xref: /linux/drivers/md/raid10.c (revision aeb3f46252e26acdc60a1a8e31fb1ca6319d9a07)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
24 
25 /*
26  * RAID10 provides a combination of RAID0 and RAID1 functionality.
27  * The layout of data is defined by
28  *    chunk_size
29  *    raid_disks
30  *    near_copies (stored in low byte of layout)
31  *    far_copies (stored in second byte of layout)
32  *    far_offset (stored in bit 16 of layout )
33  *
34  * The data to be stored is divided into chunks using chunksize.
35  * Each device is divided into far_copies sections.
36  * In each section, chunks are laid out in a style similar to raid0, but
37  * near_copies copies of each chunk is stored (each on a different drive).
38  * The starting device for each section is offset near_copies from the starting
39  * device of the previous section.
40  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41  * drive.
42  * near_copies and far_copies must be at least one, and their product is at most
43  * raid_disks.
44  *
45  * If far_offset is true, then the far_copies are handled a bit differently.
46  * The copies are still in different stripes, but instead of be very far apart
47  * on disk, there are adjacent stripes.
48  */
49 
50 /*
51  * Number of guaranteed r10bios in case of extreme VM load:
52  */
53 #define	NR_RAID10_BIOS 256
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	conf_t *conf = data;
63 	r10bio_t *r10_bio;
64 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
65 
66 	/* allocate a r10bio with room for raid_disks entries in the bios array */
67 	r10_bio = kzalloc(size, gfp_flags);
68 	if (!r10_bio)
69 		unplug_slaves(conf->mddev);
70 
71 	return r10_bio;
72 }
73 
74 static void r10bio_pool_free(void *r10_bio, void *data)
75 {
76 	kfree(r10_bio);
77 }
78 
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84 
85 /*
86  * When performing a resync, we need to read and compare, so
87  * we need as many pages are there are copies.
88  * When performing a recovery, we need 2 bios, one for read,
89  * one for write (we recover only one drive per r10buf)
90  *
91  */
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	conf_t *conf = data;
95 	struct page *page;
96 	r10bio_t *r10_bio;
97 	struct bio *bio;
98 	int i, j;
99 	int nalloc;
100 
101 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 	if (!r10_bio) {
103 		unplug_slaves(conf->mddev);
104 		return NULL;
105 	}
106 
107 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108 		nalloc = conf->copies; /* resync */
109 	else
110 		nalloc = 2; /* recovery */
111 
112 	/*
113 	 * Allocate bios.
114 	 */
115 	for (j = nalloc ; j-- ; ) {
116 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
117 		if (!bio)
118 			goto out_free_bio;
119 		r10_bio->devs[j].bio = bio;
120 	}
121 	/*
122 	 * Allocate RESYNC_PAGES data pages and attach them
123 	 * where needed.
124 	 */
125 	for (j = 0 ; j < nalloc; j++) {
126 		bio = r10_bio->devs[j].bio;
127 		for (i = 0; i < RESYNC_PAGES; i++) {
128 			page = alloc_page(gfp_flags);
129 			if (unlikely(!page))
130 				goto out_free_pages;
131 
132 			bio->bi_io_vec[i].bv_page = page;
133 		}
134 	}
135 
136 	return r10_bio;
137 
138 out_free_pages:
139 	for ( ; i > 0 ; i--)
140 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
141 	while (j--)
142 		for (i = 0; i < RESYNC_PAGES ; i++)
143 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
144 	j = -1;
145 out_free_bio:
146 	while ( ++j < nalloc )
147 		bio_put(r10_bio->devs[j].bio);
148 	r10bio_pool_free(r10_bio, conf);
149 	return NULL;
150 }
151 
152 static void r10buf_pool_free(void *__r10_bio, void *data)
153 {
154 	int i;
155 	conf_t *conf = data;
156 	r10bio_t *r10bio = __r10_bio;
157 	int j;
158 
159 	for (j=0; j < conf->copies; j++) {
160 		struct bio *bio = r10bio->devs[j].bio;
161 		if (bio) {
162 			for (i = 0; i < RESYNC_PAGES; i++) {
163 				safe_put_page(bio->bi_io_vec[i].bv_page);
164 				bio->bi_io_vec[i].bv_page = NULL;
165 			}
166 			bio_put(bio);
167 		}
168 	}
169 	r10bio_pool_free(r10bio, conf);
170 }
171 
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
173 {
174 	int i;
175 
176 	for (i = 0; i < conf->copies; i++) {
177 		struct bio **bio = & r10_bio->devs[i].bio;
178 		if (*bio && *bio != IO_BLOCKED)
179 			bio_put(*bio);
180 		*bio = NULL;
181 	}
182 }
183 
184 static void free_r10bio(r10bio_t *r10_bio)
185 {
186 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
187 
188 	/*
189 	 * Wake up any possible resync thread that waits for the device
190 	 * to go idle.
191 	 */
192 	allow_barrier(conf);
193 
194 	put_all_bios(conf, r10_bio);
195 	mempool_free(r10_bio, conf->r10bio_pool);
196 }
197 
198 static void put_buf(r10bio_t *r10_bio)
199 {
200 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
201 
202 	mempool_free(r10_bio, conf->r10buf_pool);
203 
204 	lower_barrier(conf);
205 }
206 
207 static void reschedule_retry(r10bio_t *r10_bio)
208 {
209 	unsigned long flags;
210 	mddev_t *mddev = r10_bio->mddev;
211 	conf_t *conf = mddev_to_conf(mddev);
212 
213 	spin_lock_irqsave(&conf->device_lock, flags);
214 	list_add(&r10_bio->retry_list, &conf->retry_list);
215 	conf->nr_queued ++;
216 	spin_unlock_irqrestore(&conf->device_lock, flags);
217 
218 	md_wakeup_thread(mddev->thread);
219 }
220 
221 /*
222  * raid_end_bio_io() is called when we have finished servicing a mirrored
223  * operation and are ready to return a success/failure code to the buffer
224  * cache layer.
225  */
226 static void raid_end_bio_io(r10bio_t *r10_bio)
227 {
228 	struct bio *bio = r10_bio->master_bio;
229 
230 	bio_endio(bio, bio->bi_size,
231 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232 	free_r10bio(r10_bio);
233 }
234 
235 /*
236  * Update disk head position estimator based on IRQ completion info.
237  */
238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
239 {
240 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
241 
242 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243 		r10_bio->devs[slot].addr + (r10_bio->sectors);
244 }
245 
246 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
247 {
248 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
250 	int slot, dev;
251 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
252 
253 	if (bio->bi_size)
254 		return 1;
255 
256 	slot = r10_bio->read_slot;
257 	dev = r10_bio->devs[slot].devnum;
258 	/*
259 	 * this branch is our 'one mirror IO has finished' event handler:
260 	 */
261 	update_head_pos(slot, r10_bio);
262 
263 	if (uptodate) {
264 		/*
265 		 * Set R10BIO_Uptodate in our master bio, so that
266 		 * we will return a good error code to the higher
267 		 * levels even if IO on some other mirrored buffer fails.
268 		 *
269 		 * The 'master' represents the composite IO operation to
270 		 * user-side. So if something waits for IO, then it will
271 		 * wait for the 'master' bio.
272 		 */
273 		set_bit(R10BIO_Uptodate, &r10_bio->state);
274 		raid_end_bio_io(r10_bio);
275 	} else {
276 		/*
277 		 * oops, read error:
278 		 */
279 		char b[BDEVNAME_SIZE];
280 		if (printk_ratelimit())
281 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
282 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
283 		reschedule_retry(r10_bio);
284 	}
285 
286 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
287 	return 0;
288 }
289 
290 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
291 {
292 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
293 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
294 	int slot, dev;
295 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
296 
297 	if (bio->bi_size)
298 		return 1;
299 
300 	for (slot = 0; slot < conf->copies; slot++)
301 		if (r10_bio->devs[slot].bio == bio)
302 			break;
303 	dev = r10_bio->devs[slot].devnum;
304 
305 	/*
306 	 * this branch is our 'one mirror IO has finished' event handler:
307 	 */
308 	if (!uptodate) {
309 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
310 		/* an I/O failed, we can't clear the bitmap */
311 		set_bit(R10BIO_Degraded, &r10_bio->state);
312 	} else
313 		/*
314 		 * Set R10BIO_Uptodate in our master bio, so that
315 		 * we will return a good error code for to the higher
316 		 * levels even if IO on some other mirrored buffer fails.
317 		 *
318 		 * The 'master' represents the composite IO operation to
319 		 * user-side. So if something waits for IO, then it will
320 		 * wait for the 'master' bio.
321 		 */
322 		set_bit(R10BIO_Uptodate, &r10_bio->state);
323 
324 	update_head_pos(slot, r10_bio);
325 
326 	/*
327 	 *
328 	 * Let's see if all mirrored write operations have finished
329 	 * already.
