1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * far_offset (stored in bit 16 of layout ) 33 * 34 * The data to be stored is divided into chunks using chunksize. 35 * Each device is divided into far_copies sections. 36 * In each section, chunks are laid out in a style similar to raid0, but 37 * near_copies copies of each chunk is stored (each on a different drive). 38 * The starting device for each section is offset near_copies from the starting 39 * device of the previous section. 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 41 * drive. 42 * near_copies and far_copies must be at least one, and their product is at most 43 * raid_disks. 44 * 45 * If far_offset is true, then the far_copies are handled a bit differently. 46 * The copies are still in different stripes, but instead of be very far apart 47 * on disk, there are adjacent stripes. 48 */ 49 50 /* 51 * Number of guaranteed r10bios in case of extreme VM load: 52 */ 53 #define NR_RAID10_BIOS 256 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 conf_t *conf = data; 63 r10bio_t *r10_bio; 64 int size = offsetof(struct r10bio_s, devs[conf->copies]); 65 66 /* allocate a r10bio with room for raid_disks entries in the bios array */ 67 r10_bio = kzalloc(size, gfp_flags); 68 if (!r10_bio) 69 unplug_slaves(conf->mddev); 70 71 return r10_bio; 72 } 73 74 static void r10bio_pool_free(void *r10_bio, void *data) 75 { 76 kfree(r10_bio); 77 } 78 79 /* Maximum size of each resync request */ 80 #define RESYNC_BLOCK_SIZE (64*1024) 81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 82 /* amount of memory to reserve for resync requests */ 83 #define RESYNC_WINDOW (1024*1024) 84 /* maximum number of concurrent requests, memory permitting */ 85 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 86 87 /* 88 * When performing a resync, we need to read and compare, so 89 * we need as many pages are there are copies. 90 * When performing a recovery, we need 2 bios, one for read, 91 * one for write (we recover only one drive per r10buf) 92 * 93 */ 94 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 95 { 96 conf_t *conf = data; 97 struct page *page; 98 r10bio_t *r10_bio; 99 struct bio *bio; 100 int i, j; 101 int nalloc; 102 103 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 104 if (!r10_bio) { 105 unplug_slaves(conf->mddev); 106 return NULL; 107 } 108 109 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 110 nalloc = conf->copies; /* resync */ 111 else 112 nalloc = 2; /* recovery */ 113 114 /* 115 * Allocate bios. 116 */ 117 for (j = nalloc ; j-- ; ) { 118 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 119 if (!bio) 120 goto out_free_bio; 121 r10_bio->devs[j].bio = bio; 122 } 123 /* 124 * Allocate RESYNC_PAGES data pages and attach them 125 * where needed. 126 */ 127 for (j = 0 ; j < nalloc; j++) { 128 bio = r10_bio->devs[j].bio; 129 for (i = 0; i < RESYNC_PAGES; i++) { 130 page = alloc_page(gfp_flags); 131 if (unlikely(!page)) 132 goto out_free_pages; 133 134 bio->bi_io_vec[i].bv_page = page; 135 } 136 } 137 138 return r10_bio; 139 140 out_free_pages: 141 for ( ; i > 0 ; i--) 142 safe_put_page(bio->bi_io_vec[i-1].bv_page); 143 while (j--) 144 for (i = 0; i < RESYNC_PAGES ; i++) 145 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 146 j = -1; 147 out_free_bio: 148 while ( ++j < nalloc ) 149 bio_put(r10_bio->devs[j].bio); 150 r10bio_pool_free(r10_bio, conf); 151 return NULL; 152 } 153 154 static void r10buf_pool_free(void *__r10_bio, void *data) 155 { 156 int i; 157 conf_t *conf = data; 158 r10bio_t *r10bio = __r10_bio; 159 int j; 160 161 for (j=0; j < conf->copies; j++) { 162 struct bio *bio = r10bio->devs[j].bio; 163 if (bio) { 164 for (i = 0; i < RESYNC_PAGES; i++) { 165 safe_put_page(bio->bi_io_vec[i].bv_page); 166 bio->bi_io_vec[i].bv_page = NULL; 167 } 168 bio_put(bio); 169 } 170 } 171 r10bio_pool_free(r10bio, conf); 172 } 173 174 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 175 { 176 int i; 177 178 for (i = 0; i < conf->copies; i++) { 179 struct bio **bio = & r10_bio->devs[i].bio; 180 if (*bio && *bio != IO_BLOCKED) 181 bio_put(*bio); 182 *bio = NULL; 183 } 184 } 185 186 static void free_r10bio(r10bio_t *r10_bio) 187 { 188 conf_t *conf = mddev_to_conf(r10_bio->mddev); 189 190 /* 191 * Wake up any possible resync thread that waits for the device 192 * to go idle. 193 */ 194 allow_barrier(conf); 195 196 put_all_bios(conf, r10_bio); 197 mempool_free(r10_bio, conf->r10bio_pool); 198 } 199 200 static void put_buf(r10bio_t *r10_bio) 201 { 202 conf_t *conf = mddev_to_conf(r10_bio->mddev); 203 204 mempool_free(r10_bio, conf->r10buf_pool); 205 206 lower_barrier(conf); 207 } 208 209 static void reschedule_retry(r10bio_t *r10_bio) 210 { 211 unsigned long flags; 212 mddev_t *mddev = r10_bio->mddev; 213 conf_t *conf = mddev_to_conf(mddev); 214 215 spin_lock_irqsave(&conf->device_lock, flags); 216 list_add(&r10_bio->retry_list, &conf->retry_list); 217 conf->nr_queued ++; 218 spin_unlock_irqrestore(&conf->device_lock, flags); 219 220 /* wake up frozen array... */ 221 wake_up(&conf->wait_barrier); 222 223 md_wakeup_thread(mddev->thread); 224 } 225 226 /* 227 * raid_end_bio_io() is called when we have finished servicing a mirrored 228 * operation and are ready to return a success/failure code to the buffer 229 * cache layer. 230 */ 231 static void raid_end_bio_io(r10bio_t *r10_bio) 232 { 233 struct bio *bio = r10_bio->master_bio; 234 235 bio_endio(bio, 236 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 237 free_r10bio(r10_bio); 238 } 239 240 /* 241 * Update disk head position estimator based on IRQ completion info. 242 */ 243 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 244 { 245 conf_t *conf = mddev_to_conf(r10_bio->mddev); 246 247 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 248 r10_bio->devs[slot].addr + (r10_bio->sectors); 249 } 250 251 static void raid10_end_read_request(struct bio *bio, int error) 252 { 253 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 254 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 255 int slot, dev; 256 conf_t *conf = mddev_to_conf(r10_bio->mddev); 257 258 259 slot = r10_bio->read_slot; 260 dev = r10_bio->devs[slot].devnum; 261 /* 262 * this branch is our 'one mirror IO has finished' event handler: 263 */ 264 update_head_pos(slot, r10_bio); 265 266 if (uptodate) { 267 /* 268 * Set R10BIO_Uptodate in our master bio, so that 269 * we will return a good error code to the higher 270 * levels even if IO on some other mirrored buffer fails. 271 * 272 * The 'master' represents the composite IO operation to 273 * user-side. So if something waits for IO, then it will 274 * wait for the 'master' bio. 275 */ 276 set_bit(R10BIO_Uptodate, &r10_bio->state); 277 raid_end_bio_io(r10_bio); 278 } else { 279 /* 280 * oops, read error: 281 */ 282 char b[BDEVNAME_SIZE]; 283 if (printk_ratelimit()) 284 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 285 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 286 reschedule_retry(r10_bio); 287 } 288 289 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 290 } 291 292 static void raid10_end_write_request(struct bio *bio, int error) 293 { 294 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 295 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 296 int slot, dev; 297 conf_t *conf = mddev_to_conf(r10_bio->mddev); 298 299 for (slot = 0; slot < conf->copies; slot++) 300 if (r10_bio->devs[slot].bio == bio) 301 break; 302 dev = r10_bio->devs[slot].devnum; 303 304 /* 305 * this branch is our 'one mirror IO has finished' event handler: 306 */ 307 if (!uptodate) { 308 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 309 /* an I/O failed, we can't clear the bitmap */ 310 set_bit(R10BIO_Degraded, &r10_bio->state); 311 } else 312 /* 313 * Set R10BIO_Uptodate in our master bio, so that 314 * we will return a good error code for to the higher 315 * levels even if IO on some other mirrored buffer fails. 316 * 317 * The 'master' represents the composite IO operation to 318 * user-side. So if something waits for IO, then it will 319 * wait for the 'master' bio. 320 */ 321 set_bit(R10BIO_Uptodate, &r10_bio->state); 322 323 update_head_pos(slot, r10_bio); 324 325 /* 326 * 327 * Let's see if all mirrored write operations have finished 328 * already. 