xref: /linux/drivers/md/raid10.c (revision b8321ed4a40c02054f930ca59d3570caa27bc86c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 	return get_resync_pages(bio)->raid_bio;
89 }
90 
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 	struct r10conf *conf = data;
94 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95 
96 	/* allocate a r10bio with room for raid_disks entries in the
97 	 * bios array */
98 	return kzalloc(size, gfp_flags);
99 }
100 
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108 
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct r10conf *conf = data;
119 	struct r10bio *r10_bio;
120 	struct bio *bio;
121 	int j;
122 	int nalloc, nalloc_rp;
123 	struct resync_pages *rps;
124 
125 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 	if (!r10_bio)
127 		return NULL;
128 
129 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 		nalloc = conf->copies; /* resync */
132 	else
133 		nalloc = 2; /* recovery */
134 
135 	/* allocate once for all bios */
136 	if (!conf->have_replacement)
137 		nalloc_rp = nalloc;
138 	else
139 		nalloc_rp = nalloc * 2;
140 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 	if (!rps)
142 		goto out_free_r10bio;
143 
144 	/*
145 	 * Allocate bios.
146 	 */
147 	for (j = nalloc ; j-- ; ) {
148 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 		if (!bio)
150 			goto out_free_bio;
151 		r10_bio->devs[j].bio = bio;
152 		if (!conf->have_replacement)
153 			continue;
154 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 		if (!bio)
156 			goto out_free_bio;
157 		r10_bio->devs[j].repl_bio = bio;
158 	}
159 	/*
160 	 * Allocate RESYNC_PAGES data pages and attach them
161 	 * where needed.
162 	 */
163 	for (j = 0; j < nalloc; j++) {
164 		struct bio *rbio = r10_bio->devs[j].repl_bio;
165 		struct resync_pages *rp, *rp_repl;
166 
167 		rp = &rps[j];
168 		if (rbio)
169 			rp_repl = &rps[nalloc + j];
170 
171 		bio = r10_bio->devs[j].bio;
172 
173 		if (!j || test_bit(MD_RECOVERY_SYNC,
174 				   &conf->mddev->recovery)) {
175 			if (resync_alloc_pages(rp, gfp_flags))
176 				goto out_free_pages;
177 		} else {
178 			memcpy(rp, &rps[0], sizeof(*rp));
179 			resync_get_all_pages(rp);
180 		}
181 
182 		rp->raid_bio = r10_bio;
183 		bio->bi_private = rp;
184 		if (rbio) {
185 			memcpy(rp_repl, rp, sizeof(*rp));
186 			rbio->bi_private = rp_repl;
187 		}
188 	}
189 
190 	return r10_bio;
191 
192 out_free_pages:
193 	while (--j >= 0)
194 		resync_free_pages(&rps[j]);
195 
196 	j = 0;
197 out_free_bio:
198 	for ( ; j < nalloc; j++) {
199 		if (r10_bio->devs[j].bio)
200 			bio_put(r10_bio->devs[j].bio);
201 		if (r10_bio->devs[j].repl_bio)
202 			bio_put(r10_bio->devs[j].repl_bio);
203 	}
204 	kfree(rps);
205 out_free_r10bio:
206 	rbio_pool_free(r10_bio, conf);
207 	return NULL;
208 }
209 
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 	struct r10conf *conf = data;
213 	struct r10bio *r10bio = __r10_bio;
214 	int j;
215 	struct resync_pages *rp = NULL;
216 
217 	for (j = conf->copies; j--; ) {
218 		struct bio *bio = r10bio->devs[j].bio;
219 
220 		if (bio) {
221 			rp = get_resync_pages(bio);
222 			resync_free_pages(rp);
223 			bio_put(bio);
224 		}
225 
226 		bio = r10bio->devs[j].repl_bio;
227 		if (bio)
228 			bio_put(bio);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r10bio, conf);
235 }
236 
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->geo.raid_disks; i++) {
242 		struct bio **bio = & r10_bio->devs[i].bio;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 		bio = &r10_bio->devs[i].repl_bio;
247 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 	struct r10conf *conf = r10_bio->mddev->private;
256 
257 	put_all_bios(conf, r10_bio);
258 	mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260 
261 static void put_buf(struct r10bio *r10_bio)
262 {
263 	struct r10conf *conf = r10_bio->mddev->private;
264 
265 	mempool_free(r10_bio, &conf->r10buf_pool);
266 
267 	lower_barrier(conf);
268 }
269 
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 	unsigned long flags;
273 	struct mddev *mddev = r10_bio->mddev;
274 	struct r10conf *conf = mddev->private;
275 
276 	spin_lock_irqsave(&conf->device_lock, flags);
277 	list_add(&r10_bio->retry_list, &conf->retry_list);
278 	conf->nr_queued ++;
279 	spin_unlock_irqrestore(&conf->device_lock, flags);
280 
281 	/* wake up frozen array... */
282 	wake_up(&conf->wait_barrier);
283 
284 	md_wakeup_thread(mddev->thread);
285 }
286 
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 	struct bio *bio = r10_bio->master_bio;
295 	struct r10conf *conf = r10_bio->mddev->private;
296 
297 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 		bio->bi_status = BLK_STS_IOERR;
299 
300 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
301 		bio_end_io_acct(bio, r10_bio->start_time);
302 	bio_endio(bio);
303 	/*
304 	 * Wake up any possible resync thread that waits for the device
305 	 * to go idle.
306 	 */
307 	allow_barrier(conf);
308 
309 	free_r10bio(r10_bio);
310 }
311 
312 /*
313  * Update disk head position estimator based on IRQ completion info.
314  */
315 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
316 {
317 	struct r10conf *conf = r10_bio->mddev->private;
318 
319 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
320 		r10_bio->devs[slot].addr + (r10_bio->sectors);
321 }
322 
323 /*
324  * Find the disk number which triggered given bio
325  */
326 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
327 			 struct bio *bio, int *slotp, int *replp)
328 {
329 	int slot;
330 	int repl = 0;
331 
332 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
333 		if (r10_bio->devs[slot].bio == bio)
334 			break;
335 		if (r10_bio->devs[slot].repl_bio == bio) {
336 			repl = 1;
337 			break;
338 		}
339 	}
340 
341 	update_head_pos(slot, r10_bio);
342 
343 	if (slotp)
344 		*slotp = slot;
345 	if (replp)
346 		*replp = repl;
347 	return r10_bio->devs[slot].devnum;
348 }
349 
350 static void raid10_end_read_request(struct bio *bio)
351 {
352 	int uptodate = !bio->bi_status;
353 	struct r10bio *r10_bio = bio->bi_private;
354 	int slot;
355 	struct md_rdev *rdev;
356 	struct r10conf *conf = r10_bio->mddev->private;
357 
358 	slot = r10_bio->read_slot;
359 	rdev = r10_bio->devs[slot].rdev;
360 	/*
361 	 * this branch is our 'one mirror IO has finished' event handler:
362 	 */
363 	update_head_pos(slot, r10_bio);
364 
365 	if (uptodate) {
366 		/*
367 		 * Set R10BIO_Uptodate in our master bio, so that
368 		 * we will return a good error code to the higher
369 		 * levels even if IO on some other mirrored buffer fails.
370 		 *
371 		 * The 'master' represents the composite IO operation to
372 		 * user-side. So if something waits for IO, then it will
373 		 * wait for the 'master' bio.
374 		 */
375 		set_bit(R10BIO_Uptodate, &r10_bio->state);
376 	} else {
377 		/* If all other devices that store this block have
378 		 * failed, we want to return the error upwards rather
379 		 * than fail the last device.  Here we redefine
380 		 * "uptodate" to mean "Don't want to retry"
381 		 */
382 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
383 			     rdev->raid_disk))
384 			uptodate = 1;
385 	}
386 	if (uptodate) {
387 		raid_end_bio_io(r10_bio);
388 		rdev_dec_pending(rdev, conf->mddev);
389 	} else {
390 		/*
391 		 * oops, read error - keep the refcount on the rdev
392 		 */
393 		char b[BDEVNAME_SIZE];
394 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
395 				   mdname(conf->mddev),
396 				   bdevname(rdev->bdev, b),
397 				   (unsigned long long)r10_bio->sector);
398 		set_bit(R10BIO_ReadError, &r10_bio->state);
399 		reschedule_retry(r10_bio);
400 	}
401 }
402 
403 static void close_write(struct r10bio *r10_bio)
404 {
405 	/* clear the bitmap if all writes complete successfully */
406 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
407 			   r10_bio->sectors,
408 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
409 			   0);
410 	md_write_end(r10_bio->mddev);
411 }
412 
413 static void one_write_done(struct r10bio *r10_bio)
414 {
415 	if (atomic_dec_and_test(&r10_bio->remaining)) {
416 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
417 			reschedule_retry(r10_bio);
418 		else {
419 			close_write(r10_bio);
420 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
421 				reschedule_retry(r10_bio);
422 			else
423 				raid_end_bio_io(r10_bio);
424 		}
425 	}
426 }
427 
428 static void raid10_end_write_request(struct bio *bio)
429 {
430 	struct r10bio *r10_bio = bio->bi_private;
431 	int dev;
432 	int dec_rdev = 1;
433 	struct r10conf *conf = r10_bio->mddev->private;
434 	int slot, repl;
435 	struct md_rdev *rdev = NULL;
436 	struct bio *to_put = NULL;
437 	bool discard_error;
438 
439 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
440 
441 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
442 
443 	if (repl)
444 		rdev = conf->mirrors[dev].replacement;
445 	if (!rdev) {
446 		smp_rmb();
447 		repl = 0;
448 		rdev = conf->mirrors[dev].rdev;
449 	}
450 	/*
451 	 * this branch is our 'one mirror IO has finished' event handler:
452 	 */
453 	if (bio->bi_status && !discard_error) {
454 		if (repl)
455 			/* Never record new bad blocks to replacement,
456 			 * just fail it.
457 			 */
458 			md_error(rdev->mddev, rdev);
459 		else {
460 			set_bit(WriteErrorSeen,	&rdev->flags);
461 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
462 				set_bit(MD_RECOVERY_NEEDED,
463 					&rdev->mddev->recovery);
464 
465 			dec_rdev = 0;
466 			if (test_bit(FailFast, &rdev->flags) &&
467 			    (bio->bi_opf & MD_FAILFAST)) {
468 				md_error(rdev->mddev, rdev);
469 			}
470 
471 			/*
472 			 * When the device is faulty, it is not necessary to
473 			 * handle write error.
474 			 */
475 			if (!test_bit(Faulty, &rdev->flags))
476 				set_bit(R10BIO_WriteError, &r10_bio->state);
477 			else {
478 				/* Fail the request */
479 				set_bit(R10BIO_Degraded, &r10_bio->state);
480 				r10_bio->devs[slot].bio = NULL;
481 				to_put = bio;
482 				dec_rdev = 1;
483 			}
484 		}
485 	} else {
486 		/*
487 		 * Set R10BIO_Uptodate in our master bio, so that
488 		 * we will return a good error code for to the higher
489 		 * levels even if IO on some other mirrored buffer fails.
490 		 *
491 		 * The 'master' represents the composite IO operation to
492 		 * user-side. So if something waits for IO, then it will
493 		 * wait for the 'master' bio.
494 		 */
495 		sector_t first_bad;
496 		int bad_sectors;
497 
498 		/*
499 		 * Do not set R10BIO_Uptodate if the current device is
500 		 * rebuilding or Faulty. This is because we cannot use
501 		 * such device for properly reading the data back (we could
502 		 * potentially use it, if the current write would have felt
503 		 * before rdev->recovery_offset, but for simplicity we don't
504 		 * check this here.
505 		 */
506 		if (test_bit(In_sync, &rdev->flags) &&
507 		    !test_bit(Faulty, &rdev->flags))
508 			set_bit(R10BIO_Uptodate, &r10_bio->state);
509 
510 		/* Maybe we can clear some bad blocks. */
511 		if (is_badblock(rdev,
512 				r10_bio->devs[slot].addr,
513 				r10_bio->sectors,
514 				&first_bad, &bad_sectors) && !discard_error) {
515 			bio_put(bio);
516 			if (repl)
517 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
518 			else
519 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
520 			dec_rdev = 0;
521 			set_bit(R10BIO_MadeGood, &r10_bio->state);
522 		}
523 	}
524 
525 	/*
526 	 *
527 	 * Let's see if all mirrored write operations have finished
528 	 * already.
529 	 */
530 	one_write_done(r10_bio);
531 	if (dec_rdev)
532 		rdev_dec_pending(rdev, conf->mddev);
533 	if (to_put)
534 		bio_put(to_put);
535 }
536 
537 /*
538  * RAID10 layout manager
539  * As well as the chunksize and raid_disks count, there are two
540  * parameters: near_copies and far_copies.
541  * near_copies * far_copies must be <= raid_disks.
542  * Normally one of these will be 1.
543  * If both are 1, we get raid0.
544  * If near_copies == raid_disks, we get raid1.
545  *
546  * Chunks are laid out in raid0 style with near_copies copies of the
547  * first chunk, followed by near_copies copies of the next chunk and
548  * so on.
549  * If far_copies > 1, then after 1/far_copies of the array has been assigned
550  * as described above, we start again with a device offset of near_copies.
551  * So we effectively have another copy of the whole array further down all
552  * the drives, but with blocks on different drives.
553  * With this layout, and block is never stored twice on the one device.
554  *
555  * raid10_find_phys finds the sector offset of a given virtual sector
556  * on each device that it is on.
557  *
558  * raid10_find_virt does the reverse mapping, from a device and a
559  * sector offset to a virtual address
560  */
561 
562 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
563 {
564 	int n,f;
565 	sector_t sector;
566 	sector_t chunk;
567 	sector_t stripe;
568 	int dev;
569 	int slot = 0;
570 	int last_far_set_start, last_far_set_size;
571 
572 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
573 	last_far_set_start *= geo->far_set_size;
574 
575 	last_far_set_size = geo->far_set_size;
576 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
577 
578 	/* now calculate first sector/dev */
579 	chunk = r10bio->sector >> geo->chunk_shift;
580 	sector = r10bio->sector & geo->chunk_mask;
581 
582 	chunk *= geo->near_copies;
583 	stripe = chunk;
584 	dev = sector_div(stripe, geo->raid_disks);
585 	if (geo->far_offset)
586 		stripe *= geo->far_copies;
587 
588 	sector += stripe << geo->chunk_shift;
589 
590 	/* and calculate all the others */
591 	for (n = 0; n < geo->near_copies; n++) {
592 		int d = dev;
593 		int set;
594 		sector_t s = sector;
595 		r10bio->devs[slot].devnum = d;
596 		r10bio->devs[slot].addr = s;
597 		slot++;
598 
599 		for (f = 1; f < geo->far_copies; f++) {
600 			set = d / geo->far_set_size;
601 			d += geo->near_copies;
602 
603 			if ((geo->raid_disks % geo->far_set_size) &&
604 			    (d > last_far_set_start)) {
605 				d -= last_far_set_start;
606 				d %= last_far_set_size;
607 				d += last_far_set_start;
608 			} else {
609 				d %= geo->far_set_size;
610 				d += geo->far_set_size * set;
611 			}
612 			s += geo->stride;
613 			r10bio->devs[slot].devnum = d;
614 			r10bio->devs[slot].addr = s;
615 			slot++;
616 		}
617 		dev++;
618 		if (dev >= geo->raid_disks) {
619 			dev = 0;
620 			sector += (geo->chunk_mask + 1);
621 		}
622 	}
623 }
624 
625 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
626 {
627 	struct geom *geo = &conf->geo;
628 
629 	if (conf->reshape_progress != MaxSector &&
630 	    ((r10bio->sector >= conf->reshape_progress) !=
631 	     conf->mddev->reshape_backwards)) {
632 		set_bit(R10BIO_Previous, &r10bio->state);
633 		geo = &conf->prev;
634 	} else
635 		clear_bit(R10BIO_Previous, &r10bio->state);
636 
637 	__raid10_find_phys(geo, r10bio);
638 }
639 
640 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
641 {
642 	sector_t offset, chunk, vchunk;
643 	/* Never use conf->prev as this is only called during resync
644 	 * or recovery, so reshape isn't happening
645 	 */
646 	struct geom *geo = &conf->geo;
647 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
648 	int far_set_size = geo->far_set_size;
649 	int last_far_set_start;
650 
651 	if (geo->raid_disks % geo->far_set_size) {
652 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
653 		last_far_set_start *= geo->far_set_size;
654 
655 		if (dev >= last_far_set_start) {
656 			far_set_size = geo->far_set_size;
657 			far_set_size += (geo->raid_disks % geo->far_set_size);
658 			far_set_start = last_far_set_start;
659 		}
660 	}
661 
662 	offset = sector & geo->chunk_mask;
663 	if (geo->far_offset) {
664 		int fc;
665 		chunk = sector >> geo->chunk_shift;
666 		fc = sector_div(chunk, geo->far_copies);
667 		dev -= fc * geo->near_copies;
668 		if (dev < far_set_start)
669 			dev += far_set_size;
670 	} else {
671 		while (sector >= geo->stride) {
672 			sector -= geo->stride;
673 			if (dev < (geo->near_copies + far_set_start))
674 				dev += far_set_size - geo->near_copies;
675 			else
676 				dev -= geo->near_copies;
677 		}
678 		chunk = sector >> geo->chunk_shift;
679 	}
680 	vchunk = chunk * geo->raid_disks + dev;
681 	sector_div(vchunk, geo->near_copies);
682 	return (vchunk << geo->chunk_shift) + offset;
683 }
684 
685 /*
686  * This routine returns the disk from which the requested read should
687  * be done. There is a per-array 'next expected sequential IO' sector
688  * number - if this matches on the next IO then we use the last disk.
689  * There is also a per-disk 'last know head position' sector that is
690  * maintained from IRQ contexts, both the normal and the resync IO
691  * completion handlers update this position correctly. If there is no
692  * perfect sequential match then we pick the disk whose head is closest.
693  *
694  * If there are 2 mirrors in the same 2 devices, performance degrades
695  * because position is mirror, not device based.
696  *
697  * The rdev for the device selected will have nr_pending incremented.
698  */
699 
700 /*
701  * FIXME: possibly should rethink readbalancing and do it differently
702  * depending on near_copies / far_copies geometry.
703  */
704 static struct md_rdev *read_balance(struct r10conf *conf,
705 				    struct r10bio *r10_bio,
706 				    int *max_sectors)
707 {
708 	const sector_t this_sector = r10_bio->sector;
709 	int disk, slot;
710 	int sectors = r10_bio->sectors;
711 	int best_good_sectors;
712 	sector_t new_distance, best_dist;
713 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
714 	int do_balance;
715 	int best_dist_slot, best_pending_slot;
716 	bool has_nonrot_disk = false;
717 	unsigned int min_pending;
718 	struct geom *geo = &conf->geo;
719 
720 	raid10_find_phys(conf, r10_bio);
721 	rcu_read_lock();
722 	best_dist_slot = -1;
723 	min_pending = UINT_MAX;
724 	best_dist_rdev = NULL;
725 	best_pending_rdev = NULL;
726 	best_dist = MaxSector;
727 	best_good_sectors = 0;
728 	do_balance = 1;
729 	clear_bit(R10BIO_FailFast, &r10_bio->state);
730 	/*
731 	 * Check if we can balance. We can balance on the whole
732 	 * device if no resync is going on (recovery is ok), or below
733 	 * the resync window. We take the first readable disk when
734 	 * above the resync window.
735 	 */
736 	if ((conf->mddev->recovery_cp < MaxSector
737 	     && (this_sector + sectors >= conf->next_resync)) ||
738 	    (mddev_is_clustered(conf->mddev) &&
739 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
740 					    this_sector + sectors)))
741 		do_balance = 0;
742 
743 	for (slot = 0; slot < conf->copies ; slot++) {
744 		sector_t first_bad;
745 		int bad_sectors;
746 		sector_t dev_sector;
747 		unsigned int pending;
748 		bool nonrot;
749 
750 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
751 			continue;
752 		disk = r10_bio->devs[slot].devnum;
753 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
754 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
755 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
757 		if (rdev == NULL ||
758 		    test_bit(Faulty, &rdev->flags))
759 			continue;
760 		if (!test_bit(In_sync, &rdev->flags) &&
761 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
762 			continue;
763 
764 		dev_sector = r10_bio->devs[slot].addr;
765 		if (is_badblock(rdev, dev_sector, sectors,
766 				&first_bad, &bad_sectors)) {
767 			if (best_dist < MaxSector)
768 				/* Already have a better slot */
769 				continue;
770 			if (first_bad <= dev_sector) {
771 				/* Cannot read here.  If this is the
772 				 * 'primary' device, then we must not read
773 				 * beyond 'bad_sectors' from another device.
774 				 */
775 				bad_sectors -= (dev_sector - first_bad);
776 				if (!do_balance && sectors > bad_sectors)
777 					sectors = bad_sectors;
778 				if (best_good_sectors > sectors)
779 					best_good_sectors = sectors;
780 			} else {
781 				sector_t good_sectors =
782 					first_bad - dev_sector;
783 				if (good_sectors > best_good_sectors) {
784 					best_good_sectors = good_sectors;
785 					best_dist_slot = slot;
786 					best_dist_rdev = rdev;
787 				}
788 				if (!do_balance)
789 					/* Must read from here */
790 					break;
791 			}
792 			continue;
793 		} else
794 			best_good_sectors = sectors;
795 
796 		if (!do_balance)
797 			break;
798 
799 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
800 		has_nonrot_disk |= nonrot;
801 		pending = atomic_read(&rdev->nr_pending);
802 		if (min_pending > pending && nonrot) {
803 			min_pending = pending;
804 			best_pending_slot = slot;
805 			best_pending_rdev = rdev;
806 		}
807 
808 		if (best_dist_slot >= 0)
809 			/* At least 2 disks to choose from so failfast is OK */
810 			set_bit(R10BIO_FailFast, &r10_bio->state);
811 		/* This optimisation is debatable, and completely destroys
812 		 * sequential read speed for 'far copies' arrays.  So only
813 		 * keep it for 'near' arrays, and review those later.
