1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * 42 * The data to be stored is divided into chunks using chunksize. 43 * Each device is divided into far_copies sections. 44 * In each section, chunks are laid out in a style similar to raid0, but 45 * near_copies copies of each chunk is stored (each on a different drive). 46 * The starting device for each section is offset near_copies from the starting 47 * device of the previous section. 48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 49 * drive. 50 * near_copies and far_copies must be at least one, and their product is at most 51 * raid_disks. 52 * 53 * If far_offset is true, then the far_copies are handled a bit differently. 54 * The copies are still in different stripes, but instead of be very far apart 55 * on disk, there are adjacent stripes. 56 */ 57 58 /* 59 * Number of guaranteed r10bios in case of extreme VM load: 60 */ 61 #define NR_RAID10_BIOS 256 62 63 /* when we get a read error on a read-only array, we redirect to another 64 * device without failing the first device, or trying to over-write to 65 * correct the read error. To keep track of bad blocks on a per-bio 66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 67 */ 68 #define IO_BLOCKED ((struct bio *)1) 69 /* When we successfully write to a known bad-block, we need to remove the 70 * bad-block marking which must be done from process context. So we record 71 * the success by setting devs[n].bio to IO_MADE_GOOD 72 */ 73 #define IO_MADE_GOOD ((struct bio *)2) 74 75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 76 77 /* When there are this many requests queued to be written by 78 * the raid10 thread, we become 'congested' to provide back-pressure 79 * for writeback. 80 */ 81 static int max_queued_requests = 1024; 82 83 static void allow_barrier(struct r10conf *conf); 84 static void lower_barrier(struct r10conf *conf); 85 static int enough(struct r10conf *conf, int ignore); 86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 87 int *skipped); 88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 89 static void end_reshape_write(struct bio *bio, int error); 90 static void end_reshape(struct r10conf *conf); 91 92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 struct r10conf *conf = data; 95 int size = offsetof(struct r10bio, devs[conf->copies]); 96 97 /* allocate a r10bio with room for raid_disks entries in the 98 * bios array */ 99 return kzalloc(size, gfp_flags); 100 } 101 102 static void r10bio_pool_free(void *r10_bio, void *data) 103 { 104 kfree(r10_bio); 105 } 106 107 /* Maximum size of each resync request */ 108 #define RESYNC_BLOCK_SIZE (64*1024) 109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 110 /* amount of memory to reserve for resync requests */ 111 #define RESYNC_WINDOW (1024*1024) 112 /* maximum number of concurrent requests, memory permitting */ 113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 114 115 /* 116 * When performing a resync, we need to read and compare, so 117 * we need as many pages are there are copies. 118 * When performing a recovery, we need 2 bios, one for read, 119 * one for write (we recover only one drive per r10buf) 120 * 121 */ 122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 123 { 124 struct r10conf *conf = data; 125 struct page *page; 126 struct r10bio *r10_bio; 127 struct bio *bio; 128 int i, j; 129 int nalloc; 130 131 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 132 if (!r10_bio) 133 return NULL; 134 135 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 136 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 137 nalloc = conf->copies; /* resync */ 138 else 139 nalloc = 2; /* recovery */ 140 141 /* 142 * Allocate bios. 143 */ 144 for (j = nalloc ; j-- ; ) { 145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 146 if (!bio) 147 goto out_free_bio; 148 r10_bio->devs[j].bio = bio; 149 if (!conf->have_replacement) 150 continue; 151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 152 if (!bio) 153 goto out_free_bio; 154 r10_bio->devs[j].repl_bio = bio; 155 } 156 /* 157 * Allocate RESYNC_PAGES data pages and attach them 158 * where needed. 159 */ 160 for (j = 0 ; j < nalloc; j++) { 161 struct bio *rbio = r10_bio->devs[j].repl_bio; 162 bio = r10_bio->devs[j].bio; 163 for (i = 0; i < RESYNC_PAGES; i++) { 164 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 165 &conf->mddev->recovery)) { 166 /* we can share bv_page's during recovery 167 * and reshape */ 168 struct bio *rbio = r10_bio->devs[0].bio; 169 page = rbio->bi_io_vec[i].bv_page; 170 get_page(page); 171 } else 172 page = alloc_page(gfp_flags); 173 if (unlikely(!page)) 174 goto out_free_pages; 175 176 bio->bi_io_vec[i].bv_page = page; 177 if (rbio) 178 rbio->bi_io_vec[i].bv_page = page; 179 } 180 } 181 182 return r10_bio; 183 184 out_free_pages: 185 for ( ; i > 0 ; i--) 186 safe_put_page(bio->bi_io_vec[i-1].bv_page); 187 while (j--) 188 for (i = 0; i < RESYNC_PAGES ; i++) 189 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 190 j = 0; 191 out_free_bio: 192 for ( ; j < nalloc; j++) { 193 if (r10_bio->devs[j].bio) 194 bio_put(r10_bio->devs[j].bio); 195 if (r10_bio->devs[j].repl_bio) 196 bio_put(r10_bio->devs[j].repl_bio); 197 } 198 r10bio_pool_free(r10_bio, conf); 199 return NULL; 200 } 201 202 static void r10buf_pool_free(void *__r10_bio, void *data) 203 { 204 int i; 205 struct r10conf *conf = data; 206 struct r10bio *r10bio = __r10_bio; 207 int j; 208 209 for (j=0; j < conf->copies; j++) { 210 struct bio *bio = r10bio->devs[j].bio; 211 if (bio) { 212 for (i = 0; i < RESYNC_PAGES; i++) { 213 safe_put_page(bio->bi_io_vec[i].bv_page); 214 bio->bi_io_vec[i].bv_page = NULL; 215 } 216 bio_put(bio); 217 } 218 bio = r10bio->devs[j].repl_bio; 219 if (bio) 220 bio_put(bio); 221 } 222 r10bio_pool_free(r10bio, conf); 223 } 224 225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 226 { 227 int i; 228 229 for (i = 0; i < conf->copies; i++) { 230 struct bio **bio = & r10_bio->devs[i].bio; 231 if (!BIO_SPECIAL(*bio)) 232 bio_put(*bio); 233 *bio = NULL; 234 bio = &r10_bio->devs[i].repl_bio; 235 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 236 bio_put(*bio); 237 *bio = NULL; 238 } 239 } 240 241 static void free_r10bio(struct r10bio *r10_bio) 242 { 243 struct r10conf *conf = r10_bio->mddev->private; 244 245 put_all_bios(conf, r10_bio); 246 mempool_free(r10_bio, conf->r10bio_pool); 247 } 248 249 static void put_buf(struct r10bio *r10_bio) 250 { 251 struct r10conf *conf = r10_bio->mddev->private; 252 253 mempool_free(r10_bio, conf->r10buf_pool); 254 255 lower_barrier(conf); 256 } 257 258 static void reschedule_retry(struct r10bio *r10_bio) 259 { 260 unsigned long flags; 261 struct mddev *mddev = r10_bio->mddev; 262 struct r10conf *conf = mddev->private; 263 264 spin_lock_irqsave(&conf->device_lock, flags); 265 list_add(&r10_bio->retry_list, &conf->retry_list); 266 conf->nr_queued ++; 267 spin_unlock_irqrestore(&conf->device_lock, flags); 268 269 /* wake up frozen array... */ 270 wake_up(&conf->wait_barrier); 271 272 md_wakeup_thread(mddev->thread); 273 } 274 275 /* 276 * raid_end_bio_io() is called when we have finished servicing a mirrored 277 * operation and are ready to return a success/failure code to the buffer 278 * cache layer. 279 */ 280 static void raid_end_bio_io(struct r10bio *r10_bio) 281 { 282 struct bio *bio = r10_bio->master_bio; 283 int done; 284 struct r10conf *conf = r10_bio->mddev->private; 285 286 if (bio->bi_phys_segments) { 287 unsigned long flags; 288 spin_lock_irqsave(&conf->device_lock, flags); 289 bio->bi_phys_segments--; 290 done = (bio->bi_phys_segments == 0); 291 spin_unlock_irqrestore(&conf->device_lock, flags); 292 } else 293 done = 1; 294 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 295 clear_bit(BIO_UPTODATE, &bio->bi_flags); 296 if (done) { 297 bio_endio(bio, 0); 298 /* 299 * Wake up any possible resync thread that waits for the device 300 * to go idle. 301 */ 302 allow_barrier(conf); 303 } 304 free_r10bio(r10_bio); 305 } 306 307 /* 308 * Update disk head position estimator based on IRQ completion info. 309 */ 310 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 311 { 312 struct r10conf *conf = r10_bio->mddev->private; 313 314 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 315 r10_bio->devs[slot].addr + (r10_bio->sectors); 316 } 317 318 /* 319 * Find the disk number which triggered given bio 320 */ 321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 322 struct bio *bio, int *slotp, int *replp) 323 { 324 int slot; 325 int repl = 0; 326 327 for (slot = 0; slot < conf->copies; slot++) { 328 if (r10_bio->devs[slot].bio == bio) 329 break; 330 if (r10_bio->devs[slot].repl_bio == bio) { 331 repl = 1; 332 break; 333 } 334 } 335 336 BUG_ON(slot == conf->copies); 337 update_head_pos(slot, r10_bio); 338 339 if (slotp) 340 *slotp = slot; 341 if (replp) 342 *replp = repl; 343 return r10_bio->devs[slot].devnum; 344 } 345 346 static void raid10_end_read_request(struct bio *bio, int error) 347 { 348 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 349 struct r10bio *r10_bio = bio->bi_private; 350 int slot, dev; 351 struct md_rdev *rdev; 352 struct r10conf *conf = r10_bio->mddev->private; 353 354 355 slot = r10_bio->read_slot; 356 dev = r10_bio->devs[slot].devnum; 357 rdev = r10_bio->devs[slot].rdev; 358 /* 359 * this branch is our 'one mirror IO has finished' event handler: 360 */ 361 update_head_pos(slot, r10_bio); 362 363 if (uptodate) { 364 /* 365 * Set R10BIO_Uptodate in our master bio, so that 366 * we will return a good error code to the higher 367 * levels even if IO on some other mirrored buffer fails. 368 * 369 * The 'master' represents the composite IO operation to 370 * user-side. So if something waits for IO, then it will 371 * wait for the 'master' bio. 372 */ 373 set_bit(R10BIO_Uptodate, &r10_bio->state); 374 } else { 375 /* If all other devices that store this block have 376 * failed, we want to return the error upwards rather 377 * than fail the last device. Here we redefine 378 * "uptodate" to mean "Don't want to retry" 379 */ 380 unsigned long flags; 381 spin_lock_irqsave(&conf->device_lock, flags); 382 if (!enough(conf, rdev->raid_disk)) 383 uptodate = 1; 384 spin_unlock_irqrestore(&conf->device_lock, flags); 385 } 386 if (uptodate) { 387 raid_end_bio_io(r10_bio); 388 rdev_dec_pending(rdev, conf->mddev); 389 } else { 390 /* 391 * oops, read error - keep the refcount on the rdev 392 */ 393 char b[BDEVNAME_SIZE]; 394 printk_ratelimited(KERN_ERR 395 "md/raid10:%s: %s: rescheduling sector %llu\n", 396 mdname(conf->mddev), 397 bdevname(rdev->bdev, b), 398 (unsigned long long)r10_bio->sector); 399 set_bit(R10BIO_ReadError, &r10_bio->state); 400 reschedule_retry(r10_bio); 401 } 402 } 403 404 static void close_write(struct r10bio *r10_bio) 405 { 406 /* clear the bitmap if all writes complete successfully */ 407 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 408 r10_bio->sectors, 409 !test_bit(R10BIO_Degraded, &r10_bio->state), 410 0); 411 md_write_end(r10_bio->mddev); 412 } 413 414 static void one_write_done(struct r10bio *r10_bio) 415 { 416 if (atomic_dec_and_test(&r10_bio->remaining)) { 417 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 418 reschedule_retry(r10_bio); 419 else { 420 close_write(r10_bio); 421 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 422 reschedule_retry(r10_bio); 423 else 424 raid_end_bio_io(r10_bio); 425 } 426 } 427 } 428 429 static void raid10_end_write_request(struct bio *bio, int error) 430 { 431 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 432 struct r10bio *r10_bio = bio->bi_private; 433 int dev; 434 int dec_rdev = 1; 435 struct r10conf *conf = r10_bio->mddev->private; 436 int slot, repl; 437 struct md_rdev *rdev = NULL; 438 439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 440 441 if (repl) 442 rdev = conf->mirrors[dev].replacement; 443 if (!rdev) { 444 smp_rmb(); 445 repl = 0; 446 rdev = conf->mirrors[dev].rdev; 447 } 448 /* 449 * this branch is our 'one mirror IO has finished' event handler: 450 */ 451 if (!uptodate) { 452 if (repl) 453 /* Never record new bad blocks to replacement, 454 * just fail it. 455 */ 456 md_error(rdev->mddev, rdev); 457 else { 458 set_bit(WriteErrorSeen, &rdev->flags); 459 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 460 set_bit(MD_RECOVERY_NEEDED, 461 &rdev->mddev->recovery); 462 set_bit(R10BIO_WriteError, &r10_bio->state); 463 dec_rdev = 0; 464 } 465 } else { 466 /* 467 * Set R10BIO_Uptodate in our master bio, so that 468 * we will return a good error code for to the higher 469 * levels even if IO on some other mirrored buffer fails. 470 * 471 * The 'master' represents the composite IO operation to 472 * user-side. So if something waits for IO, then it will 473 * wait for the 'master' bio. 474 */ 475 sector_t first_bad; 476 int bad_sectors; 477 478 set_bit(R10BIO_Uptodate, &r10_bio->state); 479 480 /* Maybe we can clear some bad blocks. */ 481 if (is_badblock(rdev, 482 r10_bio->devs[slot].addr, 483 r10_bio->sectors, 484 &first_bad, &bad_sectors)) { 485 bio_put(bio); 486 if (repl) 487 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 488 else 489 r10_bio->devs[slot].bio = IO_MADE_GOOD; 490 dec_rdev = 0; 491 set_bit(R10BIO_MadeGood, &r10_bio->state); 492 } 493 } 494 495 /* 496 * 497 * Let's see if all mirrored write operations have finished 498 * already. 499 */ 500 one_write_done(r10_bio); 501 if (dec_rdev) 502 rdev_dec_pending(rdev, conf->mddev); 503 } 504 505 /* 506 * RAID10 layout manager 507 * As well as the chunksize and raid_disks count, there are two 508 * parameters: near_copies and far_copies. 509 * near_copies * far_copies must be <= raid_disks. 510 * Normally one of these will be 1. 511 * If both are 1, we get raid0. 512 * If near_copies == raid_disks, we get raid1. 513 * 514 * Chunks are laid out in raid0 style with near_copies copies of the 515 * first chunk, followed by near_copies copies of the next chunk and 516 * so on. 517 * If far_copies > 1, then after 1/far_copies of the array has been assigned 518 * as described above, we start again with a device offset of near_copies. 519 * So we effectively have another copy of the whole array further down all 520 * the drives, but with blocks on different drives. 521 * With this layout, and block is never stored twice on the one device. 522 * 523 * raid10_find_phys finds the sector offset of a given virtual sector 524 * on each device that it is on. 525 * 526 * raid10_find_virt does the reverse mapping, from a device and a 527 * sector offset to a virtual address 528 */ 529 530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 531 { 532 int n,f; 533 sector_t sector; 534 sector_t chunk; 535 sector_t stripe; 536 int dev; 537 int slot = 0; 538 539 /* now calculate first sector/dev */ 540 chunk = r10bio->sector >> geo->chunk_shift; 541 sector = r10bio->sector & geo->chunk_mask; 542 543 chunk *= geo->near_copies; 544 stripe = chunk; 545 dev = sector_div(stripe, geo->raid_disks); 546 if (geo->far_offset) 547 stripe *= geo->far_copies; 548 549 sector += stripe << geo->chunk_shift; 550 551 /* and calculate all the others */ 552 for (n = 0; n < geo->near_copies; n++) { 553 int d = dev; 554 sector_t s = sector; 555 r10bio->devs[slot].addr = sector; 556 r10bio->devs[slot].devnum = d; 557 slot++; 558 559 for (f = 1; f < geo->far_copies; f++) { 560 d += geo->near_copies; 561 if (d >= geo->raid_disks) 562 d -= geo->raid_disks; 563 s += geo->stride; 564 r10bio->devs[slot].devnum = d; 565 r10bio->devs[slot].addr = s; 566 slot++; 567 } 568 dev++; 569 if (dev >= geo->raid_disks) { 570 dev = 0; 571 sector += (geo->chunk_mask + 1); 572 } 573 } 574 } 575 576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 577 { 578 struct geom *geo = &conf->geo; 579 580 if (conf->reshape_progress != MaxSector && 581 ((r10bio->sector >= conf->reshape_progress) != 582 conf->mddev->reshape_backwards)) { 583 set_bit(R10BIO_Previous, &r10bio->state); 584 geo = &conf->prev; 585 } else 586 clear_bit(R10BIO_Previous, &r10bio->state); 587 588 __raid10_find_phys(geo, r10bio); 589 } 590 591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 592 { 593 sector_t offset, chunk, vchunk; 594 /* Never use conf->prev as this is only called during resync 595 * or recovery, so reshape isn't happening 596 */ 597 struct geom *geo = &conf->geo; 598 599 offset = sector & geo->chunk_mask; 600 if (geo->far_offset) { 601 int fc; 602 chunk = sector >> geo->chunk_shift; 603 fc = sector_div(chunk, geo->far_copies); 604 dev -= fc * geo->near_copies; 605 if (dev < 0) 606 dev += geo->raid_disks; 607 } else { 608 while (sector >= geo->stride) { 609 sector -= geo->stride; 610 if (dev < geo->near_copies) 611 dev += geo->raid_disks - geo->near_copies; 612 else 613 dev -= geo->near_copies; 614 } 615 chunk = sector >> geo->chunk_shift; 616 } 617 vchunk = chunk * geo->raid_disks + dev; 618 sector_div(vchunk, geo->near_copies); 619 return (vchunk << geo->chunk_shift) + offset; 620 } 621 622 /** 623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 624 * @q: request queue 625 * @bvm: properties of new bio 626 * @biovec: the request that could be merged to it. 627 * 628 * Return amount of bytes we can accept at this offset 629 * This requires checking for end-of-chunk if near_copies != raid_disks, 630 * and for subordinate merge_bvec_fns if merge_check_needed. 