xref: /linux/drivers/md/raid10.c (revision bcefe12eff5dca6fdfa94ed85e5bee66380d5cd9)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/delay.h>
22 #include <linux/blkdev.h>
23 #include <linux/seq_file.h>
24 #include "md.h"
25 #include "raid10.h"
26 #include "bitmap.h"
27 
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.
38  * Each device is divided into far_copies sections.
39  * In each section, chunks are laid out in a style similar to raid0, but
40  * near_copies copies of each chunk is stored (each on a different drive).
41  * The starting device for each section is offset near_copies from the starting
42  * device of the previous section.
43  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
44  * drive.
45  * near_copies and far_copies must be at least one, and their product is at most
46  * raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of be very far apart
50  * on disk, there are adjacent stripes.
51  */
52 
53 /*
54  * Number of guaranteed r10bios in case of extreme VM load:
55  */
56 #define	NR_RAID10_BIOS 256
57 
58 static void unplug_slaves(mddev_t *mddev);
59 
60 static void allow_barrier(conf_t *conf);
61 static void lower_barrier(conf_t *conf);
62 
63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
64 {
65 	conf_t *conf = data;
66 	r10bio_t *r10_bio;
67 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
68 
69 	/* allocate a r10bio with room for raid_disks entries in the bios array */
70 	r10_bio = kzalloc(size, gfp_flags);
71 	if (!r10_bio && conf->mddev)
72 		unplug_slaves(conf->mddev);
73 
74 	return r10_bio;
75 }
76 
77 static void r10bio_pool_free(void *r10_bio, void *data)
78 {
79 	kfree(r10_bio);
80 }
81 
82 /* Maximum size of each resync request */
83 #define RESYNC_BLOCK_SIZE (64*1024)
84 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
85 /* amount of memory to reserve for resync requests */
86 #define RESYNC_WINDOW (1024*1024)
87 /* maximum number of concurrent requests, memory permitting */
88 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
89 
90 /*
91  * When performing a resync, we need to read and compare, so
92  * we need as many pages are there are copies.
93  * When performing a recovery, we need 2 bios, one for read,
94  * one for write (we recover only one drive per r10buf)
95  *
96  */
97 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 	conf_t *conf = data;
100 	struct page *page;
101 	r10bio_t *r10_bio;
102 	struct bio *bio;
103 	int i, j;
104 	int nalloc;
105 
106 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
107 	if (!r10_bio) {
108 		unplug_slaves(conf->mddev);
109 		return NULL;
110 	}
111 
112 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
113 		nalloc = conf->copies; /* resync */
114 	else
115 		nalloc = 2; /* recovery */
116 
117 	/*
118 	 * Allocate bios.
119 	 */
120 	for (j = nalloc ; j-- ; ) {
121 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
122 		if (!bio)
123 			goto out_free_bio;
124 		r10_bio->devs[j].bio = bio;
125 	}
126 	/*
127 	 * Allocate RESYNC_PAGES data pages and attach them
128 	 * where needed.
129 	 */
130 	for (j = 0 ; j < nalloc; j++) {
131 		bio = r10_bio->devs[j].bio;
132 		for (i = 0; i < RESYNC_PAGES; i++) {
133 			page = alloc_page(gfp_flags);
134 			if (unlikely(!page))
135 				goto out_free_pages;
136 
137 			bio->bi_io_vec[i].bv_page = page;
138 		}
139 	}
140 
141 	return r10_bio;
142 
143 out_free_pages:
144 	for ( ; i > 0 ; i--)
145 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
146 	while (j--)
147 		for (i = 0; i < RESYNC_PAGES ; i++)
148 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
149 	j = -1;
150 out_free_bio:
151 	while ( ++j < nalloc )
152 		bio_put(r10_bio->devs[j].bio);
153 	r10bio_pool_free(r10_bio, conf);
154 	return NULL;
155 }
156 
157 static void r10buf_pool_free(void *__r10_bio, void *data)
158 {
159 	int i;
160 	conf_t *conf = data;
161 	r10bio_t *r10bio = __r10_bio;
162 	int j;
163 
164 	for (j=0; j < conf->copies; j++) {
165 		struct bio *bio = r10bio->devs[j].bio;
166 		if (bio) {
167 			for (i = 0; i < RESYNC_PAGES; i++) {
168 				safe_put_page(bio->bi_io_vec[i].bv_page);
169 				bio->bi_io_vec[i].bv_page = NULL;
170 			}
171 			bio_put(bio);
172 		}
173 	}
174 	r10bio_pool_free(r10bio, conf);
175 }
176 
177 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
178 {
179 	int i;
180 
181 	for (i = 0; i < conf->copies; i++) {
182 		struct bio **bio = & r10_bio->devs[i].bio;
183 		if (*bio && *bio != IO_BLOCKED)
184 			bio_put(*bio);
185 		*bio = NULL;
186 	}
187 }
188 
189 static void free_r10bio(r10bio_t *r10_bio)
190 {
191 	conf_t *conf = r10_bio->mddev->private;
192 
193 	/*
194 	 * Wake up any possible resync thread that waits for the device
195 	 * to go idle.
196 	 */
197 	allow_barrier(conf);
198 
199 	put_all_bios(conf, r10_bio);
200 	mempool_free(r10_bio, conf->r10bio_pool);
201 }
202 
203 static void put_buf(r10bio_t *r10_bio)
204 {
205 	conf_t *conf = r10_bio->mddev->private;
206 
207 	mempool_free(r10_bio, conf->r10buf_pool);
208 
209 	lower_barrier(conf);
210 }
211 
212 static void reschedule_retry(r10bio_t *r10_bio)
213 {
214 	unsigned long flags;
215 	mddev_t *mddev = r10_bio->mddev;
216 	conf_t *conf = mddev->private;
217 
218 	spin_lock_irqsave(&conf->device_lock, flags);
219 	list_add(&r10_bio->retry_list, &conf->retry_list);
220 	conf->nr_queued ++;
221 	spin_unlock_irqrestore(&conf->device_lock, flags);
222 
223 	/* wake up frozen array... */
224 	wake_up(&conf->wait_barrier);
225 
226 	md_wakeup_thread(mddev->thread);
227 }
228 
229 /*
230  * raid_end_bio_io() is called when we have finished servicing a mirrored
231  * operation and are ready to return a success/failure code to the buffer
232  * cache layer.
233  */
234 static void raid_end_bio_io(r10bio_t *r10_bio)
235 {
236 	struct bio *bio = r10_bio->master_bio;
237 
238 	bio_endio(bio,
239 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
240 	free_r10bio(r10_bio);
241 }
242 
243 /*
244  * Update disk head position estimator based on IRQ completion info.
245  */
246 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
247 {
248 	conf_t *conf = r10_bio->mddev->private;
249 
250 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
251 		r10_bio->devs[slot].addr + (r10_bio->sectors);
252 }
253 
254 static void raid10_end_read_request(struct bio *bio, int error)
255 {
256 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
257 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
258 	int slot, dev;
259 	conf_t *conf = r10_bio->mddev->private;
260 
261 
262 	slot = r10_bio->read_slot;
263 	dev = r10_bio->devs[slot].devnum;
264 	/*
265 	 * this branch is our 'one mirror IO has finished' event handler:
266 	 */
267 	update_head_pos(slot, r10_bio);
268 
269 	if (uptodate) {
270 		/*
271 		 * Set R10BIO_Uptodate in our master bio, so that
272 		 * we will return a good error code to the higher
273 		 * levels even if IO on some other mirrored buffer fails.
274 		 *
275 		 * The 'master' represents the composite IO operation to
276 		 * user-side. So if something waits for IO, then it will
277 		 * wait for the 'master' bio.
278 		 */
279 		set_bit(R10BIO_Uptodate, &r10_bio->state);
280 		raid_end_bio_io(r10_bio);
281 	} else {
282 		/*
283 		 * oops, read error:
284 		 */
285 		char b[BDEVNAME_SIZE];
286 		if (printk_ratelimit())
287 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
288 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
289 		reschedule_retry(r10_bio);
290 	}
291 
292 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
293 }
294 
295 static void raid10_end_write_request(struct bio *bio, int error)
296 {
297 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
298 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
299 	int slot, dev;
300 	conf_t *conf = r10_bio->mddev->private;
301 
302 	for (slot = 0; slot < conf->copies; slot++)
303 		if (r10_bio->devs[slot].bio == bio)
304 			break;
305 	dev = r10_bio->devs[slot].devnum;
306 
307 	/*
308 	 * this branch is our 'one mirror IO has finished' event handler:
309 	 */
310 	if (!uptodate) {
311 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
312 		/* an I/O failed, we can't clear the bitmap */
313 		set_bit(R10BIO_Degraded, &r10_bio->state);
314 	} else
315 		/*
316 		 * Set R10BIO_Uptodate in our master bio, so that
317 		 * we will return a good error code for to the higher
318 		 * levels even if IO on some other mirrored buffer fails.
319 		 *
320 		 * The 'master' represents the composite IO operation to
321 		 * user-side. So if something waits for IO, then it will
322 		 * wait for the 'master' bio.
323 		 */
324 		set_bit(R10BIO_Uptodate, &r10_bio->state);
325 
326 	update_head_pos(slot, r10_bio);
327 
328 	/*
329 	 *
330 	 * Let's see if all mirrored write operations have finished
331 	 * already.
