1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * far_offset (stored in bit 16 of layout ) 33 * 34 * The data to be stored is divided into chunks using chunksize. 35 * Each device is divided into far_copies sections. 36 * In each section, chunks are laid out in a style similar to raid0, but 37 * near_copies copies of each chunk is stored (each on a different drive). 38 * The starting device for each section is offset near_copies from the starting 39 * device of the previous section. 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 41 * drive. 42 * near_copies and far_copies must be at least one, and their product is at most 43 * raid_disks. 44 * 45 * If far_offset is true, then the far_copies are handled a bit differently. 46 * The copies are still in different stripes, but instead of be very far apart 47 * on disk, there are adjacent stripes. 48 */ 49 50 /* 51 * Number of guaranteed r10bios in case of extreme VM load: 52 */ 53 #define NR_RAID10_BIOS 256 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 conf_t *conf = data; 63 r10bio_t *r10_bio; 64 int size = offsetof(struct r10bio_s, devs[conf->copies]); 65 66 /* allocate a r10bio with room for raid_disks entries in the bios array */ 67 r10_bio = kzalloc(size, gfp_flags); 68 if (!r10_bio) 69 unplug_slaves(conf->mddev); 70 71 return r10_bio; 72 } 73 74 static void r10bio_pool_free(void *r10_bio, void *data) 75 { 76 kfree(r10_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 /* 86 * When performing a resync, we need to read and compare, so 87 * we need as many pages are there are copies. 88 * When performing a recovery, we need 2 bios, one for read, 89 * one for write (we recover only one drive per r10buf) 90 * 91 */ 92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 conf_t *conf = data; 95 struct page *page; 96 r10bio_t *r10_bio; 97 struct bio *bio; 98 int i, j; 99 int nalloc; 100 101 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 102 if (!r10_bio) { 103 unplug_slaves(conf->mddev); 104 return NULL; 105 } 106 107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 108 nalloc = conf->copies; /* resync */ 109 else 110 nalloc = 2; /* recovery */ 111 112 /* 113 * Allocate bios. 114 */ 115 for (j = nalloc ; j-- ; ) { 116 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 117 if (!bio) 118 goto out_free_bio; 119 r10_bio->devs[j].bio = bio; 120 } 121 /* 122 * Allocate RESYNC_PAGES data pages and attach them 123 * where needed. 124 */ 125 for (j = 0 ; j < nalloc; j++) { 126 bio = r10_bio->devs[j].bio; 127 for (i = 0; i < RESYNC_PAGES; i++) { 128 page = alloc_page(gfp_flags); 129 if (unlikely(!page)) 130 goto out_free_pages; 131 132 bio->bi_io_vec[i].bv_page = page; 133 } 134 } 135 136 return r10_bio; 137 138 out_free_pages: 139 for ( ; i > 0 ; i--) 140 safe_put_page(bio->bi_io_vec[i-1].bv_page); 141 while (j--) 142 for (i = 0; i < RESYNC_PAGES ; i++) 143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < nalloc ) 147 bio_put(r10_bio->devs[j].bio); 148 r10bio_pool_free(r10_bio, conf); 149 return NULL; 150 } 151 152 static void r10buf_pool_free(void *__r10_bio, void *data) 153 { 154 int i; 155 conf_t *conf = data; 156 r10bio_t *r10bio = __r10_bio; 157 int j; 158 159 for (j=0; j < conf->copies; j++) { 160 struct bio *bio = r10bio->devs[j].bio; 161 if (bio) { 162 for (i = 0; i < RESYNC_PAGES; i++) { 163 safe_put_page(bio->bi_io_vec[i].bv_page); 164 bio->bi_io_vec[i].bv_page = NULL; 165 } 166 bio_put(bio); 167 } 168 } 169 r10bio_pool_free(r10bio, conf); 170 } 171 172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->copies; i++) { 177 struct bio **bio = & r10_bio->devs[i].bio; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r10bio(r10bio_t *r10_bio) 185 { 186 conf_t *conf = mddev_to_conf(r10_bio->mddev); 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r10_bio); 195 mempool_free(r10_bio, conf->r10bio_pool); 196 } 197 198 static void put_buf(r10bio_t *r10_bio) 199 { 200 conf_t *conf = mddev_to_conf(r10_bio->mddev); 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 lower_barrier(conf); 205 } 206 207 static void reschedule_retry(r10bio_t *r10_bio) 208 { 209 unsigned long flags; 210 mddev_t *mddev = r10_bio->mddev; 211 conf_t *conf = mddev_to_conf(mddev); 212 213 spin_lock_irqsave(&conf->device_lock, flags); 214 list_add(&r10_bio->retry_list, &conf->retry_list); 215 conf->nr_queued ++; 216 spin_unlock_irqrestore(&conf->device_lock, flags); 217 218 md_wakeup_thread(mddev->thread); 219 } 220 221 /* 222 * raid_end_bio_io() is called when we have finished servicing a mirrored 223 * operation and are ready to return a success/failure code to the buffer 224 * cache layer. 225 */ 226 static void raid_end_bio_io(r10bio_t *r10_bio) 227 { 228 struct bio *bio = r10_bio->master_bio; 229 230 bio_endio(bio, bio->bi_size, 231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 232 free_r10bio(r10_bio); 233 } 234 235 /* 236 * Update disk head position estimator based on IRQ completion info. 237 */ 238 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 239 { 240 conf_t *conf = mddev_to_conf(r10_bio->mddev); 241 242 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 243 r10_bio->devs[slot].addr + (r10_bio->sectors); 244 } 245 246 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 247 { 248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 250 int slot, dev; 251 conf_t *conf = mddev_to_conf(r10_bio->mddev); 252 253 if (bio->bi_size) 254 return 1; 255 256 slot = r10_bio->read_slot; 257 dev = r10_bio->devs[slot].devnum; 258 /* 259 * this branch is our 'one mirror IO has finished' event handler: 260 */ 261 update_head_pos(slot, r10_bio); 262 263 if (uptodate) { 264 /* 265 * Set R10BIO_Uptodate in our master bio, so that 266 * we will return a good error code to the higher 267 * levels even if IO on some other mirrored buffer fails. 268 * 269 * The 'master' represents the composite IO operation to 270 * user-side. So if something waits for IO, then it will 271 * wait for the 'master' bio. 272 */ 273 set_bit(R10BIO_Uptodate, &r10_bio->state); 274 raid_end_bio_io(r10_bio); 275 } else { 276 /* 277 * oops, read error: 278 */ 279 char b[BDEVNAME_SIZE]; 280 if (printk_ratelimit()) 281 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 282 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 283 reschedule_retry(r10_bio); 284 } 285 286 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 287 return 0; 288 } 289 290 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 291 { 292 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 293 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 294 int slot, dev; 295 conf_t *conf = mddev_to_conf(r10_bio->mddev); 296 297 if (bio->bi_size) 298 return 1; 299 300 for (slot = 0; slot < conf->copies; slot++) 301 if (r10_bio->devs[slot].bio == bio) 302 break; 303 dev = r10_bio->devs[slot].devnum; 304 305 /* 306 * this branch is our 'one mirror IO has finished' event handler: 307 */ 308 if (!uptodate) { 309 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 310 /* an I/O failed, we can't clear the bitmap */ 311 set_bit(R10BIO_Degraded, &r10_bio->state); 312 } else 313 /* 314 * Set R10BIO_Uptodate in our master bio, so that 315 * we will return a good error code for to the higher 316 * levels even if IO on some other mirrored buffer fails. 317 * 318 * The 'master' represents the composite IO operation to 319 * user-side. So if something waits for IO, then it will 320 * wait for the 'master' bio. 321 */ 322 set_bit(R10BIO_Uptodate, &r10_bio->state); 323 324 update_head_pos(slot, r10_bio); 325 326 /* 327 * 328 * Let's see if all mirrored write operations have finished 329 * already. 330 */ 331 if (atomic_dec_and_test(&r10_bio->remaining)) { 332 /* clear the bitmap if all writes complete successfully */ 333 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 334 r10_bio->sectors, 335 !test_bit(R10BIO_Degraded, &r10_bio->state), 336 0); 337 md_write_end(r10_bio->mddev); 338 raid_end_bio_io(r10_bio); 339 } 340 341 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 342 return 0; 343 } 344 345 346 /* 347 * RAID10 layout manager 348 * Aswell as the chunksize and raid_disks count, there are two 349 * parameters: near_copies and far_copies. 