1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/delay.h> 22 #include <linux/blkdev.h> 23 #include <linux/seq_file.h> 24 #include "md.h" 25 #include "raid10.h" 26 #include "bitmap.h" 27 28 /* 29 * RAID10 provides a combination of RAID0 and RAID1 functionality. 30 * The layout of data is defined by 31 * chunk_size 32 * raid_disks 33 * near_copies (stored in low byte of layout) 34 * far_copies (stored in second byte of layout) 35 * far_offset (stored in bit 16 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. 38 * Each device is divided into far_copies sections. 39 * In each section, chunks are laid out in a style similar to raid0, but 40 * near_copies copies of each chunk is stored (each on a different drive). 41 * The starting device for each section is offset near_copies from the starting 42 * device of the previous section. 43 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 44 * drive. 45 * near_copies and far_copies must be at least one, and their product is at most 46 * raid_disks. 47 * 48 * If far_offset is true, then the far_copies are handled a bit differently. 49 * The copies are still in different stripes, but instead of be very far apart 50 * on disk, there are adjacent stripes. 51 */ 52 53 /* 54 * Number of guaranteed r10bios in case of extreme VM load: 55 */ 56 #define NR_RAID10_BIOS 256 57 58 static void unplug_slaves(mddev_t *mddev); 59 60 static void allow_barrier(conf_t *conf); 61 static void lower_barrier(conf_t *conf); 62 63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 64 { 65 conf_t *conf = data; 66 r10bio_t *r10_bio; 67 int size = offsetof(struct r10bio_s, devs[conf->copies]); 68 69 /* allocate a r10bio with room for raid_disks entries in the bios array */ 70 r10_bio = kzalloc(size, gfp_flags); 71 if (!r10_bio && conf->mddev) 72 unplug_slaves(conf->mddev); 73 74 return r10_bio; 75 } 76 77 static void r10bio_pool_free(void *r10_bio, void *data) 78 { 79 kfree(r10_bio); 80 } 81 82 /* Maximum size of each resync request */ 83 #define RESYNC_BLOCK_SIZE (64*1024) 84 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 85 /* amount of memory to reserve for resync requests */ 86 #define RESYNC_WINDOW (1024*1024) 87 /* maximum number of concurrent requests, memory permitting */ 88 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 89 90 /* 91 * When performing a resync, we need to read and compare, so 92 * we need as many pages are there are copies. 93 * When performing a recovery, we need 2 bios, one for read, 94 * one for write (we recover only one drive per r10buf) 95 * 96 */ 97 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 98 { 99 conf_t *conf = data; 100 struct page *page; 101 r10bio_t *r10_bio; 102 struct bio *bio; 103 int i, j; 104 int nalloc; 105 106 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 107 if (!r10_bio) { 108 unplug_slaves(conf->mddev); 109 return NULL; 110 } 111 112 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 113 nalloc = conf->copies; /* resync */ 114 else 115 nalloc = 2; /* recovery */ 116 117 /* 118 * Allocate bios. 119 */ 120 for (j = nalloc ; j-- ; ) { 121 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 122 if (!bio) 123 goto out_free_bio; 124 r10_bio->devs[j].bio = bio; 125 } 126 /* 127 * Allocate RESYNC_PAGES data pages and attach them 128 * where needed. 129 */ 130 for (j = 0 ; j < nalloc; j++) { 131 bio = r10_bio->devs[j].bio; 132 for (i = 0; i < RESYNC_PAGES; i++) { 133 page = alloc_page(gfp_flags); 134 if (unlikely(!page)) 135 goto out_free_pages; 136 137 bio->bi_io_vec[i].bv_page = page; 138 } 139 } 140 141 return r10_bio; 142 143 out_free_pages: 144 for ( ; i > 0 ; i--) 145 safe_put_page(bio->bi_io_vec[i-1].bv_page); 146 while (j--) 147 for (i = 0; i < RESYNC_PAGES ; i++) 148 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 149 j = -1; 150 out_free_bio: 151 while ( ++j < nalloc ) 152 bio_put(r10_bio->devs[j].bio); 153 r10bio_pool_free(r10_bio, conf); 154 return NULL; 155 } 156 157 static void r10buf_pool_free(void *__r10_bio, void *data) 158 { 159 int i; 160 conf_t *conf = data; 161 r10bio_t *r10bio = __r10_bio; 162 int j; 163 164 for (j=0; j < conf->copies; j++) { 165 struct bio *bio = r10bio->devs[j].bio; 166 if (bio) { 167 for (i = 0; i < RESYNC_PAGES; i++) { 168 safe_put_page(bio->bi_io_vec[i].bv_page); 169 bio->bi_io_vec[i].bv_page = NULL; 170 } 171 bio_put(bio); 172 } 173 } 174 r10bio_pool_free(r10bio, conf); 175 } 176 177 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 178 { 179 int i; 180 181 for (i = 0; i < conf->copies; i++) { 182 struct bio **bio = & r10_bio->devs[i].bio; 183 if (*bio && *bio != IO_BLOCKED) 184 bio_put(*bio); 185 *bio = NULL; 186 } 187 } 188 189 static void free_r10bio(r10bio_t *r10_bio) 190 { 191 conf_t *conf = r10_bio->mddev->private; 192 193 /* 194 * Wake up any possible resync thread that waits for the device 195 * to go idle. 196 */ 197 allow_barrier(conf); 198 199 put_all_bios(conf, r10_bio); 200 mempool_free(r10_bio, conf->r10bio_pool); 201 } 202 203 static void put_buf(r10bio_t *r10_bio) 204 { 205 conf_t *conf = r10_bio->mddev->private; 206 207 mempool_free(r10_bio, conf->r10buf_pool); 208 209 lower_barrier(conf); 210 } 211 212 static void reschedule_retry(r10bio_t *r10_bio) 213 { 214 unsigned long flags; 215 mddev_t *mddev = r10_bio->mddev; 216 conf_t *conf = mddev->private; 217 218 spin_lock_irqsave(&conf->device_lock, flags); 219 list_add(&r10_bio->retry_list, &conf->retry_list); 220 conf->nr_queued ++; 221 spin_unlock_irqrestore(&conf->device_lock, flags); 222 223 /* wake up frozen array... */ 224 wake_up(&conf->wait_barrier); 225 226 md_wakeup_thread(mddev->thread); 227 } 228 229 /* 230 * raid_end_bio_io() is called when we have finished servicing a mirrored 231 * operation and are ready to return a success/failure code to the buffer 232 * cache layer. 233 */ 234 static void raid_end_bio_io(r10bio_t *r10_bio) 235 { 236 struct bio *bio = r10_bio->master_bio; 237 238 bio_endio(bio, 239 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 240 free_r10bio(r10_bio); 241 } 242 243 /* 244 * Update disk head position estimator based on IRQ completion info. 245 */ 246 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 247 { 248 conf_t *conf = r10_bio->mddev->private; 249 250 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 251 r10_bio->devs[slot].addr + (r10_bio->sectors); 252 } 253 254 static void raid10_end_read_request(struct bio *bio, int error) 255 { 256 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 257 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 258 int slot, dev; 259 conf_t *conf = r10_bio->mddev->private; 260 261 262 slot = r10_bio->read_slot; 263 dev = r10_bio->devs[slot].devnum; 264 /* 265 * this branch is our 'one mirror IO has finished' event handler: 266 */ 267 update_head_pos(slot, r10_bio); 268 269 if (uptodate) { 270 /* 271 * Set R10BIO_Uptodate in our master bio, so that 272 * we will return a good error code to the higher 273 * levels even if IO on some other mirrored buffer fails. 274 * 275 * The 'master' represents the composite IO operation to 276 * user-side. So if something waits for IO, then it will 277 * wait for the 'master' bio. 278 */ 279 set_bit(R10BIO_Uptodate, &r10_bio->state); 280 raid_end_bio_io(r10_bio); 281 } else { 282 /* 283 * oops, read error: 284 */ 285 char b[BDEVNAME_SIZE]; 286 if (printk_ratelimit()) 287 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 288 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 289 reschedule_retry(r10_bio); 290 } 291 292 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 293 } 294 295 static void raid10_end_write_request(struct bio *bio, int error) 296 { 297 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 298 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 299 int slot, dev; 300 conf_t *conf = r10_bio->mddev->private; 301 302 for (slot = 0; slot < conf->copies; slot++) 303 if (r10_bio->devs[slot].bio == bio) 304 break; 305 dev = r10_bio->devs[slot].devnum; 306 307 /* 308 * this branch is our 'one mirror IO has finished' event handler: 309 */ 310 if (!uptodate) { 311 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 312 /* an I/O failed, we can't clear the bitmap */ 313 set_bit(R10BIO_Degraded, &r10_bio->state); 314 } else 315 /* 316 * Set R10BIO_Uptodate in our master bio, so that 317 * we will return a good error code for to the higher 318 * levels even if IO on some other mirrored buffer fails. 