332 	 */
333 	if (atomic_dec_and_test(&r10_bio->remaining)) {
334 		/* clear the bitmap if all writes complete successfully */
335 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
336 				r10_bio->sectors,
337 				!test_bit(R10BIO_Degraded, &r10_bio->state),
338 				0);
339 		md_write_end(r10_bio->mddev);
340 		raid_end_bio_io(r10_bio);
341 	}
342 
343 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
344 }
345 
346 
347 /*
348  * RAID10 layout manager
349  * Aswell as the chunksize and raid_disks count, there are two
350  * parameters: near_copies and far_copies.
351  * near_copies * far_copies must be <= raid_disks.
352  * Normally one of these will be 1.
353  * If both are 1, we get raid0.
354  * If near_copies == raid_disks, we get raid1.
355  *
356  * Chunks are layed out in raid0 style with near_copies copies of the
357  * first chunk, followed by near_copies copies of the next chunk and
358  * so on.
359  * If far_copies > 1, then after 1/far_copies of the array has been assigned
360  * as described above, we start again with a device offset of near_copies.
361  * So we effectively have another copy of the whole array further down all
362  * the drives, but with blocks on different drives.
363  * With this layout, and block is never stored twice on the one device.
364  *
365  * raid10_find_phys finds the sector offset of a given virtual sector
366  * on each device that it is on.
367  *
368  * raid10_find_virt does the reverse mapping, from a device and a
369  * sector offset to a virtual address
370  */
371 
372 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
373 {
374 	int n,f;
375 	sector_t sector;
376 	sector_t chunk;
377 	sector_t stripe;
378 	int dev;
379 
380 	int slot = 0;
381 
382 	/* now calculate first sector/dev */
383 	chunk = r10bio->sector >> conf->chunk_shift;
384 	sector = r10bio->sector & conf->chunk_mask;
385 
386 	chunk *= conf->near_copies;
387 	stripe = chunk;
388 	dev = sector_div(stripe, conf->raid_disks);
389 	if (conf->far_offset)
390 		stripe *= conf->far_copies;
391 
392 	sector += stripe << conf->chunk_shift;
393 
394 	/* and calculate all the others */
395 	for (n=0; n < conf->near_copies; n++) {
396 		int d = dev;
397 		sector_t s = sector;
398 		r10bio->devs[slot].addr = sector;
399 		r10bio->devs[slot].devnum = d;
400 		slot++;
401 
402 		for (f = 1; f < conf->far_copies; f++) {
403 			d += conf->near_copies;
404 			if (d >= conf->raid_disks)
405 				d -= conf->raid_disks;
406 			s += conf->stride;
407 			r10bio->devs[slot].devnum = d;
408 			r10bio->devs[slot].addr = s;
409 			slot++;
410 		}
411 		dev++;
412 		if (dev >= conf->raid_disks) {
413 			dev = 0;
414 			sector += (conf->chunk_mask + 1);
415 		}
416 	}
417 	BUG_ON(slot != conf->copies);
418 }
419 
420 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
421 {
422 	sector_t offset, chunk, vchunk;
423 
424 	offset = sector & conf->chunk_mask;
425 	if (conf->far_offset) {
426 		int fc;
427 		chunk = sector >> conf->chunk_shift;
428 		fc = sector_div(chunk, conf->far_copies);
429 		dev -= fc * conf->near_copies;
430 		if (dev < 0)
431 			dev += conf->raid_disks;
432 	} else {
433 		while (sector >= conf->stride) {
434 			sector -= conf->stride;
435 			if (dev < conf->near_copies)
436 				dev += conf->raid_disks - conf->near_copies;
437 			else
438 				dev -= conf->near_copies;
439 		}
440 		chunk = sector >> conf->chunk_shift;
441 	}
442 	vchunk = chunk * conf->raid_disks + dev;
443 	sector_div(vchunk, conf->near_copies);
444 	return (vchunk << conf->chunk_shift) + offset;
445 }
446 
447 /**
448  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449  *	@q: request queue
450  *	@bvm: properties of new bio
451  *	@biovec: the request that could be merged to it.
452  *
453  *	Return amount of bytes we can accept at this offset
454  *      If near_copies == raid_disk, there are no striping issues,
455  *      but in that case, the function isn't called at all.
456  */
457 static int raid10_mergeable_bvec(struct request_queue *q,
458 				 struct bvec_merge_data *bvm,
459 				 struct bio_vec *biovec)
460 {
461 	mddev_t *mddev = q->queuedata;
462 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
463 	int max;
464 	unsigned int chunk_sectors = mddev->chunk_sectors;
465 	unsigned int bio_sectors = bvm->bi_size >> 9;
466 
467 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
468 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
469 	if (max <= biovec->bv_len && bio_sectors == 0)
470 		return biovec->bv_len;
471 	else
472 		return max;
473 }
474 
475 /*
476  * This routine returns the disk from which the requested read should
477  * be done. There is a per-array 'next expected sequential IO' sector
478  * number - if this matches on the next IO then we use the last disk.
479  * There is also a per-disk 'last know head position' sector that is
480  * maintained from IRQ contexts, both the normal and the resync IO
481  * completion handlers update this position correctly. If there is no
482  * perfect sequential match then we pick the disk whose head is closest.
483  *
484  * If there are 2 mirrors in the same 2 devices, performance degrades
485  * because position is mirror, not device based.
486  *
487  * The rdev for the device selected will have nr_pending incremented.
488  */
489 
490 /*
491  * FIXME: possibly should rethink readbalancing and do it differently
492  * depending on near_copies / far_copies geometry.
493  */
494 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
495 {
496 	const unsigned long this_sector = r10_bio->sector;
497 	int disk, slot, nslot;
498 	const int sectors = r10_bio->sectors;
499 	sector_t new_distance, current_distance;
500 	mdk_rdev_t *rdev;
501 
502 	raid10_find_phys(conf, r10_bio);
503 	rcu_read_lock();
504 	/*
505 	 * Check if we can balance. We can balance on the whole
506 	 * device if no resync is going on (recovery is ok), or below
507 	 * the resync window. We take the first readable disk when
508 	 * above the resync window.
509 	 */
510 	if (conf->mddev->recovery_cp < MaxSector
511 	    && (this_sector + sectors >= conf->next_resync)) {
512 		/* make sure that disk is operational */
513 		slot = 0;
514 		disk = r10_bio->devs[slot].devnum;
515 
516 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
517 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
518 		       !test_bit(In_sync, &rdev->flags)) {
519 			slot++;
520 			if (slot == conf->copies) {
521 				slot = 0;
522 				disk = -1;
523 				break;
524 			}
525 			disk = r10_bio->devs[slot].devnum;
526 		}
527 		goto rb_out;
528 	}
529 
530 
531 	/* make sure the disk is operational */
532 	slot = 0;
533 	disk = r10_bio->devs[slot].devnum;
534 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
535 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
536 	       !test_bit(In_sync, &rdev->flags)) {
537 		slot ++;
538 		if (slot == conf->copies) {
539 			disk = -1;
540 			goto rb_out;
541 		}
542 		disk = r10_bio->devs[slot].devnum;
543 	}
544 
545 
546 	current_distance = abs(r10_bio->devs[slot].addr -
547 			       conf->mirrors[disk].head_position);
548 
549 	/* Find the disk whose head is closest,
550 	 * or - for far > 1 - find the closest to partition beginning */
551 
552 	for (nslot = slot; nslot < conf->copies; nslot++) {
553 		int ndisk = r10_bio->devs[nslot].devnum;
554 
555 
556 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
557 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
558 		    !test_bit(In_sync, &rdev->flags))
559 			continue;
560 
561 		/* This optimisation is debatable, and completely destroys
562 		 * sequential read speed for 'far copies' arrays.  So only
563 		 * keep it for 'near' arrays, and review those later.
564 		 */
565 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
566 			disk = ndisk;
567 			slot = nslot;
568 			break;
569 		}
570 
571 		/* for far > 1 always use the lowest address */
572 		if (conf->far_copies > 1)
573 			new_distance = r10_bio->devs[nslot].addr;
574 		else
575 			new_distance = abs(r10_bio->devs[nslot].addr -
576 					   conf->mirrors[ndisk].head_position);
577 		if (new_distance < current_distance) {
578 			current_distance = new_distance;
579 			disk = ndisk;
580 			slot = nslot;
581 		}
582 	}
583 
584 rb_out:
585 	r10_bio->read_slot = slot;
586 /*	conf->next_seq_sect = this_sector + sectors;*/
587 
588 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
589 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
590 	else
591 		disk = -1;
592 	rcu_read_unlock();
593 
594 	return disk;
595 }
596 
597 static void unplug_slaves(mddev_t *mddev)
598 {
599 	conf_t *conf = mddev->private;
600 	int i;
601 
602 	rcu_read_lock();
603 	for (i=0; i<mddev->raid_disks; i++) {
604 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
605 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
606 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
607 
608 			atomic_inc(&rdev->nr_pending);
609 			rcu_read_unlock();
610 
611 			blk_unplug(r_queue);
612 
613 			rdev_dec_pending(rdev, mddev);
614 			rcu_read_lock();
615 		}
616 	}
617 	rcu_read_unlock();
618 }
619 
620 static void raid10_unplug(struct request_queue *q)
621 {
622 	mddev_t *mddev = q->queuedata;
623 
624 	unplug_slaves(q->queuedata);
625 	md_wakeup_thread(mddev->thread);
626 }
627 
628 static int raid10_congested(void *data, int bits)
629 {
630 	mddev_t *mddev = data;
631 	conf_t *conf = mddev->private;
632 	int i, ret = 0;
633 
634 	if (mddev_congested(mddev, bits))
635 		return 1;
636 	rcu_read_lock();
637 	for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
638 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
639 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
640 			struct request_queue *q = bdev_get_queue(rdev->bdev);
641 
642 			ret |= bdi_congested(&q->backing_dev_info, bits);
643 		}
644 	}
645 	rcu_read_unlock();
646 	return ret;
647 }
648 
649 static int flush_pending_writes(conf_t *conf)
650 {
651 	/* Any writes that have been queued but are awaiting
652 	 * bitmap updates get flushed here.
