1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * use_far_sets_bugfixed (stored in bit 18 of layout ) 43 * 44 * The data to be stored is divided into chunks using chunksize. Each device 45 * is divided into far_copies sections. In each section, chunks are laid out 46 * in a style similar to raid0, but near_copies copies of each chunk is stored 47 * (each on a different drive). The starting device for each section is offset 48 * near_copies from the starting device of the previous section. Thus there 49 * are (near_copies * far_copies) of each chunk, and each is on a different 50 * drive. near_copies and far_copies must be at least one, and their product 51 * is at most raid_disks. 52 * 53 * If far_offset is true, then the far_copies are handled a bit differently. 54 * The copies are still in different stripes, but instead of being very far 55 * apart on disk, there are adjacent stripes. 56 * 57 * The far and offset algorithms are handled slightly differently if 58 * 'use_far_sets' is true. In this case, the array's devices are grouped into 59 * sets that are (near_copies * far_copies) in size. The far copied stripes 60 * are still shifted by 'near_copies' devices, but this shifting stays confined 61 * to the set rather than the entire array. This is done to improve the number 62 * of device combinations that can fail without causing the array to fail. 63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 64 * on a device): 65 * A B C D A B C D E 66 * ... ... 67 * D A B C E A B C D 68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 69 * [A B] [C D] [A B] [C D E] 70 * |...| |...| |...| | ... | 71 * [B A] [D C] [B A] [E C D] 72 */ 73 74 /* 75 * Number of guaranteed r10bios in case of extreme VM load: 76 */ 77 #define NR_RAID10_BIOS 256 78 79 /* when we get a read error on a read-only array, we redirect to another 80 * device without failing the first device, or trying to over-write to 81 * correct the read error. To keep track of bad blocks on a per-bio 82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 83 */ 84 #define IO_BLOCKED ((struct bio *)1) 85 /* When we successfully write to a known bad-block, we need to remove the 86 * bad-block marking which must be done from process context. So we record 87 * the success by setting devs[n].bio to IO_MADE_GOOD 88 */ 89 #define IO_MADE_GOOD ((struct bio *)2) 90 91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 92 93 /* When there are this many requests queued to be written by 94 * the raid10 thread, we become 'congested' to provide back-pressure 95 * for writeback. 96 */ 97 static int max_queued_requests = 1024; 98 99 static void allow_barrier(struct r10conf *conf); 100 static void lower_barrier(struct r10conf *conf); 101 static int _enough(struct r10conf *conf, int previous, int ignore); 102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 103 int *skipped); 104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 105 static void end_reshape_write(struct bio *bio); 106 static void end_reshape(struct r10conf *conf); 107 108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 109 { 110 struct r10conf *conf = data; 111 int size = offsetof(struct r10bio, devs[conf->copies]); 112 113 /* allocate a r10bio with room for raid_disks entries in the 114 * bios array */ 115 return kzalloc(size, gfp_flags); 116 } 117 118 static void r10bio_pool_free(void *r10_bio, void *data) 119 { 120 kfree(r10_bio); 121 } 122 123 /* Maximum size of each resync request */ 124 #define RESYNC_BLOCK_SIZE (64*1024) 125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 126 /* amount of memory to reserve for resync requests */ 127 #define RESYNC_WINDOW (1024*1024) 128 /* maximum number of concurrent requests, memory permitting */ 129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 130 131 /* 132 * When performing a resync, we need to read and compare, so 133 * we need as many pages are there are copies. 134 * When performing a recovery, we need 2 bios, one for read, 135 * one for write (we recover only one drive per r10buf) 136 * 137 */ 138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 139 { 140 struct r10conf *conf = data; 141 struct page *page; 142 struct r10bio *r10_bio; 143 struct bio *bio; 144 int i, j; 145 int nalloc; 146 147 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 148 if (!r10_bio) 149 return NULL; 150 151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 153 nalloc = conf->copies; /* resync */ 154 else 155 nalloc = 2; /* recovery */ 156 157 /* 158 * Allocate bios. 159 */ 160 for (j = nalloc ; j-- ; ) { 161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 162 if (!bio) 163 goto out_free_bio; 164 r10_bio->devs[j].bio = bio; 165 if (!conf->have_replacement) 166 continue; 167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 168 if (!bio) 169 goto out_free_bio; 170 r10_bio->devs[j].repl_bio = bio; 171 } 172 /* 173 * Allocate RESYNC_PAGES data pages and attach them 174 * where needed. 175 */ 176 for (j = 0 ; j < nalloc; j++) { 177 struct bio *rbio = r10_bio->devs[j].repl_bio; 178 bio = r10_bio->devs[j].bio; 179 for (i = 0; i < RESYNC_PAGES; i++) { 180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 181 &conf->mddev->recovery)) { 182 /* we can share bv_page's during recovery 183 * and reshape */ 184 struct bio *rbio = r10_bio->devs[0].bio; 185 page = rbio->bi_io_vec[i].bv_page; 186 get_page(page); 187 } else 188 page = alloc_page(gfp_flags); 189 if (unlikely(!page)) 190 goto out_free_pages; 191 192 bio->bi_io_vec[i].bv_page = page; 193 if (rbio) 194 rbio->bi_io_vec[i].bv_page = page; 195 } 196 } 197 198 return r10_bio; 199 200 out_free_pages: 201 for ( ; i > 0 ; i--) 202 safe_put_page(bio->bi_io_vec[i-1].bv_page); 203 while (j--) 204 for (i = 0; i < RESYNC_PAGES ; i++) 205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 206 j = 0; 207 out_free_bio: 208 for ( ; j < nalloc; j++) { 209 if (r10_bio->devs[j].bio) 210 bio_put(r10_bio->devs[j].bio); 211 if (r10_bio->devs[j].repl_bio) 212 bio_put(r10_bio->devs[j].repl_bio); 213 } 214 r10bio_pool_free(r10_bio, conf); 215 return NULL; 216 } 217 218 static void r10buf_pool_free(void *__r10_bio, void *data) 219 { 220 int i; 221 struct r10conf *conf = data; 222 struct r10bio *r10bio = __r10_bio; 223 int j; 224 225 for (j=0; j < conf->copies; j++) { 226 struct bio *bio = r10bio->devs[j].bio; 227 if (bio) { 228 for (i = 0; i < RESYNC_PAGES; i++) { 229 safe_put_page(bio->bi_io_vec[i].bv_page); 230 bio->bi_io_vec[i].bv_page = NULL; 231 } 232 bio_put(bio); 233 } 234 bio = r10bio->devs[j].repl_bio; 235 if (bio) 236 bio_put(bio); 237 } 238 r10bio_pool_free(r10bio, conf); 239 } 240 241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 242 { 243 int i; 244 245 for (i = 0; i < conf->copies; i++) { 246 struct bio **bio = & r10_bio->devs[i].bio; 247 if (!BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 bio = &r10_bio->devs[i].repl_bio; 251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 252 bio_put(*bio); 253 *bio = NULL; 254 } 255 } 256 257 static void free_r10bio(struct r10bio *r10_bio) 258 { 259 struct r10conf *conf = r10_bio->mddev->private; 260 261 put_all_bios(conf, r10_bio); 262 mempool_free(r10_bio, conf->r10bio_pool); 263 } 264 265 static void put_buf(struct r10bio *r10_bio) 266 { 267 struct r10conf *conf = r10_bio->mddev->private; 268 269 mempool_free(r10_bio, conf->r10buf_pool); 270 271 lower_barrier(conf); 272 } 273 274 static void reschedule_retry(struct r10bio *r10_bio) 275 { 276 unsigned long flags; 277 struct mddev *mddev = r10_bio->mddev; 278 struct r10conf *conf = mddev->private; 279 280 spin_lock_irqsave(&conf->device_lock, flags); 281 list_add(&r10_bio->retry_list, &conf->retry_list); 282 conf->nr_queued ++; 283 spin_unlock_irqrestore(&conf->device_lock, flags); 284 285 /* wake up frozen array... */ 286 wake_up(&conf->wait_barrier); 287 288 md_wakeup_thread(mddev->thread); 289 } 290 291 /* 292 * raid_end_bio_io() is called when we have finished servicing a mirrored 293 * operation and are ready to return a success/failure code to the buffer 294 * cache layer. 295 */ 296 static void raid_end_bio_io(struct r10bio *r10_bio) 297 { 298 struct bio *bio = r10_bio->master_bio; 299 int done; 300 struct r10conf *conf = r10_bio->mddev->private; 301 302 if (bio->bi_phys_segments) { 303 unsigned long flags; 304 spin_lock_irqsave(&conf->device_lock, flags); 305 bio->bi_phys_segments--; 306 done = (bio->bi_phys_segments == 0); 307 spin_unlock_irqrestore(&conf->device_lock, flags); 308 } else 309 done = 1; 310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 311 bio->bi_error = -EIO; 312 if (done) { 313 bio_endio(bio); 314 /* 315 * Wake up any possible resync thread that waits for the device 316 * to go idle. 317 */ 318 allow_barrier(conf); 319 } 320 free_r10bio(r10_bio); 321 } 322 323 /* 324 * Update disk head position estimator based on IRQ completion info. 325 */ 326 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 327 { 328 struct r10conf *conf = r10_bio->mddev->private; 329 330 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 331 r10_bio->devs[slot].addr + (r10_bio->sectors); 332 } 333 334 /* 335 * Find the disk number which triggered given bio 336 */ 337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 338 struct bio *bio, int *slotp, int *replp) 339 { 340 int slot; 341 int repl = 0; 342 343 for (slot = 0; slot < conf->copies; slot++) { 344 if (r10_bio->devs[slot].bio == bio) 345 break; 346 if (r10_bio->devs[slot].repl_bio == bio) { 347 repl = 1; 348 break; 349 } 350 } 351 352 BUG_ON(slot == conf->copies); 353 update_head_pos(slot, r10_bio); 354 355 if (slotp) 356 *slotp = slot; 357 if (replp) 358 *replp = repl; 359 return r10_bio->devs[slot].devnum; 360 } 361 362 static void raid10_end_read_request(struct bio *bio) 363 { 364 int uptodate = !bio->bi_error; 365 struct r10bio *r10_bio = bio->bi_private; 366 int slot, dev; 367 struct md_rdev *rdev; 368 struct r10conf *conf = r10_bio->mddev->private; 369 370 slot = r10_bio->read_slot; 371 dev = r10_bio->devs[slot].devnum; 372 rdev = r10_bio->devs[slot].rdev; 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 update_head_pos(slot, r10_bio); 377 378 if (uptodate) { 379 /* 380 * Set R10BIO_Uptodate in our master bio, so that 381 * we will return a good error code to the higher 382 * levels even if IO on some other mirrored buffer fails. 383 * 384 * The 'master' represents the composite IO operation to 385 * user-side. So if something waits for IO, then it will 386 * wait for the 'master' bio. 387 */ 388 set_bit(R10BIO_Uptodate, &r10_bio->state); 389 } else { 390 /* If all other devices that store this block have 391 * failed, we want to return the error upwards rather 392 * than fail the last device. Here we redefine 393 * "uptodate" to mean "Don't want to retry" 394 */ 395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 396 rdev->raid_disk)) 397 uptodate = 1; 398 } 399 if (uptodate) { 400 raid_end_bio_io(r10_bio); 401 rdev_dec_pending(rdev, conf->mddev); 402 } else { 403 /* 404 * oops, read error - keep the refcount on the rdev 405 */ 406 char b[BDEVNAME_SIZE]; 407 printk_ratelimited(KERN_ERR 408 "md/raid10:%s: %s: rescheduling sector %llu\n", 409 mdname(conf->mddev), 410 bdevname(rdev->bdev, b), 411 (unsigned long long)r10_bio->sector); 412 set_bit(R10BIO_ReadError, &r10_bio->state); 413 reschedule_retry(r10_bio); 414 } 415 } 416 417 static void close_write(struct r10bio *r10_bio) 418 { 419 /* clear the bitmap if all writes complete successfully */ 420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 421 r10_bio->sectors, 422 !test_bit(R10BIO_Degraded, &r10_bio->state), 423 0); 424 md_write_end(r10_bio->mddev); 425 } 426 427 static void one_write_done(struct r10bio *r10_bio) 428 { 429 if (atomic_dec_and_test(&r10_bio->remaining)) { 430 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 431 reschedule_retry(r10_bio); 432 else { 433 close_write(r10_bio); 434 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 435 reschedule_retry(r10_bio); 436 else 437 raid_end_bio_io(r10_bio); 438 } 439 } 440 } 441 442 static void raid10_end_write_request(struct bio *bio) 443 { 444 struct r10bio *r10_bio = bio->bi_private; 445 int dev; 446 int dec_rdev = 1; 447 struct r10conf *conf = r10_bio->mddev->private; 448 int slot, repl; 449 struct md_rdev *rdev = NULL; 450 451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 452 453 if (repl) 454 rdev = conf->mirrors[dev].replacement; 455 if (!rdev) { 456 smp_rmb(); 457 repl = 0; 458 rdev = conf->mirrors[dev].rdev; 459 } 460 /* 461 * this branch is our 'one mirror IO has finished' event handler: 462 */ 463 if (bio->bi_error) { 464 if (repl) 465 /* Never record new bad blocks to replacement, 466 * just fail it. 467 */ 468 md_error(rdev->mddev, rdev); 469 else { 470 set_bit(WriteErrorSeen, &rdev->flags); 471 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 472 set_bit(MD_RECOVERY_NEEDED, 473 &rdev->mddev->recovery); 474 set_bit(R10BIO_WriteError, &r10_bio->state); 475 dec_rdev = 0; 476 } 477 } else { 478 /* 479 * Set R10BIO_Uptodate in our master bio, so that 480 * we will return a good error code for to the higher 481 * levels even if IO on some other mirrored buffer fails. 482 * 483 * The 'master' represents the composite IO operation to 484 * user-side. So if something waits for IO, then it will 485 * wait for the 'master' bio. 486 */ 487 sector_t first_bad; 488 int bad_sectors; 489 490 /* 491 * Do not set R10BIO_Uptodate if the current device is 492 * rebuilding or Faulty. This is because we cannot use 493 * such device for properly reading the data back (we could 494 * potentially use it, if the current write would have felt 495 * before rdev->recovery_offset, but for simplicity we don't 496 * check this here. 497 */ 498 if (test_bit(In_sync, &rdev->flags) && 499 !test_bit(Faulty, &rdev->flags)) 500 set_bit(R10BIO_Uptodate, &r10_bio->state); 501 502 /* Maybe we can clear some bad blocks. */ 503 if (is_badblock(rdev, 504 r10_bio->devs[slot].addr, 505 r10_bio->sectors, 506 &first_bad, &bad_sectors)) { 507 bio_put(bio); 508 if (repl) 509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 510 else 511 r10_bio->devs[slot].bio = IO_MADE_GOOD; 512 dec_rdev = 0; 513 set_bit(R10BIO_MadeGood, &r10_bio->state); 514 } 515 } 516 517 /* 518 * 519 * Let's see if all mirrored write operations have finished 520 * already. 521 */ 522 one_write_done(r10_bio); 523 if (dec_rdev) 524 rdev_dec_pending(rdev, conf->mddev); 525 } 526 527 /* 528 * RAID10 layout manager 529 * As well as the chunksize and raid_disks count, there are two 530 * parameters: near_copies and far_copies. 531 * near_copies * far_copies must be <= raid_disks. 532 * Normally one of these will be 1. 533 * If both are 1, we get raid0. 534 * If near_copies == raid_disks, we get raid1. 535 * 536 * Chunks are laid out in raid0 style with near_copies copies of the 537 * first chunk, followed by near_copies copies of the next chunk and 538 * so on. 539 * If far_copies > 1, then after 1/far_copies of the array has been assigned 540 * as described above, we start again with a device offset of near_copies. 541 * So we effectively have another copy of the whole array further down all 542 * the drives, but with blocks on different drives. 543 * With this layout, and block is never stored twice on the one device. 544 * 545 * raid10_find_phys finds the sector offset of a given virtual sector 546 * on each device that it is on. 547 * 548 * raid10_find_virt does the reverse mapping, from a device and a 549 * sector offset to a virtual address 550 */ 551 552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 553 { 554 int n,f; 555 sector_t sector; 556 sector_t chunk; 557 sector_t stripe; 558 int dev; 559 int slot = 0; 560 int last_far_set_start, last_far_set_size; 561 562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 563 last_far_set_start *= geo->far_set_size; 564 565 last_far_set_size = geo->far_set_size; 566 last_far_set_size += (geo->raid_disks % geo->far_set_size); 567 568 /* now calculate first sector/dev */ 569 chunk = r10bio->sector >> geo->chunk_shift; 570 sector = r10bio->sector & geo->chunk_mask; 571 572 chunk *= geo->near_copies; 573 stripe = chunk; 574 dev = sector_div(stripe, geo->raid_disks); 575 if (geo->far_offset) 576 stripe *= geo->far_copies; 577 578 sector += stripe << geo->chunk_shift; 579 580 /* and calculate all the others */ 581 for (n = 0; n < geo->near_copies; n++) { 582 int d = dev; 583 int set; 584 sector_t s = sector; 585 r10bio->devs[slot].devnum = d; 586 r10bio->devs[slot].addr = s; 587 slot++; 588 589 for (f = 1; f < geo->far_copies; f++) { 590 set = d / geo->far_set_size; 591 d += geo->near_copies; 592 593 if ((geo->raid_disks % geo->far_set_size) && 594 (d > last_far_set_start)) { 595 d -= last_far_set_start; 596 d %= last_far_set_size; 597 d += last_far_set_start; 598 } else { 599 d %= geo->far_set_size; 600 d += geo->far_set_size * set; 601 } 602 s += geo->stride; 603 r10bio->devs[slot].devnum = d; 604 r10bio->devs[slot].addr = s; 605 slot++; 606 } 607 dev++; 608 if (dev >= geo->raid_disks) { 609 dev = 0; 610 sector += (geo->chunk_mask + 1); 611 } 612 } 613 } 614 615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 616 { 617 struct geom *geo = &conf->geo; 618 619 if (conf->reshape_progress != MaxSector && 620 ((r10bio->sector >= conf->reshape_progress) != 621 conf->mddev->reshape_backwards)) { 622 set_bit(R10BIO_Previous, &r10bio->state); 623 geo = &conf->prev; 624 } else 625 clear_bit(R10BIO_Previous, &r10bio->state); 626 627 __raid10_find_phys(geo, r10bio); 628 } 629 630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 631 { 632 sector_t offset, chunk, vchunk; 633 /* Never use conf->prev as this is only called during resync 634 * or recovery, so reshape isn't happening 635 */ 636 struct geom *geo = &conf->geo; 637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 638 int far_set_size = geo->far_set_size; 639 int last_far_set_start; 640 641 if (geo->raid_disks % geo->far_set_size) { 642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 643 last_far_set_start *= geo->far_set_size; 644 645 if (dev >= last_far_set_start) { 646 far_set_size = geo->far_set_size; 647 far_set_size += (geo->raid_disks % geo->far_set_size); 648 far_set_start = last_far_set_start; 649 } 650 } 651 652 offset = sector & geo->chunk_mask; 653 if (geo->far_offset) { 654 int fc; 655 chunk = sector >> geo->chunk_shift; 656 fc = sector_div(chunk, geo->far_copies); 657 dev -= fc * geo->near_copies; 658 if (dev < far_set_start) 659 dev += far_set_size; 660 } else { 661 while (sector >= geo->stride) { 662 sector -= geo->stride; 663 if (dev < (geo->near_copies + far_set_start)) 664 dev += far_set_size - geo->near_copies; 665 else 666 dev -= geo->near_copies; 667 } 668 chunk = sector >> geo->chunk_shift; 669 } 670 vchunk = chunk * geo->raid_disks + dev; 671 sector_div(vchunk, geo->near_copies); 672 return (vchunk << geo->chunk_shift) + offset; 673 } 674 675 /* 676 * This routine returns the disk from which the requested read should 677 * be done. There is a per-array 'next expected sequential IO' sector 678 * number - if this matches on the next IO then we use the last disk. 679 * There is also a per-disk 'last know head position' sector that is 680 * maintained from IRQ contexts, both the normal and the resync IO 681 * completion handlers update this position correctly. If there is no 682 * perfect sequential match then we pick the disk whose head is closest. 