1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 23 #define RAID_1_10_NAME "raid10" 24 #include "raid10.h" 25 #include "raid0.h" 26 #include "md-bitmap.h" 27 28 /* 29 * RAID10 provides a combination of RAID0 and RAID1 functionality. 30 * The layout of data is defined by 31 * chunk_size 32 * raid_disks 33 * near_copies (stored in low byte of layout) 34 * far_copies (stored in second byte of layout) 35 * far_offset (stored in bit 16 of layout ) 36 * use_far_sets (stored in bit 17 of layout ) 37 * use_far_sets_bugfixed (stored in bit 18 of layout ) 38 * 39 * The data to be stored is divided into chunks using chunksize. Each device 40 * is divided into far_copies sections. In each section, chunks are laid out 41 * in a style similar to raid0, but near_copies copies of each chunk is stored 42 * (each on a different drive). The starting device for each section is offset 43 * near_copies from the starting device of the previous section. Thus there 44 * are (near_copies * far_copies) of each chunk, and each is on a different 45 * drive. near_copies and far_copies must be at least one, and their product 46 * is at most raid_disks. 47 * 48 * If far_offset is true, then the far_copies are handled a bit differently. 49 * The copies are still in different stripes, but instead of being very far 50 * apart on disk, there are adjacent stripes. 51 * 52 * The far and offset algorithms are handled slightly differently if 53 * 'use_far_sets' is true. In this case, the array's devices are grouped into 54 * sets that are (near_copies * far_copies) in size. The far copied stripes 55 * are still shifted by 'near_copies' devices, but this shifting stays confined 56 * to the set rather than the entire array. This is done to improve the number 57 * of device combinations that can fail without causing the array to fail. 58 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 59 * on a device): 60 * A B C D A B C D E 61 * ... ... 62 * D A B C E A B C D 63 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 64 * [A B] [C D] [A B] [C D E] 65 * |...| |...| |...| | ... | 66 * [B A] [D C] [B A] [E C D] 67 */ 68 69 static void allow_barrier(struct r10conf *conf); 70 static void lower_barrier(struct r10conf *conf); 71 static int _enough(struct r10conf *conf, int previous, int ignore); 72 static int enough(struct r10conf *conf, int ignore); 73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 74 int *skipped); 75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 76 static void end_reshape_write(struct bio *bio); 77 static void end_reshape(struct r10conf *conf); 78 79 #define raid10_log(md, fmt, args...) \ 80 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 81 82 #include "raid1-10.c" 83 84 #define NULL_CMD 85 #define cmd_before(conf, cmd) \ 86 do { \ 87 write_sequnlock_irq(&(conf)->resync_lock); \ 88 cmd; \ 89 } while (0) 90 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) 91 92 #define wait_event_barrier_cmd(conf, cond, cmd) \ 93 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ 94 cmd_after(conf)) 95 96 #define wait_event_barrier(conf, cond) \ 97 wait_event_barrier_cmd(conf, cond, NULL_CMD) 98 99 /* 100 * for resync bio, r10bio pointer can be retrieved from the per-bio 101 * 'struct resync_pages'. 102 */ 103 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 104 { 105 return get_resync_pages(bio)->raid_bio; 106 } 107 108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 109 { 110 struct r10conf *conf = data; 111 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 112 113 /* allocate a r10bio with room for raid_disks entries in the 114 * bios array */ 115 return kzalloc(size, gfp_flags); 116 } 117 118 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 119 /* amount of memory to reserve for resync requests */ 120 #define RESYNC_WINDOW (1024*1024) 121 /* maximum number of concurrent requests, memory permitting */ 122 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 123 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 124 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 125 126 /* 127 * When performing a resync, we need to read and compare, so 128 * we need as many pages are there are copies. 129 * When performing a recovery, we need 2 bios, one for read, 130 * one for write (we recover only one drive per r10buf) 131 * 132 */ 133 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 134 { 135 struct r10conf *conf = data; 136 struct r10bio *r10_bio; 137 struct bio *bio; 138 int j; 139 int nalloc, nalloc_rp; 140 struct resync_pages *rps; 141 142 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 143 if (!r10_bio) 144 return NULL; 145 146 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 147 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 148 nalloc = conf->copies; /* resync */ 149 else 150 nalloc = 2; /* recovery */ 151 152 /* allocate once for all bios */ 153 if (!conf->have_replacement) 154 nalloc_rp = nalloc; 155 else 156 nalloc_rp = nalloc * 2; 157 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 158 if (!rps) 159 goto out_free_r10bio; 160 161 /* 162 * Allocate bios. 163 */ 164 for (j = nalloc ; j-- ; ) { 165 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 166 if (!bio) 167 goto out_free_bio; 168 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 169 r10_bio->devs[j].bio = bio; 170 if (!conf->have_replacement) 171 continue; 172 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 173 if (!bio) 174 goto out_free_bio; 175 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 176 r10_bio->devs[j].repl_bio = bio; 177 } 178 /* 179 * Allocate RESYNC_PAGES data pages and attach them 180 * where needed. 181 */ 182 for (j = 0; j < nalloc; j++) { 183 struct bio *rbio = r10_bio->devs[j].repl_bio; 184 struct resync_pages *rp, *rp_repl; 185 186 rp = &rps[j]; 187 if (rbio) 188 rp_repl = &rps[nalloc + j]; 189 190 bio = r10_bio->devs[j].bio; 191 192 if (!j || test_bit(MD_RECOVERY_SYNC, 193 &conf->mddev->recovery)) { 194 if (resync_alloc_pages(rp, gfp_flags)) 195 goto out_free_pages; 196 } else { 197 memcpy(rp, &rps[0], sizeof(*rp)); 198 resync_get_all_pages(rp); 199 } 200 201 rp->raid_bio = r10_bio; 202 bio->bi_private = rp; 203 if (rbio) { 204 memcpy(rp_repl, rp, sizeof(*rp)); 205 rbio->bi_private = rp_repl; 206 } 207 } 208 209 return r10_bio; 210 211 out_free_pages: 212 while (--j >= 0) 213 resync_free_pages(&rps[j]); 214 215 j = 0; 216 out_free_bio: 217 for ( ; j < nalloc; j++) { 218 if (r10_bio->devs[j].bio) 219 bio_uninit(r10_bio->devs[j].bio); 220 kfree(r10_bio->devs[j].bio); 221 if (r10_bio->devs[j].repl_bio) 222 bio_uninit(r10_bio->devs[j].repl_bio); 223 kfree(r10_bio->devs[j].repl_bio); 224 } 225 kfree(rps); 226 out_free_r10bio: 227 rbio_pool_free(r10_bio, conf); 228 return NULL; 229 } 230 231 static void r10buf_pool_free(void *__r10_bio, void *data) 232 { 233 struct r10conf *conf = data; 234 struct r10bio *r10bio = __r10_bio; 235 int j; 236 struct resync_pages *rp = NULL; 237 238 for (j = conf->copies; j--; ) { 239 struct bio *bio = r10bio->devs[j].bio; 240 241 if (bio) { 242 rp = get_resync_pages(bio); 243 resync_free_pages(rp); 244 bio_uninit(bio); 245 kfree(bio); 246 } 247 248 bio = r10bio->devs[j].repl_bio; 249 if (bio) { 250 bio_uninit(bio); 251 kfree(bio); 252 } 253 } 254 255 /* resync pages array stored in the 1st bio's .bi_private */ 256 kfree(rp); 257 258 rbio_pool_free(r10bio, conf); 259 } 260 261 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 262 { 263 int i; 264 265 for (i = 0; i < conf->geo.raid_disks; i++) { 266 struct bio **bio = & r10_bio->devs[i].bio; 267 if (!BIO_SPECIAL(*bio)) 268 bio_put(*bio); 269 *bio = NULL; 270 bio = &r10_bio->devs[i].repl_bio; 271 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 272 bio_put(*bio); 273 *bio = NULL; 274 } 275 } 276 277 static void free_r10bio(struct r10bio *r10_bio) 278 { 279 struct r10conf *conf = r10_bio->mddev->private; 280 281 put_all_bios(conf, r10_bio); 282 mempool_free(r10_bio, &conf->r10bio_pool); 283 } 284 285 static void put_buf(struct r10bio *r10_bio) 286 { 287 struct r10conf *conf = r10_bio->mddev->private; 288 289 mempool_free(r10_bio, &conf->r10buf_pool); 290 291 lower_barrier(conf); 292 } 293 294 static void wake_up_barrier(struct r10conf *conf) 295 { 296 if (wq_has_sleeper(&conf->wait_barrier)) 297 wake_up(&conf->wait_barrier); 298 } 299 300 static void reschedule_retry(struct r10bio *r10_bio) 301 { 302 unsigned long flags; 303 struct mddev *mddev = r10_bio->mddev; 304 struct r10conf *conf = mddev->private; 305 306 spin_lock_irqsave(&conf->device_lock, flags); 307 list_add(&r10_bio->retry_list, &conf->retry_list); 308 conf->nr_queued ++; 309 spin_unlock_irqrestore(&conf->device_lock, flags); 310 311 /* wake up frozen array... */ 312 wake_up(&conf->wait_barrier); 313 314 md_wakeup_thread(mddev->thread); 315 } 316 317 /* 318 * raid_end_bio_io() is called when we have finished servicing a mirrored 319 * operation and are ready to return a success/failure code to the buffer 320 * cache layer. 321 */ 322 static void raid_end_bio_io(struct r10bio *r10_bio) 323 { 324 struct bio *bio = r10_bio->master_bio; 325 struct r10conf *conf = r10_bio->mddev->private; 326 327 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 328 bio->bi_status = BLK_STS_IOERR; 329 330 bio_endio(bio); 331 /* 332 * Wake up any possible resync thread that waits for the device 333 * to go idle. 334 */ 335 allow_barrier(conf); 336 337 free_r10bio(r10_bio); 338 } 339 340 /* 341 * Update disk head position estimator based on IRQ completion info. 342 */ 343 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 344 { 345 struct r10conf *conf = r10_bio->mddev->private; 346 347 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 348 r10_bio->devs[slot].addr + (r10_bio->sectors); 349 } 350 351 /* 352 * Find the disk number which triggered given bio 353 */ 354 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 355 struct bio *bio, int *slotp, int *replp) 356 { 357 int slot; 358 int repl = 0; 359 360 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 361 if (r10_bio->devs[slot].bio == bio) 362 break; 363 if (r10_bio->devs[slot].repl_bio == bio) { 364 repl = 1; 365 break; 366 } 367 } 368 369 update_head_pos(slot, r10_bio); 370 371 if (slotp) 372 *slotp = slot; 373 if (replp) 374 *replp = repl; 375 return r10_bio->devs[slot].devnum; 376 } 377 378 static void raid10_end_read_request(struct bio *bio) 379 { 380 int uptodate = !bio->bi_status; 381 struct r10bio *r10_bio = bio->bi_private; 382 int slot; 383 struct md_rdev *rdev; 384 struct r10conf *conf = r10_bio->mddev->private; 385 386 slot = r10_bio->read_slot; 387 rdev = r10_bio->devs[slot].rdev; 388 /* 389 * this branch is our 'one mirror IO has finished' event handler: 390 */ 391 update_head_pos(slot, r10_bio); 392 393 if (uptodate) { 394 /* 395 * Set R10BIO_Uptodate in our master bio, so that 396 * we will return a good error code to the higher 397 * levels even if IO on some other mirrored buffer fails. 398 * 399 * The 'master' represents the composite IO operation to 400 * user-side. So if something waits for IO, then it will 401 * wait for the 'master' bio. 402 */ 403 set_bit(R10BIO_Uptodate, &r10_bio->state); 404 } else { 405 /* If all other devices that store this block have 406 * failed, we want to return the error upwards rather 407 * than fail the last device. Here we redefine 408 * "uptodate" to mean "Don't want to retry" 409 */ 410 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 411 rdev->raid_disk)) 412 uptodate = 1; 413 } 414 if (uptodate) { 415 raid_end_bio_io(r10_bio); 416 rdev_dec_pending(rdev, conf->mddev); 417 } else { 418 /* 419 * oops, read error - keep the refcount on the rdev 420 */ 421 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", 422 mdname(conf->mddev), 423 rdev->bdev, 424 (unsigned long long)r10_bio->sector); 425 set_bit(R10BIO_ReadError, &r10_bio->state); 426 reschedule_retry(r10_bio); 427 } 428 } 429 430 static void close_write(struct r10bio *r10_bio) 431 { 432 /* clear the bitmap if all writes complete successfully */ 433 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 434 r10_bio->sectors, 435 !test_bit(R10BIO_Degraded, &r10_bio->state), 436 0); 437 md_write_end(r10_bio->mddev); 438 } 439 440 static void one_write_done(struct r10bio *r10_bio) 441 { 442 if (atomic_dec_and_test(&r10_bio->remaining)) { 443 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 444 reschedule_retry(r10_bio); 445 else { 446 close_write(r10_bio); 447 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 448 reschedule_retry(r10_bio); 449 else 450 raid_end_bio_io(r10_bio); 451 } 452 } 453 } 454 455 static void raid10_end_write_request(struct bio *bio) 456 { 457 struct r10bio *r10_bio = bio->bi_private; 458 int dev; 459 int dec_rdev = 1; 460 struct r10conf *conf = r10_bio->mddev->private; 461 int slot, repl; 462 struct md_rdev *rdev = NULL; 463 struct bio *to_put = NULL; 464 bool discard_error; 465 466 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 467 468 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 469 470 if (repl) 471 rdev = conf->mirrors[dev].replacement; 472 if (!rdev) { 473 smp_rmb(); 474 repl = 0; 475 rdev = conf->mirrors[dev].rdev; 476 } 477 /* 478 * this branch is our 'one mirror IO has finished' event handler: 479 */ 480 if (bio->bi_status && !discard_error) { 481 if (repl) 482 /* Never record new bad blocks to replacement, 483 * just fail it. 484 */ 485 md_error(rdev->mddev, rdev); 486 else { 487 set_bit(WriteErrorSeen, &rdev->flags); 488 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 489 set_bit(MD_RECOVERY_NEEDED, 490 &rdev->mddev->recovery); 491 492 dec_rdev = 0; 493 if (test_bit(FailFast, &rdev->flags) && 494 (bio->bi_opf & MD_FAILFAST)) { 495 md_error(rdev->mddev, rdev); 496 } 497 498 /* 499 * When the device is faulty, it is not necessary to 500 * handle write error. 501 */ 502 if (!test_bit(Faulty, &rdev->flags)) 503 set_bit(R10BIO_WriteError, &r10_bio->state); 504 else { 505 /* Fail the request */ 506 set_bit(R10BIO_Degraded, &r10_bio->state); 507 r10_bio->devs[slot].bio = NULL; 508 to_put = bio; 509 dec_rdev = 1; 510 } 511 } 512 } else { 513 /* 514 * Set R10BIO_Uptodate in our master bio, so that 515 * we will return a good error code for to the higher 516 * levels even if IO on some other mirrored buffer fails. 517 * 518 * The 'master' represents the composite IO operation to 519 * user-side. So if something waits for IO, then it will 520 * wait for the 'master' bio. 521 */ 522 sector_t first_bad; 523 int bad_sectors; 524 525 /* 526 * Do not set R10BIO_Uptodate if the current device is 527 * rebuilding or Faulty. This is because we cannot use 528 * such device for properly reading the data back (we could 529 * potentially use it, if the current write would have felt 530 * before rdev->recovery_offset, but for simplicity we don't 531 * check this here. 532 */ 533 if (test_bit(In_sync, &rdev->flags) && 534 !test_bit(Faulty, &rdev->flags)) 535 set_bit(R10BIO_Uptodate, &r10_bio->state); 536 537 /* Maybe we can clear some bad blocks. */ 538 if (is_badblock(rdev, 539 r10_bio->devs[slot].addr, 540 r10_bio->sectors, 541 &first_bad, &bad_sectors) && !discard_error) { 542 bio_put(bio); 543 if (repl) 544 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 545 else 546 r10_bio->devs[slot].bio = IO_MADE_GOOD; 547 dec_rdev = 0; 548 set_bit(R10BIO_MadeGood, &r10_bio->state); 549 } 550 } 551 552 /* 553 * 554 * Let's see if all mirrored write operations have finished 555 * already. 556 */ 557 one_write_done(r10_bio); 558 if (dec_rdev) 559 rdev_dec_pending(rdev, conf->mddev); 560 if (to_put) 561 bio_put(to_put); 562 } 563 564 /* 565 * RAID10 layout manager 566 * As well as the chunksize and raid_disks count, there are two 567 * parameters: near_copies and far_copies. 568 * near_copies * far_copies must be <= raid_disks. 569 * Normally one of these will be 1. 570 * If both are 1, we get raid0. 571 * If near_copies == raid_disks, we get raid1. 572 * 573 * Chunks are laid out in raid0 style with near_copies copies of the 574 * first chunk, followed by near_copies copies of the next chunk and 575 * so on. 576 * If far_copies > 1, then after 1/far_copies of the array has been assigned 577 * as described above, we start again with a device offset of near_copies. 578 * So we effectively have another copy of the whole array further down all 579 * the drives, but with blocks on different drives. 580 * With this layout, and block is never stored twice on the one device. 581 * 582 * raid10_find_phys finds the sector offset of a given virtual sector 583 * on each device that it is on. 584 * 585 * raid10_find_virt does the reverse mapping, from a device and a 586 * sector offset to a virtual address 587 */ 588 589 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 590 { 591 int n,f; 592 sector_t sector; 593 sector_t chunk; 594 sector_t stripe; 595 int dev; 596 int slot = 0; 597 int last_far_set_start, last_far_set_size; 598 599 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 600 last_far_set_start *= geo->far_set_size; 601 602 last_far_set_size = geo->far_set_size; 603 last_far_set_size += (geo->raid_disks % geo->far_set_size); 604 605 /* now calculate first sector/dev */ 606 chunk = r10bio->sector >> geo->chunk_shift; 607 sector = r10bio->sector & geo->chunk_mask; 608 609 chunk *= geo->near_copies; 610 stripe = chunk; 611 dev = sector_div(stripe, geo->raid_disks); 612 if (geo->far_offset) 613 stripe *= geo->far_copies; 614 615 sector += stripe << geo->chunk_shift; 616 617 /* and calculate all the others */ 618 for (n = 0; n < geo->near_copies; n++) { 619 int d = dev; 620 int set; 621 sector_t s = sector; 622 r10bio->devs[slot].devnum = d; 623 r10bio->devs[slot].addr = s; 624 slot++; 625 626 for (f = 1; f < geo->far_copies; f++) { 627 set = d / geo->far_set_size; 628 d += geo->near_copies; 629 630 if ((geo->raid_disks % geo->far_set_size) && 631 (d > last_far_set_start)) { 632 d -= last_far_set_start; 633 d %= last_far_set_size; 634 d += last_far_set_start; 635 } else { 636 d %= geo->far_set_size; 637 d += geo->far_set_size * set; 638 } 639 s += geo->stride; 640 r10bio->devs[slot].devnum = d; 641 r10bio->devs[slot].addr = s; 642 slot++; 643 } 644 dev++; 645 if (dev >= geo->raid_disks) { 646 dev = 0; 647 sector += (geo->chunk_mask + 1); 648 } 649 } 650 } 651 652 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 653 { 654 struct geom *geo = &conf->geo; 655 656 if (conf->reshape_progress != MaxSector && 657 ((r10bio->sector >= conf->reshape_progress) != 658 conf->mddev->reshape_backwards)) { 659 set_bit(R10BIO_Previous, &r10bio->state); 660 geo = &conf->prev; 661 } else 662 clear_bit(R10BIO_Previous, &r10bio->state); 663 664 __raid10_find_phys(geo, r10bio); 665 } 666 667 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 668 { 669 sector_t offset, chunk, vchunk; 670 /* Never use conf->prev as this is only called during resync 671 * or recovery, so reshape isn't happening 672 */ 673 struct geom *geo = &conf->geo; 674 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 675 int far_set_size = geo->far_set_size; 676 int last_far_set_start; 677 678 if (geo->raid_disks % geo->far_set_size) { 679 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 680 last_far_set_start *= geo->far_set_size; 681 682 if (dev >= last_far_set_start) { 683 far_set_size = geo->far_set_size; 684 far_set_size += (geo->raid_disks % geo->far_set_size); 685 far_set_start = last_far_set_start; 686 } 687 } 688 689 offset = sector & geo->chunk_mask; 690 if (geo->far_offset) { 691 int fc; 692 chunk = sector >> geo->chunk_shift; 693 fc = sector_div(chunk, geo->far_copies); 694 dev -= fc * geo->near_copies; 695 if (dev < far_set_start) 696 dev += far_set_size; 697 } else { 698 while (sector >= geo->stride) { 699 sector -= geo->stride; 700 if (dev < (geo->near_copies + far_set_start)) 701 dev += far_set_size - geo->near_copies; 702 else 703 dev -= geo->near_copies; 704 } 705 chunk = sector >> geo->chunk_shift; 706 } 707 vchunk = chunk * geo->raid_disks + dev; 708 sector_div(vchunk, geo->near_copies); 709 return (vchunk << geo->chunk_shift) + offset; 710 } 711 712 /* 713 * This routine returns the disk from which the requested read should 714 * be done. There is a per-array 'next expected sequential IO' sector 715 * number - if this matches on the next IO then we use the last disk. 716 * There is also a per-disk 'last know head position' sector that is 717 * maintained from IRQ contexts, both the normal and the resync IO 718 * completion handlers update this position correctly. If there is no 719 * perfect sequential match then we pick the disk whose head is closest. 