653 	 * We return 1 if any requests were actually submitted.
654 	 */
655 	int rv = 0;
656 
657 	spin_lock_irq(&conf->device_lock);
658 
659 	if (conf->pending_bio_list.head) {
660 		struct bio *bio;
661 		bio = bio_list_get(&conf->pending_bio_list);
662 		blk_remove_plug(conf->mddev->queue);
663 		spin_unlock_irq(&conf->device_lock);
664 		/* flush any pending bitmap writes to disk
665 		 * before proceeding w/ I/O */
666 		bitmap_unplug(conf->mddev->bitmap);
667 
668 		while (bio) { /* submit pending writes */
669 			struct bio *next = bio->bi_next;
670 			bio->bi_next = NULL;
671 			generic_make_request(bio);
672 			bio = next;
673 		}
674 		rv = 1;
675 	} else
676 		spin_unlock_irq(&conf->device_lock);
677 	return rv;
678 }
679 /* Barriers....
680  * Sometimes we need to suspend IO while we do something else,
681  * either some resync/recovery, or reconfigure the array.
682  * To do this we raise a 'barrier'.
683  * The 'barrier' is a counter that can be raised multiple times
684  * to count how many activities are happening which preclude
685  * normal IO.
686  * We can only raise the barrier if there is no pending IO.
687  * i.e. if nr_pending == 0.
688  * We choose only to raise the barrier if no-one is waiting for the
689  * barrier to go down.  This means that as soon as an IO request
690  * is ready, no other operations which require a barrier will start
691  * until the IO request has had a chance.
692  *
693  * So: regular IO calls 'wait_barrier'.  When that returns there
694  *    is no backgroup IO happening,  It must arrange to call
695  *    allow_barrier when it has finished its IO.
696  * backgroup IO calls must call raise_barrier.  Once that returns
697  *    there is no normal IO happeing.  It must arrange to call
698  *    lower_barrier when the particular background IO completes.
699  */
700 
701 static void raise_barrier(conf_t *conf, int force)
702 {
703 	BUG_ON(force && !conf->barrier);
704 	spin_lock_irq(&conf->resync_lock);
705 
706 	/* Wait until no block IO is waiting (unless 'force') */
707 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
708 			    conf->resync_lock,
709 			    raid10_unplug(conf->mddev->queue));
710 
711 	/* block any new IO from starting */
712 	conf->barrier++;
713 
714 	/* No wait for all pending IO to complete */
715 	wait_event_lock_irq(conf->wait_barrier,
716 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
717 			    conf->resync_lock,
718 			    raid10_unplug(conf->mddev->queue));
719 
720 	spin_unlock_irq(&conf->resync_lock);
721 }
722 
723 static void lower_barrier(conf_t *conf)
724 {
725 	unsigned long flags;
726 	spin_lock_irqsave(&conf->resync_lock, flags);
727 	conf->barrier--;
728 	spin_unlock_irqrestore(&conf->resync_lock, flags);
729 	wake_up(&conf->wait_barrier);
730 }
731 
732 static void wait_barrier(conf_t *conf)
733 {
734 	spin_lock_irq(&conf->resync_lock);
735 	if (conf->barrier) {
736 		conf->nr_waiting++;
737 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
738 				    conf->resync_lock,
739 				    raid10_unplug(conf->mddev->queue));
740 		conf->nr_waiting--;
741 	}
742 	conf->nr_pending++;
743 	spin_unlock_irq(&conf->resync_lock);
744 }
745 
746 static void allow_barrier(conf_t *conf)
747 {
748 	unsigned long flags;
749 	spin_lock_irqsave(&conf->resync_lock, flags);
750 	conf->nr_pending--;
751 	spin_unlock_irqrestore(&conf->resync_lock, flags);
752 	wake_up(&conf->wait_barrier);
753 }
754 
755 static void freeze_array(conf_t *conf)
756 {
757 	/* stop syncio and normal IO and wait for everything to
758 	 * go quiet.
759 	 * We increment barrier and nr_waiting, and then
760 	 * wait until nr_pending match nr_queued+1
761 	 * This is called in the context of one normal IO request
762 	 * that has failed. Thus any sync request that might be pending
763 	 * will be blocked by nr_pending, and we need to wait for
764 	 * pending IO requests to complete or be queued for re-try.
765 	 * Thus the number queued (nr_queued) plus this request (1)
766 	 * must match the number of pending IOs (nr_pending) before
767 	 * we continue.
768 	 */
769 	spin_lock_irq(&conf->resync_lock);
770 	conf->barrier++;
771 	conf->nr_waiting++;
772 	wait_event_lock_irq(conf->wait_barrier,
773 			    conf->nr_pending == conf->nr_queued+1,
774 			    conf->resync_lock,
775 			    ({ flush_pending_writes(conf);
776 			       raid10_unplug(conf->mddev->queue); }));
777 	spin_unlock_irq(&conf->resync_lock);
778 }
779 
780 static void unfreeze_array(conf_t *conf)
781 {
782 	/* reverse the effect of the freeze */
783 	spin_lock_irq(&conf->resync_lock);
784 	conf->barrier--;
785 	conf->nr_waiting--;
786 	wake_up(&conf->wait_barrier);
787 	spin_unlock_irq(&conf->resync_lock);
788 }
789 
790 static int make_request(struct request_queue *q, struct bio * bio)
791 {
792 	mddev_t *mddev = q->queuedata;
793 	conf_t *conf = mddev->private;
794 	mirror_info_t *mirror;
795 	r10bio_t *r10_bio;
796 	struct bio *read_bio;
797 	int cpu;
798 	int i;
799 	int chunk_sects = conf->chunk_mask + 1;
800 	const int rw = bio_data_dir(bio);
801 	const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
802 	struct bio_list bl;
803 	unsigned long flags;
804 	mdk_rdev_t *blocked_rdev;
805 
806 	if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
807 		bio_endio(bio, -EOPNOTSUPP);
808 		return 0;
809 	}
810 
811 	/* If this request crosses a chunk boundary, we need to
812 	 * split it.  This will only happen for 1 PAGE (or less) requests.
813 	 */
814 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
815 		      > chunk_sects &&
816 		    conf->near_copies < conf->raid_disks)) {
817 		struct bio_pair *bp;
818 		/* Sanity check -- queue functions should prevent this happening */
819 		if (bio->bi_vcnt != 1 ||
820 		    bio->bi_idx != 0)
821 			goto bad_map;
822 		/* This is a one page bio that upper layers
823 		 * refuse to split for us, so we need to split it.
824 		 */
825 		bp = bio_split(bio,
826 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
827 		if (make_request(q, &bp->bio1))
828 			generic_make_request(&bp->bio1);
829 		if (make_request(q, &bp->bio2))
830 			generic_make_request(&bp->bio2);
831 
832 		bio_pair_release(bp);
833 		return 0;
834 	bad_map:
835 		printk("raid10_make_request bug: can't convert block across chunks"
836 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
837 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
838 
839 		bio_io_error(bio);
840 		return 0;
841 	}
842 
843 	md_write_start(mddev, bio);
844 
845 	/*
846 	 * Register the new request and wait if the reconstruction
847 	 * thread has put up a bar for new requests.
848 	 * Continue immediately if no resync is active currently.