319 * 320 * The 'master' represents the composite IO operation to 321 * user-side. So if something waits for IO, then it will 322 * wait for the 'master' bio. 323 */ 324 set_bit(R10BIO_Uptodate, &r10_bio->state); 325 326 update_head_pos(slot, r10_bio); 327 328 /* 329 * 330 * Let's see if all mirrored write operations have finished 331 * already. 332 */ 333 if (atomic_dec_and_test(&r10_bio->remaining)) { 334 /* clear the bitmap if all writes complete successfully */ 335 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 336 r10_bio->sectors, 337 !test_bit(R10BIO_Degraded, &r10_bio->state), 338 0); 339 md_write_end(r10_bio->mddev); 340 raid_end_bio_io(r10_bio); 341 } 342 343 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 344 } 345 346 347 /* 348 * RAID10 layout manager 349 * Aswell as the chunksize and raid_disks count, there are two 350 * parameters: near_copies and far_copies. 351 * near_copies * far_copies must be <= raid_disks. 352 * Normally one of these will be 1. 353 * If both are 1, we get raid0. 354 * If near_copies == raid_disks, we get raid1. 355 * 356 * Chunks are layed out in raid0 style with near_copies copies of the 357 * first chunk, followed by near_copies copies of the next chunk and 358 * so on. 359 * If far_copies > 1, then after 1/far_copies of the array has been assigned 360 * as described above, we start again with a device offset of near_copies. 361 * So we effectively have another copy of the whole array further down all 362 * the drives, but with blocks on different drives. 363 * With this layout, and block is never stored twice on the one device. 364 * 365 * raid10_find_phys finds the sector offset of a given virtual sector 366 * on each device that it is on. 367 * 368 * raid10_find_virt does the reverse mapping, from a device and a 369 * sector offset to a virtual address 370 */ 371 372 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 373 { 374 int n,f; 375 sector_t sector; 376 sector_t chunk; 377 sector_t stripe; 378 int dev; 379 380 int slot = 0; 381 382 /* now calculate first sector/dev */ 383 chunk = r10bio->sector >> conf->chunk_shift; 384 sector = r10bio->sector & conf->chunk_mask; 385 386 chunk *= conf->near_copies; 387 stripe = chunk; 388 dev = sector_div(stripe, conf->raid_disks); 389 if (conf->far_offset) 390 stripe *= conf->far_copies; 391 392 sector += stripe << conf->chunk_shift; 393 394 /* and calculate all the others */ 395 for (n=0; n < conf->near_copies; n++) { 396 int d = dev; 397 sector_t s = sector; 398 r10bio->devs[slot].addr = sector; 399 r10bio->devs[slot].devnum = d; 400 slot++; 401 402 for (f = 1; f < conf->far_copies; f++) { 403 d += conf->near_copies; 404 if (d >= conf->raid_disks) 405 d -= conf->raid_disks; 406 s += conf->stride; 407 r10bio->devs[slot].devnum = d; 408 r10bio->devs[slot].addr = s; 409 slot++; 410 } 411 dev++; 412 if (dev >= conf->raid_disks) { 413 dev = 0; 414 sector += (conf->chunk_mask + 1); 415 } 416 } 417 BUG_ON(slot != conf->copies); 418 } 419 420 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 421 { 422 sector_t offset, chunk, vchunk; 423 424 offset = sector & conf->chunk_mask; 425 if (conf->far_offset) { 426 int fc; 427 chunk = sector >> conf->chunk_shift; 428 fc = sector_div(chunk, conf->far_copies); 429 dev -= fc * conf->near_copies; 430 if (dev < 0) 431 dev += conf->raid_disks; 432 } else { 433 while (sector >= conf->stride) { 434 sector -= conf->stride; 435 if (dev < conf->near_copies) 436 dev += conf->raid_disks - conf->near_copies; 437 else 438 dev -= conf->near_copies; 439 } 440 chunk = sector >> conf->chunk_shift; 441 } 442 vchunk = chunk * conf->raid_disks + dev; 443 sector_div(vchunk, conf->near_copies); 444 return (vchunk << conf->chunk_shift) + offset; 445 } 446 447 /** 448 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 449 * @q: request queue 450 * @bvm: properties of new bio 451 * @biovec: the request that could be merged to it. 452 * 453 * Return amount of bytes we can accept at this offset 454 * If near_copies == raid_disk, there are no striping issues, 455 * but in that case, the function isn't called at all. 456 */ 457 static int raid10_mergeable_bvec(struct request_queue *q, 458 struct bvec_merge_data *bvm, 459 struct bio_vec *biovec) 460 { 461 mddev_t *mddev = q->queuedata; 462 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 463 int max; 464 unsigned int chunk_sectors = mddev->chunk_sectors; 465 unsigned int bio_sectors = bvm->bi_size >> 9; 466 467 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 468 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 469 if (max <= biovec->bv_len && bio_sectors == 0) 470 return biovec->bv_len; 471 else 472 return max; 473 } 474 475 /* 476 * This routine returns the disk from which the requested read should 477 * be done. There is a per-array 'next expected sequential IO' sector 478 * number - if this matches on the next IO then we use the last disk. 479 * There is also a per-disk 'last know head position' sector that is 480 * maintained from IRQ contexts, both the normal and the resync IO 481 * completion handlers update this position correctly. If there is no 482 * perfect sequential match then we pick the disk whose head is closest. 483 * 484 * If there are 2 mirrors in the same 2 devices, performance degrades 485 * because position is mirror, not device based. 486 * 487 * The rdev for the device selected will have nr_pending incremented. 488 */ 489 490 /* 491 * FIXME: possibly should rethink readbalancing and do it differently 492 * depending on near_copies / far_copies geometry. 493 */ 494 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 495 { 496 const unsigned long this_sector = r10_bio->sector; 497 int disk, slot, nslot; 498 const int sectors = r10_bio->sectors; 499 sector_t new_distance, current_distance; 500 mdk_rdev_t *rdev; 501 502 raid10_find_phys(conf, r10_bio); 503 rcu_read_lock(); 504 /* 505 * Check if we can balance. We can balance on the whole 506 * device if no resync is going on (recovery is ok), or below 507 * the resync window. We take the first readable disk when 508 * above the resync window. 509 */ 510 if (conf->mddev->recovery_cp < MaxSector 511 && (this_sector + sectors >= conf->next_resync)) { 512 /* make sure that disk is operational */ 513 slot = 0; 514 disk = r10_bio->devs[slot].devnum; 515 516 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 517 r10_bio->devs[slot].bio == IO_BLOCKED || 518 !test_bit(In_sync, &rdev->flags)) { 519 slot++; 520 if (slot == conf->copies) { 521 slot = 0; 522 disk = -1; 523 break; 524 } 525 disk = r10_bio->devs[slot].devnum; 526 } 527 goto rb_out; 528 } 529 530 531 /* make sure the disk is operational */ 532 slot = 0; 533 disk = r10_bio->devs[slot].devnum; 534 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 535 r10_bio->devs[slot].bio == IO_BLOCKED || 536 !test_bit(In_sync, &rdev->flags)) { 537 slot ++; 538 if (slot == conf->copies) { 539 disk = -1; 540 goto rb_out; 541 } 542 disk = r10_bio->devs[slot].devnum; 543 } 544 545 546 current_distance = abs(r10_bio->devs[slot].addr - 547 conf->mirrors[disk].head_position); 548 549 /* Find the disk whose head is closest, 550 * or - for far > 1 - find the closest to partition beginning */ 551 552 for (nslot = slot; nslot < conf->copies; nslot++) { 553 int ndisk = r10_bio->devs[nslot].devnum; 554 555 556 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 557 r10_bio->devs[nslot].bio == IO_BLOCKED || 558 !test_bit(In_sync, &rdev->flags)) 559 continue; 560 561 /* This optimisation is debatable, and completely destroys 562 * sequential read speed for 'far copies' arrays. So only 563 * keep it for 'near' arrays, and review those later. 