330 	 */
331 	if (atomic_dec_and_test(&r10_bio->remaining)) {
332 		/* clear the bitmap if all writes complete successfully */
333 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
334 				r10_bio->sectors,
335 				!test_bit(R10BIO_Degraded, &r10_bio->state),
336 				0);
337 		md_write_end(r10_bio->mddev);
338 		raid_end_bio_io(r10_bio);
339 	}
340 
341 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
342 	return 0;
343 }
344 
345 
346 /*
347  * RAID10 layout manager
348  * Aswell as the chunksize and raid_disks count, there are two
349  * parameters: near_copies and far_copies.
350  * near_copies * far_copies must be <= raid_disks.
351  * Normally one of these will be 1.
352  * If both are 1, we get raid0.
353  * If near_copies == raid_disks, we get raid1.
354  *
355  * Chunks are layed out in raid0 style with near_copies copies of the
356  * first chunk, followed by near_copies copies of the next chunk and
357  * so on.
358  * If far_copies > 1, then after 1/far_copies of the array has been assigned
359  * as described above, we start again with a device offset of near_copies.
360  * So we effectively have another copy of the whole array further down all
361  * the drives, but with blocks on different drives.
362  * With this layout, and block is never stored twice on the one device.
363  *
364  * raid10_find_phys finds the sector offset of a given virtual sector
365  * on each device that it is on.
366  *
367  * raid10_find_virt does the reverse mapping, from a device and a
368  * sector offset to a virtual address
369  */
370 
371 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
372 {
373 	int n,f;
374 	sector_t sector;
375 	sector_t chunk;
376 	sector_t stripe;
377 	int dev;
378 
379 	int slot = 0;
380 
381 	/* now calculate first sector/dev */
382 	chunk = r10bio->sector >> conf->chunk_shift;
383 	sector = r10bio->sector & conf->chunk_mask;
384 
385 	chunk *= conf->near_copies;
386 	stripe = chunk;
387 	dev = sector_div(stripe, conf->raid_disks);
388 	if (conf->far_offset)
389 		stripe *= conf->far_copies;
390 
391 	sector += stripe << conf->chunk_shift;
392 
393 	/* and calculate all the others */
394 	for (n=0; n < conf->near_copies; n++) {
395 		int d = dev;
396 		sector_t s = sector;
397 		r10bio->devs[slot].addr = sector;
398 		r10bio->devs[slot].devnum = d;
399 		slot++;
400 
401 		for (f = 1; f < conf->far_copies; f++) {
402 			d += conf->near_copies;
403 			if (d >= conf->raid_disks)
404 				d -= conf->raid_disks;
405 			s += conf->stride;
406 			r10bio->devs[slot].devnum = d;
407 			r10bio->devs[slot].addr = s;
408 			slot++;
409 		}
410 		dev++;
411 		if (dev >= conf->raid_disks) {
412 			dev = 0;
413 			sector += (conf->chunk_mask + 1);
414 		}
415 	}
416 	BUG_ON(slot != conf->copies);
417 }
418 
419 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
420 {
421 	sector_t offset, chunk, vchunk;
422 
423 	offset = sector & conf->chunk_mask;
424 	if (conf->far_offset) {
425 		int fc;
426 		chunk = sector >> conf->chunk_shift;
427 		fc = sector_div(chunk, conf->far_copies);
428 		dev -= fc * conf->near_copies;
429 		if (dev < 0)
430 			dev += conf->raid_disks;
431 	} else {
432 		while (sector >= conf->stride) {
433 			sector -= conf->stride;
434 			if (dev < conf->near_copies)
435 				dev += conf->raid_disks - conf->near_copies;
436 			else
437 				dev -= conf->near_copies;
438 		}
439 		chunk = sector >> conf->chunk_shift;
440 	}
441 	vchunk = chunk * conf->raid_disks + dev;
442 	sector_div(vchunk, conf->near_copies);
443 	return (vchunk << conf->chunk_shift) + offset;
444 }
445 
446 /**
447  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
448  *	@q: request queue
449  *	@bio: the buffer head that's been built up so far
450  *	@biovec: the request that could be merged to it.
451  *
452  *	Return amount of bytes we can accept at this offset
453  *      If near_copies == raid_disk, there are no striping issues,
454  *      but in that case, the function isn't called at all.
455  */
456 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio,
457 				struct bio_vec *bio_vec)
458 {
459 	mddev_t *mddev = q->queuedata;
460 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
461 	int max;
462 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
463 	unsigned int bio_sectors = bio->bi_size >> 9;
464 
465 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
466 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
467 	if (max <= bio_vec->bv_len && bio_sectors == 0)
468 		return bio_vec->bv_len;
469 	else
470 		return max;
471 }
472 
473 /*
474  * This routine returns the disk from which the requested read should
475  * be done. There is a per-array 'next expected sequential IO' sector
476  * number - if this matches on the next IO then we use the last disk.
477  * There is also a per-disk 'last know head position' sector that is
478  * maintained from IRQ contexts, both the normal and the resync IO
479  * completion handlers update this position correctly. If there is no
480  * perfect sequential match then we pick the disk whose head is closest.
481  *
482  * If there are 2 mirrors in the same 2 devices, performance degrades
483  * because position is mirror, not device based.
484  *
485  * The rdev for the device selected will have nr_pending incremented.
486  */
487 
488 /*
489  * FIXME: possibly should rethink readbalancing and do it differently
490  * depending on near_copies / far_copies geometry.
491  */
492 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
493 {
494 	const unsigned long this_sector = r10_bio->sector;
495 	int disk, slot, nslot;
496 	const int sectors = r10_bio->sectors;
497 	sector_t new_distance, current_distance;
498 	mdk_rdev_t *rdev;
499 
500 	raid10_find_phys(conf, r10_bio);
501 	rcu_read_lock();
502 	/*
503 	 * Check if we can balance. We can balance on the whole
504 	 * device if no resync is going on (recovery is ok), or below
505 	 * the resync window. We take the first readable disk when
506 	 * above the resync window.
507 	 */
508 	if (conf->mddev->recovery_cp < MaxSector
509 	    && (this_sector + sectors >= conf->next_resync)) {
510 		/* make sure that disk is operational */
511 		slot = 0;
512 		disk = r10_bio->devs[slot].devnum;
513 
514 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
515 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
516 		       !test_bit(In_sync, &rdev->flags)) {
517 			slot++;
518 			if (slot == conf->copies) {
519 				slot = 0;
520 				disk = -1;
521 				break;
522 			}
523 			disk = r10_bio->devs[slot].devnum;
524 		}
525 		goto rb_out;
526 	}
527 
528 
529 	/* make sure the disk is operational */
530 	slot = 0;
531 	disk = r10_bio->devs[slot].devnum;
532 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
533 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
534 	       !test_bit(In_sync, &rdev->flags)) {
535 		slot ++;
536 		if (slot == conf->copies) {
537 			disk = -1;
538 			goto rb_out;
539 		}
540 		disk = r10_bio->devs[slot].devnum;
541 	}
542 
543 
544 	current_distance = abs(r10_bio->devs[slot].addr -
545 			       conf->mirrors[disk].head_position);
546 
547 	/* Find the disk whose head is closest */
548 
549 	for (nslot = slot; nslot < conf->copies; nslot++) {
550 		int ndisk = r10_bio->devs[nslot].devnum;
551 
552 
553 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
554 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
555 		    !test_bit(In_sync, &rdev->flags))
556 			continue;
557 
558 		/* This optimisation is debatable, and completely destroys
559 		 * sequential read speed for 'far copies' arrays.  So only
560 		 * keep it for 'near' arrays, and review those later.
561 		 */
562 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
563 			disk = ndisk;
564 			slot = nslot;
565 			break;
566 		}
567 		new_distance = abs(r10_bio->devs[nslot].addr -
568 				   conf->mirrors[ndisk].head_position);
569 		if (new_distance < current_distance) {
570 			current_distance = new_distance;
571 			disk = ndisk;
572 			slot = nslot;
573 		}
574 	}
575 
576 rb_out:
577 	r10_bio->read_slot = slot;
578 /*	conf->next_seq_sect = this_sector + sectors;*/
579 
580 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
581 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
582 	else
583 		disk = -1;
584 	rcu_read_unlock();
585 
586 	return disk;
587 }
588 
589 static void unplug_slaves(mddev_t *mddev)
590 {
591 	conf_t *conf = mddev_to_conf(mddev);
592 	int i;
593 
594 	rcu_read_lock();
595 	for (i=0; i<mddev->raid_disks; i++) {
596 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
597 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
598 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
599 
600 			atomic_inc(&rdev->nr_pending);
601 			rcu_read_unlock();
602 
603 			if (r_queue->unplug_fn)
604 				r_queue->unplug_fn(r_queue);
605 
606 			rdev_dec_pending(rdev, mddev);
607 			rcu_read_lock();
608 		}
609 	}
610 	rcu_read_unlock();
611 }
612 
613 static void raid10_unplug(struct request_queue *q)
614 {
615 	mddev_t *mddev = q->queuedata;
616 
617 	unplug_slaves(q->queuedata);
618 	md_wakeup_thread(mddev->thread);
619 }
620 
621 static int raid10_issue_flush(struct request_queue *q, struct gendisk *disk,
622 			     sector_t *error_sector)
623 {
624 	mddev_t *mddev = q->queuedata;
625 	conf_t *conf = mddev_to_conf(mddev);
626 	int i, ret = 0;
627 
628 	rcu_read_lock();
629 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
630 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
631 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
632 			struct block_device *bdev = rdev->bdev;
633 			struct request_queue *r_queue = bdev_get_queue(bdev);
634 
635 			if (!r_queue->issue_flush_fn)
636 				ret = -EOPNOTSUPP;
637 			else {
638 				atomic_inc(&rdev->nr_pending);
639 				rcu_read_unlock();
640 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
641 							      error_sector);
642 				rdev_dec_pending(rdev, mddev);
643 				rcu_read_lock();
644 			}
645 		}
646 	}
647 	rcu_read_unlock();
648 	return ret;
649 }
650 
651 static int raid10_congested(void *data, int bits)
652 {
653 	mddev_t *mddev = data;
654 	conf_t *conf = mddev_to_conf(mddev);
655 	int i, ret = 0;
656 
657 	rcu_read_lock();
658 	for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
659 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
660 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
661 			struct request_queue *q = bdev_get_queue(rdev->bdev);
662 
663 			ret |= bdi_congested(&q->backing_dev_info, bits);
664 		}
665 	}
666 	rcu_read_unlock();
667 	return ret;
668 }
669 
670 
671 /* Barriers....