849 	 */
850 	wait_barrier(conf);
851 
852 	cpu = part_stat_lock();
853 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
854 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
855 		      bio_sectors(bio));
856 	part_stat_unlock();
857 
858 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
859 
860 	r10_bio->master_bio = bio;
861 	r10_bio->sectors = bio->bi_size >> 9;
862 
863 	r10_bio->mddev = mddev;
864 	r10_bio->sector = bio->bi_sector;
865 	r10_bio->state = 0;
866 
867 	if (rw == READ) {
868 		/*
869 		 * read balancing logic:
870 		 */
871 		int disk = read_balance(conf, r10_bio);
872 		int slot = r10_bio->read_slot;
873 		if (disk < 0) {
874 			raid_end_bio_io(r10_bio);
875 			return 0;
876 		}
877 		mirror = conf->mirrors + disk;
878 
879 		read_bio = bio_clone(bio, GFP_NOIO);
880 
881 		r10_bio->devs[slot].bio = read_bio;
882 
883 		read_bio->bi_sector = r10_bio->devs[slot].addr +
884 			mirror->rdev->data_offset;
885 		read_bio->bi_bdev = mirror->rdev->bdev;
886 		read_bio->bi_end_io = raid10_end_read_request;
887 		read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
888 		read_bio->bi_private = r10_bio;
889 
890 		generic_make_request(read_bio);
891 		return 0;
892 	}
893 
894 	/*
895 	 * WRITE:
896 	 */
897 	/* first select target devices under rcu_lock and
898 	 * inc refcount on their rdev.  Record them by setting
899 	 * bios[x] to bio
900 	 */
901 	raid10_find_phys(conf, r10_bio);
902  retry_write:
903 	blocked_rdev = NULL;
904 	rcu_read_lock();
905 	for (i = 0;  i < conf->copies; i++) {
906 		int d = r10_bio->devs[i].devnum;
907 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
908 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
909 			atomic_inc(&rdev->nr_pending);
910 			blocked_rdev = rdev;
911 			break;
912 		}
913 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
914 			atomic_inc(&rdev->nr_pending);
915 			r10_bio->devs[i].bio = bio;
916 		} else {
917 			r10_bio->devs[i].bio = NULL;
918 			set_bit(R10BIO_Degraded, &r10_bio->state);
919 		}
920 	}
921 	rcu_read_unlock();
922 
923 	if (unlikely(blocked_rdev)) {
924 		/* Have to wait for this device to get unblocked, then retry */
925 		int j;
926 		int d;
927 
928 		for (j = 0; j < i; j++)
929 			if (r10_bio->devs[j].bio) {
930 				d = r10_bio->devs[j].devnum;
931 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
932 			}
933 		allow_barrier(conf);
934 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
935 		wait_barrier(conf);
936 		goto retry_write;
937 	}
938 
939 	atomic_set(&r10_bio->remaining, 0);
940 
941 	bio_list_init(&bl);
942 	for (i = 0; i < conf->copies; i++) {
943 		struct bio *mbio;
944 		int d = r10_bio->devs[i].devnum;
945 		if (!r10_bio->devs[i].bio)
946 			continue;
947 
948 		mbio = bio_clone(bio, GFP_NOIO);
949 		r10_bio->devs[i].bio = mbio;
950 
951 		mbio->bi_sector	= r10_bio->devs[i].addr+
952 			conf->mirrors[d].rdev->data_offset;
953 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
954 		mbio->bi_end_io	= raid10_end_write_request;
955 		mbio->bi_rw = WRITE | (do_sync << BIO_RW_SYNCIO);
956 		mbio->bi_private = r10_bio;
957 
958 		atomic_inc(&r10_bio->remaining);
959 		bio_list_add(&bl, mbio);
960 	}
961 
962 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
963 		/* the array is dead */
964 		md_write_end(mddev);
965 		raid_end_bio_io(r10_bio);
966 		return 0;
967 	}
968 
969 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
970 	spin_lock_irqsave(&conf->device_lock, flags);
971 	bio_list_merge(&conf->pending_bio_list, &bl);
972 	blk_plug_device(mddev->queue);
973 	spin_unlock_irqrestore(&conf->device_lock, flags);
974 
975 	/* In case raid10d snuck in to freeze_array */
976 	wake_up(&conf->wait_barrier);
977 
978 	if (do_sync)
979 		md_wakeup_thread(mddev->thread);
980 
981 	return 0;
982 }
983 
984 static void status(struct seq_file *seq, mddev_t *mddev)
985 {
986 	conf_t *conf = mddev->private;
987 	int i;
988 
989 	if (conf->near_copies < conf->raid_disks)
990 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
991 	if (conf->near_copies > 1)
992 		seq_printf(seq, " %d near-copies", conf->near_copies);
993 	if (conf->far_copies > 1) {
994 		if (conf->far_offset)
995 			seq_printf(seq, " %d offset-copies", conf->far_copies);
996 		else
997 			seq_printf(seq, " %d far-copies", conf->far_copies);
998 	}
999 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1000 					conf->raid_disks - mddev->degraded);
1001 	for (i = 0; i < conf->raid_disks; i++)
1002 		seq_printf(seq, "%s",
1003 			      conf->mirrors[i].rdev &&
1004 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1005 	seq_printf(seq, "]");
1006 }
1007 
1008 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1009 {
1010 	char b[BDEVNAME_SIZE];
1011 	conf_t *conf = mddev->private;
1012 
1013 	/*
1014 	 * If it is not operational, then we have already marked it as dead
1015 	 * else if it is the last working disks, ignore the error, let the
1016 	 * next level up know.
1017 	 * else mark the drive as failed
1018 	 */
1019 	if (test_bit(In_sync, &rdev->flags)
1020 	    && conf->raid_disks-mddev->degraded == 1)
1021 		/*
1022 		 * Don't fail the drive, just return an IO error.
1023 		 * The test should really be more sophisticated than
1024 		 * "working_disks == 1", but it isn't critical, and
1025 		 * can wait until we do more sophisticated "is the drive
1026 		 * really dead" tests...
1027 		 */
1028 		return;
1029 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1030 		unsigned long flags;
1031 		spin_lock_irqsave(&conf->device_lock, flags);
1032 		mddev->degraded++;
1033 		spin_unlock_irqrestore(&conf->device_lock, flags);
1034 		/*
1035 		 * if recovery is running, make sure it aborts.
1036 		 */
1037 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1038 	}
1039 	set_bit(Faulty, &rdev->flags);
1040 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1041 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1042 		"raid10: Operation continuing on %d devices.\n",
1043 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1044 }
1045 
1046 static void print_conf(conf_t *conf)
1047 {
1048 	int i;
1049 	mirror_info_t *tmp;
1050 
1051 	printk("RAID10 conf printout:\n");
1052 	if (!conf) {
1053 		printk("(!conf)\n");
1054 		return;
1055 	}
1056 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1057 		conf->raid_disks);
1058 
1059 	for (i = 0; i < conf->raid_disks; i++) {
1060 		char b[BDEVNAME_SIZE];
1061 		tmp = conf->mirrors + i;
1062 		if (tmp->rdev)
1063 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1064 				i, !test_bit(In_sync, &tmp->rdev->flags),
1065 			        !test_bit(Faulty, &tmp->rdev->flags),
1066 				bdevname(tmp->rdev->bdev,b));
1067 	}
1068 }
1069 
1070 static void close_sync(conf_t *conf)
1071 {
1072 	wait_barrier(conf);
1073 	allow_barrier(conf);
1074 
1075 	mempool_destroy(conf->r10buf_pool);
1076 	conf->r10buf_pool = NULL;
1077 }
1078 
1079 /* check if there are enough drives for
1080  * every block to appear on atleast one
1081  */
1082 static int enough(conf_t *conf)
1083 {
1084 	int first = 0;
1085 
1086 	do {
1087 		int n = conf->copies;
1088 		int cnt = 0;
1089 		while (n--) {
1090 			if (conf->mirrors[first].rdev)
1091 				cnt++;
1092 			first = (first+1) % conf->raid_disks;
1093 		}
1094 		if (cnt == 0)
1095 			return 0;
1096 	} while (first != 0);
1097 	return 1;
1098 }
1099 
1100 static int raid10_spare_active(mddev_t *mddev)
1101 {
1102 	int i;
1103 	conf_t *conf = mddev->private;
1104 	mirror_info_t *tmp;
1105 
1106 	/*
1107 	 * Find all non-in_sync disks within the RAID10 configuration
1108 	 * and mark them in_sync
1109 	 */
1110 	for (i = 0; i < conf->raid_disks; i++) {
1111 		tmp = conf->mirrors + i;
1112 		if (tmp->rdev
1113 		    && !test_bit(Faulty, &tmp->rdev->flags)
1114 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1115 			unsigned long flags;
1116 			spin_lock_irqsave(&conf->device_lock, flags);
1117 			mddev->degraded--;
1118 			spin_unlock_irqrestore(&conf->device_lock, flags);
1119 		}
1120 	}
1121 
1122 	print_conf(conf);
1123 	return 0;
1124 }
1125 
1126 
1127 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1128 {
1129 	conf_t *conf = mddev->private;
1130 	int err = -EEXIST;
1131 	int mirror;
1132 	mirror_info_t *p;
1133 	int first = 0;
1134 	int last = mddev->raid_disks - 1;
1135 
1136 	if (mddev->recovery_cp < MaxSector)
1137 		/* only hot-add to in-sync arrays, as recovery is
1138 		 * very different from resync
1139 		 */
1140 		return -EBUSY;
1141 	if (!enough(conf))
1142 		return -EINVAL;
1143 
1144 	if (rdev->raid_disk >= 0)
1145 		first = last = rdev->raid_disk;
1146 
1147 	if (rdev->saved_raid_disk >= 0 &&
1148 	    rdev->saved_raid_disk >= first &&
1149 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1150 		mirror = rdev->saved_raid_disk;
1151 	else
1152 		mirror = first;
1153 	for ( ; mirror <= last ; mirror++)
1154 		if ( !(p=conf->mirrors+mirror)->rdev) {
1155 
1156 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1157 					  rdev->data_offset << 9);
1158 			/* as we don't honour merge_bvec_fn, we must never risk
1159 			 * violating it, so limit ->max_sector to one PAGE, as
1160 			 * a one page request is never in violation.
1161 			 */
1162 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1163 			    queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
1164 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1165 
1166 			p->head_position = 0;
1167 			rdev->raid_disk = mirror;
1168 			err = 0;
1169 			if (rdev->saved_raid_disk != mirror)
1170 				conf->fullsync = 1;
1171 			rcu_assign_pointer(p->rdev, rdev);
1172 			break;
1173 		}
1174 
1175 	md_integrity_add_rdev(rdev, mddev);
1176 	print_conf(conf);
1177 	return err;
1178 }
1179 
1180 static int raid10_remove_disk(mddev_t *mddev, int number)
1181 {
1182 	conf_t *conf = mddev->private;
1183 	int err = 0;
1184 	mdk_rdev_t *rdev;
1185 	mirror_info_t *p = conf->mirrors+ number;
1186 
1187 	print_conf(conf);
1188 	rdev = p->rdev;
1189 	if (rdev) {
1190 		if (test_bit(In_sync, &rdev->flags) ||
1191 		    atomic_read(&rdev->nr_pending)) {
1192 			err = -EBUSY;
1193 			goto abort;
1194 		}
1195 		/* Only remove faulty devices in recovery
1196 		 * is not possible.
