xref: /linux/drivers/md/raid10.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include "dm-bio-list.h"
22 #include <linux/delay.h>
23 #include <linux/raid/raid10.h>
24 #include <linux/raid/bitmap.h>
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *
35  * The data to be stored is divided into chunks using chunksize.
36  * Each device is divided into far_copies sections.
37  * In each section, chunks are laid out in a style similar to raid0, but
38  * near_copies copies of each chunk is stored (each on a different drive).
39  * The starting device for each section is offset near_copies from the starting
40  * device of the previous section.
41  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
42  * drive.
43  * near_copies and far_copies must be at least one, and their product is at most
44  * raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of be very far apart
48  * on disk, there are adjacent stripes.
49  */
50 
51 /*
52  * Number of guaranteed r10bios in case of extreme VM load:
53  */
54 #define	NR_RAID10_BIOS 256
55 
56 static void unplug_slaves(mddev_t *mddev);
57 
58 static void allow_barrier(conf_t *conf);
59 static void lower_barrier(conf_t *conf);
60 
61 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
62 {
63 	conf_t *conf = data;
64 	r10bio_t *r10_bio;
65 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
66 
67 	/* allocate a r10bio with room for raid_disks entries in the bios array */
68 	r10_bio = kzalloc(size, gfp_flags);
69 	if (!r10_bio)
70 		unplug_slaves(conf->mddev);
71 
72 	return r10_bio;
73 }
74 
75 static void r10bio_pool_free(void *r10_bio, void *data)
76 {
77 	kfree(r10_bio);
78 }
79 
80 /* Maximum size of each resync request */
81 #define RESYNC_BLOCK_SIZE (64*1024)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 /* amount of memory to reserve for resync requests */
84 #define RESYNC_WINDOW (1024*1024)
85 /* maximum number of concurrent requests, memory permitting */
86 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
87 
88 /*
89  * When performing a resync, we need to read and compare, so
90  * we need as many pages are there are copies.
91  * When performing a recovery, we need 2 bios, one for read,
92  * one for write (we recover only one drive per r10buf)
93  *
94  */
95 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	conf_t *conf = data;
98 	struct page *page;
99 	r10bio_t *r10_bio;
100 	struct bio *bio;
101 	int i, j;
102 	int nalloc;
103 
104 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
105 	if (!r10_bio) {
106 		unplug_slaves(conf->mddev);
107 		return NULL;
108 	}
109 
110 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
111 		nalloc = conf->copies; /* resync */
112 	else
113 		nalloc = 2; /* recovery */
114 
115 	/*
116 	 * Allocate bios.
117 	 */
118 	for (j = nalloc ; j-- ; ) {
119 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
120 		if (!bio)
121 			goto out_free_bio;
122 		r10_bio->devs[j].bio = bio;
123 	}
124 	/*
125 	 * Allocate RESYNC_PAGES data pages and attach them
126 	 * where needed.
127 	 */
128 	for (j = 0 ; j < nalloc; j++) {
129 		bio = r10_bio->devs[j].bio;
130 		for (i = 0; i < RESYNC_PAGES; i++) {
131 			page = alloc_page(gfp_flags);
132 			if (unlikely(!page))
133 				goto out_free_pages;
134 
135 			bio->bi_io_vec[i].bv_page = page;
136 		}
137 	}
138 
139 	return r10_bio;
140 
141 out_free_pages:
142 	for ( ; i > 0 ; i--)
143 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
144 	while (j--)
145 		for (i = 0; i < RESYNC_PAGES ; i++)
146 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
147 	j = -1;
148 out_free_bio:
149 	while ( ++j < nalloc )
150 		bio_put(r10_bio->devs[j].bio);
151 	r10bio_pool_free(r10_bio, conf);
152 	return NULL;
153 }
154 
155 static void r10buf_pool_free(void *__r10_bio, void *data)
156 {
157 	int i;
158 	conf_t *conf = data;
159 	r10bio_t *r10bio = __r10_bio;
160 	int j;
161 
162 	for (j=0; j < conf->copies; j++) {
163 		struct bio *bio = r10bio->devs[j].bio;
164 		if (bio) {
165 			for (i = 0; i < RESYNC_PAGES; i++) {
166 				safe_put_page(bio->bi_io_vec[i].bv_page);
167 				bio->bi_io_vec[i].bv_page = NULL;
168 			}
169 			bio_put(bio);
170 		}
171 	}
172 	r10bio_pool_free(r10bio, conf);
173 }
174 
175 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
176 {
177 	int i;
178 
179 	for (i = 0; i < conf->copies; i++) {
180 		struct bio **bio = & r10_bio->devs[i].bio;
181 		if (*bio && *bio != IO_BLOCKED)
182 			bio_put(*bio);
183 		*bio = NULL;
184 	}
185 }
186 
187 static void free_r10bio(r10bio_t *r10_bio)
188 {
189 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
190 
191 	/*
192 	 * Wake up any possible resync thread that waits for the device
193 	 * to go idle.
194 	 */
195 	allow_barrier(conf);
196 
197 	put_all_bios(conf, r10_bio);
198 	mempool_free(r10_bio, conf->r10bio_pool);
199 }
200 
201 static void put_buf(r10bio_t *r10_bio)
202 {
203 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
204 
205 	mempool_free(r10_bio, conf->r10buf_pool);
206 
207 	lower_barrier(conf);
208 }
209 
210 static void reschedule_retry(r10bio_t *r10_bio)
211 {
212 	unsigned long flags;
213 	mddev_t *mddev = r10_bio->mddev;
214 	conf_t *conf = mddev_to_conf(mddev);
215 
216 	spin_lock_irqsave(&conf->device_lock, flags);
217 	list_add(&r10_bio->retry_list, &conf->retry_list);
218 	conf->nr_queued ++;
219 	spin_unlock_irqrestore(&conf->device_lock, flags);
220 
221 	/* wake up frozen array... */
222 	wake_up(&conf->wait_barrier);
223 
224 	md_wakeup_thread(mddev->thread);
225 }
226 
227 /*
228  * raid_end_bio_io() is called when we have finished servicing a mirrored
229  * operation and are ready to return a success/failure code to the buffer
230  * cache layer.
231  */
232 static void raid_end_bio_io(r10bio_t *r10_bio)
233 {
234 	struct bio *bio = r10_bio->master_bio;
235 
236 	bio_endio(bio,
237 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
238 	free_r10bio(r10_bio);
239 }
240 
241 /*
242  * Update disk head position estimator based on IRQ completion info.
243  */
244 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
245 {
246 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
247 
248 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
249 		r10_bio->devs[slot].addr + (r10_bio->sectors);
250 }
251 
252 static void raid10_end_read_request(struct bio *bio, int error)
253 {
254 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
255 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
256 	int slot, dev;
257 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
258 
259 
260 	slot = r10_bio->read_slot;
261 	dev = r10_bio->devs[slot].devnum;
262 	/*
263 	 * this branch is our 'one mirror IO has finished' event handler:
264 	 */
265 	update_head_pos(slot, r10_bio);
266 
267 	if (uptodate) {
268 		/*
269 		 * Set R10BIO_Uptodate in our master bio, so that
270 		 * we will return a good error code to the higher
271 		 * levels even if IO on some other mirrored buffer fails.
272 		 *
273 		 * The 'master' represents the composite IO operation to
274 		 * user-side. So if something waits for IO, then it will
275 		 * wait for the 'master' bio.
276 		 */
277 		set_bit(R10BIO_Uptodate, &r10_bio->state);
278 		raid_end_bio_io(r10_bio);
279 	} else {
280 		/*
281 		 * oops, read error:
282 		 */
283 		char b[BDEVNAME_SIZE];
284 		if (printk_ratelimit())
285 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
286 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
287 		reschedule_retry(r10_bio);
288 	}
289 
290 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
291 }
292 
293 static void raid10_end_write_request(struct bio *bio, int error)
294 {
295 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
297 	int slot, dev;
298 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
299 
300 	for (slot = 0; slot < conf->copies; slot++)
301 		if (r10_bio->devs[slot].bio == bio)
302 			break;
303 	dev = r10_bio->devs[slot].devnum;
304 
305 	/*
306 	 * this branch is our 'one mirror IO has finished' event handler:
307 	 */
308 	if (!uptodate) {
309 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
310 		/* an I/O failed, we can't clear the bitmap */
311 		set_bit(R10BIO_Degraded, &r10_bio->state);
312 	} else
313 		/*
314 		 * Set R10BIO_Uptodate in our master bio, so that
315 		 * we will return a good error code for to the higher
316 		 * levels even if IO on some other mirrored buffer fails.
317 		 *
318 		 * The 'master' represents the composite IO operation to
319 		 * user-side. So if something waits for IO, then it will
320 		 * wait for the 'master' bio.
321 		 */
322 		set_bit(R10BIO_Uptodate, &r10_bio->state);
323 
324 	update_head_pos(slot, r10_bio);
325 
326 	/*
327 	 *
328 	 * Let's see if all mirrored write operations have finished
329 	 * already.
330 	 */
331 	if (atomic_dec_and_test(&r10_bio->remaining)) {
332 		/* clear the bitmap if all writes complete successfully */
333 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
334 				r10_bio->sectors,
335 				!test_bit(R10BIO_Degraded, &r10_bio->state),
336 				0);
337 		md_write_end(r10_bio->mddev);
338 		raid_end_bio_io(r10_bio);
339 	}
340 
341 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
342 }
343 
344 
345 /*
346  * RAID10 layout manager
347  * Aswell as the chunksize and raid_disks count, there are two
348  * parameters: near_copies and far_copies.