814 		 */
815 		if (geo->near_copies > 1 && !pending)
816 			new_distance = 0;
817 
818 		/* for far > 1 always use the lowest address */
819 		else if (geo->far_copies > 1)
820 			new_distance = r10_bio->devs[slot].addr;
821 		else
822 			new_distance = abs(r10_bio->devs[slot].addr -
823 					   conf->mirrors[disk].head_position);
824 
825 		if (new_distance < best_dist) {
826 			best_dist = new_distance;
827 			best_dist_slot = slot;
828 			best_dist_rdev = rdev;
829 		}
830 	}
831 	if (slot >= conf->copies) {
832 		if (has_nonrot_disk) {
833 			slot = best_pending_slot;
834 			rdev = best_pending_rdev;
835 		} else {
836 			slot = best_dist_slot;
837 			rdev = best_dist_rdev;
838 		}
839 	}
840 
841 	if (slot >= 0) {
842 		atomic_inc(&rdev->nr_pending);
843 		r10_bio->read_slot = slot;
844 	} else
845 		rdev = NULL;
846 	rcu_read_unlock();
847 	*max_sectors = best_good_sectors;
848 
849 	return rdev;
850 }
851 
852 static void flush_pending_writes(struct r10conf *conf)
853 {
854 	/* Any writes that have been queued but are awaiting
855 	 * bitmap updates get flushed here.
856 	 */
857 	spin_lock_irq(&conf->device_lock);
858 
859 	if (conf->pending_bio_list.head) {
860 		struct blk_plug plug;
861 		struct bio *bio;
862 
863 		bio = bio_list_get(&conf->pending_bio_list);
864 		spin_unlock_irq(&conf->device_lock);
865 
866 		/*
867 		 * As this is called in a wait_event() loop (see freeze_array),
868 		 * current->state might be TASK_UNINTERRUPTIBLE which will
869 		 * cause a warning when we prepare to wait again.  As it is
870 		 * rare that this path is taken, it is perfectly safe to force
871 		 * us to go around the wait_event() loop again, so the warning
872 		 * is a false-positive. Silence the warning by resetting
873 		 * thread state
874 		 */
875 		__set_current_state(TASK_RUNNING);
876 
877 		blk_start_plug(&plug);
878 		/* flush any pending bitmap writes to disk
879 		 * before proceeding w/ I/O */
880 		md_bitmap_unplug(conf->mddev->bitmap);
881 		wake_up(&conf->wait_barrier);
882 
883 		while (bio) { /* submit pending writes */
884 			struct bio *next = bio->bi_next;
885 			struct md_rdev *rdev = (void*)bio->bi_bdev;
886 			bio->bi_next = NULL;
887 			bio_set_dev(bio, rdev->bdev);
888 			if (test_bit(Faulty, &rdev->flags)) {
889 				bio_io_error(bio);
890 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
891 					    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
892 				/* Just ignore it */
893 				bio_endio(bio);
894 			else
895 				submit_bio_noacct(bio);
896 			bio = next;
897 		}
898 		blk_finish_plug(&plug);
899 	} else
900 		spin_unlock_irq(&conf->device_lock);
901 }
902 
903 /* Barriers....
904  * Sometimes we need to suspend IO while we do something else,
905  * either some resync/recovery, or reconfigure the array.
906  * To do this we raise a 'barrier'.
907  * The 'barrier' is a counter that can be raised multiple times
908  * to count how many activities are happening which preclude
909  * normal IO.
910  * We can only raise the barrier if there is no pending IO.
911  * i.e. if nr_pending == 0.
912  * We choose only to raise the barrier if no-one is waiting for the
913  * barrier to go down.  This means that as soon as an IO request
914  * is ready, no other operations which require a barrier will start
915  * until the IO request has had a chance.
916  *
917  * So: regular IO calls 'wait_barrier'.  When that returns there
918  *    is no backgroup IO happening,  It must arrange to call
919  *    allow_barrier when it has finished its IO.
920  * backgroup IO calls must call raise_barrier.  Once that returns
921  *    there is no normal IO happeing.  It must arrange to call
922  *    lower_barrier when the particular background IO completes.
923  */
924 
925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927 	BUG_ON(force && !conf->barrier);
928 	spin_lock_irq(&conf->resync_lock);
929 
930 	/* Wait until no block IO is waiting (unless 'force') */
931 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
932 			    conf->resync_lock);
933 
934 	/* block any new IO from starting */
935 	conf->barrier++;
936 
937 	/* Now wait for all pending IO to complete */
938 	wait_event_lock_irq(conf->wait_barrier,
939 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
940 			    conf->resync_lock);
941 
942 	spin_unlock_irq(&conf->resync_lock);
943 }
944 
945 static void lower_barrier(struct r10conf *conf)
946 {
947 	unsigned long flags;
948 	spin_lock_irqsave(&conf->resync_lock, flags);
949 	conf->barrier--;
950 	spin_unlock_irqrestore(&conf->resync_lock, flags);
951 	wake_up(&conf->wait_barrier);
952 }
953 
954 static bool wait_barrier(struct r10conf *conf, bool nowait)
955 {
956 	bool ret = true;
957 
958 	spin_lock_irq(&conf->resync_lock);
959 	if (conf->barrier) {
960 		struct bio_list *bio_list = current->bio_list;
961 		conf->nr_waiting++;
962 		/* Wait for the barrier to drop.
963 		 * However if there are already pending
964 		 * requests (preventing the barrier from
965 		 * rising completely), and the
966 		 * pre-process bio queue isn't empty,
967 		 * then don't wait, as we need to empty
968 		 * that queue to get the nr_pending
969 		 * count down.
970 		 */
971 		/* Return false when nowait flag is set */
972 		if (nowait) {
973 			ret = false;
974 		} else {
975 			raid10_log(conf->mddev, "wait barrier");
976 			wait_event_lock_irq(conf->wait_barrier,
977 					    !conf->barrier ||
978 					    (atomic_read(&conf->nr_pending) &&
979 					     bio_list &&
980 					     (!bio_list_empty(&bio_list[0]) ||
981 					      !bio_list_empty(&bio_list[1]))) ||
982 					     /* move on if recovery thread is
983 					      * blocked by us
984 					      */
985 					     (conf->mddev->thread->tsk == current &&
986 					      test_bit(MD_RECOVERY_RUNNING,
987 						       &conf->mddev->recovery) &&
988 					      conf->nr_queued > 0),
989 					    conf->resync_lock);
990 		}
991 		conf->nr_waiting--;
992 		if (!conf->nr_waiting)
993 			wake_up(&conf->wait_barrier);
994 	}
995 	/* Only increment nr_pending when we wait */
996 	if (ret)
997 		atomic_inc(&conf->nr_pending);
998 	spin_unlock_irq(&conf->resync_lock);
999 	return ret;
1000 }
1001 
1002 static void allow_barrier(struct r10conf *conf)
1003 {
1004 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1005 			(conf->array_freeze_pending))
1006 		wake_up(&conf->wait_barrier);
1007 }
1008 
1009 static void freeze_array(struct r10conf *conf, int extra)
1010 {
1011 	/* stop syncio and normal IO and wait for everything to
1012 	 * go quiet.
1013 	 * We increment barrier and nr_waiting, and then
1014 	 * wait until nr_pending match nr_queued+extra
1015 	 * This is called in the context of one normal IO request
1016 	 * that has failed. Thus any sync request that might be pending
1017 	 * will be blocked by nr_pending, and we need to wait for
1018 	 * pending IO requests to complete or be queued for re-try.
1019 	 * Thus the number queued (nr_queued) plus this request (extra)
1020 	 * must match the number of pending IOs (nr_pending) before
1021 	 * we continue.
1022 	 */
1023 	spin_lock_irq(&conf->resync_lock);
1024 	conf->array_freeze_pending++;
1025 	conf->barrier++;
1026 	conf->nr_waiting++;
1027 	wait_event_lock_irq_cmd(conf->wait_barrier,
1028 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1029 				conf->resync_lock,
1030 				flush_pending_writes(conf));
1031 
1032 	conf->array_freeze_pending--;
1033 	spin_unlock_irq(&conf->resync_lock);
1034 }
1035 
1036 static void unfreeze_array(struct r10conf *conf)
1037 {
1038 	/* reverse the effect of the freeze */
1039 	spin_lock_irq(&conf->resync_lock);
1040 	conf->barrier--;
1041 	conf->nr_waiting--;
1042 	wake_up(&conf->wait_barrier);
1043 	spin_unlock_irq(&conf->resync_lock);
1044 }
1045 
1046 static sector_t choose_data_offset(struct r10bio *r10_bio,
1047 				   struct md_rdev *rdev)
1048 {
1049 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1050 	    test_bit(R10BIO_Previous, &r10_bio->state))
1051 		return rdev->data_offset;
1052 	else
1053 		return rdev->new_data_offset;
1054 }
1055 
1056 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1057 {
1058 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1059 	struct mddev *mddev = plug->cb.data;
1060 	struct r10conf *conf = mddev->private;
1061 	struct bio *bio;
1062 
1063 	if (from_schedule || current->bio_list) {
1064 		spin_lock_irq(&conf->device_lock);
1065 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1066 		spin_unlock_irq(&conf->device_lock);
1067 		wake_up(&conf->wait_barrier);
1068 		md_wakeup_thread(mddev->thread);
1069 		kfree(plug);
1070 		return;
1071 	}
1072 
1073 	/* we aren't scheduling, so we can do the write-out directly. */
1074 	bio = bio_list_get(&plug->pending);
1075 	md_bitmap_unplug(mddev->bitmap);
1076 	wake_up(&conf->wait_barrier);
1077 
1078 	while (bio) { /* submit pending writes */
1079 		struct bio *next = bio->bi_next;
1080 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1081 		bio->bi_next = NULL;
1082 		bio_set_dev(bio, rdev->bdev);
1083 		if (test_bit(Faulty, &rdev->flags)) {
1084 			bio_io_error(bio);
1085 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1086 				    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1087 			/* Just ignore it */
1088 			bio_endio(bio);
1089 		else
1090 			submit_bio_noacct(bio);
1091 		bio = next;
1092 	}
1093 	kfree(plug);
1094 }
1095 
1096 /*
1097  * 1. Register the new request and wait if the reconstruction thread has put
1098  * up a bar for new requests. Continue immediately if no resync is active
1099  * currently.
1100  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1101  */
1102 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1103 				 struct bio *bio, sector_t sectors)
1104 {
1105 	/* Bail out if REQ_NOWAIT is set for the bio */
1106 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1107 		bio_wouldblock_error(bio);
1108 		return false;
1109 	}
1110 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1111 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1112 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1113 		allow_barrier(conf);
1114 		if (bio->bi_opf & REQ_NOWAIT) {
1115 			bio_wouldblock_error(bio);
1116 			return false;
1117 		}
1118 		raid10_log(conf->mddev, "wait reshape");
1119 		wait_event(conf->wait_barrier,
1120 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1121 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1122 			   sectors);
1123 		wait_barrier(conf, false);
1124 	}
1125 	return true;
1126 }
1127 
1128 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1129 				struct r10bio *r10_bio)
1130 {
1131 	struct r10conf *conf = mddev->private;
1132 	struct bio *read_bio;
1133 	const int op = bio_op(bio);
1134 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1135 	int max_sectors;
1136 	struct md_rdev *rdev;
1137 	char b[BDEVNAME_SIZE];
1138 	int slot = r10_bio->read_slot;
1139 	struct md_rdev *err_rdev = NULL;
1140 	gfp_t gfp = GFP_NOIO;
1141 
1142 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1143 		/*
1144 		 * This is an error retry, but we cannot
1145 		 * safely dereference the rdev in the r10_bio,
1146 		 * we must use the one in conf.
1147 		 * If it has already been disconnected (unlikely)
1148 		 * we lose the device name in error messages.
1149 		 */
1150 		int disk;
1151 		/*
1152 		 * As we are blocking raid10, it is a little safer to
1153 		 * use __GFP_HIGH.
1154 		 */
1155 		gfp = GFP_NOIO | __GFP_HIGH;
1156 
1157 		rcu_read_lock();
1158 		disk = r10_bio->devs[slot].devnum;
1159 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1160 		if (err_rdev)
1161 			bdevname(err_rdev->bdev, b);
1162 		else {
1163 			strcpy(b, "???");
1164 			/* This never gets dereferenced */
1165 			err_rdev = r10_bio->devs[slot].rdev;
1166 		}
1167 		rcu_read_unlock();
1168 	}
1169 
1170 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1171 		return;
1172 	rdev = read_balance(conf, r10_bio, &max_sectors);
1173 	if (!rdev) {
1174 		if (err_rdev) {
1175 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1176 					    mdname(mddev), b,
1177 					    (unsigned long long)r10_bio->sector);
1178 		}
1179 		raid_end_bio_io(r10_bio);
1180 		return;
1181 	}
1182 	if (err_rdev)
1183 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1184 				   mdname(mddev),
1185 				   bdevname(rdev->bdev, b),
1186 				   (unsigned long long)r10_bio->sector);
1187 	if (max_sectors < bio_sectors(bio)) {
1188 		struct bio *split = bio_split(bio, max_sectors,
1189 					      gfp, &conf->bio_split);
1190 		bio_chain(split, bio);
1191 		allow_barrier(conf);
1192 		submit_bio_noacct(bio);
1193 		wait_barrier(conf, false);
1194 		bio = split;
1195 		r10_bio->master_bio = bio;
1196 		r10_bio->sectors = max_sectors;
1197 	}
1198 	slot = r10_bio->read_slot;
1199 
1200 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1201 		r10_bio->start_time = bio_start_io_acct(bio);
1202 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1203 
1204 	r10_bio->devs[slot].bio = read_bio;
1205 	r10_bio->devs[slot].rdev = rdev;
1206 
1207 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1208 		choose_data_offset(r10_bio, rdev);
1209 	read_bio->bi_end_io = raid10_end_read_request;
1210 	bio_set_op_attrs(read_bio, op, do_sync);
1211 	if (test_bit(FailFast, &rdev->flags) &&
1212 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1213 	        read_bio->bi_opf |= MD_FAILFAST;
1214 	read_bio->bi_private = r10_bio;
1215 
1216 	if (mddev->gendisk)
1217 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1218 	                              r10_bio->sector);
1219 	submit_bio_noacct(read_bio);
1220 	return;
1221 }
1222 
1223 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1224 				  struct bio *bio, bool replacement,
1225 				  int n_copy)
1226 {
1227 	const int op = bio_op(bio);
1228 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1229 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1230 	unsigned long flags;
1231 	struct blk_plug_cb *cb;
1232 	struct raid1_plug_cb *plug = NULL;
1233 	struct r10conf *conf = mddev->private;
1234 	struct md_rdev *rdev;
1235 	int devnum = r10_bio->devs[n_copy].devnum;
1236 	struct bio *mbio;
1237 
1238 	if (replacement) {
1239 		rdev = conf->mirrors[devnum].replacement;
1240 		if (rdev == NULL) {
1241 			/* Replacement just got moved to main 'rdev' */
1242 			smp_mb();
1243 			rdev = conf->mirrors[devnum].rdev;
1244 		}
1245 	} else
1246 		rdev = conf->mirrors[devnum].rdev;
1247 
1248 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1249 	if (replacement)
1250 		r10_bio->devs[n_copy].repl_bio = mbio;
1251 	else
1252 		r10_bio->devs[n_copy].bio = mbio;
1253 
1254 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1255 				   choose_data_offset(r10_bio, rdev));
1256 	mbio->bi_end_io	= raid10_end_write_request;
1257 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1258 	if (!replacement && test_bit(FailFast,
1259 				     &conf->mirrors[devnum].rdev->flags)
1260 			 && enough(conf, devnum))
1261 		mbio->bi_opf |= MD_FAILFAST;
1262 	mbio->bi_private = r10_bio;
1263 
1264 	if (conf->mddev->gendisk)
1265 		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1266 				      r10_bio->sector);
1267 	/* flush_pending_writes() needs access to the rdev so...*/
1268 	mbio->bi_bdev = (void *)rdev;
1269 
1270 	atomic_inc(&r10_bio->remaining);
1271 
1272 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1273 	if (cb)
1274 		plug = container_of(cb, struct raid1_plug_cb, cb);
1275 	else
1276 		plug = NULL;
1277 	if (plug) {
1278 		bio_list_add(&plug->pending, mbio);
1279 	} else {
1280 		spin_lock_irqsave(&conf->device_lock, flags);
1281 		bio_list_add(&conf->pending_bio_list, mbio);
1282 		spin_unlock_irqrestore(&conf->device_lock, flags);
1283 		md_wakeup_thread(mddev->thread);
1284 	}
1285 }
1286 
1287 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1288 {
1289 	int i;
1290 	struct r10conf *conf = mddev->private;
1291 	struct md_rdev *blocked_rdev;
1292 
1293 retry_wait:
1294 	blocked_rdev = NULL;
1295 	rcu_read_lock();
1296 	for (i = 0; i < conf->copies; i++) {
1297 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1298 		struct md_rdev *rrdev = rcu_dereference(
1299 			conf->mirrors[i].replacement);
1300 		if (rdev == rrdev)
1301 			rrdev = NULL;
1302 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1303 			atomic_inc(&rdev->nr_pending);
1304 			blocked_rdev = rdev;
1305 			break;
1306 		}
1307 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1308 			atomic_inc(&rrdev->nr_pending);
1309 			blocked_rdev = rrdev;
1310 			break;
1311 		}
1312 
1313 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1314 			sector_t first_bad;
1315 			sector_t dev_sector = r10_bio->devs[i].addr;
1316 			int bad_sectors;
1317 			int is_bad;
1318 
1319 			/*
1320 			 * Discard request doesn't care the write result
1321 			 * so it doesn't need to wait blocked disk here.
1322 			 */
1323 			if (!r10_bio->sectors)
1324 				continue;
1325 
1326 			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1327 					     &first_bad, &bad_sectors);
1328 			if (is_bad < 0) {
1329 				/*
1330 				 * Mustn't write here until the bad block
1331 				 * is acknowledged
1332 				 */
1333 				atomic_inc(&rdev->nr_pending);
1334 				set_bit(BlockedBadBlocks, &rdev->flags);
1335 				blocked_rdev = rdev;
1336 				break;
1337 			}
1338 		}
1339 	}
1340 	rcu_read_unlock();
1341 
1342 	if (unlikely(blocked_rdev)) {
1343 		/* Have to wait for this device to get unblocked, then retry */
1344 		allow_barrier(conf);
1345 		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1346 				__func__, blocked_rdev->raid_disk);
1347 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1348 		wait_barrier(conf, false);
1349 		goto retry_wait;
1350 	}
1351 }
1352 
1353 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1354 				 struct r10bio *r10_bio)
1355 {
1356 	struct r10conf *conf = mddev->private;
1357 	int i;
1358 	sector_t sectors;
1359 	int max_sectors;
1360 
1361 	if ((mddev_is_clustered(mddev) &&
1362 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1363 					    bio->bi_iter.bi_sector,
1364 					    bio_end_sector(bio)))) {
1365 		DEFINE_WAIT(w);
1366 		/* Bail out if REQ_NOWAIT is set for the bio */
1367 		if (bio->bi_opf & REQ_NOWAIT) {
1368 			bio_wouldblock_error(bio);
1369 			return;
1370 		}
1371 		for (;;) {
1372 			prepare_to_wait(&conf->wait_barrier,
1373 					&w, TASK_IDLE);
1374 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1375 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1376 				break;
1377 			schedule();
1378 		}
1379 		finish_wait(&conf->wait_barrier, &w);
1380 	}
1381 
1382 	sectors = r10_bio->sectors;
1383 	if (!regular_request_wait(mddev, conf, bio, sectors))
1384 		return;
1385 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1386 	    (mddev->reshape_backwards
1387 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1388 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1389 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1390 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1391 		/* Need to update reshape_position in metadata */
1392 		mddev->reshape_position = conf->reshape_progress;
1393 		set_mask_bits(&mddev->sb_flags, 0,
1394 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1395 		md_wakeup_thread(mddev->thread);
1396 		if (bio->bi_opf & REQ_NOWAIT) {
1397 			allow_barrier(conf);
1398 			bio_wouldblock_error(bio);
1399 			return;
1400 		}
1401 		raid10_log(conf->mddev, "wait reshape metadata");
1402 		wait_event(mddev->sb_wait,
1403 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1404 
1405 		conf->reshape_safe = mddev->reshape_position;
1406 	}
1407 
1408 	/* first select target devices under rcu_lock and
1409 	 * inc refcount on their rdev.  Record them by setting
1410 	 * bios[x] to bio
1411 	 * If there are known/acknowledged bad blocks on any device
1412 	 * on which we have seen a write error, we want to avoid
1413 	 * writing to those blocks.  This potentially requires several
1414 	 * writes to write around the bad blocks.  Each set of writes
1415 	 * gets its own r10_bio with a set of bios attached.
1416 	 */
1417 
1418 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1419 	raid10_find_phys(conf, r10_bio);
1420 
1421 	wait_blocked_dev(mddev, r10_bio);
1422 
1423 	rcu_read_lock();
1424 	max_sectors = r10_bio->sectors;
1425 
1426 	for (i = 0;  i < conf->copies; i++) {
1427 		int d = r10_bio->devs[i].devnum;
1428 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1429 		struct md_rdev *rrdev = rcu_dereference(
1430 			conf->mirrors[d].replacement);
1431 		if (rdev == rrdev)
1432 			rrdev = NULL;
1433 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1434 			rdev = NULL;
1435 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1436 			rrdev = NULL;
1437 
1438 		r10_bio->devs[i].bio = NULL;
1439 		r10_bio->devs[i].repl_bio = NULL;
1440 
1441 		if (!rdev && !rrdev) {
1442 			set_bit(R10BIO_Degraded, &r10_bio->state);
1443 			continue;
1444 		}
1445 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1446 			sector_t first_bad;
1447 			sector_t dev_sector = r10_bio->devs[i].addr;
1448 			int bad_sectors;
1449 			int is_bad;
1450 
1451 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1452 					     &first_bad, &bad_sectors);
1453 			if (is_bad && first_bad <= dev_sector) {
1454 				/* Cannot write here at all */
1455 				bad_sectors -= (dev_sector - first_bad);
1456 				if (bad_sectors < max_sectors)
1457 					/* Mustn't write more than bad_sectors
1458 					 * to other devices yet
1459 					 */
1460 					max_sectors = bad_sectors;
1461 				/* We don't set R10BIO_Degraded as that
1462 				 * only applies if the disk is missing,
1463 				 * so it might be re-added, and we want to
1464 				 * know to recover this chunk.