564 */ 565 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 566 disk = ndisk; 567 slot = nslot; 568 break; 569 } 570 571 /* for far > 1 always use the lowest address */ 572 if (conf->far_copies > 1) 573 new_distance = r10_bio->devs[nslot].addr; 574 else 575 new_distance = abs(r10_bio->devs[nslot].addr - 576 conf->mirrors[ndisk].head_position); 577 if (new_distance < current_distance) { 578 current_distance = new_distance; 579 disk = ndisk; 580 slot = nslot; 581 } 582 } 583 584 rb_out: 585 r10_bio->read_slot = slot; 586 /* conf->next_seq_sect = this_sector + sectors;*/ 587 588 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 589 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 590 else 591 disk = -1; 592 rcu_read_unlock(); 593 594 return disk; 595 } 596 597 static void unplug_slaves(mddev_t *mddev) 598 { 599 conf_t *conf = mddev->private; 600 int i; 601 602 rcu_read_lock(); 603 for (i=0; i<mddev->raid_disks; i++) { 604 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 605 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 606 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 607 608 atomic_inc(&rdev->nr_pending); 609 rcu_read_unlock(); 610 611 blk_unplug(r_queue); 612 613 rdev_dec_pending(rdev, mddev); 614 rcu_read_lock(); 615 } 616 } 617 rcu_read_unlock(); 618 } 619 620 static void raid10_unplug(struct request_queue *q) 621 { 622 mddev_t *mddev = q->queuedata; 623 624 unplug_slaves(q->queuedata); 625 md_wakeup_thread(mddev->thread); 626 } 627 628 static int raid10_congested(void *data, int bits) 629 { 630 mddev_t *mddev = data; 631 conf_t *conf = mddev->private; 632 int i, ret = 0; 633 634 if (mddev_congested(mddev, bits)) 635 return 1; 636 rcu_read_lock(); 637 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 638 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 639 if (rdev && !test_bit(Faulty, &rdev->flags)) { 640 struct request_queue *q = bdev_get_queue(rdev->bdev); 641 642 ret |= bdi_congested(&q->backing_dev_info, bits); 643 } 644 } 645 rcu_read_unlock(); 646 return ret; 647 } 648 649 static int flush_pending_writes(conf_t *conf) 650 { 651 /* Any writes that have been queued but are awaiting 652 * bitmap updates get flushed here. 653 * We return 1 if any requests were actually submitted. 654 */ 655 int rv = 0; 656 657 spin_lock_irq(&conf->device_lock); 658 659 if (conf->pending_bio_list.head) { 660 struct bio *bio; 661 bio = bio_list_get(&conf->pending_bio_list); 662 blk_remove_plug(conf->mddev->queue); 663 spin_unlock_irq(&conf->device_lock); 664 /* flush any pending bitmap writes to disk 665 * before proceeding w/ I/O */ 666 bitmap_unplug(conf->mddev->bitmap); 667 668 while (bio) { /* submit pending writes */ 669 struct bio *next = bio->bi_next; 670 bio->bi_next = NULL; 671 generic_make_request(bio); 672 bio = next; 673 } 674 rv = 1; 675 } else 676 spin_unlock_irq(&conf->device_lock); 677 return rv; 678 } 679 /* Barriers.... 680 * Sometimes we need to suspend IO while we do something else, 681 * either some resync/recovery, or reconfigure the array. 682 * To do this we raise a 'barrier'. 683 * The 'barrier' is a counter that can be raised multiple times 684 * to count how many activities are happening which preclude 685 * normal IO. 686 * We can only raise the barrier if there is no pending IO. 687 * i.e. if nr_pending == 0. 688 * We choose only to raise the barrier if no-one is waiting for the 689 * barrier to go down. This means that as soon as an IO request 690 * is ready, no other operations which require a barrier will start 691 * until the IO request has had a chance. 692 * 693 * So: regular IO calls 'wait_barrier'. When that returns there 694 * is no backgroup IO happening, It must arrange to call 695 * allow_barrier when it has finished its IO. 696 * backgroup IO calls must call raise_barrier. Once that returns 697 * there is no normal IO happeing. It must arrange to call 698 * lower_barrier when the particular background IO completes. 699 */ 700 701 static void raise_barrier(conf_t *conf, int force) 702 { 703 BUG_ON(force && !conf->barrier); 704 spin_lock_irq(&conf->resync_lock); 705 706 /* Wait until no block IO is waiting (unless 'force') */ 707 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 708 conf->resync_lock, 709 raid10_unplug(conf->mddev->queue)); 710 711 /* block any new IO from starting */ 712 conf->barrier++; 713 714 /* No wait for all pending IO to complete */ 715 wait_event_lock_irq(conf->wait_barrier, 716 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 717 conf->resync_lock, 718 raid10_unplug(conf->mddev->queue)); 719 720 spin_unlock_irq(&conf->resync_lock); 721 } 722 723 static void lower_barrier(conf_t *conf) 724 { 725 unsigned long flags; 726 spin_lock_irqsave(&conf->resync_lock, flags); 727 conf->barrier--; 728 spin_unlock_irqrestore(&conf->resync_lock, flags); 729 wake_up(&conf->wait_barrier); 730 } 731 732 static void wait_barrier(conf_t *conf) 733 { 734 spin_lock_irq(&conf->resync_lock); 735 if (conf->barrier) { 736 conf->nr_waiting++; 737 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 738 conf->resync_lock, 739 raid10_unplug(conf->mddev->queue)); 740 conf->nr_waiting--; 741 } 742 conf->nr_pending++; 743 spin_unlock_irq(&conf->resync_lock); 744 } 745 746 static void allow_barrier(conf_t *conf) 747 { 748 unsigned long flags; 749 spin_lock_irqsave(&conf->resync_lock, flags); 750 conf->nr_pending--; 751 spin_unlock_irqrestore(&conf->resync_lock, flags); 752 wake_up(&conf->wait_barrier); 753 } 754 755 static void freeze_array(conf_t *conf) 756 { 757 /* stop syncio and normal IO and wait for everything to 758 * go quiet. 759 * We increment barrier and nr_waiting, and then 760 * wait until nr_pending match nr_queued+1 761 * This is called in the context of one normal IO request 762 * that has failed. Thus any sync request that might be pending 763 * will be blocked by nr_pending, and we need to wait for 764 * pending IO requests to complete or be queued for re-try. 765 * Thus the number queued (nr_queued) plus this request (1) 766 * must match the number of pending IOs (nr_pending) before 767 * we continue. 768 */ 769 spin_lock_irq(&conf->resync_lock); 770 conf->barrier++; 771 conf->nr_waiting++; 772 wait_event_lock_irq(conf->wait_barrier, 773 conf->nr_pending == conf->nr_queued+1, 774 conf->resync_lock, 775 ({ flush_pending_writes(conf); 776 raid10_unplug(conf->mddev->queue); })); 777 spin_unlock_irq(&conf->resync_lock); 778 } 779 780 static void unfreeze_array(conf_t *conf) 781 { 782 /* reverse the effect of the freeze */ 783 spin_lock_irq(&conf->resync_lock); 784 conf->barrier--; 785 conf->nr_waiting--; 786 wake_up(&conf->wait_barrier); 787 spin_unlock_irq(&conf->resync_lock); 788 } 789 790 static int make_request(struct request_queue *q, struct bio * bio) 791 { 792 mddev_t *mddev = q->queuedata; 793 conf_t *conf = mddev->private; 794 mirror_info_t *mirror; 795 r10bio_t *r10_bio; 796 struct bio *read_bio; 797 int cpu; 798 int i; 799 int chunk_sects = conf->chunk_mask + 1; 800 const int rw = bio_data_dir(bio); 801 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); 802 struct bio_list bl; 803 unsigned long flags; 804 mdk_rdev_t *blocked_rdev; 805 806 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { 807 bio_endio(bio, -EOPNOTSUPP); 808 return 0; 809 } 810 811 /* If this request crosses a chunk boundary, we need to 812 * split it. This will only happen for 1 PAGE (or less) requests. 813 */ 814 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 815 > chunk_sects && 816 conf->near_copies < conf->raid_disks)) { 817 struct bio_pair *bp; 818 /* Sanity check -- queue functions should prevent this happening */ 819 if (bio->bi_vcnt != 1 || 820 bio->bi_idx != 0) 821 goto bad_map; 822 /* This is a one page bio that upper layers 823 * refuse to split for us, so we need to split it. 824 */ 825 bp = bio_split(bio, 826 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 827 if (make_request(q, &bp->bio1)) 828 generic_make_request(&bp->bio1); 829 if (make_request(q, &bp->bio2)) 830 generic_make_request(&bp->bio2); 831 832 bio_pair_release(bp); 833 return 0; 834 bad_map: 835 printk("raid10_make_request bug: can't convert block across chunks" 836 " or bigger than %dk %llu %d\n", chunk_sects/2, 837 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 838 839 bio_io_error(bio); 840 return 0; 841 } 842 843 md_write_start(mddev, bio); 844 845 /* 846 * Register the new request and wait if the reconstruction 847 * thread has put up a bar for new requests. 848 * Continue immediately if no resync is active currently. 