1197 		 */
1198 		if (!test_bit(Faulty, &rdev->flags) &&
1199 		    enough(conf)) {
1200 			err = -EBUSY;
1201 			goto abort;
1202 		}
1203 		p->rdev = NULL;
1204 		synchronize_rcu();
1205 		if (atomic_read(&rdev->nr_pending)) {
1206 			/* lost the race, try later */
1207 			err = -EBUSY;
1208 			p->rdev = rdev;
1209 			goto abort;
1210 		}
1211 		md_integrity_register(mddev);
1212 	}
1213 abort:
1214 
1215 	print_conf(conf);
1216 	return err;
1217 }
1218 
1219 
1220 static void end_sync_read(struct bio *bio, int error)
1221 {
1222 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1223 	conf_t *conf = r10_bio->mddev->private;
1224 	int i,d;
1225 
1226 	for (i=0; i<conf->copies; i++)
1227 		if (r10_bio->devs[i].bio == bio)
1228 			break;
1229 	BUG_ON(i == conf->copies);
1230 	update_head_pos(i, r10_bio);
1231 	d = r10_bio->devs[i].devnum;
1232 
1233 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1234 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1235 	else {
1236 		atomic_add(r10_bio->sectors,
1237 			   &conf->mirrors[d].rdev->corrected_errors);
1238 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1239 			md_error(r10_bio->mddev,
1240 				 conf->mirrors[d].rdev);
1241 	}
1242 
1243 	/* for reconstruct, we always reschedule after a read.
1244 	 * for resync, only after all reads
1245 	 */
1246 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1247 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1248 	    atomic_dec_and_test(&r10_bio->remaining)) {
1249 		/* we have read all the blocks,
1250 		 * do the comparison in process context in raid10d
1251 		 */
1252 		reschedule_retry(r10_bio);
1253 	}
1254 }
1255 
1256 static void end_sync_write(struct bio *bio, int error)
1257 {
1258 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1259 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1260 	mddev_t *mddev = r10_bio->mddev;
1261 	conf_t *conf = mddev->private;
1262 	int i,d;
1263 
1264 	for (i = 0; i < conf->copies; i++)
1265 		if (r10_bio->devs[i].bio == bio)
1266 			break;
1267 	d = r10_bio->devs[i].devnum;
1268 
1269 	if (!uptodate)
1270 		md_error(mddev, conf->mirrors[d].rdev);
1271 
1272 	update_head_pos(i, r10_bio);
1273 
1274 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1275 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1276 		if (r10_bio->master_bio == NULL) {
1277 			/* the primary of several recovery bios */
1278 			sector_t s = r10_bio->sectors;
1279 			put_buf(r10_bio);
1280 			md_done_sync(mddev, s, 1);
1281 			break;
1282 		} else {
1283 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1284 			put_buf(r10_bio);
1285 			r10_bio = r10_bio2;
1286 		}
1287 	}
1288 }
1289 
1290 /*
1291  * Note: sync and recover and handled very differently for raid10
1292  * This code is for resync.
1293  * For resync, we read through virtual addresses and read all blocks.
1294  * If there is any error, we schedule a write.  The lowest numbered
1295  * drive is authoritative.
1296  * However requests come for physical address, so we need to map.
1297  * For every physical address there are raid_disks/copies virtual addresses,
1298  * which is always are least one, but is not necessarly an integer.
1299  * This means that a physical address can span multiple chunks, so we may
1300  * have to submit multiple io requests for a single sync request.
1301  */
1302 /*
1303  * We check if all blocks are in-sync and only write to blocks that
1304  * aren't in sync
1305  */
1306 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1307 {
1308 	conf_t *conf = mddev->private;
1309 	int i, first;
1310 	struct bio *tbio, *fbio;
1311 
1312 	atomic_set(&r10_bio->remaining, 1);
1313 
1314 	/* find the first device with a block */
1315 	for (i=0; i<conf->copies; i++)
1316 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1317 			break;
1318 
1319 	if (i == conf->copies)
1320 		goto done;
1321 
1322 	first = i;
1323 	fbio = r10_bio->devs[i].bio;
1324 
1325 	/* now find blocks with errors */
1326 	for (i=0 ; i < conf->copies ; i++) {
1327 		int  j, d;
1328 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1329 
1330 		tbio = r10_bio->devs[i].bio;
1331 
1332 		if (tbio->bi_end_io != end_sync_read)
1333 			continue;
1334 		if (i == first)
1335 			continue;
1336 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1337 			/* We know that the bi_io_vec layout is the same for
1338 			 * both 'first' and 'i', so we just compare them.
1339 			 * All vec entries are PAGE_SIZE;
1340 			 */
1341 			for (j = 0; j < vcnt; j++)
1342 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1343 					   page_address(tbio->bi_io_vec[j].bv_page),
1344 					   PAGE_SIZE))
1345 					break;
1346 			if (j == vcnt)
1347 				continue;
1348 			mddev->resync_mismatches += r10_bio->sectors;
1349 		}
1350 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1351 			/* Don't fix anything. */
1352 			continue;
1353 		/* Ok, we need to write this bio
1354 		 * First we need to fixup bv_offset, bv_len and
1355 		 * bi_vecs, as the read request might have corrupted these
1356 		 */
1357 		tbio->bi_vcnt = vcnt;
1358 		tbio->bi_size = r10_bio->sectors << 9;
1359 		tbio->bi_idx = 0;
1360 		tbio->bi_phys_segments = 0;
1361 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1362 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1363 		tbio->bi_next = NULL;
1364 		tbio->bi_rw = WRITE;
1365 		tbio->bi_private = r10_bio;
1366 		tbio->bi_sector = r10_bio->devs[i].addr;
1367 
1368 		for (j=0; j < vcnt ; j++) {
1369 			tbio->bi_io_vec[j].bv_offset = 0;
1370 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1371 
1372 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1373 			       page_address(fbio->bi_io_vec[j].bv_page),
1374 			       PAGE_SIZE);
1375 		}
1376 		tbio->bi_end_io = end_sync_write;
1377 
1378 		d = r10_bio->devs[i].devnum;
1379 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1380 		atomic_inc(&r10_bio->remaining);
1381 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1382 
1383 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1384 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1385 		generic_make_request(tbio);
1386 	}
1387 
1388 done:
1389 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1390 		md_done_sync(mddev, r10_bio->sectors, 1);
1391 		put_buf(r10_bio);
1392 	}
1393 }
1394 
1395 /*
1396  * Now for the recovery code.
1397  * Recovery happens across physical sectors.
1398  * We recover all non-is_sync drives by finding the virtual address of
1399  * each, and then choose a working drive that also has that virt address.
1400  * There is a separate r10_bio for each non-in_sync drive.
1401  * Only the first two slots are in use. The first for reading,
1402  * The second for writing.
1403  *
1404  */
1405 
1406 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1407 {
1408 	conf_t *conf = mddev->private;
1409 	int i, d;
1410 	struct bio *bio, *wbio;
1411 
1412 
1413 	/* move the pages across to the second bio
1414 	 * and submit the write request
1415 	 */
1416 	bio = r10_bio->devs[0].bio;
1417 	wbio = r10_bio->devs[1].bio;
1418 	for (i=0; i < wbio->bi_vcnt; i++) {
1419 		struct page *p = bio->bi_io_vec[i].bv_page;
1420 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1421 		wbio->bi_io_vec[i].bv_page = p;
1422 	}
1423 	d = r10_bio->devs[1].devnum;
1424 
1425 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1426 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1427 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1428 		generic_make_request(wbio);
1429 	else
1430 		bio_endio(wbio, -EIO);
1431 }
1432 
1433 
1434 /*
1435  * This is a kernel thread which:
1436  *
1437  *	1.	Retries failed read operations on working mirrors.
1438  *	2.	Updates the raid superblock when problems encounter.
1439  *	3.	Performs writes following reads for array synchronising.