350 * near_copies * far_copies must be <= raid_disks. 351 * Normally one of these will be 1. 352 * If both are 1, we get raid0. 353 * If near_copies == raid_disks, we get raid1. 354 * 355 * Chunks are layed out in raid0 style with near_copies copies of the 356 * first chunk, followed by near_copies copies of the next chunk and 357 * so on. 358 * If far_copies > 1, then after 1/far_copies of the array has been assigned 359 * as described above, we start again with a device offset of near_copies. 360 * So we effectively have another copy of the whole array further down all 361 * the drives, but with blocks on different drives. 362 * With this layout, and block is never stored twice on the one device. 363 * 364 * raid10_find_phys finds the sector offset of a given virtual sector 365 * on each device that it is on. 366 * 367 * raid10_find_virt does the reverse mapping, from a device and a 368 * sector offset to a virtual address 369 */ 370 371 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 372 { 373 int n,f; 374 sector_t sector; 375 sector_t chunk; 376 sector_t stripe; 377 int dev; 378 379 int slot = 0; 380 381 /* now calculate first sector/dev */ 382 chunk = r10bio->sector >> conf->chunk_shift; 383 sector = r10bio->sector & conf->chunk_mask; 384 385 chunk *= conf->near_copies; 386 stripe = chunk; 387 dev = sector_div(stripe, conf->raid_disks); 388 if (conf->far_offset) 389 stripe *= conf->far_copies; 390 391 sector += stripe << conf->chunk_shift; 392 393 /* and calculate all the others */ 394 for (n=0; n < conf->near_copies; n++) { 395 int d = dev; 396 sector_t s = sector; 397 r10bio->devs[slot].addr = sector; 398 r10bio->devs[slot].devnum = d; 399 slot++; 400 401 for (f = 1; f < conf->far_copies; f++) { 402 d += conf->near_copies; 403 if (d >= conf->raid_disks) 404 d -= conf->raid_disks; 405 s += conf->stride; 406 r10bio->devs[slot].devnum = d; 407 r10bio->devs[slot].addr = s; 408 slot++; 409 } 410 dev++; 411 if (dev >= conf->raid_disks) { 412 dev = 0; 413 sector += (conf->chunk_mask + 1); 414 } 415 } 416 BUG_ON(slot != conf->copies); 417 } 418 419 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 420 { 421 sector_t offset, chunk, vchunk; 422 423 offset = sector & conf->chunk_mask; 424 if (conf->far_offset) { 425 int fc; 426 chunk = sector >> conf->chunk_shift; 427 fc = sector_div(chunk, conf->far_copies); 428 dev -= fc * conf->near_copies; 429 if (dev < 0) 430 dev += conf->raid_disks; 431 } else { 432 while (sector >= conf->stride) { 433 sector -= conf->stride; 434 if (dev < conf->near_copies) 435 dev += conf->raid_disks - conf->near_copies; 436 else 437 dev -= conf->near_copies; 438 } 439 chunk = sector >> conf->chunk_shift; 440 } 441 vchunk = chunk * conf->raid_disks + dev; 442 sector_div(vchunk, conf->near_copies); 443 return (vchunk << conf->chunk_shift) + offset; 444 } 445 446 /** 447 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 448 * @q: request queue 449 * @bio: the buffer head that's been built up so far 450 * @biovec: the request that could be merged to it. 451 * 452 * Return amount of bytes we can accept at this offset 453 * If near_copies == raid_disk, there are no striping issues, 454 * but in that case, the function isn't called at all. 455 */ 456 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio, 457 struct bio_vec *bio_vec) 458 { 459 mddev_t *mddev = q->queuedata; 460 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 461 int max; 462 unsigned int chunk_sectors = mddev->chunk_size >> 9; 463 unsigned int bio_sectors = bio->bi_size >> 9; 464 465 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 466 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 467 if (max <= bio_vec->bv_len && bio_sectors == 0) 468 return bio_vec->bv_len; 469 else 470 return max; 471 } 472 473 /* 474 * This routine returns the disk from which the requested read should 475 * be done. There is a per-array 'next expected sequential IO' sector 476 * number - if this matches on the next IO then we use the last disk. 477 * There is also a per-disk 'last know head position' sector that is 478 * maintained from IRQ contexts, both the normal and the resync IO 479 * completion handlers update this position correctly. If there is no 480 * perfect sequential match then we pick the disk whose head is closest. 481 * 482 * If there are 2 mirrors in the same 2 devices, performance degrades 483 * because position is mirror, not device based. 484 * 485 * The rdev for the device selected will have nr_pending incremented. 486 */ 487 488 /* 489 * FIXME: possibly should rethink readbalancing and do it differently 490 * depending on near_copies / far_copies geometry. 491 */ 492 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 493 { 494 const unsigned long this_sector = r10_bio->sector; 495 int disk, slot, nslot; 496 const int sectors = r10_bio->sectors; 497 sector_t new_distance, current_distance; 498 mdk_rdev_t *rdev; 499 500 raid10_find_phys(conf, r10_bio); 501 rcu_read_lock(); 502 /* 503 * Check if we can balance. We can balance on the whole 504 * device if no resync is going on (recovery is ok), or below 505 * the resync window. We take the first readable disk when 506 * above the resync window. 507 */ 508 if (conf->mddev->recovery_cp < MaxSector 509 && (this_sector + sectors >= conf->next_resync)) { 510 /* make sure that disk is operational */ 511 slot = 0; 512 disk = r10_bio->devs[slot].devnum; 513 514 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 515 r10_bio->devs[slot].bio == IO_BLOCKED || 516 !test_bit(In_sync, &rdev->flags)) { 517 slot++; 518 if (slot == conf->copies) { 519 slot = 0; 520 disk = -1; 521 break; 522 } 523 disk = r10_bio->devs[slot].devnum; 524 } 525 goto rb_out; 526 } 527 528 529 /* make sure the disk is operational */ 530 slot = 0; 531 disk = r10_bio->devs[slot].devnum; 532 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 533 r10_bio->devs[slot].bio == IO_BLOCKED || 534 !test_bit(In_sync, &rdev->flags)) { 535 slot ++; 536 if (slot == conf->copies) { 537 disk = -1; 538 goto rb_out; 539 } 540 disk = r10_bio->devs[slot].devnum; 541 } 542 543 544 current_distance = abs(r10_bio->devs[slot].addr - 545 conf->mirrors[disk].head_position); 546 547 /* Find the disk whose head is closest */ 548 549 for (nslot = slot; nslot < conf->copies; nslot++) { 550 int ndisk = r10_bio->devs[nslot].devnum; 551 552 553 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 554 r10_bio->devs[nslot].bio == IO_BLOCKED || 555 !test_bit(In_sync, &rdev->flags)) 556 continue; 557 558 /* This optimisation is debatable, and completely destroys 559 * sequential read speed for 'far copies' arrays. So only 560 * keep it for 'near' arrays, and review those later. 