849 */ 850 wait_barrier(conf); 851 852 cpu = part_stat_lock(); 853 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 854 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 855 bio_sectors(bio)); 856 part_stat_unlock(); 857 858 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 859 860 r10_bio->master_bio = bio; 861 r10_bio->sectors = bio->bi_size >> 9; 862 863 r10_bio->mddev = mddev; 864 r10_bio->sector = bio->bi_sector; 865 r10_bio->state = 0; 866 867 if (rw == READ) { 868 /* 869 * read balancing logic: 870 */ 871 int disk = read_balance(conf, r10_bio); 872 int slot = r10_bio->read_slot; 873 if (disk < 0) { 874 raid_end_bio_io(r10_bio); 875 return 0; 876 } 877 mirror = conf->mirrors + disk; 878 879 read_bio = bio_clone(bio, GFP_NOIO); 880 881 r10_bio->devs[slot].bio = read_bio; 882 883 read_bio->bi_sector = r10_bio->devs[slot].addr + 884 mirror->rdev->data_offset; 885 read_bio->bi_bdev = mirror->rdev->bdev; 886 read_bio->bi_end_io = raid10_end_read_request; 887 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 888 read_bio->bi_private = r10_bio; 889 890 generic_make_request(read_bio); 891 return 0; 892 } 893 894 /* 895 * WRITE: 896 */ 897 /* first select target devices under rcu_lock and 898 * inc refcount on their rdev. Record them by setting 899 * bios[x] to bio 900 */ 901 raid10_find_phys(conf, r10_bio); 902 retry_write: 903 blocked_rdev = NULL; 904 rcu_read_lock(); 905 for (i = 0; i < conf->copies; i++) { 906 int d = r10_bio->devs[i].devnum; 907 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 908 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 909 atomic_inc(&rdev->nr_pending); 910 blocked_rdev = rdev; 911 break; 912 } 913 if (rdev && !test_bit(Faulty, &rdev->flags)) { 914 atomic_inc(&rdev->nr_pending); 915 r10_bio->devs[i].bio = bio; 916 } else { 917 r10_bio->devs[i].bio = NULL; 918 set_bit(R10BIO_Degraded, &r10_bio->state); 919 } 920 } 921 rcu_read_unlock(); 922 923 if (unlikely(blocked_rdev)) { 924 /* Have to wait for this device to get unblocked, then retry */ 925 int j; 926 int d; 927 928 for (j = 0; j < i; j++) 929 if (r10_bio->devs[j].bio) { 930 d = r10_bio->devs[j].devnum; 931 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 932 } 933 allow_barrier(conf); 934 md_wait_for_blocked_rdev(blocked_rdev, mddev); 935 wait_barrier(conf); 936 goto retry_write; 937 } 938 939 atomic_set(&r10_bio->remaining, 0); 940 941 bio_list_init(&bl); 942 for (i = 0; i < conf->copies; i++) { 943 struct bio *mbio; 944 int d = r10_bio->devs[i].devnum; 945 if (!r10_bio->devs[i].bio) 946 continue; 947 948 mbio = bio_clone(bio, GFP_NOIO); 949 r10_bio->devs[i].bio = mbio; 950 951 mbio->bi_sector = r10_bio->devs[i].addr+ 952 conf->mirrors[d].rdev->data_offset; 953 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 954 mbio->bi_end_io = raid10_end_write_request; 955 mbio->bi_rw = WRITE | (do_sync << BIO_RW_SYNCIO); 956 mbio->bi_private = r10_bio; 957 958 atomic_inc(&r10_bio->remaining); 959 bio_list_add(&bl, mbio); 960 } 961 962 if (unlikely(!atomic_read(&r10_bio->remaining))) { 963 /* the array is dead */ 964 md_write_end(mddev); 965 raid_end_bio_io(r10_bio); 966 return 0; 967 } 968 969 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 970 spin_lock_irqsave(&conf->device_lock, flags); 971 bio_list_merge(&conf->pending_bio_list, &bl); 972 blk_plug_device(mddev->queue); 973 spin_unlock_irqrestore(&conf->device_lock, flags); 974 975 /* In case raid10d snuck in to freeze_array */ 976 wake_up(&conf->wait_barrier); 977 978 if (do_sync) 979 md_wakeup_thread(mddev->thread); 980 981 return 0; 982 } 983 984 static void status(struct seq_file *seq, mddev_t *mddev) 985 { 986 conf_t *conf = mddev->private; 987 int i; 988 989 if (conf->near_copies < conf->raid_disks) 990 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 991 if (conf->near_copies > 1) 992 seq_printf(seq, " %d near-copies", conf->near_copies); 993 if (conf->far_copies > 1) { 994 if (conf->far_offset) 995 seq_printf(seq, " %d offset-copies", conf->far_copies); 996 else 997 seq_printf(seq, " %d far-copies", conf->far_copies); 998 } 999 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1000 conf->raid_disks - mddev->degraded); 1001 for (i = 0; i < conf->raid_disks; i++) 1002 seq_printf(seq, "%s", 1003 conf->mirrors[i].rdev && 1004 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1005 seq_printf(seq, "]"); 1006 } 1007 1008 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1009 { 1010 char b[BDEVNAME_SIZE]; 1011 conf_t *conf = mddev->private; 1012 1013 /* 1014 * If it is not operational, then we have already marked it as dead 1015 * else if it is the last working disks, ignore the error, let the 1016 * next level up know. 1017 * else mark the drive as failed 1018 */ 1019 if (test_bit(In_sync, &rdev->flags) 1020 && conf->raid_disks-mddev->degraded == 1) 1021 /* 1022 * Don't fail the drive, just return an IO error. 1023 * The test should really be more sophisticated than 1024 * "working_disks == 1", but it isn't critical, and 1025 * can wait until we do more sophisticated "is the drive 1026 * really dead" tests... 1027 */ 1028 return; 1029 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1030 unsigned long flags; 1031 spin_lock_irqsave(&conf->device_lock, flags); 1032 mddev->degraded++; 1033 spin_unlock_irqrestore(&conf->device_lock, flags); 1034 /* 1035 * if recovery is running, make sure it aborts. 1036 */ 1037 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1038 } 1039 set_bit(Faulty, &rdev->flags); 1040 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1041 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n" 1042 "raid10: Operation continuing on %d devices.\n", 1043 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1044 } 1045 1046 static void print_conf(conf_t *conf) 1047 { 1048 int i; 1049 mirror_info_t *tmp; 1050 1051 printk("RAID10 conf printout:\n"); 1052 if (!conf) { 1053 printk("(!conf)\n"); 1054 return; 1055 } 1056 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1057 conf->raid_disks); 1058 1059 for (i = 0; i < conf->raid_disks; i++) { 1060 char b[BDEVNAME_SIZE]; 1061 tmp = conf->mirrors + i; 1062 if (tmp->rdev) 1063 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1064 i, !test_bit(In_sync, &tmp->rdev->flags), 1065 !test_bit(Faulty, &tmp->rdev->flags), 1066 bdevname(tmp->rdev->bdev,b)); 1067 } 1068 } 1069 1070 static void close_sync(conf_t *conf) 1071 { 1072 wait_barrier(conf); 1073 allow_barrier(conf); 1074 1075 mempool_destroy(conf->r10buf_pool); 1076 conf->r10buf_pool = NULL; 1077 } 1078 1079 /* check if there are enough drives for 1080 * every block to appear on atleast one 1081 */ 1082 static int enough(conf_t *conf) 1083 { 1084 int first = 0; 1085 1086 do { 1087 int n = conf->copies; 1088 int cnt = 0; 1089 while (n--) { 1090 if (conf->mirrors[first].rdev) 1091 cnt++; 1092 first = (first+1) % conf->raid_disks; 1093 } 1094 if (cnt == 0) 1095 return 0; 1096 } while (first != 0); 1097 return 1; 1098 } 1099 1100 static int raid10_spare_active(mddev_t *mddev) 1101 { 1102 int i; 1103 conf_t *conf = mddev->private; 1104 mirror_info_t *tmp; 1105 1106 /* 1107 * Find all non-in_sync disks within the RAID10 configuration 1108 * and mark them in_sync 1109 */ 1110 for (i = 0; i < conf->raid_disks; i++) { 1111 tmp = conf->mirrors + i; 1112 if (tmp->rdev 1113 && !test_bit(Faulty, &tmp->rdev->flags) 1114 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1115 unsigned long flags; 1116 spin_lock_irqsave(&conf->device_lock, flags); 1117 mddev->degraded--; 1118 spin_unlock_irqrestore(&conf->device_lock, flags); 1119 } 1120 } 1121 1122 print_conf(conf); 1123 return 0; 1124 } 1125 1126 1127 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1128 { 1129 conf_t *conf = mddev->private; 1130 int err = -EEXIST; 1131 int mirror; 1132 mirror_info_t *p; 1133 int first = 0; 1134 int last = mddev->raid_disks - 1; 1135 1136 if (mddev->recovery_cp < MaxSector) 1137 /* only hot-add to in-sync arrays, as recovery is 1138 * very different from resync 1139 */ 1140 return -EBUSY; 1141 if (!enough(conf)) 1142 return -EINVAL; 1143 1144 if (rdev->raid_disk >= 0) 1145 first = last = rdev->raid_disk; 1146 1147 if (rdev->saved_raid_disk >= 0 && 1148 rdev->saved_raid_disk >= first && 1149 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1150 mirror = rdev->saved_raid_disk; 1151 else 1152 mirror = first; 1153 for ( ; mirror <= last ; mirror++) 1154 if ( !(p=conf->mirrors+mirror)->rdev) { 1155 1156 disk_stack_limits(mddev->gendisk, rdev->bdev, 1157 rdev->data_offset << 9); 1158 /* as we don't honour merge_bvec_fn, we must never risk 1159 * violating it, so limit ->max_sector to one PAGE, as 1160 * a one page request is never in violation. 1161 */ 1162 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1163 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9)) 1164 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1165 1166 p->head_position = 0; 1167 rdev->raid_disk = mirror; 1168 err = 0; 1169 if (rdev->saved_raid_disk != mirror) 1170 conf->fullsync = 1; 1171 rcu_assign_pointer(p->rdev, rdev); 1172 break; 1173 } 1174 1175 md_integrity_add_rdev(rdev, mddev); 1176 print_conf(conf); 1177 return err; 1178 } 1179 1180 static int raid10_remove_disk(mddev_t *mddev, int number) 1181 { 1182 conf_t *conf = mddev->private; 1183 int err = 0; 1184 mdk_rdev_t *rdev; 1185 mirror_info_t *p = conf->mirrors+ number; 1186 1187 print_conf(conf); 1188 rdev = p->rdev; 1189 if (rdev) { 1190 if (test_bit(In_sync, &rdev->flags) || 1191 atomic_read(&rdev->nr_pending)) { 1192 err = -EBUSY; 1193 goto abort; 1194 } 1195 /* Only remove faulty devices in recovery 1196 * is not possible. 