *bio;
949 		bio = bio_list_get(&conf->pending_bio_list);
950 		conf->pending_count = 0;
951 		spin_unlock_irq(&conf->device_lock);
952 		/* flush any pending bitmap writes to disk
953 		 * before proceeding w/ I/O */
954 		bitmap_unplug(conf->mddev->bitmap);
955 		wake_up(&conf->wait_barrier);
956 
957 		while (bio) { /* submit pending writes */
958 			struct bio *next = bio->bi_next;
959 			bio->bi_next = NULL;
960 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
961 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
962 				/* Just ignore it */
963 				bio_endio(bio, 0);
964 			else
965 				generic_make_request(bio);
966 			bio = next;
967 		}
968 	} else
969 		spin_unlock_irq(&conf->device_lock);
970 }
971 
972 /* Barriers....
973  * Sometimes we need to suspend IO while we do something else,
974  * either some resync/recovery, or reconfigure the array.
975  * To do this we raise a 'barrier'.
976  * The 'barrier' is a counter that can be raised multiple times
977  * to count how many activities are happening which preclude
978  * normal IO.
979  * We can only raise the barrier if there is no pending IO.
980  * i.e. if nr_pending == 0.
981  * We choose only to raise the barrier if no-one is waiting for the
982  * barrier to go down.  This means that as soon as an IO request
983  * is ready, no other operations which require a barrier will start
984  * until the IO request has had a chance.
985  *
986  * So: regular IO calls 'wait_barrier'.  When that returns there
987  *    is no backgroup IO happening,  It must arrange to call
988  *    allow_barrier when it has finished its IO.
989  * backgroup IO calls must call raise_barrier.  Once that returns
990  *    there is no normal IO happeing.  It must arrange to call
991  *    lower_barrier when the particular background IO completes.
992  */
993 
994 static void raise_barrier(struct r10conf *conf, int force)
995 {
996 	BUG_ON(force && !conf->barrier);
997 	spin_lock_irq(&conf->resync_lock);
998 
999 	/* Wait until no block IO is waiting (unless 'force') */
1000 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1001 			    conf->resync_lock);
1002 
1003 	/* block any new IO from starting */
1004 	conf->barrier++;
1005 
1006 	/* Now wait for all pending IO to complete */
1007 	wait_event_lock_irq(conf->wait_barrier,
1008 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1009 			    conf->resync_lock);
1010 
1011 	spin_unlock_irq(&conf->resync_lock);
1012 }
1013 
1014 static void lower_barrier(struct r10conf *conf)
1015 {
1016 	unsigned long flags;
1017 	spin_lock_irqsave(&conf->resync_lock, flags);
1018 	conf->barrier--;
1019 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1020 	wake_up(&conf->wait_barrier);
1021 }
1022 
1023 static void wait_barrier(struct r10conf *conf)
1024 {
1025 	spin_lock_irq(&conf->resync_lock);
1026 	if (conf->barrier) {
1027 		conf->nr_waiting++;
1028 		/* Wait for the barrier to drop.
1029 		 * However if there are already pending
1030 		 * requests (preventing the barrier from
1031 		 * rising completely), and the
1032 		 * pre-process bio queue isn't empty,
1033 		 * then don't wait, as we need to empty
1034 		 * that queue to get the nr_pending
1035 		 * count down.
1036 		 */
1037 		wait_event_lock_irq(conf->wait_barrier,
1038 				    !conf->barrier ||
1039 				    (conf->nr_pending &&
1040 				     current->bio_list &&
1041 				     !bio_list_empty(current->bio_list)),
1042 				    conf->resync_lock);
1043 		conf->nr_waiting--;
1044 	}
1045 	conf->nr_pending++;
1046 	spin_unlock_irq(&conf->resync_lock);
1047 }
1048 
1049 static void allow_barrier(struct r10conf *conf)
1050 {
1051 	unsigned long flags;
1052 	spin_lock_irqsave(&conf->resync_lock, flags);
1053 	conf->nr_pending--;
1054 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1055 	wake_up(&conf->wait_barrier);
1056 }
1057 
1058 static void freeze_array(struct r10conf *conf)
1059 {
1060 	/* stop syncio and normal IO and wait for everything to
1061 	 * go quiet.
1062 	 * We increment barrier and nr_waiting, and then
1063 	 * wait until nr_pending match nr_queued+1
1064 	 * This is called in the context of one normal IO request
1065 	 * that has failed. Thus any sync request that might be pending
1066 	 * will be blocked by nr_pending, and we need to wait for
1067 	 * pending IO requests to complete or be queued for re-try.
1068 	 * Thus the number queued (nr_queued) plus this request (1)
1069 	 * must match the number of pending IOs (nr_pending) before
1070 	 * we continue.
1071 	 */
1072 	spin_lock_irq(&conf->resync_lock);
1073 	conf->barrier++;
1074 	conf->nr_waiting++;
1075 	wait_event_lock_irq_cmd(conf->wait_barrier,
1076 				conf->nr_pending == conf->nr_queued+1,
1077 				conf->resync_lock,
1078 				flush_pending_writes(conf));
1079 
1080 	spin_unlock_irq(&conf->resync_lock);
1081 }
1082 
1083 static void unfreeze_array(struct r10conf *conf)
1084 {
1085 	/* reverse the effect of the freeze */
1086 	spin_lock_irq(&conf->resync_lock);
1087 	conf->barrier--;
1088 	conf->nr_waiting--;
1089 	wake_up(&conf->wait_barrier);
1090 	spin_unlock_irq(&conf->resync_lock);
1091 }
1092 
1093 static sector_t choose_data_offset(struct r10bio *r10_bio,
1094 				   struct md_rdev *rdev)
1095 {
1096 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097 	    test_bit(R10BIO_Previous, &r10_bio->state))
1098 		return rdev->data_offset;
1099 	else
1100 		return rdev->new_data_offset;
1101 }
1102 
1103 struct raid10_plug_cb {
1104 	struct blk_plug_cb	cb;
1105 	struct bio_list		pending;
1106 	int			pending_cnt;
1107 };
1108 
1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1112 						   cb);
1113 	struct mddev *mddev = plug->cb.data;
1114 	struct r10conf *conf = mddev->private;
1115 	struct bio *bio;
1116 
1117 	if (from_schedule || current->bio_list) {
1118 		spin_lock_irq(&conf->device_lock);
1119 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120 		conf->pending_count += plug->pending_cnt;
1121 		spin_unlock_irq(&conf->device_lock);
1122 		wake_up(&conf->wait_barrier);
1123 		md_wakeup_thread(mddev->thread);
1124 		kfree(plug);
1125 		return;
1126 	}
1127 
1128 	/* we aren't scheduling, so we can do the write-out directly. */
1129 	bio = bio_list_get(&plug->pending);
1130 	bitmap_unplug(mddev->bitmap);
1131 	wake_up(&conf->wait_barrier);
1132 
1133 	while (bio) { /* submit pending writes */
1134 		struct bio *next = bio->bi_next;
1135 		bio->bi_next = NULL;
1136 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1137 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1138 			/* Just ignore it */
1139 			bio_endio(bio, 0);
1140 		else
1141 			generic_make_request(bio);
1142 		bio = next;
1143 	}
1144 	kfree(plug);
1145 }
1146 
1147 static void make_request(struct mddev *mddev, struct bio * bio)
1148 {
1149 	struct r10conf *conf = mddev->private;
1150 	struct r10bio *r10_bio;
1151 	struct bio *read_bio;
1152 	int i;
1153 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1154 	int chunk_sects = chunk_mask + 1;
1155 	const int rw = bio_data_dir(bio);
1156 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1157 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1158 	const unsigned long do_discard = (bio->bi_rw
1159 					  & (REQ_DISCARD | REQ_SECURE));
1160 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1161 	unsigned long flags;
1162 	struct md_rdev *blocked_rdev;
1163 	struct blk_plug_cb *cb;
1164 	struct raid10_plug_cb *plug = NULL;
1165 	int sectors_handled;
1166 	int max_sectors;
1167 	int sectors;
1168 
1169 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1170 		md_flush_request(mddev, bio);
1171 		return;
1172 	}
1173 
1174 	/* If this request crosses a chunk boundary, we need to
1175 	 * split it.  This will only happen for 1 PAGE (or less) requests.
1176 	 */
1177 	if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1178 		     > chunk_sects
1179 		     && (conf->geo.near_copies < conf->geo.raid_disks
1180 			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1181 		struct bio_pair *bp;
1182 		/* Sanity check -- queue functions should prevent this happening */
1183 		if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1184 		    bio->bi_idx != 0)
1185 			goto bad_map;
1186 		/* This is a one page bio that upper layers
1187 		 * refuse to split for us, so we need to split it.
1188 		 */
1189 		bp = bio_split(bio,
1190 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1191 
1192 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1193 		 * If the first succeeds but the second blocks due to the resync
1194 		 * thread raising the barrier, we will deadlock because the
1195 		 * IO to the underlying device will be queued in generic_make_request
1196 		 * and will never complete, so will never reduce nr_pending.
1197 		 * So increment nr_waiting here so no new raise_barriers will
1198 		 * succeed, and so the second wait_barrier cannot block.
1199 		 */
1200 		spin_lock_irq(&conf->resync_lock);
1201 		conf->nr_waiting++;
1202 		spin_unlock_irq(&conf->resync_lock);
1203 
1204 		make_request(mddev, &bp->bio1);
1205 		make_request(mddev, &bp->bio2);
1206 
1207 		spin_lock_irq(&conf->resync_lock);
1208 		conf->nr_waiting--;
1209 		wake_up(&conf->wait_barrier);
1210 		spin_unlock_irq(&conf->resync_lock);
1211 
1212 		bio_pair_release(bp);
1213 		return;
1214 	bad_map:
1215 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1216 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1217 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1218 
1219 		bio_io_error(bio);
1220 		return;
1221 	}
1222 
1223 	md_write_start(mddev, bio);
1224 
1225 	/*
1226 	 * Register the new request and wait if the reconstruction
1227 	 * thread has put up a bar for new requests.
1228 	 * Continue immediately if no resync is active currently.
1229 	 */
1230 	wait_barrier(conf);
1231 
1232 	sectors = bio->bi_size >> 9;
1233 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1234 	    bio->bi_sector < conf->reshape_progress &&
1235 	    bio->bi_sector + sectors > conf->reshape_progress) {
1236 		/* IO spans the reshape position.  Need to wait for
1237 		 * reshape to pass
1238 		 */
1239 		allow_barrier(conf);
1240 		wait_event(conf->wait_barrier,
1241 			   conf->reshape_progress <= bio->bi_sector ||
1242 			   conf->reshape_progress >= bio->bi_sector + sectors);
1243 		wait_barrier(conf);
1244 	}
1245 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1246 	    bio_data_dir(bio) == WRITE &&
1247 	    (mddev->reshape_backwards
1248 	     ? (bio->bi_sector < conf->reshape_safe &&
1249 		bio->bi_sector + sectors > conf->reshape_progress)
1250 	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1251 		bio->bi_sector < conf->reshape_progress))) {
1252 		/* Need to update reshape_position in metadata */
1253 		mddev->reshape_position = conf->reshape_progress;
1254 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1255 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1256 		md_wakeup_thread(mddev->thread);
1257 		wait_event(mddev->sb_wait,
1258 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1259 
1260 		conf->reshape_safe = mddev->reshape_position;
1261 	}
1262 
1263 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1264 
1265 	r10_bio->master_bio = bio;
1266 	r10_bio->sectors = sectors;
1267 
1268 	r10_bio->mddev = mddev;
1269 	r10_bio->sector = bio->bi_sector;
1270 	r10_bio->state = 0;
1271 
1272 	/* We might need to issue multiple reads to different
1273 	 * devices if there are bad blocks around, so we keep
1274 	 * track of the number of reads in bio->bi_phys_segments.
1275 	 * If this is 0, there is only one r10_bio and no locking
1276 	 * will be needed when the request completes.  If it is
1277 	 * non-zero, then it is the number of not-completed requests.
1278 	 */
1279 	bio->bi_phys_segments = 0;
1280 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1281 
1282 	if (rw == READ) {
1283 		/*
1284 		 * read balancing logic:
1285 		 */
1286 		struct md_rdev *rdev;
1287 		int slot;
1288 
1289 read_again:
1290 		rdev = read_balance(conf, r10_bio, &max_sectors);
1291 		if (!rdev) {
1292 			raid_end_bio_io(r10_bio);
1293 			return;
1294 		}
1295 		slot = r10_bio->read_slot;
1296 
1297 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1298 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1299 			    max_sectors);
1300 
1301 		r10_bio->devs[slot].bio = read_bio;
1302 		r10_bio->devs[slot].rdev = rdev;
1303 
1304 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1305 			choose_data_offset(r10_bio, rdev);
1306 		read_bio->bi_bdev = rdev->bdev;
1307 		read_bio->bi_end_io = raid10_end_read_request;
1308 		read_bio->bi_rw = READ | do_sync;
1309 		read_bio->bi_private = r10_bio;
1310 
1311 		if (max_sectors < r10_bio->sectors) {
1312 			/* Could not read all from this device, so we will
1313 			 * need another r10_bio.
1314 			 */
1315 			sectors_handled = (r10_bio->sectors + max_sectors
1316 					   - bio->bi_sector);
1317 			r10_bio->sectors = max_sectors;
1318 			spin_lock_irq(&conf->device_lock);
1319 			if (bio->bi_phys_segments == 0)
1320 				bio->bi_phys_segments = 2;
1321 			else
1322 				bio->bi_phys_segments++;
1323 			spin_unlock(&conf->device_lock);
1324 			/* Cannot call generic_make_request directly
1325 			 * as that will be queued in __generic_make_request
1326 			 * and subsequent mempool_alloc might block
1327 			 * waiting for it.  so hand bio over to raid10d.
1328 			 */
1329 			reschedule_retry(r10_bio);
1330 
1331 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1332 
1333 			r10_bio->master_bio = bio;
1334 			r10_bio->sectors = ((bio->bi_size >> 9)
1335 					    - sectors_handled);
1336 			r10_bio->state = 0;
1337 			r10_bio->mddev = mddev;
1338 			r10_bio->sector = bio->bi_sector + sectors_handled;
1339 			goto read_again;
1340 		} else
1341 			generic_make_request(read_bio);
1342 		return;
1343 	}
1344 
1345 	/*
1346 	 * WRITE:
1347 	 */
1348 	if (conf->pending_count >= max_queued_requests) {
1349 		md_wakeup_thread(mddev->thread);
1350 		wait_event(conf->wait_barrier,
1351 			   conf->pending_count < max_queued_requests);
1352 	}
1353 	/* first select target devices under rcu_lock and
1354 	 * inc refcount on their rdev.  Record them by setting
1355 	 * bios[x] to bio
1356 	 * If there are known/acknowledged bad blocks on any device
1357 	 * on which we have seen a write error, we want to avoid
1358 	 * writing to those blocks.  This potentially requires several
1359 	 * writes to write around the bad blocks.  Each set of writes
1360 	 * gets its own r10_bio with a set of bios attached.  The number
1361 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1362 	 * the read case.
1363 	 */
1364 
1365 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1366 	raid10_find_phys(conf, r10_bio);
1367 retry_write:
1368 	blocked_rdev = NULL;
1369 	rcu_read_lock();
1370 	max_sectors = r10_bio->sectors;
1371 
1372 	for (i = 0;  i < conf->copies; i++) {
1373 		int d = r10_bio->devs[i].devnum;
1374 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1375 		struct md_rdev *rrdev = rcu_dereference(
1376 			conf->mirrors[d].replacement);
1377 		if (rdev == rrdev)
1378 			rrdev = NULL;
1379 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1380 			atomic_inc(&rdev->nr_pending);
1381 			blocked_rdev = rdev;
1382 			break;
1383 		}
1384 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1385 			atomic_inc(&rrdev->nr_pending);
1386 			blocked_rdev = rrdev;
1387 			break;
1388 		}
1389 		if (rdev && (test_bit(Faulty, &rdev->flags)
1390 			     || test_bit(Unmerged, &rdev->flags)))
1391 			rdev = NULL;
1392 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1393 			      || test_bit(Unmerged, &rrdev->flags)))
1394 			rrdev = NULL;
1395 
1396 		r10_bio->devs[i].bio = NULL;
1397 		r10_bio->devs[i].repl_bio = NULL;
1398 
1399 		if (!rdev && !rrdev) {
1400 			set_bit(R10BIO_Degraded, &r10_bio->state);
1401 			continue;
1402 		}
1403 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1404 			sector_t first_bad;
1405 			sector_t dev_sector = r10_bio->devs[i].addr;
1406 			int bad_sectors;
1407 			int is_bad;
1408 
1409 			is_bad = is_badblock(rdev, dev_sector,
1410 					     max_sectors,
1411 					     &first_bad, &bad_sectors);
1412 			if (is_bad < 0) {
1413 				/* Mustn't write here until the bad block
1414 				 * is acknowledged
1415 				 */
1416 				atomic_inc(&rdev->nr_pending);
1417 				set_bit(BlockedBadBlocks, &rdev->flags);
1418 				blocked_rdev = rdev;
1419 				break;
1420 			}
1421 			if (is_bad && first_bad <= dev_sector) {
1422 				/* Cannot write here at all */
1423 				bad_sectors -= (dev_sector - first_bad);
1424 				if (bad_sectors < max_sectors)
1425 					/* Mustn't write more than bad_sectors
1426 					 * to other devices yet
1427 					 */
1428 					max_sectors = bad_sectors;
1429 				/* We don't set R10BIO_Degraded as that
1430 				 * only applies if the disk is missing,
1431 				 * so it might be re-added, and we want to
1432 				 * know to recover this chunk.