561 */ 562 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 563 disk = ndisk; 564 slot = nslot; 565 break; 566 } 567 new_distance = abs(r10_bio->devs[nslot].addr - 568 conf->mirrors[ndisk].head_position); 569 if (new_distance < current_distance) { 570 current_distance = new_distance; 571 disk = ndisk; 572 slot = nslot; 573 } 574 } 575 576 rb_out: 577 r10_bio->read_slot = slot; 578 /* conf->next_seq_sect = this_sector + sectors;*/ 579 580 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 581 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 582 else 583 disk = -1; 584 rcu_read_unlock(); 585 586 return disk; 587 } 588 589 static void unplug_slaves(mddev_t *mddev) 590 { 591 conf_t *conf = mddev_to_conf(mddev); 592 int i; 593 594 rcu_read_lock(); 595 for (i=0; i<mddev->raid_disks; i++) { 596 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 597 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 598 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 599 600 atomic_inc(&rdev->nr_pending); 601 rcu_read_unlock(); 602 603 if (r_queue->unplug_fn) 604 r_queue->unplug_fn(r_queue); 605 606 rdev_dec_pending(rdev, mddev); 607 rcu_read_lock(); 608 } 609 } 610 rcu_read_unlock(); 611 } 612 613 static void raid10_unplug(struct request_queue *q) 614 { 615 mddev_t *mddev = q->queuedata; 616 617 unplug_slaves(q->queuedata); 618 md_wakeup_thread(mddev->thread); 619 } 620 621 static int raid10_issue_flush(struct request_queue *q, struct gendisk *disk, 622 sector_t *error_sector) 623 { 624 mddev_t *mddev = q->queuedata; 625 conf_t *conf = mddev_to_conf(mddev); 626 int i, ret = 0; 627 628 rcu_read_lock(); 629 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 630 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 631 if (rdev && !test_bit(Faulty, &rdev->flags)) { 632 struct block_device *bdev = rdev->bdev; 633 struct request_queue *r_queue = bdev_get_queue(bdev); 634 635 if (!r_queue->issue_flush_fn) 636 ret = -EOPNOTSUPP; 637 else { 638 atomic_inc(&rdev->nr_pending); 639 rcu_read_unlock(); 640 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 641 error_sector); 642 rdev_dec_pending(rdev, mddev); 643 rcu_read_lock(); 644 } 645 } 646 } 647 rcu_read_unlock(); 648 return ret; 649 } 650 651 static int raid10_congested(void *data, int bits) 652 { 653 mddev_t *mddev = data; 654 conf_t *conf = mddev_to_conf(mddev); 655 int i, ret = 0; 656 657 rcu_read_lock(); 658 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 659 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 660 if (rdev && !test_bit(Faulty, &rdev->flags)) { 661 struct request_queue *q = bdev_get_queue(rdev->bdev); 662 663 ret |= bdi_congested(&q->backing_dev_info, bits); 664 } 665 } 666 rcu_read_unlock(); 667 return ret; 668 } 669 670 671 /* Barriers.... 672 * Sometimes we need to suspend IO while we do something else, 673 * either some resync/recovery, or reconfigure the array. 674 * To do this we raise a 'barrier'. 675 * The 'barrier' is a counter that can be raised multiple times 676 * to count how many activities are happening which preclude 677 * normal IO. 678 * We can only raise the barrier if there is no pending IO. 679 * i.e. if nr_pending == 0. 680 * We choose only to raise the barrier if no-one is waiting for the 681 * barrier to go down. This means that as soon as an IO request 682 * is ready, no other operations which require a barrier will start 683 * until the IO request has had a chance. 684 * 685 * So: regular IO calls 'wait_barrier'. When that returns there 686 * is no backgroup IO happening, It must arrange to call 687 * allow_barrier when it has finished its IO. 688 * backgroup IO calls must call raise_barrier. Once that returns 689 * there is no normal IO happeing. It must arrange to call 690 * lower_barrier when the particular background IO completes. 691 */ 692 #define RESYNC_DEPTH 32 693 694 static void raise_barrier(conf_t *conf, int force) 695 { 696 BUG_ON(force && !conf->barrier); 697 spin_lock_irq(&conf->resync_lock); 698 699 /* Wait until no block IO is waiting (unless 'force') */ 700 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 701 conf->resync_lock, 702 raid10_unplug(conf->mddev->queue)); 703 704 /* block any new IO from starting */ 705 conf->barrier++; 706 707 /* No wait for all pending IO to complete */ 708 wait_event_lock_irq(conf->wait_barrier, 709 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 710 conf->resync_lock, 711 raid10_unplug(conf->mddev->queue)); 712 713 spin_unlock_irq(&conf->resync_lock); 714 } 715 716 static void lower_barrier(conf_t *conf) 717 { 718 unsigned long flags; 719 spin_lock_irqsave(&conf->resync_lock, flags); 720 conf->barrier--; 721 spin_unlock_irqrestore(&conf->resync_lock, flags); 722 wake_up(&conf->wait_barrier); 723 } 724 725 static void wait_barrier(conf_t *conf) 726 { 727 spin_lock_irq(&conf->resync_lock); 728 if (conf->barrier) { 729 conf->nr_waiting++; 730 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 731 conf->resync_lock, 732 raid10_unplug(conf->mddev->queue)); 733 conf->nr_waiting--; 734 } 735 conf->nr_pending++; 736 spin_unlock_irq(&conf->resync_lock); 737 } 738 739 static void allow_barrier(conf_t *conf) 740 { 741 unsigned long flags; 742 spin_lock_irqsave(&conf->resync_lock, flags); 743 conf->nr_pending--; 744 spin_unlock_irqrestore(&conf->resync_lock, flags); 745 wake_up(&conf->wait_barrier); 746 } 747 748 static void freeze_array(conf_t *conf) 749 { 750 /* stop syncio and normal IO and wait for everything to 751 * go quiet. 752 * We increment barrier and nr_waiting, and then 753 * wait until barrier+nr_pending match nr_queued+2 754 */ 755 spin_lock_irq(&conf->resync_lock); 756 conf->barrier++; 757 conf->nr_waiting++; 758 wait_event_lock_irq(conf->wait_barrier, 759 conf->barrier+conf->nr_pending == conf->nr_queued+2, 760 conf->resync_lock, 761 raid10_unplug(conf->mddev->queue)); 762 spin_unlock_irq(&conf->resync_lock); 763 } 764 765 static void unfreeze_array(conf_t *conf) 766 { 767 /* reverse the effect of the freeze */ 768 spin_lock_irq(&conf->resync_lock); 769 conf->barrier--; 770 conf->nr_waiting--; 771 wake_up(&conf->wait_barrier); 772 spin_unlock_irq(&conf->resync_lock); 773 } 774 775 static int make_request(struct request_queue *q, struct bio * bio) 776 { 777 mddev_t *mddev = q->queuedata; 778 conf_t *conf = mddev_to_conf(mddev); 779 mirror_info_t *mirror; 780 r10bio_t *r10_bio; 781 struct bio *read_bio; 782 int i; 783 int chunk_sects = conf->chunk_mask + 1; 784 const int rw = bio_data_dir(bio); 785 const int do_sync = bio_sync(bio); 786 struct bio_list bl; 787 unsigned long flags; 788 789 if (unlikely(bio_barrier(bio))) { 790 bio_endio(bio, bio->bi_size, -EOPNOTSUPP); 791 return 0; 792 } 793 794 /* If this request crosses a chunk boundary, we need to 795 * split it. This will only happen for 1 PAGE (or less) requests. 796 */ 797 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 798 > chunk_sects && 799 conf->near_copies < conf->raid_disks)) { 800 struct bio_pair *bp; 801 /* Sanity check -- queue functions should prevent this happening */ 802 if (bio->bi_vcnt != 1 || 803 bio->bi_idx != 0) 804 goto bad_map; 805 /* This is a one page bio that upper layers 806 * refuse to split for us, so we need to split it. 807 */ 808 bp = bio_split(bio, bio_split_pool, 809 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 810 if (make_request(q, &bp->bio1)) 811 generic_make_request(&bp->bio1); 812 if (make_request(q, &bp->bio2)) 813 generic_make_request(&bp->bio2); 814 815 bio_pair_release(bp); 816 return 0; 817 bad_map: 818 printk("raid10_make_request bug: can't convert block across chunks" 819 " or bigger than %dk %llu %d\n", chunk_sects/2, 820 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 821 822 bio_io_error(bio, bio->bi_size); 823 return 0; 824 } 825 826 md_write_start(mddev, bio); 827 828 /* 829 * Register the new request and wait if the reconstruction 830 * thread has put up a bar for new requests. 831 * Continue immediately if no resync is active currently. 