1197 */ 1198 if (!test_bit(Faulty, &rdev->flags) && 1199 enough(conf)) { 1200 err = -EBUSY; 1201 goto abort; 1202 } 1203 p->rdev = NULL; 1204 synchronize_rcu(); 1205 if (atomic_read(&rdev->nr_pending)) { 1206 /* lost the race, try later */ 1207 err = -EBUSY; 1208 p->rdev = rdev; 1209 goto abort; 1210 } 1211 md_integrity_register(mddev); 1212 } 1213 abort: 1214 1215 print_conf(conf); 1216 return err; 1217 } 1218 1219 1220 static void end_sync_read(struct bio *bio, int error) 1221 { 1222 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1223 conf_t *conf = r10_bio->mddev->private; 1224 int i,d; 1225 1226 for (i=0; i<conf->copies; i++) 1227 if (r10_bio->devs[i].bio == bio) 1228 break; 1229 BUG_ON(i == conf->copies); 1230 update_head_pos(i, r10_bio); 1231 d = r10_bio->devs[i].devnum; 1232 1233 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1234 set_bit(R10BIO_Uptodate, &r10_bio->state); 1235 else { 1236 atomic_add(r10_bio->sectors, 1237 &conf->mirrors[d].rdev->corrected_errors); 1238 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1239 md_error(r10_bio->mddev, 1240 conf->mirrors[d].rdev); 1241 } 1242 1243 /* for reconstruct, we always reschedule after a read. 1244 * for resync, only after all reads 1245 */ 1246 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1247 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1248 atomic_dec_and_test(&r10_bio->remaining)) { 1249 /* we have read all the blocks, 1250 * do the comparison in process context in raid10d 1251 */ 1252 reschedule_retry(r10_bio); 1253 } 1254 } 1255 1256 static void end_sync_write(struct bio *bio, int error) 1257 { 1258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1259 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1260 mddev_t *mddev = r10_bio->mddev; 1261 conf_t *conf = mddev->private; 1262 int i,d; 1263 1264 for (i = 0; i < conf->copies; i++) 1265 if (r10_bio->devs[i].bio == bio) 1266 break; 1267 d = r10_bio->devs[i].devnum; 1268 1269 if (!uptodate) 1270 md_error(mddev, conf->mirrors[d].rdev); 1271 1272 update_head_pos(i, r10_bio); 1273 1274 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1275 while (atomic_dec_and_test(&r10_bio->remaining)) { 1276 if (r10_bio->master_bio == NULL) { 1277 /* the primary of several recovery bios */ 1278 sector_t s = r10_bio->sectors; 1279 put_buf(r10_bio); 1280 md_done_sync(mddev, s, 1); 1281 break; 1282 } else { 1283 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1284 put_buf(r10_bio); 1285 r10_bio = r10_bio2; 1286 } 1287 } 1288 } 1289 1290 /* 1291 * Note: sync and recover and handled very differently for raid10 1292 * This code is for resync. 1293 * For resync, we read through virtual addresses and read all blocks. 1294 * If there is any error, we schedule a write. The lowest numbered 1295 * drive is authoritative. 1296 * However requests come for physical address, so we need to map. 1297 * For every physical address there are raid_disks/copies virtual addresses, 1298 * which is always are least one, but is not necessarly an integer. 1299 * This means that a physical address can span multiple chunks, so we may 1300 * have to submit multiple io requests for a single sync request. 1301 */ 1302 /* 1303 * We check if all blocks are in-sync and only write to blocks that 1304 * aren't in sync 1305 */ 1306 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1307 { 1308 conf_t *conf = mddev->private; 1309 int i, first; 1310 struct bio *tbio, *fbio; 1311 1312 atomic_set(&r10_bio->remaining, 1); 1313 1314 /* find the first device with a block */ 1315 for (i=0; i<conf->copies; i++) 1316 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1317 break; 1318 1319 if (i == conf->copies) 1320 goto done; 1321 1322 first = i; 1323 fbio = r10_bio->devs[i].bio; 1324 1325 /* now find blocks with errors */ 1326 for (i=0 ; i < conf->copies ; i++) { 1327 int j, d; 1328 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1329 1330 tbio = r10_bio->devs[i].bio; 1331 1332 if (tbio->bi_end_io != end_sync_read) 1333 continue; 1334 if (i == first) 1335 continue; 1336 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1337 /* We know that the bi_io_vec layout is the same for 1338 * both 'first' and 'i', so we just compare them. 1339 * All vec entries are PAGE_SIZE; 1340 */ 1341 for (j = 0; j < vcnt; j++) 1342 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1343 page_address(tbio->bi_io_vec[j].bv_page), 1344 PAGE_SIZE)) 1345 break; 1346 if (j == vcnt) 1347 continue; 1348 mddev->resync_mismatches += r10_bio->sectors; 1349 } 1350 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1351 /* Don't fix anything. */ 1352 continue; 1353 /* Ok, we need to write this bio 1354 * First we need to fixup bv_offset, bv_len and 1355 * bi_vecs, as the read request might have corrupted these 1356 */ 1357 tbio->bi_vcnt = vcnt; 1358 tbio->bi_size = r10_bio->sectors << 9; 1359 tbio->bi_idx = 0; 1360 tbio->bi_phys_segments = 0; 1361 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1362 tbio->bi_flags |= 1 << BIO_UPTODATE; 1363 tbio->bi_next = NULL; 1364 tbio->bi_rw = WRITE; 1365 tbio->bi_private = r10_bio; 1366 tbio->bi_sector = r10_bio->devs[i].addr; 1367 1368 for (j=0; j < vcnt ; j++) { 1369 tbio->bi_io_vec[j].bv_offset = 0; 1370 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1371 1372 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1373 page_address(fbio->bi_io_vec[j].bv_page), 1374 PAGE_SIZE); 1375 } 1376 tbio->bi_end_io = end_sync_write; 1377 1378 d = r10_bio->devs[i].devnum; 1379 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1380 atomic_inc(&r10_bio->remaining); 1381 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1382 1383 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1384 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1385 generic_make_request(tbio); 1386 } 1387 1388 done: 1389 if (atomic_dec_and_test(&r10_bio->remaining)) { 1390 md_done_sync(mddev, r10_bio->sectors, 1); 1391 put_buf(r10_bio); 1392 } 1393 } 1394 1395 /* 1396 * Now for the recovery code. 1397 * Recovery happens across physical sectors. 1398 * We recover all non-is_sync drives by finding the virtual address of 1399 * each, and then choose a working drive that also has that virt address. 1400 * There is a separate r10_bio for each non-in_sync drive. 1401 * Only the first two slots are in use. The first for reading, 1402 * The second for writing. 1403 * 1404 */ 1405 1406 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1407 { 1408 conf_t *conf = mddev->private; 1409 int i, d; 1410 struct bio *bio, *wbio; 1411 1412 1413 /* move the pages across to the second bio 1414 * and submit the write request 1415 */ 1416 bio = r10_bio->devs[0].bio; 1417 wbio = r10_bio->devs[1].bio; 1418 for (i=0; i < wbio->bi_vcnt; i++) { 1419 struct page *p = bio->bi_io_vec[i].bv_page; 1420 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1421 wbio->bi_io_vec[i].bv_page = p; 1422 } 1423 d = r10_bio->devs[1].devnum; 1424 1425 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1426 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1427 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1428 generic_make_request(wbio); 1429 else 1430 bio_endio(wbio, -EIO); 1431 } 1432 1433 1434 /* 1435 * This is a kernel thread which: 1436 * 1437 * 1. Retries failed read operations on working mirrors. 1438 * 2. Updates the raid superblock when problems encounter. 1439 * 3. Performs writes following reads for array synchronising. 