1433 				 * In this case the device is here, and the
1434 				 * fact that this chunk is not in-sync is
1435 				 * recorded in the bad block log.
1436 				 */
1437 				continue;
1438 			}
1439 			if (is_bad) {
1440 				int good_sectors = first_bad - dev_sector;
1441 				if (good_sectors < max_sectors)
1442 					max_sectors = good_sectors;
1443 			}
1444 		}
1445 		if (rdev) {
1446 			r10_bio->devs[i].bio = bio;
1447 			atomic_inc(&rdev->nr_pending);
1448 		}
1449 		if (rrdev) {
1450 			r10_bio->devs[i].repl_bio = bio;
1451 			atomic_inc(&rrdev->nr_pending);
1452 		}
1453 	}
1454 	rcu_read_unlock();
1455 
1456 	if (unlikely(blocked_rdev)) {
1457 		/* Have to wait for this device to get unblocked, then retry */
1458 		int j;
1459 		int d;
1460 
1461 		for (j = 0; j < i; j++) {
1462 			if (r10_bio->devs[j].bio) {
1463 				d = r10_bio->devs[j].devnum;
1464 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1465 			}
1466 			if (r10_bio->devs[j].repl_bio) {
1467 				struct md_rdev *rdev;
1468 				d = r10_bio->devs[j].devnum;
1469 				rdev = conf->mirrors[d].replacement;
1470 				if (!rdev) {
1471 					/* Race with remove_disk */
1472 					smp_mb();
1473 					rdev = conf->mirrors[d].rdev;
1474 				}
1475 				rdev_dec_pending(rdev, mddev);
1476 			}
1477 		}
1478 		allow_barrier(conf);
1479 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1480 		wait_barrier(conf);
1481 		goto retry_write;
1482 	}
1483 
1484 	if (max_sectors < r10_bio->sectors) {
1485 		/* We are splitting this into multiple parts, so
1486 		 * we need to prepare for allocating another r10_bio.
1487 		 */
1488 		r10_bio->sectors = max_sectors;
1489 		spin_lock_irq(&conf->device_lock);
1490 		if (bio->bi_phys_segments == 0)
1491 			bio->bi_phys_segments = 2;
1492 		else
1493 			bio->bi_phys_segments++;
1494 		spin_unlock_irq(&conf->device_lock);
1495 	}
1496 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1497 
1498 	atomic_set(&r10_bio->remaining, 1);
1499 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1500 
1501 	for (i = 0; i < conf->copies; i++) {
1502 		struct bio *mbio;
1503 		int d = r10_bio->devs[i].devnum;
1504 		if (r10_bio->devs[i].bio) {
1505 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1506 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1507 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1508 				    max_sectors);
1509 			r10_bio->devs[i].bio = mbio;
1510 
1511 			mbio->bi_sector	= (r10_bio->devs[i].addr+
1512 					   choose_data_offset(r10_bio,
1513 							      rdev));
1514 			mbio->bi_bdev = rdev->bdev;
1515 			mbio->bi_end_io	= raid10_end_write_request;
1516 			mbio->bi_rw =
1517 				WRITE | do_sync | do_fua | do_discard | do_same;
1518 			mbio->bi_private = r10_bio;
1519 
1520 			atomic_inc(&r10_bio->remaining);
1521 
1522 			cb = blk_check_plugged(raid10_unplug, mddev,
1523 					       sizeof(*plug));
1524 			if (cb)
1525 				plug = container_of(cb, struct raid10_plug_cb,
1526 						    cb);
1527 			else
1528 				plug = NULL;
1529 			spin_lock_irqsave(&conf->device_lock, flags);
1530 			if (plug) {
1531 				bio_list_add(&plug->pending, mbio);
1532 				plug->pending_cnt++;
1533 			} else {
1534 				bio_list_add(&conf->pending_bio_list, mbio);
1535 				conf->pending_count++;
1536 			}
1537 			spin_unlock_irqrestore(&conf->device_lock, flags);
1538 			if (!plug)
1539 				md_wakeup_thread(mddev->thread);
1540 		}
1541 
1542 		if (r10_bio->devs[i].repl_bio) {
1543 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1544 			if (rdev == NULL) {
1545 				/* Replacement just got moved to main 'rdev' */
1546 				smp_mb();
1547 				rdev = conf->mirrors[d].rdev;
1548 			}
1549 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1550 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1551 				    max_sectors);
1552 			r10_bio->devs[i].repl_bio = mbio;
1553 
1554 			mbio->bi_sector	= (r10_bio->devs[i].addr +
1555 					   choose_data_offset(
1556 						   r10_bio, rdev));
1557 			mbio->bi_bdev = rdev->bdev;
1558 			mbio->bi_end_io	= raid10_end_write_request;
1559 			mbio->bi_rw =
1560 				WRITE | do_sync | do_fua | do_discard | do_same;
1561 			mbio->bi_private = r10_bio;
1562 
1563 			atomic_inc(&r10_bio->remaining);
1564 			spin_lock_irqsave(&conf->device_lock, flags);
1565 			bio_list_add(&conf->pending_bio_list, mbio);
1566 			conf->pending_count++;
1567 			spin_unlock_irqrestore(&conf->device_lock, flags);
1568 			if (!mddev_check_plugged(mddev))
1569 				md_wakeup_thread(mddev->thread);
1570 		}
1571 	}
1572 
1573 	/* Don't remove the bias on 'remaining' (one_write_done) until
1574 	 * after checking if we need to go around again.
1575 	 */
1576 
1577 	if (sectors_handled < (bio->bi_size >> 9)) {
1578 		one_write_done(r10_bio);
1579 		/* We need another r10_bio.  It has already been counted
1580 		 * in bio->bi_phys_segments.
1581 		 */
1582 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1583 
1584 		r10_bio->master_bio = bio;
1585 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1586 
1587 		r10_bio->mddev = mddev;
1588 		r10_bio->sector = bio->bi_sector + sectors_handled;
1589 		r10_bio->state = 0;
1590 		goto retry_write;
1591 	}
1592 	one_write_done(r10_bio);
1593 
1594 	/* In case raid10d snuck in to freeze_array */
1595 	wake_up(&conf->wait_barrier);
1596 }
1597 
1598 static void status(struct seq_file *seq, struct mddev *mddev)
1599 {
1600 	struct r10conf *conf = mddev->private;
1601 	int i;
1602 
1603 	if (conf->geo.near_copies < conf->geo.raid_disks)
1604 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1605 	if (conf->geo.near_copies > 1)
1606 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1607 	if (conf->geo.far_copies > 1) {
1608 		if (conf->geo.far_offset)
1609 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1610 		else
1611 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1612 	}
1613 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1614 					conf->geo.raid_disks - mddev->degraded);
1615 	for (i = 0; i < conf->geo.raid_disks; i++)
1616 		seq_printf(seq, "%s",
1617 			      conf->mirrors[i].rdev &&
1618 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1619 	seq_printf(seq, "]");
1620 }
1621 
1622 /* check if there are enough drives for
1623  * every block to appear on atleast one.
1624  * Don't consider the device numbered 'ignore'
1625  * as we might be about to remove it.
1626  */
1627 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1628 {
1629 	int first = 0;
1630 
1631 	do {
1632 		int n = conf->copies;
1633 		int cnt = 0;
1634 		int this = first;
1635 		while (n--) {
1636 			if (conf->mirrors[this].rdev &&
1637 			    this != ignore)
1638 				cnt++;
1639 			this = (this+1) % geo->raid_disks;
1640 		}
1641 		if (cnt == 0)
1642 			return 0;
1643 		first = (first + geo->near_copies) % geo->raid_disks;
1644 	} while (first != 0);
1645 	return 1;
1646 }
1647 
1648 static int enough(struct r10conf *conf, int ignore)
1649 {
1650 	return _enough(conf, &conf->geo, ignore) &&
1651 		_enough(conf, &conf->prev, ignore);
1652 }
1653 
1654 static void error(struct mddev *mddev, struct md_rdev *rdev)
1655 {
1656 	char b[BDEVNAME_SIZE];
1657 	struct r10conf *conf = mddev->private;
1658 
1659 	/*
1660 	 * If it is not operational, then we have already marked it as dead
1661 	 * else if it is the last working disks, ignore the error, let the
1662 	 * next level up know.
1663 	 * else mark the drive as failed
1664 	 */
1665 	if (test_bit(In_sync, &rdev->flags)
1666 	    && !enough(conf, rdev->raid_disk))
1667 		/*
1668 		 * Don't fail the drive, just return an IO error.
1669 		 */
1670 		return;
1671 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1672 		unsigned long flags;
1673 		spin_lock_irqsave(&conf->device_lock, flags);
1674 		mddev->degraded++;
1675 		spin_unlock_irqrestore(&conf->device_lock, flags);
1676 		/*
1677 		 * if recovery is running, make sure it aborts.
1678 		 */
1679 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1680 	}
1681 	set_bit(Blocked, &rdev->flags);
1682 	set_bit(Faulty, &rdev->flags);
1683 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1684 	printk(KERN_ALERT
1685 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1686 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1687 	       mdname(mddev), bdevname(rdev->bdev, b),
1688 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1689 }
1690 
1691 static void print_conf(struct r10conf *conf)
1692 {
1693 	int i;
1694 	struct raid10_info *tmp;
1695 
1696 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1697 	if (!conf) {
1698 		printk(KERN_DEBUG "(!conf)\n");
1699 		return;
1700 	}
1701 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1702 		conf->geo.raid_disks);
1703 
1704 	for (i = 0; i < conf->geo.raid_disks; i++) {
1705 		char b[BDEVNAME_SIZE];
1706 		tmp = conf->mirrors + i;
1707 		if (tmp->rdev)
1708 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1709 				i, !test_bit(In_sync, &tmp->rdev->flags),
1710 			        !test_bit(Faulty, &tmp->rdev->flags),
1711 				bdevname(tmp->rdev->bdev,b));
1712 	}
1713 }
1714 
1715 static void close_sync(struct r10conf *conf)
1716 {
1717 	wait_barrier(conf);
1718 	allow_barrier(conf);
1719 
1720 	mempool_destroy(conf->r10buf_pool);
1721 	conf->r10buf_pool = NULL;
1722 }
1723 
1724 static int raid10_spare_active(struct mddev *mddev)
1725 {
1726 	int i;
1727 	struct r10conf *conf = mddev->private;
1728 	struct raid10_info *tmp;
1729 	int count = 0;
1730 	unsigned long flags;
1731 
1732 	/*
1733 	 * Find all non-in_sync disks within the RAID10 configuration
1734 	 * and mark them in_sync
1735 	 */
1736 	for (i = 0; i < conf->geo.raid_disks; i++) {
1737 		tmp = conf->mirrors + i;
1738 		if (tmp->replacement
1739 		    && tmp->replacement->recovery_offset == MaxSector
1740 		    && !test_bit(Faulty, &tmp->replacement->flags)
1741 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1742 			/* Replacement has just become active */
1743 			if (!tmp->rdev
1744 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1745 				count++;
1746 			if (tmp->rdev) {
1747 				/* Replaced device not technically faulty,
1748 				 * but we need to be sure it gets removed
1749 				 * and never re-added.
1750 				 */
1751 				set_bit(Faulty, &tmp->rdev->flags);
1752 				sysfs_notify_dirent_safe(
1753 					tmp->rdev->sysfs_state);
1754 			}
1755 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1756 		} else if (tmp->rdev
1757 			   && !test_bit(Faulty, &tmp->rdev->flags)
1758 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1759 			count++;
1760 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1761 		}
1762 	}
1763 	spin_lock_irqsave(&conf->device_lock, flags);
1764 	mddev->degraded -= count;
1765 	spin_unlock_irqrestore(&conf->device_lock, flags);
1766 
1767 	print_conf(conf);
1768 	return count;
1769 }
1770 
1771 
1772 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1773 {
1774 	struct r10conf *conf = mddev->private;
1775 	int err = -EEXIST;
1776 	int mirror;
1777 	int first = 0;
1778 	int last = conf->geo.raid_disks - 1;
1779 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1780 
1781 	if (mddev->recovery_cp < MaxSector)
1782 		/* only hot-add to in-sync arrays, as recovery is
1783 		 * very different from resync
1784 		 */
1785 		return -EBUSY;
1786 	if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1787 		return -EINVAL;
1788 
1789 	if (rdev->raid_disk >= 0)
1790 		first = last = rdev->raid_disk;
1791 
1792 	if (q->merge_bvec_fn) {
1793 		set_bit(Unmerged, &rdev->flags);
1794 		mddev->merge_check_needed = 1;
1795 	}
1796 
1797 	if (rdev->saved_raid_disk >= first &&
1798 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1799 		mirror = rdev->saved_raid_disk;
1800 	else
1801 		mirror = first;
1802 	for ( ; mirror <= last ; mirror++) {
1803 		struct raid10_info *p = &conf->mirrors[mirror];
1804 		if (p->recovery_disabled == mddev->recovery_disabled)
1805 			continue;
1806 		if (p->rdev) {
1807 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1808 			    p->replacement != NULL)
1809 				continue;
1810 			clear_bit(In_sync, &rdev->flags);
1811 			set_bit(Replacement, &rdev->flags);
1812 			rdev->raid_disk = mirror;
1813 			err = 0;
1814 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1815 					  rdev->data_offset << 9);
1816 			conf->fullsync = 1;
1817 			rcu_assign_pointer(p->replacement, rdev);
1818 			break;
1819 		}
1820 
1821 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1822 				  rdev->data_offset << 9);
1823 
1824 		p->head_position = 0;
1825 		p->recovery_disabled = mddev->recovery_disabled - 1;
1826 		rdev->raid_disk = mirror;
1827 		err = 0;
1828 		if (rdev->saved_raid_disk != mirror)
1829 			conf->fullsync = 1;
1830 		rcu_assign_pointer(p->rdev, rdev);
1831 		break;
1832 	}
1833 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1834 		/* Some requests might not have seen this new
1835 		 * merge_bvec_fn.  We must wait for them to complete
1836 		 * before merging the device fully.
1837 		 * First we make sure any code which has tested
1838 		 * our function has submitted the request, then
1839 		 * we wait for all outstanding requests to complete.
1840 		 */
1841 		synchronize_sched();
1842 		raise_barrier(conf, 0);
1843 		lower_barrier(conf);
1844 		clear_bit(Unmerged, &rdev->flags);
1845 	}
1846 	md_integrity_add_rdev(rdev, mddev);
1847 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1848 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1849 
1850 	print_conf(conf);
1851 	return err;
1852 }
1853 
1854 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1855 {
1856 	struct r10conf *conf = mddev->private;
1857 	int err = 0;
1858 	int number = rdev->raid_disk;
1859 	struct md_rdev **rdevp;
1860 	struct raid10_info *p = conf->mirrors + number;
1861 
1862 	print_conf(conf);
1863 	if (rdev == p->rdev)
1864 		rdevp = &p->rdev;
1865 	else if (rdev == p->replacement)
1866 		rdevp = &p->replacement;
1867 	else
1868 		return 0;
1869 
1870 	if (test_bit(In_sync, &rdev->flags) ||
1871 	    atomic_read(&rdev->nr_pending)) {
1872 		err = -EBUSY;
1873 		goto abort;
1874 	}
1875 	/* Only remove faulty devices if recovery
1876 	 * is not possible.
1877 	 */
1878 	if (!test_bit(Faulty, &rdev->flags) &&
1879 	    mddev->recovery_disabled != p->recovery_disabled &&
1880 	    (!p->replacement || p->replacement == rdev) &&
1881 	    number < conf->geo.raid_disks &&
1882 	    enough(conf, -1)) {
1883 		err = -EBUSY;
1884 		goto abort;
1885 	}
1886 	*rdevp = NULL;
1887 	synchronize_rcu();
1888 	if (atomic_read(&rdev->nr_pending)) {
1889 		/* lost the race, try later */
1890 		err = -EBUSY;
1891 		*rdevp = rdev;
1892 		goto abort;
1893 	} else if (p->replacement) {
1894 		/* We must have just cleared 'rdev' */
1895 		p->rdev = p->replacement;
1896 		clear_bit(Replacement, &p->replacement->flags);
1897 		smp_mb(); /* Make sure other CPUs may see both as identical
1898 			   * but will never see neither -- if they are careful.