672  * Sometimes we need to suspend IO while we do something else,
673  * either some resync/recovery, or reconfigure the array.
674  * To do this we raise a 'barrier'.
675  * The 'barrier' is a counter that can be raised multiple times
676  * to count how many activities are happening which preclude
677  * normal IO.
678  * We can only raise the barrier if there is no pending IO.
679  * i.e. if nr_pending == 0.
680  * We choose only to raise the barrier if no-one is waiting for the
681  * barrier to go down.  This means that as soon as an IO request
682  * is ready, no other operations which require a barrier will start
683  * until the IO request has had a chance.
684  *
685  * So: regular IO calls 'wait_barrier'.  When that returns there
686  *    is no backgroup IO happening,  It must arrange to call
687  *    allow_barrier when it has finished its IO.
688  * backgroup IO calls must call raise_barrier.  Once that returns
689  *    there is no normal IO happeing.  It must arrange to call
690  *    lower_barrier when the particular background IO completes.
691  */
692 #define RESYNC_DEPTH 32
693 
694 static void raise_barrier(conf_t *conf, int force)
695 {
696 	BUG_ON(force && !conf->barrier);
697 	spin_lock_irq(&conf->resync_lock);
698 
699 	/* Wait until no block IO is waiting (unless 'force') */
700 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
701 			    conf->resync_lock,
702 			    raid10_unplug(conf->mddev->queue));
703 
704 	/* block any new IO from starting */
705 	conf->barrier++;
706 
707 	/* No wait for all pending IO to complete */
708 	wait_event_lock_irq(conf->wait_barrier,
709 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
710 			    conf->resync_lock,
711 			    raid10_unplug(conf->mddev->queue));
712 
713 	spin_unlock_irq(&conf->resync_lock);
714 }
715 
716 static void lower_barrier(conf_t *conf)
717 {
718 	unsigned long flags;
719 	spin_lock_irqsave(&conf->resync_lock, flags);
720 	conf->barrier--;
721 	spin_unlock_irqrestore(&conf->resync_lock, flags);
722 	wake_up(&conf->wait_barrier);
723 }
724 
725 static void wait_barrier(conf_t *conf)
726 {
727 	spin_lock_irq(&conf->resync_lock);
728 	if (conf->barrier) {
729 		conf->nr_waiting++;
730 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
731 				    conf->resync_lock,
732 				    raid10_unplug(conf->mddev->queue));
733 		conf->nr_waiting--;
734 	}
735 	conf->nr_pending++;
736 	spin_unlock_irq(&conf->resync_lock);
737 }
738 
739 static void allow_barrier(conf_t *conf)
740 {
741 	unsigned long flags;
742 	spin_lock_irqsave(&conf->resync_lock, flags);
743 	conf->nr_pending--;
744 	spin_unlock_irqrestore(&conf->resync_lock, flags);
745 	wake_up(&conf->wait_barrier);
746 }
747 
748 static void freeze_array(conf_t *conf)
749 {
750 	/* stop syncio and normal IO and wait for everything to
751 	 * go quiet.
752 	 * We increment barrier and nr_waiting, and then
753 	 * wait until barrier+nr_pending match nr_queued+2
754 	 */
755 	spin_lock_irq(&conf->resync_lock);
756 	conf->barrier++;
757 	conf->nr_waiting++;
758 	wait_event_lock_irq(conf->wait_barrier,
759 			    conf->barrier+conf->nr_pending == conf->nr_queued+2,
760 			    conf->resync_lock,
761 			    raid10_unplug(conf->mddev->queue));
762 	spin_unlock_irq(&conf->resync_lock);
763 }
764 
765 static void unfreeze_array(conf_t *conf)
766 {
767 	/* reverse the effect of the freeze */
768 	spin_lock_irq(&conf->resync_lock);
769 	conf->barrier--;
770 	conf->nr_waiting--;
771 	wake_up(&conf->wait_barrier);
772 	spin_unlock_irq(&conf->resync_lock);
773 }
774 
775 static int make_request(struct request_queue *q, struct bio * bio)
776 {
777 	mddev_t *mddev = q->queuedata;
778 	conf_t *conf = mddev_to_conf(mddev);
779 	mirror_info_t *mirror;
780 	r10bio_t *r10_bio;
781 	struct bio *read_bio;
782 	int i;
783 	int chunk_sects = conf->chunk_mask + 1;
784 	const int rw = bio_data_dir(bio);
785 	const int do_sync = bio_sync(bio);
786 	struct bio_list bl;
787 	unsigned long flags;
788 
789 	if (unlikely(bio_barrier(bio))) {
790 		bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
791 		return 0;
792 	}
793 
794 	/* If this request crosses a chunk boundary, we need to
795 	 * split it.  This will only happen for 1 PAGE (or less) requests.
796 	 */
797 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
798 		      > chunk_sects &&
799 		    conf->near_copies < conf->raid_disks)) {
800 		struct bio_pair *bp;
801 		/* Sanity check -- queue functions should prevent this happening */
802 		if (bio->bi_vcnt != 1 ||
803 		    bio->bi_idx != 0)
804 			goto bad_map;
805 		/* This is a one page bio that upper layers
806 		 * refuse to split for us, so we need to split it.
807 		 */
808 		bp = bio_split(bio, bio_split_pool,
809 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
810 		if (make_request(q, &bp->bio1))
811 			generic_make_request(&bp->bio1);
812 		if (make_request(q, &bp->bio2))
813 			generic_make_request(&bp->bio2);
814 
815 		bio_pair_release(bp);
816 		return 0;
817 	bad_map:
818 		printk("raid10_make_request bug: can't convert block across chunks"
819 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
820 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
821 
822 		bio_io_error(bio, bio->bi_size);
823 		return 0;
824 	}
825 
826 	md_write_start(mddev, bio);
827 
828 	/*
829 	 * Register the new request and wait if the reconstruction
830 	 * thread has put up a bar for new requests.
831 	 * Continue immediately if no resync is active currently.