1440 */ 1441 1442 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1443 { 1444 int sect = 0; /* Offset from r10_bio->sector */ 1445 int sectors = r10_bio->sectors; 1446 mdk_rdev_t*rdev; 1447 while(sectors) { 1448 int s = sectors; 1449 int sl = r10_bio->read_slot; 1450 int success = 0; 1451 int start; 1452 1453 if (s > (PAGE_SIZE>>9)) 1454 s = PAGE_SIZE >> 9; 1455 1456 rcu_read_lock(); 1457 do { 1458 int d = r10_bio->devs[sl].devnum; 1459 rdev = rcu_dereference(conf->mirrors[d].rdev); 1460 if (rdev && 1461 test_bit(In_sync, &rdev->flags)) { 1462 atomic_inc(&rdev->nr_pending); 1463 rcu_read_unlock(); 1464 success = sync_page_io(rdev->bdev, 1465 r10_bio->devs[sl].addr + 1466 sect + rdev->data_offset, 1467 s<<9, 1468 conf->tmppage, READ); 1469 rdev_dec_pending(rdev, mddev); 1470 rcu_read_lock(); 1471 if (success) 1472 break; 1473 } 1474 sl++; 1475 if (sl == conf->copies) 1476 sl = 0; 1477 } while (!success && sl != r10_bio->read_slot); 1478 rcu_read_unlock(); 1479 1480 if (!success) { 1481 /* Cannot read from anywhere -- bye bye array */ 1482 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1483 md_error(mddev, conf->mirrors[dn].rdev); 1484 break; 1485 } 1486 1487 start = sl; 1488 /* write it back and re-read */ 1489 rcu_read_lock(); 1490 while (sl != r10_bio->read_slot) { 1491 int d; 1492 if (sl==0) 1493 sl = conf->copies; 1494 sl--; 1495 d = r10_bio->devs[sl].devnum; 1496 rdev = rcu_dereference(conf->mirrors[d].rdev); 1497 if (rdev && 1498 test_bit(In_sync, &rdev->flags)) { 1499 atomic_inc(&rdev->nr_pending); 1500 rcu_read_unlock(); 1501 atomic_add(s, &rdev->corrected_errors); 1502 if (sync_page_io(rdev->bdev, 1503 r10_bio->devs[sl].addr + 1504 sect + rdev->data_offset, 1505 s<<9, conf->tmppage, WRITE) 1506 == 0) 1507 /* Well, this device is dead */ 1508 md_error(mddev, rdev); 1509 rdev_dec_pending(rdev, mddev); 1510 rcu_read_lock(); 1511 } 1512 } 1513 sl = start; 1514 while (sl != r10_bio->read_slot) { 1515 int d; 1516 if (sl==0) 1517 sl = conf->copies; 1518 sl--; 1519 d = r10_bio->devs[sl].devnum; 1520 rdev = rcu_dereference(conf->mirrors[d].rdev); 1521 if (rdev && 1522 test_bit(In_sync, &rdev->flags)) { 1523 char b[BDEVNAME_SIZE]; 1524 atomic_inc(&rdev->nr_pending); 1525 rcu_read_unlock(); 1526 if (sync_page_io(rdev->bdev, 1527 r10_bio->devs[sl].addr + 1528 sect + rdev->data_offset, 1529 s<<9, conf->tmppage, READ) == 0) 1530 /* Well, this device is dead */ 1531 md_error(mddev, rdev); 1532 else 1533 printk(KERN_INFO 1534 "raid10:%s: read error corrected" 1535 " (%d sectors at %llu on %s)\n", 1536 mdname(mddev), s, 1537 (unsigned long long)(sect+ 1538 rdev->data_offset), 1539 bdevname(rdev->bdev, b)); 1540 1541 rdev_dec_pending(rdev, mddev); 1542 rcu_read_lock(); 1543 } 1544 } 1545 rcu_read_unlock(); 1546 1547 sectors -= s; 1548 sect += s; 1549 } 1550 } 1551 1552 static void raid10d(mddev_t *mddev) 1553 { 1554 r10bio_t *r10_bio; 1555 struct bio *bio; 1556 unsigned long flags; 1557 conf_t *conf = mddev->private; 1558 struct list_head *head = &conf->retry_list; 1559 int unplug=0; 1560 mdk_rdev_t *rdev; 1561 1562 md_check_recovery(mddev); 1563 1564 for (;;) { 1565 char b[BDEVNAME_SIZE]; 1566 1567 unplug += flush_pending_writes(conf); 1568 1569 spin_lock_irqsave(&conf->device_lock, flags); 1570 if (list_empty(head)) { 1571 spin_unlock_irqrestore(&conf->device_lock, flags); 1572 break; 1573 } 1574 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1575 list_del(head->prev); 1576 conf->nr_queued--; 1577 spin_unlock_irqrestore(&conf->device_lock, flags); 1578 1579 mddev = r10_bio->mddev; 1580 conf = mddev->private; 1581 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1582 sync_request_write(mddev, r10_bio); 1583 unplug = 1; 1584 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1585 recovery_request_write(mddev, r10_bio); 1586 unplug = 1; 1587 } else { 1588 int mirror; 1589 /* we got a read error. Maybe the drive is bad. Maybe just 1590 * the block and we can fix it. 1591 * We freeze all other IO, and try reading the block from 1592 * other devices. When we find one, we re-write 1593 * and check it that fixes the read error. 1594 * This is all done synchronously while the array is 1595 * frozen. 1596 */ 1597 if (mddev->ro == 0) { 1598 freeze_array(conf); 1599 fix_read_error(conf, mddev, r10_bio); 1600 unfreeze_array(conf); 1601 } 1602 1603 bio = r10_bio->devs[r10_bio->read_slot].bio; 1604 r10_bio->devs[r10_bio->read_slot].bio = 1605 mddev->ro ? IO_BLOCKED : NULL; 1606 mirror = read_balance(conf, r10_bio); 1607 if (mirror == -1) { 1608 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1609 " read error for block %llu\n", 1610 bdevname(bio->bi_bdev,b), 1611 (unsigned long long)r10_bio->sector); 1612 raid_end_bio_io(r10_bio); 1613 bio_put(bio); 1614 } else { 1615 const bool do_sync = bio_rw_flagged(r10_bio->master_bio, BIO_RW_SYNCIO); 1616 bio_put(bio); 1617 rdev = conf->mirrors[mirror].rdev; 1618 if (printk_ratelimit()) 1619 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1620 " another mirror\n", 1621 bdevname(rdev->bdev,b), 1622 (unsigned long long)r10_bio->sector); 1623 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1624 r10_bio->devs[r10_bio->read_slot].bio = bio; 1625 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1626 + rdev->data_offset; 1627 bio->bi_bdev = rdev->bdev; 1628 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 1629 bio->bi_private = r10_bio; 1630 bio->bi_end_io = raid10_end_read_request; 1631 unplug = 1; 1632 generic_make_request(bio); 1633 } 1634 } 1635 cond_resched(); 1636 } 1637 if (unplug) 1638 unplug_slaves(mddev); 1639 } 1640 1641 1642 static int init_resync(conf_t *conf) 1643 { 1644 int buffs; 1645 1646 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1647 BUG_ON(conf->r10buf_pool); 1648 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1649 if (!conf->r10buf_pool) 1650 return -ENOMEM; 1651 conf->next_resync = 0; 1652 return 0; 1653 } 1654 1655 /* 1656 * perform a "sync" on one "block" 1657 * 1658 * We need to make sure that no normal I/O request - particularly write 1659 * requests - conflict with active sync requests. 1660 * 1661 * This is achieved by tracking pending requests and a 'barrier' concept 1662 * that can be installed to exclude normal IO requests. 1663 * 1664 * Resync and recovery are handled very differently. 1665 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1666 * 1667 * For resync, we iterate over virtual addresses, read all copies, 1668 * and update if there are differences. If only one copy is live, 1669 * skip it. 1670 * For recovery, we iterate over physical addresses, read a good 1671 * value for each non-in_sync drive, and over-write. 1672 * 1673 * So, for recovery we may have several outstanding complex requests for a 1674 * given address, one for each out-of-sync device. We model this by allocating 1675 * a number of r10_bio structures, one for each out-of-sync device. 1676 * As we setup these structures, we collect all bio's together into a list 1677 * which we then process collectively to add pages, and then process again 1678 * to pass to generic_make_request. 1679 * 1680 * The r10_bio structures are linked using a borrowed master_bio pointer. 1681 * This link is counted in ->remaining. When the r10_bio that points to NULL 1682 * has its remaining count decremented to 0, the whole complex operation 1683 * is complete. 1684 * 1685 */ 1686 1687 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1688 { 1689 conf_t *conf = mddev->private; 1690 r10bio_t *r10_bio; 1691 struct bio *biolist = NULL, *bio; 1692 sector_t max_sector, nr_sectors; 1693 int disk; 1694 int i; 1695 int max_sync; 1696 int sync_blocks; 1697 1698 sector_t sectors_skipped = 0; 1699 int chunks_skipped = 0; 1700 1701 if (!conf->r10buf_pool) 1702 if (init_resync(conf)) 1703 return 0; 1704 1705 skipped: 1706 max_sector = mddev->dev_sectors; 1707 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1708 max_sector = mddev->resync_max_sectors; 1709 if (sector_nr >= max_sector) { 1710 /* If we aborted, we need to abort the 1711 * sync on the 'current' bitmap chucks (there can 1712 * be several when recovering multiple devices). 1713 * as we may have started syncing it but not finished. 1714 * We can find the current address in 1715 * mddev->curr_resync, but for recovery, 1716 * we need to convert that to several 1717 * virtual addresses. 1718 */ 1719 if (mddev->curr_resync < max_sector) { /* aborted */ 1720 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1721 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1722 &sync_blocks, 1); 1723 else for (i=0; i<conf->raid_disks; i++) { 1724 sector_t sect = 1725 raid10_find_virt(conf, mddev->curr_resync, i); 1726 bitmap_end_sync(mddev->bitmap, sect, 1727 &sync_blocks, 1); 1728 } 1729 } else /* completed sync */ 1730 conf->fullsync = 0; 1731 1732 bitmap_close_sync(mddev->bitmap); 1733 close_sync(conf); 1734 *skipped = 1; 1735 return sectors_skipped; 1736 } 1737 if (chunks_skipped >= conf->raid_disks) { 1738 /* if there has been nothing to do on any drive, 1739 * then there is nothing to do at all.. 1740 */ 1741 *skipped = 1; 1742 return (max_sector - sector_nr) + sectors_skipped; 1743 } 1744 1745 if (max_sector > mddev->resync_max) 1746 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1747 1748 /* make sure whole request will fit in a chunk - if chunks 1749 * are meaningful 1750 */ 1751 if (conf->near_copies < conf->raid_disks && 1752 max_sector > (sector_nr | conf->chunk_mask)) 1753 max_sector = (sector_nr | conf->chunk_mask) + 1; 1754 /* 1755 * If there is non-resync activity waiting for us then 1756 * put in a delay to throttle resync. 