329 */ 330 if (atomic_dec_and_test(&r10_bio->remaining)) { 331 /* clear the bitmap if all writes complete successfully */ 332 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 333 r10_bio->sectors, 334 !test_bit(R10BIO_Degraded, &r10_bio->state), 335 0); 336 md_write_end(r10_bio->mddev); 337 raid_end_bio_io(r10_bio); 338 } 339 340 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 341 } 342 343 344 /* 345 * RAID10 layout manager 346 * Aswell as the chunksize and raid_disks count, there are two 347 * parameters: near_copies and far_copies. 348 * near_copies * far_copies must be <= raid_disks. 349 * Normally one of these will be 1. 350 * If both are 1, we get raid0. 351 * If near_copies == raid_disks, we get raid1. 352 * 353 * Chunks are layed out in raid0 style with near_copies copies of the 354 * first chunk, followed by near_copies copies of the next chunk and 355 * so on. 356 * If far_copies > 1, then after 1/far_copies of the array has been assigned 357 * as described above, we start again with a device offset of near_copies. 358 * So we effectively have another copy of the whole array further down all 359 * the drives, but with blocks on different drives. 360 * With this layout, and block is never stored twice on the one device. 361 * 362 * raid10_find_phys finds the sector offset of a given virtual sector 363 * on each device that it is on. 364 * 365 * raid10_find_virt does the reverse mapping, from a device and a 366 * sector offset to a virtual address 367 */ 368 369 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 370 { 371 int n,f; 372 sector_t sector; 373 sector_t chunk; 374 sector_t stripe; 375 int dev; 376 377 int slot = 0; 378 379 /* now calculate first sector/dev */ 380 chunk = r10bio->sector >> conf->chunk_shift; 381 sector = r10bio->sector & conf->chunk_mask; 382 383 chunk *= conf->near_copies; 384 stripe = chunk; 385 dev = sector_div(stripe, conf->raid_disks); 386 if (conf->far_offset) 387 stripe *= conf->far_copies; 388 389 sector += stripe << conf->chunk_shift; 390 391 /* and calculate all the others */ 392 for (n=0; n < conf->near_copies; n++) { 393 int d = dev; 394 sector_t s = sector; 395 r10bio->devs[slot].addr = sector; 396 r10bio->devs[slot].devnum = d; 397 slot++; 398 399 for (f = 1; f < conf->far_copies; f++) { 400 d += conf->near_copies; 401 if (d >= conf->raid_disks) 402 d -= conf->raid_disks; 403 s += conf->stride; 404 r10bio->devs[slot].devnum = d; 405 r10bio->devs[slot].addr = s; 406 slot++; 407 } 408 dev++; 409 if (dev >= conf->raid_disks) { 410 dev = 0; 411 sector += (conf->chunk_mask + 1); 412 } 413 } 414 BUG_ON(slot != conf->copies); 415 } 416 417 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 418 { 419 sector_t offset, chunk, vchunk; 420 421 offset = sector & conf->chunk_mask; 422 if (conf->far_offset) { 423 int fc; 424 chunk = sector >> conf->chunk_shift; 425 fc = sector_div(chunk, conf->far_copies); 426 dev -= fc * conf->near_copies; 427 if (dev < 0) 428 dev += conf->raid_disks; 429 } else { 430 while (sector >= conf->stride) { 431 sector -= conf->stride; 432 if (dev < conf->near_copies) 433 dev += conf->raid_disks - conf->near_copies; 434 else 435 dev -= conf->near_copies; 436 } 437 chunk = sector >> conf->chunk_shift; 438 } 439 vchunk = chunk * conf->raid_disks + dev; 440 sector_div(vchunk, conf->near_copies); 441 return (vchunk << conf->chunk_shift) + offset; 442 } 443 444 /** 445 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 446 * @q: request queue 447 * @bvm: properties of new bio 448 * @biovec: the request that could be merged to it. 449 * 450 * Return amount of bytes we can accept at this offset 451 * If near_copies == raid_disk, there are no striping issues, 452 * but in that case, the function isn't called at all. 453 */ 454 static int raid10_mergeable_bvec(struct request_queue *q, 455 struct bvec_merge_data *bvm, 456 struct bio_vec *biovec) 457 { 458 mddev_t *mddev = q->queuedata; 459 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 460 int max; 461 unsigned int chunk_sectors = mddev->chunk_size >> 9; 462 unsigned int bio_sectors = bvm->bi_size >> 9; 463 464 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 465 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 466 if (max <= biovec->bv_len && bio_sectors == 0) 467 return biovec->bv_len; 468 else 469 return max; 470 } 471 472 /* 473 * This routine returns the disk from which the requested read should 474 * be done. There is a per-array 'next expected sequential IO' sector 475 * number - if this matches on the next IO then we use the last disk. 476 * There is also a per-disk 'last know head position' sector that is 477 * maintained from IRQ contexts, both the normal and the resync IO 478 * completion handlers update this position correctly. If there is no 479 * perfect sequential match then we pick the disk whose head is closest. 480 * 481 * If there are 2 mirrors in the same 2 devices, performance degrades 482 * because position is mirror, not device based. 483 * 484 * The rdev for the device selected will have nr_pending incremented. 485 */ 486 487 /* 488 * FIXME: possibly should rethink readbalancing and do it differently 489 * depending on near_copies / far_copies geometry. 490 */ 491 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 492 { 493 const unsigned long this_sector = r10_bio->sector; 494 int disk, slot, nslot; 495 const int sectors = r10_bio->sectors; 496 sector_t new_distance, current_distance; 497 mdk_rdev_t *rdev; 498 499 raid10_find_phys(conf, r10_bio); 500 rcu_read_lock(); 501 /* 502 * Check if we can balance. We can balance on the whole 503 * device if no resync is going on (recovery is ok), or below 504 * the resync window. We take the first readable disk when 505 * above the resync window. 506 */ 507 if (conf->mddev->recovery_cp < MaxSector 508 && (this_sector + sectors >= conf->next_resync)) { 509 /* make sure that disk is operational */ 510 slot = 0; 511 disk = r10_bio->devs[slot].devnum; 512 513 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 514 r10_bio->devs[slot].bio == IO_BLOCKED || 515 !test_bit(In_sync, &rdev->flags)) { 516 slot++; 517 if (slot == conf->copies) { 518 slot = 0; 519 disk = -1; 520 break; 521 } 522 disk = r10_bio->devs[slot].devnum; 523 } 524 goto rb_out; 525 } 526 527 528 /* make sure the disk is operational */ 529 slot = 0; 530 disk = r10_bio->devs[slot].devnum; 531 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 532 r10_bio->devs[slot].bio == IO_BLOCKED || 533 !test_bit(In_sync, &rdev->flags)) { 534 slot ++; 535 if (slot == conf->copies) { 536 disk = -1; 537 goto rb_out; 538 } 539 disk = r10_bio->devs[slot].devnum; 540 } 541 542 543 current_distance = abs(r10_bio->devs[slot].addr - 544 conf->mirrors[disk].head_position); 545 546 /* Find the disk whose head is closest, 547 * or - for far > 1 - find the closest to partition beginning */ 548 549 for (nslot = slot; nslot < conf->copies; nslot++) { 550 int ndisk = r10_bio->devs[nslot].devnum; 551 552 553 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 554 r10_bio->devs[nslot].bio == IO_BLOCKED || 555 !test_bit(In_sync, &rdev->flags)) 556 continue; 557 558 /* This optimisation is debatable, and completely destroys 559 * sequential read speed for 'far copies' arrays. So only 560 * keep it for 'near' arrays, and review those later. 