xref: /linux/drivers/md/raid10.c (revision bdf20507da11a9a5b32ef04fa09f352828189aef)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *
42  * The data to be stored is divided into chunks using chunksize.
43  * Each device is divided into far_copies sections.
44  * In each section, chunks are laid out in a style similar to raid0, but
45  * near_copies copies of each chunk is stored (each on a different drive).
46  * The starting device for each section is offset near_copies from the starting
47  * device of the previous section.
48  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49  * drive.
50  * near_copies and far_copies must be at least one, and their product is at most
51  * raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of be very far apart
55  * on disk, there are adjacent stripes.
56  */
57 
58 /*
59  * Number of guaranteed r10bios in case of extreme VM load:
60  */
61 #define	NR_RAID10_BIOS 256
62 
63 /* when we get a read error on a read-only array, we redirect to another
64  * device without failing the first device, or trying to over-write to
65  * correct the read error.  To keep track of bad blocks on a per-bio
66  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67  */
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70  * bad-block marking which must be done from process context.  So we record
71  * the success by setting devs[n].bio to IO_MADE_GOOD
72  */
73 #define IO_MADE_GOOD ((struct bio *)2)
74 
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76 
77 /* When there are this many requests queued to be written by
78  * the raid10 thread, we become 'congested' to provide back-pressure
79  * for writeback.
80  */
81 static int max_queued_requests = 1024;
82 
83 static void allow_barrier(struct r10conf *conf);
84 static void lower_barrier(struct r10conf *conf);
85 static int enough(struct r10conf *conf, int ignore);
86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87 				int *skipped);
88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89 static void end_reshape_write(struct bio *bio, int error);
90 static void end_reshape(struct r10conf *conf);
91 
92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	struct r10conf *conf = data;
95 	int size = offsetof(struct r10bio, devs[conf->copies]);
96 
97 	/* allocate a r10bio with room for raid_disks entries in the
98 	 * bios array */
99 	return kzalloc(size, gfp_flags);
100 }
101 
102 static void r10bio_pool_free(void *r10_bio, void *data)
103 {
104 	kfree(r10_bio);
105 }
106 
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114 
115 /*
116  * When performing a resync, we need to read and compare, so
117  * we need as many pages are there are copies.
118  * When performing a recovery, we need 2 bios, one for read,
119  * one for write (we recover only one drive per r10buf)
120  *
121  */
122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123 {
124 	struct r10conf *conf = data;
125 	struct page *page;
126 	struct r10bio *r10_bio;
127 	struct bio *bio;
128 	int i, j;
129 	int nalloc;
130 
131 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132 	if (!r10_bio)
133 		return NULL;
134 
135 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137 		nalloc = conf->copies; /* resync */
138 	else
139 		nalloc = 2; /* recovery */
140 
141 	/*
142 	 * Allocate bios.
143 	 */
144 	for (j = nalloc ; j-- ; ) {
145 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 		if (!bio)
147 			goto out_free_bio;
148 		r10_bio->devs[j].bio = bio;
149 		if (!conf->have_replacement)
150 			continue;
151 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 		if (!bio)
153 			goto out_free_bio;
154 		r10_bio->devs[j].repl_bio = bio;
155 	}
156 	/*
157 	 * Allocate RESYNC_PAGES data pages and attach them
158 	 * where needed.
159 	 */
160 	for (j = 0 ; j < nalloc; j++) {
161 		struct bio *rbio = r10_bio->devs[j].repl_bio;
162 		bio = r10_bio->devs[j].bio;
163 		for (i = 0; i < RESYNC_PAGES; i++) {
164 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165 					       &conf->mddev->recovery)) {
166 				/* we can share bv_page's during recovery
167 				 * and reshape */
168 				struct bio *rbio = r10_bio->devs[0].bio;
169 				page = rbio->bi_io_vec[i].bv_page;
170 				get_page(page);
171 			} else
172 				page = alloc_page(gfp_flags);
173 			if (unlikely(!page))
174 				goto out_free_pages;
175 
176 			bio->bi_io_vec[i].bv_page = page;
177 			if (rbio)
178 				rbio->bi_io_vec[i].bv_page = page;
179 		}
180 	}
181 
182 	return r10_bio;
183 
184 out_free_pages:
185 	for ( ; i > 0 ; i--)
186 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
187 	while (j--)
188 		for (i = 0; i < RESYNC_PAGES ; i++)
189 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190 	j = 0;
191 out_free_bio:
192 	for ( ; j < nalloc; j++) {
193 		if (r10_bio->devs[j].bio)
194 			bio_put(r10_bio->devs[j].bio);
195 		if (r10_bio->devs[j].repl_bio)
196 			bio_put(r10_bio->devs[j].repl_bio);
197 	}
198 	r10bio_pool_free(r10_bio, conf);
199 	return NULL;
200 }
201 
202 static void r10buf_pool_free(void *__r10_bio, void *data)
203 {
204 	int i;
205 	struct r10conf *conf = data;
206 	struct r10bio *r10bio = __r10_bio;
207 	int j;
208 
209 	for (j=0; j < conf->copies; j++) {
210 		struct bio *bio = r10bio->devs[j].bio;
211 		if (bio) {
212 			for (i = 0; i < RESYNC_PAGES; i++) {
213 				safe_put_page(bio->bi_io_vec[i].bv_page);
214 				bio->bi_io_vec[i].bv_page = NULL;
215 			}
216 			bio_put(bio);
217 		}
218 		bio = r10bio->devs[j].repl_bio;
219 		if (bio)
220 			bio_put(bio);
221 	}
222 	r10bio_pool_free(r10bio, conf);
223 }
224 
225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226 {
227 	int i;
228 
229 	for (i = 0; i < conf->copies; i++) {
230 		struct bio **bio = & r10_bio->devs[i].bio;
231 		if (!BIO_SPECIAL(*bio))
232 			bio_put(*bio);
233 		*bio = NULL;
234 		bio = &r10_bio->devs[i].repl_bio;
235 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236 			bio_put(*bio);
237 		*bio = NULL;
238 	}
239 }
240 
241 static void free_r10bio(struct r10bio *r10_bio)
242 {
243 	struct r10conf *conf = r10_bio->mddev->private;
244 
245 	put_all_bios(conf, r10_bio);
246 	mempool_free(r10_bio, conf->r10bio_pool);
247 }
248 
249 static void put_buf(struct r10bio *r10_bio)
250 {
251 	struct r10conf *conf = r10_bio->mddev->private;
252 
253 	mempool_free(r10_bio, conf->r10buf_pool);
254 
255 	lower_barrier(conf);
256 }
257 
258 static void reschedule_retry(struct r10bio *r10_bio)
259 {
260 	unsigned long flags;
261 	struct mddev *mddev = r10_bio->mddev;
262 	struct r10conf *conf = mddev->private;
263 
264 	spin_lock_irqsave(&conf->device_lock, flags);
265 	list_add(&r10_bio->retry_list, &conf->retry_list);
266 	conf->nr_queued ++;
267 	spin_unlock_irqrestore(&conf->device_lock, flags);
268 
269 	/* wake up frozen array... */
270 	wake_up(&conf->wait_barrier);
271 
272 	md_wakeup_thread(mddev->thread);
273 }
274 
275 /*
276  * raid_end_bio_io() is called when we have finished servicing a mirrored
277  * operation and are ready to return a success/failure code to the buffer
278  * cache layer.
279  */
280 static void raid_end_bio_io(struct r10bio *r10_bio)
281 {
282 	struct bio *bio = r10_bio->master_bio;
283 	int done;
284 	struct r10conf *conf = r10_bio->mddev->private;
285 
286 	if (bio->bi_phys_segments) {
287 		unsigned long flags;
288 		spin_lock_irqsave(&conf->device_lock, flags);
289 		bio->bi_phys_segments--;
290 		done = (bio->bi_phys_segments == 0);
291 		spin_unlock_irqrestore(&conf->device_lock, flags);
292 	} else
293 		done = 1;
294 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 	if (done) {
297 		bio_endio(bio, 0);
298 		/*
299 		 * Wake up any possible resync thread that waits for the device
300 		 * to go idle.
301 		 */
302 		allow_barrier(conf);
303 	}
304 	free_r10bio(r10_bio);
305 }
306 
307 /*
308  * Update disk head position estimator based on IRQ completion info.
309  */
310 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311 {
312 	struct r10conf *conf = r10_bio->mddev->private;
313 
314 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315 		r10_bio->devs[slot].addr + (r10_bio->sectors);
316 }
317 
318 /*
319  * Find the disk number which triggered given bio
320  */
321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322 			 struct bio *bio, int *slotp, int *replp)
323 {
324 	int slot;
325 	int repl = 0;
326 
327 	for (slot = 0; slot < conf->copies; slot++) {
328 		if (r10_bio->devs[slot].bio == bio)
329 			break;
330 		if (r10_bio->devs[slot].repl_bio == bio) {
331 			repl = 1;
332 			break;
333 		}
334 	}
335 
336 	BUG_ON(slot == conf->copies);
337 	update_head_pos(slot, r10_bio);
338 
339 	if (slotp)
340 		*slotp = slot;
341 	if (replp)
342 		*replp = repl;
343 	return r10_bio->devs[slot].devnum;
344 }
345 
346 static void raid10_end_read_request(struct bio *bio, int error)
347 {
348 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349 	struct r10bio *r10_bio = bio->bi_private;
350 	int slot, dev;
351 	struct md_rdev *rdev;
352 	struct r10conf *conf = r10_bio->mddev->private;
353 
354 
355 	slot = r10_bio->read_slot;
356 	dev = r10_bio->devs[slot].devnum;
357 	rdev = r10_bio->devs[slot].rdev;
358 	/*
359 	 * this branch is our 'one mirror IO has finished' event handler:
360 	 */
361 	update_head_pos(slot, r10_bio);
362 
363 	if (uptodate) {
364 		/*
365 		 * Set R10BIO_Uptodate in our master bio, so that
366 		 * we will return a good error code to the higher
367 		 * levels even if IO on some other mirrored buffer fails.
368 		 *
369 		 * The 'master' represents the composite IO operation to
370 		 * user-side. So if something waits for IO, then it will
371 		 * wait for the 'master' bio.
372 		 */
373 		set_bit(R10BIO_Uptodate, &r10_bio->state);
374 	} else {
375 		/* If all other devices that store this block have
376 		 * failed, we want to return the error upwards rather
377 		 * than fail the last device.  Here we redefine
378 		 * "uptodate" to mean "Don't want to retry"
379 		 */
380 		unsigned long flags;
381 		spin_lock_irqsave(&conf->device_lock, flags);
382 		if (!enough(conf, rdev->raid_disk))
383 			uptodate = 1;
384 		spin_unlock_irqrestore(&conf->device_lock, flags);
385 	}
386 	if (uptodate) {
387 		raid_end_bio_io(r10_bio);
388 		rdev_dec_pending(rdev, conf->mddev);
389 	} else {
390 		/*
391 		 * oops, read error - keep the refcount on the rdev
392 		 */
393 		char b[BDEVNAME_SIZE];
394 		printk_ratelimited(KERN_ERR
395 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
396 				   mdname(conf->mddev),
397 				   bdevname(rdev->bdev, b),
398 				   (unsigned long long)r10_bio->sector);
399 		set_bit(R10BIO_ReadError, &r10_bio->state);
400 		reschedule_retry(r10_bio);
401 	}
402 }
403 
404 static void close_write(struct r10bio *r10_bio)
405 {
406 	/* clear the bitmap if all writes complete successfully */
407 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408 			r10_bio->sectors,
409 			!test_bit(R10BIO_Degraded, &r10_bio->state),
410 			0);
411 	md_write_end(r10_bio->mddev);
412 }
413 
414 static void one_write_done(struct r10bio *r10_bio)
415 {
416 	if (atomic_dec_and_test(&r10_bio->remaining)) {
417 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
418 			reschedule_retry(r10_bio);
419 		else {
420 			close_write(r10_bio);
421 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422 				reschedule_retry(r10_bio);
423 			else
424 				raid_end_bio_io(r10_bio);
425 		}
426 	}
427 }
428 
429 static void raid10_end_write_request(struct bio *bio, int error)
430 {
431 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432 	struct r10bio *r10_bio = bio->bi_private;
433 	int dev;
434 	int dec_rdev = 1;
435 	struct r10conf *conf = r10_bio->mddev->private;
436 	int slot, repl;
437 	struct md_rdev *rdev = NULL;
438 
439 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440 
441 	if (repl)
442 		rdev = conf->mirrors[dev].replacement;
443 	if (!rdev) {
444 		smp_rmb();
445 		repl = 0;
446 		rdev = conf->mirrors[dev].rdev;
447 	}
448 	/*
449 	 * this branch is our 'one mirror IO has finished' event handler:
450 	 */
451 	if (!uptodate) {
452 		if (repl)
453 			/* Never record new bad blocks to replacement,
454 			 * just fail it.
455 			 */
456 			md_error(rdev->mddev, rdev);
457 		else {
458 			set_bit(WriteErrorSeen,	&rdev->flags);
459 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 				set_bit(MD_RECOVERY_NEEDED,
461 					&rdev->mddev->recovery);
462 			set_bit(R10BIO_WriteError, &r10_bio->state);
463 			dec_rdev = 0;
464 		}
465 	} else {
466 		/*
467 		 * Set R10BIO_Uptodate in our master bio, so that
468 		 * we will return a good error code for to the higher
469 		 * levels even if IO on some other mirrored buffer fails.
470 		 *
471 		 * The 'master' represents the composite IO operation to
472 		 * user-side. So if something waits for IO, then it will
473 		 * wait for the 'master' bio.
474 		 */
475 		sector_t first_bad;
476 		int bad_sectors;
477 
478 		set_bit(R10BIO_Uptodate, &r10_bio->state);
479 
480 		/* Maybe we can clear some bad blocks. */
481 		if (is_badblock(rdev,
482 				r10_bio->devs[slot].addr,
483 				r10_bio->sectors,
484 				&first_bad, &bad_sectors)) {
485 			bio_put(bio);
486 			if (repl)
487 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488 			else
489 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
490 			dec_rdev = 0;
491 			set_bit(R10BIO_MadeGood, &r10_bio->state);
492 		}
493 	}
494 
495 	/*
496 	 *
497 	 * Let's see if all mirrored write operations have finished
498 	 * already.
499 	 */
500 	one_write_done(r10_bio);
501 	if (dec_rdev)
502 		rdev_dec_pending(rdev, conf->mddev);
503 }
504 
505 /*
506  * RAID10 layout manager
507  * As well as the chunksize and raid_disks count, there are two
508  * parameters: near_copies and far_copies.
509  * near_copies * far_copies must be <= raid_disks.
510  * Normally one of these will be 1.
511  * If both are 1, we get raid0.
512  * If near_copies == raid_disks, we get raid1.
513  *
514  * Chunks are laid out in raid0 style with near_copies copies of the
515  * first chunk, followed by near_copies copies of the next chunk and
516  * so on.
517  * If far_copies > 1, then after 1/far_copies of the array has been assigned
518  * as described above, we start again with a device offset of near_copies.
519  * So we effectively have another copy of the whole array further down all
520  * the drives, but with blocks on different drives.
521  * With this layout, and block is never stored twice on the one device.
522  *
523  * raid10_find_phys finds the sector offset of a given virtual sector
524  * on each device that it is on.
525  *
526  * raid10_find_virt does the reverse mapping, from a device and a
527  * sector offset to a virtual address
528  */
529 
530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531 {
532 	int n,f;
533 	sector_t sector;
534 	sector_t chunk;
535 	sector_t stripe;
536 	int dev;
537 	int slot = 0;
538 
539 	/* now calculate first sector/dev */
540 	chunk = r10bio->sector >> geo->chunk_shift;
541 	sector = r10bio->sector & geo->chunk_mask;
542 
543 	chunk *= geo->near_copies;
544 	stripe = chunk;
545 	dev = sector_div(stripe, geo->raid_disks);
546 	if (geo->far_offset)
547 		stripe *= geo->far_copies;
548 
549 	sector += stripe << geo->chunk_shift;
550 
551 	/* and calculate all the others */
552 	for (n = 0; n < geo->near_copies; n++) {
553 		int d = dev;
554 		sector_t s = sector;
555 		r10bio->devs[slot].addr = sector;
556 		r10bio->devs[slot].devnum = d;
557 		slot++;
558 
559 		for (f = 1; f < geo->far_copies; f++) {
560 			d += geo->near_copies;
561 			if (d >= geo->raid_disks)
562 				d -= geo->raid_disks;
563 			s += geo->stride;
564 			r10bio->devs[slot].devnum = d;
565 			r10bio->devs[slot].addr = s;
566 			slot++;
567 		}
568 		dev++;
569 		if (dev >= geo->raid_disks) {
570 			dev = 0;
571 			sector += (geo->chunk_mask + 1);
572 		}
573 	}
574 }
575 
576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577 {
578 	struct geom *geo = &conf->geo;
579 
580 	if (conf->reshape_progress != MaxSector &&
581 	    ((r10bio->sector >= conf->reshape_progress) !=
582 	     conf->mddev->reshape_backwards)) {
583 		set_bit(R10BIO_Previous, &r10bio->state);
584 		geo = &conf->prev;
585 	} else
586 		clear_bit(R10BIO_Previous, &r10bio->state);
587 
588 	__raid10_find_phys(geo, r10bio);
589 }
590 
591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592 {
593 	sector_t offset, chunk, vchunk;
594 	/* Never use conf->prev as this is only called during resync
595 	 * or recovery, so reshape isn't happening
596 	 */
597 	struct geom *geo = &conf->geo;
598 
599 	offset = sector & geo->chunk_mask;
600 	if (geo->far_offset) {
601 		int fc;
602 		chunk = sector >> geo->chunk_shift;
603 		fc = sector_div(chunk, geo->far_copies);
604 		dev -= fc * geo->near_copies;
605 		if (dev < 0)
606 			dev += geo->raid_disks;
607 	} else {
608 		while (sector >= geo->stride) {
609 			sector -= geo->stride;
610 			if (dev < geo->near_copies)
611 				dev += geo->raid_disks - geo->near_copies;
612 			else
613 				dev -= geo->near_copies;
614 		}
615 		chunk = sector >> geo->chunk_shift;
616 	}
617 	vchunk = chunk * geo->raid_disks + dev;
618 	sector_div(vchunk, geo->near_copies);
619 	return (vchunk << geo->chunk_shift) + offset;
620 }
621 
622 /**
623  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624  *	@q: request queue
625  *	@bvm: properties of new bio
626  *	@biovec: the request that could be merged to it.
627  *
628  *	Return amount of bytes we can accept at this offset
629  *	This requires checking for end-of-chunk if near_copies != raid_disks,
630  *	and for subordinate merge_bvec_fns if merge_check_needed.