1465 				 * In this case the device is here, and the
1466 				 * fact that this chunk is not in-sync is
1467 				 * recorded in the bad block log.
1468 				 */
1469 				continue;
1470 			}
1471 			if (is_bad) {
1472 				int good_sectors = first_bad - dev_sector;
1473 				if (good_sectors < max_sectors)
1474 					max_sectors = good_sectors;
1475 			}
1476 		}
1477 		if (rdev) {
1478 			r10_bio->devs[i].bio = bio;
1479 			atomic_inc(&rdev->nr_pending);
1480 		}
1481 		if (rrdev) {
1482 			r10_bio->devs[i].repl_bio = bio;
1483 			atomic_inc(&rrdev->nr_pending);
1484 		}
1485 	}
1486 	rcu_read_unlock();
1487 
1488 	if (max_sectors < r10_bio->sectors)
1489 		r10_bio->sectors = max_sectors;
1490 
1491 	if (r10_bio->sectors < bio_sectors(bio)) {
1492 		struct bio *split = bio_split(bio, r10_bio->sectors,
1493 					      GFP_NOIO, &conf->bio_split);
1494 		bio_chain(split, bio);
1495 		allow_barrier(conf);
1496 		submit_bio_noacct(bio);
1497 		wait_barrier(conf, false);
1498 		bio = split;
1499 		r10_bio->master_bio = bio;
1500 	}
1501 
1502 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1503 		r10_bio->start_time = bio_start_io_acct(bio);
1504 	atomic_set(&r10_bio->remaining, 1);
1505 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1506 
1507 	for (i = 0; i < conf->copies; i++) {
1508 		if (r10_bio->devs[i].bio)
1509 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1510 		if (r10_bio->devs[i].repl_bio)
1511 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1512 	}
1513 	one_write_done(r10_bio);
1514 }
1515 
1516 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1517 {
1518 	struct r10conf *conf = mddev->private;
1519 	struct r10bio *r10_bio;
1520 
1521 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1522 
1523 	r10_bio->master_bio = bio;
1524 	r10_bio->sectors = sectors;
1525 
1526 	r10_bio->mddev = mddev;
1527 	r10_bio->sector = bio->bi_iter.bi_sector;
1528 	r10_bio->state = 0;
1529 	r10_bio->read_slot = -1;
1530 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1531 			conf->geo.raid_disks);
1532 
1533 	if (bio_data_dir(bio) == READ)
1534 		raid10_read_request(mddev, bio, r10_bio);
1535 	else
1536 		raid10_write_request(mddev, bio, r10_bio);
1537 }
1538 
1539 static void raid_end_discard_bio(struct r10bio *r10bio)
1540 {
1541 	struct r10conf *conf = r10bio->mddev->private;
1542 	struct r10bio *first_r10bio;
1543 
1544 	while (atomic_dec_and_test(&r10bio->remaining)) {
1545 
1546 		allow_barrier(conf);
1547 
1548 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1549 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1550 			free_r10bio(r10bio);
1551 			r10bio = first_r10bio;
1552 		} else {
1553 			md_write_end(r10bio->mddev);
1554 			bio_endio(r10bio->master_bio);
1555 			free_r10bio(r10bio);
1556 			break;
1557 		}
1558 	}
1559 }
1560 
1561 static void raid10_end_discard_request(struct bio *bio)
1562 {
1563 	struct r10bio *r10_bio = bio->bi_private;
1564 	struct r10conf *conf = r10_bio->mddev->private;
1565 	struct md_rdev *rdev = NULL;
1566 	int dev;
1567 	int slot, repl;
1568 
1569 	/*
1570 	 * We don't care the return value of discard bio
1571 	 */
1572 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1573 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1574 
1575 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1576 	if (repl)
1577 		rdev = conf->mirrors[dev].replacement;
1578 	if (!rdev) {
1579 		/*
1580 		 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1581 		 * replacement before setting replacement to NULL. It can read
1582 		 * rdev first without barrier protect even replacment is NULL
1583 		 */
1584 		smp_rmb();
1585 		rdev = conf->mirrors[dev].rdev;
1586 	}
1587 
1588 	raid_end_discard_bio(r10_bio);
1589 	rdev_dec_pending(rdev, conf->mddev);
1590 }
1591 
1592 /*
1593  * There are some limitations to handle discard bio
1594  * 1st, the discard size is bigger than stripe_size*2.
1595  * 2st, if the discard bio spans reshape progress, we use the old way to
1596  * handle discard bio
1597  */
1598 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1599 {
1600 	struct r10conf *conf = mddev->private;
1601 	struct geom *geo = &conf->geo;
1602 	int far_copies = geo->far_copies;
1603 	bool first_copy = true;
1604 	struct r10bio *r10_bio, *first_r10bio;
1605 	struct bio *split;
1606 	int disk;
1607 	sector_t chunk;
1608 	unsigned int stripe_size;
1609 	unsigned int stripe_data_disks;
1610 	sector_t split_size;
1611 	sector_t bio_start, bio_end;
1612 	sector_t first_stripe_index, last_stripe_index;
1613 	sector_t start_disk_offset;
1614 	unsigned int start_disk_index;
1615 	sector_t end_disk_offset;
1616 	unsigned int end_disk_index;
1617 	unsigned int remainder;
1618 
1619 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1620 		return -EAGAIN;
1621 
1622 	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1623 		bio_wouldblock_error(bio);
1624 		return 0;
1625 	}
1626 	wait_barrier(conf, false);
1627 
1628 	/*
1629 	 * Check reshape again to avoid reshape happens after checking
1630 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1631 	 */
1632 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1633 		goto out;
1634 
1635 	if (geo->near_copies)
1636 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1637 					geo->raid_disks % geo->near_copies;
1638 	else
1639 		stripe_data_disks = geo->raid_disks;
1640 
1641 	stripe_size = stripe_data_disks << geo->chunk_shift;
1642 
1643 	bio_start = bio->bi_iter.bi_sector;
1644 	bio_end = bio_end_sector(bio);
1645 
1646 	/*
1647 	 * Maybe one discard bio is smaller than strip size or across one
1648 	 * stripe and discard region is larger than one stripe size. For far
1649 	 * offset layout, if the discard region is not aligned with stripe
1650 	 * size, there is hole when we submit discard bio to member disk.
1651 	 * For simplicity, we only handle discard bio which discard region
1652 	 * is bigger than stripe_size * 2
1653 	 */
1654 	if (bio_sectors(bio) < stripe_size*2)
1655 		goto out;
1656 
1657 	/*
1658 	 * Keep bio aligned with strip size.
1659 	 */
1660 	div_u64_rem(bio_start, stripe_size, &remainder);
1661 	if (remainder) {
1662 		split_size = stripe_size - remainder;
1663 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1664 		bio_chain(split, bio);
1665 		allow_barrier(conf);
1666 		/* Resend the fist split part */
1667 		submit_bio_noacct(split);
1668 		wait_barrier(conf, false);
1669 	}
1670 	div_u64_rem(bio_end, stripe_size, &remainder);
1671 	if (remainder) {
1672 		split_size = bio_sectors(bio) - remainder;
1673 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1674 		bio_chain(split, bio);
1675 		allow_barrier(conf);
1676 		/* Resend the second split part */
1677 		submit_bio_noacct(bio);
1678 		bio = split;
1679 		wait_barrier(conf, false);
1680 	}
1681 
1682 	bio_start = bio->bi_iter.bi_sector;
1683 	bio_end = bio_end_sector(bio);
1684 
1685 	/*
1686 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1687 	 * One stripe contains the chunks from all member disk (one chunk from
1688 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1689 	 */
1690 	chunk = bio_start >> geo->chunk_shift;
1691 	chunk *= geo->near_copies;
1692 	first_stripe_index = chunk;
1693 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1694 	if (geo->far_offset)
1695 		first_stripe_index *= geo->far_copies;
1696 	start_disk_offset = (bio_start & geo->chunk_mask) +
1697 				(first_stripe_index << geo->chunk_shift);
1698 
1699 	chunk = bio_end >> geo->chunk_shift;
1700 	chunk *= geo->near_copies;
1701 	last_stripe_index = chunk;
1702 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1703 	if (geo->far_offset)
1704 		last_stripe_index *= geo->far_copies;
1705 	end_disk_offset = (bio_end & geo->chunk_mask) +
1706 				(last_stripe_index << geo->chunk_shift);
1707 
1708 retry_discard:
1709 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1710 	r10_bio->mddev = mddev;
1711 	r10_bio->state = 0;
1712 	r10_bio->sectors = 0;
1713 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1714 	wait_blocked_dev(mddev, r10_bio);
1715 
1716 	/*
1717 	 * For far layout it needs more than one r10bio to cover all regions.
1718 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1719 	 * to record the discard bio. Other r10bio->master_bio record the first
1720 	 * r10bio. The first r10bio only release after all other r10bios finish.
1721 	 * The discard bio returns only first r10bio finishes
1722 	 */
1723 	if (first_copy) {
1724 		r10_bio->master_bio = bio;
1725 		set_bit(R10BIO_Discard, &r10_bio->state);
1726 		first_copy = false;
1727 		first_r10bio = r10_bio;
1728 	} else
1729 		r10_bio->master_bio = (struct bio *)first_r10bio;
1730 
1731 	/*
1732 	 * first select target devices under rcu_lock and
1733 	 * inc refcount on their rdev.  Record them by setting
1734 	 * bios[x] to bio
1735 	 */
1736 	rcu_read_lock();
1737 	for (disk = 0; disk < geo->raid_disks; disk++) {
1738 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1739 		struct md_rdev *rrdev = rcu_dereference(
1740 			conf->mirrors[disk].replacement);
1741 
1742 		r10_bio->devs[disk].bio = NULL;
1743 		r10_bio->devs[disk].repl_bio = NULL;
1744 
1745 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1746 			rdev = NULL;
1747 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1748 			rrdev = NULL;
1749 		if (!rdev && !rrdev)
1750 			continue;
1751 
1752 		if (rdev) {
1753 			r10_bio->devs[disk].bio = bio;
1754 			atomic_inc(&rdev->nr_pending);
1755 		}
1756 		if (rrdev) {
1757 			r10_bio->devs[disk].repl_bio = bio;
1758 			atomic_inc(&rrdev->nr_pending);
1759 		}
1760 	}
1761 	rcu_read_unlock();
1762 
1763 	atomic_set(&r10_bio->remaining, 1);
1764 	for (disk = 0; disk < geo->raid_disks; disk++) {
1765 		sector_t dev_start, dev_end;
1766 		struct bio *mbio, *rbio = NULL;
1767 
1768 		/*
1769 		 * Now start to calculate the start and end address for each disk.
1770 		 * The space between dev_start and dev_end is the discard region.
1771 		 *
1772 		 * For dev_start, it needs to consider three conditions:
1773 		 * 1st, the disk is before start_disk, you can imagine the disk in
1774 		 * the next stripe. So the dev_start is the start address of next
1775 		 * stripe.
1776 		 * 2st, the disk is after start_disk, it means the disk is at the
1777 		 * same stripe of first disk
1778 		 * 3st, the first disk itself, we can use start_disk_offset directly
1779 		 */
1780 		if (disk < start_disk_index)
1781 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1782 		else if (disk > start_disk_index)
1783 			dev_start = first_stripe_index * mddev->chunk_sectors;
1784 		else
1785 			dev_start = start_disk_offset;
1786 
1787 		if (disk < end_disk_index)
1788 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1789 		else if (disk > end_disk_index)
1790 			dev_end = last_stripe_index * mddev->chunk_sectors;
1791 		else
1792 			dev_end = end_disk_offset;
1793 
1794 		/*
1795 		 * It only handles discard bio which size is >= stripe size, so
1796 		 * dev_end > dev_start all the time.
1797 		 * It doesn't need to use rcu lock to get rdev here. We already
1798 		 * add rdev->nr_pending in the first loop.
1799 		 */
1800 		if (r10_bio->devs[disk].bio) {
1801 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1802 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1803 					       &mddev->bio_set);
1804 			mbio->bi_end_io = raid10_end_discard_request;
1805 			mbio->bi_private = r10_bio;
1806 			r10_bio->devs[disk].bio = mbio;
1807 			r10_bio->devs[disk].devnum = disk;
1808 			atomic_inc(&r10_bio->remaining);
1809 			md_submit_discard_bio(mddev, rdev, mbio,
1810 					dev_start + choose_data_offset(r10_bio, rdev),
1811 					dev_end - dev_start);
1812 			bio_endio(mbio);
1813 		}
1814 		if (r10_bio->devs[disk].repl_bio) {
1815 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1816 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1817 					       &mddev->bio_set);
1818 			rbio->bi_end_io = raid10_end_discard_request;
1819 			rbio->bi_private = r10_bio;
1820 			r10_bio->devs[disk].repl_bio = rbio;
1821 			r10_bio->devs[disk].devnum = disk;
1822 			atomic_inc(&r10_bio->remaining);
1823 			md_submit_discard_bio(mddev, rrdev, rbio,
1824 					dev_start + choose_data_offset(r10_bio, rrdev),
1825 					dev_end - dev_start);
1826 			bio_endio(rbio);
1827 		}
1828 	}
1829 
1830 	if (!geo->far_offset && --far_copies) {
1831 		first_stripe_index += geo->stride >> geo->chunk_shift;
1832 		start_disk_offset += geo->stride;
1833 		last_stripe_index += geo->stride >> geo->chunk_shift;
1834 		end_disk_offset += geo->stride;
1835 		atomic_inc(&first_r10bio->remaining);
1836 		raid_end_discard_bio(r10_bio);
1837 		wait_barrier(conf, false);
1838 		goto retry_discard;
1839 	}
1840 
1841 	raid_end_discard_bio(r10_bio);
1842 
1843 	return 0;
1844 out:
1845 	allow_barrier(conf);
1846 	return -EAGAIN;
1847 }
1848 
1849 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1850 {
1851 	struct r10conf *conf = mddev->private;
1852 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1853 	int chunk_sects = chunk_mask + 1;
1854 	int sectors = bio_sectors(bio);
1855 
1856 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1857 	    && md_flush_request(mddev, bio))
1858 		return true;
1859 
1860 	if (!md_write_start(mddev, bio))
1861 		return false;
1862 
1863 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1864 		if (!raid10_handle_discard(mddev, bio))
1865 			return true;
1866 
1867 	/*
1868 	 * If this request crosses a chunk boundary, we need to split
1869 	 * it.
1870 	 */
1871 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1872 		     sectors > chunk_sects
1873 		     && (conf->geo.near_copies < conf->geo.raid_disks
1874 			 || conf->prev.near_copies <
1875 			 conf->prev.raid_disks)))
1876 		sectors = chunk_sects -
1877 			(bio->bi_iter.bi_sector &
1878 			 (chunk_sects - 1));
1879 	__make_request(mddev, bio, sectors);
1880 
1881 	/* In case raid10d snuck in to freeze_array */
1882 	wake_up(&conf->wait_barrier);
1883 	return true;
1884 }
1885 
1886 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1887 {
1888 	struct r10conf *conf = mddev->private;
1889 	int i;
1890 
1891 	if (conf->geo.near_copies < conf->geo.raid_disks)
1892 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1893 	if (conf->geo.near_copies > 1)
1894 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1895 	if (conf->geo.far_copies > 1) {
1896 		if (conf->geo.far_offset)
1897 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1898 		else
1899 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1900 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1901 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1902 	}
1903 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1904 					conf->geo.raid_disks - mddev->degraded);
1905 	rcu_read_lock();
1906 	for (i = 0; i < conf->geo.raid_disks; i++) {
1907 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1908 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1909 	}
1910 	rcu_read_unlock();
1911 	seq_printf(seq, "]");
1912 }
1913 
1914 /* check if there are enough drives for
1915  * every block to appear on atleast one.
1916  * Don't consider the device numbered 'ignore'
1917  * as we might be about to remove it.
1918  */
1919 static int _enough(struct r10conf *conf, int previous, int ignore)
1920 {
1921 	int first = 0;
1922 	int has_enough = 0;
1923 	int disks, ncopies;
1924 	if (previous) {
1925 		disks = conf->prev.raid_disks;
1926 		ncopies = conf->prev.near_copies;
1927 	} else {
1928 		disks = conf->geo.raid_disks;
1929 		ncopies = conf->geo.near_copies;
1930 	}
1931 
1932 	rcu_read_lock();
1933 	do {
1934 		int n = conf->copies;
1935 		int cnt = 0;
1936 		int this = first;
1937 		while (n--) {
1938 			struct md_rdev *rdev;
1939 			if (this != ignore &&
1940 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1941 			    test_bit(In_sync, &rdev->flags))
1942 				cnt++;
1943 			this = (this+1) % disks;
1944 		}
1945 		if (cnt == 0)
1946 			goto out;
1947 		first = (first + ncopies) % disks;
1948 	} while (first != 0);
1949 	has_enough = 1;
1950 out:
1951 	rcu_read_unlock();
1952 	return has_enough;
1953 }
1954 
1955 static int enough(struct r10conf *conf, int ignore)
1956 {
1957 	/* when calling 'enough', both 'prev' and 'geo' must
1958 	 * be stable.
1959 	 * This is ensured if ->reconfig_mutex or ->device_lock
1960 	 * is held.
1961 	 */
1962 	return _enough(conf, 0, ignore) &&
1963 		_enough(conf, 1, ignore);
1964 }
1965 
1966 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1967 {
1968 	char b[BDEVNAME_SIZE];
1969 	struct r10conf *conf = mddev->private;
1970 	unsigned long flags;
1971 
1972 	/*
1973 	 * If it is not operational, then we have already marked it as dead
1974 	 * else if it is the last working disks with "fail_last_dev == false",
1975 	 * ignore the error, let the next level up know.
1976 	 * else mark the drive as failed
1977 	 */
1978 	spin_lock_irqsave(&conf->device_lock, flags);
1979 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1980 	    && !enough(conf, rdev->raid_disk)) {
1981 		/*
1982 		 * Don't fail the drive, just return an IO error.
1983 		 */
1984 		spin_unlock_irqrestore(&conf->device_lock, flags);
1985 		return;
1986 	}
1987 	if (test_and_clear_bit(In_sync, &rdev->flags))
1988 		mddev->degraded++;
1989 	/*
1990 	 * If recovery is running, make sure it aborts.
1991 	 */
1992 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1993 	set_bit(Blocked, &rdev->flags);
1994 	set_bit(Faulty, &rdev->flags);
1995 	set_mask_bits(&mddev->sb_flags, 0,
1996 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1997 	spin_unlock_irqrestore(&conf->device_lock, flags);
1998 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1999 		"md/raid10:%s: Operation continuing on %d devices.\n",
2000 		mdname(mddev), bdevname(rdev->bdev, b),
2001 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2002 }
2003 
2004 static void print_conf(struct r10conf *conf)
2005 {
2006 	int i;
2007 	struct md_rdev *rdev;
2008 
2009 	pr_debug("RAID10 conf printout:\n");
2010 	if (!conf) {
2011 		pr_debug("(!conf)\n");
2012 		return;
2013 	}
2014 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2015 		 conf->geo.raid_disks);
2016 
2017 	/* This is only called with ->reconfix_mutex held, so
2018 	 * rcu protection of rdev is not needed */
2019 	for (i = 0; i < conf->geo.raid_disks; i++) {
2020 		char b[BDEVNAME_SIZE];
2021 		rdev = conf->mirrors[i].rdev;
2022 		if (rdev)
2023 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2024 				 i, !test_bit(In_sync, &rdev->flags),
2025 				 !test_bit(Faulty, &rdev->flags),
2026 				 bdevname(rdev->bdev,b));
2027 	}
2028 }
2029 
2030 static void close_sync(struct r10conf *conf)
2031 {
2032 	wait_barrier(conf, false);
2033 	allow_barrier(conf);
2034 
2035 	mempool_exit(&conf->r10buf_pool);
2036 }
2037 
2038 static int raid10_spare_active(struct mddev *mddev)
2039 {
2040 	int i;
2041 	struct r10conf *conf = mddev->private;
2042 	struct raid10_info *tmp;
2043 	int count = 0;
2044 	unsigned long flags;
2045 
2046 	/*
2047 	 * Find all non-in_sync disks within the RAID10 configuration
2048 	 * and mark them in_sync
2049 	 */
2050 	for (i = 0; i < conf->geo.raid_disks; i++) {
2051 		tmp = conf->mirrors + i;
2052 		if (tmp->replacement
2053 		    && tmp->replacement->recovery_offset == MaxSector
2054 		    && !test_bit(Faulty, &tmp->replacement->flags)
2055 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2056 			/* Replacement has just become active */
2057 			if (!tmp->rdev
2058 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2059 				count++;
2060 			if (tmp->rdev) {
2061 				/* Replaced device not technically faulty,
2062 				 * but we need to be sure it gets removed
2063 				 * and never re-added.