832 	 */
833 	wait_barrier(conf);
834 
835 	disk_stat_inc(mddev->gendisk, ios[rw]);
836 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
837 
838 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
839 
840 	r10_bio->master_bio = bio;
841 	r10_bio->sectors = bio->bi_size >> 9;
842 
843 	r10_bio->mddev = mddev;
844 	r10_bio->sector = bio->bi_sector;
845 	r10_bio->state = 0;
846 
847 	if (rw == READ) {
848 		/*
849 		 * read balancing logic:
850 		 */
851 		int disk = read_balance(conf, r10_bio);
852 		int slot = r10_bio->read_slot;
853 		if (disk < 0) {
854 			raid_end_bio_io(r10_bio);
855 			return 0;
856 		}
857 		mirror = conf->mirrors + disk;
858 
859 		read_bio = bio_clone(bio, GFP_NOIO);
860 
861 		r10_bio->devs[slot].bio = read_bio;
862 
863 		read_bio->bi_sector = r10_bio->devs[slot].addr +
864 			mirror->rdev->data_offset;
865 		read_bio->bi_bdev = mirror->rdev->bdev;
866 		read_bio->bi_end_io = raid10_end_read_request;
867 		read_bio->bi_rw = READ | do_sync;
868 		read_bio->bi_private = r10_bio;
869 
870 		generic_make_request(read_bio);
871 		return 0;
872 	}
873 
874 	/*
875 	 * WRITE:
876 	 */
877 	/* first select target devices under spinlock and
878 	 * inc refcount on their rdev.  Record them by setting
879 	 * bios[x] to bio
880 	 */
881 	raid10_find_phys(conf, r10_bio);
882 	rcu_read_lock();
883 	for (i = 0;  i < conf->copies; i++) {
884 		int d = r10_bio->devs[i].devnum;
885 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
886 		if (rdev &&
887 		    !test_bit(Faulty, &rdev->flags)) {
888 			atomic_inc(&rdev->nr_pending);
889 			r10_bio->devs[i].bio = bio;
890 		} else {
891 			r10_bio->devs[i].bio = NULL;
892 			set_bit(R10BIO_Degraded, &r10_bio->state);
893 		}
894 	}
895 	rcu_read_unlock();
896 
897 	atomic_set(&r10_bio->remaining, 0);
898 
899 	bio_list_init(&bl);
900 	for (i = 0; i < conf->copies; i++) {
901 		struct bio *mbio;
902 		int d = r10_bio->devs[i].devnum;
903 		if (!r10_bio->devs[i].bio)
904 			continue;
905 
906 		mbio = bio_clone(bio, GFP_NOIO);
907 		r10_bio->devs[i].bio = mbio;
908 
909 		mbio->bi_sector	= r10_bio->devs[i].addr+
910 			conf->mirrors[d].rdev->data_offset;
911 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
912 		mbio->bi_end_io	= raid10_end_write_request;
913 		mbio->bi_rw = WRITE | do_sync;
914 		mbio->bi_private = r10_bio;
915 
916 		atomic_inc(&r10_bio->remaining);
917 		bio_list_add(&bl, mbio);
918 	}
919 
920 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
921 		/* the array is dead */
922 		md_write_end(mddev);
923 		raid_end_bio_io(r10_bio);
924 		return 0;
925 	}
926 
927 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
928 	spin_lock_irqsave(&conf->device_lock, flags);
929 	bio_list_merge(&conf->pending_bio_list, &bl);
930 	blk_plug_device(mddev->queue);
931 	spin_unlock_irqrestore(&conf->device_lock, flags);
932 
933 	if (do_sync)
934 		md_wakeup_thread(mddev->thread);
935 
936 	return 0;
937 }
938 
939 static void status(struct seq_file *seq, mddev_t *mddev)
940 {
941 	conf_t *conf = mddev_to_conf(mddev);
942 	int i;
943 
944 	if (conf->near_copies < conf->raid_disks)
945 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
946 	if (conf->near_copies > 1)
947 		seq_printf(seq, " %d near-copies", conf->near_copies);
948 	if (conf->far_copies > 1) {
949 		if (conf->far_offset)
950 			seq_printf(seq, " %d offset-copies", conf->far_copies);
951 		else
952 			seq_printf(seq, " %d far-copies", conf->far_copies);
953 	}
954 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
955 					conf->raid_disks - mddev->degraded);
956 	for (i = 0; i < conf->raid_disks; i++)
957 		seq_printf(seq, "%s",
958 			      conf->mirrors[i].rdev &&
959 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
960 	seq_printf(seq, "]");
961 }
962 
963 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
964 {
965 	char b[BDEVNAME_SIZE];
966 	conf_t *conf = mddev_to_conf(mddev);
967 
968 	/*
969 	 * If it is not operational, then we have already marked it as dead
970 	 * else if it is the last working disks, ignore the error, let the
971 	 * next level up know.
972 	 * else mark the drive as failed
973 	 */
974 	if (test_bit(In_sync, &rdev->flags)
975 	    && conf->raid_disks-mddev->degraded == 1)
976 		/*
977 		 * Don't fail the drive, just return an IO error.
978 		 * The test should really be more sophisticated than
979 		 * "working_disks == 1", but it isn't critical, and
980 		 * can wait until we do more sophisticated "is the drive
981 		 * really dead" tests...
982 		 */
983 		return;
984 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
985 		unsigned long flags;
986 		spin_lock_irqsave(&conf->device_lock, flags);
987 		mddev->degraded++;
988 		spin_unlock_irqrestore(&conf->device_lock, flags);
989 		/*
990 		 * if recovery is running, make sure it aborts.
991 		 */
992 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
993 	}
994 	set_bit(Faulty, &rdev->flags);
995 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
996 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
997 		"	Operation continuing on %d devices\n",
998 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
999 }
1000 
1001 static void print_conf(conf_t *conf)
1002 {
1003 	int i;
1004 	mirror_info_t *tmp;
1005 
1006 	printk("RAID10 conf printout:\n");
1007 	if (!conf) {
1008 		printk("(!conf)\n");
1009 		return;
1010 	}
1011 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1012 		conf->raid_disks);
1013 
1014 	for (i = 0; i < conf->raid_disks; i++) {
1015 		char b[BDEVNAME_SIZE];
1016 		tmp = conf->mirrors + i;
1017 		if (tmp->rdev)
1018 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1019 				i, !test_bit(In_sync, &tmp->rdev->flags),
1020 			        !test_bit(Faulty, &tmp->rdev->flags),
1021 				bdevname(tmp->rdev->bdev,b));
1022 	}
1023 }
1024 
1025 static void close_sync(conf_t *conf)
1026 {
1027 	wait_barrier(conf);
1028 	allow_barrier(conf);
1029 
1030 	mempool_destroy(conf->r10buf_pool);
1031 	conf->r10buf_pool = NULL;
1032 }
1033 
1034 /* check if there are enough drives for
1035  * every block to appear on atleast one
1036  */
1037 static int enough(conf_t *conf)
1038 {
1039 	int first = 0;
1040 
1041 	do {
1042 		int n = conf->copies;
1043 		int cnt = 0;
1044 		while (n--) {
1045 			if (conf->mirrors[first].rdev)
1046 				cnt++;
1047 			first = (first+1) % conf->raid_disks;
1048 		}
1049 		if (cnt == 0)
1050 			return 0;
1051 	} while (first != 0);
1052 	return 1;
1053 }
1054 
1055 static int raid10_spare_active(mddev_t *mddev)
1056 {
1057 	int i;
1058 	conf_t *conf = mddev->private;
1059 	mirror_info_t *tmp;
1060 
1061 	/*
1062 	 * Find all non-in_sync disks within the RAID10 configuration
1063 	 * and mark them in_sync
1064 	 */
1065 	for (i = 0; i < conf->raid_disks; i++) {
1066 		tmp = conf->mirrors + i;
1067 		if (tmp->rdev
1068 		    && !test_bit(Faulty, &tmp->rdev->flags)
1069 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1070 			unsigned long flags;
1071 			spin_lock_irqsave(&conf->device_lock, flags);
1072 			mddev->degraded--;
1073 			spin_unlock_irqrestore(&conf->device_lock, flags);
1074 		}
1075 	}
1076 
1077 	print_conf(conf);
1078 	return 0;
1079 }
1080 
1081 
1082 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1083 {
1084 	conf_t *conf = mddev->private;
1085 	int found = 0;
1086 	int mirror;
1087 	mirror_info_t *p;
1088 
1089 	if (mddev->recovery_cp < MaxSector)
1090 		/* only hot-add to in-sync arrays, as recovery is
1091 		 * very different from resync
1092 		 */
1093 		return 0;
1094 	if (!enough(conf))
1095 		return 0;
1096 
1097 	if (rdev->saved_raid_disk >= 0 &&
1098 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1099 		mirror = rdev->saved_raid_disk;
1100 	else
1101 		mirror = 0;
1102 	for ( ; mirror < mddev->raid_disks; mirror++)
1103 		if ( !(p=conf->mirrors+mirror)->rdev) {
1104 
1105 			blk_queue_stack_limits(mddev->queue,
1106 					       rdev->bdev->bd_disk->queue);
1107 			/* as we don't honour merge_bvec_fn, we must never risk
1108 			 * violating it, so limit ->max_sector to one PAGE, as
1109 			 * a one page request is never in violation.
1110 			 */
1111 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1112 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1113 				mddev->queue->max_sectors = (PAGE_SIZE>>9);
1114 
1115 			p->head_position = 0;
1116 			rdev->raid_disk = mirror;
1117 			found = 1;
1118 			if (rdev->saved_raid_disk != mirror)
1119 				conf->fullsync = 1;
1120 			rcu_assign_pointer(p->rdev, rdev);
1121 			break;
1122 		}
1123 
1124 	print_conf(conf);
1125 	return found;
1126 }
1127 
1128 static int raid10_remove_disk(mddev_t *mddev, int number)
1129 {
1130 	conf_t *conf = mddev->private;
1131 	int err = 0;
1132 	mdk_rdev_t *rdev;
1133 	mirror_info_t *p = conf->mirrors+ number;
1134 
1135 	print_conf(conf);
1136 	rdev = p->rdev;
1137 	if (rdev) {
1138 		if (test_bit(In_sync, &rdev->flags) ||
1139 		    atomic_read(&rdev->nr_pending)) {
1140 			err = -EBUSY;
1141 			goto abort;
1142 		}
1143 		p->rdev = NULL;
1144 		synchronize_rcu();
1145 		if (atomic_read(&rdev->nr_pending)) {
1146 			/* lost the race, try later */
1147 			err = -EBUSY;
1148 			p->rdev = rdev;
1149 		}
1150 	}
1151 abort:
1152 
1153 	print_conf(conf);
1154 	return err;
1155 }
1156 
1157 
1158 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1159 {
1160 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1161 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
1162 	int i,d;
1163 
1164 	if (bio->bi_size)
1165 		return 1;
1166 
1167 	for (i=0; i<conf->copies; i++)
1168 		if (r10_bio->devs[i].bio == bio)
1169 			break;
1170 	BUG_ON(i == conf->copies);
1171 	update_head_pos(i, r10_bio);
1172 	d = r10_bio->devs[i].devnum;
1173 
1174 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1175 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1176 	else {
1177 		atomic_add(r10_bio->sectors,
1178 			   &conf->mirrors[d].rdev->corrected_errors);
1179 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1180 			md_error(r10_bio->mddev,
1181 				 conf->mirrors[d].rdev);
1182 	}
1183 
1184 	/* for reconstruct, we always reschedule after a read.
