xref: /linux/drivers/md/raid10.c (revision c0c9209ddd96bc4f1d70a8b9958710671e076080)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
24 
25 /*
26  * RAID10 provides a combination of RAID0 and RAID1 functionality.
27  * The layout of data is defined by
28  *    chunk_size
29  *    raid_disks
30  *    near_copies (stored in low byte of layout)
31  *    far_copies (stored in second byte of layout)
32  *    far_offset (stored in bit 16 of layout )
33  *
34  * The data to be stored is divided into chunks using chunksize.
35  * Each device is divided into far_copies sections.
36  * In each section, chunks are laid out in a style similar to raid0, but
37  * near_copies copies of each chunk is stored (each on a different drive).
38  * The starting device for each section is offset near_copies from the starting
39  * device of the previous section.
40  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41  * drive.
42  * near_copies and far_copies must be at least one, and their product is at most
43  * raid_disks.
44  *
45  * If far_offset is true, then the far_copies are handled a bit differently.
46  * The copies are still in different stripes, but instead of be very far apart
47  * on disk, there are adjacent stripes.
48  */
49 
50 /*
51  * Number of guaranteed r10bios in case of extreme VM load:
52  */
53 #define	NR_RAID10_BIOS 256
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	conf_t *conf = data;
63 	r10bio_t *r10_bio;
64 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
65 
66 	/* allocate a r10bio with room for raid_disks entries in the bios array */
67 	r10_bio = kzalloc(size, gfp_flags);
68 	if (!r10_bio)
69 		unplug_slaves(conf->mddev);
70 
71 	return r10_bio;
72 }
73 
74 static void r10bio_pool_free(void *r10_bio, void *data)
75 {
76 	kfree(r10_bio);
77 }
78 
79 /* Maximum size of each resync request */
80 #define RESYNC_BLOCK_SIZE (64*1024)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 /* amount of memory to reserve for resync requests */
83 #define RESYNC_WINDOW (1024*1024)
84 /* maximum number of concurrent requests, memory permitting */
85 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
86 
87 /*
88  * When performing a resync, we need to read and compare, so
89  * we need as many pages are there are copies.
90  * When performing a recovery, we need 2 bios, one for read,
91  * one for write (we recover only one drive per r10buf)
92  *
93  */
94 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
95 {
96 	conf_t *conf = data;
97 	struct page *page;
98 	r10bio_t *r10_bio;
99 	struct bio *bio;
100 	int i, j;
101 	int nalloc;
102 
103 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
104 	if (!r10_bio) {
105 		unplug_slaves(conf->mddev);
106 		return NULL;
107 	}
108 
109 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
110 		nalloc = conf->copies; /* resync */
111 	else
112 		nalloc = 2; /* recovery */
113 
114 	/*
115 	 * Allocate bios.
116 	 */
117 	for (j = nalloc ; j-- ; ) {
118 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
119 		if (!bio)
120 			goto out_free_bio;
121 		r10_bio->devs[j].bio = bio;
122 	}
123 	/*
124 	 * Allocate RESYNC_PAGES data pages and attach them
125 	 * where needed.
126 	 */
127 	for (j = 0 ; j < nalloc; j++) {
128 		bio = r10_bio->devs[j].bio;
129 		for (i = 0; i < RESYNC_PAGES; i++) {
130 			page = alloc_page(gfp_flags);
131 			if (unlikely(!page))
132 				goto out_free_pages;
133 
134 			bio->bi_io_vec[i].bv_page = page;
135 		}
136 	}
137 
138 	return r10_bio;
139 
140 out_free_pages:
141 	for ( ; i > 0 ; i--)
142 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
143 	while (j--)
144 		for (i = 0; i < RESYNC_PAGES ; i++)
145 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
146 	j = -1;
147 out_free_bio:
148 	while ( ++j < nalloc )
149 		bio_put(r10_bio->devs[j].bio);
150 	r10bio_pool_free(r10_bio, conf);
151 	return NULL;
152 }
153 
154 static void r10buf_pool_free(void *__r10_bio, void *data)
155 {
156 	int i;
157 	conf_t *conf = data;
158 	r10bio_t *r10bio = __r10_bio;
159 	int j;
160 
161 	for (j=0; j < conf->copies; j++) {
162 		struct bio *bio = r10bio->devs[j].bio;
163 		if (bio) {
164 			for (i = 0; i < RESYNC_PAGES; i++) {
165 				safe_put_page(bio->bi_io_vec[i].bv_page);
166 				bio->bi_io_vec[i].bv_page = NULL;
167 			}
168 			bio_put(bio);
169 		}
170 	}
171 	r10bio_pool_free(r10bio, conf);
172 }
173 
174 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
175 {
176 	int i;
177 
178 	for (i = 0; i < conf->copies; i++) {
179 		struct bio **bio = & r10_bio->devs[i].bio;
180 		if (*bio && *bio != IO_BLOCKED)
181 			bio_put(*bio);
182 		*bio = NULL;
183 	}
184 }
185 
186 static void free_r10bio(r10bio_t *r10_bio)
187 {
188 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
189 
190 	/*
191 	 * Wake up any possible resync thread that waits for the device
192 	 * to go idle.
193 	 */
194 	allow_barrier(conf);
195 
196 	put_all_bios(conf, r10_bio);
197 	mempool_free(r10_bio, conf->r10bio_pool);
198 }
199 
200 static void put_buf(r10bio_t *r10_bio)
201 {
202 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
203 
204 	mempool_free(r10_bio, conf->r10buf_pool);
205 
206 	lower_barrier(conf);
207 }
208 
209 static void reschedule_retry(r10bio_t *r10_bio)
210 {
211 	unsigned long flags;
212 	mddev_t *mddev = r10_bio->mddev;
213 	conf_t *conf = mddev_to_conf(mddev);
214 
215 	spin_lock_irqsave(&conf->device_lock, flags);
216 	list_add(&r10_bio->retry_list, &conf->retry_list);
217 	conf->nr_queued ++;
218 	spin_unlock_irqrestore(&conf->device_lock, flags);
219 
220 	/* wake up frozen array... */
221 	wake_up(&conf->wait_barrier);
222 
223 	md_wakeup_thread(mddev->thread);
224 }
225 
226 /*
227  * raid_end_bio_io() is called when we have finished servicing a mirrored
228  * operation and are ready to return a success/failure code to the buffer
229  * cache layer.
230  */
231 static void raid_end_bio_io(r10bio_t *r10_bio)
232 {
233 	struct bio *bio = r10_bio->master_bio;
234 
235 	bio_endio(bio,
236 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
237 	free_r10bio(r10_bio);
238 }
239 
240 /*
241  * Update disk head position estimator based on IRQ completion info.
242  */
243 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
244 {
245 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
246 
247 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
248 		r10_bio->devs[slot].addr + (r10_bio->sectors);
249 }
250 
251 static void raid10_end_read_request(struct bio *bio, int error)
252 {
253 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
254 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
255 	int slot, dev;
256 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
257 
258 
259 	slot = r10_bio->read_slot;
260 	dev = r10_bio->devs[slot].devnum;
261 	/*
262 	 * this branch is our 'one mirror IO has finished' event handler:
263 	 */
264 	update_head_pos(slot, r10_bio);
265 
266 	if (uptodate) {
267 		/*
268 		 * Set R10BIO_Uptodate in our master bio, so that
269 		 * we will return a good error code to the higher
270 		 * levels even if IO on some other mirrored buffer fails.
271 		 *
272 		 * The 'master' represents the composite IO operation to
273 		 * user-side. So if something waits for IO, then it will
274 		 * wait for the 'master' bio.
275 		 */
276 		set_bit(R10BIO_Uptodate, &r10_bio->state);
277 		raid_end_bio_io(r10_bio);
278 	} else {
279 		/*
280 		 * oops, read error:
281 		 */
282 		char b[BDEVNAME_SIZE];
283 		if (printk_ratelimit())
284 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
285 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
286 		reschedule_retry(r10_bio);
287 	}
288 
289 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
290 }
291 
292 static void raid10_end_write_request(struct bio *bio, int error)
293 {
294 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
295 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
296 	int slot, dev;
297 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
298 
299 	for (slot = 0; slot < conf->copies; slot++)
300 		if (r10_bio->devs[slot].bio == bio)
301 			break;
302 	dev = r10_bio->devs[slot].devnum;
303 
304 	/*
305 	 * this branch is our 'one mirror IO has finished' event handler:
306 	 */
307 	if (!uptodate) {
308 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
309 		/* an I/O failed, we can't clear the bitmap */
310 		set_bit(R10BIO_Degraded, &r10_bio->state);
311 	} else
312 		/*
313 		 * Set R10BIO_Uptodate in our master bio, so that
314 		 * we will return a good error code for to the higher
315 		 * levels even if IO on some other mirrored buffer fails.
316 		 *
317 		 * The 'master' represents the composite IO operation to
318 		 * user-side. So if something waits for IO, then it will
319 		 * wait for the 'master' bio.
320 		 */
321 		set_bit(R10BIO_Uptodate, &r10_bio->state);
322 
323 	update_head_pos(slot, r10_bio);
324 
325 	/*
326 	 *
327 	 * Let's see if all mirrored write operations have finished
328 	 * already.