561 */ 562 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 563 disk = ndisk; 564 slot = nslot; 565 break; 566 } 567 568 /* for far > 1 always use the lowest address */ 569 if (conf->far_copies > 1) 570 new_distance = r10_bio->devs[nslot].addr; 571 else 572 new_distance = abs(r10_bio->devs[nslot].addr - 573 conf->mirrors[ndisk].head_position); 574 if (new_distance < current_distance) { 575 current_distance = new_distance; 576 disk = ndisk; 577 slot = nslot; 578 } 579 } 580 581 rb_out: 582 r10_bio->read_slot = slot; 583 /* conf->next_seq_sect = this_sector + sectors;*/ 584 585 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 586 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 587 else 588 disk = -1; 589 rcu_read_unlock(); 590 591 return disk; 592 } 593 594 static void unplug_slaves(mddev_t *mddev) 595 { 596 conf_t *conf = mddev_to_conf(mddev); 597 int i; 598 599 rcu_read_lock(); 600 for (i=0; i<mddev->raid_disks; i++) { 601 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 602 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 603 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 604 605 atomic_inc(&rdev->nr_pending); 606 rcu_read_unlock(); 607 608 blk_unplug(r_queue); 609 610 rdev_dec_pending(rdev, mddev); 611 rcu_read_lock(); 612 } 613 } 614 rcu_read_unlock(); 615 } 616 617 static void raid10_unplug(struct request_queue *q) 618 { 619 mddev_t *mddev = q->queuedata; 620 621 unplug_slaves(q->queuedata); 622 md_wakeup_thread(mddev->thread); 623 } 624 625 static int raid10_congested(void *data, int bits) 626 { 627 mddev_t *mddev = data; 628 conf_t *conf = mddev_to_conf(mddev); 629 int i, ret = 0; 630 631 rcu_read_lock(); 632 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 633 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 634 if (rdev && !test_bit(Faulty, &rdev->flags)) { 635 struct request_queue *q = bdev_get_queue(rdev->bdev); 636 637 ret |= bdi_congested(&q->backing_dev_info, bits); 638 } 639 } 640 rcu_read_unlock(); 641 return ret; 642 } 643 644 static int flush_pending_writes(conf_t *conf) 645 { 646 /* Any writes that have been queued but are awaiting 647 * bitmap updates get flushed here. 648 * We return 1 if any requests were actually submitted. 649 */ 650 int rv = 0; 651 652 spin_lock_irq(&conf->device_lock); 653 654 if (conf->pending_bio_list.head) { 655 struct bio *bio; 656 bio = bio_list_get(&conf->pending_bio_list); 657 blk_remove_plug(conf->mddev->queue); 658 spin_unlock_irq(&conf->device_lock); 659 /* flush any pending bitmap writes to disk 660 * before proceeding w/ I/O */ 661 bitmap_unplug(conf->mddev->bitmap); 662 663 while (bio) { /* submit pending writes */ 664 struct bio *next = bio->bi_next; 665 bio->bi_next = NULL; 666 generic_make_request(bio); 667 bio = next; 668 } 669 rv = 1; 670 } else 671 spin_unlock_irq(&conf->device_lock); 672 return rv; 673 } 674 /* Barriers.... 675 * Sometimes we need to suspend IO while we do something else, 676 * either some resync/recovery, or reconfigure the array. 677 * To do this we raise a 'barrier'. 678 * The 'barrier' is a counter that can be raised multiple times 679 * to count how many activities are happening which preclude 680 * normal IO. 681 * We can only raise the barrier if there is no pending IO. 682 * i.e. if nr_pending == 0. 683 * We choose only to raise the barrier if no-one is waiting for the 684 * barrier to go down. This means that as soon as an IO request 685 * is ready, no other operations which require a barrier will start 686 * until the IO request has had a chance. 687 * 688 * So: regular IO calls 'wait_barrier'. When that returns there 689 * is no backgroup IO happening, It must arrange to call 690 * allow_barrier when it has finished its IO. 691 * backgroup IO calls must call raise_barrier. Once that returns 692 * there is no normal IO happeing. It must arrange to call 693 * lower_barrier when the particular background IO completes. 694 */ 695 696 static void raise_barrier(conf_t *conf, int force) 697 { 698 BUG_ON(force && !conf->barrier); 699 spin_lock_irq(&conf->resync_lock); 700 701 /* Wait until no block IO is waiting (unless 'force') */ 702 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 703 conf->resync_lock, 704 raid10_unplug(conf->mddev->queue)); 705 706 /* block any new IO from starting */ 707 conf->barrier++; 708 709 /* No wait for all pending IO to complete */ 710 wait_event_lock_irq(conf->wait_barrier, 711 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 712 conf->resync_lock, 713 raid10_unplug(conf->mddev->queue)); 714 715 spin_unlock_irq(&conf->resync_lock); 716 } 717 718 static void lower_barrier(conf_t *conf) 719 { 720 unsigned long flags; 721 spin_lock_irqsave(&conf->resync_lock, flags); 722 conf->barrier--; 723 spin_unlock_irqrestore(&conf->resync_lock, flags); 724 wake_up(&conf->wait_barrier); 725 } 726 727 static void wait_barrier(conf_t *conf) 728 { 729 spin_lock_irq(&conf->resync_lock); 730 if (conf->barrier) { 731 conf->nr_waiting++; 732 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 733 conf->resync_lock, 734 raid10_unplug(conf->mddev->queue)); 735 conf->nr_waiting--; 736 } 737 conf->nr_pending++; 738 spin_unlock_irq(&conf->resync_lock); 739 } 740 741 static void allow_barrier(conf_t *conf) 742 { 743 unsigned long flags; 744 spin_lock_irqsave(&conf->resync_lock, flags); 745 conf->nr_pending--; 746 spin_unlock_irqrestore(&conf->resync_lock, flags); 747 wake_up(&conf->wait_barrier); 748 } 749 750 static void freeze_array(conf_t *conf) 751 { 752 /* stop syncio and normal IO and wait for everything to 753 * go quiet. 754 * We increment barrier and nr_waiting, and then 755 * wait until nr_pending match nr_queued+1 756 * This is called in the context of one normal IO request 757 * that has failed. Thus any sync request that might be pending 758 * will be blocked by nr_pending, and we need to wait for 759 * pending IO requests to complete or be queued for re-try. 760 * Thus the number queued (nr_queued) plus this request (1) 761 * must match the number of pending IOs (nr_pending) before 762 * we continue. 763 */ 764 spin_lock_irq(&conf->resync_lock); 765 conf->barrier++; 766 conf->nr_waiting++; 767 wait_event_lock_irq(conf->wait_barrier, 768 conf->nr_pending == conf->nr_queued+1, 769 conf->resync_lock, 770 ({ flush_pending_writes(conf); 771 raid10_unplug(conf->mddev->queue); })); 772 spin_unlock_irq(&conf->resync_lock); 773 } 774 775 static void unfreeze_array(conf_t *conf) 776 { 777 /* reverse the effect of the freeze */ 778 spin_lock_irq(&conf->resync_lock); 779 conf->barrier--; 780 conf->nr_waiting--; 781 wake_up(&conf->wait_barrier); 782 spin_unlock_irq(&conf->resync_lock); 783 } 784 785 static int make_request(struct request_queue *q, struct bio * bio) 786 { 787 mddev_t *mddev = q->queuedata; 788 conf_t *conf = mddev_to_conf(mddev); 789 mirror_info_t *mirror; 790 r10bio_t *r10_bio; 791 struct bio *read_bio; 792 int i; 793 int chunk_sects = conf->chunk_mask + 1; 794 const int rw = bio_data_dir(bio); 795 const int do_sync = bio_sync(bio); 796 struct bio_list bl; 797 unsigned long flags; 798 mdk_rdev_t *blocked_rdev; 799 800 if (unlikely(bio_barrier(bio))) { 801 bio_endio(bio, -EOPNOTSUPP); 802 return 0; 803 } 804 805 /* If this request crosses a chunk boundary, we need to 806 * split it. This will only happen for 1 PAGE (or less) requests. 807 */ 808 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 809 > chunk_sects && 810 conf->near_copies < conf->raid_disks)) { 811 struct bio_pair *bp; 812 /* Sanity check -- queue functions should prevent this happening */ 813 if (bio->bi_vcnt != 1 || 814 bio->bi_idx != 0) 815 goto bad_map; 816 /* This is a one page bio that upper layers 817 * refuse to split for us, so we need to split it. 818 */ 819 bp = bio_split(bio, bio_split_pool, 820 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 821 if (make_request(q, &bp->bio1)) 822 generic_make_request(&bp->bio1); 823 if (make_request(q, &bp->bio2)) 824 generic_make_request(&bp->bio2); 825 826 bio_pair_release(bp); 827 return 0; 828 bad_map: 829 printk("raid10_make_request bug: can't convert block across chunks" 830 " or bigger than %dk %llu %d\n", chunk_sects/2, 831 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 832 833 bio_io_error(bio); 834 return 0; 835 } 836 837 md_write_start(mddev, bio); 838 839 /* 840 * Register the new request and wait if the reconstruction 841 * thread has put up a bar for new requests. 842 * Continue immediately if no resync is active currently. 