1185 	 * for resync, only after all reads
1186 	 */
1187 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1188 	    atomic_dec_and_test(&r10_bio->remaining)) {
1189 		/* we have read all the blocks,
1190 		 * do the comparison in process context in raid10d
1191 		 */
1192 		reschedule_retry(r10_bio);
1193 	}
1194 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1195 	return 0;
1196 }
1197 
1198 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1199 {
1200 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1201 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1202 	mddev_t *mddev = r10_bio->mddev;
1203 	conf_t *conf = mddev_to_conf(mddev);
1204 	int i,d;
1205 
1206 	if (bio->bi_size)
1207 		return 1;
1208 
1209 	for (i = 0; i < conf->copies; i++)
1210 		if (r10_bio->devs[i].bio == bio)
1211 			break;
1212 	d = r10_bio->devs[i].devnum;
1213 
1214 	if (!uptodate)
1215 		md_error(mddev, conf->mirrors[d].rdev);
1216 	update_head_pos(i, r10_bio);
1217 
1218 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1219 		if (r10_bio->master_bio == NULL) {
1220 			/* the primary of several recovery bios */
1221 			md_done_sync(mddev, r10_bio->sectors, 1);
1222 			put_buf(r10_bio);
1223 			break;
1224 		} else {
1225 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1226 			put_buf(r10_bio);
1227 			r10_bio = r10_bio2;
1228 		}
1229 	}
1230 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1231 	return 0;
1232 }
1233 
1234 /*
1235  * Note: sync and recover and handled very differently for raid10
1236  * This code is for resync.
1237  * For resync, we read through virtual addresses and read all blocks.
1238  * If there is any error, we schedule a write.  The lowest numbered
1239  * drive is authoritative.
1240  * However requests come for physical address, so we need to map.
1241  * For every physical address there are raid_disks/copies virtual addresses,
1242  * which is always are least one, but is not necessarly an integer.
1243  * This means that a physical address can span multiple chunks, so we may
1244  * have to submit multiple io requests for a single sync request.
1245  */
1246 /*
1247  * We check if all blocks are in-sync and only write to blocks that
1248  * aren't in sync
1249  */
1250 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1251 {
1252 	conf_t *conf = mddev_to_conf(mddev);
1253 	int i, first;
1254 	struct bio *tbio, *fbio;
1255 
1256 	atomic_set(&r10_bio->remaining, 1);
1257 
1258 	/* find the first device with a block */
1259 	for (i=0; i<conf->copies; i++)
1260 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1261 			break;
1262 
1263 	if (i == conf->copies)
1264 		goto done;
1265 
1266 	first = i;
1267 	fbio = r10_bio->devs[i].bio;
1268 
1269 	/* now find blocks with errors */
1270 	for (i=0 ; i < conf->copies ; i++) {
1271 		int  j, d;
1272 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1273 
1274 		tbio = r10_bio->devs[i].bio;
1275 
1276 		if (tbio->bi_end_io != end_sync_read)
1277 			continue;
1278 		if (i == first)
1279 			continue;
1280 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1281 			/* We know that the bi_io_vec layout is the same for
1282 			 * both 'first' and 'i', so we just compare them.
1283 			 * All vec entries are PAGE_SIZE;
1284 			 */
1285 			for (j = 0; j < vcnt; j++)
1286 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1287 					   page_address(tbio->bi_io_vec[j].bv_page),
1288 					   PAGE_SIZE))
1289 					break;
1290 			if (j == vcnt)
1291 				continue;
1292 			mddev->resync_mismatches += r10_bio->sectors;
1293 		}
1294 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1295 			/* Don't fix anything. */
1296 			continue;
1297 		/* Ok, we need to write this bio
1298 		 * First we need to fixup bv_offset, bv_len and
1299 		 * bi_vecs, as the read request might have corrupted these
1300 		 */
1301 		tbio->bi_vcnt = vcnt;
1302 		tbio->bi_size = r10_bio->sectors << 9;
1303 		tbio->bi_idx = 0;
1304 		tbio->bi_phys_segments = 0;
1305 		tbio->bi_hw_segments = 0;
1306 		tbio->bi_hw_front_size = 0;
1307 		tbio->bi_hw_back_size = 0;
1308 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1309 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1310 		tbio->bi_next = NULL;
1311 		tbio->bi_rw = WRITE;
1312 		tbio->bi_private = r10_bio;
1313 		tbio->bi_sector = r10_bio->devs[i].addr;
1314 
1315 		for (j=0; j < vcnt ; j++) {
1316 			tbio->bi_io_vec[j].bv_offset = 0;
1317 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1318 
1319 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1320 			       page_address(fbio->bi_io_vec[j].bv_page),
1321 			       PAGE_SIZE);
1322 		}
1323 		tbio->bi_end_io = end_sync_write;
1324 
1325 		d = r10_bio->devs[i].devnum;
1326 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1327 		atomic_inc(&r10_bio->remaining);
1328 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1329 
1330 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1331 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1332 		generic_make_request(tbio);
1333 	}
1334 
1335 done:
1336 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1337 		md_done_sync(mddev, r10_bio->sectors, 1);
1338 		put_buf(r10_bio);
1339 	}
1340 }
1341 
1342 /*
1343  * Now for the recovery code.
1344  * Recovery happens across physical sectors.
1345  * We recover all non-is_sync drives by finding the virtual address of
1346  * each, and then choose a working drive that also has that virt address.
1347  * There is a separate r10_bio for each non-in_sync drive.
1348  * Only the first two slots are in use. The first for reading,
1349  * The second for writing.
1350  *
1351  */
1352 
1353 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1354 {
1355 	conf_t *conf = mddev_to_conf(mddev);
1356 	int i, d;
1357 	struct bio *bio, *wbio;
1358 
1359 
1360 	/* move the pages across to the second bio
1361 	 * and submit the write request
1362 	 */
1363 	bio = r10_bio->devs[0].bio;
1364 	wbio = r10_bio->devs[1].bio;
1365 	for (i=0; i < wbio->bi_vcnt; i++) {
1366 		struct page *p = bio->bi_io_vec[i].bv_page;
1367 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1368 		wbio->bi_io_vec[i].bv_page = p;
1369 	}
1370 	d = r10_bio->devs[1].devnum;
1371 
1372 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1373 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1374 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1375 		generic_make_request(wbio);
1376 	else
1377 		bio_endio(wbio, wbio->bi_size, -EIO);
1378 }
1379 
1380 
1381 /*
1382  * This is a kernel thread which:
1383  *
1384  *	1.	Retries failed read operations on working mirrors.
1385  *	2.	Updates the raid superblock when problems encounter.
1386  *	3.	Performs writes following reads for array synchronising.