2064 				 */
2065 				set_bit(Faulty, &tmp->rdev->flags);
2066 				sysfs_notify_dirent_safe(
2067 					tmp->rdev->sysfs_state);
2068 			}
2069 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2070 		} else if (tmp->rdev
2071 			   && tmp->rdev->recovery_offset == MaxSector
2072 			   && !test_bit(Faulty, &tmp->rdev->flags)
2073 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2074 			count++;
2075 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2076 		}
2077 	}
2078 	spin_lock_irqsave(&conf->device_lock, flags);
2079 	mddev->degraded -= count;
2080 	spin_unlock_irqrestore(&conf->device_lock, flags);
2081 
2082 	print_conf(conf);
2083 	return count;
2084 }
2085 
2086 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2087 {
2088 	struct r10conf *conf = mddev->private;
2089 	int err = -EEXIST;
2090 	int mirror;
2091 	int first = 0;
2092 	int last = conf->geo.raid_disks - 1;
2093 
2094 	if (mddev->recovery_cp < MaxSector)
2095 		/* only hot-add to in-sync arrays, as recovery is
2096 		 * very different from resync
2097 		 */
2098 		return -EBUSY;
2099 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2100 		return -EINVAL;
2101 
2102 	if (md_integrity_add_rdev(rdev, mddev))
2103 		return -ENXIO;
2104 
2105 	if (rdev->raid_disk >= 0)
2106 		first = last = rdev->raid_disk;
2107 
2108 	if (rdev->saved_raid_disk >= first &&
2109 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2110 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2111 		mirror = rdev->saved_raid_disk;
2112 	else
2113 		mirror = first;
2114 	for ( ; mirror <= last ; mirror++) {
2115 		struct raid10_info *p = &conf->mirrors[mirror];
2116 		if (p->recovery_disabled == mddev->recovery_disabled)
2117 			continue;
2118 		if (p->rdev) {
2119 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
2120 			    p->replacement != NULL)
2121 				continue;
2122 			clear_bit(In_sync, &rdev->flags);
2123 			set_bit(Replacement, &rdev->flags);
2124 			rdev->raid_disk = mirror;
2125 			err = 0;
2126 			if (mddev->gendisk)
2127 				disk_stack_limits(mddev->gendisk, rdev->bdev,
2128 						  rdev->data_offset << 9);
2129 			conf->fullsync = 1;
2130 			rcu_assign_pointer(p->replacement, rdev);
2131 			break;
2132 		}
2133 
2134 		if (mddev->gendisk)
2135 			disk_stack_limits(mddev->gendisk, rdev->bdev,
2136 					  rdev->data_offset << 9);
2137 
2138 		p->head_position = 0;
2139 		p->recovery_disabled = mddev->recovery_disabled - 1;
2140 		rdev->raid_disk = mirror;
2141 		err = 0;
2142 		if (rdev->saved_raid_disk != mirror)
2143 			conf->fullsync = 1;
2144 		rcu_assign_pointer(p->rdev, rdev);
2145 		break;
2146 	}
2147 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2148 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2149 
2150 	print_conf(conf);
2151 	return err;
2152 }
2153 
2154 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2155 {
2156 	struct r10conf *conf = mddev->private;
2157 	int err = 0;
2158 	int number = rdev->raid_disk;
2159 	struct md_rdev **rdevp;
2160 	struct raid10_info *p = conf->mirrors + number;
2161 
2162 	print_conf(conf);
2163 	if (rdev == p->rdev)
2164 		rdevp = &p->rdev;
2165 	else if (rdev == p->replacement)
2166 		rdevp = &p->replacement;
2167 	else
2168 		return 0;
2169 
2170 	if (test_bit(In_sync, &rdev->flags) ||
2171 	    atomic_read(&rdev->nr_pending)) {
2172 		err = -EBUSY;
2173 		goto abort;
2174 	}
2175 	/* Only remove non-faulty devices if recovery
2176 	 * is not possible.
2177 	 */
2178 	if (!test_bit(Faulty, &rdev->flags) &&
2179 	    mddev->recovery_disabled != p->recovery_disabled &&
2180 	    (!p->replacement || p->replacement == rdev) &&
2181 	    number < conf->geo.raid_disks &&
2182 	    enough(conf, -1)) {
2183 		err = -EBUSY;
2184 		goto abort;
2185 	}
2186 	*rdevp = NULL;
2187 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2188 		synchronize_rcu();
2189 		if (atomic_read(&rdev->nr_pending)) {
2190 			/* lost the race, try later */
2191 			err = -EBUSY;
2192 			*rdevp = rdev;
2193 			goto abort;
2194 		}
2195 	}
2196 	if (p->replacement) {
2197 		/* We must have just cleared 'rdev' */
2198 		p->rdev = p->replacement;
2199 		clear_bit(Replacement, &p->replacement->flags);
2200 		smp_mb(); /* Make sure other CPUs may see both as identical
2201 			   * but will never see neither -- if they are careful.
2202 			   */
2203 		p->replacement = NULL;
2204 	}
2205 
2206 	clear_bit(WantReplacement, &rdev->flags);
2207 	err = md_integrity_register(mddev);
2208 
2209 abort:
2210 
2211 	print_conf(conf);
2212 	return err;
2213 }
2214 
2215 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2216 {
2217 	struct r10conf *conf = r10_bio->mddev->private;
2218 
2219 	if (!bio->bi_status)
2220 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2221 	else
2222 		/* The write handler will notice the lack of
2223 		 * R10BIO_Uptodate and record any errors etc
2224 		 */
2225 		atomic_add(r10_bio->sectors,
2226 			   &conf->mirrors[d].rdev->corrected_errors);
2227 
2228 	/* for reconstruct, we always reschedule after a read.
2229 	 * for resync, only after all reads
2230 	 */
2231 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2232 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2233 	    atomic_dec_and_test(&r10_bio->remaining)) {
2234 		/* we have read all the blocks,
2235 		 * do the comparison in process context in raid10d
2236 		 */
2237 		reschedule_retry(r10_bio);
2238 	}
2239 }
2240 
2241 static void end_sync_read(struct bio *bio)
2242 {
2243 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2244 	struct r10conf *conf = r10_bio->mddev->private;
2245 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2246 
2247 	__end_sync_read(r10_bio, bio, d);
2248 }
2249 
2250 static void end_reshape_read(struct bio *bio)
2251 {
2252 	/* reshape read bio isn't allocated from r10buf_pool */
2253 	struct r10bio *r10_bio = bio->bi_private;
2254 
2255 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2256 }
2257 
2258 static void end_sync_request(struct r10bio *r10_bio)
2259 {
2260 	struct mddev *mddev = r10_bio->mddev;
2261 
2262 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2263 		if (r10_bio->master_bio == NULL) {
2264 			/* the primary of several recovery bios */
2265 			sector_t s = r10_bio->sectors;
2266 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2267 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2268 				reschedule_retry(r10_bio);
2269 			else
2270 				put_buf(r10_bio);
2271 			md_done_sync(mddev, s, 1);
2272 			break;
2273 		} else {
2274 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2275 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2276 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2277 				reschedule_retry(r10_bio);
2278 			else
2279 				put_buf(r10_bio);
2280 			r10_bio = r10_bio2;
2281 		}
2282 	}
2283 }
2284 
2285 static void end_sync_write(struct bio *bio)
2286 {
2287 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2288 	struct mddev *mddev = r10_bio->mddev;
2289 	struct r10conf *conf = mddev->private;
2290 	int d;
2291 	sector_t first_bad;
2292 	int bad_sectors;
2293 	int slot;
2294 	int repl;
2295 	struct md_rdev *rdev = NULL;
2296 
2297 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2298 	if (repl)
2299 		rdev = conf->mirrors[d].replacement;
2300 	else
2301 		rdev = conf->mirrors[d].rdev;
2302 
2303 	if (bio->bi_status) {
2304 		if (repl)
2305 			md_error(mddev, rdev);
2306 		else {
2307 			set_bit(WriteErrorSeen, &rdev->flags);
2308 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2309 				set_bit(MD_RECOVERY_NEEDED,
2310 					&rdev->mddev->recovery);
2311 			set_bit(R10BIO_WriteError, &r10_bio->state);
2312 		}
2313 	} else if (is_badblock(rdev,
2314 			     r10_bio->devs[slot].addr,
2315 			     r10_bio->sectors,
2316 			     &first_bad, &bad_sectors))
2317 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2318 
2319 	rdev_dec_pending(rdev, mddev);
2320 
2321 	end_sync_request(r10_bio);
2322 }
2323 
2324 /*
2325  * Note: sync and recover and handled very differently for raid10
2326  * This code is for resync.
2327  * For resync, we read through virtual addresses and read all blocks.
2328  * If there is any error, we schedule a write.  The lowest numbered
2329  * drive is authoritative.
2330  * However requests come for physical address, so we need to map.
2331  * For every physical address there are raid_disks/copies virtual addresses,
2332  * which is always are least one, but is not necessarly an integer.
2333  * This means that a physical address can span multiple chunks, so we may
2334  * have to submit multiple io requests for a single sync request.
2335  */
2336 /*
2337  * We check if all blocks are in-sync and only write to blocks that
2338  * aren't in sync
2339  */
2340 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2341 {
2342 	struct r10conf *conf = mddev->private;
2343 	int i, first;
2344 	struct bio *tbio, *fbio;
2345 	int vcnt;
2346 	struct page **tpages, **fpages;
2347 
2348 	atomic_set(&r10_bio->remaining, 1);
2349 
2350 	/* find the first device with a block */
2351 	for (i=0; i<conf->copies; i++)
2352 		if (!r10_bio->devs[i].bio->bi_status)
2353 			break;
2354 
2355 	if (i == conf->copies)
2356 		goto done;
2357 
2358 	first = i;
2359 	fbio = r10_bio->devs[i].bio;
2360 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2361 	fbio->bi_iter.bi_idx = 0;
2362 	fpages = get_resync_pages(fbio)->pages;
2363 
2364 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2365 	/* now find blocks with errors */
2366 	for (i=0 ; i < conf->copies ; i++) {
2367 		int  j, d;
2368 		struct md_rdev *rdev;
2369 		struct resync_pages *rp;
2370 
2371 		tbio = r10_bio->devs[i].bio;
2372 
2373 		if (tbio->bi_end_io != end_sync_read)
2374 			continue;
2375 		if (i == first)
2376 			continue;
2377 
2378 		tpages = get_resync_pages(tbio)->pages;
2379 		d = r10_bio->devs[i].devnum;
2380 		rdev = conf->mirrors[d].rdev;
2381 		if (!r10_bio->devs[i].bio->bi_status) {
2382 			/* We know that the bi_io_vec layout is the same for
2383 			 * both 'first' and 'i', so we just compare them.
2384 			 * All vec entries are PAGE_SIZE;
2385 			 */
2386 			int sectors = r10_bio->sectors;
2387 			for (j = 0; j < vcnt; j++) {
2388 				int len = PAGE_SIZE;
2389 				if (sectors < (len / 512))
2390 					len = sectors * 512;
2391 				if (memcmp(page_address(fpages[j]),
2392 					   page_address(tpages[j]),
2393 					   len))
2394 					break;
2395 				sectors -= len/512;
2396 			}
2397 			if (j == vcnt)
2398 				continue;
2399 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2400 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2401 				/* Don't fix anything. */
2402 				continue;
2403 		} else if (test_bit(FailFast, &rdev->flags)) {
2404 			/* Just give up on this device */
2405 			md_error(rdev->mddev, rdev);
2406 			continue;
2407 		}
2408 		/* Ok, we need to write this bio, either to correct an
2409 		 * inconsistency or to correct an unreadable block.
2410 		 * First we need to fixup bv_offset, bv_len and
2411 		 * bi_vecs, as the read request might have corrupted these
2412 		 */
2413 		rp = get_resync_pages(tbio);
2414 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2415 
2416 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2417 
2418 		rp->raid_bio = r10_bio;
2419 		tbio->bi_private = rp;
2420 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2421 		tbio->bi_end_io = end_sync_write;
2422 
2423 		bio_copy_data(tbio, fbio);
2424 
2425 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2426 		atomic_inc(&r10_bio->remaining);
2427 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2428 
2429 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2430 			tbio->bi_opf |= MD_FAILFAST;
2431 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2432 		submit_bio_noacct(tbio);
2433 	}
2434 
2435 	/* Now write out to any replacement devices
2436 	 * that are active
2437 	 */
2438 	for (i = 0; i < conf->copies; i++) {
2439 		int d;
2440 
2441 		tbio = r10_bio->devs[i].repl_bio;
2442 		if (!tbio || !tbio->bi_end_io)
2443 			continue;
2444 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2445 		    && r10_bio->devs[i].bio != fbio)
2446 			bio_copy_data(tbio, fbio);
2447 		d = r10_bio->devs[i].devnum;
2448 		atomic_inc(&r10_bio->remaining);
2449 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2450 			     bio_sectors(tbio));
2451 		submit_bio_noacct(tbio);
2452 	}
2453 
2454 done:
2455 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2456 		md_done_sync(mddev, r10_bio->sectors, 1);
2457 		put_buf(r10_bio);
2458 	}
2459 }
2460 
2461 /*
2462  * Now for the recovery code.
2463  * Recovery happens across physical sectors.
2464  * We recover all non-is_sync drives by finding the virtual address of
2465  * each, and then choose a working drive that also has that virt address.
2466  * There is a separate r10_bio for each non-in_sync drive.
2467  * Only the first two slots are in use. The first for reading,
2468  * The second for writing.
2469  *
2470  */
2471 static void fix_recovery_read_error(struct r10bio *r10_bio)
2472 {
2473 	/* We got a read error during recovery.
2474 	 * We repeat the read in smaller page-sized sections.
2475 	 * If a read succeeds, write it to the new device or record
2476 	 * a bad block if we cannot.
2477 	 * If a read fails, record a bad block on both old and
2478 	 * new devices.
2479 	 */
2480 	struct mddev *mddev = r10_bio->mddev;
2481 	struct r10conf *conf = mddev->private;
2482 	struct bio *bio = r10_bio->devs[0].bio;
2483 	sector_t sect = 0;
2484 	int sectors = r10_bio->sectors;
2485 	int idx = 0;
2486 	int dr = r10_bio->devs[0].devnum;
2487 	int dw = r10_bio->devs[1].devnum;
2488 	struct page **pages = get_resync_pages(bio)->pages;
2489 
2490 	while (sectors) {
2491 		int s = sectors;
2492 		struct md_rdev *rdev;
2493 		sector_t addr;
2494 		int ok;
2495 
2496 		if (s > (PAGE_SIZE>>9))
2497 			s = PAGE_SIZE >> 9;
2498 
2499 		rdev = conf->mirrors[dr].rdev;
2500 		addr = r10_bio->devs[0].addr + sect,
2501 		ok = sync_page_io(rdev,
2502 				  addr,
2503 				  s << 9,
2504 				  pages[idx],
2505 				  REQ_OP_READ, 0, false);
2506 		if (ok) {
2507 			rdev = conf->mirrors[dw].rdev;
2508 			addr = r10_bio->devs[1].addr + sect;
2509 			ok = sync_page_io(rdev,
2510 					  addr,
2511 					  s << 9,
2512 					  pages[idx],
2513 					  REQ_OP_WRITE, 0, false);
2514 			if (!ok) {
2515 				set_bit(WriteErrorSeen, &rdev->flags);
2516 				if (!test_and_set_bit(WantReplacement,
2517 						      &rdev->flags))
2518 					set_bit(MD_RECOVERY_NEEDED,
2519 						&rdev->mddev->recovery);
2520 			}
2521 		}
2522 		if (!ok) {
2523 			/* We don't worry if we cannot set a bad block -
2524 			 * it really is bad so there is no loss in not
2525 			 * recording it yet
2526 			 */
2527 			rdev_set_badblocks(rdev, addr, s, 0);
2528 
2529 			if (rdev != conf->mirrors[dw].rdev) {
2530 				/* need bad block on destination too */
2531 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2532 				addr = r10_bio->devs[1].addr + sect;
2533 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2534 				if (!ok) {
2535 					/* just abort the recovery */
2536 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2537 						  mdname(mddev));
2538 
2539 					conf->mirrors[dw].recovery_disabled
2540 						= mddev->recovery_disabled;
2541 					set_bit(MD_RECOVERY_INTR,
2542 						&mddev->recovery);
2543 					break;
2544 				}
2545 			}
2546 		}
2547 
2548 		sectors -= s;
2549 		sect += s;
2550 		idx++;
2551 	}
2552 }
2553 
2554 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2555 {
2556 	struct r10conf *conf = mddev->private;
2557 	int d;
2558 	struct bio *wbio, *wbio2;
2559 
2560 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2561 		fix_recovery_read_error(r10_bio);
2562 		end_sync_request(r10_bio);
2563 		return;
2564 	}
2565 
2566 	/*
2567 	 * share the pages with the first bio
2568 	 * and submit the write request
2569 	 */
2570 	d = r10_bio->devs[1].devnum;
2571 	wbio = r10_bio->devs[1].bio;
2572 	wbio2 = r10_bio->devs[1].repl_bio;
2573 	/* Need to test wbio2->bi_end_io before we call
2574 	 * submit_bio_noacct as if the former is NULL,
2575 	 * the latter is free to free wbio2.
2576 	 */
2577 	if (wbio2 && !wbio2->bi_end_io)
2578 		wbio2 = NULL;
2579 	if (wbio->bi_end_io) {
2580 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2581 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2582 		submit_bio_noacct(wbio);
2583 	}
2584 	if (wbio2) {
2585 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2586 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2587 			     bio_sectors(wbio2));
2588 		submit_bio_noacct(wbio2);
2589 	}
2590 }
2591 
2592 /*
2593  * Used by fix_read_error() to decay the per rdev read_errors.
2594  * We halve the read error count for every hour that has elapsed
2595  * since the last recorded read error.
2596  *
2597  */
2598 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2599 {
2600 	long cur_time_mon;
2601 	unsigned long hours_since_last;
2602 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2603 
2604 	cur_time_mon = ktime_get_seconds();
2605 
2606 	if (rdev->last_read_error == 0) {
2607 		/* first time we've seen a read error */
2608 		rdev->last_read_error = cur_time_mon;
2609 		return;
2610 	}
2611 
2612 	hours_since_last = (long)(cur_time_mon -
2613 			    rdev->last_read_error) / 3600;
2614 
2615 	rdev->last_read_error = cur_time_mon;
2616 
2617 	/*
2618 	 * if hours_since_last is > the number of bits in read_errors
2619 	 * just set read errors to 0. We do this to avoid
2620 	 * overflowing the shift of read_errors by hours_since_last.
2621 	 */
2622 	if (hours_since_last >= 8 * sizeof(read_errors))
2623 		atomic_set(&rdev->read_errors, 0);
2624 	else
2625 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2626 }
2627 
2628 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2629 			    int sectors, struct page *page, int rw)
2630 {
2631 	sector_t first_bad;
2632 	int bad_sectors;
2633 
2634 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2635 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2636 		return -1;
2637 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2638 		/* success */
2639 		return 1;
2640 	if (rw == WRITE) {
2641 		set_bit(WriteErrorSeen, &rdev->flags);
2642 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2643 			set_bit(MD_RECOVERY_NEEDED,
2644 				&rdev->mddev->recovery);
2645 	}
2646 	/* need to record an error - either for the block or the device */
2647 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2648 		md_error(rdev->mddev, rdev);
2649 	return 0;
2650 }
2651 
2652 /*
2653  * This is a kernel thread which:
2654  *
2655  *	1.	Retries failed read operations on working mirrors.
2656  *	2.	Updates the raid superblock when problems encounter.
2657  *	3.	Performs writes following reads for array synchronising.
2658  */
2659 
2660 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2661 {
2662 	int sect = 0; /* Offset from r10_bio->sector */
2663 	int sectors = r10_bio->sectors;
2664 	struct md_rdev *rdev;
2665 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2666 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2667 
2668 	/* still own a reference to this rdev, so it cannot
2669 	 * have been cleared recently.
2670 	 */
2671 	rdev = conf->mirrors[d].rdev;
2672 
2673 	if (test_bit(Faulty, &rdev->flags))
2674 		/* drive has already been failed, just ignore any
2675 		   more fix_read_error() attempts */
2676 		return;
2677 
2678 	check_decay_read_errors(mddev, rdev);
2679 	atomic_inc(&rdev->read_errors);
2680 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2681 		char b[BDEVNAME_SIZE];
2682 		bdevname(rdev->bdev, b);
2683 
2684 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2685 			  mdname(mddev), b,
2686 			  atomic_read(&rdev->read_errors), max_read_errors);
2687 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2688 			  mdname(mddev), b);
2689 		md_error(mddev, rdev);
2690 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2691 		return;
2692 	}
2693 
2694 	while(sectors) {
2695 		int s = sectors;
2696 		int sl = r10_bio->read_slot;
2697 		int success = 0;
2698 		int start;
2699 
2700 		if (s > (PAGE_SIZE>>9))
2701 			s = PAGE_SIZE >> 9;
2702 
2703 		rcu_read_lock();
2704 		do {
2705 			sector_t first_bad;
2706 			int bad_sectors;
2707 
2708 			d = r10_bio->devs[sl].devnum;
2709 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2710 			if (rdev &&
2711 			    test_bit(In_sync, &rdev->flags) &&
2712 			    !test_bit(Faulty, &rdev->flags) &&
2713 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2714 					&first_bad, &bad_sectors) == 0) {
2715 				atomic_inc(&rdev->nr_pending);
2716 				rcu_read_unlock();
2717 				success = sync_page_io(rdev,
2718 						       r10_bio->devs[sl].addr +
2719 						       sect,
2720 						       s<<9,
2721 						       conf->tmppage,
2722 						       REQ_OP_READ, 0, false);
2723 				rdev_dec_pending(rdev, mddev);
2724 				rcu_read_lock();
2725 				if (success)
2726 					break;
2727 			}
2728 			sl++;
2729 			if (sl == conf->copies)
2730 				sl = 0;
2731 		} while (!success && sl != r10_bio->read_slot);
2732 		rcu_read_unlock();
2733 
2734 		if (!success) {
2735 			/* Cannot read from anywhere, just mark the block
2736 			 * as bad on the first device to discourage future
2737 			 * reads.