349  * near_copies * far_copies must be <= raid_disks.
350  * Normally one of these will be 1.
351  * If both are 1, we get raid0.
352  * If near_copies == raid_disks, we get raid1.
353  *
354  * Chunks are layed out in raid0 style with near_copies copies of the
355  * first chunk, followed by near_copies copies of the next chunk and
356  * so on.
357  * If far_copies > 1, then after 1/far_copies of the array has been assigned
358  * as described above, we start again with a device offset of near_copies.
359  * So we effectively have another copy of the whole array further down all
360  * the drives, but with blocks on different drives.
361  * With this layout, and block is never stored twice on the one device.
362  *
363  * raid10_find_phys finds the sector offset of a given virtual sector
364  * on each device that it is on.
365  *
366  * raid10_find_virt does the reverse mapping, from a device and a
367  * sector offset to a virtual address
368  */
369 
370 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
371 {
372 	int n,f;
373 	sector_t sector;
374 	sector_t chunk;
375 	sector_t stripe;
376 	int dev;
377 
378 	int slot = 0;
379 
380 	/* now calculate first sector/dev */
381 	chunk = r10bio->sector >> conf->chunk_shift;
382 	sector = r10bio->sector & conf->chunk_mask;
383 
384 	chunk *= conf->near_copies;
385 	stripe = chunk;
386 	dev = sector_div(stripe, conf->raid_disks);
387 	if (conf->far_offset)
388 		stripe *= conf->far_copies;
389 
390 	sector += stripe << conf->chunk_shift;
391 
392 	/* and calculate all the others */
393 	for (n=0; n < conf->near_copies; n++) {
394 		int d = dev;
395 		sector_t s = sector;
396 		r10bio->devs[slot].addr = sector;
397 		r10bio->devs[slot].devnum = d;
398 		slot++;
399 
400 		for (f = 1; f < conf->far_copies; f++) {
401 			d += conf->near_copies;
402 			if (d >= conf->raid_disks)
403 				d -= conf->raid_disks;
404 			s += conf->stride;
405 			r10bio->devs[slot].devnum = d;
406 			r10bio->devs[slot].addr = s;
407 			slot++;
408 		}
409 		dev++;
410 		if (dev >= conf->raid_disks) {
411 			dev = 0;
412 			sector += (conf->chunk_mask + 1);
413 		}
414 	}
415 	BUG_ON(slot != conf->copies);
416 }
417 
418 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
419 {
420 	sector_t offset, chunk, vchunk;
421 
422 	offset = sector & conf->chunk_mask;
423 	if (conf->far_offset) {
424 		int fc;
425 		chunk = sector >> conf->chunk_shift;
426 		fc = sector_div(chunk, conf->far_copies);
427 		dev -= fc * conf->near_copies;
428 		if (dev < 0)
429 			dev += conf->raid_disks;
430 	} else {
431 		while (sector >= conf->stride) {
432 			sector -= conf->stride;
433 			if (dev < conf->near_copies)
434 				dev += conf->raid_disks - conf->near_copies;
435 			else
436 				dev -= conf->near_copies;
437 		}
438 		chunk = sector >> conf->chunk_shift;
439 	}
440 	vchunk = chunk * conf->raid_disks + dev;
441 	sector_div(vchunk, conf->near_copies);
442 	return (vchunk << conf->chunk_shift) + offset;
443 }
444 
445 /**
446  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
447  *	@q: request queue
448  *	@bvm: properties of new bio
449  *	@biovec: the request that could be merged to it.
450  *
451  *	Return amount of bytes we can accept at this offset
452  *      If near_copies == raid_disk, there are no striping issues,
453  *      but in that case, the function isn't called at all.
454  */
455 static int raid10_mergeable_bvec(struct request_queue *q,
456 				 struct bvec_merge_data *bvm,
457 				 struct bio_vec *biovec)
458 {
459 	mddev_t *mddev = q->queuedata;
460 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
461 	int max;
462 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
463 	unsigned int bio_sectors = bvm->bi_size >> 9;
464 
465 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
466 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
467 	if (max <= biovec->bv_len && bio_sectors == 0)
468 		return biovec->bv_len;
469 	else
470 		return max;
471 }
472 
473 /*
474  * This routine returns the disk from which the requested read should
475  * be done. There is a per-array 'next expected sequential IO' sector
476  * number - if this matches on the next IO then we use the last disk.
477  * There is also a per-disk 'last know head position' sector that is
478  * maintained from IRQ contexts, both the normal and the resync IO
479  * completion handlers update this position correctly. If there is no
480  * perfect sequential match then we pick the disk whose head is closest.
481  *
482  * If there are 2 mirrors in the same 2 devices, performance degrades
483  * because position is mirror, not device based.
484  *
485  * The rdev for the device selected will have nr_pending incremented.
486  */
487 
488 /*
489  * FIXME: possibly should rethink readbalancing and do it differently
490  * depending on near_copies / far_copies geometry.
491  */
492 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
493 {
494 	const unsigned long this_sector = r10_bio->sector;
495 	int disk, slot, nslot;
496 	const int sectors = r10_bio->sectors;
497 	sector_t new_distance, current_distance;
498 	mdk_rdev_t *rdev;
499 
500 	raid10_find_phys(conf, r10_bio);
501 	rcu_read_lock();
502 	/*
503 	 * Check if we can balance. We can balance on the whole
504 	 * device if no resync is going on (recovery is ok), or below
505 	 * the resync window. We take the first readable disk when
506 	 * above the resync window.
507 	 */
508 	if (conf->mddev->recovery_cp < MaxSector
509 	    && (this_sector + sectors >= conf->next_resync)) {
510 		/* make sure that disk is operational */
511 		slot = 0;
512 		disk = r10_bio->devs[slot].devnum;
513 
514 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
515 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
516 		       !test_bit(In_sync, &rdev->flags)) {
517 			slot++;
518 			if (slot == conf->copies) {
519 				slot = 0;
520 				disk = -1;
521 				break;
522 			}
523 			disk = r10_bio->devs[slot].devnum;
524 		}
525 		goto rb_out;
526 	}
527 
528 
529 	/* make sure the disk is operational */
530 	slot = 0;
531 	disk = r10_bio->devs[slot].devnum;
532 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
533 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
534 	       !test_bit(In_sync, &rdev->flags)) {
535 		slot ++;
536 		if (slot == conf->copies) {
537 			disk = -1;
538 			goto rb_out;
539 		}
540 		disk = r10_bio->devs[slot].devnum;
541 	}
542 
543 
544 	current_distance = abs(r10_bio->devs[slot].addr -
545 			       conf->mirrors[disk].head_position);
546 
547 	/* Find the disk whose head is closest,
548 	 * or - for far > 1 - find the closest to partition beginning */
549 
550 	for (nslot = slot; nslot < conf->copies; nslot++) {
551 		int ndisk = r10_bio->devs[nslot].devnum;
552 
553 
554 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
555 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
556 		    !test_bit(In_sync, &rdev->flags))
557 			continue;
558 
559 		/* This optimisation is debatable, and completely destroys
560 		 * sequential read speed for 'far copies' arrays.  So only
561 		 * keep it for 'near' arrays, and review those later.
562 		 */
563 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
564 			disk = ndisk;
565 			slot = nslot;
566 			break;
567 		}
568 
569 		/* for far > 1 always use the lowest address */
570 		if (conf->far_copies > 1)
571 			new_distance = r10_bio->devs[nslot].addr;
572 		else
573 			new_distance = abs(r10_bio->devs[nslot].addr -
574 					   conf->mirrors[ndisk].head_position);
575 		if (new_distance < current_distance) {
576 			current_distance = new_distance;
577 			disk = ndisk;
578 			slot = nslot;
579 		}
580 	}
581 
582 rb_out:
583 	r10_bio->read_slot = slot;
584 /*	conf->next_seq_sect = this_sector + sectors;*/
585 
586 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
587 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
588 	else
589 		disk = -1;
590 	rcu_read_unlock();
591 
592 	return disk;
593 }
594 
595 static void unplug_slaves(mddev_t *mddev)
596 {
597 	conf_t *conf = mddev_to_conf(mddev);
598 	int i;
599 
600 	rcu_read_lock();
601 	for (i=0; i<mddev->raid_disks; i++) {
602 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
603 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
604 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
605 
606 			atomic_inc(&rdev->nr_pending);
607 			rcu_read_unlock();
608 
609 			blk_unplug(r_queue);
610 
611 			rdev_dec_pending(rdev, mddev);
612 			rcu_read_lock();
613 		}
614 	}
615 	rcu_read_unlock();
616 }
617 
618 static void raid10_unplug(struct request_queue *q)
619 {
620 	mddev_t *mddev = q->queuedata;
621 
622 	unplug_slaves(q->queuedata);
623 	md_wakeup_thread(mddev->thread);
624 }
625 
626 static int raid10_congested(void *data, int bits)
627 {
628 	mddev_t *mddev = data;
629 	conf_t *conf = mddev_to_conf(mddev);
630 	int i, ret = 0;
631 
632 	rcu_read_lock();
633 	for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
634 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
635 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
636 			struct request_queue *q = bdev_get_queue(rdev->bdev);
637 
638 			ret |= bdi_congested(&q->backing_dev_info, bits);
639 		}
640 	}
641 	rcu_read_unlock();
642 	return ret;
643 }
644 
645 static int flush_pending_writes(conf_t *conf)
646 {
647 	/* Any writes that have been queued but are awaiting
648 	 * bitmap updates get flushed here.