1899 			   */
1900 		p->replacement = NULL;
1901 		clear_bit(WantReplacement, &rdev->flags);
1902 	} else
1903 		/* We might have just remove the Replacement as faulty
1904 		 * Clear the flag just in case
1905 		 */
1906 		clear_bit(WantReplacement, &rdev->flags);
1907 
1908 	err = md_integrity_register(mddev);
1909 
1910 abort:
1911 
1912 	print_conf(conf);
1913 	return err;
1914 }
1915 
1916 
1917 static void end_sync_read(struct bio *bio, int error)
1918 {
1919 	struct r10bio *r10_bio = bio->bi_private;
1920 	struct r10conf *conf = r10_bio->mddev->private;
1921 	int d;
1922 
1923 	if (bio == r10_bio->master_bio) {
1924 		/* this is a reshape read */
1925 		d = r10_bio->read_slot; /* really the read dev */
1926 	} else
1927 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1928 
1929 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1930 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1931 	else
1932 		/* The write handler will notice the lack of
1933 		 * R10BIO_Uptodate and record any errors etc
1934 		 */
1935 		atomic_add(r10_bio->sectors,
1936 			   &conf->mirrors[d].rdev->corrected_errors);
1937 
1938 	/* for reconstruct, we always reschedule after a read.
1939 	 * for resync, only after all reads
1940 	 */
1941 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1942 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1943 	    atomic_dec_and_test(&r10_bio->remaining)) {
1944 		/* we have read all the blocks,
1945 		 * do the comparison in process context in raid10d
1946 		 */
1947 		reschedule_retry(r10_bio);
1948 	}
1949 }
1950 
1951 static void end_sync_request(struct r10bio *r10_bio)
1952 {
1953 	struct mddev *mddev = r10_bio->mddev;
1954 
1955 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1956 		if (r10_bio->master_bio == NULL) {
1957 			/* the primary of several recovery bios */
1958 			sector_t s = r10_bio->sectors;
1959 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1960 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1961 				reschedule_retry(r10_bio);
1962 			else
1963 				put_buf(r10_bio);
1964 			md_done_sync(mddev, s, 1);
1965 			break;
1966 		} else {
1967 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1968 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1969 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1970 				reschedule_retry(r10_bio);
1971 			else
1972 				put_buf(r10_bio);
1973 			r10_bio = r10_bio2;
1974 		}
1975 	}
1976 }
1977 
1978 static void end_sync_write(struct bio *bio, int error)
1979 {
1980 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1981 	struct r10bio *r10_bio = bio->bi_private;
1982 	struct mddev *mddev = r10_bio->mddev;
1983 	struct r10conf *conf = mddev->private;
1984 	int d;
1985 	sector_t first_bad;
1986 	int bad_sectors;
1987 	int slot;
1988 	int repl;
1989 	struct md_rdev *rdev = NULL;
1990 
1991 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1992 	if (repl)
1993 		rdev = conf->mirrors[d].replacement;
1994 	else
1995 		rdev = conf->mirrors[d].rdev;
1996 
1997 	if (!uptodate) {
1998 		if (repl)
1999 			md_error(mddev, rdev);
2000 		else {
2001 			set_bit(WriteErrorSeen, &rdev->flags);
2002 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2003 				set_bit(MD_RECOVERY_NEEDED,
2004 					&rdev->mddev->recovery);
2005 			set_bit(R10BIO_WriteError, &r10_bio->state);
2006 		}
2007 	} else if (is_badblock(rdev,
2008 			     r10_bio->devs[slot].addr,
2009 			     r10_bio->sectors,
2010 			     &first_bad, &bad_sectors))
2011 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2012 
2013 	rdev_dec_pending(rdev, mddev);
2014 
2015 	end_sync_request(r10_bio);
2016 }
2017 
2018 /*
2019  * Note: sync and recover and handled very differently for raid10
2020  * This code is for resync.
2021  * For resync, we read through virtual addresses and read all blocks.
2022  * If there is any error, we schedule a write.  The lowest numbered
2023  * drive is authoritative.
2024  * However requests come for physical address, so we need to map.
2025  * For every physical address there are raid_disks/copies virtual addresses,
2026  * which is always are least one, but is not necessarly an integer.
2027  * This means that a physical address can span multiple chunks, so we may
2028  * have to submit multiple io requests for a single sync request.
2029  */
2030 /*
2031  * We check if all blocks are in-sync and only write to blocks that
2032  * aren't in sync
2033  */
2034 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2035 {
2036 	struct r10conf *conf = mddev->private;
2037 	int i, first;
2038 	struct bio *tbio, *fbio;
2039 	int vcnt;
2040 
2041 	atomic_set(&r10_bio->remaining, 1);
2042 
2043 	/* find the first device with a block */
2044 	for (i=0; i<conf->copies; i++)
2045 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2046 			break;
2047 
2048 	if (i == conf->copies)
2049 		goto done;
2050 
2051 	first = i;
2052 	fbio = r10_bio->devs[i].bio;
2053 
2054 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2055 	/* now find blocks with errors */
2056 	for (i=0 ; i < conf->copies ; i++) {
2057 		int  j, d;
2058 
2059 		tbio = r10_bio->devs[i].bio;
2060 
2061 		if (tbio->bi_end_io != end_sync_read)
2062 			continue;
2063 		if (i == first)
2064 			continue;
2065 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2066 			/* We know that the bi_io_vec layout is the same for
2067 			 * both 'first' and 'i', so we just compare them.
2068 			 * All vec entries are PAGE_SIZE;
2069 			 */
2070 			for (j = 0; j < vcnt; j++)
2071 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2072 					   page_address(tbio->bi_io_vec[j].bv_page),
2073 					   fbio->bi_io_vec[j].bv_len))
2074 					break;
2075 			if (j == vcnt)
2076 				continue;
2077 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2078 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2079 				/* Don't fix anything. */
2080 				continue;
2081 		}
2082 		/* Ok, we need to write this bio, either to correct an
2083 		 * inconsistency or to correct an unreadable block.
2084 		 * First we need to fixup bv_offset, bv_len and
2085 		 * bi_vecs, as the read request might have corrupted these
2086 		 */
2087 		tbio->bi_vcnt = vcnt;
2088 		tbio->bi_size = r10_bio->sectors << 9;
2089 		tbio->bi_idx = 0;
2090 		tbio->bi_phys_segments = 0;
2091 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2092 		tbio->bi_flags |= 1 << BIO_UPTODATE;
2093 		tbio->bi_next = NULL;
2094 		tbio->bi_rw = WRITE;
2095 		tbio->bi_private = r10_bio;
2096 		tbio->bi_sector = r10_bio->devs[i].addr;
2097 
2098 		for (j=0; j < vcnt ; j++) {
2099 			tbio->bi_io_vec[j].bv_offset = 0;
2100 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2101 
2102 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2103 			       page_address(fbio->bi_io_vec[j].bv_page),
2104 			       PAGE_SIZE);
2105 		}
2106 		tbio->bi_end_io = end_sync_write;
2107 
2108 		d = r10_bio->devs[i].devnum;
2109 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2110 		atomic_inc(&r10_bio->remaining);
2111 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2112 
2113 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2114 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2115 		generic_make_request(tbio);
2116 	}
2117 
2118 	/* Now write out to any replacement devices
2119 	 * that are active
2120 	 */
2121 	for (i = 0; i < conf->copies; i++) {
2122 		int j, d;
2123 
2124 		tbio = r10_bio->devs[i].repl_bio;
2125 		if (!tbio || !tbio->bi_end_io)
2126 			continue;
2127 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2128 		    && r10_bio->devs[i].bio != fbio)
2129 			for (j = 0; j < vcnt; j++)
2130 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2131 				       page_address(fbio->bi_io_vec[j].bv_page),
2132 				       PAGE_SIZE);
2133 		d = r10_bio->devs[i].devnum;
2134 		atomic_inc(&r10_bio->remaining);
2135 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2136 			     tbio->bi_size >> 9);
2137 		generic_make_request(tbio);
2138 	}
2139 
2140 done:
2141 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2142 		md_done_sync(mddev, r10_bio->sectors, 1);
2143 		put_buf(r10_bio);
2144 	}
2145 }
2146 
2147 /*
2148  * Now for the recovery code.
2149  * Recovery happens across physical sectors.
2150  * We recover all non-is_sync drives by finding the virtual address of
2151  * each, and then choose a working drive that also has that virt address.
2152  * There is a separate r10_bio for each non-in_sync drive.
2153  * Only the first two slots are in use. The first for reading,
2154  * The second for writing.
2155  *
2156  */
2157 static void fix_recovery_read_error(struct r10bio *r10_bio)
2158 {
2159 	/* We got a read error during recovery.
2160 	 * We repeat the read in smaller page-sized sections.
2161 	 * If a read succeeds, write it to the new device or record
2162 	 * a bad block if we cannot.
2163 	 * If a read fails, record a bad block on both old and
2164 	 * new devices.
2165 	 */
2166 	struct mddev *mddev = r10_bio->mddev;
2167 	struct r10conf *conf = mddev->private;
2168 	struct bio *bio = r10_bio->devs[0].bio;
2169 	sector_t sect = 0;
2170 	int sectors = r10_bio->sectors;
2171 	int idx = 0;
2172 	int dr = r10_bio->devs[0].devnum;
2173 	int dw = r10_bio->devs[1].devnum;
2174 
2175 	while (sectors) {
2176 		int s = sectors;
2177 		struct md_rdev *rdev;
2178 		sector_t addr;
2179 		int ok;
2180 
2181 		if (s > (PAGE_SIZE>>9))
2182 			s = PAGE_SIZE >> 9;
2183 
2184 		rdev = conf->mirrors[dr].rdev;
2185 		addr = r10_bio->devs[0].addr + sect,
2186 		ok = sync_page_io(rdev,
2187 				  addr,
2188 				  s << 9,
2189 				  bio->bi_io_vec[idx].bv_page,
2190 				  READ, false);
2191 		if (ok) {
2192 			rdev = conf->mirrors[dw].rdev;
2193 			addr = r10_bio->devs[1].addr + sect;
2194 			ok = sync_page_io(rdev,
2195 					  addr,
2196 					  s << 9,
2197 					  bio->bi_io_vec[idx].bv_page,
2198 					  WRITE, false);
2199 			if (!ok) {
2200 				set_bit(WriteErrorSeen, &rdev->flags);
2201 				if (!test_and_set_bit(WantReplacement,
2202 						      &rdev->flags))
2203 					set_bit(MD_RECOVERY_NEEDED,
2204 						&rdev->mddev->recovery);
2205 			}
2206 		}
2207 		if (!ok) {
2208 			/* We don't worry if we cannot set a bad block -
2209 			 * it really is bad so there is no loss in not
2210 			 * recording it yet
2211 			 */
2212 			rdev_set_badblocks(rdev, addr, s, 0);
2213 
2214 			if (rdev != conf->mirrors[dw].rdev) {
2215 				/* need bad block on destination too */
2216 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2217 				addr = r10_bio->devs[1].addr + sect;
2218 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2219 				if (!ok) {
2220 					/* just abort the recovery */
2221 					printk(KERN_NOTICE
2222 					       "md/raid10:%s: recovery aborted"
2223 					       " due to read error\n",
2224 					       mdname(mddev));
2225 
2226 					conf->mirrors[dw].recovery_disabled
2227 						= mddev->recovery_disabled;
2228 					set_bit(MD_RECOVERY_INTR,
2229 						&mddev->recovery);
2230 					break;
2231 				}
2232 			}
2233 		}
2234 
2235 		sectors -= s;
2236 		sect += s;
2237 		idx++;
2238 	}
2239 }
2240 
2241 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2242 {
2243 	struct r10conf *conf = mddev->private;
2244 	int d;
2245 	struct bio *wbio, *wbio2;
2246 
2247 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2248 		fix_recovery_read_error(r10_bio);
2249 		end_sync_request(r10_bio);
2250 		return;
2251 	}
2252 
2253 	/*
2254 	 * share the pages with the first bio
2255 	 * and submit the write request
2256 	 */
2257 	d = r10_bio->devs[1].devnum;
2258 	wbio = r10_bio->devs[1].bio;
2259 	wbio2 = r10_bio->devs[1].repl_bio;
2260 	if (wbio->bi_end_io) {
2261 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2262 		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2263 		generic_make_request(wbio);
2264 	}
2265 	if (wbio2 && wbio2->bi_end_io) {
2266 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2267 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2268 			     wbio2->bi_size >> 9);
2269 		generic_make_request(wbio2);
2270 	}
2271 }
2272 
2273 
2274 /*
2275  * Used by fix_read_error() to decay the per rdev read_errors.
2276  * We halve the read error count for every hour that has elapsed
2277  * since the last recorded read error.
2278  *
2279  */
2280 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2281 {
2282 	struct timespec cur_time_mon;
2283 	unsigned long hours_since_last;
2284 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2285 
2286 	ktime_get_ts(&cur_time_mon);
2287 
2288 	if (rdev->last_read_error.tv_sec == 0 &&
2289 	    rdev->last_read_error.tv_nsec == 0) {
2290 		/* first time we've seen a read error */
2291 		rdev->last_read_error = cur_time_mon;
2292 		return;
2293 	}
2294 
2295 	hours_since_last = (cur_time_mon.tv_sec -
2296 			    rdev->last_read_error.tv_sec) / 3600;
2297 
2298 	rdev->last_read_error = cur_time_mon;
2299 
2300 	/*
2301 	 * if hours_since_last is > the number of bits in read_errors
2302 	 * just set read errors to 0. We do this to avoid
2303 	 * overflowing the shift of read_errors by hours_since_last.
2304 	 */
2305 	if (hours_since_last >= 8 * sizeof(read_errors))
2306 		atomic_set(&rdev->read_errors, 0);
2307 	else
2308 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2309 }
2310 
2311 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2312 			    int sectors, struct page *page, int rw)
2313 {
2314 	sector_t first_bad;
2315 	int bad_sectors;
2316 
2317 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2318 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2319 		return -1;
2320 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2321 		/* success */
2322 		return 1;
2323 	if (rw == WRITE) {
2324 		set_bit(WriteErrorSeen, &rdev->flags);
2325 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2326 			set_bit(MD_RECOVERY_NEEDED,
2327 				&rdev->mddev->recovery);
2328 	}
2329 	/* need to record an error - either for the block or the device */
2330 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2331 		md_error(rdev->mddev, rdev);
2332 	return 0;
2333 }
2334 
2335 /*
2336  * This is a kernel thread which:
2337  *
2338  *	1.	Retries failed read operations on working mirrors.
2339  *	2.	Updates the raid superblock when problems encounter.
2340  *	3.	Performs writes following reads for array synchronising.
2341  */
2342 
2343 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2344 {
2345 	int sect = 0; /* Offset from r10_bio->sector */
2346 	int sectors = r10_bio->sectors;
2347 	struct md_rdev*rdev;
2348 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2349 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2350 
2351 	/* still own a reference to this rdev, so it cannot
2352 	 * have been cleared recently.
2353 	 */
2354 	rdev = conf->mirrors[d].rdev;
2355 
2356 	if (test_bit(Faulty, &rdev->flags))
2357 		/* drive has already been failed, just ignore any
2358 		   more fix_read_error() attempts */
2359 		return;
2360 
2361 	check_decay_read_errors(mddev, rdev);
2362 	atomic_inc(&rdev->read_errors);
2363 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2364 		char b[BDEVNAME_SIZE];
2365 		bdevname(rdev->bdev, b);
2366 
2367 		printk(KERN_NOTICE
2368 		       "md/raid10:%s: %s: Raid device exceeded "
2369 		       "read_error threshold [cur %d:max %d]\n",
2370 		       mdname(mddev), b,
2371 		       atomic_read(&rdev->read_errors), max_read_errors);
2372 		printk(KERN_NOTICE
2373 		       "md/raid10:%s: %s: Failing raid device\n",
2374 		       mdname(mddev), b);
2375 		md_error(mddev, conf->mirrors[d].rdev);
2376 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2377 		return;
2378 	}
2379 
2380 	while(sectors) {
2381 		int s = sectors;
2382 		int sl = r10_bio->read_slot;
2383 		int success = 0;
2384 		int start;
2385 
2386 		if (s > (PAGE_SIZE>>9))
2387 			s = PAGE_SIZE >> 9;
2388 
2389 		rcu_read_lock();
2390 		do {
2391 			sector_t first_bad;
2392 			int bad_sectors;
2393 
2394 			d = r10_bio->devs[sl].devnum;
2395 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2396 			if (rdev &&
2397 			    !test_bit(Unmerged, &rdev->flags) &&
2398 			    test_bit(In_sync, &rdev->flags) &&
2399 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2400 					&first_bad, &bad_sectors) == 0) {
2401 				atomic_inc(&rdev->nr_pending);
2402 				rcu_read_unlock();
2403 				success = sync_page_io(rdev,
2404 						       r10_bio->devs[sl].addr +
2405 						       sect,
2406 						       s<<9,
2407 						       conf->tmppage, READ, false);
2408 				rdev_dec_pending(rdev, mddev);
2409 				rcu_read_lock();
2410 				if (success)
2411 					break;
2412 			}
2413 			sl++;
2414 			if (sl == conf->copies)
2415 				sl = 0;
2416 		} while (!success && sl != r10_bio->read_slot);
2417 		rcu_read_unlock();
2418 
2419 		if (!success) {
2420 			/* Cannot read from anywhere, just mark the block
2421 			 * as bad on the first device to discourage future
2422 			 * reads.