832 */ 833 wait_barrier(conf); 834 835 disk_stat_inc(mddev->gendisk, ios[rw]); 836 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 837 838 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 839 840 r10_bio->master_bio = bio; 841 r10_bio->sectors = bio->bi_size >> 9; 842 843 r10_bio->mddev = mddev; 844 r10_bio->sector = bio->bi_sector; 845 r10_bio->state = 0; 846 847 if (rw == READ) { 848 /* 849 * read balancing logic: 850 */ 851 int disk = read_balance(conf, r10_bio); 852 int slot = r10_bio->read_slot; 853 if (disk < 0) { 854 raid_end_bio_io(r10_bio); 855 return 0; 856 } 857 mirror = conf->mirrors + disk; 858 859 read_bio = bio_clone(bio, GFP_NOIO); 860 861 r10_bio->devs[slot].bio = read_bio; 862 863 read_bio->bi_sector = r10_bio->devs[slot].addr + 864 mirror->rdev->data_offset; 865 read_bio->bi_bdev = mirror->rdev->bdev; 866 read_bio->bi_end_io = raid10_end_read_request; 867 read_bio->bi_rw = READ | do_sync; 868 read_bio->bi_private = r10_bio; 869 870 generic_make_request(read_bio); 871 return 0; 872 } 873 874 /* 875 * WRITE: 876 */ 877 /* first select target devices under spinlock and 878 * inc refcount on their rdev. Record them by setting 879 * bios[x] to bio 880 */ 881 raid10_find_phys(conf, r10_bio); 882 rcu_read_lock(); 883 for (i = 0; i < conf->copies; i++) { 884 int d = r10_bio->devs[i].devnum; 885 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 886 if (rdev && 887 !test_bit(Faulty, &rdev->flags)) { 888 atomic_inc(&rdev->nr_pending); 889 r10_bio->devs[i].bio = bio; 890 } else { 891 r10_bio->devs[i].bio = NULL; 892 set_bit(R10BIO_Degraded, &r10_bio->state); 893 } 894 } 895 rcu_read_unlock(); 896 897 atomic_set(&r10_bio->remaining, 0); 898 899 bio_list_init(&bl); 900 for (i = 0; i < conf->copies; i++) { 901 struct bio *mbio; 902 int d = r10_bio->devs[i].devnum; 903 if (!r10_bio->devs[i].bio) 904 continue; 905 906 mbio = bio_clone(bio, GFP_NOIO); 907 r10_bio->devs[i].bio = mbio; 908 909 mbio->bi_sector = r10_bio->devs[i].addr+ 910 conf->mirrors[d].rdev->data_offset; 911 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 912 mbio->bi_end_io = raid10_end_write_request; 913 mbio->bi_rw = WRITE | do_sync; 914 mbio->bi_private = r10_bio; 915 916 atomic_inc(&r10_bio->remaining); 917 bio_list_add(&bl, mbio); 918 } 919 920 if (unlikely(!atomic_read(&r10_bio->remaining))) { 921 /* the array is dead */ 922 md_write_end(mddev); 923 raid_end_bio_io(r10_bio); 924 return 0; 925 } 926 927 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 928 spin_lock_irqsave(&conf->device_lock, flags); 929 bio_list_merge(&conf->pending_bio_list, &bl); 930 blk_plug_device(mddev->queue); 931 spin_unlock_irqrestore(&conf->device_lock, flags); 932 933 if (do_sync) 934 md_wakeup_thread(mddev->thread); 935 936 return 0; 937 } 938 939 static void status(struct seq_file *seq, mddev_t *mddev) 940 { 941 conf_t *conf = mddev_to_conf(mddev); 942 int i; 943 944 if (conf->near_copies < conf->raid_disks) 945 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 946 if (conf->near_copies > 1) 947 seq_printf(seq, " %d near-copies", conf->near_copies); 948 if (conf->far_copies > 1) { 949 if (conf->far_offset) 950 seq_printf(seq, " %d offset-copies", conf->far_copies); 951 else 952 seq_printf(seq, " %d far-copies", conf->far_copies); 953 } 954 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 955 conf->raid_disks - mddev->degraded); 956 for (i = 0; i < conf->raid_disks; i++) 957 seq_printf(seq, "%s", 958 conf->mirrors[i].rdev && 959 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 960 seq_printf(seq, "]"); 961 } 962 963 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 964 { 965 char b[BDEVNAME_SIZE]; 966 conf_t *conf = mddev_to_conf(mddev); 967 968 /* 969 * If it is not operational, then we have already marked it as dead 970 * else if it is the last working disks, ignore the error, let the 971 * next level up know. 972 * else mark the drive as failed 973 */ 974 if (test_bit(In_sync, &rdev->flags) 975 && conf->raid_disks-mddev->degraded == 1) 976 /* 977 * Don't fail the drive, just return an IO error. 978 * The test should really be more sophisticated than 979 * "working_disks == 1", but it isn't critical, and 980 * can wait until we do more sophisticated "is the drive 981 * really dead" tests... 982 */ 983 return; 984 if (test_and_clear_bit(In_sync, &rdev->flags)) { 985 unsigned long flags; 986 spin_lock_irqsave(&conf->device_lock, flags); 987 mddev->degraded++; 988 spin_unlock_irqrestore(&conf->device_lock, flags); 989 /* 990 * if recovery is running, make sure it aborts. 991 */ 992 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 993 } 994 set_bit(Faulty, &rdev->flags); 995 set_bit(MD_CHANGE_DEVS, &mddev->flags); 996 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" 997 " Operation continuing on %d devices\n", 998 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 999 } 1000 1001 static void print_conf(conf_t *conf) 1002 { 1003 int i; 1004 mirror_info_t *tmp; 1005 1006 printk("RAID10 conf printout:\n"); 1007 if (!conf) { 1008 printk("(!conf)\n"); 1009 return; 1010 } 1011 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1012 conf->raid_disks); 1013 1014 for (i = 0; i < conf->raid_disks; i++) { 1015 char b[BDEVNAME_SIZE]; 1016 tmp = conf->mirrors + i; 1017 if (tmp->rdev) 1018 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1019 i, !test_bit(In_sync, &tmp->rdev->flags), 1020 !test_bit(Faulty, &tmp->rdev->flags), 1021 bdevname(tmp->rdev->bdev,b)); 1022 } 1023 } 1024 1025 static void close_sync(conf_t *conf) 1026 { 1027 wait_barrier(conf); 1028 allow_barrier(conf); 1029 1030 mempool_destroy(conf->r10buf_pool); 1031 conf->r10buf_pool = NULL; 1032 } 1033 1034 /* check if there are enough drives for 1035 * every block to appear on atleast one 1036 */ 1037 static int enough(conf_t *conf) 1038 { 1039 int first = 0; 1040 1041 do { 1042 int n = conf->copies; 1043 int cnt = 0; 1044 while (n--) { 1045 if (conf->mirrors[first].rdev) 1046 cnt++; 1047 first = (first+1) % conf->raid_disks; 1048 } 1049 if (cnt == 0) 1050 return 0; 1051 } while (first != 0); 1052 return 1; 1053 } 1054 1055 static int raid10_spare_active(mddev_t *mddev) 1056 { 1057 int i; 1058 conf_t *conf = mddev->private; 1059 mirror_info_t *tmp; 1060 1061 /* 1062 * Find all non-in_sync disks within the RAID10 configuration 1063 * and mark them in_sync 1064 */ 1065 for (i = 0; i < conf->raid_disks; i++) { 1066 tmp = conf->mirrors + i; 1067 if (tmp->rdev 1068 && !test_bit(Faulty, &tmp->rdev->flags) 1069 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1070 unsigned long flags; 1071 spin_lock_irqsave(&conf->device_lock, flags); 1072 mddev->degraded--; 1073 spin_unlock_irqrestore(&conf->device_lock, flags); 1074 } 1075 } 1076 1077 print_conf(conf); 1078 return 0; 1079 } 1080 1081 1082 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1083 { 1084 conf_t *conf = mddev->private; 1085 int found = 0; 1086 int mirror; 1087 mirror_info_t *p; 1088 1089 if (mddev->recovery_cp < MaxSector) 1090 /* only hot-add to in-sync arrays, as recovery is 1091 * very different from resync 1092 */ 1093 return 0; 1094 if (!enough(conf)) 1095 return 0; 1096 1097 if (rdev->saved_raid_disk >= 0 && 1098 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1099 mirror = rdev->saved_raid_disk; 1100 else 1101 mirror = 0; 1102 for ( ; mirror < mddev->raid_disks; mirror++) 1103 if ( !(p=conf->mirrors+mirror)->rdev) { 1104 1105 blk_queue_stack_limits(mddev->queue, 1106 rdev->bdev->bd_disk->queue); 1107 /* as we don't honour merge_bvec_fn, we must never risk 1108 * violating it, so limit ->max_sector to one PAGE, as 1109 * a one page request is never in violation. 1110 */ 1111 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1112 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1113 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1114 1115 p->head_position = 0; 1116 rdev->raid_disk = mirror; 1117 found = 1; 1118 if (rdev->saved_raid_disk != mirror) 1119 conf->fullsync = 1; 1120 rcu_assign_pointer(p->rdev, rdev); 1121 break; 1122 } 1123 1124 print_conf(conf); 1125 return found; 1126 } 1127 1128 static int raid10_remove_disk(mddev_t *mddev, int number) 1129 { 1130 conf_t *conf = mddev->private; 1131 int err = 0; 1132 mdk_rdev_t *rdev; 1133 mirror_info_t *p = conf->mirrors+ number; 1134 1135 print_conf(conf); 1136 rdev = p->rdev; 1137 if (rdev) { 1138 if (test_bit(In_sync, &rdev->flags) || 1139 atomic_read(&rdev->nr_pending)) { 1140 err = -EBUSY; 1141 goto abort; 1142 } 1143 p->rdev = NULL; 1144 synchronize_rcu(); 1145 if (atomic_read(&rdev->nr_pending)) { 1146 /* lost the race, try later */ 1147 err = -EBUSY; 1148 p->rdev = rdev; 1149 } 1150 } 1151 abort: 1152 1153 print_conf(conf); 1154 return err; 1155 } 1156 1157 1158 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 1159 { 1160 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1161 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1162 int i,d; 1163 1164 if (bio->bi_size) 1165 return 1; 1166 1167 for (i=0; i<conf->copies; i++) 1168 if (r10_bio->devs[i].bio == bio) 1169 break; 1170 BUG_ON(i == conf->copies); 1171 update_head_pos(i, r10_bio); 1172 d = r10_bio->devs[i].devnum; 1173 1174 