649 	 * We return 1 if any requests were actually submitted.
650 	 */
651 	int rv = 0;
652 
653 	spin_lock_irq(&conf->device_lock);
654 
655 	if (conf->pending_bio_list.head) {
656 		struct bio *bio;
657 		bio = bio_list_get(&conf->pending_bio_list);
658 		blk_remove_plug(conf->mddev->queue);
659 		spin_unlock_irq(&conf->device_lock);
660 		/* flush any pending bitmap writes to disk
661 		 * before proceeding w/ I/O */
662 		bitmap_unplug(conf->mddev->bitmap);
663 
664 		while (bio) { /* submit pending writes */
665 			struct bio *next = bio->bi_next;
666 			bio->bi_next = NULL;
667 			generic_make_request(bio);
668 			bio = next;
669 		}
670 		rv = 1;
671 	} else
672 		spin_unlock_irq(&conf->device_lock);
673 	return rv;
674 }
675 /* Barriers....
676  * Sometimes we need to suspend IO while we do something else,
677  * either some resync/recovery, or reconfigure the array.
678  * To do this we raise a 'barrier'.
679  * The 'barrier' is a counter that can be raised multiple times
680  * to count how many activities are happening which preclude
681  * normal IO.
682  * We can only raise the barrier if there is no pending IO.
683  * i.e. if nr_pending == 0.
684  * We choose only to raise the barrier if no-one is waiting for the
685  * barrier to go down.  This means that as soon as an IO request
686  * is ready, no other operations which require a barrier will start
687  * until the IO request has had a chance.
688  *
689  * So: regular IO calls 'wait_barrier'.  When that returns there
690  *    is no backgroup IO happening,  It must arrange to call
691  *    allow_barrier when it has finished its IO.
692  * backgroup IO calls must call raise_barrier.  Once that returns
693  *    there is no normal IO happeing.  It must arrange to call
694  *    lower_barrier when the particular background IO completes.
695  */
696 
697 static void raise_barrier(conf_t *conf, int force)
698 {
699 	BUG_ON(force && !conf->barrier);
700 	spin_lock_irq(&conf->resync_lock);
701 
702 	/* Wait until no block IO is waiting (unless 'force') */
703 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
704 			    conf->resync_lock,
705 			    raid10_unplug(conf->mddev->queue));
706 
707 	/* block any new IO from starting */
708 	conf->barrier++;
709 
710 	/* No wait for all pending IO to complete */
711 	wait_event_lock_irq(conf->wait_barrier,
712 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
713 			    conf->resync_lock,
714 			    raid10_unplug(conf->mddev->queue));
715 
716 	spin_unlock_irq(&conf->resync_lock);
717 }
718 
719 static void lower_barrier(conf_t *conf)
720 {
721 	unsigned long flags;
722 	spin_lock_irqsave(&conf->resync_lock, flags);
723 	conf->barrier--;
724 	spin_unlock_irqrestore(&conf->resync_lock, flags);
725 	wake_up(&conf->wait_barrier);
726 }
727 
728 static void wait_barrier(conf_t *conf)
729 {
730 	spin_lock_irq(&conf->resync_lock);
731 	if (conf->barrier) {
732 		conf->nr_waiting++;
733 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
734 				    conf->resync_lock,
735 				    raid10_unplug(conf->mddev->queue));
736 		conf->nr_waiting--;
737 	}
738 	conf->nr_pending++;
739 	spin_unlock_irq(&conf->resync_lock);
740 }
741 
742 static void allow_barrier(conf_t *conf)
743 {
744 	unsigned long flags;
745 	spin_lock_irqsave(&conf->resync_lock, flags);
746 	conf->nr_pending--;
747 	spin_unlock_irqrestore(&conf->resync_lock, flags);
748 	wake_up(&conf->wait_barrier);
749 }
750 
751 static void freeze_array(conf_t *conf)
752 {
753 	/* stop syncio and normal IO and wait for everything to
754 	 * go quiet.
755 	 * We increment barrier and nr_waiting, and then
756 	 * wait until nr_pending match nr_queued+1
757 	 * This is called in the context of one normal IO request
758 	 * that has failed. Thus any sync request that might be pending
759 	 * will be blocked by nr_pending, and we need to wait for
760 	 * pending IO requests to complete or be queued for re-try.
761 	 * Thus the number queued (nr_queued) plus this request (1)
762 	 * must match the number of pending IOs (nr_pending) before
763 	 * we continue.
764 	 */
765 	spin_lock_irq(&conf->resync_lock);
766 	conf->barrier++;
767 	conf->nr_waiting++;
768 	wait_event_lock_irq(conf->wait_barrier,
769 			    conf->nr_pending == conf->nr_queued+1,
770 			    conf->resync_lock,
771 			    ({ flush_pending_writes(conf);
772 			       raid10_unplug(conf->mddev->queue); }));
773 	spin_unlock_irq(&conf->resync_lock);
774 }
775 
776 static void unfreeze_array(conf_t *conf)
777 {
778 	/* reverse the effect of the freeze */
779 	spin_lock_irq(&conf->resync_lock);
780 	conf->barrier--;
781 	conf->nr_waiting--;
782 	wake_up(&conf->wait_barrier);
783 	spin_unlock_irq(&conf->resync_lock);
784 }
785 
786 static int make_request(struct request_queue *q, struct bio * bio)
787 {
788 	mddev_t *mddev = q->queuedata;
789 	conf_t *conf = mddev_to_conf(mddev);
790 	mirror_info_t *mirror;
791 	r10bio_t *r10_bio;
792 	struct bio *read_bio;
793 	int cpu;
794 	int i;
795 	int chunk_sects = conf->chunk_mask + 1;
796 	const int rw = bio_data_dir(bio);
797 	const int do_sync = bio_sync(bio);
798 	struct bio_list bl;
799 	unsigned long flags;
800 	mdk_rdev_t *blocked_rdev;
801 
802 	if (unlikely(bio_barrier(bio))) {
803 		bio_endio(bio, -EOPNOTSUPP);
804 		return 0;
805 	}
806 
807 	/* If this request crosses a chunk boundary, we need to
808 	 * split it.  This will only happen for 1 PAGE (or less) requests.
809 	 */
810 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
811 		      > chunk_sects &&
812 		    conf->near_copies < conf->raid_disks)) {
813 		struct bio_pair *bp;
814 		/* Sanity check -- queue functions should prevent this happening */
815 		if (bio->bi_vcnt != 1 ||
816 		    bio->bi_idx != 0)
817 			goto bad_map;
818 		/* This is a one page bio that upper layers
819 		 * refuse to split for us, so we need to split it.
820 		 */
821 		bp = bio_split(bio,
822 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
823 		if (make_request(q, &bp->bio1))
824 			generic_make_request(&bp->bio1);
825 		if (make_request(q, &bp->bio2))
826 			generic_make_request(&bp->bio2);
827 
828 		bio_pair_release(bp);
829 		return 0;
830 	bad_map:
831 		printk("raid10_make_request bug: can't convert block across chunks"
832 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
833 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
834 
835 		bio_io_error(bio);
836 		return 0;
837 	}
838 
839 	md_write_start(mddev, bio);
840 
841 	/*
842 	 * Register the new request and wait if the reconstruction
843 	 * thread has put up a bar for new requests.
844 	 * Continue immediately if no resync is active currently.
