xref: /linux/drivers/md/raid10.c (revision ac6a0cf6716bb46813d0161024c66c2af66e53d1)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/delay.h>
22 #include <linux/blkdev.h>
23 #include <linux/seq_file.h>
24 #include "md.h"
25 #include "raid10.h"
26 #include "bitmap.h"
27 
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.
38  * Each device is divided into far_copies sections.
39  * In each section, chunks are laid out in a style similar to raid0, but
40  * near_copies copies of each chunk is stored (each on a different drive).
41  * The starting device for each section is offset near_copies from the starting
42  * device of the previous section.
43  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
44  * drive.
45  * near_copies and far_copies must be at least one, and their product is at most
46  * raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of be very far apart
50  * on disk, there are adjacent stripes.
51  */
52 
53 /*
54  * Number of guaranteed r10bios in case of extreme VM load:
55  */
56 #define	NR_RAID10_BIOS 256
57 
58 static void unplug_slaves(mddev_t *mddev);
59 
60 static void allow_barrier(conf_t *conf);
61 static void lower_barrier(conf_t *conf);
62 
63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
64 {
65 	conf_t *conf = data;
66 	r10bio_t *r10_bio;
67 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
68 
69 	/* allocate a r10bio with room for raid_disks entries in the bios array */
70 	r10_bio = kzalloc(size, gfp_flags);
71 	if (!r10_bio)
72 		unplug_slaves(conf->mddev);
73 
74 	return r10_bio;
75 }
76 
77 static void r10bio_pool_free(void *r10_bio, void *data)
78 {
79 	kfree(r10_bio);
80 }
81 
82 /* Maximum size of each resync request */
83 #define RESYNC_BLOCK_SIZE (64*1024)
84 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
85 /* amount of memory to reserve for resync requests */
86 #define RESYNC_WINDOW (1024*1024)
87 /* maximum number of concurrent requests, memory permitting */
88 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
89 
90 /*
91  * When performing a resync, we need to read and compare, so
92  * we need as many pages are there are copies.
93  * When performing a recovery, we need 2 bios, one for read,
94  * one for write (we recover only one drive per r10buf)
95  *
96  */
97 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 	conf_t *conf = data;
100 	struct page *page;
101 	r10bio_t *r10_bio;
102 	struct bio *bio;
103 	int i, j;
104 	int nalloc;
105 
106 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
107 	if (!r10_bio) {
108 		unplug_slaves(conf->mddev);
109 		return NULL;
110 	}
111 
112 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
113 		nalloc = conf->copies; /* resync */
114 	else
115 		nalloc = 2; /* recovery */
116 
117 	/*
118 	 * Allocate bios.
119 	 */
120 	for (j = nalloc ; j-- ; ) {
121 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
122 		if (!bio)
123 			goto out_free_bio;
124 		r10_bio->devs[j].bio = bio;
125 	}
126 	/*
127 	 * Allocate RESYNC_PAGES data pages and attach them
128 	 * where needed.
129 	 */
130 	for (j = 0 ; j < nalloc; j++) {
131 		bio = r10_bio->devs[j].bio;
132 		for (i = 0; i < RESYNC_PAGES; i++) {
133 			page = alloc_page(gfp_flags);
134 			if (unlikely(!page))
135 				goto out_free_pages;
136 
137 			bio->bi_io_vec[i].bv_page = page;
138 		}
139 	}
140 
141 	return r10_bio;
142 
143 out_free_pages:
144 	for ( ; i > 0 ; i--)
145 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
146 	while (j--)
147 		for (i = 0; i < RESYNC_PAGES ; i++)
148 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
149 	j = -1;
150 out_free_bio:
151 	while ( ++j < nalloc )
152 		bio_put(r10_bio->devs[j].bio);
153 	r10bio_pool_free(r10_bio, conf);
154 	return NULL;
155 }
156 
157 static void r10buf_pool_free(void *__r10_bio, void *data)
158 {
159 	int i;
160 	conf_t *conf = data;
161 	r10bio_t *r10bio = __r10_bio;
162 	int j;
163 
164 	for (j=0; j < conf->copies; j++) {
165 		struct bio *bio = r10bio->devs[j].bio;
166 		if (bio) {
167 			for (i = 0; i < RESYNC_PAGES; i++) {
168 				safe_put_page(bio->bi_io_vec[i].bv_page);
169 				bio->bi_io_vec[i].bv_page = NULL;
170 			}
171 			bio_put(bio);
172 		}
173 	}
174 	r10bio_pool_free(r10bio, conf);
175 }
176 
177 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
178 {
179 	int i;
180 
181 	for (i = 0; i < conf->copies; i++) {
182 		struct bio **bio = & r10_bio->devs[i].bio;
183 		if (*bio && *bio != IO_BLOCKED)
184 			bio_put(*bio);
185 		*bio = NULL;
186 	}
187 }
188 
189 static void free_r10bio(r10bio_t *r10_bio)
190 {
191 	conf_t *conf = r10_bio->mddev->private;
192 
193 	/*
194 	 * Wake up any possible resync thread that waits for the device
195 	 * to go idle.
196 	 */
197 	allow_barrier(conf);
198 
199 	put_all_bios(conf, r10_bio);
200 	mempool_free(r10_bio, conf->r10bio_pool);
201 }
202 
203 static void put_buf(r10bio_t *r10_bio)
204 {
205 	conf_t *conf = r10_bio->mddev->private;
206 
207 	mempool_free(r10_bio, conf->r10buf_pool);
208 
209 	lower_barrier(conf);
210 }
211 
212 static void reschedule_retry(r10bio_t *r10_bio)
213 {
214 	unsigned long flags;
215 	mddev_t *mddev = r10_bio->mddev;
216 	conf_t *conf = mddev->private;
217 
218 	spin_lock_irqsave(&conf->device_lock, flags);
219 	list_add(&r10_bio->retry_list, &conf->retry_list);
220 	conf->nr_queued ++;
221 	spin_unlock_irqrestore(&conf->device_lock, flags);
222 
223 	/* wake up frozen array... */
224 	wake_up(&conf->wait_barrier);
225 
226 	md_wakeup_thread(mddev->thread);
227 }
228 
229 /*
230  * raid_end_bio_io() is called when we have finished servicing a mirrored
231  * operation and are ready to return a success/failure code to the buffer
232  * cache layer.
233  */
234 static void raid_end_bio_io(r10bio_t *r10_bio)
235 {
236 	struct bio *bio = r10_bio->master_bio;
237 
238 	bio_endio(bio,
239 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
240 	free_r10bio(r10_bio);
241 }
242 
243 /*
244  * Update disk head position estimator based on IRQ completion info.
245  */
246 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
247 {
248 	conf_t *conf = r10_bio->mddev->private;
249 
250 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
251 		r10_bio->devs[slot].addr + (r10_bio->sectors);
252 }
253 
254 static void raid10_end_read_request(struct bio *bio, int error)
255 {
256 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
257 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
258 	int slot, dev;
259 	conf_t *conf = r10_bio->mddev->private;
260 
261 
262 	slot = r10_bio->read_slot;
263 	dev = r10_bio->devs[slot].devnum;
264 	/*
265 	 * this branch is our 'one mirror IO has finished' event handler:
266 	 */
267 	update_head_pos(slot, r10_bio);
268 
269 	if (uptodate) {
270 		/*
271 		 * Set R10BIO_Uptodate in our master bio, so that
272 		 * we will return a good error code to the higher
273 		 * levels even if IO on some other mirrored buffer fails.
274 		 *
275 		 * The 'master' represents the composite IO operation to
276 		 * user-side. So if something waits for IO, then it will
277 		 * wait for the 'master' bio.
278 		 */
279 		set_bit(R10BIO_Uptodate, &r10_bio->state);
280 		raid_end_bio_io(r10_bio);
281 	} else {
282 		/*
283 		 * oops, read error:
284 		 */
285 		char b[BDEVNAME_SIZE];
286 		if (printk_ratelimit())
287 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
288 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
289 		reschedule_retry(r10_bio);
290 	}
291 
292 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
293 }
294 
295 static void raid10_end_write_request(struct bio *bio, int error)
296 {
297 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
298 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
299 	int slot, dev;
300 	conf_t *conf = r10_bio->mddev->private;
301 
302 	for (slot = 0; slot < conf->copies; slot++)
303 		if (r10_bio->devs[slot].bio == bio)
304 			break;
305 	dev = r10_bio->devs[slot].devnum;
306 
307 	/*
308 	 * this branch is our 'one mirror IO has finished' event handler:
309 	 */
310 	if (!uptodate) {
311 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
312 		/* an I/O failed, we can't clear the bitmap */
313 		set_bit(R10BIO_Degraded, &r10_bio->state);
314 	} else
315 		/*
316 		 * Set R10BIO_Uptodate in our master bio, so that
317 		 * we will return a good error code for to the higher
318 		 * levels even if IO on some other mirrored buffer fails.
319 		 *
320 		 * The 'master' represents the composite IO operation to
321 		 * user-side. So if something waits for IO, then it will
322 		 * wait for the 'master' bio.
323 		 */
324 		set_bit(R10BIO_Uptodate, &r10_bio->state);
325 
326 	update_head_pos(slot, r10_bio);
327 
328 	/*
329 	 *
330 	 * Let's see if all mirrored write operations have finished
331 	 * already.
