xref: /linux/drivers/md/raid10.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *    use_far_sets_bugfixed (stored in bit 18 of layout )
43  *
44  * The data to be stored is divided into chunks using chunksize.  Each device
45  * is divided into far_copies sections.   In each section, chunks are laid out
46  * in a style similar to raid0, but near_copies copies of each chunk is stored
47  * (each on a different drive).  The starting device for each section is offset
48  * near_copies from the starting device of the previous section.  Thus there
49  * are (near_copies * far_copies) of each chunk, and each is on a different
50  * drive.  near_copies and far_copies must be at least one, and their product
51  * is at most raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of being very far
55  * apart on disk, there are adjacent stripes.
56  *
57  * The far and offset algorithms are handled slightly differently if
58  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
59  * sets that are (near_copies * far_copies) in size.  The far copied stripes
60  * are still shifted by 'near_copies' devices, but this shifting stays confined
61  * to the set rather than the entire array.  This is done to improve the number
62  * of device combinations that can fail without causing the array to fail.
63  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64  * on a device):
65  *    A B C D    A B C D E
66  *      ...         ...
67  *    D A B C    E A B C D
68  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69  *    [A B] [C D]    [A B] [C D E]
70  *    |...| |...|    |...| | ... |
71  *    [B A] [D C]    [B A] [E C D]
72  */
73 
74 /*
75  * Number of guaranteed r10bios in case of extreme VM load:
76  */
77 #define	NR_RAID10_BIOS 256
78 
79 /* when we get a read error on a read-only array, we redirect to another
80  * device without failing the first device, or trying to over-write to
81  * correct the read error.  To keep track of bad blocks on a per-bio
82  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83  */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86  * bad-block marking which must be done from process context.  So we record
87  * the success by setting devs[n].bio to IO_MADE_GOOD
88  */
89 #define IO_MADE_GOOD ((struct bio *)2)
90 
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92 
93 /* When there are this many requests queued to be written by
94  * the raid10 thread, we become 'congested' to provide back-pressure
95  * for writeback.
96  */
97 static int max_queued_requests = 1024;
98 
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 				int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107 
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110 	struct r10conf *conf = data;
111 	int size = offsetof(struct r10bio, devs[conf->copies]);
112 
113 	/* allocate a r10bio with room for raid_disks entries in the
114 	 * bios array */
115 	return kzalloc(size, gfp_flags);
116 }
117 
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120 	kfree(r10_bio);
121 }
122 
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130 
131 /*
132  * When performing a resync, we need to read and compare, so
133  * we need as many pages are there are copies.
134  * When performing a recovery, we need 2 bios, one for read,
135  * one for write (we recover only one drive per r10buf)
136  *
137  */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140 	struct r10conf *conf = data;
141 	struct page *page;
142 	struct r10bio *r10_bio;
143 	struct bio *bio;
144 	int i, j;
145 	int nalloc;
146 
147 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148 	if (!r10_bio)
149 		return NULL;
150 
151 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153 		nalloc = conf->copies; /* resync */
154 	else
155 		nalloc = 2; /* recovery */
156 
157 	/*
158 	 * Allocate bios.
159 	 */
160 	for (j = nalloc ; j-- ; ) {
161 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162 		if (!bio)
163 			goto out_free_bio;
164 		r10_bio->devs[j].bio = bio;
165 		if (!conf->have_replacement)
166 			continue;
167 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 		if (!bio)
169 			goto out_free_bio;
170 		r10_bio->devs[j].repl_bio = bio;
171 	}
172 	/*
173 	 * Allocate RESYNC_PAGES data pages and attach them
174 	 * where needed.
175 	 */
176 	for (j = 0 ; j < nalloc; j++) {
177 		struct bio *rbio = r10_bio->devs[j].repl_bio;
178 		bio = r10_bio->devs[j].bio;
179 		for (i = 0; i < RESYNC_PAGES; i++) {
180 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 					       &conf->mddev->recovery)) {
182 				/* we can share bv_page's during recovery
183 				 * and reshape */
184 				struct bio *rbio = r10_bio->devs[0].bio;
185 				page = rbio->bi_io_vec[i].bv_page;
186 				get_page(page);
187 			} else
188 				page = alloc_page(gfp_flags);
189 			if (unlikely(!page))
190 				goto out_free_pages;
191 
192 			bio->bi_io_vec[i].bv_page = page;
193 			if (rbio)
194 				rbio->bi_io_vec[i].bv_page = page;
195 		}
196 	}
197 
198 	return r10_bio;
199 
200 out_free_pages:
201 	for ( ; i > 0 ; i--)
202 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 	while (j--)
204 		for (i = 0; i < RESYNC_PAGES ; i++)
205 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206 	j = 0;
207 out_free_bio:
208 	for ( ; j < nalloc; j++) {
209 		if (r10_bio->devs[j].bio)
210 			bio_put(r10_bio->devs[j].bio);
211 		if (r10_bio->devs[j].repl_bio)
212 			bio_put(r10_bio->devs[j].repl_bio);
213 	}
214 	r10bio_pool_free(r10_bio, conf);
215 	return NULL;
216 }
217 
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220 	int i;
221 	struct r10conf *conf = data;
222 	struct r10bio *r10bio = __r10_bio;
223 	int j;
224 
225 	for (j=0; j < conf->copies; j++) {
226 		struct bio *bio = r10bio->devs[j].bio;
227 		if (bio) {
228 			for (i = 0; i < RESYNC_PAGES; i++) {
229 				safe_put_page(bio->bi_io_vec[i].bv_page);
230 				bio->bi_io_vec[i].bv_page = NULL;
231 			}
232 			bio_put(bio);
233 		}
234 		bio = r10bio->devs[j].repl_bio;
235 		if (bio)
236 			bio_put(bio);
237 	}
238 	r10bio_pool_free(r10bio, conf);
239 }
240 
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243 	int i;
244 
245 	for (i = 0; i < conf->copies; i++) {
246 		struct bio **bio = & r10_bio->devs[i].bio;
247 		if (!BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 		bio = &r10_bio->devs[i].repl_bio;
251 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 			bio_put(*bio);
253 		*bio = NULL;
254 	}
255 }
256 
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259 	struct r10conf *conf = r10_bio->mddev->private;
260 
261 	put_all_bios(conf, r10_bio);
262 	mempool_free(r10_bio, conf->r10bio_pool);
263 }
264 
265 static void put_buf(struct r10bio *r10_bio)
266 {
267 	struct r10conf *conf = r10_bio->mddev->private;
268 
269 	mempool_free(r10_bio, conf->r10buf_pool);
270 
271 	lower_barrier(conf);
272 }
273 
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276 	unsigned long flags;
277 	struct mddev *mddev = r10_bio->mddev;
278 	struct r10conf *conf = mddev->private;
279 
280 	spin_lock_irqsave(&conf->device_lock, flags);
281 	list_add(&r10_bio->retry_list, &conf->retry_list);
282 	conf->nr_queued ++;
283 	spin_unlock_irqrestore(&conf->device_lock, flags);
284 
285 	/* wake up frozen array... */
286 	wake_up(&conf->wait_barrier);
287 
288 	md_wakeup_thread(mddev->thread);
289 }
290 
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298 	struct bio *bio = r10_bio->master_bio;
299 	int done;
300 	struct r10conf *conf = r10_bio->mddev->private;
301 
302 	if (bio->bi_phys_segments) {
303 		unsigned long flags;
304 		spin_lock_irqsave(&conf->device_lock, flags);
305 		bio->bi_phys_segments--;
306 		done = (bio->bi_phys_segments == 0);
307 		spin_unlock_irqrestore(&conf->device_lock, flags);
308 	} else
309 		done = 1;
310 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311 		bio->bi_error = -EIO;
312 	if (done) {
313 		bio_endio(bio);
314 		/*
315 		 * Wake up any possible resync thread that waits for the device
316 		 * to go idle.
317 		 */
318 		allow_barrier(conf);
319 	}
320 	free_r10bio(r10_bio);
321 }
322 
323 /*
324  * Update disk head position estimator based on IRQ completion info.
325  */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328 	struct r10conf *conf = r10_bio->mddev->private;
329 
330 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 		r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333 
334 /*
335  * Find the disk number which triggered given bio
336  */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338 			 struct bio *bio, int *slotp, int *replp)
339 {
340 	int slot;
341 	int repl = 0;
342 
343 	for (slot = 0; slot < conf->copies; slot++) {
344 		if (r10_bio->devs[slot].bio == bio)
345 			break;
346 		if (r10_bio->devs[slot].repl_bio == bio) {
347 			repl = 1;
348 			break;
349 		}
350 	}
351 
352 	BUG_ON(slot == conf->copies);
353 	update_head_pos(slot, r10_bio);
354 
355 	if (slotp)
356 		*slotp = slot;
357 	if (replp)
358 		*replp = repl;
359 	return r10_bio->devs[slot].devnum;
360 }
361 
362 static void raid10_end_read_request(struct bio *bio)
363 {
364 	int uptodate = !bio->bi_error;
365 	struct r10bio *r10_bio = bio->bi_private;
366 	int slot, dev;
367 	struct md_rdev *rdev;
368 	struct r10conf *conf = r10_bio->mddev->private;
369 
370 	slot = r10_bio->read_slot;
371 	dev = r10_bio->devs[slot].devnum;
372 	rdev = r10_bio->devs[slot].rdev;
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	update_head_pos(slot, r10_bio);
377 
378 	if (uptodate) {
379 		/*
380 		 * Set R10BIO_Uptodate in our master bio, so that
381 		 * we will return a good error code to the higher
382 		 * levels even if IO on some other mirrored buffer fails.
383 		 *
384 		 * The 'master' represents the composite IO operation to
385 		 * user-side. So if something waits for IO, then it will
386 		 * wait for the 'master' bio.
387 		 */
388 		set_bit(R10BIO_Uptodate, &r10_bio->state);
389 	} else {
390 		/* If all other devices that store this block have
391 		 * failed, we want to return the error upwards rather
392 		 * than fail the last device.  Here we redefine
393 		 * "uptodate" to mean "Don't want to retry"
394 		 */
395 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 			     rdev->raid_disk))
397 			uptodate = 1;
398 	}
399 	if (uptodate) {
400 		raid_end_bio_io(r10_bio);
401 		rdev_dec_pending(rdev, conf->mddev);
402 	} else {
403 		/*
404 		 * oops, read error - keep the refcount on the rdev
405 		 */
406 		char b[BDEVNAME_SIZE];
407 		printk_ratelimited(KERN_ERR
408 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
409 				   mdname(conf->mddev),
410 				   bdevname(rdev->bdev, b),
411 				   (unsigned long long)r10_bio->sector);
412 		set_bit(R10BIO_ReadError, &r10_bio->state);
413 		reschedule_retry(r10_bio);
414 	}
415 }
416 
417 static void close_write(struct r10bio *r10_bio)
418 {
419 	/* clear the bitmap if all writes complete successfully */
420 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 			r10_bio->sectors,
422 			!test_bit(R10BIO_Degraded, &r10_bio->state),
423 			0);
424 	md_write_end(r10_bio->mddev);
425 }
426 
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 	if (atomic_dec_and_test(&r10_bio->remaining)) {
430 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 			reschedule_retry(r10_bio);
432 		else {
433 			close_write(r10_bio);
434 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 				reschedule_retry(r10_bio);
436 			else
437 				raid_end_bio_io(r10_bio);
438 		}
439 	}
440 }
441 
442 static void raid10_end_write_request(struct bio *bio)
443 {
444 	struct r10bio *r10_bio = bio->bi_private;
445 	int dev;
446 	int dec_rdev = 1;
447 	struct r10conf *conf = r10_bio->mddev->private;
448 	int slot, repl;
449 	struct md_rdev *rdev = NULL;
450 
451 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452 
453 	if (repl)
454 		rdev = conf->mirrors[dev].replacement;
455 	if (!rdev) {
456 		smp_rmb();
457 		repl = 0;
458 		rdev = conf->mirrors[dev].rdev;
459 	}
460 	/*
461 	 * this branch is our 'one mirror IO has finished' event handler:
462 	 */
463 	if (bio->bi_error) {
464 		if (repl)
465 			/* Never record new bad blocks to replacement,
466 			 * just fail it.
467 			 */
468 			md_error(rdev->mddev, rdev);
469 		else {
470 			set_bit(WriteErrorSeen,	&rdev->flags);
471 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 				set_bit(MD_RECOVERY_NEEDED,
473 					&rdev->mddev->recovery);
474 			set_bit(R10BIO_WriteError, &r10_bio->state);
475 			dec_rdev = 0;
476 		}
477 	} else {
478 		/*
479 		 * Set R10BIO_Uptodate in our master bio, so that
480 		 * we will return a good error code for to the higher
481 		 * levels even if IO on some other mirrored buffer fails.
482 		 *
483 		 * The 'master' represents the composite IO operation to
484 		 * user-side. So if something waits for IO, then it will
485 		 * wait for the 'master' bio.
486 		 */
487 		sector_t first_bad;
488 		int bad_sectors;
489 
490 		/*
491 		 * Do not set R10BIO_Uptodate if the current device is
492 		 * rebuilding or Faulty. This is because we cannot use
493 		 * such device for properly reading the data back (we could
494 		 * potentially use it, if the current write would have felt
495 		 * before rdev->recovery_offset, but for simplicity we don't
496 		 * check this here.
497 		 */
498 		if (test_bit(In_sync, &rdev->flags) &&
499 		    !test_bit(Faulty, &rdev->flags))
500 			set_bit(R10BIO_Uptodate, &r10_bio->state);
501 
502 		/* Maybe we can clear some bad blocks. */
503 		if (is_badblock(rdev,
504 				r10_bio->devs[slot].addr,
505 				r10_bio->sectors,
506 				&first_bad, &bad_sectors)) {
507 			bio_put(bio);
508 			if (repl)
509 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 			else
511 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 			dec_rdev = 0;
513 			set_bit(R10BIO_MadeGood, &r10_bio->state);
514 		}
515 	}
516 
517 	/*
518 	 *
519 	 * Let's see if all mirrored write operations have finished
520 	 * already.
521 	 */
522 	one_write_done(r10_bio);
523 	if (dec_rdev)
524 		rdev_dec_pending(rdev, conf->mddev);
525 }
526 
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551 
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 	int n,f;
555 	sector_t sector;
556 	sector_t chunk;
557 	sector_t stripe;
558 	int dev;
559 	int slot = 0;
560 	int last_far_set_start, last_far_set_size;
561 
562 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 	last_far_set_start *= geo->far_set_size;
564 
565 	last_far_set_size = geo->far_set_size;
566 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
567 
568 	/* now calculate first sector/dev */
569 	chunk = r10bio->sector >> geo->chunk_shift;
570 	sector = r10bio->sector & geo->chunk_mask;
571 
572 	chunk *= geo->near_copies;
573 	stripe = chunk;
574 	dev = sector_div(stripe, geo->raid_disks);
575 	if (geo->far_offset)
576 		stripe *= geo->far_copies;
577 
578 	sector += stripe << geo->chunk_shift;
579 
580 	/* and calculate all the others */
581 	for (n = 0; n < geo->near_copies; n++) {
582 		int d = dev;
583 		int set;
584 		sector_t s = sector;
585 		r10bio->devs[slot].devnum = d;
586 		r10bio->devs[slot].addr = s;
587 		slot++;
588 
589 		for (f = 1; f < geo->far_copies; f++) {
590 			set = d / geo->far_set_size;
591 			d += geo->near_copies;
592 
593 			if ((geo->raid_disks % geo->far_set_size) &&
594 			    (d > last_far_set_start)) {
595 				d -= last_far_set_start;
596 				d %= last_far_set_size;
597 				d += last_far_set_start;
598 			} else {
599 				d %= geo->far_set_size;
600 				d += geo->far_set_size * set;
601 			}
602 			s += geo->stride;
603 			r10bio->devs[slot].devnum = d;
604 			r10bio->devs[slot].addr = s;
605 			slot++;
606 		}
607 		dev++;
608 		if (dev >= geo->raid_disks) {
609 			dev = 0;
610 			sector += (geo->chunk_mask + 1);
611 		}
612 	}
613 }
614 
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 	struct geom *geo = &conf->geo;
618 
619 	if (conf->reshape_progress != MaxSector &&
620 	    ((r10bio->sector >= conf->reshape_progress) !=
621 	     conf->mddev->reshape_backwards)) {
622 		set_bit(R10BIO_Previous, &r10bio->state);
623 		geo = &conf->prev;
624 	} else
625 		clear_bit(R10BIO_Previous, &r10bio->state);
626 
627 	__raid10_find_phys(geo, r10bio);
628 }
629 
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 	sector_t offset, chunk, vchunk;
633 	/* Never use conf->prev as this is only called during resync
634 	 * or recovery, so reshape isn't happening
635 	 */
636 	struct geom *geo = &conf->geo;
637 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 	int far_set_size = geo->far_set_size;
639 	int last_far_set_start;
640 
641 	if (geo->raid_disks % geo->far_set_size) {
642 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 		last_far_set_start *= geo->far_set_size;
644 
645 		if (dev >= last_far_set_start) {
646 			far_set_size = geo->far_set_size;
647 			far_set_size += (geo->raid_disks % geo->far_set_size);
648 			far_set_start = last_far_set_start;
649 		}
650 	}
651 
652 	offset = sector & geo->chunk_mask;
653 	if (geo->far_offset) {
654 		int fc;
655 		chunk = sector >> geo->chunk_shift;
656 		fc = sector_div(chunk, geo->far_copies);
657 		dev -= fc * geo->near_copies;
658 		if (dev < far_set_start)
659 			dev += far_set_size;
660 	} else {
661 		while (sector >= geo->stride) {
662 			sector -= geo->stride;
663 			if (dev < (geo->near_copies + far_set_start))
664 				dev += far_set_size - geo->near_copies;
665 			else
666 				dev -= geo->near_copies;
667 		}
668 		chunk = sector >> geo->chunk_shift;
669 	}
670 	vchunk = chunk * geo->raid_disks + dev;
671 	sector_div(vchunk, geo->near_copies);
672 	return (vchunk << geo->chunk_shift) + offset;
673 }
674 
675 /*
676  * This routine returns the disk from which the requested read should
677  * be done. There is a per-array 'next expected sequential IO' sector
678  * number - if this matches on the next IO then we use the last disk.
679  * There is also a per-disk 'last know head position' sector that is
680  * maintained from IRQ contexts, both the normal and the resync IO
681  * completion handlers update this position correctly. If there is no
682  * perfect sequential match then we pick the disk whose head is closest.
683  *
684  * If there are 2 mirrors in the same 2 devices, performance degrades
685  * because position is mirror, not device based.
686  *
687  * The rdev for the device selected will have nr_pending incremented.
688  */
689 
690 /*
691  * FIXME: possibly should rethink readbalancing and do it differently
692  * depending on near_copies / far_copies geometry.
693  */
694 static struct md_rdev *read_balance(struct r10conf *conf,
695 				    struct r10bio *r10_bio,
696 				    int *max_sectors)
697 {
698 	const sector_t this_sector = r10_bio->sector;
699 	int disk, slot;
700 	int sectors = r10_bio->sectors;
701 	int best_good_sectors;
702 	sector_t new_distance, best_dist;
703 	struct md_rdev *best_rdev, *rdev = NULL;
704 	int do_balance;
705 	int best_slot;
706 	struct geom *geo = &conf->geo;
707 
708 	raid10_find_phys(conf, r10_bio);
709 	rcu_read_lock();
710 retry:
711 	sectors = r10_bio->sectors;
712 	best_slot = -1;
713 	best_rdev = NULL;
714 	best_dist = MaxSector;
715 	best_good_sectors = 0;
716 	do_balance = 1;
717 	/*
718 	 * Check if we can balance. We can balance on the whole
719 	 * device if no resync is going on (recovery is ok), or below
720 	 * the resync window. We take the first readable disk when
721 	 * above the resync window.