845 	 */
846 	wait_barrier(conf);
847 
848 	cpu = part_stat_lock();
849 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
850 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
851 		      bio_sectors(bio));
852 	part_stat_unlock();
853 
854 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
855 
856 	r10_bio->master_bio = bio;
857 	r10_bio->sectors = bio->bi_size >> 9;
858 
859 	r10_bio->mddev = mddev;
860 	r10_bio->sector = bio->bi_sector;
861 	r10_bio->state = 0;
862 
863 	if (rw == READ) {
864 		/*
865 		 * read balancing logic:
866 		 */
867 		int disk = read_balance(conf, r10_bio);
868 		int slot = r10_bio->read_slot;
869 		if (disk < 0) {
870 			raid_end_bio_io(r10_bio);
871 			return 0;
872 		}
873 		mirror = conf->mirrors + disk;
874 
875 		read_bio = bio_clone(bio, GFP_NOIO);
876 
877 		r10_bio->devs[slot].bio = read_bio;
878 
879 		read_bio->bi_sector = r10_bio->devs[slot].addr +
880 			mirror->rdev->data_offset;
881 		read_bio->bi_bdev = mirror->rdev->bdev;
882 		read_bio->bi_end_io = raid10_end_read_request;
883 		read_bio->bi_rw = READ | do_sync;
884 		read_bio->bi_private = r10_bio;
885 
886 		generic_make_request(read_bio);
887 		return 0;
888 	}
889 
890 	/*
891 	 * WRITE:
892 	 */
893 	/* first select target devices under rcu_lock and
894 	 * inc refcount on their rdev.  Record them by setting
895 	 * bios[x] to bio
896 	 */
897 	raid10_find_phys(conf, r10_bio);
898  retry_write:
899 	blocked_rdev = NULL;
900 	rcu_read_lock();
901 	for (i = 0;  i < conf->copies; i++) {
902 		int d = r10_bio->devs[i].devnum;
903 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
904 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
905 			atomic_inc(&rdev->nr_pending);
906 			blocked_rdev = rdev;
907 			break;
908 		}
909 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
910 			atomic_inc(&rdev->nr_pending);
911 			r10_bio->devs[i].bio = bio;
912 		} else {
913 			r10_bio->devs[i].bio = NULL;
914 			set_bit(R10BIO_Degraded, &r10_bio->state);
915 		}
916 	}
917 	rcu_read_unlock();
918 
919 	if (unlikely(blocked_rdev)) {
920 		/* Have to wait for this device to get unblocked, then retry */
921 		int j;
922 		int d;
923 
924 		for (j = 0; j < i; j++)
925 			if (r10_bio->devs[j].bio) {
926 				d = r10_bio->devs[j].devnum;
927 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
928 			}
929 		allow_barrier(conf);
930 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
931 		wait_barrier(conf);
932 		goto retry_write;
933 	}
934 
935 	atomic_set(&r10_bio->remaining, 0);
936 
937 	bio_list_init(&bl);
938 	for (i = 0; i < conf->copies; i++) {
939 		struct bio *mbio;
940 		int d = r10_bio->devs[i].devnum;
941 		if (!r10_bio->devs[i].bio)
942 			continue;
943 
944 		mbio = bio_clone(bio, GFP_NOIO);
945 		r10_bio->devs[i].bio = mbio;
946 
947 		mbio->bi_sector	= r10_bio->devs[i].addr+
948 			conf->mirrors[d].rdev->data_offset;
949 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
950 		mbio->bi_end_io	= raid10_end_write_request;
951 		mbio->bi_rw = WRITE | do_sync;
952 		mbio->bi_private = r10_bio;
953 
954 		atomic_inc(&r10_bio->remaining);
955 		bio_list_add(&bl, mbio);
956 	}
957 
958 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
959 		/* the array is dead */
960 		md_write_end(mddev);
961 		raid_end_bio_io(r10_bio);
962 		return 0;
963 	}
964 
965 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
966 	spin_lock_irqsave(&conf->device_lock, flags);
967 	bio_list_merge(&conf->pending_bio_list, &bl);
968 	blk_plug_device(mddev->queue);
969 	spin_unlock_irqrestore(&conf->device_lock, flags);
970 
971 	/* In case raid10d snuck in to freeze_array */
972 	wake_up(&conf->wait_barrier);
973 
974 	if (do_sync)
975 		md_wakeup_thread(mddev->thread);
976 
977 	return 0;
978 }
979 
980 static void status(struct seq_file *seq, mddev_t *mddev)
981 {
982 	conf_t *conf = mddev_to_conf(mddev);
983 	int i;
984 
985 	if (conf->near_copies < conf->raid_disks)
986 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
987 	if (conf->near_copies > 1)
988 		seq_printf(seq, " %d near-copies", conf->near_copies);
989 	if (conf->far_copies > 1) {
990 		if (conf->far_offset)
991 			seq_printf(seq, " %d offset-copies", conf->far_copies);
992 		else
993 			seq_printf(seq, " %d far-copies", conf->far_copies);
994 	}
995 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
996 					conf->raid_disks - mddev->degraded);
997 	for (i = 0; i < conf->raid_disks; i++)
998 		seq_printf(seq, "%s",
999 			      conf->mirrors[i].rdev &&
1000 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1001 	seq_printf(seq, "]");
1002 }
1003 
1004 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1005 {
1006 	char b[BDEVNAME_SIZE];
1007 	conf_t *conf = mddev_to_conf(mddev);
1008 
1009 	/*
1010 	 * If it is not operational, then we have already marked it as dead
1011 	 * else if it is the last working disks, ignore the error, let the
1012 	 * next level up know.
1013 	 * else mark the drive as failed
1014 	 */
1015 	if (test_bit(In_sync, &rdev->flags)
1016 	    && conf->raid_disks-mddev->degraded == 1)
1017 		/*
1018 		 * Don't fail the drive, just return an IO error.
1019 		 * The test should really be more sophisticated than
1020 		 * "working_disks == 1", but it isn't critical, and
1021 		 * can wait until we do more sophisticated "is the drive
1022 		 * really dead" tests...
1023 		 */
1024 		return;
1025 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1026 		unsigned long flags;
1027 		spin_lock_irqsave(&conf->device_lock, flags);
1028 		mddev->degraded++;
1029 		spin_unlock_irqrestore(&conf->device_lock, flags);
1030 		/*
1031 		 * if recovery is running, make sure it aborts.
1032 		 */
1033 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1034 	}
1035 	set_bit(Faulty, &rdev->flags);
1036 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1037 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1038 		"raid10: Operation continuing on %d devices.\n",
1039 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1040 }
1041 
1042 static void print_conf(conf_t *conf)
1043 {
1044 	int i;
1045 	mirror_info_t *tmp;
1046 
1047 	printk("RAID10 conf printout:\n");
1048 	if (!conf) {
1049 		printk("(!conf)\n");
1050 		return;
1051 	}
1052 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1053 		conf->raid_disks);
1054 
1055 	for (i = 0; i < conf->raid_disks; i++) {
1056 		char b[BDEVNAME_SIZE];
1057 		tmp = conf->mirrors + i;
1058 		if (tmp->rdev)
1059 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1060 				i, !test_bit(In_sync, &tmp->rdev->flags),
1061 			        !test_bit(Faulty, &tmp->rdev->flags),
1062 				bdevname(tmp->rdev->bdev,b));
1063 	}
1064 }
1065 
1066 static void close_sync(conf_t *conf)
1067 {
1068 	wait_barrier(conf);
1069 	allow_barrier(conf);
1070 
1071 	mempool_destroy(conf->r10buf_pool);
1072 	conf->r10buf_pool = NULL;
1073 }
1074 
1075 /* check if there are enough drives for
1076  * every block to appear on atleast one
1077  */
1078 static int enough(conf_t *conf)
1079 {
1080 	int first = 0;
1081 
1082 	do {
1083 		int n = conf->copies;
1084 		int cnt = 0;
1085 		while (n--) {
1086 			if (conf->mirrors[first].rdev)
1087 				cnt++;
1088 			first = (first+1) % conf->raid_disks;
1089 		}
1090 		if (cnt == 0)
1091 			return 0;
1092 	} while (first != 0);
1093 	return 1;
1094 }
1095 
1096 static int raid10_spare_active(mddev_t *mddev)
1097 {
1098 	int i;
1099 	conf_t *conf = mddev->private;
1100 	mirror_info_t *tmp;
1101 
1102 	/*
1103 	 * Find all non-in_sync disks within the RAID10 configuration
1104 	 * and mark them in_sync
1105 	 */
1106 	for (i = 0; i < conf->raid_disks; i++) {
1107 		tmp = conf->mirrors + i;
1108 		if (tmp->rdev
1109 		    && !test_bit(Faulty, &tmp->rdev->flags)
1110 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1111 			unsigned long flags;
1112 			spin_lock_irqsave(&conf->device_lock, flags);
1113 			mddev->degraded--;
1114 			spin_unlock_irqrestore(&conf->device_lock, flags);
1115 		}
1116 	}
1117 
1118 	print_conf(conf);
1119 	return 0;
1120 }
1121 
1122 
1123 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1124 {
1125 	conf_t *conf = mddev->private;
1126 	int err = -EEXIST;
1127 	int mirror;
1128 	mirror_info_t *p;
1129 	int first = 0;
1130 	int last = mddev->raid_disks - 1;
1131 
1132 	if (mddev->recovery_cp < MaxSector)
1133 		/* only hot-add to in-sync arrays, as recovery is
1134 		 * very different from resync
1135 		 */
1136 		return -EBUSY;
1137 	if (!enough(conf))
1138 		return -EINVAL;
1139 
1140 	if (rdev->raid_disk >= 0)
1141 		first = last = rdev->raid_disk;
1142 
1143 	if (rdev->saved_raid_disk >= 0 &&
1144 	    rdev->saved_raid_disk >= first &&
1145 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1146 		mirror = rdev->saved_raid_disk;
1147 	else
1148 		mirror = first;
1149 	for ( ; mirror <= last ; mirror++)
1150 		if ( !(p=conf->mirrors+mirror)->rdev) {
1151 
1152 			blk_queue_stack_limits(mddev->queue,
1153 					       rdev->bdev->bd_disk->queue);
1154 			/* as we don't honour merge_bvec_fn, we must never risk
1155 			 * violating it, so limit ->max_sector to one PAGE, as
1156 			 * a one page request is never in violation.
1157 			 */
1158 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1159 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1160 				mddev->queue->max_sectors = (PAGE_SIZE>>9);
1161 
1162 			p->head_position = 0;
1163 			rdev->raid_disk = mirror;
1164 			err = 0;
1165 			if (rdev->saved_raid_disk != mirror)
1166 				conf->fullsync = 1;
1167 			rcu_assign_pointer(p->rdev, rdev);
1168 			break;
1169 		}
1170 
1171 	print_conf(conf);
1172 	return err;
1173 }
1174 
1175 static int raid10_remove_disk(mddev_t *mddev, int number)
1176 {
1177 	conf_t *conf = mddev->private;
1178 	int err = 0;
1179 	mdk_rdev_t *rdev;
1180 	mirror_info_t *p = conf->mirrors+ number;
1181 
1182 	print_conf(conf);
1183 	rdev = p->rdev;
1184 	if (rdev) {
1185 		if (test_bit(In_sync, &rdev->flags) ||
1186 		    atomic_read(&rdev->nr_pending)) {
1187 			err = -EBUSY;
1188 			goto abort;
1189 		}
1190 		/* Only remove faulty devices in recovery
1191 		 * is not possible.