843 */ 844 wait_barrier(conf); 845 846 disk_stat_inc(mddev->gendisk, ios[rw]); 847 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 848 849 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 850 851 r10_bio->master_bio = bio; 852 r10_bio->sectors = bio->bi_size >> 9; 853 854 r10_bio->mddev = mddev; 855 r10_bio->sector = bio->bi_sector; 856 r10_bio->state = 0; 857 858 if (rw == READ) { 859 /* 860 * read balancing logic: 861 */ 862 int disk = read_balance(conf, r10_bio); 863 int slot = r10_bio->read_slot; 864 if (disk < 0) { 865 raid_end_bio_io(r10_bio); 866 return 0; 867 } 868 mirror = conf->mirrors + disk; 869 870 read_bio = bio_clone(bio, GFP_NOIO); 871 872 r10_bio->devs[slot].bio = read_bio; 873 874 read_bio->bi_sector = r10_bio->devs[slot].addr + 875 mirror->rdev->data_offset; 876 read_bio->bi_bdev = mirror->rdev->bdev; 877 read_bio->bi_end_io = raid10_end_read_request; 878 read_bio->bi_rw = READ | do_sync; 879 read_bio->bi_private = r10_bio; 880 881 generic_make_request(read_bio); 882 return 0; 883 } 884 885 /* 886 * WRITE: 887 */ 888 /* first select target devices under rcu_lock and 889 * inc refcount on their rdev. Record them by setting 890 * bios[x] to bio 891 */ 892 raid10_find_phys(conf, r10_bio); 893 retry_write: 894 blocked_rdev = NULL; 895 rcu_read_lock(); 896 for (i = 0; i < conf->copies; i++) { 897 int d = r10_bio->devs[i].devnum; 898 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 899 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 900 atomic_inc(&rdev->nr_pending); 901 blocked_rdev = rdev; 902 break; 903 } 904 if (rdev && !test_bit(Faulty, &rdev->flags)) { 905 atomic_inc(&rdev->nr_pending); 906 r10_bio->devs[i].bio = bio; 907 } else { 908 r10_bio->devs[i].bio = NULL; 909 set_bit(R10BIO_Degraded, &r10_bio->state); 910 } 911 } 912 rcu_read_unlock(); 913 914 if (unlikely(blocked_rdev)) { 915 /* Have to wait for this device to get unblocked, then retry */ 916 int j; 917 int d; 918 919 for (j = 0; j < i; j++) 920 if (r10_bio->devs[j].bio) { 921 d = r10_bio->devs[j].devnum; 922 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 923 } 924 allow_barrier(conf); 925 md_wait_for_blocked_rdev(blocked_rdev, mddev); 926 wait_barrier(conf); 927 goto retry_write; 928 } 929 930 atomic_set(&r10_bio->remaining, 0); 931 932 bio_list_init(&bl); 933 for (i = 0; i < conf->copies; i++) { 934 struct bio *mbio; 935 int d = r10_bio->devs[i].devnum; 936 if (!r10_bio->devs[i].bio) 937 continue; 938 939 mbio = bio_clone(bio, GFP_NOIO); 940 r10_bio->devs[i].bio = mbio; 941 942 mbio->bi_sector = r10_bio->devs[i].addr+ 943 conf->mirrors[d].rdev->data_offset; 944 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 945 mbio->bi_end_io = raid10_end_write_request; 946 mbio->bi_rw = WRITE | do_sync; 947 mbio->bi_private = r10_bio; 948 949 atomic_inc(&r10_bio->remaining); 950 bio_list_add(&bl, mbio); 951 } 952 953 if (unlikely(!atomic_read(&r10_bio->remaining))) { 954 /* the array is dead */ 955 md_write_end(mddev); 956 raid_end_bio_io(r10_bio); 957 return 0; 958 } 959 960 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 961 spin_lock_irqsave(&conf->device_lock, flags); 962 bio_list_merge(&conf->pending_bio_list, &bl); 963 blk_plug_device(mddev->queue); 964 spin_unlock_irqrestore(&conf->device_lock, flags); 965 966 /* In case raid10d snuck in to freeze_array */ 967 wake_up(&conf->wait_barrier); 968 969 if (do_sync) 970 md_wakeup_thread(mddev->thread); 971 972 return 0; 973 } 974 975 static void status(struct seq_file *seq, mddev_t *mddev) 976 { 977 conf_t *conf = mddev_to_conf(mddev); 978 int i; 979 980 if (conf->near_copies < conf->raid_disks) 981 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 982 if (conf->near_copies > 1) 983 seq_printf(seq, " %d near-copies", conf->near_copies); 984 if (conf->far_copies > 1) { 985 if (conf->far_offset) 986 seq_printf(seq, " %d offset-copies", conf->far_copies); 987 else 988 seq_printf(seq, " %d far-copies", conf->far_copies); 989 } 990 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 991 conf->raid_disks - mddev->degraded); 992 for (i = 0; i < conf->raid_disks; i++) 993 seq_printf(seq, "%s", 994 conf->mirrors[i].rdev && 995 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 996 seq_printf(seq, "]"); 997 } 998 999 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1000 { 1001 char b[BDEVNAME_SIZE]; 1002 conf_t *conf = mddev_to_conf(mddev); 1003 1004 /* 1005 * If it is not operational, then we have already marked it as dead 1006 * else if it is the last working disks, ignore the error, let the 1007 * next level up know. 1008 * else mark the drive as failed 1009 */ 1010 if (test_bit(In_sync, &rdev->flags) 1011 && conf->raid_disks-mddev->degraded == 1) 1012 /* 1013 * Don't fail the drive, just return an IO error. 1014 * The test should really be more sophisticated than 1015 * "working_disks == 1", but it isn't critical, and 1016 * can wait until we do more sophisticated "is the drive 1017 * really dead" tests... 1018 */ 1019 return; 1020 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1021 unsigned long flags; 1022 spin_lock_irqsave(&conf->device_lock, flags); 1023 mddev->degraded++; 1024 spin_unlock_irqrestore(&conf->device_lock, flags); 1025 /* 1026 * if recovery is running, make sure it aborts. 1027 */ 1028 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1029 } 1030 set_bit(Faulty, &rdev->flags); 1031 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1032 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n" 1033 "raid10: Operation continuing on %d devices.\n", 1034 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1035 } 1036 1037 static void print_conf(conf_t *conf) 1038 { 1039 int i; 1040 mirror_info_t *tmp; 1041 1042 printk("RAID10 conf printout:\n"); 1043 if (!conf) { 1044 printk("(!conf)\n"); 1045 return; 1046 } 1047 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1048 conf->raid_disks); 1049 1050 for (i = 0; i < conf->raid_disks; i++) { 1051 char b[BDEVNAME_SIZE]; 1052 tmp = conf->mirrors + i; 1053 if (tmp->rdev) 1054 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1055 i, !test_bit(In_sync, &tmp->rdev->flags), 1056 !test_bit(Faulty, &tmp->rdev->flags), 1057 bdevname(tmp->rdev->bdev,b)); 1058 } 1059 } 1060 1061 static void close_sync(conf_t *conf) 1062 { 1063 wait_barrier(conf); 1064 allow_barrier(conf); 1065 1066 mempool_destroy(conf->r10buf_pool); 1067 conf->r10buf_pool = NULL; 1068 } 1069 1070 /* check if there are enough drives for 1071 * every block to appear on atleast one 1072 */ 1073 static int enough(conf_t *conf) 1074 { 1075 int first = 0; 1076 1077 do { 1078 int n = conf->copies; 1079 int cnt = 0; 1080 while (n--) { 1081 if (conf->mirrors[first].rdev) 1082 cnt++; 1083 first = (first+1) % conf->raid_disks; 1084 } 1085 if (cnt == 0) 1086 return 0; 1087 } while (first != 0); 1088 return 1; 1089 } 1090 1091 static int raid10_spare_active(mddev_t *mddev) 1092 { 1093 int i; 1094 conf_t *conf = mddev->private; 1095 mirror_info_t *tmp; 1096 1097 /* 1098 * Find all non-in_sync disks within the RAID10 configuration 1099 * and mark them in_sync 1100 */ 1101 for (i = 0; i < conf->raid_disks; i++) { 1102 tmp = conf->mirrors + i; 1103 if (tmp->rdev 1104 && !test_bit(Faulty, &tmp->rdev->flags) 1105 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1106 unsigned long flags; 1107 spin_lock_irqsave(&conf->device_lock, flags); 1108 mddev->degraded--; 1109 spin_unlock_irqrestore(&conf->device_lock, flags); 1110 } 1111 } 1112 1113 print_conf(conf); 1114 return 0; 1115 } 1116 1117 1118 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1119 { 1120 conf_t *conf = mddev->private; 1121 int err = -EEXIST; 1122 int mirror; 1123 mirror_info_t *p; 1124 int first = 0; 1125 int last = mddev->raid_disks - 1; 1126 1127 if (mddev->recovery_cp < MaxSector) 1128 /* only hot-add to in-sync arrays, as recovery is 1129 * very different from resync 1130 */ 1131 return -EBUSY; 1132 if (!enough(conf)) 1133 return -EINVAL; 1134 1135 if (rdev->raid_disk) 1136 first = last = rdev->raid_disk; 1137 1138 if (rdev->saved_raid_disk >= 0 && 1139 rdev->saved_raid_disk >= first && 1140 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1141 mirror = rdev->saved_raid_disk; 1142 else 1143 mirror = first; 1144 for ( ; mirror <= last ; mirror++) 1145 if ( !(p=conf->mirrors+mirror)->rdev) { 1146 1147 blk_queue_stack_limits(mddev->queue, 1148 rdev->bdev->bd_disk->queue); 1149 /* as we don't honour merge_bvec_fn, we must never risk 1150 * violating it, so limit ->max_sector to one PAGE, as 1151 * a one page request is never in violation. 