2423 			 */
2424 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2425 			rdev = conf->mirrors[dn].rdev;
2426 
2427 			if (!rdev_set_badblocks(
2428 				    rdev,
2429 				    r10_bio->devs[r10_bio->read_slot].addr
2430 				    + sect,
2431 				    s, 0)) {
2432 				md_error(mddev, rdev);
2433 				r10_bio->devs[r10_bio->read_slot].bio
2434 					= IO_BLOCKED;
2435 			}
2436 			break;
2437 		}
2438 
2439 		start = sl;
2440 		/* write it back and re-read */
2441 		rcu_read_lock();
2442 		while (sl != r10_bio->read_slot) {
2443 			char b[BDEVNAME_SIZE];
2444 
2445 			if (sl==0)
2446 				sl = conf->copies;
2447 			sl--;
2448 			d = r10_bio->devs[sl].devnum;
2449 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2450 			if (!rdev ||
2451 			    test_bit(Unmerged, &rdev->flags) ||
2452 			    !test_bit(In_sync, &rdev->flags))
2453 				continue;
2454 
2455 			atomic_inc(&rdev->nr_pending);
2456 			rcu_read_unlock();
2457 			if (r10_sync_page_io(rdev,
2458 					     r10_bio->devs[sl].addr +
2459 					     sect,
2460 					     s, conf->tmppage, WRITE)
2461 			    == 0) {
2462 				/* Well, this device is dead */
2463 				printk(KERN_NOTICE
2464 				       "md/raid10:%s: read correction "
2465 				       "write failed"
2466 				       " (%d sectors at %llu on %s)\n",
2467 				       mdname(mddev), s,
2468 				       (unsigned long long)(
2469 					       sect +
2470 					       choose_data_offset(r10_bio,
2471 								  rdev)),
2472 				       bdevname(rdev->bdev, b));
2473 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2474 				       "drive\n",
2475 				       mdname(mddev),
2476 				       bdevname(rdev->bdev, b));
2477 			}
2478 			rdev_dec_pending(rdev, mddev);
2479 			rcu_read_lock();
2480 		}
2481 		sl = start;
2482 		while (sl != r10_bio->read_slot) {
2483 			char b[BDEVNAME_SIZE];
2484 
2485 			if (sl==0)
2486 				sl = conf->copies;
2487 			sl--;
2488 			d = r10_bio->devs[sl].devnum;
2489 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2490 			if (!rdev ||
2491 			    !test_bit(In_sync, &rdev->flags))
2492 				continue;
2493 
2494 			atomic_inc(&rdev->nr_pending);
2495 			rcu_read_unlock();
2496 			switch (r10_sync_page_io(rdev,
2497 					     r10_bio->devs[sl].addr +
2498 					     sect,
2499 					     s, conf->tmppage,
2500 						 READ)) {
2501 			case 0:
2502 				/* Well, this device is dead */
2503 				printk(KERN_NOTICE
2504 				       "md/raid10:%s: unable to read back "
2505 				       "corrected sectors"
2506 				       " (%d sectors at %llu on %s)\n",
2507 				       mdname(mddev), s,
2508 				       (unsigned long long)(
2509 					       sect +
2510 					       choose_data_offset(r10_bio, rdev)),
2511 				       bdevname(rdev->bdev, b));
2512 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2513 				       "drive\n",
2514 				       mdname(mddev),
2515 				       bdevname(rdev->bdev, b));
2516 				break;
2517 			case 1:
2518 				printk(KERN_INFO
2519 				       "md/raid10:%s: read error corrected"
2520 				       " (%d sectors at %llu on %s)\n",
2521 				       mdname(mddev), s,
2522 				       (unsigned long long)(
2523 					       sect +
2524 					       choose_data_offset(r10_bio, rdev)),
2525 				       bdevname(rdev->bdev, b));
2526 				atomic_add(s, &rdev->corrected_errors);
2527 			}
2528 
2529 			rdev_dec_pending(rdev, mddev);
2530 			rcu_read_lock();
2531 		}
2532 		rcu_read_unlock();
2533 
2534 		sectors -= s;
2535 		sect += s;
2536 	}
2537 }
2538 
2539 static void bi_complete(struct bio *bio, int error)
2540 {
2541 	complete((struct completion *)bio->bi_private);
2542 }
2543 
2544 static int submit_bio_wait(int rw, struct bio *bio)
2545 {
2546 	struct completion event;
2547 	rw |= REQ_SYNC;
2548 
2549 	init_completion(&event);
2550 	bio->bi_private = &event;
2551 	bio->bi_end_io = bi_complete;
2552 	submit_bio(rw, bio);
2553 	wait_for_completion(&event);
2554 
2555 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2556 }
2557 
2558 static int narrow_write_error(struct r10bio *r10_bio, int i)
2559 {
2560 	struct bio *bio = r10_bio->master_bio;
2561 	struct mddev *mddev = r10_bio->mddev;
2562 	struct r10conf *conf = mddev->private;
2563 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2564 	/* bio has the data to be written to slot 'i' where
2565 	 * we just recently had a write error.
2566 	 * We repeatedly clone the bio and trim down to one block,
2567 	 * then try the write.  Where the write fails we record
2568 	 * a bad block.
2569 	 * It is conceivable that the bio doesn't exactly align with
2570 	 * blocks.  We must handle this.
2571 	 *
2572 	 * We currently own a reference to the rdev.
2573 	 */
2574 
2575 	int block_sectors;
2576 	sector_t sector;
2577 	int sectors;
2578 	int sect_to_write = r10_bio->sectors;
2579 	int ok = 1;
2580 
2581 	if (rdev->badblocks.shift < 0)
2582 		return 0;
2583 
2584 	block_sectors = 1 << rdev->badblocks.shift;
2585 	sector = r10_bio->sector;
2586 	sectors = ((r10_bio->sector + block_sectors)
2587 		   & ~(sector_t)(block_sectors - 1))
2588 		- sector;
2589 
2590 	while (sect_to_write) {
2591 		struct bio *wbio;
2592 		if (sectors > sect_to_write)
2593 			sectors = sect_to_write;
2594 		/* Write at 'sector' for 'sectors' */
2595 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2596 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2597 		wbio->bi_sector = (r10_bio->devs[i].addr+
2598 				   choose_data_offset(r10_bio, rdev) +
2599 				   (sector - r10_bio->sector));
2600 		wbio->bi_bdev = rdev->bdev;
2601 		if (submit_bio_wait(WRITE, wbio) == 0)
2602 			/* Failure! */
2603 			ok = rdev_set_badblocks(rdev, sector,
2604 						sectors, 0)
2605 				&& ok;
2606 
2607 		bio_put(wbio);
2608 		sect_to_write -= sectors;
2609 		sector += sectors;
2610 		sectors = block_sectors;
2611 	}
2612 	return ok;
2613 }
2614 
2615 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2616 {
2617 	int slot = r10_bio->read_slot;
2618 	struct bio *bio;
2619 	struct r10conf *conf = mddev->private;
2620 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2621 	char b[BDEVNAME_SIZE];
2622 	unsigned long do_sync;
2623 	int max_sectors;
2624 
2625 	/* we got a read error. Maybe the drive is bad.  Maybe just
2626 	 * the block and we can fix it.
2627 	 * We freeze all other IO, and try reading the block from
2628 	 * other devices.  When we find one, we re-write
2629 	 * and check it that fixes the read error.
2630 	 * This is all done synchronously while the array is
2631 	 * frozen.
2632 	 */
2633 	bio = r10_bio->devs[slot].bio;
2634 	bdevname(bio->bi_bdev, b);
2635 	bio_put(bio);
2636 	r10_bio->devs[slot].bio = NULL;
2637 
2638 	if (mddev->ro == 0) {
2639 		freeze_array(conf);
2640 		fix_read_error(conf, mddev, r10_bio);
2641 		unfreeze_array(conf);
2642 	} else
2643 		r10_bio->devs[slot].bio = IO_BLOCKED;
2644 
2645 	rdev_dec_pending(rdev, mddev);
2646 
2647 read_more:
2648 	rdev = read_balance(conf, r10_bio, &max_sectors);
2649 	if (rdev == NULL) {
2650 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2651 		       " read error for block %llu\n",
2652 		       mdname(mddev), b,
2653 		       (unsigned long long)r10_bio->sector);
2654 		raid_end_bio_io(r10_bio);
2655 		return;
2656 	}
2657 
2658 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2659 	slot = r10_bio->read_slot;
2660 	printk_ratelimited(
2661 		KERN_ERR
2662 		"md/raid10:%s: %s: redirecting "
2663 		"sector %llu to another mirror\n",
2664 		mdname(mddev),
2665 		bdevname(rdev->bdev, b),
2666 		(unsigned long long)r10_bio->sector);
2667 	bio = bio_clone_mddev(r10_bio->master_bio,
2668 			      GFP_NOIO, mddev);
2669 	md_trim_bio(bio,
2670 		    r10_bio->sector - bio->bi_sector,
2671 		    max_sectors);
2672 	r10_bio->devs[slot].bio = bio;
2673 	r10_bio->devs[slot].rdev = rdev;
2674 	bio->bi_sector = r10_bio->devs[slot].addr
2675 		+ choose_data_offset(r10_bio, rdev);
2676 	bio->bi_bdev = rdev->bdev;
2677 	bio->bi_rw = READ | do_sync;
2678 	bio->bi_private = r10_bio;
2679 	bio->bi_end_io = raid10_end_read_request;
2680 	if (max_sectors < r10_bio->sectors) {
2681 		/* Drat - have to split this up more */
2682 		struct bio *mbio = r10_bio->master_bio;
2683 		int sectors_handled =
2684 			r10_bio->sector + max_sectors
2685 			- mbio->bi_sector;
2686 		r10_bio->sectors = max_sectors;
2687 		spin_lock_irq(&conf->device_lock);
2688 		if (mbio->bi_phys_segments == 0)
2689 			mbio->bi_phys_segments = 2;
2690 		else
2691 			mbio->bi_phys_segments++;
2692 		spin_unlock_irq(&conf->device_lock);
2693 		generic_make_request(bio);
2694 
2695 		r10_bio = mempool_alloc(conf->r10bio_pool,
2696 					GFP_NOIO);
2697 		r10_bio->master_bio = mbio;
2698 		r10_bio->sectors = (mbio->bi_size >> 9)
2699 			- sectors_handled;
2700 		r10_bio->state = 0;
2701 		set_bit(R10BIO_ReadError,
2702 			&r10_bio->state);
2703 		r10_bio->mddev = mddev;
2704 		r10_bio->sector = mbio->bi_sector
2705 			+ sectors_handled;
2706 
2707 		goto read_more;
2708 	} else
2709 		generic_make_request(bio);
2710 }
2711 
2712 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2713 {
2714 	/* Some sort of write request has finished and it
2715 	 * succeeded in writing where we thought there was a
2716 	 * bad block.  So forget the bad block.
2717 	 * Or possibly if failed and we need to record
2718 	 * a bad block.
2719 	 */
2720 	int m;
2721 	struct md_rdev *rdev;
2722 
2723 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2724 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2725 		for (m = 0; m < conf->copies; m++) {
2726 			int dev = r10_bio->devs[m].devnum;
2727 			rdev = conf->mirrors[dev].rdev;
2728 			if (r10_bio->devs[m].bio == NULL)
2729 				continue;
2730 			if (test_bit(BIO_UPTODATE,
2731 				     &r10_bio->devs[m].bio->bi_flags)) {
2732 				rdev_clear_badblocks(
2733 					rdev,
2734 					r10_bio->devs[m].addr,
2735 					r10_bio->sectors, 0);
2736 			} else {
2737 				if (!rdev_set_badblocks(
2738 					    rdev,
2739 					    r10_bio->devs[m].addr,
2740 					    r10_bio->sectors, 0))
2741 					md_error(conf->mddev, rdev);
2742 			}
2743 			rdev = conf->mirrors[dev].replacement;
2744 			if (r10_bio->devs[m].repl_bio == NULL)
2745 				continue;
2746 			if (test_bit(BIO_UPTODATE,
2747 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2748 				rdev_clear_badblocks(
2749 					rdev,
2750 					r10_bio->devs[m].addr,
2751 					r10_bio->sectors, 0);
2752 			} else {
2753 				if (!rdev_set_badblocks(
2754 					    rdev,
2755 					    r10_bio->devs[m].addr,
2756 					    r10_bio->sectors, 0))
2757 					md_error(conf->mddev, rdev);
2758 			}
2759 		}
2760 		put_buf(r10_bio);
2761 	} else {
2762 		for (m = 0; m < conf->copies; m++) {
2763 			int dev = r10_bio->devs[m].devnum;
2764 			struct bio *bio = r10_bio->devs[m].bio;
2765 			rdev = conf->mirrors[dev].rdev;
2766 			if (bio == IO_MADE_GOOD) {
2767 				rdev_clear_badblocks(
2768 					rdev,
2769 					r10_bio->devs[m].addr,
2770 					r10_bio->sectors, 0);
2771 				rdev_dec_pending(rdev, conf->mddev);
2772 			} else if (bio != NULL &&
2773 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2774 				if (!narrow_write_error(r10_bio, m)) {
2775 					md_error(conf->mddev, rdev);
2776 					set_bit(R10BIO_Degraded,
2777 						&r10_bio->state);
2778 				}
2779 				rdev_dec_pending(rdev, conf->mddev);
2780 			}
2781 			bio = r10_bio->devs[m].repl_bio;
2782 			rdev = conf->mirrors[dev].replacement;
2783 			if (rdev && bio == IO_MADE_GOOD) {
2784 				rdev_clear_badblocks(
2785 					rdev,
2786 					r10_bio->devs[m].addr,
2787 					r10_bio->sectors, 0);
2788 				rdev_dec_pending(rdev, conf->mddev);
2789 			}
2790 		}
2791 		if (test_bit(R10BIO_WriteError,
2792 			     &r10_bio->state))
2793 			close_write(r10_bio);
2794 		raid_end_bio_io(r10_bio);
2795 	}
2796 }
2797 
2798 static void raid10d(struct md_thread *thread)
2799 {
2800 	struct mddev *mddev = thread->mddev;
2801 	struct r10bio *r10_bio;
2802 	unsigned long flags;
2803 	struct r10conf *conf = mddev->private;
2804 	struct list_head *head = &conf->retry_list;
2805 	struct blk_plug plug;
2806 
2807 	md_check_recovery(mddev);
2808 
2809 	blk_start_plug(&plug);
2810 	for (;;) {
2811 
2812 		flush_pending_writes(conf);
2813 
2814 		spin_lock_irqsave(&conf->device_lock, flags);
2815 		if (list_empty(head)) {
2816 			spin_unlock_irqrestore(&conf->device_lock, flags);
2817 			break;
2818 		}
2819 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2820 		list_del(head->prev);
2821 		conf->nr_queued--;
2822 		spin_unlock_irqrestore(&conf->device_lock, flags);
2823 
2824 		mddev = r10_bio->mddev;
2825 		conf = mddev->private;
2826 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2827 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2828 			handle_write_completed(conf, r10_bio);
2829 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2830 			reshape_request_write(mddev, r10_bio);
2831 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2832 			sync_request_write(mddev, r10_bio);
2833 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2834 			recovery_request_write(mddev, r10_bio);
2835 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2836 			handle_read_error(mddev, r10_bio);
2837 		else {
2838 			/* just a partial read to be scheduled from a
2839 			 * separate context
2840 			 */
2841 			int slot = r10_bio->read_slot;
2842 			generic_make_request(r10_bio->devs[slot].bio);
2843 		}
2844 
2845 		cond_resched();
2846 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2847 			md_check_recovery(mddev);
2848 	}
2849 	blk_finish_plug(&plug);
2850 }
2851 
2852 
2853 static int init_resync(struct r10conf *conf)
2854 {
2855 	int buffs;
2856 	int i;
2857 
2858 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2859 	BUG_ON(conf->r10buf_pool);
2860 	conf->have_replacement = 0;
2861 	for (i = 0; i < conf->geo.raid_disks; i++)
2862 		if (conf->mirrors[i].replacement)
2863 			conf->have_replacement = 1;
2864 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2865 	if (!conf->r10buf_pool)
2866 		return -ENOMEM;
2867 	conf->next_resync = 0;
2868 	return 0;
2869 }
2870 
2871 /*
2872  * perform a "sync" on one "block"
2873  *
2874  * We need to make sure that no normal I/O request - particularly write
2875  * requests - conflict with active sync requests.