1757 */ 1758 if (!go_faster && conf->nr_waiting) 1759 msleep_interruptible(1000); 1760 1761 /* Again, very different code for resync and recovery. 1762 * Both must result in an r10bio with a list of bios that 1763 * have bi_end_io, bi_sector, bi_bdev set, 1764 * and bi_private set to the r10bio. 1765 * For recovery, we may actually create several r10bios 1766 * with 2 bios in each, that correspond to the bios in the main one. 1767 * In this case, the subordinate r10bios link back through a 1768 * borrowed master_bio pointer, and the counter in the master 1769 * includes a ref from each subordinate. 1770 */ 1771 /* First, we decide what to do and set ->bi_end_io 1772 * To end_sync_read if we want to read, and 1773 * end_sync_write if we will want to write. 1774 */ 1775 1776 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1777 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1778 /* recovery... the complicated one */ 1779 int j, k; 1780 r10_bio = NULL; 1781 1782 for (i=0 ; i<conf->raid_disks; i++) 1783 if (conf->mirrors[i].rdev && 1784 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1785 int still_degraded = 0; 1786 /* want to reconstruct this device */ 1787 r10bio_t *rb2 = r10_bio; 1788 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1789 int must_sync; 1790 /* Unless we are doing a full sync, we only need 1791 * to recover the block if it is set in the bitmap 1792 */ 1793 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1794 &sync_blocks, 1); 1795 if (sync_blocks < max_sync) 1796 max_sync = sync_blocks; 1797 if (!must_sync && 1798 !conf->fullsync) { 1799 /* yep, skip the sync_blocks here, but don't assume 1800 * that there will never be anything to do here 1801 */ 1802 chunks_skipped = -1; 1803 continue; 1804 } 1805 1806 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1807 raise_barrier(conf, rb2 != NULL); 1808 atomic_set(&r10_bio->remaining, 0); 1809 1810 r10_bio->master_bio = (struct bio*)rb2; 1811 if (rb2) 1812 atomic_inc(&rb2->remaining); 1813 r10_bio->mddev = mddev; 1814 set_bit(R10BIO_IsRecover, &r10_bio->state); 1815 r10_bio->sector = sect; 1816 1817 raid10_find_phys(conf, r10_bio); 1818 1819 /* Need to check if the array will still be 1820 * degraded 1821 */ 1822 for (j=0; j<conf->raid_disks; j++) 1823 if (conf->mirrors[j].rdev == NULL || 1824 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 1825 still_degraded = 1; 1826 break; 1827 } 1828 1829 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1830 &sync_blocks, still_degraded); 1831 1832 for (j=0; j<conf->copies;j++) { 1833 int d = r10_bio->devs[j].devnum; 1834 if (conf->mirrors[d].rdev && 1835 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1836 /* This is where we read from */ 1837 bio = r10_bio->devs[0].bio; 1838 bio->bi_next = biolist; 1839 biolist = bio; 1840 bio->bi_private = r10_bio; 1841 bio->bi_end_io = end_sync_read; 1842 bio->bi_rw = READ; 1843 bio->bi_sector = r10_bio->devs[j].addr + 1844 conf->mirrors[d].rdev->data_offset; 1845 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1846 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1847 atomic_inc(&r10_bio->remaining); 1848 /* and we write to 'i' */ 1849 1850 for (k=0; k<conf->copies; k++) 1851 if (r10_bio->devs[k].devnum == i) 1852 break; 1853 BUG_ON(k == conf->copies); 1854 bio = r10_bio->devs[1].bio; 1855 bio->bi_next = biolist; 1856 biolist = bio; 1857 bio->bi_private = r10_bio; 1858 bio->bi_end_io = end_sync_write; 1859 bio->bi_rw = WRITE; 1860 bio->bi_sector = r10_bio->devs[k].addr + 1861 conf->mirrors[i].rdev->data_offset; 1862 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1863 1864 r10_bio->devs[0].devnum = d; 1865 r10_bio->devs[1].devnum = i; 1866 1867 break; 1868 } 1869 } 1870 if (j == conf->copies) { 1871 /* Cannot recover, so abort the recovery */ 1872 put_buf(r10_bio); 1873 if (rb2) 1874 atomic_dec(&rb2->remaining); 1875 r10_bio = rb2; 1876 if (!test_and_set_bit(MD_RECOVERY_INTR, 1877 &mddev->recovery)) 1878 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1879 mdname(mddev)); 1880 break; 1881 } 1882 } 1883 if (biolist == NULL) { 1884 while (r10_bio) { 1885 r10bio_t *rb2 = r10_bio; 1886 r10_bio = (r10bio_t*) rb2->master_bio; 1887 rb2->master_bio = NULL; 1888 put_buf(rb2); 1889 } 1890 goto giveup; 1891 } 1892 } else { 1893 /* resync. Schedule a read for every block at this virt offset */ 1894 int count = 0; 1895 1896 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1897 1898 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1899 &sync_blocks, mddev->degraded) && 1900 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1901 /* We can skip this block */ 1902 *skipped = 1; 1903 return sync_blocks + sectors_skipped; 1904 } 1905 if (sync_blocks < max_sync) 1906 max_sync = sync_blocks; 1907 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1908 1909 r10_bio->mddev = mddev; 1910 atomic_set(&r10_bio->remaining, 0); 1911 raise_barrier(conf, 0); 1912 conf->next_resync = sector_nr; 1913 1914 r10_bio->master_bio = NULL; 1915 r10_bio->sector = sector_nr; 1916 set_bit(R10BIO_IsSync, &r10_bio->state); 1917 raid10_find_phys(conf, r10_bio); 1918 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1919 1920 for (i=0; i<conf->copies; i++) { 1921 int d = r10_bio->devs[i].devnum; 1922 bio = r10_bio->devs[i].bio; 1923 bio->bi_end_io = NULL; 1924 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1925 if (conf->mirrors[d].rdev == NULL || 1926 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1927 continue; 1928 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1929 atomic_inc(&r10_bio->remaining); 1930 bio->bi_next = biolist; 1931 biolist = bio; 1932 bio->bi_private = r10_bio; 1933 bio->bi_end_io = end_sync_read; 1934 bio->bi_rw = READ; 1935 bio->bi_sector = r10_bio->devs[i].addr + 1936 conf->mirrors[d].rdev->data_offset; 1937 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1938 count++; 1939 } 1940 1941 if (count < 2) { 1942 for (i=0; i<conf->copies; i++) { 1943 int d = r10_bio->devs[i].devnum; 1944 if (r10_bio->devs[i].bio->bi_end_io) 1945 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1946 } 1947 put_buf(r10_bio); 1948 biolist = NULL; 1949 goto giveup; 1950 } 1951 } 1952 1953 for (bio = biolist; bio ; bio=bio->bi_next) { 1954 1955 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1956 if (bio->bi_end_io) 1957 bio->bi_flags |= 1 << BIO_UPTODATE; 1958 bio->bi_vcnt = 0; 1959 bio->bi_idx = 0; 1960 bio->bi_phys_segments = 0; 1961 bio->bi_size = 0; 1962 } 1963 1964 nr_sectors = 0; 1965 if (sector_nr + max_sync < max_sector) 1966 max_sector = sector_nr + max_sync; 1967 do { 1968 struct page *page; 1969 int len = PAGE_SIZE; 1970 disk = 0; 1971 if (sector_nr + (len>>9) > max_sector) 1972 len = (max_sector - sector_nr) << 9; 1973 if (len == 0) 1974 break; 1975 for (bio= biolist ; bio ; bio=bio->bi_next) { 1976 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1977 if (bio_add_page(bio, page, len, 0) == 0) { 1978 /* stop here */ 1979 struct bio *bio2; 1980 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1981 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1982 /* remove last page from this bio */ 1983 bio2->bi_vcnt--; 1984 bio2->bi_size -= len; 1985 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1986 } 1987 goto bio_full; 1988 } 1989 disk = i; 1990 } 1991 nr_sectors += len>>9; 1992 sector_nr += len>>9; 1993 } while (biolist->bi_vcnt < RESYNC_PAGES); 1994 bio_full: 1995 r10_bio->sectors = nr_sectors; 1996 1997 while (biolist) { 1998 bio = biolist; 1999 biolist = biolist->bi_next; 2000 2001 bio->bi_next = NULL; 2002 r10_bio = bio->bi_private; 2003 r10_bio->sectors = nr_sectors; 2004 2005 if (bio->bi_end_io == end_sync_read) { 2006 md_sync_acct(bio->bi_bdev, nr_sectors); 2007 generic_make_request(bio); 2008 } 2009 } 2010 2011 if (sectors_skipped) 2012 /* pretend they weren't skipped, it makes 2013 * no important difference in this case 2014 */ 2015 md_done_sync(mddev, sectors_skipped, 1); 2016 2017 return sectors_skipped + nr_sectors; 2018 giveup: 2019 /* There is nowhere to write, so all non-sync 2020 * drives must be failed, so try the next chunk... 