332 	 */
333 	if (atomic_dec_and_test(&r10_bio->remaining)) {
334 		/* clear the bitmap if all writes complete successfully */
335 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
336 				r10_bio->sectors,
337 				!test_bit(R10BIO_Degraded, &r10_bio->state),
338 				0);
339 		md_write_end(r10_bio->mddev);
340 		raid_end_bio_io(r10_bio);
341 	}
342 
343 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
344 }
345 
346 
347 /*
348  * RAID10 layout manager
349  * Aswell as the chunksize and raid_disks count, there are two
350  * parameters: near_copies and far_copies.
351  * near_copies * far_copies must be <= raid_disks.
352  * Normally one of these will be 1.
353  * If both are 1, we get raid0.
354  * If near_copies == raid_disks, we get raid1.
355  *
356  * Chunks are layed out in raid0 style with near_copies copies of the
357  * first chunk, followed by near_copies copies of the next chunk and
358  * so on.
359  * If far_copies > 1, then after 1/far_copies of the array has been assigned
360  * as described above, we start again with a device offset of near_copies.
361  * So we effectively have another copy of the whole array further down all
362  * the drives, but with blocks on different drives.
363  * With this layout, and block is never stored twice on the one device.
364  *
365  * raid10_find_phys finds the sector offset of a given virtual sector
366  * on each device that it is on.
367  *
368  * raid10_find_virt does the reverse mapping, from a device and a
369  * sector offset to a virtual address
370  */
371 
372 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
373 {
374 	int n,f;
375 	sector_t sector;
376 	sector_t chunk;
377 	sector_t stripe;
378 	int dev;
379 
380 	int slot = 0;
381 
382 	/* now calculate first sector/dev */
383 	chunk = r10bio->sector >> conf->chunk_shift;
384 	sector = r10bio->sector & conf->chunk_mask;
385 
386 	chunk *= conf->near_copies;
387 	stripe = chunk;
388 	dev = sector_div(stripe, conf->raid_disks);
389 	if (conf->far_offset)
390 		stripe *= conf->far_copies;
391 
392 	sector += stripe << conf->chunk_shift;
393 
394 	/* and calculate all the others */
395 	for (n=0; n < conf->near_copies; n++) {
396 		int d = dev;
397 		sector_t s = sector;
398 		r10bio->devs[slot].addr = sector;
399 		r10bio->devs[slot].devnum = d;
400 		slot++;
401 
402 		for (f = 1; f < conf->far_copies; f++) {
403 			d += conf->near_copies;
404 			if (d >= conf->raid_disks)
405 				d -= conf->raid_disks;
406 			s += conf->stride;
407 			r10bio->devs[slot].devnum = d;
408 			r10bio->devs[slot].addr = s;
409 			slot++;
410 		}
411 		dev++;
412 		if (dev >= conf->raid_disks) {
413 			dev = 0;
414 			sector += (conf->chunk_mask + 1);
415 		}
416 	}
417 	BUG_ON(slot != conf->copies);
418 }
419 
420 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
421 {
422 	sector_t offset, chunk, vchunk;
423 
424 	offset = sector & conf->chunk_mask;
425 	if (conf->far_offset) {
426 		int fc;
427 		chunk = sector >> conf->chunk_shift;
428 		fc = sector_div(chunk, conf->far_copies);
429 		dev -= fc * conf->near_copies;
430 		if (dev < 0)
431 			dev += conf->raid_disks;
432 	} else {
433 		while (sector >= conf->stride) {
434 			sector -= conf->stride;
435 			if (dev < conf->near_copies)
436 				dev += conf->raid_disks - conf->near_copies;
437 			else
438 				dev -= conf->near_copies;
439 		}
440 		chunk = sector >> conf->chunk_shift;
441 	}
442 	vchunk = chunk * conf->raid_disks + dev;
443 	sector_div(vchunk, conf->near_copies);
444 	return (vchunk << conf->chunk_shift) + offset;
445 }
446 
447 /**
448  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449  *	@q: request queue
450  *	@bvm: properties of new bio
451  *	@biovec: the request that could be merged to it.
452  *
453  *	Return amount of bytes we can accept at this offset
454  *      If near_copies == raid_disk, there are no striping issues,
455  *      but in that case, the function isn't called at all.
456  */
457 static int raid10_mergeable_bvec(struct request_queue *q,
458 				 struct bvec_merge_data *bvm,
459 				 struct bio_vec *biovec)
460 {
461 	mddev_t *mddev = q->queuedata;
462 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
463 	int max;
464 	unsigned int chunk_sectors = mddev->chunk_sectors;
465 	unsigned int bio_sectors = bvm->bi_size >> 9;
466 
467 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
468 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
469 	if (max <= biovec->bv_len && bio_sectors == 0)
470 		return biovec->bv_len;
471 	else
472 		return max;
473 }
474 
475 /*
476  * This routine returns the disk from which the requested read should
477  * be done. There is a per-array 'next expected sequential IO' sector
478  * number - if this matches on the next IO then we use the last disk.
479  * There is also a per-disk 'last know head position' sector that is
480  * maintained from IRQ contexts, both the normal and the resync IO
481  * completion handlers update this position correctly. If there is no
482  * perfect sequential match then we pick the disk whose head is closest.
483  *
484  * If there are 2 mirrors in the same 2 devices, performance degrades
485  * because position is mirror, not device based.
486  *
487  * The rdev for the device selected will have nr_pending incremented.
488  */
489 
490 /*
491  * FIXME: possibly should rethink readbalancing and do it differently
492  * depending on near_copies / far_copies geometry.
493  */
494 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
495 {
496 	const unsigned long this_sector = r10_bio->sector;
497 	int disk, slot, nslot;
498 	const int sectors = r10_bio->sectors;
499 	sector_t new_distance, current_distance;
500 	mdk_rdev_t *rdev;
501 
502 	raid10_find_phys(conf, r10_bio);
503 	rcu_read_lock();
504 	/*
505 	 * Check if we can balance. We can balance on the whole
506 	 * device if no resync is going on (recovery is ok), or below
507 	 * the resync window. We take the first readable disk when
508 	 * above the resync window.
509 	 */
510 	if (conf->mddev->recovery_cp < MaxSector
511 	    && (this_sector + sectors >= conf->next_resync)) {
512 		/* make sure that disk is operational */
513 		slot = 0;
514 		disk = r10_bio->devs[slot].devnum;
515 
516 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
517 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
518 		       !test_bit(In_sync, &rdev->flags)) {
519 			slot++;
520 			if (slot == conf->copies) {
521 				slot = 0;
522 				disk = -1;
523 				break;
524 			}
525 			disk = r10_bio->devs[slot].devnum;
526 		}
527 		goto rb_out;
528 	}
529 
530 
531 	/* make sure the disk is operational */
532 	slot = 0;
533 	disk = r10_bio->devs[slot].devnum;
534 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
535 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
536 	       !test_bit(In_sync, &rdev->flags)) {
537 		slot ++;
538 		if (slot == conf->copies) {
539 			disk = -1;
540 			goto rb_out;
541 		}
542 		disk = r10_bio->devs[slot].devnum;
543 	}
544 
545 
546 	current_distance = abs(r10_bio->devs[slot].addr -
547 			       conf->mirrors[disk].head_position);
548 
549 	/* Find the disk whose head is closest,
550 	 * or - for far > 1 - find the closest to partition beginning */
551 
552 	for (nslot = slot; nslot < conf->copies; nslot++) {
553 		int ndisk = r10_bio->devs[nslot].devnum;
554 
555 
556 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
557 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
558 		    !test_bit(In_sync, &rdev->flags))
559 			continue;
560 
561 		/* This optimisation is debatable, and completely destroys
562 		 * sequential read speed for 'far copies' arrays.  So only
563 		 * keep it for 'near' arrays, and review those later.
564 		 */
565 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
566 			disk = ndisk;
567 			slot = nslot;
568 			break;
569 		}
570 
571 		/* for far > 1 always use the lowest address */
572 		if (conf->far_copies > 1)
573 			new_distance = r10_bio->devs[nslot].addr;
574 		else
575 			new_distance = abs(r10_bio->devs[nslot].addr -
576 					   conf->mirrors[ndisk].head_position);
577 		if (new_distance < current_distance) {
578 			current_distance = new_distance;
579 			disk = ndisk;
580 			slot = nslot;
581 		}
582 	}
583 
584 rb_out:
585 	r10_bio->read_slot = slot;
586 /*	conf->next_seq_sect = this_sector + sectors;*/
587 
588 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
589 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
590 	else
591 		disk = -1;
592 	rcu_read_unlock();
593 
594 	return disk;
595 }
596 
597 static void unplug_slaves(mddev_t *mddev)
598 {
599 	conf_t *conf = mddev->private;
600 	int i;
601 
602 	rcu_read_lock();
603 	for (i=0; i<mddev->raid_disks; i++) {
604 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
605 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
606 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
607 
608 			atomic_inc(&rdev->nr_pending);
609 			rcu_read_unlock();
610 
611 			blk_unplug(r_queue);
612 
613 			rdev_dec_pending(rdev, mddev);
614 			rcu_read_lock();
615 		}
616 	}
617 	rcu_read_unlock();
618 }
619 
620 static void raid10_unplug(struct request_queue *q)
621 {
622 	mddev_t *mddev = q->queuedata;
623 
624 	unplug_slaves(q->queuedata);
625 	md_wakeup_thread(mddev->thread);
626 }
627 
628 static int raid10_congested(void *data, int bits)
629 {
630 	mddev_t *mddev = data;
631 	conf_t *conf = mddev->private;
632 	int i, ret = 0;
633 
634 	rcu_read_lock();
635 	for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
636 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
637 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
638 			struct request_queue *q = bdev_get_queue(rdev->bdev);
639 
640 			ret |= bdi_congested(&q->backing_dev_info, bits);
641 		}
642 	}
643 	rcu_read_unlock();
644 	return ret;
645 }
646 
647 static int flush_pending_writes(conf_t *conf)
648 {
649 	/* Any writes that have been queued but are awaiting
650 	 * bitmap updates get flushed here.