2876  *
2877  * This is achieved by tracking pending requests and a 'barrier' concept
2878  * that can be installed to exclude normal IO requests.
2879  *
2880  * Resync and recovery are handled very differently.
2881  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2882  *
2883  * For resync, we iterate over virtual addresses, read all copies,
2884  * and update if there are differences.  If only one copy is live,
2885  * skip it.
2886  * For recovery, we iterate over physical addresses, read a good
2887  * value for each non-in_sync drive, and over-write.
2888  *
2889  * So, for recovery we may have several outstanding complex requests for a
2890  * given address, one for each out-of-sync device.  We model this by allocating
2891  * a number of r10_bio structures, one for each out-of-sync device.
2892  * As we setup these structures, we collect all bio's together into a list
2893  * which we then process collectively to add pages, and then process again
2894  * to pass to generic_make_request.
2895  *
2896  * The r10_bio structures are linked using a borrowed master_bio pointer.
2897  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2898  * has its remaining count decremented to 0, the whole complex operation
2899  * is complete.
2900  *
2901  */
2902 
2903 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2904 			     int *skipped, int go_faster)
2905 {
2906 	struct r10conf *conf = mddev->private;
2907 	struct r10bio *r10_bio;
2908 	struct bio *biolist = NULL, *bio;
2909 	sector_t max_sector, nr_sectors;
2910 	int i;
2911 	int max_sync;
2912 	sector_t sync_blocks;
2913 	sector_t sectors_skipped = 0;
2914 	int chunks_skipped = 0;
2915 	sector_t chunk_mask = conf->geo.chunk_mask;
2916 
2917 	if (!conf->r10buf_pool)
2918 		if (init_resync(conf))
2919 			return 0;
2920 
2921 	/*
2922 	 * Allow skipping a full rebuild for incremental assembly
2923 	 * of a clean array, like RAID1 does.
2924 	 */
2925 	if (mddev->bitmap == NULL &&
2926 	    mddev->recovery_cp == MaxSector &&
2927 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2928 	    conf->fullsync == 0) {
2929 		*skipped = 1;
2930 		max_sector = mddev->dev_sectors;
2931 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2932 		    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2933 			max_sector = mddev->resync_max_sectors;
2934 		return max_sector - sector_nr;
2935 	}
2936 
2937  skipped:
2938 	max_sector = mddev->dev_sectors;
2939 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2940 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2941 		max_sector = mddev->resync_max_sectors;
2942 	if (sector_nr >= max_sector) {
2943 		/* If we aborted, we need to abort the
2944 		 * sync on the 'current' bitmap chucks (there can
2945 		 * be several when recovering multiple devices).
2946 		 * as we may have started syncing it but not finished.
2947 		 * We can find the current address in
2948 		 * mddev->curr_resync, but for recovery,
2949 		 * we need to convert that to several
2950 		 * virtual addresses.
2951 		 */
2952 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2953 			end_reshape(conf);
2954 			return 0;
2955 		}
2956 
2957 		if (mddev->curr_resync < max_sector) { /* aborted */
2958 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2959 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2960 						&sync_blocks, 1);
2961 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2962 				sector_t sect =
2963 					raid10_find_virt(conf, mddev->curr_resync, i);
2964 				bitmap_end_sync(mddev->bitmap, sect,
2965 						&sync_blocks, 1);
2966 			}
2967 		} else {
2968 			/* completed sync */
2969 			if ((!mddev->bitmap || conf->fullsync)
2970 			    && conf->have_replacement
2971 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2972 				/* Completed a full sync so the replacements
2973 				 * are now fully recovered.
2974 				 */
2975 				for (i = 0; i < conf->geo.raid_disks; i++)
2976 					if (conf->mirrors[i].replacement)
2977 						conf->mirrors[i].replacement
2978 							->recovery_offset
2979 							= MaxSector;
2980 			}
2981 			conf->fullsync = 0;
2982 		}
2983 		bitmap_close_sync(mddev->bitmap);
2984 		close_sync(conf);
2985 		*skipped = 1;
2986 		return sectors_skipped;
2987 	}
2988 
2989 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2990 		return reshape_request(mddev, sector_nr, skipped);
2991 
2992 	if (chunks_skipped >= conf->geo.raid_disks) {
2993 		/* if there has been nothing to do on any drive,
2994 		 * then there is nothing to do at all..
2995 		 */
2996 		*skipped = 1;
2997 		return (max_sector - sector_nr) + sectors_skipped;
2998 	}
2999 
3000 	if (max_sector > mddev->resync_max)
3001 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3002 
3003 	/* make sure whole request will fit in a chunk - if chunks
3004 	 * are meaningful
3005 	 */
3006 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3007 	    max_sector > (sector_nr | chunk_mask))
3008 		max_sector = (sector_nr | chunk_mask) + 1;
3009 	/*
3010 	 * If there is non-resync activity waiting for us then
3011 	 * put in a delay to throttle resync.
3012 	 */
3013 	if (!go_faster && conf->nr_waiting)
3014 		msleep_interruptible(1000);
3015 
3016 	/* Again, very different code for resync and recovery.
3017 	 * Both must result in an r10bio with a list of bios that
3018 	 * have bi_end_io, bi_sector, bi_bdev set,
3019 	 * and bi_private set to the r10bio.
3020 	 * For recovery, we may actually create several r10bios
3021 	 * with 2 bios in each, that correspond to the bios in the main one.
3022 	 * In this case, the subordinate r10bios link back through a
3023 	 * borrowed master_bio pointer, and the counter in the master
3024 	 * includes a ref from each subordinate.
3025 	 */
3026 	/* First, we decide what to do and set ->bi_end_io
3027 	 * To end_sync_read if we want to read, and
3028 	 * end_sync_write if we will want to write.
3029 	 */
3030 
3031 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3032 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3033 		/* recovery... the complicated one */
3034 		int j;
3035 		r10_bio = NULL;
3036 
3037 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3038 			int still_degraded;
3039 			struct r10bio *rb2;
3040 			sector_t sect;
3041 			int must_sync;
3042 			int any_working;
3043 			struct raid10_info *mirror = &conf->mirrors[i];
3044 
3045 			if ((mirror->rdev == NULL ||
3046 			     test_bit(In_sync, &mirror->rdev->flags))
3047 			    &&
3048 			    (mirror->replacement == NULL ||
3049 			     test_bit(Faulty,
3050 				      &mirror->replacement->flags)))
3051 				continue;
3052 
3053 			still_degraded = 0;
3054 			/* want to reconstruct this device */
3055 			rb2 = r10_bio;
3056 			sect = raid10_find_virt(conf, sector_nr, i);
3057 			if (sect >= mddev->resync_max_sectors) {
3058 				/* last stripe is not complete - don't
3059 				 * try to recover this sector.
3060 				 */
3061 				continue;
3062 			}
3063 			/* Unless we are doing a full sync, or a replacement
3064 			 * we only need to recover the block if it is set in
3065 			 * the bitmap
3066 			 */
3067 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3068 						      &sync_blocks, 1);
3069 			if (sync_blocks < max_sync)
3070 				max_sync = sync_blocks;
3071 			if (!must_sync &&
3072 			    mirror->replacement == NULL &&
3073 			    !conf->fullsync) {
3074 				/* yep, skip the sync_blocks here, but don't assume
3075 				 * that there will never be anything to do here
3076 				 */
3077 				chunks_skipped = -1;
3078 				continue;
3079 			}
3080 
3081 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3082 			raise_barrier(conf, rb2 != NULL);
3083 			atomic_set(&r10_bio->remaining, 0);
3084 
3085 			r10_bio->master_bio = (struct bio*)rb2;
3086 			if (rb2)
3087 				atomic_inc(&rb2->remaining);
3088 			r10_bio->mddev = mddev;
3089 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3090 			r10_bio->sector = sect;
3091 
3092 			raid10_find_phys(conf, r10_bio);
3093 
3094 			/* Need to check if the array will still be
3095 			 * degraded
3096 			 */
3097 			for (j = 0; j < conf->geo.raid_disks; j++)
3098 				if (conf->mirrors[j].rdev == NULL ||
3099 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3100 					still_degraded = 1;
3101 					break;
3102 				}
3103 
3104 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3105 						      &sync_blocks, still_degraded);
3106 
3107 			any_working = 0;
3108 			for (j=0; j<conf->copies;j++) {
3109 				int k;
3110 				int d = r10_bio->devs[j].devnum;
3111 				sector_t from_addr, to_addr;
3112 				struct md_rdev *rdev;
3113 				sector_t sector, first_bad;
3114 				int bad_sectors;
3115 				if (!conf->mirrors[d].rdev ||
3116 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3117 					continue;
3118 				/* This is where we read from */
3119 				any_working = 1;
3120 				rdev = conf->mirrors[d].rdev;
3121 				sector = r10_bio->devs[j].addr;
3122 
3123 				if (is_badblock(rdev, sector, max_sync,
3124 						&first_bad, &bad_sectors)) {
3125 					if (first_bad > sector)
3126 						max_sync = first_bad - sector;
3127 					else {
3128 						bad_sectors -= (sector
3129 								- first_bad);
3130 						if (max_sync > bad_sectors)
3131 							max_sync = bad_sectors;
3132 						continue;
3133 					}
3134 				}
3135 				bio = r10_bio->devs[0].bio;
3136 				bio->bi_next = biolist;
3137 				biolist = bio;
3138 				bio->bi_private = r10_bio;
3139 				bio->bi_end_io = end_sync_read;
3140 				bio->bi_rw = READ;
3141 				from_addr = r10_bio->devs[j].addr;
3142 				bio->bi_sector = from_addr + rdev->data_offset;
3143 				bio->bi_bdev = rdev->bdev;
3144 				atomic_inc(&rdev->nr_pending);
3145 				/* and we write to 'i' (if not in_sync) */
3146 
3147 				for (k=0; k<conf->copies; k++)
3148 					if (r10_bio->devs[k].devnum == i)
3149 						break;
3150 				BUG_ON(k == conf->copies);
3151 				to_addr = r10_bio->devs[k].addr;
3152 				r10_bio->devs[0].devnum = d;
3153 				r10_bio->devs[0].addr = from_addr;
3154 				r10_bio->devs[1].devnum = i;
3155 				r10_bio->devs[1].addr = to_addr;
3156 
3157 				rdev = mirror->rdev;
3158 				if (!test_bit(In_sync, &rdev->flags)) {
3159 					bio = r10_bio->devs[1].bio;
3160 					bio->bi_next = biolist;
3161 					biolist = bio;
3162 					bio->bi_private = r10_bio;
3163 					bio->bi_end_io = end_sync_write;
3164 					bio->bi_rw = WRITE;
3165 					bio->bi_sector = to_addr
3166 						+ rdev->data_offset;
3167 					bio->bi_bdev = rdev->bdev;
3168 					atomic_inc(&r10_bio->remaining);
3169 				} else
3170 					r10_bio->devs[1].bio->bi_end_io = NULL;
3171 
3172 				/* and maybe write to replacement */
3173 				bio = r10_bio->devs[1].repl_bio;
3174 				if (bio)
3175 					bio->bi_end_io = NULL;
3176 				rdev = mirror->replacement;
3177 				/* Note: if rdev != NULL, then bio
3178 				 * cannot be NULL as r10buf_pool_alloc will
3179 				 * have allocated it.
3180 				 * So the second test here is pointless.
3181 				 * But it keeps semantic-checkers happy, and
3182 				 * this comment keeps human reviewers
3183 				 * happy.
3184 				 */
3185 				if (rdev == NULL || bio == NULL ||
3186 				    test_bit(Faulty, &rdev->flags))
3187 					break;
3188 				bio->bi_next = biolist;
3189 				biolist = bio;
3190 				bio->bi_private = r10_bio;
3191 				bio->bi_end_io = end_sync_write;
3192 				bio->bi_rw = WRITE;
3193 				bio->bi_sector = to_addr + rdev->data_offset;
3194 				bio->bi_bdev = rdev->bdev;
3195 				atomic_inc(&r10_bio->remaining);
3196 				break;
3197 			}
3198 			if (j == conf->copies) {
3199 				/* Cannot recover, so abort the recovery or
3200 				 * record a bad block */
3201 				put_buf(r10_bio);
3202 				if (rb2)
3203 					atomic_dec(&rb2->remaining);
3204 				r10_bio = rb2;
3205 				if (any_working) {
3206 					/* problem is that there are bad blocks
3207 					 * on other device(s)
3208 					 */
3209 					int k;
3210 					for (k = 0; k < conf->copies; k++)
3211 						if (r10_bio->devs[k].devnum == i)
3212 							break;
3213 					if (!test_bit(In_sync,
3214 						      &mirror->rdev->flags)
3215 					    && !rdev_set_badblocks(
3216 						    mirror->rdev,
3217 						    r10_bio->devs[k].addr,
3218 						    max_sync, 0))
3219 						any_working = 0;
3220 					if (mirror->replacement &&
3221 					    !rdev_set_badblocks(
3222 						    mirror->replacement,
3223 						    r10_bio->devs[k].addr,
3224 						    max_sync, 0))
3225 						any_working = 0;
3226 				}
3227 				if (!any_working)  {
3228 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3229 							      &mddev->recovery))
3230 						printk(KERN_INFO "md/raid10:%s: insufficient "
3231 						       "working devices for recovery.\n",
3232 						       mdname(mddev));
3233 					mirror->recovery_disabled
3234 						= mddev->recovery_disabled;
3235 				}
3236 				break;
3237 			}
3238 		}
3239 		if (biolist == NULL) {
3240 			while (r10_bio) {
3241 				struct r10bio *rb2 = r10_bio;
3242 				r10_bio = (struct r10bio*) rb2->master_bio;
3243 				rb2->master_bio = NULL;
3244 				put_buf(rb2);
3245 			}
3246 			goto giveup;
3247 		}
3248 	} else {
3249 		/* resync. Schedule a read for every block at this virt offset */
3250 		int count = 0;
3251 
3252 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3253 
3254 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3255 				       &sync_blocks, mddev->degraded) &&
3256 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3257 						 &mddev->recovery)) {
3258 			/* We can skip this block */
3259 			*skipped = 1;
3260 			return sync_blocks + sectors_skipped;
3261 		}
3262 		if (sync_blocks < max_sync)
3263 			max_sync = sync_blocks;
3264 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3265 
3266 		r10_bio->mddev = mddev;
3267 		atomic_set(&r10_bio->remaining, 0);
3268 		raise_barrier(conf, 0);
3269 		conf->next_resync = sector_nr;
3270 
3271 		r10_bio->master_bio = NULL;
3272 		r10_bio->sector = sector_nr;
3273 		set_bit(R10BIO_IsSync, &r10_bio->state);
3274 		raid10_find_phys(conf, r10_bio);
3275 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3276 
3277 		for (i = 0; i < conf->copies; i++) {
3278 			int d = r10_bio->devs[i].devnum;
3279 			sector_t first_bad, sector;
3280 			int bad_sectors;
3281 
3282 			if (r10_bio->devs[i].repl_bio)
3283 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3284 
3285 			bio = r10_bio->devs[i].bio;
3286 			bio->bi_end_io = NULL;
3287 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3288 			if (conf->mirrors[d].rdev == NULL ||
3289 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3290 				continue;
3291 			sector = r10_bio->devs[i].addr;
3292 			if (is_badblock(conf->mirrors[d].rdev,
3293 					sector, max_sync,
3294 					&first_bad, &bad_sectors)) {
3295 				if (first_bad > sector)
3296 					max_sync = first_bad - sector;
3297 				else {
3298 					bad_sectors -= (sector - first_bad);
3299 					if (max_sync > bad_sectors)
3300 						max_sync = bad_sectors;
3301 					continue;
3302 				}
3303 			}
3304 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3305 			atomic_inc(&r10_bio->remaining);
3306 			bio->bi_next = biolist;
3307 			biolist = bio;
3308 			bio->bi_private = r10_bio;
3309 			bio->bi_end_io = end_sync_read;
3310 			bio->bi_rw = READ;
3311 			bio->bi_sector = sector +
3312 				conf->mirrors[d].rdev->data_offset;
3313 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3314 			count++;
3315 
3316 			if (conf->mirrors[d].replacement == NULL ||
3317 			    test_bit(Faulty,
3318 				     &conf->mirrors[d].replacement->flags))
3319 				continue;
3320 
3321 			/* Need to set up for writing to the replacement */
3322 			bio = r10_bio->devs[i].repl_bio;
3323 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3324 
3325 			sector = r10_bio->devs[i].addr;
3326 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3327 			bio->bi_next = biolist;
3328 			biolist = bio;
3329 			bio->bi_private = r10_bio;
3330 			bio->bi_end_io = end_sync_write;
3331 			bio->bi_rw = WRITE;
3332 			bio->bi_sector = sector +
3333 				conf->mirrors[d].replacement->data_offset;
3334 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3335 			count++;
3336 		}
3337 
3338 		if (count < 2) {
3339 			for (i=0; i<conf->copies; i++) {
3340 				int d = r10_bio->devs[i].devnum;
3341 				if (r10_bio->devs[i].bio->bi_end_io)
3342 					rdev_dec_pending(conf->mirrors[d].rdev,
3343 							 mddev);
3344 				if (r10_bio->devs[i].repl_bio &&
3345 				    r10_bio->devs[i].repl_bio->bi_end_io)
3346 					rdev_dec_pending(
3347 						conf->mirrors[d].replacement,
3348 						mddev);
3349 			}
3350 			put_buf(r10_bio);
3351 			biolist = NULL;
3352 			goto giveup;
3353 		}
3354 	}
3355 
3356 	for (bio = biolist; bio ; bio=bio->bi_next) {
3357 
3358 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3359 		if (bio->bi_end_io)
3360 			bio->bi_flags |= 1 << BIO_UPTODATE;
3361 		bio->bi_vcnt = 0;
3362 		bio->bi_idx = 0;
3363 		bio->bi_phys_segments = 0;
3364 		bio->bi_size = 0;
3365 	}
3366 
3367 	nr_sectors = 0;
3368 	if (sector_nr + max_sync < max_sector)
3369 		max_sector = sector_nr + max_sync;
3370 	do {
3371 		struct page *page;
3372 		int len = PAGE_SIZE;
3373 		if (sector_nr + (len>>9) > max_sector)
3374 			len = (max_sector - sector_nr) << 9;
3375 		if (len == 0)
3376 			break;
3377 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3378 			struct bio *bio2;
3379 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3380 			if (bio_add_page(bio, page, len, 0))
3381 				continue;
3382 
3383 			/* stop here */
3384 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3385 			for (bio2 = biolist;
3386 			     bio2 && bio2 != bio;
3387 			     bio2 = bio2->bi_next) {
3388 				/* remove last page from this bio */
3389 				bio2->bi_vcnt--;
3390 				bio2->bi_size -= len;
3391 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3392 			}
3393 			goto bio_full;
3394 		}
3395 		nr_sectors += len>>9;
3396 		sector_nr += len>>9;
3397 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3398  bio_full:
3399 	r10_bio->sectors = nr_sectors;
3400 
3401 	while (biolist) {
3402 		bio = biolist;
3403 		biolist = biolist->bi_next;
3404 
3405 		bio->bi_next = NULL;
3406 		r10_bio = bio->bi_private;
3407 		r10_bio->sectors = nr_sectors;
3408 
3409 		if (bio->bi_end_io == end_sync_read) {
3410 			md_sync_acct(bio->bi_bdev, nr_sectors);
3411 			generic_make_request(bio);
3412 		}
3413 	}
3414 
3415 	if (sectors_skipped)
3416 		/* pretend they weren't skipped, it makes
3417 		 * no important difference in this case
3418 		 */
3419 		md_done_sync(mddev, sectors_skipped, 1);
3420 
3421 	return sectors_skipped + nr_sectors;
3422  giveup:
3423 	/* There is nowhere to write, so all non-sync
3424 	 * drives must be failed or in resync, all drives
3425 	 * have a bad block, so try the next chunk...