631  */
632 static int raid10_mergeable_bvec(struct request_queue *q,
633 				 struct bvec_merge_data *bvm,
634 				 struct bio_vec *biovec)
635 {
636 	struct mddev *mddev = q->queuedata;
637 	struct r10conf *conf = mddev->private;
638 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639 	int max;
640 	unsigned int chunk_sectors;
641 	unsigned int bio_sectors = bvm->bi_size >> 9;
642 	struct geom *geo = &conf->geo;
643 
644 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645 	if (conf->reshape_progress != MaxSector &&
646 	    ((sector >= conf->reshape_progress) !=
647 	     conf->mddev->reshape_backwards))
648 		geo = &conf->prev;
649 
650 	if (geo->near_copies < geo->raid_disks) {
651 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652 					+ bio_sectors)) << 9;
653 		if (max < 0)
654 			/* bio_add cannot handle a negative return */
655 			max = 0;
656 		if (max <= biovec->bv_len && bio_sectors == 0)
657 			return biovec->bv_len;
658 	} else
659 		max = biovec->bv_len;
660 
661 	if (mddev->merge_check_needed) {
662 		struct {
663 			struct r10bio r10_bio;
664 			struct r10dev devs[conf->copies];
665 		} on_stack;
666 		struct r10bio *r10_bio = &on_stack.r10_bio;
667 		int s;
668 		if (conf->reshape_progress != MaxSector) {
669 			/* Cannot give any guidance during reshape */
670 			if (max <= biovec->bv_len && bio_sectors == 0)
671 				return biovec->bv_len;
672 			return 0;
673 		}
674 		r10_bio->sector = sector;
675 		raid10_find_phys(conf, r10_bio);
676 		rcu_read_lock();
677 		for (s = 0; s < conf->copies; s++) {
678 			int disk = r10_bio->devs[s].devnum;
679 			struct md_rdev *rdev = rcu_dereference(
680 				conf->mirrors[disk].rdev);
681 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
682 				struct request_queue *q =
683 					bdev_get_queue(rdev->bdev);
684 				if (q->merge_bvec_fn) {
685 					bvm->bi_sector = r10_bio->devs[s].addr
686 						+ rdev->data_offset;
687 					bvm->bi_bdev = rdev->bdev;
688 					max = min(max, q->merge_bvec_fn(
689 							  q, bvm, biovec));
690 				}
691 			}
692 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
693 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
694 				struct request_queue *q =
695 					bdev_get_queue(rdev->bdev);
696 				if (q->merge_bvec_fn) {
697 					bvm->bi_sector = r10_bio->devs[s].addr
698 						+ rdev->data_offset;
699 					bvm->bi_bdev = rdev->bdev;
700 					max = min(max, q->merge_bvec_fn(
701 							  q, bvm, biovec));
702 				}
703 			}
704 		}
705 		rcu_read_unlock();
706 	}
707 	return max;
708 }
709 
710 /*
711  * This routine returns the disk from which the requested read should
712  * be done. There is a per-array 'next expected sequential IO' sector
713  * number - if this matches on the next IO then we use the last disk.
714  * There is also a per-disk 'last know head position' sector that is
715  * maintained from IRQ contexts, both the normal and the resync IO
716  * completion handlers update this position correctly. If there is no
717  * perfect sequential match then we pick the disk whose head is closest.
718  *
719  * If there are 2 mirrors in the same 2 devices, performance degrades
720  * because position is mirror, not device based.
721  *
722  * The rdev for the device selected will have nr_pending incremented.
723  */
724 
725 /*
726  * FIXME: possibly should rethink readbalancing and do it differently
727  * depending on near_copies / far_copies geometry.
728  */
729 static struct md_rdev *read_balance(struct r10conf *conf,
730 				    struct r10bio *r10_bio,
731 				    int *max_sectors)
732 {
733 	const sector_t this_sector = r10_bio->sector;
734 	int disk, slot;
735 	int sectors = r10_bio->sectors;
736 	int best_good_sectors;
737 	sector_t new_distance, best_dist;
738 	struct md_rdev *best_rdev, *rdev = NULL;
739 	int do_balance;
740 	int best_slot;
741 	struct geom *geo = &conf->geo;
742 
743 	raid10_find_phys(conf, r10_bio);
744 	rcu_read_lock();
745 retry:
746 	sectors = r10_bio->sectors;
747 	best_slot = -1;
748 	best_rdev = NULL;
749 	best_dist = MaxSector;
750 	best_good_sectors = 0;
751 	do_balance = 1;
752 	/*
753 	 * Check if we can balance. We can balance on the whole
754 	 * device if no resync is going on (recovery is ok), or below
755 	 * the resync window. We take the first readable disk when
756 	 * above the resync window.
757 	 */
758 	if (conf->mddev->recovery_cp < MaxSector
759 	    && (this_sector + sectors >= conf->next_resync))
760 		do_balance = 0;
761 
762 	for (slot = 0; slot < conf->copies ; slot++) {
763 		sector_t first_bad;
764 		int bad_sectors;
765 		sector_t dev_sector;
766 
767 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
768 			continue;
769 		disk = r10_bio->devs[slot].devnum;
770 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
771 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
772 		    test_bit(Unmerged, &rdev->flags) ||
773 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
775 		if (rdev == NULL ||
776 		    test_bit(Faulty, &rdev->flags) ||
777 		    test_bit(Unmerged, &rdev->flags))
778 			continue;
779 		if (!test_bit(In_sync, &rdev->flags) &&
780 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
781 			continue;
782 
783 		dev_sector = r10_bio->devs[slot].addr;
784 		if (is_badblock(rdev, dev_sector, sectors,
785 				&first_bad, &bad_sectors)) {
786 			if (best_dist < MaxSector)
787 				/* Already have a better slot */
788 				continue;
789 			if (first_bad <= dev_sector) {
790 				/* Cannot read here.  If this is the
791 				 * 'primary' device, then we must not read
792 				 * beyond 'bad_sectors' from another device.
793 				 */
794 				bad_sectors -= (dev_sector - first_bad);
795 				if (!do_balance && sectors > bad_sectors)
796 					sectors = bad_sectors;
797 				if (best_good_sectors > sectors)
798 					best_good_sectors = sectors;
799 			} else {
800 				sector_t good_sectors =
801 					first_bad - dev_sector;
802 				if (good_sectors > best_good_sectors) {
803 					best_good_sectors = good_sectors;
804 					best_slot = slot;
805 					best_rdev = rdev;
806 				}
807 				if (!do_balance)
808 					/* Must read from here */
809 					break;
810 			}
811 			continue;
812 		} else
813 			best_good_sectors = sectors;
814 
815 		if (!do_balance)
816 			break;
817 
818 		/* This optimisation is debatable, and completely destroys
819 		 * sequential read speed for 'far copies' arrays.  So only
820 		 * keep it for 'near' arrays, and review those later.
821 		 */
822 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
823 			break;
824 
825 		/* for far > 1 always use the lowest address */
826 		if (geo->far_copies > 1)
827 			new_distance = r10_bio->devs[slot].addr;
828 		else
829 			new_distance = abs(r10_bio->devs[slot].addr -
830 					   conf->mirrors[disk].head_position);
831 		if (new_distance < best_dist) {
832 			best_dist = new_distance;
833 			best_slot = slot;
834 			best_rdev = rdev;
835 		}
836 	}
837 	if (slot >= conf->copies) {
838 		slot = best_slot;
839 		rdev = best_rdev;
840 	}
841 
842 	if (slot >= 0) {
843 		atomic_inc(&rdev->nr_pending);
844 		if (test_bit(Faulty, &rdev->flags)) {
845 			/* Cannot risk returning a device that failed
846 			 * before we inc'ed nr_pending
847 			 */
848 			rdev_dec_pending(rdev, conf->mddev);
849 			goto retry;
850 		}
851 		r10_bio->read_slot = slot;
852 	} else
853 		rdev = NULL;
854 	rcu_read_unlock();
855 	*max_sectors = best_good_sectors;
856 
857 	return rdev;
858 }
859 
860 int md_raid10_congested(struct mddev *mddev, int bits)
861 {
862 	struct r10conf *conf = mddev->private;
863 	int i, ret = 0;
864 
865 	if ((bits & (1 << BDI_async_congested)) &&
866 	    conf->pending_count >= max_queued_requests)
867 		return 1;
868 
869 	rcu_read_lock();
870 	for (i = 0;
871 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872 		     && ret == 0;
873 	     i++) {
874 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
876 			struct request_queue *q = bdev_get_queue(rdev->bdev);
877 
878 			ret |= bdi_congested(&q->backing_dev_info, bits);
879 		}
880 	}
881 	rcu_read_unlock();
882 	return ret;
883 }
884 EXPORT_SYMBOL_GPL(md_raid10_congested);
885 
886 static int raid10_congested(void *data, int bits)
887 {
888 	struct mddev *mddev = data;
889 
890 	return mddev_congested(mddev, bits) ||
891 		md_raid10_congested(mddev, bits);
892 }
893 
894 static void flush_pending_writes(struct r10conf *conf)
895 {
896 	/* Any writes that have been queued but are awaiting
897 	 * bitmap updates get flushed here.
898 	 */
899 	spin_lock_irq(&conf->device_lock);
900 
901 	if (conf->pending_bio_list.head) {
902 		struct bio *bio;
903 		bio = bio_list_get(&conf->pending_bio_list);
904 		conf->pending_count = 0;
905 		spin_unlock_irq(&conf->device_lock);
906 		/* flush any pending bitmap writes to disk
907 		 * before proceeding w/ I/O */
908 		bitmap_unplug(conf->mddev->bitmap);
909 		wake_up(&conf->wait_barrier);
910 
911 		while (bio) { /* submit pending writes */
912 			struct bio *next = bio->bi_next;
913 			bio->bi_next = NULL;
914 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
915 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
916 				/* Just ignore it */
917 				bio_endio(bio, 0);
918 			else
919 				generic_make_request(bio);
920 			bio = next;
921 		}
922 	} else
923 		spin_unlock_irq(&conf->device_lock);
924 }
925 
926 /* Barriers....
927  * Sometimes we need to suspend IO while we do something else,
928  * either some resync/recovery, or reconfigure the array.
929  * To do this we raise a 'barrier'.
930  * The 'barrier' is a counter that can be raised multiple times
931  * to count how many activities are happening which preclude
932  * normal IO.
933  * We can only raise the barrier if there is no pending IO.
934  * i.e. if nr_pending == 0.
935  * We choose only to raise the barrier if no-one is waiting for the
936  * barrier to go down.  This means that as soon as an IO request
937  * is ready, no other operations which require a barrier will start
938  * until the IO request has had a chance.
939  *
940  * So: regular IO calls 'wait_barrier'.  When that returns there
941  *    is no backgroup IO happening,  It must arrange to call
942  *    allow_barrier when it has finished its IO.
943  * backgroup IO calls must call raise_barrier.  Once that returns
944  *    there is no normal IO happeing.  It must arrange to call
945  *    lower_barrier when the particular background IO completes.
946  */
947 
948 static void raise_barrier(struct r10conf *conf, int force)
949 {
950 	BUG_ON(force && !conf->barrier);
951 	spin_lock_irq(&conf->resync_lock);
952 
953 	/* Wait until no block IO is waiting (unless 'force') */
954 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
955 			    conf->resync_lock, );
956 
957 	/* block any new IO from starting */
958 	conf->barrier++;
959 
960 	/* Now wait for all pending IO to complete */
961 	wait_event_lock_irq(conf->wait_barrier,
962 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
963 			    conf->resync_lock, );
964 
965 	spin_unlock_irq(&conf->resync_lock);
966 }
967 
968 static void lower_barrier(struct r10conf *conf)
969 {
970 	unsigned long flags;
971 	spin_lock_irqsave(&conf->resync_lock, flags);
972 	conf->barrier--;
973 	spin_unlock_irqrestore(&conf->resync_lock, flags);
974 	wake_up(&conf->wait_barrier);
975 }
976 
977 static void wait_barrier(struct r10conf *conf)
978 {
979 	spin_lock_irq(&conf->resync_lock);
980 	if (conf->barrier) {
981 		conf->nr_waiting++;
982 		/* Wait for the barrier to drop.
983 		 * However if there are already pending
984 		 * requests (preventing the barrier from
985 		 * rising completely), and the
986 		 * pre-process bio queue isn't empty,
987 		 * then don't wait, as we need to empty
988 		 * that queue to get the nr_pending
989 		 * count down.
990 		 */
991 		wait_event_lock_irq(conf->wait_barrier,
992 				    !conf->barrier ||
993 				    (conf->nr_pending &&
994 				     current->bio_list &&
995 				     !bio_list_empty(current->bio_list)),
996 				    conf->resync_lock,
997 			);
998 		conf->nr_waiting--;
999 	}
1000 	conf->nr_pending++;
1001 	spin_unlock_irq(&conf->resync_lock);
1002 }
1003 
1004 static void allow_barrier(struct r10conf *conf)
1005 {
1006 	unsigned long flags;
1007 	spin_lock_irqsave(&conf->resync_lock, flags);
1008 	conf->nr_pending--;
1009 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1010 	wake_up(&conf->wait_barrier);
1011 }
1012 
1013 static void freeze_array(struct r10conf *conf)
1014 {
1015 	/* stop syncio and normal IO and wait for everything to
1016 	 * go quiet.
1017 	 * We increment barrier and nr_waiting, and then
1018 	 * wait until nr_pending match nr_queued+1
1019 	 * This is called in the context of one normal IO request
1020 	 * that has failed. Thus any sync request that might be pending
1021 	 * will be blocked by nr_pending, and we need to wait for
1022 	 * pending IO requests to complete or be queued for re-try.
1023 	 * Thus the number queued (nr_queued) plus this request (1)
1024 	 * must match the number of pending IOs (nr_pending) before
1025 	 * we continue.
1026 	 */
1027 	spin_lock_irq(&conf->resync_lock);
1028 	conf->barrier++;
1029 	conf->nr_waiting++;
1030 	wait_event_lock_irq(conf->wait_barrier,
1031 			    conf->nr_pending == conf->nr_queued+1,
1032 			    conf->resync_lock,
1033 			    flush_pending_writes(conf));
1034 
1035 	spin_unlock_irq(&conf->resync_lock);
1036 }
1037 
1038 static void unfreeze_array(struct r10conf *conf)
1039 {
1040 	/* reverse the effect of the freeze */
1041 	spin_lock_irq(&conf->resync_lock);
1042 	conf->barrier--;
1043 	conf->nr_waiting--;
1044 	wake_up(&conf->wait_barrier);
1045 	spin_unlock_irq(&conf->resync_lock);
1046 }
1047 
1048 static sector_t choose_data_offset(struct r10bio *r10_bio,
1049 				   struct md_rdev *rdev)
1050 {
1051 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1052 	    test_bit(R10BIO_Previous, &r10_bio->state))
1053 		return rdev->data_offset;
1054 	else
1055 		return rdev->new_data_offset;
1056 }
1057 
1058 struct raid10_plug_cb {
1059 	struct blk_plug_cb	cb;
1060 	struct bio_list		pending;
1061 	int			pending_cnt;
1062 };
1063 
1064 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1065 {
1066 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1067 						   cb);
1068 	struct mddev *mddev = plug->cb.data;
1069 	struct r10conf *conf = mddev->private;
1070 	struct bio *bio;
1071 
1072 	if (from_schedule) {
1073 		spin_lock_irq(&conf->device_lock);
1074 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1075 		conf->pending_count += plug->pending_cnt;
1076 		spin_unlock_irq(&conf->device_lock);
1077 		md_wakeup_thread(mddev->thread);
1078 		kfree(plug);
1079 		return;
1080 	}
1081 
1082 	/* we aren't scheduling, so we can do the write-out directly. */
1083 	bio = bio_list_get(&plug->pending);
1084 	bitmap_unplug(mddev->bitmap);
1085 	wake_up(&conf->wait_barrier);
1086 
1087 	while (bio) { /* submit pending writes */
1088 		struct bio *next = bio->bi_next;
1089 		bio->bi_next = NULL;
1090 		generic_make_request(bio);
1091 		bio = next;
1092 	}
1093 	kfree(plug);
1094 }
1095 
1096 static void make_request(struct mddev *mddev, struct bio * bio)
1097 {
1098 	struct r10conf *conf = mddev->private;
1099 	struct r10bio *r10_bio;
1100 	struct bio *read_bio;
1101 	int i;
1102 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1103 	int chunk_sects = chunk_mask + 1;
1104 	const int rw = bio_data_dir(bio);
1105 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1106 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1107 	const unsigned long do_discard = (bio->bi_rw
1108 					  & (REQ_DISCARD | REQ_SECURE));
1109 	unsigned long flags;
1110 	struct md_rdev *blocked_rdev;
1111 	struct blk_plug_cb *cb;
1112 	struct raid10_plug_cb *plug = NULL;
1113 	int sectors_handled;
1114 	int max_sectors;
1115 	int sectors;
1116 
1117 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1118 		md_flush_request(mddev, bio);
1119 		return;
1120 	}
1121 
1122 	/* If this request crosses a chunk boundary, we need to
1123 	 * split it.  This will only happen for 1 PAGE (or less) requests.
1124 	 */
1125 	if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1126 		     > chunk_sects
1127 		     && (conf->geo.near_copies < conf->geo.raid_disks
1128 			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1129 		struct bio_pair *bp;
1130 		/* Sanity check -- queue functions should prevent this happening */
1131 		if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1132 		    bio->bi_idx != 0)
1133 			goto bad_map;
1134 		/* This is a one page bio that upper layers
1135 		 * refuse to split for us, so we need to split it.
1136 		 */
1137 		bp = bio_split(bio,
1138 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1139 
1140 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1141 		 * If the first succeeds but the second blocks due to the resync
1142 		 * thread raising the barrier, we will deadlock because the
1143 		 * IO to the underlying device will be queued in generic_make_request
1144 		 * and will never complete, so will never reduce nr_pending.
1145 		 * So increment nr_waiting here so no new raise_barriers will
1146 		 * succeed, and so the second wait_barrier cannot block.
1147 		 */
1148 		spin_lock_irq(&conf->resync_lock);
1149 		conf->nr_waiting++;
1150 		spin_unlock_irq(&conf->resync_lock);
1151 
1152 		make_request(mddev, &bp->bio1);
1153 		make_request(mddev, &bp->bio2);
1154 
1155 		spin_lock_irq(&conf->resync_lock);
1156 		conf->nr_waiting--;
1157 		wake_up(&conf->wait_barrier);
1158 		spin_unlock_irq(&conf->resync_lock);
1159 
1160 		bio_pair_release(bp);
1161 		return;
1162 	bad_map:
1163 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1164 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1165 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1166 
1167 		bio_io_error(bio);
1168 		return;
1169 	}
1170 
1171 	md_write_start(mddev, bio);
1172 
1173 	/*
1174 	 * Register the new request and wait if the reconstruction
1175 	 * thread has put up a bar for new requests.
1176 	 * Continue immediately if no resync is active currently.
1177 	 */
1178 	wait_barrier(conf);
1179 
1180 	sectors = bio->bi_size >> 9;
1181 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1182 	    bio->bi_sector < conf->reshape_progress &&
1183 	    bio->bi_sector + sectors > conf->reshape_progress) {
1184 		/* IO spans the reshape position.  Need to wait for
1185 		 * reshape to pass
1186 		 */
1187 		allow_barrier(conf);
1188 		wait_event(conf->wait_barrier,
1189 			   conf->reshape_progress <= bio->bi_sector ||
1190 			   conf->reshape_progress >= bio->bi_sector + sectors);
1191 		wait_barrier(conf);
1192 	}
1193 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1194 	    bio_data_dir(bio) == WRITE &&
1195 	    (mddev->reshape_backwards
1196 	     ? (bio->bi_sector < conf->reshape_safe &&
1197 		bio->bi_sector + sectors > conf->reshape_progress)
1198 	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1199 		bio->bi_sector < conf->reshape_progress))) {
1200 		/* Need to update reshape_position in metadata */
1201 		mddev->reshape_position = conf->reshape_progress;
1202 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1203 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1204 		md_wakeup_thread(mddev->thread);
1205 		wait_event(mddev->sb_wait,
1206 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1207 
1208 		conf->reshape_safe = mddev->reshape_position;
1209 	}
1210 
1211 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1212 
1213 	r10_bio->master_bio = bio;
1214 	r10_bio->sectors = sectors;
1215 
1216 	r10_bio->mddev = mddev;
1217 	r10_bio->sector = bio->bi_sector;
1218 	r10_bio->state = 0;
1219 
1220 	/* We might need to issue multiple reads to different
1221 	 * devices if there are bad blocks around, so we keep
1222 	 * track of the number of reads in bio->bi_phys_segments.
1223 	 * If this is 0, there is only one r10_bio and no locking
1224 	 * will be needed when the request completes.  If it is
1225 	 * non-zero, then it is the number of not-completed requests.