720 * 721 * If there are 2 mirrors in the same 2 devices, performance degrades 722 * because position is mirror, not device based. 723 * 724 * The rdev for the device selected will have nr_pending incremented. 725 */ 726 727 /* 728 * FIXME: possibly should rethink readbalancing and do it differently 729 * depending on near_copies / far_copies geometry. 730 */ 731 static struct md_rdev *read_balance(struct r10conf *conf, 732 struct r10bio *r10_bio, 733 int *max_sectors) 734 { 735 const sector_t this_sector = r10_bio->sector; 736 int disk, slot; 737 int sectors = r10_bio->sectors; 738 int best_good_sectors; 739 sector_t new_distance, best_dist; 740 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 741 int do_balance; 742 int best_dist_slot, best_pending_slot; 743 bool has_nonrot_disk = false; 744 unsigned int min_pending; 745 struct geom *geo = &conf->geo; 746 747 raid10_find_phys(conf, r10_bio); 748 best_dist_slot = -1; 749 min_pending = UINT_MAX; 750 best_dist_rdev = NULL; 751 best_pending_rdev = NULL; 752 best_dist = MaxSector; 753 best_good_sectors = 0; 754 do_balance = 1; 755 clear_bit(R10BIO_FailFast, &r10_bio->state); 756 /* 757 * Check if we can balance. We can balance on the whole 758 * device if no resync is going on (recovery is ok), or below 759 * the resync window. We take the first readable disk when 760 * above the resync window. 761 */ 762 if ((conf->mddev->recovery_cp < MaxSector 763 && (this_sector + sectors >= conf->next_resync)) || 764 (mddev_is_clustered(conf->mddev) && 765 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 766 this_sector + sectors))) 767 do_balance = 0; 768 769 for (slot = 0; slot < conf->copies ; slot++) { 770 sector_t first_bad; 771 int bad_sectors; 772 sector_t dev_sector; 773 unsigned int pending; 774 bool nonrot; 775 776 if (r10_bio->devs[slot].bio == IO_BLOCKED) 777 continue; 778 disk = r10_bio->devs[slot].devnum; 779 rdev = conf->mirrors[disk].replacement; 780 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 781 r10_bio->devs[slot].addr + sectors > 782 rdev->recovery_offset) 783 rdev = conf->mirrors[disk].rdev; 784 if (rdev == NULL || 785 test_bit(Faulty, &rdev->flags)) 786 continue; 787 if (!test_bit(In_sync, &rdev->flags) && 788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 789 continue; 790 791 dev_sector = r10_bio->devs[slot].addr; 792 if (is_badblock(rdev, dev_sector, sectors, 793 &first_bad, &bad_sectors)) { 794 if (best_dist < MaxSector) 795 /* Already have a better slot */ 796 continue; 797 if (first_bad <= dev_sector) { 798 /* Cannot read here. If this is the 799 * 'primary' device, then we must not read 800 * beyond 'bad_sectors' from another device. 801 */ 802 bad_sectors -= (dev_sector - first_bad); 803 if (!do_balance && sectors > bad_sectors) 804 sectors = bad_sectors; 805 if (best_good_sectors > sectors) 806 best_good_sectors = sectors; 807 } else { 808 sector_t good_sectors = 809 first_bad - dev_sector; 810 if (good_sectors > best_good_sectors) { 811 best_good_sectors = good_sectors; 812 best_dist_slot = slot; 813 best_dist_rdev = rdev; 814 } 815 if (!do_balance) 816 /* Must read from here */ 817 break; 818 } 819 continue; 820 } else 821 best_good_sectors = sectors; 822 823 if (!do_balance) 824 break; 825 826 nonrot = bdev_nonrot(rdev->bdev); 827 has_nonrot_disk |= nonrot; 828 pending = atomic_read(&rdev->nr_pending); 829 if (min_pending > pending && nonrot) { 830 min_pending = pending; 831 best_pending_slot = slot; 832 best_pending_rdev = rdev; 833 } 834 835 if (best_dist_slot >= 0) 836 /* At least 2 disks to choose from so failfast is OK */ 837 set_bit(R10BIO_FailFast, &r10_bio->state); 838 /* This optimisation is debatable, and completely destroys 839 * sequential read speed for 'far copies' arrays. So only 840 * keep it for 'near' arrays, and review those later. 841 */ 842 if (geo->near_copies > 1 && !pending) 843 new_distance = 0; 844 845 /* for far > 1 always use the lowest address */ 846 else if (geo->far_copies > 1) 847 new_distance = r10_bio->devs[slot].addr; 848 else 849 new_distance = abs(r10_bio->devs[slot].addr - 850 conf->mirrors[disk].head_position); 851 852 if (new_distance < best_dist) { 853 best_dist = new_distance; 854 best_dist_slot = slot; 855 best_dist_rdev = rdev; 856 } 857 } 858 if (slot >= conf->copies) { 859 if (has_nonrot_disk) { 860 slot = best_pending_slot; 861 rdev = best_pending_rdev; 862 } else { 863 slot = best_dist_slot; 864 rdev = best_dist_rdev; 865 } 866 } 867 868 if (slot >= 0) { 869 atomic_inc(&rdev->nr_pending); 870 r10_bio->read_slot = slot; 871 } else 872 rdev = NULL; 873 *max_sectors = best_good_sectors; 874 875 return rdev; 876 } 877 878 static void flush_pending_writes(struct r10conf *conf) 879 { 880 /* Any writes that have been queued but are awaiting 881 * bitmap updates get flushed here. 882 */ 883 spin_lock_irq(&conf->device_lock); 884 885 if (conf->pending_bio_list.head) { 886 struct blk_plug plug; 887 struct bio *bio; 888 889 bio = bio_list_get(&conf->pending_bio_list); 890 spin_unlock_irq(&conf->device_lock); 891 892 /* 893 * As this is called in a wait_event() loop (see freeze_array), 894 * current->state might be TASK_UNINTERRUPTIBLE which will 895 * cause a warning when we prepare to wait again. As it is 896 * rare that this path is taken, it is perfectly safe to force 897 * us to go around the wait_event() loop again, so the warning 898 * is a false-positive. Silence the warning by resetting 899 * thread state 900 */ 901 __set_current_state(TASK_RUNNING); 902 903 blk_start_plug(&plug); 904 raid1_prepare_flush_writes(conf->mddev->bitmap); 905 wake_up(&conf->wait_barrier); 906 907 while (bio) { /* submit pending writes */ 908 struct bio *next = bio->bi_next; 909 910 raid1_submit_write(bio); 911 bio = next; 912 cond_resched(); 913 } 914 blk_finish_plug(&plug); 915 } else 916 spin_unlock_irq(&conf->device_lock); 917 } 918 919 /* Barriers.... 920 * Sometimes we need to suspend IO while we do something else, 921 * either some resync/recovery, or reconfigure the array. 922 * To do this we raise a 'barrier'. 923 * The 'barrier' is a counter that can be raised multiple times 924 * to count how many activities are happening which preclude 925 * normal IO. 926 * We can only raise the barrier if there is no pending IO. 927 * i.e. if nr_pending == 0. 928 * We choose only to raise the barrier if no-one is waiting for the 929 * barrier to go down. This means that as soon as an IO request 930 * is ready, no other operations which require a barrier will start 931 * until the IO request has had a chance. 932 * 933 * So: regular IO calls 'wait_barrier'. When that returns there 934 * is no backgroup IO happening, It must arrange to call 935 * allow_barrier when it has finished its IO. 936 * backgroup IO calls must call raise_barrier. Once that returns 937 * there is no normal IO happeing. It must arrange to call 938 * lower_barrier when the particular background IO completes. 939 */ 940 941 static void raise_barrier(struct r10conf *conf, int force) 942 { 943 write_seqlock_irq(&conf->resync_lock); 944 945 if (WARN_ON_ONCE(force && !conf->barrier)) 946 force = false; 947 948 /* Wait until no block IO is waiting (unless 'force') */ 949 wait_event_barrier(conf, force || !conf->nr_waiting); 950 951 /* block any new IO from starting */ 952 WRITE_ONCE(conf->barrier, conf->barrier + 1); 953 954 /* Now wait for all pending IO to complete */ 955 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && 956 conf->barrier < RESYNC_DEPTH); 957 958 write_sequnlock_irq(&conf->resync_lock); 959 } 960 961 static void lower_barrier(struct r10conf *conf) 962 { 963 unsigned long flags; 964 965 write_seqlock_irqsave(&conf->resync_lock, flags); 966 WRITE_ONCE(conf->barrier, conf->barrier - 1); 967 write_sequnlock_irqrestore(&conf->resync_lock, flags); 968 wake_up(&conf->wait_barrier); 969 } 970 971 static bool stop_waiting_barrier(struct r10conf *conf) 972 { 973 struct bio_list *bio_list = current->bio_list; 974 struct md_thread *thread; 975 976 /* barrier is dropped */ 977 if (!conf->barrier) 978 return true; 979 980 /* 981 * If there are already pending requests (preventing the barrier from 982 * rising completely), and the pre-process bio queue isn't empty, then 983 * don't wait, as we need to empty that queue to get the nr_pending 984 * count down. 985 */ 986 if (atomic_read(&conf->nr_pending) && bio_list && 987 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) 988 return true; 989 990 /* daemon thread must exist while handling io */ 991 thread = rcu_dereference_protected(conf->mddev->thread, true); 992 /* 993 * move on if io is issued from raid10d(), nr_pending is not released 994 * from original io(see handle_read_error()). All raise barrier is 995 * blocked until this io is done. 996 */ 997 if (thread->tsk == current) { 998 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); 999 return true; 1000 } 1001 1002 return false; 1003 } 1004 1005 static bool wait_barrier_nolock(struct r10conf *conf) 1006 { 1007 unsigned int seq = read_seqbegin(&conf->resync_lock); 1008 1009 if (READ_ONCE(conf->barrier)) 1010 return false; 1011 1012 atomic_inc(&conf->nr_pending); 1013 if (!read_seqretry(&conf->resync_lock, seq)) 1014 return true; 1015 1016 if (atomic_dec_and_test(&conf->nr_pending)) 1017 wake_up_barrier(conf); 1018 1019 return false; 1020 } 1021 1022 static bool wait_barrier(struct r10conf *conf, bool nowait) 1023 { 1024 bool ret = true; 1025 1026 if (wait_barrier_nolock(conf)) 1027 return true; 1028 1029 write_seqlock_irq(&conf->resync_lock); 1030 if (conf->barrier) { 1031 /* Return false when nowait flag is set */ 1032 if (nowait) { 1033 ret = false; 1034 } else { 1035 conf->nr_waiting++; 1036 raid10_log(conf->mddev, "wait barrier"); 1037 wait_event_barrier(conf, stop_waiting_barrier(conf)); 1038 conf->nr_waiting--; 1039 } 1040 if (!conf->nr_waiting) 1041 wake_up(&conf->wait_barrier); 1042 } 1043 /* Only increment nr_pending when we wait */ 1044 if (ret) 1045 atomic_inc(&conf->nr_pending); 1046 write_sequnlock_irq(&conf->resync_lock); 1047 return ret; 1048 } 1049 1050 static void allow_barrier(struct r10conf *conf) 1051 { 1052 if ((atomic_dec_and_test(&conf->nr_pending)) || 1053 (conf->array_freeze_pending)) 1054 wake_up_barrier(conf); 1055 } 1056 1057 static void freeze_array(struct r10conf *conf, int extra) 1058 { 1059 /* stop syncio and normal IO and wait for everything to 1060 * go quiet. 1061 * We increment barrier and nr_waiting, and then 1062 * wait until nr_pending match nr_queued+extra 1063 * This is called in the context of one normal IO request 1064 * that has failed. Thus any sync request that might be pending 1065 * will be blocked by nr_pending, and we need to wait for 1066 * pending IO requests to complete or be queued for re-try. 1067 * Thus the number queued (nr_queued) plus this request (extra) 1068 * must match the number of pending IOs (nr_pending) before 1069 * we continue. 1070 */ 1071 write_seqlock_irq(&conf->resync_lock); 1072 conf->array_freeze_pending++; 1073 WRITE_ONCE(conf->barrier, conf->barrier + 1); 1074 conf->nr_waiting++; 1075 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == 1076 conf->nr_queued + extra, flush_pending_writes(conf)); 1077 conf->array_freeze_pending--; 1078 write_sequnlock_irq(&conf->resync_lock); 1079 } 1080 1081 static void unfreeze_array(struct r10conf *conf) 1082 { 1083 /* reverse the effect of the freeze */ 1084 write_seqlock_irq(&conf->resync_lock); 1085 WRITE_ONCE(conf->barrier, conf->barrier - 1); 1086 conf->nr_waiting--; 1087 wake_up(&conf->wait_barrier); 1088 write_sequnlock_irq(&conf->resync_lock); 1089 } 1090 1091 static sector_t choose_data_offset(struct r10bio *r10_bio, 1092 struct md_rdev *rdev) 1093 { 1094 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1095 test_bit(R10BIO_Previous, &r10_bio->state)) 1096 return rdev->data_offset; 1097 else 1098 return rdev->new_data_offset; 1099 } 1100 1101 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1102 { 1103 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1104 struct mddev *mddev = plug->cb.data; 1105 struct r10conf *conf = mddev->private; 1106 struct bio *bio; 1107 1108 if (from_schedule) { 1109 spin_lock_irq(&conf->device_lock); 1110 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1111 spin_unlock_irq(&conf->device_lock); 1112 wake_up_barrier(conf); 1113 md_wakeup_thread(mddev->thread); 1114 kfree(plug); 1115 return; 1116 } 1117 1118 /* we aren't scheduling, so we can do the write-out directly. */ 1119 bio = bio_list_get(&plug->pending); 1120 raid1_prepare_flush_writes(mddev->bitmap); 1121 wake_up_barrier(conf); 1122 1123 while (bio) { /* submit pending writes */ 1124 struct bio *next = bio->bi_next; 1125 1126 raid1_submit_write(bio); 1127 bio = next; 1128 cond_resched(); 1129 } 1130 kfree(plug); 1131 } 1132 1133 /* 1134 * 1. Register the new request and wait if the reconstruction thread has put 1135 * up a bar for new requests. Continue immediately if no resync is active 1136 * currently. 1137 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1138 */ 1139 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1140 struct bio *bio, sector_t sectors) 1141 { 1142 /* Bail out if REQ_NOWAIT is set for the bio */ 1143 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1144 bio_wouldblock_error(bio); 1145 return false; 1146 } 1147 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1148 bio->bi_iter.bi_sector < conf->reshape_progress && 1149 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1150 allow_barrier(conf); 1151 if (bio->bi_opf & REQ_NOWAIT) { 1152 bio_wouldblock_error(bio); 1153 return false; 1154 } 1155 raid10_log(conf->mddev, "wait reshape"); 1156 wait_event(conf->wait_barrier, 1157 conf->reshape_progress <= bio->bi_iter.bi_sector || 1158 conf->reshape_progress >= bio->bi_iter.bi_sector + 1159 sectors); 1160 wait_barrier(conf, false); 1161 } 1162 return true; 1163 } 1164 1165 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1166 struct r10bio *r10_bio, bool io_accounting) 1167 { 1168 struct r10conf *conf = mddev->private; 1169 struct bio *read_bio; 1170 const enum req_op op = bio_op(bio); 1171 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1172 int max_sectors; 1173 struct md_rdev *rdev; 1174 char b[BDEVNAME_SIZE]; 1175 int slot = r10_bio->read_slot; 1176 struct md_rdev *err_rdev = NULL; 1177 gfp_t gfp = GFP_NOIO; 1178 1179 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1180 /* 1181 * This is an error retry, but we cannot 1182 * safely dereference the rdev in the r10_bio, 1183 * we must use the one in conf. 1184 * If it has already been disconnected (unlikely) 1185 * we lose the device name in error messages. 1186 */ 1187 int disk; 1188 /* 1189 * As we are blocking raid10, it is a little safer to 1190 * use __GFP_HIGH. 1191 */ 1192 gfp = GFP_NOIO | __GFP_HIGH; 1193 1194 disk = r10_bio->devs[slot].devnum; 1195 err_rdev = conf->mirrors[disk].rdev; 1196 if (err_rdev) 1197 snprintf(b, sizeof(b), "%pg", err_rdev->bdev); 1198 else { 1199 strcpy(b, "???"); 1200 /* This never gets dereferenced */ 1201 err_rdev = r10_bio->devs[slot].rdev; 1202 } 1203 } 1204 1205 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) 1206 return; 1207 rdev = read_balance(conf, r10_bio, &max_sectors); 1208 if (!rdev) { 1209 if (err_rdev) { 1210 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1211 mdname(mddev), b, 1212 (unsigned long long)r10_bio->sector); 1213 } 1214 raid_end_bio_io(r10_bio); 1215 return; 1216 } 1217 if (err_rdev) 1218 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", 1219 mdname(mddev), 1220 rdev->bdev, 1221 (unsigned long long)r10_bio->sector); 1222 if (max_sectors < bio_sectors(bio)) { 1223 struct bio *split = bio_split(bio, max_sectors, 1224 gfp, &conf->bio_split); 1225 bio_chain(split, bio); 1226 allow_barrier(conf); 1227 submit_bio_noacct(bio); 1228 wait_barrier(conf, false); 1229 bio = split; 1230 r10_bio->master_bio = bio; 1231 r10_bio->sectors = max_sectors; 1232 } 1233 slot = r10_bio->read_slot; 1234 1235 if (io_accounting) { 1236 md_account_bio(mddev, &bio); 1237 r10_bio->master_bio = bio; 1238 } 1239 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1240 1241 r10_bio->devs[slot].bio = read_bio; 1242 r10_bio->devs[slot].rdev = rdev; 1243 1244 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1245 choose_data_offset(r10_bio, rdev); 1246 read_bio->bi_end_io = raid10_end_read_request; 1247 read_bio->bi_opf = op | do_sync; 1248 if (test_bit(FailFast, &rdev->flags) && 1249 test_bit(R10BIO_FailFast, &r10_bio->state)) 1250 read_bio->bi_opf |= MD_FAILFAST; 1251 read_bio->bi_private = r10_bio; 1252 1253 if (mddev->gendisk) 1254 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1255 r10_bio->sector); 1256 submit_bio_noacct(read_bio); 1257 return; 1258 } 1259 1260 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1261 struct bio *bio, bool replacement, 1262 int n_copy) 1263 { 1264 const enum req_op op = bio_op(bio); 1265 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1266 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA; 1267 unsigned long flags; 1268 struct r10conf *conf = mddev->private; 1269 struct md_rdev *rdev; 1270 int devnum = r10_bio->devs[n_copy].devnum; 1271 struct bio *mbio; 1272 1273 rdev = replacement ? conf->mirrors[devnum].replacement : 1274 conf->mirrors[devnum].rdev; 1275 1276 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1277 if (replacement) 1278 r10_bio->devs[n_copy].repl_bio = mbio; 1279 else 1280 r10_bio->devs[n_copy].bio = mbio; 1281 1282 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1283 choose_data_offset(r10_bio, rdev)); 1284 mbio->bi_end_io = raid10_end_write_request; 1285 mbio->bi_opf = op | do_sync | do_fua; 1286 if (!replacement && test_bit(FailFast, 1287 &conf->mirrors[devnum].rdev->flags) 1288 && enough(conf, devnum)) 1289 mbio->bi_opf |= MD_FAILFAST; 1290 mbio->bi_private = r10_bio; 1291 1292 if (conf->mddev->gendisk) 1293 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk), 1294 r10_bio->sector); 1295 /* flush_pending_writes() needs access to the rdev so...