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1175 set_bit(R10BIO_Uptodate, &r10_bio->state); 1176 else { 1177 atomic_add(r10_bio->sectors, 1178 &conf->mirrors[d].rdev->corrected_errors); 1179 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1180 md_error(r10_bio->mddev, 1181 conf->mirrors[d].rdev); 1182 } 1183 1184 /* for reconstruct, we always reschedule after a read. 1185 * for resync, only after all reads 1186 */ 1187 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1188 atomic_dec_and_test(&r10_bio->remaining)) { 1189 /* we have read all the blocks, 1190 * do the comparison in process context in raid10d 1191 */ 1192 reschedule_retry(r10_bio); 1193 } 1194 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1195 return 0; 1196 } 1197 1198 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1199 { 1200 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1201 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1202 mddev_t *mddev = r10_bio->mddev; 1203 conf_t *conf = mddev_to_conf(mddev); 1204 int i,d; 1205 1206 if (bio->bi_size) 1207 return 1; 1208 1209 for (i = 0; i < conf->copies; i++) 1210 if (r10_bio->devs[i].bio == bio) 1211 break; 1212 d = r10_bio->devs[i].devnum; 1213 1214 if (!uptodate) 1215 md_error(mddev, conf->mirrors[d].rdev); 1216 update_head_pos(i, r10_bio); 1217 1218 while (atomic_dec_and_test(&r10_bio->remaining)) { 1219 if (r10_bio->master_bio == NULL) { 1220 /* the primary of several recovery bios */ 1221 md_done_sync(mddev, r10_bio->sectors, 1); 1222 put_buf(r10_bio); 1223 break; 1224 } else { 1225 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1226 put_buf(r10_bio); 1227 r10_bio = r10_bio2; 1228 } 1229 } 1230 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1231 return 0; 1232 } 1233 1234 /* 1235 * Note: sync and recover and handled very differently for raid10 1236 * This code is for resync. 1237 * For resync, we read through virtual addresses and read all blocks. 1238 * If there is any error, we schedule a write. The lowest numbered 1239 * drive is authoritative. 1240 * However requests come for physical address, so we need to map. 1241 * For every physical address there are raid_disks/copies virtual addresses, 1242 * which is always are least one, but is not necessarly an integer. 1243 * This means that a physical address can span multiple chunks, so we may 1244 * have to submit multiple io requests for a single sync request. 1245 */ 1246 /* 1247 * We check if all blocks are in-sync and only write to blocks that 1248 * aren't in sync 1249 */ 1250 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1251 { 1252 conf_t *conf = mddev_to_conf(mddev); 1253 int i, first; 1254 struct bio *tbio, *fbio; 1255 1256 atomic_set(&r10_bio->remaining, 1); 1257 1258 /* find the first device with a block */ 1259 for (i=0; i<conf->copies; i++) 1260 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1261 break; 1262 1263 if (i == conf->copies) 1264 goto done; 1265 1266 first = i; 1267 fbio = r10_bio->devs[i].bio; 1268 1269 /* now find blocks with errors */ 1270 for (i=0 ; i < conf->copies ; i++) { 1271 int j, d; 1272 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1273 1274 tbio = r10_bio->devs[i].bio; 1275 1276 if (tbio->bi_end_io != end_sync_read) 1277 continue; 1278 if (i == first) 1279 continue; 1280 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1281 /* We know that the bi_io_vec layout is the same for 1282 * both 'first' and 'i', so we just compare them. 1283 * All vec entries are PAGE_SIZE; 1284 */ 1285 for (j = 0; j < vcnt; j++) 1286 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1287 page_address(tbio->bi_io_vec[j].bv_page), 1288 PAGE_SIZE)) 1289 break; 1290 if (j == vcnt) 1291 continue; 1292 mddev->resync_mismatches += r10_bio->sectors; 1293 } 1294 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1295 /* Don't fix anything. */ 1296 continue; 1297 /* Ok, we need to write this bio 1298 * First we need to fixup bv_offset, bv_len and 1299 * bi_vecs, as the read request might have corrupted these 1300 */ 1301 tbio->bi_vcnt = vcnt; 1302 tbio->bi_size = r10_bio->sectors << 9; 1303 tbio->bi_idx = 0; 1304 tbio->bi_phys_segments = 0; 1305 tbio->bi_hw_segments = 0; 1306 tbio->bi_hw_front_size = 0; 1307 tbio->bi_hw_back_size = 0; 1308 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1309 tbio->bi_flags |= 1 << BIO_UPTODATE; 1310 tbio->bi_next = NULL; 1311 tbio->bi_rw = WRITE; 1312 tbio->bi_private = r10_bio; 1313 tbio->bi_sector = r10_bio->devs[i].addr; 1314 1315 for (j=0; j < vcnt ; j++) { 1316 tbio->bi_io_vec[j].bv_offset = 0; 1317 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1318 1319 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1320 page_address(fbio->bi_io_vec[j].bv_page), 1321 PAGE_SIZE); 1322 } 1323 tbio->bi_end_io = end_sync_write; 1324 1325 d = r10_bio->devs[i].devnum; 1326 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1327 atomic_inc(&r10_bio->remaining); 1328 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1329 1330 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1331 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1332 generic_make_request(tbio); 1333 } 1334 1335 done: 1336 if (atomic_dec_and_test(&r10_bio->remaining)) { 1337 md_done_sync(mddev, r10_bio->sectors, 1); 1338 put_buf(r10_bio); 1339 } 1340 } 1341 1342 /* 1343 * Now for the recovery code. 1344 * Recovery happens across physical sectors. 1345 * We recover all non-is_sync drives by finding the virtual address of 1346 * each, and then choose a working drive that also has that virt address. 1347 * There is a separate r10_bio for each non-in_sync drive. 1348 * Only the first two slots are in use. The first for reading, 1349 * The second for writing. 1350 * 1351 */ 1352 1353 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1354 { 1355 conf_t *conf = mddev_to_conf(mddev); 1356 int i, d; 1357 struct bio *bio, *wbio; 1358 1359 1360 /* move the pages across to the second bio 1361 * and submit the write request 1362 */ 1363 bio = r10_bio->devs[0].bio; 1364 wbio = r10_bio->devs[1].bio; 1365 for (i=0; i < wbio->bi_vcnt; i++) { 1366 struct page *p = bio->bi_io_vec[i].bv_page; 1367 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1368 wbio->bi_io_vec[i].bv_page = p; 1369 } 1370 d = r10_bio->devs[1].devnum; 1371 1372 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1373 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1374 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1375 generic_make_request(wbio); 1376 else 1377 bio_endio(wbio, wbio->bi_size, -EIO); 1378 } 1379 1380 1381 /* 1382 * This is a kernel thread which: 1383 * 1384 * 1. Retries failed read operations on working mirrors. 1385 * 2. Updates the raid superblock when problems encounter. 1386 * 3. Performs writes following reads for array synchronising. 1387 */ 1388 1389 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1390 { 1391 int sect = 0; /* Offset from r10_bio->sector */ 1392 int sectors = r10_bio->sectors; 1393 mdk_rdev_t*rdev; 1394 while(sectors) { 1395 int s = sectors; 1396 int sl = r10_bio->read_slot; 1397 int success = 0; 1398 int start; 1399 1400 if (s > (PAGE_SIZE>>9)) 1401 s = PAGE_SIZE >> 9; 1402 1403 rcu_read_lock(); 1404 do { 1405 int d = r10_bio->devs[sl].devnum; 1406 rdev = rcu_dereference(conf->mirrors[d].rdev); 1407 if (rdev && 1408 test_bit(In_sync, &rdev->flags)) { 1409 atomic_inc(&rdev->nr_pending); 1410 rcu_read_unlock(); 1411 success = sync_page_io(rdev->bdev, 1412 r10_bio->devs[sl].addr + 1413 sect + rdev->data_offset, 1414 s<<9, 1415 conf->tmppage, READ); 1416 rdev_dec_pending(rdev, mddev); 1417 rcu_read_lock(); 1418 if (success) 1419 break; 1420 } 1421 sl++; 1422 if (sl == conf->copies) 1423 sl = 0; 1424 } while (!success && sl != r10_bio->read_slot); 1425 rcu_read_unlock(); 1426 1427 if (!success) { 1428 /* Cannot read from anywhere -- bye bye array */ 1429 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1430 md_error(mddev, conf->mirrors[dn].rdev); 1431 break; 1432 } 1433 1434 start = sl; 1435 /* write it back and re-read */ 