722 	 */
723 	if (conf->mddev->recovery_cp < MaxSector
724 	    && (this_sector + sectors >= conf->next_resync))
725 		do_balance = 0;
726 
727 	for (slot = 0; slot < conf->copies ; slot++) {
728 		sector_t first_bad;
729 		int bad_sectors;
730 		sector_t dev_sector;
731 
732 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
733 			continue;
734 		disk = r10_bio->devs[slot].devnum;
735 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
736 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
737 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
738 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
739 		if (rdev == NULL ||
740 		    test_bit(Faulty, &rdev->flags))
741 			continue;
742 		if (!test_bit(In_sync, &rdev->flags) &&
743 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
744 			continue;
745 
746 		dev_sector = r10_bio->devs[slot].addr;
747 		if (is_badblock(rdev, dev_sector, sectors,
748 				&first_bad, &bad_sectors)) {
749 			if (best_dist < MaxSector)
750 				/* Already have a better slot */
751 				continue;
752 			if (first_bad <= dev_sector) {
753 				/* Cannot read here.  If this is the
754 				 * 'primary' device, then we must not read
755 				 * beyond 'bad_sectors' from another device.
756 				 */
757 				bad_sectors -= (dev_sector - first_bad);
758 				if (!do_balance && sectors > bad_sectors)
759 					sectors = bad_sectors;
760 				if (best_good_sectors > sectors)
761 					best_good_sectors = sectors;
762 			} else {
763 				sector_t good_sectors =
764 					first_bad - dev_sector;
765 				if (good_sectors > best_good_sectors) {
766 					best_good_sectors = good_sectors;
767 					best_slot = slot;
768 					best_rdev = rdev;
769 				}
770 				if (!do_balance)
771 					/* Must read from here */
772 					break;
773 			}
774 			continue;
775 		} else
776 			best_good_sectors = sectors;
777 
778 		if (!do_balance)
779 			break;
780 
781 		/* This optimisation is debatable, and completely destroys
782 		 * sequential read speed for 'far copies' arrays.  So only
783 		 * keep it for 'near' arrays, and review those later.
784 		 */
785 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
786 			break;
787 
788 		/* for far > 1 always use the lowest address */
789 		if (geo->far_copies > 1)
790 			new_distance = r10_bio->devs[slot].addr;
791 		else
792 			new_distance = abs(r10_bio->devs[slot].addr -
793 					   conf->mirrors[disk].head_position);
794 		if (new_distance < best_dist) {
795 			best_dist = new_distance;
796 			best_slot = slot;
797 			best_rdev = rdev;
798 		}
799 	}
800 	if (slot >= conf->copies) {
801 		slot = best_slot;
802 		rdev = best_rdev;
803 	}
804 
805 	if (slot >= 0) {
806 		atomic_inc(&rdev->nr_pending);
807 		if (test_bit(Faulty, &rdev->flags)) {
808 			/* Cannot risk returning a device that failed
809 			 * before we inc'ed nr_pending
810 			 */
811 			rdev_dec_pending(rdev, conf->mddev);
812 			goto retry;
813 		}
814 		r10_bio->read_slot = slot;
815 	} else
816 		rdev = NULL;
817 	rcu_read_unlock();
818 	*max_sectors = best_good_sectors;
819 
820 	return rdev;
821 }
822 
823 static int raid10_congested(struct mddev *mddev, int bits)
824 {
825 	struct r10conf *conf = mddev->private;
826 	int i, ret = 0;
827 
828 	if ((bits & (1 << WB_async_congested)) &&
829 	    conf->pending_count >= max_queued_requests)
830 		return 1;
831 
832 	rcu_read_lock();
833 	for (i = 0;
834 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
835 		     && ret == 0;
836 	     i++) {
837 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
838 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
839 			struct request_queue *q = bdev_get_queue(rdev->bdev);
840 
841 			ret |= bdi_congested(&q->backing_dev_info, bits);
842 		}
843 	}
844 	rcu_read_unlock();
845 	return ret;
846 }
847 
848 static void flush_pending_writes(struct r10conf *conf)
849 {
850 	/* Any writes that have been queued but are awaiting
851 	 * bitmap updates get flushed here.
852 	 */
853 	spin_lock_irq(&conf->device_lock);
854 
855 	if (conf->pending_bio_list.head) {
856 		struct bio *bio;
857 		bio = bio_list_get(&conf->pending_bio_list);
858 		conf->pending_count = 0;
859 		spin_unlock_irq(&conf->device_lock);
860 		/* flush any pending bitmap writes to disk
861 		 * before proceeding w/ I/O */
862 		bitmap_unplug(conf->mddev->bitmap);
863 		wake_up(&conf->wait_barrier);
864 
865 		while (bio) { /* submit pending writes */
866 			struct bio *next = bio->bi_next;
867 			bio->bi_next = NULL;
868 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
869 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
870 				/* Just ignore it */
871 				bio_endio(bio);
872 			else
873 				generic_make_request(bio);
874 			bio = next;
875 		}
876 	} else
877 		spin_unlock_irq(&conf->device_lock);
878 }
879 
880 /* Barriers....
881  * Sometimes we need to suspend IO while we do something else,
882  * either some resync/recovery, or reconfigure the array.
883  * To do this we raise a 'barrier'.
884  * The 'barrier' is a counter that can be raised multiple times
885  * to count how many activities are happening which preclude
886  * normal IO.
887  * We can only raise the barrier if there is no pending IO.
888  * i.e. if nr_pending == 0.
889  * We choose only to raise the barrier if no-one is waiting for the
890  * barrier to go down.  This means that as soon as an IO request
891  * is ready, no other operations which require a barrier will start
892  * until the IO request has had a chance.
893  *
894  * So: regular IO calls 'wait_barrier'.  When that returns there
895  *    is no backgroup IO happening,  It must arrange to call
896  *    allow_barrier when it has finished its IO.
897  * backgroup IO calls must call raise_barrier.  Once that returns
898  *    there is no normal IO happeing.  It must arrange to call
899  *    lower_barrier when the particular background IO completes.
900  */
901 
902 static void raise_barrier(struct r10conf *conf, int force)
903 {
904 	BUG_ON(force && !conf->barrier);
905 	spin_lock_irq(&conf->resync_lock);
906 
907 	/* Wait until no block IO is waiting (unless 'force') */
908 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
909 			    conf->resync_lock);
910 
911 	/* block any new IO from starting */
912 	conf->barrier++;
913 
914 	/* Now wait for all pending IO to complete */
915 	wait_event_lock_irq(conf->wait_barrier,
916 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
917 			    conf->resync_lock);
918 
919 	spin_unlock_irq(&conf->resync_lock);
920 }
921 
922 static void lower_barrier(struct r10conf *conf)
923 {
924 	unsigned long flags;
925 	spin_lock_irqsave(&conf->resync_lock, flags);
926 	conf->barrier--;
927 	spin_unlock_irqrestore(&conf->resync_lock, flags);
928 	wake_up(&conf->wait_barrier);
929 }
930 
931 static void wait_barrier(struct r10conf *conf)
932 {
933 	spin_lock_irq(&conf->resync_lock);
934 	if (conf->barrier) {
935 		conf->nr_waiting++;
936 		/* Wait for the barrier to drop.
937 		 * However if there are already pending
938 		 * requests (preventing the barrier from
939 		 * rising completely), and the
940 		 * pre-process bio queue isn't empty,
941 		 * then don't wait, as we need to empty
942 		 * that queue to get the nr_pending
943 		 * count down.
944 		 */
945 		wait_event_lock_irq(conf->wait_barrier,
946 				    !conf->barrier ||
947 				    (conf->nr_pending &&
948 				     current->bio_list &&
949 				     !bio_list_empty(current->bio_list)),
950 				    conf->resync_lock);
951 		conf->nr_waiting--;
952 	}
953 	conf->nr_pending++;
954 	spin_unlock_irq(&conf->resync_lock);
955 }
956 
957 static void allow_barrier(struct r10conf *conf)
958 {
959 	unsigned long flags;
960 	spin_lock_irqsave(&conf->resync_lock, flags);
961 	conf->nr_pending--;
962 	spin_unlock_irqrestore(&conf->resync_lock, flags);
963 	wake_up(&conf->wait_barrier);
964 }
965 
966 static void freeze_array(struct r10conf *conf, int extra)
967 {
968 	/* stop syncio and normal IO and wait for everything to
969 	 * go quiet.
970 	 * We increment barrier and nr_waiting, and then
971 	 * wait until nr_pending match nr_queued+extra
972 	 * This is called in the context of one normal IO request
973 	 * that has failed. Thus any sync request that might be pending
974 	 * will be blocked by nr_pending, and we need to wait for
975 	 * pending IO requests to complete or be queued for re-try.
976 	 * Thus the number queued (nr_queued) plus this request (extra)
977 	 * must match the number of pending IOs (nr_pending) before
978 	 * we continue.
979 	 */
980 	spin_lock_irq(&conf->resync_lock);
981 	conf->barrier++;
982 	conf->nr_waiting++;
983 	wait_event_lock_irq_cmd(conf->wait_barrier,
984 				conf->nr_pending == conf->nr_queued+extra,
985 				conf->resync_lock,
986 				flush_pending_writes(conf));
987 
988 	spin_unlock_irq(&conf->resync_lock);
989 }
990 
991 static void unfreeze_array(struct r10conf *conf)
992 {
993 	/* reverse the effect of the freeze */
994 	spin_lock_irq(&conf->resync_lock);
995 	conf->barrier--;
996 	conf->nr_waiting--;
997 	wake_up(&conf->wait_barrier);
998 	spin_unlock_irq(&conf->resync_lock);
999 }
1000 
1001 static sector_t choose_data_offset(struct r10bio *r10_bio,
1002 				   struct md_rdev *rdev)
1003 {
1004 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1005 	    test_bit(R10BIO_Previous, &r10_bio->state))
1006 		return rdev->data_offset;
1007 	else
1008 		return rdev->new_data_offset;
1009 }
1010 
1011 struct raid10_plug_cb {
1012 	struct blk_plug_cb	cb;
1013 	struct bio_list		pending;
1014 	int			pending_cnt;
1015 };
1016 
1017 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1018 {
1019 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1020 						   cb);
1021 	struct mddev *mddev = plug->cb.data;
1022 	struct r10conf *conf = mddev->private;
1023 	struct bio *bio;
1024 
1025 	if (from_schedule || current->bio_list) {
1026 		spin_lock_irq(&conf->device_lock);
1027 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1028 		conf->pending_count += plug->pending_cnt;
1029 		spin_unlock_irq(&conf->device_lock);
1030 		wake_up(&conf->wait_barrier);
1031 		md_wakeup_thread(mddev->thread);
1032 		kfree(plug);
1033 		return;
1034 	}
1035 
1036 	/* we aren't scheduling, so we can do the write-out directly. */
1037 	bio = bio_list_get(&plug->pending);
1038 	bitmap_unplug(mddev->bitmap);
1039 	wake_up(&conf->wait_barrier);
1040 
1041 	while (bio) { /* submit pending writes */
1042 		struct bio *next = bio->bi_next;
1043 		bio->bi_next = NULL;
1044 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1045 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1046 			/* Just ignore it */
1047 			bio_endio(bio);
1048 		else
1049 			generic_make_request(bio);
1050 		bio = next;
1051 	}
1052 	kfree(plug);
1053 }
1054 
1055 static void __make_request(struct mddev *mddev, struct bio *bio)
1056 {
1057 	struct r10conf *conf = mddev->private;
1058 	struct r10bio *r10_bio;
1059 	struct bio *read_bio;
1060 	int i;
1061 	const int rw = bio_data_dir(bio);
1062 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064 	const unsigned long do_discard = (bio->bi_rw
1065 					  & (REQ_DISCARD | REQ_SECURE));
1066 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1067 	unsigned long flags;
1068 	struct md_rdev *blocked_rdev;
1069 	struct blk_plug_cb *cb;
1070 	struct raid10_plug_cb *plug = NULL;
1071 	int sectors_handled;
1072 	int max_sectors;
1073 	int sectors;
1074 
1075 	/*
1076 	 * Register the new request and wait if the reconstruction
1077 	 * thread has put up a bar for new requests.
1078 	 * Continue immediately if no resync is active currently.
1079 	 */
1080 	wait_barrier(conf);
1081 
1082 	sectors = bio_sectors(bio);
1083 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1084 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1085 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1086 		/* IO spans the reshape position.  Need to wait for
1087 		 * reshape to pass
1088 		 */
1089 		allow_barrier(conf);
1090 		wait_event(conf->wait_barrier,
1091 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1092 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1093 			   sectors);
1094 		wait_barrier(conf);
1095 	}
1096 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1097 	    bio_data_dir(bio) == WRITE &&
1098 	    (mddev->reshape_backwards
1099 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1100 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1101 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1102 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1103 		/* Need to update reshape_position in metadata */
1104 		mddev->reshape_position = conf->reshape_progress;
1105 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1106 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1107 		md_wakeup_thread(mddev->thread);
1108 		wait_event(mddev->sb_wait,
1109 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1110 
1111 		conf->reshape_safe = mddev->reshape_position;
1112 	}
1113 
1114 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1115 
1116 	r10_bio->master_bio = bio;
1117 	r10_bio->sectors = sectors;
1118 
1119 	r10_bio->mddev = mddev;
1120 	r10_bio->sector = bio->bi_iter.bi_sector;
1121 	r10_bio->state = 0;
1122 
1123 	/* We might need to issue multiple reads to different
1124 	 * devices if there are bad blocks around, so we keep
1125 	 * track of the number of reads in bio->bi_phys_segments.
1126 	 * If this is 0, there is only one r10_bio and no locking
1127 	 * will be needed when the request completes.  If it is
1128 	 * non-zero, then it is the number of not-completed requests.
1129 	 */
1130 	bio->bi_phys_segments = 0;
1131 	bio_clear_flag(bio, BIO_SEG_VALID);
1132 
1133 	if (rw == READ) {
1134 		/*
1135 		 * read balancing logic:
1136 		 */
1137 		struct md_rdev *rdev;
1138 		int slot;
1139 
1140 read_again:
1141 		rdev = read_balance(conf, r10_bio, &max_sectors);
1142 		if (!rdev) {
1143 			raid_end_bio_io(r10_bio);
1144 			return;
1145 		}
1146 		slot = r10_bio->read_slot;
1147 
1148 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1149 		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1150 			 max_sectors);
1151 
1152 		r10_bio->devs[slot].bio = read_bio;
1153 		r10_bio->devs[slot].rdev = rdev;
1154 
1155 		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1156 			choose_data_offset(r10_bio, rdev);
1157 		read_bio->bi_bdev = rdev->bdev;
1158 		read_bio->bi_end_io = raid10_end_read_request;
1159 		read_bio->bi_rw = READ | do_sync;
1160 		read_bio->bi_private = r10_bio;
1161 
1162 		if (max_sectors < r10_bio->sectors) {
1163 			/* Could not read all from this device, so we will
1164 			 * need another r10_bio.
1165 			 */
1166 			sectors_handled = (r10_bio->sector + max_sectors
1167 					   - bio->bi_iter.bi_sector);
1168 			r10_bio->sectors = max_sectors;
1169 			spin_lock_irq(&conf->device_lock);
1170 			if (bio->bi_phys_segments == 0)
1171 				bio->bi_phys_segments = 2;
1172 			else
1173 				bio->bi_phys_segments++;
1174 			spin_unlock_irq(&conf->device_lock);
1175 			/* Cannot call generic_make_request directly
1176 			 * as that will be queued in __generic_make_request
1177 			 * and subsequent mempool_alloc might block
1178 			 * waiting for it.  so hand bio over to raid10d.
1179 			 */
1180 			reschedule_retry(r10_bio);
1181 
1182 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1183 
1184 			r10_bio->master_bio = bio;
1185 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1186 			r10_bio->state = 0;
1187 			r10_bio->mddev = mddev;
1188 			r10_bio->sector = bio->bi_iter.bi_sector +
1189 				sectors_handled;
1190 			goto read_again;
1191 		} else
1192 			generic_make_request(read_bio);
1193 		return;
1194 	}
1195 
1196 	/*
1197 	 * WRITE:
1198 	 */
1199 	if (conf->pending_count >= max_queued_requests) {
1200 		md_wakeup_thread(mddev->thread);
1201 		wait_event(conf->wait_barrier,
1202 			   conf->pending_count < max_queued_requests);
1203 	}
1204 	/* first select target devices under rcu_lock and
1205 	 * inc refcount on their rdev.  Record them by setting
1206 	 * bios[x] to bio
1207 	 * If there are known/acknowledged bad blocks on any device
1208 	 * on which we have seen a write error, we want to avoid
1209 	 * writing to those blocks.  This potentially requires several
1210 	 * writes to write around the bad blocks.  Each set of writes
1211 	 * gets its own r10_bio with a set of bios attached.  The number
1212 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1213 	 * the read case.
1214 	 */
1215 
1216 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1217 	raid10_find_phys(conf, r10_bio);
1218 retry_write:
1219 	blocked_rdev = NULL;
1220 	rcu_read_lock();
1221 	max_sectors = r10_bio->sectors;
1222 
1223 	for (i = 0;  i < conf->copies; i++) {
1224 		int d = r10_bio->devs[i].devnum;
1225 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1226 		struct md_rdev *rrdev = rcu_dereference(
1227 			conf->mirrors[d].replacement);
1228 		if (rdev == rrdev)
1229 			rrdev = NULL;
1230 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1231 			atomic_inc(&rdev->nr_pending);
1232 			blocked_rdev = rdev;
1233 			break;
1234 		}
1235 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1236 			atomic_inc(&rrdev->nr_pending);
1237 			blocked_rdev = rrdev;
1238 			break;
1239 		}
1240 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1241 			rdev = NULL;
1242 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1243 			rrdev = NULL;
1244 
1245 		r10_bio->devs[i].bio = NULL;
1246 		r10_bio->devs[i].repl_bio = NULL;
1247 
1248 		if (!rdev && !rrdev) {
1249 			set_bit(R10BIO_Degraded, &r10_bio->state);
1250 			continue;
1251 		}
1252 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1253 			sector_t first_bad;
1254 			sector_t dev_sector = r10_bio->devs[i].addr;
1255 			int bad_sectors;
1256 			int is_bad;
1257 
1258 			is_bad = is_badblock(rdev, dev_sector,
1259 					     max_sectors,
1260 					     &first_bad, &bad_sectors);
1261 			if (is_bad < 0) {
1262 				/* Mustn't write here until the bad block
1263 				 * is acknowledged
1264 				 */
1265 				atomic_inc(&rdev->nr_pending);
1266 				set_bit(BlockedBadBlocks, &rdev->flags);
1267 				blocked_rdev = rdev;
1268 				break;
1269 			}
1270 			if (is_bad && first_bad <= dev_sector) {
1271 				/* Cannot write here at all */
1272 				bad_sectors -= (dev_sector - first_bad);
1273 				if (bad_sectors < max_sectors)
1274 					/* Mustn't write more than bad_sectors
1275 					 * to other devices yet
1276 					 */
1277 					max_sectors = bad_sectors;
1278 				/* We don't set R10BIO_Degraded as that
1279 				 * only applies if the disk is missing,
1280 				 * so it might be re-added, and we want to
1281 				 * know to recover this chunk.
1282 				 * In this case the device is here, and the
1283 				 * fact that this chunk is not in-sync is
1284 				 * recorded in the bad block log.