1192 		 */
1193 		if (!test_bit(Faulty, &rdev->flags) &&
1194 		    enough(conf)) {
1195 			err = -EBUSY;
1196 			goto abort;
1197 		}
1198 		p->rdev = NULL;
1199 		synchronize_rcu();
1200 		if (atomic_read(&rdev->nr_pending)) {
1201 			/* lost the race, try later */
1202 			err = -EBUSY;
1203 			p->rdev = rdev;
1204 		}
1205 	}
1206 abort:
1207 
1208 	print_conf(conf);
1209 	return err;
1210 }
1211 
1212 
1213 static void end_sync_read(struct bio *bio, int error)
1214 {
1215 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1216 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
1217 	int i,d;
1218 
1219 	for (i=0; i<conf->copies; i++)
1220 		if (r10_bio->devs[i].bio == bio)
1221 			break;
1222 	BUG_ON(i == conf->copies);
1223 	update_head_pos(i, r10_bio);
1224 	d = r10_bio->devs[i].devnum;
1225 
1226 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1227 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1228 	else {
1229 		atomic_add(r10_bio->sectors,
1230 			   &conf->mirrors[d].rdev->corrected_errors);
1231 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1232 			md_error(r10_bio->mddev,
1233 				 conf->mirrors[d].rdev);
1234 	}
1235 
1236 	/* for reconstruct, we always reschedule after a read.
1237 	 * for resync, only after all reads
1238 	 */
1239 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1240 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1241 	    atomic_dec_and_test(&r10_bio->remaining)) {
1242 		/* we have read all the blocks,
1243 		 * do the comparison in process context in raid10d
1244 		 */
1245 		reschedule_retry(r10_bio);
1246 	}
1247 }
1248 
1249 static void end_sync_write(struct bio *bio, int error)
1250 {
1251 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1252 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1253 	mddev_t *mddev = r10_bio->mddev;
1254 	conf_t *conf = mddev_to_conf(mddev);
1255 	int i,d;
1256 
1257 	for (i = 0; i < conf->copies; i++)
1258 		if (r10_bio->devs[i].bio == bio)
1259 			break;
1260 	d = r10_bio->devs[i].devnum;
1261 
1262 	if (!uptodate)
1263 		md_error(mddev, conf->mirrors[d].rdev);
1264 
1265 	update_head_pos(i, r10_bio);
1266 
1267 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1268 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1269 		if (r10_bio->master_bio == NULL) {
1270 			/* the primary of several recovery bios */
1271 			sector_t s = r10_bio->sectors;
1272 			put_buf(r10_bio);
1273 			md_done_sync(mddev, s, 1);
1274 			break;
1275 		} else {
1276 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1277 			put_buf(r10_bio);
1278 			r10_bio = r10_bio2;
1279 		}
1280 	}
1281 }
1282 
1283 /*
1284  * Note: sync and recover and handled very differently for raid10
1285  * This code is for resync.
1286  * For resync, we read through virtual addresses and read all blocks.
1287  * If there is any error, we schedule a write.  The lowest numbered
1288  * drive is authoritative.
1289  * However requests come for physical address, so we need to map.
1290  * For every physical address there are raid_disks/copies virtual addresses,
1291  * which is always are least one, but is not necessarly an integer.
1292  * This means that a physical address can span multiple chunks, so we may
1293  * have to submit multiple io requests for a single sync request.
1294  */
1295 /*
1296  * We check if all blocks are in-sync and only write to blocks that
1297  * aren't in sync
1298  */
1299 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1300 {
1301 	conf_t *conf = mddev_to_conf(mddev);
1302 	int i, first;
1303 	struct bio *tbio, *fbio;
1304 
1305 	atomic_set(&r10_bio->remaining, 1);
1306 
1307 	/* find the first device with a block */
1308 	for (i=0; i<conf->copies; i++)
1309 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1310 			break;
1311 
1312 	if (i == conf->copies)
1313 		goto done;
1314 
1315 	first = i;
1316 	fbio = r10_bio->devs[i].bio;
1317 
1318 	/* now find blocks with errors */
1319 	for (i=0 ; i < conf->copies ; i++) {
1320 		int  j, d;
1321 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1322 
1323 		tbio = r10_bio->devs[i].bio;
1324 
1325 		if (tbio->bi_end_io != end_sync_read)
1326 			continue;
1327 		if (i == first)
1328 			continue;
1329 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1330 			/* We know that the bi_io_vec layout is the same for
1331 			 * both 'first' and 'i', so we just compare them.
1332 			 * All vec entries are PAGE_SIZE;
1333 			 */
1334 			for (j = 0; j < vcnt; j++)
1335 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1336 					   page_address(tbio->bi_io_vec[j].bv_page),
1337 					   PAGE_SIZE))
1338 					break;
1339 			if (j == vcnt)
1340 				continue;
1341 			mddev->resync_mismatches += r10_bio->sectors;
1342 		}
1343 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1344 			/* Don't fix anything. */
1345 			continue;
1346 		/* Ok, we need to write this bio
1347 		 * First we need to fixup bv_offset, bv_len and
1348 		 * bi_vecs, as the read request might have corrupted these
1349 		 */
1350 		tbio->bi_vcnt = vcnt;
1351 		tbio->bi_size = r10_bio->sectors << 9;
1352 		tbio->bi_idx = 0;
1353 		tbio->bi_phys_segments = 0;
1354 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1355 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1356 		tbio->bi_next = NULL;
1357 		tbio->bi_rw = WRITE;
1358 		tbio->bi_private = r10_bio;
1359 		tbio->bi_sector = r10_bio->devs[i].addr;
1360 
1361 		for (j=0; j < vcnt ; j++) {
1362 			tbio->bi_io_vec[j].bv_offset = 0;
1363 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1364 
1365 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1366 			       page_address(fbio->bi_io_vec[j].bv_page),
1367 			       PAGE_SIZE);
1368 		}
1369 		tbio->bi_end_io = end_sync_write;
1370 
1371 		d = r10_bio->devs[i].devnum;
1372 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1373 		atomic_inc(&r10_bio->remaining);
1374 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1375 
1376 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1377 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1378 		generic_make_request(tbio);
1379 	}
1380 
1381 done:
1382 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1383 		md_done_sync(mddev, r10_bio->sectors, 1);
1384 		put_buf(r10_bio);
1385 	}
1386 }
1387 
1388 /*
1389  * Now for the recovery code.
1390  * Recovery happens across physical sectors.
1391  * We recover all non-is_sync drives by finding the virtual address of
1392  * each, and then choose a working drive that also has that virt address.
1393  * There is a separate r10_bio for each non-in_sync drive.
1394  * Only the first two slots are in use. The first for reading,
1395  * The second for writing.
1396  *
1397  */
1398 
1399 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1400 {
1401 	conf_t *conf = mddev_to_conf(mddev);
1402 	int i, d;
1403 	struct bio *bio, *wbio;
1404 
1405 
1406 	/* move the pages across to the second bio
1407 	 * and submit the write request
1408 	 */
1409 	bio = r10_bio->devs[0].bio;
1410 	wbio = r10_bio->devs[1].bio;
1411 	for (i=0; i < wbio->bi_vcnt; i++) {
1412 		struct page *p = bio->bi_io_vec[i].bv_page;
1413 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1414 		wbio->bi_io_vec[i].bv_page = p;
1415 	}
1416 	d = r10_bio->devs[1].devnum;
1417 
1418 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1419 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1420 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1421 		generic_make_request(wbio);
1422 	else
1423 		bio_endio(wbio, -EIO);
1424 }
1425 
1426 
1427 /*
1428  * This is a kernel thread which:
1429  *
1430  *	1.	Retries failed read operations on working mirrors.
1431  *	2.	Updates the raid superblock when problems encounter.
1432  *	3.	Performs writes following reads for array synchronising.