*/ 1296 mbio->bi_bdev = (void *)rdev; 1297 1298 atomic_inc(&r10_bio->remaining); 1299 1300 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) { 1301 spin_lock_irqsave(&conf->device_lock, flags); 1302 bio_list_add(&conf->pending_bio_list, mbio); 1303 spin_unlock_irqrestore(&conf->device_lock, flags); 1304 md_wakeup_thread(mddev->thread); 1305 } 1306 } 1307 1308 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1309 { 1310 int i; 1311 struct r10conf *conf = mddev->private; 1312 struct md_rdev *blocked_rdev; 1313 1314 retry_wait: 1315 blocked_rdev = NULL; 1316 for (i = 0; i < conf->copies; i++) { 1317 struct md_rdev *rdev, *rrdev; 1318 1319 rdev = conf->mirrors[i].rdev; 1320 rrdev = conf->mirrors[i].replacement; 1321 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1322 atomic_inc(&rdev->nr_pending); 1323 blocked_rdev = rdev; 1324 break; 1325 } 1326 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1327 atomic_inc(&rrdev->nr_pending); 1328 blocked_rdev = rrdev; 1329 break; 1330 } 1331 1332 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1333 sector_t first_bad; 1334 sector_t dev_sector = r10_bio->devs[i].addr; 1335 int bad_sectors; 1336 int is_bad; 1337 1338 /* 1339 * Discard request doesn't care the write result 1340 * so it doesn't need to wait blocked disk here. 1341 */ 1342 if (!r10_bio->sectors) 1343 continue; 1344 1345 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors, 1346 &first_bad, &bad_sectors); 1347 if (is_bad < 0) { 1348 /* 1349 * Mustn't write here until the bad block 1350 * is acknowledged 1351 */ 1352 atomic_inc(&rdev->nr_pending); 1353 set_bit(BlockedBadBlocks, &rdev->flags); 1354 blocked_rdev = rdev; 1355 break; 1356 } 1357 } 1358 } 1359 1360 if (unlikely(blocked_rdev)) { 1361 /* Have to wait for this device to get unblocked, then retry */ 1362 allow_barrier(conf); 1363 raid10_log(conf->mddev, "%s wait rdev %d blocked", 1364 __func__, blocked_rdev->raid_disk); 1365 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1366 wait_barrier(conf, false); 1367 goto retry_wait; 1368 } 1369 } 1370 1371 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1372 struct r10bio *r10_bio) 1373 { 1374 struct r10conf *conf = mddev->private; 1375 int i; 1376 sector_t sectors; 1377 int max_sectors; 1378 1379 if ((mddev_is_clustered(mddev) && 1380 md_cluster_ops->area_resyncing(mddev, WRITE, 1381 bio->bi_iter.bi_sector, 1382 bio_end_sector(bio)))) { 1383 DEFINE_WAIT(w); 1384 /* Bail out if REQ_NOWAIT is set for the bio */ 1385 if (bio->bi_opf & REQ_NOWAIT) { 1386 bio_wouldblock_error(bio); 1387 return; 1388 } 1389 for (;;) { 1390 prepare_to_wait(&conf->wait_barrier, 1391 &w, TASK_IDLE); 1392 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1393 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1394 break; 1395 schedule(); 1396 } 1397 finish_wait(&conf->wait_barrier, &w); 1398 } 1399 1400 sectors = r10_bio->sectors; 1401 if (!regular_request_wait(mddev, conf, bio, sectors)) 1402 return; 1403 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1404 (mddev->reshape_backwards 1405 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1406 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1407 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1408 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1409 /* Need to update reshape_position in metadata */ 1410 mddev->reshape_position = conf->reshape_progress; 1411 set_mask_bits(&mddev->sb_flags, 0, 1412 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1413 md_wakeup_thread(mddev->thread); 1414 if (bio->bi_opf & REQ_NOWAIT) { 1415 allow_barrier(conf); 1416 bio_wouldblock_error(bio); 1417 return; 1418 } 1419 raid10_log(conf->mddev, "wait reshape metadata"); 1420 wait_event(mddev->sb_wait, 1421 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1422 1423 conf->reshape_safe = mddev->reshape_position; 1424 } 1425 1426 /* first select target devices under rcu_lock and 1427 * inc refcount on their rdev. Record them by setting 1428 * bios[x] to bio 1429 * If there are known/acknowledged bad blocks on any device 1430 * on which we have seen a write error, we want to avoid 1431 * writing to those blocks. This potentially requires several 1432 * writes to write around the bad blocks. Each set of writes 1433 * gets its own r10_bio with a set of bios attached. 1434 */ 1435 1436 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1437 raid10_find_phys(conf, r10_bio); 1438 1439 wait_blocked_dev(mddev, r10_bio); 1440 1441 max_sectors = r10_bio->sectors; 1442 1443 for (i = 0; i < conf->copies; i++) { 1444 int d = r10_bio->devs[i].devnum; 1445 struct md_rdev *rdev, *rrdev; 1446 1447 rdev = conf->mirrors[d].rdev; 1448 rrdev = conf->mirrors[d].replacement; 1449 if (rdev && (test_bit(Faulty, &rdev->flags))) 1450 rdev = NULL; 1451 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1452 rrdev = NULL; 1453 1454 r10_bio->devs[i].bio = NULL; 1455 r10_bio->devs[i].repl_bio = NULL; 1456 1457 if (!rdev && !rrdev) { 1458 set_bit(R10BIO_Degraded, &r10_bio->state); 1459 continue; 1460 } 1461 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1462 sector_t first_bad; 1463 sector_t dev_sector = r10_bio->devs[i].addr; 1464 int bad_sectors; 1465 int is_bad; 1466 1467 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1468 &first_bad, &bad_sectors); 1469 if (is_bad && first_bad <= dev_sector) { 1470 /* Cannot write here at all */ 1471 bad_sectors -= (dev_sector - first_bad); 1472 if (bad_sectors < max_sectors) 1473 /* Mustn't write more than bad_sectors 1474 * to other devices yet 1475 */ 1476 max_sectors = bad_sectors; 1477 /* We don't set R10BIO_Degraded as that 1478 * only applies if the disk is missing, 1479 * so it might be re-added, and we want to 1480 * know to recover this chunk. 1481 * In this case the device is here, and the 1482 * fact that this chunk is not in-sync is 1483 * recorded in the bad block log. 1484 */ 1485 continue; 1486 } 1487 if (is_bad) { 1488 int good_sectors = first_bad - dev_sector; 1489 if (good_sectors < max_sectors) 1490 max_sectors = good_sectors; 1491 } 1492 } 1493 if (rdev) { 1494 r10_bio->devs[i].bio = bio; 1495 atomic_inc(&rdev->nr_pending); 1496 } 1497 if (rrdev) { 1498 r10_bio->devs[i].repl_bio = bio; 1499 atomic_inc(&rrdev->nr_pending); 1500 } 1501 } 1502 1503 if (max_sectors < r10_bio->sectors) 1504 r10_bio->sectors = max_sectors; 1505 1506 if (r10_bio->sectors < bio_sectors(bio)) { 1507 struct bio *split = bio_split(bio, r10_bio->sectors, 1508 GFP_NOIO, &conf->bio_split); 1509 bio_chain(split, bio); 1510 allow_barrier(conf); 1511 submit_bio_noacct(bio); 1512 wait_barrier(conf, false); 1513 bio = split; 1514 r10_bio->master_bio = bio; 1515 } 1516 1517 md_account_bio(mddev, &bio); 1518 r10_bio->master_bio = bio; 1519 atomic_set(&r10_bio->remaining, 1); 1520 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1521 1522 for (i = 0; i < conf->copies; i++) { 1523 if (r10_bio->devs[i].bio) 1524 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1525 if (r10_bio->devs[i].repl_bio) 1526 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1527 } 1528 one_write_done(r10_bio); 1529 } 1530 1531 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1532 { 1533 struct r10conf *conf = mddev->private; 1534 struct r10bio *r10_bio; 1535 1536 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1537 1538 r10_bio->master_bio = bio; 1539 r10_bio->sectors = sectors; 1540 1541 r10_bio->mddev = mddev; 1542 r10_bio->sector = bio->bi_iter.bi_sector; 1543 r10_bio->state = 0; 1544 r10_bio->read_slot = -1; 1545 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1546 conf->geo.raid_disks); 1547 1548 if (bio_data_dir(bio) == READ) 1549 raid10_read_request(mddev, bio, r10_bio, true); 1550 else 1551 raid10_write_request(mddev, bio, r10_bio); 1552 } 1553 1554 static void raid_end_discard_bio(struct r10bio *r10bio) 1555 { 1556 struct r10conf *conf = r10bio->mddev->private; 1557 struct r10bio *first_r10bio; 1558 1559 while (atomic_dec_and_test(&r10bio->remaining)) { 1560 1561 allow_barrier(conf); 1562 1563 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1564 first_r10bio = (struct r10bio *)r10bio->master_bio; 1565 free_r10bio(r10bio); 1566 r10bio = first_r10bio; 1567 } else { 1568 md_write_end(r10bio->mddev); 1569 bio_endio(r10bio->master_bio); 1570 free_r10bio(r10bio); 1571 break; 1572 } 1573 } 1574 } 1575 1576 static void raid10_end_discard_request(struct bio *bio) 1577 { 1578 struct r10bio *r10_bio = bio->bi_private; 1579 struct r10conf *conf = r10_bio->mddev->private; 1580 struct md_rdev *rdev = NULL; 1581 int dev; 1582 int slot, repl; 1583 1584 /* 1585 * We don't care the return value of discard bio 1586 */ 1587 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1588 set_bit(R10BIO_Uptodate, &r10_bio->state); 1589 1590 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1591 rdev = repl ? conf->mirrors[dev].replacement : 1592 conf->mirrors[dev].rdev; 1593 1594 raid_end_discard_bio(r10_bio); 1595 rdev_dec_pending(rdev, conf->mddev); 1596 } 1597 1598 /* 1599 * There are some limitations to handle discard bio 1600 * 1st, the discard size is bigger than stripe_size*2. 1601 * 2st, if the discard bio spans reshape progress, we use the old way to 1602 * handle discard bio 1603 */ 1604 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1605 { 1606 struct r10conf *conf = mddev->private; 1607 struct geom *geo = &conf->geo; 1608 int far_copies = geo->far_copies; 1609 bool first_copy = true; 1610 struct r10bio *r10_bio, *first_r10bio; 1611 struct bio *split; 1612 int disk; 1613 sector_t chunk; 1614 unsigned int stripe_size; 1615 unsigned int stripe_data_disks; 1616 sector_t split_size; 1617 sector_t bio_start, bio_end; 1618 sector_t first_stripe_index, last_stripe_index; 1619 sector_t start_disk_offset; 1620 unsigned int start_disk_index; 1621 sector_t end_disk_offset; 1622 unsigned int end_disk_index; 1623 unsigned int remainder; 1624 1625 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1626 return -EAGAIN; 1627 1628 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) { 1629 bio_wouldblock_error(bio); 1630 return 0; 1631 } 1632 wait_barrier(conf, false); 1633 1634 /* 1635 * Check reshape again to avoid reshape happens after checking 1636 * MD_RECOVERY_RESHAPE and before wait_barrier 1637 */ 1638 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1639 goto out; 1640 1641 if (geo->near_copies) 1642 stripe_data_disks = geo->raid_disks / geo->near_copies + 1643 geo->raid_disks % geo->near_copies; 1644 else 1645 stripe_data_disks = geo->raid_disks; 1646 1647 stripe_size = stripe_data_disks << geo->chunk_shift; 1648 1649 bio_start = bio->bi_iter.bi_sector; 1650 bio_end = bio_end_sector(bio); 1651 1652 /* 1653 * Maybe one discard bio is smaller than strip size or across one 1654 * stripe and discard region is larger than one stripe size. For far 1655 * offset layout, if the discard region is not aligned with stripe 1656 * size, there is hole when we submit discard bio to member disk. 1657 * For simplicity, we only handle discard bio which discard region 1658 * is bigger than stripe_size * 2 1659 */ 1660 if (bio_sectors(bio) < stripe_size*2) 1661 goto out; 1662 1663 /* 1664 * Keep bio aligned with strip size. 1665 */ 1666 div_u64_rem(bio_start, stripe_size, &remainder); 1667 if (remainder) { 1668 split_size = stripe_size - remainder; 1669 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1670 bio_chain(split, bio); 1671 allow_barrier(conf); 1672 /* Resend the fist split part */ 1673 submit_bio_noacct(split); 1674 wait_barrier(conf, false); 1675 } 1676 div_u64_rem(bio_end, stripe_size, &remainder); 1677 if (remainder) { 1678 split_size = bio_sectors(bio) - remainder; 1679 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1680 bio_chain(split, bio); 1681 allow_barrier(conf); 1682 /* Resend the second split part */ 1683 submit_bio_noacct(bio); 1684 bio = split; 1685 wait_barrier(conf, false); 1686 } 1687 1688 bio_start = bio->bi_iter.bi_sector; 1689 bio_end = bio_end_sector(bio); 1690 1691 /* 1692 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1693 * One stripe contains the chunks from all member disk (one chunk from 1694 * one disk at the same HBA address). For layout detail, see 'man md 4' 1695 */ 1696 chunk = bio_start >> geo->chunk_shift; 1697 chunk *= geo->near_copies; 1698 first_stripe_index = chunk; 1699 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1700 if (geo->far_offset) 1701 first_stripe_index *= geo->far_copies; 1702 start_disk_offset = (bio_start & geo->chunk_mask) + 1703 (first_stripe_index << geo->chunk_shift); 1704 1705 chunk = bio_end >> geo->chunk_shift; 1706 chunk *= geo->near_copies; 1707 last_stripe_index = chunk; 1708 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1709 if (geo->far_offset) 1710 last_stripe_index *= geo->far_copies; 1711 end_disk_offset = (bio_end & geo->chunk_mask) + 1712 (last_stripe_index << geo->chunk_shift); 1713 1714 retry_discard: 1715 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1716 r10_bio->mddev = mddev; 1717 r10_bio->state = 0; 1718 r10_bio->sectors = 0; 1719 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1720 wait_blocked_dev(mddev, r10_bio); 1721 1722 /* 1723 * For far layout it needs more than one r10bio to cover all regions. 1724 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1725 * to record the discard bio. Other r10bio->master_bio record the first 1726 * r10bio. The first r10bio only release after all other r10bios finish. 1727 * The discard bio returns only first r10bio finishes 1728 */ 1729 if (first_copy) { 1730 r10_bio->master_bio = bio; 1731 set_bit(R10BIO_Discard, &r10_bio->state); 1732 first_copy = false; 1733 first_r10bio = r10_bio; 1734 } else 1735 r10_bio->master_bio = (struct bio *)first_r10bio; 1736 1737 /* 1738 * first select target devices under rcu_lock and 1739 * inc refcount on their rdev. Record them by setting 1740 * bios[x] to bio 1741 */ 1742 for (disk = 0; disk < geo->raid_disks; disk++) { 1743 struct md_rdev *rdev, *rrdev; 1744 1745 rdev = conf->mirrors[disk].rdev; 1746 rrdev = conf->mirrors[disk].replacement; 1747 r10_bio->devs[disk].bio = NULL; 1748 r10_bio->devs[disk].repl_bio = NULL; 1749 1750 if (rdev && (test_bit(Faulty, &rdev->flags))) 1751 rdev = NULL; 1752 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1753 rrdev = NULL; 1754 if (!rdev && !rrdev) 1755 continue; 1756 1757 if (rdev) { 1758 r10_bio->devs[disk].bio = bio; 1759 atomic_inc(&rdev->nr_pending); 1760 } 1761 if (rrdev) { 1762 r10_bio->devs[disk].repl_bio = bio; 1763 atomic_inc(&rrdev->nr_pending); 1764 } 1765 } 1766 1767 atomic_set(&r10_bio->remaining, 1); 1768 for (disk = 0; disk < geo->raid_disks; disk++) { 1769 sector_t dev_start, dev_end; 1770 struct bio *mbio, *rbio = NULL; 1771 1772 /* 1773 * Now start to calculate the start and end address for each disk. 1774 * The space between dev_start and dev_end is the discard region. 1775 * 1776 * For dev_start, it needs to consider three conditions: 1777 * 1st, the disk is before start_disk, you can imagine the disk in 1778 * the next stripe. So the dev_start is the start address of next 1779 * stripe. 1780 * 2st, the disk is after start_disk, it means the disk is at the 1781 * same stripe of first disk 1782 * 3st, the first disk itself, we can use start_disk_offset directly 1783 */ 1784 if (disk < start_disk_index) 1785 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1786 else if (disk > start_disk_index) 1787 dev_start = first_stripe_index * mddev->chunk_sectors; 1788 else 1789 dev_start = start_disk_offset; 1790 1791 if (disk < end_disk_index) 1792 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1793 else if (disk > end_disk_index) 1794 dev_end = last_stripe_index * mddev->chunk_sectors; 1795 else 1796 dev_end = end_disk_offset; 1797 1798 /* 1799 * It only handles discard bio which size is >= stripe size, so 1800 * dev_end > dev_start all the time. 1801 * It doesn't need to use rcu lock to get rdev here. We already 1802 * add rdev->nr_pending in the first loop. 1803 */ 1804 if (r10_bio->devs[disk].bio) { 1805 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1806 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1807 &mddev->bio_set); 1808 mbio->bi_end_io = raid10_end_discard_request; 1809 mbio->bi_private = r10_bio; 1810 r10_bio->devs[disk].bio = mbio; 1811 r10_bio->devs[disk].devnum = disk; 1812 atomic_inc(&r10_bio->remaining); 1813 md_submit_discard_bio(mddev, rdev, mbio, 1814 dev_start + choose_data_offset(r10_bio, rdev), 1815 dev_end - dev_start); 1816 bio_endio(mbio); 1817 } 1818 if (r10_bio->devs[disk].repl_bio) { 1819 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1820 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1821 &mddev->bio_set); 1822 rbio->bi_end_io = raid10_end_discard_request; 1823 rbio->bi_private = r10_bio; 1824 r10_bio->devs[disk].repl_bio = rbio; 1825 r10_bio->devs[disk].devnum = disk; 1826 atomic_inc(&r10_bio->remaining); 1827 md_submit_discard_bio(mddev, rrdev, rbio, 1828 dev_start + choose_data_offset(r10_bio, rrdev), 1829 dev_end - dev_start); 1830 bio_endio(rbio); 1831 } 1832 } 1833 1834 if (!geo->far_offset && --far_copies) { 1835 first_stripe_index += geo->stride >> geo->chunk_shift; 1836 start_disk_offset += geo->stride; 1837 last_stripe_index += geo->stride >> geo->chunk_shift; 1838 end_disk_offset += geo->stride; 1839 atomic_inc(&first_r10bio->remaining); 1840 raid_end_discard_bio(r10_bio); 1841 wait_barrier(conf, false); 1842 goto retry_discard; 1843 } 1844 1845 raid_end_discard_bio(r10_bio); 1846 1847 return 0; 1848 out: 1849 allow_barrier(conf); 1850 return -EAGAIN; 1851 } 1852 1853 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1854 { 1855 struct r10conf *conf = mddev->private; 1856 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1857 int chunk_sects = chunk_mask + 1; 1858 int sectors = bio_sectors(bio); 1859 1860 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1861 && md_flush_request(mddev, bio)) 1862 return true; 1863 1864 if (!md_write_start(mddev, bio)) 1865 return false; 1866 1867 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1868 if (!raid10_handle_discard(mddev, bio)) 1869 return true; 1870 1871 /* 1872 * If this request crosses a chunk boundary, we need to split 1873 * it. 1874 */ 1875 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1876 sectors > chunk_sects 1877 && (conf->geo.near_copies < conf->geo.raid_disks 1878 || conf->prev.near_copies < 1879 conf->prev.raid_disks))) 1880 sectors = chunk_sects - 1881 (bio->bi_iter.bi_sector & 1882 (chunk_sects - 1)); 1883 __make_request(mddev, bio, sectors); 1884 1885 /* In case raid10d snuck in to freeze_array */ 1886 wake_up_barrier(conf); 1887 return true; 1888 } 1889 1890 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1891 { 1892 struct r10conf *conf = mddev->private; 1893 int i; 1894 1895 lockdep_assert_held(&mddev->lock); 1896 1897 if (conf->geo.near_copies < conf->geo.raid_disks) 1898 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1899 if (conf->geo.near_copies > 1) 1900 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1901 if (conf->geo.far_copies > 1) { 1902 if (conf->geo.far_offset) 1903 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1904 else 1905 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1906 if (conf->geo.far_set_size != conf->geo.raid_disks) 1907 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1908 } 1909 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1910 conf->geo.raid_disks - mddev->degraded); 1911 for (i = 0; i < conf->geo.raid_disks; i++) { 1912 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1913 1914 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1915 } 1916 seq_printf(seq, "]"); 1917 } 1918 1919 /* check if there are enough drives for 1920 * every block to appear on atleast one. 1921 * Don't consider the device numbered 'ignore' 1922 * as we might be about to remove it. 1923 */ 1924 static int _enough(struct r10conf *conf, int previous, int ignore) 1925 { 1926 int first = 0; 1927 int has_enough = 0; 1928 int disks, ncopies; 1929 if (previous) { 1930 disks = conf->prev.raid_disks; 1931 ncopies = conf->prev.near_copies; 1932 } else { 1933 disks = conf->geo.raid_disks; 1934 ncopies = conf->geo.near_copies; 1935 } 1936 1937 do { 1938 int n = conf->copies; 1939 int cnt = 0; 1940 int this = first; 1941 while (n--) { 1942 struct md_rdev *rdev; 1943 if (this != ignore && 1944 (rdev = conf->mirrors[this].rdev) && 1945 test_bit(In_sync, &rdev->flags)) 1946 cnt++; 1947 this = (this+1) % disks; 1948 } 1949 if (cnt == 0) 1950 goto out; 1951 first = (first + ncopies) % disks; 1952 } while (first != 0); 1953 has_enough = 1; 1954 out: 1955 return has_enough; 1956 } 1957 1958 static int enough(struct r10conf *conf, int ignore) 1959 { 1960 /* when calling 'enough', both 'prev' and 'geo' must 1961 * be stable. 