1285 				 */
1286 				continue;
1287 			}
1288 			if (is_bad) {
1289 				int good_sectors = first_bad - dev_sector;
1290 				if (good_sectors < max_sectors)
1291 					max_sectors = good_sectors;
1292 			}
1293 		}
1294 		if (rdev) {
1295 			r10_bio->devs[i].bio = bio;
1296 			atomic_inc(&rdev->nr_pending);
1297 		}
1298 		if (rrdev) {
1299 			r10_bio->devs[i].repl_bio = bio;
1300 			atomic_inc(&rrdev->nr_pending);
1301 		}
1302 	}
1303 	rcu_read_unlock();
1304 
1305 	if (unlikely(blocked_rdev)) {
1306 		/* Have to wait for this device to get unblocked, then retry */
1307 		int j;
1308 		int d;
1309 
1310 		for (j = 0; j < i; j++) {
1311 			if (r10_bio->devs[j].bio) {
1312 				d = r10_bio->devs[j].devnum;
1313 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1314 			}
1315 			if (r10_bio->devs[j].repl_bio) {
1316 				struct md_rdev *rdev;
1317 				d = r10_bio->devs[j].devnum;
1318 				rdev = conf->mirrors[d].replacement;
1319 				if (!rdev) {
1320 					/* Race with remove_disk */
1321 					smp_mb();
1322 					rdev = conf->mirrors[d].rdev;
1323 				}
1324 				rdev_dec_pending(rdev, mddev);
1325 			}
1326 		}
1327 		allow_barrier(conf);
1328 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1329 		wait_barrier(conf);
1330 		goto retry_write;
1331 	}
1332 
1333 	if (max_sectors < r10_bio->sectors) {
1334 		/* We are splitting this into multiple parts, so
1335 		 * we need to prepare for allocating another r10_bio.
1336 		 */
1337 		r10_bio->sectors = max_sectors;
1338 		spin_lock_irq(&conf->device_lock);
1339 		if (bio->bi_phys_segments == 0)
1340 			bio->bi_phys_segments = 2;
1341 		else
1342 			bio->bi_phys_segments++;
1343 		spin_unlock_irq(&conf->device_lock);
1344 	}
1345 	sectors_handled = r10_bio->sector + max_sectors -
1346 		bio->bi_iter.bi_sector;
1347 
1348 	atomic_set(&r10_bio->remaining, 1);
1349 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1350 
1351 	for (i = 0; i < conf->copies; i++) {
1352 		struct bio *mbio;
1353 		int d = r10_bio->devs[i].devnum;
1354 		if (r10_bio->devs[i].bio) {
1355 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1356 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1357 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1358 				 max_sectors);
1359 			r10_bio->devs[i].bio = mbio;
1360 
1361 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1362 					   choose_data_offset(r10_bio,
1363 							      rdev));
1364 			mbio->bi_bdev = rdev->bdev;
1365 			mbio->bi_end_io	= raid10_end_write_request;
1366 			mbio->bi_rw =
1367 				WRITE | do_sync | do_fua | do_discard | do_same;
1368 			mbio->bi_private = r10_bio;
1369 
1370 			atomic_inc(&r10_bio->remaining);
1371 
1372 			cb = blk_check_plugged(raid10_unplug, mddev,
1373 					       sizeof(*plug));
1374 			if (cb)
1375 				plug = container_of(cb, struct raid10_plug_cb,
1376 						    cb);
1377 			else
1378 				plug = NULL;
1379 			spin_lock_irqsave(&conf->device_lock, flags);
1380 			if (plug) {
1381 				bio_list_add(&plug->pending, mbio);
1382 				plug->pending_cnt++;
1383 			} else {
1384 				bio_list_add(&conf->pending_bio_list, mbio);
1385 				conf->pending_count++;
1386 			}
1387 			spin_unlock_irqrestore(&conf->device_lock, flags);
1388 			if (!plug)
1389 				md_wakeup_thread(mddev->thread);
1390 		}
1391 
1392 		if (r10_bio->devs[i].repl_bio) {
1393 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1394 			if (rdev == NULL) {
1395 				/* Replacement just got moved to main 'rdev' */
1396 				smp_mb();
1397 				rdev = conf->mirrors[d].rdev;
1398 			}
1399 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1400 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1401 				 max_sectors);
1402 			r10_bio->devs[i].repl_bio = mbio;
1403 
1404 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1405 					   choose_data_offset(
1406 						   r10_bio, rdev));
1407 			mbio->bi_bdev = rdev->bdev;
1408 			mbio->bi_end_io	= raid10_end_write_request;
1409 			mbio->bi_rw =
1410 				WRITE | do_sync | do_fua | do_discard | do_same;
1411 			mbio->bi_private = r10_bio;
1412 
1413 			atomic_inc(&r10_bio->remaining);
1414 			spin_lock_irqsave(&conf->device_lock, flags);
1415 			bio_list_add(&conf->pending_bio_list, mbio);
1416 			conf->pending_count++;
1417 			spin_unlock_irqrestore(&conf->device_lock, flags);
1418 			if (!mddev_check_plugged(mddev))
1419 				md_wakeup_thread(mddev->thread);
1420 		}
1421 	}
1422 
1423 	/* Don't remove the bias on 'remaining' (one_write_done) until
1424 	 * after checking if we need to go around again.
1425 	 */
1426 
1427 	if (sectors_handled < bio_sectors(bio)) {
1428 		one_write_done(r10_bio);
1429 		/* We need another r10_bio.  It has already been counted
1430 		 * in bio->bi_phys_segments.
1431 		 */
1432 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1433 
1434 		r10_bio->master_bio = bio;
1435 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1436 
1437 		r10_bio->mddev = mddev;
1438 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439 		r10_bio->state = 0;
1440 		goto retry_write;
1441 	}
1442 	one_write_done(r10_bio);
1443 }
1444 
1445 static void make_request(struct mddev *mddev, struct bio *bio)
1446 {
1447 	struct r10conf *conf = mddev->private;
1448 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1449 	int chunk_sects = chunk_mask + 1;
1450 
1451 	struct bio *split;
1452 
1453 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1454 		md_flush_request(mddev, bio);
1455 		return;
1456 	}
1457 
1458 	md_write_start(mddev, bio);
1459 
1460 	do {
1461 
1462 		/*
1463 		 * If this request crosses a chunk boundary, we need to split
1464 		 * it.
1465 		 */
1466 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1467 			     bio_sectors(bio) > chunk_sects
1468 			     && (conf->geo.near_copies < conf->geo.raid_disks
1469 				 || conf->prev.near_copies <
1470 				 conf->prev.raid_disks))) {
1471 			split = bio_split(bio, chunk_sects -
1472 					  (bio->bi_iter.bi_sector &
1473 					   (chunk_sects - 1)),
1474 					  GFP_NOIO, fs_bio_set);
1475 			bio_chain(split, bio);
1476 		} else {
1477 			split = bio;
1478 		}
1479 
1480 		__make_request(mddev, split);
1481 	} while (split != bio);
1482 
1483 	/* In case raid10d snuck in to freeze_array */
1484 	wake_up(&conf->wait_barrier);
1485 }
1486 
1487 static void status(struct seq_file *seq, struct mddev *mddev)
1488 {
1489 	struct r10conf *conf = mddev->private;
1490 	int i;
1491 
1492 	if (conf->geo.near_copies < conf->geo.raid_disks)
1493 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1494 	if (conf->geo.near_copies > 1)
1495 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1496 	if (conf->geo.far_copies > 1) {
1497 		if (conf->geo.far_offset)
1498 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1499 		else
1500 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1501 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1502 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1503 	}
1504 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1505 					conf->geo.raid_disks - mddev->degraded);
1506 	for (i = 0; i < conf->geo.raid_disks; i++)
1507 		seq_printf(seq, "%s",
1508 			      conf->mirrors[i].rdev &&
1509 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1510 	seq_printf(seq, "]");
1511 }
1512 
1513 /* check if there are enough drives for
1514  * every block to appear on atleast one.
1515  * Don't consider the device numbered 'ignore'
1516  * as we might be about to remove it.
1517  */
1518 static int _enough(struct r10conf *conf, int previous, int ignore)
1519 {
1520 	int first = 0;
1521 	int has_enough = 0;
1522 	int disks, ncopies;
1523 	if (previous) {
1524 		disks = conf->prev.raid_disks;
1525 		ncopies = conf->prev.near_copies;
1526 	} else {
1527 		disks = conf->geo.raid_disks;
1528 		ncopies = conf->geo.near_copies;
1529 	}
1530 
1531 	rcu_read_lock();
1532 	do {
1533 		int n = conf->copies;
1534 		int cnt = 0;
1535 		int this = first;
1536 		while (n--) {
1537 			struct md_rdev *rdev;
1538 			if (this != ignore &&
1539 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1540 			    test_bit(In_sync, &rdev->flags))
1541 				cnt++;
1542 			this = (this+1) % disks;
1543 		}
1544 		if (cnt == 0)
1545 			goto out;
1546 		first = (first + ncopies) % disks;
1547 	} while (first != 0);
1548 	has_enough = 1;
1549 out:
1550 	rcu_read_unlock();
1551 	return has_enough;
1552 }
1553 
1554 static int enough(struct r10conf *conf, int ignore)
1555 {
1556 	/* when calling 'enough', both 'prev' and 'geo' must
1557 	 * be stable.
1558 	 * This is ensured if ->reconfig_mutex or ->device_lock
1559 	 * is held.
1560 	 */
1561 	return _enough(conf, 0, ignore) &&
1562 		_enough(conf, 1, ignore);
1563 }
1564 
1565 static void error(struct mddev *mddev, struct md_rdev *rdev)
1566 {
1567 	char b[BDEVNAME_SIZE];
1568 	struct r10conf *conf = mddev->private;
1569 	unsigned long flags;
1570 
1571 	/*
1572 	 * If it is not operational, then we have already marked it as dead
1573 	 * else if it is the last working disks, ignore the error, let the
1574 	 * next level up know.
1575 	 * else mark the drive as failed
1576 	 */
1577 	spin_lock_irqsave(&conf->device_lock, flags);
1578 	if (test_bit(In_sync, &rdev->flags)
1579 	    && !enough(conf, rdev->raid_disk)) {
1580 		/*
1581 		 * Don't fail the drive, just return an IO error.
1582 		 */
1583 		spin_unlock_irqrestore(&conf->device_lock, flags);
1584 		return;
1585 	}
1586 	if (test_and_clear_bit(In_sync, &rdev->flags))
1587 		mddev->degraded++;
1588 	/*
1589 	 * If recovery is running, make sure it aborts.
1590 	 */
1591 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1592 	set_bit(Blocked, &rdev->flags);
1593 	set_bit(Faulty, &rdev->flags);
1594 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1595 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1596 	spin_unlock_irqrestore(&conf->device_lock, flags);
1597 	printk(KERN_ALERT
1598 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1599 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1600 	       mdname(mddev), bdevname(rdev->bdev, b),
1601 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1602 }
1603 
1604 static void print_conf(struct r10conf *conf)
1605 {
1606 	int i;
1607 	struct raid10_info *tmp;
1608 
1609 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1610 	if (!conf) {
1611 		printk(KERN_DEBUG "(!conf)\n");
1612 		return;
1613 	}
1614 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1615 		conf->geo.raid_disks);
1616 
1617 	for (i = 0; i < conf->geo.raid_disks; i++) {
1618 		char b[BDEVNAME_SIZE];
1619 		tmp = conf->mirrors + i;
1620 		if (tmp->rdev)
1621 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1622 				i, !test_bit(In_sync, &tmp->rdev->flags),
1623 			        !test_bit(Faulty, &tmp->rdev->flags),
1624 				bdevname(tmp->rdev->bdev,b));
1625 	}
1626 }
1627 
1628 static void close_sync(struct r10conf *conf)
1629 {
1630 	wait_barrier(conf);
1631 	allow_barrier(conf);
1632 
1633 	mempool_destroy(conf->r10buf_pool);
1634 	conf->r10buf_pool = NULL;
1635 }
1636 
1637 static int raid10_spare_active(struct mddev *mddev)
1638 {
1639 	int i;
1640 	struct r10conf *conf = mddev->private;
1641 	struct raid10_info *tmp;
1642 	int count = 0;
1643 	unsigned long flags;
1644 
1645 	/*
1646 	 * Find all non-in_sync disks within the RAID10 configuration
1647 	 * and mark them in_sync
1648 	 */
1649 	for (i = 0; i < conf->geo.raid_disks; i++) {
1650 		tmp = conf->mirrors + i;
1651 		if (tmp->replacement
1652 		    && tmp->replacement->recovery_offset == MaxSector
1653 		    && !test_bit(Faulty, &tmp->replacement->flags)
1654 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1655 			/* Replacement has just become active */
1656 			if (!tmp->rdev
1657 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1658 				count++;
1659 			if (tmp->rdev) {
1660 				/* Replaced device not technically faulty,
1661 				 * but we need to be sure it gets removed
1662 				 * and never re-added.
1663 				 */
1664 				set_bit(Faulty, &tmp->rdev->flags);
1665 				sysfs_notify_dirent_safe(
1666 					tmp->rdev->sysfs_state);
1667 			}
1668 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1669 		} else if (tmp->rdev
1670 			   && tmp->rdev->recovery_offset == MaxSector
1671 			   && !test_bit(Faulty, &tmp->rdev->flags)
1672 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1673 			count++;
1674 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1675 		}
1676 	}
1677 	spin_lock_irqsave(&conf->device_lock, flags);
1678 	mddev->degraded -= count;
1679 	spin_unlock_irqrestore(&conf->device_lock, flags);
1680 
1681 	print_conf(conf);
1682 	return count;
1683 }
1684 
1685 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1686 {
1687 	struct r10conf *conf = mddev->private;
1688 	int err = -EEXIST;
1689 	int mirror;
1690 	int first = 0;
1691 	int last = conf->geo.raid_disks - 1;
1692 
1693 	if (mddev->recovery_cp < MaxSector)
1694 		/* only hot-add to in-sync arrays, as recovery is
1695 		 * very different from resync
1696 		 */
1697 		return -EBUSY;
1698 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1699 		return -EINVAL;
1700 
1701 	if (rdev->raid_disk >= 0)
1702 		first = last = rdev->raid_disk;
1703 
1704 	if (rdev->saved_raid_disk >= first &&
1705 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1706 		mirror = rdev->saved_raid_disk;
1707 	else
1708 		mirror = first;
1709 	for ( ; mirror <= last ; mirror++) {
1710 		struct raid10_info *p = &conf->mirrors[mirror];
1711 		if (p->recovery_disabled == mddev->recovery_disabled)
1712 			continue;
1713 		if (p->rdev) {
1714 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1715 			    p->replacement != NULL)
1716 				continue;
1717 			clear_bit(In_sync, &rdev->flags);
1718 			set_bit(Replacement, &rdev->flags);
1719 			rdev->raid_disk = mirror;
1720 			err = 0;
1721 			if (mddev->gendisk)
1722 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1723 						  rdev->data_offset << 9);
1724 			conf->fullsync = 1;
1725 			rcu_assign_pointer(p->replacement, rdev);
1726 			break;
1727 		}
1728 
1729 		if (mddev->gendisk)
1730 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1731 					  rdev->data_offset << 9);
1732 
1733 		p->head_position = 0;
1734 		p->recovery_disabled = mddev->recovery_disabled - 1;
1735 		rdev->raid_disk = mirror;
1736 		err = 0;
1737 		if (rdev->saved_raid_disk != mirror)
1738 			conf->fullsync = 1;
1739 		rcu_assign_pointer(p->rdev, rdev);
1740 		break;
1741 	}
1742 	md_integrity_add_rdev(rdev, mddev);
1743 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1744 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1745 
1746 	print_conf(conf);
1747 	return err;
1748 }
1749 
1750 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1751 {
1752 	struct r10conf *conf = mddev->private;
1753 	int err = 0;
1754 	int number = rdev->raid_disk;
1755 	struct md_rdev **rdevp;
1756 	struct raid10_info *p = conf->mirrors + number;
1757 
1758 	print_conf(conf);
1759 	if (rdev == p->rdev)
1760 		rdevp = &p->rdev;
1761 	else if (rdev == p->replacement)
1762 		rdevp = &p->replacement;
1763 	else
1764 		return 0;
1765 
1766 	if (test_bit(In_sync, &rdev->flags) ||
1767 	    atomic_read(&rdev->nr_pending)) {
1768 		err = -EBUSY;
1769 		goto abort;
1770 	}
1771 	/* Only remove faulty devices if recovery
1772 	 * is not possible.
1773 	 */
1774 	if (!test_bit(Faulty, &rdev->flags) &&
1775 	    mddev->recovery_disabled != p->recovery_disabled &&
1776 	    (!p->replacement || p->replacement == rdev) &&
1777 	    number < conf->geo.raid_disks &&
1778 	    enough(conf, -1)) {
1779 		err = -EBUSY;
1780 		goto abort;
1781 	}
1782 	*rdevp = NULL;
1783 	synchronize_rcu();
1784 	if (atomic_read(&rdev->nr_pending)) {
1785 		/* lost the race, try later */
1786 		err = -EBUSY;
1787 		*rdevp = rdev;
1788 		goto abort;
1789 	} else if (p->replacement) {
1790 		/* We must have just cleared 'rdev' */
1791 		p->rdev = p->replacement;
1792 		clear_bit(Replacement, &p->replacement->flags);
1793 		smp_mb(); /* Make sure other CPUs may see both as identical
1794 			   * but will never see neither -- if they are careful.
1795 			   */
1796 		p->replacement = NULL;
1797 		clear_bit(WantReplacement, &rdev->flags);
1798 	} else
1799 		/* We might have just remove the Replacement as faulty
1800 		 * Clear the flag just in case
1801 		 */
1802 		clear_bit(WantReplacement, &rdev->flags);
1803 
1804 	err = md_integrity_register(mddev);
1805 
1806 abort:
1807 
1808 	print_conf(conf);
1809 	return err;
1810 }
1811 
1812 static void end_sync_read(struct bio *bio)
1813 {
1814 	struct r10bio *r10_bio = bio->bi_private;
1815 	struct r10conf *conf = r10_bio->mddev->private;
1816 	int d;
1817 
1818 	if (bio == r10_bio->master_bio) {
1819 		/* this is a reshape read */
1820 		d = r10_bio->read_slot; /* really the read dev */
1821 	} else
1822 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1823 
1824 	if (!bio->bi_error)
1825 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1826 	else
1827 		/* The write handler will notice the lack of
1828 		 * R10BIO_Uptodate and record any errors etc
1829 		 */
1830 		atomic_add(r10_bio->sectors,
1831 			   &conf->mirrors[d].rdev->corrected_errors);
1832 
1833 	/* for reconstruct, we always reschedule after a read.