631 */ 632 static int raid10_mergeable_bvec(struct request_queue *q, 633 struct bvec_merge_data *bvm, 634 struct bio_vec *biovec) 635 { 636 struct mddev *mddev = q->queuedata; 637 struct r10conf *conf = mddev->private; 638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 639 int max; 640 unsigned int chunk_sectors; 641 unsigned int bio_sectors = bvm->bi_size >> 9; 642 struct geom *geo = &conf->geo; 643 644 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 645 if (conf->reshape_progress != MaxSector && 646 ((sector >= conf->reshape_progress) != 647 conf->mddev->reshape_backwards)) 648 geo = &conf->prev; 649 650 if (geo->near_copies < geo->raid_disks) { 651 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 652 + bio_sectors)) << 9; 653 if (max < 0) 654 /* bio_add cannot handle a negative return */ 655 max = 0; 656 if (max <= biovec->bv_len && bio_sectors == 0) 657 return biovec->bv_len; 658 } else 659 max = biovec->bv_len; 660 661 if (mddev->merge_check_needed) { 662 struct { 663 struct r10bio r10_bio; 664 struct r10dev devs[conf->copies]; 665 } on_stack; 666 struct r10bio *r10_bio = &on_stack.r10_bio; 667 int s; 668 if (conf->reshape_progress != MaxSector) { 669 /* Cannot give any guidance during reshape */ 670 if (max <= biovec->bv_len && bio_sectors == 0) 671 return biovec->bv_len; 672 return 0; 673 } 674 r10_bio->sector = sector; 675 raid10_find_phys(conf, r10_bio); 676 rcu_read_lock(); 677 for (s = 0; s < conf->copies; s++) { 678 int disk = r10_bio->devs[s].devnum; 679 struct md_rdev *rdev = rcu_dereference( 680 conf->mirrors[disk].rdev); 681 if (rdev && !test_bit(Faulty, &rdev->flags)) { 682 struct request_queue *q = 683 bdev_get_queue(rdev->bdev); 684 if (q->merge_bvec_fn) { 685 bvm->bi_sector = r10_bio->devs[s].addr 686 + rdev->data_offset; 687 bvm->bi_bdev = rdev->bdev; 688 max = min(max, q->merge_bvec_fn( 689 q, bvm, biovec)); 690 } 691 } 692 rdev = rcu_dereference(conf->mirrors[disk].replacement); 693 if (rdev && !test_bit(Faulty, &rdev->flags)) { 694 struct request_queue *q = 695 bdev_get_queue(rdev->bdev); 696 if (q->merge_bvec_fn) { 697 bvm->bi_sector = r10_bio->devs[s].addr 698 + rdev->data_offset; 699 bvm->bi_bdev = rdev->bdev; 700 max = min(max, q->merge_bvec_fn( 701 q, bvm, biovec)); 702 } 703 } 704 } 705 rcu_read_unlock(); 706 } 707 return max; 708 } 709 710 /* 711 * This routine returns the disk from which the requested read should 712 * be done. There is a per-array 'next expected sequential IO' sector 713 * number - if this matches on the next IO then we use the last disk. 714 * There is also a per-disk 'last know head position' sector that is 715 * maintained from IRQ contexts, both the normal and the resync IO 716 * completion handlers update this position correctly. If there is no 717 * perfect sequential match then we pick the disk whose head is closest. 718 * 719 * If there are 2 mirrors in the same 2 devices, performance degrades 720 * because position is mirror, not device based. 721 * 722 * The rdev for the device selected will have nr_pending incremented. 723 */ 724 725 /* 726 * FIXME: possibly should rethink readbalancing and do it differently 727 * depending on near_copies / far_copies geometry. 728 */ 729 static struct md_rdev *read_balance(struct r10conf *conf, 730 struct r10bio *r10_bio, 731 int *max_sectors) 732 { 733 const sector_t this_sector = r10_bio->sector; 734 int disk, slot; 735 int sectors = r10_bio->sectors; 736 int best_good_sectors; 737 sector_t new_distance, best_dist; 738 struct md_rdev *best_rdev, *rdev = NULL; 739 int do_balance; 740 int best_slot; 741 struct geom *geo = &conf->geo; 742 743 raid10_find_phys(conf, r10_bio); 744 rcu_read_lock(); 745 retry: 746 sectors = r10_bio->sectors; 747 best_slot = -1; 748 best_rdev = NULL; 749 best_dist = MaxSector; 750 best_good_sectors = 0; 751 do_balance = 1; 752 /* 753 * Check if we can balance. We can balance on the whole 754 * device if no resync is going on (recovery is ok), or below 755 * the resync window. We take the first readable disk when 756 * above the resync window. 757 */ 758 if (conf->mddev->recovery_cp < MaxSector 759 && (this_sector + sectors >= conf->next_resync)) 760 do_balance = 0; 761 762 for (slot = 0; slot < conf->copies ; slot++) { 763 sector_t first_bad; 764 int bad_sectors; 765 sector_t dev_sector; 766 767 if (r10_bio->devs[slot].bio == IO_BLOCKED) 768 continue; 769 disk = r10_bio->devs[slot].devnum; 770 rdev = rcu_dereference(conf->mirrors[disk].replacement); 771 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 772 test_bit(Unmerged, &rdev->flags) || 773 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 774 rdev = rcu_dereference(conf->mirrors[disk].rdev); 775 if (rdev == NULL || 776 test_bit(Faulty, &rdev->flags) || 777 test_bit(Unmerged, &rdev->flags)) 778 continue; 779 if (!test_bit(In_sync, &rdev->flags) && 780 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 781 continue; 782 783 dev_sector = r10_bio->devs[slot].addr; 784 if (is_badblock(rdev, dev_sector, sectors, 785 &first_bad, &bad_sectors)) { 786 if (best_dist < MaxSector) 787 /* Already have a better slot */ 788 continue; 789 if (first_bad <= dev_sector) { 790 /* Cannot read here. If this is the 791 * 'primary' device, then we must not read 792 * beyond 'bad_sectors' from another device. 793 */ 794 bad_sectors -= (dev_sector - first_bad); 795 if (!do_balance && sectors > bad_sectors) 796 sectors = bad_sectors; 797 if (best_good_sectors > sectors) 798 best_good_sectors = sectors; 799 } else { 800 sector_t good_sectors = 801 first_bad - dev_sector; 802 if (good_sectors > best_good_sectors) { 803 best_good_sectors = good_sectors; 804 best_slot = slot; 805 best_rdev = rdev; 806 } 807 if (!do_balance) 808 /* Must read from here */ 809 break; 810 } 811 continue; 812 } else 813 best_good_sectors = sectors; 814 815 if (!do_balance) 816 break; 817 818 /* This optimisation is debatable, and completely destroys 819 * sequential read speed for 'far copies' arrays. So only 820 * keep it for 'near' arrays, and review those later. 821 */ 822 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 823 break; 824 825 /* for far > 1 always use the lowest address */ 826 if (geo->far_copies > 1) 827 new_distance = r10_bio->devs[slot].addr; 828 else 829 new_distance = abs(r10_bio->devs[slot].addr - 830 conf->mirrors[disk].head_position); 831 if (new_distance < best_dist) { 832 best_dist = new_distance; 833 best_slot = slot; 834 best_rdev = rdev; 835 } 836 } 837 if (slot >= conf->copies) { 838 slot = best_slot; 839 rdev = best_rdev; 840 } 841 842 if (slot >= 0) { 843 atomic_inc(&rdev->nr_pending); 844 if (test_bit(Faulty, &rdev->flags)) { 845 /* Cannot risk returning a device that failed 846 * before we inc'ed nr_pending 847 */ 848 rdev_dec_pending(rdev, conf->mddev); 849 goto retry; 850 } 851 r10_bio->read_slot = slot; 852 } else 853 rdev = NULL; 854 rcu_read_unlock(); 855 *max_sectors = best_good_sectors; 856 857 return rdev; 858 } 859 860 int md_raid10_congested(struct mddev *mddev, int bits) 861 { 862 struct r10conf *conf = mddev->private; 863 int i, ret = 0; 864 865 if ((bits & (1 << BDI_async_congested)) && 866 conf->pending_count >= max_queued_requests) 867 return 1; 868 869 rcu_read_lock(); 870 for (i = 0; 871 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 872 && ret == 0; 873 i++) { 874 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 875 if (rdev && !test_bit(Faulty, &rdev->flags)) { 876 struct request_queue *q = bdev_get_queue(rdev->bdev); 877 878 ret |= bdi_congested(&q->backing_dev_info, bits); 879 } 880 } 881 rcu_read_unlock(); 882 return ret; 883 } 884 EXPORT_SYMBOL_GPL(md_raid10_congested); 885 886 static int raid10_congested(void *data, int bits) 887 { 888 struct mddev *mddev = data; 889 890 return mddev_congested(mddev, bits) || 891 md_raid10_congested(mddev, bits); 892 } 893 894 static void flush_pending_writes(struct r10conf *conf) 895 { 896 /* Any writes that have been queued but are awaiting 897 * bitmap updates get flushed here. 898 */ 899 spin_lock_irq(&conf->device_lock); 900 901 if (conf->pending_bio_list.head) { 902 struct bio *bio; 903 bio = bio_list_get(&conf->pending_bio_list); 904 conf->pending_count = 0; 905 spin_unlock_irq(&conf->device_lock); 906 /* flush any pending bitmap writes to disk 907 * before proceeding w/ I/O */ 908 bitmap_unplug(conf->mddev->bitmap); 909 wake_up(&conf->wait_barrier); 910 911 while (bio) { /* submit pending writes */ 912 struct bio *next = bio->bi_next; 913 bio->bi_next = NULL; 914 if (unlikely((bio->bi_rw & REQ_DISCARD) && 915 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 916 /* Just ignore it */ 917 bio_endio(bio, 0); 918 else 919 generic_make_request(bio); 920 bio = next; 921 } 922 } else 923 spin_unlock_irq(&conf->device_lock); 924 } 925 926 /* Barriers.... 927 * Sometimes we need to suspend IO while we do something else, 928 * either some resync/recovery, or reconfigure the array. 929 * To do this we raise a 'barrier'. 930 * The 'barrier' is a counter that can be raised multiple times 931 * to count how many activities are happening which preclude 932 * normal IO. 933 * We can only raise the barrier if there is no pending IO. 934 * i.e. if nr_pending == 0. 935 * We choose only to raise the barrier if no-one is waiting for the 936 * barrier to go down. This means that as soon as an IO request 937 * is ready, no other operations which require a barrier will start 938 * until the IO request has had a chance. 939 * 940 * So: regular IO calls 'wait_barrier'. When that returns there 941 * is no backgroup IO happening, It must arrange to call 942 * allow_barrier when it has finished its IO. 943 * backgroup IO calls must call raise_barrier. Once that returns 944 * there is no normal IO happeing. It must arrange to call 945 * lower_barrier when the particular background IO completes. 946 */ 947 948 static void raise_barrier(struct r10conf *conf, int force) 949 { 950 BUG_ON(force && !conf->barrier); 951 spin_lock_irq(&conf->resync_lock); 952 953 /* Wait until no block IO is waiting (unless 'force') */ 954 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 955 conf->resync_lock, ); 956 957 /* block any new IO from starting */ 958 conf->barrier++; 959 960 /* Now wait for all pending IO to complete */ 961 wait_event_lock_irq(conf->wait_barrier, 962 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 963 conf->resync_lock, ); 964 965 spin_unlock_irq(&conf->resync_lock); 966 } 967 968 static void lower_barrier(struct r10conf *conf) 969 { 970 unsigned long flags; 971 spin_lock_irqsave(&conf->resync_lock, flags); 972 conf->barrier--; 973 spin_unlock_irqrestore(&conf->resync_lock, flags); 974 wake_up(&conf->wait_barrier); 975 } 976 977 static void wait_barrier(struct r10conf *conf) 978 { 979 spin_lock_irq(&conf->resync_lock); 980 if (conf->barrier) { 981 conf->nr_waiting++; 982 /* Wait for the barrier to drop. 983 * However if there are already pending 984 * requests (preventing the barrier from 985 * rising completely), and the 986 * pre-process bio queue isn't empty, 987 * then don't wait, as we need to empty 988 * that queue to get the nr_pending 989 * count down. 990 */ 991 wait_event_lock_irq(conf->wait_barrier, 992 !conf->barrier || 993 (conf->nr_pending && 994 current->bio_list && 995 !bio_list_empty(current->bio_list)), 996 conf->resync_lock, 997 ); 998 conf->nr_waiting--; 999 } 1000 conf->nr_pending++; 1001 spin_unlock_irq(&conf->resync_lock); 1002 } 1003 1004 static void allow_barrier(struct r10conf *conf) 1005 { 1006 unsigned long flags; 1007 spin_lock_irqsave(&conf->resync_lock, flags); 1008 conf->nr_pending--; 1009 spin_unlock_irqrestore(&conf->resync_lock, flags); 1010 wake_up(&conf->wait_barrier); 1011 } 1012 1013 static void freeze_array(struct r10conf *conf) 1014 { 1015 /* stop syncio and normal IO and wait for everything to 1016 * go quiet. 1017 * We increment barrier and nr_waiting, and then 1018 * wait until nr_pending match nr_queued+1 1019 * This is called in the context of one normal IO request 1020 * that has failed. Thus any sync request that might be pending 1021 * will be blocked by nr_pending, and we need to wait for 1022 * pending IO requests to complete or be queued for re-try. 1023 * Thus the number queued (nr_queued) plus this request (1) 1024 * must match the number of pending IOs (nr_pending) before 1025 * we continue. 1026 */ 1027 spin_lock_irq(&conf->resync_lock); 1028 conf->barrier++; 1029 conf->nr_waiting++; 1030 wait_event_lock_irq(conf->wait_barrier, 1031 conf->nr_pending == conf->nr_queued+1, 1032 conf->resync_lock, 1033 flush_pending_writes(conf)); 1034 1035 spin_unlock_irq(&conf->resync_lock); 1036 } 1037 1038 static void unfreeze_array(struct r10conf *conf) 1039 { 1040 /* reverse the effect of the freeze */ 1041 spin_lock_irq(&conf->resync_lock); 1042 conf->barrier--; 1043 conf->nr_waiting--; 1044 wake_up(&conf->wait_barrier); 1045 spin_unlock_irq(&conf->resync_lock); 1046 } 1047 1048 static sector_t choose_data_offset(struct r10bio *r10_bio, 1049 struct md_rdev *rdev) 1050 { 1051 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1052 test_bit(R10BIO_Previous, &r10_bio->state)) 1053 return rdev->data_offset; 1054 else 1055 return rdev->new_data_offset; 1056 } 1057 1058 struct raid10_plug_cb { 1059 struct blk_plug_cb cb; 1060 struct bio_list pending; 1061 int pending_cnt; 1062 }; 1063 1064 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1065 { 1066 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1067 cb); 1068 struct mddev *mddev = plug->cb.data; 1069 struct r10conf *conf = mddev->private; 1070 struct bio *bio; 1071 1072 if (from_schedule) { 1073 spin_lock_irq(&conf->device_lock); 1074 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1075 conf->pending_count += plug->pending_cnt; 1076 spin_unlock_irq(&conf->device_lock); 1077 md_wakeup_thread(mddev->thread); 1078 kfree(plug); 1079 return; 1080 } 1081 1082 /* we aren't scheduling, so we can do the write-out directly. */ 1083 bio = bio_list_get(&plug->pending); 1084 bitmap_unplug(mddev->bitmap); 1085 wake_up(&conf->wait_barrier); 1086 1087 while (bio) { /* submit pending writes */ 1088 struct bio *next = bio->bi_next; 1089 bio->bi_next = NULL; 1090 generic_make_request(bio); 1091 bio = next; 1092 } 1093 kfree(plug); 1094 } 1095 1096 static void make_request(struct mddev *mddev, struct bio * bio) 1097 { 1098 struct r10conf *conf = mddev->private; 1099 struct r10bio *r10_bio; 1100 struct bio *read_bio; 1101 int i; 1102 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1103 int chunk_sects = chunk_mask + 1; 1104 const int rw = bio_data_dir(bio); 1105 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1106 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1107 const unsigned long do_discard = (bio->bi_rw 1108 & (REQ_DISCARD | REQ_SECURE)); 1109 unsigned long flags; 1110 struct md_rdev *blocked_rdev; 1111 struct blk_plug_cb *cb; 1112 struct raid10_plug_cb *plug = NULL; 1113 int sectors_handled; 1114 int max_sectors; 1115 int sectors; 1116 1117 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1118 md_flush_request(mddev, bio); 1119 return; 1120 } 1121 1122 /* If this request crosses a chunk boundary, we need to 1123 * split it. This will only happen for 1 PAGE (or less) requests. 1124 */ 1125 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9) 1126 > chunk_sects 1127 && (conf->geo.near_copies < conf->geo.raid_disks 1128 || conf->prev.near_copies < conf->prev.raid_disks))) { 1129 struct bio_pair *bp; 1130 /* Sanity check -- queue functions should prevent this happening */ 1131 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) || 1132 bio->bi_idx != 0) 1133 goto bad_map; 1134 /* This is a one page bio that upper layers 1135 * refuse to split for us, so we need to split it. 1136 */ 1137 bp = bio_split(bio, 1138 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1139 1140 /* Each of these 'make_request' calls will call 'wait_barrier'. 1141 * If the first succeeds but the second blocks due to the resync 1142 * thread raising the barrier, we will deadlock because the 1143 * IO to the underlying device will be queued in generic_make_request 1144 * and will never complete, so will never reduce nr_pending. 1145 * So increment nr_waiting here so no new raise_barriers will 1146 * succeed, and so the second wait_barrier cannot block. 1147 */ 1148 spin_lock_irq(&conf->resync_lock); 1149 conf->nr_waiting++; 1150 spin_unlock_irq(&conf->resync_lock); 1151 1152 make_request(mddev, &bp->bio1); 1153 make_request(mddev, &bp->bio2); 1154 1155 spin_lock_irq(&conf->resync_lock); 1156 conf->nr_waiting--; 1157 wake_up(&conf->wait_barrier); 1158 spin_unlock_irq(&conf->resync_lock); 1159 1160 bio_pair_release(bp); 1161 return; 1162 bad_map: 1163 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1164 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1165 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 1166 1167 bio_io_error(bio); 1168 return; 1169 } 1170 1171 md_write_start(mddev, bio); 1172 1173 /* 1174 * Register the new request and wait if the reconstruction 1175 * thread has put up a bar for new requests. 1176 * Continue immediately if no resync is active currently. 