1152 */ 1153 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1154 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1155 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1156 1157 p->head_position = 0; 1158 rdev->raid_disk = mirror; 1159 err = 0; 1160 if (rdev->saved_raid_disk != mirror) 1161 conf->fullsync = 1; 1162 rcu_assign_pointer(p->rdev, rdev); 1163 break; 1164 } 1165 1166 print_conf(conf); 1167 return err; 1168 } 1169 1170 static int raid10_remove_disk(mddev_t *mddev, int number) 1171 { 1172 conf_t *conf = mddev->private; 1173 int err = 0; 1174 mdk_rdev_t *rdev; 1175 mirror_info_t *p = conf->mirrors+ number; 1176 1177 print_conf(conf); 1178 rdev = p->rdev; 1179 if (rdev) { 1180 if (test_bit(In_sync, &rdev->flags) || 1181 atomic_read(&rdev->nr_pending)) { 1182 err = -EBUSY; 1183 goto abort; 1184 } 1185 /* Only remove faulty devices in recovery 1186 * is not possible. 1187 */ 1188 if (!test_bit(Faulty, &rdev->flags) && 1189 enough(conf)) { 1190 err = -EBUSY; 1191 goto abort; 1192 } 1193 p->rdev = NULL; 1194 synchronize_rcu(); 1195 if (atomic_read(&rdev->nr_pending)) { 1196 /* lost the race, try later */ 1197 err = -EBUSY; 1198 p->rdev = rdev; 1199 } 1200 } 1201 abort: 1202 1203 print_conf(conf); 1204 return err; 1205 } 1206 1207 1208 static void end_sync_read(struct bio *bio, int error) 1209 { 1210 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1211 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1212 int i,d; 1213 1214 for (i=0; i<conf->copies; i++) 1215 if (r10_bio->devs[i].bio == bio) 1216 break; 1217 BUG_ON(i == conf->copies); 1218 update_head_pos(i, r10_bio); 1219 d = r10_bio->devs[i].devnum; 1220 1221 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1222 set_bit(R10BIO_Uptodate, &r10_bio->state); 1223 else { 1224 atomic_add(r10_bio->sectors, 1225 &conf->mirrors[d].rdev->corrected_errors); 1226 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1227 md_error(r10_bio->mddev, 1228 conf->mirrors[d].rdev); 1229 } 1230 1231 /* for reconstruct, we always reschedule after a read. 1232 * for resync, only after all reads 1233 */ 1234 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1235 atomic_dec_and_test(&r10_bio->remaining)) { 1236 /* we have read all the blocks, 1237 * do the comparison in process context in raid10d 1238 */ 1239 reschedule_retry(r10_bio); 1240 } 1241 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1242 } 1243 1244 static void end_sync_write(struct bio *bio, int error) 1245 { 1246 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1247 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1248 mddev_t *mddev = r10_bio->mddev; 1249 conf_t *conf = mddev_to_conf(mddev); 1250 int i,d; 1251 1252 for (i = 0; i < conf->copies; i++) 1253 if (r10_bio->devs[i].bio == bio) 1254 break; 1255 d = r10_bio->devs[i].devnum; 1256 1257 if (!uptodate) 1258 md_error(mddev, conf->mirrors[d].rdev); 1259 1260 update_head_pos(i, r10_bio); 1261 1262 while (atomic_dec_and_test(&r10_bio->remaining)) { 1263 if (r10_bio->master_bio == NULL) { 1264 /* the primary of several recovery bios */ 1265 md_done_sync(mddev, r10_bio->sectors, 1); 1266 put_buf(r10_bio); 1267 break; 1268 } else { 1269 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1270 put_buf(r10_bio); 1271 r10_bio = r10_bio2; 1272 } 1273 } 1274 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1275 } 1276 1277 /* 1278 * Note: sync and recover and handled very differently for raid10 1279 * This code is for resync. 1280 * For resync, we read through virtual addresses and read all blocks. 1281 * If there is any error, we schedule a write. The lowest numbered 1282 * drive is authoritative. 1283 * However requests come for physical address, so we need to map. 1284 * For every physical address there are raid_disks/copies virtual addresses, 1285 * which is always are least one, but is not necessarly an integer. 1286 * This means that a physical address can span multiple chunks, so we may 1287 * have to submit multiple io requests for a single sync request. 1288 */ 1289 /* 1290 * We check if all blocks are in-sync and only write to blocks that 1291 * aren't in sync 1292 */ 1293 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1294 { 1295 conf_t *conf = mddev_to_conf(mddev); 1296 int i, first; 1297 struct bio *tbio, *fbio; 1298 1299 atomic_set(&r10_bio->remaining, 1); 1300 1301 /* find the first device with a block */ 1302 for (i=0; i<conf->copies; i++) 1303 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1304 break; 1305 1306 if (i == conf->copies) 1307 goto done; 1308 1309 first = i; 1310 fbio = r10_bio->devs[i].bio; 1311 1312 /* now find blocks with errors */ 1313 for (i=0 ; i < conf->copies ; i++) { 1314 int j, d; 1315 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1316 1317 tbio = r10_bio->devs[i].bio; 1318 1319 if (tbio->bi_end_io != end_sync_read) 1320 continue; 1321 if (i == first) 1322 continue; 1323 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1324 /* We know that the bi_io_vec layout is the same for 1325 * both 'first' and 'i', so we just compare them. 1326 * All vec entries are PAGE_SIZE; 1327 */ 1328 for (j = 0; j < vcnt; j++) 1329 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1330 page_address(tbio->bi_io_vec[j].bv_page), 1331 PAGE_SIZE)) 1332 break; 1333 if (j == vcnt) 1334 continue; 1335 mddev->resync_mismatches += r10_bio->sectors; 1336 } 1337 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1338 /* Don't fix anything. */ 1339 continue; 1340 /* Ok, we need to write this bio 1341 * First we need to fixup bv_offset, bv_len and 1342 * bi_vecs, as the read request might have corrupted these 1343 */ 1344 tbio->bi_vcnt = vcnt; 1345 tbio->bi_size = r10_bio->sectors << 9; 1346 tbio->bi_idx = 0; 1347 tbio->bi_phys_segments = 0; 1348 tbio->bi_hw_segments = 0; 1349 tbio->bi_hw_front_size = 0; 1350 tbio->bi_hw_back_size = 0; 1351 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1352 tbio->bi_flags |= 1 << BIO_UPTODATE; 1353 tbio->bi_next = NULL; 1354 tbio->bi_rw = WRITE; 1355 tbio->bi_private = r10_bio; 1356 tbio->bi_sector = r10_bio->devs[i].addr; 1357 1358 for (j=0; j < vcnt ; j++) { 1359 tbio->bi_io_vec[j].bv_offset = 0; 1360 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1361 1362 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1363 page_address(fbio->bi_io_vec[j].bv_page), 1364 PAGE_SIZE); 1365 } 1366 tbio->bi_end_io = end_sync_write; 1367 1368 d = r10_bio->devs[i].devnum; 1369 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1370 atomic_inc(&r10_bio->remaining); 1371 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1372 1373 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1374 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1375 generic_make_request(tbio); 1376 } 1377 1378 done: 1379 if (atomic_dec_and_test(&r10_bio->remaining)) { 1380 md_done_sync(mddev, r10_bio->sectors, 1); 1381 put_buf(r10_bio); 1382 } 1383 } 1384 1385 /* 1386 * Now for the recovery code. 1387 * Recovery happens across physical sectors. 1388 * We recover all non-is_sync drives by finding the virtual address of 1389 * each, and then choose a working drive that also has that virt address. 1390 * There is a separate r10_bio for each non-in_sync drive. 1391 * Only the first two slots are in use. The first for reading, 1392 * The second for writing. 1393 * 1394 */ 1395 1396 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1397 { 1398 conf_t *conf = mddev_to_conf(mddev); 1399 int i, d; 1400 struct bio *bio, *wbio; 1401 1402 1403 /* move the pages across to the second bio 1404 * and submit the write request 1405 */ 1406 bio = r10_bio->devs[0].bio; 1407 wbio = r10_bio->devs[1].bio; 1408 for (i=0; i < wbio->bi_vcnt; i++) { 1409 struct page *p = bio->bi_io_vec[i].bv_page; 1410 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1411 wbio->bi_io_vec[i].bv_page = p; 1412 } 1413 d = r10_bio->devs[1].devnum; 1414 1415 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1416 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1417 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1418 generic_make_request(wbio); 1419 else 1420 bio_endio(wbio, -EIO); 1421 } 1422 1423 1424 /* 1425 * This is a kernel thread which: 1426 * 1427 * 1. Retries failed read operations on working mirrors. 1428 * 2. Updates the raid superblock when problems encounter. 1429 * 3. Performs writes following reads for array synchronising. 