1834 	 * for resync, only after all reads
1835 	 */
1836 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1837 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1838 	    atomic_dec_and_test(&r10_bio->remaining)) {
1839 		/* we have read all the blocks,
1840 		 * do the comparison in process context in raid10d
1841 		 */
1842 		reschedule_retry(r10_bio);
1843 	}
1844 }
1845 
1846 static void end_sync_request(struct r10bio *r10_bio)
1847 {
1848 	struct mddev *mddev = r10_bio->mddev;
1849 
1850 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1851 		if (r10_bio->master_bio == NULL) {
1852 			/* the primary of several recovery bios */
1853 			sector_t s = r10_bio->sectors;
1854 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1855 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1856 				reschedule_retry(r10_bio);
1857 			else
1858 				put_buf(r10_bio);
1859 			md_done_sync(mddev, s, 1);
1860 			break;
1861 		} else {
1862 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1863 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1864 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1865 				reschedule_retry(r10_bio);
1866 			else
1867 				put_buf(r10_bio);
1868 			r10_bio = r10_bio2;
1869 		}
1870 	}
1871 }
1872 
1873 static void end_sync_write(struct bio *bio)
1874 {
1875 	struct r10bio *r10_bio = bio->bi_private;
1876 	struct mddev *mddev = r10_bio->mddev;
1877 	struct r10conf *conf = mddev->private;
1878 	int d;
1879 	sector_t first_bad;
1880 	int bad_sectors;
1881 	int slot;
1882 	int repl;
1883 	struct md_rdev *rdev = NULL;
1884 
1885 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1886 	if (repl)
1887 		rdev = conf->mirrors[d].replacement;
1888 	else
1889 		rdev = conf->mirrors[d].rdev;
1890 
1891 	if (bio->bi_error) {
1892 		if (repl)
1893 			md_error(mddev, rdev);
1894 		else {
1895 			set_bit(WriteErrorSeen, &rdev->flags);
1896 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1897 				set_bit(MD_RECOVERY_NEEDED,
1898 					&rdev->mddev->recovery);
1899 			set_bit(R10BIO_WriteError, &r10_bio->state);
1900 		}
1901 	} else if (is_badblock(rdev,
1902 			     r10_bio->devs[slot].addr,
1903 			     r10_bio->sectors,
1904 			     &first_bad, &bad_sectors))
1905 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1906 
1907 	rdev_dec_pending(rdev, mddev);
1908 
1909 	end_sync_request(r10_bio);
1910 }
1911 
1912 /*
1913  * Note: sync and recover and handled very differently for raid10
1914  * This code is for resync.
1915  * For resync, we read through virtual addresses and read all blocks.
1916  * If there is any error, we schedule a write.  The lowest numbered
1917  * drive is authoritative.
1918  * However requests come for physical address, so we need to map.
1919  * For every physical address there are raid_disks/copies virtual addresses,
1920  * which is always are least one, but is not necessarly an integer.
1921  * This means that a physical address can span multiple chunks, so we may
1922  * have to submit multiple io requests for a single sync request.
1923  */
1924 /*
1925  * We check if all blocks are in-sync and only write to blocks that
1926  * aren't in sync
1927  */
1928 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1929 {
1930 	struct r10conf *conf = mddev->private;
1931 	int i, first;
1932 	struct bio *tbio, *fbio;
1933 	int vcnt;
1934 
1935 	atomic_set(&r10_bio->remaining, 1);
1936 
1937 	/* find the first device with a block */
1938 	for (i=0; i<conf->copies; i++)
1939 		if (!r10_bio->devs[i].bio->bi_error)
1940 			break;
1941 
1942 	if (i == conf->copies)
1943 		goto done;
1944 
1945 	first = i;
1946 	fbio = r10_bio->devs[i].bio;
1947 
1948 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1949 	/* now find blocks with errors */
1950 	for (i=0 ; i < conf->copies ; i++) {
1951 		int  j, d;
1952 
1953 		tbio = r10_bio->devs[i].bio;
1954 
1955 		if (tbio->bi_end_io != end_sync_read)
1956 			continue;
1957 		if (i == first)
1958 			continue;
1959 		if (!r10_bio->devs[i].bio->bi_error) {
1960 			/* We know that the bi_io_vec layout is the same for
1961 			 * both 'first' and 'i', so we just compare them.
1962 			 * All vec entries are PAGE_SIZE;
1963 			 */
1964 			int sectors = r10_bio->sectors;
1965 			for (j = 0; j < vcnt; j++) {
1966 				int len = PAGE_SIZE;
1967 				if (sectors < (len / 512))
1968 					len = sectors * 512;
1969 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1970 					   page_address(tbio->bi_io_vec[j].bv_page),
1971 					   len))
1972 					break;
1973 				sectors -= len/512;
1974 			}
1975 			if (j == vcnt)
1976 				continue;
1977 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1978 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1979 				/* Don't fix anything. */
1980 				continue;
1981 		}
1982 		/* Ok, we need to write this bio, either to correct an
1983 		 * inconsistency or to correct an unreadable block.
1984 		 * First we need to fixup bv_offset, bv_len and
1985 		 * bi_vecs, as the read request might have corrupted these
1986 		 */
1987 		bio_reset(tbio);
1988 
1989 		tbio->bi_vcnt = vcnt;
1990 		tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1991 		tbio->bi_rw = WRITE;
1992 		tbio->bi_private = r10_bio;
1993 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1994 		tbio->bi_end_io = end_sync_write;
1995 
1996 		bio_copy_data(tbio, fbio);
1997 
1998 		d = r10_bio->devs[i].devnum;
1999 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2000 		atomic_inc(&r10_bio->remaining);
2001 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2002 
2003 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2004 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2005 		generic_make_request(tbio);
2006 	}
2007 
2008 	/* Now write out to any replacement devices
2009 	 * that are active
2010 	 */
2011 	for (i = 0; i < conf->copies; i++) {
2012 		int d;
2013 
2014 		tbio = r10_bio->devs[i].repl_bio;
2015 		if (!tbio || !tbio->bi_end_io)
2016 			continue;
2017 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2018 		    && r10_bio->devs[i].bio != fbio)
2019 			bio_copy_data(tbio, fbio);
2020 		d = r10_bio->devs[i].devnum;
2021 		atomic_inc(&r10_bio->remaining);
2022 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2023 			     bio_sectors(tbio));
2024 		generic_make_request(tbio);
2025 	}
2026 
2027 done:
2028 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2029 		md_done_sync(mddev, r10_bio->sectors, 1);
2030 		put_buf(r10_bio);
2031 	}
2032 }
2033 
2034 /*
2035  * Now for the recovery code.
2036  * Recovery happens across physical sectors.
2037  * We recover all non-is_sync drives by finding the virtual address of
2038  * each, and then choose a working drive that also has that virt address.
2039  * There is a separate r10_bio for each non-in_sync drive.
2040  * Only the first two slots are in use. The first for reading,
2041  * The second for writing.
2042  *
2043  */
2044 static void fix_recovery_read_error(struct r10bio *r10_bio)
2045 {
2046 	/* We got a read error during recovery.
2047 	 * We repeat the read in smaller page-sized sections.
2048 	 * If a read succeeds, write it to the new device or record
2049 	 * a bad block if we cannot.
2050 	 * If a read fails, record a bad block on both old and
2051 	 * new devices.
2052 	 */
2053 	struct mddev *mddev = r10_bio->mddev;
2054 	struct r10conf *conf = mddev->private;
2055 	struct bio *bio = r10_bio->devs[0].bio;
2056 	sector_t sect = 0;
2057 	int sectors = r10_bio->sectors;
2058 	int idx = 0;
2059 	int dr = r10_bio->devs[0].devnum;
2060 	int dw = r10_bio->devs[1].devnum;
2061 
2062 	while (sectors) {
2063 		int s = sectors;
2064 		struct md_rdev *rdev;
2065 		sector_t addr;
2066 		int ok;
2067 
2068 		if (s > (PAGE_SIZE>>9))
2069 			s = PAGE_SIZE >> 9;
2070 
2071 		rdev = conf->mirrors[dr].rdev;
2072 		addr = r10_bio->devs[0].addr + sect,
2073 		ok = sync_page_io(rdev,
2074 				  addr,
2075 				  s << 9,
2076 				  bio->bi_io_vec[idx].bv_page,
2077 				  READ, false);
2078 		if (ok) {
2079 			rdev = conf->mirrors[dw].rdev;
2080 			addr = r10_bio->devs[1].addr + sect;
2081 			ok = sync_page_io(rdev,
2082 					  addr,
2083 					  s << 9,
2084 					  bio->bi_io_vec[idx].bv_page,
2085 					  WRITE, false);
2086 			if (!ok) {
2087 				set_bit(WriteErrorSeen, &rdev->flags);
2088 				if (!test_and_set_bit(WantReplacement,
2089 						      &rdev->flags))
2090 					set_bit(MD_RECOVERY_NEEDED,
2091 						&rdev->mddev->recovery);
2092 			}
2093 		}
2094 		if (!ok) {
2095 			/* We don't worry if we cannot set a bad block -
2096 			 * it really is bad so there is no loss in not
2097 			 * recording it yet
2098 			 */
2099 			rdev_set_badblocks(rdev, addr, s, 0);
2100 
2101 			if (rdev != conf->mirrors[dw].rdev) {
2102 				/* need bad block on destination too */
2103 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2104 				addr = r10_bio->devs[1].addr + sect;
2105 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2106 				if (!ok) {
2107 					/* just abort the recovery */
2108 					printk(KERN_NOTICE
2109 					       "md/raid10:%s: recovery aborted"
2110 					       " due to read error\n",
2111 					       mdname(mddev));
2112 
2113 					conf->mirrors[dw].recovery_disabled
2114 						= mddev->recovery_disabled;
2115 					set_bit(MD_RECOVERY_INTR,
2116 						&mddev->recovery);
2117 					break;
2118 				}
2119 			}
2120 		}
2121 
2122 		sectors -= s;
2123 		sect += s;
2124 		idx++;
2125 	}
2126 }
2127 
2128 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2129 {
2130 	struct r10conf *conf = mddev->private;
2131 	int d;
2132 	struct bio *wbio, *wbio2;
2133 
2134 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2135 		fix_recovery_read_error(r10_bio);
2136 		end_sync_request(r10_bio);
2137 		return;
2138 	}
2139 
2140 	/*
2141 	 * share the pages with the first bio
2142 	 * and submit the write request
2143 	 */
2144 	d = r10_bio->devs[1].devnum;
2145 	wbio = r10_bio->devs[1].bio;
2146 	wbio2 = r10_bio->devs[1].repl_bio;
2147 	/* Need to test wbio2->bi_end_io before we call
2148 	 * generic_make_request as if the former is NULL,
2149 	 * the latter is free to free wbio2.
2150 	 */
2151 	if (wbio2 && !wbio2->bi_end_io)
2152 		wbio2 = NULL;
2153 	if (wbio->bi_end_io) {
2154 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2155 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2156 		generic_make_request(wbio);
2157 	}
2158 	if (wbio2) {
2159 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2160 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2161 			     bio_sectors(wbio2));
2162 		generic_make_request(wbio2);
2163 	}
2164 }
2165 
2166 /*
2167  * Used by fix_read_error() to decay the per rdev read_errors.
2168  * We halve the read error count for every hour that has elapsed
2169  * since the last recorded read error.
2170  *
2171  */
2172 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2173 {
2174 	struct timespec cur_time_mon;
2175 	unsigned long hours_since_last;
2176 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2177 
2178 	ktime_get_ts(&cur_time_mon);
2179 
2180 	if (rdev->last_read_error.tv_sec == 0 &&
2181 	    rdev->last_read_error.tv_nsec == 0) {
2182 		/* first time we've seen a read error */
2183 		rdev->last_read_error = cur_time_mon;
2184 		return;
2185 	}
2186 
2187 	hours_since_last = (cur_time_mon.tv_sec -
2188 			    rdev->last_read_error.tv_sec) / 3600;
2189 
2190 	rdev->last_read_error = cur_time_mon;
2191 
2192 	/*
2193 	 * if hours_since_last is > the number of bits in read_errors
2194 	 * just set read errors to 0. We do this to avoid
2195 	 * overflowing the shift of read_errors by hours_since_last.
2196 	 */
2197 	if (hours_since_last >= 8 * sizeof(read_errors))
2198 		atomic_set(&rdev->read_errors, 0);
2199 	else
2200 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2201 }
2202 
2203 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2204 			    int sectors, struct page *page, int rw)
2205 {
2206 	sector_t first_bad;
2207 	int bad_sectors;
2208 
2209 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2210 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2211 		return -1;
2212 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2213 		/* success */
2214 		return 1;
2215 	if (rw == WRITE) {
2216 		set_bit(WriteErrorSeen, &rdev->flags);
2217 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2218 			set_bit(MD_RECOVERY_NEEDED,
2219 				&rdev->mddev->recovery);
2220 	}
2221 	/* need to record an error - either for the block or the device */
2222 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2223 		md_error(rdev->mddev, rdev);
2224 	return 0;
2225 }
2226 
2227 /*
2228  * This is a kernel thread which:
2229  *
2230  *	1.	Retries failed read operations on working mirrors.
2231  *	2.	Updates the raid superblock when problems encounter.
2232  *	3.	Performs writes following reads for array synchronising.
2233  */
2234 
2235 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2236 {
2237 	int sect = 0; /* Offset from r10_bio->sector */
2238 	int sectors = r10_bio->sectors;
2239 	struct md_rdev*rdev;
2240 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2241 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2242 
2243 	/* still own a reference to this rdev, so it cannot
2244 	 * have been cleared recently.
2245 	 */
2246 	rdev = conf->mirrors[d].rdev;
2247 
2248 	if (test_bit(Faulty, &rdev->flags))
2249 		/* drive has already been failed, just ignore any
2250 		   more fix_read_error() attempts */
2251 		return;
2252 
2253 	check_decay_read_errors(mddev, rdev);
2254 	atomic_inc(&rdev->read_errors);
2255 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2256 		char b[BDEVNAME_SIZE];
2257 		bdevname(rdev->bdev, b);
2258 
2259 		printk(KERN_NOTICE
2260 		       "md/raid10:%s: %s: Raid device exceeded "
2261 		       "read_error threshold [cur %d:max %d]\n",
2262 		       mdname(mddev), b,
2263 		       atomic_read(&rdev->read_errors), max_read_errors);
2264 		printk(KERN_NOTICE
2265 		       "md/raid10:%s: %s: Failing raid device\n",
2266 		       mdname(mddev), b);
2267 		md_error(mddev, conf->mirrors[d].rdev);
2268 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2269 		return;
2270 	}
2271 
2272 	while(sectors) {
2273 		int s = sectors;
2274 		int sl = r10_bio->read_slot;
2275 		int success = 0;
2276 		int start;
2277 
2278 		if (s > (PAGE_SIZE>>9))
2279 			s = PAGE_SIZE >> 9;
2280 
2281 		rcu_read_lock();
2282 		do {
2283 			sector_t first_bad;
2284 			int bad_sectors;
2285 
2286 			d = r10_bio->devs[sl].devnum;
2287 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2288 			if (rdev &&
2289 			    test_bit(In_sync, &rdev->flags) &&
2290 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2291 					&first_bad, &bad_sectors) == 0) {
2292 				atomic_inc(&rdev->nr_pending);
2293 				rcu_read_unlock();
2294 				success = sync_page_io(rdev,
2295 						       r10_bio->devs[sl].addr +
2296 						       sect,
2297 						       s<<9,
2298 						       conf->tmppage, READ, false);
2299 				rdev_dec_pending(rdev, mddev);
2300 				rcu_read_lock();
2301 				if (success)
2302 					break;
2303 			}
2304 			sl++;
2305 			if (sl == conf->copies)
2306 				sl = 0;
2307 		} while (!success && sl != r10_bio->read_slot);
2308 		rcu_read_unlock();
2309 
2310 		if (!success) {
2311 			/* Cannot read from anywhere, just mark the block
2312 			 * as bad on the first device to discourage future
2313 			 * reads.
2314 			 */
2315 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2316 			rdev = conf->mirrors[dn].rdev;
2317 
2318 			if (!rdev_set_badblocks(
2319 				    rdev,
2320 				    r10_bio->devs[r10_bio->read_slot].addr
2321 				    + sect,
2322 				    s, 0)) {
2323 				md_error(mddev, rdev);
2324 				r10_bio->devs[r10_bio->read_slot].bio
2325 					= IO_BLOCKED;
2326 			}
2327 			break;
2328 		}
2329 
2330 		start = sl;
2331 		/* write it back and re-read */
2332 		rcu_read_lock();
2333 		while (sl != r10_bio->read_slot) {
2334 			char b[BDEVNAME_SIZE];
2335 
2336 			if (sl==0)
2337 				sl = conf->copies;
2338 			sl--;
2339 			d = r10_bio->devs[sl].devnum;
2340 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2341 			if (!rdev ||
2342 			    !test_bit(In_sync, &rdev->flags))
2343 				continue;
2344 
2345 			atomic_inc(&rdev->nr_pending);
2346 			rcu_read_unlock();
2347 			if (r10_sync_page_io(rdev,
2348 					     r10_bio->devs[sl].addr +
2349 					     sect,
2350 					     s, conf->tmppage, WRITE)
2351 			    == 0) {
2352 				/* Well, this device is dead */
2353 				printk(KERN_NOTICE
2354 				       "md/raid10:%s: read correction "
2355 				       "write failed"
2356 				       " (%d sectors at %llu on %s)\n",
2357 				       mdname(mddev), s,
2358 				       (unsigned long long)(
2359 					       sect +
2360 					       choose_data_offset(r10_bio,
2361 								  rdev)),
2362 				       bdevname(rdev->bdev, b));
2363 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2364 				       "drive\n",
2365 				       mdname(mddev),
2366 				       bdevname(rdev->bdev, b));
2367 			}
2368 			rdev_dec_pending(rdev, mddev);
2369 			rcu_read_lock();
2370 		}
2371 		sl = start;
2372 		while (sl != r10_bio->read_slot) {
2373 			char b[BDEVNAME_SIZE];
2374 
2375 			if (sl==0)
2376 				sl = conf->copies;
2377 			sl--;
2378 			d = r10_bio->devs[sl].devnum;
2379 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2380 			if (!rdev ||
2381 			    !test_bit(In_sync, &rdev->flags))
2382 				continue;
2383 
2384 			atomic_inc(&rdev->nr_pending);
2385 			rcu_read_unlock();
2386 			switch (r10_sync_page_io(rdev,
2387 					     r10_bio->devs[sl].addr +
2388 					     sect,
2389 					     s, conf->tmppage,
2390 						 READ)) {
2391 			case 0:
2392 				/* Well, this device is dead */
2393 				printk(KERN_NOTICE
2394 				       "md/raid10:%s: unable to read back "
2395 				       "corrected sectors"
2396 				       " (%d sectors at %llu on %s)\n",
2397 				       mdname(mddev), s,
2398 				       (unsigned long long)(
2399 					       sect +
2400 					       choose_data_offset(r10_bio, rdev)),
2401 				       bdevname(rdev->bdev, b));
2402 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2403 				       "drive\n",
2404 				       mdname(mddev),
2405 				       bdevname(rdev->bdev, b));
2406 				break;
2407 			case 1:
2408 				printk(KERN_INFO
2409 				       "md/raid10:%s: read error corrected"
2410 				       " (%d sectors at %llu on %s)\n",
2411 				       mdname(mddev), s,
2412 				       (unsigned long long)(
2413 					       sect +
2414 					       choose_data_offset(r10_bio, rdev)),
2415 				       bdevname(rdev->bdev, b));
2416 				atomic_add(s, &rdev->corrected_errors);
2417 			}
2418 
2419 			rdev_dec_pending(rdev, mddev);
2420 			rcu_read_lock();
2421 		}
2422 		rcu_read_unlock();
2423 
2424 		sectors -= s;
2425 		sect += s;
2426 	}
2427 }
2428 
2429 static int narrow_write_error(struct r10bio *r10_bio, int i)
2430 {
2431 	struct bio *bio = r10_bio->master_bio;
2432 	struct mddev *mddev = r10_bio->mddev;
2433 	struct r10conf *conf = mddev->private;
2434 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2435 	/* bio has the data to be written to slot 'i' where
2436 	 * we just recently had a write error.
2437 	 * We repeatedly clone the bio and trim down to one block,
2438 	 * then try the write.  Where the write fails we record
2439 	 * a bad block.