1177 */ 1178 wait_barrier(conf); 1179 1180 sectors = bio->bi_size >> 9; 1181 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1182 bio->bi_sector < conf->reshape_progress && 1183 bio->bi_sector + sectors > conf->reshape_progress) { 1184 /* IO spans the reshape position. Need to wait for 1185 * reshape to pass 1186 */ 1187 allow_barrier(conf); 1188 wait_event(conf->wait_barrier, 1189 conf->reshape_progress <= bio->bi_sector || 1190 conf->reshape_progress >= bio->bi_sector + sectors); 1191 wait_barrier(conf); 1192 } 1193 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1194 bio_data_dir(bio) == WRITE && 1195 (mddev->reshape_backwards 1196 ? (bio->bi_sector < conf->reshape_safe && 1197 bio->bi_sector + sectors > conf->reshape_progress) 1198 : (bio->bi_sector + sectors > conf->reshape_safe && 1199 bio->bi_sector < conf->reshape_progress))) { 1200 /* Need to update reshape_position in metadata */ 1201 mddev->reshape_position = conf->reshape_progress; 1202 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1203 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1204 md_wakeup_thread(mddev->thread); 1205 wait_event(mddev->sb_wait, 1206 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1207 1208 conf->reshape_safe = mddev->reshape_position; 1209 } 1210 1211 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1212 1213 r10_bio->master_bio = bio; 1214 r10_bio->sectors = sectors; 1215 1216 r10_bio->mddev = mddev; 1217 r10_bio->sector = bio->bi_sector; 1218 r10_bio->state = 0; 1219 1220 /* We might need to issue multiple reads to different 1221 * devices if there are bad blocks around, so we keep 1222 * track of the number of reads in bio->bi_phys_segments. 1223 * If this is 0, there is only one r10_bio and no locking 1224 * will be needed when the request completes. If it is 1225 * non-zero, then it is the number of not-completed requests. 1226 */ 1227 bio->bi_phys_segments = 0; 1228 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1229 1230 if (rw == READ) { 1231 /* 1232 * read balancing logic: 1233 */ 1234 struct md_rdev *rdev; 1235 int slot; 1236 1237 read_again: 1238 rdev = read_balance(conf, r10_bio, &max_sectors); 1239 if (!rdev) { 1240 raid_end_bio_io(r10_bio); 1241 return; 1242 } 1243 slot = r10_bio->read_slot; 1244 1245 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1246 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1247 max_sectors); 1248 1249 r10_bio->devs[slot].bio = read_bio; 1250 r10_bio->devs[slot].rdev = rdev; 1251 1252 read_bio->bi_sector = r10_bio->devs[slot].addr + 1253 choose_data_offset(r10_bio, rdev); 1254 read_bio->bi_bdev = rdev->bdev; 1255 read_bio->bi_end_io = raid10_end_read_request; 1256 read_bio->bi_rw = READ | do_sync; 1257 read_bio->bi_private = r10_bio; 1258 1259 if (max_sectors < r10_bio->sectors) { 1260 /* Could not read all from this device, so we will 1261 * need another r10_bio. 1262 */ 1263 sectors_handled = (r10_bio->sectors + max_sectors 1264 - bio->bi_sector); 1265 r10_bio->sectors = max_sectors; 1266 spin_lock_irq(&conf->device_lock); 1267 if (bio->bi_phys_segments == 0) 1268 bio->bi_phys_segments = 2; 1269 else 1270 bio->bi_phys_segments++; 1271 spin_unlock(&conf->device_lock); 1272 /* Cannot call generic_make_request directly 1273 * as that will be queued in __generic_make_request 1274 * and subsequent mempool_alloc might block 1275 * waiting for it. so hand bio over to raid10d. 1276 */ 1277 reschedule_retry(r10_bio); 1278 1279 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1280 1281 r10_bio->master_bio = bio; 1282 r10_bio->sectors = ((bio->bi_size >> 9) 1283 - sectors_handled); 1284 r10_bio->state = 0; 1285 r10_bio->mddev = mddev; 1286 r10_bio->sector = bio->bi_sector + sectors_handled; 1287 goto read_again; 1288 } else 1289 generic_make_request(read_bio); 1290 return; 1291 } 1292 1293 /* 1294 * WRITE: 1295 */ 1296 if (conf->pending_count >= max_queued_requests) { 1297 md_wakeup_thread(mddev->thread); 1298 wait_event(conf->wait_barrier, 1299 conf->pending_count < max_queued_requests); 1300 } 1301 /* first select target devices under rcu_lock and 1302 * inc refcount on their rdev. Record them by setting 1303 * bios[x] to bio 1304 * If there are known/acknowledged bad blocks on any device 1305 * on which we have seen a write error, we want to avoid 1306 * writing to those blocks. This potentially requires several 1307 * writes to write around the bad blocks. Each set of writes 1308 * gets its own r10_bio with a set of bios attached. The number 1309 * of r10_bios is recored in bio->bi_phys_segments just as with 1310 * the read case. 1311 */ 1312 1313 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1314 raid10_find_phys(conf, r10_bio); 1315 retry_write: 1316 blocked_rdev = NULL; 1317 rcu_read_lock(); 1318 max_sectors = r10_bio->sectors; 1319 1320 for (i = 0; i < conf->copies; i++) { 1321 int d = r10_bio->devs[i].devnum; 1322 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1323 struct md_rdev *rrdev = rcu_dereference( 1324 conf->mirrors[d].replacement); 1325 if (rdev == rrdev) 1326 rrdev = NULL; 1327 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1328 atomic_inc(&rdev->nr_pending); 1329 blocked_rdev = rdev; 1330 break; 1331 } 1332 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1333 atomic_inc(&rrdev->nr_pending); 1334 blocked_rdev = rrdev; 1335 break; 1336 } 1337 if (rdev && (test_bit(Faulty, &rdev->flags) 1338 || test_bit(Unmerged, &rdev->flags))) 1339 rdev = NULL; 1340 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1341 || test_bit(Unmerged, &rrdev->flags))) 1342 rrdev = NULL; 1343 1344 r10_bio->devs[i].bio = NULL; 1345 r10_bio->devs[i].repl_bio = NULL; 1346 1347 if (!rdev && !rrdev) { 1348 set_bit(R10BIO_Degraded, &r10_bio->state); 1349 continue; 1350 } 1351 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1352 sector_t first_bad; 1353 sector_t dev_sector = r10_bio->devs[i].addr; 1354 int bad_sectors; 1355 int is_bad; 1356 1357 is_bad = is_badblock(rdev, dev_sector, 1358 max_sectors, 1359 &first_bad, &bad_sectors); 1360 if (is_bad < 0) { 1361 /* Mustn't write here until the bad block 1362 * is acknowledged 1363 */ 1364 atomic_inc(&rdev->nr_pending); 1365 set_bit(BlockedBadBlocks, &rdev->flags); 1366 blocked_rdev = rdev; 1367 break; 1368 } 1369 if (is_bad && first_bad <= dev_sector) { 1370 /* Cannot write here at all */ 1371 bad_sectors -= (dev_sector - first_bad); 1372 if (bad_sectors < max_sectors) 1373 /* Mustn't write more than bad_sectors 1374 * to other devices yet 1375 */ 1376 max_sectors = bad_sectors; 1377 /* We don't set R10BIO_Degraded as that 1378 * only applies if the disk is missing, 1379 * so it might be re-added, and we want to 1380 * know to recover this chunk. 1381 * In this case the device is here, and the 1382 * fact that this chunk is not in-sync is 1383 * recorded in the bad block log. 1384 */ 1385 continue; 1386 } 1387 if (is_bad) { 1388 int good_sectors = first_bad - dev_sector; 1389 if (good_sectors < max_sectors) 1390 max_sectors = good_sectors; 1391 } 1392 } 1393 if (rdev) { 1394 r10_bio->devs[i].bio = bio; 1395 atomic_inc(&rdev->nr_pending); 1396 } 1397 if (rrdev) { 1398 r10_bio->devs[i].repl_bio = bio; 1399 atomic_inc(&rrdev->nr_pending); 1400 } 1401 } 1402 rcu_read_unlock(); 1403 1404 if (unlikely(blocked_rdev)) { 1405 /* Have to wait for this device to get unblocked, then retry */ 1406 int j; 1407 int d; 1408 1409 for (j = 0; j < i; j++) { 1410 if (r10_bio->devs[j].bio) { 1411 d = r10_bio->devs[j].devnum; 1412 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1413 } 1414 if (r10_bio->devs[j].repl_bio) { 1415 struct md_rdev *rdev; 1416 d = r10_bio->devs[j].devnum; 1417 rdev = conf->mirrors[d].replacement; 1418 if (!rdev) { 1419 /* Race with remove_disk */ 1420 smp_mb(); 1421 rdev = conf->mirrors[d].rdev; 1422 } 1423 rdev_dec_pending(rdev, mddev); 1424 } 1425 } 1426 allow_barrier(conf); 1427 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1428 wait_barrier(conf); 1429 goto retry_write; 1430 } 1431 1432 if (max_sectors < r10_bio->sectors) { 1433 /* We are splitting this into multiple parts, so 1434 * we need to prepare for allocating another r10_bio. 1435 */ 1436 r10_bio->sectors = max_sectors; 1437 spin_lock_irq(&conf->device_lock); 1438 if (bio->bi_phys_segments == 0) 1439 bio->bi_phys_segments = 2; 1440 else 1441 bio->bi_phys_segments++; 1442 spin_unlock_irq(&conf->device_lock); 1443 } 1444 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1445 1446 atomic_set(&r10_bio->remaining, 1); 1447 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1448 1449 for (i = 0; i < conf->copies; i++) { 1450 struct bio *mbio; 1451 int d = r10_bio->devs[i].devnum; 1452 if (r10_bio->devs[i].bio) { 1453 struct md_rdev *rdev = conf->mirrors[d].rdev; 1454 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1455 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1456 max_sectors); 1457 r10_bio->devs[i].bio = mbio; 1458 1459 mbio->bi_sector = (r10_bio->devs[i].addr+ 1460 choose_data_offset(r10_bio, 1461 rdev)); 1462 mbio->bi_bdev = rdev->bdev; 1463 mbio->bi_end_io = raid10_end_write_request; 1464 mbio->bi_rw = WRITE | do_sync | do_fua | do_discard; 1465 mbio->bi_private = r10_bio; 1466 1467 atomic_inc(&r10_bio->remaining); 1468 1469 cb = blk_check_plugged(raid10_unplug, mddev, 1470 sizeof(*plug)); 1471 if (cb) 1472 plug = container_of(cb, struct raid10_plug_cb, 1473 cb); 1474 else 1475 plug = NULL; 1476 spin_lock_irqsave(&conf->device_lock, flags); 1477 if (plug) { 1478 bio_list_add(&plug->pending, mbio); 1479 plug->pending_cnt++; 1480 } else { 1481 bio_list_add(&conf->pending_bio_list, mbio); 1482 conf->pending_count++; 1483 } 1484 spin_unlock_irqrestore(&conf->device_lock, flags); 1485 if (!plug) 1486 md_wakeup_thread(mddev->thread); 1487 } 1488 1489 if (r10_bio->devs[i].repl_bio) { 1490 struct md_rdev *rdev = conf->mirrors[d].replacement; 1491 if (rdev == NULL) { 1492 /* Replacement just got moved to main 'rdev' */ 1493 smp_mb(); 1494 rdev = conf->mirrors[d].rdev; 1495 } 1496 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1497 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1498 max_sectors); 1499 r10_bio->devs[i].repl_bio = mbio; 1500 1501 mbio->bi_sector = (r10_bio->devs[i].addr + 1502 choose_data_offset( 1503 r10_bio, rdev)); 1504 mbio->bi_bdev = rdev->bdev; 1505 mbio->bi_end_io = raid10_end_write_request; 1506 mbio->bi_rw = WRITE | do_sync | do_fua | do_discard; 1507 mbio->bi_private = r10_bio; 1508 1509 atomic_inc(&r10_bio->remaining); 1510 spin_lock_irqsave(&conf->device_lock, flags); 1511 bio_list_add(&conf->pending_bio_list, mbio); 1512 conf->pending_count++; 1513 spin_unlock_irqrestore(&conf->device_lock, flags); 1514 if (!mddev_check_plugged(mddev)) 1515 md_wakeup_thread(mddev->thread); 1516 } 1517 } 1518 1519 /* Don't remove the bias on 'remaining' (one_write_done) until 1520 * after checking if we need to go around again. 1521 */ 1522 1523 if (sectors_handled < (bio->bi_size >> 9)) { 1524 one_write_done(r10_bio); 1525 /* We need another r10_bio. It has already been counted 1526 * in bio->bi_phys_segments. 1527 */ 1528 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1529 1530 r10_bio->master_bio = bio; 1531 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1532 1533 r10_bio->mddev = mddev; 1534 r10_bio->sector = bio->bi_sector + sectors_handled; 1535 r10_bio->state = 0; 1536 goto retry_write; 1537 } 1538 one_write_done(r10_bio); 1539 1540 /* In case raid10d snuck in to freeze_array */ 1541 wake_up(&conf->wait_barrier); 1542 } 1543 1544 static void status(struct seq_file *seq, struct mddev *mddev) 1545 { 1546 struct r10conf *conf = mddev->private; 1547 int i; 1548 1549 if (conf->geo.near_copies < conf->geo.raid_disks) 1550 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1551 if (conf->geo.near_copies > 1) 1552 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1553 if (conf->geo.far_copies > 1) { 1554 if (conf->geo.far_offset) 1555 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1556 else 1557 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1558 } 1559 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1560 conf->geo.raid_disks - mddev->degraded); 1561 for (i = 0; i < conf->geo.raid_disks; i++) 1562 seq_printf(seq, "%s", 1563 conf->mirrors[i].rdev && 1564 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1565 seq_printf(seq, "]"); 1566 } 1567 1568 /* check if there are enough drives for 1569 * every block to appear on atleast one. 1570 * Don't consider the device numbered 'ignore' 1571 * as we might be about to remove it. 1572 */ 1573 static int _enough(struct r10conf *conf, struct geom *geo, int ignore) 1574 { 1575 int first = 0; 1576 1577 do { 1578 int n = conf->copies; 1579 int cnt = 0; 1580 int this = first; 1581 while (n--) { 1582 if (conf->mirrors[this].rdev && 1583 this != ignore) 1584 cnt++; 1585 this = (this+1) % geo->raid_disks; 1586 } 1587 if (cnt == 0) 1588 return 0; 1589 first = (first + geo->near_copies) % geo->raid_disks; 1590 } while (first != 0); 1591 return 1; 1592 } 1593 1594 static int enough(struct r10conf *conf, int ignore) 1595 { 1596 return _enough(conf, &conf->geo, ignore) && 1597 _enough(conf, &conf->prev, ignore); 1598 } 1599 1600 static void error(struct mddev *mddev, struct md_rdev *rdev) 1601 { 1602 char b[BDEVNAME_SIZE]; 1603 struct r10conf *conf = mddev->private; 1604 1605 /* 1606 * If it is not operational, then we have already marked it as dead 1607 * else if it is the last working disks, ignore the error, let the 1608 * next level up know. 1609 * else mark the drive as failed 1610 */ 1611 if (test_bit(In_sync, &rdev->flags) 1612 && !enough(conf, rdev->raid_disk)) 1613 /* 1614 * Don't fail the drive, just return an IO error. 1615 */ 1616 return; 1617 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1618 unsigned long flags; 1619 spin_lock_irqsave(&conf->device_lock, flags); 1620 mddev->degraded++; 1621 spin_unlock_irqrestore(&conf->device_lock, flags); 1622 /* 1623 * if recovery is running, make sure it aborts. 1624 */ 1625 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1626 } 1627 set_bit(Blocked, &rdev->flags); 1628 set_bit(Faulty, &rdev->flags); 1629 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1630 printk(KERN_ALERT 1631 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1632 "md/raid10:%s: Operation continuing on %d devices.\n", 1633 mdname(mddev), bdevname(rdev->bdev, b), 1634 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1635 } 1636 1637 static void print_conf(struct r10conf *conf) 1638 { 1639 int i; 1640 struct raid10_info *tmp; 1641 1642 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1643 if (!conf) { 1644 printk(KERN_DEBUG "(!conf)\n"); 1645 return; 1646 } 1647 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1648 conf->geo.raid_disks); 1649 1650 for (i = 0; i < conf->geo.raid_disks; i++) { 1651 char b[BDEVNAME_SIZE]; 1652 tmp = conf->mirrors + i; 1653 if (tmp->rdev) 1654 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1655 i, !test_bit(In_sync, &tmp->rdev->flags), 1656 !test_bit(Faulty, &tmp->rdev->flags), 1657 bdevname(tmp->rdev->bdev,b)); 1658 } 1659 } 1660 1661 static void close_sync(struct r10conf *conf) 1662 { 1663 wait_barrier(conf); 1664 allow_barrier(conf); 1665 1666 mempool_destroy(conf->r10buf_pool); 1667 conf->r10buf_pool = NULL; 1668 } 1669 1670 static int raid10_spare_active(struct mddev *mddev) 1671 { 1672 int i; 1673 struct r10conf *conf = mddev->private; 1674 struct raid10_info *tmp; 1675 int count = 0; 1676 unsigned long flags; 1677 1678 /* 1679 * Find all non-in_sync disks within the RAID10 configuration 1680 * and mark them in_sync 1681 */ 1682 for (i = 0; i < conf->geo.raid_disks; i++) { 1683 tmp = conf->mirrors + i; 1684 if (tmp->replacement 1685 && tmp->replacement->recovery_offset == MaxSector 1686 && !test_bit(Faulty, &tmp->replacement->flags) 1687 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1688 /* Replacement has just become active */ 1689 if (!tmp->rdev 1690 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1691 count++; 1692 if (tmp->rdev) { 1693 /* Replaced device not technically faulty, 1694 * but we need to be sure it gets removed 1695 * and never re-added. 1696 */ 1697 set_bit(Faulty, &tmp->rdev->flags); 1698 sysfs_notify_dirent_safe( 1699 tmp->rdev->sysfs_state); 1700 } 1701 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1702 } else if (tmp->rdev 1703 && !test_bit(Faulty, &tmp->rdev->flags) 1704 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1705 count++; 1706 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1707 } 1708 } 1709 spin_lock_irqsave(&conf->device_lock, flags); 1710 mddev->degraded -= count; 1711 spin_unlock_irqrestore(&conf->device_lock, flags); 1712 1713 print_conf(conf); 1714 return count; 1715 } 1716 1717 1718 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1719 { 1720 struct r10conf *conf = mddev->private; 1721 int err = -EEXIST; 1722 int mirror; 1723 int first = 0; 1724 int last = conf->geo.raid_disks - 1; 1725 struct request_queue *q = bdev_get_queue(rdev->bdev); 1726 1727 if (mddev->recovery_cp < MaxSector) 1728 /* only hot-add to in-sync arrays, as recovery is 1729 * very different from resync 1730 */ 1731 return -EBUSY; 1732 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1)) 1733 return -EINVAL; 1734 1735 if (rdev->raid_disk >= 0) 1736 first = last = rdev->raid_disk; 1737 1738 if (q->merge_bvec_fn) { 1739 set_bit(Unmerged, &rdev->flags); 1740 mddev->merge_check_needed = 1; 1741 } 1742 1743 if (rdev->saved_raid_disk >= first && 1744 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1745 mirror = rdev->saved_raid_disk; 1746 else 1747 mirror = first; 1748 for ( ; mirror <= last ; mirror++) { 1749 struct raid10_info *p = &conf->mirrors[mirror]; 1750 if (p->recovery_disabled == mddev->recovery_disabled) 1751 continue; 1752 if (p->rdev) { 1753 if (!test_bit(WantReplacement, &p->rdev->flags) || 1754 p->replacement != NULL) 1755 continue; 1756 clear_bit(In_sync, &rdev->flags); 1757 set_bit(Replacement, &rdev->flags); 1758 rdev->raid_disk = mirror; 1759 err = 0; 1760 disk_stack_limits(mddev->gendisk, rdev->bdev, 1761 rdev->data_offset << 9); 1762 conf->fullsync = 1; 1763 rcu_assign_pointer(p->replacement, rdev); 1764 break; 1765 } 1766 1767 disk_stack_limits(mddev->gendisk, rdev->bdev, 1768 rdev->data_offset << 9); 1769 1770 p->head_position = 0; 1771 p->recovery_disabled = mddev->recovery_disabled - 1; 1772 rdev->raid_disk = mirror; 1773 err = 0; 1774 if (rdev->saved_raid_disk != mirror) 1775 conf->fullsync = 1; 1776 rcu_assign_pointer(p->rdev, rdev); 1777 break; 1778 } 1779 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1780 /* Some requests might not have seen this new 1781 * merge_bvec_fn. We must wait for them to complete 1782 * before merging the device fully. 