683 * 684 * If there are 2 mirrors in the same 2 devices, performance degrades 685 * because position is mirror, not device based. 686 * 687 * The rdev for the device selected will have nr_pending incremented. 688 */ 689 690 /* 691 * FIXME: possibly should rethink readbalancing and do it differently 692 * depending on near_copies / far_copies geometry. 693 */ 694 static struct md_rdev *read_balance(struct r10conf *conf, 695 struct r10bio *r10_bio, 696 int *max_sectors) 697 { 698 const sector_t this_sector = r10_bio->sector; 699 int disk, slot; 700 int sectors = r10_bio->sectors; 701 int best_good_sectors; 702 sector_t new_distance, best_dist; 703 struct md_rdev *best_rdev, *rdev = NULL; 704 int do_balance; 705 int best_slot; 706 struct geom *geo = &conf->geo; 707 708 raid10_find_phys(conf, r10_bio); 709 rcu_read_lock(); 710 retry: 711 sectors = r10_bio->sectors; 712 best_slot = -1; 713 best_rdev = NULL; 714 best_dist = MaxSector; 715 best_good_sectors = 0; 716 do_balance = 1; 717 /* 718 * Check if we can balance. We can balance on the whole 719 * device if no resync is going on (recovery is ok), or below 720 * the resync window. We take the first readable disk when 721 * above the resync window. 722 */ 723 if (conf->mddev->recovery_cp < MaxSector 724 && (this_sector + sectors >= conf->next_resync)) 725 do_balance = 0; 726 727 for (slot = 0; slot < conf->copies ; slot++) { 728 sector_t first_bad; 729 int bad_sectors; 730 sector_t dev_sector; 731 732 if (r10_bio->devs[slot].bio == IO_BLOCKED) 733 continue; 734 disk = r10_bio->devs[slot].devnum; 735 rdev = rcu_dereference(conf->mirrors[disk].replacement); 736 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 737 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 738 rdev = rcu_dereference(conf->mirrors[disk].rdev); 739 if (rdev == NULL || 740 test_bit(Faulty, &rdev->flags)) 741 continue; 742 if (!test_bit(In_sync, &rdev->flags) && 743 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 744 continue; 745 746 dev_sector = r10_bio->devs[slot].addr; 747 if (is_badblock(rdev, dev_sector, sectors, 748 &first_bad, &bad_sectors)) { 749 if (best_dist < MaxSector) 750 /* Already have a better slot */ 751 continue; 752 if (first_bad <= dev_sector) { 753 /* Cannot read here. If this is the 754 * 'primary' device, then we must not read 755 * beyond 'bad_sectors' from another device. 756 */ 757 bad_sectors -= (dev_sector - first_bad); 758 if (!do_balance && sectors > bad_sectors) 759 sectors = bad_sectors; 760 if (best_good_sectors > sectors) 761 best_good_sectors = sectors; 762 } else { 763 sector_t good_sectors = 764 first_bad - dev_sector; 765 if (good_sectors > best_good_sectors) { 766 best_good_sectors = good_sectors; 767 best_slot = slot; 768 best_rdev = rdev; 769 } 770 if (!do_balance) 771 /* Must read from here */ 772 break; 773 } 774 continue; 775 } else 776 best_good_sectors = sectors; 777 778 if (!do_balance) 779 break; 780 781 /* This optimisation is debatable, and completely destroys 782 * sequential read speed for 'far copies' arrays. So only 783 * keep it for 'near' arrays, and review those later. 784 */ 785 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 786 break; 787 788 /* for far > 1 always use the lowest address */ 789 if (geo->far_copies > 1) 790 new_distance = r10_bio->devs[slot].addr; 791 else 792 new_distance = abs(r10_bio->devs[slot].addr - 793 conf->mirrors[disk].head_position); 794 if (new_distance < best_dist) { 795 best_dist = new_distance; 796 best_slot = slot; 797 best_rdev = rdev; 798 } 799 } 800 if (slot >= conf->copies) { 801 slot = best_slot; 802 rdev = best_rdev; 803 } 804 805 if (slot >= 0) { 806 atomic_inc(&rdev->nr_pending); 807 if (test_bit(Faulty, &rdev->flags)) { 808 /* Cannot risk returning a device that failed 809 * before we inc'ed nr_pending 810 */ 811 rdev_dec_pending(rdev, conf->mddev); 812 goto retry; 813 } 814 r10_bio->read_slot = slot; 815 } else 816 rdev = NULL; 817 rcu_read_unlock(); 818 *max_sectors = best_good_sectors; 819 820 return rdev; 821 } 822 823 static int raid10_congested(struct mddev *mddev, int bits) 824 { 825 struct r10conf *conf = mddev->private; 826 int i, ret = 0; 827 828 if ((bits & (1 << WB_async_congested)) && 829 conf->pending_count >= max_queued_requests) 830 return 1; 831 832 rcu_read_lock(); 833 for (i = 0; 834 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 835 && ret == 0; 836 i++) { 837 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 838 if (rdev && !test_bit(Faulty, &rdev->flags)) { 839 struct request_queue *q = bdev_get_queue(rdev->bdev); 840 841 ret |= bdi_congested(&q->backing_dev_info, bits); 842 } 843 } 844 rcu_read_unlock(); 845 return ret; 846 } 847 848 static void flush_pending_writes(struct r10conf *conf) 849 { 850 /* Any writes that have been queued but are awaiting 851 * bitmap updates get flushed here. 852 */ 853 spin_lock_irq(&conf->device_lock); 854 855 if (conf->pending_bio_list.head) { 856 struct bio *bio; 857 bio = bio_list_get(&conf->pending_bio_list); 858 conf->pending_count = 0; 859 spin_unlock_irq(&conf->device_lock); 860 /* flush any pending bitmap writes to disk 861 * before proceeding w/ I/O */ 862 bitmap_unplug(conf->mddev->bitmap); 863 wake_up(&conf->wait_barrier); 864 865 while (bio) { /* submit pending writes */ 866 struct bio *next = bio->bi_next; 867 bio->bi_next = NULL; 868 if (unlikely((bio->bi_rw & REQ_DISCARD) && 869 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 870 /* Just ignore it */ 871 bio_endio(bio); 872 else 873 generic_make_request(bio); 874 bio = next; 875 } 876 } else 877 spin_unlock_irq(&conf->device_lock); 878 } 879 880 /* Barriers.... 881 * Sometimes we need to suspend IO while we do something else, 882 * either some resync/recovery, or reconfigure the array. 883 * To do this we raise a 'barrier'. 884 * The 'barrier' is a counter that can be raised multiple times 885 * to count how many activities are happening which preclude 886 * normal IO. 887 * We can only raise the barrier if there is no pending IO. 888 * i.e. if nr_pending == 0. 889 * We choose only to raise the barrier if no-one is waiting for the 890 * barrier to go down. This means that as soon as an IO request 891 * is ready, no other operations which require a barrier will start 892 * until the IO request has had a chance. 893 * 894 * So: regular IO calls 'wait_barrier'. When that returns there 895 * is no backgroup IO happening, It must arrange to call 896 * allow_barrier when it has finished its IO. 897 * backgroup IO calls must call raise_barrier. Once that returns 898 * there is no normal IO happeing. It must arrange to call 899 * lower_barrier when the particular background IO completes. 900 */ 901 902 static void raise_barrier(struct r10conf *conf, int force) 903 { 904 BUG_ON(force && !conf->barrier); 905 spin_lock_irq(&conf->resync_lock); 906 907 /* Wait until no block IO is waiting (unless 'force') */ 908 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 909 conf->resync_lock); 910 911 /* block any new IO from starting */ 912 conf->barrier++; 913 914 /* Now wait for all pending IO to complete */ 915 wait_event_lock_irq(conf->wait_barrier, 916 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 917 conf->resync_lock); 918 919 spin_unlock_irq(&conf->resync_lock); 920 } 921 922 static void lower_barrier(struct r10conf *conf) 923 { 924 unsigned long flags; 925 spin_lock_irqsave(&conf->resync_lock, flags); 926 conf->barrier--; 927 spin_unlock_irqrestore(&conf->resync_lock, flags); 928 wake_up(&conf->wait_barrier); 929 } 930 931 static void wait_barrier(struct r10conf *conf) 932 { 933 spin_lock_irq(&conf->resync_lock); 934 if (conf->barrier) { 935 conf->nr_waiting++; 936 /* Wait for the barrier to drop. 937 * However if there are already pending 938 * requests (preventing the barrier from 939 * rising completely), and the 940 * pre-process bio queue isn't empty, 941 * then don't wait, as we need to empty 942 * that queue to get the nr_pending 943 * count down. 944 */ 945 wait_event_lock_irq(conf->wait_barrier, 946 !conf->barrier || 947 (conf->nr_pending && 948 current->bio_list && 949 !bio_list_empty(current->bio_list)), 950 conf->resync_lock); 951 conf->nr_waiting--; 952 } 953 conf->nr_pending++; 954 spin_unlock_irq(&conf->resync_lock); 955 } 956 957 static void allow_barrier(struct r10conf *conf) 958 { 959 unsigned long flags; 960 spin_lock_irqsave(&conf->resync_lock, flags); 961 conf->nr_pending--; 962 spin_unlock_irqrestore(&conf->resync_lock, flags); 963 wake_up(&conf->wait_barrier); 964 } 965 966 static void freeze_array(struct r10conf *conf, int extra) 967 { 968 /* stop syncio and normal IO and wait for everything to 969 * go quiet. 970 * We increment barrier and nr_waiting, and then 971 * wait until nr_pending match nr_queued+extra 972 * This is called in the context of one normal IO request 973 * that has failed. Thus any sync request that might be pending 974 * will be blocked by nr_pending, and we need to wait for 975 * pending IO requests to complete or be queued for re-try. 976 * Thus the number queued (nr_queued) plus this request (extra) 977 * must match the number of pending IOs (nr_pending) before 978 * we continue. 979 */ 980 spin_lock_irq(&conf->resync_lock); 981 conf->barrier++; 982 conf->nr_waiting++; 983 wait_event_lock_irq_cmd(conf->wait_barrier, 984 conf->nr_pending == conf->nr_queued+extra, 985 conf->resync_lock, 986 flush_pending_writes(conf)); 987 988 spin_unlock_irq(&conf->resync_lock); 989 } 990 991 static void unfreeze_array(struct r10conf *conf) 992 { 993 /* reverse the effect of the freeze */ 994 spin_lock_irq(&conf->resync_lock); 995 conf->barrier--; 996 conf->nr_waiting--; 997 wake_up(&conf->wait_barrier); 998 spin_unlock_irq(&conf->resync_lock); 999 } 1000 1001 static sector_t choose_data_offset(struct r10bio *r10_bio, 1002 struct md_rdev *rdev) 1003 { 1004 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1005 test_bit(R10BIO_Previous, &r10_bio->state)) 1006 return rdev->data_offset; 1007 else 1008 return rdev->new_data_offset; 1009 } 1010 1011 struct raid10_plug_cb { 1012 struct blk_plug_cb cb; 1013 struct bio_list pending; 1014 int pending_cnt; 1015 }; 1016 1017 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1018 { 1019 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1020 cb); 1021 struct mddev *mddev = plug->cb.data; 1022 struct r10conf *conf = mddev->private; 1023 struct bio *bio; 1024 1025 if (from_schedule || current->bio_list) { 1026 spin_lock_irq(&conf->device_lock); 1027 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1028 conf->pending_count += plug->pending_cnt; 1029 spin_unlock_irq(&conf->device_lock); 1030 wake_up(&conf->wait_barrier); 1031 md_wakeup_thread(mddev->thread); 1032 kfree(plug); 1033 return; 1034 } 1035 1036 /* we aren't scheduling, so we can do the write-out directly. */ 1037 bio = bio_list_get(&plug->pending); 1038 bitmap_unplug(mddev->bitmap); 1039 wake_up(&conf->wait_barrier); 1040 1041 while (bio) { /* submit pending writes */ 1042 struct bio *next = bio->bi_next; 1043 bio->bi_next = NULL; 1044 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1045 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1046 /* Just ignore it */ 1047 bio_endio(bio); 1048 else 1049 generic_make_request(bio); 1050 bio = next; 1051 } 1052 kfree(plug); 1053 } 1054 1055 static void __make_request(struct mddev *mddev, struct bio *bio) 1056 { 1057 struct r10conf *conf = mddev->private; 1058 struct r10bio *r10_bio; 1059 struct bio *read_bio; 1060 int i; 1061 const int rw = bio_data_dir(bio); 1062 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1063 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1064 const unsigned long do_discard = (bio->bi_rw 1065 & (REQ_DISCARD | REQ_SECURE)); 1066 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1067 unsigned long flags; 1068 struct md_rdev *blocked_rdev; 1069 struct blk_plug_cb *cb; 1070 struct raid10_plug_cb *plug = NULL; 1071 int sectors_handled; 1072 int max_sectors; 1073 int sectors; 1074 1075 /* 1076 * Register the new request and wait if the reconstruction 1077 * thread has put up a bar for new requests. 1078 * Continue immediately if no resync is active currently. 1079 */ 1080 wait_barrier(conf); 1081 1082 sectors = bio_sectors(bio); 1083 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1084 bio->bi_iter.bi_sector < conf->reshape_progress && 1085 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1086 /* IO spans the reshape position. Need to wait for 1087 * reshape to pass 1088 */ 1089 allow_barrier(conf); 1090 wait_event(conf->wait_barrier, 1091 conf->reshape_progress <= bio->bi_iter.bi_sector || 1092 conf->reshape_progress >= bio->bi_iter.bi_sector + 1093 sectors); 1094 wait_barrier(conf); 1095 } 1096 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1097 bio_data_dir(bio) == WRITE && 1098 (mddev->reshape_backwards 1099 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1100 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1101 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1102 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1103 /* Need to update reshape_position in metadata */ 1104 mddev->reshape_position = conf->reshape_progress; 1105 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1106 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1107 md_wakeup_thread(mddev->thread); 1108 wait_event(mddev->sb_wait, 1109 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1110 1111 conf->reshape_safe = mddev->reshape_position; 1112 } 1113 1114 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1115 1116 r10_bio->master_bio = bio; 1117 r10_bio->sectors = sectors; 1118 1119 r10_bio->mddev = mddev; 1120 r10_bio->sector = bio->bi_iter.bi_sector; 1121 r10_bio->state = 0; 1122 1123 /* We might need to issue multiple reads to different 1124 * devices if there are bad blocks around, so we keep 1125 * track of the number of reads in bio->bi_phys_segments. 1126 * If this is 0, there is only one r10_bio and no locking 1127 * will be needed when the request completes. If it is 1128 * non-zero, then it is the number of not-completed requests. 