1962 * This is ensured if ->reconfig_mutex or ->device_lock 1963 * is held. 1964 */ 1965 return _enough(conf, 0, ignore) && 1966 _enough(conf, 1, ignore); 1967 } 1968 1969 /** 1970 * raid10_error() - RAID10 error handler. 1971 * @mddev: affected md device. 1972 * @rdev: member device to fail. 1973 * 1974 * The routine acknowledges &rdev failure and determines new @mddev state. 1975 * If it failed, then: 1976 * - &MD_BROKEN flag is set in &mddev->flags. 1977 * Otherwise, it must be degraded: 1978 * - recovery is interrupted. 1979 * - &mddev->degraded is bumped. 1980 * 1981 * @rdev is marked as &Faulty excluding case when array is failed and 1982 * &mddev->fail_last_dev is off. 1983 */ 1984 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1985 { 1986 struct r10conf *conf = mddev->private; 1987 unsigned long flags; 1988 1989 spin_lock_irqsave(&conf->device_lock, flags); 1990 1991 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { 1992 set_bit(MD_BROKEN, &mddev->flags); 1993 1994 if (!mddev->fail_last_dev) { 1995 spin_unlock_irqrestore(&conf->device_lock, flags); 1996 return; 1997 } 1998 } 1999 if (test_and_clear_bit(In_sync, &rdev->flags)) 2000 mddev->degraded++; 2001 2002 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2003 set_bit(Blocked, &rdev->flags); 2004 set_bit(Faulty, &rdev->flags); 2005 set_mask_bits(&mddev->sb_flags, 0, 2006 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2007 spin_unlock_irqrestore(&conf->device_lock, flags); 2008 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" 2009 "md/raid10:%s: Operation continuing on %d devices.\n", 2010 mdname(mddev), rdev->bdev, 2011 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 2012 } 2013 2014 static void print_conf(struct r10conf *conf) 2015 { 2016 int i; 2017 struct md_rdev *rdev; 2018 2019 pr_debug("RAID10 conf printout:\n"); 2020 if (!conf) { 2021 pr_debug("(!conf)\n"); 2022 return; 2023 } 2024 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2025 conf->geo.raid_disks); 2026 2027 lockdep_assert_held(&conf->mddev->reconfig_mutex); 2028 for (i = 0; i < conf->geo.raid_disks; i++) { 2029 rdev = conf->mirrors[i].rdev; 2030 if (rdev) 2031 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 2032 i, !test_bit(In_sync, &rdev->flags), 2033 !test_bit(Faulty, &rdev->flags), 2034 rdev->bdev); 2035 } 2036 } 2037 2038 static void close_sync(struct r10conf *conf) 2039 { 2040 wait_barrier(conf, false); 2041 allow_barrier(conf); 2042 2043 mempool_exit(&conf->r10buf_pool); 2044 } 2045 2046 static int raid10_spare_active(struct mddev *mddev) 2047 { 2048 int i; 2049 struct r10conf *conf = mddev->private; 2050 struct raid10_info *tmp; 2051 int count = 0; 2052 unsigned long flags; 2053 2054 /* 2055 * Find all non-in_sync disks within the RAID10 configuration 2056 * and mark them in_sync 2057 */ 2058 for (i = 0; i < conf->geo.raid_disks; i++) { 2059 tmp = conf->mirrors + i; 2060 if (tmp->replacement 2061 && tmp->replacement->recovery_offset == MaxSector 2062 && !test_bit(Faulty, &tmp->replacement->flags) 2063 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2064 /* Replacement has just become active */ 2065 if (!tmp->rdev 2066 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2067 count++; 2068 if (tmp->rdev) { 2069 /* Replaced device not technically faulty, 2070 * but we need to be sure it gets removed 2071 * and never re-added. 2072 */ 2073 set_bit(Faulty, &tmp->rdev->flags); 2074 sysfs_notify_dirent_safe( 2075 tmp->rdev->sysfs_state); 2076 } 2077 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2078 } else if (tmp->rdev 2079 && tmp->rdev->recovery_offset == MaxSector 2080 && !test_bit(Faulty, &tmp->rdev->flags) 2081 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2082 count++; 2083 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2084 } 2085 } 2086 spin_lock_irqsave(&conf->device_lock, flags); 2087 mddev->degraded -= count; 2088 spin_unlock_irqrestore(&conf->device_lock, flags); 2089 2090 print_conf(conf); 2091 return count; 2092 } 2093 2094 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2095 { 2096 struct r10conf *conf = mddev->private; 2097 int err = -EEXIST; 2098 int mirror, repl_slot = -1; 2099 int first = 0; 2100 int last = conf->geo.raid_disks - 1; 2101 struct raid10_info *p; 2102 2103 if (mddev->recovery_cp < MaxSector) 2104 /* only hot-add to in-sync arrays, as recovery is 2105 * very different from resync 2106 */ 2107 return -EBUSY; 2108 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2109 return -EINVAL; 2110 2111 if (md_integrity_add_rdev(rdev, mddev)) 2112 return -ENXIO; 2113 2114 if (rdev->raid_disk >= 0) 2115 first = last = rdev->raid_disk; 2116 2117 if (rdev->saved_raid_disk >= first && 2118 rdev->saved_raid_disk < conf->geo.raid_disks && 2119 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2120 mirror = rdev->saved_raid_disk; 2121 else 2122 mirror = first; 2123 for ( ; mirror <= last ; mirror++) { 2124 p = &conf->mirrors[mirror]; 2125 if (p->recovery_disabled == mddev->recovery_disabled) 2126 continue; 2127 if (p->rdev) { 2128 if (test_bit(WantReplacement, &p->rdev->flags) && 2129 p->replacement == NULL && repl_slot < 0) 2130 repl_slot = mirror; 2131 continue; 2132 } 2133 2134 if (mddev->gendisk) 2135 disk_stack_limits(mddev->gendisk, rdev->bdev, 2136 rdev->data_offset << 9); 2137 2138 p->head_position = 0; 2139 p->recovery_disabled = mddev->recovery_disabled - 1; 2140 rdev->raid_disk = mirror; 2141 err = 0; 2142 if (rdev->saved_raid_disk != mirror) 2143 conf->fullsync = 1; 2144 WRITE_ONCE(p->rdev, rdev); 2145 break; 2146 } 2147 2148 if (err && repl_slot >= 0) { 2149 p = &conf->mirrors[repl_slot]; 2150 clear_bit(In_sync, &rdev->flags); 2151 set_bit(Replacement, &rdev->flags); 2152 rdev->raid_disk = repl_slot; 2153 err = 0; 2154 if (mddev->gendisk) 2155 disk_stack_limits(mddev->gendisk, rdev->bdev, 2156 rdev->data_offset << 9); 2157 conf->fullsync = 1; 2158 WRITE_ONCE(p->replacement, rdev); 2159 } 2160 2161 print_conf(conf); 2162 return err; 2163 } 2164 2165 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2166 { 2167 struct r10conf *conf = mddev->private; 2168 int err = 0; 2169 int number = rdev->raid_disk; 2170 struct md_rdev **rdevp; 2171 struct raid10_info *p; 2172 2173 print_conf(conf); 2174 if (unlikely(number >= mddev->raid_disks)) 2175 return 0; 2176 p = conf->mirrors + number; 2177 if (rdev == p->rdev) 2178 rdevp = &p->rdev; 2179 else if (rdev == p->replacement) 2180 rdevp = &p->replacement; 2181 else 2182 return 0; 2183 2184 if (test_bit(In_sync, &rdev->flags) || 2185 atomic_read(&rdev->nr_pending)) { 2186 err = -EBUSY; 2187 goto abort; 2188 } 2189 /* Only remove non-faulty devices if recovery 2190 * is not possible. 2191 */ 2192 if (!test_bit(Faulty, &rdev->flags) && 2193 mddev->recovery_disabled != p->recovery_disabled && 2194 (!p->replacement || p->replacement == rdev) && 2195 number < conf->geo.raid_disks && 2196 enough(conf, -1)) { 2197 err = -EBUSY; 2198 goto abort; 2199 } 2200 WRITE_ONCE(*rdevp, NULL); 2201 if (p->replacement) { 2202 /* We must have just cleared 'rdev' */ 2203 WRITE_ONCE(p->rdev, p->replacement); 2204 clear_bit(Replacement, &p->replacement->flags); 2205 WRITE_ONCE(p->replacement, NULL); 2206 } 2207 2208 clear_bit(WantReplacement, &rdev->flags); 2209 err = md_integrity_register(mddev); 2210 2211 abort: 2212 2213 print_conf(conf); 2214 return err; 2215 } 2216 2217 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2218 { 2219 struct r10conf *conf = r10_bio->mddev->private; 2220 2221 if (!bio->bi_status) 2222 set_bit(R10BIO_Uptodate, &r10_bio->state); 2223 else 2224 /* The write handler will notice the lack of 2225 * R10BIO_Uptodate and record any errors etc 2226 */ 2227 atomic_add(r10_bio->sectors, 2228 &conf->mirrors[d].rdev->corrected_errors); 2229 2230 /* for reconstruct, we always reschedule after a read. 2231 * for resync, only after all reads 2232 */ 2233 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2234 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2235 atomic_dec_and_test(&r10_bio->remaining)) { 2236 /* we have read all the blocks, 2237 * do the comparison in process context in raid10d 2238 */ 2239 reschedule_retry(r10_bio); 2240 } 2241 } 2242 2243 static void end_sync_read(struct bio *bio) 2244 { 2245 struct r10bio *r10_bio = get_resync_r10bio(bio); 2246 struct r10conf *conf = r10_bio->mddev->private; 2247 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2248 2249 __end_sync_read(r10_bio, bio, d); 2250 } 2251 2252 static void end_reshape_read(struct bio *bio) 2253 { 2254 /* reshape read bio isn't allocated from r10buf_pool */ 2255 struct r10bio *r10_bio = bio->bi_private; 2256 2257 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2258 } 2259 2260 static void end_sync_request(struct r10bio *r10_bio) 2261 { 2262 struct mddev *mddev = r10_bio->mddev; 2263 2264 while (atomic_dec_and_test(&r10_bio->remaining)) { 2265 if (r10_bio->master_bio == NULL) { 2266 /* the primary of several recovery bios */ 2267 sector_t s = r10_bio->sectors; 2268 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2269 test_bit(R10BIO_WriteError, &r10_bio->state)) 2270 reschedule_retry(r10_bio); 2271 else 2272 put_buf(r10_bio); 2273 md_done_sync(mddev, s, 1); 2274 break; 2275 } else { 2276 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2277 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2278 test_bit(R10BIO_WriteError, &r10_bio->state)) 2279 reschedule_retry(r10_bio); 2280 else 2281 put_buf(r10_bio); 2282 r10_bio = r10_bio2; 2283 } 2284 } 2285 } 2286 2287 static void end_sync_write(struct bio *bio) 2288 { 2289 struct r10bio *r10_bio = get_resync_r10bio(bio); 2290 struct mddev *mddev = r10_bio->mddev; 2291 struct r10conf *conf = mddev->private; 2292 int d; 2293 sector_t first_bad; 2294 int bad_sectors; 2295 int slot; 2296 int repl; 2297 struct md_rdev *rdev = NULL; 2298 2299 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2300 if (repl) 2301 rdev = conf->mirrors[d].replacement; 2302 else 2303 rdev = conf->mirrors[d].rdev; 2304 2305 if (bio->bi_status) { 2306 if (repl) 2307 md_error(mddev, rdev); 2308 else { 2309 set_bit(WriteErrorSeen, &rdev->flags); 2310 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2311 set_bit(MD_RECOVERY_NEEDED, 2312 &rdev->mddev->recovery); 2313 set_bit(R10BIO_WriteError, &r10_bio->state); 2314 } 2315 } else if (is_badblock(rdev, 2316 r10_bio->devs[slot].addr, 2317 r10_bio->sectors, 2318 &first_bad, &bad_sectors)) 2319 set_bit(R10BIO_MadeGood, &r10_bio->state); 2320 2321 rdev_dec_pending(rdev, mddev); 2322 2323 end_sync_request(r10_bio); 2324 } 2325 2326 /* 2327 * Note: sync and recover and handled very differently for raid10 2328 * This code is for resync. 2329 * For resync, we read through virtual addresses and read all blocks. 2330 * If there is any error, we schedule a write. The lowest numbered 2331 * drive is authoritative. 2332 * However requests come for physical address, so we need to map. 2333 * For every physical address there are raid_disks/copies virtual addresses, 2334 * which is always are least one, but is not necessarly an integer. 2335 * This means that a physical address can span multiple chunks, so we may 2336 * have to submit multiple io requests for a single sync request. 2337 */ 2338 /* 2339 * We check if all blocks are in-sync and only write to blocks that 2340 * aren't in sync 2341 */ 2342 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2343 { 2344 struct r10conf *conf = mddev->private; 2345 int i, first; 2346 struct bio *tbio, *fbio; 2347 int vcnt; 2348 struct page **tpages, **fpages; 2349 2350 atomic_set(&r10_bio->remaining, 1); 2351 2352 /* find the first device with a block */ 2353 for (i=0; i<conf->copies; i++) 2354 if (!r10_bio->devs[i].bio->bi_status) 2355 break; 2356 2357 if (i == conf->copies) 2358 goto done; 2359 2360 first = i; 2361 fbio = r10_bio->devs[i].bio; 2362 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2363 fbio->bi_iter.bi_idx = 0; 2364 fpages = get_resync_pages(fbio)->pages; 2365 2366 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2367 /* now find blocks with errors */ 2368 for (i=0 ; i < conf->copies ; i++) { 2369 int j, d; 2370 struct md_rdev *rdev; 2371 struct resync_pages *rp; 2372 2373 tbio = r10_bio->devs[i].bio; 2374 2375 if (tbio->bi_end_io != end_sync_read) 2376 continue; 2377 if (i == first) 2378 continue; 2379 2380 tpages = get_resync_pages(tbio)->pages; 2381 d = r10_bio->devs[i].devnum; 2382 rdev = conf->mirrors[d].rdev; 2383 if (!r10_bio->devs[i].bio->bi_status) { 2384 /* We know that the bi_io_vec layout is the same for 2385 * both 'first' and 'i', so we just compare them. 2386 * All vec entries are PAGE_SIZE; 2387 */ 2388 int sectors = r10_bio->sectors; 2389 for (j = 0; j < vcnt; j++) { 2390 int len = PAGE_SIZE; 2391 if (sectors < (len / 512)) 2392 len = sectors * 512; 2393 if (memcmp(page_address(fpages[j]), 2394 page_address(tpages[j]), 2395 len)) 2396 break; 2397 sectors -= len/512; 2398 } 2399 if (j == vcnt) 2400 continue; 2401 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2402 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2403 /* Don't fix anything. */ 2404 continue; 2405 } else if (test_bit(FailFast, &rdev->flags)) { 2406 /* Just give up on this device */ 2407 md_error(rdev->mddev, rdev); 2408 continue; 2409 } 2410 /* Ok, we need to write this bio, either to correct an 2411 * inconsistency or to correct an unreadable block. 2412 * First we need to fixup bv_offset, bv_len and 2413 * bi_vecs, as the read request might have corrupted these 2414 */ 2415 rp = get_resync_pages(tbio); 2416 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2417 2418 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2419 2420 rp->raid_bio = r10_bio; 2421 tbio->bi_private = rp; 2422 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2423 tbio->bi_end_io = end_sync_write; 2424 2425 bio_copy_data(tbio, fbio); 2426 2427 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2428 atomic_inc(&r10_bio->remaining); 2429 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2430 2431 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2432 tbio->bi_opf |= MD_FAILFAST; 2433 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2434 submit_bio_noacct(tbio); 2435 } 2436 2437 /* Now write out to any replacement devices 2438 * that are active 2439 */ 2440 for (i = 0; i < conf->copies; i++) { 2441 int d; 2442 2443 tbio = r10_bio->devs[i].repl_bio; 2444 if (!tbio || !tbio->bi_end_io) 2445 continue; 2446 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2447 && r10_bio->devs[i].bio != fbio) 2448 bio_copy_data(tbio, fbio); 2449 d = r10_bio->devs[i].devnum; 2450 atomic_inc(&r10_bio->remaining); 2451 md_sync_acct(conf->mirrors[d].replacement->bdev, 2452 bio_sectors(tbio)); 2453 submit_bio_noacct(tbio); 2454 } 2455 2456 done: 2457 if (atomic_dec_and_test(&r10_bio->remaining)) { 2458 md_done_sync(mddev, r10_bio->sectors, 1); 2459 put_buf(r10_bio); 2460 } 2461 } 2462 2463 /* 2464 * Now for the recovery code. 2465 * Recovery happens across physical sectors. 2466 * We recover all non-is_sync drives by finding the virtual address of 2467 * each, and then choose a working drive that also has that virt address. 2468 * There is a separate r10_bio for each non-in_sync drive. 2469 * Only the first two slots are in use. The first for reading, 2470 * The second for writing. 2471 * 2472 */ 2473 static void fix_recovery_read_error(struct r10bio *r10_bio) 2474 { 2475 /* We got a read error during recovery. 2476 * We repeat the read in smaller page-sized sections. 2477 * If a read succeeds, write it to the new device or record 2478 * a bad block if we cannot. 2479 * If a read fails, record a bad block on both old and 2480 * new devices. 2481 */ 2482 struct mddev *mddev = r10_bio->mddev; 2483 struct r10conf *conf = mddev->private; 2484 struct bio *bio = r10_bio->devs[0].bio; 2485 sector_t sect = 0; 2486 int sectors = r10_bio->sectors; 2487 int idx = 0; 2488 int dr = r10_bio->devs[0].devnum; 2489 int dw = r10_bio->devs[1].devnum; 2490 struct page **pages = get_resync_pages(bio)->pages; 2491 2492 while (sectors) { 2493 int s = sectors; 2494 struct md_rdev *rdev; 2495 sector_t addr; 2496 int ok; 2497 2498 if (s > (PAGE_SIZE>>9)) 2499 s = PAGE_SIZE >> 9; 2500 2501 rdev = conf->mirrors[dr].rdev; 2502 addr = r10_bio->devs[0].addr + sect, 2503 ok = sync_page_io(rdev, 2504 addr, 2505 s << 9, 2506 pages[idx], 2507 REQ_OP_READ, false); 2508 if (ok) { 2509 rdev = conf->mirrors[dw].rdev; 2510 addr = r10_bio->devs[1].addr + sect; 2511 ok = sync_page_io(rdev, 2512 addr, 2513 s << 9, 2514 pages[idx], 2515 REQ_OP_WRITE, false); 2516 if (!ok) { 2517 set_bit(WriteErrorSeen, &rdev->flags); 2518 if (!test_and_set_bit(WantReplacement, 2519 &rdev->flags)) 2520 set_bit(MD_RECOVERY_NEEDED, 2521 &rdev->mddev->recovery); 2522 } 2523 } 2524 if (!ok) { 2525 /* We don't worry if we cannot set a bad block - 2526 * it really is bad so there is no loss in not 2527 * recording it yet 2528 */ 2529 rdev_set_badblocks(rdev, addr, s, 0); 2530 2531 if (rdev != conf->mirrors[dw].rdev) { 2532 /* need bad block on destination too */ 2533 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2534 addr = r10_bio->devs[1].addr + sect; 2535 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2536 if (!ok) { 2537 /* just abort the recovery */ 2538 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2539 mdname(mddev)); 2540 2541 conf->mirrors[dw].recovery_disabled 2542 = mddev->recovery_disabled; 2543 set_bit(MD_RECOVERY_INTR, 2544 &mddev->recovery); 2545 break; 2546 } 2547 } 2548 } 2549 2550 sectors -= s; 2551 sect += s; 2552 idx++; 2553 } 2554 } 2555 2556 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2557 { 2558 struct r10conf *conf = mddev->private; 2559 int d; 2560 struct bio *wbio = r10_bio->devs[1].bio; 2561 struct bio *wbio2 = r10_bio->devs[1].repl_bio; 2562 2563 /* Need to test wbio2->bi_end_io before we call 2564 * submit_bio_noacct as if the former is NULL, 2565 * the latter is free to free wbio2. 