2738 			 */
2739 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2740 			rdev = conf->mirrors[dn].rdev;
2741 
2742 			if (!rdev_set_badblocks(
2743 				    rdev,
2744 				    r10_bio->devs[r10_bio->read_slot].addr
2745 				    + sect,
2746 				    s, 0)) {
2747 				md_error(mddev, rdev);
2748 				r10_bio->devs[r10_bio->read_slot].bio
2749 					= IO_BLOCKED;
2750 			}
2751 			break;
2752 		}
2753 
2754 		start = sl;
2755 		/* write it back and re-read */
2756 		rcu_read_lock();
2757 		while (sl != r10_bio->read_slot) {
2758 			char b[BDEVNAME_SIZE];
2759 
2760 			if (sl==0)
2761 				sl = conf->copies;
2762 			sl--;
2763 			d = r10_bio->devs[sl].devnum;
2764 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2765 			if (!rdev ||
2766 			    test_bit(Faulty, &rdev->flags) ||
2767 			    !test_bit(In_sync, &rdev->flags))
2768 				continue;
2769 
2770 			atomic_inc(&rdev->nr_pending);
2771 			rcu_read_unlock();
2772 			if (r10_sync_page_io(rdev,
2773 					     r10_bio->devs[sl].addr +
2774 					     sect,
2775 					     s, conf->tmppage, WRITE)
2776 			    == 0) {
2777 				/* Well, this device is dead */
2778 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2779 					  mdname(mddev), s,
2780 					  (unsigned long long)(
2781 						  sect +
2782 						  choose_data_offset(r10_bio,
2783 								     rdev)),
2784 					  bdevname(rdev->bdev, b));
2785 				pr_notice("md/raid10:%s: %s: failing drive\n",
2786 					  mdname(mddev),
2787 					  bdevname(rdev->bdev, b));
2788 			}
2789 			rdev_dec_pending(rdev, mddev);
2790 			rcu_read_lock();
2791 		}
2792 		sl = start;
2793 		while (sl != r10_bio->read_slot) {
2794 			char b[BDEVNAME_SIZE];
2795 
2796 			if (sl==0)
2797 				sl = conf->copies;
2798 			sl--;
2799 			d = r10_bio->devs[sl].devnum;
2800 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2801 			if (!rdev ||
2802 			    test_bit(Faulty, &rdev->flags) ||
2803 			    !test_bit(In_sync, &rdev->flags))
2804 				continue;
2805 
2806 			atomic_inc(&rdev->nr_pending);
2807 			rcu_read_unlock();
2808 			switch (r10_sync_page_io(rdev,
2809 					     r10_bio->devs[sl].addr +
2810 					     sect,
2811 					     s, conf->tmppage,
2812 						 READ)) {
2813 			case 0:
2814 				/* Well, this device is dead */
2815 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2816 				       mdname(mddev), s,
2817 				       (unsigned long long)(
2818 					       sect +
2819 					       choose_data_offset(r10_bio, rdev)),
2820 				       bdevname(rdev->bdev, b));
2821 				pr_notice("md/raid10:%s: %s: failing drive\n",
2822 				       mdname(mddev),
2823 				       bdevname(rdev->bdev, b));
2824 				break;
2825 			case 1:
2826 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2827 				       mdname(mddev), s,
2828 				       (unsigned long long)(
2829 					       sect +
2830 					       choose_data_offset(r10_bio, rdev)),
2831 				       bdevname(rdev->bdev, b));
2832 				atomic_add(s, &rdev->corrected_errors);
2833 			}
2834 
2835 			rdev_dec_pending(rdev, mddev);
2836 			rcu_read_lock();
2837 		}
2838 		rcu_read_unlock();
2839 
2840 		sectors -= s;
2841 		sect += s;
2842 	}
2843 }
2844 
2845 static int narrow_write_error(struct r10bio *r10_bio, int i)
2846 {
2847 	struct bio *bio = r10_bio->master_bio;
2848 	struct mddev *mddev = r10_bio->mddev;
2849 	struct r10conf *conf = mddev->private;
2850 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2851 	/* bio has the data to be written to slot 'i' where
2852 	 * we just recently had a write error.
2853 	 * We repeatedly clone the bio and trim down to one block,
2854 	 * then try the write.  Where the write fails we record
2855 	 * a bad block.
2856 	 * It is conceivable that the bio doesn't exactly align with
2857 	 * blocks.  We must handle this.
2858 	 *
2859 	 * We currently own a reference to the rdev.
2860 	 */
2861 
2862 	int block_sectors;
2863 	sector_t sector;
2864 	int sectors;
2865 	int sect_to_write = r10_bio->sectors;
2866 	int ok = 1;
2867 
2868 	if (rdev->badblocks.shift < 0)
2869 		return 0;
2870 
2871 	block_sectors = roundup(1 << rdev->badblocks.shift,
2872 				bdev_logical_block_size(rdev->bdev) >> 9);
2873 	sector = r10_bio->sector;
2874 	sectors = ((r10_bio->sector + block_sectors)
2875 		   & ~(sector_t)(block_sectors - 1))
2876 		- sector;
2877 
2878 	while (sect_to_write) {
2879 		struct bio *wbio;
2880 		sector_t wsector;
2881 		if (sectors > sect_to_write)
2882 			sectors = sect_to_write;
2883 		/* Write at 'sector' for 'sectors' */
2884 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2885 				       &mddev->bio_set);
2886 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2887 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2888 		wbio->bi_iter.bi_sector = wsector +
2889 				   choose_data_offset(r10_bio, rdev);
2890 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2891 
2892 		if (submit_bio_wait(wbio) < 0)
2893 			/* Failure! */
2894 			ok = rdev_set_badblocks(rdev, wsector,
2895 						sectors, 0)
2896 				&& ok;
2897 
2898 		bio_put(wbio);
2899 		sect_to_write -= sectors;
2900 		sector += sectors;
2901 		sectors = block_sectors;
2902 	}
2903 	return ok;
2904 }
2905 
2906 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2907 {
2908 	int slot = r10_bio->read_slot;
2909 	struct bio *bio;
2910 	struct r10conf *conf = mddev->private;
2911 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2912 
2913 	/* we got a read error. Maybe the drive is bad.  Maybe just
2914 	 * the block and we can fix it.
2915 	 * We freeze all other IO, and try reading the block from
2916 	 * other devices.  When we find one, we re-write
2917 	 * and check it that fixes the read error.
2918 	 * This is all done synchronously while the array is
2919 	 * frozen.
2920 	 */
2921 	bio = r10_bio->devs[slot].bio;
2922 	bio_put(bio);
2923 	r10_bio->devs[slot].bio = NULL;
2924 
2925 	if (mddev->ro)
2926 		r10_bio->devs[slot].bio = IO_BLOCKED;
2927 	else if (!test_bit(FailFast, &rdev->flags)) {
2928 		freeze_array(conf, 1);
2929 		fix_read_error(conf, mddev, r10_bio);
2930 		unfreeze_array(conf);
2931 	} else
2932 		md_error(mddev, rdev);
2933 
2934 	rdev_dec_pending(rdev, mddev);
2935 	allow_barrier(conf);
2936 	r10_bio->state = 0;
2937 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2938 }
2939 
2940 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2941 {
2942 	/* Some sort of write request has finished and it
2943 	 * succeeded in writing where we thought there was a
2944 	 * bad block.  So forget the bad block.
2945 	 * Or possibly if failed and we need to record
2946 	 * a bad block.
2947 	 */
2948 	int m;
2949 	struct md_rdev *rdev;
2950 
2951 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2952 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2953 		for (m = 0; m < conf->copies; m++) {
2954 			int dev = r10_bio->devs[m].devnum;
2955 			rdev = conf->mirrors[dev].rdev;
2956 			if (r10_bio->devs[m].bio == NULL ||
2957 				r10_bio->devs[m].bio->bi_end_io == NULL)
2958 				continue;
2959 			if (!r10_bio->devs[m].bio->bi_status) {
2960 				rdev_clear_badblocks(
2961 					rdev,
2962 					r10_bio->devs[m].addr,
2963 					r10_bio->sectors, 0);
2964 			} else {
2965 				if (!rdev_set_badblocks(
2966 					    rdev,
2967 					    r10_bio->devs[m].addr,
2968 					    r10_bio->sectors, 0))
2969 					md_error(conf->mddev, rdev);
2970 			}
2971 			rdev = conf->mirrors[dev].replacement;
2972 			if (r10_bio->devs[m].repl_bio == NULL ||
2973 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2974 				continue;
2975 
2976 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2977 				rdev_clear_badblocks(
2978 					rdev,
2979 					r10_bio->devs[m].addr,
2980 					r10_bio->sectors, 0);
2981 			} else {
2982 				if (!rdev_set_badblocks(
2983 					    rdev,
2984 					    r10_bio->devs[m].addr,
2985 					    r10_bio->sectors, 0))
2986 					md_error(conf->mddev, rdev);
2987 			}
2988 		}
2989 		put_buf(r10_bio);
2990 	} else {
2991 		bool fail = false;
2992 		for (m = 0; m < conf->copies; m++) {
2993 			int dev = r10_bio->devs[m].devnum;
2994 			struct bio *bio = r10_bio->devs[m].bio;
2995 			rdev = conf->mirrors[dev].rdev;
2996 			if (bio == IO_MADE_GOOD) {
2997 				rdev_clear_badblocks(
2998 					rdev,
2999 					r10_bio->devs[m].addr,
3000 					r10_bio->sectors, 0);
3001 				rdev_dec_pending(rdev, conf->mddev);
3002 			} else if (bio != NULL && bio->bi_status) {
3003 				fail = true;
3004 				if (!narrow_write_error(r10_bio, m)) {
3005 					md_error(conf->mddev, rdev);
3006 					set_bit(R10BIO_Degraded,
3007 						&r10_bio->state);
3008 				}
3009 				rdev_dec_pending(rdev, conf->mddev);
3010 			}
3011 			bio = r10_bio->devs[m].repl_bio;
3012 			rdev = conf->mirrors[dev].replacement;
3013 			if (rdev && bio == IO_MADE_GOOD) {
3014 				rdev_clear_badblocks(
3015 					rdev,
3016 					r10_bio->devs[m].addr,
3017 					r10_bio->sectors, 0);
3018 				rdev_dec_pending(rdev, conf->mddev);
3019 			}
3020 		}
3021 		if (fail) {
3022 			spin_lock_irq(&conf->device_lock);
3023 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3024 			conf->nr_queued++;
3025 			spin_unlock_irq(&conf->device_lock);
3026 			/*
3027 			 * In case freeze_array() is waiting for condition
3028 			 * nr_pending == nr_queued + extra to be true.
3029 			 */
3030 			wake_up(&conf->wait_barrier);
3031 			md_wakeup_thread(conf->mddev->thread);
3032 		} else {
3033 			if (test_bit(R10BIO_WriteError,
3034 				     &r10_bio->state))
3035 				close_write(r10_bio);
3036 			raid_end_bio_io(r10_bio);
3037 		}
3038 	}
3039 }
3040 
3041 static void raid10d(struct md_thread *thread)
3042 {
3043 	struct mddev *mddev = thread->mddev;
3044 	struct r10bio *r10_bio;
3045 	unsigned long flags;
3046 	struct r10conf *conf = mddev->private;
3047 	struct list_head *head = &conf->retry_list;
3048 	struct blk_plug plug;
3049 
3050 	md_check_recovery(mddev);
3051 
3052 	if (!list_empty_careful(&conf->bio_end_io_list) &&
3053 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3054 		LIST_HEAD(tmp);
3055 		spin_lock_irqsave(&conf->device_lock, flags);
3056 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3057 			while (!list_empty(&conf->bio_end_io_list)) {
3058 				list_move(conf->bio_end_io_list.prev, &tmp);
3059 				conf->nr_queued--;
3060 			}
3061 		}
3062 		spin_unlock_irqrestore(&conf->device_lock, flags);
3063 		while (!list_empty(&tmp)) {
3064 			r10_bio = list_first_entry(&tmp, struct r10bio,
3065 						   retry_list);
3066 			list_del(&r10_bio->retry_list);
3067 			if (mddev->degraded)
3068 				set_bit(R10BIO_Degraded, &r10_bio->state);
3069 
3070 			if (test_bit(R10BIO_WriteError,
3071 				     &r10_bio->state))
3072 				close_write(r10_bio);
3073 			raid_end_bio_io(r10_bio);
3074 		}
3075 	}
3076 
3077 	blk_start_plug(&plug);
3078 	for (;;) {
3079 
3080 		flush_pending_writes(conf);
3081 
3082 		spin_lock_irqsave(&conf->device_lock, flags);
3083 		if (list_empty(head)) {
3084 			spin_unlock_irqrestore(&conf->device_lock, flags);
3085 			break;
3086 		}
3087 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3088 		list_del(head->prev);
3089 		conf->nr_queued--;
3090 		spin_unlock_irqrestore(&conf->device_lock, flags);
3091 
3092 		mddev = r10_bio->mddev;
3093 		conf = mddev->private;
3094 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3095 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3096 			handle_write_completed(conf, r10_bio);
3097 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3098 			reshape_request_write(mddev, r10_bio);
3099 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3100 			sync_request_write(mddev, r10_bio);
3101 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3102 			recovery_request_write(mddev, r10_bio);
3103 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3104 			handle_read_error(mddev, r10_bio);
3105 		else
3106 			WARN_ON_ONCE(1);
3107 
3108 		cond_resched();
3109 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3110 			md_check_recovery(mddev);
3111 	}
3112 	blk_finish_plug(&plug);
3113 }
3114 
3115 static int init_resync(struct r10conf *conf)
3116 {
3117 	int ret, buffs, i;
3118 
3119 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3120 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3121 	conf->have_replacement = 0;
3122 	for (i = 0; i < conf->geo.raid_disks; i++)
3123 		if (conf->mirrors[i].replacement)
3124 			conf->have_replacement = 1;
3125 	ret = mempool_init(&conf->r10buf_pool, buffs,
3126 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3127 	if (ret)
3128 		return ret;
3129 	conf->next_resync = 0;
3130 	return 0;
3131 }
3132 
3133 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3134 {
3135 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3136 	struct rsync_pages *rp;
3137 	struct bio *bio;
3138 	int nalloc;
3139 	int i;
3140 
3141 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3142 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3143 		nalloc = conf->copies; /* resync */
3144 	else
3145 		nalloc = 2; /* recovery */
3146 
3147 	for (i = 0; i < nalloc; i++) {
3148 		bio = r10bio->devs[i].bio;
3149 		rp = bio->bi_private;
3150 		bio_reset(bio, NULL, 0);
3151 		bio->bi_private = rp;
3152 		bio = r10bio->devs[i].repl_bio;
3153 		if (bio) {
3154 			rp = bio->bi_private;
3155 			bio_reset(bio, NULL, 0);
3156 			bio->bi_private = rp;
3157 		}
3158 	}
3159 	return r10bio;
3160 }
3161 
3162 /*
3163  * Set cluster_sync_high since we need other nodes to add the
3164  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3165  */
3166 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3167 {
3168 	sector_t window_size;
3169 	int extra_chunk, chunks;
3170 
3171 	/*
3172 	 * First, here we define "stripe" as a unit which across
3173 	 * all member devices one time, so we get chunks by use
3174 	 * raid_disks / near_copies. Otherwise, if near_copies is
3175 	 * close to raid_disks, then resync window could increases
3176 	 * linearly with the increase of raid_disks, which means
3177 	 * we will suspend a really large IO window while it is not
3178 	 * necessary. If raid_disks is not divisible by near_copies,
3179 	 * an extra chunk is needed to ensure the whole "stripe" is
3180 	 * covered.
3181 	 */
3182 
3183 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3184 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3185 		extra_chunk = 0;
3186 	else
3187 		extra_chunk = 1;
3188 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3189 
3190 	/*
3191 	 * At least use a 32M window to align with raid1's resync window
3192 	 */
3193 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3194 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3195 
3196 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3197 }
3198 
3199 /*
3200  * perform a "sync" on one "block"
3201  *
3202  * We need to make sure that no normal I/O request - particularly write
3203  * requests - conflict with active sync requests.
3204  *
3205  * This is achieved by tracking pending requests and a 'barrier' concept
3206  * that can be installed to exclude normal IO requests.
3207  *
3208  * Resync and recovery are handled very differently.
3209  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3210  *
3211  * For resync, we iterate over virtual addresses, read all copies,
3212  * and update if there are differences.  If only one copy is live,
3213  * skip it.
3214  * For recovery, we iterate over physical addresses, read a good
3215  * value for each non-in_sync drive, and over-write.
3216  *
3217  * So, for recovery we may have several outstanding complex requests for a
3218  * given address, one for each out-of-sync device.  We model this by allocating
3219  * a number of r10_bio structures, one for each out-of-sync device.
3220  * As we setup these structures, we collect all bio's together into a list
3221  * which we then process collectively to add pages, and then process again
3222  * to pass to submit_bio_noacct.
3223  *
3224  * The r10_bio structures are linked using a borrowed master_bio pointer.
3225  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3226  * has its remaining count decremented to 0, the whole complex operation
3227  * is complete.
3228  *
3229  */
3230 
3231 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3232 			     int *skipped)
3233 {
3234 	struct r10conf *conf = mddev->private;
3235 	struct r10bio *r10_bio;
3236 	struct bio *biolist = NULL, *bio;
3237 	sector_t max_sector, nr_sectors;
3238 	int i;
3239 	int max_sync;
3240 	sector_t sync_blocks;
3241 	sector_t sectors_skipped = 0;
3242 	int chunks_skipped = 0;
3243 	sector_t chunk_mask = conf->geo.chunk_mask;
3244 	int page_idx = 0;
3245 
3246 	if (!mempool_initialized(&conf->r10buf_pool))
3247 		if (init_resync(conf))
3248 			return 0;
3249 
3250 	/*
3251 	 * Allow skipping a full rebuild for incremental assembly
3252 	 * of a clean array, like RAID1 does.
3253 	 */
3254 	if (mddev->bitmap == NULL &&
3255 	    mddev->recovery_cp == MaxSector &&
3256 	    mddev->reshape_position == MaxSector &&
3257 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3258 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3259 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3260 	    conf->fullsync == 0) {
3261 		*skipped = 1;
3262 		return mddev->dev_sectors - sector_nr;
3263 	}
3264 
3265  skipped:
3266 	max_sector = mddev->dev_sectors;
3267 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3268 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3269 		max_sector = mddev->resync_max_sectors;
3270 	if (sector_nr >= max_sector) {
3271 		conf->cluster_sync_low = 0;
3272 		conf->cluster_sync_high = 0;
3273 
3274 		/* If we aborted, we need to abort the
3275 		 * sync on the 'current' bitmap chucks (there can
3276 		 * be several when recovering multiple devices).
3277 		 * as we may have started syncing it but not finished.
3278 		 * We can find the current address in
3279 		 * mddev->curr_resync, but for recovery,
3280 		 * we need to convert that to several
3281 		 * virtual addresses.
3282 		 */
3283 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3284 			end_reshape(conf);
3285 			close_sync(conf);
3286 			return 0;
3287 		}
3288 
3289 		if (mddev->curr_resync < max_sector) { /* aborted */
3290 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3291 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3292 						   &sync_blocks, 1);
3293 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3294 				sector_t sect =
3295 					raid10_find_virt(conf, mddev->curr_resync, i);
3296 				md_bitmap_end_sync(mddev->bitmap, sect,
3297 						   &sync_blocks, 1);
3298 			}
3299 		} else {
3300 			/* completed sync */
3301 			if ((!mddev->bitmap || conf->fullsync)
3302 			    && conf->have_replacement
3303 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3304 				/* Completed a full sync so the replacements
3305 				 * are now fully recovered.
3306 				 */
3307 				rcu_read_lock();
3308 				for (i = 0; i < conf->geo.raid_disks; i++) {
3309 					struct md_rdev *rdev =
3310 						rcu_dereference(conf->mirrors[i].replacement);
3311 					if (rdev)
3312 						rdev->recovery_offset = MaxSector;
3313 				}
3314 				rcu_read_unlock();
3315 			}
3316 			conf->fullsync = 0;
3317 		}
3318 		md_bitmap_close_sync(mddev->bitmap);
3319 		close_sync(conf);
3320 		*skipped = 1;
3321 		return sectors_skipped;
3322 	}
3323 
3324 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3325 		return reshape_request(mddev, sector_nr, skipped);
3326 
3327 	if (chunks_skipped >= conf->geo.raid_disks) {
3328 		/* if there has been nothing to do on any drive,
3329 		 * then there is nothing to do at all..
3330 		 */
3331 		*skipped = 1;
3332 		return (max_sector - sector_nr) + sectors_skipped;
3333 	}
3334 
3335 	if (max_sector > mddev->resync_max)
3336 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3337 
3338 	/* make sure whole request will fit in a chunk - if chunks
3339 	 * are meaningful
3340 	 */
3341 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3342 	    max_sector > (sector_nr | chunk_mask))
3343 		max_sector = (sector_nr | chunk_mask) + 1;
3344 
3345 	/*
3346 	 * If there is non-resync activity waiting for a turn, then let it
3347 	 * though before starting on this new sync request.
3348 	 */
3349 	if (conf->nr_waiting)
3350 		schedule_timeout_uninterruptible(1);
3351 
3352 	/* Again, very different code for resync and recovery.
3353 	 * Both must result in an r10bio with a list of bios that
3354 	 * have bi_end_io, bi_sector, bi_bdev set,
3355 	 * and bi_private set to the r10bio.
3356 	 * For recovery, we may actually create several r10bios
3357 	 * with 2 bios in each, that correspond to the bios in the main one.
3358 	 * In this case, the subordinate r10bios link back through a
3359 	 * borrowed master_bio pointer, and the counter in the master
3360 	 * includes a ref from each subordinate.