651 	 * We return 1 if any requests were actually submitted.
652 	 */
653 	int rv = 0;
654 
655 	spin_lock_irq(&conf->device_lock);
656 
657 	if (conf->pending_bio_list.head) {
658 		struct bio *bio;
659 		bio = bio_list_get(&conf->pending_bio_list);
660 		blk_remove_plug(conf->mddev->queue);
661 		spin_unlock_irq(&conf->device_lock);
662 		/* flush any pending bitmap writes to disk
663 		 * before proceeding w/ I/O */
664 		bitmap_unplug(conf->mddev->bitmap);
665 
666 		while (bio) { /* submit pending writes */
667 			struct bio *next = bio->bi_next;
668 			bio->bi_next = NULL;
669 			generic_make_request(bio);
670 			bio = next;
671 		}
672 		rv = 1;
673 	} else
674 		spin_unlock_irq(&conf->device_lock);
675 	return rv;
676 }
677 /* Barriers....
678  * Sometimes we need to suspend IO while we do something else,
679  * either some resync/recovery, or reconfigure the array.
680  * To do this we raise a 'barrier'.
681  * The 'barrier' is a counter that can be raised multiple times
682  * to count how many activities are happening which preclude
683  * normal IO.
684  * We can only raise the barrier if there is no pending IO.
685  * i.e. if nr_pending == 0.
686  * We choose only to raise the barrier if no-one is waiting for the
687  * barrier to go down.  This means that as soon as an IO request
688  * is ready, no other operations which require a barrier will start
689  * until the IO request has had a chance.
690  *
691  * So: regular IO calls 'wait_barrier'.  When that returns there
692  *    is no backgroup IO happening,  It must arrange to call
693  *    allow_barrier when it has finished its IO.
694  * backgroup IO calls must call raise_barrier.  Once that returns
695  *    there is no normal IO happeing.  It must arrange to call
696  *    lower_barrier when the particular background IO completes.
697  */
698 
699 static void raise_barrier(conf_t *conf, int force)
700 {
701 	BUG_ON(force && !conf->barrier);
702 	spin_lock_irq(&conf->resync_lock);
703 
704 	/* Wait until no block IO is waiting (unless 'force') */
705 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
706 			    conf->resync_lock,
707 			    raid10_unplug(conf->mddev->queue));
708 
709 	/* block any new IO from starting */
710 	conf->barrier++;
711 
712 	/* No wait for all pending IO to complete */
713 	wait_event_lock_irq(conf->wait_barrier,
714 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
715 			    conf->resync_lock,
716 			    raid10_unplug(conf->mddev->queue));
717 
718 	spin_unlock_irq(&conf->resync_lock);
719 }
720 
721 static void lower_barrier(conf_t *conf)
722 {
723 	unsigned long flags;
724 	spin_lock_irqsave(&conf->resync_lock, flags);
725 	conf->barrier--;
726 	spin_unlock_irqrestore(&conf->resync_lock, flags);
727 	wake_up(&conf->wait_barrier);
728 }
729 
730 static void wait_barrier(conf_t *conf)
731 {
732 	spin_lock_irq(&conf->resync_lock);
733 	if (conf->barrier) {
734 		conf->nr_waiting++;
735 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
736 				    conf->resync_lock,
737 				    raid10_unplug(conf->mddev->queue));
738 		conf->nr_waiting--;
739 	}
740 	conf->nr_pending++;
741 	spin_unlock_irq(&conf->resync_lock);
742 }
743 
744 static void allow_barrier(conf_t *conf)
745 {
746 	unsigned long flags;
747 	spin_lock_irqsave(&conf->resync_lock, flags);
748 	conf->nr_pending--;
749 	spin_unlock_irqrestore(&conf->resync_lock, flags);
750 	wake_up(&conf->wait_barrier);
751 }
752 
753 static void freeze_array(conf_t *conf)
754 {
755 	/* stop syncio and normal IO and wait for everything to
756 	 * go quiet.
757 	 * We increment barrier and nr_waiting, and then
758 	 * wait until nr_pending match nr_queued+1
759 	 * This is called in the context of one normal IO request
760 	 * that has failed. Thus any sync request that might be pending
761 	 * will be blocked by nr_pending, and we need to wait for
762 	 * pending IO requests to complete or be queued for re-try.
763 	 * Thus the number queued (nr_queued) plus this request (1)
764 	 * must match the number of pending IOs (nr_pending) before
765 	 * we continue.
766 	 */
767 	spin_lock_irq(&conf->resync_lock);
768 	conf->barrier++;
769 	conf->nr_waiting++;
770 	wait_event_lock_irq(conf->wait_barrier,
771 			    conf->nr_pending == conf->nr_queued+1,
772 			    conf->resync_lock,
773 			    ({ flush_pending_writes(conf);
774 			       raid10_unplug(conf->mddev->queue); }));
775 	spin_unlock_irq(&conf->resync_lock);
776 }
777 
778 static void unfreeze_array(conf_t *conf)
779 {
780 	/* reverse the effect of the freeze */
781 	spin_lock_irq(&conf->resync_lock);
782 	conf->barrier--;
783 	conf->nr_waiting--;
784 	wake_up(&conf->wait_barrier);
785 	spin_unlock_irq(&conf->resync_lock);
786 }
787 
788 static int make_request(struct request_queue *q, struct bio * bio)
789 {
790 	mddev_t *mddev = q->queuedata;
791 	conf_t *conf = mddev->private;
792 	mirror_info_t *mirror;
793 	r10bio_t *r10_bio;
794 	struct bio *read_bio;
795 	int cpu;
796 	int i;
797 	int chunk_sects = conf->chunk_mask + 1;
798 	const int rw = bio_data_dir(bio);
799 	const int do_sync = bio_sync(bio);
800 	struct bio_list bl;
801 	unsigned long flags;
802 	mdk_rdev_t *blocked_rdev;
803 
804 	if (unlikely(bio_barrier(bio))) {
805 		bio_endio(bio, -EOPNOTSUPP);
806 		return 0;
807 	}
808 
809 	/* If this request crosses a chunk boundary, we need to
810 	 * split it.  This will only happen for 1 PAGE (or less) requests.
811 	 */
812 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
813 		      > chunk_sects &&
814 		    conf->near_copies < conf->raid_disks)) {
815 		struct bio_pair *bp;
816 		/* Sanity check -- queue functions should prevent this happening */
817 		if (bio->bi_vcnt != 1 ||
818 		    bio->bi_idx != 0)
819 			goto bad_map;
820 		/* This is a one page bio that upper layers
821 		 * refuse to split for us, so we need to split it.
822 		 */
823 		bp = bio_split(bio,
824 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
825 		if (make_request(q, &bp->bio1))
826 			generic_make_request(&bp->bio1);
827 		if (make_request(q, &bp->bio2))
828 			generic_make_request(&bp->bio2);
829 
830 		bio_pair_release(bp);
831 		return 0;
832 	bad_map:
833 		printk("raid10_make_request bug: can't convert block across chunks"
834 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
835 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
836 
837 		bio_io_error(bio);
838 		return 0;
839 	}
840 
841 	md_write_start(mddev, bio);
842 
843 	/*
844 	 * Register the new request and wait if the reconstruction
845 	 * thread has put up a bar for new requests.
846 	 * Continue immediately if no resync is active currently.