329 	 */
330 	if (atomic_dec_and_test(&r10_bio->remaining)) {
331 		/* clear the bitmap if all writes complete successfully */
332 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
333 				r10_bio->sectors,
334 				!test_bit(R10BIO_Degraded, &r10_bio->state),
335 				0);
336 		md_write_end(r10_bio->mddev);
337 		raid_end_bio_io(r10_bio);
338 	}
339 
340 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
341 }
342 
343 
344 /*
345  * RAID10 layout manager
346  * Aswell as the chunksize and raid_disks count, there are two
347  * parameters: near_copies and far_copies.
348  * near_copies * far_copies must be <= raid_disks.
349  * Normally one of these will be 1.
350  * If both are 1, we get raid0.
351  * If near_copies == raid_disks, we get raid1.
352  *
353  * Chunks are layed out in raid0 style with near_copies copies of the
354  * first chunk, followed by near_copies copies of the next chunk and
355  * so on.
356  * If far_copies > 1, then after 1/far_copies of the array has been assigned
357  * as described above, we start again with a device offset of near_copies.
358  * So we effectively have another copy of the whole array further down all
359  * the drives, but with blocks on different drives.
360  * With this layout, and block is never stored twice on the one device.
361  *
362  * raid10_find_phys finds the sector offset of a given virtual sector
363  * on each device that it is on.
364  *
365  * raid10_find_virt does the reverse mapping, from a device and a
366  * sector offset to a virtual address
367  */
368 
369 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
370 {
371 	int n,f;
372 	sector_t sector;
373 	sector_t chunk;
374 	sector_t stripe;
375 	int dev;
376 
377 	int slot = 0;
378 
379 	/* now calculate first sector/dev */
380 	chunk = r10bio->sector >> conf->chunk_shift;
381 	sector = r10bio->sector & conf->chunk_mask;
382 
383 	chunk *= conf->near_copies;
384 	stripe = chunk;
385 	dev = sector_div(stripe, conf->raid_disks);
386 	if (conf->far_offset)
387 		stripe *= conf->far_copies;
388 
389 	sector += stripe << conf->chunk_shift;
390 
391 	/* and calculate all the others */
392 	for (n=0; n < conf->near_copies; n++) {
393 		int d = dev;
394 		sector_t s = sector;
395 		r10bio->devs[slot].addr = sector;
396 		r10bio->devs[slot].devnum = d;
397 		slot++;
398 
399 		for (f = 1; f < conf->far_copies; f++) {
400 			d += conf->near_copies;
401 			if (d >= conf->raid_disks)
402 				d -= conf->raid_disks;
403 			s += conf->stride;
404 			r10bio->devs[slot].devnum = d;
405 			r10bio->devs[slot].addr = s;
406 			slot++;
407 		}
408 		dev++;
409 		if (dev >= conf->raid_disks) {
410 			dev = 0;
411 			sector += (conf->chunk_mask + 1);
412 		}
413 	}
414 	BUG_ON(slot != conf->copies);
415 }
416 
417 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
418 {
419 	sector_t offset, chunk, vchunk;
420 
421 	offset = sector & conf->chunk_mask;
422 	if (conf->far_offset) {
423 		int fc;
424 		chunk = sector >> conf->chunk_shift;
425 		fc = sector_div(chunk, conf->far_copies);
426 		dev -= fc * conf->near_copies;
427 		if (dev < 0)
428 			dev += conf->raid_disks;
429 	} else {
430 		while (sector >= conf->stride) {
431 			sector -= conf->stride;
432 			if (dev < conf->near_copies)
433 				dev += conf->raid_disks - conf->near_copies;
434 			else
435 				dev -= conf->near_copies;
436 		}
437 		chunk = sector >> conf->chunk_shift;
438 	}
439 	vchunk = chunk * conf->raid_disks + dev;
440 	sector_div(vchunk, conf->near_copies);
441 	return (vchunk << conf->chunk_shift) + offset;
442 }
443 
444 /**
445  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
446  *	@q: request queue
447  *	@bvm: properties of new bio
448  *	@biovec: the request that could be merged to it.
449  *
450  *	Return amount of bytes we can accept at this offset
451  *      If near_copies == raid_disk, there are no striping issues,
452  *      but in that case, the function isn't called at all.
453  */
454 static int raid10_mergeable_bvec(struct request_queue *q,
455 				 struct bvec_merge_data *bvm,
456 				 struct bio_vec *biovec)
457 {
458 	mddev_t *mddev = q->queuedata;
459 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
460 	int max;
461 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
462 	unsigned int bio_sectors = bvm->bi_size >> 9;
463 
464 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
465 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
466 	if (max <= biovec->bv_len && bio_sectors == 0)
467 		return biovec->bv_len;
468 	else
469 		return max;
470 }
471 
472 /*
473  * This routine returns the disk from which the requested read should
474  * be done. There is a per-array 'next expected sequential IO' sector
475  * number - if this matches on the next IO then we use the last disk.
476  * There is also a per-disk 'last know head position' sector that is
477  * maintained from IRQ contexts, both the normal and the resync IO
478  * completion handlers update this position correctly. If there is no
479  * perfect sequential match then we pick the disk whose head is closest.
480  *
481  * If there are 2 mirrors in the same 2 devices, performance degrades
482  * because position is mirror, not device based.
483  *
484  * The rdev for the device selected will have nr_pending incremented.
485  */
486 
487 /*
488  * FIXME: possibly should rethink readbalancing and do it differently
489  * depending on near_copies / far_copies geometry.
490  */
491 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
492 {
493 	const unsigned long this_sector = r10_bio->sector;
494 	int disk, slot, nslot;
495 	const int sectors = r10_bio->sectors;
496 	sector_t new_distance, current_distance;
497 	mdk_rdev_t *rdev;
498 
499 	raid10_find_phys(conf, r10_bio);
500 	rcu_read_lock();
501 	/*
502 	 * Check if we can balance. We can balance on the whole
503 	 * device if no resync is going on (recovery is ok), or below
504 	 * the resync window. We take the first readable disk when
505 	 * above the resync window.
506 	 */
507 	if (conf->mddev->recovery_cp < MaxSector
508 	    && (this_sector + sectors >= conf->next_resync)) {
509 		/* make sure that disk is operational */
510 		slot = 0;
511 		disk = r10_bio->devs[slot].devnum;
512 
513 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
514 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
515 		       !test_bit(In_sync, &rdev->flags)) {
516 			slot++;
517 			if (slot == conf->copies) {
518 				slot = 0;
519 				disk = -1;
520 				break;
521 			}
522 			disk = r10_bio->devs[slot].devnum;
523 		}
524 		goto rb_out;
525 	}
526 
527 
528 	/* make sure the disk is operational */
529 	slot = 0;
530 	disk = r10_bio->devs[slot].devnum;
531 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
532 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
533 	       !test_bit(In_sync, &rdev->flags)) {
534 		slot ++;
535 		if (slot == conf->copies) {
536 			disk = -1;
537 			goto rb_out;
538 		}
539 		disk = r10_bio->devs[slot].devnum;
540 	}
541 
542 
543 	current_distance = abs(r10_bio->devs[slot].addr -
544 			       conf->mirrors[disk].head_position);
545 
546 	/* Find the disk whose head is closest,
547 	 * or - for far > 1 - find the closest to partition beginning */
548 
549 	for (nslot = slot; nslot < conf->copies; nslot++) {
550 		int ndisk = r10_bio->devs[nslot].devnum;
551 
552 
553 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
554 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
555 		    !test_bit(In_sync, &rdev->flags))
556 			continue;
557 
558 		/* This optimisation is debatable, and completely destroys
559 		 * sequential read speed for 'far copies' arrays.  So only
560 		 * keep it for 'near' arrays, and review those later.
561 		 */
562 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
563 			disk = ndisk;
564 			slot = nslot;
565 			break;
566 		}
567 
568 		/* for far > 1 always use the lowest address */
569 		if (conf->far_copies > 1)
570 			new_distance = r10_bio->devs[nslot].addr;
571 		else
572 			new_distance = abs(r10_bio->devs[nslot].addr -
573 					   conf->mirrors[ndisk].head_position);
574 		if (new_distance < current_distance) {
575 			current_distance = new_distance;
576 			disk = ndisk;
577 			slot = nslot;
578 		}
579 	}
580 
581 rb_out:
582 	r10_bio->read_slot = slot;
583 /*	conf->next_seq_sect = this_sector + sectors;*/
584 
585 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
586 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
587 	else
588 		disk = -1;
589 	rcu_read_unlock();
590 
591 	return disk;
592 }
593 
594 static void unplug_slaves(mddev_t *mddev)
595 {
596 	conf_t *conf = mddev_to_conf(mddev);
597 	int i;
598 
599 	rcu_read_lock();
600 	for (i=0; i<mddev->raid_disks; i++) {
601 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
602 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
603 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
604 
605 			atomic_inc(&rdev->nr_pending);
606 			rcu_read_unlock();
607 
608 			blk_unplug(r_queue);
609 
610 			rdev_dec_pending(rdev, mddev);
611 			rcu_read_lock();
612 		}
613 	}
614 	rcu_read_unlock();
615 }
616 
617 static void raid10_unplug(struct request_queue *q)
618 {
619 	mddev_t *mddev = q->queuedata;
620 
621 	unplug_slaves(q->queuedata);
622 	md_wakeup_thread(mddev->thread);
623 }
624 
625 static int raid10_congested(void *data, int bits)
626 {
627 	mddev_t *mddev = data;
628 	conf_t *conf = mddev_to_conf(mddev);
629 	int i, ret = 0;
630 
631 	rcu_read_lock();
632 	for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
633 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
634 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
635 			struct request_queue *q = bdev_get_queue(rdev->bdev);
636 
637 			ret |= bdi_congested(&q->backing_dev_info, bits);
638 		}
639 	}
640 	rcu_read_unlock();
641 	return ret;
642 }
643 
644 static int flush_pending_writes(conf_t *conf)
645 {
646 	/* Any writes that have been queued but are awaiting
647 	 * bitmap updates get flushed here.