3361 	 */
3362 	/* First, we decide what to do and set ->bi_end_io
3363 	 * To end_sync_read if we want to read, and
3364 	 * end_sync_write if we will want to write.
3365 	 */
3366 
3367 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3368 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3369 		/* recovery... the complicated one */
3370 		int j;
3371 		r10_bio = NULL;
3372 
3373 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3374 			int still_degraded;
3375 			struct r10bio *rb2;
3376 			sector_t sect;
3377 			int must_sync;
3378 			int any_working;
3379 			int need_recover = 0;
3380 			int need_replace = 0;
3381 			struct raid10_info *mirror = &conf->mirrors[i];
3382 			struct md_rdev *mrdev, *mreplace;
3383 
3384 			rcu_read_lock();
3385 			mrdev = rcu_dereference(mirror->rdev);
3386 			mreplace = rcu_dereference(mirror->replacement);
3387 
3388 			if (mrdev != NULL &&
3389 			    !test_bit(Faulty, &mrdev->flags) &&
3390 			    !test_bit(In_sync, &mrdev->flags))
3391 				need_recover = 1;
3392 			if (mreplace != NULL &&
3393 			    !test_bit(Faulty, &mreplace->flags))
3394 				need_replace = 1;
3395 
3396 			if (!need_recover && !need_replace) {
3397 				rcu_read_unlock();
3398 				continue;
3399 			}
3400 
3401 			still_degraded = 0;
3402 			/* want to reconstruct this device */
3403 			rb2 = r10_bio;
3404 			sect = raid10_find_virt(conf, sector_nr, i);
3405 			if (sect >= mddev->resync_max_sectors) {
3406 				/* last stripe is not complete - don't
3407 				 * try to recover this sector.
3408 				 */
3409 				rcu_read_unlock();
3410 				continue;
3411 			}
3412 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3413 				mreplace = NULL;
3414 			/* Unless we are doing a full sync, or a replacement
3415 			 * we only need to recover the block if it is set in
3416 			 * the bitmap
3417 			 */
3418 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3419 							 &sync_blocks, 1);
3420 			if (sync_blocks < max_sync)
3421 				max_sync = sync_blocks;
3422 			if (!must_sync &&
3423 			    mreplace == NULL &&
3424 			    !conf->fullsync) {
3425 				/* yep, skip the sync_blocks here, but don't assume
3426 				 * that there will never be anything to do here
3427 				 */
3428 				chunks_skipped = -1;
3429 				rcu_read_unlock();
3430 				continue;
3431 			}
3432 			atomic_inc(&mrdev->nr_pending);
3433 			if (mreplace)
3434 				atomic_inc(&mreplace->nr_pending);
3435 			rcu_read_unlock();
3436 
3437 			r10_bio = raid10_alloc_init_r10buf(conf);
3438 			r10_bio->state = 0;
3439 			raise_barrier(conf, rb2 != NULL);
3440 			atomic_set(&r10_bio->remaining, 0);
3441 
3442 			r10_bio->master_bio = (struct bio*)rb2;
3443 			if (rb2)
3444 				atomic_inc(&rb2->remaining);
3445 			r10_bio->mddev = mddev;
3446 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3447 			r10_bio->sector = sect;
3448 
3449 			raid10_find_phys(conf, r10_bio);
3450 
3451 			/* Need to check if the array will still be
3452 			 * degraded
3453 			 */
3454 			rcu_read_lock();
3455 			for (j = 0; j < conf->geo.raid_disks; j++) {
3456 				struct md_rdev *rdev = rcu_dereference(
3457 					conf->mirrors[j].rdev);
3458 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3459 					still_degraded = 1;
3460 					break;
3461 				}
3462 			}
3463 
3464 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3465 							 &sync_blocks, still_degraded);
3466 
3467 			any_working = 0;
3468 			for (j=0; j<conf->copies;j++) {
3469 				int k;
3470 				int d = r10_bio->devs[j].devnum;
3471 				sector_t from_addr, to_addr;
3472 				struct md_rdev *rdev =
3473 					rcu_dereference(conf->mirrors[d].rdev);
3474 				sector_t sector, first_bad;
3475 				int bad_sectors;
3476 				if (!rdev ||
3477 				    !test_bit(In_sync, &rdev->flags))
3478 					continue;
3479 				/* This is where we read from */
3480 				any_working = 1;
3481 				sector = r10_bio->devs[j].addr;
3482 
3483 				if (is_badblock(rdev, sector, max_sync,
3484 						&first_bad, &bad_sectors)) {
3485 					if (first_bad > sector)
3486 						max_sync = first_bad - sector;
3487 					else {
3488 						bad_sectors -= (sector
3489 								- first_bad);
3490 						if (max_sync > bad_sectors)
3491 							max_sync = bad_sectors;
3492 						continue;
3493 					}
3494 				}
3495 				bio = r10_bio->devs[0].bio;
3496 				bio->bi_next = biolist;
3497 				biolist = bio;
3498 				bio->bi_end_io = end_sync_read;
3499 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3500 				if (test_bit(FailFast, &rdev->flags))
3501 					bio->bi_opf |= MD_FAILFAST;
3502 				from_addr = r10_bio->devs[j].addr;
3503 				bio->bi_iter.bi_sector = from_addr +
3504 					rdev->data_offset;
3505 				bio_set_dev(bio, rdev->bdev);
3506 				atomic_inc(&rdev->nr_pending);
3507 				/* and we write to 'i' (if not in_sync) */
3508 
3509 				for (k=0; k<conf->copies; k++)
3510 					if (r10_bio->devs[k].devnum == i)
3511 						break;
3512 				BUG_ON(k == conf->copies);
3513 				to_addr = r10_bio->devs[k].addr;
3514 				r10_bio->devs[0].devnum = d;
3515 				r10_bio->devs[0].addr = from_addr;
3516 				r10_bio->devs[1].devnum = i;
3517 				r10_bio->devs[1].addr = to_addr;
3518 
3519 				if (need_recover) {
3520 					bio = r10_bio->devs[1].bio;
3521 					bio->bi_next = biolist;
3522 					biolist = bio;
3523 					bio->bi_end_io = end_sync_write;
3524 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3525 					bio->bi_iter.bi_sector = to_addr
3526 						+ mrdev->data_offset;
3527 					bio_set_dev(bio, mrdev->bdev);
3528 					atomic_inc(&r10_bio->remaining);
3529 				} else
3530 					r10_bio->devs[1].bio->bi_end_io = NULL;
3531 
3532 				/* and maybe write to replacement */
3533 				bio = r10_bio->devs[1].repl_bio;
3534 				if (bio)
3535 					bio->bi_end_io = NULL;
3536 				/* Note: if need_replace, then bio
3537 				 * cannot be NULL as r10buf_pool_alloc will
3538 				 * have allocated it.
3539 				 */
3540 				if (!need_replace)
3541 					break;
3542 				bio->bi_next = biolist;
3543 				biolist = bio;
3544 				bio->bi_end_io = end_sync_write;
3545 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3546 				bio->bi_iter.bi_sector = to_addr +
3547 					mreplace->data_offset;
3548 				bio_set_dev(bio, mreplace->bdev);
3549 				atomic_inc(&r10_bio->remaining);
3550 				break;
3551 			}
3552 			rcu_read_unlock();
3553 			if (j == conf->copies) {
3554 				/* Cannot recover, so abort the recovery or
3555 				 * record a bad block */
3556 				if (any_working) {
3557 					/* problem is that there are bad blocks
3558 					 * on other device(s)
3559 					 */
3560 					int k;
3561 					for (k = 0; k < conf->copies; k++)
3562 						if (r10_bio->devs[k].devnum == i)
3563 							break;
3564 					if (!test_bit(In_sync,
3565 						      &mrdev->flags)
3566 					    && !rdev_set_badblocks(
3567 						    mrdev,
3568 						    r10_bio->devs[k].addr,
3569 						    max_sync, 0))
3570 						any_working = 0;
3571 					if (mreplace &&
3572 					    !rdev_set_badblocks(
3573 						    mreplace,
3574 						    r10_bio->devs[k].addr,
3575 						    max_sync, 0))
3576 						any_working = 0;
3577 				}
3578 				if (!any_working)  {
3579 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3580 							      &mddev->recovery))
3581 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3582 						       mdname(mddev));
3583 					mirror->recovery_disabled
3584 						= mddev->recovery_disabled;
3585 				}
3586 				put_buf(r10_bio);
3587 				if (rb2)
3588 					atomic_dec(&rb2->remaining);
3589 				r10_bio = rb2;
3590 				rdev_dec_pending(mrdev, mddev);
3591 				if (mreplace)
3592 					rdev_dec_pending(mreplace, mddev);
3593 				break;
3594 			}
3595 			rdev_dec_pending(mrdev, mddev);
3596 			if (mreplace)
3597 				rdev_dec_pending(mreplace, mddev);
3598 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3599 				/* Only want this if there is elsewhere to
3600 				 * read from. 'j' is currently the first
3601 				 * readable copy.
3602 				 */
3603 				int targets = 1;
3604 				for (; j < conf->copies; j++) {
3605 					int d = r10_bio->devs[j].devnum;
3606 					if (conf->mirrors[d].rdev &&
3607 					    test_bit(In_sync,
3608 						      &conf->mirrors[d].rdev->flags))
3609 						targets++;
3610 				}
3611 				if (targets == 1)
3612 					r10_bio->devs[0].bio->bi_opf
3613 						&= ~MD_FAILFAST;
3614 			}
3615 		}
3616 		if (biolist == NULL) {
3617 			while (r10_bio) {
3618 				struct r10bio *rb2 = r10_bio;
3619 				r10_bio = (struct r10bio*) rb2->master_bio;
3620 				rb2->master_bio = NULL;
3621 				put_buf(rb2);
3622 			}
3623 			goto giveup;
3624 		}
3625 	} else {
3626 		/* resync. Schedule a read for every block at this virt offset */
3627 		int count = 0;
3628 
3629 		/*
3630 		 * Since curr_resync_completed could probably not update in
3631 		 * time, and we will set cluster_sync_low based on it.
3632 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3633 		 * safety reason, which ensures curr_resync_completed is
3634 		 * updated in bitmap_cond_end_sync.
3635 		 */
3636 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3637 					mddev_is_clustered(mddev) &&
3638 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3639 
3640 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3641 					  &sync_blocks, mddev->degraded) &&
3642 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3643 						 &mddev->recovery)) {
3644 			/* We can skip this block */
3645 			*skipped = 1;
3646 			return sync_blocks + sectors_skipped;
3647 		}
3648 		if (sync_blocks < max_sync)
3649 			max_sync = sync_blocks;
3650 		r10_bio = raid10_alloc_init_r10buf(conf);
3651 		r10_bio->state = 0;
3652 
3653 		r10_bio->mddev = mddev;
3654 		atomic_set(&r10_bio->remaining, 0);
3655 		raise_barrier(conf, 0);
3656 		conf->next_resync = sector_nr;
3657 
3658 		r10_bio->master_bio = NULL;
3659 		r10_bio->sector = sector_nr;
3660 		set_bit(R10BIO_IsSync, &r10_bio->state);
3661 		raid10_find_phys(conf, r10_bio);
3662 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3663 
3664 		for (i = 0; i < conf->copies; i++) {
3665 			int d = r10_bio->devs[i].devnum;
3666 			sector_t first_bad, sector;
3667 			int bad_sectors;
3668 			struct md_rdev *rdev;
3669 
3670 			if (r10_bio->devs[i].repl_bio)
3671 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3672 
3673 			bio = r10_bio->devs[i].bio;
3674 			bio->bi_status = BLK_STS_IOERR;
3675 			rcu_read_lock();
3676 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3677 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3678 				rcu_read_unlock();
3679 				continue;
3680 			}
3681 			sector = r10_bio->devs[i].addr;
3682 			if (is_badblock(rdev, sector, max_sync,
3683 					&first_bad, &bad_sectors)) {
3684 				if (first_bad > sector)
3685 					max_sync = first_bad - sector;
3686 				else {
3687 					bad_sectors -= (sector - first_bad);
3688 					if (max_sync > bad_sectors)
3689 						max_sync = bad_sectors;
3690 					rcu_read_unlock();
3691 					continue;
3692 				}
3693 			}
3694 			atomic_inc(&rdev->nr_pending);
3695 			atomic_inc(&r10_bio->remaining);
3696 			bio->bi_next = biolist;
3697 			biolist = bio;
3698 			bio->bi_end_io = end_sync_read;
3699 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3700 			if (test_bit(FailFast, &rdev->flags))
3701 				bio->bi_opf |= MD_FAILFAST;
3702 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3703 			bio_set_dev(bio, rdev->bdev);
3704 			count++;
3705 
3706 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3707 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3708 				rcu_read_unlock();
3709 				continue;
3710 			}
3711 			atomic_inc(&rdev->nr_pending);
3712 
3713 			/* Need to set up for writing to the replacement */
3714 			bio = r10_bio->devs[i].repl_bio;
3715 			bio->bi_status = BLK_STS_IOERR;
3716 
3717 			sector = r10_bio->devs[i].addr;
3718 			bio->bi_next = biolist;
3719 			biolist = bio;
3720 			bio->bi_end_io = end_sync_write;
3721 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3722 			if (test_bit(FailFast, &rdev->flags))
3723 				bio->bi_opf |= MD_FAILFAST;
3724 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3725 			bio_set_dev(bio, rdev->bdev);
3726 			count++;
3727 			rcu_read_unlock();
3728 		}
3729 
3730 		if (count < 2) {
3731 			for (i=0; i<conf->copies; i++) {
3732 				int d = r10_bio->devs[i].devnum;
3733 				if (r10_bio->devs[i].bio->bi_end_io)
3734 					rdev_dec_pending(conf->mirrors[d].rdev,
3735 							 mddev);
3736 				if (r10_bio->devs[i].repl_bio &&
3737 				    r10_bio->devs[i].repl_bio->bi_end_io)
3738 					rdev_dec_pending(
3739 						conf->mirrors[d].replacement,
3740 						mddev);
3741 			}
3742 			put_buf(r10_bio);
3743 			biolist = NULL;
3744 			goto giveup;
3745 		}
3746 	}
3747 
3748 	nr_sectors = 0;
3749 	if (sector_nr + max_sync < max_sector)
3750 		max_sector = sector_nr + max_sync;
3751 	do {
3752 		struct page *page;
3753 		int len = PAGE_SIZE;
3754 		if (sector_nr + (len>>9) > max_sector)
3755 			len = (max_sector - sector_nr) << 9;
3756 		if (len == 0)
3757 			break;
3758 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3759 			struct resync_pages *rp = get_resync_pages(bio);
3760 			page = resync_fetch_page(rp, page_idx);
3761 			/*
3762 			 * won't fail because the vec table is big enough
3763 			 * to hold all these pages
3764 			 */
3765 			bio_add_page(bio, page, len, 0);
3766 		}
3767 		nr_sectors += len>>9;
3768 		sector_nr += len>>9;
3769 	} while (++page_idx < RESYNC_PAGES);
3770 	r10_bio->sectors = nr_sectors;
3771 
3772 	if (mddev_is_clustered(mddev) &&
3773 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3774 		/* It is resync not recovery */
3775 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3776 			conf->cluster_sync_low = mddev->curr_resync_completed;
3777 			raid10_set_cluster_sync_high(conf);
3778 			/* Send resync message */
3779 			md_cluster_ops->resync_info_update(mddev,
3780 						conf->cluster_sync_low,
3781 						conf->cluster_sync_high);
3782 		}
3783 	} else if (mddev_is_clustered(mddev)) {
3784 		/* This is recovery not resync */
3785 		sector_t sect_va1, sect_va2;
3786 		bool broadcast_msg = false;
3787 
3788 		for (i = 0; i < conf->geo.raid_disks; i++) {
3789 			/*
3790 			 * sector_nr is a device address for recovery, so we
3791 			 * need translate it to array address before compare
3792 			 * with cluster_sync_high.
3793 			 */
3794 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3795 
3796 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3797 				broadcast_msg = true;
3798 				/*
3799 				 * curr_resync_completed is similar as
3800 				 * sector_nr, so make the translation too.
3801 				 */
3802 				sect_va2 = raid10_find_virt(conf,
3803 					mddev->curr_resync_completed, i);
3804 
3805 				if (conf->cluster_sync_low == 0 ||
3806 				    conf->cluster_sync_low > sect_va2)
3807 					conf->cluster_sync_low = sect_va2;
3808 			}
3809 		}
3810 		if (broadcast_msg) {
3811 			raid10_set_cluster_sync_high(conf);
3812 			md_cluster_ops->resync_info_update(mddev,
3813 						conf->cluster_sync_low,
3814 						conf->cluster_sync_high);
3815 		}
3816 	}
3817 
3818 	while (biolist) {
3819 		bio = biolist;
3820 		biolist = biolist->bi_next;
3821 
3822 		bio->bi_next = NULL;
3823 		r10_bio = get_resync_r10bio(bio);
3824 		r10_bio->sectors = nr_sectors;
3825 
3826 		if (bio->bi_end_io == end_sync_read) {
3827 			md_sync_acct_bio(bio, nr_sectors);
3828 			bio->bi_status = 0;
3829 			submit_bio_noacct(bio);
3830 		}
3831 	}
3832 
3833 	if (sectors_skipped)
3834 		/* pretend they weren't skipped, it makes
3835 		 * no important difference in this case
3836 		 */
3837 		md_done_sync(mddev, sectors_skipped, 1);
3838 
3839 	return sectors_skipped + nr_sectors;
3840  giveup:
3841 	/* There is nowhere to write, so all non-sync
3842 	 * drives must be failed or in resync, all drives
3843 	 * have a bad block, so try the next chunk...
3844 	 */
3845 	if (sector_nr + max_sync < max_sector)
3846 		max_sector = sector_nr + max_sync;
3847 
3848 	sectors_skipped += (max_sector - sector_nr);
3849 	chunks_skipped ++;
3850 	sector_nr = max_sector;
3851 	goto skipped;
3852 }
3853 
3854 static sector_t
3855 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3856 {
3857 	sector_t size;
3858 	struct r10conf *conf = mddev->private;
3859 
3860 	if (!raid_disks)
3861 		raid_disks = min(conf->geo.raid_disks,
3862 				 conf->prev.raid_disks);
3863 	if (!sectors)
3864 		sectors = conf->dev_sectors;
3865 
3866 	size = sectors >> conf->geo.chunk_shift;
3867 	sector_div(size, conf->geo.far_copies);
3868 	size = size * raid_disks;
3869 	sector_div(size, conf->geo.near_copies);
3870 
3871 	return size << conf->geo.chunk_shift;
3872 }
3873 
3874 static void calc_sectors(struct r10conf *conf, sector_t size)
3875 {
3876 	/* Calculate the number of sectors-per-device that will
3877 	 * actually be used, and set conf->dev_sectors and
3878 	 * conf->stride
3879 	 */
3880 
3881 	size = size >> conf->geo.chunk_shift;
3882 	sector_div(size, conf->geo.far_copies);
3883 	size = size * conf->geo.raid_disks;
3884 	sector_div(size, conf->geo.near_copies);
3885 	/* 'size' is now the number of chunks in the array */
3886 	/* calculate "used chunks per device" */
3887 	size = size * conf->copies;
3888 
3889 	/* We need to round up when dividing by raid_disks to
3890 	 * get the stride size.