847 	 */
848 	wait_barrier(conf);
849 
850 	cpu = part_stat_lock();
851 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
852 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
853 		      bio_sectors(bio));
854 	part_stat_unlock();
855 
856 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
857 
858 	r10_bio->master_bio = bio;
859 	r10_bio->sectors = bio->bi_size >> 9;
860 
861 	r10_bio->mddev = mddev;
862 	r10_bio->sector = bio->bi_sector;
863 	r10_bio->state = 0;
864 
865 	if (rw == READ) {
866 		/*
867 		 * read balancing logic:
868 		 */
869 		int disk = read_balance(conf, r10_bio);
870 		int slot = r10_bio->read_slot;
871 		if (disk < 0) {
872 			raid_end_bio_io(r10_bio);
873 			return 0;
874 		}
875 		mirror = conf->mirrors + disk;
876 
877 		read_bio = bio_clone(bio, GFP_NOIO);
878 
879 		r10_bio->devs[slot].bio = read_bio;
880 
881 		read_bio->bi_sector = r10_bio->devs[slot].addr +
882 			mirror->rdev->data_offset;
883 		read_bio->bi_bdev = mirror->rdev->bdev;
884 		read_bio->bi_end_io = raid10_end_read_request;
885 		read_bio->bi_rw = READ | do_sync;
886 		read_bio->bi_private = r10_bio;
887 
888 		generic_make_request(read_bio);
889 		return 0;
890 	}
891 
892 	/*
893 	 * WRITE:
894 	 */
895 	/* first select target devices under rcu_lock and
896 	 * inc refcount on their rdev.  Record them by setting
897 	 * bios[x] to bio
898 	 */
899 	raid10_find_phys(conf, r10_bio);
900  retry_write:
901 	blocked_rdev = NULL;
902 	rcu_read_lock();
903 	for (i = 0;  i < conf->copies; i++) {
904 		int d = r10_bio->devs[i].devnum;
905 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
906 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
907 			atomic_inc(&rdev->nr_pending);
908 			blocked_rdev = rdev;
909 			break;
910 		}
911 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
912 			atomic_inc(&rdev->nr_pending);
913 			r10_bio->devs[i].bio = bio;
914 		} else {
915 			r10_bio->devs[i].bio = NULL;
916 			set_bit(R10BIO_Degraded, &r10_bio->state);
917 		}
918 	}
919 	rcu_read_unlock();
920 
921 	if (unlikely(blocked_rdev)) {
922 		/* Have to wait for this device to get unblocked, then retry */
923 		int j;
924 		int d;
925 
926 		for (j = 0; j < i; j++)
927 			if (r10_bio->devs[j].bio) {
928 				d = r10_bio->devs[j].devnum;
929 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
930 			}
931 		allow_barrier(conf);
932 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
933 		wait_barrier(conf);
934 		goto retry_write;
935 	}
936 
937 	atomic_set(&r10_bio->remaining, 0);
938 
939 	bio_list_init(&bl);
940 	for (i = 0; i < conf->copies; i++) {
941 		struct bio *mbio;
942 		int d = r10_bio->devs[i].devnum;
943 		if (!r10_bio->devs[i].bio)
944 			continue;
945 
946 		mbio = bio_clone(bio, GFP_NOIO);
947 		r10_bio->devs[i].bio = mbio;
948 
949 		mbio->bi_sector	= r10_bio->devs[i].addr+
950 			conf->mirrors[d].rdev->data_offset;
951 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
952 		mbio->bi_end_io	= raid10_end_write_request;
953 		mbio->bi_rw = WRITE | do_sync;
954 		mbio->bi_private = r10_bio;
955 
956 		atomic_inc(&r10_bio->remaining);
957 		bio_list_add(&bl, mbio);
958 	}
959 
960 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
961 		/* the array is dead */
962 		md_write_end(mddev);
963 		raid_end_bio_io(r10_bio);
964 		return 0;
965 	}
966 
967 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
968 	spin_lock_irqsave(&conf->device_lock, flags);
969 	bio_list_merge(&conf->pending_bio_list, &bl);
970 	blk_plug_device(mddev->queue);
971 	spin_unlock_irqrestore(&conf->device_lock, flags);
972 
973 	/* In case raid10d snuck in to freeze_array */
974 	wake_up(&conf->wait_barrier);
975 
976 	if (do_sync)
977 		md_wakeup_thread(mddev->thread);
978 
979 	return 0;
980 }
981 
982 static void status(struct seq_file *seq, mddev_t *mddev)
983 {
984 	conf_t *conf = mddev->private;
985 	int i;
986 
987 	if (conf->near_copies < conf->raid_disks)
988 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
989 	if (conf->near_copies > 1)
990 		seq_printf(seq, " %d near-copies", conf->near_copies);
991 	if (conf->far_copies > 1) {
992 		if (conf->far_offset)
993 			seq_printf(seq, " %d offset-copies", conf->far_copies);
994 		else
995 			seq_printf(seq, " %d far-copies", conf->far_copies);
996 	}
997 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
998 					conf->raid_disks - mddev->degraded);
999 	for (i = 0; i < conf->raid_disks; i++)
1000 		seq_printf(seq, "%s",
1001 			      conf->mirrors[i].rdev &&
1002 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1003 	seq_printf(seq, "]");
1004 }
1005 
1006 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1007 {
1008 	char b[BDEVNAME_SIZE];
1009 	conf_t *conf = mddev->private;
1010 
1011 	/*
1012 	 * If it is not operational, then we have already marked it as dead
1013 	 * else if it is the last working disks, ignore the error, let the
1014 	 * next level up know.
1015 	 * else mark the drive as failed
1016 	 */
1017 	if (test_bit(In_sync, &rdev->flags)
1018 	    && conf->raid_disks-mddev->degraded == 1)
1019 		/*
1020 		 * Don't fail the drive, just return an IO error.
1021 		 * The test should really be more sophisticated than
1022 		 * "working_disks == 1", but it isn't critical, and
1023 		 * can wait until we do more sophisticated "is the drive
1024 		 * really dead" tests...
1025 		 */
1026 		return;
1027 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1028 		unsigned long flags;
1029 		spin_lock_irqsave(&conf->device_lock, flags);
1030 		mddev->degraded++;
1031 		spin_unlock_irqrestore(&conf->device_lock, flags);
1032 		/*
1033 		 * if recovery is running, make sure it aborts.
1034 		 */
1035 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1036 	}
1037 	set_bit(Faulty, &rdev->flags);
1038 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1039 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1040 		"raid10: Operation continuing on %d devices.\n",
1041 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1042 }
1043 
1044 static void print_conf(conf_t *conf)
1045 {
1046 	int i;
1047 	mirror_info_t *tmp;
1048 
1049 	printk("RAID10 conf printout:\n");
1050 	if (!conf) {
1051 		printk("(!conf)\n");
1052 		return;
1053 	}
1054 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1055 		conf->raid_disks);
1056 
1057 	for (i = 0; i < conf->raid_disks; i++) {
1058 		char b[BDEVNAME_SIZE];
1059 		tmp = conf->mirrors + i;
1060 		if (tmp->rdev)
1061 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1062 				i, !test_bit(In_sync, &tmp->rdev->flags),
1063 			        !test_bit(Faulty, &tmp->rdev->flags),
1064 				bdevname(tmp->rdev->bdev,b));
1065 	}
1066 }
1067 
1068 static void close_sync(conf_t *conf)
1069 {
1070 	wait_barrier(conf);
1071 	allow_barrier(conf);
1072 
1073 	mempool_destroy(conf->r10buf_pool);
1074 	conf->r10buf_pool = NULL;
1075 }
1076 
1077 /* check if there are enough drives for
1078  * every block to appear on atleast one
1079  */
1080 static int enough(conf_t *conf)
1081 {
1082 	int first = 0;
1083 
1084 	do {
1085 		int n = conf->copies;
1086 		int cnt = 0;
1087 		while (n--) {
1088 			if (conf->mirrors[first].rdev)
1089 				cnt++;
1090 			first = (first+1) % conf->raid_disks;
1091 		}
1092 		if (cnt == 0)
1093 			return 0;
1094 	} while (first != 0);
1095 	return 1;
1096 }
1097 
1098 static int raid10_spare_active(mddev_t *mddev)
1099 {
1100 	int i;
1101 	conf_t *conf = mddev->private;
1102 	mirror_info_t *tmp;
1103 
1104 	/*
1105 	 * Find all non-in_sync disks within the RAID10 configuration
1106 	 * and mark them in_sync
1107 	 */
1108 	for (i = 0; i < conf->raid_disks; i++) {
1109 		tmp = conf->mirrors + i;
1110 		if (tmp->rdev
1111 		    && !test_bit(Faulty, &tmp->rdev->flags)
1112 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1113 			unsigned long flags;
1114 			spin_lock_irqsave(&conf->device_lock, flags);
1115 			mddev->degraded--;
1116 			spin_unlock_irqrestore(&conf->device_lock, flags);
1117 		}
1118 	}
1119 
1120 	print_conf(conf);
1121 	return 0;
1122 }
1123 
1124 
1125 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1126 {
1127 	conf_t *conf = mddev->private;
1128 	int err = -EEXIST;
1129 	int mirror;
1130 	mirror_info_t *p;
1131 	int first = 0;
1132 	int last = mddev->raid_disks - 1;
1133 
1134 	if (mddev->recovery_cp < MaxSector)
1135 		/* only hot-add to in-sync arrays, as recovery is
1136 		 * very different from resync
1137 		 */
1138 		return -EBUSY;
1139 	if (!enough(conf))
1140 		return -EINVAL;
1141 
1142 	if (rdev->raid_disk >= 0)
1143 		first = last = rdev->raid_disk;
1144 
1145 	if (rdev->saved_raid_disk >= 0 &&
1146 	    rdev->saved_raid_disk >= first &&
1147 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1148 		mirror = rdev->saved_raid_disk;
1149 	else
1150 		mirror = first;
1151 	for ( ; mirror <= last ; mirror++)
1152 		if ( !(p=conf->mirrors+mirror)->rdev) {
1153 
1154 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1155 					  rdev->data_offset << 9);
1156 			/* as we don't honour merge_bvec_fn, we must never risk
1157 			 * violating it, so limit ->max_sector to one PAGE, as
1158 			 * a one page request is never in violation.
1159 			 */
1160 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1161 			    queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
1162 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1163 
1164 			p->head_position = 0;
1165 			rdev->raid_disk = mirror;
1166 			err = 0;
1167 			if (rdev->saved_raid_disk != mirror)
1168 				conf->fullsync = 1;
1169 			rcu_assign_pointer(p->rdev, rdev);
1170 			break;
1171 		}
1172 
1173 	md_integrity_add_rdev(rdev, mddev);
1174 	print_conf(conf);
1175 	return err;
1176 }
1177 
1178 static int raid10_remove_disk(mddev_t *mddev, int number)
1179 {
1180 	conf_t *conf = mddev->private;
1181 	int err = 0;
1182 	mdk_rdev_t *rdev;
1183 	mirror_info_t *p = conf->mirrors+ number;
1184 
1185 	print_conf(conf);
1186 	rdev = p->rdev;
1187 	if (rdev) {
1188 		if (test_bit(In_sync, &rdev->flags) ||
1189 		    atomic_read(&rdev->nr_pending)) {
1190 			err = -EBUSY;
1191 			goto abort;
1192 		}
1193 		/* Only remove faulty devices in recovery
1194 		 * is not possible.