2440 	 * It is conceivable that the bio doesn't exactly align with
2441 	 * blocks.  We must handle this.
2442 	 *
2443 	 * We currently own a reference to the rdev.
2444 	 */
2445 
2446 	int block_sectors;
2447 	sector_t sector;
2448 	int sectors;
2449 	int sect_to_write = r10_bio->sectors;
2450 	int ok = 1;
2451 
2452 	if (rdev->badblocks.shift < 0)
2453 		return 0;
2454 
2455 	block_sectors = roundup(1 << rdev->badblocks.shift,
2456 				bdev_logical_block_size(rdev->bdev) >> 9);
2457 	sector = r10_bio->sector;
2458 	sectors = ((r10_bio->sector + block_sectors)
2459 		   & ~(sector_t)(block_sectors - 1))
2460 		- sector;
2461 
2462 	while (sect_to_write) {
2463 		struct bio *wbio;
2464 		if (sectors > sect_to_write)
2465 			sectors = sect_to_write;
2466 		/* Write at 'sector' for 'sectors' */
2467 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2468 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2469 		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2470 				   choose_data_offset(r10_bio, rdev) +
2471 				   (sector - r10_bio->sector));
2472 		wbio->bi_bdev = rdev->bdev;
2473 		if (submit_bio_wait(WRITE, wbio) < 0)
2474 			/* Failure! */
2475 			ok = rdev_set_badblocks(rdev, sector,
2476 						sectors, 0)
2477 				&& ok;
2478 
2479 		bio_put(wbio);
2480 		sect_to_write -= sectors;
2481 		sector += sectors;
2482 		sectors = block_sectors;
2483 	}
2484 	return ok;
2485 }
2486 
2487 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2488 {
2489 	int slot = r10_bio->read_slot;
2490 	struct bio *bio;
2491 	struct r10conf *conf = mddev->private;
2492 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2493 	char b[BDEVNAME_SIZE];
2494 	unsigned long do_sync;
2495 	int max_sectors;
2496 
2497 	/* we got a read error. Maybe the drive is bad.  Maybe just
2498 	 * the block and we can fix it.
2499 	 * We freeze all other IO, and try reading the block from
2500 	 * other devices.  When we find one, we re-write
2501 	 * and check it that fixes the read error.
2502 	 * This is all done synchronously while the array is
2503 	 * frozen.
2504 	 */
2505 	bio = r10_bio->devs[slot].bio;
2506 	bdevname(bio->bi_bdev, b);
2507 	bio_put(bio);
2508 	r10_bio->devs[slot].bio = NULL;
2509 
2510 	if (mddev->ro == 0) {
2511 		freeze_array(conf, 1);
2512 		fix_read_error(conf, mddev, r10_bio);
2513 		unfreeze_array(conf);
2514 	} else
2515 		r10_bio->devs[slot].bio = IO_BLOCKED;
2516 
2517 	rdev_dec_pending(rdev, mddev);
2518 
2519 read_more:
2520 	rdev = read_balance(conf, r10_bio, &max_sectors);
2521 	if (rdev == NULL) {
2522 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2523 		       " read error for block %llu\n",
2524 		       mdname(mddev), b,
2525 		       (unsigned long long)r10_bio->sector);
2526 		raid_end_bio_io(r10_bio);
2527 		return;
2528 	}
2529 
2530 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2531 	slot = r10_bio->read_slot;
2532 	printk_ratelimited(
2533 		KERN_ERR
2534 		"md/raid10:%s: %s: redirecting "
2535 		"sector %llu to another mirror\n",
2536 		mdname(mddev),
2537 		bdevname(rdev->bdev, b),
2538 		(unsigned long long)r10_bio->sector);
2539 	bio = bio_clone_mddev(r10_bio->master_bio,
2540 			      GFP_NOIO, mddev);
2541 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2542 	r10_bio->devs[slot].bio = bio;
2543 	r10_bio->devs[slot].rdev = rdev;
2544 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2545 		+ choose_data_offset(r10_bio, rdev);
2546 	bio->bi_bdev = rdev->bdev;
2547 	bio->bi_rw = READ | do_sync;
2548 	bio->bi_private = r10_bio;
2549 	bio->bi_end_io = raid10_end_read_request;
2550 	if (max_sectors < r10_bio->sectors) {
2551 		/* Drat - have to split this up more */
2552 		struct bio *mbio = r10_bio->master_bio;
2553 		int sectors_handled =
2554 			r10_bio->sector + max_sectors
2555 			- mbio->bi_iter.bi_sector;
2556 		r10_bio->sectors = max_sectors;
2557 		spin_lock_irq(&conf->device_lock);
2558 		if (mbio->bi_phys_segments == 0)
2559 			mbio->bi_phys_segments = 2;
2560 		else
2561 			mbio->bi_phys_segments++;
2562 		spin_unlock_irq(&conf->device_lock);
2563 		generic_make_request(bio);
2564 
2565 		r10_bio = mempool_alloc(conf->r10bio_pool,
2566 					GFP_NOIO);
2567 		r10_bio->master_bio = mbio;
2568 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2569 		r10_bio->state = 0;
2570 		set_bit(R10BIO_ReadError,
2571 			&r10_bio->state);
2572 		r10_bio->mddev = mddev;
2573 		r10_bio->sector = mbio->bi_iter.bi_sector
2574 			+ sectors_handled;
2575 
2576 		goto read_more;
2577 	} else
2578 		generic_make_request(bio);
2579 }
2580 
2581 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2582 {
2583 	/* Some sort of write request has finished and it
2584 	 * succeeded in writing where we thought there was a
2585 	 * bad block.  So forget the bad block.
2586 	 * Or possibly if failed and we need to record
2587 	 * a bad block.
2588 	 */
2589 	int m;
2590 	struct md_rdev *rdev;
2591 
2592 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2593 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2594 		for (m = 0; m < conf->copies; m++) {
2595 			int dev = r10_bio->devs[m].devnum;
2596 			rdev = conf->mirrors[dev].rdev;
2597 			if (r10_bio->devs[m].bio == NULL)
2598 				continue;
2599 			if (!r10_bio->devs[m].bio->bi_error) {
2600 				rdev_clear_badblocks(
2601 					rdev,
2602 					r10_bio->devs[m].addr,
2603 					r10_bio->sectors, 0);
2604 			} else {
2605 				if (!rdev_set_badblocks(
2606 					    rdev,
2607 					    r10_bio->devs[m].addr,
2608 					    r10_bio->sectors, 0))
2609 					md_error(conf->mddev, rdev);
2610 			}
2611 			rdev = conf->mirrors[dev].replacement;
2612 			if (r10_bio->devs[m].repl_bio == NULL)
2613 				continue;
2614 
2615 			if (!r10_bio->devs[m].repl_bio->bi_error) {
2616 				rdev_clear_badblocks(
2617 					rdev,
2618 					r10_bio->devs[m].addr,
2619 					r10_bio->sectors, 0);
2620 			} else {
2621 				if (!rdev_set_badblocks(
2622 					    rdev,
2623 					    r10_bio->devs[m].addr,
2624 					    r10_bio->sectors, 0))
2625 					md_error(conf->mddev, rdev);
2626 			}
2627 		}
2628 		put_buf(r10_bio);
2629 	} else {
2630 		bool fail = false;
2631 		for (m = 0; m < conf->copies; m++) {
2632 			int dev = r10_bio->devs[m].devnum;
2633 			struct bio *bio = r10_bio->devs[m].bio;
2634 			rdev = conf->mirrors[dev].rdev;
2635 			if (bio == IO_MADE_GOOD) {
2636 				rdev_clear_badblocks(
2637 					rdev,
2638 					r10_bio->devs[m].addr,
2639 					r10_bio->sectors, 0);
2640 				rdev_dec_pending(rdev, conf->mddev);
2641 			} else if (bio != NULL && bio->bi_error) {
2642 				fail = true;
2643 				if (!narrow_write_error(r10_bio, m)) {
2644 					md_error(conf->mddev, rdev);
2645 					set_bit(R10BIO_Degraded,
2646 						&r10_bio->state);
2647 				}
2648 				rdev_dec_pending(rdev, conf->mddev);
2649 			}
2650 			bio = r10_bio->devs[m].repl_bio;
2651 			rdev = conf->mirrors[dev].replacement;
2652 			if (rdev && bio == IO_MADE_GOOD) {
2653 				rdev_clear_badblocks(
2654 					rdev,
2655 					r10_bio->devs[m].addr,
2656 					r10_bio->sectors, 0);
2657 				rdev_dec_pending(rdev, conf->mddev);
2658 			}
2659 		}
2660 		if (fail) {
2661 			spin_lock_irq(&conf->device_lock);
2662 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2663 			spin_unlock_irq(&conf->device_lock);
2664 			md_wakeup_thread(conf->mddev->thread);
2665 		} else {
2666 			if (test_bit(R10BIO_WriteError,
2667 				     &r10_bio->state))
2668 				close_write(r10_bio);
2669 			raid_end_bio_io(r10_bio);
2670 		}
2671 	}
2672 }
2673 
2674 static void raid10d(struct md_thread *thread)
2675 {
2676 	struct mddev *mddev = thread->mddev;
2677 	struct r10bio *r10_bio;
2678 	unsigned long flags;
2679 	struct r10conf *conf = mddev->private;
2680 	struct list_head *head = &conf->retry_list;
2681 	struct blk_plug plug;
2682 
2683 	md_check_recovery(mddev);
2684 
2685 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2686 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2687 		LIST_HEAD(tmp);
2688 		spin_lock_irqsave(&conf->device_lock, flags);
2689 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2690 			list_add(&tmp, &conf->bio_end_io_list);
2691 			list_del_init(&conf->bio_end_io_list);
2692 		}
2693 		spin_unlock_irqrestore(&conf->device_lock, flags);
2694 		while (!list_empty(&tmp)) {
2695 			r10_bio = list_first_entry(&tmp, struct r10bio,
2696 						   retry_list);
2697 			list_del(&r10_bio->retry_list);
2698 			if (mddev->degraded)
2699 				set_bit(R10BIO_Degraded, &r10_bio->state);
2700 
2701 			if (test_bit(R10BIO_WriteError,
2702 				     &r10_bio->state))
2703 				close_write(r10_bio);
2704 			raid_end_bio_io(r10_bio);
2705 		}
2706 	}
2707 
2708 	blk_start_plug(&plug);
2709 	for (;;) {
2710 
2711 		flush_pending_writes(conf);
2712 
2713 		spin_lock_irqsave(&conf->device_lock, flags);
2714 		if (list_empty(head)) {
2715 			spin_unlock_irqrestore(&conf->device_lock, flags);
2716 			break;
2717 		}
2718 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2719 		list_del(head->prev);
2720 		conf->nr_queued--;
2721 		spin_unlock_irqrestore(&conf->device_lock, flags);
2722 
2723 		mddev = r10_bio->mddev;
2724 		conf = mddev->private;
2725 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2726 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2727 			handle_write_completed(conf, r10_bio);
2728 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2729 			reshape_request_write(mddev, r10_bio);
2730 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2731 			sync_request_write(mddev, r10_bio);
2732 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2733 			recovery_request_write(mddev, r10_bio);
2734 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2735 			handle_read_error(mddev, r10_bio);
2736 		else {
2737 			/* just a partial read to be scheduled from a
2738 			 * separate context
2739 			 */
2740 			int slot = r10_bio->read_slot;
2741 			generic_make_request(r10_bio->devs[slot].bio);
2742 		}
2743 
2744 		cond_resched();
2745 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2746 			md_check_recovery(mddev);
2747 	}
2748 	blk_finish_plug(&plug);
2749 }
2750 
2751 static int init_resync(struct r10conf *conf)
2752 {
2753 	int buffs;
2754 	int i;
2755 
2756 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2757 	BUG_ON(conf->r10buf_pool);
2758 	conf->have_replacement = 0;
2759 	for (i = 0; i < conf->geo.raid_disks; i++)
2760 		if (conf->mirrors[i].replacement)
2761 			conf->have_replacement = 1;
2762 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2763 	if (!conf->r10buf_pool)
2764 		return -ENOMEM;
2765 	conf->next_resync = 0;
2766 	return 0;
2767 }
2768 
2769 /*
2770  * perform a "sync" on one "block"
2771  *
2772  * We need to make sure that no normal I/O request - particularly write
2773  * requests - conflict with active sync requests.
2774  *
2775  * This is achieved by tracking pending requests and a 'barrier' concept
2776  * that can be installed to exclude normal IO requests.
2777  *
2778  * Resync and recovery are handled very differently.
2779  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2780  *
2781  * For resync, we iterate over virtual addresses, read all copies,
2782  * and update if there are differences.  If only one copy is live,
2783  * skip it.
2784  * For recovery, we iterate over physical addresses, read a good
2785  * value for each non-in_sync drive, and over-write.
2786  *
2787  * So, for recovery we may have several outstanding complex requests for a
2788  * given address, one for each out-of-sync device.  We model this by allocating
2789  * a number of r10_bio structures, one for each out-of-sync device.
2790  * As we setup these structures, we collect all bio's together into a list
2791  * which we then process collectively to add pages, and then process again
2792  * to pass to generic_make_request.
2793  *
2794  * The r10_bio structures are linked using a borrowed master_bio pointer.
2795  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2796  * has its remaining count decremented to 0, the whole complex operation
2797  * is complete.
2798  *
2799  */
2800 
2801 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2802 			     int *skipped)
2803 {
2804 	struct r10conf *conf = mddev->private;
2805 	struct r10bio *r10_bio;
2806 	struct bio *biolist = NULL, *bio;
2807 	sector_t max_sector, nr_sectors;
2808 	int i;
2809 	int max_sync;
2810 	sector_t sync_blocks;
2811 	sector_t sectors_skipped = 0;
2812 	int chunks_skipped = 0;
2813 	sector_t chunk_mask = conf->geo.chunk_mask;
2814 
2815 	if (!conf->r10buf_pool)
2816 		if (init_resync(conf))
2817 			return 0;
2818 
2819 	/*
2820 	 * Allow skipping a full rebuild for incremental assembly
2821 	 * of a clean array, like RAID1 does.
2822 	 */
2823 	if (mddev->bitmap == NULL &&
2824 	    mddev->recovery_cp == MaxSector &&
2825 	    mddev->reshape_position == MaxSector &&
2826 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2827 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2828 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2829 	    conf->fullsync == 0) {
2830 		*skipped = 1;
2831 		return mddev->dev_sectors - sector_nr;
2832 	}
2833 
2834  skipped:
2835 	max_sector = mddev->dev_sectors;
2836 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2837 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2838 		max_sector = mddev->resync_max_sectors;
2839 	if (sector_nr >= max_sector) {
2840 		/* If we aborted, we need to abort the
2841 		 * sync on the 'current' bitmap chucks (there can
2842 		 * be several when recovering multiple devices).
2843 		 * as we may have started syncing it but not finished.
2844 		 * We can find the current address in
2845 		 * mddev->curr_resync, but for recovery,
2846 		 * we need to convert that to several
2847 		 * virtual addresses.
2848 		 */
2849 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2850 			end_reshape(conf);
2851 			close_sync(conf);
2852 			return 0;
2853 		}
2854 
2855 		if (mddev->curr_resync < max_sector) { /* aborted */
2856 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2857 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2858 						&sync_blocks, 1);
2859 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2860 				sector_t sect =
2861 					raid10_find_virt(conf, mddev->curr_resync, i);
2862 				bitmap_end_sync(mddev->bitmap, sect,
2863 						&sync_blocks, 1);
2864 			}
2865 		} else {
2866 			/* completed sync */
2867 			if ((!mddev->bitmap || conf->fullsync)
2868 			    && conf->have_replacement
2869 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2870 				/* Completed a full sync so the replacements
2871 				 * are now fully recovered.
2872 				 */
2873 				for (i = 0; i < conf->geo.raid_disks; i++)
2874 					if (conf->mirrors[i].replacement)
2875 						conf->mirrors[i].replacement
2876 							->recovery_offset
2877 							= MaxSector;
2878 			}
2879 			conf->fullsync = 0;
2880 		}
2881 		bitmap_close_sync(mddev->bitmap);
2882 		close_sync(conf);
2883 		*skipped = 1;
2884 		return sectors_skipped;
2885 	}
2886 
2887 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2888 		return reshape_request(mddev, sector_nr, skipped);
2889 
2890 	if (chunks_skipped >= conf->geo.raid_disks) {
2891 		/* if there has been nothing to do on any drive,
2892 		 * then there is nothing to do at all..
2893 		 */
2894 		*skipped = 1;
2895 		return (max_sector - sector_nr) + sectors_skipped;
2896 	}
2897 
2898 	if (max_sector > mddev->resync_max)
2899 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2900 
2901 	/* make sure whole request will fit in a chunk - if chunks
2902 	 * are meaningful
2903 	 */
2904 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2905 	    max_sector > (sector_nr | chunk_mask))
2906 		max_sector = (sector_nr | chunk_mask) + 1;
2907 
2908 	/* Again, very different code for resync and recovery.
2909 	 * Both must result in an r10bio with a list of bios that
2910 	 * have bi_end_io, bi_sector, bi_bdev set,
2911 	 * and bi_private set to the r10bio.
2912 	 * For recovery, we may actually create several r10bios
2913 	 * with 2 bios in each, that correspond to the bios in the main one.
2914 	 * In this case, the subordinate r10bios link back through a
2915 	 * borrowed master_bio pointer, and the counter in the master
2916 	 * includes a ref from each subordinate.
2917 	 */
2918 	/* First, we decide what to do and set ->bi_end_io
2919 	 * To end_sync_read if we want to read, and
2920 	 * end_sync_write if we will want to write.
2921 	 */
2922 
2923 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2924 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2925 		/* recovery... the complicated one */
2926 		int j;
2927 		r10_bio = NULL;
2928 
2929 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2930 			int still_degraded;
2931 			struct r10bio *rb2;
2932 			sector_t sect;
2933 			int must_sync;
2934 			int any_working;
2935 			struct raid10_info *mirror = &conf->mirrors[i];
2936 
2937 			if ((mirror->rdev == NULL ||
2938 			     test_bit(In_sync, &mirror->rdev->flags))
2939 			    &&
2940 			    (mirror->replacement == NULL ||
2941 			     test_bit(Faulty,
2942 				      &mirror->replacement->flags)))
2943 				continue;
2944 
2945 			still_degraded = 0;
2946 			/* want to reconstruct this device */
2947 			rb2 = r10_bio;
2948 			sect = raid10_find_virt(conf, sector_nr, i);
2949 			if (sect >= mddev->resync_max_sectors) {
2950 				/* last stripe is not complete - don't
2951 				 * try to recover this sector.