648 	 * We return 1 if any requests were actually submitted.
649 	 */
650 	int rv = 0;
651 
652 	spin_lock_irq(&conf->device_lock);
653 
654 	if (conf->pending_bio_list.head) {
655 		struct bio *bio;
656 		bio = bio_list_get(&conf->pending_bio_list);
657 		blk_remove_plug(conf->mddev->queue);
658 		spin_unlock_irq(&conf->device_lock);
659 		/* flush any pending bitmap writes to disk
660 		 * before proceeding w/ I/O */
661 		bitmap_unplug(conf->mddev->bitmap);
662 
663 		while (bio) { /* submit pending writes */
664 			struct bio *next = bio->bi_next;
665 			bio->bi_next = NULL;
666 			generic_make_request(bio);
667 			bio = next;
668 		}
669 		rv = 1;
670 	} else
671 		spin_unlock_irq(&conf->device_lock);
672 	return rv;
673 }
674 /* Barriers....
675  * Sometimes we need to suspend IO while we do something else,
676  * either some resync/recovery, or reconfigure the array.
677  * To do this we raise a 'barrier'.
678  * The 'barrier' is a counter that can be raised multiple times
679  * to count how many activities are happening which preclude
680  * normal IO.
681  * We can only raise the barrier if there is no pending IO.
682  * i.e. if nr_pending == 0.
683  * We choose only to raise the barrier if no-one is waiting for the
684  * barrier to go down.  This means that as soon as an IO request
685  * is ready, no other operations which require a barrier will start
686  * until the IO request has had a chance.
687  *
688  * So: regular IO calls 'wait_barrier'.  When that returns there
689  *    is no backgroup IO happening,  It must arrange to call
690  *    allow_barrier when it has finished its IO.
691  * backgroup IO calls must call raise_barrier.  Once that returns
692  *    there is no normal IO happeing.  It must arrange to call
693  *    lower_barrier when the particular background IO completes.
694  */
695 
696 static void raise_barrier(conf_t *conf, int force)
697 {
698 	BUG_ON(force && !conf->barrier);
699 	spin_lock_irq(&conf->resync_lock);
700 
701 	/* Wait until no block IO is waiting (unless 'force') */
702 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
703 			    conf->resync_lock,
704 			    raid10_unplug(conf->mddev->queue));
705 
706 	/* block any new IO from starting */
707 	conf->barrier++;
708 
709 	/* No wait for all pending IO to complete */
710 	wait_event_lock_irq(conf->wait_barrier,
711 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
712 			    conf->resync_lock,
713 			    raid10_unplug(conf->mddev->queue));
714 
715 	spin_unlock_irq(&conf->resync_lock);
716 }
717 
718 static void lower_barrier(conf_t *conf)
719 {
720 	unsigned long flags;
721 	spin_lock_irqsave(&conf->resync_lock, flags);
722 	conf->barrier--;
723 	spin_unlock_irqrestore(&conf->resync_lock, flags);
724 	wake_up(&conf->wait_barrier);
725 }
726 
727 static void wait_barrier(conf_t *conf)
728 {
729 	spin_lock_irq(&conf->resync_lock);
730 	if (conf->barrier) {
731 		conf->nr_waiting++;
732 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
733 				    conf->resync_lock,
734 				    raid10_unplug(conf->mddev->queue));
735 		conf->nr_waiting--;
736 	}
737 	conf->nr_pending++;
738 	spin_unlock_irq(&conf->resync_lock);
739 }
740 
741 static void allow_barrier(conf_t *conf)
742 {
743 	unsigned long flags;
744 	spin_lock_irqsave(&conf->resync_lock, flags);
745 	conf->nr_pending--;
746 	spin_unlock_irqrestore(&conf->resync_lock, flags);
747 	wake_up(&conf->wait_barrier);
748 }
749 
750 static void freeze_array(conf_t *conf)
751 {
752 	/* stop syncio and normal IO and wait for everything to
753 	 * go quiet.
754 	 * We increment barrier and nr_waiting, and then
755 	 * wait until nr_pending match nr_queued+1
756 	 * This is called in the context of one normal IO request
757 	 * that has failed. Thus any sync request that might be pending
758 	 * will be blocked by nr_pending, and we need to wait for
759 	 * pending IO requests to complete or be queued for re-try.
760 	 * Thus the number queued (nr_queued) plus this request (1)
761 	 * must match the number of pending IOs (nr_pending) before
762 	 * we continue.
763 	 */
764 	spin_lock_irq(&conf->resync_lock);
765 	conf->barrier++;
766 	conf->nr_waiting++;
767 	wait_event_lock_irq(conf->wait_barrier,
768 			    conf->nr_pending == conf->nr_queued+1,
769 			    conf->resync_lock,
770 			    ({ flush_pending_writes(conf);
771 			       raid10_unplug(conf->mddev->queue); }));
772 	spin_unlock_irq(&conf->resync_lock);
773 }
774 
775 static void unfreeze_array(conf_t *conf)
776 {
777 	/* reverse the effect of the freeze */
778 	spin_lock_irq(&conf->resync_lock);
779 	conf->barrier--;
780 	conf->nr_waiting--;
781 	wake_up(&conf->wait_barrier);
782 	spin_unlock_irq(&conf->resync_lock);
783 }
784 
785 static int make_request(struct request_queue *q, struct bio * bio)
786 {
787 	mddev_t *mddev = q->queuedata;
788 	conf_t *conf = mddev_to_conf(mddev);
789 	mirror_info_t *mirror;
790 	r10bio_t *r10_bio;
791 	struct bio *read_bio;
792 	int i;
793 	int chunk_sects = conf->chunk_mask + 1;
794 	const int rw = bio_data_dir(bio);
795 	const int do_sync = bio_sync(bio);
796 	struct bio_list bl;
797 	unsigned long flags;
798 	mdk_rdev_t *blocked_rdev;
799 
800 	if (unlikely(bio_barrier(bio))) {
801 		bio_endio(bio, -EOPNOTSUPP);
802 		return 0;
803 	}
804 
805 	/* If this request crosses a chunk boundary, we need to
806 	 * split it.  This will only happen for 1 PAGE (or less) requests.
807 	 */
808 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
809 		      > chunk_sects &&
810 		    conf->near_copies < conf->raid_disks)) {
811 		struct bio_pair *bp;
812 		/* Sanity check -- queue functions should prevent this happening */
813 		if (bio->bi_vcnt != 1 ||
814 		    bio->bi_idx != 0)
815 			goto bad_map;
816 		/* This is a one page bio that upper layers
817 		 * refuse to split for us, so we need to split it.
818 		 */
819 		bp = bio_split(bio, bio_split_pool,
820 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
821 		if (make_request(q, &bp->bio1))
822 			generic_make_request(&bp->bio1);
823 		if (make_request(q, &bp->bio2))
824 			generic_make_request(&bp->bio2);
825 
826 		bio_pair_release(bp);
827 		return 0;
828 	bad_map:
829 		printk("raid10_make_request bug: can't convert block across chunks"
830 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
831 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
832 
833 		bio_io_error(bio);
834 		return 0;
835 	}
836 
837 	md_write_start(mddev, bio);
838 
839 	/*
840 	 * Register the new request and wait if the reconstruction
841 	 * thread has put up a bar for new requests.
842 	 * Continue immediately if no resync is active currently.