2566 */ 2567 if (wbio2 && !wbio2->bi_end_io) 2568 wbio2 = NULL; 2569 2570 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2571 fix_recovery_read_error(r10_bio); 2572 if (wbio->bi_end_io) 2573 end_sync_request(r10_bio); 2574 if (wbio2) 2575 end_sync_request(r10_bio); 2576 return; 2577 } 2578 2579 /* 2580 * share the pages with the first bio 2581 * and submit the write request 2582 */ 2583 d = r10_bio->devs[1].devnum; 2584 if (wbio->bi_end_io) { 2585 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2586 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2587 submit_bio_noacct(wbio); 2588 } 2589 if (wbio2) { 2590 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2591 md_sync_acct(conf->mirrors[d].replacement->bdev, 2592 bio_sectors(wbio2)); 2593 submit_bio_noacct(wbio2); 2594 } 2595 } 2596 2597 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2598 int sectors, struct page *page, enum req_op op) 2599 { 2600 sector_t first_bad; 2601 int bad_sectors; 2602 2603 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2604 && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) 2605 return -1; 2606 if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) 2607 /* success */ 2608 return 1; 2609 if (op == REQ_OP_WRITE) { 2610 set_bit(WriteErrorSeen, &rdev->flags); 2611 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2612 set_bit(MD_RECOVERY_NEEDED, 2613 &rdev->mddev->recovery); 2614 } 2615 /* need to record an error - either for the block or the device */ 2616 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2617 md_error(rdev->mddev, rdev); 2618 return 0; 2619 } 2620 2621 /* 2622 * This is a kernel thread which: 2623 * 2624 * 1. Retries failed read operations on working mirrors. 2625 * 2. Updates the raid superblock when problems encounter. 2626 * 3. Performs writes following reads for array synchronising. 2627 */ 2628 2629 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2630 { 2631 int sect = 0; /* Offset from r10_bio->sector */ 2632 int sectors = r10_bio->sectors, slot = r10_bio->read_slot; 2633 struct md_rdev *rdev; 2634 int d = r10_bio->devs[slot].devnum; 2635 2636 /* still own a reference to this rdev, so it cannot 2637 * have been cleared recently. 2638 */ 2639 rdev = conf->mirrors[d].rdev; 2640 2641 if (test_bit(Faulty, &rdev->flags)) 2642 /* drive has already been failed, just ignore any 2643 more fix_read_error() attempts */ 2644 return; 2645 2646 if (exceed_read_errors(mddev, rdev)) { 2647 r10_bio->devs[slot].bio = IO_BLOCKED; 2648 return; 2649 } 2650 2651 while(sectors) { 2652 int s = sectors; 2653 int sl = slot; 2654 int success = 0; 2655 int start; 2656 2657 if (s > (PAGE_SIZE>>9)) 2658 s = PAGE_SIZE >> 9; 2659 2660 do { 2661 sector_t first_bad; 2662 int bad_sectors; 2663 2664 d = r10_bio->devs[sl].devnum; 2665 rdev = conf->mirrors[d].rdev; 2666 if (rdev && 2667 test_bit(In_sync, &rdev->flags) && 2668 !test_bit(Faulty, &rdev->flags) && 2669 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2670 &first_bad, &bad_sectors) == 0) { 2671 atomic_inc(&rdev->nr_pending); 2672 success = sync_page_io(rdev, 2673 r10_bio->devs[sl].addr + 2674 sect, 2675 s<<9, 2676 conf->tmppage, 2677 REQ_OP_READ, false); 2678 rdev_dec_pending(rdev, mddev); 2679 if (success) 2680 break; 2681 } 2682 sl++; 2683 if (sl == conf->copies) 2684 sl = 0; 2685 } while (sl != slot); 2686 2687 if (!success) { 2688 /* Cannot read from anywhere, just mark the block 2689 * as bad on the first device to discourage future 2690 * reads. 2691 */ 2692 int dn = r10_bio->devs[slot].devnum; 2693 rdev = conf->mirrors[dn].rdev; 2694 2695 if (!rdev_set_badblocks( 2696 rdev, 2697 r10_bio->devs[slot].addr 2698 + sect, 2699 s, 0)) { 2700 md_error(mddev, rdev); 2701 r10_bio->devs[slot].bio 2702 = IO_BLOCKED; 2703 } 2704 break; 2705 } 2706 2707 start = sl; 2708 /* write it back and re-read */ 2709 while (sl != slot) { 2710 if (sl==0) 2711 sl = conf->copies; 2712 sl--; 2713 d = r10_bio->devs[sl].devnum; 2714 rdev = conf->mirrors[d].rdev; 2715 if (!rdev || 2716 test_bit(Faulty, &rdev->flags) || 2717 !test_bit(In_sync, &rdev->flags)) 2718 continue; 2719 2720 atomic_inc(&rdev->nr_pending); 2721 if (r10_sync_page_io(rdev, 2722 r10_bio->devs[sl].addr + 2723 sect, 2724 s, conf->tmppage, REQ_OP_WRITE) 2725 == 0) { 2726 /* Well, this device is dead */ 2727 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", 2728 mdname(mddev), s, 2729 (unsigned long long)( 2730 sect + 2731 choose_data_offset(r10_bio, 2732 rdev)), 2733 rdev->bdev); 2734 pr_notice("md/raid10:%s: %pg: failing drive\n", 2735 mdname(mddev), 2736 rdev->bdev); 2737 } 2738 rdev_dec_pending(rdev, mddev); 2739 } 2740 sl = start; 2741 while (sl != slot) { 2742 if (sl==0) 2743 sl = conf->copies; 2744 sl--; 2745 d = r10_bio->devs[sl].devnum; 2746 rdev = conf->mirrors[d].rdev; 2747 if (!rdev || 2748 test_bit(Faulty, &rdev->flags) || 2749 !test_bit(In_sync, &rdev->flags)) 2750 continue; 2751 2752 atomic_inc(&rdev->nr_pending); 2753 switch (r10_sync_page_io(rdev, 2754 r10_bio->devs[sl].addr + 2755 sect, 2756 s, conf->tmppage, REQ_OP_READ)) { 2757 case 0: 2758 /* Well, this device is dead */ 2759 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", 2760 mdname(mddev), s, 2761 (unsigned long long)( 2762 sect + 2763 choose_data_offset(r10_bio, rdev)), 2764 rdev->bdev); 2765 pr_notice("md/raid10:%s: %pg: failing drive\n", 2766 mdname(mddev), 2767 rdev->bdev); 2768 break; 2769 case 1: 2770 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", 2771 mdname(mddev), s, 2772 (unsigned long long)( 2773 sect + 2774 choose_data_offset(r10_bio, rdev)), 2775 rdev->bdev); 2776 atomic_add(s, &rdev->corrected_errors); 2777 } 2778 2779 rdev_dec_pending(rdev, mddev); 2780 } 2781 2782 sectors -= s; 2783 sect += s; 2784 } 2785 } 2786 2787 static int narrow_write_error(struct r10bio *r10_bio, int i) 2788 { 2789 struct bio *bio = r10_bio->master_bio; 2790 struct mddev *mddev = r10_bio->mddev; 2791 struct r10conf *conf = mddev->private; 2792 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2793 /* bio has the data to be written to slot 'i' where 2794 * we just recently had a write error. 2795 * We repeatedly clone the bio and trim down to one block, 2796 * then try the write. Where the write fails we record 2797 * a bad block. 2798 * It is conceivable that the bio doesn't exactly align with 2799 * blocks. We must handle this. 2800 * 2801 * We currently own a reference to the rdev. 2802 */ 2803 2804 int block_sectors; 2805 sector_t sector; 2806 int sectors; 2807 int sect_to_write = r10_bio->sectors; 2808 int ok = 1; 2809 2810 if (rdev->badblocks.shift < 0) 2811 return 0; 2812 2813 block_sectors = roundup(1 << rdev->badblocks.shift, 2814 bdev_logical_block_size(rdev->bdev) >> 9); 2815 sector = r10_bio->sector; 2816 sectors = ((r10_bio->sector + block_sectors) 2817 & ~(sector_t)(block_sectors - 1)) 2818 - sector; 2819 2820 while (sect_to_write) { 2821 struct bio *wbio; 2822 sector_t wsector; 2823 if (sectors > sect_to_write) 2824 sectors = sect_to_write; 2825 /* Write at 'sector' for 'sectors' */ 2826 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2827 &mddev->bio_set); 2828 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2829 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2830 wbio->bi_iter.bi_sector = wsector + 2831 choose_data_offset(r10_bio, rdev); 2832 wbio->bi_opf = REQ_OP_WRITE; 2833 2834 if (submit_bio_wait(wbio) < 0) 2835 /* Failure! */ 2836 ok = rdev_set_badblocks(rdev, wsector, 2837 sectors, 0) 2838 && ok; 2839 2840 bio_put(wbio); 2841 sect_to_write -= sectors; 2842 sector += sectors; 2843 sectors = block_sectors; 2844 } 2845 return ok; 2846 } 2847 2848 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2849 { 2850 int slot = r10_bio->read_slot; 2851 struct bio *bio; 2852 struct r10conf *conf = mddev->private; 2853 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2854 2855 /* we got a read error. Maybe the drive is bad. Maybe just 2856 * the block and we can fix it. 2857 * We freeze all other IO, and try reading the block from 2858 * other devices. When we find one, we re-write 2859 * and check it that fixes the read error. 2860 * This is all done synchronously while the array is 2861 * frozen. 2862 */ 2863 bio = r10_bio->devs[slot].bio; 2864 bio_put(bio); 2865 r10_bio->devs[slot].bio = NULL; 2866 2867 if (mddev->ro) 2868 r10_bio->devs[slot].bio = IO_BLOCKED; 2869 else if (!test_bit(FailFast, &rdev->flags)) { 2870 freeze_array(conf, 1); 2871 fix_read_error(conf, mddev, r10_bio); 2872 unfreeze_array(conf); 2873 } else 2874 md_error(mddev, rdev); 2875 2876 rdev_dec_pending(rdev, mddev); 2877 r10_bio->state = 0; 2878 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false); 2879 /* 2880 * allow_barrier after re-submit to ensure no sync io 2881 * can be issued while regular io pending. 2882 */ 2883 allow_barrier(conf); 2884 } 2885 2886 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2887 { 2888 /* Some sort of write request has finished and it 2889 * succeeded in writing where we thought there was a 2890 * bad block. So forget the bad block. 2891 * Or possibly if failed and we need to record 2892 * a bad block. 2893 */ 2894 int m; 2895 struct md_rdev *rdev; 2896 2897 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2898 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2899 for (m = 0; m < conf->copies; m++) { 2900 int dev = r10_bio->devs[m].devnum; 2901 rdev = conf->mirrors[dev].rdev; 2902 if (r10_bio->devs[m].bio == NULL || 2903 r10_bio->devs[m].bio->bi_end_io == NULL) 2904 continue; 2905 if (!r10_bio->devs[m].bio->bi_status) { 2906 rdev_clear_badblocks( 2907 rdev, 2908 r10_bio->devs[m].addr, 2909 r10_bio->sectors, 0); 2910 } else { 2911 if (!rdev_set_badblocks( 2912 rdev, 2913 r10_bio->devs[m].addr, 2914 r10_bio->sectors, 0)) 2915 md_error(conf->mddev, rdev); 2916 } 2917 rdev = conf->mirrors[dev].replacement; 2918 if (r10_bio->devs[m].repl_bio == NULL || 2919 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2920 continue; 2921 2922 if (!r10_bio->devs[m].repl_bio->bi_status) { 2923 rdev_clear_badblocks( 2924 rdev, 2925 r10_bio->devs[m].addr, 2926 r10_bio->sectors, 0); 2927 } else { 2928 if (!rdev_set_badblocks( 2929 rdev, 2930 r10_bio->devs[m].addr, 2931 r10_bio->sectors, 0)) 2932 md_error(conf->mddev, rdev); 2933 } 2934 } 2935 put_buf(r10_bio); 2936 } else { 2937 bool fail = false; 2938 for (m = 0; m < conf->copies; m++) { 2939 int dev = r10_bio->devs[m].devnum; 2940 struct bio *bio = r10_bio->devs[m].bio; 2941 rdev = conf->mirrors[dev].rdev; 2942 if (bio == IO_MADE_GOOD) { 2943 rdev_clear_badblocks( 2944 rdev, 2945 r10_bio->devs[m].addr, 2946 r10_bio->sectors, 0); 2947 rdev_dec_pending(rdev, conf->mddev); 2948 } else if (bio != NULL && bio->bi_status) { 2949 fail = true; 2950 if (!narrow_write_error(r10_bio, m)) { 2951 md_error(conf->mddev, rdev); 2952 set_bit(R10BIO_Degraded, 2953 &r10_bio->state); 2954 } 2955 rdev_dec_pending(rdev, conf->mddev); 2956 } 2957 bio = r10_bio->devs[m].repl_bio; 2958 rdev = conf->mirrors[dev].replacement; 2959 if (rdev && bio == IO_MADE_GOOD) { 2960 rdev_clear_badblocks( 2961 rdev, 2962 r10_bio->devs[m].addr, 2963 r10_bio->sectors, 0); 2964 rdev_dec_pending(rdev, conf->mddev); 2965 } 2966 } 2967 if (fail) { 2968 spin_lock_irq(&conf->device_lock); 2969 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2970 conf->nr_queued++; 2971 spin_unlock_irq(&conf->device_lock); 2972 /* 2973 * In case freeze_array() is waiting for condition 2974 * nr_pending == nr_queued + extra to be true. 2975 */ 2976 wake_up(&conf->wait_barrier); 2977 md_wakeup_thread(conf->mddev->thread); 2978 } else { 2979 if (test_bit(R10BIO_WriteError, 2980 &r10_bio->state)) 2981 close_write(r10_bio); 2982 raid_end_bio_io(r10_bio); 2983 } 2984 } 2985 } 2986 2987 static void raid10d(struct md_thread *thread) 2988 { 2989 struct mddev *mddev = thread->mddev; 2990 struct r10bio *r10_bio; 2991 unsigned long flags; 2992 struct r10conf *conf = mddev->private; 2993 struct list_head *head = &conf->retry_list; 2994 struct blk_plug plug; 2995 2996 md_check_recovery(mddev); 2997 2998 if (!list_empty_careful(&conf->bio_end_io_list) && 2999 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3000 LIST_HEAD(tmp); 3001 spin_lock_irqsave(&conf->device_lock, flags); 3002 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3003 while (!list_empty(&conf->bio_end_io_list)) { 3004 list_move(conf->bio_end_io_list.prev, &tmp); 3005 conf->nr_queued--; 3006 } 3007 } 3008 spin_unlock_irqrestore(&conf->device_lock, flags); 3009 while (!list_empty(&tmp)) { 3010 r10_bio = list_first_entry(&tmp, struct r10bio, 3011 retry_list); 3012 list_del(&r10_bio->retry_list); 3013 if (mddev->degraded) 3014 set_bit(R10BIO_Degraded, &r10_bio->state); 3015 3016 if (test_bit(R10BIO_WriteError, 3017 &r10_bio->state)) 3018 close_write(r10_bio); 3019 raid_end_bio_io(r10_bio); 3020 } 3021 } 3022 3023 blk_start_plug(&plug); 3024 for (;;) { 3025 3026 flush_pending_writes(conf); 3027 3028 spin_lock_irqsave(&conf->device_lock, flags); 3029 if (list_empty(head)) { 3030 spin_unlock_irqrestore(&conf->device_lock, flags); 3031 break; 3032 } 3033 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3034 list_del(head->prev); 3035 conf->nr_queued--; 3036 spin_unlock_irqrestore(&conf->device_lock, flags); 3037 3038 mddev = r10_bio->mddev; 3039 conf = mddev->private; 3040 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3041 test_bit(R10BIO_WriteError, &r10_bio->state)) 3042 handle_write_completed(conf, r10_bio); 3043 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3044 reshape_request_write(mddev, r10_bio); 3045 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3046 sync_request_write(mddev, r10_bio); 3047 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3048 recovery_request_write(mddev, r10_bio); 3049 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3050 handle_read_error(mddev, r10_bio); 3051 else 3052 WARN_ON_ONCE(1); 3053 3054 cond_resched(); 3055 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3056 md_check_recovery(mddev); 3057 } 3058 blk_finish_plug(&plug); 3059 } 3060 3061 static int init_resync(struct r10conf *conf) 3062 { 3063 int ret, buffs, i; 3064 3065 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3066 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3067 conf->have_replacement = 0; 3068 for (i = 0; i < conf->geo.raid_disks; i++) 3069 if (conf->mirrors[i].replacement) 3070 conf->have_replacement = 1; 3071 ret = mempool_init(&conf->r10buf_pool, buffs, 3072 r10buf_pool_alloc, r10buf_pool_free, conf); 3073 if (ret) 3074 return ret; 3075 conf->next_resync = 0; 3076 return 0; 3077 } 3078 3079 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3080 { 3081 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3082 struct rsync_pages *rp; 3083 struct bio *bio; 3084 int nalloc; 3085 int i; 3086 3087 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3088 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3089 nalloc = conf->copies; /* resync */ 3090 else 3091 nalloc = 2; /* recovery */ 3092 3093 for (i = 0; i < nalloc; i++) { 3094 bio = r10bio->devs[i].bio; 3095 rp = bio->bi_private; 3096 bio_reset(bio, NULL, 0); 3097 bio->bi_private = rp; 3098 bio = r10bio->devs[i].repl_bio; 3099 if (bio) { 3100 rp = bio->bi_private; 3101 bio_reset(bio, NULL, 0); 3102 bio->bi_private = rp; 3103 } 3104 } 3105 return r10bio; 3106 } 3107 3108 /* 3109 * Set cluster_sync_high since we need other nodes to add the 3110 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3111 */ 3112 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3113 { 3114 sector_t window_size; 3115 int extra_chunk, chunks; 3116 3117 /* 3118 * First, here we define "stripe" as a unit which across 3119 * all member devices one time, so we get chunks by use 3120 * raid_disks / near_copies. Otherwise, if near_copies is 3121 * close to raid_disks, then resync window could increases 3122 * linearly with the increase of raid_disks, which means 3123 * we will suspend a really large IO window while it is not 3124 * necessary. If raid_disks is not divisible by near_copies, 3125 * an extra chunk is needed to ensure the whole "stripe" is 3126 * covered. 3127 */ 3128 3129 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3130 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3131 extra_chunk = 0; 3132 else 3133 extra_chunk = 1; 3134 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3135 3136 /* 3137 * At least use a 32M window to align with raid1's resync window 3138 */ 3139 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3140 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3141 3142 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3143 } 3144 3145 /* 3146 * perform a "sync" on one "block" 3147 * 3148 * We need to make sure that no normal I/O request - particularly write 3149 * requests - conflict with active sync requests. 3150 * 3151 * This is achieved by tracking pending requests and a 'barrier' concept 3152 * that can be installed to exclude normal IO requests. 3153 * 3154 * Resync and recovery are handled very differently. 3155 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3156 * 3157 * For resync, we iterate over virtual addresses, read all copies, 3158 * and update if there are differences. If only one copy is live, 3159 * skip it. 3160 * For recovery, we iterate over physical addresses, read a good 3161 * value for each non-in_sync drive, and over-write. 3162 * 3163 * So, for recovery we may have several outstanding complex requests for a 3164 * given address, one for each out-of-sync device. We model this by allocating 3165 * a number of r10_bio structures, one for each out-of-sync device. 3166 * As we setup these structures, we collect all bio's together into a list 3167 * which we then process collectively to add pages, and then process again 3168 * to pass to submit_bio_noacct. 3169 * 3170 * The r10_bio structures are linked using a borrowed master_bio pointer. 3171 * This link is counted in ->remaining. When the r10_bio that points to NULL 3172 * has its remaining count decremented to 0, the whole complex operation 3173 * is complete. 3174 * 3175 */ 3176 3177 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3178 int *skipped) 3179 { 3180 struct r10conf *conf = mddev->private; 3181 struct r10bio *r10_bio; 3182 struct bio *biolist = NULL, *bio; 3183 sector_t max_sector, nr_sectors; 3184 int i; 3185 int max_sync; 3186 sector_t sync_blocks; 3187 sector_t sectors_skipped = 0; 3188 int chunks_skipped = 0; 3189 sector_t chunk_mask = conf->geo.chunk_mask; 3190 int page_idx = 0; 3191 int error_disk = -1; 3192 3193 /* 3194 * Allow skipping a full rebuild for incremental assembly 3195 * of a clean array, like RAID1 does. 3196 */ 3197 if (mddev->bitmap == NULL && 3198 mddev->recovery_cp == MaxSector && 3199 mddev->reshape_position == MaxSector && 3200 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3201 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3202 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3203 conf->fullsync == 0) { 3204 *skipped = 1; 3205 return mddev->dev_sectors - sector_nr; 3206 } 3207 3208 if (!mempool_initialized(&conf->r10buf_pool)) 3209 if (init_resync(conf)) 3210 return 0; 3211 3212 skipped: 3213 max_sector = mddev->dev_sectors; 3214 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 3215 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3216 max_sector = mddev->resync_max_sectors; 3217 if (sector_nr >= max_sector) { 3218 conf->cluster_sync_low = 0; 3219 conf->cluster_sync_high = 0; 3220 3221 /* If we aborted, we need to abort the 3222 * sync on the 'current' bitmap chucks (there can 3223 * be several when recovering multiple devices). 