1783 * First we make sure any code which has tested 1784 * our function has submitted the request, then 1785 * we wait for all outstanding requests to complete. 1786 */ 1787 synchronize_sched(); 1788 raise_barrier(conf, 0); 1789 lower_barrier(conf); 1790 clear_bit(Unmerged, &rdev->flags); 1791 } 1792 md_integrity_add_rdev(rdev, mddev); 1793 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1794 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1795 1796 print_conf(conf); 1797 return err; 1798 } 1799 1800 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1801 { 1802 struct r10conf *conf = mddev->private; 1803 int err = 0; 1804 int number = rdev->raid_disk; 1805 struct md_rdev **rdevp; 1806 struct raid10_info *p = conf->mirrors + number; 1807 1808 print_conf(conf); 1809 if (rdev == p->rdev) 1810 rdevp = &p->rdev; 1811 else if (rdev == p->replacement) 1812 rdevp = &p->replacement; 1813 else 1814 return 0; 1815 1816 if (test_bit(In_sync, &rdev->flags) || 1817 atomic_read(&rdev->nr_pending)) { 1818 err = -EBUSY; 1819 goto abort; 1820 } 1821 /* Only remove faulty devices if recovery 1822 * is not possible. 1823 */ 1824 if (!test_bit(Faulty, &rdev->flags) && 1825 mddev->recovery_disabled != p->recovery_disabled && 1826 (!p->replacement || p->replacement == rdev) && 1827 number < conf->geo.raid_disks && 1828 enough(conf, -1)) { 1829 err = -EBUSY; 1830 goto abort; 1831 } 1832 *rdevp = NULL; 1833 synchronize_rcu(); 1834 if (atomic_read(&rdev->nr_pending)) { 1835 /* lost the race, try later */ 1836 err = -EBUSY; 1837 *rdevp = rdev; 1838 goto abort; 1839 } else if (p->replacement) { 1840 /* We must have just cleared 'rdev' */ 1841 p->rdev = p->replacement; 1842 clear_bit(Replacement, &p->replacement->flags); 1843 smp_mb(); /* Make sure other CPUs may see both as identical 1844 * but will never see neither -- if they are careful. 1845 */ 1846 p->replacement = NULL; 1847 clear_bit(WantReplacement, &rdev->flags); 1848 } else 1849 /* We might have just remove the Replacement as faulty 1850 * Clear the flag just in case 1851 */ 1852 clear_bit(WantReplacement, &rdev->flags); 1853 1854 err = md_integrity_register(mddev); 1855 1856 abort: 1857 1858 print_conf(conf); 1859 return err; 1860 } 1861 1862 1863 static void end_sync_read(struct bio *bio, int error) 1864 { 1865 struct r10bio *r10_bio = bio->bi_private; 1866 struct r10conf *conf = r10_bio->mddev->private; 1867 int d; 1868 1869 if (bio == r10_bio->master_bio) { 1870 /* this is a reshape read */ 1871 d = r10_bio->read_slot; /* really the read dev */ 1872 } else 1873 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1874 1875 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1876 set_bit(R10BIO_Uptodate, &r10_bio->state); 1877 else 1878 /* The write handler will notice the lack of 1879 * R10BIO_Uptodate and record any errors etc 1880 */ 1881 atomic_add(r10_bio->sectors, 1882 &conf->mirrors[d].rdev->corrected_errors); 1883 1884 /* for reconstruct, we always reschedule after a read. 1885 * for resync, only after all reads 1886 */ 1887 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1888 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1889 atomic_dec_and_test(&r10_bio->remaining)) { 1890 /* we have read all the blocks, 1891 * do the comparison in process context in raid10d 1892 */ 1893 reschedule_retry(r10_bio); 1894 } 1895 } 1896 1897 static void end_sync_request(struct r10bio *r10_bio) 1898 { 1899 struct mddev *mddev = r10_bio->mddev; 1900 1901 while (atomic_dec_and_test(&r10_bio->remaining)) { 1902 if (r10_bio->master_bio == NULL) { 1903 /* the primary of several recovery bios */ 1904 sector_t s = r10_bio->sectors; 1905 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1906 test_bit(R10BIO_WriteError, &r10_bio->state)) 1907 reschedule_retry(r10_bio); 1908 else 1909 put_buf(r10_bio); 1910 md_done_sync(mddev, s, 1); 1911 break; 1912 } else { 1913 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1914 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1915 test_bit(R10BIO_WriteError, &r10_bio->state)) 1916 reschedule_retry(r10_bio); 1917 else 1918 put_buf(r10_bio); 1919 r10_bio = r10_bio2; 1920 } 1921 } 1922 } 1923 1924 static void end_sync_write(struct bio *bio, int error) 1925 { 1926 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1927 struct r10bio *r10_bio = bio->bi_private; 1928 struct mddev *mddev = r10_bio->mddev; 1929 struct r10conf *conf = mddev->private; 1930 int d; 1931 sector_t first_bad; 1932 int bad_sectors; 1933 int slot; 1934 int repl; 1935 struct md_rdev *rdev = NULL; 1936 1937 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1938 if (repl) 1939 rdev = conf->mirrors[d].replacement; 1940 else 1941 rdev = conf->mirrors[d].rdev; 1942 1943 if (!uptodate) { 1944 if (repl) 1945 md_error(mddev, rdev); 1946 else { 1947 set_bit(WriteErrorSeen, &rdev->flags); 1948 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1949 set_bit(MD_RECOVERY_NEEDED, 1950 &rdev->mddev->recovery); 1951 set_bit(R10BIO_WriteError, &r10_bio->state); 1952 } 1953 } else if (is_badblock(rdev, 1954 r10_bio->devs[slot].addr, 1955 r10_bio->sectors, 1956 &first_bad, &bad_sectors)) 1957 set_bit(R10BIO_MadeGood, &r10_bio->state); 1958 1959 rdev_dec_pending(rdev, mddev); 1960 1961 end_sync_request(r10_bio); 1962 } 1963 1964 /* 1965 * Note: sync and recover and handled very differently for raid10 1966 * This code is for resync. 1967 * For resync, we read through virtual addresses and read all blocks. 1968 * If there is any error, we schedule a write. The lowest numbered 1969 * drive is authoritative. 1970 * However requests come for physical address, so we need to map. 1971 * For every physical address there are raid_disks/copies virtual addresses, 1972 * which is always are least one, but is not necessarly an integer. 1973 * This means that a physical address can span multiple chunks, so we may 1974 * have to submit multiple io requests for a single sync request. 1975 */ 1976 /* 1977 * We check if all blocks are in-sync and only write to blocks that 1978 * aren't in sync 1979 */ 1980 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1981 { 1982 struct r10conf *conf = mddev->private; 1983 int i, first; 1984 struct bio *tbio, *fbio; 1985 int vcnt; 1986 1987 atomic_set(&r10_bio->remaining, 1); 1988 1989 /* find the first device with a block */ 1990 for (i=0; i<conf->copies; i++) 1991 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1992 break; 1993 1994 if (i == conf->copies) 1995 goto done; 1996 1997 first = i; 1998 fbio = r10_bio->devs[i].bio; 1999 2000 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2001 /* now find blocks with errors */ 2002 for (i=0 ; i < conf->copies ; i++) { 2003 int j, d; 2004 2005 tbio = r10_bio->devs[i].bio; 2006 2007 if (tbio->bi_end_io != end_sync_read) 2008 continue; 2009 if (i == first) 2010 continue; 2011 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 2012 /* We know that the bi_io_vec layout is the same for 2013 * both 'first' and 'i', so we just compare them. 2014 * All vec entries are PAGE_SIZE; 2015 */ 2016 for (j = 0; j < vcnt; j++) 2017 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2018 page_address(tbio->bi_io_vec[j].bv_page), 2019 fbio->bi_io_vec[j].bv_len)) 2020 break; 2021 if (j == vcnt) 2022 continue; 2023 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2024 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2025 /* Don't fix anything. */ 2026 continue; 2027 } 2028 /* Ok, we need to write this bio, either to correct an 2029 * inconsistency or to correct an unreadable block. 2030 * First we need to fixup bv_offset, bv_len and 2031 * bi_vecs, as the read request might have corrupted these 2032 */ 2033 tbio->bi_vcnt = vcnt; 2034 tbio->bi_size = r10_bio->sectors << 9; 2035 tbio->bi_idx = 0; 2036 tbio->bi_phys_segments = 0; 2037 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 2038 tbio->bi_flags |= 1 << BIO_UPTODATE; 2039 tbio->bi_next = NULL; 2040 tbio->bi_rw = WRITE; 2041 tbio->bi_private = r10_bio; 2042 tbio->bi_sector = r10_bio->devs[i].addr; 2043 2044 for (j=0; j < vcnt ; j++) { 2045 tbio->bi_io_vec[j].bv_offset = 0; 2046 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 2047 2048 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2049 page_address(fbio->bi_io_vec[j].bv_page), 2050 PAGE_SIZE); 2051 } 2052 tbio->bi_end_io = end_sync_write; 2053 2054 d = r10_bio->devs[i].devnum; 2055 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2056 atomic_inc(&r10_bio->remaining); 2057 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 2058 2059 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 2060 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2061 generic_make_request(tbio); 2062 } 2063 2064 /* Now write out to any replacement devices 2065 * that are active 2066 */ 2067 for (i = 0; i < conf->copies; i++) { 2068 int j, d; 2069 2070 tbio = r10_bio->devs[i].repl_bio; 2071 if (!tbio || !tbio->bi_end_io) 2072 continue; 2073 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2074 && r10_bio->devs[i].bio != fbio) 2075 for (j = 0; j < vcnt; j++) 2076 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2077 page_address(fbio->bi_io_vec[j].bv_page), 2078 PAGE_SIZE); 2079 d = r10_bio->devs[i].devnum; 2080 atomic_inc(&r10_bio->remaining); 2081 md_sync_acct(conf->mirrors[d].replacement->bdev, 2082 tbio->bi_size >> 9); 2083 generic_make_request(tbio); 2084 } 2085 2086 done: 2087 if (atomic_dec_and_test(&r10_bio->remaining)) { 2088 md_done_sync(mddev, r10_bio->sectors, 1); 2089 put_buf(r10_bio); 2090 } 2091 } 2092 2093 /* 2094 * Now for the recovery code. 2095 * Recovery happens across physical sectors. 2096 * We recover all non-is_sync drives by finding the virtual address of 2097 * each, and then choose a working drive that also has that virt address. 2098 * There is a separate r10_bio for each non-in_sync drive. 2099 * Only the first two slots are in use. The first for reading, 2100 * The second for writing. 2101 * 2102 */ 2103 static void fix_recovery_read_error(struct r10bio *r10_bio) 2104 { 2105 /* We got a read error during recovery. 2106 * We repeat the read in smaller page-sized sections. 2107 * If a read succeeds, write it to the new device or record 2108 * a bad block if we cannot. 2109 * If a read fails, record a bad block on both old and 2110 * new devices. 2111 */ 2112 struct mddev *mddev = r10_bio->mddev; 2113 struct r10conf *conf = mddev->private; 2114 struct bio *bio = r10_bio->devs[0].bio; 2115 sector_t sect = 0; 2116 int sectors = r10_bio->sectors; 2117 int idx = 0; 2118 int dr = r10_bio->devs[0].devnum; 2119 int dw = r10_bio->devs[1].devnum; 2120 2121 while (sectors) { 2122 int s = sectors; 2123 struct md_rdev *rdev; 2124 sector_t addr; 2125 int ok; 2126 2127 if (s > (PAGE_SIZE>>9)) 2128 s = PAGE_SIZE >> 9; 2129 2130 rdev = conf->mirrors[dr].rdev; 2131 addr = r10_bio->devs[0].addr + sect, 2132 ok = sync_page_io(rdev, 2133 addr, 2134 s << 9, 2135 bio->bi_io_vec[idx].bv_page, 2136 READ, false); 2137 if (ok) { 2138 rdev = conf->mirrors[dw].rdev; 2139 addr = r10_bio->devs[1].addr + sect; 2140 ok = sync_page_io(rdev, 2141 addr, 2142 s << 9, 2143 bio->bi_io_vec[idx].bv_page, 2144 WRITE, false); 2145 if (!ok) { 2146 set_bit(WriteErrorSeen, &rdev->flags); 2147 if (!test_and_set_bit(WantReplacement, 2148 &rdev->flags)) 2149 set_bit(MD_RECOVERY_NEEDED, 2150 &rdev->mddev->recovery); 2151 } 2152 } 2153 if (!ok) { 2154 /* We don't worry if we cannot set a bad block - 2155 * it really is bad so there is no loss in not 2156 * recording it yet 2157 */ 2158 rdev_set_badblocks(rdev, addr, s, 0); 2159 2160 if (rdev != conf->mirrors[dw].rdev) { 2161 /* need bad block on destination too */ 2162 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2163 addr = r10_bio->devs[1].addr + sect; 2164 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2165 if (!ok) { 2166 /* just abort the recovery */ 2167 printk(KERN_NOTICE 2168 "md/raid10:%s: recovery aborted" 2169 " due to read error\n", 2170 mdname(mddev)); 2171 2172 conf->mirrors[dw].recovery_disabled 2173 = mddev->recovery_disabled; 2174 set_bit(MD_RECOVERY_INTR, 2175 &mddev->recovery); 2176 break; 2177 } 2178 } 2179 } 2180 2181 sectors -= s; 2182 sect += s; 2183 idx++; 2184 } 2185 } 2186 2187 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2188 { 2189 struct r10conf *conf = mddev->private; 2190 int d; 2191 struct bio *wbio, *wbio2; 2192 2193 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2194 fix_recovery_read_error(r10_bio); 2195 end_sync_request(r10_bio); 2196 return; 2197 } 2198 2199 /* 2200 * share the pages with the first bio 2201 * and submit the write request 2202 */ 2203 d = r10_bio->devs[1].devnum; 2204 wbio = r10_bio->devs[1].bio; 2205 wbio2 = r10_bio->devs[1].repl_bio; 2206 if (wbio->bi_end_io) { 2207 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2208 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 2209 generic_make_request(wbio); 2210 } 2211 if (wbio2 && wbio2->bi_end_io) { 2212 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2213 md_sync_acct(conf->mirrors[d].replacement->bdev, 2214 wbio2->bi_size >> 9); 2215 generic_make_request(wbio2); 2216 } 2217 } 2218 2219 2220 /* 2221 * Used by fix_read_error() to decay the per rdev read_errors. 2222 * We halve the read error count for every hour that has elapsed 2223 * since the last recorded read error. 2224 * 2225 */ 2226 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2227 { 2228 struct timespec cur_time_mon; 2229 unsigned long hours_since_last; 2230 unsigned int read_errors = atomic_read(&rdev->read_errors); 2231 2232 ktime_get_ts(&cur_time_mon); 2233 2234 if (rdev->last_read_error.tv_sec == 0 && 2235 rdev->last_read_error.tv_nsec == 0) { 2236 /* first time we've seen a read error */ 2237 rdev->last_read_error = cur_time_mon; 2238 return; 2239 } 2240 2241 hours_since_last = (cur_time_mon.tv_sec - 2242 rdev->last_read_error.tv_sec) / 3600; 2243 2244 rdev->last_read_error = cur_time_mon; 2245 2246 /* 2247 * if hours_since_last is > the number of bits in read_errors 2248 * just set read errors to 0. We do this to avoid 2249 * overflowing the shift of read_errors by hours_since_last. 2250 */ 2251 if (hours_since_last >= 8 * sizeof(read_errors)) 2252 atomic_set(&rdev->read_errors, 0); 2253 else 2254 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2255 } 2256 2257 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2258 int sectors, struct page *page, int rw) 2259 { 2260 sector_t first_bad; 2261 int bad_sectors; 2262 2263 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2264 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2265 return -1; 2266 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2267 /* success */ 2268 return 1; 2269 if (rw == WRITE) { 2270 set_bit(WriteErrorSeen, &rdev->flags); 2271 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2272 set_bit(MD_RECOVERY_NEEDED, 2273 &rdev->mddev->recovery); 2274 } 2275 /* need to record an error - either for the block or the device */ 2276 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2277 md_error(rdev->mddev, rdev); 2278 return 0; 2279 } 2280 2281 /* 2282 * This is a kernel thread which: 2283 * 2284 * 1. Retries failed read operations on working mirrors. 2285 * 2. Updates the raid superblock when problems encounter. 2286 * 3. Performs writes following reads for array synchronising. 2287 */ 2288 2289 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2290 { 2291 int sect = 0; /* Offset from r10_bio->sector */ 2292 int sectors = r10_bio->sectors; 2293 struct md_rdev*rdev; 2294 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2295 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2296 2297 /* still own a reference to this rdev, so it cannot 2298 * have been cleared recently. 2299 */ 2300 rdev = conf->mirrors[d].rdev; 2301 2302 if (test_bit(Faulty, &rdev->flags)) 2303 /* drive has already been failed, just ignore any 2304 more fix_read_error() attempts */ 2305 return; 2306 2307 check_decay_read_errors(mddev, rdev); 2308 atomic_inc(&rdev->read_errors); 2309 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2310 char b[BDEVNAME_SIZE]; 2311 bdevname(rdev->bdev, b); 2312 2313 printk(KERN_NOTICE 2314 "md/raid10:%s: %s: Raid device exceeded " 2315 "read_error threshold [cur %d:max %d]\n", 2316 mdname(mddev), b, 2317 atomic_read(&rdev->read_errors), max_read_errors); 2318 printk(KERN_NOTICE 2319 "md/raid10:%s: %s: Failing raid device\n", 2320 mdname(mddev), b); 2321 md_error(mddev, conf->mirrors[d].rdev); 2322 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2323 return; 2324 } 2325 2326 while(sectors) { 2327 int s = sectors; 2328 int sl = r10_bio->read_slot; 2329 int success = 0; 2330 int start; 2331 2332 if (s > (PAGE_SIZE>>9)) 2333 s = PAGE_SIZE >> 9; 2334 2335 rcu_read_lock(); 2336 do { 2337 sector_t first_bad; 2338 int bad_sectors; 2339 2340 d = r10_bio->devs[sl].devnum; 2341 rdev = rcu_dereference(conf->mirrors[d].rdev); 2342 if (rdev && 2343 !test_bit(Unmerged, &rdev->flags) && 2344 test_bit(In_sync, &rdev->flags) && 2345 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2346 &first_bad, &bad_sectors) == 0) { 2347 atomic_inc(&rdev->nr_pending); 2348 rcu_read_unlock(); 2349 success = sync_page_io(rdev, 2350 r10_bio->devs[sl].addr + 2351 sect, 2352 s<<9, 2353 conf->tmppage, READ, false); 2354 rdev_dec_pending(rdev, mddev); 2355 rcu_read_lock(); 2356 if (success) 2357 break; 2358 } 2359 sl++; 2360 if (sl == conf->copies) 2361 sl = 0; 2362 } while (!success && sl != r10_bio->read_slot); 2363 rcu_read_unlock(); 2364 2365 if (!success) { 2366 /* Cannot read from anywhere, just mark the block 2367 * as bad on the first device to discourage future 2368 * reads. 