1430 */ 1431 1432 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1433 { 1434 int sect = 0; /* Offset from r10_bio->sector */ 1435 int sectors = r10_bio->sectors; 1436 mdk_rdev_t*rdev; 1437 while(sectors) { 1438 int s = sectors; 1439 int sl = r10_bio->read_slot; 1440 int success = 0; 1441 int start; 1442 1443 if (s > (PAGE_SIZE>>9)) 1444 s = PAGE_SIZE >> 9; 1445 1446 rcu_read_lock(); 1447 do { 1448 int d = r10_bio->devs[sl].devnum; 1449 rdev = rcu_dereference(conf->mirrors[d].rdev); 1450 if (rdev && 1451 test_bit(In_sync, &rdev->flags)) { 1452 atomic_inc(&rdev->nr_pending); 1453 rcu_read_unlock(); 1454 success = sync_page_io(rdev->bdev, 1455 r10_bio->devs[sl].addr + 1456 sect + rdev->data_offset, 1457 s<<9, 1458 conf->tmppage, READ); 1459 rdev_dec_pending(rdev, mddev); 1460 rcu_read_lock(); 1461 if (success) 1462 break; 1463 } 1464 sl++; 1465 if (sl == conf->copies) 1466 sl = 0; 1467 } while (!success && sl != r10_bio->read_slot); 1468 rcu_read_unlock(); 1469 1470 if (!success) { 1471 /* Cannot read from anywhere -- bye bye array */ 1472 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1473 md_error(mddev, conf->mirrors[dn].rdev); 1474 break; 1475 } 1476 1477 start = sl; 1478 /* write it back and re-read */ 1479 rcu_read_lock(); 1480 while (sl != r10_bio->read_slot) { 1481 int d; 1482 if (sl==0) 1483 sl = conf->copies; 1484 sl--; 1485 d = r10_bio->devs[sl].devnum; 1486 rdev = rcu_dereference(conf->mirrors[d].rdev); 1487 if (rdev && 1488 test_bit(In_sync, &rdev->flags)) { 1489 atomic_inc(&rdev->nr_pending); 1490 rcu_read_unlock(); 1491 atomic_add(s, &rdev->corrected_errors); 1492 if (sync_page_io(rdev->bdev, 1493 r10_bio->devs[sl].addr + 1494 sect + rdev->data_offset, 1495 s<<9, conf->tmppage, WRITE) 1496 == 0) 1497 /* Well, this device is dead */ 1498 md_error(mddev, rdev); 1499 rdev_dec_pending(rdev, mddev); 1500 rcu_read_lock(); 1501 } 1502 } 1503 sl = start; 1504 while (sl != r10_bio->read_slot) { 1505 int d; 1506 if (sl==0) 1507 sl = conf->copies; 1508 sl--; 1509 d = r10_bio->devs[sl].devnum; 1510 rdev = rcu_dereference(conf->mirrors[d].rdev); 1511 if (rdev && 1512 test_bit(In_sync, &rdev->flags)) { 1513 char b[BDEVNAME_SIZE]; 1514 atomic_inc(&rdev->nr_pending); 1515 rcu_read_unlock(); 1516 if (sync_page_io(rdev->bdev, 1517 r10_bio->devs[sl].addr + 1518 sect + rdev->data_offset, 1519 s<<9, conf->tmppage, READ) == 0) 1520 /* Well, this device is dead */ 1521 md_error(mddev, rdev); 1522 else 1523 printk(KERN_INFO 1524 "raid10:%s: read error corrected" 1525 " (%d sectors at %llu on %s)\n", 1526 mdname(mddev), s, 1527 (unsigned long long)(sect+ 1528 rdev->data_offset), 1529 bdevname(rdev->bdev, b)); 1530 1531 rdev_dec_pending(rdev, mddev); 1532 rcu_read_lock(); 1533 } 1534 } 1535 rcu_read_unlock(); 1536 1537 sectors -= s; 1538 sect += s; 1539 } 1540 } 1541 1542 static void raid10d(mddev_t *mddev) 1543 { 1544 r10bio_t *r10_bio; 1545 struct bio *bio; 1546 unsigned long flags; 1547 conf_t *conf = mddev_to_conf(mddev); 1548 struct list_head *head = &conf->retry_list; 1549 int unplug=0; 1550 mdk_rdev_t *rdev; 1551 1552 md_check_recovery(mddev); 1553 1554 for (;;) { 1555 char b[BDEVNAME_SIZE]; 1556 1557 unplug += flush_pending_writes(conf); 1558 1559 spin_lock_irqsave(&conf->device_lock, flags); 1560 if (list_empty(head)) { 1561 spin_unlock_irqrestore(&conf->device_lock, flags); 1562 break; 1563 } 1564 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1565 list_del(head->prev); 1566 conf->nr_queued--; 1567 spin_unlock_irqrestore(&conf->device_lock, flags); 1568 1569 mddev = r10_bio->mddev; 1570 conf = mddev_to_conf(mddev); 1571 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1572 sync_request_write(mddev, r10_bio); 1573 unplug = 1; 1574 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1575 recovery_request_write(mddev, r10_bio); 1576 unplug = 1; 1577 } else { 1578 int mirror; 1579 /* we got a read error. Maybe the drive is bad. Maybe just 1580 * the block and we can fix it. 1581 * We freeze all other IO, and try reading the block from 1582 * other devices. When we find one, we re-write 1583 * and check it that fixes the read error. 1584 * This is all done synchronously while the array is 1585 * frozen. 1586 */ 1587 if (mddev->ro == 0) { 1588 freeze_array(conf); 1589 fix_read_error(conf, mddev, r10_bio); 1590 unfreeze_array(conf); 1591 } 1592 1593 bio = r10_bio->devs[r10_bio->read_slot].bio; 1594 r10_bio->devs[r10_bio->read_slot].bio = 1595 mddev->ro ? IO_BLOCKED : NULL; 1596 mirror = read_balance(conf, r10_bio); 1597 if (mirror == -1) { 1598 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1599 " read error for block %llu\n", 1600 bdevname(bio->bi_bdev,b), 1601 (unsigned long long)r10_bio->sector); 1602 raid_end_bio_io(r10_bio); 1603 bio_put(bio); 1604 } else { 1605 const int do_sync = bio_sync(r10_bio->master_bio); 1606 bio_put(bio); 1607 rdev = conf->mirrors[mirror].rdev; 1608 if (printk_ratelimit()) 1609 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1610 " another mirror\n", 1611 bdevname(rdev->bdev,b), 1612 (unsigned long long)r10_bio->sector); 1613 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1614 r10_bio->devs[r10_bio->read_slot].bio = bio; 1615 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1616 + rdev->data_offset; 1617 bio->bi_bdev = rdev->bdev; 1618 bio->bi_rw = READ | do_sync; 1619 bio->bi_private = r10_bio; 1620 bio->bi_end_io = raid10_end_read_request; 1621 unplug = 1; 1622 generic_make_request(bio); 1623 } 1624 } 1625 } 1626 if (unplug) 1627 unplug_slaves(mddev); 1628 } 1629 1630 1631 static int init_resync(conf_t *conf) 1632 { 1633 int buffs; 1634 1635 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1636 BUG_ON(conf->r10buf_pool); 1637 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1638 if (!conf->r10buf_pool) 1639 return -ENOMEM; 1640 conf->next_resync = 0; 1641 return 0; 1642 } 1643 1644 /* 1645 * perform a "sync" on one "block" 1646 * 1647 * We need to make sure that no normal I/O request - particularly write 1648 * requests - conflict with active sync requests. 1649 * 1650 * This is achieved by tracking pending requests and a 'barrier' concept 1651 * that can be installed to exclude normal IO requests. 1652 * 1653 * Resync and recovery are handled very differently. 1654 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1655 * 1656 * For resync, we iterate over virtual addresses, read all copies, 1657 * and update if there are differences. If only one copy is live, 1658 * skip it. 1659 * For recovery, we iterate over physical addresses, read a good 1660 * value for each non-in_sync drive, and over-write. 1661 * 1662 * So, for recovery we may have several outstanding complex requests for a 1663 * given address, one for each out-of-sync device. We model this by allocating 1664 * a number of r10_bio structures, one for each out-of-sync device. 1665 * As we setup these structures, we collect all bio's together into a list 1666 * which we then process collectively to add pages, and then process again 1667 * to pass to generic_make_request. 1668 * 1669 * The r10_bio structures are linked using a borrowed master_bio pointer. 1670 * This link is counted in ->remaining. When the r10_bio that points to NULL 1671 * has its remaining count decremented to 0, the whole complex operation 1672 * is complete. 1673 * 1674 */ 1675 1676 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1677 { 1678 conf_t *conf = mddev_to_conf(mddev); 1679 r10bio_t *r10_bio; 1680 struct bio *biolist = NULL, *bio; 1681 sector_t max_sector, nr_sectors; 1682 int disk; 1683 int i; 1684 int max_sync; 1685 int sync_blocks; 1686 1687 sector_t sectors_skipped = 0; 1688 int chunks_skipped = 0; 1689 1690 if (!conf->r10buf_pool) 1691 if (init_resync(conf)) 1692 return 0; 1693 1694 skipped: 1695 max_sector = mddev->size << 1; 1696 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1697 max_sector = mddev->resync_max_sectors; 1698 if (sector_nr >= max_sector) { 1699 /* If we aborted, we need to abort the 1700 * sync on the 'current' bitmap chucks (there can 1701 * be several when recovering multiple devices). 1702 * as we may have started syncing it but not finished. 1703 * We can find the current address in 1704 * mddev->curr_resync, but for recovery, 1705 * we need to convert that to several 1706 * virtual addresses. 