1440  */
1441 
1442 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1443 {
1444 	int sect = 0; /* Offset from r10_bio->sector */
1445 	int sectors = r10_bio->sectors;
1446 	mdk_rdev_t*rdev;
1447 	while(sectors) {
1448 		int s = sectors;
1449 		int sl = r10_bio->read_slot;
1450 		int success = 0;
1451 		int start;
1452 
1453 		if (s > (PAGE_SIZE>>9))
1454 			s = PAGE_SIZE >> 9;
1455 
1456 		rcu_read_lock();
1457 		do {
1458 			int d = r10_bio->devs[sl].devnum;
1459 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1460 			if (rdev &&
1461 			    test_bit(In_sync, &rdev->flags)) {
1462 				atomic_inc(&rdev->nr_pending);
1463 				rcu_read_unlock();
1464 				success = sync_page_io(rdev->bdev,
1465 						       r10_bio->devs[sl].addr +
1466 						       sect + rdev->data_offset,
1467 						       s<<9,
1468 						       conf->tmppage, READ);
1469 				rdev_dec_pending(rdev, mddev);
1470 				rcu_read_lock();
1471 				if (success)
1472 					break;
1473 			}
1474 			sl++;
1475 			if (sl == conf->copies)
1476 				sl = 0;
1477 		} while (!success && sl != r10_bio->read_slot);
1478 		rcu_read_unlock();
1479 
1480 		if (!success) {
1481 			/* Cannot read from anywhere -- bye bye array */
1482 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1483 			md_error(mddev, conf->mirrors[dn].rdev);
1484 			break;
1485 		}
1486 
1487 		start = sl;
1488 		/* write it back and re-read */
1489 		rcu_read_lock();
1490 		while (sl != r10_bio->read_slot) {
1491 			int d;
1492 			if (sl==0)
1493 				sl = conf->copies;
1494 			sl--;
1495 			d = r10_bio->devs[sl].devnum;
1496 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1497 			if (rdev &&
1498 			    test_bit(In_sync, &rdev->flags)) {
1499 				atomic_inc(&rdev->nr_pending);
1500 				rcu_read_unlock();
1501 				atomic_add(s, &rdev->corrected_errors);
1502 				if (sync_page_io(rdev->bdev,
1503 						 r10_bio->devs[sl].addr +
1504 						 sect + rdev->data_offset,
1505 						 s<<9, conf->tmppage, WRITE)
1506 				    == 0)
1507 					/* Well, this device is dead */
1508 					md_error(mddev, rdev);
1509 				rdev_dec_pending(rdev, mddev);
1510 				rcu_read_lock();
1511 			}
1512 		}
1513 		sl = start;
1514 		while (sl != r10_bio->read_slot) {
1515 			int d;
1516 			if (sl==0)
1517 				sl = conf->copies;
1518 			sl--;
1519 			d = r10_bio->devs[sl].devnum;
1520 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1521 			if (rdev &&
1522 			    test_bit(In_sync, &rdev->flags)) {
1523 				char b[BDEVNAME_SIZE];
1524 				atomic_inc(&rdev->nr_pending);
1525 				rcu_read_unlock();
1526 				if (sync_page_io(rdev->bdev,
1527 						 r10_bio->devs[sl].addr +
1528 						 sect + rdev->data_offset,
1529 						 s<<9, conf->tmppage, READ) == 0)
1530 					/* Well, this device is dead */
1531 					md_error(mddev, rdev);
1532 				else
1533 					printk(KERN_INFO
1534 					       "raid10:%s: read error corrected"
1535 					       " (%d sectors at %llu on %s)\n",
1536 					       mdname(mddev), s,
1537 					       (unsigned long long)(sect+
1538 					            rdev->data_offset),
1539 					       bdevname(rdev->bdev, b));
1540 
1541 				rdev_dec_pending(rdev, mddev);
1542 				rcu_read_lock();
1543 			}
1544 		}
1545 		rcu_read_unlock();
1546 
1547 		sectors -= s;
1548 		sect += s;
1549 	}
1550 }
1551 
1552 static void raid10d(mddev_t *mddev)
1553 {
1554 	r10bio_t *r10_bio;
1555 	struct bio *bio;
1556 	unsigned long flags;
1557 	conf_t *conf = mddev->private;
1558 	struct list_head *head = &conf->retry_list;
1559 	int unplug=0;
1560 	mdk_rdev_t *rdev;
1561 
1562 	md_check_recovery(mddev);
1563 
1564 	for (;;) {
1565 		char b[BDEVNAME_SIZE];
1566 
1567 		unplug += flush_pending_writes(conf);
1568 
1569 		spin_lock_irqsave(&conf->device_lock, flags);
1570 		if (list_empty(head)) {
1571 			spin_unlock_irqrestore(&conf->device_lock, flags);
1572 			break;
1573 		}
1574 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1575 		list_del(head->prev);
1576 		conf->nr_queued--;
1577 		spin_unlock_irqrestore(&conf->device_lock, flags);
1578 
1579 		mddev = r10_bio->mddev;
1580 		conf = mddev->private;
1581 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1582 			sync_request_write(mddev, r10_bio);
1583 			unplug = 1;
1584 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1585 			recovery_request_write(mddev, r10_bio);
1586 			unplug = 1;
1587 		} else {
1588 			int mirror;
1589 			/* we got a read error. Maybe the drive is bad.  Maybe just
1590 			 * the block and we can fix it.
1591 			 * We freeze all other IO, and try reading the block from
1592 			 * other devices.  When we find one, we re-write
1593 			 * and check it that fixes the read error.
1594 			 * This is all done synchronously while the array is
1595 			 * frozen.
1596 			 */
1597 			if (mddev->ro == 0) {
1598 				freeze_array(conf);
1599 				fix_read_error(conf, mddev, r10_bio);
1600 				unfreeze_array(conf);
1601 			}
1602 
1603 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1604 			r10_bio->devs[r10_bio->read_slot].bio =
1605 				mddev->ro ? IO_BLOCKED : NULL;
1606 			mirror = read_balance(conf, r10_bio);
1607 			if (mirror == -1) {
1608 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1609 				       " read error for block %llu\n",
1610 				       bdevname(bio->bi_bdev,b),
1611 				       (unsigned long long)r10_bio->sector);
1612 				raid_end_bio_io(r10_bio);
1613 				bio_put(bio);
1614 			} else {
1615 				const bool do_sync = bio_rw_flagged(r10_bio->master_bio, BIO_RW_SYNCIO);
1616 				bio_put(bio);
1617 				rdev = conf->mirrors[mirror].rdev;
1618 				if (printk_ratelimit())
1619 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1620 					       " another mirror\n",
1621 					       bdevname(rdev->bdev,b),
1622 					       (unsigned long long)r10_bio->sector);
1623 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1624 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1625 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1626 					+ rdev->data_offset;
1627 				bio->bi_bdev = rdev->bdev;
1628 				bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1629 				bio->bi_private = r10_bio;
1630 				bio->bi_end_io = raid10_end_read_request;
1631 				unplug = 1;
1632 				generic_make_request(bio);
1633 			}
1634 		}
1635 		cond_resched();
1636 	}
1637 	if (unplug)
1638 		unplug_slaves(mddev);
1639 }
1640 
1641 
1642 static int init_resync(conf_t *conf)
1643 {
1644 	int buffs;
1645 
1646 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1647 	BUG_ON(conf->r10buf_pool);
1648 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1649 	if (!conf->r10buf_pool)
1650 		return -ENOMEM;
1651 	conf->next_resync = 0;
1652 	return 0;
1653 }
1654 
1655 /*
1656  * perform a "sync" on one "block"
1657  *
1658  * We need to make sure that no normal I/O request - particularly write
1659  * requests - conflict with active sync requests.
1660  *
1661  * This is achieved by tracking pending requests and a 'barrier' concept
1662  * that can be installed to exclude normal IO requests.
1663  *
1664  * Resync and recovery are handled very differently.
1665  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1666  *
1667  * For resync, we iterate over virtual addresses, read all copies,
1668  * and update if there are differences.  If only one copy is live,
1669  * skip it.
1670  * For recovery, we iterate over physical addresses, read a good
1671  * value for each non-in_sync drive, and over-write.
1672  *
1673  * So, for recovery we may have several outstanding complex requests for a
1674  * given address, one for each out-of-sync device.  We model this by allocating
1675  * a number of r10_bio structures, one for each out-of-sync device.
1676  * As we setup these structures, we collect all bio's together into a list
1677  * which we then process collectively to add pages, and then process again
1678  * to pass to generic_make_request.
1679  *
1680  * The r10_bio structures are linked using a borrowed master_bio pointer.
1681  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1682  * has its remaining count decremented to 0, the whole complex operation
1683  * is complete.
1684  *
1685  */
1686 
1687 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1688 {
1689 	conf_t *conf = mddev->private;
1690 	r10bio_t *r10_bio;
1691 	struct bio *biolist = NULL, *bio;
1692 	sector_t max_sector, nr_sectors;
1693 	int disk;
1694 	int i;
1695 	int max_sync;
1696 	int sync_blocks;
1697 
1698 	sector_t sectors_skipped = 0;
1699 	int chunks_skipped = 0;
1700 
1701 	if (!conf->r10buf_pool)
1702 		if (init_resync(conf))
1703 			return 0;
1704 
1705  skipped:
1706 	max_sector = mddev->dev_sectors;
1707 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1708 		max_sector = mddev->resync_max_sectors;
1709 	if (sector_nr >= max_sector) {
1710 		/* If we aborted, we need to abort the
1711 		 * sync on the 'current' bitmap chucks (there can
1712 		 * be several when recovering multiple devices).
1713 		 * as we may have started syncing it but not finished.
1714 		 * We can find the current address in
1715 		 * mddev->curr_resync, but for recovery,
1716 		 * we need to convert that to several
1717 		 * virtual addresses.
1718 		 */
1719 		if (mddev->curr_resync < max_sector) { /* aborted */
1720 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1721 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1722 						&sync_blocks, 1);
1723 			else for (i=0; i<conf->raid_disks; i++) {
1724 				sector_t sect =
1725 					raid10_find_virt(conf, mddev->curr_resync, i);
1726 				bitmap_end_sync(mddev->bitmap, sect,
1727 						&sync_blocks, 1);
1728 			}
1729 		} else /* completed sync */
1730 			conf->fullsync = 0;
1731 
1732 		bitmap_close_sync(mddev->bitmap);
1733 		close_sync(conf);
1734 		*skipped = 1;
1735 		return sectors_skipped;
1736 	}
1737 	if (chunks_skipped >= conf->raid_disks) {
1738 		/* if there has been nothing to do on any drive,
1739 		 * then there is nothing to do at all..
1740 		 */
1741 		*skipped = 1;
1742 		return (max_sector - sector_nr) + sectors_skipped;
1743 	}
1744 
1745 	if (max_sector > mddev->resync_max)
1746 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1747 
1748 	/* make sure whole request will fit in a chunk - if chunks
1749 	 * are meaningful
1750 	 */
1751 	if (conf->near_copies < conf->raid_disks &&
1752 	    max_sector > (sector_nr | conf->chunk_mask))
1753 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1754 	/*
1755 	 * If there is non-resync activity waiting for us then
1756 	 * put in a delay to throttle resync.
1757 	 */
1758 	if (!go_faster && conf->nr_waiting)
1759 		msleep_interruptible(1000);
1760 
1761 	/* Again, very different code for resync and recovery.
1762 	 * Both must result in an r10bio with a list of bios that
1763 	 * have bi_end_io, bi_sector, bi_bdev set,
1764 	 * and bi_private set to the r10bio.