1195 		 */
1196 		if (!test_bit(Faulty, &rdev->flags) &&
1197 		    enough(conf)) {
1198 			err = -EBUSY;
1199 			goto abort;
1200 		}
1201 		p->rdev = NULL;
1202 		synchronize_rcu();
1203 		if (atomic_read(&rdev->nr_pending)) {
1204 			/* lost the race, try later */
1205 			err = -EBUSY;
1206 			p->rdev = rdev;
1207 			goto abort;
1208 		}
1209 		md_integrity_register(mddev);
1210 	}
1211 abort:
1212 
1213 	print_conf(conf);
1214 	return err;
1215 }
1216 
1217 
1218 static void end_sync_read(struct bio *bio, int error)
1219 {
1220 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1221 	conf_t *conf = r10_bio->mddev->private;
1222 	int i,d;
1223 
1224 	for (i=0; i<conf->copies; i++)
1225 		if (r10_bio->devs[i].bio == bio)
1226 			break;
1227 	BUG_ON(i == conf->copies);
1228 	update_head_pos(i, r10_bio);
1229 	d = r10_bio->devs[i].devnum;
1230 
1231 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1232 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1233 	else {
1234 		atomic_add(r10_bio->sectors,
1235 			   &conf->mirrors[d].rdev->corrected_errors);
1236 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1237 			md_error(r10_bio->mddev,
1238 				 conf->mirrors[d].rdev);
1239 	}
1240 
1241 	/* for reconstruct, we always reschedule after a read.
1242 	 * for resync, only after all reads
1243 	 */
1244 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1245 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1246 	    atomic_dec_and_test(&r10_bio->remaining)) {
1247 		/* we have read all the blocks,
1248 		 * do the comparison in process context in raid10d
1249 		 */
1250 		reschedule_retry(r10_bio);
1251 	}
1252 }
1253 
1254 static void end_sync_write(struct bio *bio, int error)
1255 {
1256 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1257 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1258 	mddev_t *mddev = r10_bio->mddev;
1259 	conf_t *conf = mddev->private;
1260 	int i,d;
1261 
1262 	for (i = 0; i < conf->copies; i++)
1263 		if (r10_bio->devs[i].bio == bio)
1264 			break;
1265 	d = r10_bio->devs[i].devnum;
1266 
1267 	if (!uptodate)
1268 		md_error(mddev, conf->mirrors[d].rdev);
1269 
1270 	update_head_pos(i, r10_bio);
1271 
1272 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1273 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1274 		if (r10_bio->master_bio == NULL) {
1275 			/* the primary of several recovery bios */
1276 			sector_t s = r10_bio->sectors;
1277 			put_buf(r10_bio);
1278 			md_done_sync(mddev, s, 1);
1279 			break;
1280 		} else {
1281 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1282 			put_buf(r10_bio);
1283 			r10_bio = r10_bio2;
1284 		}
1285 	}
1286 }
1287 
1288 /*
1289  * Note: sync and recover and handled very differently for raid10
1290  * This code is for resync.
1291  * For resync, we read through virtual addresses and read all blocks.
1292  * If there is any error, we schedule a write.  The lowest numbered
1293  * drive is authoritative.
1294  * However requests come for physical address, so we need to map.
1295  * For every physical address there are raid_disks/copies virtual addresses,
1296  * which is always are least one, but is not necessarly an integer.
1297  * This means that a physical address can span multiple chunks, so we may
1298  * have to submit multiple io requests for a single sync request.
1299  */
1300 /*
1301  * We check if all blocks are in-sync and only write to blocks that
1302  * aren't in sync
1303  */
1304 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1305 {
1306 	conf_t *conf = mddev->private;
1307 	int i, first;
1308 	struct bio *tbio, *fbio;
1309 
1310 	atomic_set(&r10_bio->remaining, 1);
1311 
1312 	/* find the first device with a block */
1313 	for (i=0; i<conf->copies; i++)
1314 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1315 			break;
1316 
1317 	if (i == conf->copies)
1318 		goto done;
1319 
1320 	first = i;
1321 	fbio = r10_bio->devs[i].bio;
1322 
1323 	/* now find blocks with errors */
1324 	for (i=0 ; i < conf->copies ; i++) {
1325 		int  j, d;
1326 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1327 
1328 		tbio = r10_bio->devs[i].bio;
1329 
1330 		if (tbio->bi_end_io != end_sync_read)
1331 			continue;
1332 		if (i == first)
1333 			continue;
1334 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1335 			/* We know that the bi_io_vec layout is the same for
1336 			 * both 'first' and 'i', so we just compare them.
1337 			 * All vec entries are PAGE_SIZE;
1338 			 */
1339 			for (j = 0; j < vcnt; j++)
1340 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1341 					   page_address(tbio->bi_io_vec[j].bv_page),
1342 					   PAGE_SIZE))
1343 					break;
1344 			if (j == vcnt)
1345 				continue;
1346 			mddev->resync_mismatches += r10_bio->sectors;
1347 		}
1348 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1349 			/* Don't fix anything. */
1350 			continue;
1351 		/* Ok, we need to write this bio
1352 		 * First we need to fixup bv_offset, bv_len and
1353 		 * bi_vecs, as the read request might have corrupted these
1354 		 */
1355 		tbio->bi_vcnt = vcnt;
1356 		tbio->bi_size = r10_bio->sectors << 9;
1357 		tbio->bi_idx = 0;
1358 		tbio->bi_phys_segments = 0;
1359 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1360 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1361 		tbio->bi_next = NULL;
1362 		tbio->bi_rw = WRITE;
1363 		tbio->bi_private = r10_bio;
1364 		tbio->bi_sector = r10_bio->devs[i].addr;
1365 
1366 		for (j=0; j < vcnt ; j++) {
1367 			tbio->bi_io_vec[j].bv_offset = 0;
1368 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1369 
1370 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1371 			       page_address(fbio->bi_io_vec[j].bv_page),
1372 			       PAGE_SIZE);
1373 		}
1374 		tbio->bi_end_io = end_sync_write;
1375 
1376 		d = r10_bio->devs[i].devnum;
1377 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1378 		atomic_inc(&r10_bio->remaining);
1379 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1380 
1381 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1382 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1383 		generic_make_request(tbio);
1384 	}
1385 
1386 done:
1387 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1388 		md_done_sync(mddev, r10_bio->sectors, 1);
1389 		put_buf(r10_bio);
1390 	}
1391 }
1392 
1393 /*
1394  * Now for the recovery code.
1395  * Recovery happens across physical sectors.
1396  * We recover all non-is_sync drives by finding the virtual address of
1397  * each, and then choose a working drive that also has that virt address.
1398  * There is a separate r10_bio for each non-in_sync drive.
1399  * Only the first two slots are in use. The first for reading,
1400  * The second for writing.
1401  *
1402  */
1403 
1404 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1405 {
1406 	conf_t *conf = mddev->private;
1407 	int i, d;
1408 	struct bio *bio, *wbio;
1409 
1410 
1411 	/* move the pages across to the second bio
1412 	 * and submit the write request
1413 	 */
1414 	bio = r10_bio->devs[0].bio;
1415 	wbio = r10_bio->devs[1].bio;
1416 	for (i=0; i < wbio->bi_vcnt; i++) {
1417 		struct page *p = bio->bi_io_vec[i].bv_page;
1418 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1419 		wbio->bi_io_vec[i].bv_page = p;
1420 	}
1421 	d = r10_bio->devs[1].devnum;
1422 
1423 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1424 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1425 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1426 		generic_make_request(wbio);
1427 	else
1428 		bio_endio(wbio, -EIO);
1429 }
1430 
1431 
1432 /*
1433  * This is a kernel thread which:
1434  *
1435  *	1.	Retries failed read operations on working mirrors.
1436  *	2.	Updates the raid superblock when problems encounter.
1437  *	3.	Performs writes following reads for array synchronising.