1387  */
1388 
1389 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1390 {
1391 	int sect = 0; /* Offset from r10_bio->sector */
1392 	int sectors = r10_bio->sectors;
1393 	mdk_rdev_t*rdev;
1394 	while(sectors) {
1395 		int s = sectors;
1396 		int sl = r10_bio->read_slot;
1397 		int success = 0;
1398 		int start;
1399 
1400 		if (s > (PAGE_SIZE>>9))
1401 			s = PAGE_SIZE >> 9;
1402 
1403 		rcu_read_lock();
1404 		do {
1405 			int d = r10_bio->devs[sl].devnum;
1406 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1407 			if (rdev &&
1408 			    test_bit(In_sync, &rdev->flags)) {
1409 				atomic_inc(&rdev->nr_pending);
1410 				rcu_read_unlock();
1411 				success = sync_page_io(rdev->bdev,
1412 						       r10_bio->devs[sl].addr +
1413 						       sect + rdev->data_offset,
1414 						       s<<9,
1415 						       conf->tmppage, READ);
1416 				rdev_dec_pending(rdev, mddev);
1417 				rcu_read_lock();
1418 				if (success)
1419 					break;
1420 			}
1421 			sl++;
1422 			if (sl == conf->copies)
1423 				sl = 0;
1424 		} while (!success && sl != r10_bio->read_slot);
1425 		rcu_read_unlock();
1426 
1427 		if (!success) {
1428 			/* Cannot read from anywhere -- bye bye array */
1429 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1430 			md_error(mddev, conf->mirrors[dn].rdev);
1431 			break;
1432 		}
1433 
1434 		start = sl;
1435 		/* write it back and re-read */
1436 		rcu_read_lock();
1437 		while (sl != r10_bio->read_slot) {
1438 			int d;
1439 			if (sl==0)
1440 				sl = conf->copies;
1441 			sl--;
1442 			d = r10_bio->devs[sl].devnum;
1443 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1444 			if (rdev &&
1445 			    test_bit(In_sync, &rdev->flags)) {
1446 				atomic_inc(&rdev->nr_pending);
1447 				rcu_read_unlock();
1448 				atomic_add(s, &rdev->corrected_errors);
1449 				if (sync_page_io(rdev->bdev,
1450 						 r10_bio->devs[sl].addr +
1451 						 sect + rdev->data_offset,
1452 						 s<<9, conf->tmppage, WRITE)
1453 				    == 0)
1454 					/* Well, this device is dead */
1455 					md_error(mddev, rdev);
1456 				rdev_dec_pending(rdev, mddev);
1457 				rcu_read_lock();
1458 			}
1459 		}
1460 		sl = start;
1461 		while (sl != r10_bio->read_slot) {
1462 			int d;
1463 			if (sl==0)
1464 				sl = conf->copies;
1465 			sl--;
1466 			d = r10_bio->devs[sl].devnum;
1467 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1468 			if (rdev &&
1469 			    test_bit(In_sync, &rdev->flags)) {
1470 				char b[BDEVNAME_SIZE];
1471 				atomic_inc(&rdev->nr_pending);
1472 				rcu_read_unlock();
1473 				if (sync_page_io(rdev->bdev,
1474 						 r10_bio->devs[sl].addr +
1475 						 sect + rdev->data_offset,
1476 						 s<<9, conf->tmppage, READ) == 0)
1477 					/* Well, this device is dead */
1478 					md_error(mddev, rdev);
1479 				else
1480 					printk(KERN_INFO
1481 					       "raid10:%s: read error corrected"
1482 					       " (%d sectors at %llu on %s)\n",
1483 					       mdname(mddev), s,
1484 					       (unsigned long long)(sect+
1485 					            rdev->data_offset),
1486 					       bdevname(rdev->bdev, b));
1487 
1488 				rdev_dec_pending(rdev, mddev);
1489 				rcu_read_lock();
1490 			}
1491 		}
1492 		rcu_read_unlock();
1493 
1494 		sectors -= s;
1495 		sect += s;
1496 	}
1497 }
1498 
1499 static void raid10d(mddev_t *mddev)
1500 {
1501 	r10bio_t *r10_bio;
1502 	struct bio *bio;
1503 	unsigned long flags;
1504 	conf_t *conf = mddev_to_conf(mddev);
1505 	struct list_head *head = &conf->retry_list;
1506 	int unplug=0;
1507 	mdk_rdev_t *rdev;
1508 
1509 	md_check_recovery(mddev);
1510 
1511 	for (;;) {
1512 		char b[BDEVNAME_SIZE];
1513 		spin_lock_irqsave(&conf->device_lock, flags);
1514 
1515 		if (conf->pending_bio_list.head) {
1516 			bio = bio_list_get(&conf->pending_bio_list);
1517 			blk_remove_plug(mddev->queue);
1518 			spin_unlock_irqrestore(&conf->device_lock, flags);
1519 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1520 			bitmap_unplug(mddev->bitmap);
1521 
1522 			while (bio) { /* submit pending writes */
1523 				struct bio *next = bio->bi_next;
1524 				bio->bi_next = NULL;
1525 				generic_make_request(bio);
1526 				bio = next;
1527 			}
1528 			unplug = 1;
1529 
1530 			continue;
1531 		}
1532 
1533 		if (list_empty(head))
1534 			break;
1535 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1536 		list_del(head->prev);
1537 		conf->nr_queued--;
1538 		spin_unlock_irqrestore(&conf->device_lock, flags);
1539 
1540 		mddev = r10_bio->mddev;
1541 		conf = mddev_to_conf(mddev);
1542 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1543 			sync_request_write(mddev, r10_bio);
1544 			unplug = 1;
1545 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1546 			recovery_request_write(mddev, r10_bio);
1547 			unplug = 1;
1548 		} else {
1549 			int mirror;
1550 			/* we got a read error. Maybe the drive is bad.  Maybe just
1551 			 * the block and we can fix it.
1552 			 * We freeze all other IO, and try reading the block from
1553 			 * other devices.  When we find one, we re-write
1554 			 * and check it that fixes the read error.
1555 			 * This is all done synchronously while the array is
1556 			 * frozen.
1557 			 */
1558 			if (mddev->ro == 0) {
1559 				freeze_array(conf);
1560 				fix_read_error(conf, mddev, r10_bio);
1561 				unfreeze_array(conf);
1562 			}
1563 
1564 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1565 			r10_bio->devs[r10_bio->read_slot].bio =
1566 				mddev->ro ? IO_BLOCKED : NULL;
1567 			mirror = read_balance(conf, r10_bio);
1568 			if (mirror == -1) {
1569 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1570 				       " read error for block %llu\n",
1571 				       bdevname(bio->bi_bdev,b),
1572 				       (unsigned long long)r10_bio->sector);
1573 				raid_end_bio_io(r10_bio);
1574 				bio_put(bio);
1575 			} else {
1576 				const int do_sync = bio_sync(r10_bio->master_bio);
1577 				bio_put(bio);
1578 				rdev = conf->mirrors[mirror].rdev;
1579 				if (printk_ratelimit())
1580 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1581 					       " another mirror\n",
1582 					       bdevname(rdev->bdev,b),
1583 					       (unsigned long long)r10_bio->sector);
1584 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1585 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1586 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1587 					+ rdev->data_offset;
1588 				bio->bi_bdev = rdev->bdev;
1589 				bio->bi_rw = READ | do_sync;
1590 				bio->bi_private = r10_bio;
1591 				bio->bi_end_io = raid10_end_read_request;
1592 				unplug = 1;
1593 				generic_make_request(bio);
1594 			}
1595 		}
1596 	}
1597 	spin_unlock_irqrestore(&conf->device_lock, flags);
1598 	if (unplug)
1599 		unplug_slaves(mddev);
1600 }
1601 
1602 
1603 static int init_resync(conf_t *conf)
1604 {
1605 	int buffs;
1606 
1607 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1608 	BUG_ON(conf->r10buf_pool);
1609 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1610 	if (!conf->r10buf_pool)
1611 		return -ENOMEM;
1612 	conf->next_resync = 0;
1613 	return 0;
1614 }
1615 
1616 /*
1617  * perform a "sync" on one "block"
1618  *
1619  * We need to make sure that no normal I/O request - particularly write
1620  * requests - conflict with active sync requests.
1621  *
1622  * This is achieved by tracking pending requests and a 'barrier' concept
1623  * that can be installed to exclude normal IO requests.
1624  *
1625  * Resync and recovery are handled very differently.
1626  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1627  *
1628  * For resync, we iterate over virtual addresses, read all copies,
1629  * and update if there are differences.  If only one copy is live,
1630  * skip it.
1631  * For recovery, we iterate over physical addresses, read a good
1632  * value for each non-in_sync drive, and over-write.
1633  *
1634  * So, for recovery we may have several outstanding complex requests for a
1635  * given address, one for each out-of-sync device.  We model this by allocating
1636  * a number of r10_bio structures, one for each out-of-sync device.
1637  * As we setup these structures, we collect all bio's together into a list
1638  * which we then process collectively to add pages, and then process again
1639  * to pass to generic_make_request.
1640  *
1641  * The r10_bio structures are linked using a borrowed master_bio pointer.
1642  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1643  * has its remaining count decremented to 0, the whole complex operation
1644  * is complete.
1645  *
1646  */
1647 
1648 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1649 {
1650 	conf_t *conf = mddev_to_conf(mddev);
1651 	r10bio_t *r10_bio;
1652 	struct bio *biolist = NULL, *bio;
1653 	sector_t max_sector, nr_sectors;
1654 	int disk;
1655 	int i;
1656 	int max_sync;
1657 	int sync_blocks;
1658 
1659 	sector_t sectors_skipped = 0;
1660 	int chunks_skipped = 0;
1661 
1662 	if (!conf->r10buf_pool)
1663 		if (init_resync(conf))
1664 			return 0;
1665 
1666  skipped:
1667 	max_sector = mddev->size << 1;
1668 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1669 		max_sector = mddev->resync_max_sectors;
1670 	if (sector_nr >= max_sector) {
1671 		/* If we aborted, we need to abort the
1672 		 * sync on the 'current' bitmap chucks (there can
1673 		 * be several when recovering multiple devices).
1674 		 * as we may have started syncing it but not finished.
1675 		 * We can find the current address in
1676 		 * mddev->curr_resync, but for recovery,
1677 		 * we need to convert that to several
1678 		 * virtual addresses.
1679 		 */
1680 		if (mddev->curr_resync < max_sector) { /* aborted */
1681 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1682 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1683 						&sync_blocks, 1);
1684 			else for (i=0; i<conf->raid_disks; i++) {
1685 				sector_t sect =
1686 					raid10_find_virt(conf, mddev->curr_resync, i);
1687 				bitmap_end_sync(mddev->bitmap, sect,
1688 						&sync_blocks, 1);
1689 			}
1690 		} else /* completed sync */
1691 			conf->fullsync = 0;
1692 
1693 		bitmap_close_sync(mddev->bitmap);
1694 		close_sync(conf);
1695 		*skipped = 1;
1696 		return sectors_skipped;
1697 	}
1698 	if (chunks_skipped >= conf->raid_disks) {
1699 		/* if there has been nothing to do on any drive,
1700 		 * then there is nothing to do at all..