1226 	 */
1227 	bio->bi_phys_segments = 0;
1228 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1229 
1230 	if (rw == READ) {
1231 		/*
1232 		 * read balancing logic:
1233 		 */
1234 		struct md_rdev *rdev;
1235 		int slot;
1236 
1237 read_again:
1238 		rdev = read_balance(conf, r10_bio, &max_sectors);
1239 		if (!rdev) {
1240 			raid_end_bio_io(r10_bio);
1241 			return;
1242 		}
1243 		slot = r10_bio->read_slot;
1244 
1245 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1246 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1247 			    max_sectors);
1248 
1249 		r10_bio->devs[slot].bio = read_bio;
1250 		r10_bio->devs[slot].rdev = rdev;
1251 
1252 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1253 			choose_data_offset(r10_bio, rdev);
1254 		read_bio->bi_bdev = rdev->bdev;
1255 		read_bio->bi_end_io = raid10_end_read_request;
1256 		read_bio->bi_rw = READ | do_sync;
1257 		read_bio->bi_private = r10_bio;
1258 
1259 		if (max_sectors < r10_bio->sectors) {
1260 			/* Could not read all from this device, so we will
1261 			 * need another r10_bio.
1262 			 */
1263 			sectors_handled = (r10_bio->sectors + max_sectors
1264 					   - bio->bi_sector);
1265 			r10_bio->sectors = max_sectors;
1266 			spin_lock_irq(&conf->device_lock);
1267 			if (bio->bi_phys_segments == 0)
1268 				bio->bi_phys_segments = 2;
1269 			else
1270 				bio->bi_phys_segments++;
1271 			spin_unlock(&conf->device_lock);
1272 			/* Cannot call generic_make_request directly
1273 			 * as that will be queued in __generic_make_request
1274 			 * and subsequent mempool_alloc might block
1275 			 * waiting for it.  so hand bio over to raid10d.
1276 			 */
1277 			reschedule_retry(r10_bio);
1278 
1279 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1280 
1281 			r10_bio->master_bio = bio;
1282 			r10_bio->sectors = ((bio->bi_size >> 9)
1283 					    - sectors_handled);
1284 			r10_bio->state = 0;
1285 			r10_bio->mddev = mddev;
1286 			r10_bio->sector = bio->bi_sector + sectors_handled;
1287 			goto read_again;
1288 		} else
1289 			generic_make_request(read_bio);
1290 		return;
1291 	}
1292 
1293 	/*
1294 	 * WRITE:
1295 	 */
1296 	if (conf->pending_count >= max_queued_requests) {
1297 		md_wakeup_thread(mddev->thread);
1298 		wait_event(conf->wait_barrier,
1299 			   conf->pending_count < max_queued_requests);
1300 	}
1301 	/* first select target devices under rcu_lock and
1302 	 * inc refcount on their rdev.  Record them by setting
1303 	 * bios[x] to bio
1304 	 * If there are known/acknowledged bad blocks on any device
1305 	 * on which we have seen a write error, we want to avoid
1306 	 * writing to those blocks.  This potentially requires several
1307 	 * writes to write around the bad blocks.  Each set of writes
1308 	 * gets its own r10_bio with a set of bios attached.  The number
1309 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1310 	 * the read case.
1311 	 */
1312 
1313 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1314 	raid10_find_phys(conf, r10_bio);
1315 retry_write:
1316 	blocked_rdev = NULL;
1317 	rcu_read_lock();
1318 	max_sectors = r10_bio->sectors;
1319 
1320 	for (i = 0;  i < conf->copies; i++) {
1321 		int d = r10_bio->devs[i].devnum;
1322 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1323 		struct md_rdev *rrdev = rcu_dereference(
1324 			conf->mirrors[d].replacement);
1325 		if (rdev == rrdev)
1326 			rrdev = NULL;
1327 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1328 			atomic_inc(&rdev->nr_pending);
1329 			blocked_rdev = rdev;
1330 			break;
1331 		}
1332 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1333 			atomic_inc(&rrdev->nr_pending);
1334 			blocked_rdev = rrdev;
1335 			break;
1336 		}
1337 		if (rdev && (test_bit(Faulty, &rdev->flags)
1338 			     || test_bit(Unmerged, &rdev->flags)))
1339 			rdev = NULL;
1340 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1341 			      || test_bit(Unmerged, &rrdev->flags)))
1342 			rrdev = NULL;
1343 
1344 		r10_bio->devs[i].bio = NULL;
1345 		r10_bio->devs[i].repl_bio = NULL;
1346 
1347 		if (!rdev && !rrdev) {
1348 			set_bit(R10BIO_Degraded, &r10_bio->state);
1349 			continue;
1350 		}
1351 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1352 			sector_t first_bad;
1353 			sector_t dev_sector = r10_bio->devs[i].addr;
1354 			int bad_sectors;
1355 			int is_bad;
1356 
1357 			is_bad = is_badblock(rdev, dev_sector,
1358 					     max_sectors,
1359 					     &first_bad, &bad_sectors);
1360 			if (is_bad < 0) {
1361 				/* Mustn't write here until the bad block
1362 				 * is acknowledged
1363 				 */
1364 				atomic_inc(&rdev->nr_pending);
1365 				set_bit(BlockedBadBlocks, &rdev->flags);
1366 				blocked_rdev = rdev;
1367 				break;
1368 			}
1369 			if (is_bad && first_bad <= dev_sector) {
1370 				/* Cannot write here at all */
1371 				bad_sectors -= (dev_sector - first_bad);
1372 				if (bad_sectors < max_sectors)
1373 					/* Mustn't write more than bad_sectors
1374 					 * to other devices yet
1375 					 */
1376 					max_sectors = bad_sectors;
1377 				/* We don't set R10BIO_Degraded as that
1378 				 * only applies if the disk is missing,
1379 				 * so it might be re-added, and we want to
1380 				 * know to recover this chunk.
1381 				 * In this case the device is here, and the
1382 				 * fact that this chunk is not in-sync is
1383 				 * recorded in the bad block log.
1384 				 */
1385 				continue;
1386 			}
1387 			if (is_bad) {
1388 				int good_sectors = first_bad - dev_sector;
1389 				if (good_sectors < max_sectors)
1390 					max_sectors = good_sectors;
1391 			}
1392 		}
1393 		if (rdev) {
1394 			r10_bio->devs[i].bio = bio;
1395 			atomic_inc(&rdev->nr_pending);
1396 		}
1397 		if (rrdev) {
1398 			r10_bio->devs[i].repl_bio = bio;
1399 			atomic_inc(&rrdev->nr_pending);
1400 		}
1401 	}
1402 	rcu_read_unlock();
1403 
1404 	if (unlikely(blocked_rdev)) {
1405 		/* Have to wait for this device to get unblocked, then retry */
1406 		int j;
1407 		int d;
1408 
1409 		for (j = 0; j < i; j++) {
1410 			if (r10_bio->devs[j].bio) {
1411 				d = r10_bio->devs[j].devnum;
1412 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1413 			}
1414 			if (r10_bio->devs[j].repl_bio) {
1415 				struct md_rdev *rdev;
1416 				d = r10_bio->devs[j].devnum;
1417 				rdev = conf->mirrors[d].replacement;
1418 				if (!rdev) {
1419 					/* Race with remove_disk */
1420 					smp_mb();
1421 					rdev = conf->mirrors[d].rdev;
1422 				}
1423 				rdev_dec_pending(rdev, mddev);
1424 			}
1425 		}
1426 		allow_barrier(conf);
1427 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1428 		wait_barrier(conf);
1429 		goto retry_write;
1430 	}
1431 
1432 	if (max_sectors < r10_bio->sectors) {
1433 		/* We are splitting this into multiple parts, so
1434 		 * we need to prepare for allocating another r10_bio.
1435 		 */
1436 		r10_bio->sectors = max_sectors;
1437 		spin_lock_irq(&conf->device_lock);
1438 		if (bio->bi_phys_segments == 0)
1439 			bio->bi_phys_segments = 2;
1440 		else
1441 			bio->bi_phys_segments++;
1442 		spin_unlock_irq(&conf->device_lock);
1443 	}
1444 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1445 
1446 	atomic_set(&r10_bio->remaining, 1);
1447 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1448 
1449 	for (i = 0; i < conf->copies; i++) {
1450 		struct bio *mbio;
1451 		int d = r10_bio->devs[i].devnum;
1452 		if (r10_bio->devs[i].bio) {
1453 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1454 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1455 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1456 				    max_sectors);
1457 			r10_bio->devs[i].bio = mbio;
1458 
1459 			mbio->bi_sector	= (r10_bio->devs[i].addr+
1460 					   choose_data_offset(r10_bio,
1461 							      rdev));
1462 			mbio->bi_bdev = rdev->bdev;
1463 			mbio->bi_end_io	= raid10_end_write_request;
1464 			mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1465 			mbio->bi_private = r10_bio;
1466 
1467 			atomic_inc(&r10_bio->remaining);
1468 
1469 			cb = blk_check_plugged(raid10_unplug, mddev,
1470 					       sizeof(*plug));
1471 			if (cb)
1472 				plug = container_of(cb, struct raid10_plug_cb,
1473 						    cb);
1474 			else
1475 				plug = NULL;
1476 			spin_lock_irqsave(&conf->device_lock, flags);
1477 			if (plug) {
1478 				bio_list_add(&plug->pending, mbio);
1479 				plug->pending_cnt++;
1480 			} else {
1481 				bio_list_add(&conf->pending_bio_list, mbio);
1482 				conf->pending_count++;
1483 			}
1484 			spin_unlock_irqrestore(&conf->device_lock, flags);
1485 			if (!plug)
1486 				md_wakeup_thread(mddev->thread);
1487 		}
1488 
1489 		if (r10_bio->devs[i].repl_bio) {
1490 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1491 			if (rdev == NULL) {
1492 				/* Replacement just got moved to main 'rdev' */
1493 				smp_mb();
1494 				rdev = conf->mirrors[d].rdev;
1495 			}
1496 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1497 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1498 				    max_sectors);
1499 			r10_bio->devs[i].repl_bio = mbio;
1500 
1501 			mbio->bi_sector	= (r10_bio->devs[i].addr +
1502 					   choose_data_offset(
1503 						   r10_bio, rdev));
1504 			mbio->bi_bdev = rdev->bdev;
1505 			mbio->bi_end_io	= raid10_end_write_request;
1506 			mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1507 			mbio->bi_private = r10_bio;
1508 
1509 			atomic_inc(&r10_bio->remaining);
1510 			spin_lock_irqsave(&conf->device_lock, flags);
1511 			bio_list_add(&conf->pending_bio_list, mbio);
1512 			conf->pending_count++;
1513 			spin_unlock_irqrestore(&conf->device_lock, flags);
1514 			if (!mddev_check_plugged(mddev))
1515 				md_wakeup_thread(mddev->thread);
1516 		}
1517 	}
1518 
1519 	/* Don't remove the bias on 'remaining' (one_write_done) until
1520 	 * after checking if we need to go around again.
1521 	 */
1522 
1523 	if (sectors_handled < (bio->bi_size >> 9)) {
1524 		one_write_done(r10_bio);
1525 		/* We need another r10_bio.  It has already been counted
1526 		 * in bio->bi_phys_segments.
1527 		 */
1528 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1529 
1530 		r10_bio->master_bio = bio;
1531 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1532 
1533 		r10_bio->mddev = mddev;
1534 		r10_bio->sector = bio->bi_sector + sectors_handled;
1535 		r10_bio->state = 0;
1536 		goto retry_write;
1537 	}
1538 	one_write_done(r10_bio);
1539 
1540 	/* In case raid10d snuck in to freeze_array */
1541 	wake_up(&conf->wait_barrier);
1542 }
1543 
1544 static void status(struct seq_file *seq, struct mddev *mddev)
1545 {
1546 	struct r10conf *conf = mddev->private;
1547 	int i;
1548 
1549 	if (conf->geo.near_copies < conf->geo.raid_disks)
1550 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1551 	if (conf->geo.near_copies > 1)
1552 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1553 	if (conf->geo.far_copies > 1) {
1554 		if (conf->geo.far_offset)
1555 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1556 		else
1557 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1558 	}
1559 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1560 					conf->geo.raid_disks - mddev->degraded);
1561 	for (i = 0; i < conf->geo.raid_disks; i++)
1562 		seq_printf(seq, "%s",
1563 			      conf->mirrors[i].rdev &&
1564 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1565 	seq_printf(seq, "]");
1566 }
1567 
1568 /* check if there are enough drives for
1569  * every block to appear on atleast one.
1570  * Don't consider the device numbered 'ignore'
1571  * as we might be about to remove it.
1572  */
1573 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1574 {
1575 	int first = 0;
1576 
1577 	do {
1578 		int n = conf->copies;
1579 		int cnt = 0;
1580 		int this = first;
1581 		while (n--) {
1582 			if (conf->mirrors[this].rdev &&
1583 			    this != ignore)
1584 				cnt++;
1585 			this = (this+1) % geo->raid_disks;
1586 		}
1587 		if (cnt == 0)
1588 			return 0;
1589 		first = (first + geo->near_copies) % geo->raid_disks;
1590 	} while (first != 0);
1591 	return 1;
1592 }
1593 
1594 static int enough(struct r10conf *conf, int ignore)
1595 {
1596 	return _enough(conf, &conf->geo, ignore) &&
1597 		_enough(conf, &conf->prev, ignore);
1598 }
1599 
1600 static void error(struct mddev *mddev, struct md_rdev *rdev)
1601 {
1602 	char b[BDEVNAME_SIZE];
1603 	struct r10conf *conf = mddev->private;
1604 
1605 	/*
1606 	 * If it is not operational, then we have already marked it as dead
1607 	 * else if it is the last working disks, ignore the error, let the
1608 	 * next level up know.
1609 	 * else mark the drive as failed
1610 	 */
1611 	if (test_bit(In_sync, &rdev->flags)
1612 	    && !enough(conf, rdev->raid_disk))
1613 		/*
1614 		 * Don't fail the drive, just return an IO error.
1615 		 */
1616 		return;
1617 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1618 		unsigned long flags;
1619 		spin_lock_irqsave(&conf->device_lock, flags);
1620 		mddev->degraded++;
1621 		spin_unlock_irqrestore(&conf->device_lock, flags);
1622 		/*
1623 		 * if recovery is running, make sure it aborts.
1624 		 */
1625 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1626 	}
1627 	set_bit(Blocked, &rdev->flags);
1628 	set_bit(Faulty, &rdev->flags);
1629 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1630 	printk(KERN_ALERT
1631 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1632 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1633 	       mdname(mddev), bdevname(rdev->bdev, b),
1634 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1635 }
1636 
1637 static void print_conf(struct r10conf *conf)
1638 {
1639 	int i;
1640 	struct raid10_info *tmp;
1641 
1642 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1643 	if (!conf) {
1644 		printk(KERN_DEBUG "(!conf)\n");
1645 		return;
1646 	}
1647 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1648 		conf->geo.raid_disks);
1649 
1650 	for (i = 0; i < conf->geo.raid_disks; i++) {
1651 		char b[BDEVNAME_SIZE];
1652 		tmp = conf->mirrors + i;
1653 		if (tmp->rdev)
1654 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1655 				i, !test_bit(In_sync, &tmp->rdev->flags),
1656 			        !test_bit(Faulty, &tmp->rdev->flags),
1657 				bdevname(tmp->rdev->bdev,b));
1658 	}
1659 }
1660 
1661 static void close_sync(struct r10conf *conf)
1662 {
1663 	wait_barrier(conf);
1664 	allow_barrier(conf);
1665 
1666 	mempool_destroy(conf->r10buf_pool);
1667 	conf->r10buf_pool = NULL;
1668 }
1669 
1670 static int raid10_spare_active(struct mddev *mddev)
1671 {
1672 	int i;
1673 	struct r10conf *conf = mddev->private;
1674 	struct raid10_info *tmp;
1675 	int count = 0;
1676 	unsigned long flags;
1677 
1678 	/*
1679 	 * Find all non-in_sync disks within the RAID10 configuration
1680 	 * and mark them in_sync
1681 	 */
1682 	for (i = 0; i < conf->geo.raid_disks; i++) {
1683 		tmp = conf->mirrors + i;
1684 		if (tmp->replacement
1685 		    && tmp->replacement->recovery_offset == MaxSector
1686 		    && !test_bit(Faulty, &tmp->replacement->flags)
1687 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1688 			/* Replacement has just become active */
1689 			if (!tmp->rdev
1690 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1691 				count++;
1692 			if (tmp->rdev) {
1693 				/* Replaced device not technically faulty,
1694 				 * but we need to be sure it gets removed
1695 				 * and never re-added.
1696 				 */
1697 				set_bit(Faulty, &tmp->rdev->flags);
1698 				sysfs_notify_dirent_safe(
1699 					tmp->rdev->sysfs_state);
1700 			}
1701 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1702 		} else if (tmp->rdev
1703 			   && !test_bit(Faulty, &tmp->rdev->flags)
1704 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1705 			count++;
1706 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1707 		}
1708 	}
1709 	spin_lock_irqsave(&conf->device_lock, flags);
1710 	mddev->degraded -= count;
1711 	spin_unlock_irqrestore(&conf->device_lock, flags);
1712 
1713 	print_conf(conf);
1714 	return count;
1715 }
1716 
1717 
1718 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1719 {
1720 	struct r10conf *conf = mddev->private;
1721 	int err = -EEXIST;
1722 	int mirror;
1723 	int first = 0;
1724 	int last = conf->geo.raid_disks - 1;
1725 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1726 
1727 	if (mddev->recovery_cp < MaxSector)
1728 		/* only hot-add to in-sync arrays, as recovery is
1729 		 * very different from resync
1730 		 */
1731 		return -EBUSY;
1732 	if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1733 		return -EINVAL;
1734 
1735 	if (rdev->raid_disk >= 0)
1736 		first = last = rdev->raid_disk;
1737 
1738 	if (q->merge_bvec_fn) {
1739 		set_bit(Unmerged, &rdev->flags);
1740 		mddev->merge_check_needed = 1;
1741 	}
1742 
1743 	if (rdev->saved_raid_disk >= first &&
1744 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1745 		mirror = rdev->saved_raid_disk;
1746 	else
1747 		mirror = first;
1748 	for ( ; mirror <= last ; mirror++) {
1749 		struct raid10_info *p = &conf->mirrors[mirror];
1750 		if (p->recovery_disabled == mddev->recovery_disabled)
1751 			continue;
1752 		if (p->rdev) {
1753 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1754 			    p->replacement != NULL)
1755 				continue;
1756 			clear_bit(In_sync, &rdev->flags);
1757 			set_bit(Replacement, &rdev->flags);
1758 			rdev->raid_disk = mirror;
1759 			err = 0;
1760 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1761 					  rdev->data_offset << 9);
1762 			conf->fullsync = 1;
1763 			rcu_assign_pointer(p->replacement, rdev);
1764 			break;
1765 		}
1766 
1767 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1768 				  rdev->data_offset << 9);
1769 
1770 		p->head_position = 0;
1771 		p->recovery_disabled = mddev->recovery_disabled - 1;
1772 		rdev->raid_disk = mirror;
1773 		err = 0;
1774 		if (rdev->saved_raid_disk != mirror)
1775 			conf->fullsync = 1;
1776 		rcu_assign_pointer(p->rdev, rdev);
1777 		break;
1778 	}
1779 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1780 		/* Some requests might not have seen this new
1781 		 * merge_bvec_fn.  We must wait for them to complete
1782 		 * before merging the device fully.
1783 		 * First we make sure any code which has tested
1784 		 * our function has submitted the request, then
1785 		 * we wait for all outstanding requests to complete.
1786 		 */
1787 		synchronize_sched();
1788 		raise_barrier(conf, 0);
1789 		lower_barrier(conf);
1790 		clear_bit(Unmerged, &rdev->flags);
1791 	}
1792 	md_integrity_add_rdev(rdev, mddev);
1793 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1794 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1795 
1796 	print_conf(conf);
1797 	return err;
1798 }
1799 
1800 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1801 {
1802 	struct r10conf *conf = mddev->private;
1803 	int err = 0;
1804 	int number = rdev->raid_disk;
1805 	struct md_rdev **rdevp;
1806 	struct raid10_info *p = conf->mirrors + number;
1807 
1808 	print_conf(conf);
1809 	if (rdev == p->rdev)
1810 		rdevp = &p->rdev;
1811 	else if (rdev == p->replacement)
1812 		rdevp = &p->replacement;
1813 	else
1814 		return 0;
1815 
1816 	if (test_bit(In_sync, &rdev->flags) ||
1817 	    atomic_read(&rdev->nr_pending)) {
1818 		err = -EBUSY;
1819 		goto abort;
1820 	}
1821 	/* Only remove faulty devices if recovery
1822 	 * is not possible.