3224 * as we may have started syncing it but not finished. 3225 * We can find the current address in 3226 * mddev->curr_resync, but for recovery, 3227 * we need to convert that to several 3228 * virtual addresses. 3229 */ 3230 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3231 end_reshape(conf); 3232 close_sync(conf); 3233 return 0; 3234 } 3235 3236 if (mddev->curr_resync < max_sector) { /* aborted */ 3237 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3238 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3239 &sync_blocks, 1); 3240 else for (i = 0; i < conf->geo.raid_disks; i++) { 3241 sector_t sect = 3242 raid10_find_virt(conf, mddev->curr_resync, i); 3243 md_bitmap_end_sync(mddev->bitmap, sect, 3244 &sync_blocks, 1); 3245 } 3246 } else { 3247 /* completed sync */ 3248 if ((!mddev->bitmap || conf->fullsync) 3249 && conf->have_replacement 3250 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3251 /* Completed a full sync so the replacements 3252 * are now fully recovered. 3253 */ 3254 for (i = 0; i < conf->geo.raid_disks; i++) { 3255 struct md_rdev *rdev = 3256 conf->mirrors[i].replacement; 3257 3258 if (rdev) 3259 rdev->recovery_offset = MaxSector; 3260 } 3261 } 3262 conf->fullsync = 0; 3263 } 3264 md_bitmap_close_sync(mddev->bitmap); 3265 close_sync(conf); 3266 *skipped = 1; 3267 return sectors_skipped; 3268 } 3269 3270 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3271 return reshape_request(mddev, sector_nr, skipped); 3272 3273 if (chunks_skipped >= conf->geo.raid_disks) { 3274 pr_err("md/raid10:%s: %s fails\n", mdname(mddev), 3275 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"); 3276 if (error_disk >= 0 && 3277 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3278 /* 3279 * recovery fails, set mirrors.recovery_disabled, 3280 * device shouldn't be added to there. 3281 */ 3282 conf->mirrors[error_disk].recovery_disabled = 3283 mddev->recovery_disabled; 3284 return 0; 3285 } 3286 /* 3287 * if there has been nothing to do on any drive, 3288 * then there is nothing to do at all. 3289 */ 3290 *skipped = 1; 3291 return (max_sector - sector_nr) + sectors_skipped; 3292 } 3293 3294 if (max_sector > mddev->resync_max) 3295 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3296 3297 /* make sure whole request will fit in a chunk - if chunks 3298 * are meaningful 3299 */ 3300 if (conf->geo.near_copies < conf->geo.raid_disks && 3301 max_sector > (sector_nr | chunk_mask)) 3302 max_sector = (sector_nr | chunk_mask) + 1; 3303 3304 /* 3305 * If there is non-resync activity waiting for a turn, then let it 3306 * though before starting on this new sync request. 3307 */ 3308 if (conf->nr_waiting) 3309 schedule_timeout_uninterruptible(1); 3310 3311 /* Again, very different code for resync and recovery. 3312 * Both must result in an r10bio with a list of bios that 3313 * have bi_end_io, bi_sector, bi_bdev set, 3314 * and bi_private set to the r10bio. 3315 * For recovery, we may actually create several r10bios 3316 * with 2 bios in each, that correspond to the bios in the main one. 3317 * In this case, the subordinate r10bios link back through a 3318 * borrowed master_bio pointer, and the counter in the master 3319 * includes a ref from each subordinate. 3320 */ 3321 /* First, we decide what to do and set ->bi_end_io 3322 * To end_sync_read if we want to read, and 3323 * end_sync_write if we will want to write. 3324 */ 3325 3326 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3327 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3328 /* recovery... the complicated one */ 3329 int j; 3330 r10_bio = NULL; 3331 3332 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3333 int still_degraded; 3334 struct r10bio *rb2; 3335 sector_t sect; 3336 int must_sync; 3337 int any_working; 3338 struct raid10_info *mirror = &conf->mirrors[i]; 3339 struct md_rdev *mrdev, *mreplace; 3340 3341 mrdev = mirror->rdev; 3342 mreplace = mirror->replacement; 3343 3344 if (mrdev && (test_bit(Faulty, &mrdev->flags) || 3345 test_bit(In_sync, &mrdev->flags))) 3346 mrdev = NULL; 3347 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3348 mreplace = NULL; 3349 3350 if (!mrdev && !mreplace) 3351 continue; 3352 3353 still_degraded = 0; 3354 /* want to reconstruct this device */ 3355 rb2 = r10_bio; 3356 sect = raid10_find_virt(conf, sector_nr, i); 3357 if (sect >= mddev->resync_max_sectors) 3358 /* last stripe is not complete - don't 3359 * try to recover this sector. 3360 */ 3361 continue; 3362 /* Unless we are doing a full sync, or a replacement 3363 * we only need to recover the block if it is set in 3364 * the bitmap 3365 */ 3366 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3367 &sync_blocks, 1); 3368 if (sync_blocks < max_sync) 3369 max_sync = sync_blocks; 3370 if (!must_sync && 3371 mreplace == NULL && 3372 !conf->fullsync) { 3373 /* yep, skip the sync_blocks here, but don't assume 3374 * that there will never be anything to do here 3375 */ 3376 chunks_skipped = -1; 3377 continue; 3378 } 3379 if (mrdev) 3380 atomic_inc(&mrdev->nr_pending); 3381 if (mreplace) 3382 atomic_inc(&mreplace->nr_pending); 3383 3384 r10_bio = raid10_alloc_init_r10buf(conf); 3385 r10_bio->state = 0; 3386 raise_barrier(conf, rb2 != NULL); 3387 atomic_set(&r10_bio->remaining, 0); 3388 3389 r10_bio->master_bio = (struct bio*)rb2; 3390 if (rb2) 3391 atomic_inc(&rb2->remaining); 3392 r10_bio->mddev = mddev; 3393 set_bit(R10BIO_IsRecover, &r10_bio->state); 3394 r10_bio->sector = sect; 3395 3396 raid10_find_phys(conf, r10_bio); 3397 3398 /* Need to check if the array will still be 3399 * degraded 3400 */ 3401 for (j = 0; j < conf->geo.raid_disks; j++) { 3402 struct md_rdev *rdev = conf->mirrors[j].rdev; 3403 3404 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3405 still_degraded = 1; 3406 break; 3407 } 3408 } 3409 3410 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3411 &sync_blocks, still_degraded); 3412 3413 any_working = 0; 3414 for (j=0; j<conf->copies;j++) { 3415 int k; 3416 int d = r10_bio->devs[j].devnum; 3417 sector_t from_addr, to_addr; 3418 struct md_rdev *rdev = conf->mirrors[d].rdev; 3419 sector_t sector, first_bad; 3420 int bad_sectors; 3421 if (!rdev || 3422 !test_bit(In_sync, &rdev->flags)) 3423 continue; 3424 /* This is where we read from */ 3425 any_working = 1; 3426 sector = r10_bio->devs[j].addr; 3427 3428 if (is_badblock(rdev, sector, max_sync, 3429 &first_bad, &bad_sectors)) { 3430 if (first_bad > sector) 3431 max_sync = first_bad - sector; 3432 else { 3433 bad_sectors -= (sector 3434 - first_bad); 3435 if (max_sync > bad_sectors) 3436 max_sync = bad_sectors; 3437 continue; 3438 } 3439 } 3440 bio = r10_bio->devs[0].bio; 3441 bio->bi_next = biolist; 3442 biolist = bio; 3443 bio->bi_end_io = end_sync_read; 3444 bio->bi_opf = REQ_OP_READ; 3445 if (test_bit(FailFast, &rdev->flags)) 3446 bio->bi_opf |= MD_FAILFAST; 3447 from_addr = r10_bio->devs[j].addr; 3448 bio->bi_iter.bi_sector = from_addr + 3449 rdev->data_offset; 3450 bio_set_dev(bio, rdev->bdev); 3451 atomic_inc(&rdev->nr_pending); 3452 /* and we write to 'i' (if not in_sync) */ 3453 3454 for (k=0; k<conf->copies; k++) 3455 if (r10_bio->devs[k].devnum == i) 3456 break; 3457 BUG_ON(k == conf->copies); 3458 to_addr = r10_bio->devs[k].addr; 3459 r10_bio->devs[0].devnum = d; 3460 r10_bio->devs[0].addr = from_addr; 3461 r10_bio->devs[1].devnum = i; 3462 r10_bio->devs[1].addr = to_addr; 3463 3464 if (mrdev) { 3465 bio = r10_bio->devs[1].bio; 3466 bio->bi_next = biolist; 3467 biolist = bio; 3468 bio->bi_end_io = end_sync_write; 3469 bio->bi_opf = REQ_OP_WRITE; 3470 bio->bi_iter.bi_sector = to_addr 3471 + mrdev->data_offset; 3472 bio_set_dev(bio, mrdev->bdev); 3473 atomic_inc(&r10_bio->remaining); 3474 } else 3475 r10_bio->devs[1].bio->bi_end_io = NULL; 3476 3477 /* and maybe write to replacement */ 3478 bio = r10_bio->devs[1].repl_bio; 3479 if (bio) 3480 bio->bi_end_io = NULL; 3481 /* Note: if replace is not NULL, then bio 3482 * cannot be NULL as r10buf_pool_alloc will 3483 * have allocated it. 3484 */ 3485 if (!mreplace) 3486 break; 3487 bio->bi_next = biolist; 3488 biolist = bio; 3489 bio->bi_end_io = end_sync_write; 3490 bio->bi_opf = REQ_OP_WRITE; 3491 bio->bi_iter.bi_sector = to_addr + 3492 mreplace->data_offset; 3493 bio_set_dev(bio, mreplace->bdev); 3494 atomic_inc(&r10_bio->remaining); 3495 break; 3496 } 3497 if (j == conf->copies) { 3498 /* Cannot recover, so abort the recovery or 3499 * record a bad block */ 3500 if (any_working) { 3501 /* problem is that there are bad blocks 3502 * on other device(s) 3503 */ 3504 int k; 3505 for (k = 0; k < conf->copies; k++) 3506 if (r10_bio->devs[k].devnum == i) 3507 break; 3508 if (mrdev && !test_bit(In_sync, 3509 &mrdev->flags) 3510 && !rdev_set_badblocks( 3511 mrdev, 3512 r10_bio->devs[k].addr, 3513 max_sync, 0)) 3514 any_working = 0; 3515 if (mreplace && 3516 !rdev_set_badblocks( 3517 mreplace, 3518 r10_bio->devs[k].addr, 3519 max_sync, 0)) 3520 any_working = 0; 3521 } 3522 if (!any_working) { 3523 if (!test_and_set_bit(MD_RECOVERY_INTR, 3524 &mddev->recovery)) 3525 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3526 mdname(mddev)); 3527 mirror->recovery_disabled 3528 = mddev->recovery_disabled; 3529 } else { 3530 error_disk = i; 3531 } 3532 put_buf(r10_bio); 3533 if (rb2) 3534 atomic_dec(&rb2->remaining); 3535 r10_bio = rb2; 3536 if (mrdev) 3537 rdev_dec_pending(mrdev, mddev); 3538 if (mreplace) 3539 rdev_dec_pending(mreplace, mddev); 3540 break; 3541 } 3542 if (mrdev) 3543 rdev_dec_pending(mrdev, mddev); 3544 if (mreplace) 3545 rdev_dec_pending(mreplace, mddev); 3546 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3547 /* Only want this if there is elsewhere to 3548 * read from. 'j' is currently the first 3549 * readable copy. 3550 */ 3551 int targets = 1; 3552 for (; j < conf->copies; j++) { 3553 int d = r10_bio->devs[j].devnum; 3554 if (conf->mirrors[d].rdev && 3555 test_bit(In_sync, 3556 &conf->mirrors[d].rdev->flags)) 3557 targets++; 3558 } 3559 if (targets == 1) 3560 r10_bio->devs[0].bio->bi_opf 3561 &= ~MD_FAILFAST; 3562 } 3563 } 3564 if (biolist == NULL) { 3565 while (r10_bio) { 3566 struct r10bio *rb2 = r10_bio; 3567 r10_bio = (struct r10bio*) rb2->master_bio; 3568 rb2->master_bio = NULL; 3569 put_buf(rb2); 3570 } 3571 goto giveup; 3572 } 3573 } else { 3574 /* resync. Schedule a read for every block at this virt offset */ 3575 int count = 0; 3576 3577 /* 3578 * Since curr_resync_completed could probably not update in 3579 * time, and we will set cluster_sync_low based on it. 3580 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3581 * safety reason, which ensures curr_resync_completed is 3582 * updated in bitmap_cond_end_sync. 3583 */ 3584 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3585 mddev_is_clustered(mddev) && 3586 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3587 3588 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3589 &sync_blocks, mddev->degraded) && 3590 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3591 &mddev->recovery)) { 3592 /* We can skip this block */ 3593 *skipped = 1; 3594 return sync_blocks + sectors_skipped; 3595 } 3596 if (sync_blocks < max_sync) 3597 max_sync = sync_blocks; 3598 r10_bio = raid10_alloc_init_r10buf(conf); 3599 r10_bio->state = 0; 3600 3601 r10_bio->mddev = mddev; 3602 atomic_set(&r10_bio->remaining, 0); 3603 raise_barrier(conf, 0); 3604 conf->next_resync = sector_nr; 3605 3606 r10_bio->master_bio = NULL; 3607 r10_bio->sector = sector_nr; 3608 set_bit(R10BIO_IsSync, &r10_bio->state); 3609 raid10_find_phys(conf, r10_bio); 3610 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3611 3612 for (i = 0; i < conf->copies; i++) { 3613 int d = r10_bio->devs[i].devnum; 3614 sector_t first_bad, sector; 3615 int bad_sectors; 3616 struct md_rdev *rdev; 3617 3618 if (r10_bio->devs[i].repl_bio) 3619 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3620 3621 bio = r10_bio->devs[i].bio; 3622 bio->bi_status = BLK_STS_IOERR; 3623 rdev = conf->mirrors[d].rdev; 3624 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3625 continue; 3626 3627 sector = r10_bio->devs[i].addr; 3628 if (is_badblock(rdev, sector, max_sync, 3629 &first_bad, &bad_sectors)) { 3630 if (first_bad > sector) 3631 max_sync = first_bad - sector; 3632 else { 3633 bad_sectors -= (sector - first_bad); 3634 if (max_sync > bad_sectors) 3635 max_sync = bad_sectors; 3636 continue; 3637 } 3638 } 3639 atomic_inc(&rdev->nr_pending); 3640 atomic_inc(&r10_bio->remaining); 3641 bio->bi_next = biolist; 3642 biolist = bio; 3643 bio->bi_end_io = end_sync_read; 3644 bio->bi_opf = REQ_OP_READ; 3645 if (test_bit(FailFast, &rdev->flags)) 3646 bio->bi_opf |= MD_FAILFAST; 3647 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3648 bio_set_dev(bio, rdev->bdev); 3649 count++; 3650 3651 rdev = conf->mirrors[d].replacement; 3652 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3653 continue; 3654 3655 atomic_inc(&rdev->nr_pending); 3656 3657 /* Need to set up for writing to the replacement */ 3658 bio = r10_bio->devs[i].repl_bio; 3659 bio->bi_status = BLK_STS_IOERR; 3660 3661 sector = r10_bio->devs[i].addr; 3662 bio->bi_next = biolist; 3663 biolist = bio; 3664 bio->bi_end_io = end_sync_write; 3665 bio->bi_opf = REQ_OP_WRITE; 3666 if (test_bit(FailFast, &rdev->flags)) 3667 bio->bi_opf |= MD_FAILFAST; 3668 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3669 bio_set_dev(bio, rdev->bdev); 3670 count++; 3671 } 3672 3673 if (count < 2) { 3674 for (i=0; i<conf->copies; i++) { 3675 int d = r10_bio->devs[i].devnum; 3676 if (r10_bio->devs[i].bio->bi_end_io) 3677 rdev_dec_pending(conf->mirrors[d].rdev, 3678 mddev); 3679 if (r10_bio->devs[i].repl_bio && 3680 r10_bio->devs[i].repl_bio->bi_end_io) 3681 rdev_dec_pending( 3682 conf->mirrors[d].replacement, 3683 mddev); 3684 } 3685 put_buf(r10_bio); 3686 biolist = NULL; 3687 goto giveup; 3688 } 3689 } 3690 3691 nr_sectors = 0; 3692 if (sector_nr + max_sync < max_sector) 3693 max_sector = sector_nr + max_sync; 3694 do { 3695 struct page *page; 3696 int len = PAGE_SIZE; 3697 if (sector_nr + (len>>9) > max_sector) 3698 len = (max_sector - sector_nr) << 9; 3699 if (len == 0) 3700 break; 3701 for (bio= biolist ; bio ; bio=bio->bi_next) { 3702 struct resync_pages *rp = get_resync_pages(bio); 3703 page = resync_fetch_page(rp, page_idx); 3704 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 3705 bio->bi_status = BLK_STS_RESOURCE; 3706 bio_endio(bio); 3707 goto giveup; 3708 } 3709 } 3710 nr_sectors += len>>9; 3711 sector_nr += len>>9; 3712 } while (++page_idx < RESYNC_PAGES); 3713 r10_bio->sectors = nr_sectors; 3714 3715 if (mddev_is_clustered(mddev) && 3716 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3717 /* It is resync not recovery */ 3718 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3719 conf->cluster_sync_low = mddev->curr_resync_completed; 3720 raid10_set_cluster_sync_high(conf); 3721 /* Send resync message */ 3722 md_cluster_ops->resync_info_update(mddev, 3723 conf->cluster_sync_low, 3724 conf->cluster_sync_high); 3725 } 3726 } else if (mddev_is_clustered(mddev)) { 3727 /* This is recovery not resync */ 3728 sector_t sect_va1, sect_va2; 3729 bool broadcast_msg = false; 3730 3731 for (i = 0; i < conf->geo.raid_disks; i++) { 3732 /* 3733 * sector_nr is a device address for recovery, so we 3734 * need translate it to array address before compare 3735 * with cluster_sync_high. 3736 */ 3737 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3738 3739 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3740 broadcast_msg = true; 3741 /* 3742 * curr_resync_completed is similar as 3743 * sector_nr, so make the translation too. 3744 */ 3745 sect_va2 = raid10_find_virt(conf, 3746 mddev->curr_resync_completed, i); 3747 3748 if (conf->cluster_sync_low == 0 || 3749 conf->cluster_sync_low > sect_va2) 3750 conf->cluster_sync_low = sect_va2; 3751 } 3752 } 3753 if (broadcast_msg) { 3754 raid10_set_cluster_sync_high(conf); 3755 md_cluster_ops->resync_info_update(mddev, 3756 conf->cluster_sync_low, 3757 conf->cluster_sync_high); 3758 } 3759 } 3760 3761 while (biolist) { 3762 bio = biolist; 3763 biolist = biolist->bi_next; 3764 3765 bio->bi_next = NULL; 3766 r10_bio = get_resync_r10bio(bio); 3767 r10_bio->sectors = nr_sectors; 3768 3769 if (bio->bi_end_io == end_sync_read) { 3770 md_sync_acct_bio(bio, nr_sectors); 3771 bio->bi_status = 0; 3772 submit_bio_noacct(bio); 3773 } 3774 } 3775 3776 if (sectors_skipped) 3777 /* pretend they weren't skipped, it makes 3778 * no important difference in this case 3779 */ 3780 md_done_sync(mddev, sectors_skipped, 1); 3781 3782 return sectors_skipped + nr_sectors; 3783 giveup: 3784 /* There is nowhere to write, so all non-sync 3785 * drives must be failed or in resync, all drives 3786 * have a bad block, so try the next chunk... 3787 */ 3788 if (sector_nr + max_sync < max_sector) 3789 max_sector = sector_nr + max_sync; 3790 3791 sectors_skipped += (max_sector - sector_nr); 3792 chunks_skipped ++; 3793 sector_nr = max_sector; 3794 goto skipped; 3795 } 3796 3797 static sector_t 3798 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3799 { 3800 sector_t size; 3801 struct r10conf *conf = mddev->private; 3802 3803 if (!raid_disks) 3804 raid_disks = min(conf->geo.raid_disks, 3805 conf->prev.raid_disks); 3806 if (!sectors) 3807 sectors = conf->dev_sectors; 3808 3809 size = sectors >> conf->geo.chunk_shift; 3810 sector_div(size, conf->geo.far_copies); 3811 size = size * raid_disks; 3812 sector_div(size, conf->geo.near_copies); 3813 3814 return size << conf->geo.chunk_shift; 3815 } 3816 3817 static void calc_sectors(struct r10conf *conf, sector_t size) 3818 { 3819 /* Calculate the number of sectors-per-device that will 3820 * actually be used, and set conf->dev_sectors and 3821 * conf->stride 3822 */ 3823 3824 size = size >> conf->geo.chunk_shift; 3825 sector_div(size, conf->geo.far_copies); 3826 size = size * conf->geo.raid_disks; 3827 sector_div(size, conf->geo.near_copies); 3828 /* 'size' is now the number of chunks in the array */ 3829 /* calculate "used chunks per device" */ 3830 size = size * conf->copies; 3831 3832 /* We need to round up when dividing by raid_disks to 3833 * get the stride size. 3834 */ 3835 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3836 3837 conf->dev_sectors = size << conf->geo.chunk_shift; 3838 3839 if (conf->geo.far_offset) 3840 conf->geo.stride = 1 << conf->geo.chunk_shift; 3841 else { 3842 sector_div(size, conf->geo.far_copies); 3843 conf->geo.stride = size << conf->geo.chunk_shift; 3844 } 3845 } 3846 3847 enum geo_type {geo_new, geo_old, geo_start}; 3848 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3849 { 3850 int nc, fc, fo; 3851 int layout, chunk, disks; 3852 switch (new) { 3853 case geo_old: 3854 layout = mddev->layout; 3855 chunk = mddev->chunk_sectors; 3856 disks = mddev->raid_disks - mddev->delta_disks; 3857 break; 3858 case geo_new: 3859 layout = mddev->new_layout; 3860 chunk = mddev->new_chunk_sectors; 3861 disks = mddev->raid_disks; 3862 break; 3863 default: /* avoid 'may be unused' warnings */ 3864 case geo_start: /* new when starting reshape - raid_disks not 3865 * updated yet. */ 3866 layout = mddev->new_layout; 3867 chunk = mddev->new_chunk_sectors; 3868 disks = mddev->raid_disks + mddev->delta_disks; 3869 break; 3870 } 3871 if (layout >> 19) 3872 return -1; 3873 if (chunk < (PAGE_SIZE >> 9) || 3874 !is_power_of_2(chunk)) 3875 return -2; 3876 nc = layout & 255; 3877 fc = (layout >> 8) & 255; 3878 fo = layout & (1<<16); 3879 geo->raid_disks = disks; 3880 geo->near_copies = nc; 3881 geo->far_copies = fc; 3882 geo->far_offset = fo; 3883 switch (layout >> 17) { 3884 case 0: /* original layout. simple but not always optimal */ 3885 geo->far_set_size = disks; 3886 break; 3887 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3888 * actually using this, but leave code here just in case.