1765 	 * For recovery, we may actually create several r10bios
1766 	 * with 2 bios in each, that correspond to the bios in the main one.
1767 	 * In this case, the subordinate r10bios link back through a
1768 	 * borrowed master_bio pointer, and the counter in the master
1769 	 * includes a ref from each subordinate.
1770 	 */
1771 	/* First, we decide what to do and set ->bi_end_io
1772 	 * To end_sync_read if we want to read, and
1773 	 * end_sync_write if we will want to write.
1774 	 */
1775 
1776 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1777 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1778 		/* recovery... the complicated one */
1779 		int j, k;
1780 		r10_bio = NULL;
1781 
1782 		for (i=0 ; i<conf->raid_disks; i++)
1783 			if (conf->mirrors[i].rdev &&
1784 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1785 				int still_degraded = 0;
1786 				/* want to reconstruct this device */
1787 				r10bio_t *rb2 = r10_bio;
1788 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1789 				int must_sync;
1790 				/* Unless we are doing a full sync, we only need
1791 				 * to recover the block if it is set in the bitmap
1792 				 */
1793 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1794 							      &sync_blocks, 1);
1795 				if (sync_blocks < max_sync)
1796 					max_sync = sync_blocks;
1797 				if (!must_sync &&
1798 				    !conf->fullsync) {
1799 					/* yep, skip the sync_blocks here, but don't assume
1800 					 * that there will never be anything to do here
1801 					 */
1802 					chunks_skipped = -1;
1803 					continue;
1804 				}
1805 
1806 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1807 				raise_barrier(conf, rb2 != NULL);
1808 				atomic_set(&r10_bio->remaining, 0);
1809 
1810 				r10_bio->master_bio = (struct bio*)rb2;
1811 				if (rb2)
1812 					atomic_inc(&rb2->remaining);
1813 				r10_bio->mddev = mddev;
1814 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1815 				r10_bio->sector = sect;
1816 
1817 				raid10_find_phys(conf, r10_bio);
1818 
1819 				/* Need to check if the array will still be
1820 				 * degraded
1821 				 */
1822 				for (j=0; j<conf->raid_disks; j++)
1823 					if (conf->mirrors[j].rdev == NULL ||
1824 					    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1825 						still_degraded = 1;
1826 						break;
1827 					}
1828 
1829 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1830 							      &sync_blocks, still_degraded);
1831 
1832 				for (j=0; j<conf->copies;j++) {
1833 					int d = r10_bio->devs[j].devnum;
1834 					if (conf->mirrors[d].rdev &&
1835 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1836 						/* This is where we read from */
1837 						bio = r10_bio->devs[0].bio;
1838 						bio->bi_next = biolist;
1839 						biolist = bio;
1840 						bio->bi_private = r10_bio;
1841 						bio->bi_end_io = end_sync_read;
1842 						bio->bi_rw = READ;
1843 						bio->bi_sector = r10_bio->devs[j].addr +
1844 							conf->mirrors[d].rdev->data_offset;
1845 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1846 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1847 						atomic_inc(&r10_bio->remaining);
1848 						/* and we write to 'i' */
1849 
1850 						for (k=0; k<conf->copies; k++)
1851 							if (r10_bio->devs[k].devnum == i)
1852 								break;
1853 						BUG_ON(k == conf->copies);
1854 						bio = r10_bio->devs[1].bio;
1855 						bio->bi_next = biolist;
1856 						biolist = bio;
1857 						bio->bi_private = r10_bio;
1858 						bio->bi_end_io = end_sync_write;
1859 						bio->bi_rw = WRITE;
1860 						bio->bi_sector = r10_bio->devs[k].addr +
1861 							conf->mirrors[i].rdev->data_offset;
1862 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1863 
1864 						r10_bio->devs[0].devnum = d;
1865 						r10_bio->devs[1].devnum = i;
1866 
1867 						break;
1868 					}
1869 				}
1870 				if (j == conf->copies) {
1871 					/* Cannot recover, so abort the recovery */
1872 					put_buf(r10_bio);
1873 					if (rb2)
1874 						atomic_dec(&rb2->remaining);
1875 					r10_bio = rb2;
1876 					if (!test_and_set_bit(MD_RECOVERY_INTR,
1877 							      &mddev->recovery))
1878 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1879 						       mdname(mddev));
1880 					break;
1881 				}
1882 			}
1883 		if (biolist == NULL) {
1884 			while (r10_bio) {
1885 				r10bio_t *rb2 = r10_bio;
1886 				r10_bio = (r10bio_t*) rb2->master_bio;
1887 				rb2->master_bio = NULL;
1888 				put_buf(rb2);
1889 			}
1890 			goto giveup;
1891 		}
1892 	} else {
1893 		/* resync. Schedule a read for every block at this virt offset */
1894 		int count = 0;
1895 
1896 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1897 
1898 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1899 				       &sync_blocks, mddev->degraded) &&
1900 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1901 			/* We can skip this block */
1902 			*skipped = 1;
1903 			return sync_blocks + sectors_skipped;
1904 		}
1905 		if (sync_blocks < max_sync)
1906 			max_sync = sync_blocks;
1907 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1908 
1909 		r10_bio->mddev = mddev;
1910 		atomic_set(&r10_bio->remaining, 0);
1911 		raise_barrier(conf, 0);
1912 		conf->next_resync = sector_nr;
1913 
1914 		r10_bio->master_bio = NULL;
1915 		r10_bio->sector = sector_nr;
1916 		set_bit(R10BIO_IsSync, &r10_bio->state);
1917 		raid10_find_phys(conf, r10_bio);
1918 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1919 
1920 		for (i=0; i<conf->copies; i++) {
1921 			int d = r10_bio->devs[i].devnum;
1922 			bio = r10_bio->devs[i].bio;
1923 			bio->bi_end_io = NULL;
1924 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1925 			if (conf->mirrors[d].rdev == NULL ||
1926 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1927 				continue;
1928 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1929 			atomic_inc(&r10_bio->remaining);
1930 			bio->bi_next = biolist;
1931 			biolist = bio;
1932 			bio->bi_private = r10_bio;
1933 			bio->bi_end_io = end_sync_read;
1934 			bio->bi_rw = READ;
1935 			bio->bi_sector = r10_bio->devs[i].addr +
1936 				conf->mirrors[d].rdev->data_offset;
1937 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1938 			count++;
1939 		}
1940 
1941 		if (count < 2) {
1942 			for (i=0; i<conf->copies; i++) {
1943 				int d = r10_bio->devs[i].devnum;
1944 				if (r10_bio->devs[i].bio->bi_end_io)
1945 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1946 			}
1947 			put_buf(r10_bio);
1948 			biolist = NULL;
1949 			goto giveup;
1950 		}
1951 	}
1952 
1953 	for (bio = biolist; bio ; bio=bio->bi_next) {
1954 
1955 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1956 		if (bio->bi_end_io)
1957 			bio->bi_flags |= 1 << BIO_UPTODATE;
1958 		bio->bi_vcnt = 0;
1959 		bio->bi_idx = 0;
1960 		bio->bi_phys_segments = 0;
1961 		bio->bi_size = 0;
1962 	}
1963 
1964 	nr_sectors = 0;
1965 	if (sector_nr + max_sync < max_sector)
1966 		max_sector = sector_nr + max_sync;
1967 	do {
1968 		struct page *page;
1969 		int len = PAGE_SIZE;
1970 		disk = 0;
1971 		if (sector_nr + (len>>9) > max_sector)
1972 			len = (max_sector - sector_nr) << 9;
1973 		if (len == 0)
1974 			break;
1975 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1976 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1977 			if (bio_add_page(bio, page, len, 0) == 0) {
1978 				/* stop here */
1979 				struct bio *bio2;
1980 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1981 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1982 					/* remove last page from this bio */
1983 					bio2->bi_vcnt--;
1984 					bio2->bi_size -= len;
1985 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1986 				}
1987 				goto bio_full;
1988 			}
1989 			disk = i;
1990 		}
1991 		nr_sectors += len>>9;
1992 		sector_nr += len>>9;
1993 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1994  bio_full:
1995 	r10_bio->sectors = nr_sectors;
1996 
1997 	while (biolist) {
1998 		bio = biolist;
1999 		biolist = biolist->bi_next;
2000 
2001 		bio->bi_next = NULL;
2002 		r10_bio = bio->bi_private;
2003 		r10_bio->sectors = nr_sectors;
2004 
2005 		if (bio->bi_end_io == end_sync_read) {
2006 			md_sync_acct(bio->bi_bdev, nr_sectors);
2007 			generic_make_request(bio);
2008 		}
2009 	}
2010 
2011 	if (sectors_skipped)
2012 		/* pretend they weren't skipped, it makes
2013 		 * no important difference in this case
2014 		 */
2015 		md_done_sync(mddev, sectors_skipped, 1);
2016 
2017 	return sectors_skipped + nr_sectors;
2018  giveup:
2019 	/* There is nowhere to write, so all non-sync
2020 	 * drives must be failed, so try the next chunk...