3891 	 */
3892 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3893 
3894 	conf->dev_sectors = size << conf->geo.chunk_shift;
3895 
3896 	if (conf->geo.far_offset)
3897 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3898 	else {
3899 		sector_div(size, conf->geo.far_copies);
3900 		conf->geo.stride = size << conf->geo.chunk_shift;
3901 	}
3902 }
3903 
3904 enum geo_type {geo_new, geo_old, geo_start};
3905 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3906 {
3907 	int nc, fc, fo;
3908 	int layout, chunk, disks;
3909 	switch (new) {
3910 	case geo_old:
3911 		layout = mddev->layout;
3912 		chunk = mddev->chunk_sectors;
3913 		disks = mddev->raid_disks - mddev->delta_disks;
3914 		break;
3915 	case geo_new:
3916 		layout = mddev->new_layout;
3917 		chunk = mddev->new_chunk_sectors;
3918 		disks = mddev->raid_disks;
3919 		break;
3920 	default: /* avoid 'may be unused' warnings */
3921 	case geo_start: /* new when starting reshape - raid_disks not
3922 			 * updated yet. */
3923 		layout = mddev->new_layout;
3924 		chunk = mddev->new_chunk_sectors;
3925 		disks = mddev->raid_disks + mddev->delta_disks;
3926 		break;
3927 	}
3928 	if (layout >> 19)
3929 		return -1;
3930 	if (chunk < (PAGE_SIZE >> 9) ||
3931 	    !is_power_of_2(chunk))
3932 		return -2;
3933 	nc = layout & 255;
3934 	fc = (layout >> 8) & 255;
3935 	fo = layout & (1<<16);
3936 	geo->raid_disks = disks;
3937 	geo->near_copies = nc;
3938 	geo->far_copies = fc;
3939 	geo->far_offset = fo;
3940 	switch (layout >> 17) {
3941 	case 0:	/* original layout.  simple but not always optimal */
3942 		geo->far_set_size = disks;
3943 		break;
3944 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3945 		 * actually using this, but leave code here just in case.*/
3946 		geo->far_set_size = disks/fc;
3947 		WARN(geo->far_set_size < fc,
3948 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3949 		break;
3950 	case 2: /* "improved" layout fixed to match documentation */
3951 		geo->far_set_size = fc * nc;
3952 		break;
3953 	default: /* Not a valid layout */
3954 		return -1;
3955 	}
3956 	geo->chunk_mask = chunk - 1;
3957 	geo->chunk_shift = ffz(~chunk);
3958 	return nc*fc;
3959 }
3960 
3961 static struct r10conf *setup_conf(struct mddev *mddev)
3962 {
3963 	struct r10conf *conf = NULL;
3964 	int err = -EINVAL;
3965 	struct geom geo;
3966 	int copies;
3967 
3968 	copies = setup_geo(&geo, mddev, geo_new);
3969 
3970 	if (copies == -2) {
3971 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3972 			mdname(mddev), PAGE_SIZE);
3973 		goto out;
3974 	}
3975 
3976 	if (copies < 2 || copies > mddev->raid_disks) {
3977 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3978 			mdname(mddev), mddev->new_layout);
3979 		goto out;
3980 	}
3981 
3982 	err = -ENOMEM;
3983 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3984 	if (!conf)
3985 		goto out;
3986 
3987 	/* FIXME calc properly */
3988 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3989 				sizeof(struct raid10_info),
3990 				GFP_KERNEL);
3991 	if (!conf->mirrors)
3992 		goto out;
3993 
3994 	conf->tmppage = alloc_page(GFP_KERNEL);
3995 	if (!conf->tmppage)
3996 		goto out;
3997 
3998 	conf->geo = geo;
3999 	conf->copies = copies;
4000 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4001 			   rbio_pool_free, conf);
4002 	if (err)
4003 		goto out;
4004 
4005 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4006 	if (err)
4007 		goto out;
4008 
4009 	calc_sectors(conf, mddev->dev_sectors);
4010 	if (mddev->reshape_position == MaxSector) {
4011 		conf->prev = conf->geo;
4012 		conf->reshape_progress = MaxSector;
4013 	} else {
4014 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4015 			err = -EINVAL;
4016 			goto out;
4017 		}
4018 		conf->reshape_progress = mddev->reshape_position;
4019 		if (conf->prev.far_offset)
4020 			conf->prev.stride = 1 << conf->prev.chunk_shift;
4021 		else
4022 			/* far_copies must be 1 */
4023 			conf->prev.stride = conf->dev_sectors;
4024 	}
4025 	conf->reshape_safe = conf->reshape_progress;
4026 	spin_lock_init(&conf->device_lock);
4027 	INIT_LIST_HEAD(&conf->retry_list);
4028 	INIT_LIST_HEAD(&conf->bio_end_io_list);
4029 
4030 	spin_lock_init(&conf->resync_lock);
4031 	init_waitqueue_head(&conf->wait_barrier);
4032 	atomic_set(&conf->nr_pending, 0);
4033 
4034 	err = -ENOMEM;
4035 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
4036 	if (!conf->thread)
4037 		goto out;
4038 
4039 	conf->mddev = mddev;
4040 	return conf;
4041 
4042  out:
4043 	if (conf) {
4044 		mempool_exit(&conf->r10bio_pool);
4045 		kfree(conf->mirrors);
4046 		safe_put_page(conf->tmppage);
4047 		bioset_exit(&conf->bio_split);
4048 		kfree(conf);
4049 	}
4050 	return ERR_PTR(err);
4051 }
4052 
4053 static void raid10_set_io_opt(struct r10conf *conf)
4054 {
4055 	int raid_disks = conf->geo.raid_disks;
4056 
4057 	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4058 		raid_disks /= conf->geo.near_copies;
4059 	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4060 			 raid_disks);
4061 }
4062 
4063 static int raid10_run(struct mddev *mddev)
4064 {
4065 	struct r10conf *conf;
4066 	int i, disk_idx;
4067 	struct raid10_info *disk;
4068 	struct md_rdev *rdev;
4069 	sector_t size;
4070 	sector_t min_offset_diff = 0;
4071 	int first = 1;
4072 	bool discard_supported = false;
4073 
4074 	if (mddev_init_writes_pending(mddev) < 0)
4075 		return -ENOMEM;
4076 
4077 	if (mddev->private == NULL) {
4078 		conf = setup_conf(mddev);
4079 		if (IS_ERR(conf))
4080 			return PTR_ERR(conf);
4081 		mddev->private = conf;
4082 	}
4083 	conf = mddev->private;
4084 	if (!conf)
4085 		goto out;
4086 
4087 	if (mddev_is_clustered(conf->mddev)) {
4088 		int fc, fo;
4089 
4090 		fc = (mddev->layout >> 8) & 255;
4091 		fo = mddev->layout & (1<<16);
4092 		if (fc > 1 || fo > 0) {
4093 			pr_err("only near layout is supported by clustered"
4094 				" raid10\n");
4095 			goto out_free_conf;
4096 		}
4097 	}
4098 
4099 	mddev->thread = conf->thread;
4100 	conf->thread = NULL;
4101 
4102 	if (mddev->queue) {
4103 		blk_queue_max_discard_sectors(mddev->queue,
4104 					      UINT_MAX);
4105 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4106 		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4107 		raid10_set_io_opt(conf);
4108 	}
4109 
4110 	rdev_for_each(rdev, mddev) {
4111 		long long diff;
4112 
4113 		disk_idx = rdev->raid_disk;
4114 		if (disk_idx < 0)
4115 			continue;
4116 		if (disk_idx >= conf->geo.raid_disks &&
4117 		    disk_idx >= conf->prev.raid_disks)
4118 			continue;
4119 		disk = conf->mirrors + disk_idx;
4120 
4121 		if (test_bit(Replacement, &rdev->flags)) {
4122 			if (disk->replacement)
4123 				goto out_free_conf;
4124 			disk->replacement = rdev;
4125 		} else {
4126 			if (disk->rdev)
4127 				goto out_free_conf;
4128 			disk->rdev = rdev;
4129 		}
4130 		diff = (rdev->new_data_offset - rdev->data_offset);
4131 		if (!mddev->reshape_backwards)
4132 			diff = -diff;
4133 		if (diff < 0)
4134 			diff = 0;
4135 		if (first || diff < min_offset_diff)
4136 			min_offset_diff = diff;
4137 
4138 		if (mddev->gendisk)
4139 			disk_stack_limits(mddev->gendisk, rdev->bdev,
4140 					  rdev->data_offset << 9);
4141 
4142 		disk->head_position = 0;
4143 
4144 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4145 			discard_supported = true;
4146 		first = 0;
4147 	}
4148 
4149 	if (mddev->queue) {
4150 		if (discard_supported)
4151 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4152 						mddev->queue);
4153 		else
4154 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4155 						  mddev->queue);
4156 	}
4157 	/* need to check that every block has at least one working mirror */
4158 	if (!enough(conf, -1)) {
4159 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4160 		       mdname(mddev));
4161 		goto out_free_conf;
4162 	}
4163 
4164 	if (conf->reshape_progress != MaxSector) {
4165 		/* must ensure that shape change is supported */
4166 		if (conf->geo.far_copies != 1 &&
4167 		    conf->geo.far_offset == 0)
4168 			goto out_free_conf;
4169 		if (conf->prev.far_copies != 1 &&
4170 		    conf->prev.far_offset == 0)
4171 			goto out_free_conf;
4172 	}
4173 
4174 	mddev->degraded = 0;
4175 	for (i = 0;
4176 	     i < conf->geo.raid_disks
4177 		     || i < conf->prev.raid_disks;
4178 	     i++) {
4179 
4180 		disk = conf->mirrors + i;
4181 
4182 		if (!disk->rdev && disk->replacement) {
4183 			/* The replacement is all we have - use it */
4184 			disk->rdev = disk->replacement;
4185 			disk->replacement = NULL;
4186 			clear_bit(Replacement, &disk->rdev->flags);
4187 		}
4188 
4189 		if (!disk->rdev ||
4190 		    !test_bit(In_sync, &disk->rdev->flags)) {
4191 			disk->head_position = 0;
4192 			mddev->degraded++;
4193 			if (disk->rdev &&
4194 			    disk->rdev->saved_raid_disk < 0)
4195 				conf->fullsync = 1;
4196 		}
4197 
4198 		if (disk->replacement &&
4199 		    !test_bit(In_sync, &disk->replacement->flags) &&
4200 		    disk->replacement->saved_raid_disk < 0) {
4201 			conf->fullsync = 1;
4202 		}
4203 
4204 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4205 	}
4206 
4207 	if (mddev->recovery_cp != MaxSector)
4208 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4209 			  mdname(mddev));
4210 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4211 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4212 		conf->geo.raid_disks);
4213 	/*
4214 	 * Ok, everything is just fine now
4215 	 */
4216 	mddev->dev_sectors = conf->dev_sectors;
4217 	size = raid10_size(mddev, 0, 0);
4218 	md_set_array_sectors(mddev, size);
4219 	mddev->resync_max_sectors = size;
4220 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4221 
4222 	if (md_integrity_register(mddev))
4223 		goto out_free_conf;
4224 
4225 	if (conf->reshape_progress != MaxSector) {
4226 		unsigned long before_length, after_length;
4227 
4228 		before_length = ((1 << conf->prev.chunk_shift) *
4229 				 conf->prev.far_copies);
4230 		after_length = ((1 << conf->geo.chunk_shift) *
4231 				conf->geo.far_copies);
4232 
4233 		if (max(before_length, after_length) > min_offset_diff) {
4234 			/* This cannot work */
4235 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4236 			goto out_free_conf;
4237 		}
4238 		conf->offset_diff = min_offset_diff;
4239 
4240 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4241 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4242 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4243 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4244 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4245 							"reshape");
4246 		if (!mddev->sync_thread)
4247 			goto out_free_conf;
4248 	}
4249 
4250 	return 0;
4251 
4252 out_free_conf:
4253 	md_unregister_thread(&mddev->thread);
4254 	mempool_exit(&conf->r10bio_pool);
4255 	safe_put_page(conf->tmppage);
4256 	kfree(conf->mirrors);
4257 	kfree(conf);
4258 	mddev->private = NULL;
4259 out:
4260 	return -EIO;
4261 }
4262 
4263 static void raid10_free(struct mddev *mddev, void *priv)
4264 {
4265 	struct r10conf *conf = priv;
4266 
4267 	mempool_exit(&conf->r10bio_pool);
4268 	safe_put_page(conf->tmppage);
4269 	kfree(conf->mirrors);
4270 	kfree(conf->mirrors_old);
4271 	kfree(conf->mirrors_new);
4272 	bioset_exit(&conf->bio_split);
4273 	kfree(conf);
4274 }
4275 
4276 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4277 {
4278 	struct r10conf *conf = mddev->private;
4279 
4280 	if (quiesce)
4281 		raise_barrier(conf, 0);
4282 	else
4283 		lower_barrier(conf);
4284 }
4285 
4286 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4287 {
4288 	/* Resize of 'far' arrays is not supported.
4289 	 * For 'near' and 'offset' arrays we can set the
4290 	 * number of sectors used to be an appropriate multiple
4291 	 * of the chunk size.
4292 	 * For 'offset', this is far_copies*chunksize.
4293 	 * For 'near' the multiplier is the LCM of
4294 	 * near_copies and raid_disks.
4295 	 * So if far_copies > 1 && !far_offset, fail.
4296 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4297 	 * multiply by chunk_size.  Then round to this number.
4298 	 * This is mostly done by raid10_size()
4299 	 */
4300 	struct r10conf *conf = mddev->private;
4301 	sector_t oldsize, size;
4302 
4303 	if (mddev->reshape_position != MaxSector)
4304 		return -EBUSY;
4305 
4306 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4307 		return -EINVAL;
4308 
4309 	oldsize = raid10_size(mddev, 0, 0);
4310 	size = raid10_size(mddev, sectors, 0);
4311 	if (mddev->external_size &&
4312 	    mddev->array_sectors > size)
4313 		return -EINVAL;
4314 	if (mddev->bitmap) {
4315 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4316 		if (ret)
4317 			return ret;
4318 	}
4319 	md_set_array_sectors(mddev, size);
4320 	if (sectors > mddev->dev_sectors &&
4321 	    mddev->recovery_cp > oldsize) {
4322 		mddev->recovery_cp = oldsize;
4323 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4324 	}
4325 	calc_sectors(conf, sectors);
4326 	mddev->dev_sectors = conf->dev_sectors;
4327 	mddev->resync_max_sectors = size;
4328 	return 0;
4329 }
4330 
4331 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4332 {
4333 	struct md_rdev *rdev;
4334 	struct r10conf *conf;
4335 
4336 	if (mddev->degraded > 0) {
4337 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4338 			mdname(mddev));
4339 		return ERR_PTR(-EINVAL);
4340 	}
4341 	sector_div(size, devs);
4342 
4343 	/* Set new parameters */
4344 	mddev->new_level = 10;
4345 	/* new layout: far_copies = 1, near_copies = 2 */
4346 	mddev->new_layout = (1<<8) + 2;
4347 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4348 	mddev->delta_disks = mddev->raid_disks;
4349 	mddev->raid_disks *= 2;
4350 	/* make sure it will be not marked as dirty */
4351 	mddev->recovery_cp = MaxSector;
4352 	mddev->dev_sectors = size;
4353 
4354 	conf = setup_conf(mddev);
4355 	if (!IS_ERR(conf)) {
4356 		rdev_for_each(rdev, mddev)
4357 			if (rdev->raid_disk >= 0) {
4358 				rdev->new_raid_disk = rdev->raid_disk * 2;
4359 				rdev->sectors = size;
4360 			}
4361 		conf->barrier = 1;
4362 	}
4363 
4364 	return conf;
4365 }
4366 
4367 static void *raid10_takeover(struct mddev *mddev)
4368 {
4369 	struct r0conf *raid0_conf;
4370 
4371 	/* raid10 can take over:
4372 	 *  raid0 - providing it has only two drives
4373 	 */
4374 	if (mddev->level == 0) {
4375 		/* for raid0 takeover only one zone is supported */
4376 		raid0_conf = mddev->private;
4377 		if (raid0_conf->nr_strip_zones > 1) {
4378 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4379 				mdname(mddev));
4380 			return ERR_PTR(-EINVAL);
4381 		}
4382 		return raid10_takeover_raid0(mddev,
4383 			raid0_conf->strip_zone->zone_end,
4384 			raid0_conf->strip_zone->nb_dev);
4385 	}
4386 	return ERR_PTR(-EINVAL);
4387 }
4388 
4389 static int raid10_check_reshape(struct mddev *mddev)
4390 {
4391 	/* Called when there is a request to change
4392 	 * - layout (to ->new_layout)
4393 	 * - chunk size (to ->new_chunk_sectors)
4394 	 * - raid_disks (by delta_disks)
4395 	 * or when trying to restart a reshape that was ongoing.
4396 	 *
4397 	 * We need to validate the request and possibly allocate
4398 	 * space if that might be an issue later.
4399 	 *
4400 	 * Currently we reject any reshape of a 'far' mode array,
4401 	 * allow chunk size to change if new is generally acceptable,
4402 	 * allow raid_disks to increase, and allow
4403 	 * a switch between 'near' mode and 'offset' mode.
4404 	 */
4405 	struct r10conf *conf = mddev->private;
4406 	struct geom geo;
4407 
4408 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4409 		return -EINVAL;
4410 
4411 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4412 		/* mustn't change number of copies */
4413 		return -EINVAL;
4414 	if (geo.far_copies > 1 && !geo.far_offset)
4415 		/* Cannot switch to 'far' mode */
4416 		return -EINVAL;
4417 
4418 	if (mddev->array_sectors & geo.chunk_mask)
4419 			/* not factor of array size */
4420 			return -EINVAL;
4421 
4422 	if (!enough(conf, -1))
4423 		return -EINVAL;
4424 
4425 	kfree(conf->mirrors_new);
4426 	conf->mirrors_new = NULL;
4427 	if (mddev->delta_disks > 0) {
4428 		/* allocate new 'mirrors' list */
4429 		conf->mirrors_new =
4430 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4431 				sizeof(struct raid10_info),
4432 				GFP_KERNEL);
4433 		if (!conf->mirrors_new)
4434 			return -ENOMEM;
4435 	}
4436 	return 0;
4437 }
4438 
4439 /*
4440  * Need to check if array has failed when deciding whether to:
4441  *  - start an array
4442  *  - remove non-faulty devices
4443  *  - add a spare
4444  *  - allow a reshape
4445  * This determination is simple when no reshape is happening.
4446  * However if there is a reshape, we need to carefully check
4447  * both the before and after sections.
4448  * This is because some failed devices may only affect one
4449  * of the two sections, and some non-in_sync devices may
4450  * be insync in the section most affected by failed devices.
4451  */
4452 static int calc_degraded(struct r10conf *conf)
4453 {
4454 	int degraded, degraded2;
4455 	int i;
4456 
4457 	rcu_read_lock();
4458 	degraded = 0;
4459 	/* 'prev' section first */
4460 	for (i = 0; i < conf->prev.raid_disks; i++) {
4461 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4462 		if (!rdev || test_bit(Faulty, &rdev->flags))
4463 			degraded++;
4464 		else if (!test_bit(In_sync, &rdev->flags))
4465 			/* When we can reduce the number of devices in
4466 			 * an array, this might not contribute to
4467 			 * 'degraded'.  It does now.
4468 			 */
4469 			degraded++;
4470 	}
4471 	rcu_read_unlock();
4472 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4473 		return degraded;
4474 	rcu_read_lock();
4475 	degraded2 = 0;
4476 	for (i = 0; i < conf->geo.raid_disks; i++) {
4477 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4478 		if (!rdev || test_bit(Faulty, &rdev->flags))
4479 			degraded2++;
4480 		else if (!test_bit(In_sync, &rdev->flags)) {
4481 			/* If reshape is increasing the number of devices,
4482 			 * this section has already been recovered, so
4483 			 * it doesn't contribute to degraded.
4484 			 * else it does.
4485 			 */
4486 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4487 				degraded2++;
4488 		}
4489 	}
4490 	rcu_read_unlock();
4491 	if (degraded2 > degraded)
4492 		return degraded2;
4493 	return degraded;
4494 }
4495 
4496 static int raid10_start_reshape(struct mddev *mddev)
4497 {
4498 	/* A 'reshape' has been requested. This commits
4499 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4500 	 * This also checks if there are enough spares and adds them
4501 	 * to the array.
4502 	 * We currently require enough spares to make the final
4503 	 * array non-degraded.  We also require that the difference
4504 	 * between old and new data_offset - on each device - is
4505 	 * enough that we never risk over-writing.
4506 	 */
4507 
4508 	unsigned long before_length, after_length;
4509 	sector_t min_offset_diff = 0;
4510 	int first = 1;
4511 	struct geom new;
4512 	struct r10conf *conf = mddev->private;
4513 	struct md_rdev *rdev;
4514 	int spares = 0;
4515 	int ret;
4516 
4517 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4518 		return -EBUSY;
4519 
4520 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4521 		return -EINVAL;
4522 
4523 	before_length = ((1 << conf->prev.chunk_shift) *
4524 			 conf->prev.far_copies);
4525 	after_length = ((1 << conf->geo.chunk_shift) *
4526 			conf->geo.far_copies);
4527 
4528 	rdev_for_each(rdev, mddev) {
4529 		if (!test_bit(In_sync, &rdev->flags)
4530 		    && !test_bit(Faulty, &rdev->flags))
4531 			spares++;
4532 		if (rdev->raid_disk >= 0) {
4533 			long long diff = (rdev->new_data_offset
4534 					  - rdev->data_offset);
4535 			if (!mddev->reshape_backwards)
4536 				diff = -diff;
4537 			if (diff < 0)
4538 				diff = 0;
4539 			if (first || diff < min_offset_diff)
4540 				min_offset_diff = diff;
4541 			first = 0;
4542 		}
4543 	}
4544 
4545 	if (max(before_length, after_length) > min_offset_diff)
4546 		return -EINVAL;
4547 
4548 	if (spares < mddev->delta_disks)
4549 		return -EINVAL;
4550 
4551 	conf->offset_diff = min_offset_diff;
4552 	spin_lock_irq(&conf->device_lock);
4553 	if (conf->mirrors_new) {
4554 		memcpy(conf->mirrors_new, conf->mirrors,
4555 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4556 		smp_mb();
4557 		kfree(conf->mirrors_old);
4558 		conf->mirrors_old = conf->mirrors;
4559 		conf->mirrors = conf->mirrors_new;
4560 		conf->mirrors_new = NULL;
4561 	}
4562 	setup_geo(&conf->geo, mddev, geo_start);
4563 	smp_mb();
4564 	if (mddev->reshape_backwards) {
4565 		sector_t size = raid10_size(mddev, 0, 0);
4566 		if (size < mddev->array_sectors) {
4567 			spin_unlock_irq(&conf->device_lock);
4568 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4569 				mdname(mddev));
4570 			return -EINVAL;
4571 		}
4572 		mddev->resync_max_sectors = size;
4573 		conf->reshape_progress = size;
4574 	} else
4575 		conf->reshape_progress = 0;
4576 	conf->reshape_safe = conf->reshape_progress;
4577 	spin_unlock_irq(&conf->device_lock);
4578 
4579 	if (mddev->delta_disks && mddev->bitmap) {
4580 		struct mdp_superblock_1 *sb = NULL;
4581 		sector_t oldsize, newsize;
4582 
4583 		oldsize = raid10_size(mddev, 0, 0);
4584 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4585 
4586 		if (!mddev_is_clustered(mddev)) {
4587 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4588 			if (ret)
4589 				goto abort;
4590 			else
4591 				goto out;
4592 		}
4593 
4594 		rdev_for_each(rdev, mddev) {
4595 			if (rdev->raid_disk > -1 &&
4596 			    !test_bit(Faulty, &rdev->flags))
4597 				sb = page_address(rdev->sb_page);
4598 		}
4599 
4600 		/*
4601 		 * some node is already performing reshape, and no need to
4602 		 * call md_bitmap_resize again since it should be called when
4603 		 * receiving BITMAP_RESIZE msg
4604 		 */
4605 		if ((sb && (le32_to_cpu(sb->feature_map) &
4606 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4607 			goto out;
4608 
4609 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4610 		if (ret)
4611 			goto abort;
4612 
4613 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4614 		if (ret) {
4615 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4616 			goto abort;
4617 		}
4618 	}
4619 out:
4620 	if (mddev->delta_disks > 0) {
4621 		rdev_for_each(rdev, mddev)
4622 			if (rdev->raid_disk < 0 &&
4623 			    !test_bit(Faulty, &rdev->flags)) {
4624 				if (raid10_add_disk(mddev, rdev) == 0) {
4625 					if (rdev->raid_disk >=
4626 					    conf->prev.raid_disks)
4627 						set_bit(In_sync, &rdev->flags);
4628 					else
4629 						rdev->recovery_offset = 0;
4630 
4631 					/* Failure here is OK */
4632 					sysfs_link_rdev(mddev, rdev);
4633 				}
4634 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4635 				   && !test_bit(Faulty, &rdev->flags)) {
4636 				/* This is a spare that was manually added */
4637 				set_bit(In_sync, &rdev->flags);
4638 			}
4639 	}
4640 	/* When a reshape changes the number of devices,
4641 	 * ->degraded is measured against the larger of the
4642 	 * pre and  post numbers.