1433  */
1434 
1435 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1436 {
1437 	int sect = 0; /* Offset from r10_bio->sector */
1438 	int sectors = r10_bio->sectors;
1439 	mdk_rdev_t*rdev;
1440 	while(sectors) {
1441 		int s = sectors;
1442 		int sl = r10_bio->read_slot;
1443 		int success = 0;
1444 		int start;
1445 
1446 		if (s > (PAGE_SIZE>>9))
1447 			s = PAGE_SIZE >> 9;
1448 
1449 		rcu_read_lock();
1450 		do {
1451 			int d = r10_bio->devs[sl].devnum;
1452 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1453 			if (rdev &&
1454 			    test_bit(In_sync, &rdev->flags)) {
1455 				atomic_inc(&rdev->nr_pending);
1456 				rcu_read_unlock();
1457 				success = sync_page_io(rdev->bdev,
1458 						       r10_bio->devs[sl].addr +
1459 						       sect + rdev->data_offset,
1460 						       s<<9,
1461 						       conf->tmppage, READ);
1462 				rdev_dec_pending(rdev, mddev);
1463 				rcu_read_lock();
1464 				if (success)
1465 					break;
1466 			}
1467 			sl++;
1468 			if (sl == conf->copies)
1469 				sl = 0;
1470 		} while (!success && sl != r10_bio->read_slot);
1471 		rcu_read_unlock();
1472 
1473 		if (!success) {
1474 			/* Cannot read from anywhere -- bye bye array */
1475 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1476 			md_error(mddev, conf->mirrors[dn].rdev);
1477 			break;
1478 		}
1479 
1480 		start = sl;
1481 		/* write it back and re-read */
1482 		rcu_read_lock();
1483 		while (sl != r10_bio->read_slot) {
1484 			int d;
1485 			if (sl==0)
1486 				sl = conf->copies;
1487 			sl--;
1488 			d = r10_bio->devs[sl].devnum;
1489 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1490 			if (rdev &&
1491 			    test_bit(In_sync, &rdev->flags)) {
1492 				atomic_inc(&rdev->nr_pending);
1493 				rcu_read_unlock();
1494 				atomic_add(s, &rdev->corrected_errors);
1495 				if (sync_page_io(rdev->bdev,
1496 						 r10_bio->devs[sl].addr +
1497 						 sect + rdev->data_offset,
1498 						 s<<9, conf->tmppage, WRITE)
1499 				    == 0)
1500 					/* Well, this device is dead */
1501 					md_error(mddev, rdev);
1502 				rdev_dec_pending(rdev, mddev);
1503 				rcu_read_lock();
1504 			}
1505 		}
1506 		sl = start;
1507 		while (sl != r10_bio->read_slot) {
1508 			int d;
1509 			if (sl==0)
1510 				sl = conf->copies;
1511 			sl--;
1512 			d = r10_bio->devs[sl].devnum;
1513 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1514 			if (rdev &&
1515 			    test_bit(In_sync, &rdev->flags)) {
1516 				char b[BDEVNAME_SIZE];
1517 				atomic_inc(&rdev->nr_pending);
1518 				rcu_read_unlock();
1519 				if (sync_page_io(rdev->bdev,
1520 						 r10_bio->devs[sl].addr +
1521 						 sect + rdev->data_offset,
1522 						 s<<9, conf->tmppage, READ) == 0)
1523 					/* Well, this device is dead */
1524 					md_error(mddev, rdev);
1525 				else
1526 					printk(KERN_INFO
1527 					       "raid10:%s: read error corrected"
1528 					       " (%d sectors at %llu on %s)\n",
1529 					       mdname(mddev), s,
1530 					       (unsigned long long)(sect+
1531 					            rdev->data_offset),
1532 					       bdevname(rdev->bdev, b));
1533 
1534 				rdev_dec_pending(rdev, mddev);
1535 				rcu_read_lock();
1536 			}
1537 		}
1538 		rcu_read_unlock();
1539 
1540 		sectors -= s;
1541 		sect += s;
1542 	}
1543 }
1544 
1545 static void raid10d(mddev_t *mddev)
1546 {
1547 	r10bio_t *r10_bio;
1548 	struct bio *bio;
1549 	unsigned long flags;
1550 	conf_t *conf = mddev_to_conf(mddev);
1551 	struct list_head *head = &conf->retry_list;
1552 	int unplug=0;
1553 	mdk_rdev_t *rdev;
1554 
1555 	md_check_recovery(mddev);
1556 
1557 	for (;;) {
1558 		char b[BDEVNAME_SIZE];
1559 
1560 		unplug += flush_pending_writes(conf);
1561 
1562 		spin_lock_irqsave(&conf->device_lock, flags);
1563 		if (list_empty(head)) {
1564 			spin_unlock_irqrestore(&conf->device_lock, flags);
1565 			break;
1566 		}
1567 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1568 		list_del(head->prev);
1569 		conf->nr_queued--;
1570 		spin_unlock_irqrestore(&conf->device_lock, flags);
1571 
1572 		mddev = r10_bio->mddev;
1573 		conf = mddev_to_conf(mddev);
1574 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1575 			sync_request_write(mddev, r10_bio);
1576 			unplug = 1;
1577 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1578 			recovery_request_write(mddev, r10_bio);
1579 			unplug = 1;
1580 		} else {
1581 			int mirror;
1582 			/* we got a read error. Maybe the drive is bad.  Maybe just
1583 			 * the block and we can fix it.
1584 			 * We freeze all other IO, and try reading the block from
1585 			 * other devices.  When we find one, we re-write
1586 			 * and check it that fixes the read error.
1587 			 * This is all done synchronously while the array is
1588 			 * frozen.
1589 			 */
1590 			if (mddev->ro == 0) {
1591 				freeze_array(conf);
1592 				fix_read_error(conf, mddev, r10_bio);
1593 				unfreeze_array(conf);
1594 			}
1595 
1596 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1597 			r10_bio->devs[r10_bio->read_slot].bio =
1598 				mddev->ro ? IO_BLOCKED : NULL;
1599 			mirror = read_balance(conf, r10_bio);
1600 			if (mirror == -1) {
1601 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1602 				       " read error for block %llu\n",
1603 				       bdevname(bio->bi_bdev,b),
1604 				       (unsigned long long)r10_bio->sector);
1605 				raid_end_bio_io(r10_bio);
1606 				bio_put(bio);
1607 			} else {
1608 				const int do_sync = bio_sync(r10_bio->master_bio);
1609 				bio_put(bio);
1610 				rdev = conf->mirrors[mirror].rdev;
1611 				if (printk_ratelimit())
1612 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1613 					       " another mirror\n",
1614 					       bdevname(rdev->bdev,b),
1615 					       (unsigned long long)r10_bio->sector);
1616 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1617 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1618 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1619 					+ rdev->data_offset;
1620 				bio->bi_bdev = rdev->bdev;
1621 				bio->bi_rw = READ | do_sync;
1622 				bio->bi_private = r10_bio;
1623 				bio->bi_end_io = raid10_end_read_request;
1624 				unplug = 1;
1625 				generic_make_request(bio);
1626 			}
1627 		}
1628 	}
1629 	if (unplug)
1630 		unplug_slaves(mddev);
1631 }
1632 
1633 
1634 static int init_resync(conf_t *conf)
1635 {
1636 	int buffs;
1637 
1638 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1639 	BUG_ON(conf->r10buf_pool);
1640 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1641 	if (!conf->r10buf_pool)
1642 		return -ENOMEM;
1643 	conf->next_resync = 0;
1644 	return 0;
1645 }
1646 
1647 /*
1648  * perform a "sync" on one "block"
1649  *
1650  * We need to make sure that no normal I/O request - particularly write
1651  * requests - conflict with active sync requests.
1652  *
1653  * This is achieved by tracking pending requests and a 'barrier' concept
1654  * that can be installed to exclude normal IO requests.
1655  *
1656  * Resync and recovery are handled very differently.
1657  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1658  *
1659  * For resync, we iterate over virtual addresses, read all copies,
1660  * and update if there are differences.  If only one copy is live,
1661  * skip it.
1662  * For recovery, we iterate over physical addresses, read a good
1663  * value for each non-in_sync drive, and over-write.
1664  *
1665  * So, for recovery we may have several outstanding complex requests for a
1666  * given address, one for each out-of-sync device.  We model this by allocating
1667  * a number of r10_bio structures, one for each out-of-sync device.
1668  * As we setup these structures, we collect all bio's together into a list
1669  * which we then process collectively to add pages, and then process again
1670  * to pass to generic_make_request.
1671  *
1672  * The r10_bio structures are linked using a borrowed master_bio pointer.
1673  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1674  * has its remaining count decremented to 0, the whole complex operation
1675  * is complete.
1676  *
1677  */
1678 
1679 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1680 {
1681 	conf_t *conf = mddev_to_conf(mddev);
1682 	r10bio_t *r10_bio;
1683 	struct bio *biolist = NULL, *bio;
1684 	sector_t max_sector, nr_sectors;
1685 	int disk;
1686 	int i;
1687 	int max_sync;
1688 	int sync_blocks;
1689 
1690 	sector_t sectors_skipped = 0;
1691 	int chunks_skipped = 0;
1692 
1693 	if (!conf->r10buf_pool)
1694 		if (init_resync(conf))
1695 			return 0;
1696 
1697  skipped:
1698 	max_sector = mddev->size << 1;
1699 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1700 		max_sector = mddev->resync_max_sectors;
1701 	if (sector_nr >= max_sector) {
1702 		/* If we aborted, we need to abort the
1703 		 * sync on the 'current' bitmap chucks (there can
1704 		 * be several when recovering multiple devices).
1705 		 * as we may have started syncing it but not finished.
1706 		 * We can find the current address in
1707 		 * mddev->curr_resync, but for recovery,
1708 		 * we need to convert that to several
1709 		 * virtual addresses.
1710 		 */
1711 		if (mddev->curr_resync < max_sector) { /* aborted */
1712 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1713 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1714 						&sync_blocks, 1);
1715 			else for (i=0; i<conf->raid_disks; i++) {
1716 				sector_t sect =
1717 					raid10_find_virt(conf, mddev->curr_resync, i);
1718 				bitmap_end_sync(mddev->bitmap, sect,
1719 						&sync_blocks, 1);
1720 			}
1721 		} else /* completed sync */
1722 			conf->fullsync = 0;
1723 
1724 		bitmap_close_sync(mddev->bitmap);
1725 		close_sync(conf);
1726 		*skipped = 1;
1727 		return sectors_skipped;
1728 	}
1729 	if (chunks_skipped >= conf->raid_disks) {
1730 		/* if there has been nothing to do on any drive,
1731 		 * then there is nothing to do at all..