1436 rcu_read_lock(); 1437 while (sl != r10_bio->read_slot) { 1438 int d; 1439 if (sl==0) 1440 sl = conf->copies; 1441 sl--; 1442 d = r10_bio->devs[sl].devnum; 1443 rdev = rcu_dereference(conf->mirrors[d].rdev); 1444 if (rdev && 1445 test_bit(In_sync, &rdev->flags)) { 1446 atomic_inc(&rdev->nr_pending); 1447 rcu_read_unlock(); 1448 atomic_add(s, &rdev->corrected_errors); 1449 if (sync_page_io(rdev->bdev, 1450 r10_bio->devs[sl].addr + 1451 sect + rdev->data_offset, 1452 s<<9, conf->tmppage, WRITE) 1453 == 0) 1454 /* Well, this device is dead */ 1455 md_error(mddev, rdev); 1456 rdev_dec_pending(rdev, mddev); 1457 rcu_read_lock(); 1458 } 1459 } 1460 sl = start; 1461 while (sl != r10_bio->read_slot) { 1462 int d; 1463 if (sl==0) 1464 sl = conf->copies; 1465 sl--; 1466 d = r10_bio->devs[sl].devnum; 1467 rdev = rcu_dereference(conf->mirrors[d].rdev); 1468 if (rdev && 1469 test_bit(In_sync, &rdev->flags)) { 1470 char b[BDEVNAME_SIZE]; 1471 atomic_inc(&rdev->nr_pending); 1472 rcu_read_unlock(); 1473 if (sync_page_io(rdev->bdev, 1474 r10_bio->devs[sl].addr + 1475 sect + rdev->data_offset, 1476 s<<9, conf->tmppage, READ) == 0) 1477 /* Well, this device is dead */ 1478 md_error(mddev, rdev); 1479 else 1480 printk(KERN_INFO 1481 "raid10:%s: read error corrected" 1482 " (%d sectors at %llu on %s)\n", 1483 mdname(mddev), s, 1484 (unsigned long long)(sect+ 1485 rdev->data_offset), 1486 bdevname(rdev->bdev, b)); 1487 1488 rdev_dec_pending(rdev, mddev); 1489 rcu_read_lock(); 1490 } 1491 } 1492 rcu_read_unlock(); 1493 1494 sectors -= s; 1495 sect += s; 1496 } 1497 } 1498 1499 static void raid10d(mddev_t *mddev) 1500 { 1501 r10bio_t *r10_bio; 1502 struct bio *bio; 1503 unsigned long flags; 1504 conf_t *conf = mddev_to_conf(mddev); 1505 struct list_head *head = &conf->retry_list; 1506 int unplug=0; 1507 mdk_rdev_t *rdev; 1508 1509 md_check_recovery(mddev); 1510 1511 for (;;) { 1512 char b[BDEVNAME_SIZE]; 1513 spin_lock_irqsave(&conf->device_lock, flags); 1514 1515 if (conf->pending_bio_list.head) { 1516 bio = bio_list_get(&conf->pending_bio_list); 1517 blk_remove_plug(mddev->queue); 1518 spin_unlock_irqrestore(&conf->device_lock, flags); 1519 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1520 bitmap_unplug(mddev->bitmap); 1521 1522 while (bio) { /* submit pending writes */ 1523 struct bio *next = bio->bi_next; 1524 bio->bi_next = NULL; 1525 generic_make_request(bio); 1526 bio = next; 1527 } 1528 unplug = 1; 1529 1530 continue; 1531 } 1532 1533 if (list_empty(head)) 1534 break; 1535 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1536 list_del(head->prev); 1537 conf->nr_queued--; 1538 spin_unlock_irqrestore(&conf->device_lock, flags); 1539 1540 mddev = r10_bio->mddev; 1541 conf = mddev_to_conf(mddev); 1542 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1543 sync_request_write(mddev, r10_bio); 1544 unplug = 1; 1545 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1546 recovery_request_write(mddev, r10_bio); 1547 unplug = 1; 1548 } else { 1549 int mirror; 1550 /* we got a read error. Maybe the drive is bad. Maybe just 1551 * the block and we can fix it. 1552 * We freeze all other IO, and try reading the block from 1553 * other devices. When we find one, we re-write 1554 * and check it that fixes the read error. 1555 * This is all done synchronously while the array is 1556 * frozen. 1557 */ 1558 if (mddev->ro == 0) { 1559 freeze_array(conf); 1560 fix_read_error(conf, mddev, r10_bio); 1561 unfreeze_array(conf); 1562 } 1563 1564 bio = r10_bio->devs[r10_bio->read_slot].bio; 1565 r10_bio->devs[r10_bio->read_slot].bio = 1566 mddev->ro ? IO_BLOCKED : NULL; 1567 mirror = read_balance(conf, r10_bio); 1568 if (mirror == -1) { 1569 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1570 " read error for block %llu\n", 1571 bdevname(bio->bi_bdev,b), 1572 (unsigned long long)r10_bio->sector); 1573 raid_end_bio_io(r10_bio); 1574 bio_put(bio); 1575 } else { 1576 const int do_sync = bio_sync(r10_bio->master_bio); 1577 bio_put(bio); 1578 rdev = conf->mirrors[mirror].rdev; 1579 if (printk_ratelimit()) 1580 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1581 " another mirror\n", 1582 bdevname(rdev->bdev,b), 1583 (unsigned long long)r10_bio->sector); 1584 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1585 r10_bio->devs[r10_bio->read_slot].bio = bio; 1586 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1587 + rdev->data_offset; 1588 bio->bi_bdev = rdev->bdev; 1589 bio->bi_rw = READ | do_sync; 1590 bio->bi_private = r10_bio; 1591 bio->bi_end_io = raid10_end_read_request; 1592 unplug = 1; 1593 generic_make_request(bio); 1594 } 1595 } 1596 } 1597 spin_unlock_irqrestore(&conf->device_lock, flags); 1598 if (unplug) 1599 unplug_slaves(mddev); 1600 } 1601 1602 1603 static int init_resync(conf_t *conf) 1604 { 1605 int buffs; 1606 1607 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1608 BUG_ON(conf->r10buf_pool); 1609 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1610 if (!conf->r10buf_pool) 1611 return -ENOMEM; 1612 conf->next_resync = 0; 1613 return 0; 1614 } 1615 1616 /* 1617 * perform a "sync" on one "block" 1618 * 1619 * We need to make sure that no normal I/O request - particularly write 1620 * requests - conflict with active sync requests. 1621 * 1622 * This is achieved by tracking pending requests and a 'barrier' concept 1623 * that can be installed to exclude normal IO requests. 1624 * 1625 * Resync and recovery are handled very differently. 1626 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1627 * 1628 * For resync, we iterate over virtual addresses, read all copies, 1629 * and update if there are differences. If only one copy is live, 1630 * skip it. 1631 * For recovery, we iterate over physical addresses, read a good 1632 * value for each non-in_sync drive, and over-write. 1633 * 1634 * So, for recovery we may have several outstanding complex requests for a 1635 * given address, one for each out-of-sync device. We model this by allocating 1636 * a number of r10_bio structures, one for each out-of-sync device. 1637 * As we setup these structures, we collect all bio's together into a list 1638 * which we then process collectively to add pages, and then process again 1639 * to pass to generic_make_request. 1640 * 1641 * The r10_bio structures are linked using a borrowed master_bio pointer. 1642 * This link is counted in ->remaining. When the r10_bio that points to NULL 1643 * has its remaining count decremented to 0, the whole complex operation 1644 * is complete. 1645 * 1646 */ 1647 1648 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1649 { 1650 conf_t *conf = mddev_to_conf(mddev); 1651 r10bio_t *r10_bio; 1652 struct bio *biolist = NULL, *bio; 1653 sector_t max_sector, nr_sectors; 1654 int disk; 1655 int i; 1656 int max_sync; 1657 int sync_blocks; 1658 1659 sector_t sectors_skipped = 0; 1660 int chunks_skipped = 0; 1661 1662 if (!conf->r10buf_pool) 1663 if (init_resync(conf)) 1664 return 0; 1665 1666 skipped: 1667 max_sector = mddev->size << 1; 1668 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1669 max_sector = mddev->resync_max_sectors; 1670 if (sector_nr >= max_sector) { 1671 /* If we aborted, we need to abort the 1672 * sync on the 'current' bitmap chucks (there can 1673 * be several when recovering multiple devices). 1674 * as we may have started syncing it but not finished. 1675 * We can find the current address in 1676 * mddev->curr_resync, but for recovery, 1677 * we need to convert that to several 1678 * virtual addresses. 