1823 	 */
1824 	if (!test_bit(Faulty, &rdev->flags) &&
1825 	    mddev->recovery_disabled != p->recovery_disabled &&
1826 	    (!p->replacement || p->replacement == rdev) &&
1827 	    number < conf->geo.raid_disks &&
1828 	    enough(conf, -1)) {
1829 		err = -EBUSY;
1830 		goto abort;
1831 	}
1832 	*rdevp = NULL;
1833 	synchronize_rcu();
1834 	if (atomic_read(&rdev->nr_pending)) {
1835 		/* lost the race, try later */
1836 		err = -EBUSY;
1837 		*rdevp = rdev;
1838 		goto abort;
1839 	} else if (p->replacement) {
1840 		/* We must have just cleared 'rdev' */
1841 		p->rdev = p->replacement;
1842 		clear_bit(Replacement, &p->replacement->flags);
1843 		smp_mb(); /* Make sure other CPUs may see both as identical
1844 			   * but will never see neither -- if they are careful.
1845 			   */
1846 		p->replacement = NULL;
1847 		clear_bit(WantReplacement, &rdev->flags);
1848 	} else
1849 		/* We might have just remove the Replacement as faulty
1850 		 * Clear the flag just in case
1851 		 */
1852 		clear_bit(WantReplacement, &rdev->flags);
1853 
1854 	err = md_integrity_register(mddev);
1855 
1856 abort:
1857 
1858 	print_conf(conf);
1859 	return err;
1860 }
1861 
1862 
1863 static void end_sync_read(struct bio *bio, int error)
1864 {
1865 	struct r10bio *r10_bio = bio->bi_private;
1866 	struct r10conf *conf = r10_bio->mddev->private;
1867 	int d;
1868 
1869 	if (bio == r10_bio->master_bio) {
1870 		/* this is a reshape read */
1871 		d = r10_bio->read_slot; /* really the read dev */
1872 	} else
1873 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1874 
1875 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1876 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1877 	else
1878 		/* The write handler will notice the lack of
1879 		 * R10BIO_Uptodate and record any errors etc
1880 		 */
1881 		atomic_add(r10_bio->sectors,
1882 			   &conf->mirrors[d].rdev->corrected_errors);
1883 
1884 	/* for reconstruct, we always reschedule after a read.
1885 	 * for resync, only after all reads
1886 	 */
1887 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1888 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1889 	    atomic_dec_and_test(&r10_bio->remaining)) {
1890 		/* we have read all the blocks,
1891 		 * do the comparison in process context in raid10d
1892 		 */
1893 		reschedule_retry(r10_bio);
1894 	}
1895 }
1896 
1897 static void end_sync_request(struct r10bio *r10_bio)
1898 {
1899 	struct mddev *mddev = r10_bio->mddev;
1900 
1901 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1902 		if (r10_bio->master_bio == NULL) {
1903 			/* the primary of several recovery bios */
1904 			sector_t s = r10_bio->sectors;
1905 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1906 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1907 				reschedule_retry(r10_bio);
1908 			else
1909 				put_buf(r10_bio);
1910 			md_done_sync(mddev, s, 1);
1911 			break;
1912 		} else {
1913 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1914 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1915 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1916 				reschedule_retry(r10_bio);
1917 			else
1918 				put_buf(r10_bio);
1919 			r10_bio = r10_bio2;
1920 		}
1921 	}
1922 }
1923 
1924 static void end_sync_write(struct bio *bio, int error)
1925 {
1926 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1927 	struct r10bio *r10_bio = bio->bi_private;
1928 	struct mddev *mddev = r10_bio->mddev;
1929 	struct r10conf *conf = mddev->private;
1930 	int d;
1931 	sector_t first_bad;
1932 	int bad_sectors;
1933 	int slot;
1934 	int repl;
1935 	struct md_rdev *rdev = NULL;
1936 
1937 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1938 	if (repl)
1939 		rdev = conf->mirrors[d].replacement;
1940 	else
1941 		rdev = conf->mirrors[d].rdev;
1942 
1943 	if (!uptodate) {
1944 		if (repl)
1945 			md_error(mddev, rdev);
1946 		else {
1947 			set_bit(WriteErrorSeen, &rdev->flags);
1948 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1949 				set_bit(MD_RECOVERY_NEEDED,
1950 					&rdev->mddev->recovery);
1951 			set_bit(R10BIO_WriteError, &r10_bio->state);
1952 		}
1953 	} else if (is_badblock(rdev,
1954 			     r10_bio->devs[slot].addr,
1955 			     r10_bio->sectors,
1956 			     &first_bad, &bad_sectors))
1957 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1958 
1959 	rdev_dec_pending(rdev, mddev);
1960 
1961 	end_sync_request(r10_bio);
1962 }
1963 
1964 /*
1965  * Note: sync and recover and handled very differently for raid10
1966  * This code is for resync.
1967  * For resync, we read through virtual addresses and read all blocks.
1968  * If there is any error, we schedule a write.  The lowest numbered
1969  * drive is authoritative.
1970  * However requests come for physical address, so we need to map.
1971  * For every physical address there are raid_disks/copies virtual addresses,
1972  * which is always are least one, but is not necessarly an integer.
1973  * This means that a physical address can span multiple chunks, so we may
1974  * have to submit multiple io requests for a single sync request.
1975  */
1976 /*
1977  * We check if all blocks are in-sync and only write to blocks that
1978  * aren't in sync
1979  */
1980 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1981 {
1982 	struct r10conf *conf = mddev->private;
1983 	int i, first;
1984 	struct bio *tbio, *fbio;
1985 	int vcnt;
1986 
1987 	atomic_set(&r10_bio->remaining, 1);
1988 
1989 	/* find the first device with a block */
1990 	for (i=0; i<conf->copies; i++)
1991 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1992 			break;
1993 
1994 	if (i == conf->copies)
1995 		goto done;
1996 
1997 	first = i;
1998 	fbio = r10_bio->devs[i].bio;
1999 
2000 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2001 	/* now find blocks with errors */
2002 	for (i=0 ; i < conf->copies ; i++) {
2003 		int  j, d;
2004 
2005 		tbio = r10_bio->devs[i].bio;
2006 
2007 		if (tbio->bi_end_io != end_sync_read)
2008 			continue;
2009 		if (i == first)
2010 			continue;
2011 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2012 			/* We know that the bi_io_vec layout is the same for
2013 			 * both 'first' and 'i', so we just compare them.
2014 			 * All vec entries are PAGE_SIZE;
2015 			 */
2016 			for (j = 0; j < vcnt; j++)
2017 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2018 					   page_address(tbio->bi_io_vec[j].bv_page),
2019 					   fbio->bi_io_vec[j].bv_len))
2020 					break;
2021 			if (j == vcnt)
2022 				continue;
2023 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2024 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2025 				/* Don't fix anything. */
2026 				continue;
2027 		}
2028 		/* Ok, we need to write this bio, either to correct an
2029 		 * inconsistency or to correct an unreadable block.
2030 		 * First we need to fixup bv_offset, bv_len and
2031 		 * bi_vecs, as the read request might have corrupted these
2032 		 */
2033 		tbio->bi_vcnt = vcnt;
2034 		tbio->bi_size = r10_bio->sectors << 9;
2035 		tbio->bi_idx = 0;
2036 		tbio->bi_phys_segments = 0;
2037 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2038 		tbio->bi_flags |= 1 << BIO_UPTODATE;
2039 		tbio->bi_next = NULL;
2040 		tbio->bi_rw = WRITE;
2041 		tbio->bi_private = r10_bio;
2042 		tbio->bi_sector = r10_bio->devs[i].addr;
2043 
2044 		for (j=0; j < vcnt ; j++) {
2045 			tbio->bi_io_vec[j].bv_offset = 0;
2046 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2047 
2048 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2049 			       page_address(fbio->bi_io_vec[j].bv_page),
2050 			       PAGE_SIZE);
2051 		}
2052 		tbio->bi_end_io = end_sync_write;
2053 
2054 		d = r10_bio->devs[i].devnum;
2055 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2056 		atomic_inc(&r10_bio->remaining);
2057 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2058 
2059 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2060 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2061 		generic_make_request(tbio);
2062 	}
2063 
2064 	/* Now write out to any replacement devices
2065 	 * that are active
2066 	 */
2067 	for (i = 0; i < conf->copies; i++) {
2068 		int j, d;
2069 
2070 		tbio = r10_bio->devs[i].repl_bio;
2071 		if (!tbio || !tbio->bi_end_io)
2072 			continue;
2073 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2074 		    && r10_bio->devs[i].bio != fbio)
2075 			for (j = 0; j < vcnt; j++)
2076 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2077 				       page_address(fbio->bi_io_vec[j].bv_page),
2078 				       PAGE_SIZE);
2079 		d = r10_bio->devs[i].devnum;
2080 		atomic_inc(&r10_bio->remaining);
2081 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2082 			     tbio->bi_size >> 9);
2083 		generic_make_request(tbio);
2084 	}
2085 
2086 done:
2087 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2088 		md_done_sync(mddev, r10_bio->sectors, 1);
2089 		put_buf(r10_bio);
2090 	}
2091 }
2092 
2093 /*
2094  * Now for the recovery code.
2095  * Recovery happens across physical sectors.
2096  * We recover all non-is_sync drives by finding the virtual address of
2097  * each, and then choose a working drive that also has that virt address.
2098  * There is a separate r10_bio for each non-in_sync drive.
2099  * Only the first two slots are in use. The first for reading,
2100  * The second for writing.
2101  *
2102  */
2103 static void fix_recovery_read_error(struct r10bio *r10_bio)
2104 {
2105 	/* We got a read error during recovery.
2106 	 * We repeat the read in smaller page-sized sections.
2107 	 * If a read succeeds, write it to the new device or record
2108 	 * a bad block if we cannot.
2109 	 * If a read fails, record a bad block on both old and
2110 	 * new devices.
2111 	 */
2112 	struct mddev *mddev = r10_bio->mddev;
2113 	struct r10conf *conf = mddev->private;
2114 	struct bio *bio = r10_bio->devs[0].bio;
2115 	sector_t sect = 0;
2116 	int sectors = r10_bio->sectors;
2117 	int idx = 0;
2118 	int dr = r10_bio->devs[0].devnum;
2119 	int dw = r10_bio->devs[1].devnum;
2120 
2121 	while (sectors) {
2122 		int s = sectors;
2123 		struct md_rdev *rdev;
2124 		sector_t addr;
2125 		int ok;
2126 
2127 		if (s > (PAGE_SIZE>>9))
2128 			s = PAGE_SIZE >> 9;
2129 
2130 		rdev = conf->mirrors[dr].rdev;
2131 		addr = r10_bio->devs[0].addr + sect,
2132 		ok = sync_page_io(rdev,
2133 				  addr,
2134 				  s << 9,
2135 				  bio->bi_io_vec[idx].bv_page,
2136 				  READ, false);
2137 		if (ok) {
2138 			rdev = conf->mirrors[dw].rdev;
2139 			addr = r10_bio->devs[1].addr + sect;
2140 			ok = sync_page_io(rdev,
2141 					  addr,
2142 					  s << 9,
2143 					  bio->bi_io_vec[idx].bv_page,
2144 					  WRITE, false);
2145 			if (!ok) {
2146 				set_bit(WriteErrorSeen, &rdev->flags);
2147 				if (!test_and_set_bit(WantReplacement,
2148 						      &rdev->flags))
2149 					set_bit(MD_RECOVERY_NEEDED,
2150 						&rdev->mddev->recovery);
2151 			}
2152 		}
2153 		if (!ok) {
2154 			/* We don't worry if we cannot set a bad block -
2155 			 * it really is bad so there is no loss in not
2156 			 * recording it yet
2157 			 */
2158 			rdev_set_badblocks(rdev, addr, s, 0);
2159 
2160 			if (rdev != conf->mirrors[dw].rdev) {
2161 				/* need bad block on destination too */
2162 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2163 				addr = r10_bio->devs[1].addr + sect;
2164 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2165 				if (!ok) {
2166 					/* just abort the recovery */
2167 					printk(KERN_NOTICE
2168 					       "md/raid10:%s: recovery aborted"
2169 					       " due to read error\n",
2170 					       mdname(mddev));
2171 
2172 					conf->mirrors[dw].recovery_disabled
2173 						= mddev->recovery_disabled;
2174 					set_bit(MD_RECOVERY_INTR,
2175 						&mddev->recovery);
2176 					break;
2177 				}
2178 			}
2179 		}
2180 
2181 		sectors -= s;
2182 		sect += s;
2183 		idx++;
2184 	}
2185 }
2186 
2187 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2188 {
2189 	struct r10conf *conf = mddev->private;
2190 	int d;
2191 	struct bio *wbio, *wbio2;
2192 
2193 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2194 		fix_recovery_read_error(r10_bio);
2195 		end_sync_request(r10_bio);
2196 		return;
2197 	}
2198 
2199 	/*
2200 	 * share the pages with the first bio
2201 	 * and submit the write request
2202 	 */
2203 	d = r10_bio->devs[1].devnum;
2204 	wbio = r10_bio->devs[1].bio;
2205 	wbio2 = r10_bio->devs[1].repl_bio;
2206 	if (wbio->bi_end_io) {
2207 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2208 		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2209 		generic_make_request(wbio);
2210 	}
2211 	if (wbio2 && wbio2->bi_end_io) {
2212 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2213 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2214 			     wbio2->bi_size >> 9);
2215 		generic_make_request(wbio2);
2216 	}
2217 }
2218 
2219 
2220 /*
2221  * Used by fix_read_error() to decay the per rdev read_errors.
2222  * We halve the read error count for every hour that has elapsed
2223  * since the last recorded read error.
2224  *
2225  */
2226 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2227 {
2228 	struct timespec cur_time_mon;
2229 	unsigned long hours_since_last;
2230 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2231 
2232 	ktime_get_ts(&cur_time_mon);
2233 
2234 	if (rdev->last_read_error.tv_sec == 0 &&
2235 	    rdev->last_read_error.tv_nsec == 0) {
2236 		/* first time we've seen a read error */
2237 		rdev->last_read_error = cur_time_mon;
2238 		return;
2239 	}
2240 
2241 	hours_since_last = (cur_time_mon.tv_sec -
2242 			    rdev->last_read_error.tv_sec) / 3600;
2243 
2244 	rdev->last_read_error = cur_time_mon;
2245 
2246 	/*
2247 	 * if hours_since_last is > the number of bits in read_errors
2248 	 * just set read errors to 0. We do this to avoid
2249 	 * overflowing the shift of read_errors by hours_since_last.
2250 	 */
2251 	if (hours_since_last >= 8 * sizeof(read_errors))
2252 		atomic_set(&rdev->read_errors, 0);
2253 	else
2254 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2255 }
2256 
2257 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2258 			    int sectors, struct page *page, int rw)
2259 {
2260 	sector_t first_bad;
2261 	int bad_sectors;
2262 
2263 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2264 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2265 		return -1;
2266 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2267 		/* success */
2268 		return 1;
2269 	if (rw == WRITE) {
2270 		set_bit(WriteErrorSeen, &rdev->flags);
2271 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2272 			set_bit(MD_RECOVERY_NEEDED,
2273 				&rdev->mddev->recovery);
2274 	}
2275 	/* need to record an error - either for the block or the device */
2276 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2277 		md_error(rdev->mddev, rdev);
2278 	return 0;
2279 }
2280 
2281 /*
2282  * This is a kernel thread which:
2283  *
2284  *	1.	Retries failed read operations on working mirrors.
2285  *	2.	Updates the raid superblock when problems encounter.
2286  *	3.	Performs writes following reads for array synchronising.
2287  */
2288 
2289 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2290 {
2291 	int sect = 0; /* Offset from r10_bio->sector */
2292 	int sectors = r10_bio->sectors;
2293 	struct md_rdev*rdev;
2294 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2295 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2296 
2297 	/* still own a reference to this rdev, so it cannot
2298 	 * have been cleared recently.
2299 	 */
2300 	rdev = conf->mirrors[d].rdev;
2301 
2302 	if (test_bit(Faulty, &rdev->flags))
2303 		/* drive has already been failed, just ignore any
2304 		   more fix_read_error() attempts */
2305 		return;
2306 
2307 	check_decay_read_errors(mddev, rdev);
2308 	atomic_inc(&rdev->read_errors);
2309 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2310 		char b[BDEVNAME_SIZE];
2311 		bdevname(rdev->bdev, b);
2312 
2313 		printk(KERN_NOTICE
2314 		       "md/raid10:%s: %s: Raid device exceeded "
2315 		       "read_error threshold [cur %d:max %d]\n",
2316 		       mdname(mddev), b,
2317 		       atomic_read(&rdev->read_errors), max_read_errors);
2318 		printk(KERN_NOTICE
2319 		       "md/raid10:%s: %s: Failing raid device\n",
2320 		       mdname(mddev), b);
2321 		md_error(mddev, conf->mirrors[d].rdev);
2322 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2323 		return;
2324 	}
2325 
2326 	while(sectors) {
2327 		int s = sectors;
2328 		int sl = r10_bio->read_slot;
2329 		int success = 0;
2330 		int start;
2331 
2332 		if (s > (PAGE_SIZE>>9))
2333 			s = PAGE_SIZE >> 9;
2334 
2335 		rcu_read_lock();
2336 		do {
2337 			sector_t first_bad;
2338 			int bad_sectors;
2339 
2340 			d = r10_bio->devs[sl].devnum;
2341 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2342 			if (rdev &&
2343 			    !test_bit(Unmerged, &rdev->flags) &&
2344 			    test_bit(In_sync, &rdev->flags) &&
2345 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2346 					&first_bad, &bad_sectors) == 0) {
2347 				atomic_inc(&rdev->nr_pending);
2348 				rcu_read_unlock();
2349 				success = sync_page_io(rdev,
2350 						       r10_bio->devs[sl].addr +
2351 						       sect,
2352 						       s<<9,
2353 						       conf->tmppage, READ, false);
2354 				rdev_dec_pending(rdev, mddev);
2355 				rcu_read_lock();
2356 				if (success)
2357 					break;
2358 			}
2359 			sl++;
2360 			if (sl == conf->copies)
2361 				sl = 0;
2362 		} while (!success && sl != r10_bio->read_slot);
2363 		rcu_read_unlock();
2364 
2365 		if (!success) {
2366 			/* Cannot read from anywhere, just mark the block
2367 			 * as bad on the first device to discourage future
2368 			 * reads.