*/ 3889 geo->far_set_size = disks/fc; 3890 WARN(geo->far_set_size < fc, 3891 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3892 break; 3893 case 2: /* "improved" layout fixed to match documentation */ 3894 geo->far_set_size = fc * nc; 3895 break; 3896 default: /* Not a valid layout */ 3897 return -1; 3898 } 3899 geo->chunk_mask = chunk - 1; 3900 geo->chunk_shift = ffz(~chunk); 3901 return nc*fc; 3902 } 3903 3904 static void raid10_free_conf(struct r10conf *conf) 3905 { 3906 if (!conf) 3907 return; 3908 3909 mempool_exit(&conf->r10bio_pool); 3910 kfree(conf->mirrors); 3911 kfree(conf->mirrors_old); 3912 kfree(conf->mirrors_new); 3913 safe_put_page(conf->tmppage); 3914 bioset_exit(&conf->bio_split); 3915 kfree(conf); 3916 } 3917 3918 static struct r10conf *setup_conf(struct mddev *mddev) 3919 { 3920 struct r10conf *conf = NULL; 3921 int err = -EINVAL; 3922 struct geom geo; 3923 int copies; 3924 3925 copies = setup_geo(&geo, mddev, geo_new); 3926 3927 if (copies == -2) { 3928 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3929 mdname(mddev), PAGE_SIZE); 3930 goto out; 3931 } 3932 3933 if (copies < 2 || copies > mddev->raid_disks) { 3934 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3935 mdname(mddev), mddev->new_layout); 3936 goto out; 3937 } 3938 3939 err = -ENOMEM; 3940 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3941 if (!conf) 3942 goto out; 3943 3944 /* FIXME calc properly */ 3945 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3946 sizeof(struct raid10_info), 3947 GFP_KERNEL); 3948 if (!conf->mirrors) 3949 goto out; 3950 3951 conf->tmppage = alloc_page(GFP_KERNEL); 3952 if (!conf->tmppage) 3953 goto out; 3954 3955 conf->geo = geo; 3956 conf->copies = copies; 3957 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3958 rbio_pool_free, conf); 3959 if (err) 3960 goto out; 3961 3962 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3963 if (err) 3964 goto out; 3965 3966 calc_sectors(conf, mddev->dev_sectors); 3967 if (mddev->reshape_position == MaxSector) { 3968 conf->prev = conf->geo; 3969 conf->reshape_progress = MaxSector; 3970 } else { 3971 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3972 err = -EINVAL; 3973 goto out; 3974 } 3975 conf->reshape_progress = mddev->reshape_position; 3976 if (conf->prev.far_offset) 3977 conf->prev.stride = 1 << conf->prev.chunk_shift; 3978 else 3979 /* far_copies must be 1 */ 3980 conf->prev.stride = conf->dev_sectors; 3981 } 3982 conf->reshape_safe = conf->reshape_progress; 3983 spin_lock_init(&conf->device_lock); 3984 INIT_LIST_HEAD(&conf->retry_list); 3985 INIT_LIST_HEAD(&conf->bio_end_io_list); 3986 3987 seqlock_init(&conf->resync_lock); 3988 init_waitqueue_head(&conf->wait_barrier); 3989 atomic_set(&conf->nr_pending, 0); 3990 3991 err = -ENOMEM; 3992 rcu_assign_pointer(conf->thread, 3993 md_register_thread(raid10d, mddev, "raid10")); 3994 if (!conf->thread) 3995 goto out; 3996 3997 conf->mddev = mddev; 3998 return conf; 3999 4000 out: 4001 raid10_free_conf(conf); 4002 return ERR_PTR(err); 4003 } 4004 4005 static void raid10_set_io_opt(struct r10conf *conf) 4006 { 4007 int raid_disks = conf->geo.raid_disks; 4008 4009 if (!(conf->geo.raid_disks % conf->geo.near_copies)) 4010 raid_disks /= conf->geo.near_copies; 4011 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) * 4012 raid_disks); 4013 } 4014 4015 static int raid10_run(struct mddev *mddev) 4016 { 4017 struct r10conf *conf; 4018 int i, disk_idx; 4019 struct raid10_info *disk; 4020 struct md_rdev *rdev; 4021 sector_t size; 4022 sector_t min_offset_diff = 0; 4023 int first = 1; 4024 4025 if (mddev->private == NULL) { 4026 conf = setup_conf(mddev); 4027 if (IS_ERR(conf)) 4028 return PTR_ERR(conf); 4029 mddev->private = conf; 4030 } 4031 conf = mddev->private; 4032 if (!conf) 4033 goto out; 4034 4035 rcu_assign_pointer(mddev->thread, conf->thread); 4036 rcu_assign_pointer(conf->thread, NULL); 4037 4038 if (mddev_is_clustered(conf->mddev)) { 4039 int fc, fo; 4040 4041 fc = (mddev->layout >> 8) & 255; 4042 fo = mddev->layout & (1<<16); 4043 if (fc > 1 || fo > 0) { 4044 pr_err("only near layout is supported by clustered" 4045 " raid10\n"); 4046 goto out_free_conf; 4047 } 4048 } 4049 4050 if (mddev->queue) { 4051 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 4052 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9); 4053 raid10_set_io_opt(conf); 4054 } 4055 4056 rdev_for_each(rdev, mddev) { 4057 long long diff; 4058 4059 disk_idx = rdev->raid_disk; 4060 if (disk_idx < 0) 4061 continue; 4062 if (disk_idx >= conf->geo.raid_disks && 4063 disk_idx >= conf->prev.raid_disks) 4064 continue; 4065 disk = conf->mirrors + disk_idx; 4066 4067 if (test_bit(Replacement, &rdev->flags)) { 4068 if (disk->replacement) 4069 goto out_free_conf; 4070 disk->replacement = rdev; 4071 } else { 4072 if (disk->rdev) 4073 goto out_free_conf; 4074 disk->rdev = rdev; 4075 } 4076 diff = (rdev->new_data_offset - rdev->data_offset); 4077 if (!mddev->reshape_backwards) 4078 diff = -diff; 4079 if (diff < 0) 4080 diff = 0; 4081 if (first || diff < min_offset_diff) 4082 min_offset_diff = diff; 4083 4084 if (mddev->gendisk) 4085 disk_stack_limits(mddev->gendisk, rdev->bdev, 4086 rdev->data_offset << 9); 4087 4088 disk->head_position = 0; 4089 first = 0; 4090 } 4091 4092 /* need to check that every block has at least one working mirror */ 4093 if (!enough(conf, -1)) { 4094 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4095 mdname(mddev)); 4096 goto out_free_conf; 4097 } 4098 4099 if (conf->reshape_progress != MaxSector) { 4100 /* must ensure that shape change is supported */ 4101 if (conf->geo.far_copies != 1 && 4102 conf->geo.far_offset == 0) 4103 goto out_free_conf; 4104 if (conf->prev.far_copies != 1 && 4105 conf->prev.far_offset == 0) 4106 goto out_free_conf; 4107 } 4108 4109 mddev->degraded = 0; 4110 for (i = 0; 4111 i < conf->geo.raid_disks 4112 || i < conf->prev.raid_disks; 4113 i++) { 4114 4115 disk = conf->mirrors + i; 4116 4117 if (!disk->rdev && disk->replacement) { 4118 /* The replacement is all we have - use it */ 4119 disk->rdev = disk->replacement; 4120 disk->replacement = NULL; 4121 clear_bit(Replacement, &disk->rdev->flags); 4122 } 4123 4124 if (!disk->rdev || 4125 !test_bit(In_sync, &disk->rdev->flags)) { 4126 disk->head_position = 0; 4127 mddev->degraded++; 4128 if (disk->rdev && 4129 disk->rdev->saved_raid_disk < 0) 4130 conf->fullsync = 1; 4131 } 4132 4133 if (disk->replacement && 4134 !test_bit(In_sync, &disk->replacement->flags) && 4135 disk->replacement->saved_raid_disk < 0) { 4136 conf->fullsync = 1; 4137 } 4138 4139 disk->recovery_disabled = mddev->recovery_disabled - 1; 4140 } 4141 4142 if (mddev->recovery_cp != MaxSector) 4143 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4144 mdname(mddev)); 4145 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4146 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4147 conf->geo.raid_disks); 4148 /* 4149 * Ok, everything is just fine now 4150 */ 4151 mddev->dev_sectors = conf->dev_sectors; 4152 size = raid10_size(mddev, 0, 0); 4153 md_set_array_sectors(mddev, size); 4154 mddev->resync_max_sectors = size; 4155 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4156 4157 if (md_integrity_register(mddev)) 4158 goto out_free_conf; 4159 4160 if (conf->reshape_progress != MaxSector) { 4161 unsigned long before_length, after_length; 4162 4163 before_length = ((1 << conf->prev.chunk_shift) * 4164 conf->prev.far_copies); 4165 after_length = ((1 << conf->geo.chunk_shift) * 4166 conf->geo.far_copies); 4167 4168 if (max(before_length, after_length) > min_offset_diff) { 4169 /* This cannot work */ 4170 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4171 goto out_free_conf; 4172 } 4173 conf->offset_diff = min_offset_diff; 4174 4175 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4176 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4177 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4178 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4179 } 4180 4181 return 0; 4182 4183 out_free_conf: 4184 md_unregister_thread(mddev, &mddev->thread); 4185 raid10_free_conf(conf); 4186 mddev->private = NULL; 4187 out: 4188 return -EIO; 4189 } 4190 4191 static void raid10_free(struct mddev *mddev, void *priv) 4192 { 4193 raid10_free_conf(priv); 4194 } 4195 4196 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4197 { 4198 struct r10conf *conf = mddev->private; 4199 4200 if (quiesce) 4201 raise_barrier(conf, 0); 4202 else 4203 lower_barrier(conf); 4204 } 4205 4206 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4207 { 4208 /* Resize of 'far' arrays is not supported. 4209 * For 'near' and 'offset' arrays we can set the 4210 * number of sectors used to be an appropriate multiple 4211 * of the chunk size. 4212 * For 'offset', this is far_copies*chunksize. 4213 * For 'near' the multiplier is the LCM of 4214 * near_copies and raid_disks. 4215 * So if far_copies > 1 && !far_offset, fail. 4216 * Else find LCM(raid_disks, near_copy)*far_copies and 4217 * multiply by chunk_size. Then round to this number. 4218 * This is mostly done by raid10_size() 4219 */ 4220 struct r10conf *conf = mddev->private; 4221 sector_t oldsize, size; 4222 4223 if (mddev->reshape_position != MaxSector) 4224 return -EBUSY; 4225 4226 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4227 return -EINVAL; 4228 4229 oldsize = raid10_size(mddev, 0, 0); 4230 size = raid10_size(mddev, sectors, 0); 4231 if (mddev->external_size && 4232 mddev->array_sectors > size) 4233 return -EINVAL; 4234 if (mddev->bitmap) { 4235 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4236 if (ret) 4237 return ret; 4238 } 4239 md_set_array_sectors(mddev, size); 4240 if (sectors > mddev->dev_sectors && 4241 mddev->recovery_cp > oldsize) { 4242 mddev->recovery_cp = oldsize; 4243 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4244 } 4245 calc_sectors(conf, sectors); 4246 mddev->dev_sectors = conf->dev_sectors; 4247 mddev->resync_max_sectors = size; 4248 return 0; 4249 } 4250 4251 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4252 { 4253 struct md_rdev *rdev; 4254 struct r10conf *conf; 4255 4256 if (mddev->degraded > 0) { 4257 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4258 mdname(mddev)); 4259 return ERR_PTR(-EINVAL); 4260 } 4261 sector_div(size, devs); 4262 4263 /* Set new parameters */ 4264 mddev->new_level = 10; 4265 /* new layout: far_copies = 1, near_copies = 2 */ 4266 mddev->new_layout = (1<<8) + 2; 4267 mddev->new_chunk_sectors = mddev->chunk_sectors; 4268 mddev->delta_disks = mddev->raid_disks; 4269 mddev->raid_disks *= 2; 4270 /* make sure it will be not marked as dirty */ 4271 mddev->recovery_cp = MaxSector; 4272 mddev->dev_sectors = size; 4273 4274 conf = setup_conf(mddev); 4275 if (!IS_ERR(conf)) { 4276 rdev_for_each(rdev, mddev) 4277 if (rdev->raid_disk >= 0) { 4278 rdev->new_raid_disk = rdev->raid_disk * 2; 4279 rdev->sectors = size; 4280 } 4281 } 4282 4283 return conf; 4284 } 4285 4286 static void *raid10_takeover(struct mddev *mddev) 4287 { 4288 struct r0conf *raid0_conf; 4289 4290 /* raid10 can take over: 4291 * raid0 - providing it has only two drives 4292 */ 4293 if (mddev->level == 0) { 4294 /* for raid0 takeover only one zone is supported */ 4295 raid0_conf = mddev->private; 4296 if (raid0_conf->nr_strip_zones > 1) { 4297 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4298 mdname(mddev)); 4299 return ERR_PTR(-EINVAL); 4300 } 4301 return raid10_takeover_raid0(mddev, 4302 raid0_conf->strip_zone->zone_end, 4303 raid0_conf->strip_zone->nb_dev); 4304 } 4305 return ERR_PTR(-EINVAL); 4306 } 4307 4308 static int raid10_check_reshape(struct mddev *mddev) 4309 { 4310 /* Called when there is a request to change 4311 * - layout (to ->new_layout) 4312 * - chunk size (to ->new_chunk_sectors) 4313 * - raid_disks (by delta_disks) 4314 * or when trying to restart a reshape that was ongoing. 4315 * 4316 * We need to validate the request and possibly allocate 4317 * space if that might be an issue later. 4318 * 4319 * Currently we reject any reshape of a 'far' mode array, 4320 * allow chunk size to change if new is generally acceptable, 4321 * allow raid_disks to increase, and allow 4322 * a switch between 'near' mode and 'offset' mode. 4323 */ 4324 struct r10conf *conf = mddev->private; 4325 struct geom geo; 4326 4327 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4328 return -EINVAL; 4329 4330 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4331 /* mustn't change number of copies */ 4332 return -EINVAL; 4333 if (geo.far_copies > 1 && !geo.far_offset) 4334 /* Cannot switch to 'far' mode */ 4335 return -EINVAL; 4336 4337 if (mddev->array_sectors & geo.chunk_mask) 4338 /* not factor of array size */ 4339 return -EINVAL; 4340 4341 if (!enough(conf, -1)) 4342 return -EINVAL; 4343 4344 kfree(conf->mirrors_new); 4345 conf->mirrors_new = NULL; 4346 if (mddev->delta_disks > 0) { 4347 /* allocate new 'mirrors' list */ 4348 conf->mirrors_new = 4349 kcalloc(mddev->raid_disks + mddev->delta_disks, 4350 sizeof(struct raid10_info), 4351 GFP_KERNEL); 4352 if (!conf->mirrors_new) 4353 return -ENOMEM; 4354 } 4355 return 0; 4356 } 4357 4358 /* 4359 * Need to check if array has failed when deciding whether to: 4360 * - start an array 4361 * - remove non-faulty devices 4362 * - add a spare 4363 * - allow a reshape 4364 * This determination is simple when no reshape is happening. 4365 * However if there is a reshape, we need to carefully check 4366 * both the before and after sections. 4367 * This is because some failed devices may only affect one 4368 * of the two sections, and some non-in_sync devices may 4369 * be insync in the section most affected by failed devices. 4370 */ 4371 static int calc_degraded(struct r10conf *conf) 4372 { 4373 int degraded, degraded2; 4374 int i; 4375 4376 degraded = 0; 4377 /* 'prev' section first */ 4378 for (i = 0; i < conf->prev.raid_disks; i++) { 4379 struct md_rdev *rdev = conf->mirrors[i].rdev; 4380 4381 if (!rdev || test_bit(Faulty, &rdev->flags)) 4382 degraded++; 4383 else if (!test_bit(In_sync, &rdev->flags)) 4384 /* When we can reduce the number of devices in 4385 * an array, this might not contribute to 4386 * 'degraded'. It does now. 4387 */ 4388 degraded++; 4389 } 4390 if (conf->geo.raid_disks == conf->prev.raid_disks) 4391 return degraded; 4392 degraded2 = 0; 4393 for (i = 0; i < conf->geo.raid_disks; i++) { 4394 struct md_rdev *rdev = conf->mirrors[i].rdev; 4395 4396 if (!rdev || test_bit(Faulty, &rdev->flags)) 4397 degraded2++; 4398 else if (!test_bit(In_sync, &rdev->flags)) { 4399 /* If reshape is increasing the number of devices, 4400 * this section has already been recovered, so 4401 * it doesn't contribute to degraded. 4402 * else it does. 4403 */ 4404 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4405 degraded2++; 4406 } 4407 } 4408 if (degraded2 > degraded) 4409 return degraded2; 4410 return degraded; 4411 } 4412 4413 static int raid10_start_reshape(struct mddev *mddev) 4414 { 4415 /* A 'reshape' has been requested. This commits 4416 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4417 * This also checks if there are enough spares and adds them 4418 * to the array. 4419 * We currently require enough spares to make the final 4420 * array non-degraded. We also require that the difference 4421 * between old and new data_offset - on each device - is 4422 * enough that we never risk over-writing. 4423 */ 4424 4425 unsigned long before_length, after_length; 4426 sector_t min_offset_diff = 0; 4427 int first = 1; 4428 struct geom new; 4429 struct r10conf *conf = mddev->private; 4430 struct md_rdev *rdev; 4431 int spares = 0; 4432 int ret; 4433 4434 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4435 return -EBUSY; 4436 4437 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4438 return -EINVAL; 4439 4440 before_length = ((1 << conf->prev.chunk_shift) * 4441 conf->prev.far_copies); 4442 after_length = ((1 << conf->geo.chunk_shift) * 4443 conf->geo.far_copies); 4444 4445 rdev_for_each(rdev, mddev) { 4446 if (!test_bit(In_sync, &rdev->flags) 4447 && !test_bit(Faulty, &rdev->flags)) 4448 spares++; 4449 if (rdev->raid_disk >= 0) { 4450 long long diff = (rdev->new_data_offset 4451 - rdev->data_offset); 4452 if (!mddev->reshape_backwards) 4453 diff = -diff; 4454 if (diff < 0) 4455 diff = 0; 4456 if (first || diff < min_offset_diff) 4457 min_offset_diff = diff; 4458 first = 0; 4459 } 4460 } 4461 4462 if (max(before_length, after_length) > min_offset_diff) 4463 return -EINVAL; 4464 4465 if (spares < mddev->delta_disks) 4466 return -EINVAL; 4467 4468 conf->offset_diff = min_offset_diff; 4469 spin_lock_irq(&conf->device_lock); 4470 if (conf->mirrors_new) { 4471 memcpy(conf->mirrors_new, conf->mirrors, 4472 sizeof(struct raid10_info)*conf->prev.raid_disks); 4473 smp_mb(); 4474 kfree(conf->mirrors_old); 4475 conf->mirrors_old = conf->mirrors; 4476 conf->mirrors = conf->mirrors_new; 4477 conf->mirrors_new = NULL; 4478 } 4479 setup_geo(&conf->geo, mddev, geo_start); 4480 smp_mb(); 4481 if (mddev->reshape_backwards) { 4482 sector_t size = raid10_size(mddev, 0, 0); 4483 if (size < mddev->array_sectors) { 4484 spin_unlock_irq(&conf->device_lock); 4485 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4486 mdname(mddev)); 4487 return -EINVAL; 4488 } 4489 mddev->resync_max_sectors = size; 4490 conf->reshape_progress = size; 4491 } else 4492 conf->reshape_progress = 0; 4493 conf->reshape_safe = conf->reshape_progress; 4494 spin_unlock_irq(&conf->device_lock); 4495 4496 if (mddev->delta_disks && mddev->bitmap) { 4497 struct mdp_superblock_1 *sb = NULL; 4498 sector_t oldsize, newsize; 4499 4500 oldsize = raid10_size(mddev, 0, 0); 4501 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4502 4503 if (!mddev_is_clustered(mddev)) { 4504 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4505 if (ret) 4506 goto abort; 4507 else 4508 goto out; 4509 } 4510 4511 rdev_for_each(rdev, mddev) { 4512 if (rdev->raid_disk > -1 && 4513 !test_bit(Faulty, &rdev->flags)) 4514 sb = page_address(rdev->sb_page); 4515 } 4516 4517 /* 4518 * some node is already performing reshape, and no need to 4519 * call md_bitmap_resize again since it should be called when 4520 * receiving BITMAP_RESIZE msg 4521 */ 4522 if ((sb && (le32_to_cpu(sb->feature_map) & 4523 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4524 goto out; 4525 4526 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4527 if (ret) 4528 goto abort; 4529 4530 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4531 if (ret) { 4532 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4533 goto abort; 4534 } 4535 } 4536 out: 4537 if (mddev->delta_disks > 0) { 4538 rdev_for_each(rdev, mddev) 4539 if (rdev->raid_disk < 0 && 4540 !test_bit(Faulty, &rdev->flags)) { 4541 if (raid10_add_disk(mddev, rdev) == 0) { 4542 if (rdev->raid_disk >= 4543 conf->prev.raid_disks) 4544 set_bit(In_sync, &rdev->flags); 4545 else 4546 rdev->recovery_offset = 0; 4547 4548 /* Failure here is OK */ 4549 sysfs_link_rdev(mddev, rdev); 4550 } 4551 } else if (rdev->raid_disk >= conf->prev.raid_disks 4552 && !test_bit(Faulty, &rdev->flags)) { 4553 /* This is a spare that was manually added */ 4554 set_bit(In_sync, &rdev->flags); 4555 } 4556 } 4557 /* When a reshape changes the number of devices, 4558 * ->degraded is measured against the larger of the 4559 * pre and post numbers. 