1129 */ 1130 bio->bi_phys_segments = 0; 1131 bio_clear_flag(bio, BIO_SEG_VALID); 1132 1133 if (rw == READ) { 1134 /* 1135 * read balancing logic: 1136 */ 1137 struct md_rdev *rdev; 1138 int slot; 1139 1140 read_again: 1141 rdev = read_balance(conf, r10_bio, &max_sectors); 1142 if (!rdev) { 1143 raid_end_bio_io(r10_bio); 1144 return; 1145 } 1146 slot = r10_bio->read_slot; 1147 1148 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1149 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector, 1150 max_sectors); 1151 1152 r10_bio->devs[slot].bio = read_bio; 1153 r10_bio->devs[slot].rdev = rdev; 1154 1155 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1156 choose_data_offset(r10_bio, rdev); 1157 read_bio->bi_bdev = rdev->bdev; 1158 read_bio->bi_end_io = raid10_end_read_request; 1159 read_bio->bi_rw = READ | do_sync; 1160 read_bio->bi_private = r10_bio; 1161 1162 if (max_sectors < r10_bio->sectors) { 1163 /* Could not read all from this device, so we will 1164 * need another r10_bio. 1165 */ 1166 sectors_handled = (r10_bio->sector + max_sectors 1167 - bio->bi_iter.bi_sector); 1168 r10_bio->sectors = max_sectors; 1169 spin_lock_irq(&conf->device_lock); 1170 if (bio->bi_phys_segments == 0) 1171 bio->bi_phys_segments = 2; 1172 else 1173 bio->bi_phys_segments++; 1174 spin_unlock_irq(&conf->device_lock); 1175 /* Cannot call generic_make_request directly 1176 * as that will be queued in __generic_make_request 1177 * and subsequent mempool_alloc might block 1178 * waiting for it. so hand bio over to raid10d. 1179 */ 1180 reschedule_retry(r10_bio); 1181 1182 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1183 1184 r10_bio->master_bio = bio; 1185 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1186 r10_bio->state = 0; 1187 r10_bio->mddev = mddev; 1188 r10_bio->sector = bio->bi_iter.bi_sector + 1189 sectors_handled; 1190 goto read_again; 1191 } else 1192 generic_make_request(read_bio); 1193 return; 1194 } 1195 1196 /* 1197 * WRITE: 1198 */ 1199 if (conf->pending_count >= max_queued_requests) { 1200 md_wakeup_thread(mddev->thread); 1201 wait_event(conf->wait_barrier, 1202 conf->pending_count < max_queued_requests); 1203 } 1204 /* first select target devices under rcu_lock and 1205 * inc refcount on their rdev. Record them by setting 1206 * bios[x] to bio 1207 * If there are known/acknowledged bad blocks on any device 1208 * on which we have seen a write error, we want to avoid 1209 * writing to those blocks. This potentially requires several 1210 * writes to write around the bad blocks. Each set of writes 1211 * gets its own r10_bio with a set of bios attached. The number 1212 * of r10_bios is recored in bio->bi_phys_segments just as with 1213 * the read case. 1214 */ 1215 1216 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1217 raid10_find_phys(conf, r10_bio); 1218 retry_write: 1219 blocked_rdev = NULL; 1220 rcu_read_lock(); 1221 max_sectors = r10_bio->sectors; 1222 1223 for (i = 0; i < conf->copies; i++) { 1224 int d = r10_bio->devs[i].devnum; 1225 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1226 struct md_rdev *rrdev = rcu_dereference( 1227 conf->mirrors[d].replacement); 1228 if (rdev == rrdev) 1229 rrdev = NULL; 1230 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1231 atomic_inc(&rdev->nr_pending); 1232 blocked_rdev = rdev; 1233 break; 1234 } 1235 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1236 atomic_inc(&rrdev->nr_pending); 1237 blocked_rdev = rrdev; 1238 break; 1239 } 1240 if (rdev && (test_bit(Faulty, &rdev->flags))) 1241 rdev = NULL; 1242 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1243 rrdev = NULL; 1244 1245 r10_bio->devs[i].bio = NULL; 1246 r10_bio->devs[i].repl_bio = NULL; 1247 1248 if (!rdev && !rrdev) { 1249 set_bit(R10BIO_Degraded, &r10_bio->state); 1250 continue; 1251 } 1252 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1253 sector_t first_bad; 1254 sector_t dev_sector = r10_bio->devs[i].addr; 1255 int bad_sectors; 1256 int is_bad; 1257 1258 is_bad = is_badblock(rdev, dev_sector, 1259 max_sectors, 1260 &first_bad, &bad_sectors); 1261 if (is_bad < 0) { 1262 /* Mustn't write here until the bad block 1263 * is acknowledged 1264 */ 1265 atomic_inc(&rdev->nr_pending); 1266 set_bit(BlockedBadBlocks, &rdev->flags); 1267 blocked_rdev = rdev; 1268 break; 1269 } 1270 if (is_bad && first_bad <= dev_sector) { 1271 /* Cannot write here at all */ 1272 bad_sectors -= (dev_sector - first_bad); 1273 if (bad_sectors < max_sectors) 1274 /* Mustn't write more than bad_sectors 1275 * to other devices yet 1276 */ 1277 max_sectors = bad_sectors; 1278 /* We don't set R10BIO_Degraded as that 1279 * only applies if the disk is missing, 1280 * so it might be re-added, and we want to 1281 * know to recover this chunk. 1282 * In this case the device is here, and the 1283 * fact that this chunk is not in-sync is 1284 * recorded in the bad block log. 1285 */ 1286 continue; 1287 } 1288 if (is_bad) { 1289 int good_sectors = first_bad - dev_sector; 1290 if (good_sectors < max_sectors) 1291 max_sectors = good_sectors; 1292 } 1293 } 1294 if (rdev) { 1295 r10_bio->devs[i].bio = bio; 1296 atomic_inc(&rdev->nr_pending); 1297 } 1298 if (rrdev) { 1299 r10_bio->devs[i].repl_bio = bio; 1300 atomic_inc(&rrdev->nr_pending); 1301 } 1302 } 1303 rcu_read_unlock(); 1304 1305 if (unlikely(blocked_rdev)) { 1306 /* Have to wait for this device to get unblocked, then retry */ 1307 int j; 1308 int d; 1309 1310 for (j = 0; j < i; j++) { 1311 if (r10_bio->devs[j].bio) { 1312 d = r10_bio->devs[j].devnum; 1313 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1314 } 1315 if (r10_bio->devs[j].repl_bio) { 1316 struct md_rdev *rdev; 1317 d = r10_bio->devs[j].devnum; 1318 rdev = conf->mirrors[d].replacement; 1319 if (!rdev) { 1320 /* Race with remove_disk */ 1321 smp_mb(); 1322 rdev = conf->mirrors[d].rdev; 1323 } 1324 rdev_dec_pending(rdev, mddev); 1325 } 1326 } 1327 allow_barrier(conf); 1328 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1329 wait_barrier(conf); 1330 goto retry_write; 1331 } 1332 1333 if (max_sectors < r10_bio->sectors) { 1334 /* We are splitting this into multiple parts, so 1335 * we need to prepare for allocating another r10_bio. 1336 */ 1337 r10_bio->sectors = max_sectors; 1338 spin_lock_irq(&conf->device_lock); 1339 if (bio->bi_phys_segments == 0) 1340 bio->bi_phys_segments = 2; 1341 else 1342 bio->bi_phys_segments++; 1343 spin_unlock_irq(&conf->device_lock); 1344 } 1345 sectors_handled = r10_bio->sector + max_sectors - 1346 bio->bi_iter.bi_sector; 1347 1348 atomic_set(&r10_bio->remaining, 1); 1349 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1350 1351 for (i = 0; i < conf->copies; i++) { 1352 struct bio *mbio; 1353 int d = r10_bio->devs[i].devnum; 1354 if (r10_bio->devs[i].bio) { 1355 struct md_rdev *rdev = conf->mirrors[d].rdev; 1356 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1357 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1358 max_sectors); 1359 r10_bio->devs[i].bio = mbio; 1360 1361 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 1362 choose_data_offset(r10_bio, 1363 rdev)); 1364 mbio->bi_bdev = rdev->bdev; 1365 mbio->bi_end_io = raid10_end_write_request; 1366 mbio->bi_rw = 1367 WRITE | do_sync | do_fua | do_discard | do_same; 1368 mbio->bi_private = r10_bio; 1369 1370 atomic_inc(&r10_bio->remaining); 1371 1372 cb = blk_check_plugged(raid10_unplug, mddev, 1373 sizeof(*plug)); 1374 if (cb) 1375 plug = container_of(cb, struct raid10_plug_cb, 1376 cb); 1377 else 1378 plug = NULL; 1379 spin_lock_irqsave(&conf->device_lock, flags); 1380 if (plug) { 1381 bio_list_add(&plug->pending, mbio); 1382 plug->pending_cnt++; 1383 } else { 1384 bio_list_add(&conf->pending_bio_list, mbio); 1385 conf->pending_count++; 1386 } 1387 spin_unlock_irqrestore(&conf->device_lock, flags); 1388 if (!plug) 1389 md_wakeup_thread(mddev->thread); 1390 } 1391 1392 if (r10_bio->devs[i].repl_bio) { 1393 struct md_rdev *rdev = conf->mirrors[d].replacement; 1394 if (rdev == NULL) { 1395 /* Replacement just got moved to main 'rdev' */ 1396 smp_mb(); 1397 rdev = conf->mirrors[d].rdev; 1398 } 1399 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1400 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1401 max_sectors); 1402 r10_bio->devs[i].repl_bio = mbio; 1403 1404 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr + 1405 choose_data_offset( 1406 r10_bio, rdev)); 1407 mbio->bi_bdev = rdev->bdev; 1408 mbio->bi_end_io = raid10_end_write_request; 1409 mbio->bi_rw = 1410 WRITE | do_sync | do_fua | do_discard | do_same; 1411 mbio->bi_private = r10_bio; 1412 1413 atomic_inc(&r10_bio->remaining); 1414 spin_lock_irqsave(&conf->device_lock, flags); 1415 bio_list_add(&conf->pending_bio_list, mbio); 1416 conf->pending_count++; 1417 spin_unlock_irqrestore(&conf->device_lock, flags); 1418 if (!mddev_check_plugged(mddev)) 1419 md_wakeup_thread(mddev->thread); 1420 } 1421 } 1422 1423 /* Don't remove the bias on 'remaining' (one_write_done) until 1424 * after checking if we need to go around again. 1425 */ 1426 1427 if (sectors_handled < bio_sectors(bio)) { 1428 one_write_done(r10_bio); 1429 /* We need another r10_bio. It has already been counted 1430 * in bio->bi_phys_segments. 1431 */ 1432 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1433 1434 r10_bio->master_bio = bio; 1435 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1436 1437 r10_bio->mddev = mddev; 1438 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1439 r10_bio->state = 0; 1440 goto retry_write; 1441 } 1442 one_write_done(r10_bio); 1443 } 1444 1445 static void make_request(struct mddev *mddev, struct bio *bio) 1446 { 1447 struct r10conf *conf = mddev->private; 1448 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1449 int chunk_sects = chunk_mask + 1; 1450 1451 struct bio *split; 1452 1453 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1454 md_flush_request(mddev, bio); 1455 return; 1456 } 1457 1458 md_write_start(mddev, bio); 1459 1460 do { 1461 1462 /* 1463 * If this request crosses a chunk boundary, we need to split 1464 * it. 1465 */ 1466 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1467 bio_sectors(bio) > chunk_sects 1468 && (conf->geo.near_copies < conf->geo.raid_disks 1469 || conf->prev.near_copies < 1470 conf->prev.raid_disks))) { 1471 split = bio_split(bio, chunk_sects - 1472 (bio->bi_iter.bi_sector & 1473 (chunk_sects - 1)), 1474 GFP_NOIO, fs_bio_set); 1475 bio_chain(split, bio); 1476 } else { 1477 split = bio; 1478 } 1479 1480 __make_request(mddev, split); 1481 } while (split != bio); 1482 1483 /* In case raid10d snuck in to freeze_array */ 1484 wake_up(&conf->wait_barrier); 1485 } 1486 1487 static void status(struct seq_file *seq, struct mddev *mddev) 1488 { 1489 struct r10conf *conf = mddev->private; 1490 int i; 1491 1492 if (conf->geo.near_copies < conf->geo.raid_disks) 1493 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1494 if (conf->geo.near_copies > 1) 1495 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1496 if (conf->geo.far_copies > 1) { 1497 if (conf->geo.far_offset) 1498 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1499 else 1500 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1501 if (conf->geo.far_set_size != conf->geo.raid_disks) 1502 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1503 } 1504 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1505 conf->geo.raid_disks - mddev->degraded); 1506 for (i = 0; i < conf->geo.raid_disks; i++) 1507 seq_printf(seq, "%s", 1508 conf->mirrors[i].rdev && 1509 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1510 seq_printf(seq, "]"); 1511 } 1512 1513 /* check if there are enough drives for 1514 * every block to appear on atleast one. 1515 * Don't consider the device numbered 'ignore' 1516 * as we might be about to remove it. 1517 */ 1518 static int _enough(struct r10conf *conf, int previous, int ignore) 1519 { 1520 int first = 0; 1521 int has_enough = 0; 1522 int disks, ncopies; 1523 if (previous) { 1524 disks = conf->prev.raid_disks; 1525 ncopies = conf->prev.near_copies; 1526 } else { 1527 disks = conf->geo.raid_disks; 1528 ncopies = conf->geo.near_copies; 1529 } 1530 1531 rcu_read_lock(); 1532 do { 1533 int n = conf->copies; 1534 int cnt = 0; 1535 int this = first; 1536 while (n--) { 1537 struct md_rdev *rdev; 1538 if (this != ignore && 1539 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1540 test_bit(In_sync, &rdev->flags)) 1541 cnt++; 1542 this = (this+1) % disks; 1543 } 1544 if (cnt == 0) 1545 goto out; 1546 first = (first + ncopies) % disks; 1547 } while (first != 0); 1548 has_enough = 1; 1549 out: 1550 rcu_read_unlock(); 1551 return has_enough; 1552 } 1553 1554 static int enough(struct r10conf *conf, int ignore) 1555 { 1556 /* when calling 'enough', both 'prev' and 'geo' must 1557 * be stable. 1558 * This is ensured if ->reconfig_mutex or ->device_lock 1559 * is held. 1560 */ 1561 return _enough(conf, 0, ignore) && 1562 _enough(conf, 1, ignore); 1563 } 1564 1565 static void error(struct mddev *mddev, struct md_rdev *rdev) 1566 { 1567 char b[BDEVNAME_SIZE]; 1568 struct r10conf *conf = mddev->private; 1569 unsigned long flags; 1570 1571 /* 1572 * If it is not operational, then we have already marked it as dead 1573 * else if it is the last working disks, ignore the error, let the 1574 * next level up know. 1575 * else mark the drive as failed 1576 */ 1577 spin_lock_irqsave(&conf->device_lock, flags); 1578 if (test_bit(In_sync, &rdev->flags) 1579 && !enough(conf, rdev->raid_disk)) { 1580 /* 1581 * Don't fail the drive, just return an IO error. 1582 */ 1583 spin_unlock_irqrestore(&conf->device_lock, flags); 1584 return; 1585 } 1586 if (test_and_clear_bit(In_sync, &rdev->flags)) 1587 mddev->degraded++; 1588 /* 1589 * If recovery is running, make sure it aborts. 1590 */ 1591 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1592 set_bit(Blocked, &rdev->flags); 1593 set_bit(Faulty, &rdev->flags); 1594 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1595 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1596 spin_unlock_irqrestore(&conf->device_lock, flags); 1597 printk(KERN_ALERT 1598 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1599 "md/raid10:%s: Operation continuing on %d devices.\n", 1600 mdname(mddev), bdevname(rdev->bdev, b), 1601 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1602 } 1603 1604 static void print_conf(struct r10conf *conf) 1605 { 1606 int i; 1607 struct raid10_info *tmp; 1608 1609 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1610 if (!conf) { 1611 printk(KERN_DEBUG "(!conf)\n"); 1612 return; 1613 } 1614 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1615 conf->geo.raid_disks); 1616 1617 for (i = 0; i < conf->geo.raid_disks; i++) { 1618 char b[BDEVNAME_SIZE]; 1619 tmp = conf->mirrors + i; 1620 if (tmp->rdev) 1621 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1622 i, !test_bit(In_sync, &tmp->rdev->flags), 1623 !test_bit(Faulty, &tmp->rdev->flags), 1624 bdevname(tmp->rdev->bdev,b)); 1625 } 1626 } 1627 1628 static void close_sync(struct r10conf *conf) 1629 { 1630 wait_barrier(conf); 1631 allow_barrier(conf); 1632 1633 mempool_destroy(conf->r10buf_pool); 1634 conf->r10buf_pool = NULL; 1635 } 1636 1637 static int raid10_spare_active(struct mddev *mddev) 1638 { 1639 int i; 1640 struct r10conf *conf = mddev->private; 1641 struct raid10_info *tmp; 1642 int count = 0; 1643 unsigned long flags; 1644 1645 /* 1646 * Find all non-in_sync disks within the RAID10 configuration 1647 * and mark them in_sync 1648 */ 1649 for (i = 0; i < conf->geo.raid_disks; i++) { 1650 tmp = conf->mirrors + i; 1651 if (tmp->replacement 1652 && tmp->replacement->recovery_offset == MaxSector 1653 && !test_bit(Faulty, &tmp->replacement->flags) 1654 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1655 /* Replacement has just become active */ 1656 if (!tmp->rdev 1657 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1658 count++; 1659 if (tmp->rdev) { 1660 /* Replaced device not technically faulty, 1661 * but we need to be sure it gets removed 1662 * and never re-added. 1663 */ 1664 set_bit(Faulty, &tmp->rdev->flags); 1665 sysfs_notify_dirent_safe( 1666 tmp->rdev->sysfs_state); 1667 } 1668 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1669 } else if (tmp->rdev 1670 && tmp->rdev->recovery_offset == MaxSector 1671 && !test_bit(Faulty, &tmp->rdev->flags) 1672 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1673 count++; 1674 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1675 } 1676 } 1677 spin_lock_irqsave(&conf->device_lock, flags); 1678 mddev->degraded -= count; 1679 spin_unlock_irqrestore(&conf->device_lock, flags); 1680 1681 print_conf(conf); 1682 return count; 1683 } 1684 1685 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1686 { 1687 struct r10conf *conf = mddev->private; 1688 int err = -EEXIST; 1689 int mirror; 1690 int first = 0; 1691 int last = conf->geo.raid_disks - 1; 1692 1693 if (mddev->recovery_cp < MaxSector) 1694 /* only hot-add to in-sync arrays, as recovery is 1695 * very different from resync 1696 */ 1697 return -EBUSY; 1698 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1699 return -EINVAL; 1700 1701 if (rdev->raid_disk >= 0) 1702 first = last = rdev->raid_disk; 1703 1704 if (rdev->saved_raid_disk >= first && 1705 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1706 mirror = rdev->saved_raid_disk; 1707 else 1708 mirror = first; 1709 for ( ; mirror <= last ; mirror++) { 1710 struct raid10_info *p = &conf->mirrors[mirror]; 1711 if (p->recovery_disabled == mddev->recovery_disabled) 1712 continue; 1713 if (p->rdev) { 1714 if (!test_bit(WantReplacement, &p->rdev->flags) || 1715 p->replacement != NULL) 1716 continue; 1717 clear_bit(In_sync, &rdev->flags); 1718 set_bit(Replacement, &rdev->flags); 1719 rdev->raid_disk = mirror; 1720 err = 0; 1721 if (mddev->gendisk) 1722 disk_stack_limits(mddev->gendisk, rdev->bdev, 1723 rdev->data_offset << 9); 1724 conf->fullsync = 1; 1725 rcu_assign_pointer(p->replacement, rdev); 1726 break; 1727 } 1728 1729 if (mddev->gendisk) 1730 disk_stack_limits(mddev->gendisk, rdev->bdev, 1731 rdev->data_offset << 9); 1732 1733 p->head_position = 0; 1734 p->recovery_disabled = mddev->recovery_disabled - 1; 1735 rdev->raid_disk = mirror; 1736 err = 0; 1737 if (rdev->saved_raid_disk != mirror) 1738 conf->fullsync = 1; 1739 rcu_assign_pointer(p->rdev, rdev); 1740 break; 1741 } 1742 md_integrity_add_rdev(rdev, mddev); 1743 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1744 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1745 1746 print_conf(conf); 1747 return err; 1748 } 1749 1750 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1751 { 1752 struct r10conf *conf = mddev->private; 1753 int err = 0; 1754 int number = rdev->raid_disk; 1755 struct md_rdev **rdevp; 1756 struct raid10_info *p = conf->mirrors + number; 1757 1758 print_conf(conf); 1759 if (rdev == p->rdev) 1760 rdevp = &p->rdev; 1761 else if (rdev == p->replacement) 1762 rdevp = &p->replacement; 1763 else 1764 return 0; 1765 1766 if (test_bit(In_sync, &rdev->flags) || 1767 atomic_read(&rdev->nr_pending)) { 1768 err = -EBUSY; 1769 goto abort; 1770 } 1771 /* Only remove faulty devices if recovery 1772 * is not possible. 