1438  */
1439 
1440 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1441 {
1442 	int sect = 0; /* Offset from r10_bio->sector */
1443 	int sectors = r10_bio->sectors;
1444 	mdk_rdev_t*rdev;
1445 	while(sectors) {
1446 		int s = sectors;
1447 		int sl = r10_bio->read_slot;
1448 		int success = 0;
1449 		int start;
1450 
1451 		if (s > (PAGE_SIZE>>9))
1452 			s = PAGE_SIZE >> 9;
1453 
1454 		rcu_read_lock();
1455 		do {
1456 			int d = r10_bio->devs[sl].devnum;
1457 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1458 			if (rdev &&
1459 			    test_bit(In_sync, &rdev->flags)) {
1460 				atomic_inc(&rdev->nr_pending);
1461 				rcu_read_unlock();
1462 				success = sync_page_io(rdev->bdev,
1463 						       r10_bio->devs[sl].addr +
1464 						       sect + rdev->data_offset,
1465 						       s<<9,
1466 						       conf->tmppage, READ);
1467 				rdev_dec_pending(rdev, mddev);
1468 				rcu_read_lock();
1469 				if (success)
1470 					break;
1471 			}
1472 			sl++;
1473 			if (sl == conf->copies)
1474 				sl = 0;
1475 		} while (!success && sl != r10_bio->read_slot);
1476 		rcu_read_unlock();
1477 
1478 		if (!success) {
1479 			/* Cannot read from anywhere -- bye bye array */
1480 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1481 			md_error(mddev, conf->mirrors[dn].rdev);
1482 			break;
1483 		}
1484 
1485 		start = sl;
1486 		/* write it back and re-read */
1487 		rcu_read_lock();
1488 		while (sl != r10_bio->read_slot) {
1489 			int d;
1490 			if (sl==0)
1491 				sl = conf->copies;
1492 			sl--;
1493 			d = r10_bio->devs[sl].devnum;
1494 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1495 			if (rdev &&
1496 			    test_bit(In_sync, &rdev->flags)) {
1497 				atomic_inc(&rdev->nr_pending);
1498 				rcu_read_unlock();
1499 				atomic_add(s, &rdev->corrected_errors);
1500 				if (sync_page_io(rdev->bdev,
1501 						 r10_bio->devs[sl].addr +
1502 						 sect + rdev->data_offset,
1503 						 s<<9, conf->tmppage, WRITE)
1504 				    == 0)
1505 					/* Well, this device is dead */
1506 					md_error(mddev, rdev);
1507 				rdev_dec_pending(rdev, mddev);
1508 				rcu_read_lock();
1509 			}
1510 		}
1511 		sl = start;
1512 		while (sl != r10_bio->read_slot) {
1513 			int d;
1514 			if (sl==0)
1515 				sl = conf->copies;
1516 			sl--;
1517 			d = r10_bio->devs[sl].devnum;
1518 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1519 			if (rdev &&
1520 			    test_bit(In_sync, &rdev->flags)) {
1521 				char b[BDEVNAME_SIZE];
1522 				atomic_inc(&rdev->nr_pending);
1523 				rcu_read_unlock();
1524 				if (sync_page_io(rdev->bdev,
1525 						 r10_bio->devs[sl].addr +
1526 						 sect + rdev->data_offset,
1527 						 s<<9, conf->tmppage, READ) == 0)
1528 					/* Well, this device is dead */
1529 					md_error(mddev, rdev);
1530 				else
1531 					printk(KERN_INFO
1532 					       "raid10:%s: read error corrected"
1533 					       " (%d sectors at %llu on %s)\n",
1534 					       mdname(mddev), s,
1535 					       (unsigned long long)(sect+
1536 					            rdev->data_offset),
1537 					       bdevname(rdev->bdev, b));
1538 
1539 				rdev_dec_pending(rdev, mddev);
1540 				rcu_read_lock();
1541 			}
1542 		}
1543 		rcu_read_unlock();
1544 
1545 		sectors -= s;
1546 		sect += s;
1547 	}
1548 }
1549 
1550 static void raid10d(mddev_t *mddev)
1551 {
1552 	r10bio_t *r10_bio;
1553 	struct bio *bio;
1554 	unsigned long flags;
1555 	conf_t *conf = mddev->private;
1556 	struct list_head *head = &conf->retry_list;
1557 	int unplug=0;
1558 	mdk_rdev_t *rdev;
1559 
1560 	md_check_recovery(mddev);
1561 
1562 	for (;;) {
1563 		char b[BDEVNAME_SIZE];
1564 
1565 		unplug += flush_pending_writes(conf);
1566 
1567 		spin_lock_irqsave(&conf->device_lock, flags);
1568 		if (list_empty(head)) {
1569 			spin_unlock_irqrestore(&conf->device_lock, flags);
1570 			break;
1571 		}
1572 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1573 		list_del(head->prev);
1574 		conf->nr_queued--;
1575 		spin_unlock_irqrestore(&conf->device_lock, flags);
1576 
1577 		mddev = r10_bio->mddev;
1578 		conf = mddev->private;
1579 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1580 			sync_request_write(mddev, r10_bio);
1581 			unplug = 1;
1582 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1583 			recovery_request_write(mddev, r10_bio);
1584 			unplug = 1;
1585 		} else {
1586 			int mirror;
1587 			/* we got a read error. Maybe the drive is bad.  Maybe just
1588 			 * the block and we can fix it.
1589 			 * We freeze all other IO, and try reading the block from
1590 			 * other devices.  When we find one, we re-write
1591 			 * and check it that fixes the read error.
1592 			 * This is all done synchronously while the array is
1593 			 * frozen.
1594 			 */
1595 			if (mddev->ro == 0) {
1596 				freeze_array(conf);
1597 				fix_read_error(conf, mddev, r10_bio);
1598 				unfreeze_array(conf);
1599 			}
1600 
1601 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1602 			r10_bio->devs[r10_bio->read_slot].bio =
1603 				mddev->ro ? IO_BLOCKED : NULL;
1604 			mirror = read_balance(conf, r10_bio);
1605 			if (mirror == -1) {
1606 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1607 				       " read error for block %llu\n",
1608 				       bdevname(bio->bi_bdev,b),
1609 				       (unsigned long long)r10_bio->sector);
1610 				raid_end_bio_io(r10_bio);
1611 				bio_put(bio);
1612 			} else {
1613 				const int do_sync = bio_sync(r10_bio->master_bio);
1614 				bio_put(bio);
1615 				rdev = conf->mirrors[mirror].rdev;
1616 				if (printk_ratelimit())
1617 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1618 					       " another mirror\n",
1619 					       bdevname(rdev->bdev,b),
1620 					       (unsigned long long)r10_bio->sector);
1621 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1622 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1623 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1624 					+ rdev->data_offset;
1625 				bio->bi_bdev = rdev->bdev;
1626 				bio->bi_rw = READ | do_sync;
1627 				bio->bi_private = r10_bio;
1628 				bio->bi_end_io = raid10_end_read_request;
1629 				unplug = 1;
1630 				generic_make_request(bio);
1631 			}
1632 		}
1633 	}
1634 	if (unplug)
1635 		unplug_slaves(mddev);
1636 }
1637 
1638 
1639 static int init_resync(conf_t *conf)
1640 {
1641 	int buffs;
1642 
1643 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1644 	BUG_ON(conf->r10buf_pool);
1645 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1646 	if (!conf->r10buf_pool)
1647 		return -ENOMEM;
1648 	conf->next_resync = 0;
1649 	return 0;
1650 }
1651 
1652 /*
1653  * perform a "sync" on one "block"
1654  *
1655  * We need to make sure that no normal I/O request - particularly write
1656  * requests - conflict with active sync requests.
1657  *
1658  * This is achieved by tracking pending requests and a 'barrier' concept
1659  * that can be installed to exclude normal IO requests.
1660  *
1661  * Resync and recovery are handled very differently.
1662  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1663  *
1664  * For resync, we iterate over virtual addresses, read all copies,
1665  * and update if there are differences.  If only one copy is live,
1666  * skip it.
1667  * For recovery, we iterate over physical addresses, read a good
1668  * value for each non-in_sync drive, and over-write.
1669  *
1670  * So, for recovery we may have several outstanding complex requests for a
1671  * given address, one for each out-of-sync device.  We model this by allocating
1672  * a number of r10_bio structures, one for each out-of-sync device.
1673  * As we setup these structures, we collect all bio's together into a list
1674  * which we then process collectively to add pages, and then process again
1675  * to pass to generic_make_request.
1676  *
1677  * The r10_bio structures are linked using a borrowed master_bio pointer.
1678  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1679  * has its remaining count decremented to 0, the whole complex operation
1680  * is complete.
1681  *
1682  */
1683 
1684 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1685 {
1686 	conf_t *conf = mddev->private;
1687 	r10bio_t *r10_bio;
1688 	struct bio *biolist = NULL, *bio;
1689 	sector_t max_sector, nr_sectors;
1690 	int disk;
1691 	int i;
1692 	int max_sync;
1693 	int sync_blocks;
1694 
1695 	sector_t sectors_skipped = 0;
1696 	int chunks_skipped = 0;
1697 
1698 	if (!conf->r10buf_pool)
1699 		if (init_resync(conf))
1700 			return 0;
1701 
1702  skipped:
1703 	max_sector = mddev->dev_sectors;
1704 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1705 		max_sector = mddev->resync_max_sectors;
1706 	if (sector_nr >= max_sector) {
1707 		/* If we aborted, we need to abort the
1708 		 * sync on the 'current' bitmap chucks (there can
1709 		 * be several when recovering multiple devices).
1710 		 * as we may have started syncing it but not finished.
1711 		 * We can find the current address in
1712 		 * mddev->curr_resync, but for recovery,
1713 		 * we need to convert that to several
1714 		 * virtual addresses.
1715 		 */
1716 		if (mddev->curr_resync < max_sector) { /* aborted */
1717 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1718 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1719 						&sync_blocks, 1);
1720 			else for (i=0; i<conf->raid_disks; i++) {
1721 				sector_t sect =
1722 					raid10_find_virt(conf, mddev->curr_resync, i);
1723 				bitmap_end_sync(mddev->bitmap, sect,
1724 						&sync_blocks, 1);
1725 			}
1726 		} else /* completed sync */
1727 			conf->fullsync = 0;
1728 
1729 		bitmap_close_sync(mddev->bitmap);
1730 		close_sync(conf);
1731 		*skipped = 1;
1732 		return sectors_skipped;
1733 	}
1734 	if (chunks_skipped >= conf->raid_disks) {
1735 		/* if there has been nothing to do on any drive,
1736 		 * then there is nothing to do at all..
1737 		 */
1738 		*skipped = 1;
1739 		return (max_sector - sector_nr) + sectors_skipped;
1740 	}
1741 
1742 	if (max_sector > mddev->resync_max)
1743 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1744 
1745 	/* make sure whole request will fit in a chunk - if chunks
1746 	 * are meaningful
1747 	 */
1748 	if (conf->near_copies < conf->raid_disks &&
1749 	    max_sector > (sector_nr | conf->chunk_mask))
1750 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1751 	/*
1752 	 * If there is non-resync activity waiting for us then
1753 	 * put in a delay to throttle resync.
1754 	 */
1755 	if (!go_faster && conf->nr_waiting)
1756 		msleep_interruptible(1000);
1757 
1758 	/* Again, very different code for resync and recovery.
1759 	 * Both must result in an r10bio with a list of bios that
1760 	 * have bi_end_io, bi_sector, bi_bdev set,
1761 	 * and bi_private set to the r10bio.