843 	 */
844 	wait_barrier(conf);
845 
846 	disk_stat_inc(mddev->gendisk, ios[rw]);
847 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
848 
849 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
850 
851 	r10_bio->master_bio = bio;
852 	r10_bio->sectors = bio->bi_size >> 9;
853 
854 	r10_bio->mddev = mddev;
855 	r10_bio->sector = bio->bi_sector;
856 	r10_bio->state = 0;
857 
858 	if (rw == READ) {
859 		/*
860 		 * read balancing logic:
861 		 */
862 		int disk = read_balance(conf, r10_bio);
863 		int slot = r10_bio->read_slot;
864 		if (disk < 0) {
865 			raid_end_bio_io(r10_bio);
866 			return 0;
867 		}
868 		mirror = conf->mirrors + disk;
869 
870 		read_bio = bio_clone(bio, GFP_NOIO);
871 
872 		r10_bio->devs[slot].bio = read_bio;
873 
874 		read_bio->bi_sector = r10_bio->devs[slot].addr +
875 			mirror->rdev->data_offset;
876 		read_bio->bi_bdev = mirror->rdev->bdev;
877 		read_bio->bi_end_io = raid10_end_read_request;
878 		read_bio->bi_rw = READ | do_sync;
879 		read_bio->bi_private = r10_bio;
880 
881 		generic_make_request(read_bio);
882 		return 0;
883 	}
884 
885 	/*
886 	 * WRITE:
887 	 */
888 	/* first select target devices under rcu_lock and
889 	 * inc refcount on their rdev.  Record them by setting
890 	 * bios[x] to bio
891 	 */
892 	raid10_find_phys(conf, r10_bio);
893  retry_write:
894 	blocked_rdev = NULL;
895 	rcu_read_lock();
896 	for (i = 0;  i < conf->copies; i++) {
897 		int d = r10_bio->devs[i].devnum;
898 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
899 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
900 			atomic_inc(&rdev->nr_pending);
901 			blocked_rdev = rdev;
902 			break;
903 		}
904 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
905 			atomic_inc(&rdev->nr_pending);
906 			r10_bio->devs[i].bio = bio;
907 		} else {
908 			r10_bio->devs[i].bio = NULL;
909 			set_bit(R10BIO_Degraded, &r10_bio->state);
910 		}
911 	}
912 	rcu_read_unlock();
913 
914 	if (unlikely(blocked_rdev)) {
915 		/* Have to wait for this device to get unblocked, then retry */
916 		int j;
917 		int d;
918 
919 		for (j = 0; j < i; j++)
920 			if (r10_bio->devs[j].bio) {
921 				d = r10_bio->devs[j].devnum;
922 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
923 			}
924 		allow_barrier(conf);
925 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
926 		wait_barrier(conf);
927 		goto retry_write;
928 	}
929 
930 	atomic_set(&r10_bio->remaining, 0);
931 
932 	bio_list_init(&bl);
933 	for (i = 0; i < conf->copies; i++) {
934 		struct bio *mbio;
935 		int d = r10_bio->devs[i].devnum;
936 		if (!r10_bio->devs[i].bio)
937 			continue;
938 
939 		mbio = bio_clone(bio, GFP_NOIO);
940 		r10_bio->devs[i].bio = mbio;
941 
942 		mbio->bi_sector	= r10_bio->devs[i].addr+
943 			conf->mirrors[d].rdev->data_offset;
944 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
945 		mbio->bi_end_io	= raid10_end_write_request;
946 		mbio->bi_rw = WRITE | do_sync;
947 		mbio->bi_private = r10_bio;
948 
949 		atomic_inc(&r10_bio->remaining);
950 		bio_list_add(&bl, mbio);
951 	}
952 
953 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
954 		/* the array is dead */
955 		md_write_end(mddev);
956 		raid_end_bio_io(r10_bio);
957 		return 0;
958 	}
959 
960 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
961 	spin_lock_irqsave(&conf->device_lock, flags);
962 	bio_list_merge(&conf->pending_bio_list, &bl);
963 	blk_plug_device(mddev->queue);
964 	spin_unlock_irqrestore(&conf->device_lock, flags);
965 
966 	/* In case raid10d snuck in to freeze_array */
967 	wake_up(&conf->wait_barrier);
968 
969 	if (do_sync)
970 		md_wakeup_thread(mddev->thread);
971 
972 	return 0;
973 }
974 
975 static void status(struct seq_file *seq, mddev_t *mddev)
976 {
977 	conf_t *conf = mddev_to_conf(mddev);
978 	int i;
979 
980 	if (conf->near_copies < conf->raid_disks)
981 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
982 	if (conf->near_copies > 1)
983 		seq_printf(seq, " %d near-copies", conf->near_copies);
984 	if (conf->far_copies > 1) {
985 		if (conf->far_offset)
986 			seq_printf(seq, " %d offset-copies", conf->far_copies);
987 		else
988 			seq_printf(seq, " %d far-copies", conf->far_copies);
989 	}
990 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
991 					conf->raid_disks - mddev->degraded);
992 	for (i = 0; i < conf->raid_disks; i++)
993 		seq_printf(seq, "%s",
994 			      conf->mirrors[i].rdev &&
995 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
996 	seq_printf(seq, "]");
997 }
998 
999 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1000 {
1001 	char b[BDEVNAME_SIZE];
1002 	conf_t *conf = mddev_to_conf(mddev);
1003 
1004 	/*
1005 	 * If it is not operational, then we have already marked it as dead
1006 	 * else if it is the last working disks, ignore the error, let the
1007 	 * next level up know.
1008 	 * else mark the drive as failed
1009 	 */
1010 	if (test_bit(In_sync, &rdev->flags)
1011 	    && conf->raid_disks-mddev->degraded == 1)
1012 		/*
1013 		 * Don't fail the drive, just return an IO error.
1014 		 * The test should really be more sophisticated than
1015 		 * "working_disks == 1", but it isn't critical, and
1016 		 * can wait until we do more sophisticated "is the drive
1017 		 * really dead" tests...
1018 		 */
1019 		return;
1020 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1021 		unsigned long flags;
1022 		spin_lock_irqsave(&conf->device_lock, flags);
1023 		mddev->degraded++;
1024 		spin_unlock_irqrestore(&conf->device_lock, flags);
1025 		/*
1026 		 * if recovery is running, make sure it aborts.
1027 		 */
1028 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1029 	}
1030 	set_bit(Faulty, &rdev->flags);
1031 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1032 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1033 		"raid10: Operation continuing on %d devices.\n",
1034 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1035 }
1036 
1037 static void print_conf(conf_t *conf)
1038 {
1039 	int i;
1040 	mirror_info_t *tmp;
1041 
1042 	printk("RAID10 conf printout:\n");
1043 	if (!conf) {
1044 		printk("(!conf)\n");
1045 		return;
1046 	}
1047 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1048 		conf->raid_disks);
1049 
1050 	for (i = 0; i < conf->raid_disks; i++) {
1051 		char b[BDEVNAME_SIZE];
1052 		tmp = conf->mirrors + i;
1053 		if (tmp->rdev)
1054 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1055 				i, !test_bit(In_sync, &tmp->rdev->flags),
1056 			        !test_bit(Faulty, &tmp->rdev->flags),
1057 				bdevname(tmp->rdev->bdev,b));
1058 	}
1059 }
1060 
1061 static void close_sync(conf_t *conf)
1062 {
1063 	wait_barrier(conf);
1064 	allow_barrier(conf);
1065 
1066 	mempool_destroy(conf->r10buf_pool);
1067 	conf->r10buf_pool = NULL;
1068 }
1069 
1070 /* check if there are enough drives for
1071  * every block to appear on atleast one
1072  */
1073 static int enough(conf_t *conf)
1074 {
1075 	int first = 0;
1076 
1077 	do {
1078 		int n = conf->copies;
1079 		int cnt = 0;
1080 		while (n--) {
1081 			if (conf->mirrors[first].rdev)
1082 				cnt++;
1083 			first = (first+1) % conf->raid_disks;
1084 		}
1085 		if (cnt == 0)
1086 			return 0;
1087 	} while (first != 0);
1088 	return 1;
1089 }
1090 
1091 static int raid10_spare_active(mddev_t *mddev)
1092 {
1093 	int i;
1094 	conf_t *conf = mddev->private;
1095 	mirror_info_t *tmp;
1096 
1097 	/*
1098 	 * Find all non-in_sync disks within the RAID10 configuration
1099 	 * and mark them in_sync
1100 	 */
1101 	for (i = 0; i < conf->raid_disks; i++) {
1102 		tmp = conf->mirrors + i;
1103 		if (tmp->rdev
1104 		    && !test_bit(Faulty, &tmp->rdev->flags)
1105 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1106 			unsigned long flags;
1107 			spin_lock_irqsave(&conf->device_lock, flags);
1108 			mddev->degraded--;
1109 			spin_unlock_irqrestore(&conf->device_lock, flags);
1110 		}
1111 	}
1112 
1113 	print_conf(conf);
1114 	return 0;
1115 }
1116 
1117 
1118 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1119 {
1120 	conf_t *conf = mddev->private;
1121 	int err = -EEXIST;
1122 	int mirror;
1123 	mirror_info_t *p;
1124 	int first = 0;
1125 	int last = mddev->raid_disks - 1;
1126 
1127 	if (mddev->recovery_cp < MaxSector)
1128 		/* only hot-add to in-sync arrays, as recovery is
1129 		 * very different from resync
1130 		 */
1131 		return -EBUSY;
1132 	if (!enough(conf))
1133 		return -EINVAL;
1134 
1135 	if (rdev->raid_disk)
1136 		first = last = rdev->raid_disk;
1137 
1138 	if (rdev->saved_raid_disk >= 0 &&
1139 	    rdev->saved_raid_disk >= first &&
1140 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1141 		mirror = rdev->saved_raid_disk;
1142 	else
1143 		mirror = first;
1144 	for ( ; mirror <= last ; mirror++)
1145 		if ( !(p=conf->mirrors+mirror)->rdev) {
1146 
1147 			blk_queue_stack_limits(mddev->queue,
1148 					       rdev->bdev->bd_disk->queue);
1149 			/* as we don't honour merge_bvec_fn, we must never risk
1150 			 * violating it, so limit ->max_sector to one PAGE, as
1151 			 * a one page request is never in violation.
1152 			 */
1153 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1154 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1155 				mddev->queue->max_sectors = (PAGE_SIZE>>9);
1156 
1157 			p->head_position = 0;
1158 			rdev->raid_disk = mirror;
1159 			err = 0;
1160 			if (rdev->saved_raid_disk != mirror)
1161 				conf->fullsync = 1;
1162 			rcu_assign_pointer(p->rdev, rdev);
1163 			break;
1164 		}
1165 
1166 	print_conf(conf);
1167 	return err;
1168 }
1169 
1170 static int raid10_remove_disk(mddev_t *mddev, int number)
1171 {
1172 	conf_t *conf = mddev->private;
1173 	int err = 0;
1174 	mdk_rdev_t *rdev;
1175 	mirror_info_t *p = conf->mirrors+ number;
1176 
1177 	print_conf(conf);
1178 	rdev = p->rdev;
1179 	if (rdev) {
1180 		if (test_bit(In_sync, &rdev->flags) ||
1181 		    atomic_read(&rdev->nr_pending)) {
1182 			err = -EBUSY;
1183 			goto abort;
1184 		}
1185 		/* Only remove faulty devices in recovery
1186 		 * is not possible.