2369 */ 2370 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2371 rdev = conf->mirrors[dn].rdev; 2372 2373 if (!rdev_set_badblocks( 2374 rdev, 2375 r10_bio->devs[r10_bio->read_slot].addr 2376 + sect, 2377 s, 0)) { 2378 md_error(mddev, rdev); 2379 r10_bio->devs[r10_bio->read_slot].bio 2380 = IO_BLOCKED; 2381 } 2382 break; 2383 } 2384 2385 start = sl; 2386 /* write it back and re-read */ 2387 rcu_read_lock(); 2388 while (sl != r10_bio->read_slot) { 2389 char b[BDEVNAME_SIZE]; 2390 2391 if (sl==0) 2392 sl = conf->copies; 2393 sl--; 2394 d = r10_bio->devs[sl].devnum; 2395 rdev = rcu_dereference(conf->mirrors[d].rdev); 2396 if (!rdev || 2397 test_bit(Unmerged, &rdev->flags) || 2398 !test_bit(In_sync, &rdev->flags)) 2399 continue; 2400 2401 atomic_inc(&rdev->nr_pending); 2402 rcu_read_unlock(); 2403 if (r10_sync_page_io(rdev, 2404 r10_bio->devs[sl].addr + 2405 sect, 2406 s, conf->tmppage, WRITE) 2407 == 0) { 2408 /* Well, this device is dead */ 2409 printk(KERN_NOTICE 2410 "md/raid10:%s: read correction " 2411 "write failed" 2412 " (%d sectors at %llu on %s)\n", 2413 mdname(mddev), s, 2414 (unsigned long long)( 2415 sect + 2416 choose_data_offset(r10_bio, 2417 rdev)), 2418 bdevname(rdev->bdev, b)); 2419 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2420 "drive\n", 2421 mdname(mddev), 2422 bdevname(rdev->bdev, b)); 2423 } 2424 rdev_dec_pending(rdev, mddev); 2425 rcu_read_lock(); 2426 } 2427 sl = start; 2428 while (sl != r10_bio->read_slot) { 2429 char b[BDEVNAME_SIZE]; 2430 2431 if (sl==0) 2432 sl = conf->copies; 2433 sl--; 2434 d = r10_bio->devs[sl].devnum; 2435 rdev = rcu_dereference(conf->mirrors[d].rdev); 2436 if (!rdev || 2437 !test_bit(In_sync, &rdev->flags)) 2438 continue; 2439 2440 atomic_inc(&rdev->nr_pending); 2441 rcu_read_unlock(); 2442 switch (r10_sync_page_io(rdev, 2443 r10_bio->devs[sl].addr + 2444 sect, 2445 s, conf->tmppage, 2446 READ)) { 2447 case 0: 2448 /* Well, this device is dead */ 2449 printk(KERN_NOTICE 2450 "md/raid10:%s: unable to read back " 2451 "corrected sectors" 2452 " (%d sectors at %llu on %s)\n", 2453 mdname(mddev), s, 2454 (unsigned long long)( 2455 sect + 2456 choose_data_offset(r10_bio, rdev)), 2457 bdevname(rdev->bdev, b)); 2458 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2459 "drive\n", 2460 mdname(mddev), 2461 bdevname(rdev->bdev, b)); 2462 break; 2463 case 1: 2464 printk(KERN_INFO 2465 "md/raid10:%s: read error corrected" 2466 " (%d sectors at %llu on %s)\n", 2467 mdname(mddev), s, 2468 (unsigned long long)( 2469 sect + 2470 choose_data_offset(r10_bio, rdev)), 2471 bdevname(rdev->bdev, b)); 2472 atomic_add(s, &rdev->corrected_errors); 2473 } 2474 2475 rdev_dec_pending(rdev, mddev); 2476 rcu_read_lock(); 2477 } 2478 rcu_read_unlock(); 2479 2480 sectors -= s; 2481 sect += s; 2482 } 2483 } 2484 2485 static void bi_complete(struct bio *bio, int error) 2486 { 2487 complete((struct completion *)bio->bi_private); 2488 } 2489 2490 static int submit_bio_wait(int rw, struct bio *bio) 2491 { 2492 struct completion event; 2493 rw |= REQ_SYNC; 2494 2495 init_completion(&event); 2496 bio->bi_private = &event; 2497 bio->bi_end_io = bi_complete; 2498 submit_bio(rw, bio); 2499 wait_for_completion(&event); 2500 2501 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2502 } 2503 2504 static int narrow_write_error(struct r10bio *r10_bio, int i) 2505 { 2506 struct bio *bio = r10_bio->master_bio; 2507 struct mddev *mddev = r10_bio->mddev; 2508 struct r10conf *conf = mddev->private; 2509 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2510 /* bio has the data to be written to slot 'i' where 2511 * we just recently had a write error. 2512 * We repeatedly clone the bio and trim down to one block, 2513 * then try the write. Where the write fails we record 2514 * a bad block. 2515 * It is conceivable that the bio doesn't exactly align with 2516 * blocks. We must handle this. 2517 * 2518 * We currently own a reference to the rdev. 2519 */ 2520 2521 int block_sectors; 2522 sector_t sector; 2523 int sectors; 2524 int sect_to_write = r10_bio->sectors; 2525 int ok = 1; 2526 2527 if (rdev->badblocks.shift < 0) 2528 return 0; 2529 2530 block_sectors = 1 << rdev->badblocks.shift; 2531 sector = r10_bio->sector; 2532 sectors = ((r10_bio->sector + block_sectors) 2533 & ~(sector_t)(block_sectors - 1)) 2534 - sector; 2535 2536 while (sect_to_write) { 2537 struct bio *wbio; 2538 if (sectors > sect_to_write) 2539 sectors = sect_to_write; 2540 /* Write at 'sector' for 'sectors' */ 2541 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2542 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2543 wbio->bi_sector = (r10_bio->devs[i].addr+ 2544 choose_data_offset(r10_bio, rdev) + 2545 (sector - r10_bio->sector)); 2546 wbio->bi_bdev = rdev->bdev; 2547 if (submit_bio_wait(WRITE, wbio) == 0) 2548 /* Failure! */ 2549 ok = rdev_set_badblocks(rdev, sector, 2550 sectors, 0) 2551 && ok; 2552 2553 bio_put(wbio); 2554 sect_to_write -= sectors; 2555 sector += sectors; 2556 sectors = block_sectors; 2557 } 2558 return ok; 2559 } 2560 2561 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2562 { 2563 int slot = r10_bio->read_slot; 2564 struct bio *bio; 2565 struct r10conf *conf = mddev->private; 2566 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2567 char b[BDEVNAME_SIZE]; 2568 unsigned long do_sync; 2569 int max_sectors; 2570 2571 /* we got a read error. Maybe the drive is bad. Maybe just 2572 * the block and we can fix it. 2573 * We freeze all other IO, and try reading the block from 2574 * other devices. When we find one, we re-write 2575 * and check it that fixes the read error. 2576 * This is all done synchronously while the array is 2577 * frozen. 2578 */ 2579 bio = r10_bio->devs[slot].bio; 2580 bdevname(bio->bi_bdev, b); 2581 bio_put(bio); 2582 r10_bio->devs[slot].bio = NULL; 2583 2584 if (mddev->ro == 0) { 2585 freeze_array(conf); 2586 fix_read_error(conf, mddev, r10_bio); 2587 unfreeze_array(conf); 2588 } else 2589 r10_bio->devs[slot].bio = IO_BLOCKED; 2590 2591 rdev_dec_pending(rdev, mddev); 2592 2593 read_more: 2594 rdev = read_balance(conf, r10_bio, &max_sectors); 2595 if (rdev == NULL) { 2596 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2597 " read error for block %llu\n", 2598 mdname(mddev), b, 2599 (unsigned long long)r10_bio->sector); 2600 raid_end_bio_io(r10_bio); 2601 return; 2602 } 2603 2604 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2605 slot = r10_bio->read_slot; 2606 printk_ratelimited( 2607 KERN_ERR 2608 "md/raid10:%s: %s: redirecting " 2609 "sector %llu to another mirror\n", 2610 mdname(mddev), 2611 bdevname(rdev->bdev, b), 2612 (unsigned long long)r10_bio->sector); 2613 bio = bio_clone_mddev(r10_bio->master_bio, 2614 GFP_NOIO, mddev); 2615 md_trim_bio(bio, 2616 r10_bio->sector - bio->bi_sector, 2617 max_sectors); 2618 r10_bio->devs[slot].bio = bio; 2619 r10_bio->devs[slot].rdev = rdev; 2620 bio->bi_sector = r10_bio->devs[slot].addr 2621 + choose_data_offset(r10_bio, rdev); 2622 bio->bi_bdev = rdev->bdev; 2623 bio->bi_rw = READ | do_sync; 2624 bio->bi_private = r10_bio; 2625 bio->bi_end_io = raid10_end_read_request; 2626 if (max_sectors < r10_bio->sectors) { 2627 /* Drat - have to split this up more */ 2628 struct bio *mbio = r10_bio->master_bio; 2629 int sectors_handled = 2630 r10_bio->sector + max_sectors 2631 - mbio->bi_sector; 2632 r10_bio->sectors = max_sectors; 2633 spin_lock_irq(&conf->device_lock); 2634 if (mbio->bi_phys_segments == 0) 2635 mbio->bi_phys_segments = 2; 2636 else 2637 mbio->bi_phys_segments++; 2638 spin_unlock_irq(&conf->device_lock); 2639 generic_make_request(bio); 2640 2641 r10_bio = mempool_alloc(conf->r10bio_pool, 2642 GFP_NOIO); 2643 r10_bio->master_bio = mbio; 2644 r10_bio->sectors = (mbio->bi_size >> 9) 2645 - sectors_handled; 2646 r10_bio->state = 0; 2647 set_bit(R10BIO_ReadError, 2648 &r10_bio->state); 2649 r10_bio->mddev = mddev; 2650 r10_bio->sector = mbio->bi_sector 2651 + sectors_handled; 2652 2653 goto read_more; 2654 } else 2655 generic_make_request(bio); 2656 } 2657 2658 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2659 { 2660 /* Some sort of write request has finished and it 2661 * succeeded in writing where we thought there was a 2662 * bad block. So forget the bad block. 2663 * Or possibly if failed and we need to record 2664 * a bad block. 2665 */ 2666 int m; 2667 struct md_rdev *rdev; 2668 2669 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2670 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2671 for (m = 0; m < conf->copies; m++) { 2672 int dev = r10_bio->devs[m].devnum; 2673 rdev = conf->mirrors[dev].rdev; 2674 if (r10_bio->devs[m].bio == NULL) 2675 continue; 2676 if (test_bit(BIO_UPTODATE, 2677 &r10_bio->devs[m].bio->bi_flags)) { 2678 rdev_clear_badblocks( 2679 rdev, 2680 r10_bio->devs[m].addr, 2681 r10_bio->sectors, 0); 2682 } else { 2683 if (!rdev_set_badblocks( 2684 rdev, 2685 r10_bio->devs[m].addr, 2686 r10_bio->sectors, 0)) 2687 md_error(conf->mddev, rdev); 2688 } 2689 rdev = conf->mirrors[dev].replacement; 2690 if (r10_bio->devs[m].repl_bio == NULL) 2691 continue; 2692 if (test_bit(BIO_UPTODATE, 2693 &r10_bio->devs[m].repl_bio->bi_flags)) { 2694 rdev_clear_badblocks( 2695 rdev, 2696 r10_bio->devs[m].addr, 2697 r10_bio->sectors, 0); 2698 } else { 2699 if (!rdev_set_badblocks( 2700 rdev, 2701 r10_bio->devs[m].addr, 2702 r10_bio->sectors, 0)) 2703 md_error(conf->mddev, rdev); 2704 } 2705 } 2706 put_buf(r10_bio); 2707 } else { 2708 for (m = 0; m < conf->copies; m++) { 2709 int dev = r10_bio->devs[m].devnum; 2710 struct bio *bio = r10_bio->devs[m].bio; 2711 rdev = conf->mirrors[dev].rdev; 2712 if (bio == IO_MADE_GOOD) { 2713 rdev_clear_badblocks( 2714 rdev, 2715 r10_bio->devs[m].addr, 2716 r10_bio->sectors, 0); 2717 rdev_dec_pending(rdev, conf->mddev); 2718 } else if (bio != NULL && 2719 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2720 if (!narrow_write_error(r10_bio, m)) { 2721 md_error(conf->mddev, rdev); 2722 set_bit(R10BIO_Degraded, 2723 &r10_bio->state); 2724 } 2725 rdev_dec_pending(rdev, conf->mddev); 2726 } 2727 bio = r10_bio->devs[m].repl_bio; 2728 rdev = conf->mirrors[dev].replacement; 2729 if (rdev && bio == IO_MADE_GOOD) { 2730 rdev_clear_badblocks( 2731 rdev, 2732 r10_bio->devs[m].addr, 2733 r10_bio->sectors, 0); 2734 rdev_dec_pending(rdev, conf->mddev); 2735 } 2736 } 2737 if (test_bit(R10BIO_WriteError, 2738 &r10_bio->state)) 2739 close_write(r10_bio); 2740 raid_end_bio_io(r10_bio); 2741 } 2742 } 2743 2744 static void raid10d(struct md_thread *thread) 2745 { 2746 struct mddev *mddev = thread->mddev; 2747 struct r10bio *r10_bio; 2748 unsigned long flags; 2749 struct r10conf *conf = mddev->private; 2750 struct list_head *head = &conf->retry_list; 2751 struct blk_plug plug; 2752 2753 md_check_recovery(mddev); 2754 2755 blk_start_plug(&plug); 2756 for (;;) { 2757 2758 flush_pending_writes(conf); 2759 2760 spin_lock_irqsave(&conf->device_lock, flags); 2761 if (list_empty(head)) { 2762 spin_unlock_irqrestore(&conf->device_lock, flags); 2763 break; 2764 } 2765 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2766 list_del(head->prev); 2767 conf->nr_queued--; 2768 spin_unlock_irqrestore(&conf->device_lock, flags); 2769 2770 mddev = r10_bio->mddev; 2771 conf = mddev->private; 2772 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2773 test_bit(R10BIO_WriteError, &r10_bio->state)) 2774 handle_write_completed(conf, r10_bio); 2775 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2776 reshape_request_write(mddev, r10_bio); 2777 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2778 sync_request_write(mddev, r10_bio); 2779 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2780 recovery_request_write(mddev, r10_bio); 2781 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2782 handle_read_error(mddev, r10_bio); 2783 else { 2784 /* just a partial read to be scheduled from a 2785 * separate context 2786 */ 2787 int slot = r10_bio->read_slot; 2788 generic_make_request(r10_bio->devs[slot].bio); 2789 } 2790 2791 cond_resched(); 2792 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2793 md_check_recovery(mddev); 2794 } 2795 blk_finish_plug(&plug); 2796 } 2797 2798 2799 static int init_resync(struct r10conf *conf) 2800 { 2801 int buffs; 2802 int i; 2803 2804 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2805 BUG_ON(conf->r10buf_pool); 2806 conf->have_replacement = 0; 2807 for (i = 0; i < conf->geo.raid_disks; i++) 2808 if (conf->mirrors[i].replacement) 2809 conf->have_replacement = 1; 2810 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2811 if (!conf->r10buf_pool) 2812 return -ENOMEM; 2813 conf->next_resync = 0; 2814 return 0; 2815 } 2816 2817 /* 2818 * perform a "sync" on one "block" 2819 * 2820 * We need to make sure that no normal I/O request - particularly write 2821 * requests - conflict with active sync requests. 2822 * 2823 * This is achieved by tracking pending requests and a 'barrier' concept 2824 * that can be installed to exclude normal IO requests. 2825 * 2826 * Resync and recovery are handled very differently. 2827 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2828 * 2829 * For resync, we iterate over virtual addresses, read all copies, 2830 * and update if there are differences. If only one copy is live, 2831 * skip it. 2832 * For recovery, we iterate over physical addresses, read a good 2833 * value for each non-in_sync drive, and over-write. 2834 * 2835 * So, for recovery we may have several outstanding complex requests for a 2836 * given address, one for each out-of-sync device. We model this by allocating 2837 * a number of r10_bio structures, one for each out-of-sync device. 2838 * As we setup these structures, we collect all bio's together into a list 2839 * which we then process collectively to add pages, and then process again 2840 * to pass to generic_make_request. 2841 * 2842 * The r10_bio structures are linked using a borrowed master_bio pointer. 2843 * This link is counted in ->remaining. When the r10_bio that points to NULL 2844 * has its remaining count decremented to 0, the whole complex operation 2845 * is complete. 2846 * 2847 */ 2848 2849 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2850 int *skipped, int go_faster) 2851 { 2852 struct r10conf *conf = mddev->private; 2853 struct r10bio *r10_bio; 2854 struct bio *biolist = NULL, *bio; 2855 sector_t max_sector, nr_sectors; 2856 int i; 2857 int max_sync; 2858 sector_t sync_blocks; 2859 sector_t sectors_skipped = 0; 2860 int chunks_skipped = 0; 2861 sector_t chunk_mask = conf->geo.chunk_mask; 2862 2863 if (!conf->r10buf_pool) 2864 if (init_resync(conf)) 2865 return 0; 2866 2867 skipped: 2868 max_sector = mddev->dev_sectors; 2869 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2870 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2871 max_sector = mddev->resync_max_sectors; 2872 if (sector_nr >= max_sector) { 2873 /* If we aborted, we need to abort the 2874 * sync on the 'current' bitmap chucks (there can 2875 * be several when recovering multiple devices). 2876 * as we may have started syncing it but not finished. 2877 * We can find the current address in 2878 * mddev->curr_resync, but for recovery, 2879 * we need to convert that to several 2880 * virtual addresses. 2881 */ 2882 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2883 end_reshape(conf); 2884 return 0; 2885 } 2886 2887 if (mddev->curr_resync < max_sector) { /* aborted */ 2888 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2889 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2890 &sync_blocks, 1); 2891 else for (i = 0; i < conf->geo.raid_disks; i++) { 2892 sector_t sect = 2893 raid10_find_virt(conf, mddev->curr_resync, i); 2894 bitmap_end_sync(mddev->bitmap, sect, 2895 &sync_blocks, 1); 2896 } 2897 } else { 2898 /* completed sync */ 2899 if ((!mddev->bitmap || conf->fullsync) 2900 && conf->have_replacement 2901 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2902 /* Completed a full sync so the replacements 2903 * are now fully recovered. 2904 */ 2905 for (i = 0; i < conf->geo.raid_disks; i++) 2906 if (conf->mirrors[i].replacement) 2907 conf->mirrors[i].replacement 2908 ->recovery_offset 2909 = MaxSector; 2910 } 2911 conf->fullsync = 0; 2912 } 2913 bitmap_close_sync(mddev->bitmap); 2914 close_sync(conf); 2915 *skipped = 1; 2916 return sectors_skipped; 2917 } 2918 2919 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2920 return reshape_request(mddev, sector_nr, skipped); 2921 2922 if (chunks_skipped >= conf->geo.raid_disks) { 2923 /* if there has been nothing to do on any drive, 2924 * then there is nothing to do at all.. 2925 */ 2926 *skipped = 1; 2927 return (max_sector - sector_nr) + sectors_skipped; 2928 } 2929 2930 if (max_sector > mddev->resync_max) 2931 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2932 2933 /* make sure whole request will fit in a chunk - if chunks 2934 * are meaningful 2935 */ 2936 if (conf->geo.near_copies < conf->geo.raid_disks && 2937 max_sector > (sector_nr | chunk_mask)) 2938 max_sector = (sector_nr | chunk_mask) + 1; 2939 /* 2940 * If there is non-resync activity waiting for us then 2941 * put in a delay to throttle resync. 