2369 			 */
2370 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2371 			rdev = conf->mirrors[dn].rdev;
2372 
2373 			if (!rdev_set_badblocks(
2374 				    rdev,
2375 				    r10_bio->devs[r10_bio->read_slot].addr
2376 				    + sect,
2377 				    s, 0)) {
2378 				md_error(mddev, rdev);
2379 				r10_bio->devs[r10_bio->read_slot].bio
2380 					= IO_BLOCKED;
2381 			}
2382 			break;
2383 		}
2384 
2385 		start = sl;
2386 		/* write it back and re-read */
2387 		rcu_read_lock();
2388 		while (sl != r10_bio->read_slot) {
2389 			char b[BDEVNAME_SIZE];
2390 
2391 			if (sl==0)
2392 				sl = conf->copies;
2393 			sl--;
2394 			d = r10_bio->devs[sl].devnum;
2395 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2396 			if (!rdev ||
2397 			    test_bit(Unmerged, &rdev->flags) ||
2398 			    !test_bit(In_sync, &rdev->flags))
2399 				continue;
2400 
2401 			atomic_inc(&rdev->nr_pending);
2402 			rcu_read_unlock();
2403 			if (r10_sync_page_io(rdev,
2404 					     r10_bio->devs[sl].addr +
2405 					     sect,
2406 					     s, conf->tmppage, WRITE)
2407 			    == 0) {
2408 				/* Well, this device is dead */
2409 				printk(KERN_NOTICE
2410 				       "md/raid10:%s: read correction "
2411 				       "write failed"
2412 				       " (%d sectors at %llu on %s)\n",
2413 				       mdname(mddev), s,
2414 				       (unsigned long long)(
2415 					       sect +
2416 					       choose_data_offset(r10_bio,
2417 								  rdev)),
2418 				       bdevname(rdev->bdev, b));
2419 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2420 				       "drive\n",
2421 				       mdname(mddev),
2422 				       bdevname(rdev->bdev, b));
2423 			}
2424 			rdev_dec_pending(rdev, mddev);
2425 			rcu_read_lock();
2426 		}
2427 		sl = start;
2428 		while (sl != r10_bio->read_slot) {
2429 			char b[BDEVNAME_SIZE];
2430 
2431 			if (sl==0)
2432 				sl = conf->copies;
2433 			sl--;
2434 			d = r10_bio->devs[sl].devnum;
2435 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2436 			if (!rdev ||
2437 			    !test_bit(In_sync, &rdev->flags))
2438 				continue;
2439 
2440 			atomic_inc(&rdev->nr_pending);
2441 			rcu_read_unlock();
2442 			switch (r10_sync_page_io(rdev,
2443 					     r10_bio->devs[sl].addr +
2444 					     sect,
2445 					     s, conf->tmppage,
2446 						 READ)) {
2447 			case 0:
2448 				/* Well, this device is dead */
2449 				printk(KERN_NOTICE
2450 				       "md/raid10:%s: unable to read back "
2451 				       "corrected sectors"
2452 				       " (%d sectors at %llu on %s)\n",
2453 				       mdname(mddev), s,
2454 				       (unsigned long long)(
2455 					       sect +
2456 					       choose_data_offset(r10_bio, rdev)),
2457 				       bdevname(rdev->bdev, b));
2458 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2459 				       "drive\n",
2460 				       mdname(mddev),
2461 				       bdevname(rdev->bdev, b));
2462 				break;
2463 			case 1:
2464 				printk(KERN_INFO
2465 				       "md/raid10:%s: read error corrected"
2466 				       " (%d sectors at %llu on %s)\n",
2467 				       mdname(mddev), s,
2468 				       (unsigned long long)(
2469 					       sect +
2470 					       choose_data_offset(r10_bio, rdev)),
2471 				       bdevname(rdev->bdev, b));
2472 				atomic_add(s, &rdev->corrected_errors);
2473 			}
2474 
2475 			rdev_dec_pending(rdev, mddev);
2476 			rcu_read_lock();
2477 		}
2478 		rcu_read_unlock();
2479 
2480 		sectors -= s;
2481 		sect += s;
2482 	}
2483 }
2484 
2485 static void bi_complete(struct bio *bio, int error)
2486 {
2487 	complete((struct completion *)bio->bi_private);
2488 }
2489 
2490 static int submit_bio_wait(int rw, struct bio *bio)
2491 {
2492 	struct completion event;
2493 	rw |= REQ_SYNC;
2494 
2495 	init_completion(&event);
2496 	bio->bi_private = &event;
2497 	bio->bi_end_io = bi_complete;
2498 	submit_bio(rw, bio);
2499 	wait_for_completion(&event);
2500 
2501 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2502 }
2503 
2504 static int narrow_write_error(struct r10bio *r10_bio, int i)
2505 {
2506 	struct bio *bio = r10_bio->master_bio;
2507 	struct mddev *mddev = r10_bio->mddev;
2508 	struct r10conf *conf = mddev->private;
2509 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2510 	/* bio has the data to be written to slot 'i' where
2511 	 * we just recently had a write error.
2512 	 * We repeatedly clone the bio and trim down to one block,
2513 	 * then try the write.  Where the write fails we record
2514 	 * a bad block.
2515 	 * It is conceivable that the bio doesn't exactly align with
2516 	 * blocks.  We must handle this.
2517 	 *
2518 	 * We currently own a reference to the rdev.
2519 	 */
2520 
2521 	int block_sectors;
2522 	sector_t sector;
2523 	int sectors;
2524 	int sect_to_write = r10_bio->sectors;
2525 	int ok = 1;
2526 
2527 	if (rdev->badblocks.shift < 0)
2528 		return 0;
2529 
2530 	block_sectors = 1 << rdev->badblocks.shift;
2531 	sector = r10_bio->sector;
2532 	sectors = ((r10_bio->sector + block_sectors)
2533 		   & ~(sector_t)(block_sectors - 1))
2534 		- sector;
2535 
2536 	while (sect_to_write) {
2537 		struct bio *wbio;
2538 		if (sectors > sect_to_write)
2539 			sectors = sect_to_write;
2540 		/* Write at 'sector' for 'sectors' */
2541 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2542 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2543 		wbio->bi_sector = (r10_bio->devs[i].addr+
2544 				   choose_data_offset(r10_bio, rdev) +
2545 				   (sector - r10_bio->sector));
2546 		wbio->bi_bdev = rdev->bdev;
2547 		if (submit_bio_wait(WRITE, wbio) == 0)
2548 			/* Failure! */
2549 			ok = rdev_set_badblocks(rdev, sector,
2550 						sectors, 0)
2551 				&& ok;
2552 
2553 		bio_put(wbio);
2554 		sect_to_write -= sectors;
2555 		sector += sectors;
2556 		sectors = block_sectors;
2557 	}
2558 	return ok;
2559 }
2560 
2561 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2562 {
2563 	int slot = r10_bio->read_slot;
2564 	struct bio *bio;
2565 	struct r10conf *conf = mddev->private;
2566 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2567 	char b[BDEVNAME_SIZE];
2568 	unsigned long do_sync;
2569 	int max_sectors;
2570 
2571 	/* we got a read error. Maybe the drive is bad.  Maybe just
2572 	 * the block and we can fix it.
2573 	 * We freeze all other IO, and try reading the block from
2574 	 * other devices.  When we find one, we re-write
2575 	 * and check it that fixes the read error.
2576 	 * This is all done synchronously while the array is
2577 	 * frozen.
2578 	 */
2579 	bio = r10_bio->devs[slot].bio;
2580 	bdevname(bio->bi_bdev, b);
2581 	bio_put(bio);
2582 	r10_bio->devs[slot].bio = NULL;
2583 
2584 	if (mddev->ro == 0) {
2585 		freeze_array(conf);
2586 		fix_read_error(conf, mddev, r10_bio);
2587 		unfreeze_array(conf);
2588 	} else
2589 		r10_bio->devs[slot].bio = IO_BLOCKED;
2590 
2591 	rdev_dec_pending(rdev, mddev);
2592 
2593 read_more:
2594 	rdev = read_balance(conf, r10_bio, &max_sectors);
2595 	if (rdev == NULL) {
2596 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2597 		       " read error for block %llu\n",
2598 		       mdname(mddev), b,
2599 		       (unsigned long long)r10_bio->sector);
2600 		raid_end_bio_io(r10_bio);
2601 		return;
2602 	}
2603 
2604 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2605 	slot = r10_bio->read_slot;
2606 	printk_ratelimited(
2607 		KERN_ERR
2608 		"md/raid10:%s: %s: redirecting "
2609 		"sector %llu to another mirror\n",
2610 		mdname(mddev),
2611 		bdevname(rdev->bdev, b),
2612 		(unsigned long long)r10_bio->sector);
2613 	bio = bio_clone_mddev(r10_bio->master_bio,
2614 			      GFP_NOIO, mddev);
2615 	md_trim_bio(bio,
2616 		    r10_bio->sector - bio->bi_sector,
2617 		    max_sectors);
2618 	r10_bio->devs[slot].bio = bio;
2619 	r10_bio->devs[slot].rdev = rdev;
2620 	bio->bi_sector = r10_bio->devs[slot].addr
2621 		+ choose_data_offset(r10_bio, rdev);
2622 	bio->bi_bdev = rdev->bdev;
2623 	bio->bi_rw = READ | do_sync;
2624 	bio->bi_private = r10_bio;
2625 	bio->bi_end_io = raid10_end_read_request;
2626 	if (max_sectors < r10_bio->sectors) {
2627 		/* Drat - have to split this up more */
2628 		struct bio *mbio = r10_bio->master_bio;
2629 		int sectors_handled =
2630 			r10_bio->sector + max_sectors
2631 			- mbio->bi_sector;
2632 		r10_bio->sectors = max_sectors;
2633 		spin_lock_irq(&conf->device_lock);
2634 		if (mbio->bi_phys_segments == 0)
2635 			mbio->bi_phys_segments = 2;
2636 		else
2637 			mbio->bi_phys_segments++;
2638 		spin_unlock_irq(&conf->device_lock);
2639 		generic_make_request(bio);
2640 
2641 		r10_bio = mempool_alloc(conf->r10bio_pool,
2642 					GFP_NOIO);
2643 		r10_bio->master_bio = mbio;
2644 		r10_bio->sectors = (mbio->bi_size >> 9)
2645 			- sectors_handled;
2646 		r10_bio->state = 0;
2647 		set_bit(R10BIO_ReadError,
2648 			&r10_bio->state);
2649 		r10_bio->mddev = mddev;
2650 		r10_bio->sector = mbio->bi_sector
2651 			+ sectors_handled;
2652 
2653 		goto read_more;
2654 	} else
2655 		generic_make_request(bio);
2656 }
2657 
2658 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2659 {
2660 	/* Some sort of write request has finished and it
2661 	 * succeeded in writing where we thought there was a
2662 	 * bad block.  So forget the bad block.
2663 	 * Or possibly if failed and we need to record
2664 	 * a bad block.
2665 	 */
2666 	int m;
2667 	struct md_rdev *rdev;
2668 
2669 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2670 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2671 		for (m = 0; m < conf->copies; m++) {
2672 			int dev = r10_bio->devs[m].devnum;
2673 			rdev = conf->mirrors[dev].rdev;
2674 			if (r10_bio->devs[m].bio == NULL)
2675 				continue;
2676 			if (test_bit(BIO_UPTODATE,
2677 				     &r10_bio->devs[m].bio->bi_flags)) {
2678 				rdev_clear_badblocks(
2679 					rdev,
2680 					r10_bio->devs[m].addr,
2681 					r10_bio->sectors, 0);
2682 			} else {
2683 				if (!rdev_set_badblocks(
2684 					    rdev,
2685 					    r10_bio->devs[m].addr,
2686 					    r10_bio->sectors, 0))
2687 					md_error(conf->mddev, rdev);
2688 			}
2689 			rdev = conf->mirrors[dev].replacement;
2690 			if (r10_bio->devs[m].repl_bio == NULL)
2691 				continue;
2692 			if (test_bit(BIO_UPTODATE,
2693 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2694 				rdev_clear_badblocks(
2695 					rdev,
2696 					r10_bio->devs[m].addr,
2697 					r10_bio->sectors, 0);
2698 			} else {
2699 				if (!rdev_set_badblocks(
2700 					    rdev,
2701 					    r10_bio->devs[m].addr,
2702 					    r10_bio->sectors, 0))
2703 					md_error(conf->mddev, rdev);
2704 			}
2705 		}
2706 		put_buf(r10_bio);
2707 	} else {
2708 		for (m = 0; m < conf->copies; m++) {
2709 			int dev = r10_bio->devs[m].devnum;
2710 			struct bio *bio = r10_bio->devs[m].bio;
2711 			rdev = conf->mirrors[dev].rdev;
2712 			if (bio == IO_MADE_GOOD) {
2713 				rdev_clear_badblocks(
2714 					rdev,
2715 					r10_bio->devs[m].addr,
2716 					r10_bio->sectors, 0);
2717 				rdev_dec_pending(rdev, conf->mddev);
2718 			} else if (bio != NULL &&
2719 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2720 				if (!narrow_write_error(r10_bio, m)) {
2721 					md_error(conf->mddev, rdev);
2722 					set_bit(R10BIO_Degraded,
2723 						&r10_bio->state);
2724 				}
2725 				rdev_dec_pending(rdev, conf->mddev);
2726 			}
2727 			bio = r10_bio->devs[m].repl_bio;
2728 			rdev = conf->mirrors[dev].replacement;
2729 			if (rdev && bio == IO_MADE_GOOD) {
2730 				rdev_clear_badblocks(
2731 					rdev,
2732 					r10_bio->devs[m].addr,
2733 					r10_bio->sectors, 0);
2734 				rdev_dec_pending(rdev, conf->mddev);
2735 			}
2736 		}
2737 		if (test_bit(R10BIO_WriteError,
2738 			     &r10_bio->state))
2739 			close_write(r10_bio);
2740 		raid_end_bio_io(r10_bio);
2741 	}
2742 }
2743 
2744 static void raid10d(struct md_thread *thread)
2745 {
2746 	struct mddev *mddev = thread->mddev;
2747 	struct r10bio *r10_bio;
2748 	unsigned long flags;
2749 	struct r10conf *conf = mddev->private;
2750 	struct list_head *head = &conf->retry_list;
2751 	struct blk_plug plug;
2752 
2753 	md_check_recovery(mddev);
2754 
2755 	blk_start_plug(&plug);
2756 	for (;;) {
2757 
2758 		flush_pending_writes(conf);
2759 
2760 		spin_lock_irqsave(&conf->device_lock, flags);
2761 		if (list_empty(head)) {
2762 			spin_unlock_irqrestore(&conf->device_lock, flags);
2763 			break;
2764 		}
2765 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2766 		list_del(head->prev);
2767 		conf->nr_queued--;
2768 		spin_unlock_irqrestore(&conf->device_lock, flags);
2769 
2770 		mddev = r10_bio->mddev;
2771 		conf = mddev->private;
2772 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2773 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2774 			handle_write_completed(conf, r10_bio);
2775 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2776 			reshape_request_write(mddev, r10_bio);
2777 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2778 			sync_request_write(mddev, r10_bio);
2779 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2780 			recovery_request_write(mddev, r10_bio);
2781 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2782 			handle_read_error(mddev, r10_bio);
2783 		else {
2784 			/* just a partial read to be scheduled from a
2785 			 * separate context
2786 			 */
2787 			int slot = r10_bio->read_slot;
2788 			generic_make_request(r10_bio->devs[slot].bio);
2789 		}
2790 
2791 		cond_resched();
2792 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2793 			md_check_recovery(mddev);
2794 	}
2795 	blk_finish_plug(&plug);
2796 }
2797 
2798 
2799 static int init_resync(struct r10conf *conf)
2800 {
2801 	int buffs;
2802 	int i;
2803 
2804 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2805 	BUG_ON(conf->r10buf_pool);
2806 	conf->have_replacement = 0;
2807 	for (i = 0; i < conf->geo.raid_disks; i++)
2808 		if (conf->mirrors[i].replacement)
2809 			conf->have_replacement = 1;
2810 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2811 	if (!conf->r10buf_pool)
2812 		return -ENOMEM;
2813 	conf->next_resync = 0;
2814 	return 0;
2815 }
2816 
2817 /*
2818  * perform a "sync" on one "block"
2819  *
2820  * We need to make sure that no normal I/O request - particularly write
2821  * requests - conflict with active sync requests.
2822  *
2823  * This is achieved by tracking pending requests and a 'barrier' concept
2824  * that can be installed to exclude normal IO requests.
2825  *
2826  * Resync and recovery are handled very differently.
2827  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2828  *
2829  * For resync, we iterate over virtual addresses, read all copies,
2830  * and update if there are differences.  If only one copy is live,
2831  * skip it.
2832  * For recovery, we iterate over physical addresses, read a good
2833  * value for each non-in_sync drive, and over-write.
2834  *
2835  * So, for recovery we may have several outstanding complex requests for a
2836  * given address, one for each out-of-sync device.  We model this by allocating
2837  * a number of r10_bio structures, one for each out-of-sync device.
2838  * As we setup these structures, we collect all bio's together into a list
2839  * which we then process collectively to add pages, and then process again
2840  * to pass to generic_make_request.
2841  *
2842  * The r10_bio structures are linked using a borrowed master_bio pointer.
2843  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2844  * has its remaining count decremented to 0, the whole complex operation
2845  * is complete.
2846  *
2847  */
2848 
2849 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2850 			     int *skipped, int go_faster)
2851 {
2852 	struct r10conf *conf = mddev->private;
2853 	struct r10bio *r10_bio;
2854 	struct bio *biolist = NULL, *bio;
2855 	sector_t max_sector, nr_sectors;
2856 	int i;
2857 	int max_sync;
2858 	sector_t sync_blocks;
2859 	sector_t sectors_skipped = 0;
2860 	int chunks_skipped = 0;
2861 	sector_t chunk_mask = conf->geo.chunk_mask;
2862 
2863 	if (!conf->r10buf_pool)
2864 		if (init_resync(conf))
2865 			return 0;
2866 
2867  skipped:
2868 	max_sector = mddev->dev_sectors;
2869 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2870 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2871 		max_sector = mddev->resync_max_sectors;
2872 	if (sector_nr >= max_sector) {
2873 		/* If we aborted, we need to abort the
2874 		 * sync on the 'current' bitmap chucks (there can
2875 		 * be several when recovering multiple devices).
2876 		 * as we may have started syncing it but not finished.
2877 		 * We can find the current address in
2878 		 * mddev->curr_resync, but for recovery,
2879 		 * we need to convert that to several
2880 		 * virtual addresses.
2881 		 */
2882 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2883 			end_reshape(conf);
2884 			return 0;
2885 		}
2886 
2887 		if (mddev->curr_resync < max_sector) { /* aborted */
2888 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2889 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2890 						&sync_blocks, 1);
2891 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2892 				sector_t sect =
2893 					raid10_find_virt(conf, mddev->curr_resync, i);
2894 				bitmap_end_sync(mddev->bitmap, sect,
2895 						&sync_blocks, 1);
2896 			}
2897 		} else {
2898 			/* completed sync */
2899 			if ((!mddev->bitmap || conf->fullsync)
2900 			    && conf->have_replacement
2901 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2902 				/* Completed a full sync so the replacements
2903 				 * are now fully recovered.
2904 				 */
2905 				for (i = 0; i < conf->geo.raid_disks; i++)
2906 					if (conf->mirrors[i].replacement)
2907 						conf->mirrors[i].replacement
2908 							->recovery_offset
2909 							= MaxSector;
2910 			}
2911 			conf->fullsync = 0;
2912 		}
2913 		bitmap_close_sync(mddev->bitmap);
2914 		close_sync(conf);
2915 		*skipped = 1;
2916 		return sectors_skipped;
2917 	}
2918 
2919 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2920 		return reshape_request(mddev, sector_nr, skipped);
2921 
2922 	if (chunks_skipped >= conf->geo.raid_disks) {
2923 		/* if there has been nothing to do on any drive,
2924 		 * then there is nothing to do at all..
2925 		 */
2926 		*skipped = 1;
2927 		return (max_sector - sector_nr) + sectors_skipped;
2928 	}
2929 
2930 	if (max_sector > mddev->resync_max)
2931 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2932 
2933 	/* make sure whole request will fit in a chunk - if chunks
2934 	 * are meaningful
2935 	 */
2936 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2937 	    max_sector > (sector_nr | chunk_mask))
2938 		max_sector = (sector_nr | chunk_mask) + 1;
2939 	/*
2940 	 * If there is non-resync activity waiting for us then
2941 	 * put in a delay to throttle resync.
2942 	 */
2943 	if (!go_faster && conf->nr_waiting)
2944 		msleep_interruptible(1000);
2945 
2946 	/* Again, very different code for resync and recovery.
2947 	 * Both must result in an r10bio with a list of bios that
2948 	 * have bi_end_io, bi_sector, bi_bdev set,
2949 	 * and bi_private set to the r10bio.
2950 	 * For recovery, we may actually create several r10bios
2951 	 * with 2 bios in each, that correspond to the bios in the main one.
2952 	 * In this case, the subordinate r10bios link back through a
2953 	 * borrowed master_bio pointer, and the counter in the master
2954 	 * includes a ref from each subordinate.
2955 	 */
2956 	/* First, we decide what to do and set ->bi_end_io
2957 	 * To end_sync_read if we want to read, and
2958 	 * end_sync_write if we will want to write.