1187 		 */
1188 		if (!test_bit(Faulty, &rdev->flags) &&
1189 		    enough(conf)) {
1190 			err = -EBUSY;
1191 			goto abort;
1192 		}
1193 		p->rdev = NULL;
1194 		synchronize_rcu();
1195 		if (atomic_read(&rdev->nr_pending)) {
1196 			/* lost the race, try later */
1197 			err = -EBUSY;
1198 			p->rdev = rdev;
1199 		}
1200 	}
1201 abort:
1202 
1203 	print_conf(conf);
1204 	return err;
1205 }
1206 
1207 
1208 static void end_sync_read(struct bio *bio, int error)
1209 {
1210 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1211 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
1212 	int i,d;
1213 
1214 	for (i=0; i<conf->copies; i++)
1215 		if (r10_bio->devs[i].bio == bio)
1216 			break;
1217 	BUG_ON(i == conf->copies);
1218 	update_head_pos(i, r10_bio);
1219 	d = r10_bio->devs[i].devnum;
1220 
1221 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1222 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1223 	else {
1224 		atomic_add(r10_bio->sectors,
1225 			   &conf->mirrors[d].rdev->corrected_errors);
1226 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1227 			md_error(r10_bio->mddev,
1228 				 conf->mirrors[d].rdev);
1229 	}
1230 
1231 	/* for reconstruct, we always reschedule after a read.
1232 	 * for resync, only after all reads
1233 	 */
1234 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1235 	    atomic_dec_and_test(&r10_bio->remaining)) {
1236 		/* we have read all the blocks,
1237 		 * do the comparison in process context in raid10d
1238 		 */
1239 		reschedule_retry(r10_bio);
1240 	}
1241 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1242 }
1243 
1244 static void end_sync_write(struct bio *bio, int error)
1245 {
1246 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1247 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1248 	mddev_t *mddev = r10_bio->mddev;
1249 	conf_t *conf = mddev_to_conf(mddev);
1250 	int i,d;
1251 
1252 	for (i = 0; i < conf->copies; i++)
1253 		if (r10_bio->devs[i].bio == bio)
1254 			break;
1255 	d = r10_bio->devs[i].devnum;
1256 
1257 	if (!uptodate)
1258 		md_error(mddev, conf->mirrors[d].rdev);
1259 
1260 	update_head_pos(i, r10_bio);
1261 
1262 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1263 		if (r10_bio->master_bio == NULL) {
1264 			/* the primary of several recovery bios */
1265 			md_done_sync(mddev, r10_bio->sectors, 1);
1266 			put_buf(r10_bio);
1267 			break;
1268 		} else {
1269 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1270 			put_buf(r10_bio);
1271 			r10_bio = r10_bio2;
1272 		}
1273 	}
1274 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1275 }
1276 
1277 /*
1278  * Note: sync and recover and handled very differently for raid10
1279  * This code is for resync.
1280  * For resync, we read through virtual addresses and read all blocks.
1281  * If there is any error, we schedule a write.  The lowest numbered
1282  * drive is authoritative.
1283  * However requests come for physical address, so we need to map.
1284  * For every physical address there are raid_disks/copies virtual addresses,
1285  * which is always are least one, but is not necessarly an integer.
1286  * This means that a physical address can span multiple chunks, so we may
1287  * have to submit multiple io requests for a single sync request.
1288  */
1289 /*
1290  * We check if all blocks are in-sync and only write to blocks that
1291  * aren't in sync
1292  */
1293 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1294 {
1295 	conf_t *conf = mddev_to_conf(mddev);
1296 	int i, first;
1297 	struct bio *tbio, *fbio;
1298 
1299 	atomic_set(&r10_bio->remaining, 1);
1300 
1301 	/* find the first device with a block */
1302 	for (i=0; i<conf->copies; i++)
1303 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1304 			break;
1305 
1306 	if (i == conf->copies)
1307 		goto done;
1308 
1309 	first = i;
1310 	fbio = r10_bio->devs[i].bio;
1311 
1312 	/* now find blocks with errors */
1313 	for (i=0 ; i < conf->copies ; i++) {
1314 		int  j, d;
1315 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1316 
1317 		tbio = r10_bio->devs[i].bio;
1318 
1319 		if (tbio->bi_end_io != end_sync_read)
1320 			continue;
1321 		if (i == first)
1322 			continue;
1323 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1324 			/* We know that the bi_io_vec layout is the same for
1325 			 * both 'first' and 'i', so we just compare them.
1326 			 * All vec entries are PAGE_SIZE;
1327 			 */
1328 			for (j = 0; j < vcnt; j++)
1329 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1330 					   page_address(tbio->bi_io_vec[j].bv_page),
1331 					   PAGE_SIZE))
1332 					break;
1333 			if (j == vcnt)
1334 				continue;
1335 			mddev->resync_mismatches += r10_bio->sectors;
1336 		}
1337 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1338 			/* Don't fix anything. */
1339 			continue;
1340 		/* Ok, we need to write this bio
1341 		 * First we need to fixup bv_offset, bv_len and
1342 		 * bi_vecs, as the read request might have corrupted these
1343 		 */
1344 		tbio->bi_vcnt = vcnt;
1345 		tbio->bi_size = r10_bio->sectors << 9;
1346 		tbio->bi_idx = 0;
1347 		tbio->bi_phys_segments = 0;
1348 		tbio->bi_hw_segments = 0;
1349 		tbio->bi_hw_front_size = 0;
1350 		tbio->bi_hw_back_size = 0;
1351 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1352 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1353 		tbio->bi_next = NULL;
1354 		tbio->bi_rw = WRITE;
1355 		tbio->bi_private = r10_bio;
1356 		tbio->bi_sector = r10_bio->devs[i].addr;
1357 
1358 		for (j=0; j < vcnt ; j++) {
1359 			tbio->bi_io_vec[j].bv_offset = 0;
1360 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1361 
1362 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1363 			       page_address(fbio->bi_io_vec[j].bv_page),
1364 			       PAGE_SIZE);
1365 		}
1366 		tbio->bi_end_io = end_sync_write;
1367 
1368 		d = r10_bio->devs[i].devnum;
1369 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1370 		atomic_inc(&r10_bio->remaining);
1371 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1372 
1373 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1374 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1375 		generic_make_request(tbio);
1376 	}
1377 
1378 done:
1379 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1380 		md_done_sync(mddev, r10_bio->sectors, 1);
1381 		put_buf(r10_bio);
1382 	}
1383 }
1384 
1385 /*
1386  * Now for the recovery code.
1387  * Recovery happens across physical sectors.
1388  * We recover all non-is_sync drives by finding the virtual address of
1389  * each, and then choose a working drive that also has that virt address.
1390  * There is a separate r10_bio for each non-in_sync drive.
1391  * Only the first two slots are in use. The first for reading,
1392  * The second for writing.
1393  *
1394  */
1395 
1396 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1397 {
1398 	conf_t *conf = mddev_to_conf(mddev);
1399 	int i, d;
1400 	struct bio *bio, *wbio;
1401 
1402 
1403 	/* move the pages across to the second bio
1404 	 * and submit the write request
1405 	 */
1406 	bio = r10_bio->devs[0].bio;
1407 	wbio = r10_bio->devs[1].bio;
1408 	for (i=0; i < wbio->bi_vcnt; i++) {
1409 		struct page *p = bio->bi_io_vec[i].bv_page;
1410 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1411 		wbio->bi_io_vec[i].bv_page = p;
1412 	}
1413 	d = r10_bio->devs[1].devnum;
1414 
1415 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1416 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1417 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1418 		generic_make_request(wbio);
1419 	else
1420 		bio_endio(wbio, -EIO);
1421 }
1422 
1423 
1424 /*
1425  * This is a kernel thread which:
1426  *
1427  *	1.	Retries failed read operations on working mirrors.
1428  *	2.	Updates the raid superblock when problems encounter.
1429  *	3.	Performs writes following reads for array synchronising.