1701 		 */
1702 		*skipped = 1;
1703 		return (max_sector - sector_nr) + sectors_skipped;
1704 	}
1705 
1706 	/* make sure whole request will fit in a chunk - if chunks
1707 	 * are meaningful
1708 	 */
1709 	if (conf->near_copies < conf->raid_disks &&
1710 	    max_sector > (sector_nr | conf->chunk_mask))
1711 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1712 	/*
1713 	 * If there is non-resync activity waiting for us then
1714 	 * put in a delay to throttle resync.
1715 	 */
1716 	if (!go_faster && conf->nr_waiting)
1717 		msleep_interruptible(1000);
1718 
1719 	/* Again, very different code for resync and recovery.
1720 	 * Both must result in an r10bio with a list of bios that
1721 	 * have bi_end_io, bi_sector, bi_bdev set,
1722 	 * and bi_private set to the r10bio.
1723 	 * For recovery, we may actually create several r10bios
1724 	 * with 2 bios in each, that correspond to the bios in the main one.
1725 	 * In this case, the subordinate r10bios link back through a
1726 	 * borrowed master_bio pointer, and the counter in the master
1727 	 * includes a ref from each subordinate.
1728 	 */
1729 	/* First, we decide what to do and set ->bi_end_io
1730 	 * To end_sync_read if we want to read, and
1731 	 * end_sync_write if we will want to write.
1732 	 */
1733 
1734 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1735 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1736 		/* recovery... the complicated one */
1737 		int i, j, k;
1738 		r10_bio = NULL;
1739 
1740 		for (i=0 ; i<conf->raid_disks; i++)
1741 			if (conf->mirrors[i].rdev &&
1742 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1743 				int still_degraded = 0;
1744 				/* want to reconstruct this device */
1745 				r10bio_t *rb2 = r10_bio;
1746 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1747 				int must_sync;
1748 				/* Unless we are doing a full sync, we only need
1749 				 * to recover the block if it is set in the bitmap
1750 				 */
1751 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1752 							      &sync_blocks, 1);
1753 				if (sync_blocks < max_sync)
1754 					max_sync = sync_blocks;
1755 				if (!must_sync &&
1756 				    !conf->fullsync) {
1757 					/* yep, skip the sync_blocks here, but don't assume
1758 					 * that there will never be anything to do here
1759 					 */
1760 					chunks_skipped = -1;
1761 					continue;
1762 				}
1763 
1764 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1765 				raise_barrier(conf, rb2 != NULL);
1766 				atomic_set(&r10_bio->remaining, 0);
1767 
1768 				r10_bio->master_bio = (struct bio*)rb2;
1769 				if (rb2)
1770 					atomic_inc(&rb2->remaining);
1771 				r10_bio->mddev = mddev;
1772 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1773 				r10_bio->sector = sect;
1774 
1775 				raid10_find_phys(conf, r10_bio);
1776 				/* Need to check if this section will still be
1777 				 * degraded
1778 				 */
1779 				for (j=0; j<conf->copies;j++) {
1780 					int d = r10_bio->devs[j].devnum;
1781 					if (conf->mirrors[d].rdev == NULL ||
1782 					    test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1783 						still_degraded = 1;
1784 						break;
1785 					}
1786 				}
1787 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1788 							      &sync_blocks, still_degraded);
1789 
1790 				for (j=0; j<conf->copies;j++) {
1791 					int d = r10_bio->devs[j].devnum;
1792 					if (conf->mirrors[d].rdev &&
1793 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1794 						/* This is where we read from */
1795 						bio = r10_bio->devs[0].bio;
1796 						bio->bi_next = biolist;
1797 						biolist = bio;
1798 						bio->bi_private = r10_bio;
1799 						bio->bi_end_io = end_sync_read;
1800 						bio->bi_rw = READ;
1801 						bio->bi_sector = r10_bio->devs[j].addr +
1802 							conf->mirrors[d].rdev->data_offset;
1803 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1804 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1805 						atomic_inc(&r10_bio->remaining);
1806 						/* and we write to 'i' */
1807 
1808 						for (k=0; k<conf->copies; k++)
1809 							if (r10_bio->devs[k].devnum == i)
1810 								break;
1811 						BUG_ON(k == conf->copies);
1812 						bio = r10_bio->devs[1].bio;
1813 						bio->bi_next = biolist;
1814 						biolist = bio;
1815 						bio->bi_private = r10_bio;
1816 						bio->bi_end_io = end_sync_write;
1817 						bio->bi_rw = WRITE;
1818 						bio->bi_sector = r10_bio->devs[k].addr +
1819 							conf->mirrors[i].rdev->data_offset;
1820 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1821 
1822 						r10_bio->devs[0].devnum = d;
1823 						r10_bio->devs[1].devnum = i;
1824 
1825 						break;
1826 					}
1827 				}
1828 				if (j == conf->copies) {
1829 					/* Cannot recover, so abort the recovery */
1830 					put_buf(r10_bio);
1831 					r10_bio = rb2;
1832 					if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1833 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1834 						       mdname(mddev));
1835 					break;
1836 				}
1837 			}
1838 		if (biolist == NULL) {
1839 			while (r10_bio) {
1840 				r10bio_t *rb2 = r10_bio;
1841 				r10_bio = (r10bio_t*) rb2->master_bio;
1842 				rb2->master_bio = NULL;
1843 				put_buf(rb2);
1844 			}
1845 			goto giveup;
1846 		}
1847 	} else {
1848 		/* resync. Schedule a read for every block at this virt offset */
1849 		int count = 0;
1850 
1851 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1852 				       &sync_blocks, mddev->degraded) &&
1853 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1854 			/* We can skip this block */
1855 			*skipped = 1;
1856 			return sync_blocks + sectors_skipped;
1857 		}
1858 		if (sync_blocks < max_sync)
1859 			max_sync = sync_blocks;
1860 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1861 
1862 		r10_bio->mddev = mddev;
1863 		atomic_set(&r10_bio->remaining, 0);
1864 		raise_barrier(conf, 0);
1865 		conf->next_resync = sector_nr;
1866 
1867 		r10_bio->master_bio = NULL;
1868 		r10_bio->sector = sector_nr;
1869 		set_bit(R10BIO_IsSync, &r10_bio->state);
1870 		raid10_find_phys(conf, r10_bio);
1871 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1872 
1873 		for (i=0; i<conf->copies; i++) {
1874 			int d = r10_bio->devs[i].devnum;
1875 			bio = r10_bio->devs[i].bio;
1876 			bio->bi_end_io = NULL;
1877 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1878 			if (conf->mirrors[d].rdev == NULL ||
1879 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1880 				continue;
1881 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1882 			atomic_inc(&r10_bio->remaining);
1883 			bio->bi_next = biolist;
1884 			biolist = bio;
1885 			bio->bi_private = r10_bio;
1886 			bio->bi_end_io = end_sync_read;
1887 			bio->bi_rw = READ;
1888 			bio->bi_sector = r10_bio->devs[i].addr +
1889 				conf->mirrors[d].rdev->data_offset;
1890 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1891 			count++;
1892 		}
1893 
1894 		if (count < 2) {
1895 			for (i=0; i<conf->copies; i++) {
1896 				int d = r10_bio->devs[i].devnum;
1897 				if (r10_bio->devs[i].bio->bi_end_io)
1898 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1899 			}
1900 			put_buf(r10_bio);
1901 			biolist = NULL;
1902 			goto giveup;
1903 		}
1904 	}
1905 
1906 	for (bio = biolist; bio ; bio=bio->bi_next) {
1907 
1908 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1909 		if (bio->bi_end_io)
1910 			bio->bi_flags |= 1 << BIO_UPTODATE;
1911 		bio->bi_vcnt = 0;
1912 		bio->bi_idx = 0;
1913 		bio->bi_phys_segments = 0;
1914 		bio->bi_hw_segments = 0;
1915 		bio->bi_size = 0;
1916 	}
1917 
1918 	nr_sectors = 0;
1919 	if (sector_nr + max_sync < max_sector)
1920 		max_sector = sector_nr + max_sync;
1921 	do {
1922 		struct page *page;
1923 		int len = PAGE_SIZE;
1924 		disk = 0;
1925 		if (sector_nr + (len>>9) > max_sector)
1926 			len = (max_sector - sector_nr) << 9;
1927 		if (len == 0)
1928 			break;
1929 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1930 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1931 			if (bio_add_page(bio, page, len, 0) == 0) {
1932 				/* stop here */
1933 				struct bio *bio2;
1934 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1935 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1936 					/* remove last page from this bio */
1937 					bio2->bi_vcnt--;
1938 					bio2->bi_size -= len;
1939 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1940 				}
1941 				goto bio_full;
1942 			}
1943 			disk = i;
1944 		}
1945 		nr_sectors += len>>9;
1946 		sector_nr += len>>9;
1947 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1948  bio_full:
1949 	r10_bio->sectors = nr_sectors;
1950 
1951 	while (biolist) {
1952 		bio = biolist;
1953 		biolist = biolist->bi_next;
1954 
1955 		bio->bi_next = NULL;
1956 		r10_bio = bio->bi_private;
1957 		r10_bio->sectors = nr_sectors;
1958 
1959 		if (bio->bi_end_io == end_sync_read) {
1960 			md_sync_acct(bio->bi_bdev, nr_sectors);
1961 			generic_make_request(bio);
1962 		}
1963 	}
1964 
1965 	if (sectors_skipped)
1966 		/* pretend they weren't skipped, it makes
1967 		 * no important difference in this case
1968 		 */
1969 		md_done_sync(mddev, sectors_skipped, 1);
1970 
1971 	return sectors_skipped + nr_sectors;
1972  giveup:
1973 	/* There is nowhere to write, so all non-sync
1974 	 * drives must be failed, so try the next chunk...