1679 */ 1680 if (mddev->curr_resync < max_sector) { /* aborted */ 1681 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1682 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1683 &sync_blocks, 1); 1684 else for (i=0; i<conf->raid_disks; i++) { 1685 sector_t sect = 1686 raid10_find_virt(conf, mddev->curr_resync, i); 1687 bitmap_end_sync(mddev->bitmap, sect, 1688 &sync_blocks, 1); 1689 } 1690 } else /* completed sync */ 1691 conf->fullsync = 0; 1692 1693 bitmap_close_sync(mddev->bitmap); 1694 close_sync(conf); 1695 *skipped = 1; 1696 return sectors_skipped; 1697 } 1698 if (chunks_skipped >= conf->raid_disks) { 1699 /* if there has been nothing to do on any drive, 1700 * then there is nothing to do at all.. 1701 */ 1702 *skipped = 1; 1703 return (max_sector - sector_nr) + sectors_skipped; 1704 } 1705 1706 /* make sure whole request will fit in a chunk - if chunks 1707 * are meaningful 1708 */ 1709 if (conf->near_copies < conf->raid_disks && 1710 max_sector > (sector_nr | conf->chunk_mask)) 1711 max_sector = (sector_nr | conf->chunk_mask) + 1; 1712 /* 1713 * If there is non-resync activity waiting for us then 1714 * put in a delay to throttle resync. 1715 */ 1716 if (!go_faster && conf->nr_waiting) 1717 msleep_interruptible(1000); 1718 1719 /* Again, very different code for resync and recovery. 1720 * Both must result in an r10bio with a list of bios that 1721 * have bi_end_io, bi_sector, bi_bdev set, 1722 * and bi_private set to the r10bio. 1723 * For recovery, we may actually create several r10bios 1724 * with 2 bios in each, that correspond to the bios in the main one. 1725 * In this case, the subordinate r10bios link back through a 1726 * borrowed master_bio pointer, and the counter in the master 1727 * includes a ref from each subordinate. 1728 */ 1729 /* First, we decide what to do and set ->bi_end_io 1730 * To end_sync_read if we want to read, and 1731 * end_sync_write if we will want to write. 1732 */ 1733 1734 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1735 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1736 /* recovery... the complicated one */ 1737 int i, j, k; 1738 r10_bio = NULL; 1739 1740 for (i=0 ; i<conf->raid_disks; i++) 1741 if (conf->mirrors[i].rdev && 1742 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1743 int still_degraded = 0; 1744 /* want to reconstruct this device */ 1745 r10bio_t *rb2 = r10_bio; 1746 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1747 int must_sync; 1748 /* Unless we are doing a full sync, we only need 1749 * to recover the block if it is set in the bitmap 1750 */ 1751 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1752 &sync_blocks, 1); 1753 if (sync_blocks < max_sync) 1754 max_sync = sync_blocks; 1755 if (!must_sync && 1756 !conf->fullsync) { 1757 /* yep, skip the sync_blocks here, but don't assume 1758 * that there will never be anything to do here 1759 */ 1760 chunks_skipped = -1; 1761 continue; 1762 } 1763 1764 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1765 raise_barrier(conf, rb2 != NULL); 1766 atomic_set(&r10_bio->remaining, 0); 1767 1768 r10_bio->master_bio = (struct bio*)rb2; 1769 if (rb2) 1770 atomic_inc(&rb2->remaining); 1771 r10_bio->mddev = mddev; 1772 set_bit(R10BIO_IsRecover, &r10_bio->state); 1773 r10_bio->sector = sect; 1774 1775 raid10_find_phys(conf, r10_bio); 1776 /* Need to check if this section will still be 1777 * degraded 1778 */ 1779 for (j=0; j<conf->copies;j++) { 1780 int d = r10_bio->devs[j].devnum; 1781 if (conf->mirrors[d].rdev == NULL || 1782 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1783 still_degraded = 1; 1784 break; 1785 } 1786 } 1787 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1788 &sync_blocks, still_degraded); 1789 1790 for (j=0; j<conf->copies;j++) { 1791 int d = r10_bio->devs[j].devnum; 1792 if (conf->mirrors[d].rdev && 1793 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1794 /* This is where we read from */ 1795 bio = r10_bio->devs[0].bio; 1796 bio->bi_next = biolist; 1797 biolist = bio; 1798 bio->bi_private = r10_bio; 1799 bio->bi_end_io = end_sync_read; 1800 bio->bi_rw = READ; 1801 bio->bi_sector = r10_bio->devs[j].addr + 1802 conf->mirrors[d].rdev->data_offset; 1803 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1804 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1805 atomic_inc(&r10_bio->remaining); 1806 /* and we write to 'i' */ 1807 1808 for (k=0; k<conf->copies; k++) 1809 if (r10_bio->devs[k].devnum == i) 1810 break; 1811 BUG_ON(k == conf->copies); 1812 bio = r10_bio->devs[1].bio; 1813 bio->bi_next = biolist; 1814 biolist = bio; 1815 bio->bi_private = r10_bio; 1816 bio->bi_end_io = end_sync_write; 1817 bio->bi_rw = WRITE; 1818 bio->bi_sector = r10_bio->devs[k].addr + 1819 conf->mirrors[i].rdev->data_offset; 1820 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1821 1822 r10_bio->devs[0].devnum = d; 1823 r10_bio->devs[1].devnum = i; 1824 1825 break; 1826 } 1827 } 1828 if (j == conf->copies) { 1829 /* Cannot recover, so abort the recovery */ 1830 put_buf(r10_bio); 1831 r10_bio = rb2; 1832 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery)) 1833 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1834 mdname(mddev)); 1835 break; 1836 } 1837 } 1838 if (biolist == NULL) { 1839 while (r10_bio) { 1840 r10bio_t *rb2 = r10_bio; 1841 r10_bio = (r10bio_t*) rb2->master_bio; 1842 rb2->master_bio = NULL; 1843 put_buf(rb2); 1844 } 1845 goto giveup; 1846 } 1847 } else { 1848 /* resync. Schedule a read for every block at this virt offset */ 1849 int count = 0; 1850 1851 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1852 &sync_blocks, mddev->degraded) && 1853 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1854 /* We can skip this block */ 1855 *skipped = 1; 1856 return sync_blocks + sectors_skipped; 1857 } 1858 if (sync_blocks < max_sync) 1859 max_sync = sync_blocks; 1860 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1861 1862 r10_bio->mddev = mddev; 1863 atomic_set(&r10_bio->remaining, 0); 1864 raise_barrier(conf, 0); 1865 conf->next_resync = sector_nr; 1866 1867 r10_bio->master_bio = NULL; 1868 r10_bio->sector = sector_nr; 1869 set_bit(R10BIO_IsSync, &r10_bio->state); 1870 raid10_find_phys(conf, r10_bio); 1871 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1872 1873 for (i=0; i<conf->copies; i++) { 1874 int d = r10_bio->devs[i].devnum; 1875 bio = r10_bio->devs[i].bio; 1876 bio->bi_end_io = NULL; 1877 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1878 if (conf->mirrors[d].rdev == NULL || 1879 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1880 continue; 1881 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1882 atomic_inc(&r10_bio->remaining); 1883 bio->bi_next = biolist; 1884 biolist = bio; 1885 bio->bi_private = r10_bio; 1886 bio->bi_end_io = end_sync_read; 1887 bio->bi_rw = READ; 1888 bio->bi_sector = r10_bio->devs[i].addr + 1889 conf->mirrors[d].rdev->data_offset; 1890 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1891 count++; 1892 } 1893 1894 if (count < 2) { 1895 for (i=0; i<conf->copies; i++) { 1896 int d = r10_bio->devs[i].devnum; 1897 if (r10_bio->devs[i].bio->bi_end_io) 1898 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1899 } 1900 put_buf(r10_bio); 1901 biolist = NULL; 1902 goto giveup; 1903 } 1904 } 1905 1906 for (bio = biolist; bio ; bio=bio->bi_next) { 1907 1908 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1909 if (bio->bi_end_io) 1910 bio->bi_flags |= 1 << BIO_UPTODATE; 1911 bio->bi_vcnt = 0; 1912 bio->bi_idx = 0; 1913 bio->bi_phys_segments = 0; 1914 bio->bi_hw_segments = 0; 1915 bio->bi_size = 0; 1916 } 1917 1918 nr_sectors = 0; 1919 if (sector_nr + max_sync < max_sector) 1920 max_sector = sector_nr + max_sync; 1921 do { 1922 struct page *page; 1923 int len = PAGE_SIZE; 1924 disk = 0; 1925 if (sector_nr + (len>>9) > max_sector) 1926 len = (max_sector - sector_nr) << 9; 1927 if (len == 0) 1928 break; 1929 for (bio= biolist ; bio ; bio=bio->bi_next) { 1930 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1931 if (bio_add_page(bio, page, len, 0) == 0) { 1932 /* stop here */ 1933 struct bio *bio2; 1934 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1935 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1936 /* remove last page from this bio */ 1937 bio2->bi_vcnt--; 1938 bio2->bi_size -= len; 1939 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1940 } 1941 goto bio_full; 1942 } 1943 disk = i; 1944 } 1945 nr_sectors += len>>9; 1946 sector_nr += len>>9; 1947 } while (biolist->bi_vcnt < RESYNC_PAGES); 1948 bio_full: 1949 r10_bio->sectors = nr_sectors; 1950 1951 while (biolist) { 1952 bio = biolist; 1953 biolist = biolist->bi_next; 1954 1955 bio->bi_next = NULL; 1956 r10_bio = bio->bi_private; 1957 r10_bio->sectors = nr_sectors; 1958 1959 if (bio->bi_end_io == end_sync_read) { 1960 md_sync_acct(bio->bi_bdev, nr_sectors); 1961 generic_make_request(bio); 1962 } 1963 } 1964 1965 if (sectors_skipped) 1966 /* pretend they weren't skipped, it makes 1967 * no important difference in this case 1968 */ 1969 md_done_sync(mddev, sectors_skipped, 1); 1970 1971 return sectors_skipped + nr_sectors; 1972 giveup: 1973 /* There is nowhere to write, so all non-sync 1974 * drives must be failed, so try the next chunk... 