2959 	 */
2960 
2961 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2962 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2963 		/* recovery... the complicated one */
2964 		int j;
2965 		r10_bio = NULL;
2966 
2967 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2968 			int still_degraded;
2969 			struct r10bio *rb2;
2970 			sector_t sect;
2971 			int must_sync;
2972 			int any_working;
2973 			struct raid10_info *mirror = &conf->mirrors[i];
2974 
2975 			if ((mirror->rdev == NULL ||
2976 			     test_bit(In_sync, &mirror->rdev->flags))
2977 			    &&
2978 			    (mirror->replacement == NULL ||
2979 			     test_bit(Faulty,
2980 				      &mirror->replacement->flags)))
2981 				continue;
2982 
2983 			still_degraded = 0;
2984 			/* want to reconstruct this device */
2985 			rb2 = r10_bio;
2986 			sect = raid10_find_virt(conf, sector_nr, i);
2987 			if (sect >= mddev->resync_max_sectors) {
2988 				/* last stripe is not complete - don't
2989 				 * try to recover this sector.
2990 				 */
2991 				continue;
2992 			}
2993 			/* Unless we are doing a full sync, or a replacement
2994 			 * we only need to recover the block if it is set in
2995 			 * the bitmap
2996 			 */
2997 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2998 						      &sync_blocks, 1);
2999 			if (sync_blocks < max_sync)
3000 				max_sync = sync_blocks;
3001 			if (!must_sync &&
3002 			    mirror->replacement == NULL &&
3003 			    !conf->fullsync) {
3004 				/* yep, skip the sync_blocks here, but don't assume
3005 				 * that there will never be anything to do here
3006 				 */
3007 				chunks_skipped = -1;
3008 				continue;
3009 			}
3010 
3011 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3012 			raise_barrier(conf, rb2 != NULL);
3013 			atomic_set(&r10_bio->remaining, 0);
3014 
3015 			r10_bio->master_bio = (struct bio*)rb2;
3016 			if (rb2)
3017 				atomic_inc(&rb2->remaining);
3018 			r10_bio->mddev = mddev;
3019 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3020 			r10_bio->sector = sect;
3021 
3022 			raid10_find_phys(conf, r10_bio);
3023 
3024 			/* Need to check if the array will still be
3025 			 * degraded
3026 			 */
3027 			for (j = 0; j < conf->geo.raid_disks; j++)
3028 				if (conf->mirrors[j].rdev == NULL ||
3029 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3030 					still_degraded = 1;
3031 					break;
3032 				}
3033 
3034 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3035 						      &sync_blocks, still_degraded);
3036 
3037 			any_working = 0;
3038 			for (j=0; j<conf->copies;j++) {
3039 				int k;
3040 				int d = r10_bio->devs[j].devnum;
3041 				sector_t from_addr, to_addr;
3042 				struct md_rdev *rdev;
3043 				sector_t sector, first_bad;
3044 				int bad_sectors;
3045 				if (!conf->mirrors[d].rdev ||
3046 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3047 					continue;
3048 				/* This is where we read from */
3049 				any_working = 1;
3050 				rdev = conf->mirrors[d].rdev;
3051 				sector = r10_bio->devs[j].addr;
3052 
3053 				if (is_badblock(rdev, sector, max_sync,
3054 						&first_bad, &bad_sectors)) {
3055 					if (first_bad > sector)
3056 						max_sync = first_bad - sector;
3057 					else {
3058 						bad_sectors -= (sector
3059 								- first_bad);
3060 						if (max_sync > bad_sectors)
3061 							max_sync = bad_sectors;
3062 						continue;
3063 					}
3064 				}
3065 				bio = r10_bio->devs[0].bio;
3066 				bio->bi_next = biolist;
3067 				biolist = bio;
3068 				bio->bi_private = r10_bio;
3069 				bio->bi_end_io = end_sync_read;
3070 				bio->bi_rw = READ;
3071 				from_addr = r10_bio->devs[j].addr;
3072 				bio->bi_sector = from_addr + rdev->data_offset;
3073 				bio->bi_bdev = rdev->bdev;
3074 				atomic_inc(&rdev->nr_pending);
3075 				/* and we write to 'i' (if not in_sync) */
3076 
3077 				for (k=0; k<conf->copies; k++)
3078 					if (r10_bio->devs[k].devnum == i)
3079 						break;
3080 				BUG_ON(k == conf->copies);
3081 				to_addr = r10_bio->devs[k].addr;
3082 				r10_bio->devs[0].devnum = d;
3083 				r10_bio->devs[0].addr = from_addr;
3084 				r10_bio->devs[1].devnum = i;
3085 				r10_bio->devs[1].addr = to_addr;
3086 
3087 				rdev = mirror->rdev;
3088 				if (!test_bit(In_sync, &rdev->flags)) {
3089 					bio = r10_bio->devs[1].bio;
3090 					bio->bi_next = biolist;
3091 					biolist = bio;
3092 					bio->bi_private = r10_bio;
3093 					bio->bi_end_io = end_sync_write;
3094 					bio->bi_rw = WRITE;
3095 					bio->bi_sector = to_addr
3096 						+ rdev->data_offset;
3097 					bio->bi_bdev = rdev->bdev;
3098 					atomic_inc(&r10_bio->remaining);
3099 				} else
3100 					r10_bio->devs[1].bio->bi_end_io = NULL;
3101 
3102 				/* and maybe write to replacement */
3103 				bio = r10_bio->devs[1].repl_bio;
3104 				if (bio)
3105 					bio->bi_end_io = NULL;
3106 				rdev = mirror->replacement;
3107 				/* Note: if rdev != NULL, then bio
3108 				 * cannot be NULL as r10buf_pool_alloc will
3109 				 * have allocated it.
3110 				 * So the second test here is pointless.
3111 				 * But it keeps semantic-checkers happy, and
3112 				 * this comment keeps human reviewers
3113 				 * happy.
3114 				 */
3115 				if (rdev == NULL || bio == NULL ||
3116 				    test_bit(Faulty, &rdev->flags))
3117 					break;
3118 				bio->bi_next = biolist;
3119 				biolist = bio;
3120 				bio->bi_private = r10_bio;
3121 				bio->bi_end_io = end_sync_write;
3122 				bio->bi_rw = WRITE;
3123 				bio->bi_sector = to_addr + rdev->data_offset;
3124 				bio->bi_bdev = rdev->bdev;
3125 				atomic_inc(&r10_bio->remaining);
3126 				break;
3127 			}
3128 			if (j == conf->copies) {
3129 				/* Cannot recover, so abort the recovery or
3130 				 * record a bad block */
3131 				put_buf(r10_bio);
3132 				if (rb2)
3133 					atomic_dec(&rb2->remaining);
3134 				r10_bio = rb2;
3135 				if (any_working) {
3136 					/* problem is that there are bad blocks
3137 					 * on other device(s)
3138 					 */
3139 					int k;
3140 					for (k = 0; k < conf->copies; k++)
3141 						if (r10_bio->devs[k].devnum == i)
3142 							break;
3143 					if (!test_bit(In_sync,
3144 						      &mirror->rdev->flags)
3145 					    && !rdev_set_badblocks(
3146 						    mirror->rdev,
3147 						    r10_bio->devs[k].addr,
3148 						    max_sync, 0))
3149 						any_working = 0;
3150 					if (mirror->replacement &&
3151 					    !rdev_set_badblocks(
3152 						    mirror->replacement,
3153 						    r10_bio->devs[k].addr,
3154 						    max_sync, 0))
3155 						any_working = 0;
3156 				}
3157 				if (!any_working)  {
3158 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3159 							      &mddev->recovery))
3160 						printk(KERN_INFO "md/raid10:%s: insufficient "
3161 						       "working devices for recovery.\n",
3162 						       mdname(mddev));
3163 					mirror->recovery_disabled
3164 						= mddev->recovery_disabled;
3165 				}
3166 				break;
3167 			}
3168 		}
3169 		if (biolist == NULL) {
3170 			while (r10_bio) {
3171 				struct r10bio *rb2 = r10_bio;
3172 				r10_bio = (struct r10bio*) rb2->master_bio;
3173 				rb2->master_bio = NULL;
3174 				put_buf(rb2);
3175 			}
3176 			goto giveup;
3177 		}
3178 	} else {
3179 		/* resync. Schedule a read for every block at this virt offset */
3180 		int count = 0;
3181 
3182 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3183 
3184 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3185 				       &sync_blocks, mddev->degraded) &&
3186 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3187 						 &mddev->recovery)) {
3188 			/* We can skip this block */
3189 			*skipped = 1;
3190 			return sync_blocks + sectors_skipped;
3191 		}
3192 		if (sync_blocks < max_sync)
3193 			max_sync = sync_blocks;
3194 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3195 
3196 		r10_bio->mddev = mddev;
3197 		atomic_set(&r10_bio->remaining, 0);
3198 		raise_barrier(conf, 0);
3199 		conf->next_resync = sector_nr;
3200 
3201 		r10_bio->master_bio = NULL;
3202 		r10_bio->sector = sector_nr;
3203 		set_bit(R10BIO_IsSync, &r10_bio->state);
3204 		raid10_find_phys(conf, r10_bio);
3205 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3206 
3207 		for (i = 0; i < conf->copies; i++) {
3208 			int d = r10_bio->devs[i].devnum;
3209 			sector_t first_bad, sector;
3210 			int bad_sectors;
3211 
3212 			if (r10_bio->devs[i].repl_bio)
3213 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3214 
3215 			bio = r10_bio->devs[i].bio;
3216 			bio->bi_end_io = NULL;
3217 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3218 			if (conf->mirrors[d].rdev == NULL ||
3219 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3220 				continue;
3221 			sector = r10_bio->devs[i].addr;
3222 			if (is_badblock(conf->mirrors[d].rdev,
3223 					sector, max_sync,
3224 					&first_bad, &bad_sectors)) {
3225 				if (first_bad > sector)
3226 					max_sync = first_bad - sector;
3227 				else {
3228 					bad_sectors -= (sector - first_bad);
3229 					if (max_sync > bad_sectors)
3230 						max_sync = bad_sectors;
3231 					continue;
3232 				}
3233 			}
3234 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3235 			atomic_inc(&r10_bio->remaining);
3236 			bio->bi_next = biolist;
3237 			biolist = bio;
3238 			bio->bi_private = r10_bio;
3239 			bio->bi_end_io = end_sync_read;
3240 			bio->bi_rw = READ;
3241 			bio->bi_sector = sector +
3242 				conf->mirrors[d].rdev->data_offset;
3243 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3244 			count++;
3245 
3246 			if (conf->mirrors[d].replacement == NULL ||
3247 			    test_bit(Faulty,
3248 				     &conf->mirrors[d].replacement->flags))
3249 				continue;
3250 
3251 			/* Need to set up for writing to the replacement */
3252 			bio = r10_bio->devs[i].repl_bio;
3253 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3254 
3255 			sector = r10_bio->devs[i].addr;
3256 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3257 			bio->bi_next = biolist;
3258 			biolist = bio;
3259 			bio->bi_private = r10_bio;
3260 			bio->bi_end_io = end_sync_write;
3261 			bio->bi_rw = WRITE;
3262 			bio->bi_sector = sector +
3263 				conf->mirrors[d].replacement->data_offset;
3264 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3265 			count++;
3266 		}
3267 
3268 		if (count < 2) {
3269 			for (i=0; i<conf->copies; i++) {
3270 				int d = r10_bio->devs[i].devnum;
3271 				if (r10_bio->devs[i].bio->bi_end_io)
3272 					rdev_dec_pending(conf->mirrors[d].rdev,
3273 							 mddev);
3274 				if (r10_bio->devs[i].repl_bio &&
3275 				    r10_bio->devs[i].repl_bio->bi_end_io)
3276 					rdev_dec_pending(
3277 						conf->mirrors[d].replacement,
3278 						mddev);
3279 			}
3280 			put_buf(r10_bio);
3281 			biolist = NULL;
3282 			goto giveup;
3283 		}
3284 	}
3285 
3286 	for (bio = biolist; bio ; bio=bio->bi_next) {
3287 
3288 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3289 		if (bio->bi_end_io)
3290 			bio->bi_flags |= 1 << BIO_UPTODATE;
3291 		bio->bi_vcnt = 0;
3292 		bio->bi_idx = 0;
3293 		bio->bi_phys_segments = 0;
3294 		bio->bi_size = 0;
3295 	}
3296 
3297 	nr_sectors = 0;
3298 	if (sector_nr + max_sync < max_sector)
3299 		max_sector = sector_nr + max_sync;
3300 	do {
3301 		struct page *page;
3302 		int len = PAGE_SIZE;
3303 		if (sector_nr + (len>>9) > max_sector)
3304 			len = (max_sector - sector_nr) << 9;
3305 		if (len == 0)
3306 			break;
3307 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3308 			struct bio *bio2;
3309 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3310 			if (bio_add_page(bio, page, len, 0))
3311 				continue;
3312 
3313 			/* stop here */
3314 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3315 			for (bio2 = biolist;
3316 			     bio2 && bio2 != bio;
3317 			     bio2 = bio2->bi_next) {
3318 				/* remove last page from this bio */
3319 				bio2->bi_vcnt--;
3320 				bio2->bi_size -= len;
3321 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3322 			}
3323 			goto bio_full;
3324 		}
3325 		nr_sectors += len>>9;
3326 		sector_nr += len>>9;
3327 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3328  bio_full:
3329 	r10_bio->sectors = nr_sectors;
3330 
3331 	while (biolist) {
3332 		bio = biolist;
3333 		biolist = biolist->bi_next;
3334 
3335 		bio->bi_next = NULL;
3336 		r10_bio = bio->bi_private;
3337 		r10_bio->sectors = nr_sectors;
3338 
3339 		if (bio->bi_end_io == end_sync_read) {
3340 			md_sync_acct(bio->bi_bdev, nr_sectors);
3341 			generic_make_request(bio);
3342 		}
3343 	}
3344 
3345 	if (sectors_skipped)
3346 		/* pretend they weren't skipped, it makes
3347 		 * no important difference in this case
3348 		 */
3349 		md_done_sync(mddev, sectors_skipped, 1);
3350 
3351 	return sectors_skipped + nr_sectors;
3352  giveup:
3353 	/* There is nowhere to write, so all non-sync
3354 	 * drives must be failed or in resync, all drives
3355 	 * have a bad block, so try the next chunk...
3356 	 */
3357 	if (sector_nr + max_sync < max_sector)
3358 		max_sector = sector_nr + max_sync;
3359 
3360 	sectors_skipped += (max_sector - sector_nr);
3361 	chunks_skipped ++;
3362 	sector_nr = max_sector;
3363 	goto skipped;
3364 }
3365 
3366 static sector_t
3367 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3368 {
3369 	sector_t size;
3370 	struct r10conf *conf = mddev->private;
3371 
3372 	if (!raid_disks)
3373 		raid_disks = min(conf->geo.raid_disks,
3374 				 conf->prev.raid_disks);
3375 	if (!sectors)
3376 		sectors = conf->dev_sectors;
3377 
3378 	size = sectors >> conf->geo.chunk_shift;
3379 	sector_div(size, conf->geo.far_copies);
3380 	size = size * raid_disks;
3381 	sector_div(size, conf->geo.near_copies);
3382 
3383 	return size << conf->geo.chunk_shift;
3384 }
3385 
3386 static void calc_sectors(struct r10conf *conf, sector_t size)
3387 {
3388 	/* Calculate the number of sectors-per-device that will
3389 	 * actually be used, and set conf->dev_sectors and
3390 	 * conf->stride
3391 	 */
3392 
3393 	size = size >> conf->geo.chunk_shift;
3394 	sector_div(size, conf->geo.far_copies);
3395 	size = size * conf->geo.raid_disks;
3396 	sector_div(size, conf->geo.near_copies);
3397 	/* 'size' is now the number of chunks in the array */
3398 	/* calculate "used chunks per device" */
3399 	size = size * conf->copies;
3400 
3401 	/* We need to round up when dividing by raid_disks to
3402 	 * get the stride size.