1975 	 */
1976 	{
1977 	sector_t sec = max_sector - sector_nr;
1978 	sectors_skipped += sec;
1979 	chunks_skipped ++;
1980 	sector_nr = max_sector;
1981 	goto skipped;
1982 	}
1983 }
1984 
1985 static int run(mddev_t *mddev)
1986 {
1987 	conf_t *conf;
1988 	int i, disk_idx;
1989 	mirror_info_t *disk;
1990 	mdk_rdev_t *rdev;
1991 	struct list_head *tmp;
1992 	int nc, fc, fo;
1993 	sector_t stride, size;
1994 
1995 	if (mddev->chunk_size == 0) {
1996 		printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
1997 		return -EINVAL;
1998 	}
1999 
2000 	nc = mddev->layout & 255;
2001 	fc = (mddev->layout >> 8) & 255;
2002 	fo = mddev->layout & (1<<16);
2003 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2004 	    (mddev->layout >> 17)) {
2005 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2006 		       mdname(mddev), mddev->layout);
2007 		goto out;
2008 	}
2009 	/*
2010 	 * copy the already verified devices into our private RAID10
2011 	 * bookkeeping area. [whatever we allocate in run(),
2012 	 * should be freed in stop()]
2013 	 */
2014 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2015 	mddev->private = conf;
2016 	if (!conf) {
2017 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2018 			mdname(mddev));
2019 		goto out;
2020 	}
2021 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2022 				 GFP_KERNEL);
2023 	if (!conf->mirrors) {
2024 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2025 		       mdname(mddev));
2026 		goto out_free_conf;
2027 	}
2028 
2029 	conf->tmppage = alloc_page(GFP_KERNEL);
2030 	if (!conf->tmppage)
2031 		goto out_free_conf;
2032 
2033 	conf->mddev = mddev;
2034 	conf->raid_disks = mddev->raid_disks;
2035 	conf->near_copies = nc;
2036 	conf->far_copies = fc;
2037 	conf->copies = nc*fc;
2038 	conf->far_offset = fo;
2039 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2040 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2041 	size = mddev->size >> (conf->chunk_shift-1);
2042 	sector_div(size, fc);
2043 	size = size * conf->raid_disks;
2044 	sector_div(size, nc);
2045 	/* 'size' is now the number of chunks in the array */
2046 	/* calculate "used chunks per device" in 'stride' */
2047 	stride = size * conf->copies;
2048 
2049 	/* We need to round up when dividing by raid_disks to
2050 	 * get the stride size.
2051 	 */
2052 	stride += conf->raid_disks - 1;
2053 	sector_div(stride, conf->raid_disks);
2054 	mddev->size = stride  << (conf->chunk_shift-1);
2055 
2056 	if (fo)
2057 		stride = 1;
2058 	else
2059 		sector_div(stride, fc);
2060 	conf->stride = stride << conf->chunk_shift;
2061 
2062 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2063 						r10bio_pool_free, conf);
2064 	if (!conf->r10bio_pool) {
2065 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2066 			mdname(mddev));
2067 		goto out_free_conf;
2068 	}
2069 
2070 	ITERATE_RDEV(mddev, rdev, tmp) {
2071 		disk_idx = rdev->raid_disk;
2072 		if (disk_idx >= mddev->raid_disks
2073 		    || disk_idx < 0)
2074 			continue;
2075 		disk = conf->mirrors + disk_idx;
2076 
2077 		disk->rdev = rdev;
2078 
2079 		blk_queue_stack_limits(mddev->queue,
2080 				       rdev->bdev->bd_disk->queue);
2081 		/* as we don't honour merge_bvec_fn, we must never risk
2082 		 * violating it, so limit ->max_sector to one PAGE, as
2083 		 * a one page request is never in violation.
2084 		 */
2085 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2086 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
2087 			mddev->queue->max_sectors = (PAGE_SIZE>>9);
2088 
2089 		disk->head_position = 0;
2090 	}
2091 	spin_lock_init(&conf->device_lock);
2092 	INIT_LIST_HEAD(&conf->retry_list);
2093 
2094 	spin_lock_init(&conf->resync_lock);
2095 	init_waitqueue_head(&conf->wait_barrier);
2096 
2097 	/* need to check that every block has at least one working mirror */
2098 	if (!enough(conf)) {
2099 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2100 		       mdname(mddev));
2101 		goto out_free_conf;
2102 	}
2103 
2104 	mddev->degraded = 0;
2105 	for (i = 0; i < conf->raid_disks; i++) {
2106 
2107 		disk = conf->mirrors + i;
2108 
2109 		if (!disk->rdev ||
2110 		    !test_bit(In_sync, &disk->rdev->flags)) {
2111 			disk->head_position = 0;
2112 			mddev->degraded++;
2113 		}
2114 	}
2115 
2116 
2117 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2118 	if (!mddev->thread) {
2119 		printk(KERN_ERR
2120 		       "raid10: couldn't allocate thread for %s\n",
2121 		       mdname(mddev));
2122 		goto out_free_conf;
2123 	}
2124 
2125 	printk(KERN_INFO
2126 		"raid10: raid set %s active with %d out of %d devices\n",
2127 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2128 		mddev->raid_disks);
2129 	/*
2130 	 * Ok, everything is just fine now
2131 	 */
2132 	mddev->array_size = size << (conf->chunk_shift-1);
2133 	mddev->resync_max_sectors = size << conf->chunk_shift;
2134 
2135 	mddev->queue->unplug_fn = raid10_unplug;
2136 	mddev->queue->issue_flush_fn = raid10_issue_flush;
2137 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2138 	mddev->queue->backing_dev_info.congested_data = mddev;
2139 
2140 	/* Calculate max read-ahead size.
2141 	 * We need to readahead at least twice a whole stripe....
2142 	 * maybe...
2143 	 */
2144 	{
2145 		int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2146 		stripe /= conf->near_copies;
2147 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2148 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2149 	}
2150 
2151 	if (conf->near_copies < mddev->raid_disks)
2152 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2153 	return 0;
2154 
2155 out_free_conf:
2156 	if (conf->r10bio_pool)
2157 		mempool_destroy(conf->r10bio_pool);
2158 	safe_put_page(conf->tmppage);
2159 	kfree(conf->mirrors);
2160 	kfree(conf);
2161 	mddev->private = NULL;
2162 out:
2163 	return -EIO;
2164 }
2165 
2166 static int stop(mddev_t *mddev)
2167 {
2168 	conf_t *conf = mddev_to_conf(mddev);
2169 
2170 	md_unregister_thread(mddev->thread);
2171 	mddev->thread = NULL;
2172 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2173 	if (conf->r10bio_pool)
2174 		mempool_destroy(conf->r10bio_pool);
2175 	kfree(conf->mirrors);
2176 	kfree(conf);
2177 	mddev->private = NULL;
2178 	return 0;
2179 }
2180 
2181 static void raid10_quiesce(mddev_t *mddev, int state)
2182 {
2183 	conf_t *conf = mddev_to_conf(mddev);
2184 
2185 	switch(state) {
2186 	case 1:
2187 		raise_barrier(conf, 0);
2188 		break;
2189 	case 0:
2190 		lower_barrier(conf);
2191 		break;
2192 	}
2193 	if (mddev->thread) {
2194 		if (mddev->bitmap)
2195 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2196 		else
2197 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2198 		md_wakeup_thread(mddev->thread);
2199 	}
2200 }
2201 
2202 static struct mdk_personality raid10_personality =
2203 {
2204 	.name		= "raid10",
2205 	.level		= 10,
2206 	.owner		= THIS_MODULE,
2207 	.make_request	= make_request,
2208 	.run		= run,
2209 	.stop		= stop,
2210 	.status		= status,
2211 	.error_handler	= error,
2212 	.hot_add_disk	= raid10_add_disk,
2213 	.hot_remove_disk= raid10_remove_disk,
2214 	.spare_active	= raid10_spare_active,
2215 	.sync_request	= sync_request,
2216 	.quiesce	= raid10_quiesce,
2217 };
2218 
2219 static int __init raid_init(void)
2220 {
2221 	return register_md_personality(&raid10_personality);
2222 }
2223 
2224 static void raid_exit(void)
2225 {
2226 	unregister_md_personality(&raid10_personality);
2227 }
2228 
2229 module_init(raid_init);
2230 module_exit(raid_exit);
2231 MODULE_LICENSE("GPL");
2232 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2233 MODULE_ALIAS("md-raid10");
2234 MODULE_ALIAS("md-level-10");
2235