4643 	 */
4644 	spin_lock_irq(&conf->device_lock);
4645 	mddev->degraded = calc_degraded(conf);
4646 	spin_unlock_irq(&conf->device_lock);
4647 	mddev->raid_disks = conf->geo.raid_disks;
4648 	mddev->reshape_position = conf->reshape_progress;
4649 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4650 
4651 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4652 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4653 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4654 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4655 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4656 
4657 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4658 						"reshape");
4659 	if (!mddev->sync_thread) {
4660 		ret = -EAGAIN;
4661 		goto abort;
4662 	}
4663 	conf->reshape_checkpoint = jiffies;
4664 	md_wakeup_thread(mddev->sync_thread);
4665 	md_new_event();
4666 	return 0;
4667 
4668 abort:
4669 	mddev->recovery = 0;
4670 	spin_lock_irq(&conf->device_lock);
4671 	conf->geo = conf->prev;
4672 	mddev->raid_disks = conf->geo.raid_disks;
4673 	rdev_for_each(rdev, mddev)
4674 		rdev->new_data_offset = rdev->data_offset;
4675 	smp_wmb();
4676 	conf->reshape_progress = MaxSector;
4677 	conf->reshape_safe = MaxSector;
4678 	mddev->reshape_position = MaxSector;
4679 	spin_unlock_irq(&conf->device_lock);
4680 	return ret;
4681 }
4682 
4683 /* Calculate the last device-address that could contain
4684  * any block from the chunk that includes the array-address 's'
4685  * and report the next address.
4686  * i.e. the address returned will be chunk-aligned and after
4687  * any data that is in the chunk containing 's'.
4688  */
4689 static sector_t last_dev_address(sector_t s, struct geom *geo)
4690 {
4691 	s = (s | geo->chunk_mask) + 1;
4692 	s >>= geo->chunk_shift;
4693 	s *= geo->near_copies;
4694 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4695 	s *= geo->far_copies;
4696 	s <<= geo->chunk_shift;
4697 	return s;
4698 }
4699 
4700 /* Calculate the first device-address that could contain
4701  * any block from the chunk that includes the array-address 's'.
4702  * This too will be the start of a chunk
4703  */
4704 static sector_t first_dev_address(sector_t s, struct geom *geo)
4705 {
4706 	s >>= geo->chunk_shift;
4707 	s *= geo->near_copies;
4708 	sector_div(s, geo->raid_disks);
4709 	s *= geo->far_copies;
4710 	s <<= geo->chunk_shift;
4711 	return s;
4712 }
4713 
4714 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4715 				int *skipped)
4716 {
4717 	/* We simply copy at most one chunk (smallest of old and new)
4718 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4719 	 * or we hit a bad block or something.
4720 	 * This might mean we pause for normal IO in the middle of
4721 	 * a chunk, but that is not a problem as mddev->reshape_position
4722 	 * can record any location.
4723 	 *
4724 	 * If we will want to write to a location that isn't
4725 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4726 	 * we need to flush all reshape requests and update the metadata.
4727 	 *
4728 	 * When reshaping forwards (e.g. to more devices), we interpret
4729 	 * 'safe' as the earliest block which might not have been copied
4730 	 * down yet.  We divide this by previous stripe size and multiply
4731 	 * by previous stripe length to get lowest device offset that we
4732 	 * cannot write to yet.
4733 	 * We interpret 'sector_nr' as an address that we want to write to.
4734 	 * From this we use last_device_address() to find where we might
4735 	 * write to, and first_device_address on the  'safe' position.
4736 	 * If this 'next' write position is after the 'safe' position,
4737 	 * we must update the metadata to increase the 'safe' position.
4738 	 *
4739 	 * When reshaping backwards, we round in the opposite direction
4740 	 * and perform the reverse test:  next write position must not be
4741 	 * less than current safe position.
4742 	 *
4743 	 * In all this the minimum difference in data offsets
4744 	 * (conf->offset_diff - always positive) allows a bit of slack,
4745 	 * so next can be after 'safe', but not by more than offset_diff
4746 	 *
4747 	 * We need to prepare all the bios here before we start any IO
4748 	 * to ensure the size we choose is acceptable to all devices.
4749 	 * The means one for each copy for write-out and an extra one for
4750 	 * read-in.
4751 	 * We store the read-in bio in ->master_bio and the others in
4752 	 * ->devs[x].bio and ->devs[x].repl_bio.
4753 	 */
4754 	struct r10conf *conf = mddev->private;
4755 	struct r10bio *r10_bio;
4756 	sector_t next, safe, last;
4757 	int max_sectors;
4758 	int nr_sectors;
4759 	int s;
4760 	struct md_rdev *rdev;
4761 	int need_flush = 0;
4762 	struct bio *blist;
4763 	struct bio *bio, *read_bio;
4764 	int sectors_done = 0;
4765 	struct page **pages;
4766 
4767 	if (sector_nr == 0) {
4768 		/* If restarting in the middle, skip the initial sectors */
4769 		if (mddev->reshape_backwards &&
4770 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4771 			sector_nr = (raid10_size(mddev, 0, 0)
4772 				     - conf->reshape_progress);
4773 		} else if (!mddev->reshape_backwards &&
4774 			   conf->reshape_progress > 0)
4775 			sector_nr = conf->reshape_progress;
4776 		if (sector_nr) {
4777 			mddev->curr_resync_completed = sector_nr;
4778 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4779 			*skipped = 1;
4780 			return sector_nr;
4781 		}
4782 	}
4783 
4784 	/* We don't use sector_nr to track where we are up to
4785 	 * as that doesn't work well for ->reshape_backwards.
4786 	 * So just use ->reshape_progress.
4787 	 */
4788 	if (mddev->reshape_backwards) {
4789 		/* 'next' is the earliest device address that we might
4790 		 * write to for this chunk in the new layout
4791 		 */
4792 		next = first_dev_address(conf->reshape_progress - 1,
4793 					 &conf->geo);
4794 
4795 		/* 'safe' is the last device address that we might read from
4796 		 * in the old layout after a restart
4797 		 */
4798 		safe = last_dev_address(conf->reshape_safe - 1,
4799 					&conf->prev);
4800 
4801 		if (next + conf->offset_diff < safe)
4802 			need_flush = 1;
4803 
4804 		last = conf->reshape_progress - 1;
4805 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4806 					       & conf->prev.chunk_mask);
4807 		if (sector_nr + RESYNC_SECTORS < last)
4808 			sector_nr = last + 1 - RESYNC_SECTORS;
4809 	} else {
4810 		/* 'next' is after the last device address that we
4811 		 * might write to for this chunk in the new layout
4812 		 */
4813 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4814 
4815 		/* 'safe' is the earliest device address that we might
4816 		 * read from in the old layout after a restart
4817 		 */
4818 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4819 
4820 		/* Need to update metadata if 'next' might be beyond 'safe'
4821 		 * as that would possibly corrupt data
4822 		 */
4823 		if (next > safe + conf->offset_diff)
4824 			need_flush = 1;
4825 
4826 		sector_nr = conf->reshape_progress;
4827 		last  = sector_nr | (conf->geo.chunk_mask
4828 				     & conf->prev.chunk_mask);
4829 
4830 		if (sector_nr + RESYNC_SECTORS <= last)
4831 			last = sector_nr + RESYNC_SECTORS - 1;
4832 	}
4833 
4834 	if (need_flush ||
4835 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4836 		/* Need to update reshape_position in metadata */
4837 		wait_barrier(conf, false);
4838 		mddev->reshape_position = conf->reshape_progress;
4839 		if (mddev->reshape_backwards)
4840 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4841 				- conf->reshape_progress;
4842 		else
4843 			mddev->curr_resync_completed = conf->reshape_progress;
4844 		conf->reshape_checkpoint = jiffies;
4845 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4846 		md_wakeup_thread(mddev->thread);
4847 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4848 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4849 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4850 			allow_barrier(conf);
4851 			return sectors_done;
4852 		}
4853 		conf->reshape_safe = mddev->reshape_position;
4854 		allow_barrier(conf);
4855 	}
4856 
4857 	raise_barrier(conf, 0);
4858 read_more:
4859 	/* Now schedule reads for blocks from sector_nr to last */
4860 	r10_bio = raid10_alloc_init_r10buf(conf);
4861 	r10_bio->state = 0;
4862 	raise_barrier(conf, 1);
4863 	atomic_set(&r10_bio->remaining, 0);
4864 	r10_bio->mddev = mddev;
4865 	r10_bio->sector = sector_nr;
4866 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4867 	r10_bio->sectors = last - sector_nr + 1;
4868 	rdev = read_balance(conf, r10_bio, &max_sectors);
4869 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4870 
4871 	if (!rdev) {
4872 		/* Cannot read from here, so need to record bad blocks
4873 		 * on all the target devices.
4874 		 */
4875 		// FIXME
4876 		mempool_free(r10_bio, &conf->r10buf_pool);
4877 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4878 		return sectors_done;
4879 	}
4880 
4881 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4882 				    GFP_KERNEL, &mddev->bio_set);
4883 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4884 			       + rdev->data_offset);
4885 	read_bio->bi_private = r10_bio;
4886 	read_bio->bi_end_io = end_reshape_read;
4887 	r10_bio->master_bio = read_bio;
4888 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4889 
4890 	/*
4891 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4892 	 * write to the region to avoid conflict.
4893 	*/
4894 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4895 		struct mdp_superblock_1 *sb = NULL;
4896 		int sb_reshape_pos = 0;
4897 
4898 		conf->cluster_sync_low = sector_nr;
4899 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4900 		sb = page_address(rdev->sb_page);
4901 		if (sb) {
4902 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4903 			/*
4904 			 * Set cluster_sync_low again if next address for array
4905 			 * reshape is less than cluster_sync_low. Since we can't
4906 			 * update cluster_sync_low until it has finished reshape.
4907 			 */
4908 			if (sb_reshape_pos < conf->cluster_sync_low)
4909 				conf->cluster_sync_low = sb_reshape_pos;
4910 		}
4911 
4912 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4913 							  conf->cluster_sync_high);
4914 	}
4915 
4916 	/* Now find the locations in the new layout */
4917 	__raid10_find_phys(&conf->geo, r10_bio);
4918 
4919 	blist = read_bio;
4920 	read_bio->bi_next = NULL;
4921 
4922 	rcu_read_lock();
4923 	for (s = 0; s < conf->copies*2; s++) {
4924 		struct bio *b;
4925 		int d = r10_bio->devs[s/2].devnum;
4926 		struct md_rdev *rdev2;
4927 		if (s&1) {
4928 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4929 			b = r10_bio->devs[s/2].repl_bio;
4930 		} else {
4931 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4932 			b = r10_bio->devs[s/2].bio;
4933 		}
4934 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4935 			continue;
4936 
4937 		bio_set_dev(b, rdev2->bdev);
4938 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4939 			rdev2->new_data_offset;
4940 		b->bi_end_io = end_reshape_write;
4941 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4942 		b->bi_next = blist;
4943 		blist = b;
4944 	}
4945 
4946 	/* Now add as many pages as possible to all of these bios. */
4947 
4948 	nr_sectors = 0;
4949 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4950 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4951 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4952 		int len = (max_sectors - s) << 9;
4953 		if (len > PAGE_SIZE)
4954 			len = PAGE_SIZE;
4955 		for (bio = blist; bio ; bio = bio->bi_next) {
4956 			/*
4957 			 * won't fail because the vec table is big enough
4958 			 * to hold all these pages
4959 			 */
4960 			bio_add_page(bio, page, len, 0);
4961 		}
4962 		sector_nr += len >> 9;
4963 		nr_sectors += len >> 9;
4964 	}
4965 	rcu_read_unlock();
4966 	r10_bio->sectors = nr_sectors;
4967 
4968 	/* Now submit the read */
4969 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4970 	atomic_inc(&r10_bio->remaining);
4971 	read_bio->bi_next = NULL;
4972 	submit_bio_noacct(read_bio);
4973 	sectors_done += nr_sectors;
4974 	if (sector_nr <= last)
4975 		goto read_more;
4976 
4977 	lower_barrier(conf);
4978 
4979 	/* Now that we have done the whole section we can
4980 	 * update reshape_progress
4981 	 */
4982 	if (mddev->reshape_backwards)
4983 		conf->reshape_progress -= sectors_done;
4984 	else
4985 		conf->reshape_progress += sectors_done;
4986 
4987 	return sectors_done;
4988 }
4989 
4990 static void end_reshape_request(struct r10bio *r10_bio);
4991 static int handle_reshape_read_error(struct mddev *mddev,
4992 				     struct r10bio *r10_bio);
4993 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4994 {
4995 	/* Reshape read completed.  Hopefully we have a block
4996 	 * to write out.
4997 	 * If we got a read error then we do sync 1-page reads from
4998 	 * elsewhere until we find the data - or give up.
4999 	 */
5000 	struct r10conf *conf = mddev->private;
5001 	int s;
5002 
5003 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5004 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5005 			/* Reshape has been aborted */
5006 			md_done_sync(mddev, r10_bio->sectors, 0);
5007 			return;
5008 		}
5009 
5010 	/* We definitely have the data in the pages, schedule the
5011 	 * writes.
5012 	 */
5013 	atomic_set(&r10_bio->remaining, 1);
5014 	for (s = 0; s < conf->copies*2; s++) {
5015 		struct bio *b;
5016 		int d = r10_bio->devs[s/2].devnum;
5017 		struct md_rdev *rdev;
5018 		rcu_read_lock();
5019 		if (s&1) {
5020 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5021 			b = r10_bio->devs[s/2].repl_bio;
5022 		} else {
5023 			rdev = rcu_dereference(conf->mirrors[d].rdev);
5024 			b = r10_bio->devs[s/2].bio;
5025 		}
5026 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
5027 			rcu_read_unlock();
5028 			continue;
5029 		}
5030 		atomic_inc(&rdev->nr_pending);
5031 		rcu_read_unlock();
5032 		md_sync_acct_bio(b, r10_bio->sectors);
5033 		atomic_inc(&r10_bio->remaining);
5034 		b->bi_next = NULL;
5035 		submit_bio_noacct(b);
5036 	}
5037 	end_reshape_request(r10_bio);
5038 }
5039 
5040 static void end_reshape(struct r10conf *conf)
5041 {
5042 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5043 		return;
5044 
5045 	spin_lock_irq(&conf->device_lock);
5046 	conf->prev = conf->geo;
5047 	md_finish_reshape(conf->mddev);
5048 	smp_wmb();
5049 	conf->reshape_progress = MaxSector;
5050 	conf->reshape_safe = MaxSector;
5051 	spin_unlock_irq(&conf->device_lock);
5052 
5053 	if (conf->mddev->queue)
5054 		raid10_set_io_opt(conf);
5055 	conf->fullsync = 0;
5056 }
5057 
5058 static void raid10_update_reshape_pos(struct mddev *mddev)
5059 {
5060 	struct r10conf *conf = mddev->private;
5061 	sector_t lo, hi;
5062 
5063 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5064 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5065 	    || mddev->reshape_position == MaxSector)
5066 		conf->reshape_progress = mddev->reshape_position;
5067 	else
5068 		WARN_ON_ONCE(1);
5069 }
5070 
5071 static int handle_reshape_read_error(struct mddev *mddev,
5072 				     struct r10bio *r10_bio)
5073 {
5074 	/* Use sync reads to get the blocks from somewhere else */
5075 	int sectors = r10_bio->sectors;
5076 	struct r10conf *conf = mddev->private;
5077 	struct r10bio *r10b;
5078 	int slot = 0;
5079 	int idx = 0;
5080 	struct page **pages;
5081 
5082 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5083 	if (!r10b) {
5084 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5085 		return -ENOMEM;
5086 	}
5087 
5088 	/* reshape IOs share pages from .devs[0].bio */
5089 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5090 
5091 	r10b->sector = r10_bio->sector;
5092 	__raid10_find_phys(&conf->prev, r10b);
5093 
5094 	while (sectors) {
5095 		int s = sectors;
5096 		int success = 0;
5097 		int first_slot = slot;
5098 
5099 		if (s > (PAGE_SIZE >> 9))
5100 			s = PAGE_SIZE >> 9;
5101 
5102 		rcu_read_lock();
5103 		while (!success) {
5104 			int d = r10b->devs[slot].devnum;
5105 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5106 			sector_t addr;
5107 			if (rdev == NULL ||
5108 			    test_bit(Faulty, &rdev->flags) ||
5109 			    !test_bit(In_sync, &rdev->flags))
5110 				goto failed;
5111 
5112 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5113 			atomic_inc(&rdev->nr_pending);
5114 			rcu_read_unlock();
5115 			success = sync_page_io(rdev,
5116 					       addr,
5117 					       s << 9,
5118 					       pages[idx],
5119 					       REQ_OP_READ, 0, false);
5120 			rdev_dec_pending(rdev, mddev);
5121 			rcu_read_lock();
5122 			if (success)
5123 				break;
5124 		failed:
5125 			slot++;
5126 			if (slot >= conf->copies)
5127 				slot = 0;
5128 			if (slot == first_slot)
5129 				break;
5130 		}
5131 		rcu_read_unlock();
5132 		if (!success) {
5133 			/* couldn't read this block, must give up */
5134 			set_bit(MD_RECOVERY_INTR,
5135 				&mddev->recovery);
5136 			kfree(r10b);
5137 			return -EIO;
5138 		}
5139 		sectors -= s;
5140 		idx++;
5141 	}
5142 	kfree(r10b);
5143 	return 0;
5144 }
5145 
5146 static void end_reshape_write(struct bio *bio)
5147 {
5148 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5149 	struct mddev *mddev = r10_bio->mddev;
5150 	struct r10conf *conf = mddev->private;
5151 	int d;
5152 	int slot;
5153 	int repl;
5154 	struct md_rdev *rdev = NULL;
5155 
5156 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5157 	if (repl)
5158 		rdev = conf->mirrors[d].replacement;
5159 	if (!rdev) {
5160 		smp_mb();
5161 		rdev = conf->mirrors[d].rdev;
5162 	}
5163 
5164 	if (bio->bi_status) {
5165 		/* FIXME should record badblock */
5166 		md_error(mddev, rdev);
5167 	}
5168 
5169 	rdev_dec_pending(rdev, mddev);
5170 	end_reshape_request(r10_bio);
5171 }
5172 
5173 static void end_reshape_request(struct r10bio *r10_bio)
5174 {
5175 	if (!atomic_dec_and_test(&r10_bio->remaining))
5176 		return;
5177 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5178 	bio_put(r10_bio->master_bio);
5179 	put_buf(r10_bio);
5180 }
5181 
5182 static void raid10_finish_reshape(struct mddev *mddev)
5183 {
5184 	struct r10conf *conf = mddev->private;
5185 
5186 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5187 		return;
5188 
5189 	if (mddev->delta_disks > 0) {
5190 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5191 			mddev->recovery_cp = mddev->resync_max_sectors;
5192 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5193 		}
5194 		mddev->resync_max_sectors = mddev->array_sectors;
5195 	} else {
5196 		int d;
5197 		rcu_read_lock();
5198 		for (d = conf->geo.raid_disks ;
5199 		     d < conf->geo.raid_disks - mddev->delta_disks;
5200 		     d++) {
5201 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5202 			if (rdev)
5203 				clear_bit(In_sync, &rdev->flags);
5204 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5205 			if (rdev)
5206 				clear_bit(In_sync, &rdev->flags);
5207 		}
5208 		rcu_read_unlock();
5209 	}
5210 	mddev->layout = mddev->new_layout;
5211 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5212 	mddev->reshape_position = MaxSector;
5213 	mddev->delta_disks = 0;
5214 	mddev->reshape_backwards = 0;
5215 }
5216 
5217 static struct md_personality raid10_personality =
5218 {
5219 	.name		= "raid10",
5220 	.level		= 10,
5221 	.owner		= THIS_MODULE,
5222 	.make_request	= raid10_make_request,
5223 	.run		= raid10_run,
5224 	.free		= raid10_free,
5225 	.status		= raid10_status,
5226 	.error_handler	= raid10_error,
5227 	.hot_add_disk	= raid10_add_disk,
5228 	.hot_remove_disk= raid10_remove_disk,
5229 	.spare_active	= raid10_spare_active,
5230 	.sync_request	= raid10_sync_request,
5231 	.quiesce	= raid10_quiesce,
5232 	.size		= raid10_size,
5233 	.resize		= raid10_resize,
5234 	.takeover	= raid10_takeover,
5235 	.check_reshape	= raid10_check_reshape,
5236 	.start_reshape	= raid10_start_reshape,
5237 	.finish_reshape	= raid10_finish_reshape,
5238 	.update_reshape_pos = raid10_update_reshape_pos,
5239 };
5240 
5241 static int __init raid_init(void)
5242 {
5243 	return register_md_personality(&raid10_personality);
5244 }
5245 
5246 static void raid_exit(void)
5247 {
5248 	unregister_md_personality(&raid10_personality);
5249 }
5250 
5251 module_init(raid_init);
5252 module_exit(raid_exit);
5253 MODULE_LICENSE("GPL");
5254 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5255 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5256 MODULE_ALIAS("md-raid10");
5257 MODULE_ALIAS("md-level-10");
5258