3403 	 */
3404 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3405 
3406 	conf->dev_sectors = size << conf->geo.chunk_shift;
3407 
3408 	if (conf->geo.far_offset)
3409 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3410 	else {
3411 		sector_div(size, conf->geo.far_copies);
3412 		conf->geo.stride = size << conf->geo.chunk_shift;
3413 	}
3414 }
3415 
3416 enum geo_type {geo_new, geo_old, geo_start};
3417 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3418 {
3419 	int nc, fc, fo;
3420 	int layout, chunk, disks;
3421 	switch (new) {
3422 	case geo_old:
3423 		layout = mddev->layout;
3424 		chunk = mddev->chunk_sectors;
3425 		disks = mddev->raid_disks - mddev->delta_disks;
3426 		break;
3427 	case geo_new:
3428 		layout = mddev->new_layout;
3429 		chunk = mddev->new_chunk_sectors;
3430 		disks = mddev->raid_disks;
3431 		break;
3432 	default: /* avoid 'may be unused' warnings */
3433 	case geo_start: /* new when starting reshape - raid_disks not
3434 			 * updated yet. */
3435 		layout = mddev->new_layout;
3436 		chunk = mddev->new_chunk_sectors;
3437 		disks = mddev->raid_disks + mddev->delta_disks;
3438 		break;
3439 	}
3440 	if (layout >> 17)
3441 		return -1;
3442 	if (chunk < (PAGE_SIZE >> 9) ||
3443 	    !is_power_of_2(chunk))
3444 		return -2;
3445 	nc = layout & 255;
3446 	fc = (layout >> 8) & 255;
3447 	fo = layout & (1<<16);
3448 	geo->raid_disks = disks;
3449 	geo->near_copies = nc;
3450 	geo->far_copies = fc;
3451 	geo->far_offset = fo;
3452 	geo->chunk_mask = chunk - 1;
3453 	geo->chunk_shift = ffz(~chunk);
3454 	return nc*fc;
3455 }
3456 
3457 static struct r10conf *setup_conf(struct mddev *mddev)
3458 {
3459 	struct r10conf *conf = NULL;
3460 	int err = -EINVAL;
3461 	struct geom geo;
3462 	int copies;
3463 
3464 	copies = setup_geo(&geo, mddev, geo_new);
3465 
3466 	if (copies == -2) {
3467 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3468 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3469 		       mdname(mddev), PAGE_SIZE);
3470 		goto out;
3471 	}
3472 
3473 	if (copies < 2 || copies > mddev->raid_disks) {
3474 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3475 		       mdname(mddev), mddev->new_layout);
3476 		goto out;
3477 	}
3478 
3479 	err = -ENOMEM;
3480 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3481 	if (!conf)
3482 		goto out;
3483 
3484 	/* FIXME calc properly */
3485 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3486 							    max(0,mddev->delta_disks)),
3487 				GFP_KERNEL);
3488 	if (!conf->mirrors)
3489 		goto out;
3490 
3491 	conf->tmppage = alloc_page(GFP_KERNEL);
3492 	if (!conf->tmppage)
3493 		goto out;
3494 
3495 	conf->geo = geo;
3496 	conf->copies = copies;
3497 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3498 					   r10bio_pool_free, conf);
3499 	if (!conf->r10bio_pool)
3500 		goto out;
3501 
3502 	calc_sectors(conf, mddev->dev_sectors);
3503 	if (mddev->reshape_position == MaxSector) {
3504 		conf->prev = conf->geo;
3505 		conf->reshape_progress = MaxSector;
3506 	} else {
3507 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3508 			err = -EINVAL;
3509 			goto out;
3510 		}
3511 		conf->reshape_progress = mddev->reshape_position;
3512 		if (conf->prev.far_offset)
3513 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3514 		else
3515 			/* far_copies must be 1 */
3516 			conf->prev.stride = conf->dev_sectors;
3517 	}
3518 	spin_lock_init(&conf->device_lock);
3519 	INIT_LIST_HEAD(&conf->retry_list);
3520 
3521 	spin_lock_init(&conf->resync_lock);
3522 	init_waitqueue_head(&conf->wait_barrier);
3523 
3524 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3525 	if (!conf->thread)
3526 		goto out;
3527 
3528 	conf->mddev = mddev;
3529 	return conf;
3530 
3531  out:
3532 	if (err == -ENOMEM)
3533 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3534 		       mdname(mddev));
3535 	if (conf) {
3536 		if (conf->r10bio_pool)
3537 			mempool_destroy(conf->r10bio_pool);
3538 		kfree(conf->mirrors);
3539 		safe_put_page(conf->tmppage);
3540 		kfree(conf);
3541 	}
3542 	return ERR_PTR(err);
3543 }
3544 
3545 static int run(struct mddev *mddev)
3546 {
3547 	struct r10conf *conf;
3548 	int i, disk_idx, chunk_size;
3549 	struct raid10_info *disk;
3550 	struct md_rdev *rdev;
3551 	sector_t size;
3552 	sector_t min_offset_diff = 0;
3553 	int first = 1;
3554 	bool discard_supported = false;
3555 
3556 	if (mddev->private == NULL) {
3557 		conf = setup_conf(mddev);
3558 		if (IS_ERR(conf))
3559 			return PTR_ERR(conf);
3560 		mddev->private = conf;
3561 	}
3562 	conf = mddev->private;
3563 	if (!conf)
3564 		goto out;
3565 
3566 	mddev->thread = conf->thread;
3567 	conf->thread = NULL;
3568 
3569 	chunk_size = mddev->chunk_sectors << 9;
3570 	if (mddev->queue) {
3571 		blk_queue_max_discard_sectors(mddev->queue,
3572 					      mddev->chunk_sectors);
3573 		blk_queue_io_min(mddev->queue, chunk_size);
3574 		if (conf->geo.raid_disks % conf->geo.near_copies)
3575 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3576 		else
3577 			blk_queue_io_opt(mddev->queue, chunk_size *
3578 					 (conf->geo.raid_disks / conf->geo.near_copies));
3579 	}
3580 
3581 	rdev_for_each(rdev, mddev) {
3582 		long long diff;
3583 		struct request_queue *q;
3584 
3585 		disk_idx = rdev->raid_disk;
3586 		if (disk_idx < 0)
3587 			continue;
3588 		if (disk_idx >= conf->geo.raid_disks &&
3589 		    disk_idx >= conf->prev.raid_disks)
3590 			continue;
3591 		disk = conf->mirrors + disk_idx;
3592 
3593 		if (test_bit(Replacement, &rdev->flags)) {
3594 			if (disk->replacement)
3595 				goto out_free_conf;
3596 			disk->replacement = rdev;
3597 		} else {
3598 			if (disk->rdev)
3599 				goto out_free_conf;
3600 			disk->rdev = rdev;
3601 		}
3602 		q = bdev_get_queue(rdev->bdev);
3603 		if (q->merge_bvec_fn)
3604 			mddev->merge_check_needed = 1;
3605 		diff = (rdev->new_data_offset - rdev->data_offset);
3606 		if (!mddev->reshape_backwards)
3607 			diff = -diff;
3608 		if (diff < 0)
3609 			diff = 0;
3610 		if (first || diff < min_offset_diff)
3611 			min_offset_diff = diff;
3612 
3613 		if (mddev->gendisk)
3614 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3615 					  rdev->data_offset << 9);
3616 
3617 		disk->head_position = 0;
3618 
3619 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3620 			discard_supported = true;
3621 	}
3622 
3623 	if (mddev->queue) {
3624 		if (discard_supported)
3625 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3626 						mddev->queue);
3627 		else
3628 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3629 						  mddev->queue);
3630 	}
3631 	/* need to check that every block has at least one working mirror */
3632 	if (!enough(conf, -1)) {
3633 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3634 		       mdname(mddev));
3635 		goto out_free_conf;
3636 	}
3637 
3638 	if (conf->reshape_progress != MaxSector) {
3639 		/* must ensure that shape change is supported */
3640 		if (conf->geo.far_copies != 1 &&
3641 		    conf->geo.far_offset == 0)
3642 			goto out_free_conf;
3643 		if (conf->prev.far_copies != 1 &&
3644 		    conf->geo.far_offset == 0)
3645 			goto out_free_conf;
3646 	}
3647 
3648 	mddev->degraded = 0;
3649 	for (i = 0;
3650 	     i < conf->geo.raid_disks
3651 		     || i < conf->prev.raid_disks;
3652 	     i++) {
3653 
3654 		disk = conf->mirrors + i;
3655 
3656 		if (!disk->rdev && disk->replacement) {
3657 			/* The replacement is all we have - use it */
3658 			disk->rdev = disk->replacement;
3659 			disk->replacement = NULL;
3660 			clear_bit(Replacement, &disk->rdev->flags);
3661 		}
3662 
3663 		if (!disk->rdev ||
3664 		    !test_bit(In_sync, &disk->rdev->flags)) {
3665 			disk->head_position = 0;
3666 			mddev->degraded++;
3667 			if (disk->rdev)
3668 				conf->fullsync = 1;
3669 		}
3670 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3671 	}
3672 
3673 	if (mddev->recovery_cp != MaxSector)
3674 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3675 		       " -- starting background reconstruction\n",
3676 		       mdname(mddev));
3677 	printk(KERN_INFO
3678 		"md/raid10:%s: active with %d out of %d devices\n",
3679 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3680 		conf->geo.raid_disks);
3681 	/*
3682 	 * Ok, everything is just fine now
3683 	 */
3684 	mddev->dev_sectors = conf->dev_sectors;
3685 	size = raid10_size(mddev, 0, 0);
3686 	md_set_array_sectors(mddev, size);
3687 	mddev->resync_max_sectors = size;
3688 
3689 	if (mddev->queue) {
3690 		int stripe = conf->geo.raid_disks *
3691 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3692 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3693 		mddev->queue->backing_dev_info.congested_data = mddev;
3694 
3695 		/* Calculate max read-ahead size.
3696 		 * We need to readahead at least twice a whole stripe....
3697 		 * maybe...
3698 		 */
3699 		stripe /= conf->geo.near_copies;
3700 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3701 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3702 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3703 	}
3704 
3705 
3706 	if (md_integrity_register(mddev))
3707 		goto out_free_conf;
3708 
3709 	if (conf->reshape_progress != MaxSector) {
3710 		unsigned long before_length, after_length;
3711 
3712 		before_length = ((1 << conf->prev.chunk_shift) *
3713 				 conf->prev.far_copies);
3714 		after_length = ((1 << conf->geo.chunk_shift) *
3715 				conf->geo.far_copies);
3716 
3717 		if (max(before_length, after_length) > min_offset_diff) {
3718 			/* This cannot work */
3719 			printk("md/raid10: offset difference not enough to continue reshape\n");
3720 			goto out_free_conf;
3721 		}
3722 		conf->offset_diff = min_offset_diff;
3723 
3724 		conf->reshape_safe = conf->reshape_progress;
3725 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3726 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3727 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3728 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3729 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3730 							"reshape");
3731 	}
3732 
3733 	return 0;
3734 
3735 out_free_conf:
3736 	md_unregister_thread(&mddev->thread);
3737 	if (conf->r10bio_pool)
3738 		mempool_destroy(conf->r10bio_pool);
3739 	safe_put_page(conf->tmppage);
3740 	kfree(conf->mirrors);
3741 	kfree(conf);
3742 	mddev->private = NULL;
3743 out:
3744 	return -EIO;
3745 }
3746 
3747 static int stop(struct mddev *mddev)
3748 {
3749 	struct r10conf *conf = mddev->private;
3750 
3751 	raise_barrier(conf, 0);
3752 	lower_barrier(conf);
3753 
3754 	md_unregister_thread(&mddev->thread);
3755 	if (mddev->queue)
3756 		/* the unplug fn references 'conf'*/
3757 		blk_sync_queue(mddev->queue);
3758 
3759 	if (conf->r10bio_pool)
3760 		mempool_destroy(conf->r10bio_pool);
3761 	kfree(conf->mirrors);
3762 	kfree(conf);
3763 	mddev->private = NULL;
3764 	return 0;
3765 }
3766 
3767 static void raid10_quiesce(struct mddev *mddev, int state)
3768 {
3769 	struct r10conf *conf = mddev->private;
3770 
3771 	switch(state) {
3772 	case 1:
3773 		raise_barrier(conf, 0);
3774 		break;
3775 	case 0:
3776 		lower_barrier(conf);
3777 		break;
3778 	}
3779 }
3780 
3781 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3782 {
3783 	/* Resize of 'far' arrays is not supported.
3784 	 * For 'near' and 'offset' arrays we can set the
3785 	 * number of sectors used to be an appropriate multiple
3786 	 * of the chunk size.
3787 	 * For 'offset', this is far_copies*chunksize.
3788 	 * For 'near' the multiplier is the LCM of
3789 	 * near_copies and raid_disks.
3790 	 * So if far_copies > 1 && !far_offset, fail.
3791 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3792 	 * multiply by chunk_size.  Then round to this number.
3793 	 * This is mostly done by raid10_size()
3794 	 */
3795 	struct r10conf *conf = mddev->private;
3796 	sector_t oldsize, size;
3797 
3798 	if (mddev->reshape_position != MaxSector)
3799 		return -EBUSY;
3800 
3801 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3802 		return -EINVAL;
3803 
3804 	oldsize = raid10_size(mddev, 0, 0);
3805 	size = raid10_size(mddev, sectors, 0);
3806 	if (mddev->external_size &&
3807 	    mddev->array_sectors > size)
3808 		return -EINVAL;
3809 	if (mddev->bitmap) {
3810 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3811 		if (ret)
3812 			return ret;
3813 	}
3814 	md_set_array_sectors(mddev, size);
3815 	set_capacity(mddev->gendisk, mddev->array_sectors);
3816 	revalidate_disk(mddev->gendisk);
3817 	if (sectors > mddev->dev_sectors &&
3818 	    mddev->recovery_cp > oldsize) {
3819 		mddev->recovery_cp = oldsize;
3820 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3821 	}
3822 	calc_sectors(conf, sectors);
3823 	mddev->dev_sectors = conf->dev_sectors;
3824 	mddev->resync_max_sectors = size;
3825 	return 0;
3826 }
3827 
3828 static void *raid10_takeover_raid0(struct mddev *mddev)
3829 {
3830 	struct md_rdev *rdev;
3831 	struct r10conf *conf;
3832 
3833 	if (mddev->degraded > 0) {
3834 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3835 		       mdname(mddev));
3836 		return ERR_PTR(-EINVAL);
3837 	}
3838 
3839 	/* Set new parameters */
3840 	mddev->new_level = 10;
3841 	/* new layout: far_copies = 1, near_copies = 2 */
3842 	mddev->new_layout = (1<<8) + 2;
3843 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3844 	mddev->delta_disks = mddev->raid_disks;
3845 	mddev->raid_disks *= 2;
3846 	/* make sure it will be not marked as dirty */
3847 	mddev->recovery_cp = MaxSector;
3848 
3849 	conf = setup_conf(mddev);
3850 	if (!IS_ERR(conf)) {
3851 		rdev_for_each(rdev, mddev)
3852 			if (rdev->raid_disk >= 0)
3853 				rdev->new_raid_disk = rdev->raid_disk * 2;
3854 		conf->barrier = 1;
3855 	}
3856 
3857 	return conf;
3858 }
3859 
3860 static void *raid10_takeover(struct mddev *mddev)
3861 {
3862 	struct r0conf *raid0_conf;
3863 
3864 	/* raid10 can take over:
3865 	 *  raid0 - providing it has only two drives
3866 	 */
3867 	if (mddev->level == 0) {
3868 		/* for raid0 takeover only one zone is supported */
3869 		raid0_conf = mddev->private;
3870 		if (raid0_conf->nr_strip_zones > 1) {
3871 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3872 			       " with more than one zone.\n",
3873 			       mdname(mddev));
3874 			return ERR_PTR(-EINVAL);
3875 		}
3876 		return raid10_takeover_raid0(mddev);
3877 	}
3878 	return ERR_PTR(-EINVAL);
3879 }
3880 
3881 static int raid10_check_reshape(struct mddev *mddev)
3882 {
3883 	/* Called when there is a request to change
3884 	 * - layout (to ->new_layout)
3885 	 * - chunk size (to ->new_chunk_sectors)
3886 	 * - raid_disks (by delta_disks)
3887 	 * or when trying to restart a reshape that was ongoing.
3888 	 *
3889 	 * We need to validate the request and possibly allocate
3890 	 * space if that might be an issue later.
3891 	 *
3892 	 * Currently we reject any reshape of a 'far' mode array,
3893 	 * allow chunk size to change if new is generally acceptable,
3894 	 * allow raid_disks to increase, and allow
3895 	 * a switch between 'near' mode and 'offset' mode.
3896 	 */
3897 	struct r10conf *conf = mddev->private;
3898 	struct geom geo;
3899 
3900 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3901 		return -EINVAL;
3902 
3903 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3904 		/* mustn't change number of copies */
3905 		return -EINVAL;
3906 	if (geo.far_copies > 1 && !geo.far_offset)
3907 		/* Cannot switch to 'far' mode */
3908 		return -EINVAL;
3909 
3910 	if (mddev->array_sectors & geo.chunk_mask)
3911 			/* not factor of array size */
3912 			return -EINVAL;
3913 
3914 	if (!enough(conf, -1))
3915 		return -EINVAL;
3916 
3917 	kfree(conf->mirrors_new);
3918 	conf->mirrors_new = NULL;
3919 	if (mddev->delta_disks > 0) {
3920 		/* allocate new 'mirrors' list */
3921 		conf->mirrors_new = kzalloc(
3922 			sizeof(struct raid10_info)
3923 			*(mddev->raid_disks +
3924 			  mddev->delta_disks),
3925 			GFP_KERNEL);
3926 		if (!conf->mirrors_new)
3927 			return -ENOMEM;
3928 	}
3929 	return 0;
3930 }
3931 
3932 /*
3933  * Need to check if array has failed when deciding whether to:
3934  *  - start an array
3935  *  - remove non-faulty devices
3936  *  - add a spare
3937  *  - allow a reshape
3938  * This determination is simple when no reshape is happening.
3939  * However if there is a reshape, we need to carefully check
3940  * both the before and after sections.
3941  * This is because some failed devices may only affect one
3942  * of the two sections, and some non-in_sync devices may
3943  * be insync in the section most affected by failed devices.
3944  */
3945 static int calc_degraded(struct r10conf *conf)
3946 {
3947 	int degraded, degraded2;
3948 	int i;
3949 
3950 	rcu_read_lock();
3951 	degraded = 0;
3952 	/* 'prev' section first */
3953 	for (i = 0; i < conf->prev.raid_disks; i++) {
3954 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3955 		if (!rdev || test_bit(Faulty, &rdev->flags))
3956 			degraded++;
3957 		else if (!test_bit(In_sync, &rdev->flags))
3958 			/* When we can reduce the number of devices in
3959 			 * an array, this might not contribute to
3960 			 * 'degraded'.  It does now.
3961 			 */
3962 			degraded++;
3963 	}
3964 	rcu_read_unlock();
3965 	if (conf->geo.raid_disks == conf->prev.raid_disks)
3966 		return degraded;
3967 	rcu_read_lock();
3968 	degraded2 = 0;
3969 	for (i = 0; i < conf->geo.raid_disks; i++) {
3970 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3971 		if (!rdev || test_bit(Faulty, &rdev->flags))
3972 			degraded2++;
3973 		else if (!test_bit(In_sync, &rdev->flags)) {
3974 			/* If reshape is increasing the number of devices,
3975 			 * this section has already been recovered, so
3976 			 * it doesn't contribute to degraded.
3977 			 * else it does.
3978 			 */
3979 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3980 				degraded2++;
3981 		}
3982 	}
3983 	rcu_read_unlock();
3984 	if (degraded2 > degraded)
3985 		return degraded2;
3986 	return degraded;
3987 }
3988 
3989 static int raid10_start_reshape(struct mddev *mddev)
3990 {
3991 	/* A 'reshape' has been requested. This commits
3992 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3993 	 * This also checks if there are enough spares and adds them
3994 	 * to the array.
3995 	 * We currently require enough spares to make the final
3996 	 * array non-degraded.  We also require that the difference
3997 	 * between old and new data_offset - on each device - is
3998 	 * enough that we never risk over-writing.
3999 	 */
4000 
4001 	unsigned long before_length, after_length;
4002 	sector_t min_offset_diff = 0;
4003 	int first = 1;
4004 	struct geom new;
4005 	struct r10conf *conf = mddev->private;
4006 	struct md_rdev *rdev;
4007 	int spares = 0;
4008 	int ret;
4009 
4010 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4011 		return -EBUSY;
4012 
4013 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4014 		return -EINVAL;
4015 
4016 	before_length = ((1 << conf->prev.chunk_shift) *
4017 			 conf->prev.far_copies);
4018 	after_length = ((1 << conf->geo.chunk_shift) *
4019 			conf->geo.far_copies);
4020 
4021 	rdev_for_each(rdev, mddev) {
4022 		if (!test_bit(In_sync, &rdev->flags)
4023 		    && !test_bit(Faulty, &rdev->flags))
4024 			spares++;
4025 		if (rdev->raid_disk >= 0) {
4026 			long long diff = (rdev->new_data_offset
4027 					  - rdev->data_offset);
4028 			if (!mddev->reshape_backwards)
4029 				diff = -diff;
4030 			if (diff < 0)
4031 				diff = 0;
4032 			if (first || diff < min_offset_diff)
4033 				min_offset_diff = diff;
4034 		}
4035 	}
4036 
4037 	if (max(before_length, after_length) > min_offset_diff)
4038 		return -EINVAL;
4039 
4040 	if (spares < mddev->delta_disks)
4041 		return -EINVAL;
4042 
4043 	conf->offset_diff = min_offset_diff;
4044 	spin_lock_irq(&conf->device_lock);
4045 	if (conf->mirrors_new) {
4046 		memcpy(conf->mirrors_new, conf->mirrors,
4047 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4048 		smp_mb();
4049 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
4050 		conf->mirrors_old = conf->mirrors;
4051 		conf->mirrors = conf->mirrors_new;
4052 		conf->mirrors_new = NULL;
4053 	}
4054 	setup_geo(&conf->geo, mddev, geo_start);
4055 	smp_mb();
4056 	if (mddev->reshape_backwards) {
4057 		sector_t size = raid10_size(mddev, 0, 0);
4058 		if (size < mddev->array_sectors) {
4059 			spin_unlock_irq(&conf->device_lock);
4060 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4061 			       mdname(mddev));
4062 			return -EINVAL;
4063 		}
4064 		mddev->resync_max_sectors = size;
4065 		conf->reshape_progress = size;
4066 	} else
4067 		conf->reshape_progress = 0;
4068 	spin_unlock_irq(&conf->device_lock);
4069 
4070 	if (mddev->delta_disks && mddev->bitmap) {
4071 		ret = bitmap_resize(mddev->bitmap,
4072 				    raid10_size(mddev, 0,
4073 						conf->geo.raid_disks),
4074 				    0, 0);
4075 		if (ret)
4076 			goto abort;
4077 	}
4078 	if (mddev->delta_disks > 0) {
4079 		rdev_for_each(rdev, mddev)
4080 			if (rdev->raid_disk < 0 &&
4081 			    !test_bit(Faulty, &rdev->flags)) {
4082 				if (raid10_add_disk(mddev, rdev) == 0) {
4083 					if (rdev->raid_disk >=
4084 					    conf->prev.raid_disks)
4085 						set_bit(In_sync, &rdev->flags);
4086 					else
4087 						rdev->recovery_offset = 0;
4088 
4089 					if (sysfs_link_rdev(mddev, rdev))
4090 						/* Failure here  is OK */;
4091 				}
4092 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4093 				   && !test_bit(Faulty, &rdev->flags)) {
4094 				/* This is a spare that was manually added */
4095 				set_bit(In_sync, &rdev->flags);
4096 			}
4097 	}
4098 	/* When a reshape changes the number of devices,
4099 	 * ->degraded is measured against the larger of the
4100 	 * pre and  post numbers.