3426 	 */
3427 	if (sector_nr + max_sync < max_sector)
3428 		max_sector = sector_nr + max_sync;
3429 
3430 	sectors_skipped += (max_sector - sector_nr);
3431 	chunks_skipped ++;
3432 	sector_nr = max_sector;
3433 	goto skipped;
3434 }
3435 
3436 static sector_t
3437 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3438 {
3439 	sector_t size;
3440 	struct r10conf *conf = mddev->private;
3441 
3442 	if (!raid_disks)
3443 		raid_disks = min(conf->geo.raid_disks,
3444 				 conf->prev.raid_disks);
3445 	if (!sectors)
3446 		sectors = conf->dev_sectors;
3447 
3448 	size = sectors >> conf->geo.chunk_shift;
3449 	sector_div(size, conf->geo.far_copies);
3450 	size = size * raid_disks;
3451 	sector_div(size, conf->geo.near_copies);
3452 
3453 	return size << conf->geo.chunk_shift;
3454 }
3455 
3456 static void calc_sectors(struct r10conf *conf, sector_t size)
3457 {
3458 	/* Calculate the number of sectors-per-device that will
3459 	 * actually be used, and set conf->dev_sectors and
3460 	 * conf->stride
3461 	 */
3462 
3463 	size = size >> conf->geo.chunk_shift;
3464 	sector_div(size, conf->geo.far_copies);
3465 	size = size * conf->geo.raid_disks;
3466 	sector_div(size, conf->geo.near_copies);
3467 	/* 'size' is now the number of chunks in the array */
3468 	/* calculate "used chunks per device" */
3469 	size = size * conf->copies;
3470 
3471 	/* We need to round up when dividing by raid_disks to
3472 	 * get the stride size.
3473 	 */
3474 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3475 
3476 	conf->dev_sectors = size << conf->geo.chunk_shift;
3477 
3478 	if (conf->geo.far_offset)
3479 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3480 	else {
3481 		sector_div(size, conf->geo.far_copies);
3482 		conf->geo.stride = size << conf->geo.chunk_shift;
3483 	}
3484 }
3485 
3486 enum geo_type {geo_new, geo_old, geo_start};
3487 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3488 {
3489 	int nc, fc, fo;
3490 	int layout, chunk, disks;
3491 	switch (new) {
3492 	case geo_old:
3493 		layout = mddev->layout;
3494 		chunk = mddev->chunk_sectors;
3495 		disks = mddev->raid_disks - mddev->delta_disks;
3496 		break;
3497 	case geo_new:
3498 		layout = mddev->new_layout;
3499 		chunk = mddev->new_chunk_sectors;
3500 		disks = mddev->raid_disks;
3501 		break;
3502 	default: /* avoid 'may be unused' warnings */
3503 	case geo_start: /* new when starting reshape - raid_disks not
3504 			 * updated yet. */
3505 		layout = mddev->new_layout;
3506 		chunk = mddev->new_chunk_sectors;
3507 		disks = mddev->raid_disks + mddev->delta_disks;
3508 		break;
3509 	}
3510 	if (layout >> 18)
3511 		return -1;
3512 	if (chunk < (PAGE_SIZE >> 9) ||
3513 	    !is_power_of_2(chunk))
3514 		return -2;
3515 	nc = layout & 255;
3516 	fc = (layout >> 8) & 255;
3517 	fo = layout & (1<<16);
3518 	geo->raid_disks = disks;
3519 	geo->near_copies = nc;
3520 	geo->far_copies = fc;
3521 	geo->far_offset = fo;
3522 	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3523 	geo->chunk_mask = chunk - 1;
3524 	geo->chunk_shift = ffz(~chunk);
3525 	return nc*fc;
3526 }
3527 
3528 static struct r10conf *setup_conf(struct mddev *mddev)
3529 {
3530 	struct r10conf *conf = NULL;
3531 	int err = -EINVAL;
3532 	struct geom geo;
3533 	int copies;
3534 
3535 	copies = setup_geo(&geo, mddev, geo_new);
3536 
3537 	if (copies == -2) {
3538 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3539 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3540 		       mdname(mddev), PAGE_SIZE);
3541 		goto out;
3542 	}
3543 
3544 	if (copies < 2 || copies > mddev->raid_disks) {
3545 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3546 		       mdname(mddev), mddev->new_layout);
3547 		goto out;
3548 	}
3549 
3550 	err = -ENOMEM;
3551 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3552 	if (!conf)
3553 		goto out;
3554 
3555 	/* FIXME calc properly */
3556 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3557 							    max(0,mddev->delta_disks)),
3558 				GFP_KERNEL);
3559 	if (!conf->mirrors)
3560 		goto out;
3561 
3562 	conf->tmppage = alloc_page(GFP_KERNEL);
3563 	if (!conf->tmppage)
3564 		goto out;
3565 
3566 	conf->geo = geo;
3567 	conf->copies = copies;
3568 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3569 					   r10bio_pool_free, conf);
3570 	if (!conf->r10bio_pool)
3571 		goto out;
3572 
3573 	calc_sectors(conf, mddev->dev_sectors);
3574 	if (mddev->reshape_position == MaxSector) {
3575 		conf->prev = conf->geo;
3576 		conf->reshape_progress = MaxSector;
3577 	} else {
3578 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3579 			err = -EINVAL;
3580 			goto out;
3581 		}
3582 		conf->reshape_progress = mddev->reshape_position;
3583 		if (conf->prev.far_offset)
3584 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3585 		else
3586 			/* far_copies must be 1 */
3587 			conf->prev.stride = conf->dev_sectors;
3588 	}
3589 	spin_lock_init(&conf->device_lock);
3590 	INIT_LIST_HEAD(&conf->retry_list);
3591 
3592 	spin_lock_init(&conf->resync_lock);
3593 	init_waitqueue_head(&conf->wait_barrier);
3594 
3595 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3596 	if (!conf->thread)
3597 		goto out;
3598 
3599 	conf->mddev = mddev;
3600 	return conf;
3601 
3602  out:
3603 	if (err == -ENOMEM)
3604 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3605 		       mdname(mddev));
3606 	if (conf) {
3607 		if (conf->r10bio_pool)
3608 			mempool_destroy(conf->r10bio_pool);
3609 		kfree(conf->mirrors);
3610 		safe_put_page(conf->tmppage);
3611 		kfree(conf);
3612 	}
3613 	return ERR_PTR(err);
3614 }
3615 
3616 static int run(struct mddev *mddev)
3617 {
3618 	struct r10conf *conf;
3619 	int i, disk_idx, chunk_size;
3620 	struct raid10_info *disk;
3621 	struct md_rdev *rdev;
3622 	sector_t size;
3623 	sector_t min_offset_diff = 0;
3624 	int first = 1;
3625 	bool discard_supported = false;
3626 
3627 	if (mddev->private == NULL) {
3628 		conf = setup_conf(mddev);
3629 		if (IS_ERR(conf))
3630 			return PTR_ERR(conf);
3631 		mddev->private = conf;
3632 	}
3633 	conf = mddev->private;
3634 	if (!conf)
3635 		goto out;
3636 
3637 	mddev->thread = conf->thread;
3638 	conf->thread = NULL;
3639 
3640 	chunk_size = mddev->chunk_sectors << 9;
3641 	if (mddev->queue) {
3642 		blk_queue_max_discard_sectors(mddev->queue,
3643 					      mddev->chunk_sectors);
3644 		blk_queue_max_write_same_sectors(mddev->queue,
3645 						 mddev->chunk_sectors);
3646 		blk_queue_io_min(mddev->queue, chunk_size);
3647 		if (conf->geo.raid_disks % conf->geo.near_copies)
3648 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3649 		else
3650 			blk_queue_io_opt(mddev->queue, chunk_size *
3651 					 (conf->geo.raid_disks / conf->geo.near_copies));
3652 	}
3653 
3654 	rdev_for_each(rdev, mddev) {
3655 		long long diff;
3656 		struct request_queue *q;
3657 
3658 		disk_idx = rdev->raid_disk;
3659 		if (disk_idx < 0)
3660 			continue;
3661 		if (disk_idx >= conf->geo.raid_disks &&
3662 		    disk_idx >= conf->prev.raid_disks)
3663 			continue;
3664 		disk = conf->mirrors + disk_idx;
3665 
3666 		if (test_bit(Replacement, &rdev->flags)) {
3667 			if (disk->replacement)
3668 				goto out_free_conf;
3669 			disk->replacement = rdev;
3670 		} else {
3671 			if (disk->rdev)
3672 				goto out_free_conf;
3673 			disk->rdev = rdev;
3674 		}
3675 		q = bdev_get_queue(rdev->bdev);
3676 		if (q->merge_bvec_fn)
3677 			mddev->merge_check_needed = 1;
3678 		diff = (rdev->new_data_offset - rdev->data_offset);
3679 		if (!mddev->reshape_backwards)
3680 			diff = -diff;
3681 		if (diff < 0)
3682 			diff = 0;
3683 		if (first || diff < min_offset_diff)
3684 			min_offset_diff = diff;
3685 
3686 		if (mddev->gendisk)
3687 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3688 					  rdev->data_offset << 9);
3689 
3690 		disk->head_position = 0;
3691 
3692 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3693 			discard_supported = true;
3694 	}
3695 
3696 	if (mddev->queue) {
3697 		if (discard_supported)
3698 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3699 						mddev->queue);
3700 		else
3701 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3702 						  mddev->queue);
3703 	}
3704 	/* need to check that every block has at least one working mirror */
3705 	if (!enough(conf, -1)) {
3706 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3707 		       mdname(mddev));
3708 		goto out_free_conf;
3709 	}
3710 
3711 	if (conf->reshape_progress != MaxSector) {
3712 		/* must ensure that shape change is supported */
3713 		if (conf->geo.far_copies != 1 &&
3714 		    conf->geo.far_offset == 0)
3715 			goto out_free_conf;
3716 		if (conf->prev.far_copies != 1 &&
3717 		    conf->geo.far_offset == 0)
3718 			goto out_free_conf;
3719 	}
3720 
3721 	mddev->degraded = 0;
3722 	for (i = 0;
3723 	     i < conf->geo.raid_disks
3724 		     || i < conf->prev.raid_disks;
3725 	     i++) {
3726 
3727 		disk = conf->mirrors + i;
3728 
3729 		if (!disk->rdev && disk->replacement) {
3730 			/* The replacement is all we have - use it */
3731 			disk->rdev = disk->replacement;
3732 			disk->replacement = NULL;
3733 			clear_bit(Replacement, &disk->rdev->flags);
3734 		}
3735 
3736 		if (!disk->rdev ||
3737 		    !test_bit(In_sync, &disk->rdev->flags)) {
3738 			disk->head_position = 0;
3739 			mddev->degraded++;
3740 			if (disk->rdev)
3741 				conf->fullsync = 1;
3742 		}
3743 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3744 	}
3745 
3746 	if (mddev->recovery_cp != MaxSector)
3747 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3748 		       " -- starting background reconstruction\n",
3749 		       mdname(mddev));
3750 	printk(KERN_INFO
3751 		"md/raid10:%s: active with %d out of %d devices\n",
3752 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3753 		conf->geo.raid_disks);
3754 	/*
3755 	 * Ok, everything is just fine now
3756 	 */
3757 	mddev->dev_sectors = conf->dev_sectors;
3758 	size = raid10_size(mddev, 0, 0);
3759 	md_set_array_sectors(mddev, size);
3760 	mddev->resync_max_sectors = size;
3761 
3762 	if (mddev->queue) {
3763 		int stripe = conf->geo.raid_disks *
3764 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3765 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3766 		mddev->queue->backing_dev_info.congested_data = mddev;
3767 
3768 		/* Calculate max read-ahead size.
3769 		 * We need to readahead at least twice a whole stripe....
3770 		 * maybe...