2952 				 */
2953 				continue;
2954 			}
2955 			/* Unless we are doing a full sync, or a replacement
2956 			 * we only need to recover the block if it is set in
2957 			 * the bitmap
2958 			 */
2959 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2960 						      &sync_blocks, 1);
2961 			if (sync_blocks < max_sync)
2962 				max_sync = sync_blocks;
2963 			if (!must_sync &&
2964 			    mirror->replacement == NULL &&
2965 			    !conf->fullsync) {
2966 				/* yep, skip the sync_blocks here, but don't assume
2967 				 * that there will never be anything to do here
2968 				 */
2969 				chunks_skipped = -1;
2970 				continue;
2971 			}
2972 
2973 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2974 			r10_bio->state = 0;
2975 			raise_barrier(conf, rb2 != NULL);
2976 			atomic_set(&r10_bio->remaining, 0);
2977 
2978 			r10_bio->master_bio = (struct bio*)rb2;
2979 			if (rb2)
2980 				atomic_inc(&rb2->remaining);
2981 			r10_bio->mddev = mddev;
2982 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2983 			r10_bio->sector = sect;
2984 
2985 			raid10_find_phys(conf, r10_bio);
2986 
2987 			/* Need to check if the array will still be
2988 			 * degraded
2989 			 */
2990 			for (j = 0; j < conf->geo.raid_disks; j++)
2991 				if (conf->mirrors[j].rdev == NULL ||
2992 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2993 					still_degraded = 1;
2994 					break;
2995 				}
2996 
2997 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2998 						      &sync_blocks, still_degraded);
2999 
3000 			any_working = 0;
3001 			for (j=0; j<conf->copies;j++) {
3002 				int k;
3003 				int d = r10_bio->devs[j].devnum;
3004 				sector_t from_addr, to_addr;
3005 				struct md_rdev *rdev;
3006 				sector_t sector, first_bad;
3007 				int bad_sectors;
3008 				if (!conf->mirrors[d].rdev ||
3009 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3010 					continue;
3011 				/* This is where we read from */
3012 				any_working = 1;
3013 				rdev = conf->mirrors[d].rdev;
3014 				sector = r10_bio->devs[j].addr;
3015 
3016 				if (is_badblock(rdev, sector, max_sync,
3017 						&first_bad, &bad_sectors)) {
3018 					if (first_bad > sector)
3019 						max_sync = first_bad - sector;
3020 					else {
3021 						bad_sectors -= (sector
3022 								- first_bad);
3023 						if (max_sync > bad_sectors)
3024 							max_sync = bad_sectors;
3025 						continue;
3026 					}
3027 				}
3028 				bio = r10_bio->devs[0].bio;
3029 				bio_reset(bio);
3030 				bio->bi_next = biolist;
3031 				biolist = bio;
3032 				bio->bi_private = r10_bio;
3033 				bio->bi_end_io = end_sync_read;
3034 				bio->bi_rw = READ;
3035 				from_addr = r10_bio->devs[j].addr;
3036 				bio->bi_iter.bi_sector = from_addr +
3037 					rdev->data_offset;
3038 				bio->bi_bdev = rdev->bdev;
3039 				atomic_inc(&rdev->nr_pending);
3040 				/* and we write to 'i' (if not in_sync) */
3041 
3042 				for (k=0; k<conf->copies; k++)
3043 					if (r10_bio->devs[k].devnum == i)
3044 						break;
3045 				BUG_ON(k == conf->copies);
3046 				to_addr = r10_bio->devs[k].addr;
3047 				r10_bio->devs[0].devnum = d;
3048 				r10_bio->devs[0].addr = from_addr;
3049 				r10_bio->devs[1].devnum = i;
3050 				r10_bio->devs[1].addr = to_addr;
3051 
3052 				rdev = mirror->rdev;
3053 				if (!test_bit(In_sync, &rdev->flags)) {
3054 					bio = r10_bio->devs[1].bio;
3055 					bio_reset(bio);
3056 					bio->bi_next = biolist;
3057 					biolist = bio;
3058 					bio->bi_private = r10_bio;
3059 					bio->bi_end_io = end_sync_write;
3060 					bio->bi_rw = WRITE;
3061 					bio->bi_iter.bi_sector = to_addr
3062 						+ rdev->data_offset;
3063 					bio->bi_bdev = rdev->bdev;
3064 					atomic_inc(&r10_bio->remaining);
3065 				} else
3066 					r10_bio->devs[1].bio->bi_end_io = NULL;
3067 
3068 				/* and maybe write to replacement */
3069 				bio = r10_bio->devs[1].repl_bio;
3070 				if (bio)
3071 					bio->bi_end_io = NULL;
3072 				rdev = mirror->replacement;
3073 				/* Note: if rdev != NULL, then bio
3074 				 * cannot be NULL as r10buf_pool_alloc will
3075 				 * have allocated it.
3076 				 * So the second test here is pointless.
3077 				 * But it keeps semantic-checkers happy, and
3078 				 * this comment keeps human reviewers
3079 				 * happy.
3080 				 */
3081 				if (rdev == NULL || bio == NULL ||
3082 				    test_bit(Faulty, &rdev->flags))
3083 					break;
3084 				bio_reset(bio);
3085 				bio->bi_next = biolist;
3086 				biolist = bio;
3087 				bio->bi_private = r10_bio;
3088 				bio->bi_end_io = end_sync_write;
3089 				bio->bi_rw = WRITE;
3090 				bio->bi_iter.bi_sector = to_addr +
3091 					rdev->data_offset;
3092 				bio->bi_bdev = rdev->bdev;
3093 				atomic_inc(&r10_bio->remaining);
3094 				break;
3095 			}
3096 			if (j == conf->copies) {
3097 				/* Cannot recover, so abort the recovery or
3098 				 * record a bad block */
3099 				if (any_working) {
3100 					/* problem is that there are bad blocks
3101 					 * on other device(s)
3102 					 */
3103 					int k;
3104 					for (k = 0; k < conf->copies; k++)
3105 						if (r10_bio->devs[k].devnum == i)
3106 							break;
3107 					if (!test_bit(In_sync,
3108 						      &mirror->rdev->flags)
3109 					    && !rdev_set_badblocks(
3110 						    mirror->rdev,
3111 						    r10_bio->devs[k].addr,
3112 						    max_sync, 0))
3113 						any_working = 0;
3114 					if (mirror->replacement &&
3115 					    !rdev_set_badblocks(
3116 						    mirror->replacement,
3117 						    r10_bio->devs[k].addr,
3118 						    max_sync, 0))
3119 						any_working = 0;
3120 				}
3121 				if (!any_working)  {
3122 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3123 							      &mddev->recovery))
3124 						printk(KERN_INFO "md/raid10:%s: insufficient "
3125 						       "working devices for recovery.\n",
3126 						       mdname(mddev));
3127 					mirror->recovery_disabled
3128 						= mddev->recovery_disabled;
3129 				}
3130 				put_buf(r10_bio);
3131 				if (rb2)
3132 					atomic_dec(&rb2->remaining);
3133 				r10_bio = rb2;
3134 				break;
3135 			}
3136 		}
3137 		if (biolist == NULL) {
3138 			while (r10_bio) {
3139 				struct r10bio *rb2 = r10_bio;
3140 				r10_bio = (struct r10bio*) rb2->master_bio;
3141 				rb2->master_bio = NULL;
3142 				put_buf(rb2);
3143 			}
3144 			goto giveup;
3145 		}
3146 	} else {
3147 		/* resync. Schedule a read for every block at this virt offset */
3148 		int count = 0;
3149 
3150 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3151 
3152 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3153 				       &sync_blocks, mddev->degraded) &&
3154 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3155 						 &mddev->recovery)) {
3156 			/* We can skip this block */
3157 			*skipped = 1;
3158 			return sync_blocks + sectors_skipped;
3159 		}
3160 		if (sync_blocks < max_sync)
3161 			max_sync = sync_blocks;
3162 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3163 		r10_bio->state = 0;
3164 
3165 		r10_bio->mddev = mddev;
3166 		atomic_set(&r10_bio->remaining, 0);
3167 		raise_barrier(conf, 0);
3168 		conf->next_resync = sector_nr;
3169 
3170 		r10_bio->master_bio = NULL;
3171 		r10_bio->sector = sector_nr;
3172 		set_bit(R10BIO_IsSync, &r10_bio->state);
3173 		raid10_find_phys(conf, r10_bio);
3174 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3175 
3176 		for (i = 0; i < conf->copies; i++) {
3177 			int d = r10_bio->devs[i].devnum;
3178 			sector_t first_bad, sector;
3179 			int bad_sectors;
3180 
3181 			if (r10_bio->devs[i].repl_bio)
3182 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3183 
3184 			bio = r10_bio->devs[i].bio;
3185 			bio_reset(bio);
3186 			bio->bi_error = -EIO;
3187 			if (conf->mirrors[d].rdev == NULL ||
3188 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3189 				continue;
3190 			sector = r10_bio->devs[i].addr;
3191 			if (is_badblock(conf->mirrors[d].rdev,
3192 					sector, max_sync,
3193 					&first_bad, &bad_sectors)) {
3194 				if (first_bad > sector)
3195 					max_sync = first_bad - sector;
3196 				else {
3197 					bad_sectors -= (sector - first_bad);
3198 					if (max_sync > bad_sectors)
3199 						max_sync = bad_sectors;
3200 					continue;
3201 				}
3202 			}
3203 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3204 			atomic_inc(&r10_bio->remaining);
3205 			bio->bi_next = biolist;
3206 			biolist = bio;
3207 			bio->bi_private = r10_bio;
3208 			bio->bi_end_io = end_sync_read;
3209 			bio->bi_rw = READ;
3210 			bio->bi_iter.bi_sector = sector +
3211 				conf->mirrors[d].rdev->data_offset;
3212 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3213 			count++;
3214 
3215 			if (conf->mirrors[d].replacement == NULL ||
3216 			    test_bit(Faulty,
3217 				     &conf->mirrors[d].replacement->flags))
3218 				continue;
3219 
3220 			/* Need to set up for writing to the replacement */
3221 			bio = r10_bio->devs[i].repl_bio;
3222 			bio_reset(bio);
3223 			bio->bi_error = -EIO;
3224 
3225 			sector = r10_bio->devs[i].addr;
3226 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3227 			bio->bi_next = biolist;
3228 			biolist = bio;
3229 			bio->bi_private = r10_bio;
3230 			bio->bi_end_io = end_sync_write;
3231 			bio->bi_rw = WRITE;
3232 			bio->bi_iter.bi_sector = sector +
3233 				conf->mirrors[d].replacement->data_offset;
3234 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3235 			count++;
3236 		}
3237 
3238 		if (count < 2) {
3239 			for (i=0; i<conf->copies; i++) {
3240 				int d = r10_bio->devs[i].devnum;
3241 				if (r10_bio->devs[i].bio->bi_end_io)
3242 					rdev_dec_pending(conf->mirrors[d].rdev,
3243 							 mddev);
3244 				if (r10_bio->devs[i].repl_bio &&
3245 				    r10_bio->devs[i].repl_bio->bi_end_io)
3246 					rdev_dec_pending(
3247 						conf->mirrors[d].replacement,
3248 						mddev);
3249 			}
3250 			put_buf(r10_bio);
3251 			biolist = NULL;
3252 			goto giveup;
3253 		}
3254 	}
3255 
3256 	nr_sectors = 0;
3257 	if (sector_nr + max_sync < max_sector)
3258 		max_sector = sector_nr + max_sync;
3259 	do {
3260 		struct page *page;
3261 		int len = PAGE_SIZE;
3262 		if (sector_nr + (len>>9) > max_sector)
3263 			len = (max_sector - sector_nr) << 9;
3264 		if (len == 0)
3265 			break;
3266 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3267 			struct bio *bio2;
3268 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3269 			if (bio_add_page(bio, page, len, 0))
3270 				continue;
3271 
3272 			/* stop here */
3273 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3274 			for (bio2 = biolist;
3275 			     bio2 && bio2 != bio;
3276 			     bio2 = bio2->bi_next) {
3277 				/* remove last page from this bio */
3278 				bio2->bi_vcnt--;
3279 				bio2->bi_iter.bi_size -= len;
3280 				bio_clear_flag(bio2, BIO_SEG_VALID);
3281 			}
3282 			goto bio_full;
3283 		}
3284 		nr_sectors += len>>9;
3285 		sector_nr += len>>9;
3286 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3287  bio_full:
3288 	r10_bio->sectors = nr_sectors;
3289 
3290 	while (biolist) {
3291 		bio = biolist;
3292 		biolist = biolist->bi_next;
3293 
3294 		bio->bi_next = NULL;
3295 		r10_bio = bio->bi_private;
3296 		r10_bio->sectors = nr_sectors;
3297 
3298 		if (bio->bi_end_io == end_sync_read) {
3299 			md_sync_acct(bio->bi_bdev, nr_sectors);
3300 			bio->bi_error = 0;
3301 			generic_make_request(bio);
3302 		}
3303 	}
3304 
3305 	if (sectors_skipped)
3306 		/* pretend they weren't skipped, it makes
3307 		 * no important difference in this case
3308 		 */
3309 		md_done_sync(mddev, sectors_skipped, 1);
3310 
3311 	return sectors_skipped + nr_sectors;
3312  giveup:
3313 	/* There is nowhere to write, so all non-sync
3314 	 * drives must be failed or in resync, all drives
3315 	 * have a bad block, so try the next chunk...
3316 	 */
3317 	if (sector_nr + max_sync < max_sector)
3318 		max_sector = sector_nr + max_sync;
3319 
3320 	sectors_skipped += (max_sector - sector_nr);
3321 	chunks_skipped ++;
3322 	sector_nr = max_sector;
3323 	goto skipped;
3324 }
3325 
3326 static sector_t
3327 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3328 {
3329 	sector_t size;
3330 	struct r10conf *conf = mddev->private;
3331 
3332 	if (!raid_disks)
3333 		raid_disks = min(conf->geo.raid_disks,
3334 				 conf->prev.raid_disks);
3335 	if (!sectors)
3336 		sectors = conf->dev_sectors;
3337 
3338 	size = sectors >> conf->geo.chunk_shift;
3339 	sector_div(size, conf->geo.far_copies);
3340 	size = size * raid_disks;
3341 	sector_div(size, conf->geo.near_copies);
3342 
3343 	return size << conf->geo.chunk_shift;
3344 }
3345 
3346 static void calc_sectors(struct r10conf *conf, sector_t size)
3347 {
3348 	/* Calculate the number of sectors-per-device that will
3349 	 * actually be used, and set conf->dev_sectors and
3350 	 * conf->stride
3351 	 */
3352 
3353 	size = size >> conf->geo.chunk_shift;
3354 	sector_div(size, conf->geo.far_copies);
3355 	size = size * conf->geo.raid_disks;
3356 	sector_div(size, conf->geo.near_copies);
3357 	/* 'size' is now the number of chunks in the array */
3358 	/* calculate "used chunks per device" */
3359 	size = size * conf->copies;
3360 
3361 	/* We need to round up when dividing by raid_disks to
3362 	 * get the stride size.
3363 	 */
3364 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3365 
3366 	conf->dev_sectors = size << conf->geo.chunk_shift;
3367 
3368 	if (conf->geo.far_offset)
3369 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3370 	else {
3371 		sector_div(size, conf->geo.far_copies);
3372 		conf->geo.stride = size << conf->geo.chunk_shift;
3373 	}
3374 }
3375 
3376 enum geo_type {geo_new, geo_old, geo_start};
3377 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3378 {
3379 	int nc, fc, fo;
3380 	int layout, chunk, disks;
3381 	switch (new) {
3382 	case geo_old:
3383 		layout = mddev->layout;
3384 		chunk = mddev->chunk_sectors;
3385 		disks = mddev->raid_disks - mddev->delta_disks;
3386 		break;
3387 	case geo_new:
3388 		layout = mddev->new_layout;
3389 		chunk = mddev->new_chunk_sectors;
3390 		disks = mddev->raid_disks;
3391 		break;
3392 	default: /* avoid 'may be unused' warnings */
3393 	case geo_start: /* new when starting reshape - raid_disks not
3394 			 * updated yet. */
3395 		layout = mddev->new_layout;
3396 		chunk = mddev->new_chunk_sectors;
3397 		disks = mddev->raid_disks + mddev->delta_disks;
3398 		break;
3399 	}
3400 	if (layout >> 19)
3401 		return -1;
3402 	if (chunk < (PAGE_SIZE >> 9) ||
3403 	    !is_power_of_2(chunk))
3404 		return -2;
3405 	nc = layout & 255;
3406 	fc = (layout >> 8) & 255;
3407 	fo = layout & (1<<16);
3408 	geo->raid_disks = disks;
3409 	geo->near_copies = nc;
3410 	geo->far_copies = fc;
3411 	geo->far_offset = fo;
3412 	switch (layout >> 17) {
3413 	case 0:	/* original layout.  simple but not always optimal */
3414 		geo->far_set_size = disks;
3415 		break;
3416 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3417 		 * actually using this, but leave code here just in case.*/
3418 		geo->far_set_size = disks/fc;
3419 		WARN(geo->far_set_size < fc,
3420 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3421 		break;
3422 	case 2: /* "improved" layout fixed to match documentation */
3423 		geo->far_set_size = fc * nc;
3424 		break;
3425 	default: /* Not a valid layout */
3426 		return -1;
3427 	}
3428 	geo->chunk_mask = chunk - 1;
3429 	geo->chunk_shift = ffz(~chunk);
3430 	return nc*fc;
3431 }
3432 
3433 static struct r10conf *setup_conf(struct mddev *mddev)
3434 {
3435 	struct r10conf *conf = NULL;
3436 	int err = -EINVAL;
3437 	struct geom geo;
3438 	int copies;
3439 
3440 	copies = setup_geo(&geo, mddev, geo_new);
3441 
3442 	if (copies == -2) {
3443 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3444 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3445 		       mdname(mddev), PAGE_SIZE);
3446 		goto out;
3447 	}
3448 
3449 	if (copies < 2 || copies > mddev->raid_disks) {
3450 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3451 		       mdname(mddev), mddev->new_layout);
3452 		goto out;
3453 	}
3454 
3455 	err = -ENOMEM;
3456 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3457 	if (!conf)
3458 		goto out;
3459 
3460 	/* FIXME calc properly */
3461 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3462 							    max(0,-mddev->delta_disks)),
3463 				GFP_KERNEL);
3464 	if (!conf->mirrors)
3465 		goto out;
3466 
3467 	conf->tmppage = alloc_page(GFP_KERNEL);
3468 	if (!conf->tmppage)
3469 		goto out;
3470 
3471 	conf->geo = geo;
3472 	conf->copies = copies;
3473 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3474 					   r10bio_pool_free, conf);
3475 	if (!conf->r10bio_pool)
3476 		goto out;
3477 
3478 	calc_sectors(conf, mddev->dev_sectors);
3479 	if (mddev->reshape_position == MaxSector) {
3480 		conf->prev = conf->geo;
3481 		conf->reshape_progress = MaxSector;
3482 	} else {
3483 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3484 			err = -EINVAL;
3485 			goto out;
3486 		}
3487 		conf->reshape_progress = mddev->reshape_position;
3488 		if (conf->prev.far_offset)
3489 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3490 		else
3491 			/* far_copies must be 1 */
3492 			conf->prev.stride = conf->dev_sectors;
3493 	}
3494 	conf->reshape_safe = conf->reshape_progress;
3495 	spin_lock_init(&conf->device_lock);
3496 	INIT_LIST_HEAD(&conf->retry_list);
3497 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3498 
3499 	spin_lock_init(&conf->resync_lock);
3500 	init_waitqueue_head(&conf->wait_barrier);
3501 
3502 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3503 	if (!conf->thread)
3504 		goto out;
3505 
3506 	conf->mddev = mddev;
3507 	return conf;
3508 
3509  out:
3510 	if (err == -ENOMEM)
3511 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3512 		       mdname(mddev));
3513 	if (conf) {
3514 		mempool_destroy(conf->r10bio_pool);
3515 		kfree(conf->mirrors);
3516 		safe_put_page(conf->tmppage);
3517 		kfree(conf);
3518 	}
3519 	return ERR_PTR(err);
3520 }
3521 
3522 static int run(struct mddev *mddev)
3523 {
3524 	struct r10conf *conf;
3525 	int i, disk_idx, chunk_size;
3526 	struct raid10_info *disk;
3527 	struct md_rdev *rdev;
3528 	sector_t size;
3529 	sector_t min_offset_diff = 0;
3530 	int first = 1;
3531 	bool discard_supported = false;
3532 
3533 	if (mddev->private == NULL) {
3534 		conf = setup_conf(mddev);
3535 		if (IS_ERR(conf))
3536 			return PTR_ERR(conf);
3537 		mddev->private = conf;
3538 	}
3539 	conf = mddev->private;
3540 	if (!conf)
3541 		goto out;
3542 
3543 	mddev->thread = conf->thread;
3544 	conf->thread = NULL;
3545 
3546 	chunk_size = mddev->chunk_sectors << 9;
3547 	if (mddev->queue) {
3548 		blk_queue_max_discard_sectors(mddev->queue,
3549 					      mddev->chunk_sectors);
3550 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3551 		blk_queue_io_min(mddev->queue, chunk_size);
3552 		if (conf->geo.raid_disks % conf->geo.near_copies)
3553 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3554 		else
3555 			blk_queue_io_opt(mddev->queue, chunk_size *
3556 					 (conf->geo.raid_disks / conf->geo.near_copies));
3557 	}
3558 
3559 	rdev_for_each(rdev, mddev) {
3560 		long long diff;
3561 		struct request_queue *q;
3562 
3563 		disk_idx = rdev->raid_disk;
3564 		if (disk_idx < 0)
3565 			continue;
3566 		if (disk_idx >= conf->geo.raid_disks &&
3567 		    disk_idx >= conf->prev.raid_disks)
3568 			continue;
3569 		disk = conf->mirrors + disk_idx;
3570 
3571 		if (test_bit(Replacement, &rdev->flags)) {
3572 			if (disk->replacement)
3573 				goto out_free_conf;
3574 			disk->replacement = rdev;
3575 		} else {
3576 			if (disk->rdev)
3577 				goto out_free_conf;
3578 			disk->rdev = rdev;
3579 		}
3580 		q = bdev_get_queue(rdev->bdev);
3581 		diff = (rdev->new_data_offset - rdev->data_offset);
3582 		if (!mddev->reshape_backwards)
3583 			diff = -diff;
3584 		if (diff < 0)
3585 			diff = 0;
3586 		if (first || diff < min_offset_diff)
3587 			min_offset_diff = diff;
3588 
3589 		if (mddev->gendisk)
3590 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3591 					  rdev->data_offset << 9);
3592 
3593 		disk->head_position = 0;
3594 
3595 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3596 			discard_supported = true;
3597 	}
3598 
3599 	if (mddev->queue) {
3600 		if (discard_supported)
3601 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3602 						mddev->queue);
3603 		else
3604 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3605 						  mddev->queue);
3606 	}
3607 	/* need to check that every block has at least one working mirror */
3608 	if (!enough(conf, -1)) {
3609 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3610 		       mdname(mddev));
3611 		goto out_free_conf;
3612 	}
3613 
3614 	if (conf->reshape_progress != MaxSector) {
3615 		/* must ensure that shape change is supported */
3616 		if (conf->geo.far_copies != 1 &&
3617 		    conf->geo.far_offset == 0)
3618 			goto out_free_conf;
3619 		if (conf->prev.far_copies != 1 &&
3620 		    conf->prev.far_offset == 0)
3621 			goto out_free_conf;
3622 	}
3623 
3624 	mddev->degraded = 0;
3625 	for (i = 0;
3626 	     i < conf->geo.raid_disks
3627 		     || i < conf->prev.raid_disks;
3628 	     i++) {
3629 
3630 		disk = conf->mirrors + i;
3631 
3632 		if (!disk->rdev && disk->replacement) {
3633 			/* The replacement is all we have - use it */
3634 			disk->rdev = disk->replacement;
3635 			disk->replacement = NULL;
3636 			clear_bit(Replacement, &disk->rdev->flags);
3637 		}
3638 
3639 		if (!disk->rdev ||
3640 		    !test_bit(In_sync, &disk->rdev->flags)) {
3641 			disk->head_position = 0;
3642 			mddev->degraded++;
3643 			if (disk->rdev &&
3644 			    disk->rdev->saved_raid_disk < 0)
3645 				conf->fullsync = 1;
3646 		}
3647 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3648 	}
3649 
3650 	if (mddev->recovery_cp != MaxSector)
3651 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3652 		       " -- starting background reconstruction\n",
3653 		       mdname(mddev));
3654 	printk(KERN_INFO
3655 		"md/raid10:%s: active with %d out of %d devices\n",
3656 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3657 		conf->geo.raid_disks);
3658 	/*
3659 	 * Ok, everything is just fine now
3660 	 */
3661 	mddev->dev_sectors = conf->dev_sectors;
3662 	size = raid10_size(mddev, 0, 0);
3663 	md_set_array_sectors(mddev, size);
3664 	mddev->resync_max_sectors = size;
3665 
3666 	if (mddev->queue) {
3667 		int stripe = conf->geo.raid_disks *
3668 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3669 
3670 		/* Calculate max read-ahead size.