4560 */ 4561 spin_lock_irq(&conf->device_lock); 4562 mddev->degraded = calc_degraded(conf); 4563 spin_unlock_irq(&conf->device_lock); 4564 mddev->raid_disks = conf->geo.raid_disks; 4565 mddev->reshape_position = conf->reshape_progress; 4566 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4567 4568 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4569 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4570 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4571 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4572 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4573 conf->reshape_checkpoint = jiffies; 4574 md_new_event(); 4575 return 0; 4576 4577 abort: 4578 mddev->recovery = 0; 4579 spin_lock_irq(&conf->device_lock); 4580 conf->geo = conf->prev; 4581 mddev->raid_disks = conf->geo.raid_disks; 4582 rdev_for_each(rdev, mddev) 4583 rdev->new_data_offset = rdev->data_offset; 4584 smp_wmb(); 4585 conf->reshape_progress = MaxSector; 4586 conf->reshape_safe = MaxSector; 4587 mddev->reshape_position = MaxSector; 4588 spin_unlock_irq(&conf->device_lock); 4589 return ret; 4590 } 4591 4592 /* Calculate the last device-address that could contain 4593 * any block from the chunk that includes the array-address 's' 4594 * and report the next address. 4595 * i.e. the address returned will be chunk-aligned and after 4596 * any data that is in the chunk containing 's'. 4597 */ 4598 static sector_t last_dev_address(sector_t s, struct geom *geo) 4599 { 4600 s = (s | geo->chunk_mask) + 1; 4601 s >>= geo->chunk_shift; 4602 s *= geo->near_copies; 4603 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4604 s *= geo->far_copies; 4605 s <<= geo->chunk_shift; 4606 return s; 4607 } 4608 4609 /* Calculate the first device-address that could contain 4610 * any block from the chunk that includes the array-address 's'. 4611 * This too will be the start of a chunk 4612 */ 4613 static sector_t first_dev_address(sector_t s, struct geom *geo) 4614 { 4615 s >>= geo->chunk_shift; 4616 s *= geo->near_copies; 4617 sector_div(s, geo->raid_disks); 4618 s *= geo->far_copies; 4619 s <<= geo->chunk_shift; 4620 return s; 4621 } 4622 4623 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4624 int *skipped) 4625 { 4626 /* We simply copy at most one chunk (smallest of old and new) 4627 * at a time, possibly less if that exceeds RESYNC_PAGES, 4628 * or we hit a bad block or something. 4629 * This might mean we pause for normal IO in the middle of 4630 * a chunk, but that is not a problem as mddev->reshape_position 4631 * can record any location. 4632 * 4633 * If we will want to write to a location that isn't 4634 * yet recorded as 'safe' (i.e. in metadata on disk) then 4635 * we need to flush all reshape requests and update the metadata. 4636 * 4637 * When reshaping forwards (e.g. to more devices), we interpret 4638 * 'safe' as the earliest block which might not have been copied 4639 * down yet. We divide this by previous stripe size and multiply 4640 * by previous stripe length to get lowest device offset that we 4641 * cannot write to yet. 4642 * We interpret 'sector_nr' as an address that we want to write to. 4643 * From this we use last_device_address() to find where we might 4644 * write to, and first_device_address on the 'safe' position. 4645 * If this 'next' write position is after the 'safe' position, 4646 * we must update the metadata to increase the 'safe' position. 4647 * 4648 * When reshaping backwards, we round in the opposite direction 4649 * and perform the reverse test: next write position must not be 4650 * less than current safe position. 4651 * 4652 * In all this the minimum difference in data offsets 4653 * (conf->offset_diff - always positive) allows a bit of slack, 4654 * so next can be after 'safe', but not by more than offset_diff 4655 * 4656 * We need to prepare all the bios here before we start any IO 4657 * to ensure the size we choose is acceptable to all devices. 4658 * The means one for each copy for write-out and an extra one for 4659 * read-in. 4660 * We store the read-in bio in ->master_bio and the others in 4661 * ->devs[x].bio and ->devs[x].repl_bio. 4662 */ 4663 struct r10conf *conf = mddev->private; 4664 struct r10bio *r10_bio; 4665 sector_t next, safe, last; 4666 int max_sectors; 4667 int nr_sectors; 4668 int s; 4669 struct md_rdev *rdev; 4670 int need_flush = 0; 4671 struct bio *blist; 4672 struct bio *bio, *read_bio; 4673 int sectors_done = 0; 4674 struct page **pages; 4675 4676 if (sector_nr == 0) { 4677 /* If restarting in the middle, skip the initial sectors */ 4678 if (mddev->reshape_backwards && 4679 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4680 sector_nr = (raid10_size(mddev, 0, 0) 4681 - conf->reshape_progress); 4682 } else if (!mddev->reshape_backwards && 4683 conf->reshape_progress > 0) 4684 sector_nr = conf->reshape_progress; 4685 if (sector_nr) { 4686 mddev->curr_resync_completed = sector_nr; 4687 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4688 *skipped = 1; 4689 return sector_nr; 4690 } 4691 } 4692 4693 /* We don't use sector_nr to track where we are up to 4694 * as that doesn't work well for ->reshape_backwards. 4695 * So just use ->reshape_progress. 4696 */ 4697 if (mddev->reshape_backwards) { 4698 /* 'next' is the earliest device address that we might 4699 * write to for this chunk in the new layout 4700 */ 4701 next = first_dev_address(conf->reshape_progress - 1, 4702 &conf->geo); 4703 4704 /* 'safe' is the last device address that we might read from 4705 * in the old layout after a restart 4706 */ 4707 safe = last_dev_address(conf->reshape_safe - 1, 4708 &conf->prev); 4709 4710 if (next + conf->offset_diff < safe) 4711 need_flush = 1; 4712 4713 last = conf->reshape_progress - 1; 4714 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4715 & conf->prev.chunk_mask); 4716 if (sector_nr + RESYNC_SECTORS < last) 4717 sector_nr = last + 1 - RESYNC_SECTORS; 4718 } else { 4719 /* 'next' is after the last device address that we 4720 * might write to for this chunk in the new layout 4721 */ 4722 next = last_dev_address(conf->reshape_progress, &conf->geo); 4723 4724 /* 'safe' is the earliest device address that we might 4725 * read from in the old layout after a restart 4726 */ 4727 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4728 4729 /* Need to update metadata if 'next' might be beyond 'safe' 4730 * as that would possibly corrupt data 4731 */ 4732 if (next > safe + conf->offset_diff) 4733 need_flush = 1; 4734 4735 sector_nr = conf->reshape_progress; 4736 last = sector_nr | (conf->geo.chunk_mask 4737 & conf->prev.chunk_mask); 4738 4739 if (sector_nr + RESYNC_SECTORS <= last) 4740 last = sector_nr + RESYNC_SECTORS - 1; 4741 } 4742 4743 if (need_flush || 4744 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4745 /* Need to update reshape_position in metadata */ 4746 wait_barrier(conf, false); 4747 mddev->reshape_position = conf->reshape_progress; 4748 if (mddev->reshape_backwards) 4749 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4750 - conf->reshape_progress; 4751 else 4752 mddev->curr_resync_completed = conf->reshape_progress; 4753 conf->reshape_checkpoint = jiffies; 4754 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4755 md_wakeup_thread(mddev->thread); 4756 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4757 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4758 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4759 allow_barrier(conf); 4760 return sectors_done; 4761 } 4762 conf->reshape_safe = mddev->reshape_position; 4763 allow_barrier(conf); 4764 } 4765 4766 raise_barrier(conf, 0); 4767 read_more: 4768 /* Now schedule reads for blocks from sector_nr to last */ 4769 r10_bio = raid10_alloc_init_r10buf(conf); 4770 r10_bio->state = 0; 4771 raise_barrier(conf, 1); 4772 atomic_set(&r10_bio->remaining, 0); 4773 r10_bio->mddev = mddev; 4774 r10_bio->sector = sector_nr; 4775 set_bit(R10BIO_IsReshape, &r10_bio->state); 4776 r10_bio->sectors = last - sector_nr + 1; 4777 rdev = read_balance(conf, r10_bio, &max_sectors); 4778 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4779 4780 if (!rdev) { 4781 /* Cannot read from here, so need to record bad blocks 4782 * on all the target devices. 4783 */ 4784 // FIXME 4785 mempool_free(r10_bio, &conf->r10buf_pool); 4786 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4787 return sectors_done; 4788 } 4789 4790 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4791 GFP_KERNEL, &mddev->bio_set); 4792 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4793 + rdev->data_offset); 4794 read_bio->bi_private = r10_bio; 4795 read_bio->bi_end_io = end_reshape_read; 4796 r10_bio->master_bio = read_bio; 4797 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4798 4799 /* 4800 * Broadcast RESYNC message to other nodes, so all nodes would not 4801 * write to the region to avoid conflict. 4802 */ 4803 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4804 struct mdp_superblock_1 *sb = NULL; 4805 int sb_reshape_pos = 0; 4806 4807 conf->cluster_sync_low = sector_nr; 4808 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4809 sb = page_address(rdev->sb_page); 4810 if (sb) { 4811 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4812 /* 4813 * Set cluster_sync_low again if next address for array 4814 * reshape is less than cluster_sync_low. Since we can't 4815 * update cluster_sync_low until it has finished reshape. 4816 */ 4817 if (sb_reshape_pos < conf->cluster_sync_low) 4818 conf->cluster_sync_low = sb_reshape_pos; 4819 } 4820 4821 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4822 conf->cluster_sync_high); 4823 } 4824 4825 /* Now find the locations in the new layout */ 4826 __raid10_find_phys(&conf->geo, r10_bio); 4827 4828 blist = read_bio; 4829 read_bio->bi_next = NULL; 4830 4831 for (s = 0; s < conf->copies*2; s++) { 4832 struct bio *b; 4833 int d = r10_bio->devs[s/2].devnum; 4834 struct md_rdev *rdev2; 4835 if (s&1) { 4836 rdev2 = conf->mirrors[d].replacement; 4837 b = r10_bio->devs[s/2].repl_bio; 4838 } else { 4839 rdev2 = conf->mirrors[d].rdev; 4840 b = r10_bio->devs[s/2].bio; 4841 } 4842 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4843 continue; 4844 4845 bio_set_dev(b, rdev2->bdev); 4846 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4847 rdev2->new_data_offset; 4848 b->bi_end_io = end_reshape_write; 4849 b->bi_opf = REQ_OP_WRITE; 4850 b->bi_next = blist; 4851 blist = b; 4852 } 4853 4854 /* Now add as many pages as possible to all of these bios. */ 4855 4856 nr_sectors = 0; 4857 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4858 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4859 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4860 int len = (max_sectors - s) << 9; 4861 if (len > PAGE_SIZE) 4862 len = PAGE_SIZE; 4863 for (bio = blist; bio ; bio = bio->bi_next) { 4864 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 4865 bio->bi_status = BLK_STS_RESOURCE; 4866 bio_endio(bio); 4867 return sectors_done; 4868 } 4869 } 4870 sector_nr += len >> 9; 4871 nr_sectors += len >> 9; 4872 } 4873 r10_bio->sectors = nr_sectors; 4874 4875 /* Now submit the read */ 4876 md_sync_acct_bio(read_bio, r10_bio->sectors); 4877 atomic_inc(&r10_bio->remaining); 4878 read_bio->bi_next = NULL; 4879 submit_bio_noacct(read_bio); 4880 sectors_done += nr_sectors; 4881 if (sector_nr <= last) 4882 goto read_more; 4883 4884 lower_barrier(conf); 4885 4886 /* Now that we have done the whole section we can 4887 * update reshape_progress 4888 */ 4889 if (mddev->reshape_backwards) 4890 conf->reshape_progress -= sectors_done; 4891 else 4892 conf->reshape_progress += sectors_done; 4893 4894 return sectors_done; 4895 } 4896 4897 static void end_reshape_request(struct r10bio *r10_bio); 4898 static int handle_reshape_read_error(struct mddev *mddev, 4899 struct r10bio *r10_bio); 4900 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4901 { 4902 /* Reshape read completed. Hopefully we have a block 4903 * to write out. 4904 * If we got a read error then we do sync 1-page reads from 4905 * elsewhere until we find the data - or give up. 4906 */ 4907 struct r10conf *conf = mddev->private; 4908 int s; 4909 4910 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4911 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4912 /* Reshape has been aborted */ 4913 md_done_sync(mddev, r10_bio->sectors, 0); 4914 return; 4915 } 4916 4917 /* We definitely have the data in the pages, schedule the 4918 * writes. 4919 */ 4920 atomic_set(&r10_bio->remaining, 1); 4921 for (s = 0; s < conf->copies*2; s++) { 4922 struct bio *b; 4923 int d = r10_bio->devs[s/2].devnum; 4924 struct md_rdev *rdev; 4925 if (s&1) { 4926 rdev = conf->mirrors[d].replacement; 4927 b = r10_bio->devs[s/2].repl_bio; 4928 } else { 4929 rdev = conf->mirrors[d].rdev; 4930 b = r10_bio->devs[s/2].bio; 4931 } 4932 if (!rdev || test_bit(Faulty, &rdev->flags)) 4933 continue; 4934 4935 atomic_inc(&rdev->nr_pending); 4936 md_sync_acct_bio(b, r10_bio->sectors); 4937 atomic_inc(&r10_bio->remaining); 4938 b->bi_next = NULL; 4939 submit_bio_noacct(b); 4940 } 4941 end_reshape_request(r10_bio); 4942 } 4943 4944 static void end_reshape(struct r10conf *conf) 4945 { 4946 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4947 return; 4948 4949 spin_lock_irq(&conf->device_lock); 4950 conf->prev = conf->geo; 4951 md_finish_reshape(conf->mddev); 4952 smp_wmb(); 4953 conf->reshape_progress = MaxSector; 4954 conf->reshape_safe = MaxSector; 4955 spin_unlock_irq(&conf->device_lock); 4956 4957 if (conf->mddev->queue) 4958 raid10_set_io_opt(conf); 4959 conf->fullsync = 0; 4960 } 4961 4962 static void raid10_update_reshape_pos(struct mddev *mddev) 4963 { 4964 struct r10conf *conf = mddev->private; 4965 sector_t lo, hi; 4966 4967 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4968 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4969 || mddev->reshape_position == MaxSector) 4970 conf->reshape_progress = mddev->reshape_position; 4971 else 4972 WARN_ON_ONCE(1); 4973 } 4974 4975 static int handle_reshape_read_error(struct mddev *mddev, 4976 struct r10bio *r10_bio) 4977 { 4978 /* Use sync reads to get the blocks from somewhere else */ 4979 int sectors = r10_bio->sectors; 4980 struct r10conf *conf = mddev->private; 4981 struct r10bio *r10b; 4982 int slot = 0; 4983 int idx = 0; 4984 struct page **pages; 4985 4986 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4987 if (!r10b) { 4988 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4989 return -ENOMEM; 4990 } 4991 4992 /* reshape IOs share pages from .devs[0].bio */ 4993 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4994 4995 r10b->sector = r10_bio->sector; 4996 __raid10_find_phys(&conf->prev, r10b); 4997 4998 while (sectors) { 4999 int s = sectors; 5000 int success = 0; 5001 int first_slot = slot; 5002 5003 if (s > (PAGE_SIZE >> 9)) 5004 s = PAGE_SIZE >> 9; 5005 5006 while (!success) { 5007 int d = r10b->devs[slot].devnum; 5008 struct md_rdev *rdev = conf->mirrors[d].rdev; 5009 sector_t addr; 5010 if (rdev == NULL || 5011 test_bit(Faulty, &rdev->flags) || 5012 !test_bit(In_sync, &rdev->flags)) 5013 goto failed; 5014 5015 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5016 atomic_inc(&rdev->nr_pending); 5017 success = sync_page_io(rdev, 5018 addr, 5019 s << 9, 5020 pages[idx], 5021 REQ_OP_READ, false); 5022 rdev_dec_pending(rdev, mddev); 5023 if (success) 5024 break; 5025 failed: 5026 slot++; 5027 if (slot >= conf->copies) 5028 slot = 0; 5029 if (slot == first_slot) 5030 break; 5031 } 5032 if (!success) { 5033 /* couldn't read this block, must give up */ 5034 set_bit(MD_RECOVERY_INTR, 5035 &mddev->recovery); 5036 kfree(r10b); 5037 return -EIO; 5038 } 5039 sectors -= s; 5040 idx++; 5041 } 5042 kfree(r10b); 5043 return 0; 5044 } 5045 5046 static void end_reshape_write(struct bio *bio) 5047 { 5048 struct r10bio *r10_bio = get_resync_r10bio(bio); 5049 struct mddev *mddev = r10_bio->mddev; 5050 struct r10conf *conf = mddev->private; 5051 int d; 5052 int slot; 5053 int repl; 5054 struct md_rdev *rdev = NULL; 5055 5056 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5057 rdev = repl ? conf->mirrors[d].replacement : 5058 conf->mirrors[d].rdev; 5059 5060 if (bio->bi_status) { 5061 /* FIXME should record badblock */ 5062 md_error(mddev, rdev); 5063 } 5064 5065 rdev_dec_pending(rdev, mddev); 5066 end_reshape_request(r10_bio); 5067 } 5068 5069 static void end_reshape_request(struct r10bio *r10_bio) 5070 { 5071 if (!atomic_dec_and_test(&r10_bio->remaining)) 5072 return; 5073 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5074 bio_put(r10_bio->master_bio); 5075 put_buf(r10_bio); 5076 } 5077 5078 static void raid10_finish_reshape(struct mddev *mddev) 5079 { 5080 struct r10conf *conf = mddev->private; 5081 5082 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5083 return; 5084 5085 if (mddev->delta_disks > 0) { 5086 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5087 mddev->recovery_cp = mddev->resync_max_sectors; 5088 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5089 } 5090 mddev->resync_max_sectors = mddev->array_sectors; 5091 } else { 5092 int d; 5093 for (d = conf->geo.raid_disks ; 5094 d < conf->geo.raid_disks - mddev->delta_disks; 5095 d++) { 5096 struct md_rdev *rdev = conf->mirrors[d].rdev; 5097 if (rdev) 5098 clear_bit(In_sync, &rdev->flags); 5099 rdev = conf->mirrors[d].replacement; 5100 if (rdev) 5101 clear_bit(In_sync, &rdev->flags); 5102 } 5103 } 5104 mddev->layout = mddev->new_layout; 5105 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5106 mddev->reshape_position = MaxSector; 5107 mddev->delta_disks = 0; 5108 mddev->reshape_backwards = 0; 5109 } 5110 5111 static struct md_personality raid10_personality = 5112 { 5113 .name = "raid10", 5114 .level = 10, 5115 .owner = THIS_MODULE, 5116 .make_request = raid10_make_request, 5117 .run = raid10_run, 5118 .free = raid10_free, 5119 .status = raid10_status, 5120 .error_handler = raid10_error, 5121 .hot_add_disk = raid10_add_disk, 5122 .hot_remove_disk= raid10_remove_disk, 5123 .spare_active = raid10_spare_active, 5124 .sync_request = raid10_sync_request, 5125 .quiesce = raid10_quiesce, 5126 .size = raid10_size, 5127 .resize = raid10_resize, 5128 .takeover = raid10_takeover, 5129 .check_reshape = raid10_check_reshape, 5130 .start_reshape = raid10_start_reshape, 5131 .finish_reshape = raid10_finish_reshape, 5132 .update_reshape_pos = raid10_update_reshape_pos, 5133 }; 5134 5135 static int __init raid_init(void) 5136 { 5137 return register_md_personality(&raid10_personality); 5138 } 5139 5140 static void raid_exit(void) 5141 { 5142 unregister_md_personality(&raid10_personality); 5143 } 5144 5145 module_init(raid_init); 5146 module_exit(raid_exit); 5147 MODULE_LICENSE("GPL"); 5148 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5149 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5150 MODULE_ALIAS("md-raid10"); 5151 MODULE_ALIAS("md-level-10"); 5152