3771 		 */
3772 		stripe /= conf->geo.near_copies;
3773 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3774 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3775 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3776 	}
3777 
3778 
3779 	if (md_integrity_register(mddev))
3780 		goto out_free_conf;
3781 
3782 	if (conf->reshape_progress != MaxSector) {
3783 		unsigned long before_length, after_length;
3784 
3785 		before_length = ((1 << conf->prev.chunk_shift) *
3786 				 conf->prev.far_copies);
3787 		after_length = ((1 << conf->geo.chunk_shift) *
3788 				conf->geo.far_copies);
3789 
3790 		if (max(before_length, after_length) > min_offset_diff) {
3791 			/* This cannot work */
3792 			printk("md/raid10: offset difference not enough to continue reshape\n");
3793 			goto out_free_conf;
3794 		}
3795 		conf->offset_diff = min_offset_diff;
3796 
3797 		conf->reshape_safe = conf->reshape_progress;
3798 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3799 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3800 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3801 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3802 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3803 							"reshape");
3804 	}
3805 
3806 	return 0;
3807 
3808 out_free_conf:
3809 	md_unregister_thread(&mddev->thread);
3810 	if (conf->r10bio_pool)
3811 		mempool_destroy(conf->r10bio_pool);
3812 	safe_put_page(conf->tmppage);
3813 	kfree(conf->mirrors);
3814 	kfree(conf);
3815 	mddev->private = NULL;
3816 out:
3817 	return -EIO;
3818 }
3819 
3820 static int stop(struct mddev *mddev)
3821 {
3822 	struct r10conf *conf = mddev->private;
3823 
3824 	raise_barrier(conf, 0);
3825 	lower_barrier(conf);
3826 
3827 	md_unregister_thread(&mddev->thread);
3828 	if (mddev->queue)
3829 		/* the unplug fn references 'conf'*/
3830 		blk_sync_queue(mddev->queue);
3831 
3832 	if (conf->r10bio_pool)
3833 		mempool_destroy(conf->r10bio_pool);
3834 	safe_put_page(conf->tmppage);
3835 	kfree(conf->mirrors);
3836 	kfree(conf);
3837 	mddev->private = NULL;
3838 	return 0;
3839 }
3840 
3841 static void raid10_quiesce(struct mddev *mddev, int state)
3842 {
3843 	struct r10conf *conf = mddev->private;
3844 
3845 	switch(state) {
3846 	case 1:
3847 		raise_barrier(conf, 0);
3848 		break;
3849 	case 0:
3850 		lower_barrier(conf);
3851 		break;
3852 	}
3853 }
3854 
3855 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3856 {
3857 	/* Resize of 'far' arrays is not supported.
3858 	 * For 'near' and 'offset' arrays we can set the
3859 	 * number of sectors used to be an appropriate multiple
3860 	 * of the chunk size.
3861 	 * For 'offset', this is far_copies*chunksize.
3862 	 * For 'near' the multiplier is the LCM of
3863 	 * near_copies and raid_disks.
3864 	 * So if far_copies > 1 && !far_offset, fail.
3865 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3866 	 * multiply by chunk_size.  Then round to this number.
3867 	 * This is mostly done by raid10_size()
3868 	 */
3869 	struct r10conf *conf = mddev->private;
3870 	sector_t oldsize, size;
3871 
3872 	if (mddev->reshape_position != MaxSector)
3873 		return -EBUSY;
3874 
3875 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3876 		return -EINVAL;
3877 
3878 	oldsize = raid10_size(mddev, 0, 0);
3879 	size = raid10_size(mddev, sectors, 0);
3880 	if (mddev->external_size &&
3881 	    mddev->array_sectors > size)
3882 		return -EINVAL;
3883 	if (mddev->bitmap) {
3884 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3885 		if (ret)
3886 			return ret;
3887 	}
3888 	md_set_array_sectors(mddev, size);
3889 	set_capacity(mddev->gendisk, mddev->array_sectors);
3890 	revalidate_disk(mddev->gendisk);
3891 	if (sectors > mddev->dev_sectors &&
3892 	    mddev->recovery_cp > oldsize) {
3893 		mddev->recovery_cp = oldsize;
3894 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3895 	}
3896 	calc_sectors(conf, sectors);
3897 	mddev->dev_sectors = conf->dev_sectors;
3898 	mddev->resync_max_sectors = size;
3899 	return 0;
3900 }
3901 
3902 static void *raid10_takeover_raid0(struct mddev *mddev)
3903 {
3904 	struct md_rdev *rdev;
3905 	struct r10conf *conf;
3906 
3907 	if (mddev->degraded > 0) {
3908 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3909 		       mdname(mddev));
3910 		return ERR_PTR(-EINVAL);
3911 	}
3912 
3913 	/* Set new parameters */
3914 	mddev->new_level = 10;
3915 	/* new layout: far_copies = 1, near_copies = 2 */
3916 	mddev->new_layout = (1<<8) + 2;
3917 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3918 	mddev->delta_disks = mddev->raid_disks;
3919 	mddev->raid_disks *= 2;
3920 	/* make sure it will be not marked as dirty */
3921 	mddev->recovery_cp = MaxSector;
3922 
3923 	conf = setup_conf(mddev);
3924 	if (!IS_ERR(conf)) {
3925 		rdev_for_each(rdev, mddev)
3926 			if (rdev->raid_disk >= 0)
3927 				rdev->new_raid_disk = rdev->raid_disk * 2;
3928 		conf->barrier = 1;
3929 	}
3930 
3931 	return conf;
3932 }
3933 
3934 static void *raid10_takeover(struct mddev *mddev)
3935 {
3936 	struct r0conf *raid0_conf;
3937 
3938 	/* raid10 can take over:
3939 	 *  raid0 - providing it has only two drives
3940 	 */
3941 	if (mddev->level == 0) {
3942 		/* for raid0 takeover only one zone is supported */
3943 		raid0_conf = mddev->private;
3944 		if (raid0_conf->nr_strip_zones > 1) {
3945 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3946 			       " with more than one zone.\n",
3947 			       mdname(mddev));
3948 			return ERR_PTR(-EINVAL);
3949 		}
3950 		return raid10_takeover_raid0(mddev);
3951 	}
3952 	return ERR_PTR(-EINVAL);
3953 }
3954 
3955 static int raid10_check_reshape(struct mddev *mddev)
3956 {
3957 	/* Called when there is a request to change
3958 	 * - layout (to ->new_layout)
3959 	 * - chunk size (to ->new_chunk_sectors)
3960 	 * - raid_disks (by delta_disks)
3961 	 * or when trying to restart a reshape that was ongoing.
3962 	 *
3963 	 * We need to validate the request and possibly allocate
3964 	 * space if that might be an issue later.
3965 	 *
3966 	 * Currently we reject any reshape of a 'far' mode array,
3967 	 * allow chunk size to change if new is generally acceptable,
3968 	 * allow raid_disks to increase, and allow
3969 	 * a switch between 'near' mode and 'offset' mode.
3970 	 */
3971 	struct r10conf *conf = mddev->private;
3972 	struct geom geo;
3973 
3974 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3975 		return -EINVAL;
3976 
3977 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3978 		/* mustn't change number of copies */
3979 		return -EINVAL;
3980 	if (geo.far_copies > 1 && !geo.far_offset)
3981 		/* Cannot switch to 'far' mode */
3982 		return -EINVAL;
3983 
3984 	if (mddev->array_sectors & geo.chunk_mask)
3985 			/* not factor of array size */
3986 			return -EINVAL;
3987 
3988 	if (!enough(conf, -1))
3989 		return -EINVAL;
3990 
3991 	kfree(conf->mirrors_new);
3992 	conf->mirrors_new = NULL;
3993 	if (mddev->delta_disks > 0) {
3994 		/* allocate new 'mirrors' list */
3995 		conf->mirrors_new = kzalloc(
3996 			sizeof(struct raid10_info)
3997 			*(mddev->raid_disks +
3998 			  mddev->delta_disks),
3999 			GFP_KERNEL);
4000 		if (!conf->mirrors_new)
4001 			return -ENOMEM;
4002 	}
4003 	return 0;
4004 }
4005 
4006 /*
4007  * Need to check if array has failed when deciding whether to:
4008  *  - start an array
4009  *  - remove non-faulty devices
4010  *  - add a spare
4011  *  - allow a reshape
4012  * This determination is simple when no reshape is happening.
4013  * However if there is a reshape, we need to carefully check
4014  * both the before and after sections.
4015  * This is because some failed devices may only affect one
4016  * of the two sections, and some non-in_sync devices may
4017  * be insync in the section most affected by failed devices.
4018  */
4019 static int calc_degraded(struct r10conf *conf)
4020 {
4021 	int degraded, degraded2;
4022 	int i;
4023 
4024 	rcu_read_lock();
4025 	degraded = 0;
4026 	/* 'prev' section first */
4027 	for (i = 0; i < conf->prev.raid_disks; i++) {
4028 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4029 		if (!rdev || test_bit(Faulty, &rdev->flags))
4030 			degraded++;
4031 		else if (!test_bit(In_sync, &rdev->flags))
4032 			/* When we can reduce the number of devices in
4033 			 * an array, this might not contribute to
4034 			 * 'degraded'.  It does now.
4035 			 */
4036 			degraded++;
4037 	}
4038 	rcu_read_unlock();
4039 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4040 		return degraded;
4041 	rcu_read_lock();
4042 	degraded2 = 0;
4043 	for (i = 0; i < conf->geo.raid_disks; i++) {
4044 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4045 		if (!rdev || test_bit(Faulty, &rdev->flags))
4046 			degraded2++;
4047 		else if (!test_bit(In_sync, &rdev->flags)) {
4048 			/* If reshape is increasing the number of devices,
4049 			 * this section has already been recovered, so
4050 			 * it doesn't contribute to degraded.
4051 			 * else it does.
4052 			 */
4053 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4054 				degraded2++;
4055 		}
4056 	}
4057 	rcu_read_unlock();
4058 	if (degraded2 > degraded)
4059 		return degraded2;
4060 	return degraded;
4061 }
4062 
4063 static int raid10_start_reshape(struct mddev *mddev)
4064 {
4065 	/* A 'reshape' has been requested. This commits
4066 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4067 	 * This also checks if there are enough spares and adds them
4068 	 * to the array.
4069 	 * We currently require enough spares to make the final
4070 	 * array non-degraded.  We also require that the difference
4071 	 * between old and new data_offset - on each device - is
4072 	 * enough that we never risk over-writing.
4073 	 */
4074 
4075 	unsigned long before_length, after_length;
4076 	sector_t min_offset_diff = 0;
4077 	int first = 1;
4078 	struct geom new;
4079 	struct r10conf *conf = mddev->private;
4080 	struct md_rdev *rdev;
4081 	int spares = 0;
4082 	int ret;
4083 
4084 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4085 		return -EBUSY;
4086 
4087 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4088 		return -EINVAL;
4089 
4090 	before_length = ((1 << conf->prev.chunk_shift) *
4091 			 conf->prev.far_copies);
4092 	after_length = ((1 << conf->geo.chunk_shift) *
4093 			conf->geo.far_copies);
4094 
4095 	rdev_for_each(rdev, mddev) {
4096 		if (!test_bit(In_sync, &rdev->flags)
4097 		    && !test_bit(Faulty, &rdev->flags))
4098 			spares++;
4099 		if (rdev->raid_disk >= 0) {
4100 			long long diff = (rdev->new_data_offset
4101 					  - rdev->data_offset);
4102 			if (!mddev->reshape_backwards)
4103 				diff = -diff;
4104 			if (diff < 0)
4105 				diff = 0;
4106 			if (first || diff < min_offset_diff)
4107 				min_offset_diff = diff;
4108 		}
4109 	}
4110 
4111 	if (max(before_length, after_length) > min_offset_diff)
4112 		return -EINVAL;
4113 
4114 	if (spares < mddev->delta_disks)
4115 		return -EINVAL;
4116 
4117 	conf->offset_diff = min_offset_diff;
4118 	spin_lock_irq(&conf->device_lock);
4119 	if (conf->mirrors_new) {
4120 		memcpy(conf->mirrors_new, conf->mirrors,
4121 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4122 		smp_mb();
4123 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
4124 		conf->mirrors_old = conf->mirrors;
4125 		conf->mirrors = conf->mirrors_new;
4126 		conf->mirrors_new = NULL;
4127 	}
4128 	setup_geo(&conf->geo, mddev, geo_start);
4129 	smp_mb();
4130 	if (mddev->reshape_backwards) {
4131 		sector_t size = raid10_size(mddev, 0, 0);
4132 		if (size < mddev->array_sectors) {
4133 			spin_unlock_irq(&conf->device_lock);
4134 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4135 			       mdname(mddev));
4136 			return -EINVAL;
4137 		}
4138 		mddev->resync_max_sectors = size;
4139 		conf->reshape_progress = size;
4140 	} else
4141 		conf->reshape_progress = 0;
4142 	spin_unlock_irq(&conf->device_lock);
4143 
4144 	if (mddev->delta_disks && mddev->bitmap) {
4145 		ret = bitmap_resize(mddev->bitmap,
4146 				    raid10_size(mddev, 0,
4147 						conf->geo.raid_disks),
4148 				    0, 0);
4149 		if (ret)
4150 			goto abort;
4151 	}
4152 	if (mddev->delta_disks > 0) {
4153 		rdev_for_each(rdev, mddev)
4154 			if (rdev->raid_disk < 0 &&
4155 			    !test_bit(Faulty, &rdev->flags)) {
4156 				if (raid10_add_disk(mddev, rdev) == 0) {
4157 					if (rdev->raid_disk >=
4158 					    conf->prev.raid_disks)
4159 						set_bit(In_sync, &rdev->flags);
4160 					else
4161 						rdev->recovery_offset = 0;
4162 
4163 					if (sysfs_link_rdev(mddev, rdev))
4164 						/* Failure here  is OK */;
4165 				}
4166 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4167 				   && !test_bit(Faulty, &rdev->flags)) {
4168 				/* This is a spare that was manually added */
4169 				set_bit(In_sync, &rdev->flags);
4170 			}
4171 	}
4172 	/* When a reshape changes the number of devices,
4173 	 * ->degraded is measured against the larger of the
4174 	 * pre and  post numbers.
4175 	 */
4176 	spin_lock_irq(&conf->device_lock);
4177 	mddev->degraded = calc_degraded(conf);
4178 	spin_unlock_irq(&conf->device_lock);
4179 	mddev->raid_disks = conf->geo.raid_disks;
4180 	mddev->reshape_position = conf->reshape_progress;
4181 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4182 
4183 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4184 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4185 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4186 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4187 
4188 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4189 						"reshape");
4190 	if (!mddev->sync_thread) {
4191 		ret = -EAGAIN;
4192 		goto abort;
4193 	}
4194 	conf->reshape_checkpoint = jiffies;
4195 	md_wakeup_thread(mddev->sync_thread);
4196 	md_new_event(mddev);
4197 	return 0;
4198 
4199 abort:
4200 	mddev->recovery = 0;
4201 	spin_lock_irq(&conf->device_lock);
4202 	conf->geo = conf->prev;
4203 	mddev->raid_disks = conf->geo.raid_disks;
4204 	rdev_for_each(rdev, mddev)
4205 		rdev->new_data_offset = rdev->data_offset;
4206 	smp_wmb();
4207 	conf->reshape_progress = MaxSector;
4208 	mddev->reshape_position = MaxSector;
4209 	spin_unlock_irq(&conf->device_lock);
4210 	return ret;
4211 }
4212 
4213 /* Calculate the last device-address that could contain
4214  * any block from the chunk that includes the array-address 's'
4215  * and report the next address.
4216  * i.e. the address returned will be chunk-aligned and after
4217  * any data that is in the chunk containing 's'.
4218  */
4219 static sector_t last_dev_address(sector_t s, struct geom *geo)
4220 {
4221 	s = (s | geo->chunk_mask) + 1;
4222 	s >>= geo->chunk_shift;
4223 	s *= geo->near_copies;
4224 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4225 	s *= geo->far_copies;
4226 	s <<= geo->chunk_shift;
4227 	return s;
4228 }
4229 
4230 /* Calculate the first device-address that could contain
4231  * any block from the chunk that includes the array-address 's'.
4232  * This too will be the start of a chunk
4233  */
4234 static sector_t first_dev_address(sector_t s, struct geom *geo)
4235 {
4236 	s >>= geo->chunk_shift;
4237 	s *= geo->near_copies;
4238 	sector_div(s, geo->raid_disks);
4239 	s *= geo->far_copies;
4240 	s <<= geo->chunk_shift;
4241 	return s;
4242 }
4243 
4244 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4245 				int *skipped)
4246 {
4247 	/* We simply copy at most one chunk (smallest of old and new)
4248 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4249 	 * or we hit a bad block or something.
4250 	 * This might mean we pause for normal IO in the middle of
4251 	 * a chunk, but that is not a problem was mddev->reshape_position
4252 	 * can record any location.
4253 	 *
4254 	 * If we will want to write to a location that isn't
4255 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4256 	 * we need to flush all reshape requests and update the metadata.
4257 	 *
4258 	 * When reshaping forwards (e.g. to more devices), we interpret
4259 	 * 'safe' as the earliest block which might not have been copied
4260 	 * down yet.  We divide this by previous stripe size and multiply
4261 	 * by previous stripe length to get lowest device offset that we
4262 	 * cannot write to yet.
4263 	 * We interpret 'sector_nr' as an address that we want to write to.
4264 	 * From this we use last_device_address() to find where we might
4265 	 * write to, and first_device_address on the  'safe' position.