1430  */
1431 
1432 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1433 {
1434 	int sect = 0; /* Offset from r10_bio->sector */
1435 	int sectors = r10_bio->sectors;
1436 	mdk_rdev_t*rdev;
1437 	while(sectors) {
1438 		int s = sectors;
1439 		int sl = r10_bio->read_slot;
1440 		int success = 0;
1441 		int start;
1442 
1443 		if (s > (PAGE_SIZE>>9))
1444 			s = PAGE_SIZE >> 9;
1445 
1446 		rcu_read_lock();
1447 		do {
1448 			int d = r10_bio->devs[sl].devnum;
1449 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1450 			if (rdev &&
1451 			    test_bit(In_sync, &rdev->flags)) {
1452 				atomic_inc(&rdev->nr_pending);
1453 				rcu_read_unlock();
1454 				success = sync_page_io(rdev->bdev,
1455 						       r10_bio->devs[sl].addr +
1456 						       sect + rdev->data_offset,
1457 						       s<<9,
1458 						       conf->tmppage, READ);
1459 				rdev_dec_pending(rdev, mddev);
1460 				rcu_read_lock();
1461 				if (success)
1462 					break;
1463 			}
1464 			sl++;
1465 			if (sl == conf->copies)
1466 				sl = 0;
1467 		} while (!success && sl != r10_bio->read_slot);
1468 		rcu_read_unlock();
1469 
1470 		if (!success) {
1471 			/* Cannot read from anywhere -- bye bye array */
1472 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1473 			md_error(mddev, conf->mirrors[dn].rdev);
1474 			break;
1475 		}
1476 
1477 		start = sl;
1478 		/* write it back and re-read */
1479 		rcu_read_lock();
1480 		while (sl != r10_bio->read_slot) {
1481 			int d;
1482 			if (sl==0)
1483 				sl = conf->copies;
1484 			sl--;
1485 			d = r10_bio->devs[sl].devnum;
1486 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1487 			if (rdev &&
1488 			    test_bit(In_sync, &rdev->flags)) {
1489 				atomic_inc(&rdev->nr_pending);
1490 				rcu_read_unlock();
1491 				atomic_add(s, &rdev->corrected_errors);
1492 				if (sync_page_io(rdev->bdev,
1493 						 r10_bio->devs[sl].addr +
1494 						 sect + rdev->data_offset,
1495 						 s<<9, conf->tmppage, WRITE)
1496 				    == 0)
1497 					/* Well, this device is dead */
1498 					md_error(mddev, rdev);
1499 				rdev_dec_pending(rdev, mddev);
1500 				rcu_read_lock();
1501 			}
1502 		}
1503 		sl = start;
1504 		while (sl != r10_bio->read_slot) {
1505 			int d;
1506 			if (sl==0)
1507 				sl = conf->copies;
1508 			sl--;
1509 			d = r10_bio->devs[sl].devnum;
1510 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1511 			if (rdev &&
1512 			    test_bit(In_sync, &rdev->flags)) {
1513 				char b[BDEVNAME_SIZE];
1514 				atomic_inc(&rdev->nr_pending);
1515 				rcu_read_unlock();
1516 				if (sync_page_io(rdev->bdev,
1517 						 r10_bio->devs[sl].addr +
1518 						 sect + rdev->data_offset,
1519 						 s<<9, conf->tmppage, READ) == 0)
1520 					/* Well, this device is dead */
1521 					md_error(mddev, rdev);
1522 				else
1523 					printk(KERN_INFO
1524 					       "raid10:%s: read error corrected"
1525 					       " (%d sectors at %llu on %s)\n",
1526 					       mdname(mddev), s,
1527 					       (unsigned long long)(sect+
1528 					            rdev->data_offset),
1529 					       bdevname(rdev->bdev, b));
1530 
1531 				rdev_dec_pending(rdev, mddev);
1532 				rcu_read_lock();
1533 			}
1534 		}
1535 		rcu_read_unlock();
1536 
1537 		sectors -= s;
1538 		sect += s;
1539 	}
1540 }
1541 
1542 static void raid10d(mddev_t *mddev)
1543 {
1544 	r10bio_t *r10_bio;
1545 	struct bio *bio;
1546 	unsigned long flags;
1547 	conf_t *conf = mddev_to_conf(mddev);
1548 	struct list_head *head = &conf->retry_list;
1549 	int unplug=0;
1550 	mdk_rdev_t *rdev;
1551 
1552 	md_check_recovery(mddev);
1553 
1554 	for (;;) {
1555 		char b[BDEVNAME_SIZE];
1556 
1557 		unplug += flush_pending_writes(conf);
1558 
1559 		spin_lock_irqsave(&conf->device_lock, flags);
1560 		if (list_empty(head)) {
1561 			spin_unlock_irqrestore(&conf->device_lock, flags);
1562 			break;
1563 		}
1564 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1565 		list_del(head->prev);
1566 		conf->nr_queued--;
1567 		spin_unlock_irqrestore(&conf->device_lock, flags);
1568 
1569 		mddev = r10_bio->mddev;
1570 		conf = mddev_to_conf(mddev);
1571 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1572 			sync_request_write(mddev, r10_bio);
1573 			unplug = 1;
1574 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1575 			recovery_request_write(mddev, r10_bio);
1576 			unplug = 1;
1577 		} else {
1578 			int mirror;
1579 			/* we got a read error. Maybe the drive is bad.  Maybe just
1580 			 * the block and we can fix it.
1581 			 * We freeze all other IO, and try reading the block from
1582 			 * other devices.  When we find one, we re-write
1583 			 * and check it that fixes the read error.
1584 			 * This is all done synchronously while the array is
1585 			 * frozen.
1586 			 */
1587 			if (mddev->ro == 0) {
1588 				freeze_array(conf);
1589 				fix_read_error(conf, mddev, r10_bio);
1590 				unfreeze_array(conf);
1591 			}
1592 
1593 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1594 			r10_bio->devs[r10_bio->read_slot].bio =
1595 				mddev->ro ? IO_BLOCKED : NULL;
1596 			mirror = read_balance(conf, r10_bio);
1597 			if (mirror == -1) {
1598 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1599 				       " read error for block %llu\n",
1600 				       bdevname(bio->bi_bdev,b),
1601 				       (unsigned long long)r10_bio->sector);
1602 				raid_end_bio_io(r10_bio);
1603 				bio_put(bio);
1604 			} else {
1605 				const int do_sync = bio_sync(r10_bio->master_bio);
1606 				bio_put(bio);
1607 				rdev = conf->mirrors[mirror].rdev;
1608 				if (printk_ratelimit())
1609 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1610 					       " another mirror\n",
1611 					       bdevname(rdev->bdev,b),
1612 					       (unsigned long long)r10_bio->sector);
1613 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1614 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1615 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1616 					+ rdev->data_offset;
1617 				bio->bi_bdev = rdev->bdev;
1618 				bio->bi_rw = READ | do_sync;
1619 				bio->bi_private = r10_bio;
1620 				bio->bi_end_io = raid10_end_read_request;
1621 				unplug = 1;
1622 				generic_make_request(bio);
1623 			}
1624 		}
1625 	}
1626 	if (unplug)
1627 		unplug_slaves(mddev);
1628 }
1629 
1630 
1631 static int init_resync(conf_t *conf)
1632 {
1633 	int buffs;
1634 
1635 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1636 	BUG_ON(conf->r10buf_pool);
1637 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1638 	if (!conf->r10buf_pool)
1639 		return -ENOMEM;
1640 	conf->next_resync = 0;
1641 	return 0;
1642 }
1643 
1644 /*
1645  * perform a "sync" on one "block"
1646  *
1647  * We need to make sure that no normal I/O request - particularly write
1648  * requests - conflict with active sync requests.
1649  *
1650  * This is achieved by tracking pending requests and a 'barrier' concept
1651  * that can be installed to exclude normal IO requests.
1652  *
1653  * Resync and recovery are handled very differently.
1654  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1655  *
1656  * For resync, we iterate over virtual addresses, read all copies,
1657  * and update if there are differences.  If only one copy is live,
1658  * skip it.
1659  * For recovery, we iterate over physical addresses, read a good
1660  * value for each non-in_sync drive, and over-write.
1661  *
1662  * So, for recovery we may have several outstanding complex requests for a
1663  * given address, one for each out-of-sync device.  We model this by allocating
1664  * a number of r10_bio structures, one for each out-of-sync device.
1665  * As we setup these structures, we collect all bio's together into a list
1666  * which we then process collectively to add pages, and then process again
1667  * to pass to generic_make_request.
1668  *
1669  * The r10_bio structures are linked using a borrowed master_bio pointer.
1670  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1671  * has its remaining count decremented to 0, the whole complex operation
1672  * is complete.
1673  *
1674  */
1675 
1676 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1677 {
1678 	conf_t *conf = mddev_to_conf(mddev);
1679 	r10bio_t *r10_bio;
1680 	struct bio *biolist = NULL, *bio;
1681 	sector_t max_sector, nr_sectors;
1682 	int disk;
1683 	int i;
1684 	int max_sync;
1685 	int sync_blocks;
1686 
1687 	sector_t sectors_skipped = 0;
1688 	int chunks_skipped = 0;
1689 
1690 	if (!conf->r10buf_pool)
1691 		if (init_resync(conf))
1692 			return 0;
1693 
1694  skipped:
1695 	max_sector = mddev->size << 1;
1696 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1697 		max_sector = mddev->resync_max_sectors;
1698 	if (sector_nr >= max_sector) {
1699 		/* If we aborted, we need to abort the
1700 		 * sync on the 'current' bitmap chucks (there can
1701 		 * be several when recovering multiple devices).
1702 		 * as we may have started syncing it but not finished.
1703 		 * We can find the current address in
1704 		 * mddev->curr_resync, but for recovery,
1705 		 * we need to convert that to several
1706 		 * virtual addresses.
1707 		 */
1708 		if (mddev->curr_resync < max_sector) { /* aborted */
1709 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1710 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1711 						&sync_blocks, 1);
1712 			else for (i=0; i<conf->raid_disks; i++) {
1713 				sector_t sect =
1714 					raid10_find_virt(conf, mddev->curr_resync, i);
1715 				bitmap_end_sync(mddev->bitmap, sect,
1716 						&sync_blocks, 1);
1717 			}
1718 		} else /* completed sync */
1719 			conf->fullsync = 0;
1720 
1721 		bitmap_close_sync(mddev->bitmap);
1722 		close_sync(conf);
1723 		*skipped = 1;
1724 		return sectors_skipped;
1725 	}
1726 	if (chunks_skipped >= conf->raid_disks) {
1727 		/* if there has been nothing to do on any drive,
1728 		 * then there is nothing to do at all..