2942 */ 2943 if (!go_faster && conf->nr_waiting) 2944 msleep_interruptible(1000); 2945 2946 /* Again, very different code for resync and recovery. 2947 * Both must result in an r10bio with a list of bios that 2948 * have bi_end_io, bi_sector, bi_bdev set, 2949 * and bi_private set to the r10bio. 2950 * For recovery, we may actually create several r10bios 2951 * with 2 bios in each, that correspond to the bios in the main one. 2952 * In this case, the subordinate r10bios link back through a 2953 * borrowed master_bio pointer, and the counter in the master 2954 * includes a ref from each subordinate. 2955 */ 2956 /* First, we decide what to do and set ->bi_end_io 2957 * To end_sync_read if we want to read, and 2958 * end_sync_write if we will want to write. 2959 */ 2960 2961 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2962 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2963 /* recovery... the complicated one */ 2964 int j; 2965 r10_bio = NULL; 2966 2967 for (i = 0 ; i < conf->geo.raid_disks; i++) { 2968 int still_degraded; 2969 struct r10bio *rb2; 2970 sector_t sect; 2971 int must_sync; 2972 int any_working; 2973 struct raid10_info *mirror = &conf->mirrors[i]; 2974 2975 if ((mirror->rdev == NULL || 2976 test_bit(In_sync, &mirror->rdev->flags)) 2977 && 2978 (mirror->replacement == NULL || 2979 test_bit(Faulty, 2980 &mirror->replacement->flags))) 2981 continue; 2982 2983 still_degraded = 0; 2984 /* want to reconstruct this device */ 2985 rb2 = r10_bio; 2986 sect = raid10_find_virt(conf, sector_nr, i); 2987 if (sect >= mddev->resync_max_sectors) { 2988 /* last stripe is not complete - don't 2989 * try to recover this sector. 2990 */ 2991 continue; 2992 } 2993 /* Unless we are doing a full sync, or a replacement 2994 * we only need to recover the block if it is set in 2995 * the bitmap 2996 */ 2997 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2998 &sync_blocks, 1); 2999 if (sync_blocks < max_sync) 3000 max_sync = sync_blocks; 3001 if (!must_sync && 3002 mirror->replacement == NULL && 3003 !conf->fullsync) { 3004 /* yep, skip the sync_blocks here, but don't assume 3005 * that there will never be anything to do here 3006 */ 3007 chunks_skipped = -1; 3008 continue; 3009 } 3010 3011 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3012 raise_barrier(conf, rb2 != NULL); 3013 atomic_set(&r10_bio->remaining, 0); 3014 3015 r10_bio->master_bio = (struct bio*)rb2; 3016 if (rb2) 3017 atomic_inc(&rb2->remaining); 3018 r10_bio->mddev = mddev; 3019 set_bit(R10BIO_IsRecover, &r10_bio->state); 3020 r10_bio->sector = sect; 3021 3022 raid10_find_phys(conf, r10_bio); 3023 3024 /* Need to check if the array will still be 3025 * degraded 3026 */ 3027 for (j = 0; j < conf->geo.raid_disks; j++) 3028 if (conf->mirrors[j].rdev == NULL || 3029 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 3030 still_degraded = 1; 3031 break; 3032 } 3033 3034 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3035 &sync_blocks, still_degraded); 3036 3037 any_working = 0; 3038 for (j=0; j<conf->copies;j++) { 3039 int k; 3040 int d = r10_bio->devs[j].devnum; 3041 sector_t from_addr, to_addr; 3042 struct md_rdev *rdev; 3043 sector_t sector, first_bad; 3044 int bad_sectors; 3045 if (!conf->mirrors[d].rdev || 3046 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3047 continue; 3048 /* This is where we read from */ 3049 any_working = 1; 3050 rdev = conf->mirrors[d].rdev; 3051 sector = r10_bio->devs[j].addr; 3052 3053 if (is_badblock(rdev, sector, max_sync, 3054 &first_bad, &bad_sectors)) { 3055 if (first_bad > sector) 3056 max_sync = first_bad - sector; 3057 else { 3058 bad_sectors -= (sector 3059 - first_bad); 3060 if (max_sync > bad_sectors) 3061 max_sync = bad_sectors; 3062 continue; 3063 } 3064 } 3065 bio = r10_bio->devs[0].bio; 3066 bio->bi_next = biolist; 3067 biolist = bio; 3068 bio->bi_private = r10_bio; 3069 bio->bi_end_io = end_sync_read; 3070 bio->bi_rw = READ; 3071 from_addr = r10_bio->devs[j].addr; 3072 bio->bi_sector = from_addr + rdev->data_offset; 3073 bio->bi_bdev = rdev->bdev; 3074 atomic_inc(&rdev->nr_pending); 3075 /* and we write to 'i' (if not in_sync) */ 3076 3077 for (k=0; k<conf->copies; k++) 3078 if (r10_bio->devs[k].devnum == i) 3079 break; 3080 BUG_ON(k == conf->copies); 3081 to_addr = r10_bio->devs[k].addr; 3082 r10_bio->devs[0].devnum = d; 3083 r10_bio->devs[0].addr = from_addr; 3084 r10_bio->devs[1].devnum = i; 3085 r10_bio->devs[1].addr = to_addr; 3086 3087 rdev = mirror->rdev; 3088 if (!test_bit(In_sync, &rdev->flags)) { 3089 bio = r10_bio->devs[1].bio; 3090 bio->bi_next = biolist; 3091 biolist = bio; 3092 bio->bi_private = r10_bio; 3093 bio->bi_end_io = end_sync_write; 3094 bio->bi_rw = WRITE; 3095 bio->bi_sector = to_addr 3096 + rdev->data_offset; 3097 bio->bi_bdev = rdev->bdev; 3098 atomic_inc(&r10_bio->remaining); 3099 } else 3100 r10_bio->devs[1].bio->bi_end_io = NULL; 3101 3102 /* and maybe write to replacement */ 3103 bio = r10_bio->devs[1].repl_bio; 3104 if (bio) 3105 bio->bi_end_io = NULL; 3106 rdev = mirror->replacement; 3107 /* Note: if rdev != NULL, then bio 3108 * cannot be NULL as r10buf_pool_alloc will 3109 * have allocated it. 3110 * So the second test here is pointless. 3111 * But it keeps semantic-checkers happy, and 3112 * this comment keeps human reviewers 3113 * happy. 3114 */ 3115 if (rdev == NULL || bio == NULL || 3116 test_bit(Faulty, &rdev->flags)) 3117 break; 3118 bio->bi_next = biolist; 3119 biolist = bio; 3120 bio->bi_private = r10_bio; 3121 bio->bi_end_io = end_sync_write; 3122 bio->bi_rw = WRITE; 3123 bio->bi_sector = to_addr + rdev->data_offset; 3124 bio->bi_bdev = rdev->bdev; 3125 atomic_inc(&r10_bio->remaining); 3126 break; 3127 } 3128 if (j == conf->copies) { 3129 /* Cannot recover, so abort the recovery or 3130 * record a bad block */ 3131 put_buf(r10_bio); 3132 if (rb2) 3133 atomic_dec(&rb2->remaining); 3134 r10_bio = rb2; 3135 if (any_working) { 3136 /* problem is that there are bad blocks 3137 * on other device(s) 3138 */ 3139 int k; 3140 for (k = 0; k < conf->copies; k++) 3141 if (r10_bio->devs[k].devnum == i) 3142 break; 3143 if (!test_bit(In_sync, 3144 &mirror->rdev->flags) 3145 && !rdev_set_badblocks( 3146 mirror->rdev, 3147 r10_bio->devs[k].addr, 3148 max_sync, 0)) 3149 any_working = 0; 3150 if (mirror->replacement && 3151 !rdev_set_badblocks( 3152 mirror->replacement, 3153 r10_bio->devs[k].addr, 3154 max_sync, 0)) 3155 any_working = 0; 3156 } 3157 if (!any_working) { 3158 if (!test_and_set_bit(MD_RECOVERY_INTR, 3159 &mddev->recovery)) 3160 printk(KERN_INFO "md/raid10:%s: insufficient " 3161 "working devices for recovery.\n", 3162 mdname(mddev)); 3163 mirror->recovery_disabled 3164 = mddev->recovery_disabled; 3165 } 3166 break; 3167 } 3168 } 3169 if (biolist == NULL) { 3170 while (r10_bio) { 3171 struct r10bio *rb2 = r10_bio; 3172 r10_bio = (struct r10bio*) rb2->master_bio; 3173 rb2->master_bio = NULL; 3174 put_buf(rb2); 3175 } 3176 goto giveup; 3177 } 3178 } else { 3179 /* resync. Schedule a read for every block at this virt offset */ 3180 int count = 0; 3181 3182 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3183 3184 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3185 &sync_blocks, mddev->degraded) && 3186 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3187 &mddev->recovery)) { 3188 /* We can skip this block */ 3189 *skipped = 1; 3190 return sync_blocks + sectors_skipped; 3191 } 3192 if (sync_blocks < max_sync) 3193 max_sync = sync_blocks; 3194 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3195 3196 r10_bio->mddev = mddev; 3197 atomic_set(&r10_bio->remaining, 0); 3198 raise_barrier(conf, 0); 3199 conf->next_resync = sector_nr; 3200 3201 r10_bio->master_bio = NULL; 3202 r10_bio->sector = sector_nr; 3203 set_bit(R10BIO_IsSync, &r10_bio->state); 3204 raid10_find_phys(conf, r10_bio); 3205 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3206 3207 for (i = 0; i < conf->copies; i++) { 3208 int d = r10_bio->devs[i].devnum; 3209 sector_t first_bad, sector; 3210 int bad_sectors; 3211 3212 if (r10_bio->devs[i].repl_bio) 3213 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3214 3215 bio = r10_bio->devs[i].bio; 3216 bio->bi_end_io = NULL; 3217 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3218 if (conf->mirrors[d].rdev == NULL || 3219 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3220 continue; 3221 sector = r10_bio->devs[i].addr; 3222 if (is_badblock(conf->mirrors[d].rdev, 3223 sector, max_sync, 3224 &first_bad, &bad_sectors)) { 3225 if (first_bad > sector) 3226 max_sync = first_bad - sector; 3227 else { 3228 bad_sectors -= (sector - first_bad); 3229 if (max_sync > bad_sectors) 3230 max_sync = bad_sectors; 3231 continue; 3232 } 3233 } 3234 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3235 atomic_inc(&r10_bio->remaining); 3236 bio->bi_next = biolist; 3237 biolist = bio; 3238 bio->bi_private = r10_bio; 3239 bio->bi_end_io = end_sync_read; 3240 bio->bi_rw = READ; 3241 bio->bi_sector = sector + 3242 conf->mirrors[d].rdev->data_offset; 3243 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3244 count++; 3245 3246 if (conf->mirrors[d].replacement == NULL || 3247 test_bit(Faulty, 3248 &conf->mirrors[d].replacement->flags)) 3249 continue; 3250 3251 /* Need to set up for writing to the replacement */ 3252 bio = r10_bio->devs[i].repl_bio; 3253 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3254 3255 sector = r10_bio->devs[i].addr; 3256 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3257 bio->bi_next = biolist; 3258 biolist = bio; 3259 bio->bi_private = r10_bio; 3260 bio->bi_end_io = end_sync_write; 3261 bio->bi_rw = WRITE; 3262 bio->bi_sector = sector + 3263 conf->mirrors[d].replacement->data_offset; 3264 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3265 count++; 3266 } 3267 3268 if (count < 2) { 3269 for (i=0; i<conf->copies; i++) { 3270 int d = r10_bio->devs[i].devnum; 3271 if (r10_bio->devs[i].bio->bi_end_io) 3272 rdev_dec_pending(conf->mirrors[d].rdev, 3273 mddev); 3274 if (r10_bio->devs[i].repl_bio && 3275 r10_bio->devs[i].repl_bio->bi_end_io) 3276 rdev_dec_pending( 3277 conf->mirrors[d].replacement, 3278 mddev); 3279 } 3280 put_buf(r10_bio); 3281 biolist = NULL; 3282 goto giveup; 3283 } 3284 } 3285 3286 for (bio = biolist; bio ; bio=bio->bi_next) { 3287 3288 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 3289 if (bio->bi_end_io) 3290 bio->bi_flags |= 1 << BIO_UPTODATE; 3291 bio->bi_vcnt = 0; 3292 bio->bi_idx = 0; 3293 bio->bi_phys_segments = 0; 3294 bio->bi_size = 0; 3295 } 3296 3297 nr_sectors = 0; 3298 if (sector_nr + max_sync < max_sector) 3299 max_sector = sector_nr + max_sync; 3300 do { 3301 struct page *page; 3302 int len = PAGE_SIZE; 3303 if (sector_nr + (len>>9) > max_sector) 3304 len = (max_sector - sector_nr) << 9; 3305 if (len == 0) 3306 break; 3307 for (bio= biolist ; bio ; bio=bio->bi_next) { 3308 struct bio *bio2; 3309 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3310 if (bio_add_page(bio, page, len, 0)) 3311 continue; 3312 3313 /* stop here */ 3314 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3315 for (bio2 = biolist; 3316 bio2 && bio2 != bio; 3317 bio2 = bio2->bi_next) { 3318 /* remove last page from this bio */ 3319 bio2->bi_vcnt--; 3320 bio2->bi_size -= len; 3321 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3322 } 3323 goto bio_full; 3324 } 3325 nr_sectors += len>>9; 3326 sector_nr += len>>9; 3327 } while (biolist->bi_vcnt < RESYNC_PAGES); 3328 bio_full: 3329 r10_bio->sectors = nr_sectors; 3330 3331 while (biolist) { 3332 bio = biolist; 3333 biolist = biolist->bi_next; 3334 3335 bio->bi_next = NULL; 3336 r10_bio = bio->bi_private; 3337 r10_bio->sectors = nr_sectors; 3338 3339 if (bio->bi_end_io == end_sync_read) { 3340 md_sync_acct(bio->bi_bdev, nr_sectors); 3341 generic_make_request(bio); 3342 } 3343 } 3344 3345 if (sectors_skipped) 3346 /* pretend they weren't skipped, it makes 3347 * no important difference in this case 3348 */ 3349 md_done_sync(mddev, sectors_skipped, 1); 3350 3351 return sectors_skipped + nr_sectors; 3352 giveup: 3353 /* There is nowhere to write, so all non-sync 3354 * drives must be failed or in resync, all drives 3355 * have a bad block, so try the next chunk... 3356 */ 3357 if (sector_nr + max_sync < max_sector) 3358 max_sector = sector_nr + max_sync; 3359 3360 sectors_skipped += (max_sector - sector_nr); 3361 chunks_skipped ++; 3362 sector_nr = max_sector; 3363 goto skipped; 3364 } 3365 3366 static sector_t 3367 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3368 { 3369 sector_t size; 3370 struct r10conf *conf = mddev->private; 3371 3372 if (!raid_disks) 3373 raid_disks = min(conf->geo.raid_disks, 3374 conf->prev.raid_disks); 3375 if (!sectors) 3376 sectors = conf->dev_sectors; 3377 3378 size = sectors >> conf->geo.chunk_shift; 3379 sector_div(size, conf->geo.far_copies); 3380 size = size * raid_disks; 3381 sector_div(size, conf->geo.near_copies); 3382 3383 return size << conf->geo.chunk_shift; 3384 } 3385 3386 static void calc_sectors(struct r10conf *conf, sector_t size) 3387 { 3388 /* Calculate the number of sectors-per-device that will 3389 * actually be used, and set conf->dev_sectors and 3390 * conf->stride 3391 */ 3392 3393 size = size >> conf->geo.chunk_shift; 3394 sector_div(size, conf->geo.far_copies); 3395 size = size * conf->geo.raid_disks; 3396 sector_div(size, conf->geo.near_copies); 3397 /* 'size' is now the number of chunks in the array */ 3398 /* calculate "used chunks per device" */ 3399 size = size * conf->copies; 3400 3401 /* We need to round up when dividing by raid_disks to 3402 * get the stride size. 3403 */ 3404 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3405 3406 conf->dev_sectors = size << conf->geo.chunk_shift; 3407 3408 if (conf->geo.far_offset) 3409 conf->geo.stride = 1 << conf->geo.chunk_shift; 3410 else { 3411 sector_div(size, conf->geo.far_copies); 3412 conf->geo.stride = size << conf->geo.chunk_shift; 3413 } 3414 } 3415 3416 enum geo_type {geo_new, geo_old, geo_start}; 3417 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3418 { 3419 int nc, fc, fo; 3420 int layout, chunk, disks; 3421 switch (new) { 3422 case geo_old: 3423 layout = mddev->layout; 3424 chunk = mddev->chunk_sectors; 3425 disks = mddev->raid_disks - mddev->delta_disks; 3426 break; 3427 case geo_new: 3428 layout = mddev->new_layout; 3429 chunk = mddev->new_chunk_sectors; 3430 disks = mddev->raid_disks; 3431 break; 3432 default: /* avoid 'may be unused' warnings */ 3433 case geo_start: /* new when starting reshape - raid_disks not 3434 * updated yet. */ 3435 layout = mddev->new_layout; 3436 chunk = mddev->new_chunk_sectors; 3437 disks = mddev->raid_disks + mddev->delta_disks; 3438 break; 3439 } 3440 if (layout >> 17) 3441 return -1; 3442 if (chunk < (PAGE_SIZE >> 9) || 3443 !is_power_of_2(chunk)) 3444 return -2; 3445 nc = layout & 255; 3446 fc = (layout >> 8) & 255; 3447 fo = layout & (1<<16); 3448 geo->raid_disks = disks; 3449 geo->near_copies = nc; 3450 geo->far_copies = fc; 3451 geo->far_offset = fo; 3452 geo->chunk_mask = chunk - 1; 3453 geo->chunk_shift = ffz(~chunk); 3454 return nc*fc; 3455 } 3456 3457 static struct r10conf *setup_conf(struct mddev *mddev) 3458 { 3459 struct r10conf *conf = NULL; 3460 int err = -EINVAL; 3461 struct geom geo; 3462 int copies; 3463 3464 copies = setup_geo(&geo, mddev, geo_new); 3465 3466 if (copies == -2) { 3467 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3468 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3469 mdname(mddev), PAGE_SIZE); 3470 goto out; 3471 } 3472 3473 if (copies < 2 || copies > mddev->raid_disks) { 3474 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3475 mdname(mddev), mddev->new_layout); 3476 goto out; 3477 } 3478 3479 err = -ENOMEM; 3480 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3481 if (!conf) 3482 goto out; 3483 3484 /* FIXME calc properly */ 3485 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3486 max(0,mddev->delta_disks)), 3487 GFP_KERNEL); 3488 if (!conf->mirrors) 3489 goto out; 3490 3491 conf->tmppage = alloc_page(GFP_KERNEL); 3492 if (!conf->tmppage) 3493 goto out; 3494 3495 conf->geo = geo; 3496 conf->copies = copies; 3497 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3498 r10bio_pool_free, conf); 3499 if (!conf->r10bio_pool) 3500 goto out; 3501 3502 calc_sectors(conf, mddev->dev_sectors); 3503 if (mddev->reshape_position == MaxSector) { 3504 conf->prev = conf->geo; 3505 conf->reshape_progress = MaxSector; 3506 } else { 3507 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3508 err = -EINVAL; 3509 goto out; 3510 } 3511 conf->reshape_progress = mddev->reshape_position; 3512 if (conf->prev.far_offset) 3513 conf->prev.stride = 1 << conf->prev.chunk_shift; 3514 else 3515 /* far_copies must be 1 */ 3516 conf->prev.stride = conf->dev_sectors; 3517 } 3518 spin_lock_init(&conf->device_lock); 3519 INIT_LIST_HEAD(&conf->retry_list); 3520 3521 spin_lock_init(&conf->resync_lock); 3522 init_waitqueue_head(&conf->wait_barrier); 3523 3524 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3525 if (!conf->thread) 3526 goto out; 3527 3528 conf->mddev = mddev; 3529 return conf; 3530 3531 out: 3532 if (err == -ENOMEM) 3533 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3534 mdname(mddev)); 3535 if (conf) { 3536 if (conf->r10bio_pool) 3537 mempool_destroy(conf->r10bio_pool); 3538 kfree(conf->mirrors); 3539 