3671 		 * We need to readahead at least twice a whole stripe....
3672 		 * maybe...
3673 		 */
3674 		stripe /= conf->geo.near_copies;
3675 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3676 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3677 	}
3678 
3679 	if (md_integrity_register(mddev))
3680 		goto out_free_conf;
3681 
3682 	if (conf->reshape_progress != MaxSector) {
3683 		unsigned long before_length, after_length;
3684 
3685 		before_length = ((1 << conf->prev.chunk_shift) *
3686 				 conf->prev.far_copies);
3687 		after_length = ((1 << conf->geo.chunk_shift) *
3688 				conf->geo.far_copies);
3689 
3690 		if (max(before_length, after_length) > min_offset_diff) {
3691 			/* This cannot work */
3692 			printk("md/raid10: offset difference not enough to continue reshape\n");
3693 			goto out_free_conf;
3694 		}
3695 		conf->offset_diff = min_offset_diff;
3696 
3697 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3698 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3699 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3700 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3701 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3702 							"reshape");
3703 	}
3704 
3705 	return 0;
3706 
3707 out_free_conf:
3708 	md_unregister_thread(&mddev->thread);
3709 	mempool_destroy(conf->r10bio_pool);
3710 	safe_put_page(conf->tmppage);
3711 	kfree(conf->mirrors);
3712 	kfree(conf);
3713 	mddev->private = NULL;
3714 out:
3715 	return -EIO;
3716 }
3717 
3718 static void raid10_free(struct mddev *mddev, void *priv)
3719 {
3720 	struct r10conf *conf = priv;
3721 
3722 	mempool_destroy(conf->r10bio_pool);
3723 	safe_put_page(conf->tmppage);
3724 	kfree(conf->mirrors);
3725 	kfree(conf->mirrors_old);
3726 	kfree(conf->mirrors_new);
3727 	kfree(conf);
3728 }
3729 
3730 static void raid10_quiesce(struct mddev *mddev, int state)
3731 {
3732 	struct r10conf *conf = mddev->private;
3733 
3734 	switch(state) {
3735 	case 1:
3736 		raise_barrier(conf, 0);
3737 		break;
3738 	case 0:
3739 		lower_barrier(conf);
3740 		break;
3741 	}
3742 }
3743 
3744 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3745 {
3746 	/* Resize of 'far' arrays is not supported.
3747 	 * For 'near' and 'offset' arrays we can set the
3748 	 * number of sectors used to be an appropriate multiple
3749 	 * of the chunk size.
3750 	 * For 'offset', this is far_copies*chunksize.
3751 	 * For 'near' the multiplier is the LCM of
3752 	 * near_copies and raid_disks.
3753 	 * So if far_copies > 1 && !far_offset, fail.
3754 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3755 	 * multiply by chunk_size.  Then round to this number.
3756 	 * This is mostly done by raid10_size()
3757 	 */
3758 	struct r10conf *conf = mddev->private;
3759 	sector_t oldsize, size;
3760 
3761 	if (mddev->reshape_position != MaxSector)
3762 		return -EBUSY;
3763 
3764 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3765 		return -EINVAL;
3766 
3767 	oldsize = raid10_size(mddev, 0, 0);
3768 	size = raid10_size(mddev, sectors, 0);
3769 	if (mddev->external_size &&
3770 	    mddev->array_sectors > size)
3771 		return -EINVAL;
3772 	if (mddev->bitmap) {
3773 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3774 		if (ret)
3775 			return ret;
3776 	}
3777 	md_set_array_sectors(mddev, size);
3778 	set_capacity(mddev->gendisk, mddev->array_sectors);
3779 	revalidate_disk(mddev->gendisk);
3780 	if (sectors > mddev->dev_sectors &&
3781 	    mddev->recovery_cp > oldsize) {
3782 		mddev->recovery_cp = oldsize;
3783 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3784 	}
3785 	calc_sectors(conf, sectors);
3786 	mddev->dev_sectors = conf->dev_sectors;
3787 	mddev->resync_max_sectors = size;
3788 	return 0;
3789 }
3790 
3791 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3792 {
3793 	struct md_rdev *rdev;
3794 	struct r10conf *conf;
3795 
3796 	if (mddev->degraded > 0) {
3797 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3798 		       mdname(mddev));
3799 		return ERR_PTR(-EINVAL);
3800 	}
3801 	sector_div(size, devs);
3802 
3803 	/* Set new parameters */
3804 	mddev->new_level = 10;
3805 	/* new layout: far_copies = 1, near_copies = 2 */
3806 	mddev->new_layout = (1<<8) + 2;
3807 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3808 	mddev->delta_disks = mddev->raid_disks;
3809 	mddev->raid_disks *= 2;
3810 	/* make sure it will be not marked as dirty */
3811 	mddev->recovery_cp = MaxSector;
3812 	mddev->dev_sectors = size;
3813 
3814 	conf = setup_conf(mddev);
3815 	if (!IS_ERR(conf)) {
3816 		rdev_for_each(rdev, mddev)
3817 			if (rdev->raid_disk >= 0) {
3818 				rdev->new_raid_disk = rdev->raid_disk * 2;
3819 				rdev->sectors = size;
3820 			}
3821 		conf->barrier = 1;
3822 	}
3823 
3824 	return conf;
3825 }
3826 
3827 static void *raid10_takeover(struct mddev *mddev)
3828 {
3829 	struct r0conf *raid0_conf;
3830 
3831 	/* raid10 can take over:
3832 	 *  raid0 - providing it has only two drives
3833 	 */
3834 	if (mddev->level == 0) {
3835 		/* for raid0 takeover only one zone is supported */
3836 		raid0_conf = mddev->private;
3837 		if (raid0_conf->nr_strip_zones > 1) {
3838 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3839 			       " with more than one zone.\n",
3840 			       mdname(mddev));
3841 			return ERR_PTR(-EINVAL);
3842 		}
3843 		return raid10_takeover_raid0(mddev,
3844 			raid0_conf->strip_zone->zone_end,
3845 			raid0_conf->strip_zone->nb_dev);
3846 	}
3847 	return ERR_PTR(-EINVAL);
3848 }
3849 
3850 static int raid10_check_reshape(struct mddev *mddev)
3851 {
3852 	/* Called when there is a request to change
3853 	 * - layout (to ->new_layout)
3854 	 * - chunk size (to ->new_chunk_sectors)
3855 	 * - raid_disks (by delta_disks)
3856 	 * or when trying to restart a reshape that was ongoing.
3857 	 *
3858 	 * We need to validate the request and possibly allocate
3859 	 * space if that might be an issue later.
3860 	 *
3861 	 * Currently we reject any reshape of a 'far' mode array,
3862 	 * allow chunk size to change if new is generally acceptable,
3863 	 * allow raid_disks to increase, and allow
3864 	 * a switch between 'near' mode and 'offset' mode.
3865 	 */
3866 	struct r10conf *conf = mddev->private;
3867 	struct geom geo;
3868 
3869 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3870 		return -EINVAL;
3871 
3872 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3873 		/* mustn't change number of copies */
3874 		return -EINVAL;
3875 	if (geo.far_copies > 1 && !geo.far_offset)
3876 		/* Cannot switch to 'far' mode */
3877 		return -EINVAL;
3878 
3879 	if (mddev->array_sectors & geo.chunk_mask)
3880 			/* not factor of array size */
3881 			return -EINVAL;
3882 
3883 	if (!enough(conf, -1))
3884 		return -EINVAL;
3885 
3886 	kfree(conf->mirrors_new);
3887 	conf->mirrors_new = NULL;
3888 	if (mddev->delta_disks > 0) {
3889 		/* allocate new 'mirrors' list */
3890 		conf->mirrors_new = kzalloc(
3891 			sizeof(struct raid10_info)
3892 			*(mddev->raid_disks +
3893 			  mddev->delta_disks),
3894 			GFP_KERNEL);
3895 		if (!conf->mirrors_new)
3896 			return -ENOMEM;
3897 	}
3898 	return 0;
3899 }
3900 
3901 /*
3902  * Need to check if array has failed when deciding whether to:
3903  *  - start an array
3904  *  - remove non-faulty devices
3905  *  - add a spare
3906  *  - allow a reshape
3907  * This determination is simple when no reshape is happening.
3908  * However if there is a reshape, we need to carefully check
3909  * both the before and after sections.
3910  * This is because some failed devices may only affect one
3911  * of the two sections, and some non-in_sync devices may
3912  * be insync in the section most affected by failed devices.
3913  */
3914 static int calc_degraded(struct r10conf *conf)
3915 {
3916 	int degraded, degraded2;
3917 	int i;
3918 
3919 	rcu_read_lock();
3920 	degraded = 0;
3921 	/* 'prev' section first */
3922 	for (i = 0; i < conf->prev.raid_disks; i++) {
3923 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3924 		if (!rdev || test_bit(Faulty, &rdev->flags))
3925 			degraded++;
3926 		else if (!test_bit(In_sync, &rdev->flags))
3927 			/* When we can reduce the number of devices in
3928 			 * an array, this might not contribute to
3929 			 * 'degraded'.  It does now.
3930 			 */
3931 			degraded++;
3932 	}
3933 	rcu_read_unlock();
3934 	if (conf->geo.raid_disks == conf->prev.raid_disks)
3935 		return degraded;
3936 	rcu_read_lock();
3937 	degraded2 = 0;
3938 	for (i = 0; i < conf->geo.raid_disks; i++) {
3939 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3940 		if (!rdev || test_bit(Faulty, &rdev->flags))
3941 			degraded2++;
3942 		else if (!test_bit(In_sync, &rdev->flags)) {
3943 			/* If reshape is increasing the number of devices,
3944 			 * this section has already been recovered, so
3945 			 * it doesn't contribute to degraded.
3946 			 * else it does.
3947 			 */
3948 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3949 				degraded2++;
3950 		}
3951 	}
3952 	rcu_read_unlock();
3953 	if (degraded2 > degraded)
3954 		return degraded2;
3955 	return degraded;
3956 }
3957 
3958 static int raid10_start_reshape(struct mddev *mddev)
3959 {
3960 	/* A 'reshape' has been requested. This commits
3961 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3962 	 * This also checks if there are enough spares and adds them
3963 	 * to the array.
3964 	 * We currently require enough spares to make the final
3965 	 * array non-degraded.  We also require that the difference
3966 	 * between old and new data_offset - on each device - is
3967 	 * enough that we never risk over-writing.
3968 	 */
3969 
3970 	unsigned long before_length, after_length;
3971 	sector_t min_offset_diff = 0;
3972 	int first = 1;
3973 	struct geom new;
3974 	struct r10conf *conf = mddev->private;
3975 	struct md_rdev *rdev;
3976 	int spares = 0;
3977 	int ret;
3978 
3979 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3980 		return -EBUSY;
3981 
3982 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
3983 		return -EINVAL;
3984 
3985 	before_length = ((1 << conf->prev.chunk_shift) *
3986 			 conf->prev.far_copies);
3987 	after_length = ((1 << conf->geo.chunk_shift) *
3988 			conf->geo.far_copies);
3989 
3990 	rdev_for_each(rdev, mddev) {
3991 		if (!test_bit(In_sync, &rdev->flags)
3992 		    && !test_bit(Faulty, &rdev->flags))
3993 			spares++;
3994 		if (rdev->raid_disk >= 0) {
3995 			long long diff = (rdev->new_data_offset
3996 					  - rdev->data_offset);
3997 			if (!mddev->reshape_backwards)
3998 				diff = -diff;
3999 			if (diff < 0)
4000 				diff = 0;
4001 			if (first || diff < min_offset_diff)
4002 				min_offset_diff = diff;
4003 		}
4004 	}
4005 
4006 	if (max(before_length, after_length) > min_offset_diff)
4007 		return -EINVAL;
4008 
4009 	if (spares < mddev->delta_disks)
4010 		return -EINVAL;
4011 
4012 	conf->offset_diff = min_offset_diff;
4013 	spin_lock_irq(&conf->device_lock);
4014 	if (conf->mirrors_new) {
4015 		memcpy(conf->mirrors_new, conf->mirrors,
4016 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4017 		smp_mb();
4018 		kfree(conf->mirrors_old);
4019 		conf->mirrors_old = conf->mirrors;
4020 		conf->mirrors = conf->mirrors_new;
4021 		conf->mirrors_new = NULL;
4022 	}
4023 	setup_geo(&conf->geo, mddev, geo_start);
4024 	smp_mb();
4025 	if (mddev->reshape_backwards) {
4026 		sector_t size = raid10_size(mddev, 0, 0);
4027 		if (size < mddev->array_sectors) {
4028 			spin_unlock_irq(&conf->device_lock);
4029 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4030 			       mdname(mddev));
4031 			return -EINVAL;
4032 		}
4033 		mddev->resync_max_sectors = size;
4034 		conf->reshape_progress = size;
4035 	} else
4036 		conf->reshape_progress = 0;
4037 	conf->reshape_safe = conf->reshape_progress;
4038 	spin_unlock_irq(&conf->device_lock);
4039 
4040 	if (mddev->delta_disks && mddev->bitmap) {
4041 		ret = bitmap_resize(mddev->bitmap,
4042 				    raid10_size(mddev, 0,
4043 						conf->geo.raid_disks),
4044 				    0, 0);
4045 		if (ret)
4046 			goto abort;
4047 	}
4048 	if (mddev->delta_disks > 0) {
4049 		rdev_for_each(rdev, mddev)
4050 			if (rdev->raid_disk < 0 &&
4051 			    !test_bit(Faulty, &rdev->flags)) {
4052 				if (raid10_add_disk(mddev, rdev) == 0) {
4053 					if (rdev->raid_disk >=
4054 					    conf->prev.raid_disks)
4055 						set_bit(In_sync, &rdev->flags);
4056 					else
4057 						rdev->recovery_offset = 0;
4058 
4059 					if (sysfs_link_rdev(mddev, rdev))
4060 						/* Failure here  is OK */;
4061 				}
4062 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4063 				   && !test_bit(Faulty, &rdev->flags)) {
4064 				/* This is a spare that was manually added */
4065 				set_bit(In_sync, &rdev->flags);
4066 			}
4067 	}
4068 	/* When a reshape changes the number of devices,
4069 	 * ->degraded is measured against the larger of the
4070 	 * pre and  post numbers.