1732 		 */
1733 		*skipped = 1;
1734 		return (max_sector - sector_nr) + sectors_skipped;
1735 	}
1736 
1737 	if (max_sector > mddev->resync_max)
1738 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1739 
1740 	/* make sure whole request will fit in a chunk - if chunks
1741 	 * are meaningful
1742 	 */
1743 	if (conf->near_copies < conf->raid_disks &&
1744 	    max_sector > (sector_nr | conf->chunk_mask))
1745 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1746 	/*
1747 	 * If there is non-resync activity waiting for us then
1748 	 * put in a delay to throttle resync.
1749 	 */
1750 	if (!go_faster && conf->nr_waiting)
1751 		msleep_interruptible(1000);
1752 
1753 	/* Again, very different code for resync and recovery.
1754 	 * Both must result in an r10bio with a list of bios that
1755 	 * have bi_end_io, bi_sector, bi_bdev set,
1756 	 * and bi_private set to the r10bio.
1757 	 * For recovery, we may actually create several r10bios
1758 	 * with 2 bios in each, that correspond to the bios in the main one.
1759 	 * In this case, the subordinate r10bios link back through a
1760 	 * borrowed master_bio pointer, and the counter in the master
1761 	 * includes a ref from each subordinate.
1762 	 */
1763 	/* First, we decide what to do and set ->bi_end_io
1764 	 * To end_sync_read if we want to read, and
1765 	 * end_sync_write if we will want to write.
1766 	 */
1767 
1768 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1769 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1770 		/* recovery... the complicated one */
1771 		int i, j, k;
1772 		r10_bio = NULL;
1773 
1774 		for (i=0 ; i<conf->raid_disks; i++)
1775 			if (conf->mirrors[i].rdev &&
1776 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1777 				int still_degraded = 0;
1778 				/* want to reconstruct this device */
1779 				r10bio_t *rb2 = r10_bio;
1780 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1781 				int must_sync;
1782 				/* Unless we are doing a full sync, we only need
1783 				 * to recover the block if it is set in the bitmap
1784 				 */
1785 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1786 							      &sync_blocks, 1);
1787 				if (sync_blocks < max_sync)
1788 					max_sync = sync_blocks;
1789 				if (!must_sync &&
1790 				    !conf->fullsync) {
1791 					/* yep, skip the sync_blocks here, but don't assume
1792 					 * that there will never be anything to do here
1793 					 */
1794 					chunks_skipped = -1;
1795 					continue;
1796 				}
1797 
1798 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1799 				raise_barrier(conf, rb2 != NULL);
1800 				atomic_set(&r10_bio->remaining, 0);
1801 
1802 				r10_bio->master_bio = (struct bio*)rb2;
1803 				if (rb2)
1804 					atomic_inc(&rb2->remaining);
1805 				r10_bio->mddev = mddev;
1806 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1807 				r10_bio->sector = sect;
1808 
1809 				raid10_find_phys(conf, r10_bio);
1810 				/* Need to check if this section will still be
1811 				 * degraded
1812 				 */
1813 				for (j=0; j<conf->copies;j++) {
1814 					int d = r10_bio->devs[j].devnum;
1815 					if (conf->mirrors[d].rdev == NULL ||
1816 					    test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1817 						still_degraded = 1;
1818 						break;
1819 					}
1820 				}
1821 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1822 							      &sync_blocks, still_degraded);
1823 
1824 				for (j=0; j<conf->copies;j++) {
1825 					int d = r10_bio->devs[j].devnum;
1826 					if (conf->mirrors[d].rdev &&
1827 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1828 						/* This is where we read from */
1829 						bio = r10_bio->devs[0].bio;
1830 						bio->bi_next = biolist;
1831 						biolist = bio;
1832 						bio->bi_private = r10_bio;
1833 						bio->bi_end_io = end_sync_read;
1834 						bio->bi_rw = READ;
1835 						bio->bi_sector = r10_bio->devs[j].addr +
1836 							conf->mirrors[d].rdev->data_offset;
1837 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1838 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1839 						atomic_inc(&r10_bio->remaining);
1840 						/* and we write to 'i' */
1841 
1842 						for (k=0; k<conf->copies; k++)
1843 							if (r10_bio->devs[k].devnum == i)
1844 								break;
1845 						BUG_ON(k == conf->copies);
1846 						bio = r10_bio->devs[1].bio;
1847 						bio->bi_next = biolist;
1848 						biolist = bio;
1849 						bio->bi_private = r10_bio;
1850 						bio->bi_end_io = end_sync_write;
1851 						bio->bi_rw = WRITE;
1852 						bio->bi_sector = r10_bio->devs[k].addr +
1853 							conf->mirrors[i].rdev->data_offset;
1854 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1855 
1856 						r10_bio->devs[0].devnum = d;
1857 						r10_bio->devs[1].devnum = i;
1858 
1859 						break;
1860 					}
1861 				}
1862 				if (j == conf->copies) {
1863 					/* Cannot recover, so abort the recovery */
1864 					put_buf(r10_bio);
1865 					if (rb2)
1866 						atomic_dec(&rb2->remaining);
1867 					r10_bio = rb2;
1868 					if (!test_and_set_bit(MD_RECOVERY_INTR,
1869 							      &mddev->recovery))
1870 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1871 						       mdname(mddev));
1872 					break;
1873 				}
1874 			}
1875 		if (biolist == NULL) {
1876 			while (r10_bio) {
1877 				r10bio_t *rb2 = r10_bio;
1878 				r10_bio = (r10bio_t*) rb2->master_bio;
1879 				rb2->master_bio = NULL;
1880 				put_buf(rb2);
1881 			}
1882 			goto giveup;
1883 		}
1884 	} else {
1885 		/* resync. Schedule a read for every block at this virt offset */
1886 		int count = 0;
1887 
1888 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1889 
1890 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1891 				       &sync_blocks, mddev->degraded) &&
1892 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1893 			/* We can skip this block */
1894 			*skipped = 1;
1895 			return sync_blocks + sectors_skipped;
1896 		}
1897 		if (sync_blocks < max_sync)
1898 			max_sync = sync_blocks;
1899 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1900 
1901 		r10_bio->mddev = mddev;
1902 		atomic_set(&r10_bio->remaining, 0);
1903 		raise_barrier(conf, 0);
1904 		conf->next_resync = sector_nr;
1905 
1906 		r10_bio->master_bio = NULL;
1907 		r10_bio->sector = sector_nr;
1908 		set_bit(R10BIO_IsSync, &r10_bio->state);
1909 		raid10_find_phys(conf, r10_bio);
1910 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1911 
1912 		for (i=0; i<conf->copies; i++) {
1913 			int d = r10_bio->devs[i].devnum;
1914 			bio = r10_bio->devs[i].bio;
1915 			bio->bi_end_io = NULL;
1916 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1917 			if (conf->mirrors[d].rdev == NULL ||
1918 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1919 				continue;
1920 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1921 			atomic_inc(&r10_bio->remaining);
1922 			bio->bi_next = biolist;
1923 			biolist = bio;
1924 			bio->bi_private = r10_bio;
1925 			bio->bi_end_io = end_sync_read;
1926 			bio->bi_rw = READ;
1927 			bio->bi_sector = r10_bio->devs[i].addr +
1928 				conf->mirrors[d].rdev->data_offset;
1929 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1930 			count++;
1931 		}
1932 
1933 		if (count < 2) {
1934 			for (i=0; i<conf->copies; i++) {
1935 				int d = r10_bio->devs[i].devnum;
1936 				if (r10_bio->devs[i].bio->bi_end_io)
1937 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1938 			}
1939 			put_buf(r10_bio);
1940 			biolist = NULL;
1941 			goto giveup;
1942 		}
1943 	}
1944 
1945 	for (bio = biolist; bio ; bio=bio->bi_next) {
1946 
1947 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1948 		if (bio->bi_end_io)
1949 			bio->bi_flags |= 1 << BIO_UPTODATE;
1950 		bio->bi_vcnt = 0;
1951 		bio->bi_idx = 0;
1952 		bio->bi_phys_segments = 0;
1953 		bio->bi_size = 0;
1954 	}
1955 
1956 	nr_sectors = 0;
1957 	if (sector_nr + max_sync < max_sector)
1958 		max_sector = sector_nr + max_sync;
1959 	do {
1960 		struct page *page;
1961 		int len = PAGE_SIZE;
1962 		disk = 0;
1963 		if (sector_nr + (len>>9) > max_sector)
1964 			len = (max_sector - sector_nr) << 9;
1965 		if (len == 0)
1966 			break;
1967 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1968 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1969 			if (bio_add_page(bio, page, len, 0) == 0) {
1970 				/* stop here */
1971 				struct bio *bio2;
1972 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1973 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1974 					/* remove last page from this bio */
1975 					bio2->bi_vcnt--;
1976 					bio2->bi_size -= len;
1977 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1978 				}
1979 				goto bio_full;
1980 			}
1981 			disk = i;
1982 		}
1983 		nr_sectors += len>>9;
1984 		sector_nr += len>>9;
1985 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1986  bio_full:
1987 	r10_bio->sectors = nr_sectors;
1988 
1989 	while (biolist) {
1990 		bio = biolist;
1991 		biolist = biolist->bi_next;
1992 
1993 		bio->bi_next = NULL;
1994 		r10_bio = bio->bi_private;
1995 		r10_bio->sectors = nr_sectors;
1996 
1997 		if (bio->bi_end_io == end_sync_read) {
1998 			md_sync_acct(bio->bi_bdev, nr_sectors);
1999 			generic_make_request(bio);
2000 		}
2001 	}
2002 
2003 	if (sectors_skipped)
2004 		/* pretend they weren't skipped, it makes
2005 		 * no important difference in this case
2006 		 */
2007 		md_done_sync(mddev, sectors_skipped, 1);
2008 
2009 	return sectors_skipped + nr_sectors;
2010  giveup:
2011 	/* There is nowhere to write, so all non-sync
2012 	 * drives must be failed, so try the next chunk...