1773 */ 1774 if (!test_bit(Faulty, &rdev->flags) && 1775 mddev->recovery_disabled != p->recovery_disabled && 1776 (!p->replacement || p->replacement == rdev) && 1777 number < conf->geo.raid_disks && 1778 enough(conf, -1)) { 1779 err = -EBUSY; 1780 goto abort; 1781 } 1782 *rdevp = NULL; 1783 synchronize_rcu(); 1784 if (atomic_read(&rdev->nr_pending)) { 1785 /* lost the race, try later */ 1786 err = -EBUSY; 1787 *rdevp = rdev; 1788 goto abort; 1789 } else if (p->replacement) { 1790 /* We must have just cleared 'rdev' */ 1791 p->rdev = p->replacement; 1792 clear_bit(Replacement, &p->replacement->flags); 1793 smp_mb(); /* Make sure other CPUs may see both as identical 1794 * but will never see neither -- if they are careful. 1795 */ 1796 p->replacement = NULL; 1797 clear_bit(WantReplacement, &rdev->flags); 1798 } else 1799 /* We might have just remove the Replacement as faulty 1800 * Clear the flag just in case 1801 */ 1802 clear_bit(WantReplacement, &rdev->flags); 1803 1804 err = md_integrity_register(mddev); 1805 1806 abort: 1807 1808 print_conf(conf); 1809 return err; 1810 } 1811 1812 static void end_sync_read(struct bio *bio) 1813 { 1814 struct r10bio *r10_bio = bio->bi_private; 1815 struct r10conf *conf = r10_bio->mddev->private; 1816 int d; 1817 1818 if (bio == r10_bio->master_bio) { 1819 /* this is a reshape read */ 1820 d = r10_bio->read_slot; /* really the read dev */ 1821 } else 1822 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1823 1824 if (!bio->bi_error) 1825 set_bit(R10BIO_Uptodate, &r10_bio->state); 1826 else 1827 /* The write handler will notice the lack of 1828 * R10BIO_Uptodate and record any errors etc 1829 */ 1830 atomic_add(r10_bio->sectors, 1831 &conf->mirrors[d].rdev->corrected_errors); 1832 1833 /* for reconstruct, we always reschedule after a read. 1834 * for resync, only after all reads 1835 */ 1836 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1837 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1838 atomic_dec_and_test(&r10_bio->remaining)) { 1839 /* we have read all the blocks, 1840 * do the comparison in process context in raid10d 1841 */ 1842 reschedule_retry(r10_bio); 1843 } 1844 } 1845 1846 static void end_sync_request(struct r10bio *r10_bio) 1847 { 1848 struct mddev *mddev = r10_bio->mddev; 1849 1850 while (atomic_dec_and_test(&r10_bio->remaining)) { 1851 if (r10_bio->master_bio == NULL) { 1852 /* the primary of several recovery bios */ 1853 sector_t s = r10_bio->sectors; 1854 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1855 test_bit(R10BIO_WriteError, &r10_bio->state)) 1856 reschedule_retry(r10_bio); 1857 else 1858 put_buf(r10_bio); 1859 md_done_sync(mddev, s, 1); 1860 break; 1861 } else { 1862 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1863 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1864 test_bit(R10BIO_WriteError, &r10_bio->state)) 1865 reschedule_retry(r10_bio); 1866 else 1867 put_buf(r10_bio); 1868 r10_bio = r10_bio2; 1869 } 1870 } 1871 } 1872 1873 static void end_sync_write(struct bio *bio) 1874 { 1875 struct r10bio *r10_bio = bio->bi_private; 1876 struct mddev *mddev = r10_bio->mddev; 1877 struct r10conf *conf = mddev->private; 1878 int d; 1879 sector_t first_bad; 1880 int bad_sectors; 1881 int slot; 1882 int repl; 1883 struct md_rdev *rdev = NULL; 1884 1885 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1886 if (repl) 1887 rdev = conf->mirrors[d].replacement; 1888 else 1889 rdev = conf->mirrors[d].rdev; 1890 1891 if (bio->bi_error) { 1892 if (repl) 1893 md_error(mddev, rdev); 1894 else { 1895 set_bit(WriteErrorSeen, &rdev->flags); 1896 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1897 set_bit(MD_RECOVERY_NEEDED, 1898 &rdev->mddev->recovery); 1899 set_bit(R10BIO_WriteError, &r10_bio->state); 1900 } 1901 } else if (is_badblock(rdev, 1902 r10_bio->devs[slot].addr, 1903 r10_bio->sectors, 1904 &first_bad, &bad_sectors)) 1905 set_bit(R10BIO_MadeGood, &r10_bio->state); 1906 1907 rdev_dec_pending(rdev, mddev); 1908 1909 end_sync_request(r10_bio); 1910 } 1911 1912 /* 1913 * Note: sync and recover and handled very differently for raid10 1914 * This code is for resync. 1915 * For resync, we read through virtual addresses and read all blocks. 1916 * If there is any error, we schedule a write. The lowest numbered 1917 * drive is authoritative. 1918 * However requests come for physical address, so we need to map. 1919 * For every physical address there are raid_disks/copies virtual addresses, 1920 * which is always are least one, but is not necessarly an integer. 1921 * This means that a physical address can span multiple chunks, so we may 1922 * have to submit multiple io requests for a single sync request. 1923 */ 1924 /* 1925 * We check if all blocks are in-sync and only write to blocks that 1926 * aren't in sync 1927 */ 1928 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1929 { 1930 struct r10conf *conf = mddev->private; 1931 int i, first; 1932 struct bio *tbio, *fbio; 1933 int vcnt; 1934 1935 atomic_set(&r10_bio->remaining, 1); 1936 1937 /* find the first device with a block */ 1938 for (i=0; i<conf->copies; i++) 1939 if (!r10_bio->devs[i].bio->bi_error) 1940 break; 1941 1942 if (i == conf->copies) 1943 goto done; 1944 1945 first = i; 1946 fbio = r10_bio->devs[i].bio; 1947 1948 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 1949 /* now find blocks with errors */ 1950 for (i=0 ; i < conf->copies ; i++) { 1951 int j, d; 1952 1953 tbio = r10_bio->devs[i].bio; 1954 1955 if (tbio->bi_end_io != end_sync_read) 1956 continue; 1957 if (i == first) 1958 continue; 1959 if (!r10_bio->devs[i].bio->bi_error) { 1960 /* We know that the bi_io_vec layout is the same for 1961 * both 'first' and 'i', so we just compare them. 1962 * All vec entries are PAGE_SIZE; 1963 */ 1964 int sectors = r10_bio->sectors; 1965 for (j = 0; j < vcnt; j++) { 1966 int len = PAGE_SIZE; 1967 if (sectors < (len / 512)) 1968 len = sectors * 512; 1969 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1970 page_address(tbio->bi_io_vec[j].bv_page), 1971 len)) 1972 break; 1973 sectors -= len/512; 1974 } 1975 if (j == vcnt) 1976 continue; 1977 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 1978 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1979 /* Don't fix anything. */ 1980 continue; 1981 } 1982 /* Ok, we need to write this bio, either to correct an 1983 * inconsistency or to correct an unreadable block. 1984 * First we need to fixup bv_offset, bv_len and 1985 * bi_vecs, as the read request might have corrupted these 1986 */ 1987 bio_reset(tbio); 1988 1989 tbio->bi_vcnt = vcnt; 1990 tbio->bi_iter.bi_size = r10_bio->sectors << 9; 1991 tbio->bi_rw = WRITE; 1992 tbio->bi_private = r10_bio; 1993 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 1994 tbio->bi_end_io = end_sync_write; 1995 1996 bio_copy_data(tbio, fbio); 1997 1998 d = r10_bio->devs[i].devnum; 1999 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2000 atomic_inc(&r10_bio->remaining); 2001 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2002 2003 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2004 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2005 generic_make_request(tbio); 2006 } 2007 2008 /* Now write out to any replacement devices 2009 * that are active 2010 */ 2011 for (i = 0; i < conf->copies; i++) { 2012 int d; 2013 2014 tbio = r10_bio->devs[i].repl_bio; 2015 if (!tbio || !tbio->bi_end_io) 2016 continue; 2017 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2018 && r10_bio->devs[i].bio != fbio) 2019 bio_copy_data(tbio, fbio); 2020 d = r10_bio->devs[i].devnum; 2021 atomic_inc(&r10_bio->remaining); 2022 md_sync_acct(conf->mirrors[d].replacement->bdev, 2023 bio_sectors(tbio)); 2024 generic_make_request(tbio); 2025 } 2026 2027 done: 2028 if (atomic_dec_and_test(&r10_bio->remaining)) { 2029 md_done_sync(mddev, r10_bio->sectors, 1); 2030 put_buf(r10_bio); 2031 } 2032 } 2033 2034 /* 2035 * Now for the recovery code. 2036 * Recovery happens across physical sectors. 2037 * We recover all non-is_sync drives by finding the virtual address of 2038 * each, and then choose a working drive that also has that virt address. 2039 * There is a separate r10_bio for each non-in_sync drive. 2040 * Only the first two slots are in use. The first for reading, 2041 * The second for writing. 2042 * 2043 */ 2044 static void fix_recovery_read_error(struct r10bio *r10_bio) 2045 { 2046 /* We got a read error during recovery. 2047 * We repeat the read in smaller page-sized sections. 2048 * If a read succeeds, write it to the new device or record 2049 * a bad block if we cannot. 2050 * If a read fails, record a bad block on both old and 2051 * new devices. 2052 */ 2053 struct mddev *mddev = r10_bio->mddev; 2054 struct r10conf *conf = mddev->private; 2055 struct bio *bio = r10_bio->devs[0].bio; 2056 sector_t sect = 0; 2057 int sectors = r10_bio->sectors; 2058 int idx = 0; 2059 int dr = r10_bio->devs[0].devnum; 2060 int dw = r10_bio->devs[1].devnum; 2061 2062 while (sectors) { 2063 int s = sectors; 2064 struct md_rdev *rdev; 2065 sector_t addr; 2066 int ok; 2067 2068 if (s > (PAGE_SIZE>>9)) 2069 s = PAGE_SIZE >> 9; 2070 2071 rdev = conf->mirrors[dr].rdev; 2072 addr = r10_bio->devs[0].addr + sect, 2073 ok = sync_page_io(rdev, 2074 addr, 2075 s << 9, 2076 bio->bi_io_vec[idx].bv_page, 2077 READ, false); 2078 if (ok) { 2079 rdev = conf->mirrors[dw].rdev; 2080 addr = r10_bio->devs[1].addr + sect; 2081 ok = sync_page_io(rdev, 2082 addr, 2083 s << 9, 2084 bio->bi_io_vec[idx].bv_page, 2085 WRITE, false); 2086 if (!ok) { 2087 set_bit(WriteErrorSeen, &rdev->flags); 2088 if (!test_and_set_bit(WantReplacement, 2089 &rdev->flags)) 2090 set_bit(MD_RECOVERY_NEEDED, 2091 &rdev->mddev->recovery); 2092 } 2093 } 2094 if (!ok) { 2095 /* We don't worry if we cannot set a bad block - 2096 * it really is bad so there is no loss in not 2097 * recording it yet 2098 */ 2099 rdev_set_badblocks(rdev, addr, s, 0); 2100 2101 if (rdev != conf->mirrors[dw].rdev) { 2102 /* need bad block on destination too */ 2103 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2104 addr = r10_bio->devs[1].addr + sect; 2105 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2106 if (!ok) { 2107 /* just abort the recovery */ 2108 printk(KERN_NOTICE 2109 "md/raid10:%s: recovery aborted" 2110 " due to read error\n", 2111 mdname(mddev)); 2112 2113 conf->mirrors[dw].recovery_disabled 2114 = mddev->recovery_disabled; 2115 set_bit(MD_RECOVERY_INTR, 2116 &mddev->recovery); 2117 break; 2118 } 2119 } 2120 } 2121 2122 sectors -= s; 2123 sect += s; 2124 idx++; 2125 } 2126 } 2127 2128 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2129 { 2130 struct r10conf *conf = mddev->private; 2131 int d; 2132 struct bio *wbio, *wbio2; 2133 2134 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2135 fix_recovery_read_error(r10_bio); 2136 end_sync_request(r10_bio); 2137 return; 2138 } 2139 2140 /* 2141 * share the pages with the first bio 2142 * and submit the write request 2143 */ 2144 d = r10_bio->devs[1].devnum; 2145 wbio = r10_bio->devs[1].bio; 2146 wbio2 = r10_bio->devs[1].repl_bio; 2147 /* Need to test wbio2->bi_end_io before we call 2148 * generic_make_request as if the former is NULL, 2149 * the latter is free to free wbio2. 2150 */ 2151 if (wbio2 && !wbio2->bi_end_io) 2152 wbio2 = NULL; 2153 if (wbio->bi_end_io) { 2154 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2155 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2156 generic_make_request(wbio); 2157 } 2158 if (wbio2) { 2159 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2160 md_sync_acct(conf->mirrors[d].replacement->bdev, 2161 bio_sectors(wbio2)); 2162 generic_make_request(wbio2); 2163 } 2164 } 2165 2166 /* 2167 * Used by fix_read_error() to decay the per rdev read_errors. 2168 * We halve the read error count for every hour that has elapsed 2169 * since the last recorded read error. 2170 * 2171 */ 2172 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2173 { 2174 struct timespec cur_time_mon; 2175 unsigned long hours_since_last; 2176 unsigned int read_errors = atomic_read(&rdev->read_errors); 2177 2178 ktime_get_ts(&cur_time_mon); 2179 2180 if (rdev->last_read_error.tv_sec == 0 && 2181 rdev->last_read_error.tv_nsec == 0) { 2182 /* first time we've seen a read error */ 2183 rdev->last_read_error = cur_time_mon; 2184 return; 2185 } 2186 2187 hours_since_last = (cur_time_mon.tv_sec - 2188 rdev->last_read_error.tv_sec) / 3600; 2189 2190 rdev->last_read_error = cur_time_mon; 2191 2192 /* 2193 * if hours_since_last is > the number of bits in read_errors 2194 * just set read errors to 0. We do this to avoid 2195 * overflowing the shift of read_errors by hours_since_last. 2196 */ 2197 if (hours_since_last >= 8 * sizeof(read_errors)) 2198 atomic_set(&rdev->read_errors, 0); 2199 else 2200 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2201 } 2202 2203 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2204 int sectors, struct page *page, int rw) 2205 { 2206 sector_t first_bad; 2207 int bad_sectors; 2208 2209 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2210 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2211 return -1; 2212 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2213 /* success */ 2214 return 1; 2215 if (rw == WRITE) { 2216 set_bit(WriteErrorSeen, &rdev->flags); 2217 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2218 set_bit(MD_RECOVERY_NEEDED, 2219 &rdev->mddev->recovery); 2220 } 2221 /* need to record an error - either for the block or the device */ 2222 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2223 md_error(rdev->mddev, rdev); 2224 return 0; 2225 } 2226 2227 /* 2228 * This is a kernel thread which: 2229 * 2230 * 1. Retries failed read operations on working mirrors. 2231 * 2. Updates the raid superblock when problems encounter. 2232 * 3. Performs writes following reads for array synchronising. 2233 */ 2234 2235 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2236 { 2237 int sect = 0; /* Offset from r10_bio->sector */ 2238 int sectors = r10_bio->sectors; 2239 struct md_rdev*rdev; 2240 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2241 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2242 2243 /* still own a reference to this rdev, so it cannot 2244 * have been cleared recently. 2245 */ 2246 rdev = conf->mirrors[d].rdev; 2247 2248 if (test_bit(Faulty, &rdev->flags)) 2249 /* drive has already been failed, just ignore any 2250 more fix_read_error() attempts */ 2251 return; 2252 2253 check_decay_read_errors(mddev, rdev); 2254 atomic_inc(&rdev->read_errors); 2255 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2256 char b[BDEVNAME_SIZE]; 2257 bdevname(rdev->bdev, b); 2258 2259 printk(KERN_NOTICE 2260 "md/raid10:%s: %s: Raid device exceeded " 2261 "read_error threshold [cur %d:max %d]\n", 2262 mdname(mddev), b, 2263 atomic_read(&rdev->read_errors), max_read_errors); 2264 printk(KERN_NOTICE 2265 "md/raid10:%s: %s: Failing raid device\n", 2266 mdname(mddev), b); 2267 md_error(mddev, conf->mirrors[d].rdev); 2268 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2269 return; 2270 } 2271 2272 while(sectors) { 2273 int s = sectors; 2274 int sl = r10_bio->read_slot; 2275 int success = 0; 2276 int start; 2277 2278 if (s > (PAGE_SIZE>>9)) 2279 s = PAGE_SIZE >> 9; 2280 2281 rcu_read_lock(); 2282 do { 2283 sector_t first_bad; 2284 int bad_sectors; 2285 2286 d = r10_bio->devs[sl].devnum; 2287 rdev = rcu_dereference(conf->mirrors[d].rdev); 2288 if (rdev && 2289 test_bit(In_sync, &rdev->flags) && 2290 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2291 &first_bad, &bad_sectors) == 0) { 2292 atomic_inc(&rdev->nr_pending); 2293 rcu_read_unlock(); 2294 success = sync_page_io(rdev, 2295 r10_bio->devs[sl].addr + 2296 sect, 2297 s<<9, 2298 conf->tmppage, READ, false); 2299 rdev_dec_pending(rdev, mddev); 2300 rcu_read_lock(); 2301 if (success) 2302 break; 2303 } 2304 sl++; 2305 if (sl == conf->copies) 2306 sl = 0; 2307 } while (!success && sl != r10_bio->read_slot); 2308 rcu_read_unlock(); 2309 2310 if (!success) { 2311 /* Cannot read from anywhere, just mark the block 2312 * as bad on the first device to discourage future 2313 * reads. 