4101 	 */
4102 	spin_lock_irq(&conf->device_lock);
4103 	mddev->degraded = calc_degraded(conf);
4104 	spin_unlock_irq(&conf->device_lock);
4105 	mddev->raid_disks = conf->geo.raid_disks;
4106 	mddev->reshape_position = conf->reshape_progress;
4107 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4108 
4109 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4110 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4111 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4112 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4113 
4114 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4115 						"reshape");
4116 	if (!mddev->sync_thread) {
4117 		ret = -EAGAIN;
4118 		goto abort;
4119 	}
4120 	conf->reshape_checkpoint = jiffies;
4121 	md_wakeup_thread(mddev->sync_thread);
4122 	md_new_event(mddev);
4123 	return 0;
4124 
4125 abort:
4126 	mddev->recovery = 0;
4127 	spin_lock_irq(&conf->device_lock);
4128 	conf->geo = conf->prev;
4129 	mddev->raid_disks = conf->geo.raid_disks;
4130 	rdev_for_each(rdev, mddev)
4131 		rdev->new_data_offset = rdev->data_offset;
4132 	smp_wmb();
4133 	conf->reshape_progress = MaxSector;
4134 	mddev->reshape_position = MaxSector;
4135 	spin_unlock_irq(&conf->device_lock);
4136 	return ret;
4137 }
4138 
4139 /* Calculate the last device-address that could contain
4140  * any block from the chunk that includes the array-address 's'
4141  * and report the next address.
4142  * i.e. the address returned will be chunk-aligned and after
4143  * any data that is in the chunk containing 's'.
4144  */
4145 static sector_t last_dev_address(sector_t s, struct geom *geo)
4146 {
4147 	s = (s | geo->chunk_mask) + 1;
4148 	s >>= geo->chunk_shift;
4149 	s *= geo->near_copies;
4150 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4151 	s *= geo->far_copies;
4152 	s <<= geo->chunk_shift;
4153 	return s;
4154 }
4155 
4156 /* Calculate the first device-address that could contain
4157  * any block from the chunk that includes the array-address 's'.
4158  * This too will be the start of a chunk
4159  */
4160 static sector_t first_dev_address(sector_t s, struct geom *geo)
4161 {
4162 	s >>= geo->chunk_shift;
4163 	s *= geo->near_copies;
4164 	sector_div(s, geo->raid_disks);
4165 	s *= geo->far_copies;
4166 	s <<= geo->chunk_shift;
4167 	return s;
4168 }
4169 
4170 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4171 				int *skipped)
4172 {
4173 	/* We simply copy at most one chunk (smallest of old and new)
4174 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4175 	 * or we hit a bad block or something.
4176 	 * This might mean we pause for normal IO in the middle of
4177 	 * a chunk, but that is not a problem was mddev->reshape_position
4178 	 * can record any location.
4179 	 *
4180 	 * If we will want to write to a location that isn't
4181 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4182 	 * we need to flush all reshape requests and update the metadata.
4183 	 *
4184 	 * When reshaping forwards (e.g. to more devices), we interpret
4185 	 * 'safe' as the earliest block which might not have been copied
4186 	 * down yet.  We divide this by previous stripe size and multiply
4187 	 * by previous stripe length to get lowest device offset that we
4188 	 * cannot write to yet.
4189 	 * We interpret 'sector_nr' as an address that we want to write to.
4190 	 * From this we use last_device_address() to find where we might
4191 	 * write to, and first_device_address on the  'safe' position.
4192 	 * If this 'next' write position is after the 'safe' position,
4193 	 * we must update the metadata to increase the 'safe' position.
4194 	 *
4195 	 * When reshaping backwards, we round in the opposite direction
4196 	 * and perform the reverse test:  next write position must not be
4197 	 * less than current safe position.
4198 	 *
4199 	 * In all this the minimum difference in data offsets
4200 	 * (conf->offset_diff - always positive) allows a bit of slack,
4201 	 * so next can be after 'safe', but not by more than offset_disk
4202 	 *
4203 	 * We need to prepare all the bios here before we start any IO
4204 	 * to ensure the size we choose is acceptable to all devices.
4205 	 * The means one for each copy for write-out and an extra one for
4206 	 * read-in.
4207 	 * We store the read-in bio in ->master_bio and the others in
4208 	 * ->devs[x].bio and ->devs[x].repl_bio.
4209 	 */
4210 	struct r10conf *conf = mddev->private;
4211 	struct r10bio *r10_bio;
4212 	sector_t next, safe, last;
4213 	int max_sectors;
4214 	int nr_sectors;
4215 	int s;
4216 	struct md_rdev *rdev;
4217 	int need_flush = 0;
4218 	struct bio *blist;
4219 	struct bio *bio, *read_bio;
4220 	int sectors_done = 0;
4221 
4222 	if (sector_nr == 0) {
4223 		/* If restarting in the middle, skip the initial sectors */
4224 		if (mddev->reshape_backwards &&
4225 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4226 			sector_nr = (raid10_size(mddev, 0, 0)
4227 				     - conf->reshape_progress);
4228 		} else if (!mddev->reshape_backwards &&
4229 			   conf->reshape_progress > 0)
4230 			sector_nr = conf->reshape_progress;
4231 		if (sector_nr) {
4232 			mddev->curr_resync_completed = sector_nr;
4233 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4234 			*skipped = 1;
4235 			return sector_nr;
4236 		}
4237 	}
4238 
4239 	/* We don't use sector_nr to track where we are up to
4240 	 * as that doesn't work well for ->reshape_backwards.
4241 	 * So just use ->reshape_progress.
4242 	 */
4243 	if (mddev->reshape_backwards) {
4244 		/* 'next' is the earliest device address that we might
4245 		 * write to for this chunk in the new layout
4246 		 */
4247 		next = first_dev_address(conf->reshape_progress - 1,
4248 					 &conf->geo);
4249 
4250 		/* 'safe' is the last device address that we might read from
4251 		 * in the old layout after a restart
4252 		 */
4253 		safe = last_dev_address(conf->reshape_safe - 1,
4254 					&conf->prev);
4255 
4256 		if (next + conf->offset_diff < safe)
4257 			need_flush = 1;
4258 
4259 		last = conf->reshape_progress - 1;
4260 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4261 					       & conf->prev.chunk_mask);
4262 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4263 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4264 	} else {
4265 		/* 'next' is after the last device address that we
4266 		 * might write to for this chunk in the new layout
4267 		 */
4268 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4269 
4270 		/* 'safe' is the earliest device address that we might
4271 		 * read from in the old layout after a restart
4272 		 */
4273 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4274 
4275 		/* Need to update metadata if 'next' might be beyond 'safe'
4276 		 * as that would possibly corrupt data
4277 		 */
4278 		if (next > safe + conf->offset_diff)
4279 			need_flush = 1;
4280 
4281 		sector_nr = conf->reshape_progress;
4282 		last  = sector_nr | (conf->geo.chunk_mask
4283 				     & conf->prev.chunk_mask);
4284 
4285 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4286 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4287 	}
4288 
4289 	if (need_flush ||
4290 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4291 		/* Need to update reshape_position in metadata */
4292 		wait_barrier(conf);
4293 		mddev->reshape_position = conf->reshape_progress;
4294 		if (mddev->reshape_backwards)
4295 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4296 				- conf->reshape_progress;
4297 		else
4298 			mddev->curr_resync_completed = conf->reshape_progress;
4299 		conf->reshape_checkpoint = jiffies;
4300 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4301 		md_wakeup_thread(mddev->thread);
4302 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4303 			   kthread_should_stop());
4304 		conf->reshape_safe = mddev->reshape_position;
4305 		allow_barrier(conf);
4306 	}
4307 
4308 read_more:
4309 	/* Now schedule reads for blocks from sector_nr to last */
4310 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4311 	raise_barrier(conf, sectors_done != 0);
4312 	atomic_set(&r10_bio->remaining, 0);
4313 	r10_bio->mddev = mddev;
4314 	r10_bio->sector = sector_nr;
4315 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4316 	r10_bio->sectors = last - sector_nr + 1;
4317 	rdev = read_balance(conf, r10_bio, &max_sectors);
4318 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4319 
4320 	if (!rdev) {
4321 		/* Cannot read from here, so need to record bad blocks
4322 		 * on all the target devices.
4323 		 */
4324 		// FIXME
4325 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4326 		return sectors_done;
4327 	}
4328 
4329 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4330 
4331 	read_bio->bi_bdev = rdev->bdev;
4332 	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4333 			       + rdev->data_offset);
4334 	read_bio->bi_private = r10_bio;
4335 	read_bio->bi_end_io = end_sync_read;
4336 	read_bio->bi_rw = READ;
4337 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4338 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4339 	read_bio->bi_vcnt = 0;
4340 	read_bio->bi_idx = 0;
4341 	read_bio->bi_size = 0;
4342 	r10_bio->master_bio = read_bio;
4343 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4344 
4345 	/* Now find the locations in the new layout */
4346 	__raid10_find_phys(&conf->geo, r10_bio);
4347 
4348 	blist = read_bio;
4349 	read_bio->bi_next = NULL;
4350 
4351 	for (s = 0; s < conf->copies*2; s++) {
4352 		struct bio *b;
4353 		int d = r10_bio->devs[s/2].devnum;
4354 		struct md_rdev *rdev2;
4355 		if (s&1) {
4356 			rdev2 = conf->mirrors[d].replacement;
4357 			b = r10_bio->devs[s/2].repl_bio;
4358 		} else {
4359 			rdev2 = conf->mirrors[d].rdev;
4360 			b = r10_bio->devs[s/2].bio;
4361 		}
4362 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4363 			continue;
4364 		b->bi_bdev = rdev2->bdev;
4365 		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4366 		b->bi_private = r10_bio;
4367 		b->bi_end_io = end_reshape_write;
4368 		b->bi_rw = WRITE;
4369 		b->bi_flags &= ~(BIO_POOL_MASK - 1);
4370 		b->bi_flags |= 1 << BIO_UPTODATE;
4371 		b->bi_next = blist;
4372 		b->bi_vcnt = 0;
4373 		b->bi_idx = 0;
4374 		b->bi_size = 0;
4375 		blist = b;
4376 	}
4377 
4378 	/* Now add as many pages as possible to all of these bios. */
4379 
4380 	nr_sectors = 0;
4381 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4382 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4383 		int len = (max_sectors - s) << 9;
4384 		if (len > PAGE_SIZE)
4385 			len = PAGE_SIZE;
4386 		for (bio = blist; bio ; bio = bio->bi_next) {
4387 			struct bio *bio2;
4388 			if (bio_add_page(bio, page, len, 0))
4389 				continue;
4390 
4391 			/* Didn't fit, must stop */
4392 			for (bio2 = blist;
4393 			     bio2 && bio2 != bio;
4394 			     bio2 = bio2->bi_next) {
4395 				/* Remove last page from this bio */
4396 				bio2->bi_vcnt--;
4397 				bio2->bi_size -= len;
4398 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4399 			}
4400 			goto bio_full;
4401 		}
4402 		sector_nr += len >> 9;
4403 		nr_sectors += len >> 9;
4404 	}
4405 bio_full:
4406 	r10_bio->sectors = nr_sectors;
4407 
4408 	/* Now submit the read */
4409 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4410 	atomic_inc(&r10_bio->remaining);
4411 	read_bio->bi_next = NULL;
4412 	generic_make_request(read_bio);
4413 	sector_nr += nr_sectors;
4414 	sectors_done += nr_sectors;
4415 	if (sector_nr <= last)
4416 		goto read_more;
4417 
4418 	/* Now that we have done the whole section we can
4419 	 * update reshape_progress
4420 	 */
4421 	if (mddev->reshape_backwards)
4422 		conf->reshape_progress -= sectors_done;
4423 	else
4424 		conf->reshape_progress += sectors_done;
4425 
4426 	return sectors_done;
4427 }
4428 
4429 static void end_reshape_request(struct r10bio *r10_bio);
4430 static int handle_reshape_read_error(struct mddev *mddev,
4431 				     struct r10bio *r10_bio);
4432 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4433 {
4434 	/* Reshape read completed.  Hopefully we have a block
4435 	 * to write out.
4436 	 * If we got a read error then we do sync 1-page reads from
4437 	 * elsewhere until we find the data - or give up.
4438 	 */
4439 	struct r10conf *conf = mddev->private;
4440 	int s;
4441 
4442 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4443 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4444 			/* Reshape has been aborted */
4445 			md_done_sync(mddev, r10_bio->sectors, 0);
4446 			return;
4447 		}
4448 
4449 	/* We definitely have the data in the pages, schedule the
4450 	 * writes.
4451 	 */
4452 	atomic_set(&r10_bio->remaining, 1);
4453 	for (s = 0; s < conf->copies*2; s++) {
4454 		struct bio *b;
4455 		int d = r10_bio->devs[s/2].devnum;
4456 		struct md_rdev *rdev;
4457 		if (s&1) {
4458 			rdev = conf->mirrors[d].replacement;
4459 			b = r10_bio->devs[s/2].repl_bio;
4460 		} else {
4461 			rdev = conf->mirrors[d].rdev;
4462 			b = r10_bio->devs[s/2].bio;
4463 		}
4464 		if (!rdev || test_bit(Faulty, &rdev->flags))
4465 			continue;
4466 		atomic_inc(&rdev->nr_pending);
4467 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4468 		atomic_inc(&r10_bio->remaining);
4469 		b->bi_next = NULL;
4470 		generic_make_request(b);
4471 	}
4472 	end_reshape_request(r10_bio);
4473 }
4474 
4475 static void end_reshape(struct r10conf *conf)
4476 {
4477 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4478 		return;
4479 
4480 	spin_lock_irq(&conf->device_lock);
4481 	conf->prev = conf->geo;
4482 	md_finish_reshape(conf->mddev);
4483 	smp_wmb();
4484 	conf->reshape_progress = MaxSector;
4485 	spin_unlock_irq(&conf->device_lock);
4486 
4487 	/* read-ahead size must cover two whole stripes, which is
4488 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4489 	 */
4490 	if (conf->mddev->queue) {
4491 		int stripe = conf->geo.raid_disks *
4492 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4493 		stripe /= conf->geo.near_copies;
4494 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4495 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4496 	}
4497 	conf->fullsync = 0;
4498 }
4499 
4500 
4501 static int handle_reshape_read_error(struct mddev *mddev,
4502 				     struct r10bio *r10_bio)
4503 {
4504 	/* Use sync reads to get the blocks from somewhere else */
4505 	int sectors = r10_bio->sectors;
4506 	struct r10conf *conf = mddev->private;
4507 	struct {
4508 		struct r10bio r10_bio;
4509 		struct r10dev devs[conf->copies];
4510 	} on_stack;
4511 	struct r10bio *r10b = &on_stack.r10_bio;
4512 	int slot = 0;
4513 	int idx = 0;
4514 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4515 
4516 	r10b->sector = r10_bio->sector;
4517 	__raid10_find_phys(&conf->prev, r10b);
4518 
4519 	while (sectors) {
4520 		int s = sectors;
4521 		int success = 0;
4522 		int first_slot = slot;
4523 
4524 		if (s > (PAGE_SIZE >> 9))
4525 			s = PAGE_SIZE >> 9;
4526 
4527 		while (!success) {
4528 			int d = r10b->devs[slot].devnum;
4529 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4530 			sector_t addr;
4531 			if (rdev == NULL ||
4532 			    test_bit(Faulty, &rdev->flags) ||
4533 			    !test_bit(In_sync, &rdev->flags))
4534 				goto failed;
4535 
4536 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4537 			success = sync_page_io(rdev,
4538 					       addr,
4539 					       s << 9,
4540 					       bvec[idx].bv_page,
4541 					       READ, false);
4542 			if (success)
4543 				break;
4544 		failed:
4545 			slot++;
4546 			if (slot >= conf->copies)
4547 				slot = 0;
4548 			if (slot == first_slot)
4549 				break;
4550 		}
4551 		if (!success) {
4552 			/* couldn't read this block, must give up */
4553 			set_bit(MD_RECOVERY_INTR,
4554 				&mddev->recovery);
4555 			return -EIO;
4556 		}
4557 		sectors -= s;
4558 		idx++;
4559 	}
4560 	return 0;
4561 }
4562 
4563 static void end_reshape_write(struct bio *bio, int error)
4564 {
4565 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4566 	struct r10bio *r10_bio = bio->bi_private;
4567 	struct mddev *mddev = r10_bio->mddev;
4568 	struct r10conf *conf = mddev->private;
4569 	int d;
4570 	int slot;
4571 	int repl;
4572 	struct md_rdev *rdev = NULL;
4573 
4574 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4575 	if (repl)
4576 		rdev = conf->mirrors[d].replacement;
4577 	if (!rdev) {
4578 		smp_mb();
4579 		rdev = conf->mirrors[d].rdev;
4580 	}
4581 
4582 	if (!uptodate) {
4583 		/* FIXME should record badblock */
4584 		md_error(mddev, rdev);
4585 	}
4586 
4587 	rdev_dec_pending(rdev, mddev);
4588 	end_reshape_request(r10_bio);
4589 }
4590 
4591 static void end_reshape_request(struct r10bio *r10_bio)
4592 {
4593 	if (!atomic_dec_and_test(&r10_bio->remaining))
4594 		return;
4595 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4596 	bio_put(r10_bio->master_bio);
4597 	put_buf(r10_bio);
4598 }
4599 
4600 static void raid10_finish_reshape(struct mddev *mddev)
4601 {
4602 	struct r10conf *conf = mddev->private;
4603 
4604 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4605 		return;
4606 
4607 	if (mddev->delta_disks > 0) {
4608 		sector_t size = raid10_size(mddev, 0, 0);
4609 		md_set_array_sectors(mddev, size);
4610 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4611 			mddev->recovery_cp = mddev->resync_max_sectors;
4612 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4613 		}
4614 		mddev->resync_max_sectors = size;
4615 		set_capacity(mddev->gendisk, mddev->array_sectors);
4616 		revalidate_disk(mddev->gendisk);
4617 	} else {
4618 		int d;
4619 		for (d = conf->geo.raid_disks ;
4620 		     d < conf->geo.raid_disks - mddev->delta_disks;
4621 		     d++) {
4622 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4623 			if (rdev)
4624 				clear_bit(In_sync, &rdev->flags);
4625 			rdev = conf->mirrors[d].replacement;
4626 			if (rdev)
4627 				clear_bit(In_sync, &rdev->flags);
4628 		}
4629 	}
4630 	mddev->layout = mddev->new_layout;
4631 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4632 	mddev->reshape_position = MaxSector;
4633 	mddev->delta_disks = 0;
4634 	mddev->reshape_backwards = 0;
4635 }
4636 
4637 static struct md_personality raid10_personality =
4638 {
4639 	.name		= "raid10",
4640 	.level		= 10,
4641 	.owner		= THIS_MODULE,
4642 	.make_request	= make_request,
4643 	.run		= run,
4644 	.stop		= stop,
4645 	.status		= status,
4646 	.error_handler	= error,
4647 	.hot_add_disk	= raid10_add_disk,
4648 	.hot_remove_disk= raid10_remove_disk,
4649 	.spare_active	= raid10_spare_active,
4650 	.sync_request	= sync_request,
4651 	.quiesce	= raid10_quiesce,
4652 	.size		= raid10_size,
4653 	.resize		= raid10_resize,
4654 	.takeover	= raid10_takeover,
4655 	.check_reshape	= raid10_check_reshape,
4656 	.start_reshape	= raid10_start_reshape,
4657 	.finish_reshape	= raid10_finish_reshape,
4658 };
4659 
4660 static int __init raid_init(void)
4661 {
4662 	return register_md_personality(&raid10_personality);
4663 }
4664 
4665 static void raid_exit(void)
4666 {
4667 	unregister_md_personality(&raid10_personality);
4668 }
4669 
4670 module_init(raid_init);
4671 module_exit(raid_exit);
4672 MODULE_LICENSE("GPL");
4673 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4674 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4675 MODULE_ALIAS("md-raid10");
4676 MODULE_ALIAS("md-level-10");
4677 
4678 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4679