1707 */ 1708 if (mddev->curr_resync < max_sector) { /* aborted */ 1709 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1710 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1711 &sync_blocks, 1); 1712 else for (i=0; i<conf->raid_disks; i++) { 1713 sector_t sect = 1714 raid10_find_virt(conf, mddev->curr_resync, i); 1715 bitmap_end_sync(mddev->bitmap, sect, 1716 &sync_blocks, 1); 1717 } 1718 } else /* completed sync */ 1719 conf->fullsync = 0; 1720 1721 bitmap_close_sync(mddev->bitmap); 1722 close_sync(conf); 1723 *skipped = 1; 1724 return sectors_skipped; 1725 } 1726 if (chunks_skipped >= conf->raid_disks) { 1727 /* if there has been nothing to do on any drive, 1728 * then there is nothing to do at all.. 1729 */ 1730 *skipped = 1; 1731 return (max_sector - sector_nr) + sectors_skipped; 1732 } 1733 1734 if (max_sector > mddev->resync_max) 1735 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1736 1737 /* make sure whole request will fit in a chunk - if chunks 1738 * are meaningful 1739 */ 1740 if (conf->near_copies < conf->raid_disks && 1741 max_sector > (sector_nr | conf->chunk_mask)) 1742 max_sector = (sector_nr | conf->chunk_mask) + 1; 1743 /* 1744 * If there is non-resync activity waiting for us then 1745 * put in a delay to throttle resync. 1746 */ 1747 if (!go_faster && conf->nr_waiting) 1748 msleep_interruptible(1000); 1749 1750 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1751 1752 /* Again, very different code for resync and recovery. 1753 * Both must result in an r10bio with a list of bios that 1754 * have bi_end_io, bi_sector, bi_bdev set, 1755 * and bi_private set to the r10bio. 1756 * For recovery, we may actually create several r10bios 1757 * with 2 bios in each, that correspond to the bios in the main one. 1758 * In this case, the subordinate r10bios link back through a 1759 * borrowed master_bio pointer, and the counter in the master 1760 * includes a ref from each subordinate. 1761 */ 1762 /* First, we decide what to do and set ->bi_end_io 1763 * To end_sync_read if we want to read, and 1764 * end_sync_write if we will want to write. 1765 */ 1766 1767 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1768 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1769 /* recovery... the complicated one */ 1770 int i, j, k; 1771 r10_bio = NULL; 1772 1773 for (i=0 ; i<conf->raid_disks; i++) 1774 if (conf->mirrors[i].rdev && 1775 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1776 int still_degraded = 0; 1777 /* want to reconstruct this device */ 1778 r10bio_t *rb2 = r10_bio; 1779 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1780 int must_sync; 1781 /* Unless we are doing a full sync, we only need 1782 * to recover the block if it is set in the bitmap 1783 */ 1784 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1785 &sync_blocks, 1); 1786 if (sync_blocks < max_sync) 1787 max_sync = sync_blocks; 1788 if (!must_sync && 1789 !conf->fullsync) { 1790 /* yep, skip the sync_blocks here, but don't assume 1791 * that there will never be anything to do here 1792 */ 1793 chunks_skipped = -1; 1794 continue; 1795 } 1796 1797 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1798 raise_barrier(conf, rb2 != NULL); 1799 atomic_set(&r10_bio->remaining, 0); 1800 1801 r10_bio->master_bio = (struct bio*)rb2; 1802 if (rb2) 1803 atomic_inc(&rb2->remaining); 1804 r10_bio->mddev = mddev; 1805 set_bit(R10BIO_IsRecover, &r10_bio->state); 1806 r10_bio->sector = sect; 1807 1808 raid10_find_phys(conf, r10_bio); 1809 /* Need to check if this section will still be 1810 * degraded 1811 */ 1812 for (j=0; j<conf->copies;j++) { 1813 int d = r10_bio->devs[j].devnum; 1814 if (conf->mirrors[d].rdev == NULL || 1815 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1816 still_degraded = 1; 1817 break; 1818 } 1819 } 1820 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1821 &sync_blocks, still_degraded); 1822 1823 for (j=0; j<conf->copies;j++) { 1824 int d = r10_bio->devs[j].devnum; 1825 if (conf->mirrors[d].rdev && 1826 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1827 /* This is where we read from */ 1828 bio = r10_bio->devs[0].bio; 1829 bio->bi_next = biolist; 1830 biolist = bio; 1831 bio->bi_private = r10_bio; 1832 bio->bi_end_io = end_sync_read; 1833 bio->bi_rw = READ; 1834 bio->bi_sector = r10_bio->devs[j].addr + 1835 conf->mirrors[d].rdev->data_offset; 1836 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1837 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1838 atomic_inc(&r10_bio->remaining); 1839 /* and we write to 'i' */ 1840 1841 for (k=0; k<conf->copies; k++) 1842 if (r10_bio->devs[k].devnum == i) 1843 break; 1844 BUG_ON(k == conf->copies); 1845 bio = r10_bio->devs[1].bio; 1846 bio->bi_next = biolist; 1847 biolist = bio; 1848 bio->bi_private = r10_bio; 1849 bio->bi_end_io = end_sync_write; 1850 bio->bi_rw = WRITE; 1851 bio->bi_sector = r10_bio->devs[k].addr + 1852 conf->mirrors[i].rdev->data_offset; 1853 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1854 1855 r10_bio->devs[0].devnum = d; 1856 r10_bio->devs[1].devnum = i; 1857 1858 break; 1859 } 1860 } 1861 if (j == conf->copies) { 1862 /* Cannot recover, so abort the recovery */ 1863 put_buf(r10_bio); 1864 if (rb2) 1865 atomic_dec(&rb2->remaining); 1866 r10_bio = rb2; 1867 if (!test_and_set_bit(MD_RECOVERY_INTR, 1868 &mddev->recovery)) 1869 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1870 mdname(mddev)); 1871 break; 1872 } 1873 } 1874 if (biolist == NULL) { 1875 while (r10_bio) { 1876 r10bio_t *rb2 = r10_bio; 1877 r10_bio = (r10bio_t*) rb2->master_bio; 1878 rb2->master_bio = NULL; 1879 put_buf(rb2); 1880 } 1881 goto giveup; 1882 } 1883 } else { 1884 /* resync. Schedule a read for every block at this virt offset */ 1885 int count = 0; 1886 1887 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1888 &sync_blocks, mddev->degraded) && 1889 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1890 /* We can skip this block */ 1891 *skipped = 1; 1892 return sync_blocks + sectors_skipped; 1893 } 1894 if (sync_blocks < max_sync) 1895 max_sync = sync_blocks; 1896 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1897 1898 r10_bio->mddev = mddev; 1899 atomic_set(&r10_bio->remaining, 0); 1900 raise_barrier(conf, 0); 1901 conf->next_resync = sector_nr; 1902 1903 r10_bio->master_bio = NULL; 1904 r10_bio->sector = sector_nr; 1905 set_bit(R10BIO_IsSync, &r10_bio->state); 1906 raid10_find_phys(conf, r10_bio); 1907 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1908 1909 for (i=0; i<conf->copies; i++) { 1910 int d = r10_bio->devs[i].devnum; 1911 bio = r10_bio->devs[i].bio; 1912 bio->bi_end_io = NULL; 1913 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1914 if (conf->mirrors[d].rdev == NULL || 1915 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1916 continue; 1917 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1918 atomic_inc(&r10_bio->remaining); 1919 bio->bi_next = biolist; 1920 biolist = bio; 1921 bio->bi_private = r10_bio; 1922 bio->bi_end_io = end_sync_read; 1923 bio->bi_rw = READ; 1924 bio->bi_sector = r10_bio->devs[i].addr + 1925 conf->mirrors[d].rdev->data_offset; 1926 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1927 count++; 1928 } 1929 1930 if (count < 2) { 1931 for (i=0; i<conf->copies; i++) { 1932 int d = r10_bio->devs[i].devnum; 1933 if (r10_bio->devs[i].bio->bi_end_io) 1934 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1935 } 1936 put_buf(r10_bio); 1937 biolist = NULL; 1938 goto giveup; 1939 } 1940 } 1941 1942 for (bio = biolist; bio ; bio=bio->bi_next) { 1943 1944 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1945 if (bio->bi_end_io) 1946 bio->bi_flags |= 1 << BIO_UPTODATE; 1947 bio->bi_vcnt = 0; 1948 bio->bi_idx = 0; 1949 bio->bi_phys_segments = 0; 1950 bio->bi_hw_segments = 0; 1951 bio->bi_size = 0; 1952 } 1953 1954 nr_sectors = 0; 1955 if (sector_nr + max_sync < max_sector) 1956 max_sector = sector_nr + max_sync; 1957 do { 1958 struct page *page; 1959 int len = PAGE_SIZE; 1960 disk = 0; 1961 if (sector_nr + (len>>9) > max_sector) 1962 len = (max_sector - sector_nr) << 9; 1963 if (len == 0) 1964 break; 1965 for (bio= biolist ; bio ; bio=bio->bi_next) { 1966 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1967 if (bio_add_page(bio, page, len, 0) == 0) { 1968 /* stop here */ 1969 struct bio *bio2; 1970 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1971 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1972 /* remove last page from this bio */ 1973 bio2->bi_vcnt--; 1974 bio2->bi_size -= len; 1975 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1976 } 1977 goto bio_full; 1978 } 1979 disk = i; 1980 } 1981 nr_sectors += len>>9; 1982 sector_nr += len>>9; 1983 } while (biolist->bi_vcnt < RESYNC_PAGES); 1984 bio_full: 1985 r10_bio->sectors = nr_sectors; 1986 1987 while (biolist) { 1988 bio = biolist; 1989 biolist = biolist->bi_next; 1990 1991 bio->bi_next = NULL; 1992 r10_bio = bio->bi_private; 1993 r10_bio->sectors = nr_sectors; 1994 1995 if (bio->bi_end_io == end_sync_read) { 1996 md_sync_acct(bio->bi_bdev, nr_sectors); 1997 generic_make_request(bio); 1998 } 1999 } 2000 2001 if (sectors_skipped) 2002 /* pretend they weren't skipped, it makes 2003 * no important difference in this case 2004 */ 2005 md_done_sync(mddev, sectors_skipped, 1); 2006 2007 return sectors_skipped + nr_sectors; 2008 giveup: 2009 /* There is nowhere to write, so all non-sync 2010 * drives must be failed, so try the next chunk... 