1975 */ 1976 { 1977 sector_t sec = max_sector - sector_nr; 1978 sectors_skipped += sec; 1979 chunks_skipped ++; 1980 sector_nr = max_sector; 1981 goto skipped; 1982 } 1983 } 1984 1985 static int run(mddev_t *mddev) 1986 { 1987 conf_t *conf; 1988 int i, disk_idx; 1989 mirror_info_t *disk; 1990 mdk_rdev_t *rdev; 1991 struct list_head *tmp; 1992 int nc, fc, fo; 1993 sector_t stride, size; 1994 1995 if (mddev->chunk_size == 0) { 1996 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 1997 return -EINVAL; 1998 } 1999 2000 nc = mddev->layout & 255; 2001 fc = (mddev->layout >> 8) & 255; 2002 fo = mddev->layout & (1<<16); 2003 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2004 (mddev->layout >> 17)) { 2005 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 2006 mdname(mddev), mddev->layout); 2007 goto out; 2008 } 2009 /* 2010 * copy the already verified devices into our private RAID10 2011 * bookkeeping area. [whatever we allocate in run(), 2012 * should be freed in stop()] 2013 */ 2014 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2015 mddev->private = conf; 2016 if (!conf) { 2017 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2018 mdname(mddev)); 2019 goto out; 2020 } 2021 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2022 GFP_KERNEL); 2023 if (!conf->mirrors) { 2024 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2025 mdname(mddev)); 2026 goto out_free_conf; 2027 } 2028 2029 conf->tmppage = alloc_page(GFP_KERNEL); 2030 if (!conf->tmppage) 2031 goto out_free_conf; 2032 2033 conf->mddev = mddev; 2034 conf->raid_disks = mddev->raid_disks; 2035 conf->near_copies = nc; 2036 conf->far_copies = fc; 2037 conf->copies = nc*fc; 2038 conf->far_offset = fo; 2039 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 2040 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 2041 size = mddev->size >> (conf->chunk_shift-1); 2042 sector_div(size, fc); 2043 size = size * conf->raid_disks; 2044 sector_div(size, nc); 2045 /* 'size' is now the number of chunks in the array */ 2046 /* calculate "used chunks per device" in 'stride' */ 2047 stride = size * conf->copies; 2048 2049 /* We need to round up when dividing by raid_disks to 2050 * get the stride size. 2051 */ 2052 stride += conf->raid_disks - 1; 2053 sector_div(stride, conf->raid_disks); 2054 mddev->size = stride << (conf->chunk_shift-1); 2055 2056 if (fo) 2057 stride = 1; 2058 else 2059 sector_div(stride, fc); 2060 conf->stride = stride << conf->chunk_shift; 2061 2062 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2063 r10bio_pool_free, conf); 2064 if (!conf->r10bio_pool) { 2065 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2066 mdname(mddev)); 2067 goto out_free_conf; 2068 } 2069 2070 ITERATE_RDEV(mddev, rdev, tmp) { 2071 disk_idx = rdev->raid_disk; 2072 if (disk_idx >= mddev->raid_disks 2073 || disk_idx < 0) 2074 continue; 2075 disk = conf->mirrors + disk_idx; 2076 2077 disk->rdev = rdev; 2078 2079 blk_queue_stack_limits(mddev->queue, 2080 rdev->bdev->bd_disk->queue); 2081 /* as we don't honour merge_bvec_fn, we must never risk 2082 * violating it, so limit ->max_sector to one PAGE, as 2083 * a one page request is never in violation. 2084 */ 2085 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2086 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2087 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2088 2089 disk->head_position = 0; 2090 } 2091 spin_lock_init(&conf->device_lock); 2092 INIT_LIST_HEAD(&conf->retry_list); 2093 2094 spin_lock_init(&conf->resync_lock); 2095 init_waitqueue_head(&conf->wait_barrier); 2096 2097 /* need to check that every block has at least one working mirror */ 2098 if (!enough(conf)) { 2099 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2100 mdname(mddev)); 2101 goto out_free_conf; 2102 } 2103 2104 mddev->degraded = 0; 2105 for (i = 0; i < conf->raid_disks; i++) { 2106 2107 disk = conf->mirrors + i; 2108 2109 if (!disk->rdev || 2110 !test_bit(In_sync, &disk->rdev->flags)) { 2111 disk->head_position = 0; 2112 mddev->degraded++; 2113 } 2114 } 2115 2116 2117 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2118 if (!mddev->thread) { 2119 printk(KERN_ERR 2120 "raid10: couldn't allocate thread for %s\n", 2121 mdname(mddev)); 2122 goto out_free_conf; 2123 } 2124 2125 printk(KERN_INFO 2126 "raid10: raid set %s active with %d out of %d devices\n", 2127 mdname(mddev), mddev->raid_disks - mddev->degraded, 2128 mddev->raid_disks); 2129 /* 2130 * Ok, everything is just fine now 2131 */ 2132 mddev->array_size = size << (conf->chunk_shift-1); 2133 mddev->resync_max_sectors = size << conf->chunk_shift; 2134 2135 mddev->queue->unplug_fn = raid10_unplug; 2136 mddev->queue->issue_flush_fn = raid10_issue_flush; 2137 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2138 mddev->queue->backing_dev_info.congested_data = mddev; 2139 2140 /* Calculate max read-ahead size. 2141 * We need to readahead at least twice a whole stripe.... 2142 * maybe... 2143 */ 2144 { 2145 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2146 stripe /= conf->near_copies; 2147 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2148 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2149 } 2150 2151 if (conf->near_copies < mddev->raid_disks) 2152 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2153 return 0; 2154 2155 out_free_conf: 2156 if (conf->r10bio_pool) 2157 mempool_destroy(conf->r10bio_pool); 2158 safe_put_page(conf->tmppage); 2159 kfree(conf->mirrors); 2160 kfree(conf); 2161 mddev->private = NULL; 2162 out: 2163 return -EIO; 2164 } 2165 2166 static int stop(mddev_t *mddev) 2167 { 2168 conf_t *conf = mddev_to_conf(mddev); 2169 2170 md_unregister_thread(mddev->thread); 2171 mddev->thread = NULL; 2172 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2173 if (conf->r10bio_pool) 2174 mempool_destroy(conf->r10bio_pool); 2175 kfree(conf->mirrors); 2176 kfree(conf); 2177 mddev->private = NULL; 2178 return 0; 2179 } 2180 2181 static void raid10_quiesce(mddev_t *mddev, int state) 2182 { 2183 conf_t *conf = mddev_to_conf(mddev); 2184 2185 switch(state) { 2186 case 1: 2187 raise_barrier(conf, 0); 2188 break; 2189 case 0: 2190 lower_barrier(conf); 2191 break; 2192 } 2193 if (mddev->thread) { 2194 if (mddev->bitmap) 2195 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2196 else 2197 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2198 md_wakeup_thread(mddev->thread); 2199 } 2200 } 2201 2202 static struct mdk_personality raid10_personality = 2203 { 2204 .name = "raid10", 2205 .level = 10, 2206 .owner = THIS_MODULE, 2207 .make_request = make_request, 2208 .run = run, 2209 .stop = stop, 2210 .status = status, 2211 .error_handler = error, 2212 .hot_add_disk = raid10_add_disk, 2213 .hot_remove_disk= raid10_remove_disk, 2214 .spare_active = raid10_spare_active, 2215 .sync_request = sync_request, 2216 .quiesce = raid10_quiesce, 2217 }; 2218 2219 static int __init raid_init(void) 2220 { 2221 return register_md_personality(&raid10_personality); 2222 } 2223 2224 static void raid_exit(void) 2225 { 2226 unregister_md_personality(&raid10_personality); 2227 } 2228 2229 module_init(raid_init); 2230 module_exit(raid_exit); 2231 MODULE_LICENSE("GPL"); 2232 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2233 MODULE_ALIAS("md-raid10"); 2234 MODULE_ALIAS("md-level-10"); 2235