2314 */ 2315 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2316 rdev = conf->mirrors[dn].rdev; 2317 2318 if (!rdev_set_badblocks( 2319 rdev, 2320 r10_bio->devs[r10_bio->read_slot].addr 2321 + sect, 2322 s, 0)) { 2323 md_error(mddev, rdev); 2324 r10_bio->devs[r10_bio->read_slot].bio 2325 = IO_BLOCKED; 2326 } 2327 break; 2328 } 2329 2330 start = sl; 2331 /* write it back and re-read */ 2332 rcu_read_lock(); 2333 while (sl != r10_bio->read_slot) { 2334 char b[BDEVNAME_SIZE]; 2335 2336 if (sl==0) 2337 sl = conf->copies; 2338 sl--; 2339 d = r10_bio->devs[sl].devnum; 2340 rdev = rcu_dereference(conf->mirrors[d].rdev); 2341 if (!rdev || 2342 !test_bit(In_sync, &rdev->flags)) 2343 continue; 2344 2345 atomic_inc(&rdev->nr_pending); 2346 rcu_read_unlock(); 2347 if (r10_sync_page_io(rdev, 2348 r10_bio->devs[sl].addr + 2349 sect, 2350 s, conf->tmppage, WRITE) 2351 == 0) { 2352 /* Well, this device is dead */ 2353 printk(KERN_NOTICE 2354 "md/raid10:%s: read correction " 2355 "write failed" 2356 " (%d sectors at %llu on %s)\n", 2357 mdname(mddev), s, 2358 (unsigned long long)( 2359 sect + 2360 choose_data_offset(r10_bio, 2361 rdev)), 2362 bdevname(rdev->bdev, b)); 2363 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2364 "drive\n", 2365 mdname(mddev), 2366 bdevname(rdev->bdev, b)); 2367 } 2368 rdev_dec_pending(rdev, mddev); 2369 rcu_read_lock(); 2370 } 2371 sl = start; 2372 while (sl != r10_bio->read_slot) { 2373 char b[BDEVNAME_SIZE]; 2374 2375 if (sl==0) 2376 sl = conf->copies; 2377 sl--; 2378 d = r10_bio->devs[sl].devnum; 2379 rdev = rcu_dereference(conf->mirrors[d].rdev); 2380 if (!rdev || 2381 !test_bit(In_sync, &rdev->flags)) 2382 continue; 2383 2384 atomic_inc(&rdev->nr_pending); 2385 rcu_read_unlock(); 2386 switch (r10_sync_page_io(rdev, 2387 r10_bio->devs[sl].addr + 2388 sect, 2389 s, conf->tmppage, 2390 READ)) { 2391 case 0: 2392 /* Well, this device is dead */ 2393 printk(KERN_NOTICE 2394 "md/raid10:%s: unable to read back " 2395 "corrected sectors" 2396 " (%d sectors at %llu on %s)\n", 2397 mdname(mddev), s, 2398 (unsigned long long)( 2399 sect + 2400 choose_data_offset(r10_bio, rdev)), 2401 bdevname(rdev->bdev, b)); 2402 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2403 "drive\n", 2404 mdname(mddev), 2405 bdevname(rdev->bdev, b)); 2406 break; 2407 case 1: 2408 printk(KERN_INFO 2409 "md/raid10:%s: read error corrected" 2410 " (%d sectors at %llu on %s)\n", 2411 mdname(mddev), s, 2412 (unsigned long long)( 2413 sect + 2414 choose_data_offset(r10_bio, rdev)), 2415 bdevname(rdev->bdev, b)); 2416 atomic_add(s, &rdev->corrected_errors); 2417 } 2418 2419 rdev_dec_pending(rdev, mddev); 2420 rcu_read_lock(); 2421 } 2422 rcu_read_unlock(); 2423 2424 sectors -= s; 2425 sect += s; 2426 } 2427 } 2428 2429 static int narrow_write_error(struct r10bio *r10_bio, int i) 2430 { 2431 struct bio *bio = r10_bio->master_bio; 2432 struct mddev *mddev = r10_bio->mddev; 2433 struct r10conf *conf = mddev->private; 2434 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2435 /* bio has the data to be written to slot 'i' where 2436 * we just recently had a write error. 2437 * We repeatedly clone the bio and trim down to one block, 2438 * then try the write. Where the write fails we record 2439 * a bad block. 2440 * It is conceivable that the bio doesn't exactly align with 2441 * blocks. We must handle this. 2442 * 2443 * We currently own a reference to the rdev. 2444 */ 2445 2446 int block_sectors; 2447 sector_t sector; 2448 int sectors; 2449 int sect_to_write = r10_bio->sectors; 2450 int ok = 1; 2451 2452 if (rdev->badblocks.shift < 0) 2453 return 0; 2454 2455 block_sectors = roundup(1 << rdev->badblocks.shift, 2456 bdev_logical_block_size(rdev->bdev) >> 9); 2457 sector = r10_bio->sector; 2458 sectors = ((r10_bio->sector + block_sectors) 2459 & ~(sector_t)(block_sectors - 1)) 2460 - sector; 2461 2462 while (sect_to_write) { 2463 struct bio *wbio; 2464 if (sectors > sect_to_write) 2465 sectors = sect_to_write; 2466 /* Write at 'sector' for 'sectors' */ 2467 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2468 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2469 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 2470 choose_data_offset(r10_bio, rdev) + 2471 (sector - r10_bio->sector)); 2472 wbio->bi_bdev = rdev->bdev; 2473 if (submit_bio_wait(WRITE, wbio) < 0) 2474 /* Failure! */ 2475 ok = rdev_set_badblocks(rdev, sector, 2476 sectors, 0) 2477 && ok; 2478 2479 bio_put(wbio); 2480 sect_to_write -= sectors; 2481 sector += sectors; 2482 sectors = block_sectors; 2483 } 2484 return ok; 2485 } 2486 2487 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2488 { 2489 int slot = r10_bio->read_slot; 2490 struct bio *bio; 2491 struct r10conf *conf = mddev->private; 2492 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2493 char b[BDEVNAME_SIZE]; 2494 unsigned long do_sync; 2495 int max_sectors; 2496 2497 /* we got a read error. Maybe the drive is bad. Maybe just 2498 * the block and we can fix it. 2499 * We freeze all other IO, and try reading the block from 2500 * other devices. When we find one, we re-write 2501 * and check it that fixes the read error. 2502 * This is all done synchronously while the array is 2503 * frozen. 2504 */ 2505 bio = r10_bio->devs[slot].bio; 2506 bdevname(bio->bi_bdev, b); 2507 bio_put(bio); 2508 r10_bio->devs[slot].bio = NULL; 2509 2510 if (mddev->ro == 0) { 2511 freeze_array(conf, 1); 2512 fix_read_error(conf, mddev, r10_bio); 2513 unfreeze_array(conf); 2514 } else 2515 r10_bio->devs[slot].bio = IO_BLOCKED; 2516 2517 rdev_dec_pending(rdev, mddev); 2518 2519 read_more: 2520 rdev = read_balance(conf, r10_bio, &max_sectors); 2521 if (rdev == NULL) { 2522 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2523 " read error for block %llu\n", 2524 mdname(mddev), b, 2525 (unsigned long long)r10_bio->sector); 2526 raid_end_bio_io(r10_bio); 2527 return; 2528 } 2529 2530 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2531 slot = r10_bio->read_slot; 2532 printk_ratelimited( 2533 KERN_ERR 2534 "md/raid10:%s: %s: redirecting " 2535 "sector %llu to another mirror\n", 2536 mdname(mddev), 2537 bdevname(rdev->bdev, b), 2538 (unsigned long long)r10_bio->sector); 2539 bio = bio_clone_mddev(r10_bio->master_bio, 2540 GFP_NOIO, mddev); 2541 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors); 2542 r10_bio->devs[slot].bio = bio; 2543 r10_bio->devs[slot].rdev = rdev; 2544 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr 2545 + choose_data_offset(r10_bio, rdev); 2546 bio->bi_bdev = rdev->bdev; 2547 bio->bi_rw = READ | do_sync; 2548 bio->bi_private = r10_bio; 2549 bio->bi_end_io = raid10_end_read_request; 2550 if (max_sectors < r10_bio->sectors) { 2551 /* Drat - have to split this up more */ 2552 struct bio *mbio = r10_bio->master_bio; 2553 int sectors_handled = 2554 r10_bio->sector + max_sectors 2555 - mbio->bi_iter.bi_sector; 2556 r10_bio->sectors = max_sectors; 2557 spin_lock_irq(&conf->device_lock); 2558 if (mbio->bi_phys_segments == 0) 2559 mbio->bi_phys_segments = 2; 2560 else 2561 mbio->bi_phys_segments++; 2562 spin_unlock_irq(&conf->device_lock); 2563 generic_make_request(bio); 2564 2565 r10_bio = mempool_alloc(conf->r10bio_pool, 2566 GFP_NOIO); 2567 r10_bio->master_bio = mbio; 2568 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2569 r10_bio->state = 0; 2570 set_bit(R10BIO_ReadError, 2571 &r10_bio->state); 2572 r10_bio->mddev = mddev; 2573 r10_bio->sector = mbio->bi_iter.bi_sector 2574 + sectors_handled; 2575 2576 goto read_more; 2577 } else 2578 generic_make_request(bio); 2579 } 2580 2581 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2582 { 2583 /* Some sort of write request has finished and it 2584 * succeeded in writing where we thought there was a 2585 * bad block. So forget the bad block. 2586 * Or possibly if failed and we need to record 2587 * a bad block. 2588 */ 2589 int m; 2590 struct md_rdev *rdev; 2591 2592 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2593 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2594 for (m = 0; m < conf->copies; m++) { 2595 int dev = r10_bio->devs[m].devnum; 2596 rdev = conf->mirrors[dev].rdev; 2597 if (r10_bio->devs[m].bio == NULL) 2598 continue; 2599 if (!r10_bio->devs[m].bio->bi_error) { 2600 rdev_clear_badblocks( 2601 rdev, 2602 r10_bio->devs[m].addr, 2603 r10_bio->sectors, 0); 2604 } else { 2605 if (!rdev_set_badblocks( 2606 rdev, 2607 r10_bio->devs[m].addr, 2608 r10_bio->sectors, 0)) 2609 md_error(conf->mddev, rdev); 2610 } 2611 rdev = conf->mirrors[dev].replacement; 2612 if (r10_bio->devs[m].repl_bio == NULL) 2613 continue; 2614 2615 if (!r10_bio->devs[m].repl_bio->bi_error) { 2616 rdev_clear_badblocks( 2617 rdev, 2618 r10_bio->devs[m].addr, 2619 r10_bio->sectors, 0); 2620 } else { 2621 if (!rdev_set_badblocks( 2622 rdev, 2623 r10_bio->devs[m].addr, 2624 r10_bio->sectors, 0)) 2625 md_error(conf->mddev, rdev); 2626 } 2627 } 2628 put_buf(r10_bio); 2629 } else { 2630 bool fail = false; 2631 for (m = 0; m < conf->copies; m++) { 2632 int dev = r10_bio->devs[m].devnum; 2633 struct bio *bio = r10_bio->devs[m].bio; 2634 rdev = conf->mirrors[dev].rdev; 2635 if (bio == IO_MADE_GOOD) { 2636 rdev_clear_badblocks( 2637 rdev, 2638 r10_bio->devs[m].addr, 2639 r10_bio->sectors, 0); 2640 rdev_dec_pending(rdev, conf->mddev); 2641 } else if (bio != NULL && bio->bi_error) { 2642 fail = true; 2643 if (!narrow_write_error(r10_bio, m)) { 2644 md_error(conf->mddev, rdev); 2645 set_bit(R10BIO_Degraded, 2646 &r10_bio->state); 2647 } 2648 rdev_dec_pending(rdev, conf->mddev); 2649 } 2650 bio = r10_bio->devs[m].repl_bio; 2651 rdev = conf->mirrors[dev].replacement; 2652 if (rdev && bio == IO_MADE_GOOD) { 2653 rdev_clear_badblocks( 2654 rdev, 2655 r10_bio->devs[m].addr, 2656 r10_bio->sectors, 0); 2657 rdev_dec_pending(rdev, conf->mddev); 2658 } 2659 } 2660 if (fail) { 2661 spin_lock_irq(&conf->device_lock); 2662 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2663 spin_unlock_irq(&conf->device_lock); 2664 md_wakeup_thread(conf->mddev->thread); 2665 } else { 2666 if (test_bit(R10BIO_WriteError, 2667 &r10_bio->state)) 2668 close_write(r10_bio); 2669 raid_end_bio_io(r10_bio); 2670 } 2671 } 2672 } 2673 2674 static void raid10d(struct md_thread *thread) 2675 { 2676 struct mddev *mddev = thread->mddev; 2677 struct r10bio *r10_bio; 2678 unsigned long flags; 2679 struct r10conf *conf = mddev->private; 2680 struct list_head *head = &conf->retry_list; 2681 struct blk_plug plug; 2682 2683 md_check_recovery(mddev); 2684 2685 if (!list_empty_careful(&conf->bio_end_io_list) && 2686 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 2687 LIST_HEAD(tmp); 2688 spin_lock_irqsave(&conf->device_lock, flags); 2689 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 2690 list_add(&tmp, &conf->bio_end_io_list); 2691 list_del_init(&conf->bio_end_io_list); 2692 } 2693 spin_unlock_irqrestore(&conf->device_lock, flags); 2694 while (!list_empty(&tmp)) { 2695 r10_bio = list_first_entry(&tmp, struct r10bio, 2696 retry_list); 2697 list_del(&r10_bio->retry_list); 2698 if (mddev->degraded) 2699 set_bit(R10BIO_Degraded, &r10_bio->state); 2700 2701 if (test_bit(R10BIO_WriteError, 2702 &r10_bio->state)) 2703 close_write(r10_bio); 2704 raid_end_bio_io(r10_bio); 2705 } 2706 } 2707 2708 blk_start_plug(&plug); 2709 for (;;) { 2710 2711 flush_pending_writes(conf); 2712 2713 spin_lock_irqsave(&conf->device_lock, flags); 2714 if (list_empty(head)) { 2715 spin_unlock_irqrestore(&conf->device_lock, flags); 2716 break; 2717 } 2718 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2719 list_del(head->prev); 2720 conf->nr_queued--; 2721 spin_unlock_irqrestore(&conf->device_lock, flags); 2722 2723 mddev = r10_bio->mddev; 2724 conf = mddev->private; 2725 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2726 test_bit(R10BIO_WriteError, &r10_bio->state)) 2727 handle_write_completed(conf, r10_bio); 2728 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2729 reshape_request_write(mddev, r10_bio); 2730 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2731 sync_request_write(mddev, r10_bio); 2732 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2733 recovery_request_write(mddev, r10_bio); 2734 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2735 handle_read_error(mddev, r10_bio); 2736 else { 2737 /* just a partial read to be scheduled from a 2738 * separate context 2739 */ 2740 int slot = r10_bio->read_slot; 2741 generic_make_request(r10_bio->devs[slot].bio); 2742 } 2743 2744 cond_resched(); 2745 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2746 md_check_recovery(mddev); 2747 } 2748 blk_finish_plug(&plug); 2749 } 2750 2751 static int init_resync(struct r10conf *conf) 2752 { 2753 int buffs; 2754 int i; 2755 2756 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2757 BUG_ON(conf->r10buf_pool); 2758 conf->have_replacement = 0; 2759 for (i = 0; i < conf->geo.raid_disks; i++) 2760 if (conf->mirrors[i].replacement) 2761 conf->have_replacement = 1; 2762 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2763 if (!conf->r10buf_pool) 2764 return -ENOMEM; 2765 conf->next_resync = 0; 2766 return 0; 2767 } 2768 2769 /* 2770 * perform a "sync" on one "block" 2771 * 2772 * We need to make sure that no normal I/O request - particularly write 2773 * requests - conflict with active sync requests. 2774 * 2775 * This is achieved by tracking pending requests and a 'barrier' concept 2776 * that can be installed to exclude normal IO requests. 2777 * 2778 * Resync and recovery are handled very differently. 2779 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2780 * 2781 * For resync, we iterate over virtual addresses, read all copies, 2782 * and update if there are differences. If only one copy is live, 2783 * skip it. 2784 * For recovery, we iterate over physical addresses, read a good 2785 * value for each non-in_sync drive, and over-write. 2786 * 2787 * So, for recovery we may have several outstanding complex requests for a 2788 * given address, one for each out-of-sync device. We model this by allocating 2789 * a number of r10_bio structures, one for each out-of-sync device. 2790 * As we setup these structures, we collect all bio's together into a list 2791 * which we then process collectively to add pages, and then process again 2792 * to pass to generic_make_request. 2793 * 2794 * The r10_bio structures are linked using a borrowed master_bio pointer. 2795 * This link is counted in ->remaining. When the r10_bio that points to NULL 2796 * has its remaining count decremented to 0, the whole complex operation 2797 * is complete. 2798 * 2799 */ 2800 2801 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2802 int *skipped) 2803 { 2804 struct r10conf *conf = mddev->private; 2805 struct r10bio *r10_bio; 2806 struct bio *biolist = NULL, *bio; 2807 sector_t max_sector, nr_sectors; 2808 int i; 2809 int max_sync; 2810 sector_t sync_blocks; 2811 sector_t sectors_skipped = 0; 2812 int chunks_skipped = 0; 2813 sector_t chunk_mask = conf->geo.chunk_mask; 2814 2815 if (!conf->r10buf_pool) 2816 if (init_resync(conf)) 2817 return 0; 2818 2819 /* 2820 * Allow skipping a full rebuild for incremental assembly 2821 * of a clean array, like RAID1 does. 2822 */ 2823 if (mddev->bitmap == NULL && 2824 mddev->recovery_cp == MaxSector && 2825 mddev->reshape_position == MaxSector && 2826 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2827 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2828 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2829 conf->fullsync == 0) { 2830 *skipped = 1; 2831 return mddev->dev_sectors - sector_nr; 2832 } 2833 2834 skipped: 2835 max_sector = mddev->dev_sectors; 2836 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2837 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2838 max_sector = mddev->resync_max_sectors; 2839 if (sector_nr >= max_sector) { 2840 /* If we aborted, we need to abort the 2841 * sync on the 'current' bitmap chucks (there can 2842 * be several when recovering multiple devices). 2843 * as we may have started syncing it but not finished. 2844 * We can find the current address in 2845 * mddev->curr_resync, but for recovery, 2846 * we need to convert that to several 2847 * virtual addresses. 2848 */ 2849 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2850 end_reshape(conf); 2851 close_sync(conf); 2852 return 0; 2853 } 2854 2855 if (mddev->curr_resync < max_sector) { /* aborted */ 2856 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2857 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2858 &sync_blocks, 1); 2859 else for (i = 0; i < conf->geo.raid_disks; i++) { 2860 sector_t sect = 2861 raid10_find_virt(conf, mddev->curr_resync, i); 2862 bitmap_end_sync(mddev->bitmap, sect, 2863 &sync_blocks, 1); 2864 } 2865 } else { 2866 /* completed sync */ 2867 if ((!mddev->bitmap || conf->fullsync) 2868 && conf->have_replacement 2869 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2870 /* Completed a full sync so the replacements 2871 * are now fully recovered. 2872 */ 2873 for (i = 0; i < conf->geo.raid_disks; i++) 2874 if (conf->mirrors[i].replacement) 2875 conf->mirrors[i].replacement 2876 ->recovery_offset 2877 = MaxSector; 2878 } 2879 conf->fullsync = 0; 2880 } 2881 bitmap_close_sync(mddev->bitmap); 2882 close_sync(conf); 2883 *skipped = 1; 2884 return sectors_skipped; 2885 } 2886 2887 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2888 return reshape_request(mddev, sector_nr, skipped); 2889 2890 if (chunks_skipped >= conf->geo.raid_disks) { 2891 /* if there has been nothing to do on any drive, 2892 * then there is nothing to do at all.. 2893 */ 2894 *skipped = 1; 2895 return (max_sector - sector_nr) + sectors_skipped; 2896 } 2897 2898 if (max_sector > mddev->resync_max) 2899 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2900 2901 /* make sure whole request will fit in a chunk - if chunks 2902 * are meaningful 2903 */ 2904 if (conf->geo.near_copies < conf->geo.raid_disks && 2905 max_sector > (sector_nr | chunk_mask)) 2906 max_sector = (sector_nr | chunk_mask) + 1; 2907 2908 /* Again, very different code for resync and recovery. 2909 * Both must result in an r10bio with a list of bios that 2910 * have bi_end_io, bi_sector, bi_bdev set, 2911 * and bi_private set to the r10bio. 2912 * For recovery, we may actually create several r10bios 2913 * with 2 bios in each, that correspond to the bios in the main one. 2914 * In this case, the subordinate r10bios link back through a 2915 * borrowed master_bio pointer, and the counter in the master 2916 * includes a ref from each subordinate. 