1729 		 */
1730 		*skipped = 1;
1731 		return (max_sector - sector_nr) + sectors_skipped;
1732 	}
1733 
1734 	if (max_sector > mddev->resync_max)
1735 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1736 
1737 	/* make sure whole request will fit in a chunk - if chunks
1738 	 * are meaningful
1739 	 */
1740 	if (conf->near_copies < conf->raid_disks &&
1741 	    max_sector > (sector_nr | conf->chunk_mask))
1742 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1743 	/*
1744 	 * If there is non-resync activity waiting for us then
1745 	 * put in a delay to throttle resync.
1746 	 */
1747 	if (!go_faster && conf->nr_waiting)
1748 		msleep_interruptible(1000);
1749 
1750 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1751 
1752 	/* Again, very different code for resync and recovery.
1753 	 * Both must result in an r10bio with a list of bios that
1754 	 * have bi_end_io, bi_sector, bi_bdev set,
1755 	 * and bi_private set to the r10bio.
1756 	 * For recovery, we may actually create several r10bios
1757 	 * with 2 bios in each, that correspond to the bios in the main one.
1758 	 * In this case, the subordinate r10bios link back through a
1759 	 * borrowed master_bio pointer, and the counter in the master
1760 	 * includes a ref from each subordinate.
1761 	 */
1762 	/* First, we decide what to do and set ->bi_end_io
1763 	 * To end_sync_read if we want to read, and
1764 	 * end_sync_write if we will want to write.
1765 	 */
1766 
1767 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1768 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1769 		/* recovery... the complicated one */
1770 		int i, j, k;
1771 		r10_bio = NULL;
1772 
1773 		for (i=0 ; i<conf->raid_disks; i++)
1774 			if (conf->mirrors[i].rdev &&
1775 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1776 				int still_degraded = 0;
1777 				/* want to reconstruct this device */
1778 				r10bio_t *rb2 = r10_bio;
1779 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1780 				int must_sync;
1781 				/* Unless we are doing a full sync, we only need
1782 				 * to recover the block if it is set in the bitmap
1783 				 */
1784 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1785 							      &sync_blocks, 1);
1786 				if (sync_blocks < max_sync)
1787 					max_sync = sync_blocks;
1788 				if (!must_sync &&
1789 				    !conf->fullsync) {
1790 					/* yep, skip the sync_blocks here, but don't assume
1791 					 * that there will never be anything to do here
1792 					 */
1793 					chunks_skipped = -1;
1794 					continue;
1795 				}
1796 
1797 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1798 				raise_barrier(conf, rb2 != NULL);
1799 				atomic_set(&r10_bio->remaining, 0);
1800 
1801 				r10_bio->master_bio = (struct bio*)rb2;
1802 				if (rb2)
1803 					atomic_inc(&rb2->remaining);
1804 				r10_bio->mddev = mddev;
1805 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1806 				r10_bio->sector = sect;
1807 
1808 				raid10_find_phys(conf, r10_bio);
1809 				/* Need to check if this section will still be
1810 				 * degraded
1811 				 */
1812 				for (j=0; j<conf->copies;j++) {
1813 					int d = r10_bio->devs[j].devnum;
1814 					if (conf->mirrors[d].rdev == NULL ||
1815 					    test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1816 						still_degraded = 1;
1817 						break;
1818 					}
1819 				}
1820 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1821 							      &sync_blocks, still_degraded);
1822 
1823 				for (j=0; j<conf->copies;j++) {
1824 					int d = r10_bio->devs[j].devnum;
1825 					if (conf->mirrors[d].rdev &&
1826 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1827 						/* This is where we read from */
1828 						bio = r10_bio->devs[0].bio;
1829 						bio->bi_next = biolist;
1830 						biolist = bio;
1831 						bio->bi_private = r10_bio;
1832 						bio->bi_end_io = end_sync_read;
1833 						bio->bi_rw = READ;
1834 						bio->bi_sector = r10_bio->devs[j].addr +
1835 							conf->mirrors[d].rdev->data_offset;
1836 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1837 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1838 						atomic_inc(&r10_bio->remaining);
1839 						/* and we write to 'i' */
1840 
1841 						for (k=0; k<conf->copies; k++)
1842 							if (r10_bio->devs[k].devnum == i)
1843 								break;
1844 						BUG_ON(k == conf->copies);
1845 						bio = r10_bio->devs[1].bio;
1846 						bio->bi_next = biolist;
1847 						biolist = bio;
1848 						bio->bi_private = r10_bio;
1849 						bio->bi_end_io = end_sync_write;
1850 						bio->bi_rw = WRITE;
1851 						bio->bi_sector = r10_bio->devs[k].addr +
1852 							conf->mirrors[i].rdev->data_offset;
1853 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1854 
1855 						r10_bio->devs[0].devnum = d;
1856 						r10_bio->devs[1].devnum = i;
1857 
1858 						break;
1859 					}
1860 				}
1861 				if (j == conf->copies) {
1862 					/* Cannot recover, so abort the recovery */
1863 					put_buf(r10_bio);
1864 					if (rb2)
1865 						atomic_dec(&rb2->remaining);
1866 					r10_bio = rb2;
1867 					if (!test_and_set_bit(MD_RECOVERY_INTR,
1868 							      &mddev->recovery))
1869 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1870 						       mdname(mddev));
1871 					break;
1872 				}
1873 			}
1874 		if (biolist == NULL) {
1875 			while (r10_bio) {
1876 				r10bio_t *rb2 = r10_bio;
1877 				r10_bio = (r10bio_t*) rb2->master_bio;
1878 				rb2->master_bio = NULL;
1879 				put_buf(rb2);
1880 			}
1881 			goto giveup;
1882 		}
1883 	} else {
1884 		/* resync. Schedule a read for every block at this virt offset */
1885 		int count = 0;
1886 
1887 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1888 				       &sync_blocks, mddev->degraded) &&
1889 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1890 			/* We can skip this block */
1891 			*skipped = 1;
1892 			return sync_blocks + sectors_skipped;
1893 		}
1894 		if (sync_blocks < max_sync)
1895 			max_sync = sync_blocks;
1896 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1897 
1898 		r10_bio->mddev = mddev;
1899 		atomic_set(&r10_bio->remaining, 0);
1900 		raise_barrier(conf, 0);
1901 		conf->next_resync = sector_nr;
1902 
1903 		r10_bio->master_bio = NULL;
1904 		r10_bio->sector = sector_nr;
1905 		set_bit(R10BIO_IsSync, &r10_bio->state);
1906 		raid10_find_phys(conf, r10_bio);
1907 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1908 
1909 		for (i=0; i<conf->copies; i++) {
1910 			int d = r10_bio->devs[i].devnum;
1911 			bio = r10_bio->devs[i].bio;
1912 			bio->bi_end_io = NULL;
1913 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1914 			if (conf->mirrors[d].rdev == NULL ||
1915 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1916 				continue;
1917 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1918 			atomic_inc(&r10_bio->remaining);
1919 			bio->bi_next = biolist;
1920 			biolist = bio;
1921 			bio->bi_private = r10_bio;
1922 			bio->bi_end_io = end_sync_read;
1923 			bio->bi_rw = READ;
1924 			bio->bi_sector = r10_bio->devs[i].addr +
1925 				conf->mirrors[d].rdev->data_offset;
1926 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1927 			count++;
1928 		}
1929 
1930 		if (count < 2) {
1931 			for (i=0; i<conf->copies; i++) {
1932 				int d = r10_bio->devs[i].devnum;
1933 				if (r10_bio->devs[i].bio->bi_end_io)
1934 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1935 			}
1936 			put_buf(r10_bio);
1937 			biolist = NULL;
1938 			goto giveup;
1939 		}
1940 	}
1941 
1942 	for (bio = biolist; bio ; bio=bio->bi_next) {
1943 
1944 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1945 		if (bio->bi_end_io)
1946 			bio->bi_flags |= 1 << BIO_UPTODATE;
1947 		bio->bi_vcnt = 0;
1948 		bio->bi_idx = 0;
1949 		bio->bi_phys_segments = 0;
1950 		bio->bi_hw_segments = 0;
1951 		bio->bi_size = 0;
1952 	}
1953 
1954 	nr_sectors = 0;
1955 	if (sector_nr + max_sync < max_sector)
1956 		max_sector = sector_nr + max_sync;
1957 	do {
1958 		struct page *page;
1959 		int len = PAGE_SIZE;
1960 		disk = 0;
1961 		if (sector_nr + (len>>9) > max_sector)
1962 			len = (max_sector - sector_nr) << 9;
1963 		if (len == 0)
1964 			break;
1965 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1966 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1967 			if (bio_add_page(bio, page, len, 0) == 0) {
1968 				/* stop here */
1969 				struct bio *bio2;
1970 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1971 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1972 					/* remove last page from this bio */
1973 					bio2->bi_vcnt--;
1974 					bio2->bi_size -= len;
1975 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1976 				}
1977 				goto bio_full;
1978 			}
1979 			disk = i;
1980 		}
1981 		nr_sectors += len>>9;
1982 		sector_nr += len>>9;
1983 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1984  bio_full:
1985 	r10_bio->sectors = nr_sectors;
1986 
1987 	while (biolist) {
1988 		bio = biolist;
1989 		biolist = biolist->bi_next;
1990 
1991 		bio->bi_next = NULL;
1992 		r10_bio = bio->bi_private;
1993 		r10_bio->sectors = nr_sectors;
1994 
1995 		if (bio->bi_end_io == end_sync_read) {
1996 			md_sync_acct(bio->bi_bdev, nr_sectors);
1997 			generic_make_request(bio);
1998 		}
1999 	}
2000 
2001 	if (sectors_skipped)
2002 		/* pretend they weren't skipped, it makes
2003 		 * no important difference in this case
2004 		 */
2005 		md_done_sync(mddev, sectors_skipped, 1);
2006 
2007 	return sectors_skipped + nr_sectors;
2008  giveup:
2009 	/* There is nowhere to write, so all non-sync
2010 	 * drives must be failed, so try the next chunk...