safe_put_page(conf->tmppage); 3540 kfree(conf); 3541 } 3542 return ERR_PTR(err); 3543 } 3544 3545 static int run(struct mddev *mddev) 3546 { 3547 struct r10conf *conf; 3548 int i, disk_idx, chunk_size; 3549 struct raid10_info *disk; 3550 struct md_rdev *rdev; 3551 sector_t size; 3552 sector_t min_offset_diff = 0; 3553 int first = 1; 3554 bool discard_supported = false; 3555 3556 if (mddev->private == NULL) { 3557 conf = setup_conf(mddev); 3558 if (IS_ERR(conf)) 3559 return PTR_ERR(conf); 3560 mddev->private = conf; 3561 } 3562 conf = mddev->private; 3563 if (!conf) 3564 goto out; 3565 3566 mddev->thread = conf->thread; 3567 conf->thread = NULL; 3568 3569 chunk_size = mddev->chunk_sectors << 9; 3570 if (mddev->queue) { 3571 blk_queue_max_discard_sectors(mddev->queue, 3572 mddev->chunk_sectors); 3573 blk_queue_io_min(mddev->queue, chunk_size); 3574 if (conf->geo.raid_disks % conf->geo.near_copies) 3575 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3576 else 3577 blk_queue_io_opt(mddev->queue, chunk_size * 3578 (conf->geo.raid_disks / conf->geo.near_copies)); 3579 } 3580 3581 rdev_for_each(rdev, mddev) { 3582 long long diff; 3583 struct request_queue *q; 3584 3585 disk_idx = rdev->raid_disk; 3586 if (disk_idx < 0) 3587 continue; 3588 if (disk_idx >= conf->geo.raid_disks && 3589 disk_idx >= conf->prev.raid_disks) 3590 continue; 3591 disk = conf->mirrors + disk_idx; 3592 3593 if (test_bit(Replacement, &rdev->flags)) { 3594 if (disk->replacement) 3595 goto out_free_conf; 3596 disk->replacement = rdev; 3597 } else { 3598 if (disk->rdev) 3599 goto out_free_conf; 3600 disk->rdev = rdev; 3601 } 3602 q = bdev_get_queue(rdev->bdev); 3603 if (q->merge_bvec_fn) 3604 mddev->merge_check_needed = 1; 3605 diff = (rdev->new_data_offset - rdev->data_offset); 3606 if (!mddev->reshape_backwards) 3607 diff = -diff; 3608 if (diff < 0) 3609 diff = 0; 3610 if (first || diff < min_offset_diff) 3611 min_offset_diff = diff; 3612 3613 if (mddev->gendisk) 3614 disk_stack_limits(mddev->gendisk, rdev->bdev, 3615 rdev->data_offset << 9); 3616 3617 disk->head_position = 0; 3618 3619 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3620 discard_supported = true; 3621 } 3622 3623 if (mddev->queue) { 3624 if (discard_supported) 3625 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3626 mddev->queue); 3627 else 3628 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3629 mddev->queue); 3630 } 3631 /* need to check that every block has at least one working mirror */ 3632 if (!enough(conf, -1)) { 3633 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3634 mdname(mddev)); 3635 goto out_free_conf; 3636 } 3637 3638 if (conf->reshape_progress != MaxSector) { 3639 /* must ensure that shape change is supported */ 3640 if (conf->geo.far_copies != 1 && 3641 conf->geo.far_offset == 0) 3642 goto out_free_conf; 3643 if (conf->prev.far_copies != 1 && 3644 conf->geo.far_offset == 0) 3645 goto out_free_conf; 3646 } 3647 3648 mddev->degraded = 0; 3649 for (i = 0; 3650 i < conf->geo.raid_disks 3651 || i < conf->prev.raid_disks; 3652 i++) { 3653 3654 disk = conf->mirrors + i; 3655 3656 if (!disk->rdev && disk->replacement) { 3657 /* The replacement is all we have - use it */ 3658 disk->rdev = disk->replacement; 3659 disk->replacement = NULL; 3660 clear_bit(Replacement, &disk->rdev->flags); 3661 } 3662 3663 if (!disk->rdev || 3664 !test_bit(In_sync, &disk->rdev->flags)) { 3665 disk->head_position = 0; 3666 mddev->degraded++; 3667 if (disk->rdev) 3668 conf->fullsync = 1; 3669 } 3670 disk->recovery_disabled = mddev->recovery_disabled - 1; 3671 } 3672 3673 if (mddev->recovery_cp != MaxSector) 3674 printk(KERN_NOTICE "md/raid10:%s: not clean" 3675 " -- starting background reconstruction\n", 3676 mdname(mddev)); 3677 printk(KERN_INFO 3678 "md/raid10:%s: active with %d out of %d devices\n", 3679 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3680 conf->geo.raid_disks); 3681 /* 3682 * Ok, everything is just fine now 3683 */ 3684 mddev->dev_sectors = conf->dev_sectors; 3685 size = raid10_size(mddev, 0, 0); 3686 md_set_array_sectors(mddev, size); 3687 mddev->resync_max_sectors = size; 3688 3689 if (mddev->queue) { 3690 int stripe = conf->geo.raid_disks * 3691 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3692 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3693 mddev->queue->backing_dev_info.congested_data = mddev; 3694 3695 /* Calculate max read-ahead size. 3696 * We need to readahead at least twice a whole stripe.... 3697 * maybe... 3698 */ 3699 stripe /= conf->geo.near_copies; 3700 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3701 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3702 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3703 } 3704 3705 3706 if (md_integrity_register(mddev)) 3707 goto out_free_conf; 3708 3709 if (conf->reshape_progress != MaxSector) { 3710 unsigned long before_length, after_length; 3711 3712 before_length = ((1 << conf->prev.chunk_shift) * 3713 conf->prev.far_copies); 3714 after_length = ((1 << conf->geo.chunk_shift) * 3715 conf->geo.far_copies); 3716 3717 if (max(before_length, after_length) > min_offset_diff) { 3718 /* This cannot work */ 3719 printk("md/raid10: offset difference not enough to continue reshape\n"); 3720 goto out_free_conf; 3721 } 3722 conf->offset_diff = min_offset_diff; 3723 3724 conf->reshape_safe = conf->reshape_progress; 3725 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3726 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3727 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3728 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3729 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3730 "reshape"); 3731 } 3732 3733 return 0; 3734 3735 out_free_conf: 3736 md_unregister_thread(&mddev->thread); 3737 if (conf->r10bio_pool) 3738 mempool_destroy(conf->r10bio_pool); 3739 safe_put_page(conf->tmppage); 3740 kfree(conf->mirrors); 3741 kfree(conf); 3742 mddev->private = NULL; 3743 out: 3744 return -EIO; 3745 } 3746 3747 static int stop(struct mddev *mddev) 3748 { 3749 struct r10conf *conf = mddev->private; 3750 3751 raise_barrier(conf, 0); 3752 lower_barrier(conf); 3753 3754 md_unregister_thread(&mddev->thread); 3755 if (mddev->queue) 3756 /* the unplug fn references 'conf'*/ 3757 blk_sync_queue(mddev->queue); 3758 3759 if (conf->r10bio_pool) 3760 mempool_destroy(conf->r10bio_pool); 3761 kfree(conf->mirrors); 3762 kfree(conf); 3763 mddev->private = NULL; 3764 return 0; 3765 } 3766 3767 static void raid10_quiesce(struct mddev *mddev, int state) 3768 { 3769 struct r10conf *conf = mddev->private; 3770 3771 switch(state) { 3772 case 1: 3773 raise_barrier(conf, 0); 3774 break; 3775 case 0: 3776 lower_barrier(conf); 3777 break; 3778 } 3779 } 3780 3781 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3782 { 3783 /* Resize of 'far' arrays is not supported. 3784 * For 'near' and 'offset' arrays we can set the 3785 * number of sectors used to be an appropriate multiple 3786 * of the chunk size. 3787 * For 'offset', this is far_copies*chunksize. 3788 * For 'near' the multiplier is the LCM of 3789 * near_copies and raid_disks. 3790 * So if far_copies > 1 && !far_offset, fail. 3791 * Else find LCM(raid_disks, near_copy)*far_copies and 3792 * multiply by chunk_size. Then round to this number. 3793 * This is mostly done by raid10_size() 3794 */ 3795 struct r10conf *conf = mddev->private; 3796 sector_t oldsize, size; 3797 3798 if (mddev->reshape_position != MaxSector) 3799 return -EBUSY; 3800 3801 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3802 return -EINVAL; 3803 3804 oldsize = raid10_size(mddev, 0, 0); 3805 size = raid10_size(mddev, sectors, 0); 3806 if (mddev->external_size && 3807 mddev->array_sectors > size) 3808 return -EINVAL; 3809 if (mddev->bitmap) { 3810 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3811 if (ret) 3812 return ret; 3813 } 3814 md_set_array_sectors(mddev, size); 3815 set_capacity(mddev->gendisk, mddev->array_sectors); 3816 revalidate_disk(mddev->gendisk); 3817 if (sectors > mddev->dev_sectors && 3818 mddev->recovery_cp > oldsize) { 3819 mddev->recovery_cp = oldsize; 3820 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3821 } 3822 calc_sectors(conf, sectors); 3823 mddev->dev_sectors = conf->dev_sectors; 3824 mddev->resync_max_sectors = size; 3825 return 0; 3826 } 3827 3828 static void *raid10_takeover_raid0(struct mddev *mddev) 3829 { 3830 struct md_rdev *rdev; 3831 struct r10conf *conf; 3832 3833 if (mddev->degraded > 0) { 3834 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3835 mdname(mddev)); 3836 return ERR_PTR(-EINVAL); 3837 } 3838 3839 /* Set new parameters */ 3840 mddev->new_level = 10; 3841 /* new layout: far_copies = 1, near_copies = 2 */ 3842 mddev->new_layout = (1<<8) + 2; 3843 mddev->new_chunk_sectors = mddev->chunk_sectors; 3844 mddev->delta_disks = mddev->raid_disks; 3845 mddev->raid_disks *= 2; 3846 /* make sure it will be not marked as dirty */ 3847 mddev->recovery_cp = MaxSector; 3848 3849 conf = setup_conf(mddev); 3850 if (!IS_ERR(conf)) { 3851 rdev_for_each(rdev, mddev) 3852 if (rdev->raid_disk >= 0) 3853 rdev->new_raid_disk = rdev->raid_disk * 2; 3854 conf->barrier = 1; 3855 } 3856 3857 return conf; 3858 } 3859 3860 static void *raid10_takeover(struct mddev *mddev) 3861 { 3862 struct r0conf *raid0_conf; 3863 3864 /* raid10 can take over: 3865 * raid0 - providing it has only two drives 3866 */ 3867 if (mddev->level == 0) { 3868 /* for raid0 takeover only one zone is supported */ 3869 raid0_conf = mddev->private; 3870 if (raid0_conf->nr_strip_zones > 1) { 3871 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3872 " with more than one zone.\n", 3873 mdname(mddev)); 3874 return ERR_PTR(-EINVAL); 3875 } 3876 return raid10_takeover_raid0(mddev); 3877 } 3878 return ERR_PTR(-EINVAL); 3879 } 3880 3881 static int raid10_check_reshape(struct mddev *mddev) 3882 { 3883 /* Called when there is a request to change 3884 * - layout (to ->new_layout) 3885 * - chunk size (to ->new_chunk_sectors) 3886 * - raid_disks (by delta_disks) 3887 * or when trying to restart a reshape that was ongoing. 3888 * 3889 * We need to validate the request and possibly allocate 3890 * space if that might be an issue later. 3891 * 3892 * Currently we reject any reshape of a 'far' mode array, 3893 * allow chunk size to change if new is generally acceptable, 3894 * allow raid_disks to increase, and allow 3895 * a switch between 'near' mode and 'offset' mode. 3896 */ 3897 struct r10conf *conf = mddev->private; 3898 struct geom geo; 3899 3900 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3901 return -EINVAL; 3902 3903 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3904 /* mustn't change number of copies */ 3905 return -EINVAL; 3906 if (geo.far_copies > 1 && !geo.far_offset) 3907 /* Cannot switch to 'far' mode */ 3908 return -EINVAL; 3909 3910 if (mddev->array_sectors & geo.chunk_mask) 3911 /* not factor of array size */ 3912 return -EINVAL; 3913 3914 if (!enough(conf, -1)) 3915 return -EINVAL; 3916 3917 kfree(conf->mirrors_new); 3918 conf->mirrors_new = NULL; 3919 if (mddev->delta_disks > 0) { 3920 /* allocate new 'mirrors' list */ 3921 conf->mirrors_new = kzalloc( 3922 sizeof(struct raid10_info) 3923 *(mddev->raid_disks + 3924 mddev->delta_disks), 3925 GFP_KERNEL); 3926 if (!conf->mirrors_new) 3927 return -ENOMEM; 3928 } 3929 return 0; 3930 } 3931 3932 /* 3933 * Need to check if array has failed when deciding whether to: 3934 * - start an array 3935 * - remove non-faulty devices 3936 * - add a spare 3937 * - allow a reshape 3938 * This determination is simple when no reshape is happening. 3939 * However if there is a reshape, we need to carefully check 3940 * both the before and after sections. 3941 * This is because some failed devices may only affect one 3942 * of the two sections, and some non-in_sync devices may 3943 * be insync in the section most affected by failed devices. 3944 */ 3945 static int calc_degraded(struct r10conf *conf) 3946 { 3947 int degraded, degraded2; 3948 int i; 3949 3950 rcu_read_lock(); 3951 degraded = 0; 3952 /* 'prev' section first */ 3953 for (i = 0; i < conf->prev.raid_disks; i++) { 3954 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3955 if (!rdev || test_bit(Faulty, &rdev->flags)) 3956 degraded++; 3957 else if (!test_bit(In_sync, &rdev->flags)) 3958 /* When we can reduce the number of devices in 3959 * an array, this might not contribute to 3960 * 'degraded'. It does now. 3961 */ 3962 degraded++; 3963 } 3964 rcu_read_unlock(); 3965 if (conf->geo.raid_disks == conf->prev.raid_disks) 3966 return degraded; 3967 rcu_read_lock(); 3968 degraded2 = 0; 3969 for (i = 0; i < conf->geo.raid_disks; i++) { 3970 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3971 if (!rdev || test_bit(Faulty, &rdev->flags)) 3972 degraded2++; 3973 else if (!test_bit(In_sync, &rdev->flags)) { 3974 /* If reshape is increasing the number of devices, 3975 * this section has already been recovered, so 3976 * it doesn't contribute to degraded. 3977 * else it does. 3978 */ 3979 if (conf->geo.raid_disks <= conf->prev.raid_disks) 3980 degraded2++; 3981 } 3982 } 3983 rcu_read_unlock(); 3984 if (degraded2 > degraded) 3985 return degraded2; 3986 return degraded; 3987 } 3988 3989 static int raid10_start_reshape(struct mddev *mddev) 3990 { 3991 /* A 'reshape' has been requested. This commits 3992 * the various 'new' fields and sets MD_RECOVER_RESHAPE 3993 * This also checks if there are enough spares and adds them 3994 * to the array. 3995 * We currently require enough spares to make the final 3996 * array non-degraded. We also require that the difference 3997 * between old and new data_offset - on each device - is 3998 * enough that we never risk over-writing. 3999 */ 4000 4001 unsigned long before_length, after_length; 4002 sector_t min_offset_diff = 0; 4003 int first = 1; 4004 struct geom new; 4005 struct r10conf *conf = mddev->private; 4006 struct md_rdev *rdev; 4007 int spares = 0; 4008 int ret; 4009 4010 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4011 return -EBUSY; 4012 4013 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4014 return -EINVAL; 4015 4016 before_length = ((1 << conf->prev.chunk_shift) * 4017 conf->prev.far_copies); 4018 after_length = ((1 << conf->geo.chunk_shift) * 4019 conf->geo.far_copies); 4020 4021 rdev_for_each(rdev, mddev) { 4022 if (!test_bit(In_sync, &rdev->flags) 4023 && !test_bit(Faulty, &rdev->flags)) 4024 spares++; 4025 if (rdev->raid_disk >= 0) { 4026 long long diff = (rdev->new_data_offset 4027 - rdev->data_offset); 4028 if (!mddev->reshape_backwards) 4029 diff = -diff; 4030 if (diff < 0) 4031 diff = 0; 4032 if (first || diff < min_offset_diff) 4033 min_offset_diff = diff; 4034 } 4035 } 4036 4037 if (max(before_length, after_length) > min_offset_diff) 4038 return -EINVAL; 4039 4040 if (spares < mddev->delta_disks) 4041 return -EINVAL; 4042 4043 conf->offset_diff = min_offset_diff; 4044 spin_lock_irq(&conf->device_lock); 4045 if (conf->mirrors_new) { 4046 memcpy(conf->mirrors_new, conf->mirrors, 4047 sizeof(struct raid10_info)*conf->prev.raid_disks); 4048 smp_mb(); 4049 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 4050 conf->mirrors_old = conf->mirrors; 4051 conf->mirrors = conf->mirrors_new; 4052 conf->mirrors_new = NULL; 4053 } 4054 setup_geo(&conf->geo, mddev, geo_start); 4055 smp_mb(); 4056 if (mddev->reshape_backwards) { 4057 sector_t size = raid10_size(mddev, 0, 0); 4058 if (size < mddev->array_sectors) { 4059 spin_unlock_irq(&conf->device_lock); 4060 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4061 mdname(mddev)); 4062 return -EINVAL; 4063 } 4064 mddev->resync_max_sectors = size; 4065 conf->reshape_progress = size; 4066 } else 4067 conf->reshape_progress = 0; 4068 spin_unlock_irq(&conf->device_lock); 4069 4070 if (mddev->delta_disks && mddev->bitmap) { 4071 ret = bitmap_resize(mddev->bitmap, 4072 raid10_size(mddev, 0, 4073 conf->geo.raid_disks), 4074 0, 0); 4075 if (ret) 4076 goto abort; 4077 } 4078 if (mddev->delta_disks > 0) { 4079 rdev_for_each(rdev, mddev) 4080 if (rdev->raid_disk < 0 && 4081 !test_bit(Faulty, &rdev->flags)) { 4082 if (raid10_add_disk(mddev, rdev) == 0) { 4083 if (rdev->raid_disk >= 4084 conf->prev.raid_disks) 4085 set_bit(In_sync, &rdev->flags); 4086 else 4087 rdev->recovery_offset = 0; 4088 4089 if (sysfs_link_rdev(mddev, rdev)) 4090 /* Failure here is OK */; 4091 } 4092 } else if (rdev->raid_disk >= conf->prev.raid_disks 4093 && !test_bit(Faulty, &rdev->flags)) { 4094 /* This is a spare that was manually added */ 4095 set_bit(In_sync, &rdev->flags); 4096 } 4097 } 4098 /* When a reshape changes the number of devices, 4099 * ->degraded is measured against the larger of the 4100 * pre and post numbers. 4101 */ 4102 spin_lock_irq(&conf->device_lock); 4103 mddev->degraded = calc_degraded(conf); 4104 spin_unlock_irq(&conf->device_lock); 4105 mddev->raid_disks = conf->geo.raid_disks; 4106 mddev->reshape_position = conf->reshape_progress; 4107 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4108 4109 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4110 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4111 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4112 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4113 4114 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4115 "reshape"); 4116 if (!mddev->sync_thread) { 4117 ret = -EAGAIN; 4118 goto abort; 4119 } 4120 conf->reshape_checkpoint = jiffies; 4121 md_wakeup_thread(mddev->sync_thread); 4122 md_new_event(mddev); 4123 return 0; 4124 4125 abort: 4126 mddev->recovery = 0; 4127 spin_lock_irq(&conf->device_lock); 4128 conf->geo = conf->prev; 4129 mddev->raid_disks = conf->geo.raid_disks; 4130 rdev_for_each(rdev, mddev) 4131 rdev->new_data_offset = rdev->data_offset; 4132 smp_wmb(); 4133 conf->reshape_progress = MaxSector; 4134 mddev->reshape_position = MaxSector; 4135 spin_unlock_irq(&conf->device_lock); 4136 return ret; 4137 } 4138 4139 /* Calculate the last device-address that could contain 4140 * any block from the chunk that includes the array-address 's' 4141 * and report the next address. 