2917 */ 2918 /* First, we decide what to do and set ->bi_end_io 2919 * To end_sync_read if we want to read, and 2920 * end_sync_write if we will want to write. 2921 */ 2922 2923 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2924 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2925 /* recovery... the complicated one */ 2926 int j; 2927 r10_bio = NULL; 2928 2929 for (i = 0 ; i < conf->geo.raid_disks; i++) { 2930 int still_degraded; 2931 struct r10bio *rb2; 2932 sector_t sect; 2933 int must_sync; 2934 int any_working; 2935 struct raid10_info *mirror = &conf->mirrors[i]; 2936 2937 if ((mirror->rdev == NULL || 2938 test_bit(In_sync, &mirror->rdev->flags)) 2939 && 2940 (mirror->replacement == NULL || 2941 test_bit(Faulty, 2942 &mirror->replacement->flags))) 2943 continue; 2944 2945 still_degraded = 0; 2946 /* want to reconstruct this device */ 2947 rb2 = r10_bio; 2948 sect = raid10_find_virt(conf, sector_nr, i); 2949 if (sect >= mddev->resync_max_sectors) { 2950 /* last stripe is not complete - don't 2951 * try to recover this sector. 2952 */ 2953 continue; 2954 } 2955 /* Unless we are doing a full sync, or a replacement 2956 * we only need to recover the block if it is set in 2957 * the bitmap 2958 */ 2959 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2960 &sync_blocks, 1); 2961 if (sync_blocks < max_sync) 2962 max_sync = sync_blocks; 2963 if (!must_sync && 2964 mirror->replacement == NULL && 2965 !conf->fullsync) { 2966 /* yep, skip the sync_blocks here, but don't assume 2967 * that there will never be anything to do here 2968 */ 2969 chunks_skipped = -1; 2970 continue; 2971 } 2972 2973 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2974 r10_bio->state = 0; 2975 raise_barrier(conf, rb2 != NULL); 2976 atomic_set(&r10_bio->remaining, 0); 2977 2978 r10_bio->master_bio = (struct bio*)rb2; 2979 if (rb2) 2980 atomic_inc(&rb2->remaining); 2981 r10_bio->mddev = mddev; 2982 set_bit(R10BIO_IsRecover, &r10_bio->state); 2983 r10_bio->sector = sect; 2984 2985 raid10_find_phys(conf, r10_bio); 2986 2987 /* Need to check if the array will still be 2988 * degraded 2989 */ 2990 for (j = 0; j < conf->geo.raid_disks; j++) 2991 if (conf->mirrors[j].rdev == NULL || 2992 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 2993 still_degraded = 1; 2994 break; 2995 } 2996 2997 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2998 &sync_blocks, still_degraded); 2999 3000 any_working = 0; 3001 for (j=0; j<conf->copies;j++) { 3002 int k; 3003 int d = r10_bio->devs[j].devnum; 3004 sector_t from_addr, to_addr; 3005 struct md_rdev *rdev; 3006 sector_t sector, first_bad; 3007 int bad_sectors; 3008 if (!conf->mirrors[d].rdev || 3009 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3010 continue; 3011 /* This is where we read from */ 3012 any_working = 1; 3013 rdev = conf->mirrors[d].rdev; 3014 sector = r10_bio->devs[j].addr; 3015 3016 if (is_badblock(rdev, sector, max_sync, 3017 &first_bad, &bad_sectors)) { 3018 if (first_bad > sector) 3019 max_sync = first_bad - sector; 3020 else { 3021 bad_sectors -= (sector 3022 - first_bad); 3023 if (max_sync > bad_sectors) 3024 max_sync = bad_sectors; 3025 continue; 3026 } 3027 } 3028 bio = r10_bio->devs[0].bio; 3029 bio_reset(bio); 3030 bio->bi_next = biolist; 3031 biolist = bio; 3032 bio->bi_private = r10_bio; 3033 bio->bi_end_io = end_sync_read; 3034 bio->bi_rw = READ; 3035 from_addr = r10_bio->devs[j].addr; 3036 bio->bi_iter.bi_sector = from_addr + 3037 rdev->data_offset; 3038 bio->bi_bdev = rdev->bdev; 3039 atomic_inc(&rdev->nr_pending); 3040 /* and we write to 'i' (if not in_sync) */ 3041 3042 for (k=0; k<conf->copies; k++) 3043 if (r10_bio->devs[k].devnum == i) 3044 break; 3045 BUG_ON(k == conf->copies); 3046 to_addr = r10_bio->devs[k].addr; 3047 r10_bio->devs[0].devnum = d; 3048 r10_bio->devs[0].addr = from_addr; 3049 r10_bio->devs[1].devnum = i; 3050 r10_bio->devs[1].addr = to_addr; 3051 3052 rdev = mirror->rdev; 3053 if (!test_bit(In_sync, &rdev->flags)) { 3054 bio = r10_bio->devs[1].bio; 3055 bio_reset(bio); 3056 bio->bi_next = biolist; 3057 biolist = bio; 3058 bio->bi_private = r10_bio; 3059 bio->bi_end_io = end_sync_write; 3060 bio->bi_rw = WRITE; 3061 bio->bi_iter.bi_sector = to_addr 3062 + rdev->data_offset; 3063 bio->bi_bdev = rdev->bdev; 3064 atomic_inc(&r10_bio->remaining); 3065 } else 3066 r10_bio->devs[1].bio->bi_end_io = NULL; 3067 3068 /* and maybe write to replacement */ 3069 bio = r10_bio->devs[1].repl_bio; 3070 if (bio) 3071 bio->bi_end_io = NULL; 3072 rdev = mirror->replacement; 3073 /* Note: if rdev != NULL, then bio 3074 * cannot be NULL as r10buf_pool_alloc will 3075 * have allocated it. 3076 * So the second test here is pointless. 3077 * But it keeps semantic-checkers happy, and 3078 * this comment keeps human reviewers 3079 * happy. 3080 */ 3081 if (rdev == NULL || bio == NULL || 3082 test_bit(Faulty, &rdev->flags)) 3083 break; 3084 bio_reset(bio); 3085 bio->bi_next = biolist; 3086 biolist = bio; 3087 bio->bi_private = r10_bio; 3088 bio->bi_end_io = end_sync_write; 3089 bio->bi_rw = WRITE; 3090 bio->bi_iter.bi_sector = to_addr + 3091 rdev->data_offset; 3092 bio->bi_bdev = rdev->bdev; 3093 atomic_inc(&r10_bio->remaining); 3094 break; 3095 } 3096 if (j == conf->copies) { 3097 /* Cannot recover, so abort the recovery or 3098 * record a bad block */ 3099 if (any_working) { 3100 /* problem is that there are bad blocks 3101 * on other device(s) 3102 */ 3103 int k; 3104 for (k = 0; k < conf->copies; k++) 3105 if (r10_bio->devs[k].devnum == i) 3106 break; 3107 if (!test_bit(In_sync, 3108 &mirror->rdev->flags) 3109 && !rdev_set_badblocks( 3110 mirror->rdev, 3111 r10_bio->devs[k].addr, 3112 max_sync, 0)) 3113 any_working = 0; 3114 if (mirror->replacement && 3115 !rdev_set_badblocks( 3116 mirror->replacement, 3117 r10_bio->devs[k].addr, 3118 max_sync, 0)) 3119 any_working = 0; 3120 } 3121 if (!any_working) { 3122 if (!test_and_set_bit(MD_RECOVERY_INTR, 3123 &mddev->recovery)) 3124 printk(KERN_INFO "md/raid10:%s: insufficient " 3125 "working devices for recovery.\n", 3126 mdname(mddev)); 3127 mirror->recovery_disabled 3128 = mddev->recovery_disabled; 3129 } 3130 put_buf(r10_bio); 3131 if (rb2) 3132 atomic_dec(&rb2->remaining); 3133 r10_bio = rb2; 3134 break; 3135 } 3136 } 3137 if (biolist == NULL) { 3138 while (r10_bio) { 3139 struct r10bio *rb2 = r10_bio; 3140 r10_bio = (struct r10bio*) rb2->master_bio; 3141 rb2->master_bio = NULL; 3142 put_buf(rb2); 3143 } 3144 goto giveup; 3145 } 3146 } else { 3147 /* resync. Schedule a read for every block at this virt offset */ 3148 int count = 0; 3149 3150 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3151 3152 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3153 &sync_blocks, mddev->degraded) && 3154 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3155 &mddev->recovery)) { 3156 /* We can skip this block */ 3157 *skipped = 1; 3158 return sync_blocks + sectors_skipped; 3159 } 3160 if (sync_blocks < max_sync) 3161 max_sync = sync_blocks; 3162 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3163 r10_bio->state = 0; 3164 3165 r10_bio->mddev = mddev; 3166 atomic_set(&r10_bio->remaining, 0); 3167 raise_barrier(conf, 0); 3168 conf->next_resync = sector_nr; 3169 3170 r10_bio->master_bio = NULL; 3171 r10_bio->sector = sector_nr; 3172 set_bit(R10BIO_IsSync, &r10_bio->state); 3173 raid10_find_phys(conf, r10_bio); 3174 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3175 3176 for (i = 0; i < conf->copies; i++) { 3177 int d = r10_bio->devs[i].devnum; 3178 sector_t first_bad, sector; 3179 int bad_sectors; 3180 3181 if (r10_bio->devs[i].repl_bio) 3182 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3183 3184 bio = r10_bio->devs[i].bio; 3185 bio_reset(bio); 3186 bio->bi_error = -EIO; 3187 if (conf->mirrors[d].rdev == NULL || 3188 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3189 continue; 3190 sector = r10_bio->devs[i].addr; 3191 if (is_badblock(conf->mirrors[d].rdev, 3192 sector, max_sync, 3193 &first_bad, &bad_sectors)) { 3194 if (first_bad > sector) 3195 max_sync = first_bad - sector; 3196 else { 3197 bad_sectors -= (sector - first_bad); 3198 if (max_sync > bad_sectors) 3199 max_sync = bad_sectors; 3200 continue; 3201 } 3202 } 3203 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3204 atomic_inc(&r10_bio->remaining); 3205 bio->bi_next = biolist; 3206 biolist = bio; 3207 bio->bi_private = r10_bio; 3208 bio->bi_end_io = end_sync_read; 3209 bio->bi_rw = READ; 3210 bio->bi_iter.bi_sector = sector + 3211 conf->mirrors[d].rdev->data_offset; 3212 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3213 count++; 3214 3215 if (conf->mirrors[d].replacement == NULL || 3216 test_bit(Faulty, 3217 &conf->mirrors[d].replacement->flags)) 3218 continue; 3219 3220 /* Need to set up for writing to the replacement */ 3221 bio = r10_bio->devs[i].repl_bio; 3222 bio_reset(bio); 3223 bio->bi_error = -EIO; 3224 3225 sector = r10_bio->devs[i].addr; 3226 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3227 bio->bi_next = biolist; 3228 biolist = bio; 3229 bio->bi_private = r10_bio; 3230 bio->bi_end_io = end_sync_write; 3231 bio->bi_rw = WRITE; 3232 bio->bi_iter.bi_sector = sector + 3233 conf->mirrors[d].replacement->data_offset; 3234 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3235 count++; 3236 } 3237 3238 if (count < 2) { 3239 for (i=0; i<conf->copies; i++) { 3240 int d = r10_bio->devs[i].devnum; 3241 if (r10_bio->devs[i].bio->bi_end_io) 3242 rdev_dec_pending(conf->mirrors[d].rdev, 3243 mddev); 3244 if (r10_bio->devs[i].repl_bio && 3245 r10_bio->devs[i].repl_bio->bi_end_io) 3246 rdev_dec_pending( 3247 conf->mirrors[d].replacement, 3248 mddev); 3249 } 3250 put_buf(r10_bio); 3251 biolist = NULL; 3252 goto giveup; 3253 } 3254 } 3255 3256 nr_sectors = 0; 3257 if (sector_nr + max_sync < max_sector) 3258 max_sector = sector_nr + max_sync; 3259 do { 3260 struct page *page; 3261 int len = PAGE_SIZE; 3262 if (sector_nr + (len>>9) > max_sector) 3263 len = (max_sector - sector_nr) << 9; 3264 if (len == 0) 3265 break; 3266 for (bio= biolist ; bio ; bio=bio->bi_next) { 3267 struct bio *bio2; 3268 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3269 if (bio_add_page(bio, page, len, 0)) 3270 continue; 3271 3272 /* stop here */ 3273 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3274 for (bio2 = biolist; 3275 bio2 && bio2 != bio; 3276 bio2 = bio2->bi_next) { 3277 /* remove last page from this bio */ 3278 bio2->bi_vcnt--; 3279 bio2->bi_iter.bi_size -= len; 3280 bio_clear_flag(bio2, BIO_SEG_VALID); 3281 } 3282 goto bio_full; 3283 } 3284 nr_sectors += len>>9; 3285 sector_nr += len>>9; 3286 } while (biolist->bi_vcnt < RESYNC_PAGES); 3287 bio_full: 3288 r10_bio->sectors = nr_sectors; 3289 3290 while (biolist) { 3291 bio = biolist; 3292 biolist = biolist->bi_next; 3293 3294 bio->bi_next = NULL; 3295 r10_bio = bio->bi_private; 3296 r10_bio->sectors = nr_sectors; 3297 3298 if (bio->bi_end_io == end_sync_read) { 3299 md_sync_acct(bio->bi_bdev, nr_sectors); 3300 bio->bi_error = 0; 3301 generic_make_request(bio); 3302 } 3303 } 3304 3305 if (sectors_skipped) 3306 /* pretend they weren't skipped, it makes 3307 * no important difference in this case 3308 */ 3309 md_done_sync(mddev, sectors_skipped, 1); 3310 3311 return sectors_skipped + nr_sectors; 3312 giveup: 3313 /* There is nowhere to write, so all non-sync 3314 * drives must be failed or in resync, all drives 3315 * have a bad block, so try the next chunk... 3316 */ 3317 if (sector_nr + max_sync < max_sector) 3318 max_sector = sector_nr + max_sync; 3319 3320 sectors_skipped += (max_sector - sector_nr); 3321 chunks_skipped ++; 3322 sector_nr = max_sector; 3323 goto skipped; 3324 } 3325 3326 static sector_t 3327 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3328 { 3329 sector_t size; 3330 struct r10conf *conf = mddev->private; 3331 3332 if (!raid_disks) 3333 raid_disks = min(conf->geo.raid_disks, 3334 conf->prev.raid_disks); 3335 if (!sectors) 3336 sectors = conf->dev_sectors; 3337 3338 size = sectors >> conf->geo.chunk_shift; 3339 sector_div(size, conf->geo.far_copies); 3340 size = size * raid_disks; 3341 sector_div(size, conf->geo.near_copies); 3342 3343 return size << conf->geo.chunk_shift; 3344 } 3345 3346 static void calc_sectors(struct r10conf *conf, sector_t size) 3347 { 3348 /* Calculate the number of sectors-per-device that will 3349 * actually be used, and set conf->dev_sectors and 3350 * conf->stride 3351 */ 3352 3353 size = size >> conf->geo.chunk_shift; 3354 sector_div(size, conf->geo.far_copies); 3355 size = size * conf->geo.raid_disks; 3356 sector_div(size, conf->geo.near_copies); 3357 /* 'size' is now the number of chunks in the array */ 3358 /* calculate "used chunks per device" */ 3359 size = size * conf->copies; 3360 3361 /* We need to round up when dividing by raid_disks to 3362 * get the stride size. 3363 */ 3364 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3365 3366 conf->dev_sectors = size << conf->geo.chunk_shift; 3367 3368 if (conf->geo.far_offset) 3369 conf->geo.stride = 1 << conf->geo.chunk_shift; 3370 else { 3371 sector_div(size, conf->geo.far_copies); 3372 conf->geo.stride = size << conf->geo.chunk_shift; 3373 } 3374 } 3375 3376 enum geo_type {geo_new, geo_old, geo_start}; 3377 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3378 { 3379 int nc, fc, fo; 3380 int layout, chunk, disks; 3381 switch (new) { 3382 case geo_old: 3383 layout = mddev->layout; 3384 chunk = mddev->chunk_sectors; 3385 disks = mddev->raid_disks - mddev->delta_disks; 3386 break; 3387 case geo_new: 3388 layout = mddev->new_layout; 3389 chunk = mddev->new_chunk_sectors; 3390 disks = mddev->raid_disks; 3391 break; 3392 default: /* avoid 'may be unused' warnings */ 3393 case geo_start: /* new when starting reshape - raid_disks not 3394 * updated yet. */ 3395 layout = mddev->new_layout; 3396 chunk = mddev->new_chunk_sectors; 3397 disks = mddev->raid_disks + mddev->delta_disks; 3398 break; 3399 } 3400 if (layout >> 19) 3401 return -1; 3402 if (chunk < (PAGE_SIZE >> 9) || 3403 !is_power_of_2(chunk)) 3404 return -2; 3405 nc = layout & 255; 3406 fc = (layout >> 8) & 255; 3407 fo = layout & (1<<16); 3408 geo->raid_disks = disks; 3409 geo->near_copies = nc; 3410 geo->far_copies = fc; 3411 geo->far_offset = fo; 3412 switch (layout >> 17) { 3413 case 0: /* original layout. simple but not always optimal */ 3414 geo->far_set_size = disks; 3415 break; 3416 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3417 * actually using this, but leave code here just in case.*/ 3418 geo->far_set_size = disks/fc; 3419 WARN(geo->far_set_size < fc, 3420 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3421 break; 3422 case 2: /* "improved" layout fixed to match documentation */ 3423 geo->far_set_size = fc * nc; 3424 break; 3425 default: /* Not a valid layout */ 3426 return -1; 3427 } 3428 geo->chunk_mask = chunk - 1; 3429 geo->chunk_shift = ffz(~chunk); 3430 return nc*fc; 3431 } 3432 3433 static struct r10conf *setup_conf(struct mddev *mddev) 3434 { 3435 struct r10conf *conf = NULL; 3436 int err = -EINVAL; 3437 struct geom geo; 3438 int copies; 3439 3440 copies = setup_geo(&geo, mddev, geo_new); 3441 3442 if (copies == -2) { 3443 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3444 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3445 mdname(mddev), PAGE_SIZE); 3446 goto out; 3447 } 3448 3449 if (copies < 2 || copies > mddev->raid_disks) { 3450 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3451 mdname(mddev), mddev->new_layout); 3452 goto out; 3453 } 3454 3455 err = -ENOMEM; 3456 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3457 if (!conf) 3458 goto out; 3459 3460 /* FIXME calc properly */ 3461 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3462 max(0,-mddev->delta_disks)), 3463 GFP_KERNEL); 3464 if (!conf->mirrors) 3465 goto out; 3466 3467 conf->tmppage = alloc_page(GFP_KERNEL); 3468 if (!conf->tmppage) 3469 goto out; 3470 3471 conf->geo = geo; 3472 conf->copies = copies; 3473 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3474 r10bio_pool_free, conf); 3475 if (!conf->r10bio_pool) 3476 goto out; 3477 3478 calc_sectors(conf, mddev->dev_sectors); 3479 if (mddev->reshape_position == MaxSector) { 3480 conf->prev = conf->geo; 3481 conf->reshape_progress = MaxSector; 3482 } else { 3483 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3484 err = -EINVAL; 3485 goto out; 3486 } 3487 conf->reshape_progress = mddev->reshape_position; 3488 if (conf->prev.far_offset) 3489 conf->prev.stride = 1 << conf->prev.chunk_shift; 3490 else 3491 /* far_copies must be 1 */ 3492 conf->prev.stride = conf->dev_sectors; 3493 } 3494 conf->reshape_safe = conf->reshape_progress; 3495 spin_lock_init(&conf->device_lock); 3496 INIT_LIST_HEAD(&conf->retry_list); 3497 INIT_LIST_HEAD(&conf->bio_end_io_list); 3498 3499 spin_lock_init(&conf->resync_lock); 3500 init_waitqueue_head(&conf->wait_barrier); 3501 3502 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3503 if (!conf->thread) 3504 goto out; 3505 3506 conf->mddev = mddev; 3507 return conf; 3508 3509 out: 3510 if (err == -ENOMEM) 3511 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3512 mdname(mddev)); 3513 if (conf) { 3514 mempool_destroy(conf->r10bio_pool); 3515 kfree(conf->mirrors); 3516 safe_put_page(conf->tmppage); 3517 kfree(conf); 3518 } 3519 return ERR_PTR(err); 3520 } 3521 3522 static int run(struct mddev *mddev) 3523 { 3524 struct r10conf *conf; 