4266 	 * If this 'next' write position is after the 'safe' position,
4267 	 * we must update the metadata to increase the 'safe' position.
4268 	 *
4269 	 * When reshaping backwards, we round in the opposite direction
4270 	 * and perform the reverse test:  next write position must not be
4271 	 * less than current safe position.
4272 	 *
4273 	 * In all this the minimum difference in data offsets
4274 	 * (conf->offset_diff - always positive) allows a bit of slack,
4275 	 * so next can be after 'safe', but not by more than offset_disk
4276 	 *
4277 	 * We need to prepare all the bios here before we start any IO
4278 	 * to ensure the size we choose is acceptable to all devices.
4279 	 * The means one for each copy for write-out and an extra one for
4280 	 * read-in.
4281 	 * We store the read-in bio in ->master_bio and the others in
4282 	 * ->devs[x].bio and ->devs[x].repl_bio.
4283 	 */
4284 	struct r10conf *conf = mddev->private;
4285 	struct r10bio *r10_bio;
4286 	sector_t next, safe, last;
4287 	int max_sectors;
4288 	int nr_sectors;
4289 	int s;
4290 	struct md_rdev *rdev;
4291 	int need_flush = 0;
4292 	struct bio *blist;
4293 	struct bio *bio, *read_bio;
4294 	int sectors_done = 0;
4295 
4296 	if (sector_nr == 0) {
4297 		/* If restarting in the middle, skip the initial sectors */
4298 		if (mddev->reshape_backwards &&
4299 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4300 			sector_nr = (raid10_size(mddev, 0, 0)
4301 				     - conf->reshape_progress);
4302 		} else if (!mddev->reshape_backwards &&
4303 			   conf->reshape_progress > 0)
4304 			sector_nr = conf->reshape_progress;
4305 		if (sector_nr) {
4306 			mddev->curr_resync_completed = sector_nr;
4307 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4308 			*skipped = 1;
4309 			return sector_nr;
4310 		}
4311 	}
4312 
4313 	/* We don't use sector_nr to track where we are up to
4314 	 * as that doesn't work well for ->reshape_backwards.
4315 	 * So just use ->reshape_progress.
4316 	 */
4317 	if (mddev->reshape_backwards) {
4318 		/* 'next' is the earliest device address that we might
4319 		 * write to for this chunk in the new layout
4320 		 */
4321 		next = first_dev_address(conf->reshape_progress - 1,
4322 					 &conf->geo);
4323 
4324 		/* 'safe' is the last device address that we might read from
4325 		 * in the old layout after a restart
4326 		 */
4327 		safe = last_dev_address(conf->reshape_safe - 1,
4328 					&conf->prev);
4329 
4330 		if (next + conf->offset_diff < safe)
4331 			need_flush = 1;
4332 
4333 		last = conf->reshape_progress - 1;
4334 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4335 					       & conf->prev.chunk_mask);
4336 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4337 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4338 	} else {
4339 		/* 'next' is after the last device address that we
4340 		 * might write to for this chunk in the new layout
4341 		 */
4342 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4343 
4344 		/* 'safe' is the earliest device address that we might
4345 		 * read from in the old layout after a restart
4346 		 */
4347 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4348 
4349 		/* Need to update metadata if 'next' might be beyond 'safe'
4350 		 * as that would possibly corrupt data
4351 		 */
4352 		if (next > safe + conf->offset_diff)
4353 			need_flush = 1;
4354 
4355 		sector_nr = conf->reshape_progress;
4356 		last  = sector_nr | (conf->geo.chunk_mask
4357 				     & conf->prev.chunk_mask);
4358 
4359 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4360 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4361 	}
4362 
4363 	if (need_flush ||
4364 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4365 		/* Need to update reshape_position in metadata */
4366 		wait_barrier(conf);
4367 		mddev->reshape_position = conf->reshape_progress;
4368 		if (mddev->reshape_backwards)
4369 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4370 				- conf->reshape_progress;
4371 		else
4372 			mddev->curr_resync_completed = conf->reshape_progress;
4373 		conf->reshape_checkpoint = jiffies;
4374 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4375 		md_wakeup_thread(mddev->thread);
4376 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4377 			   kthread_should_stop());
4378 		conf->reshape_safe = mddev->reshape_position;
4379 		allow_barrier(conf);
4380 	}
4381 
4382 read_more:
4383 	/* Now schedule reads for blocks from sector_nr to last */
4384 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4385 	raise_barrier(conf, sectors_done != 0);
4386 	atomic_set(&r10_bio->remaining, 0);
4387 	r10_bio->mddev = mddev;
4388 	r10_bio->sector = sector_nr;
4389 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4390 	r10_bio->sectors = last - sector_nr + 1;
4391 	rdev = read_balance(conf, r10_bio, &max_sectors);
4392 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4393 
4394 	if (!rdev) {
4395 		/* Cannot read from here, so need to record bad blocks
4396 		 * on all the target devices.
4397 		 */
4398 		// FIXME
4399 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4400 		return sectors_done;
4401 	}
4402 
4403 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4404 
4405 	read_bio->bi_bdev = rdev->bdev;
4406 	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4407 			       + rdev->data_offset);
4408 	read_bio->bi_private = r10_bio;
4409 	read_bio->bi_end_io = end_sync_read;
4410 	read_bio->bi_rw = READ;
4411 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4412 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4413 	read_bio->bi_vcnt = 0;
4414 	read_bio->bi_idx = 0;
4415 	read_bio->bi_size = 0;
4416 	r10_bio->master_bio = read_bio;
4417 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4418 
4419 	/* Now find the locations in the new layout */
4420 	__raid10_find_phys(&conf->geo, r10_bio);
4421 
4422 	blist = read_bio;
4423 	read_bio->bi_next = NULL;
4424 
4425 	for (s = 0; s < conf->copies*2; s++) {
4426 		struct bio *b;
4427 		int d = r10_bio->devs[s/2].devnum;
4428 		struct md_rdev *rdev2;
4429 		if (s&1) {
4430 			rdev2 = conf->mirrors[d].replacement;
4431 			b = r10_bio->devs[s/2].repl_bio;
4432 		} else {
4433 			rdev2 = conf->mirrors[d].rdev;
4434 			b = r10_bio->devs[s/2].bio;
4435 		}
4436 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4437 			continue;
4438 		b->bi_bdev = rdev2->bdev;
4439 		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4440 		b->bi_private = r10_bio;
4441 		b->bi_end_io = end_reshape_write;
4442 		b->bi_rw = WRITE;
4443 		b->bi_flags &= ~(BIO_POOL_MASK - 1);
4444 		b->bi_flags |= 1 << BIO_UPTODATE;
4445 		b->bi_next = blist;
4446 		b->bi_vcnt = 0;
4447 		b->bi_idx = 0;
4448 		b->bi_size = 0;
4449 		blist = b;
4450 	}
4451 
4452 	/* Now add as many pages as possible to all of these bios. */
4453 
4454 	nr_sectors = 0;
4455 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4456 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4457 		int len = (max_sectors - s) << 9;
4458 		if (len > PAGE_SIZE)
4459 			len = PAGE_SIZE;
4460 		for (bio = blist; bio ; bio = bio->bi_next) {
4461 			struct bio *bio2;
4462 			if (bio_add_page(bio, page, len, 0))
4463 				continue;
4464 
4465 			/* Didn't fit, must stop */
4466 			for (bio2 = blist;
4467 			     bio2 && bio2 != bio;
4468 			     bio2 = bio2->bi_next) {
4469 				/* Remove last page from this bio */
4470 				bio2->bi_vcnt--;
4471 				bio2->bi_size -= len;
4472 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4473 			}
4474 			goto bio_full;
4475 		}
4476 		sector_nr += len >> 9;
4477 		nr_sectors += len >> 9;
4478 	}
4479 bio_full:
4480 	r10_bio->sectors = nr_sectors;
4481 
4482 	/* Now submit the read */
4483 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4484 	atomic_inc(&r10_bio->remaining);
4485 	read_bio->bi_next = NULL;
4486 	generic_make_request(read_bio);
4487 	sector_nr += nr_sectors;
4488 	sectors_done += nr_sectors;
4489 	if (sector_nr <= last)
4490 		goto read_more;
4491 
4492 	/* Now that we have done the whole section we can
4493 	 * update reshape_progress
4494 	 */
4495 	if (mddev->reshape_backwards)
4496 		conf->reshape_progress -= sectors_done;
4497 	else
4498 		conf->reshape_progress += sectors_done;
4499 
4500 	return sectors_done;
4501 }
4502 
4503 static void end_reshape_request(struct r10bio *r10_bio);
4504 static int handle_reshape_read_error(struct mddev *mddev,
4505 				     struct r10bio *r10_bio);
4506 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4507 {
4508 	/* Reshape read completed.  Hopefully we have a block
4509 	 * to write out.
4510 	 * If we got a read error then we do sync 1-page reads from
4511 	 * elsewhere until we find the data - or give up.
4512 	 */
4513 	struct r10conf *conf = mddev->private;
4514 	int s;
4515 
4516 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4517 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4518 			/* Reshape has been aborted */
4519 			md_done_sync(mddev, r10_bio->sectors, 0);
4520 			return;
4521 		}
4522 
4523 	/* We definitely have the data in the pages, schedule the
4524 	 * writes.
4525 	 */
4526 	atomic_set(&r10_bio->remaining, 1);
4527 	for (s = 0; s < conf->copies*2; s++) {
4528 		struct bio *b;
4529 		int d = r10_bio->devs[s/2].devnum;
4530 		struct md_rdev *rdev;
4531 		if (s&1) {
4532 			rdev = conf->mirrors[d].replacement;
4533 			b = r10_bio->devs[s/2].repl_bio;
4534 		} else {
4535 			rdev = conf->mirrors[d].rdev;
4536 			b = r10_bio->devs[s/2].bio;
4537 		}
4538 		if (!rdev || test_bit(Faulty, &rdev->flags))
4539 			continue;
4540 		atomic_inc(&rdev->nr_pending);
4541 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4542 		atomic_inc(&r10_bio->remaining);
4543 		b->bi_next = NULL;
4544 		generic_make_request(b);
4545 	}
4546 	end_reshape_request(r10_bio);
4547 }
4548 
4549 static void end_reshape(struct r10conf *conf)
4550 {
4551 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4552 		return;
4553 
4554 	spin_lock_irq(&conf->device_lock);
4555 	conf->prev = conf->geo;
4556 	md_finish_reshape(conf->mddev);
4557 	smp_wmb();
4558 	conf->reshape_progress = MaxSector;
4559 	spin_unlock_irq(&conf->device_lock);
4560 
4561 	/* read-ahead size must cover two whole stripes, which is
4562 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4563 	 */
4564 	if (conf->mddev->queue) {
4565 		int stripe = conf->geo.raid_disks *
4566 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4567 		stripe /= conf->geo.near_copies;
4568 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4569 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4570 	}
4571 	conf->fullsync = 0;
4572 }
4573 
4574 
4575 static int handle_reshape_read_error(struct mddev *mddev,
4576 				     struct r10bio *r10_bio)
4577 {
4578 	/* Use sync reads to get the blocks from somewhere else */
4579 	int sectors = r10_bio->sectors;
4580 	struct r10conf *conf = mddev->private;
4581 	struct {
4582 		struct r10bio r10_bio;
4583 		struct r10dev devs[conf->copies];
4584 	} on_stack;
4585 	struct r10bio *r10b = &on_stack.r10_bio;
4586 	int slot = 0;
4587 	int idx = 0;
4588 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4589 
4590 	r10b->sector = r10_bio->sector;
4591 	__raid10_find_phys(&conf->prev, r10b);
4592 
4593 	while (sectors) {
4594 		int s = sectors;
4595 		int success = 0;
4596 		int first_slot = slot;
4597 
4598 		if (s > (PAGE_SIZE >> 9))
4599 			s = PAGE_SIZE >> 9;
4600 
4601 		while (!success) {
4602 			int d = r10b->devs[slot].devnum;
4603 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4604 			sector_t addr;
4605 			if (rdev == NULL ||
4606 			    test_bit(Faulty, &rdev->flags) ||
4607 			    !test_bit(In_sync, &rdev->flags))
4608 				goto failed;
4609 
4610 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4611 			success = sync_page_io(rdev,
4612 					       addr,
4613 					       s << 9,
4614 					       bvec[idx].bv_page,
4615 					       READ, false);
4616 			if (success)
4617 				break;
4618 		failed:
4619 			slot++;
4620 			if (slot >= conf->copies)
4621 				slot = 0;
4622 			if (slot == first_slot)
4623 				break;
4624 		}
4625 		if (!success) {
4626 			/* couldn't read this block, must give up */
4627 			set_bit(MD_RECOVERY_INTR,
4628 				&mddev->recovery);
4629 			return -EIO;
4630 		}
4631 		sectors -= s;
4632 		idx++;
4633 	}
4634 	return 0;
4635 }
4636 
4637 static void end_reshape_write(struct bio *bio, int error)
4638 {
4639 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4640 	struct r10bio *r10_bio = bio->bi_private;
4641 	struct mddev *mddev = r10_bio->mddev;
4642 	struct r10conf *conf = mddev->private;
4643 	int d;
4644 	int slot;
4645 	int repl;
4646 	struct md_rdev *rdev = NULL;
4647 
4648 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4649 	if (repl)
4650 		rdev = conf->mirrors[d].replacement;
4651 	if (!rdev) {
4652 		smp_mb();
4653 		rdev = conf->mirrors[d].rdev;
4654 	}
4655 
4656 	if (!uptodate) {
4657 		/* FIXME should record badblock */
4658 		md_error(mddev, rdev);
4659 	}
4660 
4661 	rdev_dec_pending(rdev, mddev);
4662 	end_reshape_request(r10_bio);
4663 }
4664 
4665 static void end_reshape_request(struct r10bio *r10_bio)
4666 {
4667 	if (!atomic_dec_and_test(&r10_bio->remaining))
4668 		return;
4669 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4670 	bio_put(r10_bio->master_bio);
4671 	put_buf(r10_bio);
4672 }
4673 
4674 static void raid10_finish_reshape(struct mddev *mddev)
4675 {
4676 	struct r10conf *conf = mddev->private;
4677 
4678 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4679 		return;
4680 
4681 	if (mddev->delta_disks > 0) {
4682 		sector_t size = raid10_size(mddev, 0, 0);
4683 		md_set_array_sectors(mddev, size);
4684 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4685 			mddev->recovery_cp = mddev->resync_max_sectors;
4686 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4687 		}
4688 		mddev->resync_max_sectors = size;
4689 		set_capacity(mddev->gendisk, mddev->array_sectors);
4690 		revalidate_disk(mddev->gendisk);
4691 	} else {
4692 		int d;
4693 		for (d = conf->geo.raid_disks ;
4694 		     d < conf->geo.raid_disks - mddev->delta_disks;
4695 		     d++) {
4696 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4697 			if (rdev)
4698 				clear_bit(In_sync, &rdev->flags);
4699 			rdev = conf->mirrors[d].replacement;
4700 			if (rdev)
4701 				clear_bit(In_sync, &rdev->flags);
4702 		}
4703 	}
4704 	mddev->layout = mddev->new_layout;
4705 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4706 	mddev->reshape_position = MaxSector;
4707 	mddev->delta_disks = 0;
4708 	mddev->reshape_backwards = 0;
4709 }
4710 
4711 static struct md_personality raid10_personality =
4712 {
4713 	.name		= "raid10",
4714 	.level		= 10,
4715 	.owner		= THIS_MODULE,
4716 	.make_request	= make_request,
4717 	.run		= run,
4718 	.stop		= stop,
4719 	.status		= status,
4720 	.error_handler	= error,
4721 	.hot_add_disk	= raid10_add_disk,
4722 	.hot_remove_disk= raid10_remove_disk,
4723 	.spare_active	= raid10_spare_active,
4724 	.sync_request	= sync_request,
4725 	.quiesce	= raid10_quiesce,
4726 	.size		= raid10_size,
4727 	.resize		= raid10_resize,
4728 	.takeover	= raid10_takeover,
4729 	.check_reshape	= raid10_check_reshape,
4730 	.start_reshape	= raid10_start_reshape,
4731 	.finish_reshape	= raid10_finish_reshape,
4732 };
4733 
4734 static int __init raid_init(void)
4735 {
4736 	return register_md_personality(&raid10_personality);
4737 }
4738 
4739 static void raid_exit(void)
4740 {
4741 	unregister_md_personality(&raid10_personality);
4742 }
4743 
4744 module_init(raid_init);
4745 module_exit(raid_exit);
4746 MODULE_LICENSE("GPL");
4747 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4748 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4749 MODULE_ALIAS("md-raid10");
4750 MODULE_ALIAS("md-level-10");
4751 
4752 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4753