2011 */ 2012 { 2013 sector_t sec = max_sector - sector_nr; 2014 sectors_skipped += sec; 2015 chunks_skipped ++; 2016 sector_nr = max_sector; 2017 goto skipped; 2018 } 2019 } 2020 2021 static int run(mddev_t *mddev) 2022 { 2023 conf_t *conf; 2024 int i, disk_idx; 2025 mirror_info_t *disk; 2026 mdk_rdev_t *rdev; 2027 struct list_head *tmp; 2028 int nc, fc, fo; 2029 sector_t stride, size; 2030 2031 if (mddev->chunk_size == 0) { 2032 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 2033 return -EINVAL; 2034 } 2035 2036 nc = mddev->layout & 255; 2037 fc = (mddev->layout >> 8) & 255; 2038 fo = mddev->layout & (1<<16); 2039 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2040 (mddev->layout >> 17)) { 2041 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 2042 mdname(mddev), mddev->layout); 2043 goto out; 2044 } 2045 /* 2046 * copy the already verified devices into our private RAID10 2047 * bookkeeping area. [whatever we allocate in run(), 2048 * should be freed in stop()] 2049 */ 2050 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2051 mddev->private = conf; 2052 if (!conf) { 2053 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2054 mdname(mddev)); 2055 goto out; 2056 } 2057 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2058 GFP_KERNEL); 2059 if (!conf->mirrors) { 2060 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2061 mdname(mddev)); 2062 goto out_free_conf; 2063 } 2064 2065 conf->tmppage = alloc_page(GFP_KERNEL); 2066 if (!conf->tmppage) 2067 goto out_free_conf; 2068 2069 conf->mddev = mddev; 2070 conf->raid_disks = mddev->raid_disks; 2071 conf->near_copies = nc; 2072 conf->far_copies = fc; 2073 conf->copies = nc*fc; 2074 conf->far_offset = fo; 2075 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 2076 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 2077 size = mddev->size >> (conf->chunk_shift-1); 2078 sector_div(size, fc); 2079 size = size * conf->raid_disks; 2080 sector_div(size, nc); 2081 /* 'size' is now the number of chunks in the array */ 2082 /* calculate "used chunks per device" in 'stride' */ 2083 stride = size * conf->copies; 2084 2085 /* We need to round up when dividing by raid_disks to 2086 * get the stride size. 2087 */ 2088 stride += conf->raid_disks - 1; 2089 sector_div(stride, conf->raid_disks); 2090 mddev->size = stride << (conf->chunk_shift-1); 2091 2092 if (fo) 2093 stride = 1; 2094 else 2095 sector_div(stride, fc); 2096 conf->stride = stride << conf->chunk_shift; 2097 2098 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2099 r10bio_pool_free, conf); 2100 if (!conf->r10bio_pool) { 2101 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2102 mdname(mddev)); 2103 goto out_free_conf; 2104 } 2105 2106 spin_lock_init(&conf->device_lock); 2107 mddev->queue->queue_lock = &conf->device_lock; 2108 2109 rdev_for_each(rdev, tmp, mddev) { 2110 disk_idx = rdev->raid_disk; 2111 if (disk_idx >= mddev->raid_disks 2112 || disk_idx < 0) 2113 continue; 2114 disk = conf->mirrors + disk_idx; 2115 2116 disk->rdev = rdev; 2117 2118 blk_queue_stack_limits(mddev->queue, 2119 rdev->bdev->bd_disk->queue); 2120 /* as we don't honour merge_bvec_fn, we must never risk 2121 * violating it, so limit ->max_sector to one PAGE, as 2122 * a one page request is never in violation. 2123 */ 2124 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2125 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2126 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2127 2128 disk->head_position = 0; 2129 } 2130 INIT_LIST_HEAD(&conf->retry_list); 2131 2132 spin_lock_init(&conf->resync_lock); 2133 init_waitqueue_head(&conf->wait_barrier); 2134 2135 /* need to check that every block has at least one working mirror */ 2136 if (!enough(conf)) { 2137 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2138 mdname(mddev)); 2139 goto out_free_conf; 2140 } 2141 2142 mddev->degraded = 0; 2143 for (i = 0; i < conf->raid_disks; i++) { 2144 2145 disk = conf->mirrors + i; 2146 2147 if (!disk->rdev || 2148 !test_bit(In_sync, &disk->rdev->flags)) { 2149 disk->head_position = 0; 2150 mddev->degraded++; 2151 if (disk->rdev) 2152 conf->fullsync = 1; 2153 } 2154 } 2155 2156 2157 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2158 if (!mddev->thread) { 2159 printk(KERN_ERR 2160 "raid10: couldn't allocate thread for %s\n", 2161 mdname(mddev)); 2162 goto out_free_conf; 2163 } 2164 2165 printk(KERN_INFO 2166 "raid10: raid set %s active with %d out of %d devices\n", 2167 mdname(mddev), mddev->raid_disks - mddev->degraded, 2168 mddev->raid_disks); 2169 /* 2170 * Ok, everything is just fine now 2171 */ 2172 mddev->array_sectors = size << conf->chunk_shift; 2173 mddev->resync_max_sectors = size << conf->chunk_shift; 2174 2175 mddev->queue->unplug_fn = raid10_unplug; 2176 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2177 mddev->queue->backing_dev_info.congested_data = mddev; 2178 2179 /* Calculate max read-ahead size. 2180 * We need to readahead at least twice a whole stripe.... 2181 * maybe... 2182 */ 2183 { 2184 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2185 stripe /= conf->near_copies; 2186 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2187 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2188 } 2189 2190 if (conf->near_copies < mddev->raid_disks) 2191 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2192 return 0; 2193 2194 out_free_conf: 2195 if (conf->r10bio_pool) 2196 mempool_destroy(conf->r10bio_pool); 2197 safe_put_page(conf->tmppage); 2198 kfree(conf->mirrors); 2199 kfree(conf); 2200 mddev->private = NULL; 2201 out: 2202 return -EIO; 2203 } 2204 2205 static int stop(mddev_t *mddev) 2206 { 2207 conf_t *conf = mddev_to_conf(mddev); 2208 2209 md_unregister_thread(mddev->thread); 2210 mddev->thread = NULL; 2211 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2212 if (conf->r10bio_pool) 2213 mempool_destroy(conf->r10bio_pool); 2214 kfree(conf->mirrors); 2215 kfree(conf); 2216 mddev->private = NULL; 2217 return 0; 2218 } 2219 2220 static void raid10_quiesce(mddev_t *mddev, int state) 2221 { 2222 conf_t *conf = mddev_to_conf(mddev); 2223 2224 switch(state) { 2225 case 1: 2226 raise_barrier(conf, 0); 2227 break; 2228 case 0: 2229 lower_barrier(conf); 2230 break; 2231 } 2232 if (mddev->thread) { 2233 if (mddev->bitmap) 2234 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2235 else 2236 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2237 md_wakeup_thread(mddev->thread); 2238 } 2239 } 2240 2241 static struct mdk_personality raid10_personality = 2242 { 2243 .name = "raid10", 2244 .level = 10, 2245 .owner = THIS_MODULE, 2246 .make_request = make_request, 2247 .run = run, 2248 .stop = stop, 2249 .status = status, 2250 .error_handler = error, 2251 .hot_add_disk = raid10_add_disk, 2252 .hot_remove_disk= raid10_remove_disk, 2253 .spare_active = raid10_spare_active, 2254 .sync_request = sync_request, 2255 .quiesce = raid10_quiesce, 2256 }; 2257 2258 static int __init raid_init(void) 2259 { 2260 return register_md_personality(&raid10_personality); 2261 } 2262 2263 static void raid_exit(void) 2264 { 2265 unregister_md_personality(&raid10_personality); 2266 } 2267 2268 module_init(raid_init); 2269 module_exit(raid_exit); 2270 MODULE_LICENSE("GPL"); 2271 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2272 MODULE_ALIAS("md-raid10"); 2273 MODULE_ALIAS("md-level-10"); 2274