4071 	 */
4072 	spin_lock_irq(&conf->device_lock);
4073 	mddev->degraded = calc_degraded(conf);
4074 	spin_unlock_irq(&conf->device_lock);
4075 	mddev->raid_disks = conf->geo.raid_disks;
4076 	mddev->reshape_position = conf->reshape_progress;
4077 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4078 
4079 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4080 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4081 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4082 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4083 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4084 
4085 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4086 						"reshape");
4087 	if (!mddev->sync_thread) {
4088 		ret = -EAGAIN;
4089 		goto abort;
4090 	}
4091 	conf->reshape_checkpoint = jiffies;
4092 	md_wakeup_thread(mddev->sync_thread);
4093 	md_new_event(mddev);
4094 	return 0;
4095 
4096 abort:
4097 	mddev->recovery = 0;
4098 	spin_lock_irq(&conf->device_lock);
4099 	conf->geo = conf->prev;
4100 	mddev->raid_disks = conf->geo.raid_disks;
4101 	rdev_for_each(rdev, mddev)
4102 		rdev->new_data_offset = rdev->data_offset;
4103 	smp_wmb();
4104 	conf->reshape_progress = MaxSector;
4105 	conf->reshape_safe = MaxSector;
4106 	mddev->reshape_position = MaxSector;
4107 	spin_unlock_irq(&conf->device_lock);
4108 	return ret;
4109 }
4110 
4111 /* Calculate the last device-address that could contain
4112  * any block from the chunk that includes the array-address 's'
4113  * and report the next address.
4114  * i.e. the address returned will be chunk-aligned and after
4115  * any data that is in the chunk containing 's'.
4116  */
4117 static sector_t last_dev_address(sector_t s, struct geom *geo)
4118 {
4119 	s = (s | geo->chunk_mask) + 1;
4120 	s >>= geo->chunk_shift;
4121 	s *= geo->near_copies;
4122 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4123 	s *= geo->far_copies;
4124 	s <<= geo->chunk_shift;
4125 	return s;
4126 }
4127 
4128 /* Calculate the first device-address that could contain
4129  * any block from the chunk that includes the array-address 's'.
4130  * This too will be the start of a chunk
4131  */
4132 static sector_t first_dev_address(sector_t s, struct geom *geo)
4133 {
4134 	s >>= geo->chunk_shift;
4135 	s *= geo->near_copies;
4136 	sector_div(s, geo->raid_disks);
4137 	s *= geo->far_copies;
4138 	s <<= geo->chunk_shift;
4139 	return s;
4140 }
4141 
4142 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4143 				int *skipped)
4144 {
4145 	/* We simply copy at most one chunk (smallest of old and new)
4146 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4147 	 * or we hit a bad block or something.
4148 	 * This might mean we pause for normal IO in the middle of
4149 	 * a chunk, but that is not a problem as mddev->reshape_position
4150 	 * can record any location.
4151 	 *
4152 	 * If we will want to write to a location that isn't
4153 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4154 	 * we need to flush all reshape requests and update the metadata.
4155 	 *
4156 	 * When reshaping forwards (e.g. to more devices), we interpret
4157 	 * 'safe' as the earliest block which might not have been copied
4158 	 * down yet.  We divide this by previous stripe size and multiply
4159 	 * by previous stripe length to get lowest device offset that we
4160 	 * cannot write to yet.
4161 	 * We interpret 'sector_nr' as an address that we want to write to.
4162 	 * From this we use last_device_address() to find where we might
4163 	 * write to, and first_device_address on the  'safe' position.
4164 	 * If this 'next' write position is after the 'safe' position,
4165 	 * we must update the metadata to increase the 'safe' position.
4166 	 *
4167 	 * When reshaping backwards, we round in the opposite direction
4168 	 * and perform the reverse test:  next write position must not be
4169 	 * less than current safe position.
4170 	 *
4171 	 * In all this the minimum difference in data offsets
4172 	 * (conf->offset_diff - always positive) allows a bit of slack,
4173 	 * so next can be after 'safe', but not by more than offset_diff
4174 	 *
4175 	 * We need to prepare all the bios here before we start any IO
4176 	 * to ensure the size we choose is acceptable to all devices.
4177 	 * The means one for each copy for write-out and an extra one for
4178 	 * read-in.
4179 	 * We store the read-in bio in ->master_bio and the others in
4180 	 * ->devs[x].bio and ->devs[x].repl_bio.
4181 	 */
4182 	struct r10conf *conf = mddev->private;
4183 	struct r10bio *r10_bio;
4184 	sector_t next, safe, last;
4185 	int max_sectors;
4186 	int nr_sectors;
4187 	int s;
4188 	struct md_rdev *rdev;
4189 	int need_flush = 0;
4190 	struct bio *blist;
4191 	struct bio *bio, *read_bio;
4192 	int sectors_done = 0;
4193 
4194 	if (sector_nr == 0) {
4195 		/* If restarting in the middle, skip the initial sectors */
4196 		if (mddev->reshape_backwards &&
4197 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4198 			sector_nr = (raid10_size(mddev, 0, 0)
4199 				     - conf->reshape_progress);
4200 		} else if (!mddev->reshape_backwards &&
4201 			   conf->reshape_progress > 0)
4202 			sector_nr = conf->reshape_progress;
4203 		if (sector_nr) {
4204 			mddev->curr_resync_completed = sector_nr;
4205 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4206 			*skipped = 1;
4207 			return sector_nr;
4208 		}
4209 	}
4210 
4211 	/* We don't use sector_nr to track where we are up to
4212 	 * as that doesn't work well for ->reshape_backwards.
4213 	 * So just use ->reshape_progress.
4214 	 */
4215 	if (mddev->reshape_backwards) {
4216 		/* 'next' is the earliest device address that we might
4217 		 * write to for this chunk in the new layout
4218 		 */
4219 		next = first_dev_address(conf->reshape_progress - 1,
4220 					 &conf->geo);
4221 
4222 		/* 'safe' is the last device address that we might read from
4223 		 * in the old layout after a restart
4224 		 */
4225 		safe = last_dev_address(conf->reshape_safe - 1,
4226 					&conf->prev);
4227 
4228 		if (next + conf->offset_diff < safe)
4229 			need_flush = 1;
4230 
4231 		last = conf->reshape_progress - 1;
4232 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4233 					       & conf->prev.chunk_mask);
4234 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4235 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4236 	} else {
4237 		/* 'next' is after the last device address that we
4238 		 * might write to for this chunk in the new layout
4239 		 */
4240 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4241 
4242 		/* 'safe' is the earliest device address that we might
4243 		 * read from in the old layout after a restart
4244 		 */
4245 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4246 
4247 		/* Need to update metadata if 'next' might be beyond 'safe'
4248 		 * as that would possibly corrupt data
4249 		 */
4250 		if (next > safe + conf->offset_diff)
4251 			need_flush = 1;
4252 
4253 		sector_nr = conf->reshape_progress;
4254 		last  = sector_nr | (conf->geo.chunk_mask
4255 				     & conf->prev.chunk_mask);
4256 
4257 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4258 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4259 	}
4260 
4261 	if (need_flush ||
4262 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4263 		/* Need to update reshape_position in metadata */
4264 		wait_barrier(conf);
4265 		mddev->reshape_position = conf->reshape_progress;
4266 		if (mddev->reshape_backwards)
4267 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4268 				- conf->reshape_progress;
4269 		else
4270 			mddev->curr_resync_completed = conf->reshape_progress;
4271 		conf->reshape_checkpoint = jiffies;
4272 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4273 		md_wakeup_thread(mddev->thread);
4274 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4275 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4276 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4277 			allow_barrier(conf);
4278 			return sectors_done;
4279 		}
4280 		conf->reshape_safe = mddev->reshape_position;
4281 		allow_barrier(conf);
4282 	}
4283 
4284 read_more:
4285 	/* Now schedule reads for blocks from sector_nr to last */
4286 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4287 	r10_bio->state = 0;
4288 	raise_barrier(conf, sectors_done != 0);
4289 	atomic_set(&r10_bio->remaining, 0);
4290 	r10_bio->mddev = mddev;
4291 	r10_bio->sector = sector_nr;
4292 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4293 	r10_bio->sectors = last - sector_nr + 1;
4294 	rdev = read_balance(conf, r10_bio, &max_sectors);
4295 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4296 
4297 	if (!rdev) {
4298 		/* Cannot read from here, so need to record bad blocks
4299 		 * on all the target devices.
4300 		 */
4301 		// FIXME
4302 		mempool_free(r10_bio, conf->r10buf_pool);
4303 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4304 		return sectors_done;
4305 	}
4306 
4307 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4308 
4309 	read_bio->bi_bdev = rdev->bdev;
4310 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4311 			       + rdev->data_offset);
4312 	read_bio->bi_private = r10_bio;
4313 	read_bio->bi_end_io = end_sync_read;
4314 	read_bio->bi_rw = READ;
4315 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4316 	read_bio->bi_error = 0;
4317 	read_bio->bi_vcnt = 0;
4318 	read_bio->bi_iter.bi_size = 0;
4319 	r10_bio->master_bio = read_bio;
4320 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4321 
4322 	/* Now find the locations in the new layout */
4323 	__raid10_find_phys(&conf->geo, r10_bio);
4324 
4325 	blist = read_bio;
4326 	read_bio->bi_next = NULL;
4327 
4328 	for (s = 0; s < conf->copies*2; s++) {
4329 		struct bio *b;
4330 		int d = r10_bio->devs[s/2].devnum;
4331 		struct md_rdev *rdev2;
4332 		if (s&1) {
4333 			rdev2 = conf->mirrors[d].replacement;
4334 			b = r10_bio->devs[s/2].repl_bio;
4335 		} else {
4336 			rdev2 = conf->mirrors[d].rdev;
4337 			b = r10_bio->devs[s/2].bio;
4338 		}
4339 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4340 			continue;
4341 
4342 		bio_reset(b);
4343 		b->bi_bdev = rdev2->bdev;
4344 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4345 			rdev2->new_data_offset;
4346 		b->bi_private = r10_bio;
4347 		b->bi_end_io = end_reshape_write;
4348 		b->bi_rw = WRITE;
4349 		b->bi_next = blist;
4350 		blist = b;
4351 	}
4352 
4353 	/* Now add as many pages as possible to all of these bios. */
4354 
4355 	nr_sectors = 0;
4356 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4357 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4358 		int len = (max_sectors - s) << 9;
4359 		if (len > PAGE_SIZE)
4360 			len = PAGE_SIZE;
4361 		for (bio = blist; bio ; bio = bio->bi_next) {
4362 			struct bio *bio2;
4363 			if (bio_add_page(bio, page, len, 0))
4364 				continue;
4365 
4366 			/* Didn't fit, must stop */
4367 			for (bio2 = blist;
4368 			     bio2 && bio2 != bio;
4369 			     bio2 = bio2->bi_next) {
4370 				/* Remove last page from this bio */
4371 				bio2->bi_vcnt--;
4372 				bio2->bi_iter.bi_size -= len;
4373 				bio_clear_flag(bio2, BIO_SEG_VALID);
4374 			}
4375 			goto bio_full;
4376 		}
4377 		sector_nr += len >> 9;
4378 		nr_sectors += len >> 9;
4379 	}
4380 bio_full:
4381 	r10_bio->sectors = nr_sectors;
4382 
4383 	/* Now submit the read */
4384 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4385 	atomic_inc(&r10_bio->remaining);
4386 	read_bio->bi_next = NULL;
4387 	generic_make_request(read_bio);
4388 	sector_nr += nr_sectors;
4389 	sectors_done += nr_sectors;
4390 	if (sector_nr <= last)
4391 		goto read_more;
4392 
4393 	/* Now that we have done the whole section we can
4394 	 * update reshape_progress
4395 	 */
4396 	if (mddev->reshape_backwards)
4397 		conf->reshape_progress -= sectors_done;
4398 	else
4399 		conf->reshape_progress += sectors_done;
4400 
4401 	return sectors_done;
4402 }
4403 
4404 static void end_reshape_request(struct r10bio *r10_bio);
4405 static int handle_reshape_read_error(struct mddev *mddev,
4406 				     struct r10bio *r10_bio);
4407 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4408 {
4409 	/* Reshape read completed.  Hopefully we have a block
4410 	 * to write out.
4411 	 * If we got a read error then we do sync 1-page reads from
4412 	 * elsewhere until we find the data - or give up.
4413 	 */
4414 	struct r10conf *conf = mddev->private;
4415 	int s;
4416 
4417 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4418 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4419 			/* Reshape has been aborted */
4420 			md_done_sync(mddev, r10_bio->sectors, 0);
4421 			return;
4422 		}
4423 
4424 	/* We definitely have the data in the pages, schedule the
4425 	 * writes.
4426 	 */
4427 	atomic_set(&r10_bio->remaining, 1);
4428 	for (s = 0; s < conf->copies*2; s++) {
4429 		struct bio *b;
4430 		int d = r10_bio->devs[s/2].devnum;
4431 		struct md_rdev *rdev;
4432 		if (s&1) {
4433 			rdev = conf->mirrors[d].replacement;
4434 			b = r10_bio->devs[s/2].repl_bio;
4435 		} else {
4436 			rdev = conf->mirrors[d].rdev;
4437 			b = r10_bio->devs[s/2].bio;
4438 		}
4439 		if (!rdev || test_bit(Faulty, &rdev->flags))
4440 			continue;
4441 		atomic_inc(&rdev->nr_pending);
4442 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4443 		atomic_inc(&r10_bio->remaining);
4444 		b->bi_next = NULL;
4445 		generic_make_request(b);
4446 	}
4447 	end_reshape_request(r10_bio);
4448 }
4449 
4450 static void end_reshape(struct r10conf *conf)
4451 {
4452 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4453 		return;
4454 
4455 	spin_lock_irq(&conf->device_lock);
4456 	conf->prev = conf->geo;
4457 	md_finish_reshape(conf->mddev);
4458 	smp_wmb();
4459 	conf->reshape_progress = MaxSector;
4460 	conf->reshape_safe = MaxSector;
4461 	spin_unlock_irq(&conf->device_lock);
4462 
4463 	/* read-ahead size must cover two whole stripes, which is
4464 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4465 	 */
4466 	if (conf->mddev->queue) {
4467 		int stripe = conf->geo.raid_disks *
4468 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4469 		stripe /= conf->geo.near_copies;
4470 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4471 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4472 	}
4473 	conf->fullsync = 0;
4474 }
4475 
4476 static int handle_reshape_read_error(struct mddev *mddev,
4477 				     struct r10bio *r10_bio)
4478 {
4479 	/* Use sync reads to get the blocks from somewhere else */
4480 	int sectors = r10_bio->sectors;
4481 	struct r10conf *conf = mddev->private;
4482 	struct {
4483 		struct r10bio r10_bio;
4484 		struct r10dev devs[conf->copies];
4485 	} on_stack;
4486 	struct r10bio *r10b = &on_stack.r10_bio;
4487 	int slot = 0;
4488 	int idx = 0;
4489 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4490 
4491 	r10b->sector = r10_bio->sector;
4492 	__raid10_find_phys(&conf->prev, r10b);
4493 
4494 	while (sectors) {
4495 		int s = sectors;
4496 		int success = 0;
4497 		int first_slot = slot;
4498 
4499 		if (s > (PAGE_SIZE >> 9))
4500 			s = PAGE_SIZE >> 9;
4501 
4502 		while (!success) {
4503 			int d = r10b->devs[slot].devnum;
4504 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4505 			sector_t addr;
4506 			if (rdev == NULL ||
4507 			    test_bit(Faulty, &rdev->flags) ||
4508 			    !test_bit(In_sync, &rdev->flags))
4509 				goto failed;
4510 
4511 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4512 			success = sync_page_io(rdev,
4513 					       addr,
4514 					       s << 9,
4515 					       bvec[idx].bv_page,
4516 					       READ, false);
4517 			if (success)
4518 				break;
4519 		failed:
4520 			slot++;
4521 			if (slot >= conf->copies)
4522 				slot = 0;
4523 			if (slot == first_slot)
4524 				break;
4525 		}
4526 		if (!success) {
4527 			/* couldn't read this block, must give up */
4528 			set_bit(MD_RECOVERY_INTR,
4529 				&mddev->recovery);
4530 			return -EIO;
4531 		}
4532 		sectors -= s;
4533 		idx++;
4534 	}
4535 	return 0;
4536 }
4537 
4538 static void end_reshape_write(struct bio *bio)
4539 {
4540 	struct r10bio *r10_bio = bio->bi_private;
4541 	struct mddev *mddev = r10_bio->mddev;
4542 	struct r10conf *conf = mddev->private;
4543 	int d;
4544 	int slot;
4545 	int repl;
4546 	struct md_rdev *rdev = NULL;
4547 
4548 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4549 	if (repl)
4550 		rdev = conf->mirrors[d].replacement;
4551 	if (!rdev) {
4552 		smp_mb();
4553 		rdev = conf->mirrors[d].rdev;
4554 	}
4555 
4556 	if (bio->bi_error) {
4557 		/* FIXME should record badblock */
4558 		md_error(mddev, rdev);
4559 	}
4560 
4561 	rdev_dec_pending(rdev, mddev);
4562 	end_reshape_request(r10_bio);
4563 }
4564 
4565 static void end_reshape_request(struct r10bio *r10_bio)
4566 {
4567 	if (!atomic_dec_and_test(&r10_bio->remaining))
4568 		return;
4569 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4570 	bio_put(r10_bio->master_bio);
4571 	put_buf(r10_bio);
4572 }
4573 
4574 static void raid10_finish_reshape(struct mddev *mddev)
4575 {
4576 	struct r10conf *conf = mddev->private;
4577 
4578 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4579 		return;
4580 
4581 	if (mddev->delta_disks > 0) {
4582 		sector_t size = raid10_size(mddev, 0, 0);
4583 		md_set_array_sectors(mddev, size);
4584 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4585 			mddev->recovery_cp = mddev->resync_max_sectors;
4586 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4587 		}
4588 		mddev->resync_max_sectors = size;
4589 		set_capacity(mddev->gendisk, mddev->array_sectors);
4590 		revalidate_disk(mddev->gendisk);
4591 	} else {
4592 		int d;
4593 		for (d = conf->geo.raid_disks ;
4594 		     d < conf->geo.raid_disks - mddev->delta_disks;
4595 		     d++) {
4596 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4597 			if (rdev)
4598 				clear_bit(In_sync, &rdev->flags);
4599 			rdev = conf->mirrors[d].replacement;
4600 			if (rdev)
4601 				clear_bit(In_sync, &rdev->flags);
4602 		}
4603 	}
4604 	mddev->layout = mddev->new_layout;
4605 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4606 	mddev->reshape_position = MaxSector;
4607 	mddev->delta_disks = 0;
4608 	mddev->reshape_backwards = 0;
4609 }
4610 
4611 static struct md_personality raid10_personality =
4612 {
4613 	.name		= "raid10",
4614 	.level		= 10,
4615 	.owner		= THIS_MODULE,
4616 	.make_request	= make_request,
4617 	.run		= run,
4618 	.free		= raid10_free,
4619 	.status		= status,
4620 	.error_handler	= error,
4621 	.hot_add_disk	= raid10_add_disk,
4622 	.hot_remove_disk= raid10_remove_disk,
4623 	.spare_active	= raid10_spare_active,
4624 	.sync_request	= sync_request,
4625 	.quiesce	= raid10_quiesce,
4626 	.size		= raid10_size,
4627 	.resize		= raid10_resize,
4628 	.takeover	= raid10_takeover,
4629 	.check_reshape	= raid10_check_reshape,
4630 	.start_reshape	= raid10_start_reshape,
4631 	.finish_reshape	= raid10_finish_reshape,
4632 	.congested	= raid10_congested,
4633 };
4634 
4635 static int __init raid_init(void)
4636 {
4637 	return register_md_personality(&raid10_personality);
4638 }
4639 
4640 static void raid_exit(void)
4641 {
4642 	unregister_md_personality(&raid10_personality);
4643 }
4644 
4645 module_init(raid_init);
4646 module_exit(raid_exit);
4647 MODULE_LICENSE("GPL");
4648 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4649 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4650 MODULE_ALIAS("md-raid10");
4651 MODULE_ALIAS("md-level-10");
4652 
4653 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4654