3525 int i, disk_idx, chunk_size; 3526 struct raid10_info *disk; 3527 struct md_rdev *rdev; 3528 sector_t size; 3529 sector_t min_offset_diff = 0; 3530 int first = 1; 3531 bool discard_supported = false; 3532 3533 if (mddev->private == NULL) { 3534 conf = setup_conf(mddev); 3535 if (IS_ERR(conf)) 3536 return PTR_ERR(conf); 3537 mddev->private = conf; 3538 } 3539 conf = mddev->private; 3540 if (!conf) 3541 goto out; 3542 3543 mddev->thread = conf->thread; 3544 conf->thread = NULL; 3545 3546 chunk_size = mddev->chunk_sectors << 9; 3547 if (mddev->queue) { 3548 blk_queue_max_discard_sectors(mddev->queue, 3549 mddev->chunk_sectors); 3550 blk_queue_max_write_same_sectors(mddev->queue, 0); 3551 blk_queue_io_min(mddev->queue, chunk_size); 3552 if (conf->geo.raid_disks % conf->geo.near_copies) 3553 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3554 else 3555 blk_queue_io_opt(mddev->queue, chunk_size * 3556 (conf->geo.raid_disks / conf->geo.near_copies)); 3557 } 3558 3559 rdev_for_each(rdev, mddev) { 3560 long long diff; 3561 struct request_queue *q; 3562 3563 disk_idx = rdev->raid_disk; 3564 if (disk_idx < 0) 3565 continue; 3566 if (disk_idx >= conf->geo.raid_disks && 3567 disk_idx >= conf->prev.raid_disks) 3568 continue; 3569 disk = conf->mirrors + disk_idx; 3570 3571 if (test_bit(Replacement, &rdev->flags)) { 3572 if (disk->replacement) 3573 goto out_free_conf; 3574 disk->replacement = rdev; 3575 } else { 3576 if (disk->rdev) 3577 goto out_free_conf; 3578 disk->rdev = rdev; 3579 } 3580 q = bdev_get_queue(rdev->bdev); 3581 diff = (rdev->new_data_offset - rdev->data_offset); 3582 if (!mddev->reshape_backwards) 3583 diff = -diff; 3584 if (diff < 0) 3585 diff = 0; 3586 if (first || diff < min_offset_diff) 3587 min_offset_diff = diff; 3588 3589 if (mddev->gendisk) 3590 disk_stack_limits(mddev->gendisk, rdev->bdev, 3591 rdev->data_offset << 9); 3592 3593 disk->head_position = 0; 3594 3595 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3596 discard_supported = true; 3597 } 3598 3599 if (mddev->queue) { 3600 if (discard_supported) 3601 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3602 mddev->queue); 3603 else 3604 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3605 mddev->queue); 3606 } 3607 /* need to check that every block has at least one working mirror */ 3608 if (!enough(conf, -1)) { 3609 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3610 mdname(mddev)); 3611 goto out_free_conf; 3612 } 3613 3614 if (conf->reshape_progress != MaxSector) { 3615 /* must ensure that shape change is supported */ 3616 if (conf->geo.far_copies != 1 && 3617 conf->geo.far_offset == 0) 3618 goto out_free_conf; 3619 if (conf->prev.far_copies != 1 && 3620 conf->prev.far_offset == 0) 3621 goto out_free_conf; 3622 } 3623 3624 mddev->degraded = 0; 3625 for (i = 0; 3626 i < conf->geo.raid_disks 3627 || i < conf->prev.raid_disks; 3628 i++) { 3629 3630 disk = conf->mirrors + i; 3631 3632 if (!disk->rdev && disk->replacement) { 3633 /* The replacement is all we have - use it */ 3634 disk->rdev = disk->replacement; 3635 disk->replacement = NULL; 3636 clear_bit(Replacement, &disk->rdev->flags); 3637 } 3638 3639 if (!disk->rdev || 3640 !test_bit(In_sync, &disk->rdev->flags)) { 3641 disk->head_position = 0; 3642 mddev->degraded++; 3643 if (disk->rdev && 3644 disk->rdev->saved_raid_disk < 0) 3645 conf->fullsync = 1; 3646 } 3647 disk->recovery_disabled = mddev->recovery_disabled - 1; 3648 } 3649 3650 if (mddev->recovery_cp != MaxSector) 3651 printk(KERN_NOTICE "md/raid10:%s: not clean" 3652 " -- starting background reconstruction\n", 3653 mdname(mddev)); 3654 printk(KERN_INFO 3655 "md/raid10:%s: active with %d out of %d devices\n", 3656 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3657 conf->geo.raid_disks); 3658 /* 3659 * Ok, everything is just fine now 3660 */ 3661 mddev->dev_sectors = conf->dev_sectors; 3662 size = raid10_size(mddev, 0, 0); 3663 md_set_array_sectors(mddev, size); 3664 mddev->resync_max_sectors = size; 3665 3666 if (mddev->queue) { 3667 int stripe = conf->geo.raid_disks * 3668 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3669 3670 /* Calculate max read-ahead size. 3671 * We need to readahead at least twice a whole stripe.... 3672 * maybe... 3673 */ 3674 stripe /= conf->geo.near_copies; 3675 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3676 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3677 } 3678 3679 if (md_integrity_register(mddev)) 3680 goto out_free_conf; 3681 3682 if (conf->reshape_progress != MaxSector) { 3683 unsigned long before_length, after_length; 3684 3685 before_length = ((1 << conf->prev.chunk_shift) * 3686 conf->prev.far_copies); 3687 after_length = ((1 << conf->geo.chunk_shift) * 3688 conf->geo.far_copies); 3689 3690 if (max(before_length, after_length) > min_offset_diff) { 3691 /* This cannot work */ 3692 printk("md/raid10: offset difference not enough to continue reshape\n"); 3693 goto out_free_conf; 3694 } 3695 conf->offset_diff = min_offset_diff; 3696 3697 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3698 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3699 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3700 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3701 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3702 "reshape"); 3703 } 3704 3705 return 0; 3706 3707 out_free_conf: 3708 md_unregister_thread(&mddev->thread); 3709 mempool_destroy(conf->r10bio_pool); 3710 safe_put_page(conf->tmppage); 3711 kfree(conf->mirrors); 3712 kfree(conf); 3713 mddev->private = NULL; 3714 out: 3715 return -EIO; 3716 } 3717 3718 static void raid10_free(struct mddev *mddev, void *priv) 3719 { 3720 struct r10conf *conf = priv; 3721 3722 mempool_destroy(conf->r10bio_pool); 3723 safe_put_page(conf->tmppage); 3724 kfree(conf->mirrors); 3725 kfree(conf->mirrors_old); 3726 kfree(conf->mirrors_new); 3727 kfree(conf); 3728 } 3729 3730 static void raid10_quiesce(struct mddev *mddev, int state) 3731 { 3732 struct r10conf *conf = mddev->private; 3733 3734 switch(state) { 3735 case 1: 3736 raise_barrier(conf, 0); 3737 break; 3738 case 0: 3739 lower_barrier(conf); 3740 break; 3741 } 3742 } 3743 3744 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3745 { 3746 /* Resize of 'far' arrays is not supported. 3747 * For 'near' and 'offset' arrays we can set the 3748 * number of sectors used to be an appropriate multiple 3749 * of the chunk size. 3750 * For 'offset', this is far_copies*chunksize. 3751 * For 'near' the multiplier is the LCM of 3752 * near_copies and raid_disks. 3753 * So if far_copies > 1 && !far_offset, fail. 3754 * Else find LCM(raid_disks, near_copy)*far_copies and 3755 * multiply by chunk_size. Then round to this number. 3756 * This is mostly done by raid10_size() 3757 */ 3758 struct r10conf *conf = mddev->private; 3759 sector_t oldsize, size; 3760 3761 if (mddev->reshape_position != MaxSector) 3762 return -EBUSY; 3763 3764 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3765 return -EINVAL; 3766 3767 oldsize = raid10_size(mddev, 0, 0); 3768 size = raid10_size(mddev, sectors, 0); 3769 if (mddev->external_size && 3770 mddev->array_sectors > size) 3771 return -EINVAL; 3772 if (mddev->bitmap) { 3773 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3774 if (ret) 3775 return ret; 3776 } 3777 md_set_array_sectors(mddev, size); 3778 set_capacity(mddev->gendisk, mddev->array_sectors); 3779 revalidate_disk(mddev->gendisk); 3780 if (sectors > mddev->dev_sectors && 3781 mddev->recovery_cp > oldsize) { 3782 mddev->recovery_cp = oldsize; 3783 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3784 } 3785 calc_sectors(conf, sectors); 3786 mddev->dev_sectors = conf->dev_sectors; 3787 mddev->resync_max_sectors = size; 3788 return 0; 3789 } 3790 3791 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3792 { 3793 struct md_rdev *rdev; 3794 struct r10conf *conf; 3795 3796 if (mddev->degraded > 0) { 3797 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3798 mdname(mddev)); 3799 return ERR_PTR(-EINVAL); 3800 } 3801 sector_div(size, devs); 3802 3803 /* Set new parameters */ 3804 mddev->new_level = 10; 3805 /* new layout: far_copies = 1, near_copies = 2 */ 3806 mddev->new_layout = (1<<8) + 2; 3807 mddev->new_chunk_sectors = mddev->chunk_sectors; 3808 mddev->delta_disks = mddev->raid_disks; 3809 mddev->raid_disks *= 2; 3810 /* make sure it will be not marked as dirty */ 3811 mddev->recovery_cp = MaxSector; 3812 mddev->dev_sectors = size; 3813 3814 conf = setup_conf(mddev); 3815 if (!IS_ERR(conf)) { 3816 rdev_for_each(rdev, mddev) 3817 if (rdev->raid_disk >= 0) { 3818 rdev->new_raid_disk = rdev->raid_disk * 2; 3819 rdev->sectors = size; 3820 } 3821 conf->barrier = 1; 3822 } 3823 3824 return conf; 3825 } 3826 3827 static void *raid10_takeover(struct mddev *mddev) 3828 { 3829 struct r0conf *raid0_conf; 3830 3831 /* raid10 can take over: 3832 * raid0 - providing it has only two drives 3833 */ 3834 if (mddev->level == 0) { 3835 /* for raid0 takeover only one zone is supported */ 3836 raid0_conf = mddev->private; 3837 if (raid0_conf->nr_strip_zones > 1) { 3838 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3839 " with more than one zone.\n", 3840 mdname(mddev)); 3841 return ERR_PTR(-EINVAL); 3842 } 3843 return raid10_takeover_raid0(mddev, 3844 raid0_conf->strip_zone->zone_end, 3845 raid0_conf->strip_zone->nb_dev); 3846 } 3847 return ERR_PTR(-EINVAL); 3848 } 3849 3850 static int raid10_check_reshape(struct mddev *mddev) 3851 { 3852 /* Called when there is a request to change 3853 * - layout (to ->new_layout) 3854 * - chunk size (to ->new_chunk_sectors) 3855 * - raid_disks (by delta_disks) 3856 * or when trying to restart a reshape that was ongoing. 3857 * 3858 * We need to validate the request and possibly allocate 3859 * space if that might be an issue later. 3860 * 3861 * Currently we reject any reshape of a 'far' mode array, 3862 * allow chunk size to change if new is generally acceptable, 3863 * allow raid_disks to increase, and allow 3864 * a switch between 'near' mode and 'offset' mode. 3865 */ 3866 struct r10conf *conf = mddev->private; 3867 struct geom geo; 3868 3869 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3870 return -EINVAL; 3871 3872 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3873 /* mustn't change number of copies */ 3874 return -EINVAL; 3875 if (geo.far_copies > 1 && !geo.far_offset) 3876 /* Cannot switch to 'far' mode */ 3877 return -EINVAL; 3878 3879 if (mddev->array_sectors & geo.chunk_mask) 3880 /* not factor of array size */ 3881 return -EINVAL; 3882 3883 if (!enough(conf, -1)) 3884 return -EINVAL; 3885 3886 kfree(conf->mirrors_new); 3887 conf->mirrors_new = NULL; 3888 if (mddev->delta_disks > 0) { 3889 /* allocate new 'mirrors' list */ 3890 conf->mirrors_new = kzalloc( 3891 sizeof(struct raid10_info) 3892 *(mddev->raid_disks + 3893 mddev->delta_disks), 3894 GFP_KERNEL); 3895 if (!conf->mirrors_new) 3896 return -ENOMEM; 3897 } 3898 return 0; 3899 } 3900 3901 /* 3902 * Need to check if array has failed when deciding whether to: 3903 * - start an array 3904 * - remove non-faulty devices 3905 * - add a spare 3906 * - allow a reshape 3907 * This determination is simple when no reshape is happening. 3908 * However if there is a reshape, we need to carefully check 3909 * both the before and after sections. 3910 * This is because some failed devices may only affect one 3911 * of the two sections, and some non-in_sync devices may 3912 * be insync in the section most affected by failed devices. 3913 */ 3914 static int calc_degraded(struct r10conf *conf) 3915 { 3916 int degraded, degraded2; 3917 int i; 3918 3919 rcu_read_lock(); 3920 degraded = 0; 3921 /* 'prev' section first */ 3922 for (i = 0; i < conf->prev.raid_disks; i++) { 3923 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3924 if (!rdev || test_bit(Faulty, &rdev->flags)) 3925 degraded++; 3926 else if (!test_bit(In_sync, &rdev->flags)) 3927 /* When we can reduce the number of devices in 3928 * an array, this might not contribute to 3929 * 'degraded'. It does now. 3930 */ 3931 degraded++; 3932 } 3933 rcu_read_unlock(); 3934 if (conf->geo.raid_disks == conf->prev.raid_disks) 3935 return degraded; 3936 rcu_read_lock(); 3937 degraded2 = 0; 3938 for (i = 0; i < conf->geo.raid_disks; i++) { 3939 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3940 if (!rdev || test_bit(Faulty, &rdev->flags)) 3941 degraded2++; 3942 else if (!test_bit(In_sync, &rdev->flags)) { 3943 /* If reshape is increasing the number of devices, 3944 * this section has already been recovered, so 3945 * it doesn't contribute to degraded. 3946 * else it does. 3947 */ 3948 if (conf->geo.raid_disks <= conf->prev.raid_disks) 3949 degraded2++; 3950 } 3951 } 3952 rcu_read_unlock(); 3953 if (degraded2 > degraded) 3954 return degraded2; 3955 return degraded; 3956 } 3957 3958 static int raid10_start_reshape(struct mddev *mddev) 3959 { 3960 /* A 'reshape' has been requested. This commits 3961 * the various 'new' fields and sets MD_RECOVER_RESHAPE 3962 * This also checks if there are enough spares and adds them 3963 * to the array. 3964 * We currently require enough spares to make the final 3965 * array non-degraded. We also require that the difference 3966 * between old and new data_offset - on each device - is 3967 * enough that we never risk over-writing. 3968 */ 3969 3970 unsigned long before_length, after_length; 3971 sector_t min_offset_diff = 0; 3972 int first = 1; 3973 struct geom new; 3974 struct r10conf *conf = mddev->private; 3975 struct md_rdev *rdev; 3976 int spares = 0; 3977 int ret; 3978 3979 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3980 return -EBUSY; 3981 3982 if (setup_geo(&new, mddev, geo_start) != conf->copies) 3983 return -EINVAL; 3984 3985 before_length = ((1 << conf->prev.chunk_shift) * 3986 conf->prev.far_copies); 3987 after_length = ((1 << conf->geo.chunk_shift) * 3988 conf->geo.far_copies); 3989 3990 rdev_for_each(rdev, mddev) { 3991 if (!test_bit(In_sync, &rdev->flags) 3992 && !test_bit(Faulty, &rdev->flags)) 3993 spares++; 3994 if (rdev->raid_disk >= 0) { 3995 long long diff = (rdev->new_data_offset 3996 - rdev->data_offset); 3997 if (!mddev->reshape_backwards) 3998 diff = -diff; 3999 if (diff < 0) 4000 diff = 0; 4001 if (first || diff < min_offset_diff) 4002 min_offset_diff = diff; 4003 } 4004 } 4005 4006 if (max(before_length, after_length) > min_offset_diff) 4007 return -EINVAL; 4008 4009 if (spares < mddev->delta_disks) 4010 return -EINVAL; 4011 4012 conf->offset_diff = min_offset_diff; 4013 spin_lock_irq(&conf->device_lock); 4014 if (conf->mirrors_new) { 4015 memcpy(conf->mirrors_new, conf->mirrors, 4016 sizeof(struct raid10_info)*conf->prev.raid_disks); 4017 smp_mb(); 4018 kfree(conf->mirrors_old); 4019 conf->mirrors_old = conf->mirrors; 4020 conf->mirrors = conf->mirrors_new; 4021 conf->mirrors_new = NULL; 4022 } 4023 setup_geo(&conf->geo, mddev, geo_start); 4024 smp_mb(); 4025 if (mddev->reshape_backwards) { 4026 sector_t size = raid10_size(mddev, 0, 0); 4027 if (size < mddev->array_sectors) { 4028 spin_unlock_irq(&conf->device_lock); 4029 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4030 mdname(mddev)); 4031 return -EINVAL; 4032 } 4033 mddev->resync_max_sectors = size; 4034 conf->reshape_progress = size; 4035 } else 4036 conf->reshape_progress = 0; 4037 conf->reshape_safe = conf->reshape_progress; 4038 spin_unlock_irq(&conf->device_lock); 4039 4040 if (mddev->delta_disks && mddev->bitmap) { 4041 ret = bitmap_resize(mddev->bitmap, 4042 raid10_size(mddev, 0, 4043 conf->geo.raid_disks), 4044 0, 0); 4045 if (ret) 4046 goto abort; 4047 } 4048 if (mddev->delta_disks > 0) { 4049 rdev_for_each(rdev, mddev) 4050 if (rdev->raid_disk < 0 && 4051 !test_bit(Faulty, &rdev->flags)) { 4052 if (raid10_add_disk(mddev, rdev) == 0) { 4053 if (rdev->raid_disk >= 4054 conf->prev.raid_disks) 4055 set_bit(In_sync, &rdev->flags); 4056 else 4057 rdev->recovery_offset = 0; 4058 4059 if (sysfs_link_rdev(mddev, rdev)) 4060 /* Failure here is OK */; 4061 } 4062 } else if (rdev->raid_disk >= conf->prev.raid_disks 4063 && !test_bit(Faulty, &rdev->flags)) { 4064 /* This is a spare that was manually added */ 4065 set_bit(In_sync, &rdev->flags); 4066 } 4067 } 4068 /* When a reshape changes the number of devices, 4069 * ->degraded is measured against the larger of the 4070 * pre and post numbers. 4071 */ 4072 spin_lock_irq(&conf->device_lock); 4073 mddev->degraded = calc_degraded(conf); 4074 spin_unlock_irq(&conf->device_lock); 4075 mddev->raid_disks = conf->geo.raid_disks; 4076 mddev->reshape_position = conf->reshape_progress; 4077 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4078 4079 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4080 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4081 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4082 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4083 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4084 4085 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4086 "reshape"); 4087 if (!mddev->sync_thread) { 4088 ret = -EAGAIN; 4089 goto abort; 4090 } 4091 conf->reshape_checkpoint = jiffies; 4092 md_wakeup_thread(mddev->sync_thread); 4093 md_new_event(mddev); 4094 return 0; 4095 4096 abort: 4097 mddev->recovery = 0; 4098 spin_lock_irq(&conf->device_lock); 4099 conf->geo = conf->prev; 4100 mddev->raid_disks = conf->geo.raid_disks; 4101 rdev_for_each(rdev, mddev) 4102 rdev->new_data_offset = rdev->data_offset; 4103 smp_wmb(); 4104 conf->reshape_progress = MaxSector; 4105 conf->reshape_safe = MaxSector; 4106 mddev->reshape_position = MaxSector; 4107 spin_unlock_irq(&conf->device_lock); 4108 return ret; 4109 } 4110 4111 /* Calculate the last device-address that could contain 4112 * any block from the chunk that includes the array-address 's' 4113 * and report the next address. 