2013 	 */
2014 	if (sector_nr + max_sync < max_sector)
2015 		max_sector = sector_nr + max_sync;
2016 
2017 	sectors_skipped += (max_sector - sector_nr);
2018 	chunks_skipped ++;
2019 	sector_nr = max_sector;
2020 	goto skipped;
2021 }
2022 
2023 static int run(mddev_t *mddev)
2024 {
2025 	conf_t *conf;
2026 	int i, disk_idx;
2027 	mirror_info_t *disk;
2028 	mdk_rdev_t *rdev;
2029 	int nc, fc, fo;
2030 	sector_t stride, size;
2031 
2032 	if (mddev->chunk_size < PAGE_SIZE) {
2033 		printk(KERN_ERR "md/raid10: chunk size must be "
2034 		       "at least PAGE_SIZE(%ld).\n", PAGE_SIZE);
2035 		return -EINVAL;
2036 	}
2037 
2038 	nc = mddev->layout & 255;
2039 	fc = (mddev->layout >> 8) & 255;
2040 	fo = mddev->layout & (1<<16);
2041 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2042 	    (mddev->layout >> 17)) {
2043 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2044 		       mdname(mddev), mddev->layout);
2045 		goto out;
2046 	}
2047 	/*
2048 	 * copy the already verified devices into our private RAID10
2049 	 * bookkeeping area. [whatever we allocate in run(),
2050 	 * should be freed in stop()]
2051 	 */
2052 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2053 	mddev->private = conf;
2054 	if (!conf) {
2055 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2056 			mdname(mddev));
2057 		goto out;
2058 	}
2059 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2060 				 GFP_KERNEL);
2061 	if (!conf->mirrors) {
2062 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2063 		       mdname(mddev));
2064 		goto out_free_conf;
2065 	}
2066 
2067 	conf->tmppage = alloc_page(GFP_KERNEL);
2068 	if (!conf->tmppage)
2069 		goto out_free_conf;
2070 
2071 	conf->mddev = mddev;
2072 	conf->raid_disks = mddev->raid_disks;
2073 	conf->near_copies = nc;
2074 	conf->far_copies = fc;
2075 	conf->copies = nc*fc;
2076 	conf->far_offset = fo;
2077 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2078 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2079 	size = mddev->size >> (conf->chunk_shift-1);
2080 	sector_div(size, fc);
2081 	size = size * conf->raid_disks;
2082 	sector_div(size, nc);
2083 	/* 'size' is now the number of chunks in the array */
2084 	/* calculate "used chunks per device" in 'stride' */
2085 	stride = size * conf->copies;
2086 
2087 	/* We need to round up when dividing by raid_disks to
2088 	 * get the stride size.
2089 	 */
2090 	stride += conf->raid_disks - 1;
2091 	sector_div(stride, conf->raid_disks);
2092 	mddev->size = stride  << (conf->chunk_shift-1);
2093 
2094 	if (fo)
2095 		stride = 1;
2096 	else
2097 		sector_div(stride, fc);
2098 	conf->stride = stride << conf->chunk_shift;
2099 
2100 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2101 						r10bio_pool_free, conf);
2102 	if (!conf->r10bio_pool) {
2103 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2104 			mdname(mddev));
2105 		goto out_free_conf;
2106 	}
2107 
2108 	spin_lock_init(&conf->device_lock);
2109 	mddev->queue->queue_lock = &conf->device_lock;
2110 
2111 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2112 		disk_idx = rdev->raid_disk;
2113 		if (disk_idx >= mddev->raid_disks
2114 		    || disk_idx < 0)
2115 			continue;
2116 		disk = conf->mirrors + disk_idx;
2117 
2118 		disk->rdev = rdev;
2119 
2120 		blk_queue_stack_limits(mddev->queue,
2121 				       rdev->bdev->bd_disk->queue);
2122 		/* as we don't honour merge_bvec_fn, we must never risk
2123 		 * violating it, so limit ->max_sector to one PAGE, as
2124 		 * a one page request is never in violation.
2125 		 */
2126 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2127 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
2128 			mddev->queue->max_sectors = (PAGE_SIZE>>9);
2129 
2130 		disk->head_position = 0;
2131 	}
2132 	INIT_LIST_HEAD(&conf->retry_list);
2133 
2134 	spin_lock_init(&conf->resync_lock);
2135 	init_waitqueue_head(&conf->wait_barrier);
2136 
2137 	/* need to check that every block has at least one working mirror */
2138 	if (!enough(conf)) {
2139 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2140 		       mdname(mddev));
2141 		goto out_free_conf;
2142 	}
2143 
2144 	mddev->degraded = 0;
2145 	for (i = 0; i < conf->raid_disks; i++) {
2146 
2147 		disk = conf->mirrors + i;
2148 
2149 		if (!disk->rdev ||
2150 		    !test_bit(In_sync, &disk->rdev->flags)) {
2151 			disk->head_position = 0;
2152 			mddev->degraded++;
2153 			if (disk->rdev)
2154 				conf->fullsync = 1;
2155 		}
2156 	}
2157 
2158 
2159 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2160 	if (!mddev->thread) {
2161 		printk(KERN_ERR
2162 		       "raid10: couldn't allocate thread for %s\n",
2163 		       mdname(mddev));
2164 		goto out_free_conf;
2165 	}
2166 
2167 	printk(KERN_INFO
2168 		"raid10: raid set %s active with %d out of %d devices\n",
2169 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2170 		mddev->raid_disks);
2171 	/*
2172 	 * Ok, everything is just fine now
2173 	 */
2174 	mddev->array_sectors = size << conf->chunk_shift;
2175 	mddev->resync_max_sectors = size << conf->chunk_shift;
2176 
2177 	mddev->queue->unplug_fn = raid10_unplug;
2178 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2179 	mddev->queue->backing_dev_info.congested_data = mddev;
2180 
2181 	/* Calculate max read-ahead size.
2182 	 * We need to readahead at least twice a whole stripe....
2183 	 * maybe...
2184 	 */
2185 	{
2186 		int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2187 		stripe /= conf->near_copies;
2188 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2189 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2190 	}
2191 
2192 	if (conf->near_copies < mddev->raid_disks)
2193 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2194 	return 0;
2195 
2196 out_free_conf:
2197 	if (conf->r10bio_pool)
2198 		mempool_destroy(conf->r10bio_pool);
2199 	safe_put_page(conf->tmppage);
2200 	kfree(conf->mirrors);
2201 	kfree(conf);
2202 	mddev->private = NULL;
2203 out:
2204 	return -EIO;
2205 }
2206 
2207 static int stop(mddev_t *mddev)
2208 {
2209 	conf_t *conf = mddev_to_conf(mddev);
2210 
2211 	md_unregister_thread(mddev->thread);
2212 	mddev->thread = NULL;
2213 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2214 	if (conf->r10bio_pool)
2215 		mempool_destroy(conf->r10bio_pool);
2216 	kfree(conf->mirrors);
2217 	kfree(conf);
2218 	mddev->private = NULL;
2219 	return 0;
2220 }
2221 
2222 static void raid10_quiesce(mddev_t *mddev, int state)
2223 {
2224 	conf_t *conf = mddev_to_conf(mddev);
2225 
2226 	switch(state) {
2227 	case 1:
2228 		raise_barrier(conf, 0);
2229 		break;
2230 	case 0:
2231 		lower_barrier(conf);
2232 		break;
2233 	}
2234 	if (mddev->thread) {
2235 		if (mddev->bitmap)
2236 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2237 		else
2238 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2239 		md_wakeup_thread(mddev->thread);
2240 	}
2241 }
2242 
2243 static struct mdk_personality raid10_personality =
2244 {
2245 	.name		= "raid10",
2246 	.level		= 10,
2247 	.owner		= THIS_MODULE,
2248 	.make_request	= make_request,
2249 	.run		= run,
2250 	.stop		= stop,
2251 	.status		= status,
2252 	.error_handler	= error,
2253 	.hot_add_disk	= raid10_add_disk,
2254 	.hot_remove_disk= raid10_remove_disk,
2255 	.spare_active	= raid10_spare_active,
2256 	.sync_request	= sync_request,
2257 	.quiesce	= raid10_quiesce,
2258 };
2259 
2260 static int __init raid_init(void)
2261 {
2262 	return register_md_personality(&raid10_personality);
2263 }
2264 
2265 static void raid_exit(void)
2266 {
2267 	unregister_md_personality(&raid10_personality);
2268 }
2269 
2270 module_init(raid_init);
2271 module_exit(raid_exit);
2272 MODULE_LICENSE("GPL");
2273 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2274 MODULE_ALIAS("md-raid10");
2275 MODULE_ALIAS("md-level-10");
2276