2011 	 */
2012 	{
2013 	sector_t sec = max_sector - sector_nr;
2014 	sectors_skipped += sec;
2015 	chunks_skipped ++;
2016 	sector_nr = max_sector;
2017 	goto skipped;
2018 	}
2019 }
2020 
2021 static int run(mddev_t *mddev)
2022 {
2023 	conf_t *conf;
2024 	int i, disk_idx;
2025 	mirror_info_t *disk;
2026 	mdk_rdev_t *rdev;
2027 	struct list_head *tmp;
2028 	int nc, fc, fo;
2029 	sector_t stride, size;
2030 
2031 	if (mddev->chunk_size == 0) {
2032 		printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
2033 		return -EINVAL;
2034 	}
2035 
2036 	nc = mddev->layout & 255;
2037 	fc = (mddev->layout >> 8) & 255;
2038 	fo = mddev->layout & (1<<16);
2039 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2040 	    (mddev->layout >> 17)) {
2041 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2042 		       mdname(mddev), mddev->layout);
2043 		goto out;
2044 	}
2045 	/*
2046 	 * copy the already verified devices into our private RAID10
2047 	 * bookkeeping area. [whatever we allocate in run(),
2048 	 * should be freed in stop()]
2049 	 */
2050 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2051 	mddev->private = conf;
2052 	if (!conf) {
2053 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2054 			mdname(mddev));
2055 		goto out;
2056 	}
2057 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2058 				 GFP_KERNEL);
2059 	if (!conf->mirrors) {
2060 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2061 		       mdname(mddev));
2062 		goto out_free_conf;
2063 	}
2064 
2065 	conf->tmppage = alloc_page(GFP_KERNEL);
2066 	if (!conf->tmppage)
2067 		goto out_free_conf;
2068 
2069 	conf->mddev = mddev;
2070 	conf->raid_disks = mddev->raid_disks;
2071 	conf->near_copies = nc;
2072 	conf->far_copies = fc;
2073 	conf->copies = nc*fc;
2074 	conf->far_offset = fo;
2075 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2076 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2077 	size = mddev->size >> (conf->chunk_shift-1);
2078 	sector_div(size, fc);
2079 	size = size * conf->raid_disks;
2080 	sector_div(size, nc);
2081 	/* 'size' is now the number of chunks in the array */
2082 	/* calculate "used chunks per device" in 'stride' */
2083 	stride = size * conf->copies;
2084 
2085 	/* We need to round up when dividing by raid_disks to
2086 	 * get the stride size.
2087 	 */
2088 	stride += conf->raid_disks - 1;
2089 	sector_div(stride, conf->raid_disks);
2090 	mddev->size = stride  << (conf->chunk_shift-1);
2091 
2092 	if (fo)
2093 		stride = 1;
2094 	else
2095 		sector_div(stride, fc);
2096 	conf->stride = stride << conf->chunk_shift;
2097 
2098 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2099 						r10bio_pool_free, conf);
2100 	if (!conf->r10bio_pool) {
2101 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2102 			mdname(mddev));
2103 		goto out_free_conf;
2104 	}
2105 
2106 	spin_lock_init(&conf->device_lock);
2107 	mddev->queue->queue_lock = &conf->device_lock;
2108 
2109 	rdev_for_each(rdev, tmp, mddev) {
2110 		disk_idx = rdev->raid_disk;
2111 		if (disk_idx >= mddev->raid_disks
2112 		    || disk_idx < 0)
2113 			continue;
2114 		disk = conf->mirrors + disk_idx;
2115 
2116 		disk->rdev = rdev;
2117 
2118 		blk_queue_stack_limits(mddev->queue,
2119 				       rdev->bdev->bd_disk->queue);
2120 		/* as we don't honour merge_bvec_fn, we must never risk
2121 		 * violating it, so limit ->max_sector to one PAGE, as
2122 		 * a one page request is never in violation.
2123 		 */
2124 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2125 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
2126 			mddev->queue->max_sectors = (PAGE_SIZE>>9);
2127 
2128 		disk->head_position = 0;
2129 	}
2130 	INIT_LIST_HEAD(&conf->retry_list);
2131 
2132 	spin_lock_init(&conf->resync_lock);
2133 	init_waitqueue_head(&conf->wait_barrier);
2134 
2135 	/* need to check that every block has at least one working mirror */
2136 	if (!enough(conf)) {
2137 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2138 		       mdname(mddev));
2139 		goto out_free_conf;
2140 	}
2141 
2142 	mddev->degraded = 0;
2143 	for (i = 0; i < conf->raid_disks; i++) {
2144 
2145 		disk = conf->mirrors + i;
2146 
2147 		if (!disk->rdev ||
2148 		    !test_bit(In_sync, &disk->rdev->flags)) {
2149 			disk->head_position = 0;
2150 			mddev->degraded++;
2151 			if (disk->rdev)
2152 				conf->fullsync = 1;
2153 		}
2154 	}
2155 
2156 
2157 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2158 	if (!mddev->thread) {
2159 		printk(KERN_ERR
2160 		       "raid10: couldn't allocate thread for %s\n",
2161 		       mdname(mddev));
2162 		goto out_free_conf;
2163 	}
2164 
2165 	printk(KERN_INFO
2166 		"raid10: raid set %s active with %d out of %d devices\n",
2167 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2168 		mddev->raid_disks);
2169 	/*
2170 	 * Ok, everything is just fine now
2171 	 */
2172 	mddev->array_sectors = size << conf->chunk_shift;
2173 	mddev->resync_max_sectors = size << conf->chunk_shift;
2174 
2175 	mddev->queue->unplug_fn = raid10_unplug;
2176 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2177 	mddev->queue->backing_dev_info.congested_data = mddev;
2178 
2179 	/* Calculate max read-ahead size.
2180 	 * We need to readahead at least twice a whole stripe....
2181 	 * maybe...
2182 	 */
2183 	{
2184 		int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2185 		stripe /= conf->near_copies;
2186 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2187 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2188 	}
2189 
2190 	if (conf->near_copies < mddev->raid_disks)
2191 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2192 	return 0;
2193 
2194 out_free_conf:
2195 	if (conf->r10bio_pool)
2196 		mempool_destroy(conf->r10bio_pool);
2197 	safe_put_page(conf->tmppage);
2198 	kfree(conf->mirrors);
2199 	kfree(conf);
2200 	mddev->private = NULL;
2201 out:
2202 	return -EIO;
2203 }
2204 
2205 static int stop(mddev_t *mddev)
2206 {
2207 	conf_t *conf = mddev_to_conf(mddev);
2208 
2209 	md_unregister_thread(mddev->thread);
2210 	mddev->thread = NULL;
2211 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2212 	if (conf->r10bio_pool)
2213 		mempool_destroy(conf->r10bio_pool);
2214 	kfree(conf->mirrors);
2215 	kfree(conf);
2216 	mddev->private = NULL;
2217 	return 0;
2218 }
2219 
2220 static void raid10_quiesce(mddev_t *mddev, int state)
2221 {
2222 	conf_t *conf = mddev_to_conf(mddev);
2223 
2224 	switch(state) {
2225 	case 1:
2226 		raise_barrier(conf, 0);
2227 		break;
2228 	case 0:
2229 		lower_barrier(conf);
2230 		break;
2231 	}
2232 	if (mddev->thread) {
2233 		if (mddev->bitmap)
2234 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2235 		else
2236 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2237 		md_wakeup_thread(mddev->thread);
2238 	}
2239 }
2240 
2241 static struct mdk_personality raid10_personality =
2242 {
2243 	.name		= "raid10",
2244 	.level		= 10,
2245 	.owner		= THIS_MODULE,
2246 	.make_request	= make_request,
2247 	.run		= run,
2248 	.stop		= stop,
2249 	.status		= status,
2250 	.error_handler	= error,
2251 	.hot_add_disk	= raid10_add_disk,
2252 	.hot_remove_disk= raid10_remove_disk,
2253 	.spare_active	= raid10_spare_active,
2254 	.sync_request	= sync_request,
2255 	.quiesce	= raid10_quiesce,
2256 };
2257 
2258 static int __init raid_init(void)
2259 {
2260 	return register_md_personality(&raid10_personality);
2261 }
2262 
2263 static void raid_exit(void)
2264 {
2265 	unregister_md_personality(&raid10_personality);
2266 }
2267 
2268 module_init(raid_init);
2269 module_exit(raid_exit);
2270 MODULE_LICENSE("GPL");
2271 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2272 MODULE_ALIAS("md-raid10");
2273 MODULE_ALIAS("md-level-10");
2274