1762 	 * For recovery, we may actually create several r10bios
1763 	 * with 2 bios in each, that correspond to the bios in the main one.
1764 	 * In this case, the subordinate r10bios link back through a
1765 	 * borrowed master_bio pointer, and the counter in the master
1766 	 * includes a ref from each subordinate.
1767 	 */
1768 	/* First, we decide what to do and set ->bi_end_io
1769 	 * To end_sync_read if we want to read, and
1770 	 * end_sync_write if we will want to write.
1771 	 */
1772 
1773 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1774 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1775 		/* recovery... the complicated one */
1776 		int i, j, k;
1777 		r10_bio = NULL;
1778 
1779 		for (i=0 ; i<conf->raid_disks; i++)
1780 			if (conf->mirrors[i].rdev &&
1781 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1782 				int still_degraded = 0;
1783 				/* want to reconstruct this device */
1784 				r10bio_t *rb2 = r10_bio;
1785 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1786 				int must_sync;
1787 				/* Unless we are doing a full sync, we only need
1788 				 * to recover the block if it is set in the bitmap
1789 				 */
1790 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1791 							      &sync_blocks, 1);
1792 				if (sync_blocks < max_sync)
1793 					max_sync = sync_blocks;
1794 				if (!must_sync &&
1795 				    !conf->fullsync) {
1796 					/* yep, skip the sync_blocks here, but don't assume
1797 					 * that there will never be anything to do here
1798 					 */
1799 					chunks_skipped = -1;
1800 					continue;
1801 				}
1802 
1803 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1804 				raise_barrier(conf, rb2 != NULL);
1805 				atomic_set(&r10_bio->remaining, 0);
1806 
1807 				r10_bio->master_bio = (struct bio*)rb2;
1808 				if (rb2)
1809 					atomic_inc(&rb2->remaining);
1810 				r10_bio->mddev = mddev;
1811 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1812 				r10_bio->sector = sect;
1813 
1814 				raid10_find_phys(conf, r10_bio);
1815 
1816 				/* Need to check if the array will still be
1817 				 * degraded
1818 				 */
1819 				for (j=0; j<conf->raid_disks; j++)
1820 					if (conf->mirrors[j].rdev == NULL ||
1821 					    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1822 						still_degraded = 1;
1823 						break;
1824 					}
1825 
1826 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1827 							      &sync_blocks, still_degraded);
1828 
1829 				for (j=0; j<conf->copies;j++) {
1830 					int d = r10_bio->devs[j].devnum;
1831 					if (conf->mirrors[d].rdev &&
1832 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1833 						/* This is where we read from */
1834 						bio = r10_bio->devs[0].bio;
1835 						bio->bi_next = biolist;
1836 						biolist = bio;
1837 						bio->bi_private = r10_bio;
1838 						bio->bi_end_io = end_sync_read;
1839 						bio->bi_rw = READ;
1840 						bio->bi_sector = r10_bio->devs[j].addr +
1841 							conf->mirrors[d].rdev->data_offset;
1842 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1843 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1844 						atomic_inc(&r10_bio->remaining);
1845 						/* and we write to 'i' */
1846 
1847 						for (k=0; k<conf->copies; k++)
1848 							if (r10_bio->devs[k].devnum == i)
1849 								break;
1850 						BUG_ON(k == conf->copies);
1851 						bio = r10_bio->devs[1].bio;
1852 						bio->bi_next = biolist;
1853 						biolist = bio;
1854 						bio->bi_private = r10_bio;
1855 						bio->bi_end_io = end_sync_write;
1856 						bio->bi_rw = WRITE;
1857 						bio->bi_sector = r10_bio->devs[k].addr +
1858 							conf->mirrors[i].rdev->data_offset;
1859 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1860 
1861 						r10_bio->devs[0].devnum = d;
1862 						r10_bio->devs[1].devnum = i;
1863 
1864 						break;
1865 					}
1866 				}
1867 				if (j == conf->copies) {
1868 					/* Cannot recover, so abort the recovery */
1869 					put_buf(r10_bio);
1870 					if (rb2)
1871 						atomic_dec(&rb2->remaining);
1872 					r10_bio = rb2;
1873 					if (!test_and_set_bit(MD_RECOVERY_INTR,
1874 							      &mddev->recovery))
1875 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1876 						       mdname(mddev));
1877 					break;
1878 				}
1879 			}
1880 		if (biolist == NULL) {
1881 			while (r10_bio) {
1882 				r10bio_t *rb2 = r10_bio;
1883 				r10_bio = (r10bio_t*) rb2->master_bio;
1884 				rb2->master_bio = NULL;
1885 				put_buf(rb2);
1886 			}
1887 			goto giveup;
1888 		}
1889 	} else {
1890 		/* resync. Schedule a read for every block at this virt offset */
1891 		int count = 0;
1892 
1893 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1894 
1895 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1896 				       &sync_blocks, mddev->degraded) &&
1897 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1898 			/* We can skip this block */
1899 			*skipped = 1;
1900 			return sync_blocks + sectors_skipped;
1901 		}
1902 		if (sync_blocks < max_sync)
1903 			max_sync = sync_blocks;
1904 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1905 
1906 		r10_bio->mddev = mddev;
1907 		atomic_set(&r10_bio->remaining, 0);
1908 		raise_barrier(conf, 0);
1909 		conf->next_resync = sector_nr;
1910 
1911 		r10_bio->master_bio = NULL;
1912 		r10_bio->sector = sector_nr;
1913 		set_bit(R10BIO_IsSync, &r10_bio->state);
1914 		raid10_find_phys(conf, r10_bio);
1915 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1916 
1917 		for (i=0; i<conf->copies; i++) {
1918 			int d = r10_bio->devs[i].devnum;
1919 			bio = r10_bio->devs[i].bio;
1920 			bio->bi_end_io = NULL;
1921 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1922 			if (conf->mirrors[d].rdev == NULL ||
1923 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1924 				continue;
1925 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1926 			atomic_inc(&r10_bio->remaining);
1927 			bio->bi_next = biolist;
1928 			biolist = bio;
1929 			bio->bi_private = r10_bio;
1930 			bio->bi_end_io = end_sync_read;
1931 			bio->bi_rw = READ;
1932 			bio->bi_sector = r10_bio->devs[i].addr +
1933 				conf->mirrors[d].rdev->data_offset;
1934 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1935 			count++;
1936 		}
1937 
1938 		if (count < 2) {
1939 			for (i=0; i<conf->copies; i++) {
1940 				int d = r10_bio->devs[i].devnum;
1941 				if (r10_bio->devs[i].bio->bi_end_io)
1942 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1943 			}
1944 			put_buf(r10_bio);
1945 			biolist = NULL;
1946 			goto giveup;
1947 		}
1948 	}
1949 
1950 	for (bio = biolist; bio ; bio=bio->bi_next) {
1951 
1952 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1953 		if (bio->bi_end_io)
1954 			bio->bi_flags |= 1 << BIO_UPTODATE;
1955 		bio->bi_vcnt = 0;
1956 		bio->bi_idx = 0;
1957 		bio->bi_phys_segments = 0;
1958 		bio->bi_size = 0;
1959 	}
1960 
1961 	nr_sectors = 0;
1962 	if (sector_nr + max_sync < max_sector)
1963 		max_sector = sector_nr + max_sync;
1964 	do {
1965 		struct page *page;
1966 		int len = PAGE_SIZE;
1967 		disk = 0;
1968 		if (sector_nr + (len>>9) > max_sector)
1969 			len = (max_sector - sector_nr) << 9;
1970 		if (len == 0)
1971 			break;
1972 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1973 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1974 			if (bio_add_page(bio, page, len, 0) == 0) {
1975 				/* stop here */
1976 				struct bio *bio2;
1977 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1978 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1979 					/* remove last page from this bio */
1980 					bio2->bi_vcnt--;
1981 					bio2->bi_size -= len;
1982 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1983 				}
1984 				goto bio_full;
1985 			}
1986 			disk = i;
1987 		}
1988 		nr_sectors += len>>9;
1989 		sector_nr += len>>9;
1990 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1991  bio_full:
1992 	r10_bio->sectors = nr_sectors;
1993 
1994 	while (biolist) {
1995 		bio = biolist;
1996 		biolist = biolist->bi_next;
1997 
1998 		bio->bi_next = NULL;
1999 		r10_bio = bio->bi_private;
2000 		r10_bio->sectors = nr_sectors;
2001 
2002 		if (bio->bi_end_io == end_sync_read) {
2003 			md_sync_acct(bio->bi_bdev, nr_sectors);
2004 			generic_make_request(bio);
2005 		}
2006 	}
2007 
2008 	if (sectors_skipped)
2009 		/* pretend they weren't skipped, it makes
2010 		 * no important difference in this case
2011 		 */
2012 		md_done_sync(mddev, sectors_skipped, 1);
2013 
2014 	return sectors_skipped + nr_sectors;
2015  giveup:
2016 	/* There is nowhere to write, so all non-sync
2017 	 * drives must be failed, so try the next chunk...