2021 	 */
2022 	if (sector_nr + max_sync < max_sector)
2023 		max_sector = sector_nr + max_sync;
2024 
2025 	sectors_skipped += (max_sector - sector_nr);
2026 	chunks_skipped ++;
2027 	sector_nr = max_sector;
2028 	goto skipped;
2029 }
2030 
2031 static sector_t
2032 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2033 {
2034 	sector_t size;
2035 	conf_t *conf = mddev->private;
2036 
2037 	if (!raid_disks)
2038 		raid_disks = mddev->raid_disks;
2039 	if (!sectors)
2040 		sectors = mddev->dev_sectors;
2041 
2042 	size = sectors >> conf->chunk_shift;
2043 	sector_div(size, conf->far_copies);
2044 	size = size * raid_disks;
2045 	sector_div(size, conf->near_copies);
2046 
2047 	return size << conf->chunk_shift;
2048 }
2049 
2050 static int run(mddev_t *mddev)
2051 {
2052 	conf_t *conf;
2053 	int i, disk_idx, chunk_size;
2054 	mirror_info_t *disk;
2055 	mdk_rdev_t *rdev;
2056 	int nc, fc, fo;
2057 	sector_t stride, size;
2058 
2059 	if (mddev->chunk_sectors < (PAGE_SIZE >> 9) ||
2060 	    !is_power_of_2(mddev->chunk_sectors)) {
2061 		printk(KERN_ERR "md/raid10: chunk size must be "
2062 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n", PAGE_SIZE);
2063 		return -EINVAL;
2064 	}
2065 
2066 	nc = mddev->layout & 255;
2067 	fc = (mddev->layout >> 8) & 255;
2068 	fo = mddev->layout & (1<<16);
2069 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2070 	    (mddev->layout >> 17)) {
2071 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2072 		       mdname(mddev), mddev->layout);
2073 		goto out;
2074 	}
2075 	/*
2076 	 * copy the already verified devices into our private RAID10
2077 	 * bookkeeping area. [whatever we allocate in run(),
2078 	 * should be freed in stop()]
2079 	 */
2080 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2081 	mddev->private = conf;
2082 	if (!conf) {
2083 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2084 			mdname(mddev));
2085 		goto out;
2086 	}
2087 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2088 				 GFP_KERNEL);
2089 	if (!conf->mirrors) {
2090 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2091 		       mdname(mddev));
2092 		goto out_free_conf;
2093 	}
2094 
2095 	conf->tmppage = alloc_page(GFP_KERNEL);
2096 	if (!conf->tmppage)
2097 		goto out_free_conf;
2098 
2099 	conf->raid_disks = mddev->raid_disks;
2100 	conf->near_copies = nc;
2101 	conf->far_copies = fc;
2102 	conf->copies = nc*fc;
2103 	conf->far_offset = fo;
2104 	conf->chunk_mask = mddev->chunk_sectors - 1;
2105 	conf->chunk_shift = ffz(~mddev->chunk_sectors);
2106 	size = mddev->dev_sectors >> conf->chunk_shift;
2107 	sector_div(size, fc);
2108 	size = size * conf->raid_disks;
2109 	sector_div(size, nc);
2110 	/* 'size' is now the number of chunks in the array */
2111 	/* calculate "used chunks per device" in 'stride' */
2112 	stride = size * conf->copies;
2113 
2114 	/* We need to round up when dividing by raid_disks to
2115 	 * get the stride size.
2116 	 */
2117 	stride += conf->raid_disks - 1;
2118 	sector_div(stride, conf->raid_disks);
2119 	mddev->dev_sectors = stride << conf->chunk_shift;
2120 
2121 	if (fo)
2122 		stride = 1;
2123 	else
2124 		sector_div(stride, fc);
2125 	conf->stride = stride << conf->chunk_shift;
2126 
2127 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2128 						r10bio_pool_free, conf);
2129 	if (!conf->r10bio_pool) {
2130 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2131 			mdname(mddev));
2132 		goto out_free_conf;
2133 	}
2134 
2135 	conf->mddev = mddev;
2136 	spin_lock_init(&conf->device_lock);
2137 	mddev->queue->queue_lock = &conf->device_lock;
2138 
2139 	chunk_size = mddev->chunk_sectors << 9;
2140 	blk_queue_io_min(mddev->queue, chunk_size);
2141 	if (conf->raid_disks % conf->near_copies)
2142 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2143 	else
2144 		blk_queue_io_opt(mddev->queue, chunk_size *
2145 				 (conf->raid_disks / conf->near_copies));
2146 
2147 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2148 		disk_idx = rdev->raid_disk;
2149 		if (disk_idx >= mddev->raid_disks
2150 		    || disk_idx < 0)
2151 			continue;
2152 		disk = conf->mirrors + disk_idx;
2153 
2154 		disk->rdev = rdev;
2155 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2156 				  rdev->data_offset << 9);
2157 		/* as we don't honour merge_bvec_fn, we must never risk
2158 		 * violating it, so limit ->max_sector to one PAGE, as
2159 		 * a one page request is never in violation.
2160 		 */
2161 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2162 		    queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
2163 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
2164 
2165 		disk->head_position = 0;
2166 	}
2167 	INIT_LIST_HEAD(&conf->retry_list);
2168 
2169 	spin_lock_init(&conf->resync_lock);
2170 	init_waitqueue_head(&conf->wait_barrier);
2171 
2172 	/* need to check that every block has at least one working mirror */
2173 	if (!enough(conf)) {
2174 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2175 		       mdname(mddev));
2176 		goto out_free_conf;
2177 	}
2178 
2179 	mddev->degraded = 0;
2180 	for (i = 0; i < conf->raid_disks; i++) {
2181 
2182 		disk = conf->mirrors + i;
2183 
2184 		if (!disk->rdev ||
2185 		    !test_bit(In_sync, &disk->rdev->flags)) {
2186 			disk->head_position = 0;
2187 			mddev->degraded++;
2188 			if (disk->rdev)
2189 				conf->fullsync = 1;
2190 		}
2191 	}
2192 
2193 
2194 	mddev->thread = md_register_thread(raid10d, mddev, NULL);
2195 	if (!mddev->thread) {
2196 		printk(KERN_ERR
2197 		       "raid10: couldn't allocate thread for %s\n",
2198 		       mdname(mddev));
2199 		goto out_free_conf;
2200 	}
2201 
2202 	if (mddev->recovery_cp != MaxSector)
2203 		printk(KERN_NOTICE "raid10: %s is not clean"
2204 		       " -- starting background reconstruction\n",
2205 		       mdname(mddev));
2206 	printk(KERN_INFO
2207 		"raid10: raid set %s active with %d out of %d devices\n",
2208 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2209 		mddev->raid_disks);
2210 	/*
2211 	 * Ok, everything is just fine now
2212 	 */
2213 	md_set_array_sectors(mddev, raid10_size(mddev, 0, 0));
2214 	mddev->resync_max_sectors = raid10_size(mddev, 0, 0);
2215 
2216 	mddev->queue->unplug_fn = raid10_unplug;
2217 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2218 	mddev->queue->backing_dev_info.congested_data = mddev;
2219 
2220 	/* Calculate max read-ahead size.
2221 	 * We need to readahead at least twice a whole stripe....
2222 	 * maybe...
2223 	 */
2224 	{
2225 		int stripe = conf->raid_disks *
2226 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
2227 		stripe /= conf->near_copies;
2228 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2229 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2230 	}
2231 
2232 	if (conf->near_copies < mddev->raid_disks)
2233 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2234 	md_integrity_register(mddev);
2235 	return 0;
2236 
2237 out_free_conf:
2238 	if (conf->r10bio_pool)
2239 		mempool_destroy(conf->r10bio_pool);
2240 	safe_put_page(conf->tmppage);
2241 	kfree(conf->mirrors);
2242 	kfree(conf);
2243 	mddev->private = NULL;
2244 out:
2245 	return -EIO;
2246 }
2247 
2248 static int stop(mddev_t *mddev)
2249 {
2250 	conf_t *conf = mddev->private;
2251 
2252 	raise_barrier(conf, 0);
2253 	lower_barrier(conf);
2254 
2255 	md_unregister_thread(mddev->thread);
2256 	mddev->thread = NULL;
2257 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2258 	if (conf->r10bio_pool)
2259 		mempool_destroy(conf->r10bio_pool);
2260 	kfree(conf->mirrors);
2261 	kfree(conf);
2262 	mddev->private = NULL;
2263 	return 0;
2264 }
2265 
2266 static void raid10_quiesce(mddev_t *mddev, int state)
2267 {
2268 	conf_t *conf = mddev->private;
2269 
2270 	switch(state) {
2271 	case 1:
2272 		raise_barrier(conf, 0);
2273 		break;
2274 	case 0:
2275 		lower_barrier(conf);
2276 		break;
2277 	}
2278 	if (mddev->thread) {
2279 		if (mddev->bitmap)
2280 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2281 		else
2282 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2283 		md_wakeup_thread(mddev->thread);
2284 	}
2285 }
2286 
2287 static struct mdk_personality raid10_personality =
2288 {
2289 	.name		= "raid10",
2290 	.level		= 10,
2291 	.owner		= THIS_MODULE,
2292 	.make_request	= make_request,
2293 	.run		= run,
2294 	.stop		= stop,
2295 	.status		= status,
2296 	.error_handler	= error,
2297 	.hot_add_disk	= raid10_add_disk,
2298 	.hot_remove_disk= raid10_remove_disk,
2299 	.spare_active	= raid10_spare_active,
2300 	.sync_request	= sync_request,
2301 	.quiesce	= raid10_quiesce,
2302 	.size		= raid10_size,
2303 };
2304 
2305 static int __init raid_init(void)
2306 {
2307 	return register_md_personality(&raid10_personality);
2308 }
2309 
2310 static void raid_exit(void)
2311 {
2312 	unregister_md_personality(&raid10_personality);
2313 }
2314 
2315 module_init(raid_init);
2316 module_exit(raid_exit);
2317 MODULE_LICENSE("GPL");
2318 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2319 MODULE_ALIAS("md-raid10");
2320 MODULE_ALIAS("md-level-10");
2321