2021 */ 2022 if (sector_nr + max_sync < max_sector) 2023 max_sector = sector_nr + max_sync; 2024 2025 sectors_skipped += (max_sector - sector_nr); 2026 chunks_skipped ++; 2027 sector_nr = max_sector; 2028 goto skipped; 2029 } 2030 2031 static sector_t 2032 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks) 2033 { 2034 sector_t size; 2035 conf_t *conf = mddev->private; 2036 2037 if (!raid_disks) 2038 raid_disks = mddev->raid_disks; 2039 if (!sectors) 2040 sectors = mddev->dev_sectors; 2041 2042 size = sectors >> conf->chunk_shift; 2043 sector_div(size, conf->far_copies); 2044 size = size * raid_disks; 2045 sector_div(size, conf->near_copies); 2046 2047 return size << conf->chunk_shift; 2048 } 2049 2050 static int run(mddev_t *mddev) 2051 { 2052 conf_t *conf; 2053 int i, disk_idx, chunk_size; 2054 mirror_info_t *disk; 2055 mdk_rdev_t *rdev; 2056 int nc, fc, fo; 2057 sector_t stride, size; 2058 2059 if (mddev->chunk_sectors < (PAGE_SIZE >> 9) || 2060 !is_power_of_2(mddev->chunk_sectors)) { 2061 printk(KERN_ERR "md/raid10: chunk size must be " 2062 "at least PAGE_SIZE(%ld) and be a power of 2.\n", PAGE_SIZE); 2063 return -EINVAL; 2064 } 2065 2066 nc = mddev->layout & 255; 2067 fc = (mddev->layout >> 8) & 255; 2068 fo = mddev->layout & (1<<16); 2069 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2070 (mddev->layout >> 17)) { 2071 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 2072 mdname(mddev), mddev->layout); 2073 goto out; 2074 } 2075 /* 2076 * copy the already verified devices into our private RAID10 2077 * bookkeeping area. [whatever we allocate in run(), 2078 * should be freed in stop()] 2079 */ 2080 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2081 mddev->private = conf; 2082 if (!conf) { 2083 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2084 mdname(mddev)); 2085 goto out; 2086 } 2087 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2088 GFP_KERNEL); 2089 if (!conf->mirrors) { 2090 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2091 mdname(mddev)); 2092 goto out_free_conf; 2093 } 2094 2095 conf->tmppage = alloc_page(GFP_KERNEL); 2096 if (!conf->tmppage) 2097 goto out_free_conf; 2098 2099 conf->raid_disks = mddev->raid_disks; 2100 conf->near_copies = nc; 2101 conf->far_copies = fc; 2102 conf->copies = nc*fc; 2103 conf->far_offset = fo; 2104 conf->chunk_mask = mddev->chunk_sectors - 1; 2105 conf->chunk_shift = ffz(~mddev->chunk_sectors); 2106 size = mddev->dev_sectors >> conf->chunk_shift; 2107 sector_div(size, fc); 2108 size = size * conf->raid_disks; 2109 sector_div(size, nc); 2110 /* 'size' is now the number of chunks in the array */ 2111 /* calculate "used chunks per device" in 'stride' */ 2112 stride = size * conf->copies; 2113 2114 /* We need to round up when dividing by raid_disks to 2115 * get the stride size. 2116 */ 2117 stride += conf->raid_disks - 1; 2118 sector_div(stride, conf->raid_disks); 2119 mddev->dev_sectors = stride << conf->chunk_shift; 2120 2121 if (fo) 2122 stride = 1; 2123 else 2124 sector_div(stride, fc); 2125 conf->stride = stride << conf->chunk_shift; 2126 2127 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2128 r10bio_pool_free, conf); 2129 if (!conf->r10bio_pool) { 2130 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2131 mdname(mddev)); 2132 goto out_free_conf; 2133 } 2134 2135 conf->mddev = mddev; 2136 spin_lock_init(&conf->device_lock); 2137 mddev->queue->queue_lock = &conf->device_lock; 2138 2139 chunk_size = mddev->chunk_sectors << 9; 2140 blk_queue_io_min(mddev->queue, chunk_size); 2141 if (conf->raid_disks % conf->near_copies) 2142 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 2143 else 2144 blk_queue_io_opt(mddev->queue, chunk_size * 2145 (conf->raid_disks / conf->near_copies)); 2146 2147 list_for_each_entry(rdev, &mddev->disks, same_set) { 2148 disk_idx = rdev->raid_disk; 2149 if (disk_idx >= mddev->raid_disks 2150 || disk_idx < 0) 2151 continue; 2152 disk = conf->mirrors + disk_idx; 2153 2154 disk->rdev = rdev; 2155 disk_stack_limits(mddev->gendisk, rdev->bdev, 2156 rdev->data_offset << 9); 2157 /* as we don't honour merge_bvec_fn, we must never risk 2158 * violating it, so limit ->max_sector to one PAGE, as 2159 * a one page request is never in violation. 2160 */ 2161 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2162 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9)) 2163 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 2164 2165 disk->head_position = 0; 2166 } 2167 INIT_LIST_HEAD(&conf->retry_list); 2168 2169 spin_lock_init(&conf->resync_lock); 2170 init_waitqueue_head(&conf->wait_barrier); 2171 2172 /* need to check that every block has at least one working mirror */ 2173 if (!enough(conf)) { 2174 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2175 mdname(mddev)); 2176 goto out_free_conf; 2177 } 2178 2179 mddev->degraded = 0; 2180 for (i = 0; i < conf->raid_disks; i++) { 2181 2182 disk = conf->mirrors + i; 2183 2184 if (!disk->rdev || 2185 !test_bit(In_sync, &disk->rdev->flags)) { 2186 disk->head_position = 0; 2187 mddev->degraded++; 2188 if (disk->rdev) 2189 conf->fullsync = 1; 2190 } 2191 } 2192 2193 2194 mddev->thread = md_register_thread(raid10d, mddev, NULL); 2195 if (!mddev->thread) { 2196 printk(KERN_ERR 2197 "raid10: couldn't allocate thread for %s\n", 2198 mdname(mddev)); 2199 goto out_free_conf; 2200 } 2201 2202 if (mddev->recovery_cp != MaxSector) 2203 printk(KERN_NOTICE "raid10: %s is not clean" 2204 " -- starting background reconstruction\n", 2205 mdname(mddev)); 2206 printk(KERN_INFO 2207 "raid10: raid set %s active with %d out of %d devices\n", 2208 mdname(mddev), mddev->raid_disks - mddev->degraded, 2209 mddev->raid_disks); 2210 /* 2211 * Ok, everything is just fine now 2212 */ 2213 md_set_array_sectors(mddev, raid10_size(mddev, 0, 0)); 2214 mddev->resync_max_sectors = raid10_size(mddev, 0, 0); 2215 2216 mddev->queue->unplug_fn = raid10_unplug; 2217 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2218 mddev->queue->backing_dev_info.congested_data = mddev; 2219 2220 /* Calculate max read-ahead size. 2221 * We need to readahead at least twice a whole stripe.... 2222 * maybe... 2223 */ 2224 { 2225 int stripe = conf->raid_disks * 2226 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 2227 stripe /= conf->near_copies; 2228 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2229 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2230 } 2231 2232 if (conf->near_copies < mddev->raid_disks) 2233 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2234 md_integrity_register(mddev); 2235 return 0; 2236 2237 out_free_conf: 2238 if (conf->r10bio_pool) 2239 mempool_destroy(conf->r10bio_pool); 2240 safe_put_page(conf->tmppage); 2241 kfree(conf->mirrors); 2242 kfree(conf); 2243 mddev->private = NULL; 2244 out: 2245 return -EIO; 2246 } 2247 2248 static int stop(mddev_t *mddev) 2249 { 2250 conf_t *conf = mddev->private; 2251 2252 raise_barrier(conf, 0); 2253 lower_barrier(conf); 2254 2255 md_unregister_thread(mddev->thread); 2256 mddev->thread = NULL; 2257 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2258 if (conf->r10bio_pool) 2259 mempool_destroy(conf->r10bio_pool); 2260 kfree(conf->mirrors); 2261 kfree(conf); 2262 mddev->private = NULL; 2263 return 0; 2264 } 2265 2266 static void raid10_quiesce(mddev_t *mddev, int state) 2267 { 2268 conf_t *conf = mddev->private; 2269 2270 switch(state) { 2271 case 1: 2272 raise_barrier(conf, 0); 2273 break; 2274 case 0: 2275 lower_barrier(conf); 2276 break; 2277 } 2278 if (mddev->thread) { 2279 if (mddev->bitmap) 2280 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2281 else 2282 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2283 md_wakeup_thread(mddev->thread); 2284 } 2285 } 2286 2287 static struct mdk_personality raid10_personality = 2288 { 2289 .name = "raid10", 2290 .level = 10, 2291 .owner = THIS_MODULE, 2292 .make_request = make_request, 2293 .run = run, 2294 .stop = stop, 2295 .status = status, 2296 .error_handler = error, 2297 .hot_add_disk = raid10_add_disk, 2298 .hot_remove_disk= raid10_remove_disk, 2299 .spare_active = raid10_spare_active, 2300 .sync_request = sync_request, 2301 .quiesce = raid10_quiesce, 2302 .size = raid10_size, 2303 }; 2304 2305 static int __init raid_init(void) 2306 { 2307 return register_md_personality(&raid10_personality); 2308 } 2309 2310 static void raid_exit(void) 2311 { 2312 unregister_md_personality(&raid10_personality); 2313 } 2314 2315 module_init(raid_init); 2316 module_exit(raid_exit); 2317 MODULE_LICENSE("GPL"); 2318 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2319 MODULE_ALIAS("md-raid10"); 2320 MODULE_ALIAS("md-level-10"); 2321