4114 * i.e. the address returned will be chunk-aligned and after 4115 * any data that is in the chunk containing 's'. 4116 */ 4117 static sector_t last_dev_address(sector_t s, struct geom *geo) 4118 { 4119 s = (s | geo->chunk_mask) + 1; 4120 s >>= geo->chunk_shift; 4121 s *= geo->near_copies; 4122 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4123 s *= geo->far_copies; 4124 s <<= geo->chunk_shift; 4125 return s; 4126 } 4127 4128 /* Calculate the first device-address that could contain 4129 * any block from the chunk that includes the array-address 's'. 4130 * This too will be the start of a chunk 4131 */ 4132 static sector_t first_dev_address(sector_t s, struct geom *geo) 4133 { 4134 s >>= geo->chunk_shift; 4135 s *= geo->near_copies; 4136 sector_div(s, geo->raid_disks); 4137 s *= geo->far_copies; 4138 s <<= geo->chunk_shift; 4139 return s; 4140 } 4141 4142 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4143 int *skipped) 4144 { 4145 /* We simply copy at most one chunk (smallest of old and new) 4146 * at a time, possibly less if that exceeds RESYNC_PAGES, 4147 * or we hit a bad block or something. 4148 * This might mean we pause for normal IO in the middle of 4149 * a chunk, but that is not a problem as mddev->reshape_position 4150 * can record any location. 4151 * 4152 * If we will want to write to a location that isn't 4153 * yet recorded as 'safe' (i.e. in metadata on disk) then 4154 * we need to flush all reshape requests and update the metadata. 4155 * 4156 * When reshaping forwards (e.g. to more devices), we interpret 4157 * 'safe' as the earliest block which might not have been copied 4158 * down yet. We divide this by previous stripe size and multiply 4159 * by previous stripe length to get lowest device offset that we 4160 * cannot write to yet. 4161 * We interpret 'sector_nr' as an address that we want to write to. 4162 * From this we use last_device_address() to find where we might 4163 * write to, and first_device_address on the 'safe' position. 4164 * If this 'next' write position is after the 'safe' position, 4165 * we must update the metadata to increase the 'safe' position. 4166 * 4167 * When reshaping backwards, we round in the opposite direction 4168 * and perform the reverse test: next write position must not be 4169 * less than current safe position. 4170 * 4171 * In all this the minimum difference in data offsets 4172 * (conf->offset_diff - always positive) allows a bit of slack, 4173 * so next can be after 'safe', but not by more than offset_diff 4174 * 4175 * We need to prepare all the bios here before we start any IO 4176 * to ensure the size we choose is acceptable to all devices. 4177 * The means one for each copy for write-out and an extra one for 4178 * read-in. 4179 * We store the read-in bio in ->master_bio and the others in 4180 * ->devs[x].bio and ->devs[x].repl_bio. 4181 */ 4182 struct r10conf *conf = mddev->private; 4183 struct r10bio *r10_bio; 4184 sector_t next, safe, last; 4185 int max_sectors; 4186 int nr_sectors; 4187 int s; 4188 struct md_rdev *rdev; 4189 int need_flush = 0; 4190 struct bio *blist; 4191 struct bio *bio, *read_bio; 4192 int sectors_done = 0; 4193 4194 if (sector_nr == 0) { 4195 /* If restarting in the middle, skip the initial sectors */ 4196 if (mddev->reshape_backwards && 4197 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4198 sector_nr = (raid10_size(mddev, 0, 0) 4199 - conf->reshape_progress); 4200 } else if (!mddev->reshape_backwards && 4201 conf->reshape_progress > 0) 4202 sector_nr = conf->reshape_progress; 4203 if (sector_nr) { 4204 mddev->curr_resync_completed = sector_nr; 4205 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4206 *skipped = 1; 4207 return sector_nr; 4208 } 4209 } 4210 4211 /* We don't use sector_nr to track where we are up to 4212 * as that doesn't work well for ->reshape_backwards. 4213 * So just use ->reshape_progress. 4214 */ 4215 if (mddev->reshape_backwards) { 4216 /* 'next' is the earliest device address that we might 4217 * write to for this chunk in the new layout 4218 */ 4219 next = first_dev_address(conf->reshape_progress - 1, 4220 &conf->geo); 4221 4222 /* 'safe' is the last device address that we might read from 4223 * in the old layout after a restart 4224 */ 4225 safe = last_dev_address(conf->reshape_safe - 1, 4226 &conf->prev); 4227 4228 if (next + conf->offset_diff < safe) 4229 need_flush = 1; 4230 4231 last = conf->reshape_progress - 1; 4232 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4233 & conf->prev.chunk_mask); 4234 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4235 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4236 } else { 4237 /* 'next' is after the last device address that we 4238 * might write to for this chunk in the new layout 4239 */ 4240 next = last_dev_address(conf->reshape_progress, &conf->geo); 4241 4242 /* 'safe' is the earliest device address that we might 4243 * read from in the old layout after a restart 4244 */ 4245 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4246 4247 /* Need to update metadata if 'next' might be beyond 'safe' 4248 * as that would possibly corrupt data 4249 */ 4250 if (next > safe + conf->offset_diff) 4251 need_flush = 1; 4252 4253 sector_nr = conf->reshape_progress; 4254 last = sector_nr | (conf->geo.chunk_mask 4255 & conf->prev.chunk_mask); 4256 4257 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4258 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4259 } 4260 4261 if (need_flush || 4262 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4263 /* Need to update reshape_position in metadata */ 4264 wait_barrier(conf); 4265 mddev->reshape_position = conf->reshape_progress; 4266 if (mddev->reshape_backwards) 4267 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4268 - conf->reshape_progress; 4269 else 4270 mddev->curr_resync_completed = conf->reshape_progress; 4271 conf->reshape_checkpoint = jiffies; 4272 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4273 md_wakeup_thread(mddev->thread); 4274 wait_event(mddev->sb_wait, mddev->flags == 0 || 4275 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4276 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4277 allow_barrier(conf); 4278 return sectors_done; 4279 } 4280 conf->reshape_safe = mddev->reshape_position; 4281 allow_barrier(conf); 4282 } 4283 4284 read_more: 4285 /* Now schedule reads for blocks from sector_nr to last */ 4286 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4287 r10_bio->state = 0; 4288 raise_barrier(conf, sectors_done != 0); 4289 atomic_set(&r10_bio->remaining, 0); 4290 r10_bio->mddev = mddev; 4291 r10_bio->sector = sector_nr; 4292 set_bit(R10BIO_IsReshape, &r10_bio->state); 4293 r10_bio->sectors = last - sector_nr + 1; 4294 rdev = read_balance(conf, r10_bio, &max_sectors); 4295 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4296 4297 if (!rdev) { 4298 /* Cannot read from here, so need to record bad blocks 4299 * on all the target devices. 4300 */ 4301 // FIXME 4302 mempool_free(r10_bio, conf->r10buf_pool); 4303 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4304 return sectors_done; 4305 } 4306 4307 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4308 4309 read_bio->bi_bdev = rdev->bdev; 4310 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4311 + rdev->data_offset); 4312 read_bio->bi_private = r10_bio; 4313 read_bio->bi_end_io = end_sync_read; 4314 read_bio->bi_rw = READ; 4315 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4316 read_bio->bi_error = 0; 4317 read_bio->bi_vcnt = 0; 4318 read_bio->bi_iter.bi_size = 0; 4319 r10_bio->master_bio = read_bio; 4320 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4321 4322 /* Now find the locations in the new layout */ 4323 __raid10_find_phys(&conf->geo, r10_bio); 4324 4325 blist = read_bio; 4326 read_bio->bi_next = NULL; 4327 4328 for (s = 0; s < conf->copies*2; s++) { 4329 struct bio *b; 4330 int d = r10_bio->devs[s/2].devnum; 4331 struct md_rdev *rdev2; 4332 if (s&1) { 4333 rdev2 = conf->mirrors[d].replacement; 4334 b = r10_bio->devs[s/2].repl_bio; 4335 } else { 4336 rdev2 = conf->mirrors[d].rdev; 4337 b = r10_bio->devs[s/2].bio; 4338 } 4339 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4340 continue; 4341 4342 bio_reset(b); 4343 b->bi_bdev = rdev2->bdev; 4344 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4345 rdev2->new_data_offset; 4346 b->bi_private = r10_bio; 4347 b->bi_end_io = end_reshape_write; 4348 b->bi_rw = WRITE; 4349 b->bi_next = blist; 4350 blist = b; 4351 } 4352 4353 /* Now add as many pages as possible to all of these bios. */ 4354 4355 nr_sectors = 0; 4356 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4357 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4358 int len = (max_sectors - s) << 9; 4359 if (len > PAGE_SIZE) 4360 len = PAGE_SIZE; 4361 for (bio = blist; bio ; bio = bio->bi_next) { 4362 struct bio *bio2; 4363 if (bio_add_page(bio, page, len, 0)) 4364 continue; 4365 4366 /* Didn't fit, must stop */ 4367 for (bio2 = blist; 4368 bio2 && bio2 != bio; 4369 bio2 = bio2->bi_next) { 4370 /* Remove last page from this bio */ 4371 bio2->bi_vcnt--; 4372 bio2->bi_iter.bi_size -= len; 4373 bio_clear_flag(bio2, BIO_SEG_VALID); 4374 } 4375 goto bio_full; 4376 } 4377 sector_nr += len >> 9; 4378 nr_sectors += len >> 9; 4379 } 4380 bio_full: 4381 r10_bio->sectors = nr_sectors; 4382 4383 /* Now submit the read */ 4384 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4385 atomic_inc(&r10_bio->remaining); 4386 read_bio->bi_next = NULL; 4387 generic_make_request(read_bio); 4388 sector_nr += nr_sectors; 4389 sectors_done += nr_sectors; 4390 if (sector_nr <= last) 4391 goto read_more; 4392 4393 /* Now that we have done the whole section we can 4394 * update reshape_progress 4395 */ 4396 if (mddev->reshape_backwards) 4397 conf->reshape_progress -= sectors_done; 4398 else 4399 conf->reshape_progress += sectors_done; 4400 4401 return sectors_done; 4402 } 4403 4404 static void end_reshape_request(struct r10bio *r10_bio); 4405 static int handle_reshape_read_error(struct mddev *mddev, 4406 struct r10bio *r10_bio); 4407 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4408 { 4409 /* Reshape read completed. Hopefully we have a block 4410 * to write out. 4411 * If we got a read error then we do sync 1-page reads from 4412 * elsewhere until we find the data - or give up. 4413 */ 4414 struct r10conf *conf = mddev->private; 4415 int s; 4416 4417 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4418 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4419 /* Reshape has been aborted */ 4420 md_done_sync(mddev, r10_bio->sectors, 0); 4421 return; 4422 } 4423 4424 /* We definitely have the data in the pages, schedule the 4425 * writes. 4426 */ 4427 atomic_set(&r10_bio->remaining, 1); 4428 for (s = 0; s < conf->copies*2; s++) { 4429 struct bio *b; 4430 int d = r10_bio->devs[s/2].devnum; 4431 struct md_rdev *rdev; 4432 if (s&1) { 4433 rdev = conf->mirrors[d].replacement; 4434 b = r10_bio->devs[s/2].repl_bio; 4435 } else { 4436 rdev = conf->mirrors[d].rdev; 4437 b = r10_bio->devs[s/2].bio; 4438 } 4439 if (!rdev || test_bit(Faulty, &rdev->flags)) 4440 continue; 4441 atomic_inc(&rdev->nr_pending); 4442 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4443 atomic_inc(&r10_bio->remaining); 4444 b->bi_next = NULL; 4445 generic_make_request(b); 4446 } 4447 end_reshape_request(r10_bio); 4448 } 4449 4450 static void end_reshape(struct r10conf *conf) 4451 { 4452 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4453 return; 4454 4455 spin_lock_irq(&conf->device_lock); 4456 conf->prev = conf->geo; 4457 md_finish_reshape(conf->mddev); 4458 smp_wmb(); 4459 conf->reshape_progress = MaxSector; 4460 conf->reshape_safe = MaxSector; 4461 spin_unlock_irq(&conf->device_lock); 4462 4463 /* read-ahead size must cover two whole stripes, which is 4464 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4465 */ 4466 if (conf->mddev->queue) { 4467 int stripe = conf->geo.raid_disks * 4468 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4469 stripe /= conf->geo.near_copies; 4470 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4471 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4472 } 4473 conf->fullsync = 0; 4474 } 4475 4476 static int handle_reshape_read_error(struct mddev *mddev, 4477 struct r10bio *r10_bio) 4478 { 4479 /* Use sync reads to get the blocks from somewhere else */ 4480 int sectors = r10_bio->sectors; 4481 struct r10conf *conf = mddev->private; 4482 struct { 4483 struct r10bio r10_bio; 4484 struct r10dev devs[conf->copies]; 4485 } on_stack; 4486 struct r10bio *r10b = &on_stack.r10_bio; 4487 int slot = 0; 4488 int idx = 0; 4489 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4490 4491 r10b->sector = r10_bio->sector; 4492 __raid10_find_phys(&conf->prev, r10b); 4493 4494 while (sectors) { 4495 int s = sectors; 4496 int success = 0; 4497 int first_slot = slot; 4498 4499 if (s > (PAGE_SIZE >> 9)) 4500 s = PAGE_SIZE >> 9; 4501 4502 while (!success) { 4503 int d = r10b->devs[slot].devnum; 4504 struct md_rdev *rdev = conf->mirrors[d].rdev; 4505 sector_t addr; 4506 if (rdev == NULL || 4507 test_bit(Faulty, &rdev->flags) || 4508 !test_bit(In_sync, &rdev->flags)) 4509 goto failed; 4510 4511 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4512 success = sync_page_io(rdev, 4513 addr, 4514 s << 9, 4515 bvec[idx].bv_page, 4516 READ, false); 4517 if (success) 4518 break; 4519 failed: 4520 slot++; 4521 if (slot >= conf->copies) 4522 slot = 0; 4523 if (slot == first_slot) 4524 break; 4525 } 4526 if (!success) { 4527 /* couldn't read this block, must give up */ 4528 set_bit(MD_RECOVERY_INTR, 4529 &mddev->recovery); 4530 return -EIO; 4531 } 4532 sectors -= s; 4533 idx++; 4534 } 4535 return 0; 4536 } 4537 4538 static void end_reshape_write(struct bio *bio) 4539 { 4540 struct r10bio *r10_bio = bio->bi_private; 4541 struct mddev *mddev = r10_bio->mddev; 4542 struct r10conf *conf = mddev->private; 4543 int d; 4544 int slot; 4545 int repl; 4546 struct md_rdev *rdev = NULL; 4547 4548 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4549 if (repl) 4550 rdev = conf->mirrors[d].replacement; 4551 if (!rdev) { 4552 smp_mb(); 4553 rdev = conf->mirrors[d].rdev; 4554 } 4555 4556 if (bio->bi_error) { 4557 /* FIXME should record badblock */ 4558 md_error(mddev, rdev); 4559 } 4560 4561 rdev_dec_pending(rdev, mddev); 4562 end_reshape_request(r10_bio); 4563 } 4564 4565 static void end_reshape_request(struct r10bio *r10_bio) 4566 { 4567 if (!atomic_dec_and_test(&r10_bio->remaining)) 4568 return; 4569 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4570 bio_put(r10_bio->master_bio); 4571 put_buf(r10_bio); 4572 } 4573 4574 static void raid10_finish_reshape(struct mddev *mddev) 4575 { 4576 struct r10conf *conf = mddev->private; 4577 4578 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4579 return; 4580 4581 if (mddev->delta_disks > 0) { 4582 sector_t size = raid10_size(mddev, 0, 0); 4583 md_set_array_sectors(mddev, size); 4584 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4585 mddev->recovery_cp = mddev->resync_max_sectors; 4586 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4587 } 4588 mddev->resync_max_sectors = size; 4589 set_capacity(mddev->gendisk, mddev->array_sectors); 4590 revalidate_disk(mddev->gendisk); 4591 } else { 4592 int d; 4593 for (d = conf->geo.raid_disks ; 4594 d < conf->geo.raid_disks - mddev->delta_disks; 4595 d++) { 4596 struct md_rdev *rdev = conf->mirrors[d].rdev; 4597 if (rdev) 4598 clear_bit(In_sync, &rdev->flags); 4599 rdev = conf->mirrors[d].replacement; 4600 if (rdev) 4601 clear_bit(In_sync, &rdev->flags); 4602 } 4603 } 4604 mddev->layout = mddev->new_layout; 4605 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4606 mddev->reshape_position = MaxSector; 4607 mddev->delta_disks = 0; 4608 mddev->reshape_backwards = 0; 4609 } 4610 4611 static struct md_personality raid10_personality = 4612 { 4613 .name = "raid10", 4614 .level = 10, 4615 .owner = THIS_MODULE, 4616 .make_request = make_request, 4617 .run = run, 4618 .free = raid10_free, 4619 .status = status, 4620 .error_handler = error, 4621 .hot_add_disk = raid10_add_disk, 4622 .hot_remove_disk= raid10_remove_disk, 4623 .spare_active = raid10_spare_active, 4624 .sync_request = sync_request, 4625 .quiesce = raid10_quiesce, 4626 .size = raid10_size, 4627 .resize = raid10_resize, 4628 .takeover = raid10_takeover, 4629 .check_reshape = raid10_check_reshape, 4630 .start_reshape = raid10_start_reshape, 4631 .finish_reshape = raid10_finish_reshape, 4632 .congested = raid10_congested, 4633 }; 4634 4635 static int __init raid_init(void) 4636 { 4637 return register_md_personality(&raid10_personality); 4638 } 4639 4640 static void raid_exit(void) 4641 { 4642 unregister_md_personality(&raid10_personality); 4643 } 4644 4645 module_init(raid_init); 4646 module_exit(raid_exit); 4647 MODULE_LICENSE("GPL"); 4648 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4649 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4650 MODULE_ALIAS("md-raid10"); 4651 MODULE_ALIAS("md-level-10"); 4652 4653 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4654