4142 * i.e. the address returned will be chunk-aligned and after 4143 * any data that is in the chunk containing 's'. 4144 */ 4145 static sector_t last_dev_address(sector_t s, struct geom *geo) 4146 { 4147 s = (s | geo->chunk_mask) + 1; 4148 s >>= geo->chunk_shift; 4149 s *= geo->near_copies; 4150 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4151 s *= geo->far_copies; 4152 s <<= geo->chunk_shift; 4153 return s; 4154 } 4155 4156 /* Calculate the first device-address that could contain 4157 * any block from the chunk that includes the array-address 's'. 4158 * This too will be the start of a chunk 4159 */ 4160 static sector_t first_dev_address(sector_t s, struct geom *geo) 4161 { 4162 s >>= geo->chunk_shift; 4163 s *= geo->near_copies; 4164 sector_div(s, geo->raid_disks); 4165 s *= geo->far_copies; 4166 s <<= geo->chunk_shift; 4167 return s; 4168 } 4169 4170 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4171 int *skipped) 4172 { 4173 /* We simply copy at most one chunk (smallest of old and new) 4174 * at a time, possibly less if that exceeds RESYNC_PAGES, 4175 * or we hit a bad block or something. 4176 * This might mean we pause for normal IO in the middle of 4177 * a chunk, but that is not a problem was mddev->reshape_position 4178 * can record any location. 4179 * 4180 * If we will want to write to a location that isn't 4181 * yet recorded as 'safe' (i.e. in metadata on disk) then 4182 * we need to flush all reshape requests and update the metadata. 4183 * 4184 * When reshaping forwards (e.g. to more devices), we interpret 4185 * 'safe' as the earliest block which might not have been copied 4186 * down yet. We divide this by previous stripe size and multiply 4187 * by previous stripe length to get lowest device offset that we 4188 * cannot write to yet. 4189 * We interpret 'sector_nr' as an address that we want to write to. 4190 * From this we use last_device_address() to find where we might 4191 * write to, and first_device_address on the 'safe' position. 4192 * If this 'next' write position is after the 'safe' position, 4193 * we must update the metadata to increase the 'safe' position. 4194 * 4195 * When reshaping backwards, we round in the opposite direction 4196 * and perform the reverse test: next write position must not be 4197 * less than current safe position. 4198 * 4199 * In all this the minimum difference in data offsets 4200 * (conf->offset_diff - always positive) allows a bit of slack, 4201 * so next can be after 'safe', but not by more than offset_disk 4202 * 4203 * We need to prepare all the bios here before we start any IO 4204 * to ensure the size we choose is acceptable to all devices. 4205 * The means one for each copy for write-out and an extra one for 4206 * read-in. 4207 * We store the read-in bio in ->master_bio and the others in 4208 * ->devs[x].bio and ->devs[x].repl_bio. 4209 */ 4210 struct r10conf *conf = mddev->private; 4211 struct r10bio *r10_bio; 4212 sector_t next, safe, last; 4213 int max_sectors; 4214 int nr_sectors; 4215 int s; 4216 struct md_rdev *rdev; 4217 int need_flush = 0; 4218 struct bio *blist; 4219 struct bio *bio, *read_bio; 4220 int sectors_done = 0; 4221 4222 if (sector_nr == 0) { 4223 /* If restarting in the middle, skip the initial sectors */ 4224 if (mddev->reshape_backwards && 4225 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4226 sector_nr = (raid10_size(mddev, 0, 0) 4227 - conf->reshape_progress); 4228 } else if (!mddev->reshape_backwards && 4229 conf->reshape_progress > 0) 4230 sector_nr = conf->reshape_progress; 4231 if (sector_nr) { 4232 mddev->curr_resync_completed = sector_nr; 4233 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4234 *skipped = 1; 4235 return sector_nr; 4236 } 4237 } 4238 4239 /* We don't use sector_nr to track where we are up to 4240 * as that doesn't work well for ->reshape_backwards. 4241 * So just use ->reshape_progress. 4242 */ 4243 if (mddev->reshape_backwards) { 4244 /* 'next' is the earliest device address that we might 4245 * write to for this chunk in the new layout 4246 */ 4247 next = first_dev_address(conf->reshape_progress - 1, 4248 &conf->geo); 4249 4250 /* 'safe' is the last device address that we might read from 4251 * in the old layout after a restart 4252 */ 4253 safe = last_dev_address(conf->reshape_safe - 1, 4254 &conf->prev); 4255 4256 if (next + conf->offset_diff < safe) 4257 need_flush = 1; 4258 4259 last = conf->reshape_progress - 1; 4260 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4261 & conf->prev.chunk_mask); 4262 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4263 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4264 } else { 4265 /* 'next' is after the last device address that we 4266 * might write to for this chunk in the new layout 4267 */ 4268 next = last_dev_address(conf->reshape_progress, &conf->geo); 4269 4270 /* 'safe' is the earliest device address that we might 4271 * read from in the old layout after a restart 4272 */ 4273 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4274 4275 /* Need to update metadata if 'next' might be beyond 'safe' 4276 * as that would possibly corrupt data 4277 */ 4278 if (next > safe + conf->offset_diff) 4279 need_flush = 1; 4280 4281 sector_nr = conf->reshape_progress; 4282 last = sector_nr | (conf->geo.chunk_mask 4283 & conf->prev.chunk_mask); 4284 4285 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4286 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4287 } 4288 4289 if (need_flush || 4290 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4291 /* Need to update reshape_position in metadata */ 4292 wait_barrier(conf); 4293 mddev->reshape_position = conf->reshape_progress; 4294 if (mddev->reshape_backwards) 4295 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4296 - conf->reshape_progress; 4297 else 4298 mddev->curr_resync_completed = conf->reshape_progress; 4299 conf->reshape_checkpoint = jiffies; 4300 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4301 md_wakeup_thread(mddev->thread); 4302 wait_event(mddev->sb_wait, mddev->flags == 0 || 4303 kthread_should_stop()); 4304 conf->reshape_safe = mddev->reshape_position; 4305 allow_barrier(conf); 4306 } 4307 4308 read_more: 4309 /* Now schedule reads for blocks from sector_nr to last */ 4310 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4311 raise_barrier(conf, sectors_done != 0); 4312 atomic_set(&r10_bio->remaining, 0); 4313 r10_bio->mddev = mddev; 4314 r10_bio->sector = sector_nr; 4315 set_bit(R10BIO_IsReshape, &r10_bio->state); 4316 r10_bio->sectors = last - sector_nr + 1; 4317 rdev = read_balance(conf, r10_bio, &max_sectors); 4318 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4319 4320 if (!rdev) { 4321 /* Cannot read from here, so need to record bad blocks 4322 * on all the target devices. 4323 */ 4324 // FIXME 4325 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4326 return sectors_done; 4327 } 4328 4329 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4330 4331 read_bio->bi_bdev = rdev->bdev; 4332 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4333 + rdev->data_offset); 4334 read_bio->bi_private = r10_bio; 4335 read_bio->bi_end_io = end_sync_read; 4336 read_bio->bi_rw = READ; 4337 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4338 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4339 read_bio->bi_vcnt = 0; 4340 read_bio->bi_idx = 0; 4341 read_bio->bi_size = 0; 4342 r10_bio->master_bio = read_bio; 4343 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4344 4345 /* Now find the locations in the new layout */ 4346 __raid10_find_phys(&conf->geo, r10_bio); 4347 4348 blist = read_bio; 4349 read_bio->bi_next = NULL; 4350 4351 for (s = 0; s < conf->copies*2; s++) { 4352 struct bio *b; 4353 int d = r10_bio->devs[s/2].devnum; 4354 struct md_rdev *rdev2; 4355 if (s&1) { 4356 rdev2 = conf->mirrors[d].replacement; 4357 b = r10_bio->devs[s/2].repl_bio; 4358 } else { 4359 rdev2 = conf->mirrors[d].rdev; 4360 b = r10_bio->devs[s/2].bio; 4361 } 4362 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4363 continue; 4364 b->bi_bdev = rdev2->bdev; 4365 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; 4366 b->bi_private = r10_bio; 4367 b->bi_end_io = end_reshape_write; 4368 b->bi_rw = WRITE; 4369 b->bi_flags &= ~(BIO_POOL_MASK - 1); 4370 b->bi_flags |= 1 << BIO_UPTODATE; 4371 b->bi_next = blist; 4372 b->bi_vcnt = 0; 4373 b->bi_idx = 0; 4374 b->bi_size = 0; 4375 blist = b; 4376 } 4377 4378 /* Now add as many pages as possible to all of these bios. */ 4379 4380 nr_sectors = 0; 4381 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4382 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4383 int len = (max_sectors - s) << 9; 4384 if (len > PAGE_SIZE) 4385 len = PAGE_SIZE; 4386 for (bio = blist; bio ; bio = bio->bi_next) { 4387 struct bio *bio2; 4388 if (bio_add_page(bio, page, len, 0)) 4389 continue; 4390 4391 /* Didn't fit, must stop */ 4392 for (bio2 = blist; 4393 bio2 && bio2 != bio; 4394 bio2 = bio2->bi_next) { 4395 /* Remove last page from this bio */ 4396 bio2->bi_vcnt--; 4397 bio2->bi_size -= len; 4398 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4399 } 4400 goto bio_full; 4401 } 4402 sector_nr += len >> 9; 4403 nr_sectors += len >> 9; 4404 } 4405 bio_full: 4406 r10_bio->sectors = nr_sectors; 4407 4408 /* Now submit the read */ 4409 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4410 atomic_inc(&r10_bio->remaining); 4411 read_bio->bi_next = NULL; 4412 generic_make_request(read_bio); 4413 sector_nr += nr_sectors; 4414 sectors_done += nr_sectors; 4415 if (sector_nr <= last) 4416 goto read_more; 4417 4418 /* Now that we have done the whole section we can 4419 * update reshape_progress 4420 */ 4421 if (mddev->reshape_backwards) 4422 conf->reshape_progress -= sectors_done; 4423 else 4424 conf->reshape_progress += sectors_done; 4425 4426 return sectors_done; 4427 } 4428 4429 static void end_reshape_request(struct r10bio *r10_bio); 4430 static int handle_reshape_read_error(struct mddev *mddev, 4431 struct r10bio *r10_bio); 4432 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4433 { 4434 /* Reshape read completed. Hopefully we have a block 4435 * to write out. 4436 * If we got a read error then we do sync 1-page reads from 4437 * elsewhere until we find the data - or give up. 4438 */ 4439 struct r10conf *conf = mddev->private; 4440 int s; 4441 4442 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4443 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4444 /* Reshape has been aborted */ 4445 md_done_sync(mddev, r10_bio->sectors, 0); 4446 return; 4447 } 4448 4449 /* We definitely have the data in the pages, schedule the 4450 * writes. 4451 */ 4452 atomic_set(&r10_bio->remaining, 1); 4453 for (s = 0; s < conf->copies*2; s++) { 4454 struct bio *b; 4455 int d = r10_bio->devs[s/2].devnum; 4456 struct md_rdev *rdev; 4457 if (s&1) { 4458 rdev = conf->mirrors[d].replacement; 4459 b = r10_bio->devs[s/2].repl_bio; 4460 } else { 4461 rdev = conf->mirrors[d].rdev; 4462 b = r10_bio->devs[s/2].bio; 4463 } 4464 if (!rdev || test_bit(Faulty, &rdev->flags)) 4465 continue; 4466 atomic_inc(&rdev->nr_pending); 4467 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4468 atomic_inc(&r10_bio->remaining); 4469 b->bi_next = NULL; 4470 generic_make_request(b); 4471 } 4472 end_reshape_request(r10_bio); 4473 } 4474 4475 static void end_reshape(struct r10conf *conf) 4476 { 4477 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4478 return; 4479 4480 spin_lock_irq(&conf->device_lock); 4481 conf->prev = conf->geo; 4482 md_finish_reshape(conf->mddev); 4483 smp_wmb(); 4484 conf->reshape_progress = MaxSector; 4485 spin_unlock_irq(&conf->device_lock); 4486 4487 /* read-ahead size must cover two whole stripes, which is 4488 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4489 */ 4490 if (conf->mddev->queue) { 4491 int stripe = conf->geo.raid_disks * 4492 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4493 stripe /= conf->geo.near_copies; 4494 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4495 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4496 } 4497 conf->fullsync = 0; 4498 } 4499 4500 4501 static int handle_reshape_read_error(struct mddev *mddev, 4502 struct r10bio *r10_bio) 4503 { 4504 /* Use sync reads to get the blocks from somewhere else */ 4505 int sectors = r10_bio->sectors; 4506 struct r10conf *conf = mddev->private; 4507 struct { 4508 struct r10bio r10_bio; 4509 struct r10dev devs[conf->copies]; 4510 } on_stack; 4511 struct r10bio *r10b = &on_stack.r10_bio; 4512 int slot = 0; 4513 int idx = 0; 4514 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4515 4516 r10b->sector = r10_bio->sector; 4517 __raid10_find_phys(&conf->prev, r10b); 4518 4519 while (sectors) { 4520 int s = sectors; 4521 int success = 0; 4522 int first_slot = slot; 4523 4524 if (s > (PAGE_SIZE >> 9)) 4525 s = PAGE_SIZE >> 9; 4526 4527 while (!success) { 4528 int d = r10b->devs[slot].devnum; 4529 struct md_rdev *rdev = conf->mirrors[d].rdev; 4530 sector_t addr; 4531 if (rdev == NULL || 4532 test_bit(Faulty, &rdev->flags) || 4533 !test_bit(In_sync, &rdev->flags)) 4534 goto failed; 4535 4536 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4537 success = sync_page_io(rdev, 4538 addr, 4539 s << 9, 4540 bvec[idx].bv_page, 4541 READ, false); 4542 if (success) 4543 break; 4544 failed: 4545 slot++; 4546 if (slot >= conf->copies) 4547 slot = 0; 4548 if (slot == first_slot) 4549 break; 4550 } 4551 if (!success) { 4552 /* couldn't read this block, must give up */ 4553 set_bit(MD_RECOVERY_INTR, 4554 &mddev->recovery); 4555 return -EIO; 4556 } 4557 sectors -= s; 4558 idx++; 4559 } 4560 return 0; 4561 } 4562 4563 static void end_reshape_write(struct bio *bio, int error) 4564 { 4565 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4566 struct r10bio *r10_bio = bio->bi_private; 4567 struct mddev *mddev = r10_bio->mddev; 4568 struct r10conf *conf = mddev->private; 4569 int d; 4570 int slot; 4571 int repl; 4572 struct md_rdev *rdev = NULL; 4573 4574 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4575 if (repl) 4576 rdev = conf->mirrors[d].replacement; 4577 if (!rdev) { 4578 smp_mb(); 4579 rdev = conf->mirrors[d].rdev; 4580 } 4581 4582 if (!uptodate) { 4583 /* FIXME should record badblock */ 4584 md_error(mddev, rdev); 4585 } 4586 4587 rdev_dec_pending(rdev, mddev); 4588 end_reshape_request(r10_bio); 4589 } 4590 4591 static void end_reshape_request(struct r10bio *r10_bio) 4592 { 4593 if (!atomic_dec_and_test(&r10_bio->remaining)) 4594 return; 4595 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4596 bio_put(r10_bio->master_bio); 4597 put_buf(r10_bio); 4598 } 4599 4600 static void raid10_finish_reshape(struct mddev *mddev) 4601 { 4602 struct r10conf *conf = mddev->private; 4603 4604 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4605 return; 4606 4607 if (mddev->delta_disks > 0) { 4608 sector_t size = raid10_size(mddev, 0, 0); 4609 md_set_array_sectors(mddev, size); 4610 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4611 mddev->recovery_cp = mddev->resync_max_sectors; 4612 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4613 } 4614 mddev->resync_max_sectors = size; 4615 set_capacity(mddev->gendisk, mddev->array_sectors); 4616 revalidate_disk(mddev->gendisk); 4617 } else { 4618 int d; 4619 for (d = conf->geo.raid_disks ; 4620 d < conf->geo.raid_disks - mddev->delta_disks; 4621 d++) { 4622 struct md_rdev *rdev = conf->mirrors[d].rdev; 4623 if (rdev) 4624 clear_bit(In_sync, &rdev->flags); 4625 rdev = conf->mirrors[d].replacement; 4626 if (rdev) 4627 clear_bit(In_sync, &rdev->flags); 4628 } 4629 } 4630 mddev->layout = mddev->new_layout; 4631 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4632 mddev->reshape_position = MaxSector; 4633 mddev->delta_disks = 0; 4634 mddev->reshape_backwards = 0; 4635 } 4636 4637 static struct md_personality raid10_personality = 4638 { 4639 .name = "raid10", 4640 .level = 10, 4641 .owner = THIS_MODULE, 4642 .make_request = make_request, 4643 .run = run, 4644 .stop = stop, 4645 .status = status, 4646 .error_handler = error, 4647 .hot_add_disk = raid10_add_disk, 4648 .hot_remove_disk= raid10_remove_disk, 4649 .spare_active = raid10_spare_active, 4650 .sync_request = sync_request, 4651 .quiesce = raid10_quiesce, 4652 .size = raid10_size, 4653 .resize = raid10_resize, 4654 .takeover = raid10_takeover, 4655 .check_reshape = raid10_check_reshape, 4656 .start_reshape = raid10_start_reshape, 4657 .finish_reshape = raid10_finish_reshape, 4658 }; 4659 4660 static int __init raid_init(void) 4661 { 4662 return register_md_personality(&raid10_personality); 4663 } 4664 4665 static void raid_exit(void) 4666 { 4667 unregister_md_personality(&raid10_personality); 4668 } 4669 4670 module_init(raid_init); 4671 module_exit(raid_exit); 4672 MODULE_LICENSE("GPL"); 4673 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4674 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4675 MODULE_ALIAS("md-raid10"); 4676 MODULE_ALIAS("md-level-10"); 4677 4678 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4679