2018 	 */
2019 	if (sector_nr + max_sync < max_sector)
2020 		max_sector = sector_nr + max_sync;
2021 
2022 	sectors_skipped += (max_sector - sector_nr);
2023 	chunks_skipped ++;
2024 	sector_nr = max_sector;
2025 	goto skipped;
2026 }
2027 
2028 static sector_t
2029 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2030 {
2031 	sector_t size;
2032 	conf_t *conf = mddev->private;
2033 
2034 	if (!raid_disks)
2035 		raid_disks = mddev->raid_disks;
2036 	if (!sectors)
2037 		sectors = mddev->dev_sectors;
2038 
2039 	size = sectors >> conf->chunk_shift;
2040 	sector_div(size, conf->far_copies);
2041 	size = size * raid_disks;
2042 	sector_div(size, conf->near_copies);
2043 
2044 	return size << conf->chunk_shift;
2045 }
2046 
2047 static int run(mddev_t *mddev)
2048 {
2049 	conf_t *conf;
2050 	int i, disk_idx, chunk_size;
2051 	mirror_info_t *disk;
2052 	mdk_rdev_t *rdev;
2053 	int nc, fc, fo;
2054 	sector_t stride, size;
2055 
2056 	if (mddev->chunk_sectors < (PAGE_SIZE >> 9) ||
2057 	    !is_power_of_2(mddev->chunk_sectors)) {
2058 		printk(KERN_ERR "md/raid10: chunk size must be "
2059 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n", PAGE_SIZE);
2060 		return -EINVAL;
2061 	}
2062 
2063 	nc = mddev->layout & 255;
2064 	fc = (mddev->layout >> 8) & 255;
2065 	fo = mddev->layout & (1<<16);
2066 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2067 	    (mddev->layout >> 17)) {
2068 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2069 		       mdname(mddev), mddev->layout);
2070 		goto out;
2071 	}
2072 	/*
2073 	 * copy the already verified devices into our private RAID10
2074 	 * bookkeeping area. [whatever we allocate in run(),
2075 	 * should be freed in stop()]
2076 	 */
2077 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2078 	mddev->private = conf;
2079 	if (!conf) {
2080 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2081 			mdname(mddev));
2082 		goto out;
2083 	}
2084 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2085 				 GFP_KERNEL);
2086 	if (!conf->mirrors) {
2087 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2088 		       mdname(mddev));
2089 		goto out_free_conf;
2090 	}
2091 
2092 	conf->tmppage = alloc_page(GFP_KERNEL);
2093 	if (!conf->tmppage)
2094 		goto out_free_conf;
2095 
2096 	conf->mddev = mddev;
2097 	conf->raid_disks = mddev->raid_disks;
2098 	conf->near_copies = nc;
2099 	conf->far_copies = fc;
2100 	conf->copies = nc*fc;
2101 	conf->far_offset = fo;
2102 	conf->chunk_mask = mddev->chunk_sectors - 1;
2103 	conf->chunk_shift = ffz(~mddev->chunk_sectors);
2104 	size = mddev->dev_sectors >> conf->chunk_shift;
2105 	sector_div(size, fc);
2106 	size = size * conf->raid_disks;
2107 	sector_div(size, nc);
2108 	/* 'size' is now the number of chunks in the array */
2109 	/* calculate "used chunks per device" in 'stride' */
2110 	stride = size * conf->copies;
2111 
2112 	/* We need to round up when dividing by raid_disks to
2113 	 * get the stride size.
2114 	 */
2115 	stride += conf->raid_disks - 1;
2116 	sector_div(stride, conf->raid_disks);
2117 	mddev->dev_sectors = stride << conf->chunk_shift;
2118 
2119 	if (fo)
2120 		stride = 1;
2121 	else
2122 		sector_div(stride, fc);
2123 	conf->stride = stride << conf->chunk_shift;
2124 
2125 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2126 						r10bio_pool_free, conf);
2127 	if (!conf->r10bio_pool) {
2128 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2129 			mdname(mddev));
2130 		goto out_free_conf;
2131 	}
2132 
2133 	spin_lock_init(&conf->device_lock);
2134 	mddev->queue->queue_lock = &conf->device_lock;
2135 
2136 	chunk_size = mddev->chunk_sectors << 9;
2137 	blk_queue_io_min(mddev->queue, chunk_size);
2138 	if (conf->raid_disks % conf->near_copies)
2139 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2140 	else
2141 		blk_queue_io_opt(mddev->queue, chunk_size *
2142 				 (conf->raid_disks / conf->near_copies));
2143 
2144 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2145 		disk_idx = rdev->raid_disk;
2146 		if (disk_idx >= mddev->raid_disks
2147 		    || disk_idx < 0)
2148 			continue;
2149 		disk = conf->mirrors + disk_idx;
2150 
2151 		disk->rdev = rdev;
2152 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2153 				  rdev->data_offset << 9);
2154 		/* as we don't honour merge_bvec_fn, we must never risk
2155 		 * violating it, so limit ->max_sector to one PAGE, as
2156 		 * a one page request is never in violation.
2157 		 */
2158 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2159 		    queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
2160 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
2161 
2162 		disk->head_position = 0;
2163 	}
2164 	INIT_LIST_HEAD(&conf->retry_list);
2165 
2166 	spin_lock_init(&conf->resync_lock);
2167 	init_waitqueue_head(&conf->wait_barrier);
2168 
2169 	/* need to check that every block has at least one working mirror */
2170 	if (!enough(conf)) {
2171 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2172 		       mdname(mddev));
2173 		goto out_free_conf;
2174 	}
2175 
2176 	mddev->degraded = 0;
2177 	for (i = 0; i < conf->raid_disks; i++) {
2178 
2179 		disk = conf->mirrors + i;
2180 
2181 		if (!disk->rdev ||
2182 		    !test_bit(In_sync, &disk->rdev->flags)) {
2183 			disk->head_position = 0;
2184 			mddev->degraded++;
2185 			if (disk->rdev)
2186 				conf->fullsync = 1;
2187 		}
2188 	}
2189 
2190 
2191 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2192 	if (!mddev->thread) {
2193 		printk(KERN_ERR
2194 		       "raid10: couldn't allocate thread for %s\n",
2195 		       mdname(mddev));
2196 		goto out_free_conf;
2197 	}
2198 
2199 	if (mddev->recovery_cp != MaxSector)
2200 		printk(KERN_NOTICE "raid10: %s is not clean"
2201 		       " -- starting background reconstruction\n",
2202 		       mdname(mddev));
2203 	printk(KERN_INFO
2204 		"raid10: raid set %s active with %d out of %d devices\n",
2205 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2206 		mddev->raid_disks);
2207 	/*
2208 	 * Ok, everything is just fine now
2209 	 */
2210 	md_set_array_sectors(mddev, raid10_size(mddev, 0, 0));
2211 	mddev->resync_max_sectors = raid10_size(mddev, 0, 0);
2212 
2213 	mddev->queue->unplug_fn = raid10_unplug;
2214 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2215 	mddev->queue->backing_dev_info.congested_data = mddev;
2216 
2217 	/* Calculate max read-ahead size.
2218 	 * We need to readahead at least twice a whole stripe....
2219 	 * maybe...
2220 	 */
2221 	{
2222 		int stripe = conf->raid_disks *
2223 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
2224 		stripe /= conf->near_copies;
2225 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2226 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2227 	}
2228 
2229 	if (conf->near_copies < mddev->raid_disks)
2230 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2231 	md_integrity_register(mddev);
2232 	return 0;
2233 
2234 out_free_conf:
2235 	if (conf->r10bio_pool)
2236 		mempool_destroy(conf->r10bio_pool);
2237 	safe_put_page(conf->tmppage);
2238 	kfree(conf->mirrors);
2239 	kfree(conf);
2240 	mddev->private = NULL;
2241 out:
2242 	return -EIO;
2243 }
2244 
2245 static int stop(mddev_t *mddev)
2246 {
2247 	conf_t *conf = mddev->private;
2248 
2249 	raise_barrier(conf, 0);
2250 	lower_barrier(conf);
2251 
2252 	md_unregister_thread(mddev->thread);
2253 	mddev->thread = NULL;
2254 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2255 	if (conf->r10bio_pool)
2256 		mempool_destroy(conf->r10bio_pool);
2257 	kfree(conf->mirrors);
2258 	kfree(conf);
2259 	mddev->private = NULL;
2260 	return 0;
2261 }
2262 
2263 static void raid10_quiesce(mddev_t *mddev, int state)
2264 {
2265 	conf_t *conf = mddev->private;
2266 
2267 	switch(state) {
2268 	case 1:
2269 		raise_barrier(conf, 0);
2270 		break;
2271 	case 0:
2272 		lower_barrier(conf);
2273 		break;
2274 	}
2275 	if (mddev->thread) {
2276 		if (mddev->bitmap)
2277 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2278 		else
2279 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2280 		md_wakeup_thread(mddev->thread);
2281 	}
2282 }
2283 
2284 static struct mdk_personality raid10_personality =
2285 {
2286 	.name		= "raid10",
2287 	.level		= 10,
2288 	.owner		= THIS_MODULE,
2289 	.make_request	= make_request,
2290 	.run		= run,
2291 	.stop		= stop,
2292 	.status		= status,
2293 	.error_handler	= error,
2294 	.hot_add_disk	= raid10_add_disk,
2295 	.hot_remove_disk= raid10_remove_disk,
2296 	.spare_active	= raid10_spare_active,
2297 	.sync_request	= sync_request,
2298 	.quiesce	= raid10_quiesce,
2299 	.size		= raid10_size,
2300 };
2301 
2302 static int __init raid_init(void)
2303 {
2304 	return register_md_personality(&raid10_personality);
2305 }
2306 
2307 static void raid_exit(void)
2308 {
2309 	unregister_md_personality(&raid10_personality);
2310 }
2311 
2312 module_init(raid_init);
2313 module_exit(raid_exit);
2314 MODULE_LICENSE("GPL");
2315 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2316 MODULE_ALIAS("md-raid10");
2317 MODULE_ALIAS("md-level-10");
2318